Science.gov

Sample records for actively erupting submarine

  1. Long-term eruptive activity at a submarine arc volcano

    USGS Publications Warehouse

    Embley, R.W.; Chadwick, W.W.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; De Ronde, C. E. J.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H.; Stern, R.J.; Lebon, G.T.; Nakamura, K.-I.; Merle, S.G.; Hein, J.R.; Wiens, D.A.; Tamura, Y.

    2006-01-01

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. ?? 2006 Nature Publishing Group.

  2. Active submarine volcano sampled

    USGS Publications Warehouse

    Taylor, B.

    1983-01-01

    On June 4, 1982, two full dredge hauls of fresh lava were recovered from the upper flanks of Kavachi submarine volcano, Solomon Islands, in the western Pacific Ocean, from the water depths of 1,200 and 2,700 feet. the shallower dredge site was within 0.5 mile of the active submarine vent shown at the surface by an area of slick water, probably caused by gas emissions. Kavachi is a composite stratovolcano that has been observed to erupt every year or two for at least the last 30 years (see photographs). An island formed in 1952, 1961, 1965, and 1978; but, in each case, it rapidly eroded below sea level. The latest eruption was observed by Solair pilots during the several weeks up to and including May 18, 1982. 

  3. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  4. Integrated volcanologic and petrologic analysis of the 1650 AD eruption of Kolumbo submarine volcano, Greece

    NASA Astrophysics Data System (ADS)

    Cantner, Kathleen; Carey, Steven; Nomikou, Paraskevi

    2014-01-01

    Kolumbo submarine volcano, located 7 km northeast of Santorini, Greece in the Aegean Sea, last erupted in 1650 AD. Submarine and subaerial explosive activity lasted for a period of about four months and led to the formation of thick (~ 250 m) highly stratified pumice deposits on the upper crater walls as well as extensive pumice rafts that were dispersed throughout the southern Aegean Sea. Subaerial tephra fallout from eruption columns that breached the surface occurred as far east as Turkey.

  5. New Insights into Basaltic Balloon Formation during Submarine Eruptions

    NASA Astrophysics Data System (ADS)

    Carey, S.; Kelly, J.; Rosi, M.; Pistolesi, M.; Marani, M.; Roman, C.; Croff Bell, K. L.

    2014-12-01

    Remotely operated vehicle (ROV) explorations in the area of the 1891 Foerstner submarine eruption (Pantelleria, Italy) during cruise NA-018 of the E/V Nautilus has provided the first examination of the vent site of a basaltic balloon-forming eruption. Ultra high-resolution bathymetric mapping defined a mound-like vent morphology in water depths of ~250 meter, constructed dominantly of highly vesicular scoriaceous fragments with minor pillow lava flows. The formation of floating basaltic balloons that reached the surface of the Strait of Sicily during the eruption is attributed to a hybrid Strombolian eruption mechanism that involved pre-concentration of volatiles into gas-rich portions of magma beneath the vent. An important difference of this Strombolian mechanism compared to its subaerial counterpart is the occurrence of buoyant magma discharge in the submarine environment caused by localized high gas contents. The added buoyancy flux modifies the fluid dynamic configuration of magma venting on the seafloor allowing for detachment of highly-inflated parcels of gas-rich magma. Some of these parcels contain large gas cavities that are enveloped in a partially quenched shell and maintain sufficient buoyancy to rise to the sea surface as a basaltic balloon. The majority of the vesicular magma maintains only partial positive buoyancy or negative buoyancy and is explosively fragmented to form large quantities of decimeter-scale fragments that accumulate close to the vent. Formation of the basaltic balloons is thus considered a somewhat accidental process that involves a subset of the total erupted volume of magma during the eruption. Suitable conditions for balloon formation include low magma viscosity, pre-concentration of gas, and moderate pressures (i.e.water depth). The dampening effect of seawater greatly reduces the dispersal of pyroclasts resulting in a mound-like vent morphology compared to subaerial scoria cones typically associated with Strombolian activity.

  6. Active Submarine Volcanoes and Electro-Optical Sensor Networks: The Potential of Capturing and Quantifying an Entire Eruptive Sequence at Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.; Kelley, D. S.; Proskurowski, G.; Fundis, A. T.; Kawka, O.

    2011-12-01

    The NE Pacific Regional Scale Nodes (RSN) component of the NSF Ocean Observatories Initiative is designed to provide unprecedented electrical power and bandwidth to the base and summit of Axial Seamount. The scientific community is engaged in identifying a host of existing and innovative observation and measurement techniques that utilize the high-power and bandwidth infrastructure and its real-time transmission capabilities. The cable, mooring, and sensor arrays will enable the first quantitative documentation of myriad processes leading up to, during, and following a submarine volcanic event. Currently planned RSN instrument arrays will provide important and concurrent spatial and temporal constraints on earthquake activity, melt migration, hydrothermal venting behavior and chemistry, ambient currents, microbial community structure, high-definition (HD) still images and HD video streaming from the vents, and water-column chemistry in the overlying ocean. Anticipated, but not yet funded, additions will include AUVs and gliders that continually document the spatial-temporal variations in the water column above the volcano and the distal zones. When an eruption appears imminent the frequency of sampling will be increased remotely, and the potential of repurposing the tracking capabilities of the mobile sensing platforms will be adapted to the spatial indicators of likely eruption activity. As the eruption begins mobile platforms will fully define the geometry, temperature, and chemical-microbial character of the volcanic plume as it rises into the thoroughly documented control volume above the volcano. Via the Internet the scientific community will be able to witness and direct adaptive sampling in response to changing conditions of plume formation. A major goal will be to document the eruptive volume and link the eruption duration to the volume of erupted magma. For the first time, it will be possible to begin to quantify the time-integrated output of an underwater

  7. Insights into the 2011-2012 submarine eruption off the coast of El Hierro (Canary Islands, Spain) from statistical analyses of earthquake activity

    NASA Astrophysics Data System (ADS)

    Ibáñez, J. M.; De Angelis, S.; Díaz-Moreno, A.; Hernández, P.; Alguacil, G.; Posadas, A.; Pérez, N.

    2012-08-01

    The purpose of this work is to gain insights into the 2011-2012 eruption of El Hierro (Canary Islands) by mapping the evolution of the seismic b-value. The El Hierro seismic sequence offers a rather unique opportunity to investigate the process of reawakening of an oceanic intraplate volcano after a long period of repose. The 2011-2012 eruption is a submarine volcanic event that took place about 2 km off of the southern coast of El Hierro. The eruption was accompanied by an intense seismic swarm and surface manifestations of activity. The earthquake catalogue during the period of unrest includes over 12 000 events, the largest with magnitude 4.6. The seismic sequence can be grouped into three distinct phases, which correspond to well-separated spatial clusters and distinct earthquake regimes. The estimated b-value is of 1.18 ± 0.03, and a magnitude of completeness of 1.3, for the entire catalogue. B is very close to 1.0, which indicates completeness of the earthquake catalogue with only minor departures from the linearity of Gutenberg-Richter frequency-magnitude distribution. The most straightforward interpretation of this result is that the seismic swarm reached its final stages, and no additional large magnitude events should be anticipated, similarly to what one would expect for non-volcanic earthquake sequences. The results, dividing the activity in different phases, illustrate remarkable differences in the estimate of b-value during the early and late stages of the eruption. The early pre-eruptive activity was characterized by a b-value of 2.25. In contrast, the b-value was 1.25 during the eruptive phase. Based on our analyses, and the results of other studies, we propose a scenario that may account for the observations reported in this work. We infer that the earthquakes that occurred in the first phase reflect magma migration from the upper mantle to crustal depths. The area where magma initially intruded into the crust, because of its transitional nature

  8. Submarine Volcanic Eruptions and Potential Analogs for Venus

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Mouginismark, P. J.; Fryer, P.; Gaddis, L. R.

    1985-01-01

    As part of an analysis program to better understand the diversity of volcanic processes on the terrestrial planets, an investigation of the volcanic landforms which exist on the Earth's ocean floor was initiated. In part, this analysis is focused toward gaining a better understanding of submarine volcanic landforms in their own right, but also it is hoped that these features may show similarities to volcanic landforms on Venus, due to the high ambient water (Earth) and atmospheric (Venus) pressures. A series of numerical modelling experiments was performed to investigate the relative importance of such attributes as water pressure and temperature on the eruption process, and to determine the rate of cooling and emplacement of lava flows in the submarine environment. Investigations to date show that the confining water pressure and the buoyancy effects of the surrounding water significantly affect the styles of volcanism on the ocean floor. In the case of Venusian volcanism, confining pressures will not be as great as that found at the ocean's abyssal plains, but nevertheless the general trend toward reducing magma vesiculation will hold true for Venus as well as the ocean floor. Furthermore, other analogs may also be found between submarine volcanism and Venusian activity.

  9. Products of Submarine Fountains and Bubble-burst Eruptive Activity at 1200 m on West Mata Volcano, Lau Basin

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Rubin, K. H.; Keller, N. S.

    2009-12-01

    An eruption was observed and sampled at West Mata Volcano using ROV JASON II for 5 days in May 2009 during the NSF-NOAA eruption response cruise to this region of suspected volcanic activity. Activity was focused near the summit at the Prometheus and Hades vents. Prometheus erupted almost exclusively as low-level fountains. Activity at Hades cycled between vigorous degassing, low fountains, and bubble-bursts, building up and partially collapsing a small spatter/scoria cone and feeding short sheet-like and pillow flows. Fire fountains at Prometheus produced mostly small primary pyroclasts that include Pele's hair and fluidal fragments of highly vesicular volcanic glass. These fragments have mostly shattered and broken surfaces, although smooth spatter-like surfaces also occur. As activity wanes, glow in the vent fades, and denser, sometimes altered volcanic clasts are incorporated into the eruption. The latter are likely from the conduit walls and/or vent-rim ejecta, drawn back into the vent by inrushing seawater that replaces water entrained in the rising volcanic plume. Repeated recycling of previously erupted materials eventually produces rounded clasts resembling beach cobbles and pitted surfaces on broken phenocrysts of pyroxene and olivine. We estimate that roughly 33% of near vent ejecta are recycled. Our best sample of this ejecta type was deposited in the drawer of the JASON II ROV during a particularly large explosion that occurred during plume sampling immediately above the vent. Elemental sulfur spherules up to 5 mm in diameter are common in ejecta from both vents and occur inside some of the lava fragments Hades activity included dramatic bubble-bursts unlike anything previously observed under water. The lava bubbles, sometimes occurring in rapid-fire sequence, collapsed in the water-column, producing fragments that are quenched in less than a second to form Pele's hair, limu o Pele, spatter-like lava blobs, and scoria. All are highly vesicular

  10. Discovery of the Largest Historic Silicic Submarine Eruption

    NASA Astrophysics Data System (ADS)

    Carey, Rebecca J.; Wysoczanski, Richard; Wunderman, Richard; Jutzeler, Martin

    2014-05-01

    It was likely twice the size of the renowned Mount St. Helens eruption of 1980 and perhaps more than 10 times bigger than the more recent 2010 Eyjafjallajökull eruption in Iceland. However, unlike those two events, which dominated world news headlines, in 2012 the daylong submarine silicic eruption at Havre volcano in the Kermadec Arc, New Zealand (Figure 1a; ~800 kilometers north of Auckland, New Zealand), passed without fanfare. In fact, for a while no one even knew it had occurred.

  11. Preliminary results from Submarine Ring of Fire 2012 - NE Lau: First explorations of hydrothermally active volcanoes across the supra-subduction zone and a return to the West Mata eruption site

    NASA Astrophysics Data System (ADS)

    Resing, J.; Embley, R. W.

    2012-12-01

    Several expeditions in the past few years have shown that the NE Lau basin has one of the densest concentrations of volcanically and hydrothermally active volcanoes on the planet. In 2008 two active submarine volcanic eruptions were discovered during a one week period and subsequent dives with the Jason remotely operated vehicle at one of the sites (West Mata) revealed an active boninite eruption taking place at 1200 m depth. Two dives at the other revealed evidence for recent eruption along the NE Lau Spreading Center. Several more expeditions in 2010-11 discovered additional evidence about the extent and types of hydrothermal activity in this area. Data from CTDO (conductivity, temperature, depth, optical) vertical casts, tow-yos, and towed camera deployments revealed more than 15 hydrothermal sites at water depths from ~800 to 2700 m that include sites from the magmatic arc, the "rear arc," and the back arc spreading centers. These sites range from high temperature black smoker sulfide-producing systems to those dominated by magmatic degassing. Dives by remotely operated vehicle (Quest 4000) in September 2012 will explore these sites and return samples for chemical, biological and geologic studies. One of the dives will be a return visit to West Mata volcano, the site of the deepest submarine eruption yet observed (in 2009). Recent multibeam data reveal large changes in West Mata's summit, suggesting that the nature of the eruption and the location of the erupting vents may have changed. In addition to the preliminary results from the science team, we will also discuss our use and experience with continuous live video transmission (through the High Definition video camera on the Quest 4000) back to shore via satellite and through the internet. Submarine Ring of Fire 2012 Science Team: Bradley Tebo, Bill Chadwick, Ed Baker, Ken Rubin, Susan Merle, Timothy Shank, Sharon Walker, Andra Bobbitt, Nathan Buck, David Butterfield, Eric Olson, John Lupton, Richard Arculus

  12. Distribution of tephra from the 1650 AD submarine eruption of Kolumbo volcano, Greece

    NASA Astrophysics Data System (ADS)

    Fuller, S. A.; Carey, S.; Nomikou, P.

    2013-12-01

    Kolumbo submarine volcano, located 7 km northeast of Santorini in the Aegean Sea, last erupted in 1650 AD resulting in about 70 fatalities on Thera from gas discharge and significant coastal destruction from tsunamis. Extensive pumice rafts were reported over a large area surrounding Santorini, extending as far south as Crete. Tephra from the 1650 AD submarine eruption has been correlated in sediment box cores using a combination of mineralogy and major element composition of glass shards. The biotite-bearing rhyolite of Kolumbo can be readily discriminated from other silicic pyroclastics derived from the main Santorini complex. In general the tephra deposits are very fine grained (silt to fine sand-size), medium gray in color, and covered by about 10 cms of brown hemipelagic sediment. This corresponds to an average background sedimentation rate of 29 cm/kyr. The distribution of the 1650 AD Kolumbo tephra extends over an area larger than previously inferred from seismic profiles on the volcano's slopes and in adjacent basins. The cores indicate tephra deposits at least 19 km from the caldera, more than double the approximate 9 km inferred from seismic data. The preferential occurrence of the tephra within basins and sedimentological features such as cross bedding and laminations suggests that emplacement was dominated by sediment gravity flows generated from submarine and subaerial eruption plumes. We suggest that generation of the sediment gravity flows took place by collapse of submarine eruption columns and by Rayleigh-Taylor instabilities that formed on the sea surface as subaerial fallout accumulated from parts of the columns that breached the surface. Additionally, SEM imaging reveals particle morphologies that can be attributed to fragmentation by both primary volatile degassing (bubble wall shards) and phreatomagmatic activity (blocky equant grains). It is likely that phreatomagmatic activity became more important in the latter stages of the eruptive

  13. Hydroacoustic, infrasonic and seismic monitoring of the submarine eruptive activity and sub-aerial plume generation at South Sarigan, May 2010

    NASA Astrophysics Data System (ADS)

    Green, David N.; Evers, Läslo G.; Fee, David; Matoza, Robin S.; Snellen, Mirjam; Smets, Pieter; Simons, Dick

    2013-05-01

    Explosive submarine volcanic processes are poorly understood, due to the difficulties associated with both direct observation and continuous monitoring. In this study hydroacoustic, infrasound, and seismic signals recorded during the May 2010 submarine eruption of South Sarigan seamount, Marianas Arc, are used to construct a detailed event chronology. The signals were recorded on stations of the International Monitoring System, which is a component of the verification measures for the Comprehensive Nuclear-Test-Ban Treaty. Numerical hydroacoustic and infrasound propagation modelling confirms that viable propagation paths from the source to receivers exist, and provide traveltimes allowing signals recorded on the different technologies to be associated. The eruption occurred in three stages, separated by three-hour periods of quiescence. 1) A 46 h period during which broadband impulsive hydroacoustic signals were generated in clusters lasting between 2 and 13 min. 95% of the 7602 identified events could be classified into 4 groups based on their waveform similarity. The time interval between clusters decreased steadily from 80 to 25 min during this period. 2) A five-hour period of 10 Hz hydroacoustic tremor, interspersed with large-amplitude, broadband signals. Associated infrasound signals were also recorded at this time. 3) An hour-long period of transient broadband events culminated in two large-amplitude hydroacoustic events and one broadband infrasound signal. A speculative interpretation, consistent with the data, suggests that during phase (1) transitions between endogenous dome growth and phreatomagmatic explosions occurred with the magma ascent rate accelerating throughout the period; during phase (2) continuous venting of fragmented magma occurred, and was powerful enough to breach the sea surface. During the climactic phase (3) discrete powerful explosions occurred, and sufficient seawater was vaporised to produce the contemporaneous 12 km altitude steam

  14. Low sulfur content in submarine lavas: An unreliable indicator of subaerial eruption

    SciTech Connect

    Davis, A.S.; Clague, D.A.; Schulz, M.S.; Hein, J.R. )

    1991-07-01

    Low S content (< 250 ppm) has been used to identify subaerially erupted Hawaiian and Icelandic lavas. Large differences in S content of submarine-erupted lavas from different tectonic settings indicate that the behavior of S is complex. Variations is S abundance in undegassed, submarine-erupted lavas can result from different source compositions, different percentages of partial melting, and crystal fractionation. Low S concentrations in highly vesicular submarine lavas suggest that partial degassing can occur despite great hydrostatic pressure. These processes need to be evaluated before using S content as an indicator of eruption depth.

  15. Correlation of submarine deposits and witness accounts of the 1952 Myojinsho submarine eruption, Izu-Bonin arc, by bathymetric survey

    NASA Astrophysics Data System (ADS)

    Shimano, T.; Tani, K.; Maeno, F.; Fiske, R. S.; Shukuno, H.; Ito, K.; Shimoda, G.; Suzuki, Y. J.; Yoshida, T.; Taniguchi, H.

    2009-12-01

    The relationship between eruptive phenomena during the 1952 phreatomagmatic eruption and consequent deposits under seawater is discussed, on the basis of bathymetric survey of Myojinsho volcano, Izu-Bonin island arc (32°55’N, 140°00’E). We carried out some research cruises by the ship Natsushima (JAMSTEC) in 2006-2008. We used unmanned bathymetric vehicle, Hyperdolphin, for observation and sampling of the submarine deposit. Myojinsho volcano is an active post-caldera volcano that grew on the northeastern rim of Myojinsho caldera (8 x 6 km in diameter). There have been many reports of colored seawater, and we also recognized a bubbly column above the summit of Myojinsho (Myojin reef; ca. 50 m below sea level) during acoustic survey. The 1952 eruption was the latest eruption that formed and destroyed new island above sea level, and would have been the first submarine eruption to be recorded by good scientific standard. This eruption was firstly recognized at the middle of September, 1952, and explosions and dome growth have been documented for about 1 year till the middle of September, 1953. There are many time series color photographs of explosions so that we can evaluate these explosions quantitatively (Ossaka, 1991). These records indicate that most of the cock’s tail jets are limited within the proximal area (ca. 500m) from the center of explosions, whereas the base surges and lateral steam clouds reach farther than ca. 500 m. During the bathymetric survey, we found several small lobes of pumice-rich deposits (< 1 m thick, several meter wide, several tens of meter long) on the sandy flat slope father than ca. 500 m from the summit of Myojinsho (deeper than ca. 300 m below sea level). Large pumices are concentrated at the front of each lobe, and the lobes become thinner toward the summit. On the other hand, the proximal deposit (<500 m from the summit) is characterized by scattered large angular blocky rocks or pumices. The largest blocks are as large as

  16. The 2014 Submarine Eruption of Ahyi Volcano, Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Chadwick, W.; Merle, S. G.; Buck, N. J.; Butterfield, D. A.; Coombs, M. L.; Evers, L. G.; Heaney, K. D.; Lyons, J. J.; Searcy, C. K.; Walker, S. L.; Young, C.; Embley, R. W.

    2014-12-01

    On April 23, 2014, Ahyi Volcano, a submarine cone in the Northern Mariana Islands (NMI), ended a 13-year-long period of repose with an explosive eruption lasting over 2 weeks. The remoteness of the volcano and the presence of several seamounts in the immediate area posed a challenge for constraining the source location of the eruption. Critical to honing in on the Ahyi area quickly were quantitative error estimates provided by the CTBTO on the backazimuth of hydroacoustic arrivals observed at Wake Island (IMS station H11). T-phases registered across the NMI seismic network at the rate of approximately 10 per hour until May 8 and were observed in hindsight at seismic stations on Guam and Chichijima. After May 8, sporadic T-phases were observed until May 17. Within days of the eruption onset, reports were received from NOAA research divers of hearing explosions underwater and through the hull on the ship while working on the SE coastline of Farallon de Pajaros (Uracas), a distance of 20 km NW of Ahyi. In the same area, the NOAA crew reported sighting mats of orange-yellow bubbles on the water surface and extending up to 1 km from the shoreline. Despite these observations, satellite images showed nothing unusual throughout the eruption. During mid-May, a later cruise leg on the NOAA ship Hi'ialakai that was previously scheduled in the Ahyi area was able to collect some additional data in response to the eruption. Preliminary multibeam sonar bathymetry and water-column CTD casts were obtained at Ahyi. Comparison between 2003 and 2014 bathymetry revealed that the minimum depth had changed from 60 m in 2003 to 75 m in 2014, and a new crater ~95 m deep had formed at the summit. Extending SSE from the crater was a new scoured-out landslide chute extending downslope to a depth of at least 2300 m. Up to 125 m of material had been removed from the head of the landslide chute and downslope deposits were up to 40 m thick. Significant particle plumes were detected at all three

  17. Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of El Hierro (Canary Islands).

    PubMed

    Ferrera, Isabel; Arístegui, Javier; González, José M; Montero, María F; Fraile-Nuez, Eugenio; Gasol, Josep M

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1-V3 regions for Bacteria and V3-V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70-200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed.

  18. Transient Changes in Bacterioplankton Communities Induced by the Submarine Volcanic Eruption of El Hierro (Canary Islands)

    PubMed Central

    Ferrera, Isabel; Arístegui, Javier; González, José M.; Montero, María F.; Fraile-Nuez, Eugenio; Gasol, Josep M.

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1–V3 regions for Bacteria and V3–V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70–200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed

  19. Imaging of CO2 bubble plumes above an erupting submarine volcano, NW Rota-1, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Chadwick, William W.; Merle, Susan G.; Buck, Nathaniel J.; Lavelle, J. William; Resing, Joseph A.; Ferrini, Vicki

    2014-11-01

    Rota-1 is a submarine volcano in the Mariana volcanic arc located ˜100 km north of Guam. Underwater explosive eruptions driven by magmatic gases were first witnessed there in 2004 and continued until at least 2010. During a March 2010 expedition, visual observations documented continuous but variable eruptive activity at multiple vents at ˜560 m depth. Some vents released CO2 bubbles passively and continuously, while others released CO2 during stronger but intermittent explosive bursts. Plumes of CO2 bubbles in the water column over the volcano were imaged by an EM122 (12 kHz) multibeam sonar system. Throughout the 2010 expedition numerous passes were made over the eruptive vents with the ship to document the temporal variability of the bubble plumes and relate them to the eruptive activity on the seafloor, as recorded by an in situ hydrophone and visual observations. Analysis of the EM122 midwater data set shows: (1) bubble plumes were present on every pass over the summit and they rose 200-400 m above the vents but dissolved before they reached the ocean surface, (2) bubble plume deflection direction and distance correlate well with ocean current direction and velocity determined from the ship's acoustic doppler current profiler, (3) bubble plume heights and volumes were variable over time and correlate with eruptive intensity as measured by the in situ hydrophone. This study shows that midwater multibeam sonar data can be used to characterize the level of eruptive activity and its temporal variability at a shallow submarine volcano with robust CO2 output.

  20. The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro

    NASA Astrophysics Data System (ADS)

    Magdalena Santana-Casiano, J.; González-Dávila, Melchor; Fraile-Nuez, Eugenio

    2014-05-01

    The shallow submarine eruption which took place in October 10th 2011, 1.8 km south of the island of El Hierro (Canary Islands) allowed the study of the abrupt changes in the physical-chemical properties of seawater caused by volcanic discharges. In order to monitor the evolution of these changes, seven oceanographic surveys were carried out over six months (November 2011-April 2012) from the beginning of the eruptive stage to the post-eruptive phase. Important changes in the water column chemistry including large decreases in pH, striking effects on the carbonate system, decreases in the oxygen concentrations and enrichment of Fe(II) and nutrients were produced. As a result of the ongoing magmatic activity, the submarine eruption produced an unprecedented episode of severe acidification and fertilization. The findings highlight that the same volcano which was responsible for the creation of a highly corrosive environment, affecting marine biota, has also provided the nutrients required for the rapid recuperation of the marine ecosystem.

  1. Syn-eruptive CO2 Degassing of Submarine Lavas Flows: Constraints on Eruption Dynamics

    NASA Astrophysics Data System (ADS)

    Soule, S. A.; Boulahanis, B.; Fundis, A.; Clague, D. A.; Chadwick, B.

    2013-12-01

    At fast- and intermediate-spreading rate mid-ocean ridges, quenched lava samples are commonly supersaturated in CO2 with concentrations similar to the pressure/depth of shallow crustal melt lenses. This supersaturation is attributed to rapid ascent and decompression rates that exceed the kinetic rates of bubble nucleation and growth. During emplacement, CO2 supersaturated lavas experience nearly isothermal and isobaric conditions over a period of hours. A recent study has demonstrated systematic decreases in CO2 with increasing transport distance (i.e. time) along a single flow pathway within the 2005-06 eruption at the East Pacific Rise (~2500 m.b.s.l.). Based on analysis of vesicle population characteristics and complementary noble gas measurements, it is proposed that diffusion of CO2 into bubbles can be used as a basis to model the gas loss from the melt and thus place constraints on the dynamics of the eruption. We suggest that submarine lava flows represent a natural experiment in degassing that isolates conditions of low to moderate supersaturation and highlights timescales of diffusion and vesiculation processes that are relevant to shallow crustal and conduit processes in subaerial basaltic volcanic systems. Here we report a new suite of volatile concentration analyses and vesicle size distributions from the 2011 eruption of Axial Volcano along the Juan de Fuca Ridge (~1500 m.b.s.l.). The lava flows from this eruption are mapped by differencing of repeat high-resolution bathymetric surveys, so that the geologic context of the samples is known. In addition, in-situ instrument records record the onset of the eruption and place constraints on timing that can be used to verify estimates of eruption dynamics derived from degassing. This sample suite provides a comprehensive view of the variability in volatile concentrations within a submarine eruption and new constraints for evaluating models of degassing and vesiculation. Initial results show systematic

  2. The 1998 eruption of Axial Seamount: New insights on submarine lava flow emplacement from high-resolution mapping

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Clague, D. A.; Embley, R. W.; Perfit, M. R.; Butterfield, D. A.; Caress, D. W.; Paduan, J. B.; Martin, J. F.; Sasnett, P.; Merle, S. G.; Bobbitt, A. M.

    2013-10-01

    Axial Seamount, an active submarine volcano on the Juan de Fuca Ridge at 46°N, 130°W, erupted in January 1998 along 11 km of its upper south rift zone. We use ship-based multibeam sonar, high-resolution (1 m) bathymetry, sidescan sonar imagery, and submersible dive observations to map four separate 1998 lava flows that were fed from 11 eruptive fissures. These new mapping results give an eruption volume of 31 × 106 m3, 70% of which was in the northern-most flow, 23% in the southern-most flow, and 7% in two smaller flows in between. We introduce the concept of map-scale submarine lava flow morphology (observed at a scale of hundreds of meters, as revealed by the high-resolution bathymetry), and an interpretive model in which two map-scale morphologies are produced by high effusion-rate eruptions: "inflated lobate flows" are formed near eruptive vents, and where they drain downslope more than 0.5-1.0 km, they transition to "inflated pillow flows." These two morphologies are observed on the 1998 lava flows at Axial. A third map-scale flow morphology that was not produced during this eruption, "pillow mounds," is formed by low effusion-rate eruptions in which pillow lava piles up directly over the eruptive vents. Axial Seamount erupted again in April 2011 and there are remarkable similarities between the 1998 and 2011 eruptions, particularly the locations of eruptive vents and lava flow morphologies. Because the 2011 eruption reused most of the same eruptive fissures, 58% of the area of the 1998 lava flows is now covered by 2011 lava.

  3. Mapping the sound field of an erupting submarine volcano using an acoustic glider.

    PubMed

    Matsumoto, Haru; Haxel, Joseph H; Dziak, Robert P; Bohnenstiehl, Delwayne R; Embley, Robert W

    2011-03-01

    An underwater glider with an acoustic data logger flew toward a recently discovered erupting submarine volcano in the northern Lau basin. With the volcano providing a wide-band sound source, recordings from the two-day survey produced a two-dimensional sound level map spanning 1 km (depth) × 40 km(distance). The observed sound field shows depth- and range-dependence, with the first-order spatial pattern being consistent with the predictions of a range-dependent propagation model. The results allow constraining the acoustic source level of the volcanic activity and suggest that the glider provides an effective platform for monitoring natural and anthropogenic ocean sounds.

  4. Bubble Plumes above erupting NW Rota-1 submarine volcano, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Chadwick, B.; Merle, S. G.; Embley, R. W.; Buck, N.; Resing, J. A.; Leifer, I.

    2013-12-01

    NW Rota-1 is a submarine volcano in the Mariana volcanic arc with a summit depth of 517 m, located ~100 km north of Guam. Underwater explosive eruptions driven by magmatic gases were first witnessed here in 2004 and the volcano has remained persistently active ever since. During a March 2010 expedition to NW Rota-1 with the remotely operated vehicle Jason, we observed intermittent explosive activity at five distinct eruptive vents along a line 100-m long near the summit of the volcano (550-590 m depth). The continuous but variable eruptive activity produced CO2 bubble plumes that rose in the water column over the volcano and could be readily imaged by sonar because they provide excellent acoustic reflectors. This study compares the manifestations of NW Rota's eruptive activity as measured by several independent methods, including: (1) an EM122 multibeam sonar system (12 kHz) on the R/V Kilo Moana that imaged bubble plumes in the water column over the volcano, (2) hydrophone data that recorded the sounds of the variable eruptive activity, and (3) visual observations of the activity at the eruptive vents on the seafloor from Jason. Throughout the 2010 expedition numerous passes were made over the volcano's summit to image the bubble plumes with the EM122 multibeam sonar, in order to capture the variability of the plumes over time and to relate them to the eruptive output of the volcano. The mid-water sonar dataset totals >95 hours of observations over a 12-day period. Analysis of the EM122 dataset shows: (1) bubble plumes were visible in the water column on every pass over the summit, (2) separate plumes were resolvable from up to 4 of the 5 eruptive vents at times, (3) plume heights and intensities were variable with time, (4) the highest observed bubble plume rise height was 415 meters above the seafloor to within 175 m of the ocean surface, while lower amplitude wisps rose to heights <100 m from the surface, (5) most of the bubble plumes were deflected to the WSW

  5. Sulfur in submarine eruptions: Observations and preliminary data from West Mata, NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Keller, N. S.; Rubin, K. H.; Clague, D. A.; Michael, P. J.; Resing, J. A.; Cooper, L. B.; Shaw, A. M.; Ono, S.; Tamura, Y.

    2009-12-01

    Sulfur in its various oxidation states is a major component of magmatic volatiles; its abundance and isotopic composition constrain degassing processes as well as sulfur sources, and have been used as a tool to study sulfur cycling at convergent plate margins. However, there are almost no sulfur isotope data on active submarine eruptions as such eruptions have only been witnessed in recent years. Little is known on the effect of water depth and eruptive processes on the isotopic composition of all sulfur-bearing phases, in particular on the relationship between δ33S and δ34S. Therefore, the active eruption observed at West Mata Volcano during a NOAA/NSF rapid response cruise to the NE Lau Basin in May 2009 provided a unique opportunity to study lavas, fluids and native sulfur from an ongoing submarine eruption. West Mata is situated about 40 km west of the northern termination of the Tonga Arc and its summit is at a water depth of 1193 m. Two main areas of active vents were discovered near the summit, named Hades and Prometheus. The observed eruptive processes consisted of pyroclastic activity and degassing at both vents; additionally, extrusion of tubular pillows was observed at Hades. The eruption plumes had a pronounced yellow color, due to the presence of large quantities of native sulfur globules. Five ROV Jason 2 dives on and around the summit area returned samples of pillows, sheet flows, spatter fragments, pyroclastic deposits, as well as gas and fluid samples. The pyroclastic deposits close to the vents contain numerous sulfur droplets, whereas sediment scoops taken further from the vents are free of native sulfur, suggesting that the droplets disintegrate and dissolve over time, so their presence may be a qualitative age indicator for the eruptive material. The sulfur globules are generally quasi perfect spheres up to 5 mm in diameter, mostly yellow, but sometimes pink, orange or grey. Several droplets were found to have elongated or twisted shapes

  6. Magmatic sill intrusions beneath El Hierro Island following the 2011-2012 submarine eruption

    NASA Astrophysics Data System (ADS)

    Benito-Saz, María Á.; Sigmundsson, Freysteinn; Parks, Michelle M.; García-Cañada, Laura; Domínguez Cerdeña, Itahiza

    2016-04-01

    El Hierro, the most southwestern island of Canary Islands, Spain, is a volcano rising from around 3600 m above the ocean floor and up to of 1500 m above sea level. A submarine eruption occurred off the coast of El Hierro in 2011-2012, which was the only confirmed eruption in the last ~ 600 years. Activity continued after the end of the eruption with six magmatic intrusions occurring between 2012-2014. Each of these intrusions was characterized by hundreds of earthquakes and 3-19 centimeters of observed ground deformation. Ground displacements at ten continuous GPS sites were initially inverted to determine the optimal source parameters (location, geometry, volume/pressure change) that best define these intrusions from a geodetic point of view. Each intrusive period appears to be associated with the formation of a separate sill, with inferred volumes between 0.02 - 0.3 km3. SAR images from the Canadian RADARSAT-2 satellite and the Italian Space Agency COSMO-SkyMed constellation have been used to produce high-resolution detailed maps of line-of-sight displacements for each of these intrusions. These data have been combined with the continuous GPS observations and a joint inversion undertaken to gain further constraints on the optimal source parameters for each of these separate intrusive events. The recorded activity helps to understand how an oceanic intraplate volcanic island grows through repeated sill intrusions; well documented by seismic, GPS and InSAR observations in the case of the El Hierro activity.

  7. Effects of a submarine eruption on the performance of two brown seaweeds

    NASA Astrophysics Data System (ADS)

    Betancor, Séfora; Tuya, Fernando; Gil-Díaz, Teba; Figueroa, Félix L.; Haroun, Ricardo

    2014-03-01

    World oceans are becoming more acidic as a consequence of CO2 anthropogenic emissions, with multiple physiological and ecological implications. So far, our understanding is mainly limited to some species through in vitro experimentation. In this study, we took advantage of a recent submarine eruption (from October 2011 to March 2012) at ~ 1 nautical mile offshore El Hierro Island (Canary Islands, central east Atlantic) to determine whether altered physical-chemical conditions, mainly sudden natural ocean acidification, affected the morphology, photosynthesis (in situ Chl-a fluorescence) and physiological performance (photo-protective mechanisms and oxidative stress) of the conspicuous brown seaweeds Padina pavonica-a species with carbonate deposition - and Lobophora variegata-a species without carbonate on thallus surfaces - , both with similar morphology. Seaweeds were sampled twice: November 2011 (eruptive phase with a pH drop of ca. 1.22 units relative to standard conditions) and March 2012 (post-eruptive phase with a pH of ca. 8.23), on two intertidal locations adjacent to the eruption and at a control location. P. pavonica showed decalcification and loss of photo-protective compounds and antioxidant activity at locations affected by the eruption, behaving as a sun-adapted species during lowered pH conditions. At the same time, L. variegata suffered a decrease in photo-protective compounds and antioxidant activity during the volcanic event, but its photosynthetic performance remained unaltered. These results reinforce the idea that calcareous seaweeds, as a whole, are more sensitive than non-calcareous seaweeds to alter their performance under scenarios of reduced pH.

  8. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    NASA Astrophysics Data System (ADS)

    Fraile-Nuez, Eugenio; Magdalena Santana-Casiano, J.; González-Dávila, Melchor

    2014-05-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments.

  9. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response.

    PubMed

    Fraile-Nuez, E; González-Dávila, M; Santana-Casiano, J M; Arístegui, J; Alonso-González, I J; Hernández-León, S; Blanco, M J; Rodríguez-Santana, A; Hernández-Guerra, A; Gelado-Caballero, M D; Eugenio, F; Marcello, J; de Armas, D; Domínguez-Yanes, J F; Montero, M F; Laetsch, D R; Vélez-Belchí, P; Ramos, A; Ariza, A V; Comas-Rodríguez, I; Benítez-Barrios, V M

    2012-01-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments.

  10. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    PubMed Central

    Fraile-Nuez, E.; González-Dávila, M.; Santana-Casiano, J. M.; Arístegui, J.; Alonso-González, I. J.; Hernández-León, S.; Blanco, M. J.; Rodríguez-Santana, A.; Hernández-Guerra, A.; Gelado-Caballero, M. D.; Eugenio, F.; Marcello, J.; de Armas, D.; Domínguez-Yanes, J. F.; Montero, M. F.; Laetsch, D. R.; Vélez-Belchí, P.; Ramos, A.; Ariza, A. V.; Comas-Rodríguez, I.; Benítez-Barrios, V. M.

    2012-01-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. PMID:22768379

  11. Quantifying the eruption cycle at Axial Seamount using submarine geodesy

    NASA Astrophysics Data System (ADS)

    Nooner, S. L.; Chadwick, B.

    2011-12-01

    Bottom pressure instruments within the caldera of Axial Seamount recorded subsidence during eruptions in 1998 and again in April 2011, for a total repeat time of 13 years. We present here a summary of the vertical deformation history at Axial and describe what that tells us about changes in magma supply over an entire eruption cycle. Over the last 13 years we have used a combination of continuously recording bottom pressure recorder (BPR) instruments and campaign style mobile pressure recorder (MPR) surveys to document changes in the elevation of the caldera floor. These observations of caldera deformation directly reflect changes in the magmatic system throughout the entire volcanic eruption cycle. Rapid inflation of the volcano (>50 cm/yr) started immediately after the 1998 eruption and began slowing exponentially within a few months, ultimately transitioning to a constant linear inflation rate of 15 cm/yr that continued until the 2011 eruption. We interpret these two different inflation regimes as the surface manifestation of two entirely different recharge mechanisms within the magma chamber: 1) Short-duration poroelastic flow and viscoelastic relaxation immediately following eruption, and 2) Long-term linear recharge from the mantle. The second mechanism suggests that long-term flow rates from the mantle are controlled by permeability rather than pressure at Axial. Finally, we present evidence that the pattern of deformation at Axial can be used as a method of forecasting future eruptions here.

  12. Active Eruptions in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Resing, J. A.; Embley, R. W.

    2009-12-01

    submarine volcanoes including actively erupting NW Rota. Two dives were also conducted on the NELSC, which was no longer erupting and showed no signs of extensive eruption-related hydrothermal activity. A new lava flow was found beneath the Nov. 2008 zone of near-bottom water column temperature anomalies. Preliminary radiometric dating of lavas is consistent with a Nov. 2008 eruption. For >20 yrs the PMEL-Vents and NSF RIDGE programs have sought to observe active eruptions to understand their impacts and modes of occurrence, yet these dynamic events have been difficult to capture. This response cruise produced new insights on submarine volcanism, including the first documented back-arc spreading center eruption, the first boninitic eruption, and the first observation of pillow lava formation in the deep sea, arguably one of Earth’s most common surface rock forms. The “rapidity” with which we were able to return to these sites aided in this success. The cruise on the R/V TG Thompson was funded by NSF through the R2K, MARGINS, and MGG programs, and by NOAA Ocean Exploration and PMEL. Over 37 letters of interest were submitted from the scientific community to join the cruise and/or to receive samples, from which a multidisciplinary team of petrologists, fluid chemists, oceanographers, geophysicists, and macro- and micro- biologists was assembled.

  13. On the fate of pumice rafts formed during the 2012 Havre submarine eruption

    PubMed Central

    Jutzeler, Martin; Marsh, Robert; Carey, Rebecca J.; White, James D. L.; Talling, Peter J.; Karlstrom, Leif

    2014-01-01

    Pumice rafts are floating mobile accumulations of low-density pumice clasts generated by silicic volcanic eruptions. Pumice in rafts can drift for years, become waterlogged and sink, or become stranded on shorelines. Here we show that the pumice raft formed by the impressive, deep submarine eruption of the Havre caldera volcano (Southwest Pacific) in July 2012 can be mapped by satellite imagery augmented by sailing crew observations. Far from coastal interference, the eruption produced a single >400 km2 raft in 1 day, thus initiating a gigantic, high-precision, natural experiment relevant to both modern and prehistoric oceanic surface dispersal dynamics. Observed raft dispersal can be accurately reproduced by simulating drift and dispersal patterns using currents from an eddy-resolving ocean model hindcast. For future eruptions that produce potentially hazardous pumice rafts, our technique allows real-time forecasts of dispersal routes, in addition to inference of ash/pumice deposit distribution in the deep ocean. PMID:24755668

  14. On the fate of pumice rafts formed during the 2012 Havre submarine eruption.

    PubMed

    Jutzeler, Martin; Marsh, Robert; Carey, Rebecca J; White, James D L; Talling, Peter J; Karlstrom, Leif

    2014-04-22

    Pumice rafts are floating mobile accumulations of low-density pumice clasts generated by silicic volcanic eruptions. Pumice in rafts can drift for years, become waterlogged and sink, or become stranded on shorelines. Here we show that the pumice raft formed by the impressive, deep submarine eruption of the Havre caldera volcano (Southwest Pacific) in July 2012 can be mapped by satellite imagery augmented by sailing crew observations. Far from coastal interference, the eruption produced a single >400 km(2) raft in 1 day, thus initiating a gigantic, high-precision, natural experiment relevant to both modern and prehistoric oceanic surface dispersal dynamics. Observed raft dispersal can be accurately reproduced by simulating drift and dispersal patterns using currents from an eddy-resolving ocean model hindcast. For future eruptions that produce potentially hazardous pumice rafts, our technique allows real-time forecasts of dispersal routes, in addition to inference of ash/pumice deposit distribution in the deep ocean.

  15. On the fate of pumice rafts formed during the 2012 Havre submarine eruption

    NASA Astrophysics Data System (ADS)

    Jutzeler, Martin; Marsh, Robert; Carey, Rebecca J.; White, James D. L.; Talling, Peter J.; Karlstrom, Leif

    2014-04-01

    Pumice rafts are floating mobile accumulations of low-density pumice clasts generated by silicic volcanic eruptions. Pumice in rafts can drift for years, become waterlogged and sink, or become stranded on shorelines. Here we show that the pumice raft formed by the impressive, deep submarine eruption of the Havre caldera volcano (Southwest Pacific) in July 2012 can be mapped by satellite imagery augmented by sailing crew observations. Far from coastal interference, the eruption produced a single >400 km2 raft in 1 day, thus initiating a gigantic, high-precision, natural experiment relevant to both modern and prehistoric oceanic surface dispersal dynamics. Observed raft dispersal can be accurately reproduced by simulating drift and dispersal patterns using currents from an eddy-resolving ocean model hindcast. For future eruptions that produce potentially hazardous pumice rafts, our technique allows real-time forecasts of dispersal routes, in addition to inference of ash/pumice deposit distribution in the deep ocean.

  16. Emplacement of submarine lava flow fields: A geomorphological model from the Niños eruption at the Galápagos Spreading Center

    NASA Astrophysics Data System (ADS)

    McClinton, J. Timothy; White, Scott M.

    2015-03-01

    In the absence of any direct observations of an active submarine eruption at a mid-ocean ridge (MOR), our understanding of volcanic processes there is based on the interpretation of eruptive products. Submarine lava flow morphology serves as a primary indicator of eruption and emplacement processes; however, there is typically a lack of visual observations and bathymetric data at a scale and extent relevant to submarine lava flows, which display meter to submeter-scale morphological variability. In this paper, we merge submersible-based visual observations with high-resolution multibeam bathymetry collected by an autonomous underwater vehicle (AUV) and examine the fine-scale geomorphology of Niños, a submarine lava flow field at the Galápagos Spreading Center (GSC).We identify separate morphological facies (i.e., morphofacies) within the lava flow field, each having distinct patterns of lava flow morphology and volcanic structures. The spatial and stratigraphic arrangement of morphofacies suggests that they were emplaced sequentially as the eruption progressed, implying that the Niños eruption consisted of at least three eruptive phases. We estimate eruption parameters and develop a chronological model that describes the construction of the Niños lava flow field. An initial phase with high effusion rates emplaced sheet flows, then an intermediate phase emplaced a platform of lobate lavas, and then an extended final phase with low effusion rates emplaced a discontinuous row of pillow lava domes. We then compare this model to mapped lava flow fields at other MORs. Despite disparities in scale, the morphological similarities of volcanic features at MORs with different spreading rates suggest common emplacement processes that are primarily controlled by local magma supply.

  17. Looking for Larvae Above an Erupting Submarine Volcano, NW Rota-1, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Hanson, M.; Beaulieu, S.; Tunnicliffe, V.; Chadwick, W.; Breuer, E. R.

    2015-12-01

    In 2009 the first marine protected areas for deep-sea hydrothermal vents in U.S. waters were established as part of the Volcanic Unit of the Marianas Trench Marine National Monument. In this region, hydrothermal vents are located along the Mariana Arc and back-arc spreading center. In particular hydrothermal vents are located near the summit of NW Rota-1, an active submarine volcano on the Mariana Arc which was erupting between 2003 through 2010 and ceased as of 2014. In late 2009, NW Rota-1 experienced a massive landslide decimating the habitat on the southern side of the volcano. This presented an enormous natural disturbance to the community. This project looked at zooplankton tow samples taken from the water column above NW Rota-1 in 2010, searching specifically for larvae which have the potential to recolonize the sea floor after such a major disturbance. We focused on samples for which profiles with a MAPR sensor indicated hydrothermal plumes in the water column. Samples were sorted in entirety into coarse taxa, and then larvae were removed for DNA barcoding. Overall zooplankton composition was dominated by copepods, ostracods, and chaetognaths, the majority of which are pelagic organisms. Comparatively few larvae of benthic invertebrates were found, but shrimp, gastropod, barnacle, and polychaete larvae did appear in low numbers in the samples. Species-level identification obtained via genetic barcoding will allow for these larvae to be matched to species known to inhabit the benthic communities at NW Rota-1. Identified larvae will give insight into the organisms which can re-colonize the seafloor vent communities after a disturbance such as the 2009 landslide. Communities at hydrothermal vents at other submarine volcanoes in the Monument also can act as sources for these planktonic, recolonizing larvae. As the microinvertebrate biodiversity in the Monument has yet to be fully characterized, our project also provides an opportunity to better describe both

  18. The 2011 El Hierro submarine eruption: estimation of erupted lava flow volume on the basis of helicopter thermal surveys

    NASA Astrophysics Data System (ADS)

    Hernández, P. A.; Calvari, S.; Calvo, D.; Marquez, A.; Padron, E.; Pérez, N.; Melian, G.; Padilla, G.; Barrancos, J.; Dionis, S.; Rodríguez, F.; Nolasco, D.; Hernández, I.

    2012-04-01

    El Hierro represents the summit of a volcanic shield elevating from the surrounding seafloor at depth of 4000 m to up to 1501 m above sea level. The island is believed to be near the present hotspot location in the Canaries with the oldest subaerial rocks dated at 1.12 Ma. The subaerial parts of the El Hierro rift zones (NE, NW and S Ridges) are characterized by tightly aligned dyke complexes with clusters of cinder cones as their surface expressions. Since 16 July, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. After the occurrence of more than 10,000 seismic events, volcanic tremor started at 05:15 on 10 October, followed on the afternoon of 12 October by a green discolouration of seawater, strong bubbling and degassing, and abundant bombs on a decimetre scale found floating on the ocean surface offshore, southwest of La Restinga village. The Canary Government raised the alert level from green to yellow on 10 October (3 colour basis: green, yellow, and red). Further episodes have occurred during November, December 2011 and January 2012, with turbulent water, foam rings, and volcanic material again reaching the sea surface. Colour of the discoloured area has changed frequently from light green to dark brown, depending on the eruptive activity. During the whole eruptive period, The Volcanological Institute of Canary Islands and the Helicopter Unit of the Spanish Civil Guard have carried out regularly thermal surveys with a hand held FLIR Thermal Camera P65. The images have been collected taking care of avoiding solar reflection (with cloudy weather) or at times of the day without direct sun light. Air temperature and humidity were measured with a handled thermo-hygrometer every time before the thermal image collection, and measurements were always performed at two fixed heights: 2000 and 1000 feet, and images were collected as perpendicular as possible to the surface. Together with thermal images, digital photos of the surface have

  19. The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro

    NASA Astrophysics Data System (ADS)

    Santana-Casiano, J.; Fraile-Nuez, E.; Gonzalez-Davila, M.

    2013-12-01

    The shallow submarine eruption which took place in October 10th 2011, 1.8 km south of the island of El Hierro (Canary Islands) allowed the study of the abrupt changes in the physical-chemical properties of seawater caused by volcanic discharges. In order to monitor the evolution of these changes, seven oceanographic surveys were carried out over six months (November 2011-April 2012) from the beginning of the eruptive stage to the post-eruptive phase. It was observed dramatic changes in the water column chemistry including large decreases in pH, striking effects on the carbonate system, decreases in the oxygen concentrations and enrichment of Fe(II) and nutrients. The findings highlight that the same volcano which was responsible for the creation of a highly corrosive environment, affecting marine biota, has also provided the nutrients required for the rapid recuperation of the marine ecosystem. In January 2013, a new project, the VULCANO project, was iniciated to study the post-eruptive phase in the submarine volcanic area.

  20. Segmentation and Tracking of Anticyclonic Eddies during a Submarine Volcanic Eruption Using Ocean Colour Imagery

    PubMed Central

    Marcello, Javier; Eugenio, Francisco; Estrada-Allis, Sheila; Sangrà, Pablo

    2015-01-01

    The eruptive phase of a submarine volcano located 2 km away from the southern coast of El Hierro Island started on October 2011. This extraordinary event provoked a dramatic perturbation of the water column. In order to understand and quantify the environmental impacts caused, a regular multidisciplinary monitoring was carried out using remote sensing sensors. In this context, we performed the systematic processing of every MODIS and MERIS and selected high resolution Worldview-2 imagery to provide information on the concentration of a number of biological, physical and chemical parameters. On the other hand, the eruption provided an exceptional source of tracer that allowed the study a variety of oceanographic structures. Specifically, the Canary Islands belong to a very active zone of long-lived eddies. Such structures are usually monitored using sea level anomaly fields. However these products have coarse spatial resolution and they are not suitable to perform submesoscale studies. Thanks to the volcanic tracer, detailed studies were undertaken with ocean colour imagery allowing, using the diffuse attenuation coefficient, to monitor the process of filamentation and axisymmetrization predicted by theoretical studies and numerical modelling. In our work, a novel 2-step segmentation methodology has been developed. The approach incorporates different segmentation algorithms and region growing techniques. In particular, the first step obtains an initial eddy segmentation using thresholding or clustering methods and, next, the fine detail is achieved by the iterative identification of the points to grow and the subsequent application of watershed or thresholding strategies. The methodology has demonstrated an excellent performance and robustness and it has proven to properly capture the eddy and its filaments. PMID:25875193

  1. Segmentation and tracking of anticyclonic eddies during a submarine volcanic eruption using ocean colour imagery.

    PubMed

    Marcello, Javier; Eugenio, Francisco; Estrada-Allis, Sheila; Sangrà, Pablo

    2015-04-14

    The eruptive phase of a submarine volcano located 2 km away from the southern coast of El Hierro Island started on October 2011. This extraordinary event provoked a dramatic perturbation of the water column. In order to understand and quantify the environmental impacts caused, a regular multidisciplinary monitoring was carried out using remote sensing sensors. In this context, we performed the systematic processing of every MODIS and MERIS and selected high resolution Worldview-2 imagery to provide information on the concentration of a number of biological, physical and chemical parameters. On the other hand, the eruption provided an exceptional source of tracer that allowed the study a variety of oceanographic structures. Specifically, the Canary Islands belong to a very active zone of long-lived eddies. Such structures are usually monitored using sea level anomaly fields. However these products have coarse spatial resolution and they are not suitable to perform submesoscale studies. Thanks to the volcanic tracer, detailed studies were undertaken with ocean colour imagery allowing, using the diffuse attenuation coefficient, to monitor the process of filamentation and axisymmetrization predicted by theoretical studies and numerical modelling. In our work, a novel 2-step segmentation methodology has been developed. The approach incorporates different segmentation algorithms and region growing techniques. In particular, the first step obtains an initial eddy segmentation using thresholding or clustering methods and, next, the fine detail is achieved by the iterative identification of the points to grow and the subsequent application of watershed or thresholding strategies. The methodology has demonstrated an excellent performance and robustness and it has proven to properly capture the eddy and its filaments.

  2. The May 2010 submarine eruption from South Sarigan seamount, Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    McGimsey, R. G.; Neal, C. A.; Searcy, C. K.; Camacho, J. T.; Aydlett, W. B.; Embley, R. W.; Trusdell, F.; Paskievitch, J. F.; Schneider, D. J.

    2010-12-01

    A sudden submarine explosive eruption occurred on May 29, 2010, from a seamount south of Sarigan Island in the Northern Mariana Islands, propelling a diffuse steam and ash cloud to high altitude. Pre-eruptive seismicity was recorded in early April by stations located on Sarigan and Anatahan Island, 42 km to the south, and indicated a source ~12-16 km south of Sarigan. On May 27-28, a change in seismicity—the appearance of tremor-like waveforms—may have marked the onset of volcanic activity. Also on May 27, an elongate patch of discolored ocean water and possible light-colored floating debris about 8-11 km south of Sarigan was observed from a helicopter. This material was likely produced during low-intensity eruptive activity, and an Information Statement from the Commonwealth of the Northern Mariana Islands (CNMI) Emergency Management Office (EMO) and USGS issued at 2353 UTC May 28 described the observation. The Guam Weather Forecast Office of the National Weather Service reported that the area of discoloration, visible on satellite images at 2313 and 2330 UTC on May 28, was about 10 km2, about twice the size of Sarigan Island. Pulses of tremor merged into a nearly continuous signal by 0305 UTC on May 29, lasting for ~4.5 hours followed by nearly 4.5 hours of quiescence. The EMO issued a declaration closing the region south of Sarigan to all local boating traffic and issued an advisory to aircraft. The explosive onset of the main plume-producing event occurred at ~1148 UTC as confirmed by seismic records on Anatahan Island, with the strongest phase ending ~1200 UTC. Soon after, the Washington Volcanic Ash Advisory Center reported an eruption cloud reaching an estimated 40,000 feet (12 km) ASL that diminished rapidly on satellite imagery suggesting it was water-vapor dominated. Winds carried the cloud southwest over Guam, and although no ash fall was reported, the cloud was visible and was detected in Aura/OMI aerosol index imagery. Biologists on Sarigan Island

  3. The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro.

    PubMed

    Santana-Casiano, J M; González-Dávila, M; Fraile-Nuez, E; de Armas, D; González, A G; Domínguez-Yanes, J F; Escánez, J

    2013-01-01

    The shallow submarine eruption which took place in October 10(th) 2011, 1.8 km south of the island of El Hierro (Canary Islands) allowed the study of the abrupt changes in the physical-chemical properties of seawater caused by volcanic discharges. In order to monitor the evolution of these changes, seven oceanographic surveys were carried out over six months (November 2011-April 2012) from the beginning of the eruptive stage to the post-eruptive phase. Here, we present dramatic changes in the water column chemistry including large decreases in pH, striking effects on the carbonate system, decreases in the oxygen concentrations and enrichment of Fe(II) and nutrients. Our findings highlight that the same volcano which was responsible for the creation of a highly corrosive environment, affecting marine biota, has also provided the nutrients required for the rapid recuperation of the marine ecosystem.

  4. The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro

    PubMed Central

    Santana-Casiano, J. M.; González-Dávila, M.; Fraile-Nuez, E.; de Armas, D.; González, A. G.; Domínguez-Yanes, J. F.; Escánez, J.

    2013-01-01

    The shallow submarine eruption which took place in October 10th 2011, 1.8 km south of the island of El Hierro (Canary Islands) allowed the study of the abrupt changes in the physical-chemical properties of seawater caused by volcanic discharges. In order to monitor the evolution of these changes, seven oceanographic surveys were carried out over six months (November 2011-April 2012) from the beginning of the eruptive stage to the post-eruptive phase. Here, we present dramatic changes in the water column chemistry including large decreases in pH, striking effects on the carbonate system, decreases in the oxygen concentrations and enrichment of Fe(II) and nutrients. Our findings highlight that the same volcano which was responsible for the creation of a highly corrosive environment, affecting marine biota, has also provided the nutrients required for the rapid recuperation of the marine ecosystem. PMID:23355953

  5. Transport and Deposition During The 2012 Submarine Explosive Eruption of Havre Volcano

    NASA Astrophysics Data System (ADS)

    Soule, S. A.; Carey, R.; Jones, M.; Ikegami, F.; Yoerger, D.; Fornari, D. J.

    2015-12-01

    Havre Volcano in the Kermadec Arc experienced a large eruption in 2012. The eruption was identified when ships in the area intersected a pumice raft, which was subsequently tracked by NASA MODIS satellite imagery. In 2015, an NSF-sponsored research cruise to the area conducted AUV and ROV dives to map and sample the deposits of this eruption. This presentation describes the high-resolution mapping data and seafloor observations that illustrate the processes of lava and pyroclast transport and deposition. The National Deep Submergence Facility (NDSF) AUV Sentry collected multibeam bathymetry data over the Havre caldera rim and floor - an area of 56 km2 - at a resolution of 1m. In addition, Sentry collected high-resolution sidescan sonar backscatter data over the same area. The NDSF ROV Jason collected HD video and down-looking still imagery along dive transects. These data allow us to document the depositional landforms in great detail. Notable features include effusive domes, lava flows, and a widespread blanket of giant pumice and ash. With constraints from seafloor imagery, we use the morphology of the imaged landforms to delineate deposit extents, identify intra-flow and intra-deposit features, pinpoint vent locations, and, in comparison with pre-eruption bathymetry, determine eruptive volumes. This information informs preliminary models of transport and deposition processes that are unique to submarine explosive eruptions.

  6. Submarine Volcaniclastic Deposits Associated with the Minoan Eruption of Santorini volcano, Greece

    NASA Astrophysics Data System (ADS)

    Carey, S.; Sigurdsson, H.; Alexandri, M.; Vougioukalakis, G.; Croff, K.; Roman, C.; Sakellariou, D.; Anagnostou, C.; Rousakis, G.; Ioakim, C.; Gogou, A.; Ballas, D.; Misaridis, T.; Nomikou, P.

    2006-12-01

    The distribution of submarine volcaniclastic deposits has been studied in the Santorini volcanic field by a combination of seismic surveys using a ten cubic inch air-gun, sediment coring and ROV operations. A distinctive sediment sequence has been identified in the uppermost section of the seafloor surrounding Santorini. It is generally massive or chaotic with some irregular internal reflectors. The sequence extends more than 25 km to the west in the Christiana Basin, 22 km to the east in the Anafi Basin, and 28 km to the NE in the Anydros Basin. A mean thickness of about 29 meters is inferred from the seismic records, but is as high as 80 meters locally in areas near the coast of Santorini, where the Minoan pyroclastic flow deposit is up to 40 m thick on land. The sequence has been traced over an area of at least 1378 square kilometers on the sea floor. On the steep submarine slopes of the volcano the sequence often exhibits a terraced or step-like morphology that may reflect downslope creep or slumping during or just after deposition. The massive facies of the sequence was observed to transform abruptly into a laminated or well-bedded, and much thinner facies with distance from source, and with greater overall extent. In many cases this distal facies, which may consist of turbidites, extends beyond the area of the seismic survey lines, or more than 30 km from Santorini. ROV dives on the sediment sequence to the east of Santorini show that it consists of massive pyroclastic flow deposit. By analogy with the seismic character of submarine pyroclastic flows from the 1883 eruption of Krakatau we propose that the widespread sequence is related to the entrance of pyroclastic flows into the sea during the Minoan explosive eruption of Santorini (~3600 yrs. B.P.). A previous estimate of the volume of submarine pyroclastic flow deposits from the Minoan eruption was 20 cubic kilometers (dense rock equivalent, DRE) based on the fractionation of co-ignimbrite ash fall from

  7. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    NASA Astrophysics Data System (ADS)

    Fraile-Nuez, E.; Santana-Casiano, J.; Gonzalez-Davila, M.

    2013-12-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. (A) Natural color composite from the MEdium Resolution Imaging Spectrometer (MERIS) instrument aboard ENVISAT Satellite (European Space Agency), (November 9, 2011 at 14:45 UTC). Remote sensing data have been used to monitor the evolution of the volcanic emissions, playing a fundamental role during field cruises in guiding the Spanish government oceanographic vessel to the appropriate sampling areas. The inset map shows the position of Canary Islands west of Africa and the study area (solid white box). (B) Location of the stations carried out from November 2011 to February 2012 at El Hierro. Black lines denote transects A-B and C-D.

  8. Monitoring the volcanic unrest of El Hierro (Canary Islands) before the onset of the 2011-2012 submarine eruption

    NASA Astrophysics Data System (ADS)

    López, C.; Blanco, M. J.; Abella, R.; Brenes, B.; Cabrera Rodríguez, V. M.; Casas, B.; Domínguez Cerdeña, I.; Felpeto, A.; de Villalta, M. Fernández; del Fresno, C.; García, O.; García-Arias, M. J.; García-Cañada, L.; Gomis Moreno, A.; González-Alonso, E.; Guzmán Pérez, J.; Iribarren, I.; López-Díaz, R.; Luengo-Oroz, N.; Meletlidis, S.; Moreno, M.; Moure, D.; de Pablo, J. Pereda; Rodero, C.; Romero, E.; Sainz-Maza, S.; Sentre Domingo, M. A.; Torres, P. A.; Trigo, P.; Villasante-Marcos, V.

    2012-07-01

    On 10 October 2011, a submarine volcanic eruption started 2 km south from El Hierro Island (Spain). Since July 2011 a dense multiparametric monitoring network was deployed all over the island by Instituto Geográfico Nacional (IGN). By the time the eruption started, almost 10000 earthquakes had been located and the deformation analyses showed a maximum deformation of more than 5 cm. Earthquake migration from the north to the south of the island and acceleration of seismicity are in good correlation with changes in the deformation pattern as well as with some anomalies in geochemical and geomagnetic parameters. An earthquake of local magnitude 4.3 at 12 km depth (8 October 2011) and shallower seismicity a day after, preceded the onset of the eruption. This is the first time that a volcanic eruption is fully monitored in the Canary Islands. Data recorded during this unrest episode at El Hierro will contribute to understand reawakening of volcanic activity in this region and others of similar characteristics.

  9. Precursory geophysical, geodetic and geochemical signatures of a new 2012 submarine eruption off the northwestern coast of El Hierro, Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Somoza, Luis; González de Vallejo, Luis; Sagiya, Takeshi; León, Ricardo; Hernández, Pedro A.; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Gonzalez-Aller, Daniel; Sánchez de La Madrid, José Luis; Barrancos, José; Ibáñez, Jesús M.; Sumino, Hirochika

    2013-04-01

    Here we report precursory geophysical, geodetic, and geochemical signatures of a new submarine eruption off the northwestern coast of El Hierro, Canary Islands, which has been detected through acoustic imaging of submarine plumes on June 27, 2012, by the Spanish research vessel "Hespérides". Five distinct acoustic submarine plumes have been recognized in this area at water depths between 64 and 88 m along a submarine platform located in front of the Lomo Negro volcanic cone, northwestern of El Hierro. Submarine plums are characterized by vertical columns of high-amplitude values rising from seafloor. These acoustic imaging data clearly support a new submarine eruption in 2012 associated to the recent magmatic reactivation of El Hierro volcanic system. This new eruption event was preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥ 2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS permanent network (Nagoya University-ITER-GRAFCAN) at El Hierro with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity at HIE02, a geochemical station located in the northwestern of El Hierro, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) the highest observed corrected value of 3He/4He ratio in ground waters (8,5 Ra) from San Simón well at the northwestern of El Hierro on June 16, 2012. These precursory signals have revealed important to improve and optimize the detection of early warning signals of volcanic unrest episodes at El Hierro.

  10. Contrasting pyroclast density spectra from subaerial and submarine silicic eruptions in the Kermadec arc: implications for eruption processes and dredge sampling

    NASA Astrophysics Data System (ADS)

    Barker, Simon J.; Rotella, Melissa D.; Wilson, Colin J. N.; Wright, Ian C.; Wysoczanski, Richard J.

