Science.gov

Sample records for actively growing bacteria

  1. Community shifts of actively growing lake bacteria after N-acetyl-glucosamine addition: improving the BrdU-FACS method.

    PubMed

    Tada, Yuya; Grossart, Hans-Peter

    2014-02-01

    In aquatic environments, community dynamics of bacteria, especially actively growing bacteria (AGB), are tightly linked with dissolved organic matter (DOM) quantity and quality. We analyzed the community dynamics of DNA-synthesizing and accordingly AGB by linking an improved bromodeoxyuridine immunocytochemistry approach with fluorescence-activated cell sorting (BrdU-FACS). FACS-sorted cells of even oligotrophic ecosystems in winter were characterized by 16S rRNA gene analysis. In incubation experiments, we examined community shifts of AGB in response to the addition of N-acetyl-glucosamine (NAG), one of the most abundant aminosugars in aquatic systems. Our improved BrdU-FACS analysis revealed that AGB winter communities of oligotrophic Lake Stechlin (northeastern Germany) substantially differ from those of total bacteria and consist of Alpha-, Beta-, Gamma-, Deltaproteobacteria, Actinobacteria, Candidatus OP10 and Chloroflexi. AGB populations with different BrdU-fluorescence intensities and cell sizes represented different phylotypes suggesting that single-cell growth potential varies at the taxon level. NAG incubation experiments demonstrated that a variety of widespread taxa related to Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Planctomycetes, Spirochaetes, Verrucomicrobia and Chloroflexi actively grow in the presence of NAG. The BrdU-FACS approach enables detailed phylogenetic studies of AGB and, thus, to identify those phylotypes which are potential key players in aquatic DOM cycling.

  2. Community structures of actively growing bacteria shift along a north-south transect in the western North Pacific.

    PubMed

    Taniguchi, Akito; Hamasaki, Koji

    2008-04-01

    Bacterial community structures and their activities in the ocean are tightly coupled with organic matter fluxes and thus control ocean biogeochemical cycles. Bromodeoxyuridine (BrdU), halogenated nucleoside and thymidine analogue, has been recently used to monitor actively growing bacteria (AGB) in natural environments. We labelled DNA of proliferating cells in seawater bacterial assemblages with BrdU and determined community structures of the bacteria that were possible key species in mediating biochemical reactions in the ocean. Surface seawater samples were collected along a north-south transect in the North Pacific in October 2003 and subjected to BrdU magnetic beads immunocapture and PCR-DGGE (BUMP-DGGE) analysis. Change of BrdU-incorporated community structures reflected the change of water masses along a north-south transect from subarctic to subtropical gyres in the North Pacific. We identified 25 bands referred to AGB as BrdU-incorporated phylotypes, belonging to Alphaproteobacteria (5 bands), Betaproteobacteria (1 band), Gammaproteobacteria (4 bands), Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria (5 bands), Gram-positive bacteria (6 bands), and Cyanobacteria (4 bands). BrdU-incorporated phylotypes belonging to Vibrionales, Alteromonadales and Gram-positive bacteria appeared only at sampling stations in a subtropical gyre, while those belonging to Roseobacter-related bacteria and CFB group bacteria appeared at the stations in both subarctic and subtropical gyres. Our result revealed phylogenetic affiliation of AGB and their dynamic change along with north-south environmental gradients in open oceans. Different species of AGB utilize different amount and kinds of substrates, which can affect the change of organic matter fluxes along transect.

  3. GrowLab: Activities for Growing Minds.

    ERIC Educational Resources Information Center

    Pranis, Eve; Cohen, Joy

    As students observe plant growth, the questions that naturally arise can provide opportunities for student exploration and discovery. This guide presents a collection of activities for students in grades K-8 that turn students' questions into life sciences learning experiences. The guide contains four chapters, each with background information and…

  4. Multifork chromosome replication in slow-growing bacteria

    PubMed Central

    Trojanowski, Damian; Hołówka, Joanna; Ginda, Katarzyna; Jakimowicz, Dagmara; Zakrzewska-Czerwińska, Jolanta

    2017-01-01

    The growth rates of bacteria must be coordinated with major cell cycle events, including chromosome replication. When the doubling time (Td) is shorter than the duration of chromosome replication (C period), a new round of replication begins before the previous round terminates. Thus, newborn cells inherit partially duplicated chromosomes. This phenomenon, which is termed multifork replication, occurs among fast-growing bacteria such as Escherichia coli and Bacillus subtilis. In contrast, it was historically believed that slow-growing bacteria (including mycobacteria) do not reinitiate chromosome replication until the previous round has been completed. Here, we use single-cell time-lapse analyses to reveal that mycobacterial cell populations exhibit heterogeneity in their DNA replication dynamics. In addition to cells with non-overlapping replication rounds, we observed cells in which the next replication round was initiated before completion of the previous replication round. We speculate that this heterogeneity may reflect a relaxation of cell cycle checkpoints, possibly increasing the ability of slow-growing mycobacteria to adapt to environmental conditions. PMID:28262767

  5. Cecum Lymph Node Dendritic Cells Harbor Slow-Growing Bacteria Phenotypically Tolerant to Antibiotic Treatment

    PubMed Central

    Dolowschiak, Tamas; Wotzka, Sandra Y.; Lengefeld, Jette; Slack, Emma; Grant, Andrew J.; Ackermann, Martin; Hardt, Wolf-Dietrich

    2014-01-01

    In vivo, antibiotics are often much less efficient than ex vivo and relapses can occur. The reasons for poor in vivo activity are still not completely understood. We have studied the fluoroquinolone antibiotic ciprofloxacin in an animal model for complicated Salmonellosis. High-dose ciprofloxacin treatment efficiently reduced pathogen loads in feces and most organs. However, the cecum draining lymph node (cLN), the gut tissue, and the spleen retained surviving bacteria. In cLN, approximately 10%–20% of the bacteria remained viable. These phenotypically tolerant bacteria lodged mostly within CD103+CX3CR1−CD11c+ dendritic cells, remained genetically susceptible to ciprofloxacin, were sufficient to reinitiate infection after the end of the therapy, and displayed an extremely slow growth rate, as shown by mathematical analysis of infections with mixed inocula and segregative plasmid experiments. The slow growth was sufficient to explain recalcitrance to antibiotics treatment. Therefore, slow-growing antibiotic-tolerant bacteria lodged within dendritic cells can explain poor in vivo antibiotic activity and relapse. Administration of LPS or CpG, known elicitors of innate immune defense, reduced the loads of tolerant bacteria. Thus, manipulating innate immunity may augment the in vivo activity of antibiotics. PMID:24558351

  6. Identification of effective Pb resistant bacteria isolated from Lens culinaris growing in lead contaminated soils.

    PubMed

    Jebara, Salwa Harzalli; Abdelkerim, Souhir; Fatnassi, Imen Challougui; Chiboub, Manel; Saadani, Omar; Jebara, Moez

    2015-03-01

    Soil bacteria are a new phytoremediation system for the removal of heavy metals from soils. In this study, fifteen soil bacteria were isolated from root nodules of lentil growing in heavy metals contaminated soils, particularly by lead. Molecular characterization of the collection showed a large diversity, including Agrobacterium tumefaciens, Rahnella aquatilis, Pseudomonas, and Rhizobium sp. These soil bacteria had a wide range of tolerance to heavy metals. Among them, strains of A. tumefaciens and R. aquatilis tolerated up to 3.35 mM Pb; whereas Pseudomonas tolerated up to 3.24 mM Pb. The inoculation of lentil grown hydroponically with inoculums formed by these efficient and Pb resistant bacteria enhanced plant biomass. The treatment of this symbiosis by 1 mM Pb for 10 days or by 2 mM Pb for 3 days demonstrated that lentil had Pb accumulation capacity and can be considered a Pb accumulator plant, elsewhere, roots accumulated more Pb than shoots, and the inoculation decreased the Pb up take by the plants, suggesting that this symbiosis should be investigated for use in phytostabilization of Pb-contaminated soils. At the same time, a modulation in the antioxidant enzyme activity and a specific duration was required for the induction of the superoxide dismutase (SOD), peroxidase (POX), and ascorbate peroxidase (APX) response and to adapt to Pb stress. These results suggested that these enzymes may be involved in the main mechanism of antioxidative defense in lentil exposed to Pb oxidative stress.

  7. Effect of protozoan predation on relative abundance of fast- and slow-growing bacteria

    SciTech Connect

    Sinclair, J.L.; Alexander, M.

    1989-01-01

    Survival of six bacterial species with different growth rates was tested in raw sewage and sewage rendered free of protozoa. When the six species were inoculated at the same densities into sewage containing protozoa, the three slow-growing species were rapidly eliminated, and two of the three fast-growing species survived in detectable numbers. It is suggested that in environments with intense protozoan predation, protozoa may alter composition of bacterial communities by eliminating slow-growing bacteria.

  8. Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi.

    PubMed

    Lecomte, Julie; St-Arnaud, Marc; Hijri, Mohamed

    2011-04-01

    Soil-microorganism symbioses are of fundamental importance for plant adaptation to the environment. Research in microbial ecology has revealed that some soil bacteria are associated with arbuscular mycorrhizal fungi (AMF). However, these interactions may be much more complex than originally thought. To assess the type of bacteria associated with AMF, we initially isolated spores of Glomus irregulare from an Agrostis stolonifera rhizosphere. The spores were washed with sterile water and plated onto G. irregulare mycelium growing in vitro in a root-free compartment of bicompartmented Petri dishes. We hypothesized that this system should select for bacteria closely associated with the fungus because the only nutrients available to the bacteria were those derived from the hyphae. Twenty-nine bacterial colonies growing on the AMF hyphae were subcultured and identified using 16S rRNA gene sequences. All bacterial isolates showed high sequence identity to Bacillus cereus, Bacillus megaterium, Bacillus simplex, Kocuria rhizophila, Microbacterium ginsengisoli, Sphingomonas sp. and Variovorax paradoxus. We also assessed bacterial diversity on the surface of spores by PCR-denaturating gradient gel electrophoresis. Finally, we used live cellular imaging to show that the bacteria isolated can grow on the surface of hyphae with different growing patterns in contrast to Escherichia coli as a control.

  9. Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene.

    PubMed

    Kuyukina, Maria S; Ivshina, Irena B; Korshunova, Irina O; Stukova, Galina I; Krivoruchko, Anastasiya V

    2016-03-01

    This study evaluated the effects of a trehalolipid biosurfactant produced by Rhodococcus ruber IEGM 231 on the bacterial adhesion and biofilm formation on the surface of polystyrene microplates. The adhesion of Gram-positive (Arthrobacter simplex, Bacillus subtilis, Brevibacterium linens, Corynebacterium glutamicum, Micrococcus luteus) and Gram-negative (Escherichia coli, Pseudomonas fluorescencens) bacteria correlated differently with the cell hydrophobicity and surface charge. In particular, exponentially growing bacterial cells with increased hydrophobicities adhered stronger to polystyrene compared to more hydrophilic stationary phase cells. Also, a moderate correlation (0.56) was found between zeta potential and adhesion values of actively growing bacteria, suggesting that less negatively charged cells adhered stronger to polystyrene. Efficient biosurfactant concentrations (10-100 mg/L) were determined, which selectively inhibited (up to 76 %) the adhesion of tested bacterial cultures, however without inhibiting their growth. The biosurfactant was more active against growing bacteria rather than resting cells, thus showing high biofilm-preventing properties. Contact angle measurements revealed more hydrophilic surface of the biosurfactant-covered polystyrene compared to bare polystyrene, which allowed less adhesion of hydrophobic bacteria. Furthermore, surface free-energy calculations showed a decrease in the Wan der Waals (γ(LW)) component and an increase in the acid-based (γ(AB)) component caused by the biosurfactant coating of polysterene. However, our results suggested that the biosurfactant inhibited the adhesion of bacteria independently on their surface charges. AFM scanning revealed three-type biosurfactant structures (micelles, cord-like assemblies and large vesicles) formed on glass, depending on concentrations used, that could lead to diverse anti-adhesive effects against different bacterial species.

  10. Swimming motion of rod-shaped magnetotactic bacteria: the effects of shape and growing magnetic moment

    PubMed Central

    Kong, Dali; Lin, Wei; Pan, Yongxin; Zhang, Keke

    2014-01-01

    We investigate the swimming motion of rod-shaped magnetotactic bacteria affiliated with the Nitrospirae phylum in a viscous liquid under the influence of an externally imposed, time-dependent magnetic field. By assuming that fluid motion driven by the translation and rotation of a swimming bacterium is of the Stokes type and that inertial effects of the motion are negligible, we derive a new system of the twelve coupled equations that govern both the motion and orientation of a swimming rod-shaped magnetotactic bacterium with a growing magnetic moment in the laboratory frame of reference. It is revealed that the initial pattern of swimming motion can be strongly affected by the rate of the growing magnetic moment. It is also revealed, through comparing mathematical solutions of the twelve coupled equations to the swimming motion observed in our laboratory experiments with rod-shaped magnetotactic bacteria, that the laboratory trajectories of the swimming motion can be approximately reproduced using an appropriate set of the parameters in our theoretical model. PMID:24523716

  11. Distribution of indicator bacteria and bacteriophages in shellfish and shellfish-growing waters.

    PubMed

    Legnani, P; Leoni, E; Lev, D; Rossi, R; Villa, G C; Bisbini, P

    1998-11-01

    Shellfish (mussels and clams) and shellfish-growing waters were examined for indicator bacteria according to the EC regulations, Salmonella spp., coliphages and anti-Salmonella phages. Samples were collected both from natural-growing areas along the coast and from authorized shellfish-harvesting beds. The coastal area was affected by organic pollution and extensive faecal contamination and, according to the legal requirements, was unsuitable for shellfish farming. The shellfish collected along the coast also showed faecal contamination at levels which did not conform to legal standards. No significant differences were observed between the frequency of isolation of somatic coliphages and indicator bacteria from sea water. In contrast, both the authorized and wild coastal shellfish were contaminated by coliphages at a significantly higher level than the corresponding bacterial indicators for faecal contamination (chi 2 test, P < 0.01). Coliphage concentrations were significantly correlated with faecal indicators in marine waters (P < 0.001) and sediments (P < 0.05), but no correlation was found in shellfish, thus showing their low specificity as indicators of faecal pollution of human origin in shellfish of economic importance.

  12. Cell dualism: presence of cells with alternative membrane potentials in growing populations of bacteria and yeasts.

    PubMed

    Ivanov, Volodymyr; Rezaeinejad, Saeid; Chu, Jian

    2013-10-01

    It is considered that all growing cells, for exception of acidophilic bacteria, have negatively charged inside cytoplasmic membrane (Δψ⁻-cells). Here we show that growing populations of microbial cells contain a small portion of cells with positively charged inside cytoplasmic membrane (Δψ⁺-cells). These cells were detected after simultaneous application of the fluorescent probes for positive membrane potential (anionic dye DIBAC⁻) and membrane integrity (propidium iodide, PI). We found in exponentially growing cell populations of Escherichia coli and Saccharomyces cerevisiae that the content of live Δψ⁻-cells was 93.6 ± 1.8 % for bacteria and 90.4 ± 4.0 % for yeasts and the content of live Δψ⁺-cells was 0.9 ± 0.3 % for bacteria and 2.4 ± 0.7 % for yeasts. Hypothetically, existence of Δψ⁺-cells could be due to short-term, about 1 min for bacteria and 5 min for yeasts, change of membrane potential from negative to positive value during the cell cycle. This change has been shown by the reversions of K⁺, Na⁺, and Ca²⁺ ions fluxes across the cell membrane during synchronous yeast culture. The transformation of Δψ(⁻-cells to Δψ⁺-cells can be explained by slow influx of K⁺ ions into Δψ⁻-cell to the trigger level of K⁺ concentration ("compression of potassium spring"), which is forming "alternative" Δψ⁺-cell for a short period, following with fast efflux of K⁺ ions out of Δψ⁺-cell ("release of potassium spring") returning cell to normal Δψ⁻ state. We anticipate our results to be a starting point to reveal the biological role of cell dualism in form of Δψ⁻- and Δψ⁺- cells.

  13. Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria

    PubMed Central

    Cafaro, Matías J.; Poulsen, Michael; Little, Ainslie E. F.; Price, Shauna L.; Gerardo, Nicole M.; Wong, Bess; Stuart, Alison E.; Larget, Bret; Abbot, Patrick; Currie, Cameron R.

    2011-01-01

    Fungus-growing ants (tribe Attini) engage in a mutualism with a fungus that serves as the ants' primary food source, but successful fungus cultivation is threatened by microfungal parasites (genus Escovopsis). Actinobacteria (genus Pseudonocardia) associate with most of the phylogenetic diversity of fungus-growing ants; are typically maintained on the cuticle of workers; and infection experiments, bioassay challenges and chemical analyses support a role of Pseudonocardia in defence against Escovopsis through antibiotic production. Here we generate a two-gene phylogeny for Pseudonocardia associated with 124 fungus-growing ant colonies, evaluate patterns of ant–Pseudonocardia specificity and test Pseudonocardia antibiotic activity towards Escovopsis. We show that Pseudonocardia associated with fungus-growing ants are not monophyletic: the ants have acquired free-living strains over the evolutionary history of the association. Nevertheless, our analysis reveals a significant pattern of specificity between clades of Pseudonocardia and groups of related fungus-growing ants. Furthermore, antibiotic assays suggest that despite Escovopsis being generally susceptible to inhibition by diverse Actinobacteria, the ant-derived Pseudonocardia inhibit Escovopsis more strongly than they inhibit other fungi, and are better at inhibiting this pathogen than most environmental Pseudonocardia strains tested. Our findings support a model that many fungus-growing ants maintain specialized Pseudonocardia symbionts that help with garden defence. PMID:21106596

  14. Impact of mulches and growing season on indicator bacteria survival during lettuce cultivation.

    PubMed

    Xu, Aixia; Buchanan, Robert L; Micallef, Shirley A

    2016-05-02

    In fresh produce production, the use of mulches as ground cover to retain moisture and control weeds is a common agricultural practice, but the influence that various mulches have on enteric pathogen survival and dispersal is unknown. The goal of this study was to assess the impact of different mulching methods on the survival of soil and epiphytic fecal indicator bacteria on organically grown lettuce during different growing seasons. Organically managed lettuce, cultivated with various ground covers--polyethylene plastic, corn-based biodegradable plastic, paper and straw mulch--and bare ground as a no-mulch control, was overhead inoculated with manure-contaminated water containing known levels of generic Escherichia coli and Enterococcus spp. Leaves and soil samples were collected at intervals over a two week period on days 0, 1, 3, 5, 7, 10 and 14, and quantitatively assessed for E. coli, fecal coliforms and Enterococcus spp. Data were analyzed using mixed models with repeated measures and an exponential decline with asymptote survival model. Indicator bacterial concentrations in the lettuce phyllosphere decreased over time under all treatments, with more rapid E. coli declines in the fall than in the spring (p<0.01). Persistence of E. coli in spring was correlated with higher maximum and minimum temperatures in this season, and more regular rainfall. The survival model gave very good fits for the progression of E. coli concentrations in the phyllosphere over time (R(2)=0.88 ± 0.12). In the spring season, decline rates of E. coli counts were faster (2013 p=0.18; 2014 p<0.005) for the bare ground-cultivated lettuce compared to mulches. In fall 2014, the E. coli decline rate on paper mulch-grown lettuce was higher (p<0.005). Bacteria fluctuated more, and persisted longer, in soil compared to lettuce phyllosphere, and mulch type was a factor for fecal coliform levels (p<0.05), with higher counts retrieved under plastic mulches in all trials, and higher enterococci

  15. How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization.

    PubMed

    Bosdriesz, Evert; Molenaar, Douwe; Teusink, Bas; Bruggeman, Frank J

    2015-05-01

    Maximization of growth rate is an important fitness strategy for bacteria. Bacteria can achieve this by expressing proteins at optimal concentrations, such that resources are not wasted. This is exemplified for Escherichia coli by the increase of its ribosomal protein-fraction with growth rate, which precisely matches the increased protein synthesis demand. These findings and others have led to the hypothesis that E. coli aims to maximize its growth rate in environments that support growth. However, what kind of regulatory strategy is required for a robust, optimal adjustment of the ribosome concentration to the prevailing condition is still an open question. In the present study, we analyze the ppGpp-controlled mechanism of ribosome expression used by E. coli and show that this mechanism maintains the ribosomes saturated with its substrates. In this manner, overexpression of the highly abundant ribosomal proteins is prevented, and limited resources can be redirected to the synthesis of other growth-promoting enzymes. It turns out that the kinetic conditions for robust, optimal protein-partitioning, which are required for growth rate maximization across conditions, can be achieved with basic biochemical interactions. We show that inactive ribosomes are the most suitable 'signal' for tracking the intracellular nutritional state and for adjusting gene expression accordingly, as small deviations from optimal ribosome concentration cause a huge fractional change in ribosome inactivity. We expect to find this control logic implemented across fast-growing microbial species because growth rate maximization is a common selective pressure, ribosomes are typically highly abundant and thus costly, and the required control can be implemented by a small, simple network.