    2012-08-01

    Pyroclastic deposits from four caldera volcanoes in the Kermadec arc have been sampled from subaerial sections (Raoul and Macauley) and by dredging from the submerged volcano flanks (Macauley, Healy, and the newly discovered Raoul SW). Suites of 16-32 mm sized clasts have been analyzed for density and shape, and larger clasts have been analyzed for major element compositions. Density spectra for subaerial dry-type eruptions on Raoul Island have narrow unimodal distributions peaking at vesicularities of 80-85%, whereas ingress of external water (wet-type eruption) or extended timescales for degassing generate broader distributions, including denser clasts. Submarine-erupted pyroclasts show two different patterns. Healy and Raoul SW dredge samples and Macauley Island subaerial-emplaced samples are dominated by modes at ~80-85%, implying that submarine explosive volcanism at high eruption rates can generate clasts with similar vesicularities to their subaerial counterparts. A minor proportion of Healy and Raoul SW clasts also show a pink oxidation color, suggesting that hot clasts met air despite 0.5 to >1 km of intervening water. In contrast, Macauley dredged samples have a bimodal density spectrum dominated by clasts formed in a submarine-eruptive style that is not highly explosive. Macauley dredged pyroclasts are also the mixed products of multiple eruptions, as shown by pumice major-element chemistry, and the sea-floor deposits reflect complex volcanic and sedimentation histories. The Kermadec calderas are composite features, and wide dispersal of pumice does not require large single eruptions. When coupled with chemical constraints and textural observations, density spectra are useful for interpreting both eruptive style and the diversity of samples collected from the submarine environment.

  11. Using submarine lava pillars to record mid-ocean ridge eruption dynamics

    USGS Publications Warehouse

    Gregg, Tracy K.P.; Fornari, Daniel J.; Perfit, Michael R.; Ridley, W. Ian; Kurz, Mark D.

    2000-01-01

    Submarine lava pillars are hollow, glass-lined, basaltic cylinders that occur at the axis of the mid-ocean ridge, and within the summit calderas of some seamounts. Typically, pillars are ~1-20 m tall and 0.25-2.0 m in diameter, with subhorizontal to horizontal glassy selvages on their exterior walls. Lava pillars form gradually during a single eruption, and are composed of lava emplaced at the eruption onset as well as the last lava remaining after the lava pond has drained. On the deep sea floor, the surface of a basaltic lava flow quenches to glass within 1 s, thereby preserving information about eruption dynamics, as well as chemical and physical properties of lava within a single eruption. Investigation of different lava pillars collected from a single eruption allows us to distinguish surficial lava-pond or lava-lake geochemical processes from those operating in the magma chamber. Morphologic, major-element, petrographic and helium analyses were performed on portions of three lava pillars formed during the April 1991 eruption near 9°50'N at the axis of the East Pacific Rise. Modeling results indicate that the collected portions of pillars formed in ~2-5 h, suggesting a total eruption duration of ~8-20 h. These values are consistent with observed homogeneity in the glass helium concentrations and helium diffusion rates. Major-element compositions of most pillar glasses are homogeneous and identical to the 1991 flow, but slight chemical variations measured in the outermost portions of some pillars may reflect post-eruptive processes rather than those occurring in subaxial magma bodies. Because lava pillars are common at mid-ocean ridges (MORs), the concepts and techniques we present here may have important application to the study of MOR eruptions, thereby providing a basis for quantitative comparisons of volcanic eruptions in geographically and tectonically diverse settings. More research is needed to thoroughly test the hypotheses presented here. (C) 2000

  12. Long-term explosive degassing and debris flow activity at West Mata submarine volcano

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T.-K.; Chadwick, W. W.

    2015-03-01

    West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were observed in 2009. The acoustic signatures from the volcano's summit eruptive vents Hades and Prometheus were recorded with an in situ (~25 m range) hydrophone during ROV dives in May 2009 and with local (~5 km range) moored hydrophones between December 2009 and August 2011. The sensors recorded low frequency (1-40 Hz), short duration explosions consistent with magma bubble bursts from Hades, and broadband, 1-5 min duration signals associated with episodes of fragmentation degassing from Prometheus. Long-term eruptive degassing signals, recorded through May 2010, preceded a several month period of declining activity. Degassing episodes were not recorded acoustically after early 2011, although quieter effusive eruption activity may have continued. Synchronous optical measurements of turbidity made between December 2009 and April 2010 indicate that turbidity maxima resulted from occasional south flank slope failures triggered by the collapse of accumulated debris during eruption intervals.

  13. Geochemical monitoring network at El Hierro (Canary Islands) before and during 2011 submarine eruption

    NASA Astrophysics Data System (ADS)

    Torres, P. A.; Meletlidis, S.; Luengo-Oroz, N.; Moure, D.; Rodero, C.; Villasante-Marcos, V.; Abella, R.; López, C.; Blanco, M. J.

    2012-04-01

    . Temperature, pH, electric conductivity and total dissolved solids were periodically measured. Water samples were also collected in order to determine major and trace elements. In situ measurements did not show any significant changes that could be related directly to the volcanic-seismic activity. However, the highest water temperature and the lowest pH value were obtained in the well located closer to the zone where the maximum values of CO2 diffuse flux were detected. Water samples were also taken on the stain generated by the submarine eruption and the nearby area since the beginning of the eruptive process. Chemical analysis revealed that seawater directly affected by the volcanic emissions, experimented an important increase in the concentration of several heavy metals.

  14. Diffuse degassing He/CO2 ratio before and during the 2011-12 El Hierro submarine eruption, Canary Islands

    NASA Astrophysics Data System (ADS)

    Padrón, Eleazar; Hernández, Pedro A.; Melián, Gladys V.; Barrancos, José; Padilla, Germán; Pérez, Nemesio M.; Dionis, Samara; Rodríguez, Fátima; Asensio-Ramos, María; Calvo, David

    2015-04-01

    El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events and significant deformation along the island, culminating with the eruption onset in October 12. Since at El Hierro Islands there are not any surface geothermal manifestation (fumaroles, etc), we have focused our studies on soil degassing surveys. Between July 2011 to March 2012, seventeen diffuse CO2 and He emissions soil gas surveys were undertaken at El Hierro volcanic system (600 observation sites) with the aim to investigate the relationship between their temporal variations and the volcanic activity (Padrón et al., 2013; Melián et al., 2014). Based on the diffuse He/CO2 emission ratio, a sharp increase before the eruption onset was observed, reaching the maximum value on September 26 (6.8×10-5), sixteen days before the occurrence of the eruption. This increase coincided with an increase in seismic energy release during the volcanic unrest and occurred together with an increase on the 3He/4He isotopic ratio in groundwaters from a well in El Hierro Island (Padrón et al., 2013; from 2-3 RA to 7.2 RA where RA = 3He/4He ratio in air), one month prior to the eruption onset. Early degassing of new gas-rich magma batch at depth could explain the observed increase on the He/CO2 ratio, causing a preferential partitioning of CO2 in the gas phase with respect to the He, due to the lower solubility of CO2 than that of He in basaltic magmas. During the eruptive period (October 2011-March 2012) the prevalence of a magmatic CO2-dominated component is evident, as indicated by the generally lower He/CO2 ratios and high 3He/4He values (Padrón et al., 2013). The onset of the submarine eruption might have produced a sudden release of volcanic gases, and consequently, a decrease in the volcanic gas pressure of the magma bodies moving beneath the island, reflected by a drastic decrease in

  15. Vesiculation and fragmentation history in a submarine scoria cone-forming eruption, an example from Nishiizu (Izu Peninsula, Japan)

    NASA Astrophysics Data System (ADS)

    Jutzeler, Martin; White, James D. L.; Proussevitch, Alexander A.; Gordee, Sarah M.

    2016-02-01

    An uplifted, >50-m-thick, half-dissected, submarine-emplaced (below wave-base) scoria cone occurs as dipping beds in coastal outcrops at Nishiizu, on the Izu Peninsula in Japan. Concentrically outward-dipping, weakly stratified, ungraded, framework-supported thin-to-very thick beds consist of brown coarse tuff to scoria lapilli-tuff, with outsized fluidal bombs throughout; accessory lithic clasts chiefly occur in the lowermost visible beds. Scoria bombs have quenched margins, weak bread-crust textures and their vesicle number densities decrease inward, which is indicative of fast surface cooling. Composite textures in the scoria bombs indicate recycling and agglutination of quenched and semi-molten pyroclasts at the submarine vent. In contrast to weak concentric gradations in vesicle size distribution in the bombs, lapilli have asymmetrical gradients in vesicle size distribution, indicating that they are fragments of coarser, quenched lumps. Three grain-size modes characterise the Nishiizu brown scoria, with coarse magma lumps ejected during magmatic fragmentation and quench-jointed upon contact with seawater, to be subsequently fragmented into lapilli and coarse ash by various styles of fragmentation where seawater plays a critical role. The cone was constructed by slow-moving fallout-fed granular flow/creep, fed directly by suspension settling focused at the crater rim but extending onto the cone flanks, with only minor resedimentation by granular flows. Nishiizu deposits yield an exceptional record of eruption and sedimentation dynamics during submarine cone-building activity, and in this study we compare their vesiculation and fragmentation mechanisms with those of potential subaerial analogues.

  16. Serreta Submarine Eruption 1998-2001, Azores: a new compositional end-member?

    NASA Astrophysics Data System (ADS)

    Filipa Marques, Ana; Hamelin, Cédric; Madureira, Pedro; Rosa, Carlos; Silva, Pedro; Relvas, Jorge; Lourenço, Nuno; Conceição, Patrícia; Barriga, Fernando

    2014-05-01

    The Azores platform, where the Eurasian, Nubian and American plates meet, comprises nine volcanic islands extending to both sides of the Mid-Atlantic Ridge (MAR). East of the MAR, the plate boundary between Eurasian and Nubian plates is defined by the Terceira Rift, interpreted as an intra-oceanic spreading system where the Islands of S. Miguel, Terceira and Graciosa emerge as well and the submarine D.João de Castro Bank, separated by deep avolcanic zones [1, 2]. Submarine and subaerial lavas from the Terceira Rift are characterized by small-scale elemental and isotopic variations, and several distinct compositional end-members have been identified [2,3] supporting the concept of significant mantle source heterogeneity. A recent submarine eruption (1998-2001) occurred ~4-5 NM WNW of Terceira Island, at the Serreta Ridge where lava balloons were observed floating at the surface [4]. In 2008, an oceanographic cruise was conducted to the Serreta ridge to investigate the site of the 1998-2001 eruption, map the seafloor, identify vent location, and characterize possible products of eruption [5]. An ROV from the EMEPC (Task Group for the Extension of the Continental Shelf) was used in this survey providing high-definition video footage and fresh lava samples. Three survey ROV dives (D15, D16, D17) were made on the Serreta ridge. D15 and D17 dives were located on the southern wall of the crater, whereas D16 explored the central and northern areas of the crater floor. Sr-Nd-Pb isotope compositions of representative samples from the Serreta submarine ridge are presented for the first time. On the 208Pb/204Pb vs. 206Pb/204Pb diagram Serreta samples plot on a linear array with the remaining Terceira rift samples. However, these results show that Serreta submarine volcanics lay on the most depleted end of the Terceira Rift array. Radiogenic isotopes also show that samples from the central and northern wall of the crater are distinct from the younger southern wall sector

  17. Deployment of a seismic array for volcano monitoring during the ongoing submarine eruption at El Hierro, Canary Islands

    NASA Astrophysics Data System (ADS)

    Abella, R.; Almendros, J.; Carmona, E.; Martin, R.

    2012-04-01

    On 17 July 2011 there was an important increase of the seismic activity at El Hierro (Canary Islands, Spain). This increase was detected by the Volcano Monitoring Network (Spanish national seismic network) run by the Instituto Geográfico Nacional (IGN). As a consequence, the IGN immediately deployed a dense, complete monitoring network that included seismometers, GPS stations, geochemical equipment, magnetometers, and gravity meters. During the first three months of activity, the seismic network recorded over ten thousand volcano-tectonic earthquakes, with a maximum magnitude of 4.6. On 10 October 2011 an intense volcanic tremor started. It was a monochromatic signal, with variable amplitude and frequency content centered at about 1-2 Hz. The tremor onset was correlated with the initial stages of the submarine eruption that occurred from a vent located south of El Hierro island, near the village of La Restinga. At that point the IGN, in collaboration with the Instituto Andaluz de Geofísica, deployed a seismic array intended for volcanic tremor monitoring and analysis. The seismic array is located about 7 km NW of the submarine vent. It has a 12-channel, 24-bit data acquisition system sampling each channel at 100 sps. The array is composed by 1 three-component and 9 vertical-component seismometers, distributed in a flat area with an aperture of 360 m. The data provided by the seismic array are going to be processed using two different approaches: (1) near-real-time, to produce information that can be useful in the management of the volcanic crisis; and (2) detailed investigations, to study the volcanic tremor characteristics and relate them to the eruption dynamics. At this stage we are mostly dedicated to produce fast, near-real-time estimates. Preliminary results have been obtained using the maximum average cross-correlation method. They indicate that the tremor wavefronts are highly coherent among array stations and propagate across the seismic array with an

  18. Insights on volcanic behaviour from the 2015 July 23-24 T-phase signals generated by eruptions at Kick-'em-Jenny Submarine Volcano, Grenada, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Dondin, F. J. Y.; Latchman, J. L.; Robertson, R. E. A.; Lynch, L.; Stewart, R.; Smith, P.; Ramsingh, C.; Nath, N.; Ramsingh, H.; Ash, C.

    2015-12-01

    Kick-'em-Jenny volcano (KeJ) is the only known active submarine volcano in the Lesser Antilles Arc. Since 1939, the year it revealed itself, and until the volcano-seismic unrest of 2015 July 11-25 , the volcano has erupted 12 times. Only two eruptions breached the surface: 1939, 1974. The volcano has an average eruption cycle of about 10-11 years. Excluding the Montserrat, Soufrière Hills, KeJ is the most active volcano in the Lesser Antilles arc. The University of the West Indies, Seismic Research Centre (SRC) has been monitoring KeJ since 1953. On July 23 and 24 at 1:42 am and 0:02 am local time, respectively, the SRC recorded T-phase signals , considered to have been generated by KeJ. Both signals were recorded at seismic stations in and north of Grenada: SRC seismic stations as well as the French volcano observatories in Guadeloupe and Martinique, Montserrat Volcano Observatory, and the Puerto Rico Seismic Network. These distant recordings, along with the experience of similar observations in previous eruptions, allowed the SRC to confirm that two explosive eruptions occurred in this episode at KeJ. Up to two days after the second eruption, when aerial surveillance was done, there was no evidence of activity at the surface. During the instrumental era, eruptions of the KeJ have been identified from T-phases recorded at seismic stations from Trinidad, in the south, to Puerto Rico, in the north. In the 2015 July eruption episode, the seismic station in Trinidad did not record T-phases associated with the KeJ eruptions. In this study we compare the T-phase signals of 2015 July with those recorded in KeJ eruptions up to 1974 to explore possible causative features for the T-phase recording pattern in KeJ eruptions. In particular, we investigate the potential role played by the Sound Fixing and Ranging (SOFAR) layer in influencing the absence of the T-phase on the Trinidad seismic station during this eruption.

  19. Direct observation of a submarine volcanic eruption from a sea-floor instrument caught in a lava flow.

    PubMed

    Fox, C G; Chadwick, W W; Embley, R W

    2001-08-16

    Our understanding of submarine volcanic eruptions has improved substantially in the past decade owing to the recent ability to remotely detect such events and to then respond rapidly with synoptic surveys and sampling at the eruption site. But these data are necessarily limited to observations after the event. In contrast, the 1998 eruption of Axial volcano on the Juan de Fuca ridge was monitored by in situ sea-floor instruments. One of these instruments, which measured bottom pressure as a proxy for vertical deformation of the sea floor, was overrun and entrapped by the 1998 lava flow. The instrument survived-being insulated from the molten lava by the solidified crust-and was later recovered. The data serendipitously recorded by this instrument reveal the duration, character and effusion rate of a sheet flow eruption on a mid-ocean ridge, and document over three metres of lava-flow inflation and subsequent drain-back. After the brief two-hour eruption, the instrument also measured gradual subsidence of 1.4 metres over the next several days, reflecting deflation of the entire volcano summit as magma moved into the adjacent rift zone. These findings are consistent with our understanding of submarine lava effusion, as previously inferred from seafloor observations, terrestrial analogues, and laboratory simulations.

  20. Submarine seismic monitoring of El Hierro volcanic eruption with a 3C-geophone string: applying new acquisition and data processing techniques to volcano monitoring

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Ripepe, Maurizio; Lopez, Carmen; Blanco, Maria Jose; Crespo, Jose

    2015-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2011 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. Right after the eruption onset, in October 2011 a geophone string was deployed by the CSIC-IGN to monitor seismic activity. Monitoring with the seismic array continued till May 2012. The array was installed less than 2 km away from the new vol¬cano, next to La Restinga village shore in the harbor from 6 to 12m deep into the water. Our purpose was to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. Each geophone consists on a 3-component module based on 3 orthogonal independent sensors that measures ground velocity. Some of the geophones were placed directly on the seabed, some were buried. Due to different factors, as the irregular characteristics of the seafloor. The data was recorded on the surface with a seismometer and stored on a laptop computer. We show how acoustic data collected underwater show a great correlation with the seismic data recorded on land. Finally we compare our data analysis results with the observed sea surface activity (ash and lava emission and degassing). This evidence is disclosing new and innovative tecniques on monitoring submarine volcanic activity. Reference Instituto Geográfico Nacional (IGN), "Serie El Hierro." Internet: http://www.ign.es/ign/resources /volcanologia/HIERRO.html [May, 17. 2013

  1. Leakage of magmatic-hydrothermal volatiles from a crater bottom formed by a submarine eruption in 1989 at Teishi Knoll, Japan

    NASA Astrophysics Data System (ADS)

    Notsu, Kenji; Sohrin, Rumi; Wada, Hideki; Tsuboi, Tatsuya; Sumino, Hirochika; Mori, Toshiya; Tsunogai, Urumu; Hernández, Pedro A.; Suzuki, Yusuke; Ikuta, Ryoya; Oorui, Kohei; Koyama, Masato; Masuda, Toshiaki; Fujii, Naoyuki

    2014-01-01

    A submarine eruption occurred off the Izu Peninsula of Japan on 13 July 1989, forming Teishi Knoll, which has a diameter of 450 m and a height of ca. 10 m above the surrounding 90-100 m deep seafloor. Immediately after the eruption, intense gas release was observed from two vents in the crater. The gas bubbling gradually decreased and apparently ceased in 1990. Given that no survey has been undertaken to examine volatile release from the crater of Teishi Knoll, we collected seawater samples at three different sites from just above the crater bottom on 17 July 2012, in order to detect signs of magmatic volatile release. Seawater samples from the crater bottom have dissolved CH4 contents and δ13C values higher than those of shallower (50-100 m deep) seawater samples. Total inorganic carbon contents from the bottom seawater samples are also higher, and δ13C and Δ14C values lower than those of shallower seawater samples. These data indicate the addition of minor CH4 and CO2 of hydrothermal or magmatic origin to the bottom seawater from the crater. 3He/4He ratios and total organic carbon data are also consistent with the leakage of magmatic fluids. The most prominent CH4 and CO2 anomalies were observed at the site located closest to one of the bubbling gas sites of the 1989 eruption. As such, volcanic gas emissions still continue today at extremely low levels, 23 years after eruption of this monogenetic volcano. The monitoring of ultra-trace amounts of chemical components in seawater is a prospective method to monitor temporal changes in magmatic activity at such submarine volcanoes.

  2. Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Paris, R.; Nomikou, P.; Kelfoun, K.; Leibrandt, S.; Tappin, D. R.; McCoy, F. W.

    2016-07-01

    The 1650 AD explosive eruption of Kolumbo submarine volcano (Aegean Sea, Greece) generated a destructive tsunami. In this paper we propose a source mechanism of this poorly documented tsunami using both geological investigations and numerical simulations. Sedimentary evidence of the 1650 AD tsunami was found along the coast of Santorini Island at maximum altitudes ranging between 3.5 m a.s.l. (Perissa, southern coast) and 20 m a.s.l. (Monolithos, eastern coast), corresponding to a minimum inundation of 360 and 630 m respectively. Tsunami deposits consist of an irregular 5 to 30 cm thick layer of dark grey sand that overlies pumiceous deposits erupted during the Minoan eruption and are found at depths of 30-50 cm below the surface. Composition of the tsunami sand is similar to the composition of the present-day beach sand but differs from the pumiceous gravelly deposits on which it rests. The spatial distribution of the tsunami deposits was compared to available historical records and to the results of numerical simulations of tsunami inundation. Different source mechanisms were tested: earthquakes, underwater explosions, caldera collapse, and pyroclastic flows. The most probable source of the 1650 AD Kolumbo tsunami is a 250 m high water surface displacement generated by underwater explosion with an energy of 2 × 1016 J at water depths between 20 and 150 m. The tsunamigenic explosion(s) occurred on September 29, 1650 during the transition between submarine and subaerial phases of the eruption. Caldera subsidence is not an efficient tsunami source mechanism as short (and probably unrealistic) collapse durations (< 5 min) are needed. Pyroclastic flows cannot be discarded, but the required flux (106 to 107 m3 · s- 1) is exceptionally high compared to the magnitude of the eruption.

  3. Active Volcanic Eruptions on Io

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.

    The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the

  4. Petrological and geochemical Highlights in the floating fragments of the October 2011 submarine eruption offshore El Hierro (Canary Islands): Relevance of submarine hydrothermal processes

    NASA Astrophysics Data System (ADS)

    Rodriguez-Losada, Jose A.; Eff-Darwich, Antonio; Hernandez, Luis E.; Viñas, Ronaldo; Pérez, Nemesio; Hernandez, Pedro; Melián, Gladys; Martinez-Frías, Jesús; Romero-Ruiz, M. Carmen; Coello-Bravo, Juan Jesús

    2015-02-01

    This paper describes the main physical, petrological and geochemical features of the floating fragments that were emitted in the initial stages of the 2011-2012 submarine eruption off the coast of the Canarian island of El Hierro, located 380 km from the Northwest African Coast. It attempts to assess the potential of radiometric analyses to discern the intriguing origin of the floating fragments and the differences between their constituent parts. In this regard, the material that conforms the core of the fragments contains the largest concentration of uranium (U) ever found in volcanic rocks of the Canary Islands. This enrichment in U is not found in the content of thorium (Th), hence the floating fragments have an unusual U/Th ratio, namely equal to or larger than 3. Although the origin of this material is under discussion, it is proposed that the enrichment in U is the result of hydrothermal processes.

  5. Volcanic eruptions and solar activity

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  6. Ultra-long-range hydroacoustic observations of submarine volcanic activity at Monowai, Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Metz, D.; Watts, A. B.; Grevemeyer, I.; Rodgers, M.; Paulatto, M.

    2016-02-01

    Monowai is an active submarine volcanic center in the Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of 5 days, with explosive activity directly linked to the generation of seismoacoustic T phases. We show, using cross-correlation and time-difference-of-arrival techniques, that the eruption is detected as far as Ascension Island, equatorial South Atlantic Ocean, where a bottom moored hydrophone array is operated as part of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization. Hydroacoustic phases from the volcanic center must therefore have propagated through the Sound Fixing and Ranging channel in the South Pacific and South Atlantic Oceans, a source-receiver distance of ~15,800 km. We believe this to be the furthest documented range of a naturally occurring underwater signal above 1 Hz. Our findings, which are consistent with observations at regional broadband stations and long-range, acoustic parabolic equation modeling, have implications for submarine volcano monitoring.

  7. Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Paris, Raphael; Nomikou, Paraskevi; Tappin, Dave

    2016-04-01

    The 1650 AD explosive eruption of Kolumbo submarine volcano (Aegean Sea, Greece) generated a destructive tsunami. In this paper we propose a source mechanism of this poorly documented tsunami using both geological investigations and numerical simulations. Sedimentary evidences of the 1650 AD tsunami were found along the coast of Santorini Island at maximum altitudes ranging between 3.5 m a.s.l. (Perissa, southern coast) and 20 m a.s.l. (Monolithos, eastern coast), corresponding to a minimum inundation of 360 and 630 m respectively. Tsunami deposits correspond to an irregular 5 to 30 cm thick layer of dark grey sand intercalated in soil at depths between 30 and 50 cm. Composition of the tsunami sand is similar to the composition of the present-day beach and clearly differs from the pumiceous gravelly soil. Spatial distribution of the tsunami deposits was confronted to available historical records and to the results of numerical simulations of tsunami inundation. Different scenarios of source mechanism were tested: earthquakes, underwater explosions, caldera collapse, and pyroclastic flows. The most probable source of the 1650 AD Kolumbo tsunami is a 250 m high water surface displacement generated by underwater explosion with an energy of ~2 E15 J at water depths between 20 and 150 m. The tsunamigenic explosion(s) occurred on September 29, 1650 during the transition between submarine and subaerial phases. Caldera subsidence is not an efficient source of tsunami, as short (and probably unrealistic) collapse durations (< 5 minutes) are needed. Pyroclastic flows cannot be discarded, but the required flux (E6 to E7 m³.s-1) is exceptionally high compared to the magnitude of the eruption.

  8. Active control of radiated pressure of a submarine hull

    NASA Astrophysics Data System (ADS)

    Pan, Xia; Tso, Yan; Juniper, Ross

    2008-03-01

    A theoretical analysis of the active control of low-frequency radiated pressure from submarine hulls is presented. Two typical hull models are examined in this paper. Each model consists of a water-loaded cylindrical shell with a hemispherical shell at one end and conical shell at the other end, which forms a simple model of a submarine hull. The conical end is excited by an axial force to simulate propeller excitations while the other end is free. The control action is implemented through a Tee-sectioned circumferential stiffener driven by pairs of PZT stack actuators. These actuators are located under the flange of the stiffener and driven out of phase to produce a control moment. A number of cost functions for minimizing the radiated pressure are examined. In general, it was found that the control system was capable of reducing more than half of the total radiated pressure from each of the submarine hull for the first three axial modes.

  9. Quantifying submarine landslide processes driven by active tectonic forcing: Cook Strait submarine canyon, New Zealand.

    NASA Astrophysics Data System (ADS)

    Mountjoy, J. J.; Barnes, P. M.; Pettinga, J. R.

    2006-12-01

    The Cook Strait submarine canyon system is a multi-branched, deeply incised and highly sinuous feature of New Zealand's active margin, covering some 1500km2 of sea floor between the North and South Islands and spanning water depths of between 50 and 2700m. The canyon occurs at the transition from the westward dipping oblique subduction zone adjacent to the SE North Island and the zone of continental transpression in NE South Island. The recent acquisition of high resolution (5-10m) SIMRAD EM300 bathymetric data allows active tectonic and geomorphic processes to be assessed and quantified at a level of detail previously not possible. While multiple active submarine fault traces have been identified in the Cook Strait by previous studies, quantitative information on their activity has been limited. Cook Strait is structurally characterized by westward dipping thrust faults and E-W trending dextral strike slip faults. The multiple large magnitude high frequency earthquake sources define zones of very high ground shaking expected to contribute to triggering of extensive submarine slope failures. Landslide activity within the canyon system is widespread and represents the dominant mass movement process affecting canyon heads and walls, redistributing material into valley fills. Complexes of large (km3) multi-stepped, deep-seated (100m) translational bedding plane failures represented by gently sloping (<3°) evacuated slide-scar areas with associated blocky valley fill deposits are numerous. Steep catchment heads, channel walls and the leading edges of asymmetric thrust-fault driven anticlines are dominated by gulley and rill systems with associated eroded and/or incipient slump features. Large (107m3+) slide blocks are recognized in discrete failures with quantifiable displacement vectors. Tsunamigenic landslides in this environment are inevitable. This study will provide quantification of landslide models including triggering mechanisms, discrete geometries and

  10. Assessment of ambulatory activity in the Republic of Korea Navy submarine crew.

    PubMed

    Choi, Seong-Woo; Lee, Jae-Ho; Jang, Young-Keun; Kim, Jung-Ryul

    2010-01-01

    A submarine crew in the Republic of the Korea Navy experienced significant physical inactivity during undersea deployment because of the narrow and confined space. Physical inactivity is known to be associated with a number of adverse health conditions in the long-term perspective. This study aimed to assess the ambulatory activity of submarine crew using pedometers. Study subjects (n=109) were the submarine crew from two diesel submarines and personnel from the Submarine Command. The subjects wore pedometers at their waistline and recorded their walking steps daily for a month. The submarine crew walked more than 7000 steps/day on average during the stationed period. However, the ambulatory activity of the submarine crew greatly declined to a level of around 2000 steps/day during deployment, which corresponded to the sedentary status category. Active exercise is recommended for the submarine crew to prevent potential adverse health outcomes related to the physical inactivity.

  11. Magnitude and Recurrence of Submarine Landslides: Active vs. Passive Margins

    NASA Astrophysics Data System (ADS)

    Urgeles, Roger; Camerlenghi, Angelo

    2016-04-01

    Submarine landslides are ubiquitous along Mediterranean continental margins. With the aim of understanding mass-wasting processes and related hazard at the scale of a large marine basin encompassing multiple geological settings, we have compiled data on their geometry, age, and trigger mechanism with a geographic information system. The distribution of submarine landslides in the Mediterranean reveals that major deltaic wedges have a higher density of large submarine landslides, while tectonically active margins are characterized by relatively small failures. In all areas, landslide size distributions display power law scaling for landslides > 1 km3. We find consistent differences on the exponent of the power law (θ) depending on the tectonic setting. Active margins present steep slopes of the frequency-magnitude relationship while passive margins tend to display gentler slopes. This pattern likely responds to the common view that tectonically active margins have numerous but small failures, while passive margins have larger but fewer failures. Available age information suggests that failures exceeding 1000 km3 are infrequent and may recur every ~40 kyr. Smaller failures that can still cause significant damage might be relatively frequent (failures > 1 km3 may recur every 40 years). The database highlights that our knowledge of submarine landslide activity with time is limited to a few tens of thousands of years. Available data suggest that submarine landslides may preferentially occur during lowstand periods, but no firm conclusion can be made on this respect, as only 70 landslides (out of 696 in the database) have relatively accurate age determinations. The temporal pattern and changes in frequency-magnitude distribution suggest that sedimentation patterns and pore pressure development have had a major role in triggering slope failures and control the sediment flux from mass wasting to the deep basin.

  12. Two-dimensional simulations of explosive eruptions of Kick-em Jenny and other submarine volcanos

    SciTech Connect

    Gisler, Galen R.; Weaver, R. P.; Mader, Charles L.; Gittings, M. L.

    2004-01-01

    Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy), but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailuluu in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by subaerial and sub-aqueous landslides demonstrate this.

  13. The submarine volcano eruption off El Hierro Island: effects on the scattering migrant biota and the evolution of the pelagic communities.

    PubMed

    Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community.

  14. The Submarine Volcano Eruption off El Hierro Island: Effects on the Scattering Migrant Biota and the Evolution of the Pelagic Communities

    PubMed Central

    Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. PMID:25047077

  15. The 1998-2001 submarine lava balloon eruption at the Serreta ridge (Azores archipelago): Constraints from volcanic facies architecture, isotope geochemistry and magnetic data

    NASA Astrophysics Data System (ADS)

    Madureira, Pedro; Rosa, Carlos; Marques, Ana Filipa; Silva, Pedro; Moreira, Manuel; Hamelin, Cédric; Relvas, Jorge; Lourenço, Nuno; Conceição, Patrícia; Pinto de Abreu, Manuel; Barriga, Fernando J. A. S.

    2017-01-01

    The most recent submarine eruption observed offshore the Azores archipelago occurred between 1998 and 2001 along the submarine Serreta ridge (SSR), 4-5 nautical miles WNW of Terceira Island. This submarine eruption delivered abundant basaltic lava balloons floating at the sea surface and significantly changed the bathymetry around the eruption area. Our work combines bathymetry, volcanic facies cartography, petrography, rock magnetism and geochemistry in order to (1) track the possible vent source at seabed, (2) better constrain the Azores magma source(s) sampled through the Serreta submarine volcanic event, and (3) interpret the data within the small-scale mantle source heterogeneity framework that has been demonstrated for the Azores archipelago. Lava balloons sampled at sea surface display a radiogenic signature, which is also correlated with relatively primitive (low) 4He/3He isotopic ratios. Conversely, SSR lavas are characterized by significantly lower radiogenic 87Sr/86Sr, 206Pb/204Pb and 208Pb/204Pb ratios than the lava balloons and the onshore lavas from the Terceira Island. SSR lavas are primitive, but incompatible trace-enriched. Apparent decoupling between the enriched incompatible trace element abundances and depleted radiogenic isotope ratios is best explained by binary mixing of a depleted MORB source and a HIMU­type component into magma batches that evolved by similar shallower processes in their travel to the surface. The collected data suggest that the freshest samples collected in the SSR may correspond to volcanic products of an unnoticed and more recent eruption than the 1998-2001 episode.

  16. Episodic massive mud eruptions from submarine mud volcanoes examined through topographical signatures

    NASA Astrophysics Data System (ADS)

    Kioka, Arata; Ashi, Juichiro

    2015-10-01

    The role of mud volcanism on subsurface fluid migration and material cycling has long been debated. Here we compile the heights and radii of offshore mud volcanoes and estimate a mean volume of episodic massive mud eruptions based on previous studies into granular flows. The volume is estimated as a function of the ratio of height to basal radius of the mud volcano's body under reasonable assumptions of the sizes of the mud conduit. Nearly all known offshore mud volcanoes are found to be polygenetic with the mean individual eruption volume of the pie-type mud volcano being several orders of magnitude larger than that of the cone type. The frequent occurrence of pie-type mud volcanoes in accretionary margins characterized by high-sediment influx is explained by their efficiency in the transport of large amounts of fluidized sediments from deep depths to the seafloor.

  17. Using IMS hydrophone data for detecting submarine volcanic activity: Insights from Monowai, 26°S Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Metz, Dirk; Watts, Anthony B.; Grevemeyer, Ingo; Rodgers, Mel; Paulatto, Michele

    2016-04-01

    Only little is known on active volcanism in the ocean. As eruptions are attenuated by seawater and fallout does not regularly reach the sea surface, eruption rates and mechanisms are poorly understood. Estimations on the number of active volcanoes across the modern seas range from hundreds to thousands, but only very few active sites are known. Monowai is a submarine volcanic centre in the northern Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of five days, with explosive activity directly linked to the generation of seismoacoustic tertiary waves ('T-phases'), recorded at three broadband seismic stations in the region. We show, using windowed cross-correlation and time-difference-of-arrival techniques, that T-phases associated with this eruption are detected as far as Ascension Island, South Atlantic Ocean, where two bottom-moored hydrophone arrays are operated as part of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). We observe a high incidence of T-phase arrivals during the time of the eruption, with the angle of arrival stabilizing at the geodesic azimuth between the IMS arrays and Monowai. T-phases from the volcanic centre must therefore have propagated through the Sound Fixing And Ranging (SOFAR) channel in the South Pacific and South Atlantic Oceans and over a total geodesic range of approximately 15,800 km, one of the longest source-receiver distances of any naturally occurring underwater signal ever observed. Our findings, which are consistent with observations at regional broadband stations and two dimensional, long-range, parabolic equation modelling, highlight the exceptional capabilities of the hydroacoustic waveform component of the IMS for remotely detecting episodes of submarine volcanic activity. Using Monowai and the hydrophone arrays at Ascension Island as a natural laboratory, we investigate the long-term eruptive record of a submarine volcano from

  18. High CO2 in MORB - a link to explosive submarine eruptions?

    NASA Astrophysics Data System (ADS)

    Helo, C.; Longpré, M.; Shimizu, N.; Clague, D. A.; Stix, J.

    2009-12-01

    We analyzed volatile (CO2, H2O, S, F, Cl), and other trace elements, using the Cameca IMS 1280 and the Cameca 3F secondary ion mass spectrometer, in carefully selected plagioclase-hosted melt inclusions and matrix glass from mid-ocean ridge basalt (MORB) hyaloclastite sequences erupted from Axial caldera, Juan de Fuca Ridge (JdFR). The hyaloclastites were sampled at 1400 m below sea-level, and are inferred to result from a series of small pyroclastic eruptions. The trace elements reveal variations from normal to transitional MORB for Axial caldera (e.g., Nb = 1.1-6.5 ppm, Zr/Nb = 9-39). The CO2 concentrations in the melt inclusions range from 260 to 9160 ppm, with 16 out of 47 analyzed inclusions reaching > 1000 ppm. Surface contamination was ruled out by very low CO2 concentrations measured in adjacent plagioclase hosts (< 30 ppm). Such high values are consistent with the initial CO2 content estimated for N- and T-MORBs from the Mid-Atlantic Ridge [Hekinian et al, 2000. Journal of Volcanology and Geothermal Research 98]. When plotted together, CO2 and H2O define a vertical trend suggesting decompression degassing, with apparent vapour saturation pressures ranging from 57 to > 600 MPa. We recognize two possible scenarios: (1) limited degassing during early stages of magma ascent, culminating in supersaturation and sudden, rapid bubble growth at shallower levels, or (2) open-system degassing accompanied by bubble growth and separation as magma rises. The close spatial occurrence of high- and low-CO2 inclusions (< 1000 ppm) within single crystals may argue towards the first interpretation. Saturation pressures for low-CO2 inclusions are consistent with pressures expected within the present day magma reservoir beneath Axial (~ 70-160 MPa). The matrix glass is oversaturated with respect to the depth of eruption; CO2 concentrations vary from 87 to 248 ppm, yielding saturation pressures between 14 MPa and 54 MPa. Water concentrations in the inclusions range from 0.05 to

  19. Eruption style and flow emplacement in the Submarine North Arch Volcanic Field, Hawaii

    NASA Astrophysics Data System (ADS)

    Clague, David A.; Uto, Kozo; Satake, Kenji; Davis, Alicé S.

    The North Arch Volcanic Field covers about 24,000 km2 of seafloor north of Oahu and has an estimated volume between 1,000 and 1,250 km3. The field straddles the Hawaiian flexural arch about 250 km north of the axis of the island chain and surrounds numerous Cretaceous volcanic ridges, circular flat-topped volcanoes, and low-relief regions of sediment-covered seafloor. New SeaBeam bathymetric maps that cover about 1/3 of the flow field reveal nearly 100 volcanic structures ranging from low shields to steep cones. One shield is modified by a pit crater, approximately 1.1×1.25 km and 300 m deep. A lava flow in the SE part of the volcanic field covers about 3,600 km2, has an estimated volume of 36-72 km3, and apparently erupted from a 75-km-long NNW-trending fissure system. A 108-km-long flow advanced north in a graben parallel to the Cretaceous mid-ocean ridge that formed the crust; its surface gradient is 1.9 m/km (slope of 0.1°). Shinkai 6500 submersible dive 502 explored one of the composite volcanoes and observed and collected dense alkalic basalt sheet flows erupted after vesicular basanite pillow basalts and fragmental hyaloclastite that make up the steep-sided cone. Dive 503 collected alkalic basalt sheet flows and pillow basalt from the top 122 m of the southern wall of a pit crater that formed by collapse caused by a decrease in magma volume from a shallow storage chamber located 1-2 km below the surface. The volume change may have been caused by loss of gas bubbles from the stored magma when replenishment ceased at the end of the eruption. The surficial drapery-folded sheet flow is covered by only a few cm of sediment, indicating that it is younger than the 0.5-1.5 Ma ages previously estimated for North Arch flows and vents. The near-vent constructs and flow characteristics indicate that vigorous eruption of highly vesicular lava constructed steep-sided cones of pillow basalt and hyaloclastite whereas steady eruption of dense lava that had lost its bubbles

  20. Analyses of Etna Eruptive Activity From 18th Century and Characterization of Flank Eruptions

    NASA Astrophysics Data System (ADS)

    del Carlo, P.; Branca, S.; Coltelli, M.

    2003-12-01

    Etna explosive activity has usually been considered subordinate with respect to the effusive eruptions. Nevertheless, in the last decade and overall after the 2001 and 2002 flank eruptions, explosive activity has drawn the attention of the scientific and politic communities owing to the damages that the long-lasting ash fall caused to Sicily's economy. We analyzed the eruptions from the 18th century to find some analogous behavior of Etna in the past. A study of the Etna historical record (Branca and Del Carlo, 2003) evidenced that after the 1727 eruption, there are no more errors in the attribution of the year of the eruption. Furthermore from this time on, the scientific quality of the chronicles allowed us to obtain volcanological information and to estimate the magnitude of the major explosive events. The main goal of this work was to characterize the different typologies of Etna eruptions in the last three centuries. Meanwhile, we have tried to find the possible relationship between the two kinds of activity (explosive and effusive) in order to understand the complexity of the eruptive phenomena and define the short-term behavior of Etna. On the base of the predominance of the eruptive typology (effusive or explosive) we have classified the flank eruptions in three classes: i) Type 1: almost purely effusive; ii) Type 2: the intensity of explosive activity comparable with the effusive; iii) Type 3: almost purely explosive with minor lava effusion (only the 1763 La Montagnola and 2002 eruptions belong to this class). Long-lasting explosive activity is produced by flank eruptions with continuous ash emission and prolonged fallout on the flanks (e.g. 1763, 1811, 1852-53, 1886, 1892, 2001 and 2002 eruptions). At summit craters continuous activity is weaker, whereas the strongest explosive eruptions are short-lived events. Furthermore, from the 18th to 20th century there were several years of intense and discontinuous summit explosive activity, from high strombolian

  1. Spatial and temporal variations of diffuse CO2 degassing at El Hierro volcanic system: Relation to the 2011-2012 submarine eruption

    NASA Astrophysics Data System (ADS)

    Melián, Gladys; Hernández, Pedro A.; Padrón, Eleazar; Pérez, Nemesio M.; Barrancos, José; Padilla, Germán.; Dionis, Samara; Rodríguez, Fátima; Calvo, David; Nolasco, Dacil

    2014-09-01

    We report herein the results of extensive diffuse CO2 emission surveys performed on El Hierro Island in the period 1998-2012. More than 17,000 measurements of the diffuse CO2 efflux were carried out, most of them during the volcanic unrest period that started in July 2011. Two significant precursory signals based on geochemical and geodetical studies suggest that a magma intrusion processes might have started before 2011 in El Hierro Island. During the preeruptive and eruptive periods, the time series of the diffuse CO2 emission released by the whole island experienced two significant increases. The first started almost 2 weeks before the onset of the submarine eruption, reflecting a clear geochemical anomaly in CO2 emission, most likely due to increasing release of deep-seated magmatic gases to the surface. The second one, between 24 October and 27 November 2011, started before the most energetic seismic events of the volcanic-seismic unrest. The data presented here demonstrate that combined continuous monitoring studies and discrete surveys of diffuse CO2 emission provide important information to optimize the early warning system in volcano monitoring programs and to monitor the evolution of an ongoing volcanic eruption, even though it is a submarine eruption.

  2. Holocene eruptive activity of El Chichon volcano, Chiapas, Mexico

    NASA Technical Reports Server (NTRS)

    Tilling, R. I.; Rubin, M.; Sigurdsson, H.; Carey, S.; Duffield, W. A.; Rose, W. I.

    1984-01-01

    Geologic and radiometric-age data indicate that El Chichon was frequently and violently active during the Holocene, including eruptive episodes about 600, 1250, and 1700 years ago and several undated, older eruptions. These episodes, involving explosive eruptions of sulfur-rich magma and associated domegrowth processes, were apparently separated by intervals of approximately 350 to 650 years. Some of El Chichon's eruptions may correlate with unusual atmospheric phenomena around A.D. 1300 and possibly A.D. 623.

  3. Holocene eruptive activity of El Chichon volcano, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Tilling, R. I.; Rubin, M.; Sigurdsson, H.; Carey, S.; Duffield, W. A.; Rose, W. I.

    1984-05-01

    Geologic and radiometric-age data indicate that El Chichon was frequently and violently active during the Holocene, including eruptive episodes about 600, 1250, and 1700 years ago and several undated, older eruptions. These episodes, involving explosive eruptions of sulfur-rich magma and associated domegrowth processes, were apparently separated by intervals of approximately 350 to 650 years. Some of El Chichon's eruptions may correlate with unusual atmospheric phenomena around A.D. 1300 and possibly A.D. 623.

  4. Open-System Magma Reservoir Affects Gas Segregation, Vesiculation, Fragmentation and Lava/Pyroclast Dispersal During the 1.2 km-deep 2007-2010 Submarine Eruption at West Mata Volcano

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Clague, D. A.; Embley, R. W.; Hellebrand, E.; Soule, S. A.; Resing, J.

    2014-12-01

    West Mata, a small, active rear-arc volcano in the NE Lau Basin, erupts crystal and gas rich boninite magma. Eruptions were observed at the summit (1.2 km water depth) during 5 ROV Jason dives in 2009 (the deepest erupting submarine volcano observed to date). Subsequent ROV and ship-based bathymetric mapping revealed that a pit crater formed and the summit eruption ceased in 2010, with roughly simultaneous eruptions along the SW rift zone. During the summit eruption, a combination of water depth, H2O-CO2-rich and high crystallinity magma, a split in the conduit to feed two vent sites, and waxing/waning magma supply led to a range of effusive/explosive eruption styles and volcanic deposit types. The 2-3 vent Hades cluster and the lone Prometheus vent had different eruption characteristics. Petrographic, petrologic and geochemical studies of erupted products indicate a change in magma composition in time and space over a period of 3.5 yrs, suggesting a small, open-system magma reservoir within the volcano. Prometheus (1174m depth) produced mostly pyroclastic material during our observations (e.g., highly vesicular glowing fluidal ejecta that cooled in the water column and rounded recycled dense clasts), but sampling and 210Po radiometric dating show that several months prior pillowed lava flows, subsequently covered with cm-sized pyroclasts, had flowed >50m from the vent. In contrast, vents at Hades (1200m depth) cycled between lava production and vigorous degassing, 10-20m high fire fountains and bursts of glowing lava-skinned bubbles, the products of which froze/broke in the water column, forming unstable cones of spatter and scoria near the vents. We hypothesize that bubbles collapse rather than form lava balloons because of skin brittleness (from high crystal content) and hydrostatic pressure. Clast settling times and patterns suggest >100m water column rise height for 10+ cm-sized fragments. Pillow flows were also observed to be issuing from the base of the

  5. Interaction of sea water and lava during submarine eruptions at mid-ocean ridges

    USGS Publications Warehouse

    Perfit, M.R.; Cann, J.R.; Fornari, D.J.; Engels, J.; Smith, D.K.; Ridley, W.I.; Edwards, M.H.

    2003-01-01

    Lava erupts into cold sea water on the ocean floor at mid-ocean ridges (at depths of 2,500 m and greater), and the resulting flows make up the upper part of the global oceanic crust. Interactions between heated sea water and molten basaltic lava could exert significant control on the dynamics of lava flows and on their chemistry. But it has been thought that heating sea water at pressures of several hundred bars cannot produce significant amounts of vapour and that a thick crust of chilled glass on the exterior of lava flows minimizes the interaction of lava with sea water. Here we present evidence to the contrary, and show that bubbles of vaporized sea water often rise through the base of lava flows and collect beneath the chilled upper crust. These bubbles of steam at magmatic temperatures may interact both chemically and physically with flowing lava, which could influence our understanding of deep-sea volcanic processes and oceanic crustal construction more generally. We infer that vapour formation plays an important role in creating the collapse features that characterize much of the upper oceanic crust and may accordingly contribute to the measured low seismic velocities in this layer.

  6. Interaction of sea water and lava during submarine eruptions at mid-ocean ridges.

    PubMed

    Perfit, Michael R; Cann, Johnson R; Fornari, Daniel J; Engels, Jennifer; Smith, Deborah K; Ridley, W Ian; Edwards, Margo H

    2003-11-06

    Lava erupts into cold sea water on the ocean floor at mid-ocean ridges (at depths of 2,500 m and greater), and the resulting flows make up the upper part of the global oceanic crust. Interactions between heated sea water and molten basaltic lava could exert significant control on the dynamics of lava flows and on their chemistry. But it has been thought that heating sea water at pressures of several hundred bars cannot produce significant amounts of vapour and that a thick crust of chilled glass on the exterior of lava flows minimizes the interaction of lava with sea water. Here we present evidence to the contrary, and show that bubbles of vaporized sea water often rise through the base of lava flows and collect beneath the chilled upper crust. These bubbles of steam at magmatic temperatures may interact both chemically and physically with flowing lava, which could influence our understanding of deep-sea volcanic processes and oceanic crustal construction more generally. We infer that vapour formation plays an important role in creating the collapse features that characterize much of the upper oceanic crust and may accordingly contribute to the measured low seismic velocities in this layer.

  7. Predicting eruptions from precursory activity using remote sensing data hybridization

    NASA Astrophysics Data System (ADS)

    Reath, K. A.; Ramsey, M. S.; Dehn, J.; Webley, P. W.

    2016-07-01

    Many volcanoes produce some level of precursory activity prior to an eruption. This activity may or may not be detected depending on the available monitoring technology. In certain cases, precursors such as thermal output can be interpreted to make forecasts about the time and magnitude of the impending eruption. Kamchatka (Russia) provides an ideal natural laboratory to study a wide variety of eruption styles and precursory activity prior to an eruption. At Bezymianny volcano for example, a clear increase in thermal activity commonly occurs before an eruption, which has allowed predictions to be made months ahead of time. Conversely, the eruption of Tolbachik volcano in 2012 produced no discernable thermal precursors before the large scale effusive eruption. However, most volcanoes fall between the extremes of consistently behaved and completely undetectable, which is the case with neighboring Kliuchevskoi volcano. This study tests the effectiveness of using thermal infrared (TIR) remote sensing to track volcanic thermal precursors using data from both the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Advanced Very High Resolution Radiometer (AVHRR) sensors. It focuses on three large eruptions that produced different levels and durations of effusive and explosive behavior at Kliuchevskoi. Before each of these eruptions, TIR spaceborne sensors detected thermal anomalies (i.e., pixels with brightness temperatures > 2 °C above the background temperature). High-temporal, low-spatial resolution (i.e., ~ hours and 1 km) AVHRR data are ideal for detecting large thermal events occurring over shorter time scales, such as the hot material ejected following strombolian eruptions. In contrast, high-spatial, low-temporal resolution (i.e., days to weeks and 90 m) ASTER data enables the detection of much lower thermal activity; however, activity with a shorter duration will commonly be missed. ASTER and AVHRR data are combined to track low

  8. Xenopumices from the 2011-2012 submarine eruption of El Hierro (Canary Islands, Spain): Constraints on the plumbing system and magma ascent

    NASA Astrophysics Data System (ADS)

    Meletlidis, S.; Di Roberto, A.; Pompilio, M.; Bertagnini, A.; Iribarren, I.; Felpeto, A.; Torres, P. A.; D'Oriano, C.

    2012-09-01

    Textures, petrography and geochemical compositions of products emitted during the onset of the 2011-2012 submarine eruption (15 October, 2011) off the coast of El Hierro have been investigated to get information on interaction mechanism between the first rising magma and the crust during the onset of the eruption as well as to get information on magma storage and plumbing systems beneath El Hierro volcano. Studied products consist of 5-50 cm bombs with an outer black to greenish, vesicular crust with bulk basanite composition containing pumiceous xenoliths (xenopumices). Our results show that xenopumices are much more heterogeneous that previously observed, since consist of a macro-scale mingling of a gray trachyte and white rhyolite. We interpreted xenopumices as resulting from the interaction (heating) between the basanitic magma feeding the eruption, a stagnant trachytic magma pocket/s and an associated hydrothermally altered halo with rhyolitic composition. Our findings confirm the importance of the study of the early products of an eruption since they can contain crucial information on the plumbing system geometry and the mechanism of magma ascent.

  9. Solar activity and explosive transient eruptions

    NASA Astrophysics Data System (ADS)

    Ambastha, Ashok

    2016-07-01

    We discuss active and explosive behavior of the Sun observable in a wide range of wavelengths (or energies) and spatio-temporal scales that are not possible for any other star. On the longer time scales, the most notable form of solar activity is the well known so called 11-year solar activity cycle. On the other hand, at shorter time scales of a few minutes to several hours, spectacular explosive transient events, such as, solar flares, prominence eruptions, and coronal mass ejections (CMEs) occur in the outer layers of solar atmosphere. These solar activity cycle and explosive phenomena influence and disturb the space between the Sun and planets. The state of the interplanetary medium, including planetary and terrestrial surroundings, or "the space weather", and its forecasting has important practical consequences. The reliable forecasting of space weather lies in continuously observing of the Sun. We present an account of the recent developments in our understanding of these phenomena using both space-borne and ground-based solar observations.

  10. Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China: implications for possible future eruptions

    NASA Astrophysics Data System (ADS)

    Wei, Haiquan; Liu, Guoming; Gill, James

    2013-04-01

    One of the largest explosive eruptions in the past several thousand years occurred at Tianchi volcano, also known as Changbaishan, on the China-North Korea border. This historically active polygenetic central volcano consists of three parts: a lower basaltic shield, an upper trachytic composite cone, and young comendite ash flows. The Millennium Eruption occurred between 938 and 946 ad, and was preceded by two smaller and chemically different rhyolitic pumice deposits. There has been at least one additional, small eruption in the last three centuries. From 2002 to 2005, seismicity, deformation, and the helium and hydrogen gas contents of spring waters all increased markedly, causing regional concern. We attribute this event to magma recharge or volatile exhalation or both at depth, followed by two episodes of addition of magmatic fluids into the overlying aquifer without a phreatic eruption. The estimated present magma accumulation rate is too low by itself to account for the 2002-2005 unrest. The most serious volcanic hazards are ash eruption and flows, and lahars. The available geological information and volcano monitoring data provide a baseline for comprehensive assessment of future episodes of unrest and possible eruptive activity.

  11. Submarine fissure eruptions and hydrothermal vents on the southern Juan de Fuca Ridge: preliminary observations from the submersible Alvin

    USGS Publications Warehouse

    Normark, W.R.

    1986-01-01

    The submersible Alvin was used to investigate 3 active hydrothermal discharge sites along the S Juan de Fuca Ridge in September 1984. The hydrothermal zones occur within a 10-30m-deep, 30-50m-wide cleft marking the center of the axial valley. This cleft is the eruptive locus for the axial valley. The hydrothermal vents coincide with the main eruptive vents along the cleft. Each hydrothermal zone has multiple discharge sites extending as much as 500m along the cleft. Sulfide deposits occur as clusters (15-100m2 area) of small chimneys (= or <2m high) and as individual and clustered fields of large, branched chimneys (= or <10m high). Recovered sulfide samples are predominantly the tops of chimneys and spires and typically contain more than 80% sphalerite and wurtzite with minor pyrrhotite, pyrite, marcasite, isocubanite, chalcopyrite, anhydrite, anhydrite, and amorphous silica. The associated hydrothermal fluids have the highest chlorinity of any reported to date.-Authors

  12. An authoritative global database for active submarine hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew

    2013-11-01

    The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.

  13. Estimated CO2, SO2 and H2S emission to the atmosphere from the 2011 El Hierro submarine eruption (Canary Islands) on the basis of helicopter gas surveys

    NASA Astrophysics Data System (ADS)

    Barrancos, J.; Padilla, G.; Padrón, E.; Hernández, P. A.; Calvo, D.; Marquez, A.; Pérez, N. M.; Melian, G.; Dionis, S.; Rodríguez, F.; Nolasco, D.; Hernández, I.

    2012-04-01

    An accurate estimation of SO2 emission rates is an important issue to elucidate the activity of volcanoes, moreover the monitoring of its temporal evolution might help to predict a possible eruption and thus, save the loss of human's lives in cities nearby volcanoes. In the lasts years new instruments have been developed and improved, in order to be more portable, cheaper and lighter. The miniDOAS consist of a small spectrometer with a lens for collecting scattered UV light, and are controlled/powered via USB with a laptop. Recently, new technical developments have allowed monitoring the emission of other gas species such as CO2, H2S, etc from volcanic plumes by means of portable multisensor system. With both devices we were able to evaluate the SO2 emission rates and the molar ratios of major volcanic gas components, respectively. Multiplying the observed SO2 emission rate times the observed (gas)i/SO2 mass ratios (CO2/SO2 and H2S/SO2) allowed us to estimate other volatiles emission rates. Between November 11, 2011, and January 16, 2012, and as a consequence of the submarine volcanic eruption started on October 10, 2011, south off shore El Hierro, Canary Islands, a regularly monitoring of the volcanic plume from the submarine volcano has been performed with remote sensors, always depending of helicopter availability. The instruments are mounted aboard on a helicopter belonged to the Helicopter Unit of Spanish Civil Guard. The SO2 flux measured during this period showed a maximum SO2 emission of 109 ± 19 t/d on November 6, just two days before the occurrence of a intense bubbling at the sea surface on November 8, producing a water, gas and ash column of about 15 meters over the sea surface. That day, CO2 and H2S emission also reached the maximum measured, with 5400 t/d and 3.6 t/d, respectively. Since then, SO2, CO2 and H2S emission rates have declined to values close to detection limit (~ 2 t/d for SO2). These results report the first SO2 emission rates measured

  14. Submarine explosive activity and ocean noise generation at Monowai Volcano, Kermadec Arc: constraints from hydroacoustic T-waves

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony

    2016-04-01

    Submarine volcanic activity is difficult to detect, because eruptions at depth are strongly attenuated by seawater. With increasing depth the ambient water pressure increases and limits the expansion of gas and steam such that volcanic eruptions tend to be less violent and less explosive with depth. Furthermore, the thermal conductivity and heat capacity of water causes rapid cooling of ejected products and hence erupted magma cools much more quickly than during subaerial eruptions. Therefore, reports on submarine volcanism are restricted to those sites where erupted products - like the presence of pumice rafts, gas bubbling on the sea surface, and local seawater colour changes - reach the sea surface. However, eruptions cause sound waves that travel over far distances through the Sound-Fixing-And-Ranging (SOFAR) channel, so called T-waves. Seismic networks in French Polynesia recorded T-waves since the 1980's that originated at Monowai Volcano, Kermadec Arc, and were attributed to episodic growth and collapse events. Repeated swath-mapping campaigns conducted between 1998 and 2011 confirm that Monowai volcano is a highly dynamic volcano. In July of 2007 a network of ocean-bottom-seismometers (OBS) and hydrophones was deployed and recovered at the end of January 2008. The instruments were located just to the east of Monowai between latitude 25°45'S and 27°30'S. The 23 OBS were placed over the fore-arc and on the incoming subducting plate to obtain local seismicity associated with plate bending and coupling of the subduction megathrust. However, we recognized additional non-seismic sleuths in the recordings. Events were best seen in 1 Hz high-pass filtered hydrophone records and were identified as T-waves. The term T-wave is generally used for waves travelling through the SOFAR channel over large distances. In our case, however, they were also detected on station down to ~8000 m, suggesting that waves on the sea-bed station were direct waves caused by explosive

  15. A statistical analysis of eruptive activity on Mount Etna, Sicily

    NASA Astrophysics Data System (ADS)

    Smethurst, Lucy; James, Mike R.; Pinkerton, Harry; Tawn, Jonathan A.

    2009-10-01

    A rigorous analysis of the timing and location of flank eruptions of Mount Etna on Sicily is important for the creation of hazard maps of the densely populated area surrounding the volcano. In this paper, we analyse the temporal, volumetric and spatial data on eruptive activity on Etna. Our analyses are based on the two most recent and robust historical data catalogues of flank eruption activity on Etna, with one from 1669 to 2008 and the other from 1610 to 2008. We use standard statistical methodology and modelling techniques, though a number of features are new to the analysis of eruption data. Our temporal analysis reveals that flank eruptions on Mount Etna between 1610 and 2008 follow an inhomogeneous Poisson process, with intensity of eruptions increasing nearly linearly since the mid-1900s. Our temporal analysis reveals no evidence of cyclicity over this period. An analysis of volumetric lava flow rates shows a marked increase in activity since 1971. This increase, which coincides with the formation of the Southeast Crater (SEC), appears to be related to increased activity on and around the SEC. This has significant implications for hazard analysis on Etna.

  16. Shallow water submarine hydrothermal activity - A case study in the assessment of ocean acidification and fertilization

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yoshida, K.; Hagiwara, T.; Nagao, K.; Kusakabe, M.; Wang, B.; Chen, C. A.

    2012-12-01

    Most natural Shallow Water submarine Hydrothermal activates (SWH) along coastlines are related to hydrothermal eruptions involving heating of groundwater with the volcanic gas. These SWHs supply nutrients such as phosphorus and micro nutrients like iron to the euphotic zone, contributing to the overall natural fertility and primary productivity of coastal waters. However, SWHs also have a negative effect, dispersing toxic materials such as mercury and arsenic, and affecting the acidification of the surrounding waters. In this study, we evaluate the impact of "iron supply" and "ocean acidification" on the primary production in a coastal marine environment, at a SWH area discovered off Gueshandao Island, northeast Taiwan. In the past three years, expeditions were conducted and observations made around this SWH site. Divers, small boats and a research vessel (R/V OR1, Ocean University National Taiwan) were used to survey successively larger areas around the site. Some of the results obtained are as follows. Hydrothermal vents are located in a hilly terrain rich with hot spring water with gas erupting intermittently. There are two types of vents, roughly divided by color, yellow hot spring water with higher temperature >110 degC ejected from sulfur chimneys of various sizes, and colorless water with lower temperature ~80 degC ejected directly from the crevices of the andesitic bedrock. Natural sulfur solidifying in the mouth of a small chimney was captured by a video camera, and explosions were also observed at intervals of a few minutes. Sediment, sand and particles of sulfur were deposited on the sides to a radius of about 50 m condensing around the chimney. The bottom type changes from sand/particles to outcrop/rock away from the vents. Moreover, gas samples were collected from the vents; the ratios of gas concentrations (N2/Ar) and isotopic composition of noble gas (3He/4He) suggest that these volcanic gases are mantle-derived. Hydrothermal fluid with high p

  17. Applying fractal dimensions and energy-budget analysis to characterize fracturing processes during magma migration and eruption: 2011-2012 El Hierro (Canary Islands) submarine eruption

    NASA Astrophysics Data System (ADS)

    López, Carmen; Martí, Joan; Abella, Rafael; Tarraga, Marta

    2014-05-01

    The impossibility of observing magma migration inside the crust obliges us to rely on geophysical data and mathematical modelling to interpret precursors and to forecast volcanic eruptions. Of the geophysical signals that may be recorded before and during an eruption, deformation and seismicity are two of the most relevant as they are directly related to its dynamic. The final phase of the unrest episode that preceded the 2011-2012 eruption on El Hierro (Canary Islands) was characterized by local and accelerated deformation and seismic energy release indicating an increasing fracturing and a migration of the magma. Application of time varying fractal analysis to the seismic data and the characterization of the seismicity pattern and the strain and the stress rates allow us to identify different stages in the source mechanism and to infer the geometry of the path used by the magma and associated fluids to reach the Earth's surface. The results obtained illustrate the relevance of such studies to understanding volcanic unrest and the causes that govern the initiation of volcanic eruptions.

  18. Applying Fractal Dimensions and Energy-Budget Analysis to Characterize Fracturing Processes During Magma Migration and Eruption: 2011-2012 El Hierro (Canary Islands) Submarine Eruption

    NASA Astrophysics Data System (ADS)

    López, Carmen; Martí, Joan; Abella, Rafael; Tarraga, Marta

    2014-07-01

    The impossibility of observing magma migration inside the crust obliges us to rely on geophysical data and mathematical modelling to interpret precursors and to forecast volcanic eruptions. Of the geophysical signals that may be recorded before and during an eruption, deformation and seismicity are two of the most relevant as they are directly related to its dynamic. The final phase of the unrest episode that preceded the 2011-2012 eruption on El Hierro (Canary Islands) was characterized by local and accelerated deformation and seismic energy release indicating an increasing fracturing and a migration of the magma. Application of time varying fractal analysis to the seismic data and the characterization of the seismicity pattern and the strain and the stress rates allow us to identify different stages in the source mechanism and to infer the geometry of the path used by the magma and associated fluids to reach the Earth's surface. The results obtained illustrate the relevance of such studies to understanding volcanic unrest and the causes that govern the initiation of volcanic eruptions.

  19. Spatial and temporal variations of soil CO2 degassing rate at El Hierro volcanic system and relation to the 2011 submarine eruption

    NASA Astrophysics Data System (ADS)

    Melían, G.; Barrancos, J.; Padilla, G.; Dionis, S.; Rodríguez, F.; Nolasco, D.; Padrón, E.; Hernández, P. A.; Calvo, D.; Hernández, I.; Peréz, N. M.; Peraza, M. D.

    2012-04-01

    El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events. On October 10, 2011, the seismic activity changed behaviour and produced a harmonic tremor due to magma movement suggesting the initial stage of an eruption. The purpose of this study is to investigate the spatial and temporal variations of soil CO2 degassing rates at El Hierro volcanic system and its relation with the 2011 El Hierro volcanic unrest. Since 1998, diffuse CO2 emission has been investigated at El Hierro volcanic system in a yearly basis during the summer periods with approximately 600 observation sites. From 2004 to 2009, a diffuse CO2 emission rate decreasing trend from 1434 to 358 t•d-1 (equivalent to background values) was observed, and this tendency changed from 2009 to 2010 reaching a diffuse CO2 emission rate of 970 t•d-1. Because of this observed tendency change on the diffuse CO2 emission rate is possible to think that the preliminary stages of the 2011 volcanic unrest at El Hierro did start by the middle of 2010 with aseismic magma rising in the upper mantle beneath El Hierro. Since July 2011 and due to the start of the seismic-volcanic crisis at El Hierro, 16 diffuse CO2 emission surveys have been undertaken until January 2012. Diffuse CO2 emission measurements were performed by means of portable NDIR sensors according to the accumulation chamber method. Observed soil CO2 efflux values for all the 2011-12 surveys have ranged from negligible values to 398 g•m-2•d-1. The diffuse CO2 output released to atmosphere for the 2011-12 surveys was estimated between 138 and 2,143 t•d-1. On October 6, 2011, an increase tendency of diffuse CO2 emission rate from 380 to 990 t•d-1 was observed prior the occurrence of the first 4 magnitude type earthquake on October 8, 2011, and El Hierro submarine eruption on October 12, 2011. From October 15, 2011, an

  20. Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  1. Temperature and Structure of Active Eruptions from a Handheld Camcorder

    NASA Astrophysics Data System (ADS)

    Radebaugh, Jani; Carling, Greg T.; Saito, Takeshi; Dangerfield, Anne; Tingey, David G.; Lorenz, Ralph D.; Lopes, Rosaly M.; Howell, Robert R.; Diniega, Serina; Turtle, Elizabeth P.