  16. Drug efflux pump deficiency and drug target resistance masking in growing bacteria

    PubMed Central

    Fange, David; Nilsson, Karin; Tenson, Tanel; Ehrenberg, Måns

    2009-01-01

    Recent experiments have shown that drug efflux pump deficiency not only increases the susceptibility of pathogens to antibiotics, but also seems to “mask” the effects of mutations, that decrease the affinities of drugs to their intracellular targets, on the growth rates of drug-exposed bacteria. That is, in the presence of drugs, the growth rates of drug-exposed WT and target mutated strains are the same in a drug efflux pump deficient background, but the mutants grow faster than WT in a drug efflux pump proficient background. Here, we explain the mechanism of target resistance masking and show that it occurs in response to drug efflux pump inhibition among pathogens with high-affinity drug binding targets, low cell-membrane drug-permeability and insignificant intracellular drug degradation. We demonstrate that target resistance masking is fundamentally linked to growth-bistability, i.e., the existence of 2 different steady state growth rates for one and the same drug concentration in the growth medium. We speculate that target resistance masking provides a hitherto unknown mechanism for slowing down the evolution of target resistance among pathogens. PMID:19416855

  17. Study examines sulfate-reducing bacteria activity

    SciTech Connect

    McElhiney, J.E.; Hardy, J.A.; Rizk, T.Y.; Stott, J.F.D.; Eden, R.D.

    1996-12-09

    Low-sulfate seawater injection can reduce the potential of an oil reservoir turning sour because of sulfate-reducing bacteria. Sulfate-reducing bacteria (SRB) convert sulfate ions in seawater used in waterflooding into sulfide with the concomitant oxidation of a carbon source. A recent study at Capcis investigated the efficiency of SRB under various conditions of sulfate limitation. This study was conducted in a flowing bioreactor at 2,000 psia with different temperature zones (mesophilic 35 C and thermophilic 60--80 C). The study mixed microfloral populations derived from real North Sea-produced fluids, and included an active population of marine methanogenic bacteria present to provide competition for the available carbon sources. In general, results showed that SRB continue to convert sulfate to sulfide in stoichiometric quantities without regard to absolute concentrations. The paper discusses the results and recommends nanofiltration of seawater for ``sweet`` reservoirs.

  18. Raman activity in synchronously dividing bacteria

    SciTech Connect

    Layne, S.P.

    1985-01-01

    Using a spectrometer equipped with an optical-multichannel analyzer as the detector (OMA), we have observed the Stokes laser-Raman spectra of metabolically active Escherichia coli and Bacillus megaterium from 100 - 2100 cm/sup -1/. After lengthy investigation, no Raman lines attributable to the metabolic process nor the cells themselves were found. Previous Raman spectra of active bacteria cannot be used to support nonlinear theories in biology. 34 refs., 9 figs.

  19. Hemagglutinating activity in phytopathogenic bacteria surface compounds.

    PubMed

    Serra, M T; Castresana, M C; Tejerina, G

    1987-01-01

    Extracellular components of plant pathogenic bacteria were obtained from their culture medium as well as from the whole cells by using NaCl 1 M, pH 6.0; 20% sucrose dissolved in 0.03 M Tris buffer, pH 8.0; or 0.05 M Na2EDTA. All the extracts from Erwinia carotovora subsp. carotovora, Xanthomonas campestris pv. campestris, Pseudomonas syringae pv. phaseolicola, Xanthomonas campestris pv. phaseoli, Pseudomonas solanacearum, and Erwinia carotovora subsp. atroseptica, were assayed for hemagglutinating activity on sheep, rabbit and chicken red blood cells (RBCs). The only active extracts were those obtained by NaCl treatment. They agglutinated sheep and rabbit erythrocytes. Extracts from E. carotovora subsp. atroseptica gave rise to the high agglutination titer on rabbit RBCs. These extracts had the lowest polysaccharide/protein ratio. E. carotovora subsp. carotovora extracts showed only a low titer (18.5 units). The agglutinating activity present in NaCl extracts of the bacteria tested was inhibited by different carbohydrates to various extent. Extracts from E. carotovora subsp. atroseptica appeared to be the most sensitive ones while those of E. carotovora subsp. carotovora least sensitive to the presence of sugar. It is suggested that hemagglutinins observed in plant pathogenic bacteria and those in plant host are similar and that both may, in some way, be involved in the plant-parasite relationship.

  20. Growing with EASE: Eating, Activity, and Self-Esteem

    ERIC Educational Resources Information Center

    Huettig, Carol; Rich, Shannon; Engelbrecht, Jo Ann; Sanborn, Charlotte; Essery, Eve; DiMarco, Nancy; Velez, Luisa; Levy, Luba

    2006-01-01

    A diverse group of professionals associated with Texas Woman's University's Institute for Women's Health, working collaboratively with school administrators, teachers, family support teams, and family members, developed Growing with EASE: Eating, Activity, and Self-Esteem, a nutrition program for young children and their families. In tracking the…

  1. Bacteria-Based Analysis of HIV-1 Vpu Channel Activity

    PubMed Central

    Taube, Robert; Alhadeff, Raphael; Assa, Dror; Krugliak, Miriam; Arkin, Isaiah T.

    2014-01-01

    HIV-1 Vpu is a small, single-span membrane protein with two attributed functions that increase the virus' pathogenicity: degradation of CD4 and inactivation of BST-2. Vpu has also been shown to posses ion channel activity, yet no correlation has been found between this attribute and Vpu's role in viral release. In order to gain further insight into the channel activity of Vpu we devised two bacteria-based assays that can examine this function in detail. In the first assay Vpu was over-expressed, such that it was deleterious to bacterial growth due to membrane permeabilization. In the second and more sensitive assay, the channel was expressed at low levels in K+ transport deficient bacteria. Consequently, Vpu expression enabled the bacteria to grow at otherwise non permissive low K+ concentrations. Hence, Vpu had the opposite impact on bacterial growth in the two assays: detrimental in the former and beneficial in the latter. Furthermore, we show that channel blockers also behave reciprocally in the two assays, promoting growth in the first assay and hindering it in the second assay. Taken together, we investigated Vpu's channel activity in a rapid and quantitative approach that is amenable to high-throughput screening, in search of novel blockers. PMID:25272035

  2. Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast-growing methane-oxidizing bacteria.

    PubMed

    Hoefman, Sven; van der Ha, David; De Vos, Paul; Boon, Nico; Heylen, Kim

    2012-05-01

    Methane-oxidizing bacteria (MOB) have a large potential as a microbial sink for the greenhouse gas methane as well as for biotechnological purposes. However, their application in biotechnology has so far been hampered, in part due to the relative slow growth rate of the available strains. To enable the availability of novel strains, this study compares the isolation of MOB by conventional dilution plating with miniaturized extinction culturing, both performed after an initial enrichment step. The extinction approach rendered 22 MOB isolates from four environmental samples, while no MOB could be isolated by plating. In most cases, extinction culturing immediately yielded MOB monocultures making laborious purification redundant. Both type I (Methylomonas spp.) and type II (Methylosinus sp.) MOB were isolated. The isolated methanotrophic diversity represented at least 11 different strains and several novel species based on 16S rRNA gene sequence dissimilarity. These strains possessed the particulate (100%) and soluble (64%) methane monooxygenase gene. Also, 73% of the strains could be linked to a highly active fast-growing mixed MOB community. In conclusion, miniaturized extinction culturing was more efficient in rapidly isolating numerous MOB requiring little effort and fewer materials, compared with the more widely applied plating procedure. This miniaturized approach allowed straightforward isolation and could be very useful for subsequent screening of desired characteristics, in view of their future biotechnological potential.

  3. Rotating bacteria aggregate into active crystals

    NASA Astrophysics Data System (ADS)

    Petroff, Alexander; Wu, Xiao-Lun; Libchaber, Albert

    2014-11-01

    The dynamics of many microbial ecosystems are determined not only by the response of individual bacteria to their chemical and physical environments but also the dynamics that emerge from interactions between cells. Here we investigate the collective dynamics displayed by communities of Thiovulum majus, one of the fastest known bacteria. We observe that when these bacteria swim close to a microscope cover slip, the cells spontaneously aggregate into a visually-striking two-dimensional hexagonal lattice of rotating cells. Each cell in an aggregate rotates its flagella, exerting a force that pushes the cell into the cover slip and a torque that causes the cell to rotate. As cells rotate against their neighbors, they exert forces and torques on the aggregate that cause the crystal to move and cells to hop to new positions in the lattice. We show how these dynamics arises from hydrodynamic and surface forces between cells. We derive the equations of motion for an aggregate, show that this model reproduces many aspects of the observed dynamics, and discuss the stability of these and similar active crystals. Finally, we discuss the ecological significance of this behavior to understand how the ability to aggregate into these communities may have evolved.

  4. Rotating Bacteria Aggregate into Active Crystals

    NASA Astrophysics Data System (ADS)

    Petroff, A. P.; Wu, X. L.; Libchaber, A.

    2014-12-01

    The dynamics of many microbial ecosystems are determined not only by the response of individual bacteria to their chemical and physical environments but also the dynamics that emerge from interactions between cells. Here we investigate collective dynamics displayed by communities of Thiovulum majus, one of the fastest known bacteria. We observe that when these bacteria swim close to a microscope cover slip, the cells spontaneously aggregate into a visually-striking, two-dimensional hexagonal lattice of rotating cells. Each cell in an aggregate rotates its flagella, exerting a force that pushes the cell into the cover slip and a torque that causes the cell to rotate. As cells rotate against their neighbors, they exert forces and torques on the aggregate that cause the crystal to move and cells to hop to new positions in the lattice. We show how these dynamics arise from hydrodynamic and surface forces between cells. We derive the equations of motion for an aggregate, show that this model reproduces many aspects of the observed dynamics, and discuss the stability of these and similar active crystals. Finally, we discuss the ecological significance of this behavior to understand how the ability to aggregate into these communities may have evolved.

  5. Isolation of bacteria from remote high altitude Andean lakes able to grow in the presence of antibiotics.

    PubMed

    Dib, Julián R; Weiss, Annika; Neumann, Anna; Ordoñez, Omar; Estévez, María C; Farías, Maria E

    2009-01-01

    High altitude Andean lakes are placed in Puna desert over 4400 above sea level. Completely isolated, they are exposed to extreme environmental factors like high levels of salinity, UV radiation and heavy metals and low concentrations of phosphorus. Nevertheless, they are the habitat of enormous populations of three flamingo species that migrate among these Lakes. Previous reports have determined that bacteria isolated from these environments present high levels of resistance to antibiotics. The aim of this work was to determine the diversity of antibiotic resistant bacteria in water from Andean Lakes and their connection with flamingo enteric biota. Bacteria from water and birds faeces from high altitude Lakes: Laguna (L.) Aparejos, L. Negra, L. Vilama and L. Azul (all are located between 4,200 and 4,600 m altitude) were isolated by plating in five different Antibiotics (ampicillin, 100 microg ml(-1); chloramphenicol, 170 microg ml(-1); colistin , 20 microg ml(-1); erythromycin, 50 microg ml(-1) and tetracycline 50 microg ml(-1)). 56 bacteria were isolated and identified by 16 S rDNA sequencing. Antibiotic resistance profiles of isolated bacteria were determined for 22 different antibiotics. All identified bacteria were able to growth in multiple ATBs. Colistin, ceftazidime, ampicillin/sulbactam, cefotaxime, cefepime, cefalotin, ampicillin and erythromycin were the most distributed resistances among the 56 tested bacteria. The current results demonstrated that antibiotic resistance was abundant and diverse in high altitude Lakes. Also the present article indicates some useful patents regarding the isolation of bacteria able to grow in the present of antibiotics.

  6. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    PubMed

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival.

  7. Target activation by regulatory RNAs in bacteria

    PubMed Central

    Papenfort, Kai; Vanderpool, Carin K.

    2015-01-01

    Bacterial small regulatory RNAs (sRNAs) are commonly known to repress gene expression by base pairing to target mRNAs. In many cases, sRNAs base pair with and sequester mRNA ribosome-binding sites, resulting in translational repression and accelerated transcript decay. In contrast, a growing number of examples of translational activation and mRNA stabilization by sRNAs have now been documented. A given sRNA often employs a conserved region to interact with and regulate both repressed and activated targets. However, the mechanisms underlying activation differ substantially from repression. Base pairing resulting in target activation can involve sRNA interactions with the 5′ untranslated region (UTR), the coding sequence or the 3′ UTR of the target mRNAs. Frequently, the activities of protein factors such as cellular ribonucleases and the RNA chaperone Hfq are required for activation. Bacterial sRNAs, including those that function as activators, frequently control stress response pathways or virulence-associated functions required for immediate responses to changing environments. This review aims to summarize recent advances in knowledge regarding target mRNA activation by bacterial sRNAs, highlighting the molecular mechanisms and biological relevance of regulation. PMID:25934124

  8. Isolation of bacteria from Siberian permafrost capable of growing under simulated Mars atmospheric pressure and composition

    NASA Astrophysics Data System (ADS)

    Nicholson, Wayne; Gilichinsky, David; Schuerger, Andrew; Mironov, Vasiliy; Fajardo-Cavazos, Patricia; Kerney, Krystal; Krivushin, Kirill; Oliveira, Rafael; Waters, Samantha

    A central goal of Astrobiology is to explore the limits at which life can occur and to search for life and habitable locations outside Earth. Mars is currently an active target in the search for life due to its relative proximity and similarity to Earth, coupled with increasing evidence pointing to the past and present existence of liquid water at the surface and near subsurface [1]. Exchange of rocky impact ejecta between Mars and Earth has been known for at least two decades [2], and evidence has accumulated supporting the hypothesis that living microorganisms embedded in rocks could survive the transfer process [3]. Understanding the ability of terrestrial microbes to grow in the near-surface martian environment is of prime importance both for life detection and for protection of Mars from forward contamination by human or robotic exploration [4]. The surface environment of Mars presents formidable challenges to life, such as: harsh solar radiation; a scarcity of liquid water and nutrients; extreme low temperatures; and a low-pressure, CO2-dominated anoxic atmosphere [5]. Our recent work has concentrated on investigating the possibility that prokaryotes from Earth could survive and proliferate in the Mars environment. Our experiments have involved environmental chambers that can simulate Mars atmospheric conditions of low pressure (P; 0.7 kPa), temperature (T; 0˚C), and a CO2-dominated anoxic atmosphere (A), called here collectively low-PTA conditions. Because much of the water on present-day Mars exists in a permanently frozen state mixed with mineral matrix, terrestrial permafrosts are considered to be analogs of the martian environment [6]. We therefore screened Siberian permafrost soils for microbes capable of growing under low-PTA conditions. Using this approach we reported the isolation of 6 Carnobacterium spp. isolates from Siberian permafrost that were capable of low-PTA growth [7]. One of these isolates has been characterized in detail and proposed as

  9. Active oil-water interfaces: buckling and deformation of oil drops by bacteria

    NASA Astrophysics Data System (ADS)

    Juarez, Gabriel; Stocker, Roman

    2014-11-01

    Bacteria are unicellular organisms that seek nutrients and energy for growth, division, and self-propulsion. Bacteria are also natural colloidal particles that attach and self-assemble at liquid-liquid interfaces. Here, we present experimental results on active oil-water interfaces that spontaneously form when bacteria accumulate or grow on the interface. Using phase-contrast and fluorescence microscopy, we simultaneously observed the dynamics of adsorbed Alcanivorax bacteria and the oil-water interface within microfluidic devices. We find that, by growing and dividing, adsorbed bacteria form a jammed monolayer of cells that encapsulates the entire oil drop. As bacteria continue to grow at the interface, the drop buckles and the interface undergoes strong deformations. The bacteria act to stabilize non-equilibrium shapes of the oil-phase such wrinkling and tubulation. In addition to presenting a natural example of a living interface, these findings shape our understanding of microbial degradation of oil and may have important repercussions on engineering interventions for oil bioremediation.

  10. Bacteriocins active against plant pathogenic bacteria.

    PubMed

    Grinter, Rhys; Milner, Joel; Walker, Daniel

    2012-12-01

    Gram-negative phytopathogens cause significant losses in a diverse range of economically important crop plants. The effectiveness of traditional countermeasures, such as the breeding and introduction of resistant cultivars, is often limited by the dearth of available sources of genetic resistance. An alternative strategy to reduce loss to specific bacterial phytopathogens is to use narrow-spectrum protein antibiotics such as colicin-like bacteriocins as biocontrol agents. A number of colicin-like bacteriocins active against phytopathogenic bacteria have been described previously as have strategies for their application to biocontrol. In the present paper, we discuss these strategies and our own recent work on the identification and characterization of candidate bacteriocins and how these potent and selective antimicrobial agents can be effectively applied to the control of economically important plant disease.

  11. Tobacco flakes on cigarette filters grow bacteria: a potential health risk to the smoker?

    PubMed

    Pauly, J L; Waight, J D; Paszkiewicz, G M

    2008-09-01

    Bacterial growth from a single flake of tobacco was documented for cigarettes that had been purchased recently from local vendors and from cigarettes that had been stored for more than six years in a warehouse. In a novel tobacco flake assay, a pack of cigarettes was opened within the sterile environment of a laminar flow hood. A single flake of tobacco was collected randomly and aseptically from the middle of the cigarette column and placed onto the surface of a blood agar plate. The test cigarettes included eight different popular US brands, and these were from three different tobacco companies. After 24 hours of incubation at 37 degrees C, the plates showed bacterial growth for tobacco from all brands of cigarettes. Further, more than 90% of the individual tobacco flakes of a given brand grew bacteria. Likewise, bacteria grew from microparticulate tobacco that had been sieved from cigarettes. Tobacco flakes were observed lying loosely on the cut surface of the filter of cigarettes in newly opened packs, and bacteria grew from cigarette filters that had been touched to the surface of a blood agar plate. In conclusion, the results of these studies predict that diverse microbes and microbial toxins are carried by tobacco microparticulates that are released from the cigarette during smoking, and carried into mainstream smoke that is sucked deep into the lung.

  12. Antibacterial Activity of Honey on Cariogenic Bacteria

    PubMed Central

    Ahmadi – Motamayel, Fatemeh; Hendi, Seyedeh Sare; Alikhani, Mohammad Yusof; Khamverdi, Zahra

    2013-01-01

    Objective: Honey has antibacterial activity. The aim of this study was to evaluate the antibacterial activity of honey on Streptococcus mutans and Lactobacillus. Materials and Methods: In this in vitro study, solutions containing 0%, 5%, 10%, 20%, 50% and 100%(w/v) of natural Hamadan honey were prepared. Each blood (nutrient) agar plate was then filled with dilutions of the honey. The strains of bacteria were inoculated in blood agar for 24 hours at 37°C and were adjusted according to the McFarland scale (10×10 cfumcl−1). All assays were repeated 10 times for each of the honey concentrations. Data were analyzed by non parametric Chi-Square test. Statistical significance was set at α=0.05. Results: Significant antibacterial activity was detected for honey on Streptococcus mutans in concentrations more than 20% and on Lactobacillus in 100% concentration (P<0.05). Conclusion: It seems that antibacterial activity of honey could be used for prevention and reduction of dental caries. PMID:23724198

  13. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    NASA Astrophysics Data System (ADS)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  14. Antibacterial activity of silver-killed bacteria: the "zombies" effect.

    PubMed

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-23

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  15. Real time and online dynamic speckle assessment of growing bacteria using the method of motion history image

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad Zaheer; Ramírez-Miquet, Evelio E.; Otero, Isabel; Rodríguez, Dania; Darias, Juan G.

    2016-06-01

    This paper reports the application of the motion history image (MHI) method for biospeckle processing of a bacterial growth. The method avoids the complexity as well as the large computation in sequence-matching-based methods and detects whether the speckle structure has changed or not. Encouraging experimental results on the real-time evolution of the growing bacteria during 12 h demonstrate the effectiveness of the proposed method. The MHI presented an online result without loss of resolution and definition. In turn, the MHI also presented the ability to provide a close answer to the traditional offline method of generalized differences.

  16. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions

    PubMed Central

    Elshaghabee, Fouad M. F.; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J.

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD+/NADP+, drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial

  17. Improvement of activated sludge bacteria growth by low intensity ultrasound

    NASA Astrophysics Data System (ADS)

    Yan, Y. X.; Ding, J. Y.; Gao, J. L.

    2016-08-01

    Influence of low intensity ultrasound (US) on growth rate of bacteria separated from aerobic activated sludge was studied. In order to reveal the optimal ultrasonic conditions,specific oxygen uptake rate (SOUR) of activated sludge was first detected and results showed that the maximum SOUR was obtained (increased by 40%) at US intensity of 3 Wcm-2 and irradiation time of 10min. Under the optimal conditions, 2 species of bacteria isolated from activated sludge were sonicated and then cultivated for 36h, and increment of 6% and 10% of growth rate were detected for the 2 species of bacteria, respectively, indicating US irradiation of suitable parameters effectively improved activated sludge bacteria growth.