    2014-11-01

    A commercial handheld digital camcorder can operate as a high-resolution, short-wavelength, low-cost thermal imaging system for monitoring active volcanoes, when calibrated against a laboratory heated rock of similar composition to the given eruptive material. We utilize this system to find full pixel brightness temperatures on centimeter scales at close but safe proximity to active lava flows. With it, observed temperatures of a Kilauea tube flow exposed in a skylight reached 1200 C, compared with pyrometer measurements of the same flow of 1165 C, both similar to reported eruption temperatures at that volcano. The lava lake at Erta Ale, Ethiopia had crack and fountain temperatures of 1175 C compared with previous pyrometer measurements of 1165 C. Temperature calibration of the vigorously active Marum lava lake in Vanuatu is underway, challenges being excessive levels of gas and distance from the eruption (300 m). Other aspects of the fine-scale structure of the eruptions are visible in the high-resolution temperature maps, such as flow banding within tubes, the thermal gradient away from cracks in lake surfaces, heat pathways through pahoehoe crust and temperature zoning in spatter and fountains. High-resolution measurements such as these reveal details of temperature, structure, and change over time at the rapidly evolving settings of active lava flows. These measurement capabilities are desirable for future instruments exploring bodies with active eruptions like Io, Enceladus and possibly Venus.

  2. CONTRACTING AND ERUPTING COMPONENTS OF SIGMOIDAL ACTIVE REGIONS

    SciTech Connect

    Liu Rui; Wang Yuming; Liu Chang; Wang Haimin; Toeroek, Tibor

    2012-10-01

    It has recently been noted that solar eruptions can be associated with the contraction of coronal loops that are not involved in magnetic reconnection processes. In this paper, we investigate five coronal eruptions originating from four sigmoidal active regions, using high-cadence, high-resolution narrowband EUV images obtained by the Solar Dynamic Observatory (SDO). The magnitudes of the flares associated with the eruptions range from GOES class B to class X. Owing to the high-sensitivity and broad temperature coverage of the Atmospheric Imaging Assembly (AIA) on board SDO, we are able to identify both the contracting and erupting components of the eruptions: the former is observed in cold AIA channels as the contracting coronal loops overlying the elbows of the sigmoid, and the latter is preferentially observed in warm/hot AIA channels as an expanding bubble originating from the center of the sigmoid. The initiation of eruption always precedes the contraction, and in the energetically mild events (B- and C-flares), it also precedes the increase in GOES soft X-ray fluxes. In the more energetic events, the eruption is simultaneous with the impulsive phase of the nonthermal hard X-ray emission. These observations confirm that loop contraction is an integrated process in eruptions with partially opened arcades. The consequence of contraction is a new equilibrium with reduced magnetic energy, as the contracting loops never regain their original positions. The contracting process is a direct consequence of flare energy release, as evidenced by the strong correlation of the maximal contracting speed, and strong anti-correlation of the time delay of contraction relative to expansion, with the peak soft X-ray flux. This is also implied by the relationship between contraction and expansion, i.e., their timing and speed.

  3. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    NASA Astrophysics Data System (ADS)

    Jiang, Chao-Wei; Wu, Shi-Tsan; Feng, Xue-Shang; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE-MHD-NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption.

  4. Massive Pyroclastic Eruptions Accompanied the Sector Collapse of Oahu and the Nu`uanu Landslide: Petrological Evidence for a Submarine Directed Blast

    NASA Astrophysics Data System (ADS)

    Natland, J. H.; Atlas, Z.

    2003-12-01

    During ODP Leg 200 in December, 2002, a series of thinly bedded volcaniclastic turbidites and silty muds interbedded with two thicker and strongly indurated vitric tuffs was drilled at Site 1223 on the crest of the Hawaiian arch east of the island of Oahu. The massive Nu`uanu landslide debris field, derived from a massive collapse of the eastern half of Oahu at about 2 Ma, lies in the flexural moat between the site and the island. The shipboard interpretation (1) was that the muds and silts are typical turbidites derived by redeposition from beaches and nearshore benches, but that the tuffs represent the distal portions of large submarine pyroclastic eruptions that may have attended the landslide. We report electron probe microanalyses of basaltic glass, olivine, Cr-spinel, palagonite and secondary minerals in the tuffs supporting the shipboard interpretation. In particular, the glass compositions from individual thin sections match precisely the range of compositions obtained from numerous samples of coarse volcaniclastic breccia sampled from the steep flanks of landslide blocks in the moat (2). This includes somewhat higher SiO2 and lower total iron as FeO(T) at given MgO than similar basaltic glasses from other Hawaiian volcanoes, a distinctive attribute of tholeiitic basalt from Oahu's Ko`olau volcano. Key attributes of the glasses in the tuffs and the minerals in them are that they are poly-compositional and they are strongly differentiated, with a range of compositions typical of those erupted from modern Hawaiian volcanic rift systems supplied by lateral diking from central conduits. The finer-grained tuffs at Site 1223 thus are indeed a distal pyroclastic facies that seemingly tapped much of the suddenly exposed, magma-inflated, deep flanking rift system of Ko`olau volcano. Over-steepening of the NE flank of the volcano coupled with internal weakening provided by near saturation of its rift system with magma may have triggered the landslide. This was almost

  5. Pumice rafting and faunal dispersion during 2001 2002 in the Southwest Pacific: record of a dacitic submarine explosive eruption from Tonga

    NASA Astrophysics Data System (ADS)

    Bryan, S. E.; Cook, A.; Evans, J. P.; Colls, P. W.; Wells, M. G.; Lawrence, M. G.; Jell, J. S.; Greig, A.; Leslie, R.

    2004-10-01

    A new influx of sea-rafted pumice reached the eastern coast of Australia in October 2002, approximately 1 year after a felsic, shallow-marine explosive eruption at a previously unknown volcano (0403-091) along the Tofua volcanic arc (Tonga). The eruption produced floating pumice rafts that first became stranded in Fiji in November 2001, approximately 1 month after the eruption. Strandings of sea-rafted pumice along shorelines have been the only record of products from this submarine explosive eruption at the remote, submerged volcano. Computed drift trajectories of the sea-rafted pumice using numerical models of southwest Pacific surface wind fields and ocean currents indicate two cyclonic systems disturbed the drift of pumice to eastern Australia, as well as the importance of the combined wave and direct wind effect on pumice trajectory. Pumice became stranded along at least two-thirds (>2000 km) of the coastline of eastern Australia being deposited on beaches during a sustained period of fresh onshore winds. Typical amounts of pumice initially stranded on beaches were 500-4000 individual clasts per m 2, and a minimum volume estimate of pumice that arrived to eastern Australia is 1.25×10 5 m 3. Pumice was beached below maximum tidal/storm surge levels and was quickly reworked back into the ocean, such that the concentration of beached pumice rapidly dissipated within weeks of the initial stranding, and little record of this stranding event now exists. Most stranded pumice clasts ranged in size from 2 to 5 cm in diameter; the largest measured clasts were 10 cm in Australia and 20 cm in Fiji. The pumice has a low phenocryst content (<5% modal), containing the assemblage of calcic plagioclase (An 88-74), augite (En 35Fs 29Wo 36), pigeonite (En 45Fs 46Wo 9), and titanomagnetite. Examined pumice clasts are compositionally homogenous, although there is considerable variation in clast vesicularity, both within and between clasts. The pumice composition is low-K dacite

  6. Reconstructing Final H2O Contents of Hydrated Rhyolitic Glasses: Insights into H2O Degassing and Eruptive Style of Silicic Submarine Volcanoes

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Nichols, A. R.; Tani, K.; Llewellin, E. W.

    2015-12-01

    H2O degassing influences the evolution of magma viscosity and vesicularity during ascent through the crust, and ultimately the eruptive style. Investigating H2O degassing requires data on both initial and final H2O contents. Initial H2O contents are revealed by melt inclusion data, while final H2O contents are found from dissolved H2O contents of volcanic glass. However volcanic glasses, particularly of silicic composition, are susceptible to secondary hydration i.e. the addition of H2O from the surrounding environment at ambient temperature during the time following pyroclast deposition. Obtaining meaningful final H2O data therefore requires distinguishing between the original final dissolved H2O content and the H2O added subsequently during hydration. Since H2O added during hydration is added as molecular H2O (H2Om), and the species interconversion between H2Om and hydroxyl (OH) species is negligible at ambient temperature, the final OH content of the glass remains unaltered during hydration. By using H2O speciation models to find the original H2Om content that would correspond to the measured OH content of the glass, the original total H2O (H2Ot) content of the glass prior to hydration can be reconstructed. These H2O speciation data are obtained using FTIR spectroscopy. In many cases, particularly where vesicular glasses necessitate thin wafers, OH cannot be measured directly and instead is calculated indirectly as OH = H2Ot - H2Om. Here we demonstrate the importance of using a speciation-dependent H2Ot molar absorptivity coefficient to obtain accurate H2Ot and H2O speciation data and outline a methodology for calculating such a coefficient for rhyolite glasses, with application to hydrated silicic pumice from submarine volcanoes in the Japanese Izu-Bonin Arc. Although hydrated pumice from Kurose Nishi and Oomurodashi now contain ~1.0 - 2.5 wt% H2Ot, their pre-hydration final H2O contents were typically ~0.3 - 0.4 wt% H2Ot. Furthermore, we show that pre

  7. Three-dimensional flow dynamics of an active submarine channel

    NASA Astrophysics Data System (ADS)

    Sumner, E. J.; Dorrell, R. M.; Peakall, J.; Darby, S. E.; Parsons, D. R.; Wynn, R.

    2012-12-01

    Field scale submarine channel gravity currents are notoriously difficult to measure and thus directly investigate due to their inaccessible location and infrequent nature, which is compounded by present sea-level high-stand. An exception to this is the almost continuous density-driven current that results from the inflow of saline Mediterranean water, via the Bosporus strait, into the Black Sea. This flow has carved a sinuous channel system in water depths of 70 to 120 m. The relatively shallow depths of the channel and the continuous nature of this current provide a rare opportunity to study three-dimensional flow dynamics and the interaction of the flow with a seafloor channel network. Thus, it provides a rare analogue for channelized dilute sediment-laden turbidity currents. Sediment erosion, transport and deposition within submarine channel bends is primarily controlled by the magnitude and direction of near bed flow. Flow around channel bends is characterized by a helical or spiralling structure. In rivers this helical flow is characterized by near-surface fluid moving toward the outer bank and near-bed fluid moving toward the inner bank. Following fierce debate over the last decade, it is now accepted that helical flow in submarine channel bends can display a variety of complex structures. Most importantly for understanding sediment transport, near bed flow can be directed towards the outer bank, which is in the opposite sense to in a river. The next challenge is to understand what the exact controls on the orientation of helical flow cells within submarine flows are, and their spatial evolution around bends. We present data from the Black Sea showing how the three-dimensional velocity and density of a submarine gravity current evolves at multiple cross sections as the flow travels around a bend. We use this data to calculate the magnitude, relative importance and interaction of centrifugal, coriolis and pressure gradients in controlling the structure of

  8. Io's Active Eruption Plumes: Insights from HST

    NASA Astrophysics Data System (ADS)

    Jessup, K. L.; Spencer, J. R.

    2011-10-01

    Taking advantage of the available data, we recently [10] completed a detailed analysis of the spectral signature of Io's Pele-type Tvashtar plume as imaged by the HST Wide Field and Planetary Camera 2 (HST/WFPC2) via absorption during Jupiter transit and via reflected sunlight in 2007, as well as HST/WFPC2 observations of the 1997 eruption of Io's Prometheus-type Pillan plume (Fig. 1). These observations were obtained in the 0.24-0.42 μm range, where the plumes gas absorption and aerosol scattering properties are most conspicuous. By completing a detailed analysis of these observations, several key aspects of the reflectance and the absorption properties of the two plumes have been revealed. Additionally, by considering the analysis of the HST imaging data in light of previously published spectral analysis of Io's Prometheus and Pele-type plumes several trends in the plume properties have been determined, allowing us to define the relative significance of each plume on the rate of re-surfacing occurring on Io and providing the measurements needed to better assess the role the volcanoes play in the stability of Io's tenuous atmosphere.

  9. Hinode Observations of an Eruption from a Sigmoidal Active Region

    NASA Astrophysics Data System (ADS)

    Green, L. M.; Wallace, A. J.; Kliem, B.

    2012-08-01

    We analyse the evolution of a bipolar active region which produces an eruption during its decay phase. The soft X-ray arcade develops high shear over a time span of two days and transitions to sigmoidal shortly before the eruption. We propose that the continuous sigmoidal soft X-ray threads indicate that a flux rope has formed which is lying low in the solar atmosphere with a bald patch separatrix surface topology. The formation of the flux rope is driven by the photospheric evolution which is dominated by fragmentation of the main polarities, motion due to supergranular flows and cancellation at the polarity inversion line.

  10. Acoustic stratigraphy and hydrothermal activity within Epi Submarine Caldera, Vanuatu, New Hebrides Arc

    USGS Publications Warehouse

    Greene, H. Gary; Exon, N.F.

    1988-01-01

    Geological and geophysical surveys of active submarine volcanoes offshore and southeast of Epi Island, Vanuatu, New Hebrides Arc, have delineated details of the structure and acoustic stratigraphy of three volcanic cones. These submarine cones, named Epia, Epib, and Epic, are aligned east-west and spaced 3.5 km apart on the rim of a submerged caldera. At least three acoustic sequences, of presumed Quaternary age, can be identified on single-channel seismic-reflection profiles. Rocks dredged from these cones include basalt, dacite, and cognate gabbroic inclusions with magmatic affinities similar to those of the Karua (an active submarine volcano off the southeastern tip of Epi) lavas. ?? 1988 Springer-Verlag New York Inc.

  11. Coronal Jets from Minifilament Eruptions in Active Regions

    NASA Technical Reports Server (NTRS)

    Martinez, Francisco; Sterling, Alphonse C.; Falconer, David A.; Moore, Ronald L.

    2016-01-01

    Solar coronal jets are transient (frequently of lifetime approx.10 min) features that shoot out from near the solar surface, become much longer than their width, and occur in all solar regions, including coronal holes, quiet Sun, and active regions (e.g., Shimojo et al. 1996, Cirtain et al. 2007). Sterling et al. (2015) and other studies found that in coronal holes and in quiet Sun the jets result when small-scale filaments, called "minifilaments" erupt onto nearby open or high-reaching field lines. Additional studies found that coronal-jet-onset locations (and hence presumably the minifilament-eruption-onset locations) coincided with locations of magnetic-flux cancelation. For active region (AR) jets however the situation is less clear. Sterling et al. (2016) studied jets in one active region over a 24-hour period; they found that some AR jets indeed resulted from minifilament eruptions, usually originating from locations of episodes of magnetic-flux cancelation. In some cases however they could not determine whether flux was emerging or canceling at the polarity inversion line from which the minifilament erupted, and for other jets of that region minifilaments were not conclusively apparent prior to jet occurrence. Here we further study AR jets, by observing them in a single AR over a one-week period, using X-ray images from Hinode/XRT and EUV/UV images from SDO/AIA, and line-of-sight magnetograms and white-light intensity-grams from SDO/HMI. We initially identified 13 prominent jets in the XRT data, and examined corresponding AIA and HMI data. For at least several of the jets, our findings are consistent with the jets resulting from minifilament eruptions, and originating from sites of magnetic-field cancelation.

  12. Kizimen Volcano, Kamchatka, Russia: 2010-2012 Eruptive Activity

    NASA Astrophysics Data System (ADS)

    Gordeev, E.; Droznin, V.; Malik, N.; Muravyev, Y.

    2012-12-01

    New eruptive activity at Kizimen Volcano began in October 2010 after 1.5 years of seismic build up. Two vents located at the summit of the volcano had been producing occasional steam-and-gas emissions with traces of ash until early December. Kizimen is located at a junction between Shapensky graben in the Central Kamchatka Depression and a horst of Tumrok Ridge. Kizimen is a 2376 m a.s.l. complex stratovolcano. The only single eruption reported in historic time occurred from December 1928 to January 1929. Little is known about the volcano; explosive activity was preceded by strong local earthquakes, and ashfalls were reported in neighboring settlements. During the period between eruptions the volcano was producing constant fumarolic activity, reported since 1825. During the cause of the current (2010-2012) eruption, the volcano produced several eruptive phases: moderate explosive activity was observed from December 10, 2010 to late February 2011 (ashfalls and descend of pyroclastic flows resulted in a large lahar traveling along the valley of the Poperechny Creek on December 13, 2010); from late February to mid-December the volcano produced an explosive-effusive phase (the lava flow descended eastern flank, while explosive activity has decreased), which resulted in strong explosions on December 14, 2011 accompanied by scores of pyroclastic flows of various thickness to the NE foot on the volcano. Since then, a constant growth of the large lava flow has been accompanied by strong steam-and-gas emissions from the summit crater. The erupted materials are tephra and deposits of pyroclastic and lava flows consisted of high-aluminous andesites and dacites of potassium-sodium series: SiO2 content varied from 61% in December 2010 to 65-68% in January-February 2011, and up to 62% in December 2011. Ashfalls area exceeded 100 km2 (the weight of erupted tephra > 107 tons), while the total area of pyroclastic flows was estimated to be 15.5 km2 (V= 0.16 km3). Until late May 2012

  13. A model of tephra dispersal from an early Palaeogene shallow submarine Surtseyan-style eruption(s), the Red Bluff Tuff Formation, Chatham Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Sorrentino, Leonor; Stilwell, Jeffrey D.; Mays, Chris

    2014-03-01

    The Red Bluff Tuff Formation, an early Palaeogene volcano-sedimentary shallow marine succession from the Chatham Islands (New Zealand), provides a unique framework, in eastern 'Zealandia', to explore tephra dispersal processes associated with ancient small phreatomagmatic explosions (i.e. Surtseyan-style eruptions). Detailed sedimentological mapping, logging and sampling integrated with the results of extensive laboratory analyses (i.e. grain-size, componentry and applied palaeontological methods) elucidated the complex mechanisms of transport and deposition of nine identified resedimented fossiliferous volcaniclastic facies. These facies record the subaqueous reworking and deposition of tephra from the erosion and degradation of a proximal, entirely submerged ancient Surtseyan volcanic edifice (Cone II). South of this volcanic cone, the lowermost distal facies provides significant evidence of deposition as water-supported volcanic- or storm-driven mass flows (e.g. turbidity currents and mud/debris flows) of volcaniclastic and bioclastic debris, whereas the uppermost distal facies exhibit features of tractional sedimentary processes caused by shallow subaqueous currents. Further north, within the proximity of the volcanic edifice, the uppermost facies are represented by an abundant, diverse, large, and well preserved in situ fauna of shallow marine sessile invertebrates (e.g. corals and sponges) that reflect the protracted biotic stabiliszation and rebound following pulsed volcanic events. Over a period of time, these stable and wave-eroded volcanic platforms were inhabited by a flourishing and diversifying marine community of benthic and sessile pioneers (corals, bryozoans, molluscs, brachiopods, barnacles, sponges, foraminifera, etc.). This succession exhibits a vertical progression of sedimentary structures (i.e. density, cohesive and mass flows, and cross-bedding) and our interpretations indicate a shallowing upwards succession. This study reports for the first

  14. Chronology of Postglacial Eruptive Activity and Calculation of Eruption Probabilities for Medicine Lake Volcano, Northern California

    USGS Publications Warehouse

    Nathenson, Manuel; Donnelly-Nolan, Julie M.; Champion, Duane E.; Lowenstern, Jacob B.

    2007-01-01

    Medicine Lake volcano has had 4 eruptive episodes in its postglacial history (since 13,000 years ago) comprising 16 eruptions. Time intervals between events within the episodes are relatively short, whereas time intervals between the episodes are much longer. An updated radiocarbon chronology for these eruptions is presented that uses paleomagnetic data to constrain the choice of calibrated ages. This chronology is used with exponential, Weibull, and mixed-exponential probability distributions to model the data for time intervals between eruptions. The mixed exponential distribution is the best match to the data and provides estimates for the conditional probability of a future eruption given the time since the last eruption. The probability of an eruption at Medicine Lake volcano in the next year from today is 0.00028.

  15. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions

    USGS Publications Warehouse

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.

    2007-01-01

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.

  16. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system.

    PubMed

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-06-17

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report (3)He/(4)He measurements in CO2-dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a (3)He/(4)He signature of at least 7.0 Ra (being Ra the (3)He/(4)He ratio of atmospheric He equal to 1.39×10(-6)), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like (3)He/(4)He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.

  17. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system

    PubMed Central

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N.; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-01-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report 3He/4He measurements in CO2–dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a 3He/4He signature of at least 7.0 Ra (being Ra the 3He/4He ratio of atmospheric He equal to 1.39×10−6), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like 3He/4He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano. PMID:27311383

  18. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system

    NASA Astrophysics Data System (ADS)

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N.; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-06-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report 3He/4He measurements in CO2–dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a 3He/4He signature of at least 7.0 Ra (being Ra the 3He/4He ratio of atmospheric He equal to 1.39×10‑6), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like 3He/4He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.

  19. Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity

    NASA Astrophysics Data System (ADS)

    Arrighi, Simone; Principe, Claudia; Rosi, Mauro

    2001-06-01

    On the basis of historical chronicles and field investigations the tephrostratigraphic sequence of post-1631 activity of Vesuvius is reconstructed. It has been established that, during this period, in addition to numerous totally effusive eruptions and/or normal strombolian activity, 16 explosive events produced well-traceable tephra deposits in the area outside the Mount Somma caldera. Ages of tephra beds were established on the basis of stratigraphic relationships with historical lava flows and comparison with chroniclers information. The dispersal and lithological characteristics of tephra deposits combined with description of explosive activity lead to the identification of three styles: (a) periods of violent strombolian activity; (b) violent strombolian eruptions; and (c) subplinian eruptions. Violent strombolian eruptions and periods of discrete activity are characterized by the formation of lapilli falls from eruptive columns only some kilometers high. Subplinian eruptions are defined on the basis of their lapilli fall volumes which is of the order of 107 m3, on eruptive column heights of approximately 10 km, bt higher than 1.5, and mass discharged rate values not lower than 106 kg/s. During the first century of activity after the 1631 eruption, two periods of violent strombolian activity occurred at Vesuvius (1682-1707 and 1707-1719) preceded, and followed, by a series of violent strombolian eruptions (1660, 1682, 1707, 1723, 1730, 1790, 1872). Between 1730 and 1779 a relevant change in the eruptive style of Vesuvius occurred by an increase in the explosivity of the eruptions. During the past two centuries of activity, only a few eruptions reached subplinian magnitude and only five eruptions had a phreatomagmatic phase (1779, 1794, 1822, 1906, 1944). Therefore, the previously accepted model of cyclic activity, in which each cycle is closed by an important explosive eruption with phreatomagmatic characteristics, is unfounded. The tephrostratigraphy of the

  20. Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity

    NASA Astrophysics Data System (ADS)

    Alessandro, G.

    2001-05-01

    On the basis of historical chronicles and field investigations the tephrostratigraphic sequence of post-1631 activity of Vesuvius is reconstructed. It has been established that, during this period, in addition to numerous totally effusive eruptions and/or normal strombolian activity, 16 explosive events produced well-traceable tephra deposits in the area outside the Mount Somma caldera. Ages of tephra beds were established on the basis of stratigraphic relationships with historical lava flows and comparison with chroniclers information. The dispersal and lithological characteristics of tephra deposits combined with description of explosive activity lead to the identification of three styles: (a) periods of violent strombolian activity; (b) violent strombolian eruptions; and (c) subplinian eruptions. Violent strombolian eruptions and periods of discrete activity are characterized by the formation of lapilli falls from eruptive columns only some kilometers high. Subplinian eruptions are defined on the basis of their lapilli fall volumes which is of the order of 107 m3, on eruptive column heights of approximately 10 km, bt higher than 1.5, and mass discharged rate values not lower than 106 kg/s. During the first century of activity after the 1631 eruption, two periods of violent strombolian activity occurred at Vesuvius (1682-1707 and 1707-1719) preceded, and followed, by a series of violent strombolian eruptions (1660, 1682, 1707, 1723, 1730, 1790, 1872). Between 1730 and 1779 a relevant change in the eruptive style of Vesuvius occurred by an increase in the explosivity of the eruptions. During the past two centuries of activity, only a few eruptions reached subplinian magnitude and only five eruptions had a phreatomagmatic phase (1779, 1794, 1822, 1906, 1944). Therefore, the previously accepted model of cyclic activity, in which each cycle is closed by an important explosive eruption with phreatomagmatic characteristics, is unfounded. The tephrostratigraphy of the

  1. The Submarine Flanks of Anatahan Volcano

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Embley, R. W.; Johnson, P. D.; Merle, S. G.; Ristau, S.

    2003-12-01

    submarine volcano located about 10 km NE of the island, here named NE Anatahan volcano. The summit of NE Anatahan volcano reaches a depth of 459 m, and the depth of the saddle between NE Anatahan and the submarine flank of Anatahan is 1000 m. NE Anatahan volcano has a circular crater rim that is open to the west. The summit and northern flank of NE Anatahan volcano are cut by normal faults that trend north-south, possibly reflecting the orientation of the local tectonic stress field. Another submarine volcanic construction is located 5 miles north of the island and is a linear ridge aligned in the NNW-SSE direction. This ridge has a crest at a depth of 1000 m, and the most recent deposits from Anatahan and NE Anatahan volcanoes are deflected around it. There is no evidence of any landslide materials on the submarine flanks of Anatahan, except perhaps for a small area southeast of NE Anatahan volcano. Even though there appears to be evidence for relatively young submarine eruptions at Anatahan, there has been no reported evidence for submarine volcanic activity during the 2003 eruption.

  2. ESR dating of submarine hydrothermal activities using barite in sulfide deposition

    NASA Astrophysics Data System (ADS)

    Toyoda, S.; Fujiwara, T.; Ishibashi, J.; Isono, Y.; Uchida, A.; Takamasa, A.; Nakai, S.

    2012-12-01

    The temporal change of submarine hydrothermal activities has been an important issue in the aspect of the evolution of hydrothermal systems which is related with ore formation (Urabe, 1995) and biological systems sustained by the chemical species arising from hydrothermal activities (Macdonald et al., 1980). Determining the ages of the hydrothermal deposit will provide essential information on such studies. Dating methods using disequilibrium between radioisotopes such as U-Th method (e.g. You and Bickle, 1998), 226}Ra-{210Pb and 228}Ra-{228Th method (e.g. Noguchi et al., 2011) have been applied to date submarine hydrothermal deposits. ESR (electron spin resonance) dating method is commonly applied to fossil teeth, shells, and quartz of Quaternay period where the natural accumulated dose is obtained from the intensities of the ESR signals which are created by natural radiation. The natural dose is divided by the dose rate to the mineral/sample to deduce the age. Okumura et al., (2010) made the first practical application of ESR (electron spin resonance) dating technique to a sample of submarine hydrothermal barite (BaSO4) to obtain preliminary ages, where Kasuya et al. (1991) first pointed out that barite can be used for ESR dating. Knowing that ESR dating of barite is promising, in this paper, we will present how we have investigated each factor that contributes ESR dating of barite in submarine hydrothermal sulfide deposition. (1) The best ESR condition for measuring the SO3- signal in barite is with the microwave power of 1mW and modulation amplitude of 0.1mT. (2) As results of heating experiments, the signal was found to be stable for the dating age range of several thousands. (3) 226Ra replacing Ba in barite is the source of the radiation. The amount of radioactive elements in sulfide mineral surrounding barite is negligible. (4) The external radiation from the sea water is negligible even in the submarine hydrothermal area where the radiation level is much

  3. Discovery of an active shallow submarine silicic volcano in the northern Izu-Bonin Arc: volcanic structure and potential hazards of Oomurodashi Volcano (Invited)

    NASA Astrophysics Data System (ADS)

    Tani, K.; Ishizuka, O.; Nichols, A. R.; Hirahara, Y.; Carey, R.; McIntosh, I. M.; Masaki, Y.; Kondo, R.; Miyairi, Y.

    2013-12-01

    Oomurodashi is a bathymetric high located ~20 km south of Izu-Oshima, an active volcanic island of the northern Izu-Bonin Arc. Using the 200 m bathymetric contour to define its summit dimensions, the diameter of Oomurodashi is ~20 km. Oomurodashi has been regarded as inactive, largely because it has a vast flat-topped summit at 100 - 150 meters below sea level (mbsl). During cruise NT07-15 of R/V Natsushima in 2007, we conducted a dive survey in a small crater, Oomuro Hole, located in the center of the flat-topped summit, using the remotely-operated vehicle (ROV) Hyper-Dolphin. The only heat flow measurement conducted on the floor of Oomuro Hole during the dive recorded an extremely high value of 4,200 mW/m2. Furthermore, ROV observations revealed that the southwestern wall of Oomuro Hole consists of fresh rhyolitic lavas. These findings suggest that Oomurodashi is in fact an active silicic submarine volcano. To confirm this hypothesis, we conducted detailed geological and geophysical ROV Hyper-Dolphin (cruise NT12-19). In addition to further ROV surveys, we carried out single-channel seismic (SCS) surveys across Oomurodashi in order to examine the shallow structures beneath the current edifice. The ROV surveys revealed numerous active hydrothermal vents on the floor of Oomuro Hole, at ~200 mbsl, with maximum water temperature measured at the hydrothermal vents reaching 194°C. We also conducted a much more detailed set of heat flow measurements across the floor of Oomuro Hole, detecting very high heat flows of up to 29,000 mW/m2. ROV observations revealed that the area surrounding Oomuro Hole on the flat-topped summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with minimum biogenetic or manganese cover, suggesting recent eruption(s). These findings strongly indicate that Oomurodashi is an active silicic submarine volcano, with recent eruption(s) occurring from Oomuro Hole. Since the summit of Oomurodashi is in shallow water, it

  4. H2O Contents of Submarine and Subaerial Silicic Pyroclasts from Oomurodashi Volcano, Northern Izu-Bonin Arc

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Tani, K.; Nichols, A. R.

    2014-12-01

    Oomurodashi volcano is an active shallow submarine silicic volcano in the northern Izu-Bonin Arc, located ~20 km south of the inhabited active volcanic island of Izu-Oshima. Oomurodashi has a large (~20km diameter) flat-topped summit located at 100 - 150 metres below sea level (mbsl), with a small central crater, Oomuro Hole, located at ~200 mbsl. Surveys conducted during cruise NT12-19 of R/V Natsushima in 2012 using the remotely-operated vehicle (ROV) Hyper-Dolphin revealed that Oomuro Hole contains numerous active hydrothermal vents and that the summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with little biogenetic or manganese cover, suggesting recent eruption(s) from Oomuro Hole. Given the shallow depth of the volcano summit, such eruptions are likely to have generated subaerial eruption columns. A ~10ka pumiceous subaerial tephra layer on the neighbouring island of Izu-Oshima has a similar chemical composition to the submarine Oomurodashi rocks collected during the NT12-19 cruise and is thought to have originated from Oomurodashi. Here we present FTIR measurements of the H2O contents of rhyolitic pumice from both the submarine deposits sampled during ROV dives and the subaerial tephra deposit on Izu-Oshima, in order to assess magma degassing and eruption processes occurring during shallow submarine eruptions.

  5. A Comparison Study of an Active Region Eruptive Filament and a Neighboring Non-Eruptive Filament

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Jiang, C.; Feng, X. S.; Hu, Q.

    2014-12-01

    We perform a comparison study of an eruptive filament in the core region of AR 11283 and a nearby non-eruptive filament. The coronal magnetic field supporting these two filaments is extrapolated using our data-driven CESE-MHD-NLFFF code (Jiang et al. 2013, Jiang etal. 2014), which presents two magnetic flux ropes (FRs) in the same extrapolation box. The eruptive FR contains a bald-patch separatrix surface (BPSS) spatially co-aligned very well with a pre-eruption EUV sigmoid, which is consistent with the BPSS model for the coronal sigmoids. The numerically reproduced magnetic dips of the FRs match observations of the filaments strikingly well, which supports strongly the FR-dip model for filaments. The FR that supports the AR eruptive filament is much smaller (with a length of 3 Mm) compared with the large-scale FR holding the quiescent filament (with a length of 30 Mm). But the AR eruptive FR contains most of the magnetic free energy in the extrapolation box and holds a much higher magnetic energy density than the quiescent FR, because it resides along the main polarity inversion line (PIL) around sunspots with strong magnetic shear. Both the FRs are weakly twisted and cannot trigger kink instability. The AR eruptive FR is unstable because its axis reaches above a critical height for torus instability (TI), at which the overlying closed arcades can no longer confine the FR stably. To the contrary, the quiescent FR is firmly held down by its overlying field, as its axis apex is far below the TI threshold height. (This work is partially supported by NSF AGS-1153323 and 1062050)

  6. High-resolution seismic structure analysis of an active submarine mud volcano area off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Hsiao-Shan; Hsu, Shu-Kun; Tsai, Wan-Lin; Tsai, Ching-Hui; Lin, Shin-Yi; Chen, Song-Chuen

    2015-04-01

    In order to better understand the subsurface structure related to an active mud volcano MV1 and to understand their relationship with gas hydrate/cold seep formation, we conducted deep-towed side-scan sonar (SSS), sub-bottom profiler (SBP), multibeam echo sounding (MBES), and multi-channel reflection seismic (MCS) surveys off SW Taiwan from 2009 to 2011. As shown in the high-resolution sub-bottom profiler and EK500 sonar data, the detailed structures reveal more gas seeps and gas flares in the study area. In addition, the survey profiles show several submarine landslides occurred near the thrust faults. Based on the MCS results, we can find that the MV1 is located on top of a mud diapiric structure. It indicates that the MV1 has the same source as the associated mud diapir. The blanking of the seismic signal may indicate the conduit for the upward migration of the gas (methane or CO2). Therefore, we suggest that the submarine mud volcano could be due to a deep source of mud compressed by the tectonic convergence. Fluids and argillaceous materials have thus migrated upward along structural faults and reach the seafloor. The gas-charged sediments or gas seeps in sediments thus make the seafloor instable and may trigger submarine landslides.

  7. Coastal submarine hydrothermal activity of Northern Baja California 2. Evolutionary history and isotope geochemistry

    SciTech Connect

    Vidal, V.M.V.; Vidal, F.V.; Isaacs, J.D.

    1981-10-10

    A geochemical model of the Punta Banda submarine hydrothermal system (PBSHS) and Ensenada quadrangle subaerial hot springs is developed using /sup 18/O//sup 16/O, D/H, /sup 34/S//sup 32/S, /sup 3/H, water and gas chemistry. The PBSHS water is a primary high temperature, acid, reducing fluid of old seawater origin which has been titrated by cold, alkaline groundwater of meteoric origin. The final exiting solutions represent a 1:1 mixture of the two primary mixing components. In contrast, the subaerial hot spring waters are of unmixed meteoric origin. The subaerial hot spring gas is predominantly atmospheric N/sub 2/, while the PBSHS contains large amounts of CH/sub 4/ and N/sub 2/ derived from trapped marine sediments of Cretaceous age, deltaS/sup 34/ values of sampled hydrothermal waters are similar to Cretaceous marine sulfate values and suggest that the waters contacted Cretaceous marine sedimentary strata. The presence of the Alisitos and Rosario marine sedimentary formations of Cretaceous age within the Ensenada-Punta Banda quadrangel renders support to the above hypothesis. The data also demonstrate the pyrite mineralization and deposition in submarine hydrothermal environments result from the complexing of ferrous iron with elemental sulfur and sulfide and that submarine hydrothermal activity acts as a major source of silica, Ca/sup 2 +/, and trace metals and as a major sink for seawater Mg/sup 2 +/ and SO/sub 4//sup 2 -/.

  8. MAGNETOHYDRODYNAMIC SIMULATION OF A SIGMOID ERUPTION OF ACTIVE REGION 11283

    SciTech Connect

    Jiang Chaowei; Feng Xueshang; Wu, S. T.; Hu Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2013-07-10

    Current magnetohydrodynamic (MHD) simulations of the initiation of solar eruptions are still commonly carried out with idealized magnetic field models, whereas the realistic coronal field prior to eruptions can possibly be reconstructed from the observable photospheric field. Using a nonlinear force-free field extrapolation prior to a sigmoid eruption in AR 11283 as the initial condition in an MHD model, we successfully simulate the realistic initiation process of the eruption event, as is confirmed by a remarkable resemblance to the SDO/AIA observations. Analysis of the pre-eruption field reveals that the envelope flux of the sigmoidal core contains a coronal null and furthermore the flux rope is prone to a torus instability. Observations suggest that reconnection at the null cuts overlying tethers and likely triggers the torus instability of the flux rope, which results in the eruption. This kind of simulation demonstrates the capability of modeling the realistic solar eruptions to provide the initiation process.

  9. The Variation of Volcanic Tremor During Active Stage in the 1986 Izu-Oshima Eruption

    NASA Astrophysics Data System (ADS)

    Kurokawa, Aika; Kurita, Kei

    2014-05-01

    Izu-Oshima is one of the most active volcanoes in Japan. The latest eruption of Nov. 1986 exhibited a curious eruption sequence; the strombolian type eruption started on 15 Nov. at the central vent and it had continued for 4 days. Then after it ceased, subplinian type fissure eruptions occurred inside and outside the caldera where several hundreds meters to few kilometers away from the central vent. Lava flows were associated with these two eruption episodes. Petrologically compositions of these two kinds of lava are completely dissimilar; magma from the central vent is basaltic with narrow range of chemical composition, which is almost same as that of the previous stages while magma from the fissures is evolved one with wider variations of composition [Aramaki and Fujii, 1988]. This means that two distinct magma sources, which were chemically separated but mechanically coupled, should have existed prior to the eruption. The most important issue concerning this eruption is how the mechanical interaction between two magma sources took place and evolved. Throughout the eruption sequence, remarkable activities of seismic tremor have been observed. In this presentation we report evolution of tremor sources to characterize the interaction based on the recently recovered seismic records and we propose a reinterpretation of the eruption sequence. We analyzed volcanic tremor in Nov. 1986 on digitized seismic records of 7 stations in the Island. The aim of this analysis is to estimate the movement of two kinds of magma associated with the change of the eruption styles. Firstly root mean square amplitudes of the filtered seismic signals and their spectrum were calculated. The tremor style changed from continuous mode to intermittent, sporadic mode at the period between the summit eruption and the fissure eruptions. The dominant frequency also changed around the same time. Secondly to derive the location of tremor source, Amplitude Inversion Method [Battaglia and Aki, 2003

  10. Subaqueous cryptodome eruption, hydrothermal activity and related seafloor morphologies on the andesitic North Su volcano

    NASA Astrophysics Data System (ADS)

    Thal, Janis; Tivey, Maurice; Yoerger, Dana R.; Bach, Wolfgang

    2016-09-01

    North Su is a double-peaked active andesite submarine volcano located in the eastern Manus Basin of the Bismarck Sea that reaches a depth of 1154 m. It hosts a vigorous and varied hydrothermal system with black and white smoker vents along with several areas of diffuse venting and deposits of native sulfur. Geologic mapping based on ROV observations from 2006 and 2011 combined with morphologic features identified from repeated bathymetric surveys in 2002 and 2011 documents the emplacement of a volcanic cryptodome between 2006 and 2011. We use our observations and rock analyses to interpret an eruption scenario where highly viscous, crystal-rich andesitic magma erupted slowly into the water-saturated, gravel-dominated slope of North Su. An intense fragmentation process produced abundant blocky clasts of a heterogeneous magma (olivine crystals within a rhyolitic groundmass) that only rarely breached through the clastic cover onto the seafloor. Phreatic and phreatomagmatic explosions beneath the seafloor cause mixing of juvenile and pre-existing lithic clasts and produce a volcaniclastic deposit. This volcaniclastic deposit consists of blocky, non-altered clasts next, variably (1-100%) altered clasts, hydrothermal precipitates and crystal fragments. The usually applied parameters to identify juvenile subaqueous lava fragments, i.e. fluidal shape or chilled margin, were not applicable to distinguish between pre-existing non-altered clasts and juvenile clasts. This deposit is updomed during further injection of magma and mechanical disruption. Gas-propelled turbulent clast-recycling causes clasts to develop variably rounded shapes. An abundance of blocky clasts and the lack of clasts typical for the contact of liquid lava with water is interpreted to be the result of a cooled, high-viscosity, crystal-rich magma that failed as a brittle solid upon stress. The high viscosity allows the lava to form blocky and short lobes. The pervasive volcaniclastic cover on North Su is

  11. Dueling Volcanoes: How Activity Levels At Kilauea Influence Eruptions At Mauna Loa

    NASA Astrophysics Data System (ADS)

    Trusdell, F.

    2011-12-01

    The eruption of Kilauea at Pu`u `O`o is approaching its 29th anniversary. During this time, Mauna Loa has slowly inflated following its most recent eruption in 1984. This is Mauna Loa's longest inter-eruptive interval observed in HVO's 100 years of operation. When will the next eruption of Mauna Loa take place? Is the next eruption of Mauna Loa tied to the current activity at Kilauea? Historically, eruptive periods at Kilauea and Mauna Loa volcanoes appear to be inversely correlated. In the past, when Mauna Loa was exceptionally active, Kilauea Volcano was in repose, recovery, or in sustained lava lake activity. Swanson and co-workers (this meeting) have noted that explosive activity on Kilauea, albeit sporadic, was interspersed between episodes of effusive activity. Specifically, Swanson and co-workers note as explosive the time periods between 300 B.C.E.-1000 C.E and 1500-1800 C.E. They also point to evidence for low magma supply to Kilauea during these periods and few flank eruptions. During the former explosive period, Mauna Loa was exceedingly active, covering approximately 37% of its surface or 1882 km2, an area larger than Kilauea. This period is also marked by summit activity at Mauna Loa sustained for 300 years. In the 1500-1800 C.E. period, Mauna Loa was conspicuously active with 29 eruptions covering an area of 446 km2. In the late 19th and early 20th century, Kilauea was dominated by nearly continuous lava-lake activity. Meanwhile Mauna Loa was frequently active from 1843 C.E. to 1919 C.E., with 24 eruptions for an average repose time of 3.5 years. I propose that eruptive activity at one volcano may affect eruptions at the other, due to factors that impact magma supply, volcanic plumbing, and flank motion. This hypothesis is predicated on the notion that when the rift zones of Kilauea, and in turn its mobile south flank, are active, Mauna Loa's tendency to erupt is diminished. Kilauea's rift zones help drive the south flank seaward, in turn, as Mauna

  12. Triggering of major eruptions recorded by actively forming cumulates

    PubMed Central

    Stock, Michael J.; Taylor, Rex N.; Gernon, Thomas M.

    2012-01-01

    Major overturn within a magma chamber can bring together felsic and mafic magmas, prompting de-volatilisation and acting as the driver for Plinian eruptions. Until now identification of mixing has been limited to analysis of lavas or individual crystals ejected during eruptions. We have recovered partially developed cumulate material (‘live’ cumulate mush) from pyroclastic deposits of major eruptions on Tenerife. These samples represent “frozen” clumps of diverse crystalline deposits from all levels in the developing reservoir, which are permeated with the final magma immediately before eruptions. Such events therefore record the complete disintegration of the magma chamber, leading to caldera collapse. Chemical variation across developing cumulus crystals records changes in melt composition. Apart from fluctuations reflecting periodic influxes of mafic melt, crystal edges consistently record the presence of more felsic magmas. The prevalence of this felsic liquid implies it was able to infiltrate the entire cumulate pile immediately before each eruption. PMID:23066500

  13. Holocene eruptive activity of El Chichón Volcano, Chiapas, Mexico

    USGS Publications Warehouse

    Tilling, Robert I.; Rubin, Meyer; Sigurdsson, Haraldur; Carey, Steven; Duffield, Wendell A.; Rose, William I.

    1984-01-01

    Geologic and radiometric-age data indicate that El Chichón was frequently and violently active during the Holocene, including eruptive episodes about 600, 1250, and 1700 years ago and several undated, older eruptions. These episodes, involving explosive eruptions of sulfur-rich magma and associated dome-growth processes, were apparently separated by intervals of approximately 350 to 650 years. Some of El Chichón's eruptions may correlate with unusual atmospheric phenomena around A.D. 1300 and possibly A.D. 623.

  14. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  15. THE EVOLUTION OF THE ELECTRIC CURRENT DURING THE FORMATION AND ERUPTION OF ACTIVE-REGION FILAMENTS

    SciTech Connect

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  16. Evidence from acoustic imaging for submarine volcanic activity in 2012 off the west coast of El Hierro (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Somoza, Luis; Hernández, Pedro A.; de Vallejo, Luis González; León, Ricardo; Sagiya, Takeshi; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Barrancos, José; Ibáñez, Jesús; Sumino, Hirochika; Nogami, Kenji; Romero, Carmen

    2014-12-01

    We report precursory geophysical, geodetic, and geochemical signatures of a new submarine volcanic activity observed off the western coast of El Hierro, Canary Islands. Submarine manifestation of this activity has been revealed through acoustic imaging of submarine plumes detected on the 20-kHz chirp parasound subbottom profiler (TOPAS PS18) mounted aboard the Spanish RV Hespérides on June 28, 2012. Five distinct "filament-shaped" acoustic plumes emanating from the flanks of mounds have been recognized at water depth between 64 and 88 m on a submarine platform located NW El Hierro. These plumes were well imaged on TOPAS profiles as "flares" of high acoustic contrast of impedance within the water column. Moreover, visible plumes composed of white rafts floating on the sea surface and sourcing from the location of the submarine plumes were reported by aerial photographs on July 3, 2012, 5 days after acoustic plumes were recorded. In addition, several geophysical and geochemical data support the fact that these submarine vents were preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS network (Nagoya University-ITER-GRAFCAN) with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) observed positive peak in the air-corrected value of 3He/4He ratio monitored in ground waters (8.5 atmospheric 3He/4He ratio ( R A)) at the northwestern El Hierro on June 16, 2012. Combining these submarine and subaerial information, we suggest these plumes are the consequence of submarine vents exhaling volcanic gas mixed with fine ash as consequence of an event of rapid rise of volatile-rich magma beneath the NW submarine ridge

  17. Measurements of Lightning During the Grimsvotn 2004 Eruption in Iceland

    NASA Astrophysics Data System (ADS)

    Arason, P.

    2009-05-01

    Lightning activity in volcanic ash plumes is common, especially in subglacial or submarine eruptions. The interaction between magma and water may be responsible for electric charge separation, leading to positively charged vapor and negatively charged ash. Lightning data were collected during the last three volcanic eruptions in Iceland; Grimsvotn 1998, Hekla 2000 and Grimsvotn 2004. For the last eruption we collected data from the LLP Icelandic lightning location system, the ATD sferics system of the UK Met Office, as well as from our vertical E-field wave recording station, located in Reykjavik. We note a good correlation between the lightning activity and the intensity of the eruptions as indicated by the height of the ash plume observed by weather radar. The lightning data collected during these volcanic eruptions gives valuable insight into the character of volcanogenic lightning and how they differ from weather lightning.

  18. Late Pleistocene to Holocene eruptive activity of Pico de Orizaba, Eastern Mexico

    NASA Astrophysics Data System (ADS)

    Hoskuldsson, Armann; Robin, Claude

    1993-12-01

    The Late Pleistocene to Holocene eruptive history of Pico de Orizaba can be divided into 11 eurptive episodes. Each eruptive episode lasted several hundred years, the longest recorded being about 1000 years (the Xilomich episode). Intervals of dormancy range from millenia during the late Pleistocene to about 500 years, the shortest interval recorded in the Holocene. This difference could reflect either changes in the volcano's activity or that the older stratigraphic record is less complete than the younger. Eruptive mechanisms during the late Pleistocene were characterized by dome extrusions, lava flows and ash-and-scoria-flow generating eruptive columns. However, in Holocene time plinian activity became increasingly important. The increase in dacitic plinian eruptions over time is related to increased volumes of dacitic magma beneath Pico de Orizaba. We suggest that the magma reservoir under Pico de Orizaba is stratified. The last eruptive episode, which lasted from about 690 years bp until ad 1687, was initiated by a dacitic plinian eruption and was followed by effusive lava-forming eruptions. For the last 5,000 years the activity of the volcano has been gradually evolving towards such a trend, underlining the increasing importance of dacitic magma and stratification of the magma reservoir. Independent observations of Pico de Orizaba's glacier early this century indicate that some increase in volcanic activity occurred between 1906 and 1947, and that it was probably fumarolic.

  19. Measurements of volcanic gas emissions during the first phase of 2010 eruptive activity of Eyjafallajokull

    NASA Astrophysics Data System (ADS)

    Burton, M. R.; Salerno, G. G.; La Spina, A.; Stefansson, A.; Kaasalainen, H. S.

    2010-12-01

    The March-April 2010 alkali-basalt eruption of Eyjafallajokull immediately preceded the vigorous, ash-rich April-May 2010 trachyandesitic eruption. We performed open-path FTIR, mini-DOAS and UV camera measurements on the erupted gases emitted from the first phase of the eruption at Fimmvörduháls on 1st and 2nd April, followed by downwind SO2 flux measurements on the following days. The SO2 gas flux produced by the eruption was ~3000 tonnes per day. Approximately 70% of the SO2 flux was produced by the fissure which opened on 31st March, with ~30% emitted from the 21st March fissure. The flux of HF from the eruption was ~30 tonnes per day. Gas compositions emitted from the two eruption fissures were broadly similar, being very rich in H2O (>80% by mole), <15 % CO2 and <3% SO2. Strong variations between 5 and 25 in the SO2/HCl ratio were observed at the 31st March fissure on the two measurement days, with higher values observed on 1st April when the activity was apparently more intense than 2nd April. In this work we interpret the gas emission data in terms of the eruption dynamics and CO2 contribution to the atmosphere. We also examine the implications of the observed gas fluxes for the erupted magma volume.

  20. Eruptions in space and time: durations, intervals, and comparison of world's active volcanic belts

    SciTech Connect

    Simkin, T.; McClelland, L.

    1986-07-01

    A computerized data bank, compiled over the last 12 years at the Smithsonian Institution, allows summaries to be made of Holocene volcanism. The Scientific Event Alert Network tracks current volcanic activity. However, the record of most volcanoes is poor before the last 100 years, and some eruptions still pass unreported. The time interval since the previous eruption can be calculated for 4835 of the 5564 compiled eruptions. The median interval is 5.0 years, but much longer intervals commonly precede unusually violent eruptions. For the 25 most violent eruptions in the file (with known preceding interval), the medium interval is 865 years. Of the historic eruptions in this group, 50% resulted in fatalities. The interval between an eruption's start and its most violent paroxysm may be measured in months or years, but it is usually short. Of the 205 larger eruptions for which data are available, 92 had the paroxysmal event within the first day of the eruption, allowing little time for emergency preparations after the eruption's opening phase. To compare the recent vigor of different volcanic belts, they calculated the number of years in which each volcano was active in the last 100 years, summed these for each belt, and divided by belt length. Another index of recent vigor is the number of recognized Holocene volcanoes divided by belt length. A third index is the number of large explosive eruptions (volcanic explosive index greater than or equal to 3) of the last 100 years, again normalized by belt length. These three measures correlate reasonably well, serving to contrast vigorous belts such as Kamchatka, Central America, and Java with relatively quiet belts such as the Cascades, South Sandwich Islands, Greece, and southern Chile.

  1. Active control of sound radiated by a submarine in bending vibration

    NASA Astrophysics Data System (ADS)

    Caresta, Mauro

    2011-02-01

    This paper theoretically investigates the use of inertial actuators to reduce the sound radiated by a submarine hull in bending vibration under harmonic excitation from the propeller. The radial forces from the propeller are tonal at the blade passing frequency and are transmitted to the hull through the stern end cone. The hull is modelled as a fluid loaded cylindrical shell with ring stiffeners and two equally spaced bulkheads. The cylinder is closed by end-plates and conical end caps. The actuators are arranged in circumferential arrays and attached to the prow end cone. Both Active Vibration Control and Active Structural Acoustic Control are analysed. The inertial actuators can provide control forces with a magnitude large enough to reduce the sound radiated by the vibrations of the hull in some frequency ranges.

  2. Submarine landslides

    USGS Publications Warehouse

    Hampton, M.A.; Lee, H.J.; Locat, J.

    1996-01-01

    Landslides are common on inclined areas of the seafloor, particularly in environments where weak geologic materials such as rapidly deposited, finegrained sediment or fractured rock are subjected to strong environmental stresses such as earthquakes, large storm waves, and high internal pore pressures. Submarine landslides can involve huge amounts of material and can move great distances: slide volumes as large as 20,000 km3 and runout distances in excess of 140 km have been reported. They occur at locations where the downslope component of stress exceeds the resisting stress, causing movement along one or several concave to planar rupture surfaces. Some recent slides that originated nearshore and retrogressed back across the shoreline were conspicuous by their direct impact on human life and activities. Most known slides, however, occurred far from land in prehistoric time and were discovered by noting distinct to subtle characteristics, such as headwall scarps and displaced sediment or rock masses, on acoustic-reflection profiles and side-scan sonar images. Submarine landslides can be analyzed using the same mechanics principles as are used for occurrences on land. However, some loading mechanisms are unique, for example, storm waves, and some, such as earthquakes, can have greater impact. The potential for limited-deformation landslides to transform into sediment flows that can travel exceedingly long distances is related to the density of the slope-forming material and the amount of shear strength that is lost when the slope fails.

  3. Evidence of Velocity Variations During the Recent Mt. Etna Eruptive Activity Detected by Temporal Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Barberi, G.; Zhang, H.; Cocina, O.; Patanè, D.; Thurber, C. H.

    2005-12-01

    After nearly 10 years without any major flank eruption, volcanic activity resumed at Mt. Etna on July 17, 2001, giving rise to the first of the two most striking flank eruptions on this volcano in recent times. Fifteen months after the end (August 09, 2001) of this eruptive episode, a new eruption started abruptly on October 26, 2002 with only a few hours of premonitory seismicity accompanying the opening of eruptive fissures along a bi-radial direction. Since the end of this last eruption (January 2003), a period of weak volcanic activity occurred. On September 7, 2004 a new eruption occurred along a WNW-ESE to NW-SE oriented fracture system at the base of the South East summit crater. Compared to the previous two flank eruptions, the 2004 eruption did not have any measurable short-period seismicity and deformation variations. Since 2001, Mt. Etna is well covered by the INGV-CT permanent network and some temporary networks. This provides a unique opportunity to investigate seismic velocity variations before, during and after the three most recent eruptions. Characterizing spatial and temporal variations in seismic velocity in detail will yield a better understanding of the complex plumbing system beneath Mt. Etna and the triggering mechanisms for each eruption. The conventional way to detect temporal velocity changes is to separately invert velocity models for each data set and then examine their differences. This may, however, cause some artifacts in the velocity changes due to different data quality and distribution. Here we present a true temporal seismic tomography algorithm by constraining velocity models for different periods through a temporal smoothing operator. This technique considers the fact that the main features of the velocity models for different periods are similar. The temporal seismic tomography algorithm is based on the double-difference tomography code tomoDD that uses both absolute and differential arrival times to simultaneously determine

  4. Rapid Changes on Sediment Accumulation Rates within Submarine Canyons Caused By Bottom Trawling Activities

    NASA Astrophysics Data System (ADS)

    Puig, P.; Masque, P.; Martin, J.; Paradis, S.; Juan, X.; Toro, M.; Palanques, A.

    2014-12-01

    The physical disturbance of the marine sedimentary environments by commercial bottom trawling is a matter of concern. The direct physical effects of this fishing technique include scraping and ploughing of the seabed and increases of the near-bottom water turbidity by sediment resuspension. However, the quantification of the sediment that has been resuspended by this anthropogenic activity over years and has been ultimately exported across the margin remains largely unaddressed. The analysis of sediment accumulation rates from sediment cores collected along the axes of several submarine canyons in the Catalan margin (northwestern Mediterranean) has allowed to estimate the contribution of this anthropogenic activity to the present-day sediment dynamics. 210Pb chronologies, occasionally supported by 137Cs dating, indicate a rapid increase of sediment accumulation rates since the 1970s, in coincidence with a strong impulse in the industrialization of the trawling fleets of this region. Such increase has been associated to the enhanced delivery of sediment resuspended by trawlers from the shelves and upper slope regions towards the canyon's interior, and to the rapid technical development at that time, in terms of engine power and gear size. This change has been observed in La Fonera (or Palamós) Canyon at depths greater than 1700 m, while in other canyons it is restricted to shallower regions (~1000 m in depth) closer to fishing grounds. Two sampling sites from La Fonera and Foix submarine canyons that exhibited high sediment accumulation rates (0.6-0.7 cm/y) were reoccupied several years after the first chronological analyses. These two new cores reveal a second and more rapid increase of sediment accumulation rates in both canyons occurring circa 2002 and accounting for about 2 cm/y. This second change at the beginning of the XXI century has been attributed to a preferential displacement of the trawling fleet towards slope fishing grounds surrounding submarine

  5. A Submarine Perspective on Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2011-12-01

    Postwar improvements in navigation, sonar-based mapping, and submarine photography enabled the development of bathymetric maps, which revealed submarine morphologic features that could be dredged or explored and sampled with a new generation of manned and unmanned submersibles. The maps revealed debris fields from giant landslides, the great extent of rift zones radiating from volcanic centers, and two previously unknown submarine volcanoes named Mahukona and Loihi, the youngest Hawaiian volcano. About 70 major landslides cover half the flanks of the Hawaiian Ridge out to Midway Island. Some of the landslides attain lengths of 200 km and have volumes exceeding 5,000 km3. More recent higher resolution bathymetry and sidescan data reveal that many submarine eruptions construct circular, flat-topped, monogenetic cones; that large fields of young strongly alkalic lava flows, such as the North Arch and South Arch lava fields, erupt on the seafloor within several hundred km of the islands; and that alkalic lavas erupt during the shield stage on Kilauea and Mauna Loa. The North Arch flow field covers about 24,000 km2, has an estimated volume between about 1000 and 1250 km3, has flows as long as 108 km, and erupted from over 100 vents. The source and melting mechanisms for their production is still debated. The maps also displayed stair-step terraces, mostly constructed of drowned coral reefs, which form during early rapid subsidence of the volcanoes during periods of oscillating sea level. The combination of scuba and underwater photography facilitated the first motion pictures of the mechanism of formation of pillow lava in shallow water offshore Kilauea. The age progression known from the main islands was extended westward along the Hawaiian Ridge past Midway Island, around a bend in the chain and northward along the Emperor Seamounts. Radiometric dating of dredged samples from these submarine volcanoes show that the magma source that built the chain has been active for

  6. Eruption History of Cone D: Implications for Current and Future Activity at Okmok Caldera

    NASA Astrophysics Data System (ADS)

    Beget, J.; Almberg, L.; Faust-Larsen, J.; Neal, C.

    2008-12-01

    Cone B at Okmok Caldera erupted in 1817, and since then activity has beeen centered in and around Cone A in the SW part of Okmok Caldera. However, prior to 1817 at least a half dozen other eruptive centers were active at various times within the caldera. Cone D was active between ca. 2000-1500 yr BP., and underwent at least two separate intervals characterized by violent hydromagmatic explosions and surge production followed by the construction of extensive lava deltas in a 150-m-deep intra-caldera lake. Reconstructions of cone morphology indicate the hydromagmatic explosions occurred when lake levels were shallow or when the eruptive cones had grown to reach the surface of the intra-caldera lake. The effusion rate over this interval averaged several million cubic meters of lava per year, implying even higher outputs during the actual eruptive episodes. At least two dozen tephra deposits on the volcano flanks date to this interval, and record frequent explosive eruptions. The pyroclastic flows and surges from Cone D and nearby cones extend as far as 14 kilometers from the caldera rim, where dozens of such deposits are preserved in a section as much as 6 m thick at a distance of 8 km beyond the rim. A hydromagmatic explosive eruption at ca. 1500 yr BP generated very large floods and resulted in the draining of the caldera lake. The 2008 hydromagmatic explosive eruptions in the Cone D area caused by interactions with lake water resulted in the generation of surges, floods and lahars that are smaller but quite similar in style to the prehistoric eruptions at Cone E ca. 2000-1500 yr BP. The style and magnitude of future eruptions at vents around Cone D will depend strongly on the evolution of the intra-caldera lake system.

  7. Seismic activity before and after the eruption of Kuchinoerabujima in 2015

    NASA Astrophysics Data System (ADS)

    Chiba, K.

    2015-12-01

    Shindake, on Kuchinoerabujima, in the Ryukyu Islands, south of Kyusyu, Japan, erupted at 09:59 JST on 29 May 2015. This eruption is considered to have been a phreato-magmatic eruption, according to the Coordinating Committee for Prediction of Volcanic Eruption in Japan. As characteristic seismic activities before and after the eruption, an A-type event (Mw 2.3) occurred in the northwestern part of Shindake on 23 May, and numerous volcanic events occurred in and around Shindake just after the eruption. The frequency-magnitude distribution (b-value) of earthquakes is commonly high in volcanic areas. It is also known that high b-values in volcanic areas are primarily responsible for material heterogeneity, low shear strength, and high thermal gradients. These facts suggest that the b-value distribution can be used as a tool to locate active magma chambers. It is thus important to determine the distribution of hypocenters precisely and to investigate the b-value distribution on Kuchinoerabujima. We used a data set of the Japan Meteorological Agency and the National Research Institute for Earth Science and Disaster Prevention, and a half-space with Vp = 2.5 km/s as a velocity structure. For the determination of hypocenters, we used the hypomh (Hirata and Matsu'ura 1987) and hypoDD (Waldhauser and Ellsworth 2000) algorithms. This revealed that many estimated hypocenters were distributed in and around the vent at a depth of ~5 km under Shindake before and after the eruption. A volume of high b (>1.2) was locally observed in the eastern part at depths of 1.0-2.5 km below Shindake before the eruption and another was widely observed at depths of 2.0-4.0 km after the eruption. By comparing these findings with other observation results, we may be able to obtain a clear image of the active magma chamber.

  8. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  9. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  10. Minifilament Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Panesar, Navdeep; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-05-01

    Solar coronal jets are common in both coronal holes and in active regions. Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism, such as the hitherto popular ``emerging flux'' model for jets. We present observations of an on-disk active region that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale ~20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode.

  11. The explosive activity of the 1669 Monti Rossi eruption at Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Mulas, Maurizio; Cioni, Raffaello; Andronico, Daniele; Mundula, Filippo

    2016-12-01

    Preceded by 14 days of intense seismic activity, a new eruption started on the south flank of Mt. Etna, Sicily (Italy) early in the morning of 11 March 1669 opening up a series of NS eruptive fissures. The eruption is one of the most destructive flank eruptions of Etna in historical times; it lasted until 11 July, and was characterized by simultaneous explosive and effusive activity during the first three months, while only lava flow output in the last month. The activity built up the large composite cone of the "Monti Rossi" at the lower end of the eruptive fissures, and caused severe damage to the nearby inhabited areas. The prolonged effusive activity generated lava flows for > 15 km, which destroyed several villages and the western part of the town of Catania before reaching the coastline and entering the sea. In this paper, we examine the tephro-stratigraphy of the products of the explosive activity. An in-depth analysis of historical accounts was used to define the chronology of the main eruptive phases (precursors, explosive activity and initial effusive phenomena). The geology of the cone and of the fallout deposits were defined through a field survey over a distance of 5 km from the Monti Rossi. Textural (grain-size, morphological, componentry), density and petrological analyses of tephra samples provided a sedimentological, physical and geochemical characterization of erupted products. Integrating ground and historical data enabled defining the evolution of the cone, identifying and correlating four main cone-forming units. By tracing the dispersal map of the main distal tephra beds (the finer ash being dispersed mainly to the NE as far as Calabria and to the south of Sicily and the 10-cm isopach of the total deposit covering an area up to 53 km2), we estimated a total tephra fallout volume, including the Monti Rossi cone, of about 6.6 × 107 m3 (about 3.2 × 107 m3 DRE). The 1669 event can be considered an archetype of the most hazardous expected

  12. Titan Submarines!

    NASA Astrophysics Data System (ADS)

    Oleson, S. R.; Lorenz, R. D.; Paul, M. V.; Hartwig, J. W.; Walsh, J. M.

    2017-02-01

    A NIAC Phase II submarine concept, dubbed 'Titan Turtle' for Saturn's moon Titan's northern sea, Ligea Mare. A design concept including science and operations is described for this -180°C liquid methane sea.