  18. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    SciTech Connect

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  19. Isolation and molecular identification of landfill bacteria capable of growing on di-(2-ethylhexyl) phthalate and deteriorating PVC materials

    PubMed Central

    Latorre, Isomar; Hwang, Sangchul; Montalvo-Rodriguez, Rafael

    2012-01-01

    Waste materials containing Di-(2-ethylhexyl) phthalate (DEHP), a suspected endocrine disruptor and reasonably anticipated human carcinogen, are typically disposed of in landfills. Despite this, very few studies had been conducted to isolate and identify DEHP-degrading bacteria in landfill leachate. Therefore, this study was conducted to isolate and characterize bacteria in landfill leachate growing on DEHP as the sole carbon source and deteriorating PVC materials. Four strains LHM1, LHM2, LHM3 and LHM4, not previously reported as DEHP-degraders, were identified via 16S rRNA gene sequence. Gram-positive strains LHM1 and LHM2 had a greater than 97% similarity with Chryseomicrobium imtechense MW 10(T) and Lysinibacillus fusiformis NBRC 15717(T), respectively. Gram-negative strains LHM3 and LHM4 were related to Acinetobacter calcoaceticus DSM 30006(T) (90.7% similarity) and Stenotrophomonas pavanii ICB 89(T) (96.0% similarity), respectively. Phylogenetic analysis also corroborated these similarities of strains LHM1 and LHM2 to the corresponding bacteria species. Strains LHM2 and LHM4 grew faster than strains LHM1 and LHM3 in the enrichment where DEHP was the sole carbon source. When augmented to the reactors with PVC shower curtains containing DEHP, strains LHM1 and LHM2 developed greater optical densities in the solution phase and thicker biofilm on the surfaces of the shower curtains. PMID:22934997

  20. A Novel Antisense RNA from the Salmonella Virulence Plasmid pSLT Expressed by Non-Growing Bacteria inside Eukaryotic Cells

    PubMed Central

    Rico-Pérez, Gadea; Pucciarelli, M. Graciela; García-del Portillo, Francisco

    2013-01-01

    Bacterial small RNAs (sRNAs) are regulatory molecules playing relevant roles in response to environmental changes, stressful conditions and pathogenesis. The intracellular bacterial pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) is known to regulate expression of some sRNAs during colonization of fibroblasts. Here, we characterize a previously unknown sRNA encoded in the S. Typhimurium pSLT virulence plasmid that is specifically up-regulated by non-growing dormant bacteria persisting inside fibroblasts. This sRNA was inferred in microarray expression analyses, which unraveled enhanced transcriptional activity in the PSLT047- PSLT046 (mig5) intergenic region. The sRNA transcript was further identified as a 597-nucleotide molecule, which we named IesR-1, for ‘Intracellular-expressed-sRNA-1′. IesR-1 expression is low in bacteria growing in axenic cultures across a variety of experimental conditions but displays a marked increase (∼200–300 fold) following bacterial entry into fibroblasts. Remarkably, induction of IesR-1 expression is not prominent in bacteria proliferating within epithelial cells. IesR-1 deletion affects the control of bacterial growth in defined fibroblast cell lines and impairs virulence in a mouse infection model. Expression analyses performed in the PSLT047-iesR-1-PSLT046 (mig5) region support a cis-acting regulatory mechanism of IesR-1 as antisense RNA over the PSLT047 transcript involving interaction at their respective 3′ ends and modulation of PSLT047 protein levels. This model is sustained by the scarce production of PSLT047 protein observed in non-growing intracellular bacteria and the high amount of PSLT047 protein produced by bacteria carrying a truncated IesR-1 version with separated 5′ and 3′ regions. Taken together, these data reveal that S. Typhimurium sRNAs encoded in the pSLT virulence plasmid respond to a state of persistence inside the host cell. As exemplified by IesR-1, some of these sRNAs may

  1. Effect of Bacteria and Amoebae on Rhizosphere Phosphatase Activity

    PubMed Central

    Gould, W. Douglas; Coleman, David C.; Rubink, Amy J.

    1979-01-01

    The contributions of various components of soil microflora and microfauna to rhizosphere phosphatase activity were determined with hydroponic cultures. Three treatments were employed: (i) plants alone (Bouteloua gracilis (H.B.K.) Lag. ex Steud.) (ii) plants plus bacteria (Pseudomonas sp.), and (iii) plants plus bacteria plus amoebae (Acanthamoeba sp.). No alkaline phosphatase was detected, but an appreciable amount of acid phosphatase activity (120 to 500 nmol of p-nitrophenylphosphate hydrolyzed per h per plant) was found in the root culture solutions. The presence of bacteria or bacteria and amoebae increased the amount of acid phosphatase in solution, and properties of additional activity were identical to properties of plant acid phosphatase. The presence of bacteria or bacteria and amoebae increased both solution and root phosphatase activities at most initial phosphate concentrations. PMID:16345390

  2. Carbon Isotope Fractionation during Catabolism and Anabolism in Acetogenic Bacteria Growing on Different Substrates

    PubMed Central

    Freude, Christoph

    2016-01-01

    Homoacetogenic bacteria are versatile microbes that use the acetyl coenzyme A (acetyl-CoA) pathway to synthesize acetate from CO2 and hydrogen. Likewise, the acetyl-CoA pathway may be used to incorporate other 1-carbon substrates (e.g., methanol or formate) into acetate or to homoferment monosaccharides completely to acetate. In this study, we analyzed the fractionation of pure acetogenic cultures grown on different carbon substrates. While the fractionation of Sporomusa sphaeroides grown on C1 compounds was strong (εC1, −49‰ to −64‰), the fractionation of Moorella thermoacetica and Thermoanaerobacter kivui using glucose (εGlu = −14.1‰) was roughly one-third as strong, suggesting a contribution of less-depleted acetate from fermentative processes. For M. thermoacetica, this could indeed be validated by the addition of nitrate, which inhibited the acetyl-CoA pathway, resulting in fractionation during fermentation (εferm = −0.4‰). In addition, we determined the fractionation into microbial biomass of T. kivui grown on H2/CO2 (εanabol. = −28.6‰) as well as on glucose (εanabol. = +2.9‰). PMID:26921422

  3. Theoretical models for the regulation of DNA replication in fast-growing bacteria

    NASA Astrophysics Data System (ADS)

    Creutziger, Martin; Schmidt, Mischa; Lenz, Peter

    2012-09-01

    Growing in always changing environments, Escherichia coli cells are challenged by the task to coordinate growth and division. In particular, adaption of their growth program to the surrounding medium has to guarantee that the daughter cells obtain fully replicated chromosomes. Replication is therefore to be initiated at the right time, which is particularly challenging in media that support fast growth. Here, the mother cell initiates replication not only for the daughter but also for the granddaughter cells. This is possible only if replication occurs from several replication forks that all need to be correctly initiated. Despite considerable efforts during the last 40 years, regulation of this process is still unknown. Part of the difficulty arises from the fact that many details of the relevant molecular processes are not known. Here, we develop a novel theoretical strategy for dealing with this general problem: instead of analyzing a single model, we introduce a wide variety of 128 different models that make different assumptions about the unknown processes. By comparing the predictions of these models we are able to identify the key quantities that allow the experimental discrimination of the different models. Analysis of these quantities yields that out of the 128 models 94 are not consistent with available experimental data. From the remaining 34 models we are able to conclude that mass growth and DNA replication need either to be truly coupled, by coupling DNA replication initiation to the event of cell division, or to the amount of accumulated mass. Finally, we make suggestions for experiments to further reduce the number of possible regulation scenarios.

  4. Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria.

    PubMed

    Lehouritis, Panos; Stanton, Michael; McCarthy, Florence O; Jeavons, Matthieu; Tangney, Mark

    2016-01-28

    Some chemotherapeutic drugs (prodrugs) require activation by an enzyme for efficacy. We and others have demonstrated the ability of probiotic bacteria to grow specifically within solid tumours following systemic administration, and we hypothesised that the natural enzymatic activity of these tumour-localised bacteria may be suitable for activation of certain such chemotherapeutic drugs. Several wild-type probiotic bacteria; Escherichia coli Nissle, Bifidobacterium breve, Lactococcus lactis and Lactobacillus species, were screened against a panel of popular prodrugs. All strains were capable of activating at least one prodrug. E. coli Nissle 1917 was selected for further studies because of its ability to activate numerous prodrugs and its resistance to prodrug toxicity. HPLC data confirmed biochemical transformation of prodrugs to their toxic counterparts. Further analysis demonstrated that different enzymes can complement prodrug activation, while simultaneous activation of multiple prodrugs (CB1954, 5-FC, AQ4N and Fludarabine phosphate) by E. coli was confirmed, resulting in significant efficacy improvement. Experiments in mice harbouring murine tumours validated in vitro findings, with significant reduction in tumour growth and increase in survival of mice treated with probiotic bacteria and a combination of prodrugs. These findings demonstrate the ability of probiotic bacteria, without the requirement for genetic modification, to enable high-level activation of multiple prodrugs specifically at the site of action.

  5. Activity of sulfate-reducing bacteria under simulated reservoir conditions

    SciTech Connect

    Rosnes, J.T.; Graue, A.; Lien, T. )

    1991-05-01

    This paper reports on sulfate-reducing bacteria (SRB) that have been isolated from hot oilfield waters from subsea oil reservoirs in the North Sea. Experiments with these bacteria in a reservoir simulator indicate that SRB may maintain their activity in the conditions found in most North Sea reservoirs and, if precautions are not taken, may contribute to souring of the oil and gas.

  6. Active stress driven convection in a suspension of chemotactic bacteria

    NASA Astrophysics Data System (ADS)

    Kasyap, T. V.; Koch, Donald

    2011-11-01

    We examine the linear stability of a suspension of swimming bacteria producing dipolar hydrodynamic disturbances confined in a channel subjected to a linear chemo-attractant gradient across the channel. At the continuum level swimming bacteria exert an ``active'' stress on the fluid which is a function of the bacterial concentration and orientation fields. In the base-state without any fluid flow, the fluxes from the chemotactic and diffusive motion of the bacteria balance to yield exponential number density and active stress profiles across the channel. We show that such a base-state is unstable to perturbations in the number density parallel to the channel walls if the bacterial concentration exceeds a critical value determined by a Peclet number measuring the strength of chemotaxis relative to diffusion. Active stress gradients resulting from the perturbation in the number density drive convective fluid flow, which transports bacteria into the regions of highest perturbed bacteria concentration reinforcing the original perturbation. We examine the linear stability of a suspension of swimming bacteria producing dipolar hydrodynamic disturbances confined in a channel subjected to a linear chemo-attractant gradient across the channel. At the continuum level swimming bacteria exert an ``active'' stress on the fluid which is a function of the bacterial concentration and orientation fields. In the base-state without any fluid flow, the fluxes from the chemotactic and diffusive motion of the bacteria balance to yield exponential number density and active stress profiles across the channel. We show that such a base-state is unstable to perturbations in the number density parallel to the channel walls if the bacterial concentration exceeds a critical value determined by a Peclet number measuring the strength of chemotaxis relative to diffusion. Active stress gradients resulting from the perturbation in the number density drive convective fluid flow, which transports

  7. Evidence for metabolic activity of airborne bacteria

    NASA Technical Reports Server (NTRS)

    Chatigny, M. A.; Wolochow, H.

    1974-01-01

    Aerosols of the bacterium Serratia marcescens, and of uniformly labeled C-14 glucose were produced simultaneously and mixed in tubing leading to an aerosol chamber. During a subsequent period of about 5 hrs, carbon dioxide was produced metabolically within the chamber, and labeled material incorporated within the suspended particles first increased then decreased. This constitutes the first direct evidence of microbial metabolism of bacteria suspended in the air.

  8. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  9. Membrane-Targeting DCAP Analogues with Broad-Spectrum Antibiotic Activity against Pathogenic Bacteria.

    PubMed

    Hurley, Katherine A; Heinrich, Victoria A; Hershfield, Jeremy R; Demons, Samandra T; Weibel, Douglas B

    2015-04-09

    We performed a structure-activity relationship study of 2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2-(hydroxymethyl)propane-1,3-diol (DCAP), which is an antibacterial agent that disrupts the membrane potential and permeability of bacteria. The stereochemistry of DCAP had no effect on the biological activity of DCAP. The aromaticity and electronegativity of the chlorine-substituted carbazole was required for activity, suggesting that its planar and dipolar characteristics orient DCAP in membranes. Increasing the hydrophobicity of the tail region of DCAP enhanced its antibiotic activity. Two DCAP analogues displayed promising antibacterial activity against the BSL-3 pathogens Bacillus anthracis and Francisella tularensis. Codosing DCAP analogues with ampicillin or kanamycin increased their potency. These studies demonstrate that DCAP and its analogues may be a promising scaffold for developing chemotherapeutic agents that bind to bacterial membranes and kill strains of slow-growing or dormant bacteria that cause persistent infections.

  10. [Activity and growth efficiency of heterotrophic bacteria in Rybinsk Reservoir].

    PubMed

    Kosolapov, D B; Kosolapova, N G; Rumiantseva, E V

    2014-01-01

    The active fraction, production, and respiration of heterotrophic bacteria are determined to assess their growth efficiency and their role in the carbon cycle in the pelagic zone of Rybinsk Reservoir in summer. The greater part of organic substances assimilated by bacteria is mineralized to CO2. It has been established that the essential part of the constructive and energy metabolism of bacteria is supported by the input of allochthonous substances. Bacterioplankton, producing the biomass at their expense, performs functions similar to the functions of phytoplankton, and substantially supports the structural and functional organization of the planktonic food web in the reservoir.

  11. Comparative study of volatile oil content and antimicrobial activity of pecan cultivars growing in Egypt.

    PubMed

    El Hawary, Seham S; Zaghloul, Soumaya S; El Halawany, Ali M; El Bishbishy, Mahitab H

    2013-11-01

    The volatile oils obtained from the leaves of four pecan cultivars growing in Egypt were evaluated for their chemical composition and antimicrobial activity. The selected cultivars (cv.) were Carya illinoinensis (Wangneh.) K. Koch. cv. Wichita, C. illinoinensis cv. Western Schley, C. illinoinensis cv. Cherokee, and C. illinoinensis cv. Sioux. The gas chromatography-mass spectrometry analyses revealed that the volatile oils from samples of the different cultivars differ in composition and percentage of their components. β-Curcumene was found as the major constituent of the cv. Wichita oil, whereas germacrene D was the major component of cv. Sioux, cv. Cherokee, and cv. Western Schley. The antimicrobial activity was assayed using the Kirby-Bauer Method by measuring the zone of inhibition of growth. All volatile oils displayed an antimicrobial activity against the tested bacterial strains. On the other hand, only the volatile oil of cv. Wichita showed an antifungal effect on Aspergillus flavus. This work has identified candidates of volatile oils for future in vivo studies to develop antibiotic substitutes for the diminution of human and animal pathogenic bacteria. Nevertheless, the variations of the volatile oil components and antimicrobial potencies of the different studied cultivars, necessitate identifying the cultivars used in future studies.

  12. Responses in ileal and cecal bacteria to low and high amylose/amylopectin ratio diets in growing pigs.

    PubMed

    Luo, Yu-Heng; Yang, Can; Wright, André-Denis G; He, Jun; Chen, Dai-Wen

    2015-12-01

    Dietary starch that escapes digestion in the small intestine may serve as a carbon source for bacterial fermentation in the distal intestine. This study aimed to compare the bacterial community in the ileal and cecal digesta of growing pigs fed diets with low (0.14, LR pigs) and high (0.43, HR pigs) amylose/amylopectin ratio. Pyrosequencing based on MiSeq 2000 platform showed that in ileum digesta, Bacteroidetes of LR pigs was markedly higher than that in HR pigs (P < 0.05). Megasphaera and Prevotella were the two most predominant genera in LR pigs, and Prevotella was significantly higher in LR pigs than in HR pigs (P < 0.05). Prevotella was predominant in cecal samples from both LR and HR pigs, although no significant differences were found between the two groups. In the ileum, Megasphaera elsdenii and Mitsuokella multacida were significantly (P < 0.01) higher in LR pigs along with an increase of acetate and butyrate concentrations. Halomonas pacifica, Escherichia fergusonii, and Actinobacillus minor which belong to class Gammaproteobacteria were significantly lower (P < 0.01) in HR pigs with a significant increase (P < 0.01) of Lactobacillus acetotolerans-like bacteria. Therefore, the changed bacterial community may lead to a transformation of microbial function, such as the alteration of fermentation mode which is showed on the change of microbial metabolites like the concentration of short-chain fatty acids (SCFAs), to a response to the switch of dietary composition, and in turn, to help host absorb and utilize nutrients efficiently. The increase of dietary amylose induced the reduction of conditioned pathogens which may probably be due to the increase of some probiotics such as Lactobacillus, thus reducing the risk of intestinal disease.

  13. Lipase Activity among Bacteria Isolated from Amazonian Soils

    PubMed Central

    Willerding, André Luis; de Oliveira, Luiz Antonio; Moreira, Francisco Wesen; Germano, Mariana Gomes; Chagas, Aloísio Freitas

    2011-01-01

    The objective of this study was to select lipase-producing bacteria collected from different counties of the Amazon region. Of the 440 bacteria strains, 181 were selected for the lipase assay in qualitative tests at Petri dishes, being 75 (41%) lipase positive. The enzymatic index was determined during fifteen days at different temperatures (30°, 35°, 40°, and 45°C). The highest lipase activity was observed within 72 hours at 30°C. Twelve bacteria strains presented an index equal to or greater than the standard used like reference, demonstrating the potential of microbial resource. After the bioassay in Petri dishes, the selected bacteria strains were analyzed in quantitative tests on p-nitrophenyl palmitate (p-NPP). A group of the strains was selected for other phases of study with the use in oleaginous substrates of the Amazonian flora, aiming for the application in processes like oil biotransformation. PMID:22007294

  14. Activities to Grow On: Buttons, Beads, and Beans.

    ERIC Educational Resources Information Center

    Gonzolis, Amy; And Others

    1992-01-01

    Presents new ideas for using buttons, beans, and beads as teaching manipulatives for elementary school children. The ideas include a button scavenger hunt, a button count, a cup puppet bean game, a numbers guessing game with beans in jars, and a bead stringing activity. (SM)

  15. Activity and cellular localization of amylases of rabbit cecal bacteria.

    PubMed

    Sirotek, K; Marounek, M; Suchorská, O

    2006-01-01

    Five 11-week-old rabbits, fed a commercial granulated feed, were slaughtered and cecal starch-degrading bacteria enumerated; total concentration of cultivable bacteria utilizing starch averaged 5.5 x 10(10) CFU/g. The activity and cellular localization of amylases was determined in 9 bacteria identified as Actinomyces israeli (strains AA2 and AD4), Bacteroides spp. (strain AA3), Dichelobacter nodosus (strain AA4), Mitsuokella multiacidus (strain AA6), Eubacterium spp. (strains AA7 and AB2), Clostridium spp. (strains AD1 and AA5). Four strains (AA3, AA4, AA5, AD4) produced extracellular amylases with an activity of 26-35 micromol of reducing sugars per h per mg of protein; in five strains (AA2, AA6, AA7, AB2, AD1) amylases were membrane-bound with an activity of 14-18 micromol of reducing sugars per h per mg of protein. All strains exhibited a low intracellular amylolytic activity. The pH optimum of amylases was 6.8-7.0. In strains producing extracellular amylases a substantial loss of viscosity was observed during incubations of cultivation supernatant with starch, similar to viscosity reduction in starch solutions treated with alpha-amylase; this indicates an endo-type (random cleavage) of extracellular amylase reaction in the bacteria under study. No strain possessed glucoamylase activity.

  16. Metabolic Activity of Bacteria at High Pressure

    NASA Astrophysics Data System (ADS)

    Picard, A.; Daniel, I.; Oger, P.

    2008-12-01

    a depth of marine sediment of 500 m, or even beneath a water column of 6 km in surface sediments. This suggests that the metabolic activity of surface microorganisms that receive nutrients through sea water percolation into the deeper parts of the sediment, or that sink with the sediment, may represent a significant fraction of the total activity observed in subsurface environments. The present results indicate also that cells in stationary phase at HHP, which preclude growth, can still have a short-term metabolic activity independent of the growth-related activity. Consequently, surface microorganisms have the ability to impact significantly and rapidly on biogeochemical cycles in deep environments.

  17. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories.