  13. Attaining high-resolution eruptive histories for active arc volcanoes with argon geochronology

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2012-04-01

    Geochronology of active arc volcanoes commonly illuminates eruptive behavior over tens to hundreds of thousands of years, lengthy periods of repose punctuated by short eruptive episodes, and spatial and compositional changes with time. Despite the >1 Gyr half-life of 40K, argon geochronology is an exceptional tool for characterizing Pleistocene to Holocene eruptive histories and for placing constraints on models of eruptive behavior. Reliable 40Ar/39Ar ages of calc-alkaline arc rocks with rigorously derived errors small enough (± 500 to 3,000 years) to constrain eruptive histories are attainable using careful procedures. Sample selection and analytical work in concert with geologic mapping and stratigraphic studies are essential for determining reliable eruptive histories. Preparation, irradiation and spectrometric techniques have all been optimized to produce reliable, high-precision results. Examples of Cascade and Alaska/Aleutian eruptive histories illustrating duration of activity from single centers, eruptive episodicity, and spatial and compositional changes with time will be presented: (1) Mt. Shasta, the largest Cascade stratovolcano, has a 700,000-year history (Calvert and Christiansen, 2011 Fall AGU). A similar sized and composition volcano (Rainbow Mountain) on the Cascade axis was active 1200-950 ka. The eruptive center then jumped west 15 km to the south flank of the present Mt. Shasta and produced a stratovolcano from 700-450 ka likely rivaling today's Mt. Shasta. The NW portion of that edifice failed in an enormous (>30 km3) debris avalanche. Vents near today's active summit erupted 300-135 ka, then 60-15 ka. A voluminous, but short-lived eruptive sequence occurred at 11 ka, including a summit explosion producing a subplinian plume, followed by >60 km3 andesite-dacite Shastina domes and flows, then by the flank dacite Black Butte dome. Holocene domes and flows subsequently rebuilt the summit and flowed to the north and east. (2) Mt. Veniaminof on

  14. Formation of submarine flat-topped volcanic cones in Hawai'i

    NASA Astrophysics Data System (ADS)

    Clague, David A.; Moore, James G.; Reynolds, Jennifer R.

    simultaneously build the rim outward and upward, but also dam and fill in the low point on the rim. The process repeats at the new lowest point, forming a circular structure with a flat horizontal top and steep pillowed margins. There is a delicate balance between lava (heat) supply to the pond and cooling and thickening of the floating crust. Factors that facilitate construction of such landforms include effusive eruption of lava with low volatile contents, moderate to high confining pressure at moderate to great ocean depth, long-lived steady eruption (years to decades), moderate effusion rates (probably ca. 0.1km3/year), and low, but not necessarily flat, slopes. With higher effusion rates, sheet flows flood the slope. With lower effusion rates, pillow mounds form. Hawaiian shield-stage eruptions begin as fissure eruptions. If the eruption is too brief, it will not consolidate activity at a point, and fissure-fed flows will form a pond with irregular levees. The pond will solidify between eruptive pulses if the eruption is not steady. Lava that is too volatile rich or that is erupted in too shallow water will produce fragmental and highly vesicular lava that will accumulate to form steep pointed cones, as occurs during the post-shield stage. The steady effusion of lava on land constructs lava shields, which are probably the subaerial analogs to submarine flat-topped cones but formed under different cooling conditions.

  15. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption.

    PubMed

    Wilcock, William S D; Tolstoy, Maya; Waldhauser, Felix; Garcia, Charles; Tan, Yen Joe; Bohnenstiehl, DelWayne R; Caplan-Auerbach, Jacqueline; Dziak, Robert P; Arnulf, Adrien F; Mann, M Everett

    2016-12-16

    Seismic observations in volcanically active calderas are challenging. A new cabled observatory atop Axial Seamount on the Juan de Fuca ridge allows unprecedented real-time monitoring of a submarine caldera. Beginning on 24 April 2015, the seismic network captured an eruption that culminated in explosive acoustic signals where lava erupted on the seafloor. Extensive seismic activity preceding the eruption shows that inflation is accommodated by the reactivation of an outward-dipping caldera ring fault, with strong tidal triggering indicating a critically stressed system. The ring fault accommodated deflation during the eruption and provided a pathway for a dike that propagated south and north beneath the caldera's east wall. Once north of the caldera, the eruption stepped westward, and a dike propagated along the extensional north rift.

  16. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption

    NASA Astrophysics Data System (ADS)

    Wilcock, William S. D.; Tolstoy, Maya; Waldhauser, Felix; Garcia, Charles; Tan, Yen Joe; Bohnenstiehl, DelWayne R.; Caplan-Auerbach, Jacqueline; Dziak, Robert P.; Arnulf, Adrien F.; Mann, M. Everett

    2016-12-01

    Seismic observations in volcanically active calderas are challenging. A new cabled observatory atop Axial Seamount on the Juan de Fuca ridge allows unprecedented real-time monitoring of a submarine caldera. Beginning on 24 April 2015, the seismic network captured an eruption that culminated in explosive acoustic signals where lava erupted on the seafloor. Extensive seismic activity preceding the eruption shows that inflation is accommodated by the reactivation of an outward-dipping caldera ring fault, with strong tidal triggering indicating a critically stressed system. The ring fault accommodated deflation during the eruption and provided a pathway for a dike that propagated south and north beneath the caldera’s east wall. Once north of the caldera, the eruption stepped westward, and a dike propagated along the extensional north rift.

  17. Relationship between fumarole gas composition and eruptive activity at Galeras Volcano, Colombia

    SciTech Connect

    Fischer, T.P.; Williams, S.N.; Arehart, G.B.; Sturchio, N.C.

    1996-06-01

    Forecasting volcanic eruptions is critical to the mitigation of hazards for the millions of people living dangerously close to active volcanoes. Volcanic gases collected over five years from Galeras Volcano, Colombia, and analyzed for chemical and isotopic composition show the effects of long-term degassing of the magma body and a gradual decline in sulfur content of the gases. In contrast, short-term (weeks), sharp variations are the precursors to explosive eruptions. Selective absorption of magmatic SO{sub 2} and HCl due to interaction with low-temperature geothermal waters allows the gas emissions to become dominated by CO{sub 2}. Absorption appears to precede an eruption because magmatic volatiles are slowed or retained by a sealing carapace, reducing the total flux of volatiles and allowing the hydrothermal volatiles to dominate gas emissions. Temporal changes in gas compositions were correlated with eruptive activity and provide new evidence bearing on the mechanism of this type of `pneumatic` explosive eruptions. 18 refs., 5 figs.

  18. Extensive Submarine Active Fault and the 2011 off the Pacific Coast of Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Nakata, T.; Kumamoto, T.; Muroi, S.; Watanabe, M.

    2013-12-01

    Active faults observed on seafloor along Japan Trench are resultants of repeated large earthquakes. We discuss on the relation between large earthquakes and their source faults based on a detailed active fault map along Japan Trench. Judging from location and continuation of active faults in the earthquake source area, we consider that one of the extensive thrust faults which extends from off-Sanriku to off-Ibaraki for about 500km, is directly related to the source fault of the 2011 off the Pacific coast of Tohoku Earthquake. The 2011 off the Pacific Coast of Tohoku Earthquake (Mw9.0) generated large tsunami with massive pulsating pattern of waves (Maeda et al. 2011). A leading hypothesis believed among many seismologists that an earthquake source fault that generated the earthquake, caused the near-surface fault rupture along the axis of Japan Trench, and large displacement ~50m eastward and ~7 to ~10m upward was estimated from comparison of data obtained before and after the earthquake in 2004 and 2011 by multibeam bathymetric surveys across the trench (Fujiwara et al. 2011). Satake et al. (2011) explained the large tsunami height by simultaneous faulting on two different fault planes, one on subducting plate boundary and the other near the trench axis. Since most of the workers hypothesized without any doubt believed that the earthquake was caused by the fault ruptured up to the trench axis, existence of submarine active fault is rather overlooked so far. However, we consider the large displacement is due to landslide and do not find any extensive fault scarp on the trench axis. We simulated pattern of seafloor deformation associated with the earthquake using a simple dislocation model for a single fault plane with uniform slip that dips 14 degree in depth and 33.6 degree beneath the tectonic bulge related to the extensive active fault. A result shows that an area of large uplift agrees more or less with the location of tectonic bulge with width of about 20km

  19. A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes

    NASA Astrophysics Data System (ADS)

    Mendoza-Rosas, Ana Teresa; De la Cruz-Reyna, Servando

    2008-09-01

    The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltépetl, Nevado de Toluca, Popocatépetl and El Chichón, to obtain hazard estimates.

  20. Monitoring eruption activity from temporal stress changes at Mt. Ontake volcano, Japan

    NASA Astrophysics Data System (ADS)

    Terakawa, T.; Kato, A.; Yamanaka, Y.; Maeda, Y.; Horikawa, S.; Matsuhiro, K.; Okuda, T.

    2015-12-01

    On 27 September 2014, Mt. Ontake in Japan produced a phreatic (steam type) eruption with a Volcanic Explosivity Index value of 2 after being dormant for seven years. The local stress field around volcanoes is the superposition of the regional stress field and stress perturbations related to volcanic activity. Temporal stress changes over periods of weeks to months are generally attributed to volcanic processes. Here we show that monitoring temporal changes in the local stress field beneath Mt. Ontake, using focal mechanism solutions of volcano-tectonic (VT) earthquakes, is an effective tool for assessing the state of volcanic activity. We estimated focal mechanism solutions of 157 VT earthquakes beneath Mt. Ontake from August 2014 to March 2015, assuming that the source was double-couple. Pre-eruption seismicity was dominated by normal faulting with east-west tension, whereas most post-eruption events were reverse faulting with east-west compression. The misfit angle between observed slip vectors and those derived theoretically from the regional (i.e., background) stress pattern is used to evaluate the deviation of the local stress field, or the stress perturbation related to volcanic activity. The moving average of misfit angles tended to exceed 90° before the eruption, and showed a marked decrease immediately after the eruption. This indicates that during the precursory period the local stress field beneath Mt. Ontake was rotated by stress perturbations caused by the inflation of magmatic/hydrothermal fluids. Post-eruption events of reverse faulting acted to shrink the volcanic edifice after expulsion of volcanic ejecta, controlled by the regional stress field. The misfit angle is a good indicator of the state of volcanic activity. The monitoring method by using this indicator is applicable to other volcanoes and may contribute to the mitigation of volcanic hazards.

  1. Making a Submarine.

    ERIC Educational Resources Information Center

    Cornacchia, Deborah J.

    2002-01-01

    Describes Archimedes principle and why a ship sinks when it gets a hole in it. Suggests an activity for teaching the concept of density and water displacement through the construction of a simple submarine. Includes materials and procedures for this activity. (KHR)

  2. White submarine

    NASA Astrophysics Data System (ADS)

    While not everyone gets to live in a yellow submarine, the scientific community may get to have a decommissioned U.S. Navy nuclear submarine dedicated to it. The Sturgeon class of submarines, which scientists say are the ideal choice for the project, will be coming up for decommissioning in this next decade. So the time is ripe, scientists say. Two weeks ago, oceanographers, submarine specialists, marine biologists, and geophysicists, among others met at AGU headquarters in Washington to discuss how to get the project in the water. If all goes well, the project would be the "biggest thing that ever happened in ocean and Earth science," according to Lloyd Keigwin of the Woods Hole Oceanographic Institution, who convened the meeting. For example, the submarine could make many types of "compelling" research possible that can not be done now by other means, such as studies in the Arctic that may have significant bearing on global change research, Keigwin says. However, the imposing hurdles that the project must overcome are as big as the opportunities it offers. Foremost, there is a question as to who will pick up the tab for such an endeavor.

  3. Active submarine volcanism on the Society hotspot swell (west Pacific): A geochemical study

    SciTech Connect

    Devey, C.W.; Albarede, F.; Michard, A. ); Cheminee, J.L. ); Muehe, R.; Stoffers, P. )

    1990-04-10

    The present work deals with the petrography and geochemistry of lavas dredged from five active submarine volcanoes (named Mehetia, Moua Pihaa, Rocard, Teahitia, and Cyana) from the southeast end of the Society Islands hotspot trace. Most samples are basic and alkaline. Fractionation modelling based on major and minor compatible element variations suggests that olivine and minor clinopyroxene were the major fractionating phases. Rocard and Cyana have yielded more evolved, trachy-phonolitic, glassy samples. Both basaltic and phonolitic samples are incompatible-element enriched. The trachy-phonolite patterns show middle (REE) depletion and negative Eu anomalies. The Moua Pihaa basalts have flatter patterns than the other basalts. All smaples, with the exception of a sample from Moua Pihaa which has elevated {sup 206}Pb/{sup 204}Pb, fall on linear Sr-Nd-Pb isotopic arrays, suggesting two end-member mixing. The Sr isotopic variations in the samples excluding Moua Pihaa correlate positively with Rb/Nb, Pb/Ce, and SiO{sub 2} variations, idicating a component of mantle enriched by injection of material from a subducted oceanic slab. Correlation of {sup 207}Pb/{sup 204}Pb with {sup 87}Sr/{sup 86}Sr suggests that the subducted material is geochemically old. The absence of a MORB component in the Society magmatism, the small volumes of the Polynesian hotspot volcanoes, and the lack of more intense volcanic activity near the center of the Pacific Superswell, all lead to the conclusion that the latter is unlikely to be caused by a large convective plume.

  4. The study of active submarine volcanoes and hydrothermal vents in the Southernmost Part of Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Tsai, C.; Lee, C.

    2004-12-01

    The study area is located in the Southernmost Part of Okinawa Trough (SPOT), which is a back-arc basin formed by extension of Eurasian plate. Previous research indicated two extensional stages in SPOT area. Many normal-fault structures were come into existence during both extensional processes. The SPOT is presently in an activity tectonic episode. Therefore, the area becomes a frequent earthquake and abundant magmatism. The purpose of this study is to discuss which relationship between tectonics, submarine volcanoes and hydrothermal vents in SPOT area. The investigations are continued from 1998 to 2004, we have found at least twelve active hydrothermal vents in study area. Compare the locations hydrothermal vents with fault systems, we find both of them have highly correlated. We can distinguish them into two shapes, pyramidal shape and non-pyramidal shape. According to plumes height, we are able to divide these vents into two groups near east longitude 122.5° . East of this longitude, the hydrothermal plumes are more powerful and west of it are the weaker. This is closely related to the present extensional axis (N80° E) of the southern part of the Okinawa Trough. This can be explained the reason of why the more powerful vents coming out of the east group. The east group is associated with the present back-arc spreading system. West of 122.5° , the spreading system are in a primary stage. The andesitic volcanic island, the Turtle Island, is a result of N60° E extensional tectonism with a lot of faults. Besides the pyramidal shape, this can be proved indirectly. The vents located in the west side were occurred from previous extensional faults and are weaker than the eastern. Therefore, we suggest that if last the extension keeps going on, the hydrothermal vents located at the west side of the longitude 122.5° will be intensified.

  5. Monitoring eruptive activity at Mount St. Helens with TIR image data

    USGS Publications Warehouse

    Vaughan, R.G.; Hook, S.J.; Ramsey, M.S.; Realmuto, V.J.; Schneider, D.J.

    2005-01-01

    Thermal infrared (TIR) data from the MASTER airborne imaging spectrometer were acquired over Mount St. Helens in Sept and Oct, 2004, before and after the onset of recent eruptive activity. Pre-eruption data showed no measurable increase in surface temperatures before the first phreatic eruption on Oct 1. MASTER data acquired during the initial eruptive episode on Oct 14 showed maximum temperatures of ???330??C and TIR data acquired concurrently from a Forward Looking Infrared (FLIR) camera showed maximum temperatures ???675??C, in narrow (???1-m) fractures of molten rock on a new resurgent dome. MASTER and FLIR thermal flux calculations indicated a radiative cooling rate of ???714 J/m2/S over the new dome, corresponding to a radiant power of ???24 MW. MASTER data indicated the new dome was dacitic in composition, and digital elevation data derived from LIDAR acquired concurrently with MASTER showed that the dome growth correlated with the areas of elevated temperatures. Low SO2 concentrations in the plume combined with sub-optimal viewing conditions prohibited quantitative measurement of plume SO2. The results demonstrate that airborne TIR data can provide information on the temperature of both the surface and plume and the composition of new lava during eruptive episodes. Given sufficient resources, the airborne instrumentation could be deployed rapidly to a newly-awakening volcano and provide a means for remote volcano monitoring. Copyright 2005 by the American Geophysical Union.

  6. Monitoring Eruptive Activity at Mount St. Helens with TIR Image Data

    NASA Technical Reports Server (NTRS)

    Vaughan, R. G.; Hook, S. J.; Ramsey, M. S.; Realmuto, V. J.; Schneider, D. J.

    2005-01-01

    Thermal infrared (TIR) data from the MASTER airborne imaging spectrometer were acquired over Mount St. Helens in Sept and Oct, 2004, before and after the onset of recent eruptive activity. Pre-eruption data showed no measurable increase in surface temperatures before the first phreatic eruption on Oct 1. MASTER data acquired during the initial eruptive episode on Oct 14 showed maximum temperatures of similar to approximately 330 C and TIR data acquired concurrently from a Forward Looking Infrared (FLIR) camera showed maximum temperatures similar to approximately 675 C, in narrow (approximately 1-m) fractures of molten rock on a new resurgent dome. MASTER and FLIR thermal flux calculations indicated a radiative cooling rate of approximately 714 J/m(exp 2)/s over the new dome, corresponding to a radiant power of approximately 24 MW. MASTER data indicated the new dome was dacitic in composition, and digital elevation data derived from LIDAR acquired concurrently with MASTER showed that the dome growth correlated with the areas of elevated temperatures. Low SO2 concentrations in the plume combined with sub-optimal viewing conditions prohibited quantitative measurement of plume SO2. The results demonstrate that airborne TIR data can provide information on the temperature of both the surface and plume and the composition of new lava during eruptive episodes. Given sufficient resources, the airborne instrumentation could be deployed rapidly to a newly-awakening volcano and provide a means for remote volcano monitoring.

  7. Voluminous submarine lava flows from Hawaiian volcanoes

    SciTech Connect

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  8. Seismicity and eruptive activity at Fuego Volcano, Guatemala: February 1975 -January 1977

    USGS Publications Warehouse

    Yuan, A.T.E.; McNutt, S.R.; Harlow, D.H.

    1984-01-01

    We examine seismic and eruptive activity at Fuego Volcano (14??29???N, 90?? 53???W), a 3800-m-high stratovolcano located in the active volcanic arc of Guatemala. Eruptions at Fuego are typically short-lived vulcanian eruptions producing ash falls and ash flows of high-alumina basalt. From February 1975 to December 1976, five weak ash eruptions occurred, accompanied by small earthquake swarms. Between 0 and 140 (average ??? 10) A-type or high-frequency seismic events per day with M > 0.5 were recorded during this period. Estimated thermal energies for each eruption are greater by a factor of 106 than cumulative seismic energies, a larger ratio than that reported for other volcanoes. Over 4000 A-type events were recorded January 3-7, 1977 (cumulative seismic energy ??? 109 joules), yet no eruption occurred. Five 2-hour-long pulses of intense seismicity separated by 6-hour intervals of quiescence accounted for the majority of events. Maximum likelihood estimates of b-values range from 0.7 ?? 0.2 to 2.1 ?? 0.4 with systematically lower values corresponding to the five intense pulses. The low values suggest higher stress conditions. During the 1977 swarm, a tiltmeter located 6 km southeast of Fuego recorded a 14 ?? 3 microradian tilt event (down to SW). This value is too large to represent a simple change in the elastic strain field due to the earthquake swarm. We speculate that the earthquake swarm and tilt are indicative of subsurface magma movement. ?? 1984.

  9. Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Eugenio, F.; Martin, J.; Marcello, J.; Fraile-Nuez, E.

    2014-06-01

    El Hierro Island, located at the Canary Islands Archipelago in the Atlantic coast of North Africa, has been rocked by thousands of tremors and earthquakes since July 2011. Finally, an underwater volcanic eruption started 300 m below sea level on October 10, 2011. Since then, regular multidisciplinary monitoring has been carried out in order to quantify the environmental impacts caused by the submarine eruption. Thanks to this natural tracer release, multisensorial satellite imagery obtained from MODIS and MERIS sensors have been processed to monitor the volcano activity and to provide information on the concentration of biological, chemical and physical marine parameters. Specifically, low resolution satellite estimations of optimal diffuse attenuation coefficient (Kd) and chlorophyll-a (Chl-a) concentration under these abnormal conditions have been assessed. These remote sensing data have played a fundamental role during field campaigns guiding the oceanographic vessel to the appropriate sampling areas. In addition, to analyze El Hierro submarine volcano area, WorldView-2 high resolution satellite spectral bands were atmospherically and deglinted processed prior to obtain a high-resolution optimal diffuse attenuation coefficient model. This novel algorithm was developed using a matchup data set with MERIS and MODIS data, in situ transmittances measurements and a seawater radiative transfer model. Multisensor and multitemporal imagery processed from satellite remote sensing sensors have demonstrated to be a powerful tool for monitoring the submarine volcanic activities, such as discolored seawater, floating material and volcanic plume, having shown the capabilities to improve the understanding of submarine volcanic processes.

  10. A multidisciplinary approach to detect active pathways for magma migration and eruption at Mt. Etna (Sicily, Italy) before the 2001 and 2002-2003 eruptions

    NASA Astrophysics Data System (ADS)

    Alparone, S.; Andronico, D.; Giammanco, S.; Lodato, L.

    2004-08-01

    Two strong flank eruptions occurred in July-August 2001 and from late October 2002 to late January 2003 at Mt. Etna volcano. The two eruptions mainly involved the upper southern flank of the volcano, a particularly active area during the last 30 years, damaging several tourist facilities and threatening some villages. The composite eruptive activity on the upper southern flank of Mt. Etna during 2001-2003 has confirmed "a posteriori" the results of a multidisciplinary study, started well before its occurrence by combining geological, seismic and geochemical data gathered in this part of the volcano. We were able, in fact, to highlight fractured zones likely to be re-activated in the near future in this area, where the largest majority of eruptive fissures in the recent past opened along N120° to N180° ranging directions. The spatial distribution of earthquake epicentres during the period June 30th 2000-June 30th 2001 showed the greatest frequency in a sector compatible with both the direction of the main fissures of the pre-2001 period and that of the 2001 and 2002 lateral eruptions. Soil CO 2 and soil temperature surveys carried out in the studied area during the last 3 years have revealed anomalous release of magmatic fluids (mainly CO 2 and water vapour) along some NNW-SSE-trending volcano-tectonic structures of the area even during inter-eruptive periods, indicating persistent convective hydrothermal systems at shallow depth connected with the main feeder conduits of Etna. The temporal changes in both seismic and geochemical data from June 30th, 2000 to June 30th, 2001 were compared with the evolution of volcanic activity. The comparison allowed to recognize at least two sequences of anomalous signals (August to December 2000 and April to June 2001), likely related to episodes of step-like magma ascent towards the surface, as indicated by the following eruptive episodes. The N120° to N180° structural directions are in accord with one of the main structural

  11. Esmeralda Bank: Geochemistry of an active submarine volcano in the Mariana Island Arc

    NASA Astrophysics Data System (ADS)

    Stern, Robert J.; Bibee, L. D.

    1984-05-01

    Esmeralda Bank is the southernmost active volcano in the Izu-Volcano-Mariana Arc. This submarine volcano is one of the most active vents in the western Pacific. It has a total volume of about 27 km3, rising to within 30 m of sea level. Two dredge hauls from Esmeralda recovered fresh, nearly aphyric, vesicular basalts and basaltic andesites and minor basaltic vitrophyre. These samples reflect uniform yet unusual major and trace element chemistries. Mean abundances of TiO2 (1.3%) and FeO* (12.6%) are higher and CaO (9.2%) and Al2O3 (15.1%) are lower than rocks of similar silica content from other active Mariana Arc volcanoes. Mean incompatible element ratios K/Rb (488) and K/Ba (29) of Esmeralda rocks are indistinguishable from those of other Mariana Arc volcanoes. On a Ti-Zr plot, Esmeralda samples plot in the field of oceanic basalts while other Mariana Arc volcanic rocks plot in the field for island arcs. Incompatible element ratios K/Rb and K/Ba and isotopic compositions of Sr (87Sr/86Sr=0.70342 0.70348), Nd (ɛND=+7.6 to +8.1), and O(δ18O=+5.8 to +5.9) are incompatible with models calling for the Esmeralda source to include appreciable contributions from pelagic sediments or fresh or altered abyssal tholeiite from subduction zone melting. Instead, incompatible element and isotopic ratios of Esmeralda rocks are similar to those of intra-plate oceanic islands or “hot-spot” volcanoes in general and Kilauean tholeiites in particular. The conclusion that the source for Esmeralda lavas is an ocean-island type mantle reservoir is preferred. Esmeralda Bank rare earth element patterns are inconsistent with models calling for residual garnet in the source region, but are adequately modelled by 7 10% equilibrium partial melting of spinel lherzolite. This is supported by consideration of the results of melting experiments at 20 kbars, 1,150° C with CO2 and H2O as important volatile components. These experiments further indicate that low MgO (4.1%), MgO/FeO*(0.25) and

  12. Multi-wavelength and High-resolution Observations of Solar Eruptive Activities

    NASA Astrophysics Data System (ADS)

    Shen, Y. D.

    2014-09-01

    In recent years, various solar eruptive activities have been observed in the solar atmosphere, such as solar flares, filament eruptions, jets, coronal mass ejections (CMEs), and magnetohydrodynamics (MHD) waves. Previous observations have indicated that solar magnetic field plays a dominant role in the processes of all kinds of solar activities. Since many large-scale solar eruptive activities can cause significant effects on the space environment of the Earth as well as the human life, studying and forecasting the solar activities are urgent tasks for us. In addition, the Sun is the nearest star to the Earth, so that people can directly observe and study it in detail. Hence, studying the Sun can also provide a reference to study other stars in the universe. This thesis focuses on the multi-wavelength and high-resolution observations of three types of solar eruptive activities: filament eruptions, coronal jets, and coronal MHD waves. By analyzing various observations taken by ground-based and space-borne instruments, we try to understand the inherent physical mechanisms, and construct models to interpret different kinds of solar eruptive activities. The triggering mechanism and the cause of a failed filament eruption are studied in Chapter 3, which indicates that the energy released in the flare is a key factor to the fate of the filament. Two successive filament eruptions are studied in Chapter 4, which indicates that the magnetic implosion could be the physical linkage between them, and the structures of coronal magnetic fields are important for producing sympathetic eruptions. A magnetic unwinding jet and a blowout jet are studied in Chapters 5 and 6, respectively. The former exhibits obvious radial expansion, which undergoes three distinct phases: the slow expansion phase, the fast expansion phase, and the steady phase. In addition, calculation indicates that the non-potential magnetic field in the jet can supply sufficient energy for producing the unwinding

  13. Explosive eruptive activity and temporal magmatic changes at Yotei Volcano during the last 50,000 years, southwest Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Uesawa, Shimpei; Nakagawa, Mitsuhiro; Umetsu, Akane

    2016-10-01

    To understand the eruptive history, structure, and magmatic evolution of Yotei Volcano, southwest Hokkaido, Japan, we investigated the geology and petrology of tephras located around the base of the volcano. We identified 43 tephra units interbedded with soils (in descending stratigraphic order, tephras Y1-Y43), and four widespread regional tephras. Ten radiocarbon ages were obtained from soils beneath the Yotei tephras. On the basis of petrologic differences and, the stratigraphic positions of thick layers of volcanic ash soil, indicative of volcanic stratigraphic gaps, the Yotei tephras are divided into four groups (in ascending stratigraphic order): Yotei tephra groups I, II-1, II-2, and II-3. We calculated the age of each eruptive deposit based on the soil accumulation rate, and estimated the volume of each eruption using isopach maps or the correlation between eruption volume and the maximum thickness at ~ 10 km from the summit crater. The results regarding eruptive activity and the rate of explosive eruptions indicate four eruptive stages at Yotei Volcano over the last 50,000 years. Stage I eruptions produced Yotei tephra group I between ca. 54 cal. ka BP and up to at least ca. 46 cal. ka BP, at relatively high average eruption rates of 0.07 km3 dense-rock equivalent (DRE)/ky. After a pause in activity of ca. 8000 years, Stage II-1 to II-2 eruptions produced Yotei tephra groups II-1 and II-2 from ca. 38 to ca. 21 cal. ka BP at high average eruption rates (0.10 km3 DRE/ky), after a pause in activity of 2000-3000 years. Finally, after another pause in activity of 4000-5000 years, Stage II-3 eruptions produced Yotei tephra group II-3 from ca. 16.5 cal. ka BP until the present day, at low average eruption rates (0.009 km3 DRE/ky). Whole-rock geochemical compositions vary within each tephra group over the entire eruption history. For example, group I and II-3 tephras contain the lowest and highest abundances, respectively, of K2O, P2O5, and Zr. Group II-1 has the

  14. Formation and Eruption of an Active Region Sigmoid: NLFFF Modeling and MHD Simulation

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Wu, S.; Feng, X.; Hu, Q.

    2013-12-01

    We present a magnetic analysis of the formation and eruption of an active region sigmoid in AR 11283 from 2011 September 4 to 6, which is jointly based on observations, static nonlinear force-free field (NLFFF) extrapolation and dynamic MHD simulation. A time sequence of NLFFF model's outputs are used to reproduce the evolution of the magnetic field of the region over three days leading to a X-class flare near the end of 2011 September 6. In the first day, a new bipolar emerges into the negative polarity of a pre-existing mature bipolar, forming a magnetic topology with a coronal null on the magnetic separatrix surface between the two flux system, while the field is still near potential at the end of the day. After then photospheric shearing and twisting build up non-potentiality in the embedded core region, with a flux rope (FR) formed there above the polarity inversion line by tether-cutting reconnection between the strongly sheared field lines. Within this duration, the core field has gained a magnetic free energy of ˜ 1032 erg. In this core a sigmoid is observed distinctly at 22:00 UT on September 6, closely before its eruption at 22:12 UT. Comparison of the SDO/AIA observations with coronal magnetic field suggests that the sigmoid is formed by emission due to enhanced current sheet along the BPSS (bald-patch separatrix surface, in which the field lines graze the line-tied photosphere at the neutral line) that separates the FR from the ambient flux. Quantitative inspection of the pre-eruption field on 22:00 UT suggests a mechanism for the eruption: tether cutting at the null triggers a torus instability of the FR--overlying field system. This pre-eruption NLFFF is then input into a time-dependent MHD model to simulate the fast magnetic evolution during eruption, which successfully reproduces the observations. The highly asymmetric magnetic environment along with the lateral location of the null leads to a strongly inclined non-radial direction of the eruption

  15. Contact Lenses on Submarines

    DTIC Science & Technology

    2014-09-26

    NAVAL SUBMARINE MEDICAL RESEARCH LABORATORY SUBMARINE BASE, GROTON, CONN. REPORT NUMBER 1048 CONTACT LENSES ON SUBMARINES... CONTACT LENSES ON SUBMARINES by James F. Socks, CDR, MSC, USN NAVAL SUBMARINE MEDICAL RESEARCH LABORATORY REPORT NUMBER 1048 NAVAL MEDICAL RESEARCH...DRSCHLAB Approved for public release; distribution unlimited SUMMARY PAGE PROBLEM To determine the feasibility of wearing contact lenses aboard

  16. Repeated remobilisation of submarine landslide debris on an active subduction margin interpreted from multibeam bathymetry and multichannel seismic data

    NASA Astrophysics Data System (ADS)

    Mountjoy, J. J.; Barnes, P. M.; McKean, J.; Pettinga, J. R.

    2008-12-01

    EM300 multibeam and multichannel seismic data reveal a 230 square kilometre submarine landslide complex which exhibits many of the characteristic features of equivalent terrestrial creeping earthflow complexes. Slope failures are sourced from the shelf edge/upper slope of the Poverty Bay reentrant on the active Hikurangi subduction margin of New Zealand where tectonic deformation, via major thrust faults with slip rates of c. 3-4 mm/yr, exerts a controlling influence on seafloor physiography. Individual landslides within this submarine complex are up to 14 km long over a vertical elevation drop of 700 m. Debris streams are in excess of 2 km wide with a debris thickness of 100 m. While multibeam data is limited to c. 10 m resolution, the scale of submarine landslide features allows us to resolve internal debris detail equivalent to terrestrial landslide examples using terrestrial techniques (e.g. airborne lidar). DEM derivative surface roughness techniques are employed to delineate the geomorphic expression of features including active and abandoned lateral shears, and contractional and extensional deformation of the landslide debris. From these interpretations multiple internal failures are recognised along the length of the landslide debris. Debris deformation is also imaged in high fold multichannel seismic data and correlated to the imaged surface geomorphic features, providing insight into the failure mechanics of the landslides. Failures initiate and evolve within the quasi-stable prograding sediment wedge built onto the upper slope during lowstand sealevels. Landslides within the greater complex are at different stages of development providing information on their spatial and temporal evolution headward and laterally along the transition from shelf to upper slope margin. We infer that failures are triggered and evolve in response to sealevel rise, and/or the frequent occurrence large earthquakes along the margin.

  17. Early signs of geodynamic activity before the 2011-2012 El Hierro eruption

    NASA Astrophysics Data System (ADS)

    López, Carmen; García-Cañada, Laura; Martí, Joan; Domínguez Cerdeña, Itahiza

    2017-02-01

    The potential relation between mantle plume dynamics, regional tectonics and eruptive activity in the Canary Islands has not been studied yet through the analysis of long-time series of geophysical observational data. The existence of highly reliable seismic and geodetic data has enabled us to study from 1996 to 2014 the geodynamic evolution of the North Atlantic Azores-Gibraltar region (including the NW African margin) and its relationship with recent volcanic activity in El Hierro (Canary Islands). We compiled a new and unified regional seismic catalog and used long time-series of digital 3D surface displacements recorded by permanent GPS stations in the region. A joint regional- and local-scale analysis based on these data enabled us to identify signs of anomalous tectonic activity from 2003 onwards, whose intensity increased in 2007 and finally accelerated three months before the onset of the volcanic eruption on El Hierro in October 2011. Activity included the occurrence of regional extension and an uplift process affecting the southern Iberian Peninsula, NW Africa, and the Canary Islands. We interpret these observations as early signs of the geodynamic activity, which led to El Hierro eruption and the subsequent episodes of magma intrusion. Results point to the significant contribution of the mantle plume dynamics (i.e. external forces) in this renewed volcanic activity in the Canary Islands and emphasize the role of mantle dynamics in controlling regional tectonics.

  18. Numerical Tsunami Hazard Assessment of the Only Active Lesser Antilles Arc Submarine Volcano: Kick 'em Jenny.

    NASA Astrophysics Data System (ADS)

    Dondin, F. J. Y.; Dorville, J. F. M.; Robertson, R. E. A.

    2015-12-01

    The Lesser Antilles Volcanic Arc has potentially been hit by prehistorical regional tsunamis generated by voluminous volcanic landslides (volume > 1 km3) among the 53 events recognized so far. No field evidence of these tsunamis are found in the vincity of the sources. Such a scenario taking place nowadays would trigger hazardous tsunami waves bearing potentially catastrophic consequences for the closest islands and regional offshore oil platforms.Here we applied a complete hazard assessment method on the only active submarine volcano of the arc Kick 'em Jenny (KeJ). KeJ is the southernmost edifice with recognized associated volcanic landslide deposits. From the three identified landslide episodes one is associated with a collapse volume ca. 4.4 km3. Numerical simulations considering a single pulse collapse revealed that this episode would have produced a regional tsunami. An edifice current volume estimate is ca. 1.5 km3.Previous study exists in relationship to assessment of regional tsunami hazard related to shoreline surface elevation (run-up) in the case of a potential flank collapse scenario at KeJ. However this assessment was based on inferred volume of collapse material. We aim to firstly quantify potential initial volumes of collapse material using relative slope instability analysis (RSIA); secondly to assess first order run-ups and maximum inland inundation distance for Barbados and Trinidad and Tobago, i.e. two important economic centers of the Lesser Antilles. In this framework we present for seven geomechanical models tested in the RSIA step maps of critical failure surface associated with factor of stability (Fs) for twelve sectors of 30° each; then we introduce maps of expected potential run-ups (run-up × the probability of failure at a sector) at the shoreline.The RSIA evaluates critical potential failure surface associated with Fs <1 as compared to areas of deficit/surplus of mass/volume identified on the volcanic edifice using (VolcanoFit 2

  19. SOLAR MAGNETIC ACTIVITY CYCLES, CORONAL POTENTIAL FIELD MODELS AND ERUPTION RATES

    SciTech Connect

    Petrie, G. J. D.

    2013-05-10

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  20. Recent turbidity current activity in sediment-starved submarine canyons (Northwestern Gulf of St. Lawrence, Eastern Canada)

    NASA Astrophysics Data System (ADS)

    Normandeau, Alexandre; Lajeunesse, Patrick; St-Onge, Guillaume; Bourgault, Daniel; Neumeier, Urs

    2016-04-01

    Submarine canyons are known to be main conduits for the transport of sediments to deep-sea basins, mostly by turbidity currents. Turbidity currents flowing in submarine canyons are mostly triggered by hyperpycnal flows, small to large slope failures and advection of shelf sediment offshore. In these contexts, sediment supply is necessary to maintain canyon activity over time. In 2007, a high-resolution mapping of small-scale submarine canyons offshore Pointe-des-Monts (NW Gulf of St. Lawrence, Eastern Canada) revealed a series of incisions characterized by the presence of numerous confined crescentic bedforms. The repeat mapping of the canyons in 2012 and 2015 revealed that the bedforms migrated upslope, indicating that they are cyclic steps produced by supercritical flows. Surprisingly, the comparison of multibeam surveys did not show any evidence of slope failures that could have triggered the turbidity currents responsible for recent bedform migration. Additionally, the rocky shores and coastal shelf do not supply sediments to these canyons, thus excluding turbidity current triggers such as advection of shelf sediments or hyperpycnal flows. In this context, we suggest that hydrodynamic processes are responsible for suspending in-situ sediments, which then may flow as turbidity currents when density of the water-sediment mixture is high enough. ADCPs deployed for 3,5 months during the summer of 2015 revealed along-canyon currents following tidal cycles with speeds up to 0.4 m/s, which were not strong enough to produce bedform migration. Therefore, the currents responsible for bedforms occur during infrequent events or during winter conditions, which both require longer instrument time-series to be observed.

  1. Textural constraints on the dynamics of the 2000 Miyakejima eruption

    NASA Astrophysics Data System (ADS)

    Garozzo, Ileana; Romano, Claudia; Giordano, Guido; Geshi, Nobuo; Vona, Alessandro

    2016-04-01

    Miyakejima Volcano is a basaltic-andesite stratovolcano active from ~10.000 years, located on the north of the Izu-Bonin arc. During the last 600 years the volcano has been characterized mainly by flank fissure activity, with explosive phreatomagmatic eruptions on the coastal areas. In the last century, the activity became more frequent and regular with intervals of 20 to 70 years (1940, 1962, 1983 and 2000). The last activity started on 27 June 2000, with a minor submarine eruption on the west coast of the volcano, and proceeded with six major summit eruptions from July 8 to August 29. The eruptions led to the formation of a collapse caldera ~1.6 km across. The total erupted tephra represents only 1.7% in volume of the caldera, the high fragmentation of magma produced mainly fine-grained volcanic ash. In order to improve the understanding on the triggering and dynamics of this explosive eruption, we carried out a detailed investigation of the erupted materials with particular attention to the textural features of juvenile pyroclasts (Vesicle and Crystal Size Distributions). The stratigraphic record can be divided into six fall units, corresponding to the six summit eruptions, although juvenile materials were identified only in 4 units (unit 2, 4, 5, 6). We selected about 100 juvenile grains sampled from the bottom to the top of each level, to be analyzed by scanning electron microscopy. The study of juvenile morphological features allowed us to recognize the existence of three characteristic morphotypes, showing marked differences in their external morphologies and internal textures (from poorly to highly crystallized and vesiculated clasts). The distribution of these morphotypes is non-homogeneous along the eruptive sequence indicating changes of dynamics during magma ascent. Juveniles do not show features inherited from the interaction with external water. Vesicle Volume Distributions of the selected ash grains show that the three types of pyroclasts experienced

  2. Reventador Volcano 2005: Eruptive activity inferred from seismo-acoustic observation

    NASA Astrophysics Data System (ADS)

    Lees, Jonathan M.; Johnson, Jeffrey B.; Ruiz, Mario; Troncoso, Liliana; Welsh, Matt

    2008-09-01

    Reventador Volcano entered an eruptive phase in 2005 which included a wide variety of seismic and infrasonic activity. These are described and illustrated: volcano-tectonic, harmonic tremor, drumbeats, chugging and spasmodic tremor, long period and very long period events. The recording of this simultaneous activity on an array of three broadband, seismo-acoustic instruments provides detailed information of the state of the conduit and vent during this phase of volcanic eruption. Quasi-periodic tremor at Reventador is similar to that observed at other volcanoes and may be used as an indicator of vent aperture. Variations in the vibration modes of the volcano, frequency fluctuations and rapid temporal fluctuations suggest the influx of new material, choking of the vent and possible modification of the conduit geometry during explosions and effusion over a period of six weeks.

  3. Solar magnetic activity cycles, coronal potential field models and eruption rates

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon

    2013-07-01

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and from the U. Stanford's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking (CACTus), Solar Eruptive Event Detection System (SEEDS), and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003-2012 than for those between 1997-2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  4. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins

    NASA Astrophysics Data System (ADS)

    Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary

    2014-06-01

    Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.

  5. Present-day submarine hydrothermal activity in the Taupo-Rotorua Zone (Bay of Plenty, New Zealand)

    SciTech Connect

    Osipenko, A.B.; Egorov, Yu.O.; Fazlullin, S.M.; Gavrilenko, G.M.; Shul`kin, V.I.; Chertkova, L.V.

    1994-09-01

    We made detailed descriptions of the structure and material composition of sedimentary and water columns in the vicinity of active submarine hydrothermal activity in the southern part of the Bay of Plenty (North Island, New Zealand). Geophysical methods revealed that the hydrothermal system is confined to a tectonically distinct zone with a sedimentary cover characterized by complex structure. Chemical and mineralogical investigations confirmed that the activity of underwater vents exerts no substantial regional influence on the composition and features of ore mineralization in these formations. It is shown that essentially hydrothermal formations distinguishable within areas of otherwise monotypic sediments directly coincide with zones of hydrothermal discharge in the ocean floor. The absence of pronounced hydrothermal anomalies, together with the presence of {open_quotes}tongues{close_quotes} of anomalous concentrations of water-soluble gases suggests that the discharges are primarily hydrothermal in character.

  6. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon

    NASA Astrophysics Data System (ADS)

    Yu, Ho-Shing; Chiang, Cheng-Shing; Shen, Su-Min

    2009-03-01

    The sediment dispersal system in southwestern Taiwan margin consists of two main parts: the subaerial drainage basin and the offshore receiving marine basin. In plan view, this sediment dispersal system can be further divided into five geomorphic units: (1) the Gaoping (formerly spelled Kaoping) River drainage basin, (2) the Gaoping (Kaoping) Shelf, (3) the Gaoping (Kaoping) Slope, (4) the Gaoping (Kaoping) Submarine Canyon and (5) the Manila Trench in the northernmost South China Sea. The Gaoping River drainage basin is a small (3250 km 2), tectonically active and overfilled foreland basin, receiving sediments derived from the uprising Central Range of Taiwan with a maximum elevation of 3952 m. The Gaoping Submarine Canyon begins at the mouth of the Gaoping River, crosses the narrow Gaoping Shelf (~ 10 km) and the Gaoping Slope, and finally merges into the northern termination of the Manila Trench over a distance of ~ 260 km. The SW Taiwan margin dispersal system is characterized by a direct river-canyon connection with a narrow shelf and frequent episodic sediment discharge events in the canyon head. In a regional source to sink scheme, the Gaoping River drainage basin is the primary source area, the Gaoping Shelf being the sediment bypass zone and the Gaoping Slope being the temporary sink and the Manila Trench being the ultimate sink of the sediment from the Taiwan orogen. It is inferred from seismic data that the outer shelf and upper slope region can be considered as a line source for mass wasting deposits delivered to the lower Gaoping Slope where small depressions between diapiric ridges are partially filled with sediment or are empty. At present, recurrent hyperpycnal flows during the flood seasons are temporarily depositing sediments mainly derived from the Gaoping River in the head of the Gaoping Submarine Canyon. On the decadal and century timescales, sediments temporarily stored in the upper reach are removed over longer timescales probably by

  7. The impact of a volcanic edifice on intrusive and eruptive activity

    NASA Astrophysics Data System (ADS)

    Roman, Alberto; Jaupart, Claude

    2014-12-01

    In a volcanic area, the orientation and composition of dikes record the development of the magmatic system that feeds intrusive and eruptive activity. At Spanish Peaks, Colorado, curved dike trajectories issuing from a single focal area have been attributed to horizontal propagation from a pressurized central reservoir in a deviatoric tectonic stress field. These dikes, however, are nowhere in contact with the central intrusion, are younger than it by about 1 My and are not filled with the same magma. They were emplaced at shallow depths (≈ 1 km), where the local stress field is very sensitive to surface loads. Here, we show that their trajectories can be set by the load of a volcanic edifice in a tectonic stress field. The orientation and distribution of the Spanish Peaks dikes have changed in the course of two million years as magmas were evolving chemically. Early dikes that were parallel to each another and filled with primitive melts document ascent in the regional tectonic stress field. They were replaced by curved dikes carrying evolved melts, which record the influence of a sizable volcanic edifice. Beneath this edifice, the induced compression prevented dense primitive magmas from erupting in the focal area and diverted intermediate magmas sideways. The growth of this large volcanic cone was probably responsible for the formation of a magma reservoir. The mechanisms that have shaped the Spanish Peaks dike swarm may control the spatial distribution and migration of eruptive centers in many active volcanic areas.

  8. Eruption of the magnetic flux rope in a fast decayed active region

    NASA Astrophysics Data System (ADS)

    Yang, Shangbin

    2012-07-01

    An isolated and fast decayed active region was observed when passing through solar disk. There is only one CME related with it that give us a good opportunity to investigate the whole process of the CME. Filament in this active region rises up rapidly and then hesitates and disintegrates into flare loops. The rising filament from EIT images separates into two parts just before eruption. It is interesting that this filament rises up with positive kink which is opposite to the negative helicity according to the inverse S-shaped X-ray sigmoid and accumulated magnetic helicity. A new filament reforms several hours later after CME and the axis of this new one rotates clockwise about 22° comparing with that of the former one. We also observed a bright transient J-shaped X-ray sigmoid immediately appears after filament eruption. It quickly develops into a soft X-ray cusp and rises up firstly then drops down. We propose that field lines underneath bald-patch sparatrix surface (BPSS) where for the formation of a magnetic tangential discontinuity are locally rooted to the photosphere near the bald-patch (BP) inversion line. Field lines above the surface are detached from the photosphere to form this CME and partially open the field which make the filament loses equilibrium to rise quickly and then be drawn back by the tension force of magnetic field after eruption to form a new filament. Two magnetic cancelation regions have been observed clearly just before filament eruption that reflect the existence of BPs. On the other hand, the values of total magnetic helicity to the corona taken by emergence and differential rotation normalized by the square total magnetic flux implies the possibility of upper bound on the total magnetic helicity that a force-free field can contain.

  9. A comparison of active seismic source data to seismic excitations from the 2012 Tongariro volcanic eruptions, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, Arthur; Kennedy, Ben; Keys, Harry; Lokmer, Ivan; Proctor, Jon; Lyons, John; Jolly, Gillian

    2014-05-01

    The 6 August 2012 eruption from Tongariro volcano's Te Maari vent comprised a complex sequence of events including at least 4 eruption jets, a large chasm collapse, and a debris avalanche (volume of ~7x105 m3) that propagated ~2 km beyond the eruptive vent. The eruption was poorly observed, being obscured by night time darkness, and the eruption chronology must be unravelled instead from a complex seismic record that includes discrete volcanic earthquakes, a sequence of low to moderate level spasmodic tremor and an intense burst of seismic and infrasound activity starting at 11:52:18 UTC that marked the eruption onset. We have discriminated the timing of the complex surface activity by comparing active seismic source data to the eruptive sequence. We dropped 11 high impact masses from helicopter to generate a range of active seismic sources in the vicinity of the eruption vent, chasm, and debris avalanche areas. We obtained 8 successful drops having an impact energy ranging from 3 to 9x106 joules producing seismic signals to a distance of 5 to 10 km and having good signal to noise characteristics in the 3-12 Hz range. For the 8 drops, we picked first-P arrival times and calculated amplitude spectra for a uniform set of four 3-component stations. From these, we obtained a distribution of amplitudes across the network for each drop position which varied systematically from the eruption vent and avalanche scar to the debris avalanche toe. We then compared these proxy source excitations to the natural eruption and pre-eruption data using a moving window cross-correlation approach. From the correlation processing, we found evidence for the debris avalanche a few minutes prior to the eruption in both the broad spectrum and narrow frequency (5-10 Hz) analysis. The total seismic energy release calculated from the new method is ~8x1011 joules, similar to an independently estimated calculation based on the radiated seismic energy. The inferred seismic energy release for the

  10. Development and experimental verification of a robust active noise control system for a diesel engine in submarines

    NASA Astrophysics Data System (ADS)

    Sachau, D.; Jukkert, S.; Hövelmann, N.

    2016-08-01

    This paper presents the development and experimental validation of an ANC (active noise control)-system designed for a particular application in the exhaust line of a submarine. Thereby, tonal components of the exhaust noise in the frequency band from 75 Hz to 120 Hz are reduced by more than 30 dB. The ANC-system is based on the feedforward leaky FxLMS-algorithm. The observability of the sound pressure in standing wave field is ensured by using two error microphones. The noninvasive online plant identification method is used to increase the robustness of the controller. Online plant identification is extended by a time-varying convergence gain to improve the performance in the presence of slight error in the frequency of the reference signal.

  11. Unusual seismic activity in 2011 and 2013 at the submarine volcano Rocard, Society hot spot (French Polynesia)

    NASA Astrophysics Data System (ADS)

    Talandier, Jacques; Hyvernaud, Olivier; Maury, René C.

    2016-05-01

    We analyze two seismic events that occurred on 27 May 2011 and 29 April 2013 at the Rocard submarine volcano which overlies the Society hot spot. The Polynesian Seismic Network recorded for the first time unusual associated short- and long-period signals, with perfectly monochromatic (0.0589 Hz) Rayleigh wave trains of long period and duration. None of the numerous observations of long-period (10-30 s) signals previously associated with volcanic activity in Japan, Italy, Mexico, Indonesia, Antarctica, and the Hawaiian Islands have the characteristics we observed at Rocard. We propose a tentative model for these unusual and rather enigmatic signals, in which the movement of lava excited the resonance of a shallow open conduit under a high hydrostatic pressure of ~400 bars.

  12. Signs of potential renewal of eruptive activity at La Fossa (Vulcano, Aeolian Islands)

    NASA Astrophysics Data System (ADS)

    Montalto, A.

    1996-04-01

    Since the end of the last magmatic eruption (1890), activity of La Fossa (southern Tyrrhenian Sea, Italy) has consisted of fumarolic emissions of fluctuating intensity. Fluids are discharged principally at two fumarolic fields located in the northern rim of the active crater and at the beach sited at its northern foot. Increased thermal, seismic and geochemical activity has been recorded since 1978, when an earthquake of M=5.5 occurred in the region. This paper combines available geophysical and geochemical information in order to develop a tentative interpretation of two episodes of apparent unrest which occurred in 1985 and 1987 1988, enhancing the risk of renewal of the eruptive activity. The 1985 unrest consisted essentially of a sharp build up of the internal pressure in the shallow hydrothermal system, which was induced by the injection of hot gases of magmatic origin. The crater fumaroles displayed significant increases in CO2 and other acid species, but their outlet temperature did not change. Conversely, the 1987 1988 episode was characterized by appreciable modifications at the crater fumaroles, with only secondary effects at the fumarole system of the beach. The sliding of part of the eastern flank of the La Fossa cone into the sea occurred on 20 April 1988, when the region was affected by crustal dilatation producing a seismic sequence of relatively high intensity. Both episodes of unrest were accompanied by increases of local microseismic activity, which affected the nothern sector of the island in 1985, and the southern one in 1988. Finally, a phase of appreciable areal contraction was detected in 1990, probably due to the effect of the cooling and crystallization of magma at relatively shallow depths, accompanying the increased thermal activity at the crater fumaroles. Regional tectonic stress seems to play an important role in the transition of the volcanic system from a phase of relative stability to a phase of apparent unrest, inducing the heating

  13. Summary of the historical eruptive activity of volcán de Colima, Mexico 1519-2000

    NASA Astrophysics Data System (ADS)

    Ramirez, J. J.

    2001-12-01

    Volcán de Colima (103circ37'W, 19circ30'45"N) has had significant eruptive activity over the last 5 centuries, leading to its designation as the most active volcano in Mexico. This activity has manifested itself through a variety of eruptive processes, culminating in explosive events rated VEI 4. Much of our knowledge of the earlier volcanic events is from non-scientific writings and as such is only an interpretation of sometimes ambiguous information. The most recent eruptions of the 19th and 20th centuries are, however, well documented scientifically allowing for more detailed understanding of these events. Numerous cities and towns, numbering up to 390,000 persons, are at risk from hazards posed by a Plinian or Subplinian eruption. Pyroclastic flows accompanying the 1818 and 1913 eruptions reached distances of 15 km, strong ash fell over 30 km distance, and lesser ash falls reached many hundreds of kilometers. It is to be remembered that at present there are a number of towns within Colima and Jalisco States that could be seriously affected by such an eruption: pyroclastic flows, ash falls, and lahars being the major threats. Although the historical record does not permit forecasting the start of such activity, it gives abundant evidence that this style of volcanism will no doubt occur in Colima's future.

  14. Active seismic sources as a proxy for seismic surface processes: An example from the 2012 Tongariro volcanic eruptions, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Lokmer, I.; Kennedy, B.; Keys, H. J. R.; Proctor, J.; Lyons, J. J.; Jolly, G. E.

    2014-10-01

    The 6 August 2012 eruption from Tongariro volcano's Te Maari vent comprised a complex sequence of events including at least 4 eruption pulses, a large chasm collapse, and a debris avalanche (volume of ~ 7 × 105 m3) that propagated ~ 2 km beyond the eruptive vent. The eruption was poorly observed, being obscured by night time darkness, and the eruption timing must be unravelled instead from a complex seismic record that includes discrete volcanic earthquakes, a sequence of low to moderate level spasmodic tremor and an intense burst of seismic and infrasound activity that marked the eruption onset. We have discriminated the evolution of the complex surface activity by comparing active seismic source data to the seismic sequence in a new cross correlation source location approach. We dropped 11 high impact masses from helicopter to generate a range of active seismic sources in the vicinity of the eruption vent, chasm, and debris avalanche areas. We obtained 8 successful drops having an impact energy ranging from 3 to 9 × 106 Nm producing observable seismic signals to a distance of 5 to 10 km and having good signal to noise characteristics in the 3-12 Hz range. For the 8 drops, we picked first-P arrival times and calculated amplitude spectra for a uniform set of four stations. We then compared these proxy source excitations to the natural eruption and pre-eruption data using a moving window cross correlation approach. From the correlation processing, we obtain a best matched source position in the near vent region for the eruption period and significant down channel excitations during both the pre and post eruption periods. The total seismic energy release calculated from the new method is ~ 8 × 1011 Nm, similar to an independently estimated calculation based on the radiated seismic energy. The new energy estimate may be more robust than those calculated from standard seismic radiation equations, which may include uncertainties about the path and site effects. The

  15. Popocatepetl Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Popocatepetl Volcano, almost 30 miles south of Mexico City, erupted yesterday (December 18, 2000) in what authorities are calling its most spectacular eruption since 800 A.D. This morning, Popocatepetl (pronounced poh-poh-kah-TEH-peh-til) continued spewing red-hot rocks as well as a column of smoke and ash about 2.5 miles high into the atmosphere. This true-color image of the volcano was acquired today by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) flying aboard the OrbView-2 satellite. In this image, Popocatepetl's plume (greyish pixels) can be seen blowing southward, away from Mexico City. There is a large cloud bank (bright white pixels) just to the east of the volcanic plume. Although Popocatepetl has been active since 1994-when it awoke from a 70-year slumber-this most recent eruption is most concerning to the greater Mexico City region's 20 million residents. The volcano demonstrated what it can do in 800 A.D. when it belched forth enough lava to fill many of the valleys in the surrounding region. Earlier, scientists warned the citizens of Mexico that there is a dome of lava at the base of the volcano that is causing pressure to build inside. They are concerned that, if it continues to build unabated, this pressure could cause even larger eruptions in the future. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  16. Seafloor deformation and forecasts of the April 2011 eruption at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Chadwick, William W.; Nooner, Scott L.; Butterfield, David A.; Lilley, Marvin D.

    2012-07-01

    Axial Seamount is an active submarine volcano located at the intersection between the Cobb hotspot and the Juan de Fuca spreading centre in the northeast Pacific Ocean. The volcano has been closely monitored since it erupted in 1998 (refs , ). Since then, Axial Seamount seemed to exhibit a similar inflation-deflation cycle to basaltic volcanoes on land and, on that basis, was expected to erupt again sometime before 2014 or 2020 (refs , ). In April 2011 Axial Seamount erupted. Here we report continuous measurements of ocean bottom pressure that document the deflation-inflation cycle of Axial Seamount between 1998 and 2011. We find that the volcano inflation rate, caused by the intrusion of magma, gradually increased in the months leading up to the 2011 eruption. Sudden uplift occurred 40-55min before the eruption onset, which we interpret as a precursor event. Based on our measurements of ground deformation through the entire eruption cycle at Axial Seamount, we suggest that another eruption could occur as early as 2018. We propose that the long-term eruptive cycle of Axial Seamount could be more predictable compared with its subaerial counterparts because the volcano receives a relatively steady supply of magma through the Cobb hotspot and because it is located on thin oceanic crust at a spreading plate boundary.

  17. Eyjafjallajökull2010 - The activity of the eruption plume during the first 2 weeks

    NASA Astrophysics Data System (ADS)

    Sigurősson, Árni; Pálmason, Bolli; Hlíőar Jensen, Esther; Petersen, Gudrun Nina; Björnsson, Halldór; Şorsteinsson, Hróbjartur; Arason, Şórőur

    2010-05-01

    On 14 April 2010 an eruption started in Eyjafjallajökull, in southern Iceland. This was an explosive eruption in the caldera, beneath the glacier. During the first two weeks the eruption went through two phases, an explosive phase with much tephra and ash production and a calmer phase with less productivity and some lava production. During the explosive phase 14-17 April, the plume altititude was about 5-7 km but occasionally increased up to 8 km height, there was lightning activity in the plume and the material produced was mainly ash and tephra. It is estimated that the production was peaked at about 750 tons/s. The local ash fall on 17 April was the worst by far for the local community to the south of the volcano as about a 1 km thick ash cloud flowed almost continuously from the volcano and over the region. During this phase the upper level winds over Iceland were strong, northwesterly 40-50 m/s, and the emitted ash was advected southeastward toward northwestern Europe. This caused major disruption in air traffic. During the second phase 18-29 April there was a reduced net output form the volcano, lava production was estimated as 10-30 tons/s and tephra and ash production of less than 10 tons/s. The height of the plume was estimated as 3-5 km. Local ash fall predictions were made for the areas within a 500 km radius from the eruption site and prediction maps published on the website of the Icelandic Met Office. Information on local ash fall were collected from synoptic weather stations but also from the general public and the media. An internet web registration form was made public and advertised. In 6 days 95 reports of ash fall were made. This information together with other ground observations and remote sense observations are important for validations of ash fall prediction, near field and far field, as well as ensuring that the impact of the volcanic eruption is well understood, in a geological, geophysical and biological sense but also the societal

  18. Forecasts and predictions of eruptive activity at Mount St. Helens, USA: 1975-1984

    USGS Publications Warehouse

    Swanson, D.A.; Casadevall, T.J.; Dzurisin, D.; Holcomb, R.T.; Newhall, C.G.; Malone, S.D.; Weaver, C.S.

    1985-01-01

    Public statements about volcanic activity at Mount St. Helens include factual statements, forecasts, and predictions. A factual statement describes current conditions but does not anticipate future events. A forecast is a comparatively imprecise statement of the time, place, and nature of expected activity. A prediction is a comparatively precise statement of the time, place, and ideally, the nature and size of impending activity. A prediction usually covers a shorter time period than a forecast and is generally based dominantly on interpretations and measurements of ongoing processes and secondarily on a projection of past history. The three types of statements grade from one to another, and distinctions are sometimes arbitrary. Forecasts and predictions at Mount St. Helens became increasingly precise from 1975 to 1982. Stratigraphic studies led to a long-range forecast in 1975 of renewed eruptive activity at Mount St. Helens, possibly before the end of the century. On the basis of seismic, geodetic and geologic data, general forecasts for a landslide and eruption were issued in April 1980, before the catastrophic blast and landslide on 18 May 1980. All extrusions except two from June 1980 to the end of 1984 were predicted on the basis of integrated geophysical, geochemical, and geologic monitoring. The two extrusions that were not predicted were preceded by explosions that removed a substantial part of the dome, reducing confining pressure and essentially short-circuiting the normal precursors. ?? 1985.

  19. Timing of ectocranial suture activity in Gorilla gorilla as related to cranial volume and dental eruption.

    PubMed

    Cray, James; Cooper, Gregory M; Mooney, Mark P; Siegel, Michael I

    2011-05-01

    Research has shown that Pan and Homo have similar ectocranial suture synostosis patterns and a similar suture ontogeny (relative timing of suture fusion during the species ontogeny). This ontogeny includes patency during and after neurocranial expansion with a delayed bony response associated with adaptation to biomechanical forces generated by mastication. Here we investigate these relationships for Gorilla by examining the association among ectocranial suture morphology, cranial volume (as a proxy for neurocranial expansion) and dental development (as a proxy for the length of time that it has been masticating hard foods and exerting such strains on the cranial vault) in a large sample of Gorilla gorilla skulls. Two-hundred and fifty-five Gorilla gorilla skulls were examined for ectocranial suture closure status, cranial volume and dental eruption. Regression models were calculated for cranial volumes by suture activity, and Kendall's tau (a non-parametric measure of association) was calculated for dental eruption status by suture activity. Results suggest that, as reported for Pan and Homo, neurocranial expansion precedes suture synostosis activity. Here, Gorilla was shown to have a strong relationship between dental development and suture activity (synostosis). These data are suggestive of suture fusion extending further into ontogeny than brain expansion, similar to Homo and Pan. This finding allows for the possibility that masticatory forces influence ectocranial suture morphology.

  20. Arctic Submarine Slope Stability

    NASA Astrophysics Data System (ADS)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  1. Submarine radial vents on Mauna Loa Volcano, Hawai'i

    USGS Publications Warehouse

    Wanless, V. Dorsey; Garcia, M.O.; Trusdell, F.A.; Rhodes, J.M.; Norman, M.D.; Weis, Dominique; Fornari, D.J.; Kurz, M.D.; Guillou, Herve

    2006-01-01

    A 2002 multibeam sonar survey of Mauna Loa's western flank revealed ten submarine radial vents and three submarine lava flows. Only one submarine radial vent was known previously. The ages of these vents are constrained by eyewitness accounts, geologic relationships, Mn-Fe coatings, and geochemical stratigraphy; they range from 128 years B.P. to possibly 47 ka. Eight of the radial vents produced degassed lavas despite eruption in water depths sufficient to inhibit sulfur degassing. These vents formed truncated cones and short lava flows. Two vents produced undegassed lavas that created “irregular” cones and longer lava flows. Compositionally and isotopically, the submarine radial vent lavas are typical of Mauna Loa lavas, except two cones that erupted alkalic lavas. He-Sr isotopes for the radial vent lavas follow Mauna Loa's evolutionary trend. The compositional and isotopic heterogeneity of these lavas indicates most had distinct parental magmas. Bathymetry and acoustic backscatter results, along with photography and sampling during four JASON2 dives, are used to produce a detailed geologic map to evaluate Mauna Loa's submarine geologic history. The new map shows that the 1877 submarine eruption was much larger than previously thought, resulting in a 10% increase for recent volcanism. Furthermore, although alkalic lavas were found at two radial vents, there is no systematic increase in alkalinity among these or other Mauna Loa lavas as expected for a dying volcano. These results refute an interpretation that Mauna Loa's volcanism is waning. The submarine radial vents and flows cover 29 km2 of seafloor and comprise a total volume of ∼2×109 m3 of lava, reinforcing the idea that submarine lava eruptions are important in the growth of oceanic island volcanoes even after they emerged above sea level.

  2. Submarine volcanic features west of Kealakekua Bay, Hawaii

    USGS Publications Warehouse

    Fornari, D.J.; Lockwood, J.P.; Lipman, P.W.; Rawson, M.; Malahoff, A.

    1980-01-01

    Visual observations of submarine volcanic vents were made from the submersible vehicle DSV "Sea Cliff" in water depths between 1310 and 690 m, west of Kealakekua Bay, Hawaii. Glass-rich, shelly submarine lavas surround circular 1- to 3-m-diameter volcanic vents between 1050 and 690 m depth in an area west-northwest of the southernpoint (Keei Pt.) of Kealakekua Bay. Eye-witness accounts indicate that this area was the site of a submarine eruption on February 24, 1877. Chemical analyses of lavas from these possible seafloor vent areas indicate that the eruptive products are very similar in composition to volcanic rocks produced by historic eruptions of Mauna Loa volcano. ?? 1980.

  3. Morphological analysis of active Mount Nemrut stratovolcano, eastern Turkey: evidences and possible impact areas of future eruption

    NASA Astrophysics Data System (ADS)

    Aydar, Erkan; Gourgaud, Alain; Ulusoy, Inan; Digonnet, Fabrice; Labazuy, Philippe; Sen, Erdal; Bayhan, Hasan; Kurttas, Turker; Tolluoglu, Arif Umit

    2003-05-01

    Mount Nemrut, an active stratovolcano in eastern Turkey, is a great danger for its vicinity. The volcano possesses a summit caldera which cuts the volcano into two stages, i.e. pre- and post-caldera. Wisps of smoke and hot springs are to be found within the caldera. Although the last recorded volcanic activity is known to have been in 1441, we consider here that the last eruption of Nemrut occurred more recently, probably just before 1597. The present active tectonic regime, historical eruptions, occurrence of mantle-derived magmatic gases and the fumarole and hot spring activities on the caldera floor make Nemrut Volcano a real danger for its vicinity. According to the volcanological past of Nemrut, the styles of expected eruptions are well-focused on two types: (1) occurrence of water within the caldera leads to phreatomagmatic (highly energetic) eruptions, subsequently followed by lava extrusions, and (2) effusions-extrusions (non-explosive or weakly energetic eruptions) on the flanks from fissures. To predict the impact area of future eruptions, a series of morphological analyses based on field observations, Digital Elevation Model and satellite images were realized. Twenty-two valleys (main transport pathways) were classified according to their importance, and the physical parameters related to the valleys were determined. The slope values in each point of the flanks and the Heim parameters H/ L were calculated. In the light of morphological analysis the possible impact areas around the volcano and danger zones were proposed. The possible transport pathways of the products of expected volcanic events are unified in three main directions: Bitlis, Guroymak, Tatvan and Ahlat cities, the about 135 000 inhabitants of which could be threatened by future eruptions of this poorly known and unsurveyed volcano.

  4. Short-term spasmodic switching of volcanic tremor source activation in a conduit of the 2011 Kirishima eruption

    NASA Astrophysics Data System (ADS)

    Matsumoto, S.; Shimizu, H.; Matsushima, T.; Uehira, K.; Yamashita, Y.; Nakamoto, M.; Miyazaki, M.; Chikura, H.

    2012-04-01

    Volcanic tremors are seismic indicators providing clues for magma behavior, which is related to volcanic eruptions and activity. Detection of spatial and temporal variations of volcanic tremors is important for understanding the mechanism of volcanic eruptions. However, temporal variations of tremor activity in short-term than a minute have not been previously detected by seismological observations around volcanoes. Here, we show that volcanic tremor sources were activated at the top of the conduit (i.e. the crater) and at its lower end by analyzing seismograms from a dense seismic array during the 2011 Kirishima eruption. We observed spasmodic switching in the seismic ray direction during a volcanic tremor sequence. Such fine volcanic tremor structure suggests an interaction between tremor sources located in both deep and shallow depths. Our result suggests that seismic array observations can monitor the magma behavior and contribute to the evaluation of the activity's transition.

  5. INVESTIGATING TWO SUCCESSIVE FLUX ROPE ERUPTIONS IN A SOLAR ACTIVE REGION

    SciTech Connect

    Cheng, X.; Zhang, J.; Ding, M. D.; Guo, Y.; Olmedo, O.; Sun, X. D.; Liu, Y.

    2013-06-01

    We investigate two successive flux rope (FR1 and FR2) eruptions resulting in two coronal mass ejections (CMEs) on 2012 January 23. Both flux ropes (FRs) appeared as an EUV channel structure in the images of high temperature passbands of the Atmospheric Imaging Assembly prior to the CME eruption. Through fitting their height evolution with a function consisting of linear and exponential components, we determine the onset time of the FR impulsive acceleration with high temporal accuracy for the first time. Using this onset time, we divide the evolution of the FRs in the low corona into two phases: a slow rise phase and an impulsive acceleration phase. In the slow rise phase of FR1, the appearance of sporadic EUV and UV brightening and the strong shearing along the polarity inverse line indicates that the quasi-separatrix-layer reconnection likely initiates the slow rise. On the other hand, for FR2, we mainly contribute its slow rise to the FR1 eruption, which partially opened the overlying field and thus decreased the magnetic restriction. At the onset of the impulsive acceleration phase, FR1 (FR2) reaches the critical height of 84.4 ± 11.2 Mm (86.2 ± 13.0 Mm) where the decline of the overlying field with height is fast enough to trigger the torus instability. After a very short interval (∼2 minutes), the flare emission began to enhance. These results reveal the compound activity involving multiple magnetic FRs and further suggest that the ideal torus instability probably plays the essential role of initiating the impulsive acceleration of CMEs.

  6. Sunspot Rotation as a Driver of Major Solar Eruptions in the NOAA Active Region 12158

    NASA Astrophysics Data System (ADS)

    Vemareddy, P.; Cheng, X.; Ravindra, B.

    2016-09-01

    We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°-5° h-1 with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the AR magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.

  7. Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption

    PubMed Central

    Jiang, Chaowei; Wu, S. T.; Feng, Xuesheng; Hu, Qiang

    2016-01-01

    Solar eruptions are well-recognized as major drivers of space weather but what causes them remains an open question. Here we show how an eruption is initiated in a non-potential magnetic flux-emerging region using magnetohydrodynamic modelling driven directly by solar magnetograms. Our model simulates the coronal magnetic field following a long-duration quasi-static evolution to its fast eruption. The field morphology resembles a set of extreme ultraviolet images for the whole process. Study of the magnetic field suggests that in this event, the key transition from the pre-eruptive to eruptive state is due to the establishment of a positive feedback between the upward expansion of internal stressed magnetic arcades of new emergence and an external magnetic reconnection which triggers the eruption. Such a nearly realistic simulation of a solar eruption from origin to onset can provide important insight into its cause, and also has the potential for improving space weather modelling. PMID:27181846

  8. The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity.

    PubMed

    Bourbouli, Maria; Katsifas, Efstathios A; Papathanassiou, Evangelos; Karagouni, Amalia D

    2015-05-01

    Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76 %) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds.

  9. Observations of Active Submarine Groundwater Discharge on a Shallow Coastal Sea in Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Marino, I.; Vera, I.; Enriquez, C.; Capurro, L.; Kantun, C.

    2008-12-01

    This contribution presents detailed measurements of fresh water fluxes from an energetic submarine groundwater discharge (SGD) located on the coastal ocean on Dzilam Bravo, Yucatan, Mexico. Due to the geologic characteristics of the site (karstic geology), inland groundwater flows through karstic conduits and exits at sea. Time series of fluxes measured by an acoustic velocimeter (VECTOR), temperature and salinity are correlated to the variability imposed by tides, currents, waves and rainfall. The contribution of SGD is a determining factor in the dynamics of marine ecosystems because it provides fresh water, nutrients, contaminants and other solutes. For this reason it is important to increase the knowledge about its dynamics and mixing processes that take place in these kind of environments. To study the spacial variability of thermohaline conditions, an area of 1 by 1 km (which includes five freshwater springs) was measured with a vessel towed CTD during drough and rainfall seasons. The results reveal that the flow conditions for the main spring (X'buya-Ha) is controlled by sea level variations, which include tides and weather effects. The outflow velocity is about 0.5 m/s during dry season when the discharge is weak, and about 3 m/s during periods of intense rainfall, when the discharge is strong. Also, it was noted that outflow direction changes as a result of high and low tides along a day. Results will be presented on the spatial influence as well, showing that the effect of the springs is very localised during high tide, but expands considerably during low tides.

  10. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano

    PubMed Central

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-01-01

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards. PMID:26892716

  11. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    PubMed

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  12. Mount St. Helens erupts again: activity from September 2004 through March 2005

    USGS Publications Warehouse

    Major, Jon J.; Scott, William E.; Driedger, Carolyn; Dzurisin, Dan

    2005-01-01

    Eruptive activity at Mount St. Helens captured the world’s attention in 1980 when the largest historical landslide on Earth and a powerful explosion reshaped the volcano, created its distinctive crater, and dramatically modified the surrounding landscape. Over the next 6 years, episodic extrusions of lava built a large dome in the crater. From 1987 to 2004, Mount St. Helens returned to a period of relative quiet, interrupted by occasional, short-lived seismic swarms that lasted minutes to days, by months-to-yearslong increases in background seismicity that probably reflected replenishment of magma deep underground, and by minor steam explosions as late as 1991. During this period a new glacier grew in the crater and wrapped around and partly buried the lava dome. Although the volcano was relatively quiet, scientists with the U.S. Geological Survey and University of Washington’s Pacific Northwest Seismograph Network continued to closely monitor it for signs of renewed activity.

  13. The First-ever Detection and Tracking of a Mid-Ocean Ridge Volcanic Eruption Using the Recently Completed, NSF-Funded, Submarine Fiber-Optic Network in the Juan de Fuca Region.

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.

    2015-12-01

    The most scientifically diverse and technologically advanced component of the Ocean Observatories Initiative involves 900 km of electro-optical fiber, extending from Pacific City, OR, across active portions of the JDF tectonic plate, and upward into the overlying ocean. Completed in 2014, on time and under budget, this network enables real-time, high-bandwidth, 2-way communication with seafloor/water-column sensor arrays across: 1. the Cascadia accretionary prism, 2. the JdF spreading center, and, 3. portions of the overlying NE Pacific. Oceanographic processes in coastal environments, the California Current, and 400 km offshore, are captured by six remote-controlled, profiling moorings covering full-ocean depths. In August, 2015, all sections of cable, all six operational primary nodes, all 17 junction boxes, and 97% of all 146 instruments are transmitting data ashore to the Internet via the Pacific Northwest Gigapop (http://www.pnwgp.net/). All data are archived at the U of Washington, pending completion of the OOI CyberInfrastructure System in October 2015. In 2014, community requests to access seismic and seafloor deformational information for assessment of progressive inflation at Axial Seamount (Chadwick et al, 2012), resulted in NSF releasing, through IRIS (http://www.iris.edu/hq/), real-time data from 7 seismometers and 3 pressure sensors. At a community-initiated meeting on April 20-22, 90 participants covering the spectrum of Ocean Sciences, met in Seattle to explore scientific responses in the event Axial actually erupted (http://novae.ocean.washington.edu). On April 24, Axial did erupt; seismic event counts rose dramatically to many hundreds/hour (Wilcock, AGU-2015), the Axial caldera floor dropped 2.2 m in ~20 hours (Nooner et al, AGU-2015), and water temperatures in the caldera rose slowly by ~0.7°C, then declined in 3 weeks to normal values. Unusual water-bourn acoustic signals indicated ongoing seafloor activity along the rift zone extending north

  14. Exploring a long-lasting volcanic eruption by means of in-soil radon measurements and seismic activity

    NASA Astrophysics Data System (ADS)

    Falsaperla, Susanna; Neri, Marco; Di Grazia, Giuseppe; Langer, Horst; Spampinato, Salvatore

    2016-04-01

    We analyze in-soil radon (Rn) emission and ambient parameters (barometric pressure and air temperature measurements) along with seismic activity during the longest flank eruption of this century at Mt. Etna, Italy. This eruption occurred between 14 May 2008 and 6 July 2009, from a N120-140°E eruptive fissure extending between 3050 and 2620 m above sea level. It was heralded by a short-lived (~5 hours) episode of lava fountaining three days before a dike-forming intrusion fed a lava emission, which affected the summit area of the volcano over ~15 months. The peculiar position of the station for the Rn measurement, which was at an altitude of 2950 m above sea level and near (~1 km) the summit active craters, offered us the uncommon chance: i) to explore the temporal development of the gas emission close (<2 km) to the 2008-2009 eruptive vents in the long term, and ii) to analyze the relationship between in-soil Rn fluxes and seismic signals (in particular, local earthquakes and volcanic tremor) during the uninterrupted lava emission. This approach reveals important details about the recharging phases characterizing the 2008-2009 eruption, which are not visible with other methods of investigation. Our study benefitted from the application of methods of pattern classification developed in the framework of the European MEDiterrranean Supersite Volcanoes (MED­SUV) project.

  15. Volcanology and eruptive styles of Barren Island: an active mafic stratovolcano in the Andaman Sea, NE Indian Ocean

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Ray, Jyotiranjan S.; Bhutani, Rajneesh; Kumar, Alok; Smitha, R. S.

    2009-11-01

    Barren Island (India) is a relatively little studied, little known active volcano in the Andaman Sea, and the northernmost active volcano of the great Indonesian arc. The volcano is built of prehistoric (possibly late Pleistocene) lava flows (dominantly basalt and basaltic andesite, with minor andesite) intercalated with volcaniclastic deposits (tuff breccias, and ash beds deposited by pyroclastic falls and surges), which are exposed along a roughly circular caldera wall. There are indications of a complete phreatomagmatic tephra ring around the exposed base of the volcano. A polygenetic cinder cone has existed at the centre of the caldera and produced basalt-basaltic andesite aa and blocky aa lava flows, as well as tephra, during historic eruptions (1787-1832) and three recent eruptions (1991, 1994-95, 2005-06). The recent aa flows include a toothpaste aa flow, with tilted and overturned crustal slabs carried atop an aa core, as well as locally developed tumuli-like elliptical uplifts having corrugated crusts. Based on various evidence we infer that it belongs to either the 1991 or the 1994-95 eruptions. The volcano has recently (2008) begun yet another eruption, so far only of tephra. We make significantly different interpretations of several features of the volcano than previous workers. This study of the volcanology and eruptive styles of the Barren Island volcano lays the ground for detailed geochemical-isotopic and petrogenetic work, and provides clues to what the volcano can be expected to do in the future.

  16. Submarine laser communications

    NASA Astrophysics Data System (ADS)

    McConathy, D. R.

    The Department of the Navy and the Defense Advanced Research Projects Agency (DARPA) are sponsoring a joint study to investigate the use of blue-green laser technology to comunicate with submarines at operating depths. Two approaches are under investigation - one in which the laser itself is space-based, and the other in which the laser is ground-based with its beam redirected to the earth's surface by an orbiting mirror. This paper discusses these two approaches, and presents a brief history of activities which led to the current studies.

  17. Physical and chemical properties of submarine basaltic rocks from the submarine flanks of the Hawaiian Islands

    USGS Publications Warehouse

    Yokose, H.; Lipman, P.W.; Kanamatsu, T.

    2005-01-01

    To evaluate physical and chemical diversity in submarine basaltic rocks, approximately 280 deep submarine samples recovered by submersibles from the underwater flanks of the Hawaiian Islands were analyzed and compared. Based on observations from the submersibles and hand specimens, these samples were classified into three main occurrence types (lavas, coarse-grained volcaniclastic rocks, and fine-grained sediments), each with several subtypes. The whole-rock sulfur content and porosity in submarine basaltic rocks, recovered from depths greater than 2000 m, range from < 10 ppm and 2 vol.% to 2200 ppm and 47 vol.%, respectively. These wide variations cannot be due just to different ambient pressures at the collection depths, as inferred previously for submarine erupted lavas. The physical and chemical properties of the recovered samples, especially a combination of three whole-rock parameters (Fe-oxidation state, Sulfur content, and Porosity), are closely related to the occurrence type. The FSP triangular diagram is a valuable indicator of the source location of basaltic fragments deposited in deep submarine areas. This diagram can be applied to basaltic rocks such as clasts in debris-flow deposits, submarine-emplaced lava flows that may have crossed the shoreline, and slightly altered geological samples. ?? 2005 Elsevier B.V. All rights reserved.

  18. Cotopaxi volcano's unrest and eruptive activity in 2015: mild awakening after 73 years of quiescence

    NASA Astrophysics Data System (ADS)

    Hidalgo, Silvana; Bernard, Benjamin; Battaglia, Jean; Gaunt, Elizabeth; Barrington, Charlotte; Andrade, Daniel; Ramón, Patricio; Arellano, Santiago; Yepes, Hugo; Proaño, Antonio; Almeida, Stefanie; Sierra, Daniel; Dinger, Florian; Kelly, Peter; Parra, René; Bobrowski, Nicole; Galle, Bo; Almeida, Marco; Mothes, Patricia; Alvarado, Alexandra

    2016-04-01

    , while juvenile component increased. Total ash fallout mass since August 14 yield 1.19E+9 kg. During these episodes BrO and HCl were detected in the plume, and airborne Multi-GAS measurements showed that the plume had a CO2/SO2 ratio from 1 to 2.5 and that SO2 was >99% of total sulfur (SO2+ H2S), indicating a shallow magmatic origin for the gas. During ash emissions temperatures of up to 200° C were measured at the column with an IR camera. Thermal anomalies in the upper part of the edifice have also been observed and have resulted in minor melting of the ice cap. This phenomenon has produced small secondary lahars with a maximum discharge on the order of 10 to 30 m3/s. Since late November 2015, surface manifestations and the other monitored parameters have shown a marked decrease. Historical reports of Cotopaxi's activity show that both short and long-lasting eruptive periods usually start with mild eruptive phases prior to culminating in VEI 3 or 4 eruptions. Therefore special care should be taken in monitoring unrest at Cotopaxi in order to identify precursory signs of a larger eruption.

  19. Volcano acoustic activity associated with the eruption of Mt. Usu, 2000 - Mud-pool Strombolian -

    NASA Astrophysics Data System (ADS)

    Aoyama, H.; Oshima, H.; Maekawa, T.

    2001-12-01

    There was intense acoustic activity associated with the eruption of Mount Usu, which began on March 31, 2000. Repeating phreatic explosions generated many isolated infrasonic signals, which were observed at plural acoustic stations. During the periods when acoustic activity was high, infrasonic pulses as many as 200 were identified every 10 minutes. Source location of infrasonic signals could be well identified from the records of the low frequency microphone network. Two active craters, Nishiyama craterlets and Konpirayama craterlets, are clearly distinguished by sound source determination analysis though distance between them is around 1 km. To investigate the transition of acoustic activity from April to June, 2000, we contrive a method to detect arrival and amplitude of infrasonic signals automatically. The number of automatically identified infrasonic signals exceeds 1.46 million during three months. It seems that there is a good correlation between acoustic activity and seismic signal amplitude. Patterns of acoustic activity and infrasonic pulse shapes observed at Usu volcano are very similar to those of observed at Stromboli volcano, Italy. We name the acoustic activity accompanied with phreatic explosion that scatters a lot of clods `mud-pool Strombolian type'. Phreatic explosion excites not only infrasonic pulse but also seismic signal observed before the arrival of infrasonic pulse. Existence of Rayleigh wave phase with large amplitude suggests that the seismic wave is excited at a shallow part.

  20. Triggering an Eruptive Flare by Emerging Flux in a Solar Active-Region Complex

    NASA Astrophysics Data System (ADS)

    Louis, Rohan E.; Kliem, Bernhard; Ravindra, B.; Chintzoglou, Georgios

    2015-12-01

    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on 2012 July 1 (SOL2012-07-01) in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade ({≈} 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.

  1. Increasing sediment accumulation rates in La Fonera (Palamós) submarine canyon axis and their relationship with bottom trawling activities

    NASA Astrophysics Data System (ADS)

    Puig, P.; Martín, J.; Masqué, P.; Palanques, A.

    2015-10-01

    Previous studies conducted in La Fonera (Palamós) submarine canyon (NW Mediterranean) found that trawling activities along the canyon flanks cause resuspension and transport of sediments toward the canyon axis. 210Pb chronology supported by 137Cs dating applied to a sediment core collected at 1750 m in 2002 suggested a doubling of the sediment accumulation rate since the 1970s, coincident with the rapid industrialization of the local trawling fleet. The same canyon area has been revisited a decade later, and new data are consistent with a sedimentary regime shift during the 1970s and also suggest that the accumulation rate during the last decade could be greater than expected, approaching ~2.4 cm yr-1 (compared to ~0.25 cm yr-1 pre-1970s). These results support the hypothesis that commercial bottom trawling can substantially affect sediment dynamics and budgets on continental margins, eventually initiating the formation of anthropogenic depocenters in submarine canyon environments.

  2. Active tectonic structures and submarine landslides offshore southern Apulia (Italy): a new scenario for the 1743 earthquake and subsequent tsunami

    NASA Astrophysics Data System (ADS)

    Milia, Alfonsa; Iannace, Pietro; Torrente, Maurizio M.

    2017-01-01

    The southern Apulia foreland recorded a strong (Imax=X MCS) earthquake in 1743 and a concomitant tsunami, which struck the southeastern Salento coast. The seismo-genetic fault and the triggering factors of the tsunami are unknown. Three-dimensional interpretation of multichannel seismic profiles calibrated by wells using a GIS software enabled the recognition of the stratigraphic succession, structural framework, and submarine landslides offshore Salento. A thin Pliocene unit overlying the Mesozoic-Cenozoic substrate is covered by a Pleistocene succession separated by a Middle Pleistocene unconformity that formed during the regional uplift of Salento. The latter gave rise to the morphologic conditions for the deposition of a prograding wedge off the Salento coast, with a shelf break located at 150 m depth. Normal faults, mainly oriented NW-SE, displaced the early Lower Pleistocene succession and are buried by younger deposits. Since the Middle Pleistocene, a compressional event gave rise to the Apulia uplift and large folds and basement-involved reverse faults that are active in the eastern part of Apulia. A huge (58 km3) slump affecting the Middle Pleistocene prograding wedge has been documented offshore the southeast coast of Salento. The proposed geological scenario of the 1743 earthquake and subsequent tsunami is (1) an initial strong earthquake (Imax=X MCS) associated with a thrust fault located in the eastern sector of the Apulia offshore, (2) a shacking-induced large-volume slump offshore Otranto, and (3) landslide-triggered tsunamis that struck the Salento coast.

  3. LARGE SOLAR ENERGETIC PARTICLE EVENTS ASSOCIATED WITH FILAMENT ERUPTIONS OUTSIDE ACTIVE REGIONS

    SciTech Connect

    Gopalswamy, N.; Mäkelä, P.; Akiyama, S.; Yashiro, S.; Xie, H.; Thakur, N.; Kahler, S. W.

    2015-06-10

    We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds ∼ 1000 km s{sup −1}) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric type II bursts were present in three events, indicating that the shocks formed beyond 2–3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of ∼2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10–100 MeV range, but there were other low-intensity SEP events with spectral indices ≥4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.

  4. Large Solar Energetic Particle Events Associated With Filament Eruptions Outside Active Regions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Akiyama, S.; Yashiro, S.; Xie, H.; Thakur, N.; Kahler, S. W.

    2015-01-01

    We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds approx. 1000 km/s) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric type II bursts were present in three events, indicating that the shocks formed beyond 2-3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of approx.2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10-100 MeV range, but there were other low-intensity SEP events with spectral indices ?4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.

  5. Reduced RANKL expression impedes osteoclast activation and tooth eruption in alendronate-treated rats.

    PubMed

    Bradaschia-Correa, Vivian; Moreira, Mariana M; Arana-Chavez, Victor E

    2013-07-01

    The creation of the eruption pathway requires the resorption of the occlusal alveolar bone by osteoclasts and signaling events between bone and dental follicle are necessary. The aim of the present study has been to evaluate the effect of alendronate on osteoclastogenesis and the expression of the regulator proteins of osteoclast activation, namely RANK, RANKL and OPG, in the bone that covers the first molar germ. Newborn Wistar rats were treated daily with 2.5 mg/kg alendronate for 4, 8, 14, 21 and 28 days, whereas controls received sterile saline solution. At the time points cited, maxillae were fixed, decalcified and processed for light and electron microscopic analysis. TRAP histochemistry was performed on semi-serial sections and the osteoclasts in the occlusal half of the bony crypt surface were counted. TUNEL analysis was carried out on paraffin sections. The occlusal bone that covers the upper first molar was removed in additional 4- and 8-day-old alendronate-treated and control rats in which the expression of RANK, RANKL and OPG was analyzed by SDS-polyacrylamide gel electrophoresis and Western blotting. TRAP-positive osteoclasts were more numerous in the alendronate group at all time points, despite their unactivated phenotype and the presence of apoptotic cells. RANKL expression in the alendronate specimens was inhibited at all time points, unlike in controls. Our findings indicate that the expression of RANKL in the occlusal portion of the bony crypt is unrelated to osteoclast recruitment and differentiation but is crucial to their activation during the creation of the eruption pathway.

  6. Debris Avalanche Formation at Kick'em Jenny Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Carey, S. N.; Wilson, D.

    2005-12-01

    Kick'em Jenny submarine volcano near Grenada is the most active volcanic center in the Lesser Antilles arc. Multibeam surveys of the volcano by NOAA in 2002 revealed an arcuate fault scarp east of the active cone, suggesting flank collapse. More extensive NOAA surveys in 2003 demonstrated the presence of an associated debris avalanche deposit, judging from their surface morphologic expression on the sea floor, extending at least 15 km and possibly as much as 30 km from the volcano, into the Grenada Basin to the west. Seismic air-gun profiles of the region show that these are lobate deposits, that range in thickness from tens to hundreds of meters. The debris avalanche deposit is contained within two marginal levees, that extend symmetrically from the volcano to the west. A conservative estimate of the volume of the smaller debris avalanche deposit is about 10 km3. Age dating of the deposits and the flank failure events is in progress, by analysis of gravity cores collected during the 2003 survey. Reconstruction of the pre-collapse volcanic edifice suggests that the ancestral Kick'em Jenny volcano might have been at or above sea level. Kick'em Jenny is dominantly supplied by basalt to basaltic andesite magmas, that are extruded now as submarine pillow lavas and domes or ejected as tephra in relatively minor phreatomagmatic explosions. Geochemical evolution of this volcano has not, however, reached the stage of generation of volatile-rich silicic magmas that might form highly explosive eruptions.

  7. Magnetic Properties of Solar Active Regions That Govern Large Solar Flares and Eruptions

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Schrijver, Carolus J.; Harra, Louise K.; Hudson, Hugh; Nagashima, Kaori

    2017-01-01

    Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim of understanding the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with Geostationary Orbiting Environmental Satellite levels of ≥M5.0 within 45° from disk center between 2010 May and 2016 April. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory. More than 80% of the 29 ARs are found to exhibit δ-sunspots, and at least three ARs violate Hale’s polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR controls CME productivity. AR characterization shows that even X-class events do not require δ-sunspots or strong-field, high-gradient polarity inversion lines. An investigation of historical observational data suggests the possibility that the largest solar ARs, with magnetic flux of 2 × 1023 Mx, might be able to produce “superflares” with energies of the order of 1034 erg. The proportionality between the flare durations and magnetic energies is consistent with stellar flare observations, suggesting a common physical background for solar and stellar flares.

  8. Fault activation after vigorous eruption: the December 8, 2015 seismic swarm at Mt. Etna

    NASA Astrophysics Data System (ADS)

    Alparone, Salvatore; Bonforte, Alessandro; Guglielmino, Francesco; Maiolino, Vincenza; Puglisi, Giuseppe; Ursino, Andrea

    2016-04-01

    From December 2, 2015, volcanic activity suddenly occurred on Mt. Etna with very violent fire fountaining at central crater, known also as "Voragine". This activity continued with other intense episodes at the same crater during the three following days and involving also, in turn, all the other three summit craters. This sudden eruption produced a rapid deflation of the volcano and was followed, from December 8, by a seismic swarm, with almost eighty earthquakes during this day, located on the uppermost segment of the Pernicana-Provenzana fault system (PFS). This seismicity was characterized by shallow foci (from few hundred meters until 1.5 km below the sea level) and mainshock with 3.6 magnitude. In order to investigate and measure the dynamics controlling and accompanying the PFS activation, a dataset composed of C-Band Sentinel-1A data has been used for SAR Interferometry (InSAR) analysis. Some interferograms have been generated from ascending and descending orbits in order to analyze both short- and long-term deformation. The availability of GPS data allowed comparing and integrating them with InSAR for ground truth and modeling aims. The surface kinematics and modeling obtained by DInSAR and GPS data and integration have been compared to the distribution of the seismicity and related focal mechanisms in order to define the fault geometry and motion. Moreover, essential constraints have been achieved about the PFS dynamic and its relationship with the intense volcanic activity occurred.

  9. Observations on the Origin of Submarine Volcanic Cone Morphologies in Hawaii

    NASA Astrophysics Data System (ADS)

    Reynolds, J. R.; Clague, D. A.; Hon, K.; Dixon, J. E.; Cousens, B. L.

    2001-12-01

    volcanoes, and are also abundant on the submarine flank of Ni`ihau. They have the form of truncated cones. We modeled them as monogenetic constructions formed by an inflating and overflowing lava pond during protracted, steady eruption of gas-poor, low-viscosity lava. Previous dive observations on flat-topped cones at Mahukona and Kohala showed that the outer slopes are covered by pillow lava flows (and talus), consistent with overflows from a lava pond, but observations on the flat tops were thwarted by heavy sediment cover. The recent TIBURON dives investigated five flat-topped cones on Ni`ihau. As before, elongated pillow lavas were observed on the outer slopes. On the flat tops, the lava flow forms protruding through the sediment were primarily hackly sheet flows, folded sheets, tumuli (which form on inflated sheet flows), and lobate lavas. Submarine hackly sheet flows indicate unusually fast-moving, well-insulated lava. Existence of these flow forms on a low-grade slope is consistent with crust forming on an actively circulating lava pond, and suggests that the crust forms over large areas of the pond at once, rather than gradually accumulating at the edges as the cone grows. The lobate flows may represent lava extruded through cracks in the crust. The flat-topped cones on Ni`ihau are confirmed to be submarine equivalents of the rejuvenated stage Kiekie Volcanics on the island. The new samples have low vesicularity, supporting the model of flat-topped cones as sustained eruptions of gas-poor, low-viscosity lava.

  10. Obstacle avoidance sonar for submarines

    NASA Astrophysics Data System (ADS)

    Dugas, Albert C.; Webman, Kenneth M.

    2002-05-01

    The Advanced Mine Detection Sonar (AMDS) system was designed to operate in poor environments with high biological and/or shallow-water boundary conditions. It provides increased capability for active detection of volume, close-tethered, and bottom mines, as well as submarine and surface target active/passive detection for ASW and collision avoidance. It also provides bottom topography mapping capability for precise submarine navigation in uncharted littoral waters. It accomplishes this by using advanced processing techniques with extremely narrow beamwidths. The receive array consists of 36 modules arranged in a 15-ft-diameter semicircle at the bottom of the submarine sonar dome to form a chin-mounted array. Each module consists of 40 piezoelectric rubber elements. The modules provide the necessary signal conditioning to the element data prior to signal transmission (uplink) through the hull. The elements are amplified, filtered, converted to digital signals by an A/D converter, and multiplexed prior to uplink to the inboard receiver. Each module also has a downlink over which it receives synchronization and mode/gain control. Uplink and downlink transmission is done using fiberoptic telemetry. AMDS was installed on the USS Asheville. The high-frequency chin array for Virginia class submarines is based on the Asheville design.

  11. Psychological aspects in a volcanic crisis: El Hierro Island eruption (October, 2011).

    NASA Astrophysics Data System (ADS)

    Lopez, P.; Llinares, A.; Garcia, A.; Marrero, J. M.; Ortiz, R.

    2012-04-01

    The recent eruption on the El Hierro Island (Canary Islands, Spain) has shown that Psychology plays an important role in the emergence management of a natural phenomenon. However, Psychology continues to have no social coverage it deserves in the mitigation of the effects before, during and after the occurrence of a natural phenomenon. Keep in mind that an unresolved psychological problem involves an individual and collective mismatch may become unrecoverable. The population of El Hierro has been under a state of alert since July 2011, when seismic activity begins, until the occurrence of submarine eruption in October 2011 that is held for more than three months. During this period the inhabitants of the small island have gone through different emotional states ranging from confusion to disappointment. A volcanic eruption occurs not unexpectedly, allowing to have a time of preparation / action before the disaster. From the psychological point of view people from El Hierro Island have responded to different stages of the same natural process. Although the island of El Hierro is of volcanic origin, the population has no historical memory since the last eruption occurred in 1793. Therefore, the educational system does not adequately address the formation in volcanic risk. As a result people feel embarrassment when the seismovolcanic crisis begins, although no earthquakes felt. As an intermediate stage, when the earthquakes are felt by the population, scientists and operational Emergency Plan care to inform and prepare actions in case of a possible eruption. The population feel safe despite the concerns expressed by not knowing where, how and when the eruption will occur. Once started the submarine eruption, taking into account that all the actions (evacuation, relocation, etc.) have worked well and that both their basic needs and security are covered there are new states of mind. These new emotional states ranging from disenchantment with the phenomenology of the

  12. Calm Before the Storm? Immediate Identification of Volcanic Eruption Intensity: Promising Test of a New Monitoring System at the Active Volcano Popocatépetl, Mexico

    NASA Astrophysics Data System (ADS)

    Berger, P.

    2007-12-01

    Experiments by the Physikalisch Vulkanologisches Labor (PVL) in Wuerzburg, Germany, have shown that the intensity of violent volcanic eruptions, occurring when magma undergoes brittle fragmentation, is mirrored within brief electrical charges that can be detected on a short timescale (ms). Laboratory studies and certain explosion experiments offer the opportunity to calibrate the energy release of volcanic eruptions. Based on these results, a new high-precision, low-cost, real-time surveillance system is developed and tested at the active volcano of Popocat´{e}petl, Mexico. This volcano, situated about 60 km southeast of Mexico City, offers excellent testing conditions, erupting regularly and intensively and violent eruptions are expected in the near future. The system, which detects short-term electrostatic field gradients (dc voltage against local ground), mainly consists of an antenna and a specially-designed amplifier. Depending on eruption intensity, as little as two or three eruptions will provide a sufficient amount of data. Amount, size, and shape of erupted particles give important indications about the physical fragmentation process which formed the pyroclasts, and hence about the type and intensity of the eruption. The evaluation and analysis of the samples collected at the volcano after each documented eruption will be carried out at the PVL. This physics lab, with a specially-designed experimental setup, allows controlled explosion experiments wherein rock from lava or bombs - related to the sampled pyroclasts - will be melted and subsequently brought to explosion. The energy released during these laboratory experiments will be calibrated to Popocat´{e}petl using the ejecta volume of the observed eruptions, allowing a correlation of the actual energy release to the registered electrical field data. The aims of the project are: (1) quantification of individual magma properties of Popocat´{e}petl (2) on-line measurement of mechanical energy release

  13. Evidence for synchronous hydromagmatic and primary degassing activity during the 1991 eruption of Hudson Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Kratzmann, D. J.; Carey, S.; Scasso, R.; Naranjo, J.

    2010-12-01

    The fall deposit from the paroxysmal phase of the 1991 eruption of Hudson volcano in southern Chile (August 12-15) is highly stratified with multiple layers of alternating coarse pumice lapilli and fine ash. The lapilli units may be related to eruptive pulses associated with well-developed plinian columns, with the fine ash layers corresponding to periods of quiescence between eruptive pulses. Alternatively, the fine ash layers may represent a change in eruption style, from plinian to phreatoplinian. Dispersal characteristics for the paroxysmal phase of the 1991 Hudson eruption suggest a phreatoplinian event. The eruption, which occurred through a thick glacier that fills the summit caldera, may be one of the few phreatoplinian events of modern times. In order to assess the possibility of arrested degassing during the eruption and identify evidence for magma-water interaction a detailed SEM / FTIR investigation of juvenile particles was conducted. SEM analysis of juvenile material revealed features including blocky and equant clasts with step features, adhered particles, and a lack of hydration cracks. These features are indicative of ‘dry’ magma-water interactions. Highly vesicular, volatile-rich particles are also present throughout the stratigraphy. These suggest that both hydromagmatic and primary degassing processes were operating contemporaneously to varying degrees during the course of the eruption. Further evidence for magma-water interactions is found in the water content of the matrix glasses, which range from 0.1 to 1.3 wt%. At total water less than 0.5 wt% the Hudson matrix glasses have higher molecular H2O than is predicted from experimental work. Elevated H2O / OH ratios can be produced through syn-eruptive hydration of the matrix glass during periods of magma-water interaction. Molecular water rapidly diffuses into glassy particles, which have high surface areas, but the reaction to produce hydroxyl is slow enough that the dissolved water remains

  14. Reconstructing 800 years of historical eruptive activity at Popocatépetl Volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Martin-Del Pozzo, Ana Lillian; Rodríguez, Alan; Portocarrero, Jorge

    2016-03-01

    Pictorial and written documents spanning 800 years were analyzed for information about historical eruptions at Popocatépetl volcano. These documents were prepared by several indigenous groups as well as by the Spanish conquistadors and missionaries during their military campaigns and long-term evangelization and colonization and later on, by Indian nobles and Spanish historians. Pre-Columbian drawings show flames coming out of Popocatépetl's crater while later descriptions from the Spanish colonial period in Mexico (1521 to 1821) refer to ash emission and ballistics, lahars, and some pumice falls, similar to what were depicted in the thirteenth to sixteenth century drawings. Graphic information from the pre-Columbian codices, colonial maps, and paintings referring to the eruptions were correlated with historical accounts and religious chronicles, thereby leading to the reconstruction of a more detailed sequence of eruptive events. From such information, it was possible for us to prepare ash distribution maps for the 1540, 1592, and 1664 eruptions. Most of the known historical eruptions seem to be similar to those that have been occurring at Popocatépetl since 1994, indicating the importance of ash emission and crater dome formation throughout its recent eruptive history. The strongest eruptions occurred in 1510, 1519, 1540, 1580, 1664, and 2001; these produced widespread ash falls that affected both populated and rural areas. Duration of eruptive episodes during the past 800 years were estimated to have ranged from less than a year to more than 30 years, separated by repose periods ranging between 7 and over 100 years.

  15. Dynamics and kinematics of eruptive activity at Fuego volcano, Guatemala 2005--2009

    NASA Astrophysics Data System (ADS)

    Lyons, John J.

    Volcanoes are the surficial expressions of complex pathways that vent magma and gasses generated deep in the Earth. Geophysical data record at least the partial history of magma and gas movement in the conduit and venting to the atmosphere. This work focuses on developing a more comprehensive understanding of explosive degassing at Fuego volcano, Guatemala through observations and analysis of geophysical data collected in 2005--2009. A pattern of eruptive activity was observed during 2005--2007 and quantified with seismic and infrasound, satellite thermal and gas measurements, and lava flow lengths. Eruptive styles are related to variable magma flux and accumulation of gas. Explosive degassing was recorded on broadband seismic and infrasound sensors in 2008 and 2009. Explosion energy partitioning between the ground and the atmosphere shows an increase in acoustic energy from 2008 to 2009, indicating a shift toward increased gas pressure in the conduit. Very-long-period (VLP) seismic signals are associated with the strongest explosions recorded in 2009 and waveform modeling in the 10--30 s band produces a best-fit source location 300 m west and 300 m below the summit crater. The calculated moment tensor indicates a volumetric source, which is modeled as a dike feeding a SW-dipping (35°) sill. The sill is the dominant component and its projection to the surface nearly intersects the summit crater. The deformation history of the sill is interpreted as: (1) an initial inflation due to pressurization, followed by (2) a rapid deflation as overpressure is explosively release, and finally (3) a reinflation as fresh magma flows into the sill and degasses. Tilt signals are derived from the horizontal components of the seismometer and show repetitive inflation-deflation cycles with a 20 minute period coincident with strong explosions. These cycles represent the pressurization of the shallow conduit and explosive venting of overpressure that develops beneath a partially

  16. Eruptive history, current activity and risk estimation using geospatial information in the Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Camarena-Garcia, M.; Nunez-Cornu, F. J.; Flores-Peña, S.

    2013-12-01

    Colima volcano, also known as Volcan de Fuego (19 30.696 N, 103 37.026 W), is located on the border between the states of Jalisco and Colima, and is the most active volcano in Mexico. In January 20, 1913, Colima had its biggest explosion of the twentieth century, with VEI 4, after the volcano had been dormant for almost 40 years. In 1961, a dome reached the northeastern edge of the crater and started a new lava flow, and from this date maintains constant activity. In February 10, 1999, a new explosion occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching altitudes between 4,500 and 9,000 masl, further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events, ash emissions were generated in all directions reaching distances up to 100 km, slightly affecting the nearby villages: Tuxpan, Tonila, Zapotlan, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During 2005 to July 2013, this volcano has had an intense effusive-explosive activity; similar to the one that took place during the period of 1890 through 1905. That was before the Plinian eruption of 1913, where pyroclastic flows reached a distance of 15 km from the crater. In this paper we estimate the risk of Colima volcano through the analysis of the vulnerability variables, hazard and exposure, for which we use: satellite imagery, recurring Fenix helicopter over flights of the state government of Jalisco, the use of the images of Google Earth and the population census 2010 INEGI. With this information and data identified changes in economic activities, development, and use of land. The expansion of the agricultural frontier in the lower sides of the volcano Colima, and with the advancement of traditional crops of sugar cane and corn, increased the growth of

  17. Motif Discovery on Seismic Amplitude Time Series: The Case Study of Mt Etna 2011 Eruptive Activity

    NASA Astrophysics Data System (ADS)

    Cassisi, Carmelo; Aliotta, Marco; Cannata, Andrea; Montalto, Placido; Patanè, Domenico; Pulvirenti, Alfredo; Spampinato, Letizia

    2013-04-01

    Algorithms searching for similar patterns are widely used in seismology both when the waveforms of the events of interest are known and when there is no a priori-knowledge. Such methods usually make use of the cross-correlation coefficient as a measure of similarity; if there is no a-priori knowledge, they behave as brute-force searching algorithms. The disadvantage of these methods, preventing or limiting their application to very large datasets, is computational complexity. The Mueen-Keogh (MK) algorithm overcomes this limitation by means of two optimization techniques—the early abandoning concept and space indexing. Here, we apply the MK algorithm to amplitude time series retrieved from seismic signals recorded during episodic eruptive activity of Mt Etna in 2011. By adequately tuning the input to the MK algorithm we found eight motif groups characterized by distinct seismic amplitude trends, each related to a different phenomenon. In particular, we observed that earthquakes are accompanied by sharp increases and decreases in seismic amplitude whereas lava fountains are accompanied by slower changes. These results demonstrate that the MK algorithm, because of its particular features, may have wide applicability in seismology.

  18. Dive and Explore: An Interactive Web Visualization that Simulates Making an ROV Dive to an Active Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.

    2004-12-01

    Several years ago we created an exciting and engaging multimedia exhibit for the Hatfield Marine Science Center that lets visitors simulate making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. The public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. We are now completing a revision to the project that will make this engaging virtual exploration accessible to a much larger audience. With minor modifications we will be able to put the exhibit onto the world wide web so that any person with internet access can view and learn about exciting volcanic and hydrothermal activity at Axial Seamount on the Juan de Fuca Ridge. The modifications address some cosmetic and logistic ISSUES confronted in the museum environment, but will mainly involve compressing video clips so they can be delivered more efficiently over the internet. The web version, like the museum version, will allow users to choose from 1 of 3 different dives sites in the caldera of Axial Volcano. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the computer mouse. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are

  19. Triple Solar Eruption

    NASA Video Gallery

    Solar activity surged on the morning of Dec 12, 2010 when the sun erupted three times in quick succession, hurling a trio of bright coronal mass ejections (CMEs) into space. Coronagraphs onboard th...

  20. Immediate Identification of Volcanic Eruption Intensity: Promising Test of a New Monitoring System Based on Short-Term Electrostatic Field Variations at the Active Volcano Popocatepetl, Mexico

    NASA Astrophysics Data System (ADS)

    Berger, P.

    2006-12-01

    Experiments by the Physikalisch Vulkanologisches Labor (PVL) in Wuerzburg, Germany, have shown that the intensity of violent volcanic eruptions, occurring when magma undergoes brittle fragmentation, is mirrored within brief electrical charges that can be detected on a short timescale (ms). Laboratory studies and certain explosion experiments offer the opportunity to calibrate the energy release of volcanic eruptions. Based on these results, a new high-precision, low-cost, real-time surveillance system is developed and tested at the active volcano of Popocatepetl, Mexico. This volcano, situated about 60 km southeast of Mexico City, offers excellent testing conditions, erupting regularly and intensively. The system, which detects short-term electrostatic field gradients (dc voltage against local ground), mainly consists of an antenna and a specially- designed amplifier. Depending on eruption intensity, as little as two or three eruptions will provide a sufficient amount of data. Amount, size, and shape of erupted particles give important indications about the physical fragmentation process which formed the pyroclasts, and hence about the type and intensity of the eruption. The evaluation and analysis of the samples collected at the volcano after each documented eruption will be carried out at the PVL. This physics lab, with a specially-designed experimental setup, allows controlled explosion experiments wherein rock from lava or bombs - related to the sampled pyroclasts - will be melted and subsequently brought to explosion. The energy released during these laboratory experiments will be calibrated to Popocatepetl using the ejecta volume of the observed eruptions, allowing a correlation of the actual energy release to the registered electrical field data. The aims of the project are: (1) quantification of individual magma properties of Popocatepetl (2) on-line measurement of mechanical energy release and mass flux and (3) immediate risk assessment of ongoing volcanic

  1. North Kona slump: Submarine flank failure during the early(?) tholeiitic shield stage of Hualalai Volcano

    USGS Publications Warehouse

    Lipman, P.W.; Coombs, M.L.

    2006-01-01

    The North Kona slump is an elliptical region, about 20 by 60 km (1000-km2 area), of multiple, geometrically intricate benches and scarps, mostly at water depths of 2000–4500 m, on the west flank of Hualalai Volcano. Two dives up steep scarps in the slump area were made in September 2001, using the ROV Kaiko of the Japan Marine Science and Technology Center (JAMSTEC), as part of a collaborative Japan–USA project to improve understanding of the submarine flanks of Hawaiian volcanoes. Both dives, at water depths of 2700–4000 m, encountered pillow lavas draping the scarp-and-bench slopes. Intact to only slightly broken pillow lobes and cylinders that are downward elongate dominate on the steepest mid-sections of scarps, while more equant and spherical pillow shapes are common near the tops and bases of scarps and locally protrude through cover of muddy sediment on bench flats. Notably absent are subaerially erupted Hualalai lava flows, interbedded hyaloclastite pillow breccia, and/or coastal sandy sediment that might have accumulated downslope from an active coastline. The general structure of the North Kona flank is interpreted as an intricate assemblage of downdropped lenticular blocks, bounded by steeply dipping normal faults. The undisturbed pillow-lava drape indicates that slumping occurred during shield-stage tholeiitic volcanism. All analyzed samples of the pillow-lava drape are tholeiite, similar to published analyses from the submarine northwest rift zone of Hualālai. Relatively low sulfur (330–600 ppm) and water (0.18–0.47 wt.%) contents of glass rinds suggest that the eruptive sources were in shallow water, perhaps 500–1000-m depth. In contrast, saturation pressures calculated from carbon dioxide concentrations (100–190 ppm) indicate deeper equilibration, at or near sample sites at water depths of − 3900 to − 2800 m. Either vents close to the sample sites erupted mixtures of undegassed and degassed magmas, or volatiles were resorbed from

  2. The ongoing Puʻu ʻŌʻō eruption of Kīlauea Volcano, Hawaiʻi: 30 years of eruptive activity

    USGS Publications Warehouse

    Orr, Tim R.; Heliker, Christina; Patrick, Matthew R.

    2013-01-01

    The Puʻu ʻŌʻō eruption of Kīlauea Volcano is its longest rift-zone eruption in more than 500 years. Since the eruption began in 1983, lava flows have buried 48 square miles (125 square kilometers) of land and added about 500 acres (200 hectares) of new land to the Island of Hawaiʻi. The eruption not only challenges local communities, which must adapt to an ever-changing and sometimes-destructive environment, but has also drawn millions of visitors to Hawaiʻi Volcanoes National Park. U.S. Geological Survey (USGS) scientists closely monitor and evaluate hazards at Hawaiʻi’s volcanoes and also work with park rangers to help ensure safe lava viewing for visitors.

  3. Paint-Stirrer Submarine

    ERIC Educational Resources Information Center

    Young, Jocelyn; Hardy, Kevin

    2007-01-01

    In this article, the authors discuss a unique and challenging laboratory exercise called, the paint-stir-stick submarine, that keeps the students enthralled. The paint-stir-stick submarine fits beautifully with the National Science Education Standards Physical Science Content Standard B, and with the California state science standards for physical…

  4. Submarine cable route survey

    SciTech Connect

    Herrouin, G.; Scuiller, T.

    1995-12-31

    The growth of telecommunication market is very significant. From the beginning of the nineties, more and more the use of optical fiber submarine cables is privileged to that of satellites. These submarine telecommunication highways require accurate surveys in order to select the optimum route and determine the cable characteristics. Advanced technology tools used for these surveys are presented along with their implementation.

  5. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  6. Structure and deformation of the Southern Taiwan accretionary prism: The active submarine Fangliao Fault Zone offshore west Hengchun Peninsula

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Liu, Char-Shine; Hsu, Ho-Han

    2016-12-01

    What is the structural geometry of the southern Taiwan transition zone from the Manila subduction offshore to the Taiwan onshore collision, specifically in the western flank of the Hengchun peninsula that corresponds to the summit of the Manila subduction accretionary prism? This paper aims to decipher the onshore/offshore structures and tectonic deformation that occur west of the Hengchun Ridge through both detailed topographic analyses and interpretation of numerous old and new seismic profiles. From a geomorphic point of view, both Fangliao and Hongchai submarine canyons have different structural and landslide implications. The Fangliao Canyon is guided by a N-S elongated mud diapir (the Fangliao Ridge), intruding an inferred N010°E trending, left lateral strike-slip fault zone. Conversely, the arcuate and concave shape of the Hongchai Canyon appear to follow the crown and the northern boundary of a newly recognized Hongchai submarine landslide situated on the steep western flank of the onshore asymmetric Hengchun Anticline. Our results highlight that both Fangliao and Hengchun Faults are linear, near-vertical left-lateral strike-slip faults. They converge onshore to the Chaochou Fault. This study demonstrates that neotectonics combine with morphostructural analysis of the submarine canyon drainages lead to a better comprehension of the present deformation in the northern part of the Manila accretionary prism.

  7. Vailulu’u Seamount, Samoa: Life and death on an active submarine volcano

    PubMed Central

    Staudigel, Hubert; Hart, Stanley R.; Pile, Adele; Bailey, Bradley E.; Baker, Edward T.; Brooke, Sandra; Connelly, Douglas P.; Haucke, Lisa; German, Christopher R.; Hudson, Ian; Jones, Daniel; Koppers, Anthony A. P.; Konter, Jasper; Lee, Ray; Pietsch, Theodore W.; Tebo, Bradley M.; Templeton, Alexis S.; Zierenberg, Robert; Young, Craig M.

    2006-01-01

    Submersible exploration of the Samoan hotspot revealed a new, 300-m-tall, volcanic cone, named Nafanua, in the summit crater of Vailulu’u seamount. Nafanua grew from the 1,000-m-deep crater floor in <4 years and could reach the sea surface within decades. Vents fill Vailulu’u crater with a thick suspension of particulates and apparently toxic fluids that mix with seawater entering from the crater breaches. Low-temperature vents form Fe oxide chimneys in many locations and up to 1-m-thick layers of hydrothermal Fe floc on Nafanua. High-temperature (81°C) hydrothermal vents in the northern moat (945-m water depth) produce acidic fluids (pH 2.7) with rising droplets of (probably) liquid CO2. The Nafanua summit vent area is inhabited by a thriving population of eels (Dysommina rugosa) that feed on midwater shrimp probably concentrated by anticyclonic currents at the volcano summit and rim. The moat and crater floor around the new volcano are littered with dead metazoans that apparently died from exposure to hydrothermal emissions. Acid-tolerant polychaetes (Polynoidae) live in this environment, apparently feeding on bacteria from decaying fish carcasses. Vailulu’u is an unpredictable and very active underwater volcano presenting a potential long-term volcanic hazard. Although eels thrive in hydrothermal vents at the summit of Nafanua, venting elsewhere in the crater causes mass mortality. Paradoxically, the same anticyclonic currents that deliver food to the eels may also concentrate a wide variety of nektonic animals in a death trap of toxic hydrothermal fluids. PMID:16614067

  8. Provenance of a large Lower Cretaceous turbidite submarine fan complex on the active Laurasian margin: Central Pontides, northern Turkey

    NASA Astrophysics Data System (ADS)

    Akdoğan, Remziye; Okay, Aral I.; Sunal, Gürsel; Tari, Gabor; Meinhold, Guido; Kylander-Clark, Andrew R. C.

    2017-02-01

    The Pontides formed the southern active margin of Laurasia during the Mesozoic. They became separated from mainland Laurasia during the Late Cretaceous, with the opening of the Black Sea as an oceanic back-arc basin. During the Early Cretaceous, a large submarine turbidite fan complex developed in the Central Pontides. The turbidites cover an area of 400 km by 90 km with a thickness of more than 2 km. We have investigated the provenance of these turbidites-the Çağlayan Formation-using paleocurrent measurements, U-Pb detrital zircon ages, REE abundances of dated zircons and geochemistry of detrital rutile grains. 1924 paleocurrent measurements from 96 outcrop stations indicate flow direction from northwest to southeast in the eastern part of the Çağlayan Basin and from north-northeast to west-southwest in the western part. 1194 detrital zircon ages from 13 Lower Cretaceous sandstone samples show different patterns in the eastern, central and western parts of the basin. The majority of the U-Pb detrital zircon ages in the eastern part of the basin are Archean and Paleoproterozoic (61% of all zircon ages, 337 grains); rocks of these ages are absent in the Pontides and present in the Ukrainian Shield, which indicates a source north of the Black Sea. In the western part of the basin the majority of the zircons are Carboniferous and Neoproterozoic (68%, 246 grains) implying more local sources within the Pontides. The detrital zircons from the central part show an age spectrum as mixture of zircons from western and eastern parts. Significantly, Jurassic and Early Cretaceous zircons make up less than 2% of the total zircon population, which implies lack of a coeval magmatic arc in the region. This is compatible with the absence of the Lower Cretaceous granites in the Pontides. Thus, although the Çağlayan Basin occupied a fore-arc position above the subduction zone, the arc was missing, probably due to flat subduction, and the basin was largely fed from the Ukrainian

  9. Cinnabar, arsenian pyrite and thallium-enrichment in active shallow submarine hydrothermal vents at Paleochori Bay, Milos Island, Greece

    NASA Astrophysics Data System (ADS)

    Kati, Marianna; Voudouris, Panagiotis; Valsami-Jones, Eugenia; Magganas, Andreas; Baltatzis, Emmanouil; Kanellopoulos, Christos; Mavrogonatos, Constantinos

    2015-04-01

    We herein report the discovery of active cinnabar-depositing hydrothermal vents in a submarine setting at Paleochori Bay, within the offshore southeastern extension of the Milos Island Geothermal Field, South Aegean Active Volcanic Arc. Active, low temperature (up to 115 °C) hydrothermal venting through volcaniclastic material has led to a varied assemblage of sulfide and alteration mineral phases in an area of approximately 1 km2. Our samples recovered from Paleochori Bay are hydrothermal edifices composed of volcaniclastic detrital material cemented by pyrite, or pure sulfide (mainly massive pyrite) mounts. Besides pyrite and minor marcasite, the hydrothermal minerals include cinnabar, amorphous silica, hydrous ferric oxides, carbonates (aragonite and calcite), alunite-jarosite solid solution and Sr-rich barite. Among others, growth textures, sieve-textured pyrite associated with barite, alunite-jarosite solid solution and hydrous ferric oxides rims colloform-banded pyrite layers. Overgrowths of arsenian pyrite layers (up to 3.2 wt. % As and/or up to 1.1 wt. % Mn) onto As-free pyrite indicate fluctuation in As content of the hydrothermal fluid. Mercury, in the form of cinnabar, occurs in up to 5 μm grains within arsenian pyrite layers, usually forming distinct cinnabar-enriched micro-layers. Hydrothermal Sr-rich barite (barite-celestine solid solution), pseudocubic alunite-jarosite solid solution and Mn- and Sr-enriched carbonates occur in various amounts and closely associated with pyrite and/or hydrous ferric oxides. Thallium-bearing sulfides and/or sulfosalts were not detected during our study; however, hydrous ferric oxides show thallium content of up to 0.5 wt. % Tl. The following scenarios may have played a role in pyrite precipitation at Paleochori: (a) H2S originally dissolved in the deep fluid but separated upon boiling could have reacted with oxygenated seawater under production of sulphuric acid, thus causing leaching and dissolution of primary iron

  10. Transition from Effusive to Explosive Activity during Lava Dome Eruption: The Example of the 2010 of Merapi Volcano (Java, Indonesia)

    NASA Astrophysics Data System (ADS)

    Drignon, M. J.; Arbaret, L.; Burgisser, A.; Komorowski, J. C.; Martel, C.; Putra, R.

    2014-12-01

    Understanding the transition between effusive and explosive activity in dome-forming volcanoes remains a challenging question for eruption forecasting and eruptive scenario definition. The explosive activity of 26 Oct. and 5 Nov. during the 2010 eruption of Merapi volcano offers the opportunity to explore this transition by quantifying the mechanisms that led to the dome explosion. Forty-three pumice samples were analyzed by 1) scanning electron microscope for textural analysis and 2) elemental analyzer for water content. The SEM images were processed so as to determine the proportions of gas bubbles, microlites and glass in each sample. These data were combined with the glass water content to feed the simple physical model developed by Burgisser et al. [1,2] to calculate pre-explosive pressure, depth, and porosity level for each pyroclastic pumice sample. Preliminary results indicate that the water content in the melt is high, reaching 7 wt.%. These water contents yield a wide range of pre-eruptive pressures. Samples from 26 Oct. originated at pressures from a few MPa to 280 MPa. These pressures correspond to depths ranging from a few hundred meters to more than 10 km. This suggests that large overpressures were associated with conduit evacuation that reached unexpected depths. Samples from the 5 Nov. event range from ~10 to ~100 MPa. This suggests that this event also evacuated a large part of the volcanic conduit. Pre-explosive porosities of both events are low (<10 vol. %) along the depth of the entire conduit, which suggests extensive permeable outgassing of the magma-filed conduit prior to each explosive evacuation. Ongoing work includes analysis of melt CO2 content due to preliminary evidence that it played an important role in the 2010 Merapi eruption. The modeled conduit properties serve as baseline data for conduit flow modeling and building plausible eruptive scenarios. [1] Burgisser et al. (2010) J. Volcanol. Geotherm. Res. 194, 27-41. [2] Burgisser et

  11. Magma displacements under insular volcanic fields, applications to eruption forecasting: El Hierro, Canary Islands, 2011-2013

    NASA Astrophysics Data System (ADS)

    García, A.; Fernández-Ros, A.; Berrocoso, M.; Marrero, J. M.; Prates, G.; De la Cruz-Reyna, S.; Ortiz, R.

    2014-04-01

    Significant deformations, followed by increased seismicity detected since 2011 July at El Hierro, Canary Islands, Spain, prompted the deployment of additional monitoring equipment. The climax of this unrest was a submarine eruption first detected on 2011 October 10, and located at about 2 km SW of La Restinga, southernmost village of El Hierro Island. The eruption ceased on 2012 March 5, after the volcanic tremor signals persistently weakened through 2012 February. However, the seismic activity did not end with the eruption, as several other seismic crises followed. The seismic episodes presented a characteristic pattern: over a few days the number and magnitude of seismic event increased persistently, culminating in seismic events severe enough to be felt all over the island. Those crises occurred in 2011 November, 2012 June and September, 2012 December to 2013 January and in 2013 March-April. In all cases the seismic unrest was preceded by significant deformations measured on the island's surface that continued during the whole episode. Analysis of the available GPS and seismic data suggests that several magma displacement processes occurred at depth from the beginning of the unrest. The first main magma movement or `injection' culminated with the 2011 October submarine eruption. A model combining the geometry of the magma injection process and the variations in seismic energy release has allowed successful forecasting of the new-vent opening.

  12. MICRO-SIGMOIDS AS PROGENITORS OF CORONAL JETS: IS ERUPTIVE ACTIVITY SELF-SIMILARLY MULTI-SCALED?

    SciTech Connect

    Raouafi, N.-E.; Rust, D. M.; Bernasconi, P. N.; Georgoulis, M. K.

    2010-08-01

    Observations from the X-ray telescope (XRT) on Hinode are used to study the nature of X-ray-bright points, sources of coronal jets. Several jet events in the coronal holes are found to erupt from small-scale, S-shaped bright regions. This finding suggests that coronal micro-sigmoids may well be progenitors of coronal jets. Moreover, the presence of these structures may explain numerous observed characteristics of jets such as helical structures, apparent transverse motions, and shapes. Analogous to large-scale sigmoids giving rise to coronal mass ejections (CMEs), a promising future task would perhaps be to investigate whether solar eruptive activity, from coronal jets to CMEs, is self-similar in terms of properties and instability mechanisms.

  13. Acoustic measurements of the 1999 basaltic eruption of Shishaldin volcano, Alaska 1. Origin of Strombolian activity

    USGS Publications Warehouse

    Vergniolle, S.; Boichu, M.; Caplan-Auerbach, J.

    2004-01-01

    The 1999 basaltic eruption of Shishaldin volcano (Alaska, USA) displayed both classical Strombolian activity and an explosive Subplinian plume. Strombolian activity at Shishaldin occurred in two major phases following the Subplinian activity. In this paper, we use acoustic measurements to interpret the Strombolian activity. Acoustic measurements of the two Strombolian phases show a series of explosions that are modeled by the vibration of a large overpressurised cylindrical bubble at the top of the magma column. Results show that the bubble does not burst at its maximum radius, as expected if the liquid film is stretched beyond its elasticity. But bursting occurs after one cycle of vibration, as a consequence of an instability of the air-magma interface close to the bubble minimum radius. During each Strombolian period, estimates of bubble length and overpressure are calculated. Using an alternate method based on acoustic power, we estimate gas velocity to be 30-60 m/s, in very good agreement with synthetic waveforms. Although there is some variation within these parameters, bubble length and overpressure for the first Strombolian phase are found to be ??? 82 ?? 11 m and 0.083 MPa. For the second Strombolian phase, bubble length and overpressure are estimated at 24 ?? 12 m and 0.15 MPa for the first 17 h after which bubble overpressure shows a constant increase, reaching a peak of 1.4 MPa, just prior to the end of the second Strombolian phase. This peak suggests that, at the time, the magma in the conduit may contain a relatively large concentration of small bubbles. Maximum total gas volume and gas fluxes at the surface are estimated to be 3.3 ?? 107 and 2.9 ?? 103 m3/s for the first phase and 1.0 ?? 108 and 2.2 ?? 103 m3/s for the second phase. This gives a mass flux of 1.2 ?? 103 and 8.7 ?? 102 kg/s, respectively, for the first and the second Strombolian phases. ?? 2004 Elsevier B.V. All rights reserved.

  14. Prevalence of Helicobacter pylori in United States Navy submarine crews.

    PubMed

    Jackman, R P; Schlichting, C; Carr, W; Dubois, A

    2006-06-01

    Helicobacter pylori prevalence is elevated in German submarine crews and in United States Navy (USN) surface fleet personnel, but H. pylori prevalence in USN submariners was unknown. The goal of the study was to determine the prevalence of H. pylori in the crews of USN nuclear submarines compared to other military personnel and to the general US population. The presence of H. pylori IgG antibodies was determined in serum samples using a commercial ELISA. Only 47 out of 451 submariners (9.4%) were H. pylori positive, which is similar to that of the US general population with a similar level of education. In contrast, H. pylori prevalence is significantly higher in US Army recruits (26%), USN surface fleet personnel (25%), and German diesel submariners (38%). These data demonstrate that submarine service (and by inference activity requiring isolation and close contact, per se) is not a risk factor for H. pylori infection.

  15. Spatial probability distribution of future volcanic eruptions at El Hierro Island (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Becerril, Laura; Cappello, Annalisa; Galindo, Inés; Neri, Marco; Del Negro, Ciro

    2013-05-01

    The 2011 submarine eruption that took place in the proximity of El Hierro Island (Canary Islands, Spain) has raised the need to identify the most likely future emission zones even on volcanoes characterized by low frequency activity. Here, we propose a probabilistic method to build the susceptibility map of El Hierro, i.e. the spatial distribution of vent opening for future eruptions, based on the probabilistic analysis of volcano-structural data of the Island collected through new fieldwork measurements, bathymetric information, as well as analysis of geological maps, orthophotos and aerial photographs. These data have been divided into different datasets and converted into separate and weighted probability density functions, which were included in a non-homogeneous Poisson process to produce the volcanic susceptibility map. The most likely area to host new eruptions in El Hierro is in the south-western part of the West rift. High probability locations are also found in the Northeast and South rifts, and along the submarine parts of the rifts. This map represents the first effort to deal with the volcanic hazard at El Hierro and can be a support tool for decision makers in land planning, emergency measures and civil defense actions.

  16. Exploration of the 1891 Foerstner submarine vent site (Pantelleria, Italy): insights into the formation of basaltic balloons

    NASA Astrophysics Data System (ADS)

    Kelly, Joshua T.; Carey, Steven; Pistolesi, Marco; Rosi, Mauro; Croff-Bell, Katherine Lynn; Roman, Chris; Marani, Michael

    2014-07-01

    On October 17, 1891, a submarine eruption started at Foerstner volcano located within the Pantelleria Rift of the Strait of Sicily (Italy). Activity occurred for a period of 1 week from an eruptive vent located 4 km northwest of the island of Pantelleria at a water depth of 250 m. The eruption produced lava balloons that discharged gas at the surface and eventually sank to the seafloor. Remotely operated vehicle (ROV) video footage and high-resolution multi-beam mapping of the Foerstner vent site were used to create a geologic map of the AD 1891 deposits and conduct the first detailed study of the source area associated with this unusual type of submarine volcanism. The main Foerstner vent consists of two overlapping circular mounds with a total volume of 6.3 × 105 m3 and relief of 60 m. It is dominantly constructed of clastic scoriaceous deposits with some interbedded pillow lavas. Petrographic and geochemical analyses of Foerstner samples by X-ray fluorescence and inductively coupled plasma mass spectrometry reveal that the majority of the deposits are vesicular, hypocrystalline basanite scoria that display porphyritic, hyaloophitic, and vitrophyric textures. An intact lava balloon recovered from the seafloor consists of a large interior gas cavity surrounded by a thin lava shell comprising two distinct layers: a thin, oxidized, quenched crust surrounding the exterior of the balloon and a dark gray, tachylite layer lying beneath it. Ostwald ripening is proposed to be the dominant bubble growth mechanism of four representative Foerstner scoria samples as inferred by vesicle size distributions. Characterization of the diversity of deposit facies observed at Foerstner in conjunction with quantitative rock texture analysis indicates that submarine Strombolian-like activity is the most likely mechanism for the formation of lava balloons. The deposit facies observed at the main Foerstner vent are very similar to those produced by other known submarine Strombolian

  17. Submarine neutrino communication

    NASA Astrophysics Data System (ADS)

    Huber, Patrick

    2010-09-01

    We discuss the possibility to use a high energy neutrino beam from a muon storage ring to provide one way communication with a submerged submarine. Neutrino interactions produce muons which can be detected either, directly when they pass through the submarine or by their emission of Cerenkov light in sea water, which, in turn, can be exploited with sensitive photo detectors. Due to the very high neutrino flux from a muon storage ring, it is sufficient to mount either detection system directly onto the hull of the submersible. The achievable data transfer rates compare favorable with existing technologies and do allow for a communication at the usual speed and depth of submarines.

  18. [The health status and morbidity in the crew members of submarines at different periods of combat training activity].