  18. Distribution, Diversity, and Activities of Sulfur Dioxygenases in Heterotrophic Bacteria

    PubMed Central

    Liu, Honglei; Xin, Yufeng

    2014-01-01

    Sulfur oxidation by chemolithotrophic bacteria is well known; however, sulfur oxidation by heterotrophic bacteria is often ignored. Sulfur dioxygenases (SDOs) (EC 1.13.11.18) were originally found in the cell extracts of some chemolithotrophic bacteria as glutathione (GSH)-dependent sulfur dioxygenases. GSH spontaneously reacts with elemental sulfur to generate glutathione persulfide (GSSH), and SDOs oxidize GSSH to sulfite and GSH. However, SDOs have not been characterized for bacteria, including chemolithotrophs. The gene coding for human SDO (human ETHE1 [hETHE1]) in mitochondria was discovered because its mutations lead to a hereditary human disease, ethylmalonic encephalopathy. Using sequence analysis and activity assays, we discovered three subgroups of bacterial SDOs in the proteobacteria and cyanobacteria. Ten selected SDO genes were cloned and expressed in Escherichia coli, and the recombinant proteins were purified. The SDOs used Fe2+ for catalysis and displayed considerable variations in specific activities. The wide distribution of SDO genes reveals the likely source of the hETHE1 gene and highlights the potential of sulfur oxidation by heterotrophic bacteria. PMID:24389926

  19. Silver enhances antibiotic activity against gram-negative bacteria.

    PubMed

    Morones-Ramirez, Jose Ruben; Winkler, Jonathan A; Spina, Catherine S; Collins, James J

    2013-06-19

    A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

  20. Commensal gut bacteria modulate phosphorylation-dependent PPARγ transcriptional activity in human intestinal epithelial cells

    PubMed Central

    Nepelska, Malgorzata; de Wouters, Tomas; Jacouton, Elsa; Béguet-Crespel, Fabienne; Lapaque, Nicolas; Doré, Joël; Arulampalam, Velmurugesan; Blottière, Hervé M.

    2017-01-01

    In healthy subjects, the intestinal microbiota interacts with the host’s epithelium, regulating gene expression to the benefit of both, host and microbiota. The underlying mechanisms remain poorly understood, however. Although many gut bacteria are not yet cultured, constantly growing culture collections have been established. We selected 57 representative commensal bacterial strains to study bacteria-host interactions, focusing on PPARγ, a key nuclear receptor in colonocytes linking metabolism and inflammation to the microbiota. Conditioned media (CM) were harvested from anaerobic cultures and assessed for their ability to modulate PPARγ using a reporter cell line. Activation of PPARγ transcriptional activity was linked to the presence of butyrate and propionate, two of the main metabolites of intestinal bacteria. Interestingly, some stimulatory CMs were devoid of these metabolites. A Prevotella and an Atopobium strain were chosen for further study, and shown to up-regulate two PPARγ-target genes, ANGPTL4 and ADRP. The molecular mechanisms of these activations involved the phosphorylation of PPARγ through ERK1/2. The responsible metabolites were shown to be heat sensitive but markedly diverged in size, emphasizing the diversity of bioactive compounds found in the intestine. Here we describe different mechanisms by which single intestinal bacteria can directly impact their host’s health through transcriptional regulation. PMID:28266623

  1. Commensal gut bacteria modulate phosphorylation-dependent PPARγ transcriptional activity in human intestinal epithelial cells.

    PubMed

    Nepelska, Malgorzata; de Wouters, Tomas; Jacouton, Elsa; Béguet-Crespel, Fabienne; Lapaque, Nicolas; Doré, Joël; Arulampalam, Velmurugesan; Blottière, Hervé M

    2017-03-07

    In healthy subjects, the intestinal microbiota interacts with the host's epithelium, regulating gene expression to the benefit of both, host and microbiota. The underlying mechanisms remain poorly understood, however. Although many gut bacteria are not yet cultured, constantly growing culture collections have been established. We selected 57 representative commensal bacterial strains to study bacteria-host interactions, focusing on PPARγ, a key nuclear receptor in colonocytes linking metabolism and inflammation to the microbiota. Conditioned media (CM) were harvested from anaerobic cultures and assessed for their ability to modulate PPARγ using a reporter cell line. Activation of PPARγ transcriptional activity was linked to the presence of butyrate and propionate, two of the main metabolites of intestinal bacteria. Interestingly, some stimulatory CMs were devoid of these metabolites. A Prevotella and an Atopobium strain were chosen for further study, and shown to up-regulate two PPARγ-target genes, ANGPTL4 and ADRP. The molecular mechanisms of these activations involved the phosphorylation of PPARγ through ERK1/2. The responsible metabolites were shown to be heat sensitive but markedly diverged in size, emphasizing the diversity of bioactive compounds found in the intestine. Here we describe different mechanisms by which single intestinal bacteria can directly impact their host's health through transcriptional regulation.

  2. Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity

    PubMed Central

    Gefen, Orit; Fridman, Ofer; Ronin, Irine; Balaban, Nathalie Q.

    2014-01-01

    Exponentially growing bacteria are rarely found in the wild, as microorganisms tend to spend most of their lifetime at stationary phase. Despite this general prevalence of stationary-phase bacteria, they are as yet poorly characterized. Our goal was to quantitatively study this phase by direct observation of single bacteria as they enter into stationary phase and by monitoring their activity over several days during growth arrest. For this purpose, we devised an experimental procedure for starving single Escherichia coli bacteria in microfluidic devices and measured their activity by monitoring the production rate of fluorescent proteins. When amino acids were the sole carbon source, the production rate decreased by an order of magnitude upon entry into stationary phase. We found that, even while growth-arrested, bacteria continued to produce proteins at a surprisingly constant rate over several days. Our identification of this newly observed period of constant activity in nongrowing cells, designated as constant activity stationary phase, makes possible the conduction of assays that require constant protein expression over time, and are therefore difficult to perform under exponential growth conditions. Moreover, we show that exogenous protein expression bears no fitness cost on the regrowth of the population when starvation ends. Further characterization of constant activity stationary phase—a phase where nongrowing bacteria can be quantitatively studied over several days in a reproducible manner—should contribute to a better understanding of this ubiquitous but overlooked physiological state of bacteria in nature. PMID:24344288

  3. Collective motion in an active suspension of Escherichia coli bacteria

    NASA Astrophysics Data System (ADS)

    Gachelin, J.; Rousselet, A.; Lindner, A.; Clement, E.

    2014-02-01

    We investigate experimentally the emergence of collective motion in the bulk of an active suspension of Escherichia coli bacteria. When increasing the concentration from a dilute to a semi-dilute regime, we observe a continuous crossover from a dynamical cluster regime to a regime of ‘bio-turbulence’ convection patterns. We measure a length scale characterizing the collective motion as a function of the bacteria concentration. For bacteria fully supplied with oxygen, the increase of the correlation length is almost linear with concentration and at the largest concentrations tested, the correlation length could be as large as 24 bacterial body sizes (or 7-8 when including the flagella bundle). In contrast, under conditions of oxygen shortage the correlation length saturates at a value of around 7 body lengths.

  4. Antifouling activities of marine bacteria associated with sponge ( Sigmadocia sp.)

    NASA Astrophysics Data System (ADS)

    Satheesh, S.; Soniamby, A. R.; Sunjaiy Shankar, C. V.; Mary Josephine Punitha, S.

    2012-09-01

    The present study aimed at assessing the antifouling activity of bacteria associated with marine sponges. A total of eight bacterial strains were isolated from the surface of sponge Sigmadocia sp., of them, SS02, SS05 and SS06 showed inhibitory activity against biofilm-forming bacteria. The extracts of these 3 strains considerably affected the extracellular polymeric substance producing ability and adhesion of biofilm-forming bacterial strains. In addition to disc diffusion assay, microalgal settlement assay was carried out with the extracts mixed with polyurethane wood polish and coated onto stainless steel coupons. The extract of strain SS05 showed strong microalgal settlement inhibitory activity. Strain SS05 was identified as Bacillus cereus based on its 16S rRNA gene. Metabolites of the bacterial strains associated with marine invertebrates promise to be developed into environment-friendly antifouling agents.

  5. Polyhydroxyalkanoate production potential of heterotrophic bacteria in activated sludge.

    PubMed

    Inoue, Daisuke; Suzuki, Yuta; Uchida, Takahiro; Morohoshi, Jota; Sei, Kazunari

    2016-01-01

    This study was conducted to evaluate the polyhydroxyalkanoate (PHA) production potential of cultivable heterotrophic bacteria in activated sludge by genotypic and phenotypic characterizations. A total of 114 bacterial strains were isolated from four activated sludge samples taken from a lab-scale sequencing batch reactor and three wastewater treatment processes of two municipal wastewater treatment plants. PCR detection of the phaC genes encoding class I and II PHA synthase revealed that 15% of the total isolates possessed phaC genes, all of which had the closest similarities to known phaC genes of α- and β-Proteobacteria and Actinobacteria. PHA production experiments under aerobic and nitrogen-limited conditions showed that 68% of the total isolates were capable of producing PHA from at least one of the six substrates used (acetate, propionate, lactate, butyrate, glucose and glycerol). Genotypic and phenotypic characterizations revealed that 75% of the activated sludge bacteria had PHA production potential. Our results also indicated that short-chain fatty acids would be the preferable substrates for PHA production by activated sludge bacteria, and that there might be a variety of unidentified phaC genes in activated sludge.

  6. Impact of interspecific interactions on antimicrobial activity among soil bacteria.

    PubMed

    Tyc, Olaf; van den Berg, Marlies; Gerards, Saskia; van Veen, Johannes A; Raaijmakers, Jos M; de Boer, Wietse; Garbeva, Paolina

    2014-01-01

    Certain bacterial species produce antimicrobial compounds only in the presence of a competing species. However, little is known on the frequency of interaction-mediated induction of antibiotic compound production in natural communities of soil bacteria. Here we developed a high-throughput method to screen for the production of antimicrobial activity by monocultures and pair-wise combinations of 146 phylogenetically different bacteria isolated from similar soil habitats. Growth responses of two human pathogenic model organisms, Escherichia coli WA321 and Staphylococcus aureus 533R4, were used to monitor antimicrobial activity. From all isolates, 33% showed antimicrobial activity only in monoculture and 42% showed activity only when tested in interactions. More bacterial isolates were active against S. aureus than against E. coli. The frequency of interaction-mediated induction of antimicrobial activity was 6% (154 interactions out of 2798) indicating that only a limited set of species combinations showed such activity. The screening revealed also interaction-mediated suppression of antimicrobial activity for 22% of all combinations tested. Whereas all patterns of antimicrobial activity (non-induced production, induced production and suppression) were seen for various bacterial classes, interaction-mediated induction of antimicrobial activity was more frequent for combinations of Flavobacteria and alpha- Proteobacteria. The results of our study give a first indication on the frequency of interference competitive interactions in natural soil bacterial communities which may forms a basis for selection of bacterial groups that are promising for the discovery of novel, cryptic antibiotics.

  7. Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria.

    PubMed

    Stubner, S; Wind, T; Conrad, R

    1998-12-01

    In rice paddy fields the bulk soil is anoxic, but oxygenated zones occur in the surrounding of the rice roots to where oxygen is transported via the aerenchyma system of the rice plants. In the anaerobic soil compartments sulfate is consumed by sulfate-reducing bacteria. In the rhizosphere the reduced sulfur compounds can be reoxidized by sulfur-oxidizing bacteria. Measurements of the potential activity of thiosulfate-oxidizing bacteria in soil slurries derived from planted rice soil microcosms showed turnover rates of 2-6 mumol d-1 g-dw-1. Thiosulfate was oxidized to sulfate with tetrathionate as intermediate. Most probable number (MPN) enumeration with three aerobic media and one anaerobic nitrate-amended medium showed that thiosulfate-oxidizing bacteria were abundant in paddy soil and in rhizosphere soil at numbers of 10(5) to 10(6) per gram dry weight soil. Nine isolates of S-oxidizing bacteria were obtained from enrichment cultures or from the highest dilutions of the MPN series and were affiliated to four different phylogenetic groups. These isolates were characterized by physiological properties and by comparative 16S rDNA sequence analysis. Three isolates (TA1-AE1, TA1-A1 and TA12-21) were shown to be facultatively chemolithoautotrophic strains of Ancylobacter aquaticus. Three further isolates (Tv6-2b, Z2A-6A and Z4A-2A) were also facultatively chemolithoautotrophic and were affiliated with the Xanthobacter sp. group, probably representing new strains of X. flavus or X. tagetidis. Strain SZ-2111 was phylogenetically related to Bosea thiooxidans. However, the genus Bosea is described as obligately heterotrophic, whereas strain 5Z-2111 was able to grow autotrophically. The isolates 5Z-C1 and TBW3 were obligate chemolithoautotrophs and were closely affiliated with Thiobacillus thioparus. Our results showed that S-oxidizing bacteria were abundant and active in rice paddy soil and consisted of physiologically and phylogenetically diverse populations.

  8. Effect of dietary inorganic sulfur level on growth performance, fecal composition, and measures of inflammation and sulfate-reducing bacteria in the intestine of growing pigs.

    PubMed

    Kerr, B J; Weber, T E; Ziemer, C J; Spence, C; Cotta, M A; Whitehead, T R

    2011-02-01

    in ileal tissue, but there was no effect of dietary S on mucosal alkaline phosphatase or sucrase activity. Pigs fed the high-S diet had decreased (P < 0.05) total bacteria in ileal digesta, but increased (P < 0.05) prevalence of SRB in colon contents. Fecal sulfide was increased (P < 0.05) and fecal pH was deceased (P < 0.05) in pigs fed high-S. The data indicate that growing pigs can tolerate relatively high amounts of dietary inorganic S, but high dietary S content alters inflammatory mediators and intestinal bacteria.

  9. Enumeration and activity of nitrifying bacteria in zeoponic substrates

    NASA Astrophysics Data System (ADS)

    McGilloway, Robyn Leigh

    Regenerative life-support systems are needed for long-term space missions. One component of a proposed life-support system is the use of zeoponic growth substrates, which slowly release NH4 into 'soil' solution for the production of plants. Nitrifying bacteria that convert NH4 to NO3 are among the important microbial components of these systems. Some evidence suggests that a balance between NH4 and NO3 is desirable in promoting plant growth and seed development. Therefore, enumeration of nitrifying bacteria and evaluation of the kinetics of nitrification in zeoponic substrates warrants investigation. A method for rapid detection and enumeration of a commercial inoculum of nitrifying bacteria in a zeoponic substrate was developed using a most probable number (MPN)-polymerase chain reaction (PCR) approach, and a TaqMan probe-based assay. The detection limit of the MPN-PCR methodology was 2,000 cells per assay. Detection sensitivity for the TaqMan assay was determined to be 60 cells. The quantitative assay demonstrated that the zeoponic substrate was capable of supporting 105 to 107 Nitrobacter cells g-1 substrate. The MPN-PCR method and TaqMan probe-based assay can be effective and rapid approaches to enumerate nitrifying bacteria in zeoponic substrates. Column studies and a growth chamber study were conducted to evaluate the production of NO2 and NO3, and nitrifier populations in zeoponic substrates. The zeoponic substrate provided a readily available source of NH4, and nitrifying bacteria were active in the substrate. Quantities of NH4 oxidized, 10 mug N g-1 h-1, to NO2 and NO3 in inoculated zeoponic substrate were in excess of plant uptake. Acidification as a result of NH4 oxidation resulted in decline of pH to 5.5. The zeoponic substrate showed limited pH buffering capacity. Survival of nitrifying bacteria during periods of desiccation was evaluated, as the zeoponic substrate would likely be stored in an air-dry state between croppings. Substrate was enriched for

  10. Endo- and exoglucanase activities in bacteria from mangrove sediment.

    PubMed

    Soares Júnior, Fábio Lino; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipola; Taketani, Rodrigo Gouvêa; de Souza Lima, André Oliveira; Melo, Itamar Soares; Andreote, Fernando Dini

    2013-01-01

    The mangrove ecosystem is an unexplored source for biotechnological applications. In this unique environment, endemic bacteria have the ability to thrive in the harsh environmental conditions (salinity and anaerobiosis), and act in the degradation of organic matter, promoting nutrient cycles. Thus, this study aimed to assess the cellulolytic activities of bacterial groups present in the sediment from a mangrove located in Ilha do Cardoso (SP, Brazil). To optimize the isolation of cellulolytic bacteria, enrichments in two types of culture media (tryptone broth and minimum salt medium), both supplemented with 5% NaCl and 1% of cellulose, were performed. Tests conducted with the obtained colonies showed a higher occurrence of endoglycolytic activity (33 isolates) than exoglycolytic (19 isolates), and the degradation activity was shown to be modulated by the presence of NaCl. The isolated bacteria were clustered by BOX-PCR and further classified on the basis of partial 16S rRNA sequences as Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes or Bacteroidetes. Therefore, this study highlights the importance of studies focusing on the endemic species found in mangroves to exploit them as novel biotechnological tools for the degradation of cellulose.

  11. Endo- and exoglucanase activities in bacteria from mangrove sediment

    PubMed Central

    Júnior, Fábio Lino Soares; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipola; Taketani, Rodrigo Gouvêa; de Souza Lima, André Oliveira; Melo, Itamar Soares; Andreote, Fernando Dini

    2013-01-01

    The mangrove ecosystem is an unexplored source for biotechnological applications. In this unique environment, endemic bacteria have the ability to thrive in the harsh environmental conditions (salinity and anaerobiosis), and act in the degradation of organic matter, promoting nutrient cycles. Thus, this study aimed to assess the cellulolytic activities of bacterial groups present in the sediment from a mangrove located in Ilha do Cardoso (SP, Brazil). To optimize the isolation of cellulolytic bacteria, enrichments in two types of culture media (tryptone broth and minimum salt medium), both supplemented with 5% NaCl and 1% of cellulose, were performed. Tests conducted with the obtained colonies showed a higher occurrence of endoglycolytic activity (33 isolates) than exoglycolytic (19 isolates), and the degradation activity was shown to be modulated by the presence of NaCl. The isolated bacteria were clustered by BOX-PCR and further classified on the basis of partial 16S rRNA sequences as Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes or Bacteroidetes. Therefore, this study highlights the importance of studies focusing on the endemic species found in mangroves to exploit them as novel biotechnological tools for the degradation of cellulose. PMID:24516466

  12. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    PubMed

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions.

  13. In Situ Characterization of Nitrospira-Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants

    PubMed Central

    Daims, Holger; Nielsen, Jeppe L.; Nielsen, Per H.; Schleifer, Karl-Heinz; Wagner, Michael

    2001-01-01

    Uncultivated Nitrospira-like bacteria in different biofilm and activated-sludge samples were investigated by cultivation-independent molecular approaches. Initially, the phylogenetic affiliation of Nitrospira-like bacteria in a nitrifying biofilm was determined by 16S rRNA gene sequence analysis. Subsequently, a phylogenetic consensus tree of the Nitrospira phylum including all publicly available sequences was constructed. This analysis revealed that the genus Nitrospira consists of at least four distinct sublineages. Based on these data, two 16S rRNA-directed oligonucleotide probes specific for the phylum and genus Nitrospira, respectively, were developed and evaluated for suitability for fluorescence in situ hybridization (FISH). The probes were used to investigate the in situ architecture of cell aggregates of Nitrospira-like nitrite oxidizers in wastewater treatment plants by FISH, confocal laser scanning microscopy, and computer-aided three-dimensional visualization. Cavities and a network of cell-free channels inside the Nitrospira microcolonies were detected that were water permeable, as demonstrated by fluorescein staining. The uptake of different carbon sources by Nitrospira-like bacteria within their natural habitat under different incubation conditions was studied by combined FISH and microautoradiography. Under aerobic conditions, the Nitrospira-like bacteria in bioreactor samples took up inorganic carbon (as HCO3− or as CO2) and pyruvate but not acetate, butyrate, and propionate, suggesting that these bacteria can grow mixotrophically in the presence of pyruvate. In contrast, no uptake by the Nitrospira-like bacteria of any of the carbon sources tested was observed under anoxic or anaerobic conditions. PMID:11679356

  14. Measuring the potential activity of hydrocarbon-degrading bacteria.

    PubMed Central

    Walker, J D; Colwell, R R

    1976-01-01

    [14C]hydrocarbons were utilized as a means of estimating the hydrocarbon-degrading potential of bacteria in estuarine and marine environments. Evaporation of the hydrocarbons must be considered in estimates of oxidation. Amount of mineralization of [14C]hexadecane can be equated with the total number of petroleum-degrading bacteria and the percentage of the total heterotrophic population, which they represent. Mineralization activity was found to be related to the activity of the bacterial populations during in situ incubation. Rates of mineralization were observed, as follows, for [14C]hexadecane greater than [14C]naphthalene greater than [14C]toluene greater than [14C]cyclohexane. Increased rates of uptake and mineralization were observed for bacteria in samples collected from an oil-polluted harbor compared with samples from a relatively unpolluted, shellfish-harvesting area, e.g., turnover times of 15 and 60 min for these areas, respectively, using [14C]hexadecane. PMID:999271

  15. Endophytic root bacteria associated with the natural vegetation growing at the hydrocarbon contaminated Bitumount Provincial Historic site.

    PubMed

    Blain, Natalie Pierrette; Helgason, Bobbi; Germida, James J

    2017-02-24

    The Bitumount Provincial Historic site is the location of two of the world's first oil extracting and refining operations. Despite hydrocarbons levels ranging from 330 to 24 700 mg kg-1 soil, plants have been able to recolonize the site through means of natural revegetation. This study was designed to achieve a better understanding of the plant root-associated bacterial partnerships occurring within naturally revegetated hydrocarbon contaminated soils. Root endophytic bacterial communities were characterized from representative plant species throughout the site using both high-throughput sequencing and culturing techniques. Population abundance of rhizosphere and root endosphere bacteria was significantly influenced (p<0.05) by plant species and sampling location. In general, members of the Actinomycetales, Rhizobiales, Pseudomonadales, Burkholderiales, and Sphingomonadales orders were the most commonly identified orders. Community structure of root-associated bacteria was influenced by both plant species and sampling location. Quantitative real-time polymerase chain reaction was used to determine the potential functional diversity of the root endophytic bacteria. The gene copy numbers of 16S rRNA and two hydrocarbon degrading genes (CYP153 and alkB) were significantly affected (p<0.05) by the interaction of plant species and sampling location. Our findings suggest that some of the bacterial communities detected are known to exhibit plant growth promotion characteristics.

  16. Effect of probiotic bacteria-fermented medicinal plants (Gynura procumbens, Rehmannia glutinosa, Scutellaria baicalensis) as performance enhancers in growing pigs.

    PubMed

    Jeong, Jin Suk; Kim, In Ho

    2015-06-01

    This study was conducted to investigate the effect of dietary supplementation of mixed fermented medicinal plants (FMP) obtained from exudates of Gynura procumbens, Rehmannia glutinosa and Scutellaria baicalensis fermented with Lactobacillus plantarum, Saccharomyces cerevisiae and Bacillus licheniformis, respectively, on growth performance in growing pigs in order to assess the feasibility of using FMP as an alternative to antibiotic growth promoters (AGP), such as tiamulin. A total of 150 growing pigs (body wieght 25.50 ± 2.50 kg) were used in a 6 weeks experiment and randomly divided into five groups with six replicates of five growing pigs each. The treatments were NC (basal diet), basal diet with 33 ppm tiamulin (PC), basal diet with FMP 0.05% (FMP 0.05), basal diet with FMP 0.1% (FMP 0.1) and basal diet with FMP 0.2% (FMP 0.2). Overall, body weight gain, feed conversion rate, the digestibility of dry matter and gross energy, noxious gas emission all improved with FMP supplementation as compared to NC. Taken together, these results suggest the feasibility of using FMP as an alternative to AGP for enhancing the growth performance, nutrient digestibility and excreta noxious gas emission of growing pigs.

  17. Commensal bacteria calibrate the activation threshold of innate antiviral immunity.

    PubMed

    Abt, Michael C; Osborne, Lisa C; Monticelli, Laurel A; Doering, Travis A; Alenghat, Theresa; Sonnenberg, Gregory F; Paley, Michael A; Antenus, Marcelo; Williams, Katie L; Erikson, Jan; Wherry, E John; Artis, David

    2012-07-27

    Signals from commensal bacteria can influence immune cell development and susceptibility to infectious or inflammatory diseases. However, the mechanisms by which commensal bacteria regulate protective immunity after exposure to systemic pathogens remain poorly understood. Here, we demonstrate that antibiotic-treated (ABX) mice exhibit impaired innate and adaptive antiviral immune responses and substantially delayed viral clearance after exposure to systemic LCMV or mucosal influenza virus. Furthermore, ABX mice exhibited severe bronchiole epithelial degeneration and increased host mortality after influenza virus infection. Genome-wide transcriptional profiling of macrophages isolated from ABX mice revealed decreased expression of genes associated with antiviral immunity. Moreover, macrophages from ABX mice exhibited defective responses to type I and type II IFNs and impaired capacity to limit viral replication. Collectively, these data indicate that commensal-derived signals provide tonic immune stimulation that establishes the activation threshold of the innate immune system required for optimal antiviral immunity.

  18. Application of Ice Nucleation - Active Bacteria to Food

    NASA Astrophysics Data System (ADS)

    Arai, Soichi; Watanabe, Michiko

    Ice nucleation-active bacteria act as nuclei and are able to freeze water without supercooling to a great degree. They are known as a major cause of the frost damage to crops. We have been trying with success to positively apply these bacteria to freeze texturing of food materials, freeze concentration of fresh liquid foods, formation of new physical properties of foods by freezing, and so forth. The most useful species for these applications is Xanthomonas campestris which has recently been designated as a food additive by the Japan Ministry of Health and Welfare and produced on an industrial scale. This paper reviews these topics, with some practical examples quoted primarily from our studies.

  19. Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity

    PubMed Central

    Abt, Michael C.; Osborne, Lisa C.; Monticelli, Laurel A.; Doering, Travis A.; Alenghat, Theresa; Sonnenberg, Gregory F.; Paley, Michael A.; Antenus, Marcelo; Williams, Katie L.; Erikson, Jan; Wherry, E. John; Artis, David

    2013-01-01

    SUMMARY Signals from commensal bacteria can influence immune cell development and susceptibility to infectious or inflammatory diseases. However, the mechanisms by which commensal bacteria regulate protective immunity after exposure to systemic pathogens remain poorly understood. Here, we demonstrate that antibiotic-treated (ABX) mice exhibit impaired innate and adaptive antiviral immune responses and substantially delayed viral clearance after exposure to systemic LCMV or mucosal influenza virus. Furthermore, ABX mice exhibited severe bronchiole epithelial degeneration and increased host mortality after influenza virus infection. Genome-wide transcriptional profiling of macrophages isolated from ABX mice revealed decreased expression of genes associated with antiviral immunity. Moreover, macrophages from ABX mice exhibited defective responses to type I and type II IFNs and impaired capacity to limit viral replication. Collectively, these data indicate that commensal-derived signals provide tonic immune stimulation that establishes the activation threshold of the innate immune system required for optimal antiviral immunity. PMID:22705104

  20. A MEMBRANE FILTER PROCEDURE FOR ASSAYING CYTOTOXIC ACTIVITY IN HETEROTROPHIC BACTERIA ISOLATED FROM DRINKING WATER

    EPA Science Inventory

    Cytotoxic activity assays of Gram-negative, heterotrophic bacteria are often laborious and time consuming. The objective of this study was to develop in situ procedures for testing potential cytotoxic activities of heterotrophic bacteria isolated from drinking water systems. Wate...

  1. Physico-Chemical-Managed Killing of Penicillin-Resistant Static and Growing Gram-Positive and Gram-Negative Vegetative Bacteria

    NASA Technical Reports Server (NTRS)

    Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor); Farris, III, Alex F. (Inventor)

    2012-01-01

    Systems and methods for the use of compounds from the Hofmeister series coupled with specific pH and temperature to provide rapid physico-chemical-managed killing of penicillin-resistant static and growing Gram-positive and Gram-negative vegetative bacteria. The systems and methods represent the more general physico-chemical enhancement of susceptibility for a wide range of pathological macromolecular targets to clinical management by establishing the reactivity of those targets to topically applied drugs or anti-toxins.

  2. Bacteria activate sensory neurons that modulate pain and inflammation

    PubMed Central

    Chiu, Isaac M.; Heesters, Balthasar A.; Ghasemlou, Nader; Von Hehn, Christian A.; Zhao, Fan; Tran, Johnathan; Wainger, Brian; Strominger, Amanda; Muralidharan, Sriya; Horswill, Alexander R.; Wardenburg, Juliane Bubeck; Hwang, Sun Wook; Carroll, Michael C.; Woolf, Clifford J.

    2013-01-01

    Summary Nociceptor sensory neurons are specialized to detect potentially damaging stimuli, protecting the organism by initiating the sensation of pain and eliciting defensive behaviors. Bacterial infections produce pain by unknown molecular mechanisms, although they are presumed secondary to immune activation. Here we demonstrate that bacteria directly activate nociceptors, and that the immune response mediated through TLR2, MyD88, T cells, B cells, and neutrophils/monocytes is not necessary for Staphylococcus aureus induced pain in mice. Mechanical and thermal hyperalgesia parallels live bacterial load rather than tissue swelling or immune activation. Bacteria induce calcium flux and action potentials in nociceptor neurons, in part via bacterial N-formylated peptides and the pore-forming toxin alpha-hemolysin through distinct mechanisms. Specific ablation of Nav1.8-lineage neurons, which include nociceptors, abrogated pain during bacterial infection, but concurrently increased local immune infiltration and lymphadenopathy of the draining lymph node. Thus, bacterial pathogens produce pain by directly activating sensory neurons that modulate inflammation, an unsuspected role for the nervous system in host-pathogen interactions. PMID:23965627

  3. Identification and catabolic activity of well-derived gasoline-degrading bacteria from a contaminated aquifer

    SciTech Connect

    Ridgway, H.F.; Safarik, J.; Phipps, D.; Carl, P.; Clark, D. )

    1990-11-01

    Approximately 300 gasoline-degrading bacteria were isolated from well water and core material from a shallow coastal aquifer contaminated with unleaded gasoline. Identification of 244 isolates revealed four genera: Pseudomonas, Alcaligenes, Nocardia, and Micrococcus, with pseudomonads making up 86.9% of bacteria identified. A total of 297 isolates was sorted into 111 catabolic groups on the basis of aerobic growth responses on 15 gasoline hydrocarbons. Each test hydrocarbon was degraded by at least one isolate. Toluene, p-xylene, ethylbenzene, and 1,2,4-trimethylbenzene were most frequently utilized as growth substrates, whereas cyclic and branched alkanes were least utilized. Most isolates were able to grow on 2 or 3 different hydrocarbons, and nearly 75% utilized toluene as a sole source of carbon and energy. Isolates were remarkably specific for hydrocarbon usage, often catabolizing only one of several closely related compounds. A subset of 220 isolates was sorted into 51 groups by polyacrylamide gel electrophoresis. Pseudomonas aeruginosa was partitioned into 16 protein-banding groups (i.e., subspecies) whose catabolic activities were largely restricted to substituted aromatics. Different members of subspecies groups defined by protein-banding pattern analysis often exhibited different growth responses on the same hydrocarbon, implying marked strain diversity. The catabolic activities of well-derived, gasoline-degrading bacteria associated with this contaminated aquifer are consonant with in situ adaptation at the site.

  4. Antibacterial activity of caffeine against plant pathogenic bacteria.

    PubMed

    Sledz, Wojciech; Los, Emilia; Paczek, Agnieszka; Rischka, Jacek; Motyka, Agata; Zoledowska, Sabina; Piosik, Jacek; Lojkowska, Ewa

    2015-01-01

    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [(3)H]thymidine, [(3)H]uridine or (14)C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions.

  5. Active invasion of bacteria into living fungal cells.

    PubMed

    Moebius, Nadine; Üzüm, Zerrin; Dijksterhuis, Jan; Lackner, Gerald; Hertweck, Christian

    2014-09-02

    The rice seedling blight fungus Rhizopus microsporus and its endosymbiont Burkholderia rhizoxinica form an unusual, highly specific alliance to produce the highly potent antimitotic phytotoxin rhizoxin. Yet, it has remained a riddle how bacteria invade the fungal cells. Genome mining for potential symbiosis factors and functional analyses revealed that a type 2 secretion system (T2SS) of the bacterial endosymbiont is required for the formation of the endosymbiosis. Comparative proteome analyses show that the T2SS releases chitinolytic enzymes (chitinase, chitosanase) and chitin-binding proteins. The genes responsible for chitinolytic proteins and T2SS components are highly expressed during infection. Through targeted gene knock-outs, sporulation assays and microscopic investigations we found that chitinase is essential for bacteria to enter hyphae. Unprecedented snapshots of the traceless bacterial intrusion were obtained using cryo-electron microscopy. Beyond unveiling the pivotal role of chitinolytic enzymes in the active invasion of a fungus by bacteria, these findings grant unprecedented insight into the fungal cell wall penetration and symbiosis formation.

  6. Active invasion of bacteria into living fungal cells

    PubMed Central

    Moebius, Nadine; Üzüm, Zerrin; Dijksterhuis, Jan; Lackner, Gerald; Hertweck, Christian

    2014-01-01

    The rice seedling blight fungus Rhizopus microsporus and its endosymbiont Burkholderia rhizoxinica form an unusual, highly specific alliance to produce the highly potent antimitotic phytotoxin rhizoxin. Yet, it has remained a riddle how bacteria invade the fungal cells. Genome mining for potential symbiosis factors and functional analyses revealed that a type 2 secretion system (T2SS) of the bacterial endosymbiont is required for the formation of the endosymbiosis. Comparative proteome analyses show that the T2SS releases chitinolytic enzymes (chitinase, chitosanase) and chitin-binding proteins. The genes responsible for chitinolytic proteins and T2SS components are highly expressed during infection. Through targeted gene knock-outs, sporulation assays and microscopic investigations we found that chitinase is essential for bacteria to enter hyphae. Unprecedented snapshots of the traceless bacterial intrusion were obtained using cryo-electron microscopy. Beyond unveiling the pivotal role of chitinolytic enzymes in the active invasion of a fungus by bacteria, these findings grant unprecedented insight into the fungal cell wall penetration and symbiosis formation. DOI: http://dx.doi.org/10.7554/eLife.03007.001 PMID:25182414

  7. Antimicrobial activity and phytochemical analyses of Polygonum aviculare L. (Polygonaceae), naturally growing in Egypt

    PubMed Central

    Salama, Hediat M.H.; Marraiki, Najat

    2009-01-01

    Polygonum aviculare (Polygonaceae) is an herb commonly distributed in Mediterranean coastal regions in Egypt and used in folkloric medicine. Organic and aqueous solvent extracts and fractions of P. aviculare were investigated for antimicrobial activities on several microorganisms including bacteria and fungi. Phytochemical constituents of air-dried powered plant parts were extracted using aqueous and organic solvents (acetone, ethanol, chloroform and water). Antimicrobial activity of the concentrated extracts was evaluated by determination of the diameter of inhibition zone against both Gram-negative and Gram-positive bacteria and fungi using paper disc diffusion method. Results of the phytochemical studies revealed the presence of tannins, saponins, flavonoids, alkaloids and sesquiterpenes and the extracts were active against both Gram-negative and Gram-positive bacteria. Chloroform extract gave very good and excellent antimicrobial activity against all tested bacteria and good activity against all tested fungi except Candida albicans. Structural spectroscopic analysis that was carried out on the active substances in the chloroform extract led to the identification of panicudine (6-hydroxy-11-deoxy-13 dehydrohetisane). Evaluation of the antimicrobial activity of panicudine indicated significant activity against all tested Gram-negative and Gram-positive organisms. Panicudine displayed considerable activity against the tested fungi with the exception of C. albicans. Antimicrobial activity of the extracts was unaffected after exposure to different heat treatments, but was reduced at alkaline pH. Studies of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of panicudine on the tested organisms showed that the lowest MIC and the MBC were demonstrated against Salmonella paratyphi, Bacillus subtilis and Salmonella typhi and the highest MIC and MBC were against Staphylococcus aureus. PMID:23961059

  8. Probing the fractal pattern and organization of Bacillus thuringiensis bacteria colonies growing under different conditions using quantitative spectral light scattering polarimetry

    NASA Astrophysics Data System (ADS)

    Banerjee, Paromita; Soni, Jalpa; Purwar, Harsh; Ghosh, Nirmalya; Sengupta, Tapas K.

    2013-03-01

    Development of methods for quantification of cellular association and patterns in growing bacterial colony is of considerable current interest, not only to help understand multicellular behavior of a bacterial species but also to facilitate detection and identification of a bacterial species in a given space and under a given set of condition(s). We have explored quantitative spectral light scattering polarimetry for probing the morphological and structural changes taking place during colony formations of growing Bacillus thuringiensis bacteria under different conditions (in normal nutrient agar representing favorable growth environment, in the presence of 1% glucose as an additional nutrient, and 3 mM sodium arsenate as toxic material). The method is based on the measurement of spectral 3×3 Mueller matrices (which involves linear polarization measurements alone) and its subsequent analysis via polar decomposition to extract the intrinsic polarization parameters. Moreover, the fractal micro-optical parameter, namely, the Hurst exponent H, is determined via fractal-Born approximation-based inverse analysis of the polarization-preserving component of the light scattering spectra. Interesting differences are noted in the derived values for the H parameter and the intrinsic polarization parameters (linear diattenuation d, linear retardance δ, and linear depolarization Δ coefficients) of the growing bacterial colonies under different conditions. The bacterial colony growing in presence of 1% glucose exhibit the strongest fractality (lowest value of H), whereas that growing in presence of 3 mM sodium arsenate showed the weakest fractality. Moreover, the values for δ and d parameters are found to be considerably higher for the colony growing in presence of glucose, indicating more structured growth pattern. These findings are corroborated further with optical microscopic studies conducted on the same samples.

  9. Probing the fractal pattern and organization of Bacillus thuringiensis bacteria colonies growing under different conditions using quantitative spectral light scattering polarimetry.

    PubMed

    Banerjee, Paromita; Soni, Jalpa; Purwar, Harsh; Ghosh, Nirmalya; Sengupta, Tapas K

    2013-03-01

    Development of methods for quantification of cellular association and patterns in growing bacterial colony is of considerable current interest, not only to help understand multicellular behavior of a bacterial species but also to facilitate detection and identification of a bacterial species in a given space and under a given set of condition(s). We have explored quantitative spectral light scattering polarimetry for probing the morphological and structural changes taking place during colony formations of growing Bacillus thuringiensis bacteria under different conditions (in normal nutrient agar representing favorable growth environment, in the presence of 1% glucose as an additional nutrient, and 3 mM sodium arsenate as toxic material). The method is based on the measurement of spectral 3×3 Mueller matrices (which involves linear polarization measurements alone) and its subsequent analysis via polar decomposition to extract the intrinsic polarization parameters. Moreover, the fractal micro-optical parameter, namely, the Hurst exponent H, is determined via fractal-Born approximation-based inverse analysis of the polarization-preserving component of the light scattering spectra. Interesting differences are noted in the derived values for the H parameter and the intrinsic polarization parameters (linear diattenuation d, linear retardance δ, and linear depolarization Δ coefficients) of the growing bacterial colonies under different conditions. The bacterial colony growing in presence of 1% glucose exhibit the strongest fractality (lowest value of H), whereas that growing in presence of 3 mM sodium arsenate showed the weakest fractality. Moreover, the values for δ and d parameters are found to be considerably higher for the colony growing in presence of glucose, indicating more structured growth pattern. These findings are corroborated further with optical microscopic studies conducted on the same samples.

  10. Promoting Physical Activity in Secondary Schools: Growing Expectations, "Same Old" Issues?

    ERIC Educational Resources Information Center

    Cale, Lorraine; Harris, Jo; Duncombe, Rebecca

    2016-01-01

    There are growing expectations on schools to promote health and physical activity and helping schools to effectively do so is considered a priority. This paper reports on selected findings from a research project that was concerned with supporting secondary schools in the effective promotion of physical activity and establishing their needs in…

  11. Synergistic Effect of Photosynthetic Bacteria and Isolated Bacteria in Their Antifungal Activities against Root Rot Fungi.

    PubMed

    Wei, Hongyi; Okunishi, Suguru; Yoshikawa, Takeshi; Kamei, Yuto; Dawwoda, Mahmoud A O; Santander-DE Leon, Sheila Mae S; Nuñal, Sharon Nonato; Maeda, Hiroto

    2016-01-01

    Antifungal bacteria (AB) in root rot fungus (RRF)-contaminated sweet potato farms were isolated, and seven strains were initially chosen as antagonistic candidates. An antagonistic test by using the mycelial disk placement method revealed that one AB strain by itself could inhibit the RRF growth. This AB strain was identified as Bacillus polyfermenticus based on phylogeny of 16S ribosomal RNA genes. Two AB strains (Bacillus aerophilus) displayed high levels of antifungal activity when paired with photosynthetic bacterial strain A (a purple nonsulfur photosynthetic bacterium Rhodopseudomonas faecalis). The results suggest the possible use of the isolates as agents for the biological control of the RRF infection of agricultural products in fields of cultivation.

  12. Characterization of root-nodulating bacteria associated to Prosopis farcta growing in the arid regions of Tunisia.

    PubMed

    Fterich, A; Mahdhi, M; Caviedes, M A; Pajuelo, E; Rivas, R; Rodriguez-Llorente, I D; Mars, M

    2011-06-01

    Diversity of 50 bacterial isolates recovered from root nodules of Prosopis farcta grown in different arid soils in Tunisia, was investigated. Characterization of isolates was assessed using a polyphasic approach including phenotypic characteristics, 16S rRNA gene PCR--RFLP and sequencing, nodA gene sequencing and MLSA. It was found that most of isolates are tolerant to high temperature (40°C) and salinity (3%). Genetic characterization emphasizes that isolates were assigned to the genus Ensifer (80%), Mesorhizobium (4%) and non-nodulating endophytic bacteria (16%). Forty isolates belonging to the genus Ensifer were affiliated to Ensifer meliloti, Ensifer xinjiangense/Ensifer fredii and Ensifer numidicus species. Two isolates belonged to the genus Mesorhizobium. Eight isolates failing to renodulate their host plant were endophytic bacteria and belonged to Bacillus, Paenibacillus and Acinetobacter genera. Symbiotic properties of nodulating isolates showed a diversity in their capacity to infect their host plant and fix atmospheric nitrogen. Isolate PG29 identified as Ensifer meliloti was the most effective one. Ability of Prosopis farcta to establish symbiosis with rhizobial species confers an important advantage for this species to be used in reforestation programs. This study offered the first systematic information about the diversity of microsymbionts nodulating Prosopis farcta in the arid regions of Tunisia.