    PubMed

    Bortnovskiĭ, V N; Myznikov, I L

    1993-09-01

    It was found out in the result of complex examination of health status of 2020 enlisted men from 65 submarine crews of the North Fleet, that the inflammatory and infectious morbidity during the post-cruise period was considerably higher than during seagoing period. This morbidity was characterized by seasonal outbreaks. As for the types of the immune dependency, there were no seasonal changes. The peak of infectious morbidity coincides with the pre-cruise preparative period and post-cruise recreation due to "mixing" of the crews and diminishing of the non-specific resistance of an organism.

  19. The link between multistep magma ascent and eruption intensity: examples from the recent activity of Piton de la Fournaise (La Réunion Island).

    NASA Astrophysics Data System (ADS)

    Di Muro, Andrea

    2014-05-01

    Caldera collapses represent catastrophic events, which induce drastic modification in a volcano plumbing system and can result in major and fast evolution of the system dynamics. At Piton de la Fournaise (PdF) volcano, the 2007 eruptive sequence extruded the largest lava volume (240 Mm3) since at least 3 centuries, provoking the collapse of a small (1 km wide; 340 m deep) summit caldera. In about 35 days, the 2007 major eruption generated i) the greatest lava output rate, ii) the strongest lava fountaining activity (> 200 m high), iii) the largest SO2 volume (> 230 kt) ever documented at PdF. This event ended a 9 year-long period (1998-2007) of continuous edifice inflation and sustained eruptive activity (3 eruptions per year on average). Unexpectedly and in spite of the large volume of magma erupted in 2007, volcano unrest and eruptive activity resumed quickly in 2008, soon after caldera collapse, and produced several closely spaced intracaldera eruptions and shallow intrusions. The post-2007 activity is associated with a trend of continuous volcano deflation and consists in small-volume (<3 Mm3) weak (< 20 m high fountains; strombolian activity) summit/proximal eruptions of moderate/low MgO magmas and frequent shallow magma intrusions. Non-eruptive tremor and increase in SO2 emissions were interpreted as evidences of magma intrusions at shallow depth (< 2.0 km) preceding the eruptions. The 2007-2011 phase of activity represents an ideal case-study to analyze the influence of magma ascent kinetics on the evolution of volcano dynamics at a persistently active basaltic volcano. In order to track magma storage and ascent, we compare geochemical data on fast quenched glasses (melt inclusions, Pele's hairs, coarse ash fragments produced by lava-sea water interaction, glassy crust of lavas, high-temperature lavas quenched in water, matrix glasses) with the geophysical record of volcano unrest. Petro-chemical data suggest that the shallow PdF plumbing system is formed by

  20. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  1. Submarine Landslides: What we Know and Where we are Going!

    NASA Astrophysics Data System (ADS)

    Moscardelli, L. G.; Mountjoy, J. J.; Micallef, A.; Strasser, M.; Vanneste, M.; Chaytor, J. D.; Mosher, D.; Krastel, S.; Lo Iacono, C.; Yamada, Y.

    2015-12-01

    Submarine landslides and other gravity-induced movements can disrupt very large areas of continental margins resulting in long-term seafloor morphologic change and multi-scale mass transport deposits (MTDs). Potential consequences of submarine landslides include damage to seabed infrastructure, offshore facilities, as well as generation or enhancement of tsunamis. MTDs are common on the modern seafloor and within the stratigraphic record. Slides, slumps and debris flows can be constituents of MTDs and can co-occur in the same event or depositional unit. Recent research indicates that relationships exist between MTD geological setting, causal mechanisms, and geometries. Quantitative data analysis suggests that MTD morphometric parameters can be used to link these three parameters. Despite many advances in this field, it still remains unclear how to definitively identify pre-conditioning factors and triggers of submarine landslides in modern slopes, and how submarine landslides evolve after initiation. In addition, new questions regarding the interaction between submarine landslides and active marine processes, such as bottom currents and fluid flow, have emerged.One of the mandates of the S4SLIDE (IGCP-640) project, a joint endeavor of UNESCO and IGCP that represents the broad field of submarine landslide research, is to facilitate interactions at an international level among scientists, industry and government representatives to advance our knowledge on a number of outstanding science questions: (i) What is the nature of the interaction between current-controlled sedimentation and submarine landslides? (ii) What role do transient turbulent-laminar flows play in the formation of submarine landslides? (iii) Do climatic variations control the occurrence of submarine landslides? (iv) What is the economic significance of submarine landslides? (v) Do we understand the hazards that submarine landslides pose to the environment and to humans? This presentation will cover

  2. Multistation alarm system for eruptive activity based on the automatic classification of volcanic tremor: specifications and performance

    NASA Astrophysics Data System (ADS)

    Langer, Horst; Falsaperla, Susanna; Messina, Alfio; Spampinato, Salvatore

    2015-04-01

    With over fifty eruptive episodes (Strombolian activity, lava fountains, and lava flows) between 2006 and 2013, Mt Etna, Italy, underscored its role as the most active volcano in Europe. Seven paroxysmal lava fountains at the South East Crater occurred in 2007-2008 and 46 at the New South East Crater between 2011 and 2013. Month-lasting lava emissions affected the upper eastern flank of the volcano in 2006 and 2008-2009. On this background, effective monitoring and forecast of volcanic phenomena are a first order issue for their potential socio-economic impact in a densely populated region like the town of Catania and its surroundings. For example, explosive activity has often formed thick ash clouds with widespread tephra fall able to disrupt the air traffic, as well as to cause severe problems at infrastructures, such as highways and roads. For timely information on changes in the state of the volcano and possible onset of dangerous eruptive phenomena, the analysis of the continuous background seismic signal, the so-called volcanic tremor, turned out of paramount importance. Changes in the state of the volcano as well as in its eruptive style are usually concurrent with variations of the spectral characteristics (amplitude and frequency content) of tremor. The huge amount of digital data continuously acquired by INGV's broadband seismic stations every day makes a manual analysis difficult, and techniques of automatic classification of the tremor signal are therefore applied. The application of unsupervised classification techniques to the tremor data revealed significant changes well before the onset of the eruptive episodes. This evidence led to the development of specific software packages related to real-time processing of the tremor data. The operational characteristics of these tools - fail-safe, robustness with respect to noise and data outages, as well as computational efficiency - allowed the identification of criteria for automatic alarm flagging. The

  3. Creeping eruption

    MedlinePlus

    ... JavaScript. Creeping eruption is a human infection with dog or cat hookworm larvae (immature worms). Causes Hookworm eggs are found in the stool of infected dogs and cats. When the eggs hatch, the larvae ...

  4. Submarine Volcanic Morphology of Santorini Caldera, Greece

    NASA Astrophysics Data System (ADS)

    Nomikou, P.; Croff Bell, K.; Carey, S.; Bejelou, K.; Parks, M.; Antoniou, V.

    2012-04-01

    Santorini volcanic group form the central part of the modern Aegean volcanic arc, developed within the Hellenic arc and trench system, because of the ongoing subduction of the African plate beneath the European margin throughout Cenozoic. It comprises three distinct volcanic structures occurring along a NE-SW direction: Christianna form the southwestern part of the group, Santorini occupies the middle part and Koloumbo volcanic rift zone extends towards the northeastern part. The geology of the Santorini volcano has been described by a large number of researchers with petrological as well as geochronological data. The offshore area of the Santorini volcanic field has only recently been investigated with emphasis mainly inside the Santorini caldera and the submarine volcano of Kolumbo. In September 2011, cruise NA-014 on the E/V Nautilus carried out new surveys on the submarine volcanism of the study area, investigating the seafloor morphology with high-definition video imaging. Submarine hydrothermal vents were found on the seafloor of the northern basin of the Santorini caldera with no evidence of high temperature fluid discharges or massive sulphide formations, but only low temperature seeps characterized by meter-high mounds of bacteria-rich sediment. This vent field is located in line with the normal fault system of the Kolumbo rift, and also near the margin of a shallow intrusion that occurs within the sediments of the North Basin. Push cores have been collected and they will provide insights for their geochemical characteristics and their relationship to the active vents of the Kolumbo underwater volcano. Similar vent mounds occur in the South Basin, at shallow depths around the islets of Nea and Palaia Kameni. ROV exploration at the northern slopes of Nea Kameni revealed a fascinating underwater landscape of lava flows, lava spines and fractured lava blocks that have been formed as a result of 1707-1711 and 1925-1928 AD eruptions. A hummocky topography at

  5. Submarine radial vents on Mauna Loa Volcano, Hawaìi

    NASA Astrophysics Data System (ADS)

    Wanless, V. Dorsey; Garcia, M. O.; Trusdell, F. A.; Rhodes, J. M.; Norman, M. D.; Weis, Dominique; Fornari, D. J.; Kurz, M. D.; Guillou, Hervé

    2006-05-01

    A 2002 multibeam sonar survey of Mauna Loa's western flank revealed ten submarine radial vents and three submarine lava flows. Only one submarine radial vent was known previously. The ages of these vents are constrained by eyewitness accounts, geologic relationships, Mn-Fe coatings, and geochemical stratigraphy; they range from 128 years B.P. to possibly 47 ka. Eight of the radial vents produced degassed lavas despite eruption in water depths sufficient to inhibit sulfur degassing. These vents formed truncated cones and short lava flows. Two vents produced undegassed lavas that created "irregular" cones and longer lava flows. Compositionally and isotopically, the submarine radial vent lavas are typical of Mauna Loa lavas, except two cones that erupted alkalic lavas. He-Sr isotopes for the radial vent lavas follow Mauna Loa's evolutionary trend. The compositional and isotopic heterogeneity of these lavas indicates most had distinct parental magmas. Bathymetry and acoustic backscatter results, along with photography and sampling during four JASON2 dives, are used to produce a detailed geologic map to evaluate Mauna Loa's submarine geologic history. The new map shows that the 1877 submarine eruption was much larger than previously thought, resulting in a 10% increase for recent volcanism. Furthermore, although alkalic lavas were found at two radial vents, there is no systematic increase in alkalinity among these or other Mauna Loa lavas as expected for a dying volcano. These results refute an interpretation that Mauna Loa's volcanism is waning. The submarine radial vents and flows cover 29 km2 of seafloor and comprise a total volume of ˜2 × 109 m3 of lava, reinforcing the idea that submarine lava eruptions are important in the growth of oceanic island volcanoes even after they emerged above sea level.

  6. Localization of Volcanic Activity: Topographic Effects on Dike Propagation, Eruption and COnduit Formation

    SciTech Connect

    E.S. Gaffney; B. Damjanac

    2006-05-12

    Magma flow in a dike rising in a crack whose strike runs from a highland or a ridge to an adjacent lowland has been modeled to determine the effect of topography on the flow. It is found that there is a distinct tendency for the flow to be diverted away from the highland end of the strike toward the lowland. Separation of the geometric effect of the topography from its effect on lateral confining stresses on the crack indicates that both contribute to the effect but that the effect of stress is less important. Although this analysis explains a tendency for volcanic eruptions to occur in low lands, it does not preclude eruptions on highlands. The particular configuration modeled mimics topography around the proposed nuclear waste repository at Yucca Mountain, Nevada, so that the results may indicate some reduction in the volcanic hazard to the site.

  7. 3-d Visualization of Earthquakes and Erupting Vents in Time-series Animations: Application to Kilauea and Miyakejima volcanoes

    NASA Astrophysics Data System (ADS)

    Wright, T. L.

    2003-12-01

    Computer programs have been developed to view erupting vents and earthquake sequences on and beneath transparent topography shown by a DEM, vertical image, or map. In a single frame an earthquake dataset can be rotated with the mouse to create perspective views. Multiple-frame time animations are created in which the perspective (e.g., map, cross-section) and time increments (e.g., hour, day, month) are chosen by the user. Viewed as movies, the animations allow recognition of seismicity patterns occurring over large areas and long time periods. Departures from characteristic activity are easily spotted and can be further investigated in a single frame or in animation with shorter time increments. Time animations have been made of earthquake sequences accompanying several eruptions of Kilauea volcano and the Miyakejima eruption and associated dike emplacement in 2000. An earthquake swarm shallower than 6 km beneath Miyakejima island began on the evening of 6/26/2000. The seismicity moved to the southwest, then to the north and offshore, and a submarine eruption occurred on the morning of 6/27. Shortly thereafter, earthquakes of M 4 and above migrated westward, also becoming deeper (to 20 km), marking the emplacement of a large dike northwest of Miyakejima island. Eruptions at Miyakejima from 7/8 to 9/1 were associated with formation of a new caldera. The timing and location of the submarine eruption can be seen in the seismicity, consistent with later visual observation of discolored seawater and photographs obtained of the seafloor vents. Seismicity associated with the submarine eruption plunges eastward. Seismic sequences preceding explosive eruptions at Miyakejima summit in August plunge southwest. Intersection of the opposed dips occurs near 10 km depth, consistent with existence of a deeper basaltic reservoir feeding the explosive eruptions. Sequences of vertical, pipe-like seismicity extending to very shallow depths over the propagating dike and occurring over

  8. A Miocene submarine volcano at Low Layton, Jamaica

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1982-01-01

    A submarine fissure eruption of Upper Miocene age produced a modest volume of alkaline basalt at Low Layton, on the north coast of Jamaica. The eruption occurred in no more than a few hundred meters of water and produced a series of hyaloclastites, pillow breccias and pillow lavas, massive lavas, and dikes with an ENE en echelon structure. The volcano lies on the trend of one of the island's major E-W strike-slip fault zones; the Dunavale Fault Zone. The K-Ar age of the eruption of 9.5 plus or minus 0.5 Ma. B.P. corresponds to an extension of the Mid-Cayman Rise spreading center inferred from magnetic anomalies and bathymetry of the Cayman Trough to the north and west of Jamaica. The Low Layton eruption was part of the response of the strike-slip fault systems adjacent to this spreading center during this brief episode of tectonic readjustment.

  9. Fossil and active fumaroles in the 1912 eruptive deposits, Valley of ten thousand smokes, Alaska

    USGS Publications Warehouse

    Keith, T.E.C.

    1991-01-01

    Fumaroles in the ash-flow sheet emplaced during the 1912 eruption of Novarupta were intensely active throughout the Valley of Ten Thousand Smokes (VTTS) when first studied in 1917. Fumarole temperatures recorded in 1919 were as hot as 645??C. Influx of surface waters into the hot ash-flow sheet provided the fluid flow to sustain the fumaroles but also enhanced cooling so that by the mid-1930's vigorous activity survived only in the vent region. Configuration and distribution of high-temperature fissure fumaroles tens of meters long, that are prevalent in the middle and upper VTTS, were controlled largely by sintering and degree of welding, which in turn controlled fracturing and permeability of the ash-flow tuff. One fracture type developed parallel to the enclosing valley walls during compaction of the ash-flow sheet. Another type extends across the VTTS nearly perpendicular to the flow direction. A third type of randomly oriented fractures developed as cooling contraction cracks during vapor-phase devitrification. In distal parts of the ash-flow sheet where the tuff is nonwelded, prominent fumaroles have irregular funnel-shaped morphologies. Fumarole distribution in the nonwelded part of the ash-flow sheet is concentrated above pre-emplacement river channels. The hottest, longest-lived fumaroles occurred in the upper VTTS near the 1912 vent where the ash-flow sheet is thicker, more indurated, and on average more mafic (richer in dacite and andesite) in contrast to the thinner, nonwelded rhyolitic tuff in the distal part of the sheet. Fumarolic activity was less intense in the distal part of the tuff because of lower emplacement temperatures, more diffuse fumarole conduits in the nonwelded tuff, and the thinness of the ash-flow sheet. Chemical leaching of ash-flow tuff by hot rising fluids took place adjacent to fumarolic conduits in deep parts of the fumaroles. Deposition of incrustation minerals, the components of which were carried upward by fumarolic gases

  10. Monitoring and Characterizing the Geysering and Seismic Activity at the Lusi Mud Eruption Site, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian

    2016-04-01

    The Lusi eruption began on May 29, 2006 in the northeast of Java Island, Indonesia, and to date is still active. Lusi is a newborn sedimentary-hosted hydrothermal system characterized by continuous expulsion of liquefied mud and breccias and geysering activity. Lusi is located upon the Watukosek fault system, a left lateral wrench system connecting the volcanic arc and the bakarc basin. This fault system is still periodically reactivated as shown by field data. In the framework of the Lusi Lab project (ERC grant n° 308126) we conducted several types of monitoring. Based on camera observations, we characterized the Lusi erupting activity by four main behaviors occurring cyclically: (1) Regular activity, which consists in the constant emission of water and mud breccias (i.e. viscous mud containing clay, silt, sand and clasts) associated with the constant expulsion of gas (mainly aqueous vapor with minor amounts of CO2 and CH4) (2) Geysering phase with intense bubbling, consisting in reduced vapor emission and more powerful bursting events that do not seem to have a regular pattern. (3) Geysering phase with intense vapor and degassing discharge and a typically dense plume that propagates up to 100 m height. (4) Quiescent phase marking the end of the geysering activity (and the observed cycle) with no gas emissions or bursts observed. To investigate the possible seismic activity beneath Lusi and the mechanisms controlling the Lusi pulsating behaviour, we deployed a network of 5 seismic stations and a HD camera around the Lusi crater. We characterize the observed types of seismic activity as tremor and volcano-tectonic events. Lusi tremor events occur in 5-10 Hz frequency band, while volcano tectonic events are abundant in the high frequencies range from 5 Hz until 25 Hz. We coupled the seismic monitoring with the images collected with the HD camera to study the correlation between the seismic tremor and the different phases of the geysering activity. Key words: Lusi

  11. Eruptive activity at Turrialba volcano (Costa Rica): Inferences from 3He/4He in fumarole gases and chemistry of the products ejected during 2014 and 2015

    NASA Astrophysics Data System (ADS)

    Rizzo, Andrea Luca; Di Piazza, Andrea; de Moor, J. Maarten; Alvarado, Guillermo E.; Avard, Geoffroy; Carapezza, Maria Luisa; Mora, Mauricio M.

    2016-11-01

    A new period of eruptive activity started at Turrialba volcano, Costa Rica, in 2010 after almost 150 years of quiescence. This activity has been characterized by sporadic explosions whose frequency clearly increased since October 2014. This study aimed to identify the mechanisms that triggered the resumption of this eruptive activity and characterize the evolution of the phenomena over the past 2 years. We integrate 3He/4He data available on fumarole gases collected in the summit area of Turrialba between 1999 and 2011 with new measurements made on samples collected between September 2014 and February 2016. The results of a petrological investigation of the products that erupted between October 2014 and May 2015 are also presented. We infer that the resumption of eruptive activity in 2010 was triggered by a replenishment of the plumbing system of Turrialba by a new batch of magma. This is supported by the increase in 3He/4He values observed since 2005 at the crater fumaroles and by comparable high values in September 2014, just before the onset of the new eruptive phase. The presence of a number of fresh and juvenile glassy shards in the erupted products increased between October 2014 and May 2015, suggesting the involvement of new magma with a composition similar to that erupted in 1864-1866. We conclude that the increase in 3He/4He at the summit fumaroles since October 2015 represents strong evidence of a new phase of magma replenishment, which implies that the level of activity remains high at the volcano.

  12. Seismic Activity Related to the 2002-2003 Mt. Etna Volcano Eruption (Italy): Fault Plane Solutions and Stress Tensor Computation

    NASA Astrophysics Data System (ADS)

    Barberi, G.; Cammarata, L.; Cocina, O.; Maiolino, V.; Musumeci, C.; Privitera, E.

    2003-04-01

    Late on the night of October 26, 2002, a bi-lateral eruption started on both the eastern and the southeastern flanks of Mt. Etna. The opening of the eruptive fracture system on the NE sector and the reactivation of the 2001 fracture system, on the S sector, were accompanied by a strong seismic swarm recorded between October 26 and 28 and by sharp increase of volcanic tremor amplitude. After this initial phase, on October 29 another seismogenetic zone became active in the SE sector of the volcano. At present (January 2003) the eruption is still in evolution. During the whole period a total of 862 earthquakes (Md≫1) was recorded by the local permanent seismic network run by INGV - Sezione di Catania. The maximum magnitude observed was Md=4.4. We focus our attention on 55 earthquakes with magnitude Md≫ 3.0. The dataset consists of accurate digital pickings of P- and S-phases including first-motion polarities. Firstly earthquakes were located using a 1D velocity model (Hirn et alii, 1991), then events were relocated by using two different 3D velocity models (Aloisi et alii, 2002; Patane et alii, 2002). Results indicate that most of earthquakes are located to the east of the Summit Craters and to northeast of them. Fault plane solutions (FPS) obtained show prevalent strike-slip rupture mechanisms. The suitable FPSs were considered for the application of Gephart and Forsyth`s algorithm in order to evaluate seismic stress field characteristics. Taking into account the preliminary results we propose a kinematic model of the eastern flank eastward movement in response of the intrusion processes in the central part of the volcano. References Aloisi M., Cocina O., Neri G., Orecchio B., Privitera E. (2002). Seismic tomography of the crust underneath the Etna volcano, Sicily. Physics of the Earth and Planetary Interiors 4154, pp. 1-17 Hirn A., Nercessian A., Sapin M., Ferrucci F., Wittlinger G. (1991). Seismic heterogeneity of Mt. Etna: structure and activity. Geophys. J

  13. Modelling of Subglacial Volcanic and Geothermal Activity, during the 2014-15 Bárdarbunga-Holuhraun Eruption and Caldera Collapse

    NASA Astrophysics Data System (ADS)

    Reynolds, H. I.; Gudmundsson, M. T.; Hognadottir, T.

    2015-12-01

    Seismic unrest was observed within the subglacial caldera of Bárdarbunga on 16 August 2014, followed by seismicity tracing the path of a lateral dyke extending underneath the Vatnajökull glacier out to 45 km to the north east of the volcano. A short subaerial fissure eruption occurred at the site of the Holuhraun lavas, just north of the glacier edge on 29 August, before recommencing in earnest on 31 August with a large effusive eruption and accompanying slow caldera collapse, which lasted for approximately 6 months. The glacier surface around Bárdarbunga was monitored using aerial altimeter profiling. Several shallow depressions, known as ice cauldrons, formed around the caldera rim and on Dyngjujökull glacier above the dyke propagation path. The cauldrons range in volume from approximately 0.0003 km3 to 0.02 km3. Two types of melting were observed: high initial heat flux over a period of days which gradually disappears; and slower but more sustained melting rates. We present time series data of the development and evolution of these cauldrons, with estimates of the heat flux magnitudes involved.The nature of the heat source required to generate these cauldrons is not obvious. Two scenarios are explored: 1) small subglacial eruptions; or 2) increased geothermal activity induced by the dyke intrusion. We investigate these scenarios using numerical modelling, considering the surface heat flux produced, and timescales and spatial extent of associated surface anomalies. It is found that a magmatic intrusion into rocks where the groundwater is near the boiling point curve can cause rapid increase in geothermal activity, but even a shallow intrusion into a cold groundwater reservoir will have a muted thermal response. Thus, our results indicate that minor subglacial eruptions are the most plausible explanation for the observed rapid melting far from known geothermal areas. These results have implications for the interpretation of thermal signals observed at ice

  14. The Summer 1997 Eruption at Pillan Patera on Io: Implications for Ultrabasic Lava Flow Emplacement

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Davies, Ashley G.; Keszthelyi, Laszlo P.; Greeley, Ronald

    2001-01-01

    than those for typical Mauna Loa/Kilaueaq flows but comparable to those for the (1783) Laki eruption and the inferred flow rates of the Roza flows in the Columbia River flood basalts. The differences in ultrabasic eruption styles on Earth and Io appear to be controlled by the different eruption environments; Plumes at sites of ultrabasic eruptions on Io suggest strong magma-volatile interactions on a low-gravity body lacking an atmosphere, whereas the geology at sites of komatiite eruptions on Earth suggest mostly submarine emplacement of thick flows with a pronounced lack of subaerial explosive activity.

  15. Contrasting styles of Mount Vesuvius activity in the period between the Avellino and Pompeii Plinian eruptions, and some implications for assessment of future hazards

    NASA Astrophysics Data System (ADS)

    Andronico, Daniele; Cioni, Raffaello

    2002-09-01

    Intense explosive activity occurred repeatedly at Vesuvius during the nearly 1,600-year period between the two Plinian eruptions of Avellino (3.5 ka) and Pompeii (79 A.D.). By correlating stratigraphic sections from more than 40 sites around the volcano, we identify the deposits of six main eruptions (AP1-AP6) and of some minor intervening events. Several deposits can be traced up to 20 km from the vent. Their stratigraphic and dispersal features suggest the prevalence of two main contrasting eruptive styles, each involving a complex relationship between magmatic and phreatomagmatic phases. The two main eruption styles are (1) sub-Plinian to phreato-Plinian events (AP1 and AP2 members), where deposits consist of pumice and scoria fall layers alternating with fine-grained, vesiculated, accretionary lapilli-bearing ashes; and (2) mixed, violent Strombolian to Vulcanian events (AP3-AP6 members), which deposited a complex sequence of fallout, massive to thinly stratified, scoria-bearing lapilli layers and fine ash beds. Morphology and density variations of the juvenile fragments confirm the important role played by magma-water interaction in the eruptive dynamics. The mean composition of the ejected material changes with time, and shows a strong correlation with vent position and eruption style. The ranges of intensity and magnitude of these events, derived by estimations of peak column height and volume of the ejecta, are significantly smaller than the values for the better known Plinian and sub-Plinian eruptions of Vesuvius, enlarging the spectrum of the possible eruptive scenarios at Vesuvius, useful in the assessment of its potential hazard.

  16. Transport of Fine Ash Through the Water Column at Erupting Volcanoes - Monowai Cone, Kermadec-Tonga Arc

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; Leybourne, M. I.; de Ronde, C. E.; Greene, R.; Faure, K.; Chadwick, W.; Dziak, R. P.; Lupton, J. E.; Lebon, G.

    2010-12-01

    Monowai cone is a large, active, basaltic stratovolcano, part of the submarine Monowai volcanic center (MVC) located at ~26°S on the Kermadec-Tonga arc. At other actively erupting submarine volcanoes, magma extrusions and hydrothermal vents have been located only near the summit of the edifice, generating plumes enriched with hydrothermal components and magmatic gasses that disperse into the ocean environment at, or shallower than, the summit depth. Plumes found deeper than summit depths are dominated by fresh volcaniclastic ash particles, devoid of hydrothermal tracers, emplaced episodically by down-slope gravity flows, and transport fine ash to 10’s of km from the active eruptions. A water column survey of the MVC in 2004 mapped intensely hydrothermal-magmatic plumes over the shallow (~130 m) summit of Monowai cone and widespread plumes around its flanks. Due to the more complex multiple parasitic cone and caldera structure of MVC, we analyzed the dissolved and particulate components of the flank plumes for evidence of additional sources. Although hydrothermal plumes exist within the adjacent caldera, none of the parasitic cones on Monowai cone or elsewhere within the MVC were hydrothermally or volcanically active. The combination of an intensely enriched summit plume, sulfur particles and bubbles at the sea surface, and ash-dominated flank plumes indicate Monowai cone was actively erupting at the time of the 2004 survey. Monowai cone is thus the fourth erupting submarine volcano we have encountered, and all have had deep ash plumes distributed around their flanks [the others are: Kavachi (Solomon Island arc), NW Rota-1 (Mariana arc) and W Mata (NE Lau basin)]. These deep ash plumes are a syneruptive phenomenon, but it is unknown how they are related to eruptive style and output, or to the cycles of construction and collapse that occur on the slopes of submarine volcanoes. Repeat multibeam bathymetric surveys have documented two large-scale sector collapse

  17. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  18. Seasonality of Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Mason, B.; Pyle, D. M.; Dade, W. B.; Jupp, T.

    2001-12-01

    An analysis of volcanic activity in the last three hundred years reveals that the frequency of onset of volcanic eruptions varies systematically with the time of year. We analysed the Smithsonian catalogue of more than 3200 subaerial eruptions recorded during the last 300 years. We also investigated continuous records, which are not part of the general catalogue, of individual explosions at Sakurajima volcano (Japan, 150 events per year since 1955) and Semeru (Indonesia, 100,000 events during the period 1997-2000). A higher proportion (as much as 18 percent of the average monthly rate) of eruptions occur worldwide between December and March. This observation is statistically significant at above the 99 percent level. This pattern is independent of the time interval considered, and emerges whether individual eruptions are counted with equal weight or with weights proportional to event explosivity. Elevated rates of eruption onset in boreal winter months are observed in northern and southern hemispheres alike, as well as in most volcanically-active regions including, most prominently, the 'Ring of Fire' surrounding the Pacific basin. Key contributors to this regional pattern include volcanoes in Central and South America, the volcanic provinces of the northwest Pacific rim, Indonesia and the southwest Pacific basin. On the smallest spatial scales, some individual volcanoes for which detailed histories exist exhibit peak levels in eruption activity during November-January. Seasonality is attributed to one or more mechanisms associated with the annual hydrological cycle, and may correspond to the smallest time-scale over which fluctuations in stress due to the redistribution of water-masses are felt by the Earth's crust. Our findings have important ramifications for volcanic risk assessment, and offer new insight into possible changes in volcanic activity during periods of long-term changes in global sea level.

  19. Seasonality of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Mason, B.; Pyle, D.; Dade, B.; Jupp, T.

    2003-04-01

    An analysis of volcanic activity in the last three hundred years reveals that the frequency of onset of volcanic eruptions varies systematically with the time of year. We analysed the Smithsonian catalogue of more than 3200 subaerial eruptions recorded during the last 300 years. We also investigated continuous records, which are not part of the general catalogue, of individual explosions at Sakurajima volcano (Japan, 150 events per year since 1955) and Semeru (Indonesia, 100,000 events during the period 1997-2000). A higher proportion (as much as 18 percent of the average monthly rate) of eruptions occur worldwide between December and March. This observation is statistically significant at above the 99 percent level. This pattern is independent of the time interval considered, and emerges whether individual eruptions are counted with equal weight or with weights proportional to event explosivity. Elevated rates of eruption onset in boreal winter months are observed in northern and southern hemispheres alike, as well as in most volcanically-active regions including, most prominently, the 'Ring of Fire' surrounding the Pacific basin. Key contributors to this regional pattern include volcanoes in Central and South America, the volcanic provinces of the northwest Pacific rim, Indonesia and the southwest Pacific basin. On the smallest spatial scales, some individual volcanoes for which detailed histories exist exhibit peak levels in eruption activity during November-January. Seasonality is attributed to one or more mechanisms associated with the annual hydrological cycle, and may correspond to the smallest time-scale over which fluctuations in stress due to the redistribution of water-masses are felt by the Earth's crust. Our findings have important ramifications for volcanic risk assessment, and offer new insight into possible changes in volcanic activity during periods of long-term changes in global sea level.

  20. Two likely stratospheric volcanic eruptions in the 1450s C.E. found in a bipolar, subannually dated 800 year ice core record

    NASA Astrophysics Data System (ADS)

    Cole-Dai, Jihong; Ferris, David G.; Lanciki, Alyson L.; Savarino, Joël.; Thiemens, Mark H.; McConnell, Joseph R.

    2013-07-01

    An 800 year volcanic record is constructed from high-resolution chemical analysis of recently obtained West Antarctica and central Greenland ice cores. The high accuracy and precision of the ice core chronologies are a result of dating by annual ice layer counting. Nineteen bipolar volcanic signals in this record represent large, explosive eruptions in the tropics with probable climatic impact. One of the two bipolar volcanic signals dated at 1453 and 1459 is probably left by the eruption of the submarine volcano Kuwae in the tropical Pacific, one of the largest volcanic eruptions in the last millennium. The discovery of the two signals in the 1450s casts doubt on the eruption year of 1452 or 1453 for Kuwae based on previous ice core records. The volcanic sulfate deposition patterns in this bipolar record suggest that the later signal is likely from the Kuwae eruption in 1458, although a firm attribution is not possible. Sulfur isotope composition in the volcanic sulfate in the central Greenland cores indicates that both eruptions in the 1450s injected sulfur gases into the stratosphere with probable impact on the global climate. These results are in agreement with tree ring records showing two short cold episodes during that decade. The bipolar volcanic record supports the hypothesis that unusually active volcanism in the thirteenth century contributed to the onset of the Little Ice Age and another active period in the mid fifteenth century may have helped to sustain the Little Ice Age.

  1. Formation and eruption of an active region sigmoid. I. A study by nonlinear force-free field modeling

    SciTech Connect

    Jiang, Chaowei; Feng, Xueshang; Wu, S. T.; Hu, Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2014-01-01

    We present a comprehensive study of the formation and eruption of an active region (AR) sigmoid in AR 11283. To follow the quasi-static evolution of the coronal magnetic field, we reconstruct a time sequence of static fields using a recently developed nonlinear force-free field model constrained by vector magnetograms. A detailed analysis of the fields compared with observations suggests the following scenario for the evolution of the region. Initially, a new bipole emerges into the negative polarity of a preexisting bipolar AR, forming a null-point topology between the two flux systems. A weakly twisted flux rope (FR) is then built up slowly in the embedded core region, largely through flux cancellation, forming a bald patch separatrix surface (BPSS). The FR grows gradually until its axis runs into a torus instability (TI) domain, and the BPSS also develops a full S-shape. The combined effects of the TI-driven expansion of the FR and the line tying at the BP tear the FR into two parts with the upper portion freely expelled and the lower portion remaining behind the postflare arcades. This process dynamically perturbs the BPSS and results in the enhanced heating of the sigmoid and the rope. The accelerated expansion of the upper-portion rope strongly pushes its envelope flux near the null point and triggers breakout reconnection at the null, which further drives the eruption. We discuss the important implications of these results for the formation and disruption of the sigmoid region with an FR.

  2. Formation and Eruption of an Active Region Sigmoid. I. A Study by Nonlinear Force-free Field Modeling

    NASA Astrophysics Data System (ADS)

    Jiang, Chaowei; Wu, S. T.; Feng, Xueshang; Hu, Qiang

    2014-01-01

    We present a comprehensive study of the formation and eruption of an active region (AR) sigmoid in AR 11283. To follow the quasi-static evolution of the coronal magnetic field, we reconstruct a time sequence of static fields using a recently developed nonlinear force-free field model constrained by vector magnetograms. A detailed analysis of the fields compared with observations suggests the following scenario for the evolution of the region. Initially, a new bipole emerges into the negative polarity of a preexisting bipolar AR, forming a null-point topology between the two flux systems. A weakly twisted flux rope (FR) is then built up slowly in the embedded core region, largely through flux cancellation, forming a bald patch separatrix surface (BPSS). The FR grows gradually until its axis runs into a torus instability (TI) domain, and the BPSS also develops a full S-shape. The combined effects of the TI-driven expansion of the FR and the line tying at the BP tear the FR into two parts with the upper portion freely expelled and the lower portion remaining behind the postflare arcades. This process dynamically perturbs the BPSS and results in the enhanced heating of the sigmoid and the rope. The accelerated expansion of the upper-portion rope strongly pushes its envelope flux near the null point and triggers breakout reconnection at the null, which further drives the eruption. We discuss the important implications of these results for the formation and disruption of the sigmoid region with an FR.

  3. Ash erupted during normal activity at Stromboli (Aeolian Islands, Italy) raises questions on how the feeding system works

    NASA Astrophysics Data System (ADS)

    D'Oriano, Claudia; Bertagnini, Antonella; Pompilio, Massimo

    2011-07-01

    Ash fallout collected during 4 days of sampling at Stromboli confirms that a crystal-rich (HP) degassed magma erupts during the Strombolian explosions that are characteristic of the normal activity of this volcano. We identified 3 different types of juvenile ash fragments (fluidal, spongy and dense), which formed through different mechanisms of fragmentation of the low-viscosity, physically heterogeneous (in terms of the size and spatial distribution of bubbles) shoshonitic magma. A small amount (less than 3 vol%) of volatile-rich magma with low porphyricity (LP), erupted as highly vesicular ash fragments, has been collected, together with the HP magma, during normal strombolian explosions. Laboratory experiments and the morphological, textural and compositional investigations of ash fragments reveal that the LP ash is fresh and not recycled from the last paroxysm (15 March 2007). We suggest that small droplets of LP magma are dragged to the surface by the time-variable but persistent supply of deep derived CO2-rich gas bubbles. This coupled ascent of bubbles and LP melts is transient and does not perturb the dynamics of the HP magma within the shallow reservoir. This finding provides a new perspective on how the Stromboli volcano works and has important implications for monitoring strategies.

  4. Polymorphic light eruption sine eruption.

    PubMed

    Dover, J S; Hawk, J L

    1988-01-01

    We describe seven patients, four female and three male, who developed intense pruritus on sun-exposed skin without visible change. The clinical features resembled those of polymorphic light eruption (PLE) without rash. Four patients also occasionally developed typical PLE upon sun exposure, but sun-induced pruritus alone occurred most frequently. No patient was taking any drug therapy. One patient developed similar pruritus following solar simulated irradiation, and one following PUVA therapy. All other laboratory investigations were negative. Treatment with low dose UVB phototherapy or PUVA therapy was effective. The condition, which we have called polymorphic light eruption sine eruptione (PLESE), appears to be a variant of PLE not previously reported.

  5. Submarine landslides: advances and challenges

    USGS Publications Warehouse

    Locat, Jacques; Lee, Homa J.

    2002-01-01

    Due to the recent development of well-integrated surveying techniques of the sea floor, significant improvements were achieved in mapping and describing the morphology and architecture of submarine mass movements. Except for the occurrence of turbidity currents, the aquatic environment (marine and fresh water) experiences the same type of mass failure as that found on land. Submarine mass movements, however, can have run-out distances in excess of 100 km, so their impact on any offshore activity needs to be integrated over a wide area. This great mobility of submarinemass movements is still not very well understood, particularly for cases like the far-reaching debris flows mapped on the Mississippi Fan and the large submarine rock avalanches found around many volcanic islands. A major challenge ahead is the integration of mass movement mechanics in an appropriate evaluation of the hazard so that proper risk assessment methodologies can be developed and implemented for various human activities offshore, including the development of natural resources and the establishment of reliable communication corridors. Key words : submarine slides, hazards, risk assessment, morphology, mobility, tsunami. Le dveloppement rcent de techniques de levs hydrograhiques pour les fonds marins nous a permis d'atteindre une qualit ingale dans la cartographie et la description des glissements sous marins. l'exception des courants de turbidit, on retrouve dans le domaine aquatique les mmes types de mouvements de terrain que sur terre. Par contre, les glissements sous-marins peuvent atteindre des distances excdant 100 km de telle sorte que leur impact sur les activits offshore doit tre pris en compte sur degrandes tendues. La grande mobilit des glissements sous-marins n'est pas encore bien comprise, comme pour le cas des coules dedbris cartographies sur le cne du Mississippi ainsi que pour les grandes avalanches rocheuses sous-marines retrouves au pourtour des les volcaniques. Un dfi majeur

  6. Biochemical and Hematologic Profiles of 1000 Submariners

    DTIC Science & Technology

    1977-03-01

    neutrophil and leucocyte levels, serum cholesterol , and both fasting and postprandial glucose correlated positively with age; serum al- kaline phosphatase... postprandial glucose, and cholesterol may be seen to correlate positively and significantly with age after correlation effects attributed to length... cholesterol content and alkaline phosphatase activity; after a loading test, glucose levels showed a negative relationship to length of submarine service

  7. Geomorphic process fingerprints in submarine canyons

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  8. The submarine flanks of Anatahan Volcano, commonwealth of the Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Chadwick, William W.; Embley, Robert W.; Johnson, Paul D.; Merle, Susan G.; Ristau, Shannon; Bobbitt, Andra

    2005-08-01

    The submarine flanks of Anatahan volcano were surveyed comprehensively for the first time in 2003 and 2004 with multibeam and sidescan sonar systems. A geologic map based on the new bathymetry and backscatter data shows that 67% of the volcano's submarine flanks are covered with volcaniclastic debris and 26% is lava flows, cones, and bedrock outcrops. The island of Anatahan is only 1% of the volume of the entire volcano, which has a height from its submarine base of 3700 m and an average diameter of ˜35 km. NE Anatahan is a prominent satellite volcano located 10 km NE of the island, but it is only 6% of Anatahan's volume (40 km 3 vs. 620 km 3). Seventy-eight submarine eruptive vents are mapped associated with lava flows and cones between depths of 350 and 2950 m, and 80% of these vents are located in a cluster on the east flank of the volcano. The distribution of cones and lava flows vs. depth suggests a possible change in eruptive style from explosive to effusive between 1500 and 2000 m. Eruptive vents below 2000 m have produced mostly lava flows. There is no evidence of major landslides on the submarine flanks of Anatahan volcano, in contrast to many basaltic islands and seamounts, suggesting that mass wasting at felsic oceanic arc volcanoes may be characterized by sediment flows of unconsolidated volcaniclastic debris instead of mass movements of relatively large intact blocks.

  9. The proximal part of the giant submarine Wailau landslide, Molokai, Hawaii

    USGS Publications Warehouse

    Clague, D.A.; Moore, J.G.

    2002-01-01

    The main break-in-slope on the northern submarine flank of Molokai at -1500 to -1250 m is a shoreline feature that has been only modestly modified by the Wailau landslide. Submarine canyons above the break-in-slope, including one meandering stream, were subaerially carved. Where such canyons cross the break-in-slope, plunge pools may form by erosion from bedload sediment carried down the canyons. West Molokai Volcano continued infrequent volcanic activity that formed a series of small coastal sea cliffs, now submerged, as the island subsided. Lavas exposed at the break-in-slope are subaerially erupted and emplaced tholeiitic shield lavas. Submarine rejuvenated-stage volcanic cones formed after the landslide took place and following at least 400-500 m of subsidence after the main break-in-slope had formed. The sea cliff on east Molokai is not the headwall of the landslide, nor did it form entirely by erosion. It may mark the location of a listric fault similar to the Hilina faults on present-day Kilauea Volcano. The Wailau landslide occurred about 1.5 Ma and the Kalaupapa Peninsula most likely formed 330??5 ka. Molokai is presently stable relative to sea level and has subsided no more than 30 m in the last 330 ka. At their peak, West and East Molokai stood 1.6 and 3 km above sea level. High rainfall causes high surface runoff and formation of canyons, and increases groundwater pressure that during dike intrusions may lead to flank failure. Active shield or postshield volcanism (with dikes injected along rift zones) and high rainfall appear to be two components needed to trigger the deep-seated giant Hawaiian landslides. ?? 2002 Elsevier Science B.V. All rights reserved.

  10. Eruptive xanthomas.

    PubMed

    Zaremba, Joanna; Zaczkiewicz, Andrzej; Placek, Waldemar

    2013-12-01

    Xanthomas are localized lipid deposits in the skin, tendons and subcutaneous tissue associated with lipid abnormality. The hyperlipidemia responsible for this disorder can be caused by a primary genetic defect, a secondary disorder, or both. That kind of skin exanthema may be the first signal of cardiovascular risk. We present a 24-year-old woman with a skin eruption that had appeared a few months earlier.

  11. Eruptive xanthomas

    PubMed Central

    Zaczkiewicz, Andrzej; Placek, Waldemar

    2013-01-01

    Xanthomas are localized lipid deposits in the skin, tendons and subcutaneous tissue associated with lipid abnormality. The hyperlipidemia responsible for this disorder can be caused by a primary genetic defect, a secondary disorder, or both. That kind of skin exanthema may be the first signal of cardiovascular risk. We present a 24-year-old woman with a skin eruption that had appeared a few months earlier. PMID:24494004

  12. Solidification and morphology of submarine lavas - A dependence on extrusion rate

    NASA Technical Reports Server (NTRS)

    Griffiths, Ross W.; Fink, Jonathan H.

    1992-01-01

    The results of recent laboratory experiments with wax extruded beneath relatively cold water may be extrapolated to predict the surface morphology of submarine lavas as a function of the extrusion rate and melt viscosity. The experiments with solidifying wax indicated that the surface morphology was controlled by a single parameter, the ratio of the time taken for the surface to solidify, and a time scale for lateral flow. For submarine basalts a solution of the cooling problem (which is dominated by conduction in the lava but convective heat transfer in the water) and estimates of lava viscosities place this parameter within the empirically determined 'pillowing' regime over a wide range of extrusion rates. This results is consistent with the observation that pillow basalts are the most common products of submarine eruptions. Smoother surfaces corresponding to the various types of submarine sheet flows are predicted for sufficiently rapid extrusion of basaltic magma. Still higher eruption rates in regions of low topographic relief may produce submarine lava lakes. Minimum emplacement times can be calculated for submarine volcanic constructs of a single lava flow type.

  13. Photogrammetry surveys and mosaic: a useful tool to monitor active zones. Applications to the Indonesian Lusi eruption site.

    NASA Astrophysics Data System (ADS)

    Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano; Iarocci, Alessandro; Caramelli, Antonio

    2016-04-01

    Unmanned and remotely operated aircraft showed to be an efficient and cost effective way to explore remote or extreme environments. Comparative photogrammetry studies are an efficient way to study and monitor he evolution of geologically active areas and ongoing events and are able to highlight details that are typically lost during traditional field campaigns. The Lusi mud eruption in eastern Java (Indonesia) represents one of the most spectacular geological phenomena that is ongoing since May 2006. In the framework of the Lusi Lab project (ERC grant n° 308126) we designed and constructed a multipurpose drone to survey the eruption site. Among the numerous other payloads, the Lusi drone is equipped with Olympus EPM-2 and Go-Pro Hero3 cameras that allow the operator to collect video stills, high quality pictures and to complete photogrammetry surveys. Targeted areas have been selected for detailed studies in the 7 km2 region inside the embankment that was prevent the mud burial of the settlements in the Sidoarjo Regency. The region is characterized by the presence of the Watukosek fault zone. This strike slip system originates from the Arjuno-Welirang volcanic complex and extends to the north east of the Java Island intersecting the Lusi crater. Therefore of particular interest are the faulted surveyed areas present around the Lusi crater inside the embankment. Results reveal a surprising accuracy for the collected mosaic. Multiple surveys are able to reveal the changes and the evolution of the fault through time and to indicate more active zones. In particular this type of survey can highlight the weakness zones and is thus useful to prevent potential geohazards in the area. The poster shows the aerial survey results, including a 3d-printed slice of LuSi, obtained combining 2500 16 Mp photographs. A 3d zoomed detail is also shown, evidencing the resolution that this technique can offer.

  14. Metal enrichment of soils following the April 2012-2013 eruptive activity of the Popocatépetl volcano, Puebla, Mexico.

    PubMed

    Rodriguez-Espinosa, P F; Jonathan, M P; Morales-García, S S; Villegas, Lorena Elizabeth Campos; Martínez-Tavera, E; Muñoz-Sevilla, N P; Cardona, Miguel Alvarado

    2015-11-01

    We analyzed the total (Zn, Pb, Ni, Hg, Cr, Cd, Cu, As) and partially leachable metals (PLMs) in 25 ash and soil samples from recent (2012-2013) eruptions of the Popocatépetl Volcano in Central Mexico. More recent ash and soil samples from volcanic activity in 2012-2013 had higher metal concentrations than older samples from eruptions in 1997 suggesting that the naturally highly volatile and mobile metals leach into nearby fresh water sources. The higher proportions of As (74.72%), Zn (44.64%), Cu (42.50%), and Hg (32.86%) reflect not only their considerable mobility but also the fact that they are dissolved and accumulated quickly following an eruption. Comparison of our concentration patterns with sediment quality guidelines indicates that the Cu, Cd, Cr, Hg, Ni, and Pb concentrations are higher than permissible limits; this situation must be monitored closely as these concentrations may reach lethal levels in the future.

  15. Volcanic-ash hazard to aviation during the 2003-2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    USGS Publications Warehouse

    Guffanti, M.; Ewert, J.W.; Gallina, G.M.; Bluth, G.J.S.; Swanson, G.L.

    2005-01-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  16. Volcanic-ash hazard to aviation during the 2003 2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Guffanti, Marianne; Ewert, John W.; Gallina, Gregory M.; Bluth, Gregg J. S.; Swanson, Grace L.

    2005-08-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO 2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  17. Seafloor characterization and benthic megafaunal distribution of an active submarine canyon and surrounding sectors: The case of Gioia Canyon (Southern Tyrrhenian Sea)

    NASA Astrophysics Data System (ADS)

    Pierdomenico, Martina; Martorelli, Eleonora; Dominguez-Carrió, Carlos; Gili, Josep Maria; Chiocci, Francesco Latino

    2016-05-01

    In this paper, we used multibeam bathymetry and backscatter, high-resolution seismic profiles, ROV video images and sediment samples to identify the principal morpho-sedimentary features and related megabenthic communities along the upper reach of the Gioia Canyon (depth < 600 m) and the surrounding shelf and slope areas. Interpretation of the multidisciplinary dataset was undertaken to evaluate the relationships between seafloor characteristics and faunal distribution along a submarine canyon in an active tectonic setting. The results from this study indicate that physical disturbance on the seafloor at the canyon head and surrounding shelf, related to high sedimentation rates and occasional turbidite flows, may limit the variability of megabenthic communities. Evidence of diffuse trawl marks over soft sedimentary bottoms indicates anthropogenic impact due to fishing activities, which could explain low abundances of megabenthic species observed locally. The canyon margins and flanks along the continental slope host octocorals Funiculina quadrangularis and Isidella elongata, species that are indicative of vulnerable marine ecosystems (VMEs) and relevant in terms of sustainable management priorities. At the Palmi Ridge, the occurrence of outcropping rocks and bottom currents related to the presence of Levantine Intermediate Waters, provide conditions for the development of hard-bottom assemblages, including the black coral Antipathella subpinnata and deep-sea sponges fields.

  18. Exercise Aboard Attack Submarines: Rationale and New Options

    DTIC Science & Technology

    2004-08-18

    exercise on submarines: for example, Bondi and Dougherty (3) found that crewmember activity during deployment decreased to about half of that seen...experience loss of physical fitness while underway. Bennett and co-workers (2) noted a 7% reduction of maximal oxygen consumption in non- exercising ... exercise in part because it is a “chore” instead of a fun activity . 5. The exercise equipment submarines carry is usually not designed for the

  19. Submarine lavas from Mauna Kea Volcano, Hawaii: Implications for Hawaiian shield stage processes

    NASA Astrophysics Data System (ADS)

    Yang, Huai-Jen; Frey, Frederick A.; Garcia, Michael O.; Clague, David A.

    1994-08-01

    The island of Hawaii is composed of five voluminous shields but only the youngest, active and well-exposed shields of Mauna Loa and Kilauea have been studied in detail. The shield lavas forming Kohala, Hualalai, and Mauna Kea are largely covered by postshield lavas with geochemical characteristics that differ from the shield lavas. In order to determine the geochemical characteristics of the Mauna Kea shield which is adjacent to the Kilauea and Mauna Loa shields, 12 Mauna Kea shield basalts dredged from the submarine east rift were analyzed for major and trace element contents and isotopic (Sr, Nd, and Pb) ratios. The lavas are MgO-rich (11 to 20%), submarine erupted, tholeiitic basalts, but they are not representative of crystallized MgO-rich melts. Their whole rock and mineral compositions are consistent with mixing of an evolved magma, less than 7% MgO, with a magma containing abundant olivine xenocrysts, probably disaggregated from a dunitic cumulate. At a given MgO content, some of the Mauna Kea whole rocks have lower abundances of CaO and higher abundances of incompatible elements. The evolved melt component in these lavas reflects significant fractionation of plagioclase and clinopyroxene and in some cases even the late crystallizing phases orthopyroxene and Fe-Ti oxide. Although these Mauna Kea lavas are not isotopically homogenous, in general their Sr, Nd, and Pb isotopic ratios overlap with the fields for lavas from Loihi and Kilauea volcanoes.

  20. Crater lake and post-eruption hydrothermal activity, El Chichón Volcano, Mexico

    USGS Publications Warehouse

    Casadevall, Thomas J.; de la Cruz-Reyna, Servando; Rose, William I.; Bagley, Susan; Finnegan, David L.; Zoller, William H.

    1984-01-01

    Explosive eruptions of Volcán El Chichón in Chiapas, Mexico on March 28 and April 3–4, 1982 removed 0.2 km3 of rock to form a 1-km-wide 300-m-deep summit crater. By late April 1982 a lake had begun to form on the crater floor, and by November 1982 it attained a maximum surface area of 1.4 × 105 m2 and a volume of 5 × 106 m3. Accumulation of 4–5 m of rainfall between July and October 1982 largely formed the lake. In January 1983, temperatures of fumaroles on the crater floor and lower crater walls ranged from 98 to 115°C; by October 1983 the maximum temperature of fumarole emissions was 99°C. In January 1983 fumarole gas emissions were greater than 99 vol. % H2O with traces of CO2, SO2, and H2S. The water of the lake was a hot (T = 52–58°C), acidic (pH = 0.5), dilute solution (34,046 mg L−1 dissolved solids; Cl/S = 20.5). Sediment from the lake contains the same silicate minerals as the rocks of the 1982 pyroclastic deposits, together with less than 1% of elemental sulfur. The composition and temperature of the lake water is attributed to: (1) solution of fumarole emissions; (2) reaction of lake water with hot rocks beneath the lake level; (3) sediments washed into the lake from the crater walls; (4) hydrothermal fluids leaching sediments and formational waters in sedimentary rocks of the basement; (5) evaporation; and (6) precipitation.

  1. [Functional status of submariners after short-time submarine raid in the sea].

    PubMed

    Kalmanov, A S; Pisarev, A A; Khankevich, Yu R; Bloshchinskii, I A; Valskii, A V

    2015-10-01

    Short-time sea submarine raids (from a few days to a few weeks), performed during one working cycle, negatively influence on the functional state of the submariners organism. Upon returning to the point of basing the crew involved in the maintenance of the material and performs preparations for further access to the sea. Due to the high workload and lack of time personnel are not held in any correctional and rehabilitation activities, and therefore the time for the next release in the sea functional condition and functional reserves of the body does not have time to fully recover. The transfer of the submarine crew and referral to medical and psychological rehabilitation assumed only after the end of the operating cycle after the crew the task of further voyage. Based on the assessment of the functional systems of the submarine after a short voyage concluded on the need to develop a set of remedial measures for the recovery of submarine crews during inter-cruise period.

  2. A potential submarine landslide tsunami in South China Sea

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Zhang, Y.; Switzer, A. D.

    2010-12-01

    Submarine earthquakes and submarine landslides are two main sources of tsunamis. Tsunami hazard modeling in the South China Sea has been primarily concerned with the potential large submarine earthquakes in the Manila trench. In contrast, evaluating the regional risk posed by tsunamis generated from submarine landslide is a new endeavor. At offshore south central Vietnam, bathymetric and seismic surveys show evidence of potentially tsunamigenic submarine landslides although their ages remain uncertain. We model two hypothetical submarine landslide events at a potential site on the heavily sediment laden, seismically active, steep continental slope offshore southeast Vietnam. Water level rises along the coast of Vietnam are presented for the potential scenarios, which indicate that the southeast coastal areas of Vietnam are at considerable risk of tsunami generated offshore submarine landslides. Key references: Kusnowidjaja Megawati, Felicia Shaw, Kerry Sieh, Zhenhua Huang, Tso-Ren Wu, Y. Lin, Soon Keat Tan and Tso-Chien Pan.(2009). Tsunami hazard from the subduction megathrust of the South China Sea, Part I, Source characterization and the resulting tsunami, Journal of Asian Earth Sciences, Vol. 36(1), pp. 13-20. Enet, F., Grilli, S.T. and Watts, P. (2003). Laboratory experiments for tsunami generated by underwater landslides: comparison with numerical modeling, In: Proceedings of 13th International Conference on Offshore and Polar Engineering, Honolulu, Hawaii, USA, pp. 372-379.

  3. Estimating eruption temperature from thermal emission spectra of lava fountain activity in the Erta'Ale (Ethiopia) volcano lava lake: Implications for observing Io's volcanoes

    USGS Publications Warehouse

    Davies, A.G.; Keszthelyi, L.; McEwen, A.S.

    2011-01-01

    We have analysed high-spatial-resolution and high-temporal-resolution temperature measurements of the active lava lake at Erta'Ale volcano, Ethiopia, to derive requirements for measuring eruption temperatures at Io's volcanoes. Lava lakes are particularly attractive targets because they are persistent in activity and large, often with ongoing lava fountain activity that exposes lava at near-eruption temperature. Using infrared thermography, we find that extracting useful temperature estimates from remote-sensing data requires (a) high spatial resolution to isolate lava fountains from adjacent cooler lava and (b) rapid acquisition of multi-color data. Because existing spacecraft data of Io's volcanoes do not meet these criteria, it is particularly important to design future instruments so that they will be able to collect such data. Near-simultaneous data at more than two relatively short wavelengths (shorter than 1 ??m) are needed to constrain eruption temperatures. Resolving parts of the lava lake or fountains that are near the eruption temperature is also essential, and we provide a rough estimate of the required image scale. ?? 2011 by the American Geophysical Union.

  4. Estimating eruption temperature from thermal emission spectra of lava fountain activity in the Erta'Ale (Ethiopia) volcano lava lake: Implications for observing Io's volcanoes

    USGS Publications Warehouse

    Davies, Ashley G.; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2011-01-01

    We have analysed high-spatial-resolution and high-temporal-resolution temperature measurements of the active lava lake at Erta'Ale volcano, Ethiopia, to derive requirements for measuring eruption temperatures at Io's volcanoes. Lava lakes are particularly attractive targets because they are persistent in activity and large, often with ongoing lava fountain activity that exposes lava at near-eruption temperature. Using infrared thermography, we find that extracting useful temperature estimates from remote-sensing data requires (a) high spatial resolution to isolate lava fountains from adjacent cooler lava and (b) rapid acquisition of multi-color data. Because existing spacecraft data of Io's volcanoes do not meet these criteria, it is particularly important to design future instruments so that they will be able to collect such data. Near-simultaneous data at more than two relatively short wavelengths (shorter than 1 μm) are needed to constrain eruption temperatures. Resolving parts of the lava lake or fountains that are near the eruption temperature is also essential, and we provide a rough estimate of the required image scale.

  5. Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity

    NASA Astrophysics Data System (ADS)

    van Otterloo, Jozua; Cas, Raymond A. F.; Sheard, Malcolm J.

    2013-08-01

    The ˜5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin-medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water-magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a "magmatic horizon" of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW-SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.

  6. High-resolution remote sensing data to monitor active volcanic areas: an application to the 2011-2015 eruptive activity of Mount Etna (Italy) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Marsella, Maria

    2016-10-01

    In volcanic areas, where it could be difficult to gain access to the most critical zones for carrying out direct surveys, remote sensing proved to have remarkable potentialities to follow the evolution of lava flow, as well as to detect slope instability processes induced by volcanic activity. By exploiting SAR and optical data a methodology for observing and quantifying eruptive processes was developed. The approach integrates HR optical images and SAR interferometric products and can optimize the observational capability of standard surveillance activities based on in-situ video camera network. A dedicated tool for mapping the evolution of the lava field, using both ground-based and satellite data, was developed and tested to map lava flows during the 2011-2015 eruptive activities. Ground based data were collected using the permanent ground NEtwork of Thermal and VIsible Sensors located on Mt. Etna (Etna_NETVIS) and allowed to downscale the information derived from satellite data and to integrate the satellite datasets in case of incomplete coverage or missing acquisitions. This work was developed in the framework of the EU-FP7 project "MED-SUV" (MEDiterranean SUpersite Volcanoes).

  7. Submarine geothermal resources

    USGS Publications Warehouse

    Williams, D.L.

    1976-01-01

    Approximately 20% of the earth's heat loss (or 2 ?? 1012 cal/s) is released through 1% of the earth's surface area and takes the form of hydrothermal discharge from young (Pleistocene or younger) rocks adjacent to active seafloor-spreading centers and submarine volcanic areas. This amount is roughly equivalent to man's present gross energy consumption rate. A sub-seafloor geothermal reservoir, to be exploitable under future economic conditions, will have to be hot, porous, permeable, large, shallow, and near an energy-deficient, populated land mass. Furthermore, the energy must be recoverable using technology achievable at a competitive cost and numerous environmental, legal and institutional problems will have to be overcome. The highest-temperature reservoirs should be found adjacent to the zones of the seafloor extension or volcanism that are subject to high sedimentation rates. The relatively impermeable sediments reduce hydrothermal-discharge flow rates, forcing the heat to be either conducted away or released by high-temperature fluids, both of which lead to reservoir temperatures that can exceed 300??C. There is evidence that the oceanic crust is quite permeable and porous and that it was amenable to deep (3-5 km) penetration by seawater at least some time in the early stages of its evolution. Most of the heat escapes far from land, but there are notable exceptions. For example, in parts of the Gulf of California, thermal gradients in the bottom sediments exceed 1??C/m. In the coastal areas of the Gulf of California, where electricity and fresh water are at a premium, this potential resource lies in shallow water (< 200 m) and within sight of land. Other interesting areas include the Sea of Japan, the Sea of Okhotsk and the Andaman Sea along the margins of the western Pacific, the Tyrrhenian Sea west of Italy, and the southern California borderland and west flank of the Juan de Fuca Ridge off the west coast of the United States. Many questions remain to be

  8. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  9. Volcanic Eruptions and Climate

    NASA Technical Reports Server (NTRS)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  10. Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Randall, M.; Parker, T.

    2014-12-01

    The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (volcview.wr.usgs.gov), a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and

  11. [Medical-physiological characteristics of combat training of nuclear-power submarine crews].

    PubMed

    Dovgusha, V V; Myznikov, I L; Shalabodov, S A; Bumaĭ, O K

    2009-10-01

    The article presents an observe of general questions of peculiarities of military-professional activity of submarine staff These questions are defining value in ideology of medical supply of submarine troops of NAVY in now-days conditions. The article also presents the statistics of morbidity in long termed sails for last forty years, it's dynamics by different categories of sail staff, on different stages of combat training activity in dependence of perioditation of work cycle of submarine staff The authors have examined modern condition of medical supply of submarines; have presented statistics of quality indexes of health of submarine staff The authors have formed main problems of medical supply of submarines and have proposed ways of their solving on modern stage.

  12. Current submarine atmosphere control technology.

    PubMed

    Mazurek, W

    1998-01-01

    Air purification in submarines was introduced towards the end of World War II and was limited to the use of soda lime for the removal of carbon dioxide and oxygen candles for the regeneration of oxygen. The next major advances came with the advent of nuclear-powered submarines. These included the development of regenerative and, sometimes, energy-intensive processes for comprehensive atmosphere revitalization. With the present development of conventional submarines using air-independent propulsion there is a requirement for air purification similar to that of the nuclear-powered submarines but it is constrained by limited power and space. Some progress has been made in the development of new technology and the adoption of air purification equipment used in the nuclear-powered submarines for this application.

  13. Flushing submarine canyons.

    PubMed

    Canals, Miquel; Puig, Pere; de Madron, Xavier Durrieu; Heussner, Serge; Palanques, Albert; Fabres, Joan

    2006-11-16

    The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean(1). During high sea-level stands, such as at present, these canyons still experience occasional sediment gravity flows(2-5), which are usually thought to be triggered by sediment failure or river flooding. Here we present observations from a submarine canyon on the Gulf of Lions margin, in the northwest Mediterranean Sea, that demonstrate that these flows can also be triggered by dense shelf water cascading (DSWC)-a type of current that is driven solely by seawater density contrast. Our results show that DSWC can transport large amounts of water and sediment, reshape submarine canyon floors and rapidly affect the deep-sea environment. This cascading is seasonal, resulting from the formation of dense water by cooling and/or evaporation, and occurs on both high- and low-latitude continental margins(6-8). DSWC may therefore transport large amounts of sediment and organic matter to the deep ocean. Furthermore, changes in the frequency and intensity of DSWC driven by future climate change may have a significant impact on the supply of organic matter to deep-sea ecosystems and on the amount of carbon stored on continental margins and in ocean basins.

  14. Carbonate-derived CO 2 purging magma at depth: Influence on the eruptive activity of Somma-Vesuvius, Italy

    NASA Astrophysics Data System (ADS)

    Dallai, Luigi; Cioni, Raffaello; Boschi, Chiara; D'Oriano, Claudia

    2011-10-01

    Mafic phenocrysts from selected products of the last 4 ka volcanic activity at Mt. Vesuvius were investigated for their chemical and O-isotope composition, as a proxy for primary magmas feeding the system. 18O/ 16O ratios of studied Mg-rich olivines suggest that near-primary shoshonitic to tephritic melts experienced a flux of sedimentary carbonate-derived CO 2, representing the early process of magma contamination in the roots of the volcanic structure. Bulk carbonate assimilation (physical digestion) mainly occurred in the shallow crust, strongly influencing magma chamber evolution. On a petrological and geochemical basis the effects of bulk sedimentary carbonate digestion on the chemical composition of the near-primary melts are resolved from those of carbonate-released CO 2 fluxed into magma. An important outcome of this process lies in the effect of external CO 2 in changing the overall volatile solubility of the magma, enhancing the ability of Vesuvius mafic magmas to rapidly rise and explosively erupt at the surface.

  15. The Initiation of Submarine Debris Flow after 2006 Pingtung Earthquake Offshore Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Su, C. C.; Liu, J. T.; Chiu, H. T.; Li, S. J.

    2014-12-01

    On 26-27 December 2006, a series of submarine cables were damaged offshore southwestern Taiwan from Gaoping Slope to the northern terminus of the Manila Trench. The cable breakages were caused by gravity flows which triggered by the Pingtung earthquake doublet occurred on 26 December 2006 at 20:26 (21.9°N, 120.6°E; ML 7.0) and 20:34 (21.97°N, 120.42°E; ML 7.0) offshore of Fangliao Twonship and meanwhile the local fishermen reported disturbed waters at the head of Fangliao submarine canyon. Although many researchers conjectured the disturbed waters may cause by the eruption of submarine volcanoes which has been widely discovered off the southwestern Taiwan, the actual mechanism is still unclear. In previous studies, a series of faults, liquefaction strata, pockmarks and acoustically transparent sediments with doming structures were observed at the head of Fanliao submarine canyon and may highly related to the submarine groundwater discharge off southwestern Taiwan. Recently, further multi-beam surveys were conducted at the east of Fangliao submarine canyon head and the result shows large area of seafloor subsidence after Pingtung Earthquake. The area of subsidence is over 60 km2 with maximum depth around 5 meters. The north end of the subsidence is connected to the Fangliao submarine canyon where the first cable was failed (CH-US CN-W2-1: 22°13.287'N, 120°33.722'E) after Pingtung Earthquake. All the evidences point out the large earthquake might triggered liquefaction process and generated large debris flow and swept the submarine cables away from the Fangliao submarine canyon head to the abyss.