  13. Molecular Evidence for Metabolically Active Bacteria in the Atmosphere

    PubMed Central

    Klein, Ann M.; Bohannan, Brendan J. M.; Jaffe, Daniel A.; Levin, David A.; Green, Jessica L.

    2016-01-01

    Bacterial metabolisms are responsible for critical chemical transformations in nearly all environments, including oceans, freshwater, and soil. Despite the ubiquity of bacteria in the atmosphere, little is known about the metabolic functioning of atmospheric bacterial communities. To gain a better understanding of the metabolism of bacterial communities in the atmosphere, we used a combined empirical and model-based approach to investigate the structure and composition of potentially active bacterial communities in air sampled at a high elevation research station. We found that the composition of the putatively active bacterial community (assayed via rRNA) differed significantly from the total bacterial community (assayed via rDNA). Rare taxa in the total (rDNA) community were disproportionately active relative to abundant taxa, and members of the order Rhodospirillales had the highest potential for activity. We developed theory to explore the effects of random sampling from the rRNA and rDNA communities on observed differences between the communities. We found that random sampling, particularly in cases where active taxa are rare in the rDNA community, will give rise to observed differences in community composition including the occurrence of “phantom taxa”, taxa which are detected in the rRNA community but not the rDNA community. We show that the use of comparative rRNA/rDNA techniques can reveal the structure and composition of the metabolically active portion of bacterial communities. Our observations suggest that metabolically active bacteria exist in the atmosphere and that these communities may be involved in the cycling of organic compounds in the atmosphere. PMID:27252689

  14. Membrane-Targeting DCAP Analogues with Broad-Spectrum Antibiotic Activity against Pathogenic Bacteria

    PubMed Central

    2015-01-01

    We performed a structure–activity relationship study of 2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2-(hydroxymethyl)propane-1,3-diol (DCAP), which is an antibacterial agent that disrupts the membrane potential and permeability of bacteria. The stereochemistry of DCAP had no effect on the biological activity of DCAP. The aromaticity and electronegativity of the chlorine-substituted carbazole was required for activity, suggesting that its planar and dipolar characteristics orient DCAP in membranes. Increasing the hydrophobicity of the tail region of DCAP enhanced its antibiotic activity. Two DCAP analogues displayed promising antibacterial activity against the BSL-3 pathogens Bacillus anthracis and Francisella tularensis. Codosing DCAP analogues with ampicillin or kanamycin increased their potency. These studies demonstrate that DCAP and its analogues may be a promising scaffold for developing chemotherapeutic agents that bind to bacterial membranes and kill strains of slow-growing or dormant bacteria that cause persistent infections. PMID:25941556

  15. An active principle of Nigella sativa L., thymoquinone, showing significant antimicrobial activity against anaerobic bacteria

    PubMed Central

    Randhawa, Mohammad Akram; Alenazy, Awwad Khalaf; Alrowaili, Majed Gorayan; Basha, Jamith

    2017-01-01

    Aim/Background: Thymoquinone (TQ) is the major active principle of Nigella sativa seed (black seed) and is known to control many fungi, bacteria, and some viruses. However, the activity of TQ against anaerobic bacteria is not well demonstrated. Anaerobic bacteria can cause severe infections, including diarrhea, aspiration pneumonia, and brain abscess, particularly in immunodeficient individuals. The present study aimed to investigate the in vitro antimicrobial activity of TQ against some anaerobic pathogens in comparison to metronidazole. Methods: Standard, ATCC, strains of four anaerobic bacteria (Clostridium difficile, Clostridium perfringens, Bacteroides fragilis, and Bacteroides thetaiotaomicron), were initially isolated on special Brucella agar base (with hemin and vitamin K). Then, minimum inhibitory concentrations (MICs) of TQ and metronidazole were determined against these anaerobes when grown in Brucella agar, using serial agar dilution method according to the recommended guidelines for anaerobic organisms instructed by the Clinical and Laboratory Standards Institute. Results: TQ showed a significant antimicrobial activity against anaerobic bacteria although much weaker than metronidazole. MICs of TQ and metronidazole against various anaerobic human pathogens tested were found to be between 10-160 mg/L and 0.19-6.25 mg/L, respectively. Conclusions: TQ controlled the anaerobic human pathogenic bacteria, which supports the use of N. sativa in the treatment of diarrhea in folk medicine. Further investigations are in need for determination of the synergistic effect of TQ in combination with metronidazole and the activity of derivatives of TQ against anaerobic infections. PMID:28163966

  16. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests.

    PubMed

    McKernan, Kevin; Spangler, Jessica; Helbert, Yvonne; Lynch, Ryan C; Devitt-Lee, Adrian; Zhang, Lei; Orphe, Wendell; Warner, Jason; Foss, Theodore; Hudalla, Christopher J; Silva, Matthew; Smith, Douglas R

    2016-01-01

    Background: The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM) testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR) approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial) fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the Cannabis and food safety testing industries.

  17. Molecular identification of antagonistic bacteria from Tehran soils and evaluation of their inhibitory activities toward pathogenic fungi

    PubMed Central

    Ranjbariyan, AR; Shams-Ghahfarokhi, M; Kalantari, S; Razzaghi-Abyaneh, M

    2011-01-01

    Background and Objectives To find antagonistic bacteria with potential antifungal activity against some pathogenic fungi, including Aspergillus niger, A. flavus, Fusarium moniliforme and Penicillium marneffei, a total of 148 agricultural soil samples from different sites of Tehran were examined. Materials and Methods Antagonistic soils were selected by screening against A. niger on glucose-yeast extract (GY) agar using a visual agar plate assay method. All growing bacteria were examined for antifungal activity, and antagonistic bacteria identified based on 16S rRNA sequence analysis. Among a total number of 97 bacteria isolated form inhibitory soils (36 samples), 16 bacteria were reported as strong growth inhibitors in co-cultures on GY agar with all tested fungi at variable degrees. Fungal growth inhibitory bacteria were cultured against all fungi and growth inhibition was measured and analyzed between test and control groups by statistical analysis (ANOVA). Results Molecular identification of antagonistic bacteria indicated that most bacterial isolates belonged to the genus Bacillus (81.25%), including B. subtilis (5 isolates), B. amyloliquefaciens (6 isolates) and B. valismortis (2 isolates), followed by one isolate (6.25%) from each Streptomyces sp., Pseudomonas chlororaphis and Acinetobacter baumannii. Based on the visual plate assay results, total fungal growth inhibition of all bacteria was reported in the range of 13.2 to 68.3%. P. chlororaphis S105 was reported as the most potent antagonistic bacterium which inhibited the growth of A. niger by 68.3%, followed by F. moniliforme (66.4%), A. flavus (64.7%) and P. marneffei (57.1%). Conclusion P. chlororaphis and some other inhibitory bacteria reported in the present study, they may be considered not only as a rich source of useful metabolites with potential application in antifungal drug discovery, but also as potential candidates for biological control programs. PMID:22347597

  18. The universal bundling activity of AtVLN4 in diffusely growing cells.

    PubMed

    Du, Fei; Zhang, Yi; Ren, Haiyun

    2011-09-01

    We recently reported that AtVLN4, a member of villin/gelsolin/fragmin superfamily in Arabidopsis thaliana, participated in root hair growth through its actin bundling activity. To further understand the functions of AtVLN4, we investigated its in vivo expression pattern and roles in diffusely growing cells. Transcription analysis of AtVLN4 and detection of AtVLN 4 promoter-GUS activity consistently indicated that AtVLN4 had a universal expression pattern and was preferentially expressed in vegetative tissues. Observation of actin structures labeled by GFP-fABD2 revealed that there were less actin bundles in many diffusely growing cell types in atvln4-1 seedlings than in wild-type seedlings. Pharmacological studies by treatment with Latrunculin B showed that the actin filaments were much easier to be disrupted in diffusely growing cells of atvln4-1 seedlings. Collectively, these results demonstrate that AtVLN4 has a universal actin bundling activity in diffusely growing cells just like that in the tip growing cell, root hairs.

  19. [Activated Sludge Bacteria Transforming Cyanopyridines and Amides of Pyridinecarboxylic Acids].

    PubMed

    Demakov, V A; Vasil'ev, D M; Maksimova, Yu G; Pavlova, Yu A; Ovechkina, G V; Maksimov, A Yu

    2015-01-01

    Species diversity of bacteria from the activated sludge of Perm biological waste treatment facilities capable of transformation of cyanopyridines and amides of pyridinecarboxylic acids was investigated. Enrichment cultures in mineral media with 3-cyanopyridine as the sole carbon and nitrogen source were used to obtain 32 clones of gram-negative heterotrophic bacteria exhibiting moderate growth on solid and liquid media with 3- and 4-cyanopyridine. Sequencing of the 16S rRNA gene fragments revealed that the clones with homology of at least 99% belonged to the genera Acinetobacte, Alcaligenes, Delftia, Ochrobactrum, Pseudomonas, Stenotrophomonas, and Xanthobacter. PCR analysis showed that 13 out of 32 isolates contained the sequences (-1070 bp) homologous to the nitrilase genes reported previously in Alcaligenes faecalis JM3 (GenBank, D13419.1). Nine clones were capable of nitrile and amide transformation in minimal salt medium. Acinetobacter sp. 11 h and Alcaligenes sp. osv transformed 3-cyanopyridine to nicotinamide, while most of the clones possessed amidase activity (0.5 to 46.3 mmol/(g h) for acetamide and 0.1 to 5.6 mmol/(g h) for nicotinamide). Nicotinamide utilization by strain A. faecalis 2 was shown to result in excretion of a secondary metabolite, which was identified as dodecyl acrylate at 91% probability.

  20. Mercury-resistant rhizobial bacteria isolated from nodules of leguminous plants growing in high Hg-contaminated soils.

    PubMed

    Ruiz-Díez, Beatriz; Quiñones, Miguel A; Fajardo, Susana; López, Miguel A; Higueras, Pablo; Fernández-Pascual, Mercedes

    2012-10-01

    A survey of symbiotic bacteria from legumes grown in high mercury-contaminated soils (Almadén, Spain) was performed to produce a collection of rhizobia which could be well adapted to the environmental conditions of this region and be used for restoration practices. Nineteen Hg-tolerant rhizobia were isolated from nodules of 11 legume species (of the genera Medicago, Trifolium, Vicia, Lupinus, Phaseolus, and Retama) and characterized. Based on their growth on Hg-supplemented media, the isolates were classified into three susceptibility groups. The minimum inhibitory concentrations (MICs) and the effective concentrations that produce 50% mortality identified the patterns of mercury tolerance and showed that 15 isolates were tolerant. The dynamics of cell growth during incubation with mercury showed that five isolates were unaffected by exposure to Hg concentrations under the MICs. Genetic analyses of the 16S rRNA gene assigned ten strains to Rhizobium leguminosarum, six to Ensifer medicae, two to Bradyrhizobium canariense, and one to Rhizobium radiobacter. Inoculation of host plants and analysis of the nodC genes revealed that most of them were symbiotically effective. Finally, three isolates were selected for bioremediation processes with restoration purposes on the basis of their levels of Hg tolerance, their response to high concentrations of this heavy metal, and their genetic affiliation and nodulation capacity.

  1. Starvation Improves Survival of Bacteria Introduced into Activated Sludge

    PubMed Central

    Watanabe, Kazuya; Miyashita, Mariko; Harayama, Shigeaki

    2000-01-01

    A phenol-degrading bacterium, Ralstonia eutropha E2, was grown in Luria-Bertani (LB) medium or in an inorganic medium (called MP) supplemented with phenol and harvested at the late-exponential-growth phase. Phenol-acclimated activated sludge was inoculated with the E2 cells immediately after harvest or after starvation in MP for 2 or 7 days. The densities of the E2 populations in the activated sludge were then monitored by quantitative PCR. The E2 cells grown on phenol and starved for 2 days (P-2 cells) survived in the activated sludge better than those treated differently: the population density of the P-2 cells 7 days after their inoculation was 50 to 100 times higher than the population density of E2 cells without starvation or that with 7-day starvation. LB medium-grown cells either starved or nonstarved were rapidly eliminated from the sludge. The P-2 cells showed a high cell surface hydrophobicity and retained metabolic activities. Cells otherwise prepared did not have one of these two features. From these observations, it is assumed that hydrophobic cell surface and metabolic activities higher than certain levels were required for the inoculated bacteria to survive in the activated sludge. Reverse transcriptase PCR analyses showed that the P-2 cells initiated the expression of phenol hydroxylase within 1 day of their inoculation into the sludge. These results suggest the utility of a short starvation treatment for improving the efficacy of bioaugumentation. PMID:10966407

  2. In situ growing Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation.

    PubMed

    Li, Juan; Yin, Yunchao; Liu, Enzhou; Ma, Yongning; Wan, Jun; Fan, Jun; Hu, Xiaoyun

    2017-01-05

    Bi2MoO6/g-C3N4 heterojunctions were fabricated by an in situ solvothermal method using g-C3N4 nanosheets. The photocatalytic activities of as-prepared samples were evaluated by hydrogen evolution from water splitting and disinfection of bacteria under visible light irradiation. The results indicate that exfoliating bulk g-C3N4 to g-C3N4 nanosheets greatly enlarges the specific surface area and shortens the diffusion distance for photogenerated charges, which could not only promote the photocatalytic performance but also benefit the sufficient interaction with Bi2MoO6. Furthermore, intimate contact of Bi2MoO6 (BM) and g-C3N4 nanosheets (CNNs) in the BM/CNNs composites facilitates the transfer and separation of photogenetrated electron-hole pairs. 20%-BM/CNNs heterojunction exhibits the optimal photocatalytic hydrogen evolution as well as photocatalytic disinfection of bacteria. Furthermore, h(+) was demonstrated as the dominant reactive species which could make the bacteria cells inactivated in the photocatalytic disinfection process. This study extends new chance of g-C3N4-based photocatalysts to the growing demand of clean new energy and drinking water.

  3. [Effects of growing time on Panax ginseng rhizosphere soil microbial activity and biomass].

    PubMed

    Xiao, Chun-ping; Yang, Li-min; Ma, Feng-min

    2014-12-01

    Using the field sampling and indoor soil cultivation methods, the dynamic of ginseng rhizosphere soil microbial activity and biomass with three cultivated ages was studied to provide a theory basis for illustrating mechanism of continuous cropping obstacles of ginseng. The results showed that ginseng rhizosphere soil microbial activity and biomass accumulation were inhibited observably by growing time. The soil respiration, soil cellulose decomposition and soil nitrification of ginseng rhizosphere soil microorganism were inhibited significantly (P <0.05), in contrast to the control soil uncultivated ginseng (R0). And the inhibition was gradual augmentation with the number of growing years. The soil microbial activity of 3a ginseng soil (R3) was the lowest, and its activity of soil respiration, soil cellulose decomposition, soil ammonification and soil nitrification was lower than that in R0 with 56.31%, 86.71% and 90. 53% , respectively. The soil ammonification of ginseng rhizosphere soil microbial was significantly promoted compared with R0. The promotion was improved during the early growing time, while the promotion was decreased with the number of growing years. The soil ammonification of R1, R2 and R3 were lower than that in R0 with 32.43%, 80.54% and 66.64% separately. The SMB-C and SMB-N in ginseng rhizosphere soil had a decreased tendency with the number of growing years. The SMB-C difference among 3 cultivated ages was significant, while the SMB-N was not. The SMB of R3 was the lowest. Compared with R0, the SMB-C and the SMB-N were significantly reduced 77.30% and 69.36%. It was considered by integrated analysis that the leading factor of continuous cropping obstacle in ginseng was the changes of the rhizosphere soil microbial species, number and activity as well as the micro-ecological imbalance of rhizosphere soil caused by the accumulation of ginseng rhizosphere secretions.

  4. Diverse Bacteria Affiliated with the Genera Microvirga, Phyllobacterium, and Bradyrhizobium Nodulate Lupinus micranthus Growing in Soils of Northern Tunisia.

    PubMed

    Msaddak, Abdelhakim; Durán, David; Rejili, Mokhtar; Mars, Mohamed; Ruiz-Argüeso, Tomás; Imperial, Juan; Palacios, José; Rey, Luis

    2017-03-15

    , rhizobial populations associated with L. micranthus are poorly understood. In this context, the diversity of endosymbionts of this legume was investigated. Most Lupinus species are nodulated by Bradyrhizobium strains. This work showed that about half of the isolates from northern Tunisian soils were in fact Bradyrhizobium symbionts, but the other half were found unexpectedly to be bacteria within the genera Microvirga and Phyllobacterium These unusual endosymbionts may have a great ecological relevance. Inoculation with the appropriate selected symbiotic bacterial partners will increase L. micranthus survival with consequent advantages for the environment in semiarid areas of Tunisia.

  5. Antimicrobial activity of Antrodia camphorata extracts against oral bacteria.

    PubMed

    Lien, Hsiu-Man; Tseng, Chin-Jui; Huang, Chao-Lu; Lin, Yu-Ting; Chen, Chia-Chang; Lai, Ya-Yun

    2014-01-01

    Antrodia camphorata (A. camphorata) is a unique, endemic and extremely rare mushroom species native to Taiwan, and both crude extracts of and purified chemical compounds from A. camphorata have been reported to have a variety of significant beneficial effects, such as anti-tumor and anti-inflammatory activity. However, reports on the effects of A. camphorata against dental pathogens have been limited. Oral health is now recognized as important for overall general health, including conditions such as dental caries, periodontal disease and rheumatoid arthritis. Streptococcus mutans (S. mutans) and Porphyromonas gingivalis (P. gingivalis) are the most common bacteria associated with dental plaque and periodontopathic diseases, respectively. Thus, our study examined the ability of five various crude extracts of A. camphorata to inhibit the growth of dental bacteria and anti-adherence in vitro. Among the extracts, the ethanol, ethyl acetate and chloroform extracts exhibited the lowest MICs against P. gingivalis and S. mutans (MIC = 4∼16 µg/mL). The MIC of the aqueous extract was greater than 2048 µg/mL against both P. gingivalis and S. mutans. In vitro adherence of S. mutans was significantly inhibited by the addition of either the ethyl acetate extract or chloroform extract (MIC = 16∼24 µg/mL), while the ethanol extract (MIC = 32∼64 µg/mL) exhibited moderate inhibitory activity. Based on the result of this study, the ethyl acetate and chloroform extracts of A. camphorata may be good candidates for oral hygiene agents to control dental caries and periodontopathic conditions.

  6. Antimicrobial Activity of Antrodia camphorata Extracts against Oral Bacteria

    PubMed Central

    Lien, Hsiu-Man; Tseng, Chin-Jui; Huang, Chao-Lu; Lin, Yu-Ting; Chen, Chia-Chang; Lai, Ya-Yun

    2014-01-01

    Antrodia camphorata (A. camphorata) is a unique, endemic and extremely rare mushroom species native to Taiwan, and both crude extracts of and purified chemical compounds from A. camphorata have been reported to have a variety of significant beneficial effects, such as anti-tumor and anti-inflammatory activity. However, reports on the effects of A. camphorata against dental pathogens have been limited. Oral health is now recognized as important for overall general health, including conditions such as dental caries, periodontal disease and rheumatoid arthritis. Streptococcus mutans (S. mutans) and Porphyromonas gingivalis (P. gingivalis) are the most common bacteria associated with dental plaque and periodontopathic diseases, respectively. Thus, our study examined the ability of five various crude extracts of A. camphorata to inhibit the growth of dental bacteria and anti-adherence in vitro. Among the extracts, the ethanol, ethyl acetate and chloroform extracts exhibited the lowest MICs against P. gingivalis and S. mutans (MIC = 4∼16 µg/mL). The MIC of the aqueous extract was greater than 2048 µg/mL against both P. gingivalis and S. mutans. In vitro adherence of S. mutans was significantly inhibited by the addition of either the ethyl acetate extract or chloroform extract (MIC = 16∼24 µg/mL), while the ethanol extract (MIC = 32∼64 µg/mL) exhibited moderate inhibitory activity. Based on the result of this study, the ethyl acetate and chloroform extracts of A. camphorata may be good candidates for oral hygiene agents to control dental caries and periodontopathic conditions. PMID:25144619

  7. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests

    PubMed Central

    McKernan, Kevin; Spangler, Jessica; Helbert, Yvonne; Lynch, Ryan C.; Devitt-Lee, Adrian; Zhang, Lei; Orphe, Wendell; Warner, Jason; Foss, Theodore; Hudalla, Christopher J.; Silva, Matthew; Smith, Douglas R.

    2016-01-01

    Background: The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM) testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR) approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial) fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the Cannabis and food safety testing industries. PMID:27853518

  8. Water activity of poultry litter: Relationship to moisture content during a grow-out.

    PubMed

    Dunlop, Mark W; McAuley, Jim; Blackall, Patrick J; Stuetz, Richard M

    2016-05-01

    Poultry grown on litter floors are in contact with their own waste products. The waste material needs to be carefully managed to reduce food safety risks and to provide conditions that are comfortable and safe for the birds. Water activity (Aw) is an important thermodynamic property that has been shown to be more closely related to microbial, chemical and physical properties of natural products than moisture content. In poultry litter, Aw is relevant for understanding microbial activity; litter handling and rheological properties; and relationships between in-shed relative humidity and litter moisture content. We measured the Aw of poultry litter collected throughout a meat chicken grow-out (from fresh pine shavings bedding material to day 52) and over a range of litter moisture content (10-60%). The Aw increased non-linearly from 0.71 to 1.0, and reached a value of 0.95 when litter moisture content was only 22-33%. Accumulation of manure during the grow-out reduced Aw for the same moisture content. These results are relevant for making decisions regarding litter re-use in multiple grow-outs as well as setting targets for litter moisture content to minimise odour, microbial risks and to ensure necessary litter physical conditions are maintained during a grow-out. Methods to predict Aw in poultry litter from moisture content are proposed.

  9. Recovering glycoside hydrolase genes from active tundra cellulolytic bacteria.

    PubMed

    Pinnell, Lee J; Dunford, Eric; Ronan, Patrick; Hausner, Martina; Neufeld, Josh D

    2014-07-01

    Bacteria responsible for cellulose hydrolysis in situ are poorly understood, largely because of the relatively recent development of cultivation-independent methods for their detection and characterization. This study combined DNA stable-isotope probing (DNA-SIP) and metagenomics for identifying active bacterial communities that assimilated carbon from glucose and cellulose in Arctic tundra microcosms. Following DNA-SIP, bacterial fingerprint analysis of gradient fractions confirmed isotopic enrichment. Sequenced fingerprint bands and clone library analysis of 16S rRNA genes identified active bacterial taxa associated with cellulose-associated labelled DNA, including Bacteroidetes (Sphingobacteriales), Betaproteobacteria (Burkholderiales), Alphaproteobacteria (Caulobacteraceae), and Chloroflexi (Anaerolineaceae). We also compared glycoside hydrolase metagenomic profiles from bulk soil and heavy DNA recovered from DNA-SIP incubations. Active populations consuming [(13)C]glucose and [(13)C]cellulose were distinct, based on ordinations of light and heavy DNA. Metagenomic analysis demonstrated a ∼3-fold increase in the relative abundance of glycoside hydrolases in DNA-SIP libraries over bulk-soil libraries. The data also indicate that multiple displacement amplification introduced bias into the resulting metagenomic analysis. This research identified DNA-SIP incubation conditions for glucose and cellulose that were suitable for Arctic tundra soil and confirmed that DNA-SIP enrichment can increase target gene frequencies in metagenomic libraries.

  10. Evaluation of activity of epiphyseal plates in growing males and females.

    PubMed

    Yang, K-T A; Yang, A D

    2006-06-01

    To investigate the age-related activity of the epiphyseal plates, a retrospective study of (99m)Tc-methylene diphosphonate bone scans was undertaken. The study comprised 81 males and 46 females aged 2 weeks to 24 years. The total percentage (%) whole-body (ratio of total physis activity to whole-body activity) and the regional % whole-body (ratio of physis activity of one region to whole-body activity) were derived. The ratio of physis activity of one region to the total physis activity was defined as % physis. Before age 12, total physis activity was found to contribute about 10% to whole-body activity. All total and regional % whole-body activities followed sigmoid curves with age. The differences of the parameters (transition centers and widths) suggested that there might be a later and longer period for the disappearance of physis activity in males than in females. For all the regions, % physis changed little with age until after puberty. At age <1, the proportion of bone activity in the body was about 30-35% for skull, 20-25% for lower limbs, and 5-15% for the rest of the regions. The maximal changes during growth occurred in the skull and the lower limbs. The age-related changes of physis activity during growth reflect a combination of the potential of bone to grow and the processes of bone growth and bone turnover. Bone scintigraphy is useful in understanding the changes of physis activity during growth.

  11. Evidence of mitogenic activity in periodontitis-associated bacteria.

    PubMed Central

    Donaldson, S L; Ranney, R R; Tew, J G

    1983-01-01

    This study examines several periodontitis-associated bacterial isolates for the presence of mitogenic activity, as indicated by their capacity to stimulate unsensitized lymphocytes to undergo blastogenesis. Germfree mouse spleen cells responded vigorously to all of the bacterial sonic extracts tested. The kinetics and dose responses to these activators in germfree mouse spleen cell cultures paralleled those seen with the standard murine B-cell mitogen, Escherichia coli lipopolysaccharide. In contrast, Streptokinase-Streptodornase (Varidase; Lederle Laboratories) antigen elicited no response. Human cord blood lymphocytes also responded upon stimulation with these same bacterial isolates but failed to respond to Streptokinase-Streptodornase. The frequency, magnitude, and kinetics of these cord blood lymphocyte responses were remarkably similar to those seen with adult peripheral blood lymphocytes. However, in this and previous studies, individuals with unresponsive peripheral blood lymphocytes have been observed. Studies were initiated to determine whether these unresponsive leukocyte preparations truly lacked the capacity to respond to these bacteria or whether unresponsiveness reflected the presence of a regulatory cell population in these cultures. After the removal of the adherent cells from unresponsive peripheral blood lymphocyte cultures, the nonadherent cells were found to be responsive. Therefore, peripheral blood lymphocyte responsiveness appears to be regulated via an adherent cell population. The removal of adherent cells from unresponsive cord blood lymphocyte preparations resulted in a less consistent alteration to responsiveness. However, cord blood lymphocyte preparations unresponsive at a standard cell density were shown to be responsive at altered cell densities. PMID:6605923

  12. Metabolic activity of permafrost bacteria below the freezing point

    NASA Technical Reports Server (NTRS)

    Rivkina, E. M.; Friedmann, E. I.; McKay, C. P.; Gilichinsky, D. A.

    2000-01-01

    Metabolic activity was measured in the laboratory at temperatures between 5 and -20 degrees C on the basis of incorporation of (14)C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5 degrees C) to 20 days (-10 degrees C) to ca. 160 days (-20 degrees C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature.

  13. Metabolic Activity of Permafrost Bacteria below the Freezing Point

    PubMed Central

    Rivkina, E. M.; Friedmann, E. I.; McKay, C. P.; Gilichinsky, D. A.

    2000-01-01

    Metabolic activity was measured in the laboratory at temperatures between 5 and −20°C on the basis of incorporation of 14C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5°C) to 20 days (−10°C) to ca. 160 days (−20°C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature. PMID:10919774

  14. Antibacterial Activity of Blue Light against Nosocomial Wound Pathogens Growing Planktonically and as Mature Biofilms

    PubMed Central

    Thwaite, Joanne E.; Burt, Rebecca; Laws, Thomas R.; Raguse, Marina; Moeller, Ralf; Webber, Mark A.; Oppenheim, Beryl A.

    2016-01-01

    ABSTRACT The blue wavelengths within the visible light spectrum are intrinisically antimicrobial and can photodynamically inactivate the cells of a wide spectrum of bacteria (Gram positive and negative) and fungi. Furthermore, blue light is equally effective against both drug-sensitive and -resistant members of target species and is less detrimental to mammalian cells than is UV radiation. Blue light is currently used for treating acnes vulgaris and Helicobacter pylori infections; the utility for decontamination and treatment of wound infections is in its infancy. Furthermore, limited studies have been performed on bacterial biofilms, the key growth mode of bacteria involved in clinical infections. Here we report the findings of a multicenter in vitro study performed to assess the antimicrobial activity of 400-nm blue light against bacteria in both planktonic and biofilm growth modes. Blue light was tested against a panel of 34 bacterial isolates (clinical and type strains) comprising Acinetobacter baumannii, Enterobacter cloacae, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, and Elizabethkingia meningoseptica. All planktonic-phase bacteria were susceptible to blue light treatment, with the majority (71%) demonstrating a ≥5-log10 decrease in viability after 15 to 30 min of exposure (54 J/cm2 to 108 J/cm2). Bacterial biofilms were also highly susceptible to blue light, with significant reduction in seeding observed for all isolates at all levels of exposure. These results warrant further investigation of blue light as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications. IMPORTANCE Blue light shows great promise as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications (e.g., wound closure during surgery). This warrants further

  15. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.

    PubMed

    Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2012-03-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. D-sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.

  16. Exploring Anopheles gut bacteria for Plasmodium blocking activity

    PubMed Central

    Bahia, Ana C; Dong, Yuemei; Blumberg, Benjamin J; Mlambo, Godfree; Tripathi, Abhai; BenMarzouk-Hidalgo, Omar J; Chandra, Ramesh; Dimopoulos, George

    2014-01-01

    SUMMARY Malaria parasite transmission requires the successful development of Plasmodium gametocytes into flagellated microgametes upon mosquito blood ingestion, and the subsequent fertilization of microgametes and macrogametes for the development of motile zygotes, called ookinetes, which invade and transverse the Anopheles vector mosquito midgut at around 18-36 h after blood ingestion. Within the mosquito midgut, the malaria parasite has to withstand the mosquito's innate immune response and the detrimental effect of its commensal bacterial flora. We have assessed the midgut colonization capacity of 5 gut bacterial isolates from field-derived, and 2 from laboratory colony, mosquitoes and their effect on Plasmodium development in vivo and in vitro, along with their impact on mosquito survival. Some bacterial isolates activated the mosquito's immune system, affected the mosquito's life span, and were capable of blocking Plasmodium development. We have also shown that the ability of these bacteria to inhibit the parasites is likely to involve different mechanisms and factors. A Serratia marcescens isolate was particularly efficient in colonizing the mosquitoes’ gut, compromising mosquito survival, and inhibiting both sexual- and asexual-stage Plasmodium through secreted factors, thereby rendering it a potential candidate for the development of a malaria transmission intervention strategy. PMID:24428613

  17. Antimycobacterial activity in vitro of pigments isolated from Antarctic bacteria.

    PubMed

    Mojib, Nazia; Philpott, Rachel; Huang, Jonathan P; Niederweis, Michael; Bej, Asim K

    2010-11-01

    In this study, we describe the antimycobacterial activity of two pigments, violacein, a purple violet pigment from Janthinobacterium sp. Ant5-2 (J-PVP), and flexirubin, a yellow-orange pigment from Flavobacterium sp. Ant342 (F-YOP). These pigments were isolated from bacterial strains found in the land-locked freshwater lakes of Schirmacher Oasis, East Antarctica. The minimum inhibitory concentrations (MICs) of these pigments for avirulent and virulent mycobacteria were determined by the microplate Alamar Blue Assay (MABA) and Nitrate Reductase Assay (NRA). Results indicated that the MICs of J-PVP and F-YOP were 8.6 and 3.6 μg/ml for avirulent Mycobacterium smegmatis mc²155; 5 and 2.6 μg/ml for avirulent Mycobacterium tuberculosis mc²6230; and 34.4 and 10.8 μg/ml for virulent M. tuberculosis H₃₇Rv, respectively. J-PVP exhibited a ~15 times lower MIC for Mycobacterium sp. than previously reported for violacein pigment from Chromobacterium violaceum, while the antimycobacterial effect of F-YOP remains undocumented. Our results indicate these pigments isolated from Antarctic bacteria might be valuable lead compounds for new antimycobacterial drugs used for chemotherapy of tuberculosis.

  18. Barriers for active transport of bacteria in a microfluidic flow

    NASA Astrophysics Data System (ADS)

    Johnson, Payton; Doan, Minh; Mitchell, Kevin; Solomon, Tom

    2016-11-01

    We present experiments on the motion of swimming bacteria in a laminar, hyperbolic flow in a microfluidic cross channel. The bacteria used are a genetically-mutated "smooth swimming" bacillus subtilis. The movement of bacteria in the flow is bounded by swimming invariant manifolds (SWIMs) that act as one-way barriers. The SWIMs are similar to 'burning invariant manifolds" that act as one-way barriers that impede the motion of reaction fronts in a fluid flow. We explore the structure and bounding behavior of the SWIMs and how their separation from the passive manifolds depends on the bacteria swimming speed, normalized by the characteristic fluid speeds. Supported by NSF Grant DMR-1361881.

  19. Identification of active fluorescence stained bacteria by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krause, Mario; Beyer, Beatrice; Pietsch, Christian; Radt, Benno; Harz, Michaela; Rösch, Petra; Popp, Jürgen

    2008-04-01

    Microorganisms can be found everywhere e.g. in food both as useful ingredients or harmful contaminations causing food spoilage. Therefore, a fast and easy to handle analysis method is needed to detect bacteria in different kinds of samples like meat, juice or air to decide if the sample is contaminated by harmful microorganisms. Conventional identification methods in microbiology require always cultivation and therefore are time consuming. In this contribution we present an analysis approach to identify fluorescence stained bacteria on strain level by means of Raman spectroscopy. The stained bacteria are highlighted and can be localized easier against a complex sample environment e.g. in food. The use of Raman spectroscopy in combination with chemometrical methods allows the identification of single bacteria within minutes.

  20. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes.

  1. Influence of different anoxic time exposures on active biomass, protozoa and filamentous bacteria in activated sludge.

    PubMed

    Rodriguez-Perez, S; Fermoso, F G; Arnaiz, C

    Medium-sized wastewater treatment plants are considered too small to implement anaerobic digestion technologies and too large for extensive treatments. A promising option as a sewage sludge reduction method is the inclusion of anoxic time exposures. In the present study, three different anoxic time exposures of 12, 6 and 4 hours have been studied to reduce sewage sludge production. The best anoxic time exposure was observed under anoxic/oxic cycles of 6 hours, which reduced 29.63% of the biomass production compared with the oxic control conditions. The sludge under different anoxic time exposures, even with a lower active biomass concentration than the oxic control conditions, showed a much higher metabolic activity than the oxic control conditions. Microbiological results suggested that both protozoa density and abundance of filamentous bacteria decrease under anoxic time exposures compared to oxic control conditions. The anoxic time exposures 6/6 showed the highest reduction in both protozoa density, 37.5%, and abundance of filamentous bacteria, 41.1%, in comparison to the oxic control conditions. The groups of crawling ciliates, carnivorous ciliates and filamentous bacteria were highly influenced by the anoxic time exposures. Protozoa density and abundance of filamentous bacteria have been shown as promising bioindicators of biomass production reduction.

  2. Development of long-term preservation and re-activation techniques for ANAMMOX bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ANAMMOX are slow growing biofilm-forming bacteria responsible for the anaerobic oxidation of ammonia to produce nitrogen gas and nitrate. ANAMMOX-based bioreactors are being used to effectively treat high ammonia concentrations in industrial, municipal and agricultural wastewaters. Usually, fresh sl...

  3. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans.

    PubMed

    Sun, Mengjun; Dong, Jiachen; Xia, Yiru; Shu, Rong

    2017-03-31

    The aim of this study was to evaluate the potential antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm modes of Streptococcus mutans (S. mutans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The effects on planktonic growth and biofilm metabolic activity were evaluated by growth curve determination and MTT assay, respectively. Then, colony forming unit (CFU) counting, scanning electron microscopy (SEM) and real-time PCR were performed to further investigate the actions of DHA and EPA on exponential phase-S. mutans. Confocal laser scanning microscopy (CLSM) was used to detect the influences on mature biofilms. The MICs of DHA and EPA against S. mutans were 100 μM and 50 μM, respectively; the MBC of both compounds was 100 μM. In the presence of 12.5 μM-100 μM DHA or EPA, the planktonic growth and biofilm metabolic activity were reduced in varying degrees. For exponential-phase S. mutans, the viable counts, the bacterial membranes and the biofilm-associated gene expression were damaged by 100 μM DHA or EPA treatment. For 1-day-old biofilms, the thickness was decreased and the proportion of membrane-damaged bacteria was increased in the presence of 100 μM DHA or EPA. These results indicated that, DHA and EPA possessed antibacterial activities against planktonic and biofilm growing S. mutans.

  4. Malassezia globosa tends to grow actively in summer conditions more than other cutaneous Malassezia species.

    PubMed

    Akaza, Narifumi; Akamatsu, Hirohiko; Takeoka, Shiori; Sasaki, Yasuyuki; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko

    2012-07-01

    Malassezia globosa is a major pathogen of Malassezia folliculitis (MF) and the predominant species on human skin. The aim of this study was to clarify the differences between M. globosa and other cutaneous Malassezia species, M. restricta, M. dermatis, M. sympodialis and M. furfur. The optimum growth temperature, effects of compounds of sweat and free fatty acids on growth, and lipase activities of five cutaneous Malassezia species were determined. The growth of M. globosa was promoted strongly by the compounds of sweat and high temperature unlike that of other cutaneous Malassezia species. This result clarified that M. globosa tended to grow actively in summer conditions more than other cutaneous Malassezia species. Furthermore, M. globosa showed high lipase activity. We consider these characteristics of M. globosa to relate to the pathogenesis of MF.

  5. Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria.

    PubMed

    Forster, Scott; Snape, Jason R; Lappin-Scott, Hilary M; Porter, Jonathan

    2002-10-01

    Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems.

  6. Growing up Active: A Study into Physical Activity in Long Day Care Centers

    ERIC Educational Resources Information Center

    Cashmore, Aaron W.; Jones, Sandra C.

    2008-01-01

    The child care center is an ideal setting in which to implement strategies to promote physical activity and healthy weight, but there is a paucity of empirical evidence on factors that influence physical activity in these settings. The current study gathered initial qualitative data to explore these factors. Child care workers from five long day…

  7. Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya.

    PubMed

    Giweli, Abdulhmid; Džamić, Ana M; Soković, Marina; Ristić, Mihailo S; Marin, Petar D

    2012-04-26

    The composition of essential oil isolated from Satureja thymbra, growing wild in Libya, was analyzed by GC and GC-MS. The essential oil was characterized by γ-terpinene (39.23%), thymol (25.16%), p-cymene (7.17%) and carvacrol (4.18%) as the major constituents. Antioxidant activity was analyzed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method. It possessed strong antioxidant activity (IC50 = 0.0967 mg/mL). The essential oil was also screened for its antimicrobial activity against eight bacterial and eight fungal species, showing excellent antimicrobial activity against the microorganisms used, in particular against the fungi. The oil of S. thymbra showed bacteriostatic activity at 0.001-0.1 mg/mL and was bactericidal at 0.002-0.2 mg/mL; fungistatic effects at 0.001-0.025 mg/mL and fungicidal effects at 0.001-0.1 mg/mL. The main constituents thymol, carvacrol and γ-terpinene also showed strong antimicrobial activity. The commercial fungicide bifonazole showed much lower antifungal activity than the tested oil.

  8. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria.

    PubMed

    Roslev, Peter; Larsen, Mariann Brøndum; Jørgensen, Dennis; Hesselsoe, Martin

    2004-12-01

    We have examined whether assimilation of CO2 can be used as a measure of metabolic activity in planktonic and sessile heterotrophic bacteria. CO2 assimilation by environmental samples and pure cultures of heterotrophic bacteria was studied using 14CO2 and 13CO2 as tracers. Heterotrophic growth on complex organic substrates resulted in assimilation of CO2 into cell biomass by activated sludge, drinking water biofilm, and pure cultures of Escherichia coli ATCC 25922, Es. coli ATCC 13706, Rhodococcus ruber, Burkholderia sp., Bacillus circulans, Pseudomonas putida, Pseudomonas stutzeri, and Pseudomonas aeruginosa. Analysis of 13C-labelled phospholipid fatty acids (PLFAs) confirmed that heterotrophic bacteria may assimilate 13CO2 into cell macromolecules such as membrane lipids. All major PLFAs extracted from activated sludge and drinking water biofilm samples were enriched in 13C after incubation with CO2. Between 1.4% and 6.5% of the biomass produced by cultures of P. putida and a drinking water biofilm during growth in complex media was apparently derived from assimilation of CO2. Resting cells assimilated less CO2 compared to actively growing cells, and CO2 assimilation activity correlated with the amount of biomass produced during heterotrophic growth. The 14CO2 assimilation assay was evaluated as a tool to examine inhibitory effects of biocides on planktonic and sessile heterotrophs (biofilms). On the basis of 14CO2 assimilation activity, the minimum inhibitory concentration (MIC) of benzalkonium chloride was estimated to 21.1 and 127.2 mg l(-1) for planktonic and biofilm samples, respectively. The results indicate that assimilation of isotopically labelled CO2 can be used as a relatively simple measure of metabolic activity in heterotrophic bacteria. CO2 assimilation assays may be used to study the effects of antimicrobial agents on growth and survival of planktonic and sessile heterotrophic organisms.

  9. Phenotypic diversity and amylolytic activity of fast growing rhizobia from pigeonpea [Cajanus cajan (L.) Millsp.

    PubMed Central

    Júnior, Paulo Ivan Fernandes; de Lima, Andréa Aparecida; Passos, Samuel Ribeiro; Tuão Gava, Carlos Alberto; de Oliveira, Paulo Jansen; Rumjanek, Norma Gouvêa; Xavier, Gustavo Ribeiro

    2012-01-01

    This study evaluated 26 pigeonpea rhizobial isolates according to their cultural characteristics, intrinsic antibiotic resistance, salt and temperature tolerance, carbon source utilization and amylolytic activity. The cultural characterization showed that the majority of them presented the ability to acidify the YMA. Among the 27 isolates evaluated, 25 were able to grow when incubated at 42° C and 11 showed tolerance to 3% (w/v) of NaCl in YMA medium. The patterns of carbon sources utilization was very diverse among the isolates. It was observed the capacity of three strains to metabolize all the carbon sources evaluated and a total of 42% of the bacterial isolates was able to grow in the culture medium supplemented with at least, six carbon sources. The carbon sources mannitol (control) and sucrose were metabilized by all isolates evaluated. The profile of intrinsic resistance to antibiotics showed that the isolates were mostly resistant to streptomycin and ampicillin, but susceptible to kanamycin and chloranphenicol. High amylolytic activity of, at least, four isolates was also demonstrated, especially for isolated 47.3b, which showed the highest enzymatic index. These results indicate the metabolic versatility of the pigeonpea rhizobia, and indicates the isolate 47.3b to further studies regarding the amylase production and characterization. PMID:24031992

  10. Sensitivity of Active and Passive Microwave Observations to Soil Moisture during Growing Corn

    NASA Astrophysics Data System (ADS)

    Judge, J.; Monsivais-Huertero, A.; Liu, P.; De Roo, R. D.; England, A. W.; Nagarajan, K.

    2011-12-01

    Soil moisture (SM) in the root zone is a key factor governing water and energy fluxes at the land surface and its accurate knowledge is critical to predictions of weather and near-term climate, nutrient cycles, crop-yield, and ecosystem productivity. Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The two satellite-based missions dedicated to soil moisture estimation include, the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission and the planned NASA Soil Moisture Active/Passive (SMAP) [4] mission. The SMAP mission will include active and passive sensors at L-band to provide global observations of SM, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture estimates through data assimilation into land surface models (LSMs). Both the active (radar) and passive (radiometer) microwave sensors measure radiation quantities that are functions of soil dielectric constant and exhibit similar sensitivities to SM. In addition to the SM sensitivity, radar backscatter is highly sensitive to roughness of soil surface and scattering within the vegetation. These effects may produce a much larger dynamic range in backscatter than that produced due to SM changes alone. In this study, we discuss the field observations of active and passive signatures of growing corn at L-band from several seasons during the tenth Microwave, Water and Energy Balance Experiment (MicroWEX-10) conducted in North Central Florida, and to understand the sensitivity of these signatures to soil moisture under dynamic vegetation conditions. The MicroWEXs are a series of season-long field experiments conducted during the growing seasons of sweet corn, cotton, and energy cane over the past six years (for example, [22]). The corn was planted on July 5 and harvested on September 23, 2011 during MicroWEX-10. The size of the field was 0.04 km2 and the soils

  11. Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq

    PubMed Central

    Al-Bayati, Firas A.; Al-Mola, Hassan F.

    2008-01-01

    Antimicrobial activity of organic and aqueous extracts from fruits, leaves and roots of Tribulus terrestris L., an Iraqi medicinal plant used as urinary anti-infective in folk medicine, was examined against 11 species of pathogenic and non-pathogenic microorganisms: Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Corynebacterium diphtheriae, Escherichia coli, Proteus vulgaris, Serratia marcescens, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Candida albicans using microdilution method in 96 multiwell microtiter plates. All the extracts from the different parts of the plant showed antimicrobial activity against most tested microorganisms. The most active extract against both Gram-negative and Gram-positive bacteria was ethanol extract from the fruits with a minimal inhibitory concentration (MIC) value of 0.15 mg/ml against B. subtilis, B. cereus, P. vulgaris and C. diphtheriae. In addition, the same extract from the same plant part demonstrated the strongest antifungal activity against C. albicans with an MIC value of 0.15 mg/ml. PMID:18257138

  12. rRNA promoter activity in the fast-growing bacterium Vibrio natriegens.

    PubMed

    Aiyar, Sarah E; Gaal, Tamas; Gourse, Richard L

    2002-03-01

    The bacterium Vibrio natriegens can double with a generation time of less than 10 min (R. G. Eagon, J. Bacteriol. 83:736-737, 1962), a growth rate that requires an extremely high rate of protein synthesis. We show here that V. natriegens' high potential for protein synthesis results from an increase in ribosome numbers with increasing growth rate, as has been found for other bacteria. We show that V. natriegens contains a large number of rRNA operons, and its rRNA promoters are extremely strong. The V. natriegens rRNA core promoters are at least as active in vitro as Escherichia coli rRNA core promoters with either E. coli RNA polymerase (RNAP) or V. natriegens RNAP, and they are activated by UP elements, as in E. coli. In addition, the E. coli transcription factor Fis activated V. natriegens rrn P1 promoters in vitro. We conclude that the high capacity for ribosome synthesis in V. natriegens results from a high capacity for rRNA transcription, and the high capacity for rRNA transcription results, at least in part, from the same factors that contribute most to high rates of rRNA transcription in E. coli, i.e., high gene dose and strong activation by UP elements and Fis.

  13. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia

    PubMed Central

    Hatzenpichler, Roland; Connon, Stephanie A.; Goudeau, Danielle; Malmstrom, Rex R.; Woyke, Tanja; Orphan, Victoria J.

    2016-01-01

    To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probe the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of >16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia. This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought. PMID:27357680

  14. Antibiotic production by soil bacteria: diversity, activity and natural functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The living components of soils, the micro- and macrobiota, play an essential role in several life support functions as they enable soils to recycle nutrients, inactive contaminants, suppress plant pathogens and serve as a suitable substrate for plant growth. Beneficial bacteria occur naturally in s...

  15. Chitinase producing bacteria with direct algicidal activity on marine diatoms

    PubMed Central

    Li, Yi; Lei, Xueqian; Zhu, Hong; Zhang, Huajun; Guan, Chengwei; Chen, Zhangran; Zheng, Wei; Fu, Lijun; Zheng, Tianling

    2016-01-01

    Chitinase producing bacteria can involve extensively in nutrient cycling and energy flow in the aquatic environment through degradation and utilization of chitin. It is well known that diatoms cells are encased by box-like frustules composed of chitin. Thus the chitin containing of diatoms shall be a natural target of chitinase producing bacteria, however, the interaction between these two organismic groups has not been studied thus far. Therefore, in this study, the algicidal mechanism of one chitinase producing bacterium (strain LY03) on Thalassiosira pseudonana was investigated. The algicidal range and algicidal mode of strain LY03 were first studied, and then bacterial viability, chemotactic ability and direct interaction characteristic between bacteria and diatom were also confirmed. Finally, the characteristic of the intracellular algicidal substance was identified and the algicidal mechanism was determined whereby algicidal bacterial cells showed chemotaxis to algal cells, fastened themselves on algal cells with their flagella, and then produced chitinase to degrade algal cell walls, and eventually caused algal lysis and death. It is the first time to investigate the interaction between chitinase producing bacteria and diatoms, and this novel special interaction mode was confirmed in this study, which will be helpful in protection and utilization of diatoms resources. PMID:26902175

  16. Chitinase producing bacteria with direct algicidal activity on marine diatoms.

    PubMed

    Li, Yi; Lei, Xueqian; Zhu, Hong; Zhang, Huajun; Guan, Chengwei; Chen, Zhangran; Zheng, Wei; Fu, Lijun; Zheng, Tianling

    2016-02-23

    Chitinase producing bacteria can involve extensively in nutrient cycling and energy flow in the aquatic environment through degradation and utilization of chitin. It is well known that diatoms cells are encased by box-like frustules composed of chitin. Thus the chitin containing of diatoms shall be a natural target of chitinase producing bacteria, however, the interaction between these two organismic groups has not been studied thus far. Therefore, in this study, the algicidal mechanism of one chitinase producing bacterium (strain LY03) on Thalassiosira pseudonana was investigated. The algicidal range and algicidal mode of strain LY03 were first studied, and then bacterial viability, chemotactic ability and direct interaction characteristic between bacteria and diatom were also confirmed. Finally, the characteristic of the intracellular algicidal substance was identified and the algicidal mechanism was determined whereby algicidal bacterial cells showed chemotaxis to algal cells, fastened themselves on algal cells with their flagella, and then produced chitinase to degrade algal cell walls, and eventually caused algal lysis and death. It is the first time to investigate the interaction between chitinase producing bacteria and diatoms, and this novel special interaction mode was confirmed in this study, which will be helpful in protection and utilization of diatoms resources.

  17. Community structures and antagonistic activities of the bacteria associated with surface-sterilized pepper plants grown in different field soils.

    PubMed

    Kang, Sin Ae; Han, Jae Woo; Kim, Beom Seok

    2016-12-01

    Endophytic bacteria may act individually or in consortia in controlling certain plant diseases. In this study, pepper plants (Capsicum annuum L. cv. Nokkwang) were cultivated in glasshouse conditions using field soils collected from two different geographic locations, Deokso (DS) and Gwangyang (GY) in Korea. Community structure and antifungal activity of pepper endophytic bacteria were analyzed using culture-independent (PCR-DGGE) and culture-dependent (plating) methods, respectively. Dissimilarities were observed between DGGE profiles of DS and GY samples at all plant tissues. However, sequencing of the major DGGE bands revealed an enrichment of Firmicutes in the leaves of plants propagated in either soil. Similar results were observed with the culturable assays. Firmicutes dominated the isolates from both leaf samples, DS leaf (100 %) and GY leaf (83.3 %), although the genus compositions of DS leaf and GY leaf isolates were different. We assessed the antifungal activity of each isolate recovered to better understand the potential role that these endophytic bacteria may play. Of the 27 representative isolates from DS plant samples, 17 isolates (63.0 %) had antagonistic activity against at least one of the fungi tested. Seventeen isolates from GY plant samples (58.6 %) displayed antagonistic properties. The results show that the endophytic communities differ in the same plant species when propagated in different soils. Exploring the internal tissues of plants growing in diverse soil environments could be a way to find potential candidates for biocontrol agents.

  18. Testing anti-fungal activity of a soil-like substrate for growing plants in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Nesterenko, E. V.; Kozlov, V. A.; Khizhnyak, S. V.; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu. L.; Liu, Hong; Xing, Yidong; Hu, Enzhu

    2009-10-01

    The object of this research is to study a soil-like substrate (SLS) to grow plants in a Bioregenerative Life Support System (BLSS). Wheat and rice straw were used as raw materials to prepare SLS. Anti-fungal activity of SLS using test cultures of Bipolaris sorokiniana, a plant-pathogenic fungus which causes wheat root rot was studied. Experiments were conducted with SLS samples, using natural soil and sand as controls. Infecting the substrates, was performed at two levels: the first level was done with wheat seeds carrying B. sorokiniana and the second level with seeds and additional conidia of B. sorokiniana from an outside source. We measured wheat disease incidence and severity in two crop plantings. Lowest disease incidence values were obtained from the second planting, SLS: 26% and 41% at the first and the second infection levels, respectively. For soil the values were 60% and 82%, respectively, and for sand they were 67% and 74%, respectively. Wheat root rot in the second crop planting on SLS, at both infection levels was considerably less severe (9% and 13%, respectively) than on natural soil (20% and 33%) and sand (22% and 32%). SLS significantly suppressed the germination of B. sorokiniana conidia. Conidia germination was 5% in aqueous SLS suspension, and 18% in clean water. No significant differences were found regarding the impact on conidia germination between the SLS samples obtained from wheat and rice straw. The anti-fungal activity in SLS increased because of the presence of worms. SLS also contained bacteria stimulating and inhibiting B. sorokiniana growth.

  19. Antimicrobial activity of the carnivorous plant Dionaea muscipula against food-related pathogenic and putrefactive bacteria.

    PubMed

    Ogihara, Hirokazu; Endou, Fumiko; Furukawa, Soichi; Matsufuji, Hiroshi; Suzuki, Kouichi; Anzai, Hiroshi

    2013-01-01

    Solvent extracts from the carnivorous plant Dionaea muscipula (Venus flytrap) were prepared using eight different organic solvents, and examined for antibacterial activity against food-related pathogenic and putrefactive bacteria. All solvent extracts showed higher antibacterial activity against gram positive bacteria than against gram negative bacteria. The TLC-bioautography analysis of the extracts revealed that a yellow spot was detected at Rf value of 0.85, which showed strong antibacterial activity. The UV, MS, and NMR analyses revealed that the antibacterial compound was plumbagin.

  20. Antileishmanial activity of some plants growing in Algeria: Juglans regia, Lawsonia inermis and Salvia officinalis.

    PubMed

    Serakta, M; Djerrou, Z; Mansour-Djaalab, H; Kahlouche-Riachi, F; Hamimed, S; Trifa, W; Belkhiri, A; Edikra, N; Hamdi Pacha, Y

    2013-01-01

    The current study was undertaken to evaluate in vitro the antileishmanial activity of three plants growing wild in Algeria : Juglans regia, Lawsonia inermis and Salvia officinalis. The hydroalcoholic extracts of these plants were tested on the growth of the promastigotes of Leishmania major. The plant extract effects were compared with three controls : CRL1 composed of 1 ml RPMI inoculated with 10(6) of promastigotes, CRL2 composed of 1 ml RPMI inoculated with 10(6) of promastigotes and 100 µl of hydroalcoholic solvent, CRL3 composed of 1 ml RPMI inoculated with 10(6) of promastigotes and 100 µl of Glucantim as a reference drug in the management of leishmaniasis. The results showed that both J. regia and L. inermis extracts reduced the promastigotes number significantly (P<0.01). however, S. officinalis showed a total inhibition of the Leishmania major growth.

  1. Creating leptin-like biofunctions by active immunization against chicken leptin receptor in growing chickens.

    PubMed

    Lei, M M; Wu, S Q; Shao, X B; Li, X W; Chen, Z; Ying, S J; Shi, Z D

    2015-01-01

    In this study, immunization against chicken leptin receptor (cLEPR) extracellular domain (ECD) was applied to investigate leptin regulation and LEPR biofunction in growing chicken pullets. A recombinant protein (cLEPR ECD) based on the cLEPR complemenary DNA sequence corresponding to the 582nd to 796th amino acid residues of cLEPR mature peptide was prepared and used as antigen. Immunization against cLEPR ECD in growing chickens increased anti-cLEPR ECD antibody titers in blood, enhanced proportions of phosphorylated janus kinase 2 (JAK2) and served as signal transducer and activator of transcription 3 (STAT3) protein in liver tissue. Chicken live weight gain and abdominal fat mass were significantly decreased (P < 0.05), but feed intake was stimulated by cLEPR ECD immunization (P < 0.05). The treatment also upregulated the gene expression levels of lepR, AMP-activated protein kinase (AMPK), acetyl CoA carboxylase-2 (ACC2), and uncoupling protein 3 (UCP3) in liver, abdominal fat, and breast muscle (P < 0.05) but decreased fasn expression levels (P < 0.01). Apart from that of lepR, the expression of appetite-regulating genes, such as orexigenic genes, agouti-related peptide (AgRP) and neuropeptide Y (NPY), were upregulated (P < 0.01), whereas the anorexigenic gene proopiomelanocortin (POMC) was downregulated in the hypothalamic tissue of cLEPR-immunized pullets (P < 0.01). Blood concentrations of metabolic molecules, such as glucose, triglycerides, and very-low-density lipoprotein, were significantly decreased in cLEPR-immunized pullets but those of cholesterol, high-density lipoprotein, and low-density lipoprotein increased. These results demonstrate that antibodies to membrane proximal cLEPR ECD enhance cLEPR signal transduction, which stimulates metabolism and reduces fat deposition in chickens.

  2. Chemical composition and antimicrobial activity of essential oils from Scabiosa arenaria Forssk: growing wild in Tunisia.

    PubMed

    Besbes, Malek; Omri, Amel; Cheraif, Imed; Daami, Mejda; Jannet, Hichem Ben; Mastouri, Maha; Aouni, Mahjoub; Selmi, Boulbaba

    2012-04-01

    The essential oils isolated from three organs, i.e., fruits, stems and leaves, and flowers, of the endemic North African plant Scabiosa arenaria Forssk. were screened for their chemical composition, as well as their possible antibacterial, anticandidal, and antifungal properties. According to the GC-FID and GC/MS analyses, 61 (99.26% of the total oil composition), 79 (98.43%), and 51 compounds (99.9%) were identified in the three oils, respectively. While α-thujone (34.39%), camphor (17.48%), and β-thujone (15.29%) constituted the major compounds of the fruit oil, chrysanthenone (23.43%), together with camphor (12.98%) and α-thujone (10.7%), were the main constituents of the stem and leaf oil. In the case of the flower oil, also chrysanthenone (38.52%), camphor (11.75%), and α-thujone (9.5%) were identified as the major compounds. Furthermore, the isolated oils were tested against 16 Gram-positive and Gram-negative bacteria, four Candida species, and nine phytopathogenic fungal strains. It was found that the oils exhibited interesting antibacterial and anticandidal activities, comparable to those of thymol, which was used as positive control, but no activity against the phytopathogenic fungal strains was observed.

  3. In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms.

    PubMed

    Kindaichi, Tomonori; Tsushima, Ikuo; Ogasawara, Yuji; Shimokawa, Masaki; Ozaki, Noriatsu; Satoh, Hisashi; Okabe, Satoshi

    2007-08-01

    We investigated autotrophic anaerobic ammonium-oxidizing (anammox) biofilms for their spatial organization, community composition, and in situ activities by using molecular biological techniques combined with microelectrodes. Results of phylogenetic analysis and fluorescence in situ hybridization (FISH) revealed that "Brocadia"-like anammox bacteria that hybridized with the Amx820 probe dominated, with 60 to 92% of total bacteria in the upper part (<1,000 microm) of the biofilm, where high anammox activity was mainly detected with microelectrodes. The relative abundance of anammox bacteria decreased along the flow direction of the reactor. FISH results also indicated that Nitrosomonas-, Nitrosospira-, and Nitrosococcus-like aerobic ammonia-oxidizing bacteria (AOB) and Nitrospira-like nitrite-oxidizing bacteria (NOB) coexisted with anammox bacteria and accounted for 13 to 21% of total bacteria in the biofilms. Microelectrode measurements at three points along the anammox reactor revealed that the NH(4)(+) and NO(2)(-) consumption rates decreased from 0.68 and 0.64 micromol cm(-2) h(-1) at P2 (the second port, 170 mm from the inlet port) to 0.30 and 0.35 micromol cm(-2) h(-1) at P3 (the third port, 205 mm from the inlet port), respectively. No anammox activity was detected at P4 (the fourth port, 240 mm from the inlet port), even though sufficient amounts of NH(4)(+) and NO(2)(-) and a high abundance of anammox bacteria were still present. This result could be explained by the inhibitory effect of organic compounds derived from biomass decay and/or produced by anammox and coexisting bacteria in the upper parts of the biofilm and in the upstream part of the reactor. The anammox activities in the biofilm determined by microelectrodes reflected the overall reactor performance. The several groups of aerobic AOB lineages, Nitrospira-like NOB, and Betaproteobacteria coexisting in the anammox biofilm might consume a trace amount of O(2) or organic compounds, which

  4. Epithermal neutron activation analysis of Cr(VI)-reducer basalt-inhabiting bacteria.

    PubMed

    Tsibakhashvili, Nelly Yasonovna; Frontasyeva, Marina Vladimirovna; Kirkesali, Elena Ivanovna; Aksenova, Nadezhda Gennadievna; Kalabegishvili, Tamaz Levanovich; Murusidze, Ivana Georgievich; Mosulishvili, Ligury Mikhailovich; Holman, Hoi-Ying N

    2006-09-15

    Epithermal neutron activation analysis (ENAA) has been applied to study elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance, demonstrating that the bacteria differ in their rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(V) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 microg/g of dry weight) indicate bacterial adaptation to the environmental conditions typical of the basalts. The concentrations of at least 12-19 different elements were determined in each type of bacteria simultaneously starting with the major to ultratrace elements. The range of concentrations spans over 8 orders of magnitude.

  5. Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria

    NASA Astrophysics Data System (ADS)

    Geraldo, Daniela A.; Arancibia-Miranda, Nicolás; Villagra, Nicolás A.; Mora, Guido C.; Arratia-Perez, Ramiro

    2012-12-01

    The use of molecular conjugates of quantum dots (nanocrystalline fluorophores) for biological purposes have received much attention due to their improved biological activity. However, relatively, little is known about the synthesis and application of aluminosilicate nanotubes decorated with quantum dots (QDs) for imaging and treatment of pathogenic bacteria. This paper describes for