  16. Submarine Pyroclastic Flow Deposits; July 2003 Dome Collapse Event of the Soufrière Hills Volcano, Montserrat, West Indies

    NASA Astrophysics Data System (ADS)

    Trofimovs, J.; Sparks, S.; Talling, P.

    2006-12-01

    What happens when pyroclastic flows enter the ocean? To date, the subject of submarine pyroclastic flow behaviour has been controversial. Ambiguity arises from inconclusive evidence of a subaqueous depositional environment in ancient successions, to difficulty in sampling the in situ products of modern eruptions. A research voyage of the RRS James Clark Ross (9-18 May 2005) sampled 52 sites offshore from the volcanic island of Montserrat. The Soufrière Hills volcano, Montserrat, has been active since 1995 with eruptive behaviour dominated by andesite lava dome growth and collapse. Over 90% of the pyroclastic material produced has been deposited into the ocean. In July 2003 the Soufrière Hills volcano produced the largest historically documented dome collapse event. 210 x 106 m3 of pyroclastic material avalanched down the Tar River Valley, southeast Montserrat, to be deposited into the ocean. Bathymetric imaging and coring of offshore pyroclastic deposits, with a specific focus on the July 2003 units, reveals that the pyroclastic flows mix rapidly and violently with the water as they enter the ocean. Mixing takes place between the shore and 500 m depth where the deposition of basal coarse-grained parts of the flow initiates on slopes of 15° or less. The coarse components (pebbles to boulders) are deposited proximally from dense basal slurries to form steep sided, near linear ridges that amalgamate to form a kilometer-scale submarine fan. These proximal deposits contain <1% of ash-grade material. The finer components (dominantly ash-grade) are mixed into the overlying water column to form turbidity currents that flow distances >40 km from source. The total volume of pyroclastic material deposited within the submarine environment during this event exceeds 170 x 106 m3, with 65% deposited in proximal lobes and 35% deposited as distal turbidites. This broadly correlates with the block and ash components respectively, of the source subaerial pyroclastic flow. However

  17. Subaqueous explosive eruption and welding of pyroclastic deposits.

    PubMed

    Kokelaar, P; Busby, C

    1992-07-10

    Silicic tuffs infilling an ancient submarine caldera, at Mineral King in California, show microscopic fabrics indicative of welding of glass shards and pumice at temperatures >500 degrees C. The occurrence indicates that subaqueous explosive eruption and emplacement of pyroclastic materials can occur without substantial admixture of the ambient water, which would cause chilling. Intracaldera progressive aggradation of pumice and ash from a thick, fast-moving pyroclastic flow occurred during a short-lived explosive eruption of approximately 26 cubic kilometers of magma in water >/=150 meters deep. The thickness, high velocity, and abundant fine material of the erupted gas-solids mixture prevented substantial incorporation of ambient water into the flow. Stripping of pyroclasts from upper surfaces of subaqueous pyroclastic flows in general, both above the vent and along any flow path, may be the main process giving rise to buoyant-convective subaqueous eruption columns and attendant fallout deposits.

  18. Magma storage and migration associated with the 2011-2012 El Hierro eruption: Implications for crustal magmatic systems at oceanic island volcanoes

    NASA Astrophysics Data System (ADS)

    González, Pablo J.; Samsonov, Sergey V.; Pepe, Susi; Tiampo, Kristy F.; Tizzani, Pietro; Casu, Francesco; Fernández, José; Camacho, Antonio G.; Sansosti, Eugenio

    2013-08-01

    Starting in July 2011, anomalous seismicity was observed at El Hierro Island, a young oceanic island volcano. On 12 October 2011, the process led to the beginning of a submarine NW-SE fissural eruption at ~15 km from the initial earthquake loci, indicative of significant lateral magma migration. Here we conduct a multifrequency, multisensor interferometric analysis of spaceborne radar images acquired using three different satellite systems (RADARSAT-2, ENVISAT, and COSMO-SkyMed (Constellation of Small Satellites for Mediterranean Basin Observation)). The data fully captures both the pre-eruptive and coeruptive phases. Elastic modeling of the ground deformation is employed to constrain the dynamics associated with the magmatic activity. This study represents the first geodetically constrained active magmatic plumbing system model for any of the Canary Islands volcanoes, and one of the few examples of submarine volcanic activity to date. Geodetic results reveal two spatially distinct shallow (crustal) magma reservoirs, a deeper central source (9.5 ± 4.0 km), and a shallower magma reservoir at the flank of the southern rift (4.5 ± 2.0 km). The deeper source was recharged, explaining the relatively long basaltic eruption, contributing to the observed island-wide uplift processes, and validating proposed active magma underplating. The shallowest source may be an incipient reservoir that facilitates fractional crystallization as observed at other Canary Islands. Data from this eruption supports a relationship between the depth of the shallow crustal magmatic systems and the long-term magma supply rate and oceanic lithospheric age. Such a relationship implies that a factor controlling the existence/depth of shallow (crustal) magmatic systems in oceanic island volcanoes is the lithosphere thermomechanical behavior.

  19. Seismogenic structures activated during the pre-eruptive and intrusive swarms of Piton de la Fournaise volcano (La Réunion island) between 2008 and 2011

    NASA Astrophysics Data System (ADS)

    Battaglia, J.; Brenguier, F.

    2011-12-01

    Piton de la Fournaise is a frequently active basaltic volcano with more than 30 fissure eruptions since 1998. These eruptions are always preceded by pre-eruptive swarms of volcano-tectonic earthquakes which accompany dike propagation. Occasionally, intrusion swarms occur without leading to any eruption. From October 2008 to May 2011, as part of the research project Undervolc, a temporary network of 15 broadband stations has been installed on the volcano to complement the local monitoring network. We examined in detail the 6 intrusive and 5 pre-eruptive swarms which occurred during the temporary experiment. All the crises lasted for a few hours and only included shallow events clustered below the summit craters, around and above sea level, showing no signs of deeper magma transfers. These characteristics are common to most swarms observed at Piton de la Fournaise arising questions about the origin of the seismicity which seems to be poorly linked with dike propagation. With the aim to identify the main seismogenic structures active during the swarms, we applied precise earthquake detection and classification techniques based on waveform cross-correlation. For each swarm, the onsets of all transients, including small amplitude ones, have been precisely detected at a single station by scanning the continuous data with reference waveforms. The classification of the detected transients indicates the presence of several families of similar earthquakes. The two main families (F01 and F02) include several hundred events. They are systematically activated at the beginning of each pre-eruptive swarm but are inactive during the intrusive ones. They group more than 50 percent of the detected events for the corresponding crises. The other clusters are mostly associated with single swarms. To determine the spatial characteristics of the structures corresponding to the main families, we applied precise relocation techniques. Based on the one-station classification, the events

  20. Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna

    SciTech Connect

    Pieri, D.C.; Glaze, L.S.; Abrams, M.J. )

    1990-10-01

    The thermal budget of an active lava flow observed on 20 June 1984 from the Southeast crater of Mount Etna, Sicily, Italy, was analyzed from data taken by the Landsat Thematic Mapper. The Thematic Mapper images constitute one of the few satellite data sets of sufficient spatial and spectral resolution to allow calibrated measurements on the distribution and intensity of thermal radiation from active lava flows. Using radiance data from two reflective infrared channels, we can estimate the temperature and areas of the hottest parts of the active flow, which correspond to hot (>500{degree}C) fractures or zones at the flow surface. Using this techniques, we estimate that only 10%-20% of the total radiated thermal power output is emitted by hot zones or fractures, which constitute less than 1% of the observed surface area. Generally, it seems that only where hot fractures or zones constitute greater than about 1% of the surface area of the flow will losses from such features significantly reduce internal flow temperatures. Using our radiance observations as boundary conditions for a multicomponent thermal model of flow interior temperature, we infer that, for the parts of this flow subject to analysis, the boundary layer and flow thickness effects dominate over radiant zones in controlling the depression of core temperature.

  1. Filament Eruption without Coronal Mass Ejection

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad; Moore, Ronald L.

    2003-01-01

    We report characteristics of quiescent filament eruptions that were not associated with coronal mass ejections (CMEs). We examined 12 quiescent filament eruptions, each of which was located far from disk center (20.7 R(sub sun)) in diffuse remnant magnetic fields of decayed active regions, was well observed in full-disk movies in Ha and Fe XI, and had good coronagraph coverage. Of the 12 events, 9 were associated with CMEs and 3 were not. Even though the two kinds of eruption were indistinguishable in their magnetic setting and in the eruptive motion of the filament in the Ha movies, each of the CME-producing eruptions produced a two-ribbon flare in Ha and a coronal arcade and/or two-ribbon flare in Fe XII, and each of the non-CME-producing eruptions did not. From this result, and the appearance of the eruptive motion in the Fe XII movies, we conclude that the non-CME-associated filament eruptions are confined eruptions like the confined filament eruptions in active regions.

  2. Independent CMEs from a Single Solar Active Region - The Case of the Super-Eruptive NOAA AR11429

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios; Patsourakos, Spiros; Vourlidas, Angelos

    2014-06-01

    In this investigation we study AR 11429, the origin of the twin super-fast CME eruptions of 07-Mar-2012. This AR fulfills all the requirements for the 'perfect storm'; namely, Hale's law incompatibility and a delta-magnetic configuration. In fact, during its limb-to-limb transit, AR 11429 spawned several eruptions which caused geomagnetic storms, including the biggest in Cycle 24 so far. Magnetic Flux Ropes (MFRs) are twisted magnetic structures in the corona, best seen in ~10MK hot plasma emission and are often considered as the culprit causing such super-eruptions. However, their 'dormant' existence in the solar atmosphere (i.e. prior to eruptions), is a matter of strong debate. Aided by multi-wavelength and multi-spacecraft observations (SDO/HMI & AIA, HINODE/SOT/SP, STEREO B/EUVI) and by using a Non-Linear Force-Free (NLFFF) model for the coronal magnetic field, our work shows two separate, weakly-twisted magnetic flux systems which suggest the existence of possible pre-eruption MFRs.

  3. Exploring the Gas Chemistry of Old Submarine Technologies Using Plastic Bottles as Reaction Vessels and Models

    ERIC Educational Resources Information Center

    Horikoshi, Ryo; Takeiri, Fumitaka; Kobayashi, Yoji; Kageyama, Hiroshi

    2016-01-01

    We describe an activity that is suitable for high school students and makes use of plastic bottles. This activity allows students to familiarize themselves with gas chemistry by introducing technologies that were applied in old submarine systems. Plastic bottles, which are representative of submarines, are used as reaction vessels. Three simple…

  4. Cardiometabolic Health in Submariners Returning from a 3-Month Patrol

    PubMed Central

    Gasier, Heath G.; Young, Colin R.; Gaffney-Stomberg, Erin; McAdams, Douglas C.; Lutz, Laura J.; McClung, James P.

    2016-01-01

    Confined space, limited exercise equipment, rotating shift work and reduced sleep may affect cardiometabolic health in submariners. To test this hypothesis, 53 male U.S. Submariners (20–39 years) were studied before and after a 3-month routine submarine patrol. Measures included anthropometrics, dietary and physical activity, biomarkers of cardiometabolic health, energy and appetite regulation, and inflammation. Before deployment, 62% of submariners had a body fat % (BF%) ≥ 25% (obesity), and of this group, 30% met the criteria for metabolic syndrome. In obese volunteers, insulin, the homeostatic model assessment of insulin resistance (HOMA-IR), leptin, the leptin/adiponectin ratio, and pro-inflammatory chemokines growth-related oncogene and macrophage-derived chemokine were significantly higher compared to non-obese submariners. Following the patrol, a significant mean reduction in body mass (5%) and fat-mass (11%) occurred in the obese group as a result of reduced energy intake (~2000 kJ) during the patrol; and, independent of group, modest improvements in serum lipids and a mean reduction in interferon γ-induced protein 10 and monocyte chemotactic protein 1 were observed. Since 43% of the submariners remained obese, and 18% continued to meet the criteria for metabolic syndrome following the patrol, the magnitude of weight loss was insufficient to completely abolish metabolic dysfunction. Submergence up to 3-months, however, does not appear to be the cause of obesity, which is similar to that of the general population. PMID:26867201

  5. Jupiter Eruptions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover

    Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers.

    This visible-light image is from NASA's Hubble Space Telescope taken on May 11, 2007. It shows the turbulent pattern generated by the two plumes on the upper left part of Jupiter.

    Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena.

    According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vi gorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  6. Formation and Eruption of a Flux Rope from the Sigmoid Active Region NOAA 11719 and Associated M6.5 Flare: A Multi-wavelength Study

    NASA Astrophysics Data System (ADS)

    Joshi, Bhuwan; Kushwaha, Upendra; Veronig, Astrid M.; Dhara, Sajal Kumar; Shanmugaraju, A.; Moon, Yong-Jae

    2017-01-01

    We investigate the formation, activation, and eruption of a flux rope (FR) from the sigmoid active region NOAA 11719 by analyzing E(UV), X-ray, and radio measurements. During the pre-eruption period of ∼7 hr, the AIA 94 Å images reveal the emergence of a coronal sigmoid through the interaction between two J-shaped bundles of loops, which proceeds with multiple episodes of coronal loop brightenings and significant variations in the magnetic flux through the photosphere. These observations imply that repetitive magnetic reconnections likely play a key role in the formation of the sigmoidal FR in the corona and also contribute toward sustaining the temperature of the FR higher than that of the ambient coronal structures. Notably, the formation of the sigmoid is associated with the fast morphological evolution of an S-shaped filament channel in the chromosphere. The sigmoid activates toward eruption with the ascent of a large FR in the corona, which is preceded by the decrease in photospheric magnetic flux through the core flaring region, suggesting tether-cutting reconnection as a possible triggering mechanism. The FR eruption results in a two-ribbon M6.5 flare with a prolonged rise phase of ∼21 minutes. The flare exhibits significant deviation from the standard flare model in the early rise phase, during which a pair of J-shaped flare ribbons form and apparently exhibit converging motions parallel to the polarity inversion line, which is further confirmed by the motions of hard X-ray footpoint sources. In the later stages, the flare follows the standard flare model and the source region undergoes a complete sigmoid-to-arcade transformation.

  7. Variations in eruption style during the 1931 A.D. eruption of Aniakchak volcano, Alaska

    USGS Publications Warehouse

    Nicholson, Robert S.; Gardner, James E.; Neal, Christina A.

    2011-01-01

    The 1931 A.D. eruption of Aniakchak volcano, Alaska, progressed from subplinian to effusive eruptive style and from trachydacite to basaltic andesite composition from multiple vent locations. Eyewitness accounts and new studies of deposit stratigraphy provide a combined narrative of eruptive events. Additional field, compositional, grain size, componentry, density, and grain morphology data document the influences on changing eruptive style as the eruption progressed. The eruption began on 1 May 1931 A.D. when a large subplinian eruption column produced vesicular juvenile-rich tephra. Subsequent activity was more intermittent, as magma interacted with groundwater and phreatomagmatic ash and lithic-rich tephra was dispersed up to 600 km downwind. Final erupted products were more mafic in composition and the eruption became more strombolian in style. Stratigraphic evidence suggests that two trachydacitic lava flows were erupted from separate but adjacent vents before the phreatomagmatic phase concluded and that basaltic andesite lava from a third vent began to effuse near the end of explosive activity. The estimated total bulk volume of the eruption is 0.9 km3, which corresponds to approximately 0.3 km3 of magma. Eruption style changes are interpreted as follows: (1) a decrease in magma supply rate caused the change from subplinian to phreatomagmatic eruption; (2) a subsequent change in magma composition caused the transition from phreatomagmatic to strombolian eruption style. Additionally, the explosion and effusion of a similar magma composition from three separate vents indicates how the pre-existing caldera structure controlled the pathway of shallow magma ascent, thus influencing eruption style.

  8. Variations in eruption style during the 1931A.D. eruption of Aniakchak volcano, Alaska

    USGS Publications Warehouse

    Nicholson, R.S.; Gardner, J.E.; Neal, C.A.

    2011-01-01

    The 1931A.D. eruption of Aniakchak volcano, Alaska, progressed from subplinian to effusive eruptive style and from trachydacite to basaltic andesite composition from multiple vent locations. Eyewitness accounts and new studies of deposit stratigraphy provide a combined narrative of eruptive events. Additional field, compositional, grain size, componentry, density, and grain morphology data document the influences on changing eruptive style as the eruption progressed. The eruption began on 1 May 1931A.D. when a large subplinian eruption column produced vesicular juvenile-rich tephra. Subsequent activity was more intermittent, as magma interacted with groundwater and phreatomagmatic ash and lithic-rich tephra was dispersed up to 600km downwind. Final erupted products were more mafic in composition and the eruption became more strombolian in style. Stratigraphic evidence suggests that two trachydacitic lava flows were erupted from separate but adjacent vents before the phreatomagmatic phase concluded and that basaltic andesite lava from a third vent began to effuse near the end of explosive activity. The estimated total bulk volume of the eruption is 0.9km3, which corresponds to approximately 0.3km3 of magma. Eruption style changes are interpreted as follows: (1) a decrease in magma supply rate caused the change from subplinian to phreatomagmatic eruption; (2) a subsequent change in magma composition caused the transition from phreatomagmatic to strombolian eruption style. Additionally, the explosion and effusion of a similar magma composition from three separate vents indicates how the pre-existing caldera structure controlled the pathway of shallow magma ascent, thus influencing eruption style. ?? 2011 Elsevier B.V..

  9. Can tides influence volcanic eruptions?

    NASA Astrophysics Data System (ADS)

    Girona, T.; Huber, C.

    2015-12-01

    The possibility that the Moon-Sun gravitational force can affect terrestrial volcanoes and trigger eruptions is a controversial issue that has been proposed since ancient times, and that has been widely debated during the last century. The controversy arises mainly from two reasons. First, the days of initiation of eruptions are not well known for many volcanoes, and thus a robust statistical comparison with tidal cycles cannot be performed for many of them. Second, the stress changes induced by tides in the upper crust are very small (10-3 MPa) compared to the tensile strength of rocks (~ 10-1-10 MPa), and hence the mechanism by which tidal stresses might trigger eruptions is unclear. In this study, we address these issues for persistently degassing volcanoes, as they erupt frequently and thus the initiation time of a significant number of eruptions (>30) is well known in several cases (9). In particular, we find that the occurrence of eruptions within ±2 days from neap tides (first and third quarter moon) is lower than 34% (e.g., 29% for Etna, Italy; 28% for Merapi, Indonesia), which is the value expected if eruptions occur randomly with no external influence. To understand this preference for erupting far away from neap tides, we have developed a new lumped-parameter model that accounts for the deformation of magma reservoirs, a partially open conduit, and a gas layer where bubbles accumulate beneath volcanic craters before being released. We demonstrate that this system reservoir-conduit-gas layer acts as an amplifier of the tidal stresses, such that, when a volcano approaches to a critical state, the gas overpressure beneath the crater can reach up to several MPa more during a spring tide (full and new moon) than during a neap tide. This amplification mechanism can explain why active volcanoes are sensitive to the moon cycles.

  10. Eruption Source Parameters for Recent Icelandic Eruptions and Their Implications for Duration and Termination of Events

    NASA Astrophysics Data System (ADS)

    Thordarson, T.

    2015-12-01

    Since 1947, Iceland has featured 26 volcanic eruptions (2.5 eruptions/year). These include events at the central volcanoes Hekla, Eyjafjallajökull, Grímsvötn and Askja and the fissure eruptions of Surtsey 1963-67 and Nornahraun 2014-15. Of these, 11 are effusive, 8 are mixed (explosive to effusive) and 6 are within-glacier events. Surtsey is the only emergent submarine event (1309 days; 1 km3). Duration of effusive eruptions spans 0.3 to 181 days, with volume, average and peak magma discharge ranging from 10-5-1.6 km3, 0.5-123 m3/s and 1-370 m3/s. Similarly, the mixed events have durations spanning 2.8 to 393 days with volume, average and peak magma discharge ranging from 0.03-0.87 km3, 14-617 m3/s and 50-35600 m3/s. Duration of within-glacier events spans 4.4 to 14 days with volume, average and peak magma discharge ranging from 0.05-0.27 km3, 9-440 m3/s and 400-14000 m3/s. The discharge profiles for these eruptions are highly variable. Mixed eruptions often feature intense discharge (1500 to 40000 m3/s) at the onset of eruption (lasting hours), but some start in a much more subdued manner (500-1000 m3/s). This initial phase is followed by low (3-20 m3/s) magma discharge lasting for weeks to months that normally terminates abruptly. The onset of effusive eruptions is typified by modest discharge (10's to 100's m3/s). They can be very abrupt (<1 day), or drawn out for weeks to months with discharge dropping steadily throughout. The within-glacier events are short-lived explosive events, although with highly varied intensity (see above), and appear to terminate rather abruptly. Plots of eruption duration against size or discharge exhibits no systematic correlation suggesting that none of the eruption source parameters exert principal control on eruption duration or termination. However, these parameters may play a role in conjunction with other factors such as the nature of the lithostratigraphic succession and the local stress field at the eruption site.

  11. Assessing Eruption Column Height in Ancient Flood Basalt Eruptions

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2015-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained

  12. Assessing eruption column height in ancient flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2017-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at ∼ 45 ° N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the ∼ 180km of known Roza fissure length could have supported ∼36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (∼ 66Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained flood basalt eruptions could have influenced

  13. Gravity changes and deformation at Kīlauea Volcano, Hawaii, associated with summit eruptive activity, 2009-2012

    USGS Publications Warehouse

    Bagnardi, Marco; Poland, Michael P.; Carbone, Daniele; Baker, Scott; Battaglia, Maurizio; Amelung, Falk

    2014-01-01

    Analysis of microgravity and surface displacement data collected at the summit of Kīlauea Volcano, Hawaii (USA), between December 2009 and November 2012 suggests a net mass accumulation at ~1.5 km depth beneath the northeast margin of Halema‘uma‘u Crater, within Kīlauea Caldera. Although residual gravity increases and decreases are accompanied by periods of uplift and subsidence of the surface, respectively, the volume change inferred from the modeling of interferometric synthetic aperture radar deformation data can account for only a small portion (as low as 8%) of the mass addition responsible for the gravity increase. We propose that since the opening of a new eruptive vent at the summit of Kīlauea in 2008, magma rising to the surface of the lava lake outgasses, becomes denser, and sinks to deeper levels, replacing less dense gas-rich magma stored in the Halema‘uma‘u magma reservoir. In fact, a relatively small density increase (<200 kg m−3) of a portion of the reservoir can produce the positive residual gravity change measured during the period with the largest mass increase, between March 2011 and November 2012. Other mechanisms may also play a role in the gravity increase without producing significant uplift of the surface, including compressibility of magma, formation of olivine cumulates, and filling of void space by magma. The rate of gravity increase, higher than during previous decades, varies through time and seems to be directly correlated with the volcanic activity occurring at both the summit and the east rift zone of the volcano.

  14. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    SciTech Connect

    Vemareddy, P.; Zhang, J.

    2014-12-20

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  15. Using a combined population-based and kinetic modelling approach to assess timescales and durations of magma migration activities prior to the 1669 flank eruption of Mt. Etna

    NASA Astrophysics Data System (ADS)

    Kahl, M.; Morgan, D. J.; Viccaro, M.; Dingwell, D. B.

    2015-12-01

    The March-July eruption of Mt. Etna in 1669 is ranked as one of the most destructive and voluminous eruptions of Etna volcano in historical times. To assess threats from future eruptions, a better understanding of how and over what timescales magma moved underground prior to and during the 1669 eruption is required. We present a combined population based and kinetic modelling approach [1-2] applied to 185 olivine crystals that erupted during the 1669 eruption. By means of this approach we provide, for the first time, a dynamic picture of magma mixing and magma migration activity prior to and during the 1669 flank eruption of Etna volcano. Following the work of [3] we have studied 10 basaltic lava samples (five SET1 and five SET2 samples) that were erupted from different fissures that opened between 950 and 700 m a.s.l. Following previous work [1-2] we were able to classify different populations of olivine based on their overall core and rim compositional record and the prevalent zoning type (i.e. normal vs. reverse). The core plateau compositions of the SET1 and SET2 olivines range from Fo70 up to Fo83 with a single peak at Fo75-76. The rims differ significantly and can be distinguished into two different groups. Olivine rims from the SET1 samples are generally more evolved and range from Fo50 to Fo64 with a maximum at Fo55-57. SET2 olivine rims vary between Fo65-75 with a peak at Fo69. SET1 and SET2 olivines display normal zonation with cores at Fo75-76 and diverging rim records (Fo55-57 and Fo65-75). The diverging core and rim compositions recorded in the SET1 and SET2 olivines can be attributed to magma evolution possibly in three different magmatic environments (MEs): M1 (=Fo75-76), M2 (=Fo69) and M3 (=Fo55-57) with magma transfer and mixing amongst them. The MEs established in this study differ slightly from those identified in previous works [1-2]. We note the relative lack of olivines with Fo-rich core and rim compositions indicating a major mafic magma

  16. Postglacial eruptive history, geochemistry, and recent seismicity of Aniakchak volcano, Alaska Peninsula

    USGS Publications Warehouse

    Bacon, Charles R.; Neal, Christina A.; Miller, Thomas P.; McGimsey, Robert G.; Nye, Christopher J.

    2014-01-01

    Future volcanic activity of Aniakchak could include hydromagmatic explosions, possibly followed by effusion or strombolian eruption of basaltic andesite to Plinian eruption of dacite. Another voluminous eruption, such as Aniakchak II, is considered unlikely in the near future.

  17. Controls on plan-form evolution of submarine channels

    NASA Astrophysics Data System (ADS)

    Imran, J.; Mohrig, D. C.

    2014-12-01

    Vertically aggrading sinuous channels constitute a basic building block of modern submarine fans and the greater continental slope. Interpretation of seismically imaged channels reveals a significant diversity in internal architecture, as well as important similarities and differences in the evolution of submarine channels relative to better studied rivers. Many submarine channel cross sections possess a 'gull wing' shape. Successive stacking of such channels demonstrates that systematic bank erosion is not required in order for lateral migration to occur. The lateral shift of such aggrading channels, however, is expected to be much less dynamic than in the case of terrestrial rivers. Recent high-resolution 3D seismic data from offshore Angola and an upstream segment of the Bengal Submarine Fan show intensely meandering channels that experience considerable lateral shifting during periods of active migration within submarine valleys. The cross sections of the actively migrating channels are similar to meandering river channels characterized by an outer cut-bank and inner-bank accretion. In submarine channels, the orientation of the secondary flow can be river-like or river-reverse depending on the channel gradient, cross sectional shape, and the adaptation length of the channel bend. In river channels, a single circulation cell commonly occupies the entire channel relief, redistributing the bed-load sediment across the channel, and influencing the thread of high velocity and thus the plan-form evolution of the channel. In submarine environments, the height of the circulation cell will be significantly smaller than channel relief, thus leading to development of lower relief point bars from bed-load transport. Nevertheless these "underfit" bars may play an important role in plan-form evolution of submarine channels. In rivers and submarine channels, the inclined surface accretion can be constructed via pure bed-load, suspended-load, or a combination of both transport

  18. Solar Eruption and Local Magnetic Parameters

    NASA Astrophysics Data System (ADS)

    Lee, Jeongwoo; Liu, Chang; Jing, Ju; Chae, Jongchul

    2016-11-01

    It is now a common practice to use local magnetic parameters such as magnetic decay index for explaining solar eruptions from active regions, but there can be an alternative view that the global properties of the source region should be counted as a more important factor. We discuss this issue based on Solar Dynamics Observatory observations of the three successive eruptions within 1.5 hr from the NOAA active region 11444 and the magnetic parameters calculated using the nonlinear force-free field model. Two violent eruptions occurred in the regions with relatively high magnetic twist number (0.5-1.5) and high decay index (0.9-1.1) at the nominal height of the filament (12″) and otherwise a mild eruption occurred, which supports the local-parameter paradigm. Our main point is that the time sequence of the eruptions did not go with these parameters. It is argued that an additional factor, in the form of stabilizing force, should operate to determine the onset of the first eruption and temporal behaviors of subsequent eruptions. As supporting evidence, we report that the heating and fast plasma flow continuing for a timescale of an hour was the direct cause for the first eruption and that the unidirectional propagation of the disturbance determined the timing of subsequent eruptions. Both of these factors are associated with the overall magnetic structure rather than local magnetic properties of the active region.

  19. Late Quaternary reef growth history of Les Saintes submarine plateau: a key to constrain active faulting kinematics in Guadeloupe (FWI)

    NASA Astrophysics Data System (ADS)

    Leclerc, F.; Feuillet, N.; Deplus, C.; Cabioch, G.; Tapponnier, P.; LeBrun, J.; Bazin, S.; Beauducel, F.; Boudon, G.; Le Friant, A.; De Min, L.; Melezan, D.

    2012-12-01

    hazard. Joint analysis of the aftershocks sequence and the fault map provide a good image of the fault system recent activity. Finally, we deduced fault kinematics with respect to Holocene reef demise timing, and obtained a mean slip rate of several tenth of mm/yr on each fault, comparable to the slip rate of the near active Morne-Piton fault. Thus, the fault system could generate a Mw 6 earthquake every 250 yrs.

  20. Eruptive activity of enigmatic medium-sized volcanoes in the Michoacán-Guanajuato Volcanic Field (MGVF), Central Mexico: The case of El Metate

    NASA Astrophysics Data System (ADS)

    Chevrel, M.; Siebe, C.; Guilbaud, M. N.

    2014-12-01

    The MGVF has a total area of ca. 40,000 km2 and is well known for being the host of the only two monogenetic volcanoes in Mexico that were born in historical times: Jorullo (1759-1774) and Paricutin (1943-1952). Another particularity of the MGVF is its high number of eruptive vents with over 1000 small monogenetic cones and associated lava flows (average vol. of 0.021 km3) and ca. 400 medium-sized volcanoes (average vol. from 0.5 to 50 km3). Most of these medium-sized volcanoes may be characterized as shields that were produced dominantly by effusive activity as opposed to the small cones formed also by explosive phases of activity. The products of the small cones range from olivine basalts to andesites whereas the medium-sized volcanoes are restricted to a smaller compositional range in the andesitic domain. Although the medium-sized volcanoes are more sparsely distributed in time and space and less abundant than the small cones, the risks associated with renewal of this type of activity should not be neglected. This study focuses on El Metate which is probably the youngest shield of the MGVF (< 3,700 y. BP). Unlike a typical shield volcano composed of a succession of thin fluid basaltic flows, El Metate consists of well-preserved >60 m thick andesite flows distributed radially around a summit dome. Detailed mapping and sampling allowed us to reconstruct its eruptive activity and the time sequence of lava flow emplacement. We have identified 13 individual lava flows with lengths ranging between 3 and 15 km covering 103 km2 and average thicknesses between 60 and 150 m. Individual volumes range between 0.5 and 3.5 km3 for a total of 11 to 15 km3. Estimates of flow emplacement parameters indicate maximum average effusion rates ranging between 15 and 100 m3.s-1 and a cumulative duration from 15 to 30 years. Such a short emplacement time is comparable to the historical monogenetic eruption of nearby Paricutin volcano (9 years) but the erupted volume of lava is

  1. Submarine lithification of carbonate sediments.

    PubMed

    Milliman, J D

    1966-08-26

    Recrystallized planktonic limestones from two guyots in the North Atlantic are in oxygen-isotopic equilibrium with their present ambient waters, suggesting submarine lithifica tion and recrystallization. The early stages of submarine lithification of carbonates may involve precipitation of, and replacement by, magnesium-rich calcite; with time this may invert to magnesium-poor calcite. This type of lithification probably requires very low rates of sediment accumulation.

  2. Eruption of a deep-sea mud volcano triggers rapid sediment movement.

    PubMed

    Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R; Camilli, Richard; German, Christopher R; de Beer, Dirk

    2014-11-11

    Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO₂ from the seafloor.

  3. Will Teide erupt again?

    NASA Astrophysics Data System (ADS)

    Marti, Joan; Geyer, Adelina

    2016-04-01

    The quantification of hazard in volcanic systems characterised by long repose period is difficult because the lack of knowledge of the past volcanic history and also because in many cases volcanism is not perceived as a potential problem, being only regarded as an attraction for tourism or a source of economic benefit, thus hiding the need to conduct hazard assessment. Teide, in the island of Tenerife (Canary Islands), is not an exception to this general rule and, despite being one of the largest composite volcanoes in the World, it is generally considered as a non-active volcano by population, visitors and even by some scientists. However, geological and geophysical evidence, including a large diversity of monitoring signals recorded during last decades, as well as a simple comparison with similar volcanoes that have erupted in recent times after hundreds or even thousands of years of quiescence, recommend to consider Teide as an active volcano and to take the necessary precaution in an island with nearly one million of permanent inhabitants and nearly 5 millions of visitors per year. What is the potential of Teide to erupt again? is the question that relies behind the fact of considering it as active, and that needs to be answered first. Based on the current volcanological, petrological and geophysical knowledge We propose a conceptual model on the magma recharge mechanisms, structure of the plumbing system, and eruption triggers and dynamics of Teide volcano that helps to understand its behaviour and to anticipate future activity. Ramón y Cajal contract (RYC-2012-11024)

  4. Assessing submarine gas hydrate at active seeps on the Hikurangi Margin, New Zealand, using controlled source electromagnetic data with constraints from seismic, geochemistry, and heatflow data

    NASA Astrophysics Data System (ADS)

    Schwalenberg, K.; Haeckel, M.; Pecher, I. A.; Toulmin, S. J.; Hamdan, L. J.; Netzeband, G.; Wood, W.; Poort, J.; Jegen, M. D.; Coffin, R. B.

    2009-12-01

    Electrical resistivity is one of the key properties useful for evaluating submarine gas hydrate deposits. Gas hydrates are electrically insulating in contrast to the conductive pore fluid. Where they form in sufficient quantities the bulk resistivity of the sub-seafloor is elevated. CSEM data were collected in 2007 as part of the German - International “New Vents” project on R/V Sonne, cruise SO191, at three target areas on the Hikurangi subduction margin, New Zealand. The margin is characterized by widespread bottom simulating reflectors (BSR), seep structures, and active methane and fluid venting indicating the potential for gas hydrate formation. Opouawe Bank is one of the ridge and basin systems on the accretionary wedge and is located off the Wairarapa coast at water depths of 1000-1100 m. The first observed seep sites (North Tower, South Tower, Pukeko, Takahe, and Tui) were identified from individual gas flares in hydro-acoustic data and video observations during voyages on R/V Tangaroa. Seismic reflection data collected during SO191 subsequently identified more than 25 new seep structures. Two intersecting CSEM profiles have been surveyed across North Tower, South Tower, and Takahe. 1-D inversion of the data reveals anomalously high resistivities at North Tower and South Tower, moderately elevated resistivities at Takahe, and normal background resistivities away from the seeps. The high resistivities are attributed to gas hydrate layers at intermediate depths beneath the seeps. At South Tower the hydrate concentration could be possibly as much as 25% of the total sediment volume within a 50m thick layer. This conforms with geochemical pore water analyses which show a trend of increased methane flux towards South Tower. At Takahe, gas pockets and patchy gas hydrate, as well as sediment heterogeneities and carbonates, or temperature driven upward fluid flow indicated by the observed higher heat flow at this site may explain the resistivity pattern

  5. Lava dome morphometry and geochronology of the youngest eruptive activity in Eastern Central Europe: Ciomadul (Csomád), East Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Karátson, D.; Telbisz, T.; Harangi, Sz.; Magyari, E.; Kiss, B.; Dunkl, I.; Veres, D.; Braun, M.

    2012-04-01

    Volcanic evolution of the Ciomadul (Csomád) lava dome complex, site of the youngest (Late Pleistocene, late Marine Isotope Stage 3) eruptive activity in the Carpathians, has been studied by advanced morphometry and radiometric (U/Pb, U/He and 14C) geochronology. The volcano produced alternating effusive and intermittent explosive eruptions from individual domes, typical of common andesitic-dacitic lava domes. A comparative morphometry shows steep ≥30° mean slopes of domes' upper flank and the Csomád domes fit well to the 100-200 ka domes worldwide. Morphometric ages obtained from the mean slope vs age precipitation correlation results in ≤100 ka ages. The morphometric approach is supported by U/Pb and U/He chronology: preliminary results of zircon dating indicate ages ranging between 200(250) and 30 ka. The youngest ages of the data set obtained both from lavas and pumiceous pyroclastics argue for a more or less coeval effusive and explosive volcanism. Based also on volcanological data, we propose vulcanian eruptions and explosive dome collapses especially toward the end of volcanic activity. Moreover, radiometric chronology suggests that, possibly subsequently to the peripheral domes, a central lava dome complex built up ≤100 ka ago. This dome complex, exhibiting even more violent, up to sub-plinian explosions, emplaced pumiceous pyroclastic flow and fall deposits as far as 17 km. We propose that the explosive activity produced caldera-forming eruptions as well, creating a half-caldera. This caldera rim is manifested by the asymmetric morphology of the central edifice: the present-day elevated ridge of Ciomadul Mare (Nagy Csomád), encompassing the twin craters of Mohoş (Mohos) peat bog and Sf. Ana (Szent [St.] Anna). These latter craters may have been formed subsequently, ca. ~100-30 ka ago, after the caldera formation. Drilling of lacustrine sediments in the St. Anna crater shows that beneath the Holocene gyttja several meters of Late Pleistocene

  6. Continuous magma recharge at Mt. Etna during the 2011-2013 period controls the style of volcanic activity and compositions of erupted lavas

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Calcagno, Rosario; Garozzo, Ileana; Giuffrida, Marisa; Nicotra, Eugenio

    2015-02-01

    Volcanic rocks erupted during the January 2011 - April 2013 paroxysmal sequence at Mt. Etna volcano have been investigated through in situ microanalysis of mineral phases and whole rock geochemistry. These products have been also considered within the framework of the post-2001 record, evidencing that magmas feeding the 2011-2013 paroxysmal activity inherited deep signature comparable to that of the 2007-2009 volcanic rocks for what concerns their trace element concentration. Analysis performed on plagioclase, clinopyroxene and olivine, which are sensitive to differentiation processes, show respectively fluctuations of the An, Mg# and Fo contents during the considered period. Also major and trace elements measured on the whole rock provide evidence of the evolutionary degree variations through time. Simulations by MELTS at fixed chemical-physical parameters allowed the definition of feeding system dynamics controlling the geochemical variability of magmas during the 2011-2013 period. Specifically, compositional changes have been interpreted as due to superimposition of fractional crystallization and mixing in variable proportions with more basic magma ascending from intermediate to shallower levels of the plumbing system. Composition of the recharging end-member is compatible with that of the most basic magmas emitted during the 2007 and the early paroxysmal eruptions of 2012. Analysis of the erupted volumes of magma combined with its petrologic evolution through time support the idea that large volumes of magma are continuously intruded and stored in the intermediate plumbing system after major recharging phases in the deepest levels of it. Transient recharge from the intermediate to the shallow levels is then responsible for the paroxysmal eruptions.

  7. Dive! Dive! An Introduction to the History and Technology of Submarines.

    ERIC Educational Resources Information Center

    Department of the Navy, Washington, DC.

    This resource guide for science and social studies classes explores the world of U.S. Navy submarines and other submersibles. The guide consists of background information on the history and development of submarines and a list of cross-curricular activities to challenge, educate, and entertain students. Students learn the inherent challenges that…

  8. First Use of an Autonomous Glider for Exploring Submarine Volcanism in the SW Pacific

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Embley, R. W.; Haxel, J. H.; Dziak, R. P.; Bohnenstiehl, D. R.; Stalin, S.; Meinig, C.

    2010-12-01

    A 1000-m Slocum glider® (Teledyne Webb Research Corporation) with CTD, turbidity, and hydrophone sensors was operated for two days in the Northeast Lau Basin. The survey was conducted near West Mata Volcano, where in November of 2008 the NOAA PMEL Vents program observed an active eruption at its 1207 m summit—the deepest submarine activity ever before witnessed. Our goal was to use the glider as a forensic tool to search for other nearby eruption sites with onboard sensors that detect the chemical and hydroacoustic signatures associated with the volcanic and hydrothermal plumes. The glider was launched approximately 40 km to the west of West Mata. It flew toward West Mata and was recovered near the summit of the volcano after repeating 13 yos during a 41-hour mission. Although the recordings were affected by mechanical noise from the glider’s rudder, the data demonstrate that the system can detect the wide-band noises (>1 kHz) associated with submarine volcanic and intense hydrothermal activity. The glider recorded complex acoustic amplitudes due to the multiple raypaths from West Mata as well as temporal variations in the volcano’s rate of activity, and demonstrated that these geologic processes contribute to the region’s high ambient noise levels. With the exception of the deployment and recovery, the mission was managed entirely by the shore teams in PMEL (Seattle, WA) and OSU labs (Newport, OR), ~5000 miles away without an engineer onboard. The dive cycle of the 950-m dives was ~3.5 hours and the average speed was ~0.27 cm/s. The CTD data were downloaded at every surface cycle and appeared to be of high quality. However we found that the sensitivity of the Wetlabs ECO flntu turbidity sensor was not adequate for the detection of volcanic plumes. The mission demonstrated PMEL’s ability to use autonomous gliders to monitor a variety of environmental parameters including ambient sound levels, temperature, salinity and turbidity for the purpose of finding

  9. Two types of volcanic tremor changed with eruption style during 1986 Izu-Oshima eruption

    NASA Astrophysics Data System (ADS)

    Kurokawa, Aika; Takeo, Minoru; Kurita, Kei

    2016-04-01

    Volcanic tremor provides clues to magma migration pathways so that tremor source location is expected to be an efficient tool for tracking dynamic behavior of magma in evolution of eruptive activity. However, clear evidence, which connects between temporal variation in volcanic tremor and evolution of eruption style, is still lacking. We have analyzed volcanic tremors occurred during 1986 Izu-Oshima eruption using recently digitized data. The results present a clear link between eruption styles, waveform variations and source locations of the tremors. Moreover, precursory activity of the tremors that indicates injection of magma below fissures has been clarified 5 days prior to the fissure eruptions. This demonstrates predominance of tremor activity as an adaptive monitoring tool in volcanic eruption.

  10. Homologous prominence non-radial eruptions: A case study

    NASA Astrophysics Data System (ADS)

    Duchlev, P.; Koleva, K.; Madjarska, M. S.; Dechev, M.

    2016-10-01

    The present study provides important details on homologous eruptions of a solar prominence that occurred in active region NOAA 10904 on 2006 August 22. We report on the pre-eruptive phase of the homologous feature as well as the kinematics and the morphology of a forth from a series of prominence eruptions that is critical in defining the nature of the previous consecutive eruptions. The evolution of the overlying coronal field during homologous eruptions is discussed and a new observational criterion for homologous eruptions is provided. We find a distinctive sequence of three activation periods each of them containing pre-eruptive precursors such as a brightening and enlarging of the prominence body followed by small surge-like ejections from its southern end observed in the radio 17 GHz. We analyse a fourth eruption that clearly indicates a full reformation of the prominence after the third eruption. The fourth eruption although occurring 11 h later has an identical morphology, the same angle of propagation with respect to the radial direction, as well as similar kinematic evolution as the previous three eruptions. We find an important feature of the homologous eruptive prominence sequence that is the maximum height increase of each consecutive eruption. The present analysis establishes that all four eruptions observed in Hα are of confined type with the third eruption undergoing a thermal disappearance during its eruptive phase. We suggest that the observation of the same direction of the magnetic flux rope (MFR) ejections can be consider as an additional observational criterion for MFR homology. This observational indication for homologous eruptions is important, especially in the case of events of typical or poorly distinguishable morphology of eruptive solar phenomena.

  11. High-resolution Geophysical Mapping of Submarine Glacial Landforms

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Dowdeswell, J. A.; Canals, M.; Todd, B. J.; Dowdeswell, E. K.; Hogan, K. A.; Mayer, L. A.

    2014-12-01

    Glacial landforms are generated from the activity of glaciers and display spatial dimensions ranging from below one meter up to tens of kilometers. Glacial landforms are used as diagnostic features of past activity of ice sheets and glaciers; they are specifically important in the field of palaeoglaciology. Mapping of submarine glacial landforms is largely dependent on geophysical survey methods capable of imaging the seafloor and sub-bottom through the water column. Full "global" seafloor mapping coverage, equivalent to what exists for land elevation, is to-date only achieved by the powerful method of deriving bathymetry from altimeters on satellites like GEOSAT and ERS-1. The lateral resolution of satellite derived bathymetry is, however, limited by the footprint of the satellite and the need to average out local wave and wind effects resulting in values of around 15 km. Consequently, mapping submarine glacial landforms requires for the most part higher resolution than is achievable by satellite derived bathymetry. The most widely-used methods for mapping submarine glacial landforms are based on echo-sounding principles. This presentation shows how the evolution of marine geophysical mapping techniques, in particular the advent of side-scan and multibeam bathymetric sonars, has made it possible to study submarine glacial landforms in unprecedented detail. Examples are shown from the Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient, which will be published in late 2015 in the Memoir Series of the Geological Society of London.

  12. Filament Eruption Onset

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2011-01-01

    We have been investigating filament eruptions in recent years. Use filament eruptions as markers of the coronal field evolution. Data from SoHO, Yohkoh, TRACE, Hinode, and other sources. We and others have observed: (1)Filaments often show slow rise, followed by fast rise, (2) Brightenings, preflares, microflares during slow rise (3) Magnetic evolution in hours prior to eruption onset. We investigated What do Hinode and SDO show for filament eruptions?

  13. Characterization of the seismicity prior to the 2011 El Hierro eruption

    NASA Astrophysics Data System (ADS)

    Domínguez Cerdeña, Itahiza; del Fresno, Carmen; Gomis Moreno, Almudena; Hernández Yanes, Paula; Meletlidis, Stavros; López, Carmen

    2014-05-01

    The last eruption of the Canary Islands started on 10 October 2011, 2 km south of El Hierro. This submarine eruption was the first fully monitored volcanic eruption in this archipelago and was preceded by various precursory signals, the most evident of which was the seismicity that started in July 2011. This seismicity includes almost 10,000 low-magnitude earthquakes located during 81 days before the eruption which revealed a 20 km horizontal migration from the north of the island to the south at depths of between 10 and 17 km, the deeper events occurring further south. In this work we try to improve the quality of the seismic catalogue. We applied a relative location algorithm (hypoDD) to improve hypocentral locations. Tests performed to check the reliability of the results gave maximum uncertainties of 400 m in the relocations. Furthermore, new features were found, including the origin of the seismicity in the center of the island and the presence of two alternating seismogenic zones in the north of the island during the first month of activity. The first days of the unrest the seismic network was composed by only 2 seismic stations and almost no location was possible. We obtained information about location and magnitude of these events at the beginning of the seismic crisis by comparison of the waveforms by correlation with located earthquakes. We have also analyzed the baselevel seismicity of El Hierro from 1996 using digital data of a short period station. Manual revision of these data showed a considerably low number of earthquakes in the region before the unrest (less than one event per day).

  14. An erupted compound odontoma.

    PubMed

    Gupta, Anil; Vij, Hitesh; Vij, Ruchieka; Malhotra, Ritika

    2014-04-12

    Odontomas are familiar entities but their eruption into the oral cavity is an extraordinary occurrence, which may be associated with pain, infection, malocclusion, etc. Not many cases of erupted odontomas have been reported in the literature. This paper puts forth a case of erupting odontoma in an attempt to add to the list of reported cases of this unique pathology.

  15. Are Avellino (4365 cal BP) and Pompeii twin plinian eruptions? Pre-eruptive constraints and degassing history

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît.; Ucciani, Guillaume; Cioni, Raffaello

    2010-05-01

    Somma-Vesuvius activity started 35 ky ago and is characterized by numerous eruptions of variable composition and eruptive style, sometimes interrupted by long periods of unrest. The main explosive eruptions are represented by four plinian eruptions: Pomici di Base eruption (22 cal ky), Mercato (~8900 cal BP), Avellino (4365 cal BP) and Pompeii (79 AD). The 79 AD eruption embodies the most famous eruption since it's responsible of the destruction of Pompeii and Herculanum and it's the first described eruption. The Avellino eruption represents the last plinian event that preceded the Pompeii eruption. The eruptive sequence is similar to the 79 AD plinian eruption, with an opening phase preceding a main plinian fallout activity which ended by a phreatomagmatic phase. The fallout deposit displays a sharp colour contrast from white to grey pumice, corresponding to a magma composition evolution. We focus our study on the main fallout deposit that we sampled in detail in the Traianello quarry, 9 km North-North East of the crater, to investigate the degassing processes during the eruption, using volatile content and textural observations. Density and vesicularity measurements were obtained on a minimum of 100 pumice clasts sampled in 10 stratigraphic levels in the fallout deposit. On the basis of the density distribution, bulk geochemical data, point analytical measurements on glasses (melt inclusions and residual glass) and textural observations were obtained simultaneously on a minimum of 5 pumice clasts per eruptive unit. The glass composition, in particular the Na/K ratio, evolves from Na-rich phonolite for white pumices to a more K-rich phonolite for grey pumices. The pre-eruptive conditions are constrained by systematic Cl measurements in melt inclusions and matrix glass of pumice clasts. The entire magma was saturated relative to sub-critical fluids (a Cl-rich H2O vapour phase and a brine), with a Cl melt content buffered at ~6000 ppm, and a mean pre-eruptive H2O

  16. Relationship between morphological feature of submarine landslides and geological condition -focus on Oshima-Oshima, Kaimon and Hawaii regions-

    NASA Astrophysics Data System (ADS)

    Kaji, T.; Yamazaki, H.; Kato, Y.

    2008-12-01

    Huge submarine landslides which generate the tsunami are found in the world. Those submarine landslides are generated by the collapse of the volcano and an unstable slope of sediments on the continental shelf. It is thought that a generation mechanism and morphological features of submarine landslides are different according to the environment (geological condition, topography, and transportation mechanism, etc) in each region. We compared submarine landslides in three different regions to clarify the relation of them. The comparison items are geological condition, morphological feature, form of submarine landslide and transportation mechanism. Oshima-Oshima is a volcanic island and tsunami was generated by collapse of volcanic edifice in 1741 eruption. Kaimon submarine landslide was generated by collapse of continental shelf slope off Kaimon volcano which has acted since 4000BP. There are many submarine landslides around Hawaii Islands. Nuuanu-Wailau submarine landslides are peculiar in those submarine landslides. Moreover, we compare some submarine landslides around Hawaii islands with Oshima-Oshima debris avalanche. Both Oshima-Oshima and Hawaii islands are volcanic islands, however the morphological features are different. As a morphological feature, Oshima-Oshima has thick sediment of 100-120m in front of collapse area and those sediment thins with distance. Nuuanu-Wailau submarine landslides have sediment including a huge blocks of 2km height at equal intervals around Hawaii islands. On the other hand, Kaimon submarine landslide has evenly thin sediment as a non volcanic type. In addition, in the case of Nuuanu-Wailau slides are smaller than Oshima-Oshima's case when we think about sediment extension to lateral side. Especially, sediment extension of Kaimon submarine landslide is small. These sediment distributions are related to the transportation mechanism. In general, sediment gravity flow is divided into 4 types (turbidity current, fluidized sediment flow

  17. Eruptive history of the Dieng Mountains region, central Java, and potential hazards from future eruptions

    USGS Publications Warehouse

    Miller, C. Dan; Sushyar, R.; ,; Hamidi, S.

    1983-01-01

    The Dieng Mountains region consists of a complex of late Quaternary to recent volcanic stratocones, parasitic vents, and explosion craters. Six age groups of volcanic centers, eruptive products, and explosion craters are recognized in the region based on their morphology, degree of dissection, stratigraphic relationships, and degree of weathering. These features range in age from tens of thousands of years to events that have occurred this century. No magmatic eruptions have occurred in the Dieng Mountains region for at least several thousand years; volcanic activity during this time interval has consisted of phreatic eruptions and non-explosive hydrothermal activity. If future volcanic events are similar to those of the last few thousand years, they will consist of phreatic eruptions, associated small hot mudflows, emission of suffocating gases, and hydrothermal activity. Future phreatic eruptions may follow, or accompany, periods of increased earthquake activity; the epicenters for the seismicity may suggest where eruptive activity will occur. Under such circumstances, the populace within several kilometers of a potential eruption site should be warned of a possible eruption, given instructions about what to do in the event of an eruption, or temporarily evacuated to a safer location.

  18. Seismic expression of Late Quaternary Banda submarine canyon and fan offshore northern Baja California

    SciTech Connect

    Legg, M.R.

    1987-05-01

    High-resolution seismic reflection profiles obtained throughout the inner California continental borderland offshore northwestern Baja California, Mexico, show the presence of numerous modern submarine canyons and associated fans. One set of these, the Banda submarine canyon/fan, is of relatively recent origin, as demonstrated by onlap of the basal fan sediments against an acoustically transparent, presumably hemipelagic deposit. Late Quaternary sedimentation rates inferred from isotopically dated piston core samples place the age of the postulated hemipelagic unit at approximately 650,000 years ago. The Banda submarine canyon heads within the Bahia Todos Santo and passes through a narrow gorge between Punta Banda and Islas Todos Santos. It is proposed that this submarine canyon and fan system formed entirely during late Quaternary time, following the breach of the Punta Banda ridge during a late Pleistocene high sea level stand. The presence of an ancient, buried channel exiting to the north out of Bahia Todos Santos probably marks the head of an earlier submarine canyon which acted as the conduit of clastic sediments from Valle Maneadero to the deep borderland basins. The now active Banda submarine canyon pirated the supply of terrigenous clastics from this older canyon. The active Agua Blanca fault zone cuts across the head of Banda submarine canyon, suggesting that tectonic movements may have played a role in the development of the Banda submarine canyon and fan system.

  19. Giant submarine canyons: is size any clue to their importance in the rock record?

    USGS Publications Warehouse

    Normark, William R.; Carlson, Paul R.

    2003-01-01

    Submarine canyons are the most important conduits for funneling sediment from continents to oceans. Submarine canyons, however, are zones of sediment bypassing, and little sediment accumulates in the canyon until it ceases to be an active conduit. To understand the potential importance in the rock record of any given submarine canyon, it is necessary to understand sediment-transport processes in, as well as knowledge of, deep-sea turbidite and related deposits that moved through the canyons. There is no straightforward correlation between the final volume of the sedimentary deposits and size o fthe associated submarine canyons. Comparison of selected modern submarine canyons together with their deposits emphasizes the wide range of scale differences between canyons and their impact on the rock record. Three of the largest submarine canyons in the world are incised into the Beringian (North American) margin of the Bering Sea. Zhemchug Canyon has the largest cross-section at the shelf break and greatest volume of incision of slope and shelf. The Bering Canyon, which is farther south in the Bering Sea, is first in length and total area. In contrast, the largest submarine fans-e.g., Bengal, Indus, and Amazon-have substantially smaller, delta-front submarine canyons that feed them; their submarine drainage areas are one-third to less than one-tenth the area of Bering Canyon. some very large deep-sea channells and tubidite deposits are not even associated with a significant submarine canyon; examples include Horizon Channel in the northeast Pacific and Laurentian Fan Valley in the North Atlantic. Available data suggest that the size of turbidity currents (as determined by volume of sediment transported to the basins) is also not a reliable indicator of submarine canyon size.

  20. Echo-resonance and hydraulic perturbations in magma cavities: application to the volcanic tremor of Etna (Italy) in relation to its eruptive activity

    NASA Astrophysics Data System (ADS)

    Montalto, A.; Longo, V.; Patanè, G.

    1995-08-01

    A study is presented of spectral features of volcanic tremor recorded at Mount Etna (Sicily, Italy) following the methods of analysis suggested by the resonant scattering formalism of Gaunaurd and Überall (1978, 1979a, 1979b) and the model for hydraulic origin of Seidl et al. (1981). The periods investigated include summit and flank eruptions that occurred between 1984 and 1993. Recordings from a permanent station located near the top of the volcano were used, and the temporal patterns associated with (a) the average spacing (bar Δ ) between consecutive spectral peaks in the frequency range 1 6 Hz, (b) the spectral shape and (c) the overall spectral amplitude were analyzed. bar Δ values are thought to depend on the physical properties of magma, such as its density, which, in turn, is controlled by the degree of gas exsolution. Variations in the spectral shape are tentatively attributed to changes in the geometrical scattering from the boundary of resonant conduits and magma batches. Finally, the overall amplitude at the station should essentially reflect the state of turbulence of magma within the superficial ascending path. A limit in the application of the resonant scattering formalism to the study of volcanic tremor is given by the fact that the fundamental modes and integer harmonics are difficult to identify in the frequency spectra, as tremor sources are likely within cavities of very complex geometry, rather than in spherical or cylindrical chambers, as expected by theory. This study gives evidence of some correlations between the analyzed temporal patterns and the major events in the volcanic activity, related to both lava flow and explosions at the summit vents. In particular, relatively high values of bar Δ have been attained during the SE crater eruption of 1984, the complex eruptive phases of September October 1989 and the 1991 1993 flank eruption, suggesting the presence of a relatively dense magma for all of these events. Conversely, very low

  1. The frequency of explosive volcanic eruptions in Southeast Asia.

    PubMed

    Whelley, Patrick L; Newhall, Christopher G; Bradley, Kyle E

    There are ~750 active and potentially active volcanoes in Southeast Asia. Ash from eruptions of volcanic explosivity index 3 (VEI 3) and smaller pose mostly local hazards while eruptions of VEI ≥ 4 could disrupt trade, travel, and daily life in large parts of the region. We classify Southeast Asian volcanoes into five groups, using their morphology and, where known, their eruptive history and degassing style. Because the eruptive histories of most volcanoes in Southeast Asia are poorly constrained, we assume that volcanoes with similar morphologies have had similar eruption histories. Eruption histories of well-studied examples of each morphologic class serve as proxy histories for understudied volcanoes in the class. From known and proxy eruptive histories, we estimate that decadal probabilities of VEI 4-8 eruptions in Southeast Asia are nearly 1.0, ~0.6, ~0.15, ~0.012, and ~0.001, respectively.

  2. Can rain cause volcanic eruptions?

    USGS Publications Warehouse

    Mastin, Larry G.

    1993-01-01

    Volcanic eruptions are renowned for their violence and destructive power. This power comes ultimately from the heat and pressure of molten rock and its contained gases. Therefore we rarely consider the possibility that meteoric phenomena, like rainfall, could promote or inhibit their occurrence. Yet from time to time observers have suggested that weather may affect volcanic activity. In the late 1800's, for example, one of the first geologists to visit the island of Hawaii, J.D. Dana, speculated that rainfall influenced the occurrence of eruptions there. In the early 1900's, volcanologists suggested that some eruptions from Mount Lassen, Calif., were caused by the infiltration of snowmelt into the volcano's hot summit. Most such associations have not been provable because of lack of information; others have been dismissed after careful evaluation of the evidence.

  3. Io - One of at Least Four Simultaneous Erupting Volcanic Eruptions

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This photo of an active volcanic eruption on Jupiter's satellite Io was taken 1 hour, 52 minutes after the accompanying picture, late in the evening of March 4, 1979, Pacific time. On the limb of the satellite can be seen one of at least four simultaneous volcanic eruptions -- the first such activity ever observed on another celestial body. Seen against the limb are plume-like structures rising more than 60 miles (100 kilometers) above the surface. Several eruptions have been identified with volcanic structures on the surface of Io, which have also been identified by Voyager 1's infrared instrument as being abnormally hot -- several hundred degrees warmer than surrounding terrain. The fact that several eruptions appear to be occurring at the same time suggests that Io has the most active surface in the solar system and that volcanism is going on there essentially continuously. Another characteristic of the observed volcanism is that it appears to be extremely explosive, with velocities more than 2,000 miles an hour (at least 1 kilometer per second). That is more violent than terrestrial volcanoes like Etna, Vesuvius or Krakatoa.

  4. Long-term forecasting of eruption hazards: A hierarchical approach to merge analogous eruptive histories

    NASA Astrophysics Data System (ADS)

    Sheldrake, Tom

    2014-10-01

    Estimating the hazard associated with a volcanic eruption requires an understanding of previous eruptive episodes to forecast future events. This involves calculating how destructive a future eruption is likely to be by estimating the magnitude of eruptive activity and likelihood of various hazardous phenomena. Importantly though, eruptive histories for individual volcanoes can suffer from a lack of observations and thus might not be representative for all future eruption scenarios. Consequently, a methodology is developed to combine eruptive histories from multiple volcanoes into an event tree framework to inform forecasts at individual volcanoes. It is based on a hierarchical Bayesian approach in which model parameters are derived for a group of volcanoes and then updated on an individual basis. However, eruptive histories are not simply aggregated and the model allows for possible heterogeneities in eruptive regimes. Continuous probability distributions are employed to capture the relative uncertainties of both global and individual records and posterior distributions for eruption magnitudes and hazardous phenomena are computed using Markov chain Monte Carlo techniques. The model is designed to initially include no subjective judgement of probabilities but is developed so that information from other analyses can be incorporated. While this article uses the hierarchical Bayesian approach specifically for event forecasting, the methodology has the potential to be used in a wide range of problems regarding hazard assessment and for the purposes of causal inference and data reduction.

  5. Multi-level magmatic system of El Hierro Island (Canary Islands) constrained by multi-satellite radar interferometry measurements during the 2011-2012 eruption

    NASA Astrophysics Data System (ADS)

    Gonzalez, P. J.; Samsonov, S. V.; Pepe, S.; Tiampo, K. F.; Tizzani, P.; Fernandez, J.; Sansosti, E.

    2012-12-01

    Starting from July 2011, anomalous seismicity was observed at El Hierro Island (Canary Islands, Spain). During the following three months, seismic activity increased both in number of events and in magnitude, while expanding over a large area. In early October 2011 the process led to a submarine eruption, with some uncertainty about the location and timing of vent(s) opening. The site of the eruption was ~10 km from the initial and main earthquake loci, indicative of significant lateral migration. Here, we conduct a multi-frequency, multi-sensor interferometric analysis of space-borne radar images acquired using three different satellites (Radarsat-2, ASAR-ENVISAT and COSMO-SkyMed). Radar interferometry is used to measure the deformation that occurred from December 2009 to July 2012. InSAR data fully captures both the pre-, co- and post-eruptive phases. Subsequently, elastic modeling of the ground deformation is employed to constrain the dynamics associated with the magmatic and eruptive activity. This study represents one of the first geodetically-constrained active magmatic plumbing system model for any of the Canary Islands volcanoes, and one of the few examples of geodetic measurement of submarine volcanic activity to date. It reveals a complex magmatic system with multiple levels of stagnation, a deeper central system (~8.5 km depth) and a shallower magma reservoir at the flank of the southern rift (~4 km depth). Before eruption, magma propagated ~5 km downrift towards the eruption fissure. From mid-November 2011 to early January 2012 the system was continuously recharged from source(s) deeper than 10 km, which contributed to a relatively atypical long duration for a basaltic eruption (~5 months). The submarine eruption finished on early March 2012. However, on June 24, 2012 the seismic activity resumed and intense ground deformation has been recorded. The anomalous seismicity continued for a month depicting a clear, but different migration path with respect

  6. Origin of Izu-Bonin forearc submarine canyons

    SciTech Connect

    Fujioka, Kantaro ); Yoshida, Haruko )

    1990-06-01

    Submarine canyons on the Izu-Bonin forearc are morphologically divided from north to south into four types based on their morphology, long profiles, and seismic profiles: Mikura, Aogashima, Sofu, and Chichijima types, respectively. These types of canyons are genetically different from each other. Mikura group is formed by the faults related to bending of the subducting Philippine Sea Plate. Aogashima type genetically relates to the activity of large submarine calderas that supply large amounts of volcaniclastic material to the consequent forearc slope. The third, Sofu group, is thought to be formed by the large-scale mega mass wasting in relation to the recent movement of the Sofugan tectonic line. The last, Chichijima group, is formed by collision of the Uyeda Ridge and the Ogasawara Plateau on the subducting Pacific Plate with Bonin Arc. Long profiles of four types of submarine canyons also support this.

  7. Seasonal influence over serum and urine metabolic markers in submariners during prolonged patrols

    PubMed Central

    Holy, Xavier; Bégot, Laurent; Renault, Sylvie; Butigieg, Xavier; André, Catherine; Bonneau, Dominique; Savourey, Gustave; Collombet, Jean-Marc

    2015-01-01

    Within the framework of earlier publications, we have consistently dedicated our investigations to eliciting the effects of both seasonal vitamin D deficiency and submarine-induced hypercapnia on serum parameters for acid–base balance and bone metabolism in submariners over a 2-month winter (WP) or summer (SP) patrols. The latest findings reported herein, contribute further evidence with regard to overall physiological regulations in the same submariner populations that underwent past scrutiny. Hence, urine and blood samples were collected in WP and SP submariners at control prepatrol time as well as on submarine patrol days 20, 41, and 58. Several urine and serum metabolic markers were quantified, namely, deoxypyridinoline (DPD), lactate, albumin, creatinine, nonesterified fatty acids (NEFA), and ionized sodium (Na+) or potassium (K+), with a view to assessing bone, muscle, liver, or kidney metabolisms. We evidenced bone metabolism alteration (urine DPD, calcium, and phosphorus) previously recorded in submarine crewmembers under prolonged patrols. We also highlighted transitory modifications in liver metabolism (serum albumin) occurring within the first 20 days of submersion. We further evidenced changes in submariners’ renal physiology (serum creatinine) throughout the entire patrol time span. Measurements of ionic homeostasis (serum Na+ and K+) displayed potential seasonal impact over active ionic pumps in submariners. Finally, there is some evidence that submersion provides beneficial conditions prone to fend off seasonal lactic acidosis (serum lactate) detected in WP submariners. PMID:26265754

  8. A Toba-scale eruption in the Early Miocene: The Semilir eruption, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Smyth, Helen R.; Crowley, Quentin G.; Hall, Robert; Kinny, Peter D.; Hamilton, P. Joseph; Schmidt, Daniela N.

    2011-10-01

    The Indonesian archipelago is well-known for volcanic activity and has been the location of three catastrophic eruptions in the last million years: Krakatau, Tambora and Toba. However, there are no reports of large magnitude eruptions during the earlier Cenozoic despite a long volcanic record in Indonesia during subduction of Indian Ocean lithosphere since the Eocene. Here we report an Early Miocene major eruption, the Semilir eruption, in south Java, the main phase of which occurred at 20.7 ± 0.02 Ma. This major volcanic eruption appears similar in scale, but not in type, to the 74 ka Toba event. Its products can be identified elsewhere in Java and are likely to have been distributed widely in SE Asia and adjacent oceans. The Semilir eruption could have triggered a climate response, but cannot yet be linked with certainty to Early Miocene climatic events such as glaciations.

  9. Remote Analysis of Grain Size Characteristic in Submarine Pyroclastic Deposits from Kolumbo Volcano, Greece

    NASA Astrophysics Data System (ADS)

    Smart, C.; Whitesell, D. P.; Roman, C.; Carey, S.

    2011-12-01

    Grain size characteristics of pyroclastic deposits provide valuable information about source eruption energetics and depositional processes. Maximum size and sorting are often used to discriminate between fallout and sediment gravity flow processes during explosive eruptions. In the submarine environment the collection of such data in thick pyroclastic sequences is extremely challenging and potentially time consuming. A method has been developed to extract grain size information from stereo images collected by a remotely operated vehicle (ROV). In the summer of 2010 the ROV Hercules collected a suite of stereo images from a thick pumice sequence in the caldera walls of Kolumbo submarine volcano located about seven kilometers off the coast of Santorini, Greece. The highly stratified, pumice-rich deposit was likely created by the last explosive eruption of the volcano that took place in 1650 AD. Each image was taken from a distance of only a few meters from the outcrop in order to capture the outlines of individual clasts with relatively high resolution. Mosaics of individual images taken as the ROV transected approximately 150 meters of vertical outcrop were used to create large-scale vertical stratigraphic columns that proved useful for overall documentation of the eruption sequence and intracaldera correlations of distinct tephra units. Initial image processing techniques, including morphological operations, edge detection, shape and size estimation were implemented in MatLab and applied to a subset of individual images of the mosiacs. A large variety of algorithms were tested in order to best discriminate the outlines of individual pumices. This proved to be challenging owing to the close packing and overlapping of individual pumices. Preliminary success was achieved in discriminating the outlines of the large particles and measurements were carried out on the largest clasts present at different stratigraphic levels. In addition, semi-quantitative analysis of the

  10. Responses to, and the short and long-term impacts of, the 1957/1958 Capelinhos volcanic eruption and associated earthquake activity on Faial, Azores

    NASA Astrophysics Data System (ADS)

    Coutinho, Rui; Chester, David K.; Wallenstein, Nicolau; Duncan, Angus M.

    2010-10-01

    The 1957/58 Capelinhos eruption on Faial Island in the Azores is well known for being an excellent example of Surtseyan hydromagmatic volcanic activity. Less well known are the responses of the Portuguese authorities to the eruption and subsequent earthquake in May 1958, and the ways in which well-thought-out and generally effective recovery programmes were put in place. At the time Portugal was ruled by a dictatorship, the Estado Novo (New State). Only superficially similar to other fascist governments in Southern Europe, the Estado Novo collected huge amounts of data on the responses of the authorities to the disaster and their programmes of recovery, but never encouraged academic evaluation of policy, although it ensured that the scientific aspects of the eruption and earthquake were meticulously recorded and published. In this paper we remedy this situation by discussing the details of the immediate response to the emergency and the ways in which the island recovered in its aftermath. The study is based not only on archival sources and demographic and economic data, but also on detailed interviews with survivors some of whom were also decision makers. We argue that response, recovery and rehabilitation were generally highly successful and assess the lessons of the 1957/58 emergency which are relevant to future geophysical disasters in Faial and the wider Azores. Since the 1974 revolution Portugal has been a democratic state. We conclude that both the legislation and the civil defence infrastructure, necessary to achieve a similarly strong and successful response, are in place today.

  11. Holocene Earthquakes, Slope Failures, and Submarine Gas Hydrates at Hydrate Ridge, Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Goldfinger, C.; Nelson, C. H.

    2002-12-01

    Hydrate Ridge Basin West (HRB-W) is an isolated slope basin located down slope of the well-studied gas hydrate-bearing Hydrate Ridge anticline on the lower slope of the Oregon accretionary wedge. Swath bathymetry and high-resolution sidescan sonar imagery indicate the western flank of Hydrate Ridge is dissected by a large submarine canyon, which serves as the major pathway for sediment transport into the basin. Two piston and companion trigger cores and one 10 ft super kasten core were recently collected from the basin to obtain the Holocene record of slope failure sedimentation events (turbidites/debris flows). To determine the frequency of these slope failures, their temporal effect on seafloor gas hydrate destabilization on Hydrate Ridge, and differentiate between possible triggers responsible for their failure, we compare this slope basin record to the margin-wide earthquake triggered submarine canyon turbidite record preserved in 52 piston and box cores collected in 1999. AMS radiocarbon dating of the submarine canyon turbidites and their margin-wide correlation indicate 13 events have been simultaneously triggered from the Washington to Northern California margins since the eruption of Mt. Mazama 7627 +/-150 cal yr B.P (Zdanowicz et al., 1999) and 18 (5 pre-Mazama -13 post-Mazama) have been simultaneously triggered during the last 10,000 years. We believe the most likely trigger for these events is recurrent subduction zone earthquakes. Initial examination of the new HRB-W cores suggests a possible correlation with the margin-wide turbidite record, with ~20 events occurring above a foraminiferan dominant to radiolarian dominant datum, which can be used as a proxy for the onset of Holocene sedimentation. Planned AMS radiocarbon dating of all events in the new cores will provide more precise ages and test for synchroneity with the margin-wide record. We postulate that earthquake-triggered slope failures are a dominant mechanism that could have a short

  12. Managing public and media response to a reawakening volcano: lessons from the 2004 eruptive activity of Mount St. Helens: Chapter 23 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Frenzen, Peter M.; Matarrese, Michael T.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Volcanic eruptions and other infrequent, large-scale natural disturbances pose challenges and opportunities for public-land managers. In the days and weeks preceding an eruption, there can be considerable uncertainty surrounding the magnitude and areal extent of eruptive effects. At the same time, public and media interest in viewing developing events is high and concern for public safety on the part of local land managers and public safety officials is elevated. Land managers and collaborating Federal, State, and local officials must decide whether evacuations or restrictions to public access are necessary, the appropriate level of advance preparation, and how best to coordinate between overlapping jurisdictions. In the absence of a formal Federal or State emergency declaration, there is generally no identified source of supplemental funding for emergency-response preparation or managing extraordinary public and media response to developing events. In this chapter, we examine responses to escalating events that preceded the 2004 Mount St. Helens eruption and changes in public perception during the extended period of the largely nonexplosive, dome-building eruption that followed. Lessons learned include the importance of maintaining up-to-date emergency-response plans, cultivating close working relationships with collaborating agencies, and utilizing an organized response framework that incorporates clearly defined roles and responsibilities and effective communication strategies.

  13. Voluminous eruption from a zoned magma body after an increase in supply rate at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Paduan, J. B.; Clague, D. A.; Dreyer, B. M.; Merle, S. G.; Bobbitt, A. M.; Caress, D. W.; Philip, B. T.; Kelley, D. S.; Nooner, S. L.

    2016-12-01

    Axial Seamount is the best monitored submarine volcano in the world, providing an exceptional window into the dynamic interactions between magma storage, transport, and eruption processes in a mid-ocean ridge setting. An eruption in April 2015 produced the largest volume of erupted lava since monitoring and mapping began in the mid-1980s after the shortest repose time, due to a recent increase in magma supply. The higher rate of magma replenishment since 2011 resulted in the eruption of the most mafic lava in the last 500-600 years. Eruptive fissures at the volcano summit produced pyroclastic ash that was deposited over an area of at least 8 km2. A systematic spatial distribution of compositions is consistent with a single dike tapping different parts of a thermally and chemically zoned magma reservoir that can be directly related to previous multichannel seismic-imaging results.

  14. The 1991 eruption of Hekla, Iceland

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Oskarsson, Niels; Gronvold, Karl; Saemundsson, Kristjan; Sigurdsson, Oddur; Stefansson, Ragnar; Gislason, Sigurdur R.; Einarsson, Pall; Brandsdottir, Bryndis; Larsen, Gudrun; Johannesson, Haukur; Thordarson, Thorvaldur

    1992-02-01

    The eruption that started in the Hekla volcano in South Iceland on 17 January 1991, and came to an end on 11 March, produced mainly andesitic lava. This lava covers 23 km2 and has an estimated volume of 0.15 km3. This is the third eruption in only 20 years, whereas the average repose period since 1104 is 55 years. Earthquakes, as well as a strain pulse recorded by borehole strainmeters, occurred less than half an hour before the start of the eruption. The initial plinian phase was very short-lived, producing a total of only 0.02 km3 of tephra. The eruption cloud attained 11.5 km in height in only 10 min, but it became detached from the volcano a few hours later. Several fissures were active during the first day of the eruption, including a part of the summit fissure. By the second day, however, the activity was already essentially limited to that segment of the principal fissure where the main crater subsequently formed. The average effusion rate during the first two days of the eruption was about 800 m3 s-1. After this peak, the effusion rate declined rapidly to 10 20 m3 s-1, then more slowly to 1 m3 s-1, and remained at 1 12 m3 s-1 until the end of the eruption. Site observations near the main crater suggest that the intensity of the volcanic tremor varied directly with the force of the eruption. A notable rise in the fluorine concentration of riverwater in the vicinity of the eruptive fissures occurred on the 5th day of the eruption, but it levelled off on the 6th day and then remained essentially constant. The volume and initial silica content of the lava and tephra, the explosivity and effusion rate during the earliest stage of the eruption, as well as the magnitude attained by the associated earthquakes, support earlier suggestions that these parameters are positively related to the length of the preceeding repose period. The chemical difference between the eruptive material of Hekla itself and the lavas erupted in its vicinity can be explained in terms of a

  15. Retrieval of lava and SO2 fluxes during long-lived effusive eruptions using MSG-SEVIRI: the case of Bárdarbunga 2014 activity

    NASA Astrophysics Data System (ADS)

    Gouhier, Mathieu; Gauthier, Pierre-Jean; Haddadi, Baptiste; Moune, Séverine; Sigmarsson, Olgeir

    2015-04-01

    During effusive events, such as that of the 2014 Holuhraun eruption in the Bárdarbunga Volcanic System, Iceland, the lava and SO2 fluxes can be very large and possibly last for several months. However, the magma effusion rate as well as the gas flux may vary. The monitoring of any changes is essential as it informs on the dynamics of the eruption, and possibly reflects modifications of deeper mechanisms at the origin of the eruption. Geostationary satellite sensors turns out to be particularly relevant to record rapid changes of surface activity by the continuous acquisition of infrared data at time resolution of up to one image every five minutes. However, the long time-series generated cannot easily be analyzed and interpreted using conventional techniques, and require automated processing. Here we present a new method, hereafter called the "gradient method", which can be applied for the quantification of both lava volume and gas mass fluxes during long-lived effusive eruptions using infrared geostationary satellite data. The retrieval scheme comprises the following steps: firstly, the instantaneous lava volume and SO2 cloud mass must be calculated from each image. Then, we apply the "gradient method" to retrieve the lava and gas fluxes, leading to estimates of the true lava volume and gas mass. For the lava, the 3.9µm and 12µm wavebands are used to detect thermal anomalies and calculate related lava areas from the dual "pixel integrated temperature" method. Then, assuming the lava flow thickness, it gives an instantaneous lava volume. The SO2 column abundance is retrieved from the 8.7µm waveband using a linear regression derived from a least square fit procedure between satellite sensor measurements and simulated radiances. It leads to an instantaneous SO2 cloud mass. These calculations are made at each time step, generating time series of these two parameters. The actual lava volume and SO2 mass cannot be estimated through the integration of the total time

  16. A model for Plinian eruptions of Vesuvius

    NASA Astrophysics Data System (ADS)

    Sheridan, M. F.; Barberi, F.; Rosi, M.; Santacroce, R.

    1981-01-01

    The term `Plinian' has been widely used1-4 to describe continuous gas-blast eruptions of large magnitude a typical example5, of which is the AD 79 eruption of Vesuvius which destroyed Pompei and the surrounding region. We develop a new model here for the AD 79 event that explains the complete Plinian eruptive episode including pyroclastic fall, pyroclastic flow, base surge, laharic and phreatic activity. This model has widespread implications with regard to volcanic hazard evaluation and geothermal exploration at Vesuvius and other volcanoes with similar patterns of activity, such as Mount St Helens.

  17. Impact of tephra falls on Andean communities: The influences of eruption size and weather conditions during the 1999-2001 activity of Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Le Pennec, Jean-Luc; Ruiz, Gorki A.; Ramón, Patricio; Palacios, Enrique; Mothes, Patricia; Yepes, Hugo

    2012-03-01

    Repeated ash fall events have occurred during the 1999-ongoing eruption of Tungurahua volcano, Ecuador, notably during the late 1999 and August 2001 eruptive phases. While the eruptive styles were similar, these two phases had different impacts on nearby rural and urban Andean populations: ash falls in late 1999 had limited effects on human health and farming, whereas the 2001 phase resulted in medical problems, death of animals in livestock, and damages to houses and crops. Here we investigate the origin of this difference by estimating the size of the August 2001 event (VEI, magnitude, intensity), and by comparing monitoring information of the 1999 and 2001 phases (duration, explosion rate, column height, SO2 output rate). The results show that both phases ranked at VEI 3, although the longer 1999 phase was likely larger than the 2001 phase. Mass magnitude (M) and intensity (I) indexes calculated for the 2001 phase reach M ≈ 2.7 and I ≈ 6.5 when based on ash fall layer data, but increase to M ≈ 3.2 and I ≈ 7.0 when ballistic products are included. We investigated the influence of rain fall and wind flow regimes on ash dispersion, sedimentation and remobilization. The analysis indicates that the harmful effect of the 2001 phase resulted from unfavorable conditions that combined volcanological and seasonal origins, including: a) a low elevation of the ash plume above rural regions owed to a usually bent-over column, b) ash sedimentation in a narrow area west of the volcano under sub-steady wind directions, c) anticipated ash settling by frequent rain flushing of low intensity, and d) formation of a wet cohesive ash coating on buildings and harvests. Conversely, the stronger 1999 phase injected a large amount of ash at higher elevation in the dry season; the ash was widely disseminated across the whole Ecuadorian territory and beyond, and was frequently removed by rain and winds. In summary, our study illustrates the influences of eruption size and weather

  18. An Eruption on Io

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The first images returned to Earth by New Horizons during its close encounter with Jupiter feature the Galilean moon Io, snapped with the Long Range Reconnaissance Imager (LORRI) at 0840 UTC on February 26, while the moon was 2.5 million miles (4 million kilometers) from the spacecraft.

    Io is intensely heated by its tidal interaction with Jupiter and is thus extremely volcanically active. That activity is evident in these images, which reveal an enormous dust plume, more than 150 miles high, erupting from the volcano Tvashtar. The plume appears as an umbrella-shaped feature of the edge of Io's disk in the 11 o'clock position in the right image, which is a long-exposure (20-millisecond) frame designed specifically to look for plumes like this. The bright spots at 2 o'clock are high mountains catching the setting sun; beyond them the night side of Io can be seen, faintly illuminated by light reflected from Jupiter itself.

    The left image is a shorter exposure -- 3 milliseconds -- designed to look at surface features. In this frame, the Tvashtar volcano shows as a dark spot, also at 11 o'clock, surrounded by a large dark ring, where an area larger than Texas has been covered by fallout from the giant eruption.

    This is the clearest view yet of a plume from Tvashtar, one of Io's most active volcanoes. Ground-based telescopes and the Galileo Jupiter orbiter first spotted volcanic heat radiation from Tvashtar in November 1999, and the Cassini spacecraft saw a large plume when it flew past Jupiter in December 2000. The Keck telescope in Hawaii picked up renewed heat radiation from Tvashtar in spring 2006, and just two weeks ago the Hubble Space Telescope saw the Tvashtar plume in ultraviolet images designed to support the New Horizons flyby.

    Most of those images will be stored onboard the spacecraft for downlink to Earth in March and April.

  19. C3-class Solar Flare Eruption

    NASA Video Gallery

    Just as sunspot 1105 was turning away from Earth on Sept. 8, the active region erupted, producing a C3-class solar flare (peak @ 2330 UT) and a fantastic prominence. This is a three color closeup o...

  20. Mt. Spurr's 1992 eruptions

    USGS Publications Warehouse

    1993-01-01

    On 27 June, 1992, the Crater Peak vent on the south side of Mt. Spurr awoke from 39 years of dormancy and burst into sub-plinian eruption after 10 months of elevated seismicity. Two more eruptions followed in August and September. The volcano lies 125 km west of Anchorage, Alaska's largest city and an important international hub for air travel. The Alaska Volcano Observatory (AVO) was able to warn communities and the aviation industry well in advance of these eruptions.

  1. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    NASA Astrophysics Data System (ADS)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  2. Early prediction of eruption site using lightning location data: Estimates of accuracy during past eruptions

    NASA Astrophysics Data System (ADS)

    Nína Petersen, Guðrún; Arason, Þórður; Bjornsson, Halldór

    2013-04-01

    Eruption of subglacial volcanoes may lead to catastrophic floods and therefore early determination of the exact eruption site may be critical to civil protection evacuation plans. Poor visibility due to weather or darkness often inhibit positive identification of exact eruption location for many hours. However, because of the proximity and abundance of water in powerful subglacial volcanic eruptions, they are probably always accompanied by early lightning activity in the volcanic column. Lightning location systems, designed for weather thunderstorm monitoring, based on remote detection of electromagnetic waves from lightning, can provide valuable real-time information on location of eruption site. Important aspect of such remote detection is its independence of weather, apart from thunderstorms close to the volcano. Individual lightning strikes can be 5-10 km in length and are sometimes tilted and to the side of the volcanic column. This adds to the lightning location uncertainty, which is often a few km. Furthermore, the volcanic column may be swayed by the local wind to one side. Therefore, location of a single lightning can be misleading but by calculating average location of many lightning strikes and applying wind correction a more accurate eruption site location can be obtained. In an effort to assess the expected accuracy, the average lightning locations during the past five volcanic eruptions in Iceland (1998-2011) were compared to the exact site of the eruption vent. Simultaneous weather thunderstorms might have complicated this analysis, but there were no signs of ordinary thunderstorms in Iceland during these eruptions. To identify a suitable wind correction, the vector wind at the 500 hPa pressure level (5-6 km altitude) was compared to mean lightning locations during the eruptions. The essential elements of a system, which predicts the eruption site during the first hour(s) of an eruption, will be described.

  3. 30. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONNECTICUT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONNECTICUT. 2 JUNE 1930. SUBMARINE TRAINING TANK - STEELWORK 98% COMPLETE; BRICKWORK 95% COMPLETE, PIPING 10% IN PLACE. LOOKING NORTH. CONTRACT NO. Y-1539-ELEVATOR, SUBMARINE ESCAPE TANK.' - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  4. Historical bathymetric charts and the evolution of Santorini submarine volcano, Greece

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Nomikou, P.; Moore, J. D. P.; Parks, M. M.; Alexandri, M.

    2015-03-01

    Historical bathymetric charts are a potential resource for better understanding the dynamics of the seafloor and the role of active processes, such as submarine volcanism. The British Admiralty, for example, have been involved in lead line measurements of seafloor depth since the early 1790s. Here, we report on an analysis of historical charts in the region of Santorini volcano, Greece. Repeat lead line surveys in 1848, late 1866, and 1925-1928 as well as multibeam swath bathymetry surveys in 2001 and 2006 have been used to document changes in seafloor depth. These data reveal that the flanks of the Kameni Islands, a dacitic dome complex in the caldera center, have shallowed by up to ˜175 m and deepened by up to ˜80 m since 1848. The largest shallowing occurred between the late 1866 and 1925-1928 surveys and the largest deepening occurred during the 1925-1928 and 2001 and 2006 surveys. The shallowing is attributed to the emplacement of lavas during effusive eruptions in both 1866-1870 and 1925-1928 at rates of up to 0.18 and 0.05 km3 a-1, respectively. The deepening is attributed to a load-induced viscoelastic stress relaxation following the 1866-1870 and 1925-1928 lava eruptions. The elastic thickness and viscosity that best fits the observed deepening are 1.0 km and ˜1016 Pa s, respectively. This parameter pair, which is consistent with the predictions of a shallow magma chamber thermal model, explains both the amplitude and wavelength of the historical bathymetric data and the present day rate of subsidence inferred from InSAR analysis.

  5. On-line image analysis of the stromboli volcanic activity recorded by the surveillance camera helps the forecasting of the major eruptive events.

    NASA Astrophysics Data System (ADS)

    Cristaldi, A.; Coltelli, M.; Mangiagli, S.; Pecora, E.

    2003-04-01

    The typical activity of Stromboli consists of intermittent mild explosions lasting a few seconds, which take place at different vents and at variable intervals, the most common time interval being 10-20 minutes. However, the routine activity can be interrupted by more violent, paroxysmal explosions, that eject m-sized scoriaceous bombs and lava blocks to a distance of several hundreds of meters from the craters, endangering the numerous tourists that watch the spectacular activity from the volcano's summit located about two hundreds meters from the active vents. On average, 1-2 paroxysmal explosions occurred per year over the past century, but this statistic may be underestimated in absence of continuous monitoring. For this reason from summer 1996 a remote surveillance camera works on Stromboli recording continuously the volcanic activity. It is located on Pizzo Sopra la Fossa, 100 metres above the crater terrace where are the active vents. Using image analysis we seeks to identify any change of the explosive activity trend that could precede a particular eruptive event, like paroxysmal explosions, fire fountains, lava flows. From the day of the camera installation up to present 12 paroxysmal events and lava flows occurred. The analysis include the counting of the explosions occurred at the different craters and the parameterization in classes of intensity for each explosion on the base of tephra dispersion and kinetics energy. The plot of dissipated energy by each crater versus time shows a cyclic behavior with max and min of explosive activity ranging from a few days to a month. Often the craters show opposite trends so when the activity decreases in a crater, increases in the other. Before every paroxysmal explosions recorded, the crater that produced the event decreased and then stopped its activity from a few days to weeks before. The other crater tried to compensate increasing its activity and when it declined the paroxysmal explosion occurred suddenly at

  6. Post-eruptive flooding of Santorini caldera and implications for tsunami generation.

    PubMed

    Nomikou, P; Druitt, T H; Hübscher, C; Mather, T A; Paulatto, M; Kalnins, L M; Kelfoun, K; Papanikolaou, D; Bejelou, K; Lampridou, D; Pyle, D M; Carey, S; Watts, A B; Weiß, B; Parks, M M

    2016-11-08

    Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0-2.5 km(3), submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production.

  7. Post-eruptive flooding of Santorini caldera and implications for tsunami generation

    NASA Astrophysics Data System (ADS)

    Nomikou, P.; Druitt, T. H.; Hübscher, C.; Mather, T. A.; Paulatto, M.; Kalnins, L. M.; Kelfoun, K.; Papanikolaou, D.; Bejelou, K.; Lampridou, D.; Pyle, D. M.; Carey, S.; Watts, A. B.; Weiß, B.; Parks, M. M.

    2016-11-01

    Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0-2.5 km3, submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production.

  8. Post-eruptive flooding of Santorini caldera and implications for tsunami generation

    PubMed Central

    Nomikou, P.; Druitt, T. H.; Hübscher, C.; Mather, T. A.; Paulatto, M.; Kalnins, L. M.; Kelfoun, K.; Papanikolaou, D.; Bejelou, K.; Lampridou, D.; Pyle, D. M.; Carey, S.; Watts, A. B.; Weiß, B.; Parks, M. M.

    2016-01-01

    Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0–2.5 km3, submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production. PMID:27824353

  9. Pre-, Syn- and Post Eruptive Seismicity of the 2011 Eruption of Nabro Volcano, Eritrea

    NASA Astrophysics Data System (ADS)

    Goitom, Berhe; Hammond, James; Kendall, Michael; Nowacky, Andy; Keir, Derek; Oppenheimer, Clive; Ogubazghi, Ghebrebrhan; Ayele, Atalay; Ibrahim, Said; Jacques, Eric

    2014-05-01

    Nabro volcano, located in south-east Eritrea, East Africa, lies at the eastern margin of the Afar Rift and the Danakil Depression. Its tectonic behaviour is controlled by the divergence of the Arabian, Nubian and Somali plates. Nabro volcano was thought to be seismically quiet until it erupted in June 2011 with limited warning. The volcano erupted on June 12, 2011 around 20:32 UTC, following a series of earthquakes on that day that reached a maximum magnitude of 5.8. It is the first recorded eruption of Nabro volcano and only the second in Eritrea, following the Dubbi eruption in 1861. A lava flow emerged from the caldera and travelled about 20 km from the vent and buried settlements in the area. At the time of this eruption there was no seismic network in Eritrea, and hence the volcano was not monitored. In this study we use ten Ethiopian, one Yemeni and one Djibouti stations to investigate the seismicity of the area before, during and after the eruption. Four Eritrean seismic stations deployed in June 2011, four days after the eruption, are also included in the dataset. Travel time picks supplied by colleagues from Djibouti were also incorporated into the dataset. Our analysis covers roughly three months before and after the eruption and shows that Nabro was seismically quiet before the eruption (nine events), with the exception of one major earthquake (4.8 magnitude) that occurred on March 31, 2011. In contrast, the region shows continued seismic activity after the eruption (92 events). During the eruption seismicity levels are high (123 events), with two days particularly active, June 12 and June 17 with 85 and 28 discrete events, respectively. Maximum magnitudes of 5.8 and 5.9 were recorded on these two days. The two days of increased seismicity are consistent with satellite observations of the eruption which show two distinct phases of the eruption. The period between these two phases was dominated by volcanic tremor. The tremor signal lasted for almost one

  10. Timing signatures of large scale solar eruptions

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Hock-Mysliwiec, Rachel; Henry, Timothy; Kirk, Michael S.

    2016-05-01

    We examine the timing signatures of large solar eruptions resulting in flares, CMEs and Solar Energetic Particle events. We probe solar active regions from the chromosphere through the corona, using data from space and ground-based observations, including ISOON, SDO, GONG, and GOES. Our studies include a number of flares and CMEs of mostly the M- and X-strengths as categorized by GOES. We find that the chromospheric signatures of these large eruptions occur 5-30 minutes in advance of coronal high temperature signatures. These timing measurements are then used as inputs to models and reconstruct the eruptive nature of these systems, and explore their utility in forecasts.

  11. Mineralized microbes from Giggenbach submarine volcano

    NASA Astrophysics Data System (ADS)

    Jones, Brian; de Ronde, C. E. J.; Renaut, Robin W.

    2008-08-01

    The Giggenbach submarine volcano, which forms part of the Kermadec active arc front, is located ˜780 km NNE of the North Island of New Zealand. Samples collected from chimneys associated with seafloor hydrothermal vents on this volcano, at a depth of 160-180 m, contain silicified microbes and microbes entombed in reticular Fe-rich precipitates. The mineralized biota includes filamentous, rod-shaped, and rare coccoid microbes. In the absence of organic carbon for rDNA analysis or preserved cells, the taxonomic affinity of these microbes, in terms of extant taxa, remains questionable because of their architectural simplicity and the paucity of taxonomically significant features. The three-dimensional preservation of the microbes indicates rapid mineralization with a steady supply of supersaturated fluids to the nucleation sites present on the surfaces of the microbes. The mineralization styles evident in the microbes from the Giggenbach submarine volcano are similar to those associated with mineralized microbes found in terrestrial hot spring deposits in New Zealand, Iceland, Yellowstone, and Kenya. These similarities exist even though the microbes are probably different and the fluids become supersaturated with respect to opal-A by different mechanisms. For ancient rocks it means that interpretations of the depositional settings cannot be based solely on the silicified microbes or their style of silicification.

  12. Linear drug eruption.

    PubMed

    Alfonso, R; Belinchon, I

    2001-01-01

    Linear eruptions are sometimes associated with systemic diseases and they may also be induced by various drugs. Paradoxically, such acquired inflammatory skin diseases tend to follow the system of Blaschko's lines. We describe a case of unilateral linear drug eruption caused by ibuprofen, which later became bilateral and generalized.

  13. Generalized Eruptive Syringoma

    PubMed Central

    Avhad, Ganesh; Ghuge, Priyanka; Jerajani, HR

    2015-01-01

    Eruptive syringoma is a very rare variant of syringoma. It is a benign adnexal tumor of the intraepidermal portion of eccrine sweat ducts. Here we report a 32-year-old female presented with classical asymptomatic eruptive syringomas involving her face and extremities. PMID:25814740

  14. Volatile concentrations in variably vesicular pyroclasts from the Rotongaio ash (181 AD Taupo eruption): did shallow magma degassing trigger exceptionally violent phreatomagmatic activity?

    NASA Astrophysics Data System (ADS)

    Tuffen, Hugh; Houghton, Bruce F.; Dingwellp, Donald B.; Pinkerton, Harry

    2010-05-01

    Measurement of dissolved volatile concentrations in pyroclasts has formed the basis of our understanding of the links between magma degassing and the explosivity of silicic eruptions[1]. To date these studies have focussed exclusively on the densest pyroclastic obsidians, which comprise on a tiny proportion of the erupted products, in order to bypass the difficulty of analysing vesicular material. As a consequence, crucial information is missing about how degassing in the densest clasts relates to the behaviour of the bulk of the magma volume. To overcome this shortcoming, the volatile content of variably vesicular pyroclasts from the Rotongaio ash has been analysed using both micro-analytical (SIMS, synchrotron FTIR) and bulk techniques (TGA-MS). The Rotongaio ash was an exceptionally violent phase of phreatomagmatic activity during the 181 AD rhyolitic eruption of Taupo (New Zealand), the most powerful worldwide in the last 5000 years. The Rotongaio phase involved opening of new vents beneath Lake Taupo and the ash is characterised by a wide range of clast vesicularities (<10 to ~80 % by volume). Volatile measurement was challenging due to the high bubble number densities and small clast sizes. The mismatch between the water content of matrix glasses measured using bulk and micro-analytical techniques reflects pervasive post-eruption hydration of vesicle walls, which is most problematic at high vesicularities. Micron-scale maps of water concentration variations around vesicles in 30-50 vol % vesicular samples were acquired using SIMS. They indicate strong hydration within ~5 microns of vesicle walls, with pockets of unhydrated glass remaining in the thickest septa. Analysis of these unhydrated domains allowed robust measurement of water contents in pyroclasts ranging from ~1 to >50 vol % vesicles. Matrix glasses had largely degassed (0.19-0.49 wt % H2O, compared with an initial concentration in melt inclusions of ~3.6 wt %). The water contents measured using SIMS

  15. The 2008 eruption of Chaitén volcano, Southern Chile: a tectonically controlled eruption?

    NASA Astrophysics Data System (ADS)

    Lara, L. E.; Pallister, J. S.; Ewert, J. W.

    2008-12-01

    initially high plumes and only limited column collapse argue for a relatively strong and narrow conduit and vent structure during the early explosive eruptions. However, the sustained high-rate and large-volume lava eruption (now 4 months in duration) accompanied by relatively low explosivity and low SO2 emissions argue against a purely gas-driven eruptive process. We propose a model for magmatism at Chaitén, in which the timing and compositions of eruptions are controlled by tectonism along the Liquiñe-Ofqui Fault Zone (LOFZ), a 1200 km long structure that is part of a dextral transpressional arc domain. In this model, silicic magmas are trapped and stored at deep levels of the crust (10 km?) during periods of upper crustal localized compression, and eruptions are triggered by tectonic shifts that open tear faults and promote magma transport to the surface. Consistent with seismicity along the LOFZ and subsidiary branches before and during the eruption and with new InSAR data that indicate fault-controlled syn-eruptive deformation, we suggest that such a process triggered the 2008 eruption and that re-establishment of compression, following the initial Plinian phase, has sustained an anomalously high-rate of lava production for the past four months. In turn, fluid flow along the fault-fracture network enhances seismic activity, which is still recorded. The two- way coupling between tectonics and volcanism provides a challenging conceptual framework for hazards assessment in Southern Andes.

  16. Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea Volcano, Hawaii

    SciTech Connect

    Dixon, J.E.; Stolper, E.M. ); Clague, D.A. )

    1991-05-01

    Major, minor, and dissolved volatile element concentrations were measured in tholeiitic glasses from the submarine portion (Puna Ridge) of the east rift zone of Kilauea Volcano, Hawaii. Dissolved H{sub 2}O and S concentrations display a wide range relative to nonvolatile incompatible elements at all depths. This range cannot be readily explained by fractional crystallization, degassing of H{sub 2}O and S during eruption on the seafloor, or source region heterogeneities. Dissolved CO{sub 2} concentrations, in contrast, show a positive correlation with eruption depth and typically agree within error with the solubility at that depth. The authors propose that most magmas along the Puna Ridge result from (1) mixing of a relatively volatile-rich, undegassed component with magmas that experienced low pressure (perhaps subaerial) degassing during which substantial H{sub 2}O, S, and CO{sub 2} were lost, followed by (2) fractional crystallization of olivine, clinopyroxene, and plagioclase from this mixture to generate a residual liquid; and (3) further degassing, principally of CO{sub 2} for samples erupted deeper than 1,000 m, during eruption on the seafloor. They predict that average Kilauean primary magmas with 16% MgO contain {approximately}0.47 wt % H{sub 2}0, {approximately}900 ppm S, and have {delta}D values of {approximately}{minus}30 to {minus}40%. The model predicts that submarine lavas from wholly submarine volcanoes (i.e., Loihi), for which there is no opportunity to generate the degassed end member by low pressure degassing, will be enriched in volatiles relative to those from volcanoes whose summits have breached the sea surface (i.e., Kilauea and Mauna Loa).

  17. Updated bathymetric survey of Kick-'em-Jenny submarine volcano

    NASA Astrophysics Data System (ADS)

    Watlington, R. A.; Wilson, W. D.; Johns, W. E.; Nelson, C.

    High-resolution bathymetric data obtained in July 1996 during a survey of the Kick-'em-Jenny submarine volcano north of Grenada in the Lesser Antilles revealed changes in the structure of the volcanic edifice compared to previously available surveys. The volcano's summit, at 178 m below sea level, was found to be approximately 18 m farther from the surface than was reported by Bouysse et al. (1988) and others. No dome was observed. Instead, an open crater, surrounded by walls that dropped significantly in elevation from one side to the opposite, suggest that eruptions, earthquakes, rockfalls or explosions may have altered the structure since the last detailed survey. The deepest contour of the volcano's crater was found 106 m below the summit.

  18. Initiation of Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2007-01-01

    We consider processes occurring just prior to and at the start of the onset of flare- and CME-producing solar eruptions. Our recent work uses observations of filament motions around the time of eruption onset as a proxy for the evolution of the fields involved in the eruption. Frequently the filaments show a slow rise prior to fast eruption, indicative of a slow expansion of the field that is about co explode. Work by us and others suggests that reconnection involving emerging or canceling flux results in a lengthening of fields restraining the filament-carrying field, and the consequent upward expansion of the field in and around the filament produces the filament's slow rise: that is, the reconnection weakens the magnetic "tethers" ("tether-weakening" reconnection), and results in the slow rise of the filament. It is still inconclusive, however, what mechanism is responsible for the switch from the slow rise to the fast eruption.

  19. Gas-driven eruptions at Mount Ruapehu, New Zealand: towards a coherent model of eruption

    NASA Astrophysics Data System (ADS)

    Kilgour, G. N.; Mader, H. M.; Mangan, M.; Blundy, J.

    2010-12-01

    Mt. Ruapehu is an andesitic cone volcano situated at the southern end of the Taupo Volcanic Zone. The summit plateau at Ruapehu consists of three craters (South, Central and North). Historical activity has consisted of frequent small phreatic and phreatomagmatic eruptions from South Crater. The active vents of South Crater are submerged beneath Crater Lake - a warm, acidic lake. The most recent eruption at Ruapehu occurred on 25th September, 2007 that generated a moderate steam column to about 4.5 km above Crater Lake, and a directed ballistic and surge deposit of coarse blocks and ash to the north of Crater Lake. It also initiated lahars in two catchments. The eruption occurred during the ski season and it resulted in the temporary closure of the three ski fields. Seismicity for the main eruption lasted for about 4 minutes and included an explosive phase which lasted for less than 1 minute and a post-explosion phase which probably indicated resonance in the conduit together with signals generated from lahars and vent stabilisation. Preceding seismicity occurred ~ 10 min before the eruption. The 2007 eruption appears strikingly similar to phreatic/phreatomagmatic eruptions of 1969 and 1975. In those eruptions, limited precursory seismicity was recorded, the bulk of the erupted deposits were accidental lithics, including lake sediments and older lavas, and only a small amount of juvenile material was erupted (~ 5%). It is likely that all three eruptions were driven by magmatic gases, either stored and pressurised beneath a hydrothermal seal, or rapidly exsolved during a gas release event. This poster outlines the plan that we will use to model this common type of eruption at Ruapehu. We will analyse the volatile content of phenocryst-hosted melt inclusions to determine the degassing depth of historic eruptions. This will allow us to identify where the magmas have been or are degassing beneath Crater Lake. Analogue modelling of gas and fluid flow through a visco

  20. Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io

    USGS Publications Warehouse

    Davies, A.G.; Keszthelyi, L.P.; Williams, D.A.; Phillips, C.B.; McEwen, A.S.; Lopes, R.M.C.; Smythe, W.D.; Kamp, L.W.; Soderblom, L.A.; Carlson, R.W.

    2001-01-01

    The Galileo spacecraft has been periodically monitoring volcanic activity on Io since June 1996, making it possible to chart the evolution of individual eruptions. We present results of coanalysis of Near-Infrared Mapping Spectrometer (NIMS) and solid-state imaging (SSI) data of eruptions at Pele and Pillan, especially from a particularly illuminating data set consisting of mutually constraining, near-simultaneous NIMS and SSI observations obtained during orbit C9 in June 1997. The observed thermal signature from each hot spot, and the way in which the thermal signature changes with time, tightly constrains the possible styles of eruption. Pele and Pillan have very different eruption styles. From September 1996 through May 1999, Pele demonstrates an almost constant total thermal output, with thermal emission spectra indicative of a long-lived, active lava lake. The NIMS Pillan data exhibit the thermal signature of a "Pillanian" eruption style, a large, vigorous eruption with associated open channel, or sheet flows, producing an extensive flow field by orbit C10 in September 1997. The high mass eruption rate, high liquidus temperature (at least 1870 K) eruption at Pillan is the best candidate so far for an active ultramafic (magnesium-rich, "komatiitic") flow on Io, a style of eruption never before witnessed. The thermal output per unit area from Pillan is, however, consistent with the emplacement of large, open-channel flows. Magma temperature at Pele is ~1600 K. If the magma temperature is 1600 K, it suggests a komatiitic-basalt composition. The power output from Pele is indicative of a magma volumetric eruption rate of ~250 to 340 m3 s-1. Although the Pele lava lake is considerably larger than its terrestrial counterparts, the power and mass fluxes per unit area are similar to active terrestrial lava lakes. Copyright 2001 by the American Geophysical Union.

  1. 34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION OF BLISTERS IN 1959, LOOKING SOUTHEAST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  2. Volcanic Eruptions and Climate

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  3. History of earthquakes and vertical ground movement in Campi Flegrei caldera, Southern Italy: comparison of precursory events to the A.D. 1538 eruption of Monte Nuovo and of activity since 1968

    USGS Publications Warehouse

    Dvorak, J.J.; Gasparini, P.

    1991-01-01

    The record of felt earthquakes around Naples Bay in southern Italy is probably complete since the mid-15th century. According to this record, intense earthquake swarms originating beneath Campi Flegrei, an explosive caldera located along the north coast of Naples Bay, have occurred only twice: (1) before the only historical eruption in Campi Flegrei in 1538; and (2) from mid-1983 to December 1984. Earthquake activity during the earlier period, which began at least a few years, and possibly as many as 30 years, before the 1538 eruption, damaged many buildings in the city of Pozzuoli, located near the center of Campi Flegrei. Minor seismic activity, which consisted of only a few felt earthquakes, occurred from 1970 to 1971. The second period of intense earthquake swarms lasted from mid-1983 to 1984, again damaging many buildings in Pozzuoli. Two periods of uplift along the shoreline within Campi Flegrei have also been noted since the mid-15th century: (1) during the few decades before the 1538 eruption; and (2) as two distinct episodes since 1968. Uplift of a few meters probably occurred a few decades before the 1538 eruption; uplift of as much as 3.0 m has occurred in Pozzuoli since 1968. These similarities strongly suggest that, for the first time in 440 years, the same process that caused intense local earthquake swarms and uplift in the early 1500's and led to an eruption in 1538, has again occurred beneath Campi Flegrei. Though no major seismicity or uplift has occurred since December 1984, because of the large amount of extensional strain accumulated during the past two decades, if a third episode of seismicity and rapid uplift occurs, it may lead to an eruption within several months after the resumption of activity. ?? 1991.

  4. Submarine basalt from the Revillagigedo Islands region, Mexico

    USGS Publications Warehouse

    Moore, J.G.

    1970-01-01

    Ocean-floor dredging and submarine photography in the Revillagigedo region off the west coast of Mexico reveal that the dominant exposed rock of the submarine part of the large island-forming volcanoes (Roca Partida and San Benedicto) is a uniform alkali pillow basalt; more siliceous rocks are exposed on the upper, subaerial parts of the volcanoes. Basalts dredged from smaller seamounts along the Clarion fracture zone south of the Revillagigedo Islands are tholeiitic pillow basalts. Pillows of alkali basalts are more vesicular than Hawaiian tholeiitic pillows collected from the same depths. This difference probably reflects a higher original volatile content of the alkali basalts. Manganese-iron oxide nodules common in several dredge hauls generally contain nucleii of rhyolitic pumice or basalt pillow fragments. The pumice floated to its present site from subaerial eruptions, became waterlogged and sank, and was then coated with manganese-iron oxides. The thickness of palagonite rinds on the glassy pillow fragments is proportional to the thickness of manganese-iron oxide layers, and both are a measure of the age of the nodule. Both oldest basalts (10-100 m.y.) and youngest (less than 1 m.y.) are along the Clarion fracture zone, whereas basalts from Roca Partida and San Benedicto volcanoes are of intermediate age. ?? 1970.

  5. Measuring currents in submarine canyons: technological and scientific progress in the past 30 years

    USGS Publications Warehouse

    Xu, J. P.

    2011-01-01

    The development and application of acoustic and optical technologies and of accurate positioning systems in the past 30 years have opened new frontiers in the submarine canyon research communities. This paper reviews several key advancements in both technology and science in the field of currents in submarine canyons since the1979 publication of Currents in Submarine Canyons and Other Sea Valleys by Francis Shepard and colleagues. Precise placements of high-resolution, high-frequency instruments have not only allowed researchers to collect new data that are essential for advancing and generalizing theories governing the canyon currents, but have also revealed new natural phenomena that challenge the understandings of the theorists and experimenters in their predictions of submarine canyon flow fields. Baroclinic motions at tidal frequencies, found to be intensified both up canyon and toward the canyon floor, dominate the flow field and control the sediment transport processes in submarine canyons. Turbidity currents are found to frequently occur in active submarine canyons such as Monterey Canyon. These turbidity currents have maximum speeds of nearly 200 cm/s, much smaller than the speeds of turbidity currents in geological time, but still very destructive. In addition to traditional Eulerian measurements, Lagrangian flow data are essential in quantifying water and sediment transport in submarine canyons. A concerted experiment with multiple monitoring stations along the canyon axis and on nearby shelves is required to characterize the storm-trigger mechanism for turbidity currents.

  6. Overview of the 1995 NATO ARW on nuclear submarine decommissioning and related problems

    SciTech Connect

    LeSage, L.G.

    1997-10-01

    The NATO Advanced Research Workshop on Nuclear Submarine Decommissioning and Related Problems was held in Moscow June 19--22, 1995. It was preceded by a visit to the Zvezdotchka Shipyard at Severodvinsk, a repair and maintenance yard for Russian nuclear submarines, for a subgroup of the workshop attendees. Most of the material in this paper is drawn directly form the workshop proceedings. Slightly less than 500 nuclear ships and submarines (the vast majority are submarines) have been constructed by the countries with nuclear navies. This includes approximately 250 by Russia, 195 by the United States, 23 by the United Kingdom, 11 by France and 6 by China. By the year 2000 it is expected that approximately one-half of these nuclear vessels will be removed from service and in various states of decommissioning. A newspaper account in June 1997 indicated that 156 Russian nuclear submarines had been removed from service. In August 1996 it was reported that 55 reactor compartment sections from US nuclear submarines were already in long-term storage at Hanford. Overall the dismantlement of nuclear submarines and the processing, storage and disposal of nuclear fuel, activated components and section of the hulls, and the liquid and solid radioactive and hazardous wastes is an enormous problem. This problem has been exacerbated by the accelerated decommissioning schedule associated with treaty obligations.

  7. Russian nuclear-powered submarine decommissioning

    SciTech Connect

    Bukharin, O.; Handler, J.

    1995-11-01

    Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems.

  8. Saga is largest commercial submarine ever

    SciTech Connect

    Not Available

    1985-05-01

    The long-range autonomous submarine, Saga, went nuclear last year with an agreement between the French and two Canadian companies. The agreement to convert the prototype from Swedish Stirling closed-cycle combustion engines to a nuclear power supply will make Saga the first non-defense nuclear submarine. With an external hull displacement of 500 tons, Saga will be the largest commercial submarine ever built.

  9. Submarine landslides hazard offshore Israel

    NASA Astrophysics Data System (ADS)

    Katz, Oded

    2016-04-01

    Submarine landslides pose significant natural hazards. They can damage seafloor infrastructure, such as that used to recover oil and gas or seafloor telecommunication cables, and even generate tsunamis. We recently mapped 447 submarine landslides across the east Mediterranean continental slope, offshore Israel (hereafter the studied area). The mapped landslides are found at water depths of 130 m to 1,000 m and their volume ranges 10-5 - 100 km3. Landslide scars are typically related to a critical slope angle of >4° . Landslides at the northern part of the studied area are spatially associated with fault scarps and are smaller than the ones on the southern part. In this work we evaluate the potential hazard to population and to on- and off- shore facilities posed by submarine landslides across the studied area. We integrate three independent probabilities: (1) the probability for a landslide event of a given volume, based on the size distribution of the mapped landslides; (2) the probability for a landslide event in a given time, based on the reoccurrence time of triggering earthquakes with M >7, and on a 50,000 years general time frame derived from submarine landslides identified across the Mediterranean Sea; (3) the probability for a landslide event in a given area, based on the distribution of slopes exceeding the critical angle. Overall, the fraction of potentially destructive landslides (size > 0.1 km3) is small, 0.05. Thus, considering typical planning time scales of less than 100 years, the calculated hazard is only moderate. The small fraction of landslides with tsunamogenic potential (size > 1 km3), suggests that the hazard for landslide-induced tsunamis along the open slope part of the studied area is small. Landslides in the southern part of the studied area are larger and thus present a somewhat bigger potential source of tsunami waves.

  10. An ongoing large submarine landslide at the Japan trench

    NASA Astrophysics Data System (ADS)

    Nitta, S.; Kasaya, T.; Miura, S.; Kawamura, K.

    2013-12-01

    This paper deals with an active submarine landslide on a landward trench slope in the Japan trench. Studied area is located on the upper terrace ranging from 400 to 1200 m in water depth, off Sendai, northeast Japan. We have surveyed in detail the seabed topography using a multi narrow beam (hereafter MBES) and a subbottom profiler (hereafter SBP) during the cruise MR12-E02 of R/V Mirai. The survey lines were 12 lines in N-S, and 3 lines in E-W, and situated in the region from 141°45'E, 37°40'N to 142°33'E, 38°32'N. Moreover, we used multi-channel seismic profile by the cruise KR04-10 of R/V Kairei in the interpretation of the SBP results. In general, horseshoe-shaped depressions of about 100 km wide along the trench slope are arrayed along the Japan trench. It has thought that they were formed by large submarine landslides, but we could not understand critically the relationship between the depressions and the submarine landslides. Based on the survey results, we found signals of an active submarine landslide in the depression as follows. 1) We observed arcuate-shaped lineaments, which are sub-parallel to a horseshoe-shaped depression. The lineaments concentrate in the south region from 38°N at about 20 km wide. These lineaments are formed by deformation structures as anticlines, synclines and normal fault sense displacements. 2) Most of the synclines and anticlines are not buried to form the lineaments. 3) Normal faults cutting about 1 km deep are observed in a multi-channel seismic profile. The normal faults are located just below the arcuate-shaped lineaments, and are tilted eastward being the downslope direction. It indicates a large submarine landslide. We concluded that the arcuate-shaped lineaments were generated by surface sediment movement with the submarine landsliding. We think that the submarine landslide of about 20 km wide and about 1 km thick move continuously down the landward trench slope. This would be the formation process of the horseshoe

  11. Submarine thermal springs on the Galapagos Rift

    USGS Publications Warehouse

    Corliss, J.B.; Dymond, J.; Gordon, L.I.; Edmond, J.M.; Von Herzen, R. P.; Ballard, Richard D.; Green, K.; Williams, D.; Bainbridge, A.; Crane, K.; Van Andel, T. H.

    1979-01-01

    The submarine hydrothermal activity on and near the Galápagos Rift has been explored with the aid of the deep submersible Alvin. Analyses of water samples from hydrothermal vents reveal that hydrothermal activity provides significant or dominant sources and sinks for several components of seawater; studies of conductive and convective heat transfer suggest that two-thirds of the heat lost from new oceanic lithosphere at the Galápagos Rift in the first million years may be vented from thermal springs, predominantly along the axial ridge within the rift valley. The vent areas are populated by animal communities. They appear to utilize chemosynthesis by sulfur-oxidizing bacteria to derive their entire energy supply from reactions between the seawater and the rocks at high temperatures, rather than photosynthesis

  12. Exploring the "Sharkcano": Biogeochemical observations of the Kavachi submarine volcano (Solomon Islands) using simple, cost-effective methods.

    NASA Astrophysics Data System (ADS)

    Phillips, B. T.; Albert, S.; Carey, S.; DeCiccio, A.; Dunbabin, M.; Flinders, A. F.; Grinham, A. R.; Henning, B.; Howell, C.; Kelley, K. A.; Scott, J. J.

    2015-12-01

    Kavachi is a highly active undersea volcano located in the Western Province of the Solomon Islands, known for its frequent phreatomagmatic eruptions and ephemeral island-forming activity. The remote location of Kavachi and its explosive behavior has restricted scientific exploration of the volcano, limiting observations to surface imagery and peripheral water-column data. An expedition to Kavachi in January 2015 was timed with a rare lull in volcanic activity, allowing for observation of the inside of Kavachi's caldera and its flanks. Here we present medium-resolution bathymetry of the main peak paired with benthic imagery, petrologic analysis of samples from the caldera rim, measurements of gas flux over the main peak, and hydrothermal plume structure data. A second peak was discovered to the Southwest of the main cone and displayed evidence of diffuse-flow venting. Populations of gelatinous animals, small fish, and sharks were observed inside the active crater, raising new questions about the ecology of active submarine volcanoes. Most equipment used in this study was lightweight, relatively low-cost, and deployed using small boats; these methods may offer developing nations an economic means to explore deep-sea environments within their own territorial waters.

  13. Present Thoughts on Exercise, Weight, and Performance Aboard Nuclear Submarines,

    DTIC Science & Technology

    Submarine personnel, Physical fitness, Confined environments, Stress(Physiology), Stress(Psychology), Body weight, Weight reduction, Diet , Nuclear powered submarines, Exercise(Physiology), Performance(Human)

  14. Solar Prominence Eruption

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    1998-01-01

    The prominence that erupts in a prominence eruption is a magnetic structure in the chromosphere and corona. It is visible in chromospheric images by virtue of chromospheric-temperature plasma suspended in the magnetic field, and belongs to that large class of magnetic structures appropriately called filaments because of their characteristic sinewy sigmoidal form. Hence, the term "filament eruption" is used interchangeably with the term "prominence eruption". The magnetic field holding a filament is prone to undergo explosive changes in configuration. In these upheavals, because the filament material is compelled by its high conductivity to ride with the magnetic field that threads it, this material is a visible tracer of the field motion. The part of the magnetic explosion displayed by the entrained filament material is the phenomenon known as a filament eruption, the topic of this article. This article begins with a description of basic observed characteristics of filament eruptions, with attention to the magnetic fields, flares, and coronal mass ejections in which erupting filaments are embedded. The present understanding of these characteristics in terms of the form and action of the magnetic field is then laid out by means of a rudimentary three-dimensional model of the field. The article ends with basic questions that this picture leaves unresolved and with remarks on the observations needed to probe these questions.

  15. Eruption Pattern of Dentition and Its Medico-legal Significance.

    PubMed

    Karki, R K

    2016-01-01

    Background The eruption pattern of temporary and permanent teeth are fairly constant with the growing age. So the age determination of an individual by examination of teeth is one of the accepted methods in legal system. A review of the literature shows there are differences in eruption pattern between different populations mainly due to variations in the constitutions and environment, so highlighting the importance of this study to the Nepalese population. Objective To assess the eruption age of temporary and permanent teeth in Nepalese population and compared the eruption age with other groups. Method This cross-sectional study, included 450 subjects, aged between six months to 25 years selected by simple random sampling method. The determinant variable such as age and number of teeth was recorded. Result Eruption of temporary and permanent teeth is slightly delayed in Nepalese population compared with others. First temporary tooth to erupt is lower central Incisor at around eight months and last to erupt is second molar at around 28 months. For permanent tooth, first molar erupts at around seven years and second molar erupts by 14 years. Eruption of third molar (wisdom tooth) varies from 18 to 25 years. Conclusion This study provides a model data on eruption age of teeth which is first study of its kind in Nepal. The findings of this study will help as a reference data for optimal use in clinical, academic and research activities especially in Nepalese population. Medico legally it helps in estimation of age along with other parameters.

  16. Seismic recording of the Anatahan eruption

    NASA Astrophysics Data System (ADS)

    Pozgay, S. H.; Wiens, D. A.; Shore, P. J.; Sauter, A.; Camacho, J. T.

    2003-12-01

    The first historic eruption of Anatahan volcano was fortuitously recorded by a broadband PASSCAL seismograph installed on the island only 4 days prior to the eruption. Although covered by ash during the eruption, the seismograph continued to operate throughout the main two month period of activity on Anatahan. This seismograph, located about 6 km west of the active eastern crater, as well as a seismograph installed on Sarigan about 45 km to the north, provide a continuous record of activity during the eruption. We have manually analyzed and visually picked arrivals from the 14 day period beginning 4 days prior to the eruption, and we have implemented an automatic event identification algorithm for the rest of the eruption period that has been calibrated relative to the manually processed data. In addition, we have located many of the larger volcano tectonic (VT) earthquakes using the P and S wave arrivals at Anatahan and Sarigan as well as P wave polarization data. Although these locations are not highly accurate they serve to delineate the general spatial progression of the earthquake activity. No earthquakes occurred in the crater region during the 4 days prior to the eruption. The only significant precursory earthquake activity was a swarm of events on May 8 that were located about 15 km northeast of the island and significantly deeper than events directly associated with the eruption. The first VT event from Anatahan itself was recorded at about 02:00 hrs GMT on May 10. The number of events per hour increases dramatically between 02:00 and 07:00 GMT. A period of nearly continuous earthquake activity commences at about 06:20 GMT which corresponds well with the eruption time of 07:30 GMT estimated by the Volcanic Ash Advisory Center from satellite photos of the ash cloud. After about 36 hours of intense earthquake activity, the number of discrete earthquakes declined, and were replaced by nearly continuous volcanic tremor. Much of the later part of the eruption

  17. Dynamics and pre-eruptive conditions of catastrophic, ignimbrite-producing eruptions from the Yenkahe Caldera, Vanuatu

    NASA Astrophysics Data System (ADS)

    Firth, Chris W.; Cronin, Shane J.; Turner, Simon P.; Handley, Heather K.; Gaildry, Clement; Smith, Ian

    2015-12-01

    A combined stratigraphic and geochemical examination of ~ 43 kyr of volcanic activity is presented for the Yenkahe Caldera, a mafic-intermediate volcanic system on the island of Tanna, in the Vanuatu Arc. Through this period two catastrophic ignimbrite-producing eruptions have occurred: the Siwi eruption and the older, Old Tanna Ignimbrite eruption. The latter was previously linked with a different edifice to the north-east, however re-examination has shown it was derived from the Yenkahe Caldera. Radiocarbon dating of this ignimbrite gives an age of ~ 43 kyr B.P. Both eruptions produced voluminous ignimbrite sheets, however differences in deposit sequences show that the eruptions followed distinct courses. Deposits from the more recent Siwi eruption display greater evidence for phreatomagmatic phases during eruption onset. Both ignimbrites are distributed asymmetrically about the caldera, indicating partial collapse in each case. The early stages of the Siwi eruption produced directed pyroclastic surges and spatter fountains. Between these two major eruptions, volcanic activity was maintained through the formation of small, discrete volcanic cones, such as Yasur, which is active today. Whole rock major and trace element data show that intra-caldera activity between cataclysmic eruptions produced magmas of uniform basaltic-trachy-andesitic composition (SiO2 ~ 56 wt.%). Minerals within these lavas appear to be in equilibrium with their host. The Siwi eruption produced the most evolved, trachy-andesitic magma (SiO2 > 58 wt.%), while the Old Tanna eruption is associated with less evolved, basaltic-andesite magma (SiO2 ~ 53 wt.%). Juvenile clasts from both ignimbrites display diverse mineral chemistry and mineral disequilibrium textures. From these variations in geochemistry and petrology we suggest that a crystal mush or resident magma remained following low-magnitude, intra-caldera activity. MELTS modelling suggest that this was stored at shallow depths, equivalent

  18. Eruption and degassing dynamics of the major August 2015 Piton de la Fournaise eruption

    NASA Astrophysics Data System (ADS)

    Di Muro, Andrea; Arellano, Santiago; Aiuppa, Alessandro; Bachelery, Patrick; Boudoire, Guillaume; Coppola, Diego; Ferrazzini, Valerie; Galle, Bo; Giudice, Gaetano; Gurioli, Lucia; Harris, Andy; Liuzzo, Marco; Metrich, Nicole; Moune, Severine; Peltier, Aline; Villeneuve, Nicolas; Vlastelic, Ivan

    2016-04-01

    Piton de la Fournaise (PdF) shield volcano is one of the most active basaltic volcanoes in the World with one eruption every nine months, on average. This frequent volcanic activity is broadly bimodal, with frequent small volume, short lived eruptions (< 30 Mm3, most being < 10 Mm3) and less frequent relatively large (50-210 Mm3) and long lasting (months) eruptions. After the major caldera forming event of 2007, the volcano produced several short lived small volume summit to proximal eruptions of relatively evolved cotectic magmas and relatively long repose periods (up to 3.5 years between 2010 and 2014). The August 2015 eruption was the first large (45±15 Mm3) and long lasting (2 months) eruption since 2007 and the only event to be fully monitored by the new gas geochemical network of Piton de la Fournaise volcanological observatory (DOAS, MultiGaS, diffuse CO2 soil emissions). Regular lava and tephra sampling was also performed for geochemical and petrological analysis. The eruption was preceded by a significant increase in CO2 soil emissions at distal soil stations (ca. 15 km from the summit), with CO2 enrichment also being recorded at summit low temperature fumaroles. Eruptive products were spectacularly zoned, with plagioclase and pyroxene being abundant in the early erupted products and olivine being the main phase in the late-erupted lavas. Total gas emissions at the eruptive vent underwent a decrease during the first half of the eruption and then an increase, mirroring the time evolution of magma discharge rate (from 5-10 m3/s in September to 15-30 m3/s in late-October) and the progressive change in magma composition. In spite of significant evolution in magma and gas output, CO2/SO2 ratios in high temperature gases remained quite low (< 0.3) and with little temporal change. Geochemical data indicated that this relatively long-lived eruption corresponded to the progressive drainage of most of the shallow part of PdF plumbing system, triggered by a new

  19. Volcanic tremors: Good indicators of change in plumbing systems during volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Tárraga, Marta; Martí, Joan; Abella, Rafael; Carniel, Roberto; López, Carmen

    2014-03-01

    Geophysical and geochemical signals recorded during episodes of unrest preceding volcanic eruptions provide information on movements of magma inside the lithosphere and on how magma prepares to reach the surface. When the eruption ensues continuous volcanic monitoring can reveal the nature of changes occurring in the volcano's plumbing system, which may be correlated with changes in both eruption behaviour and products. During the 2011-2012 submarine eruption of El Hierro (Canary Islands), the seismic signal, surface deformation, a broad stain on the sea surface of the eruption site, and the occasional appearance of floating lava balloons and pyroclastic fragments were the main observable signs. A strong continuous tremor in the vent accompanied the eruption and varied significantly in amplitude, frequency and dynamical parameters. We analysed these variations and correlated them with changes in the distribution of earthquakes and in the petrology of the erupting magma. This enabled us to relate variations in tremors to changes in the (i) stress conditions of the plumbing system, (ii) dimensions of the conduit and vent, (iii) intensity of the explosive episodes, and (iv) rheological changes in the erupting magma. The results obtained show how the tremor signal was strongly influenced by stress changes in the host rock and in the rheological variations in the erupting magma. We conclude that the tracking of real-time syn-eruptive tremor signals via the observation of variations in plumbing systems and magma physics is a potentially effective tool for interpreting eruption dynamics, and suggest that similar variations observed in pre-eruptive tremors will have a similar origin.

  20. Supply Hotlist Report Generation for Fleet Ballistic Missile Submarine Management Meetings.

    DTIC Science & Technology

    1987-09-01

    enlisted personnel on-board a U.S. Navy FBM Submarine Tender in producing daily high- priority requisition "Hot List " reports. These reports are used for...This report lists each active requisition. grouped by tended unit. and subgrouped within those by priority . Supply codes are trans- lated into plain...store data and software for use in computer operation. hotlist A listing of priority I (highest priority ) requisitions from a submarine tender or

  1. Depth of origin of magma in eruptions

    PubMed Central

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-01-01

    Many volcanic hazard factors - such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses - relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11–15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011–2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide. PMID:24067336

  2. Depth of origin of magma in eruptions.

    PubMed

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-09-26

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.

  3. Dynamics of Submarine Landslides in an Active Margin from Analysis of Particle Size, Cores, and 3D Seismic Data: Site C0021, IODP Expedition 338, Offshore Japan

    NASA Astrophysics Data System (ADS)

    Sawyer, D.; Moore, Z. T.

    2013-12-01

    The deposits of submarine landslides, termed mass transport deposits (MTDs), were drilled and cored at Site C0021 in the Nankai Trough during Integrated Ocean Drilling Program (IODP) Expedition 338. Two MTDs were identified at 94-117 mbsf and 133-176 mbsf. Each MTD includes mud clasts, tilted bedding, and/or chaotic bedding, an increase in shear strength, a decrease in porosity, the occurrence of shear zones/faults, and a semi-transparent seismic facies. We conducted laser particle size analyses of sediments throughout the entire cored interval at Site C0021 (0 - 5 mbsf and 90 - 194 mbsf). Particle size distributions show that sediments shallower than 155 mbsf are composed of approximately 80% silt-sized, 15% clay-sized, and 5% sand-sized particles. Sediments deeper than 155 mbsf are predominantly composed of approximately 65% silt-sized, 15% clay-sized, and 20% sand-sized particles. MTDs have no obvious differences from non-MTD particle size distributions. We are examining the MTDs to gain insight into their dynamic behavior by mapping them in 3D seismic data. We measure slope geometry, runout distance, and characterize the depositional features preserved within the MTDs in the basal surface, top surface, and internal body. We use slope geometry to calculate regional gravitational shear stress and we use runout distance and morphology as indicators of the dynamic behavior of the landslide. Future work will focus on back-analysis estimates of shear stress and shear strength parameters. Our goal is to distinguish whether these landslides occurred as relatively rapid-moving, low-viscosity events or relatively slow-moving, high-viscosity events. This is an important distinction to make given that initial acceleration of a landslide is a critical variable that determines amplitude of slide-generated tsunami.

  4. Volcanic Eruptions in Kamchatka

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Sheveluch Stratovolcano Click on the image for full resolution TIFF Klyuchevskoy Stratovolcano Click on the image for full resolution TIFF

    One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. On April 26, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radioneter (ASTER) on NASA's Terra spacecraft captured these images of the Klyuchevskoy and Sheveluch stratovolcanoes, erupting simultaneously, and 80 kilometers (50 miles) apart. Over Klyuchevskoy, the thermal infrared data (overlaid in red) indicates that two open-channel lava flows are descending the northwest flank of the volcano. Also visible is an ash-and-water plume extending to the east. Sheveluch volcano is partially cloud-covered. The hot flows highlighted in red come from a lava dome at the summit. They are avalanches of material from the dome, and pyroclastic flows.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy,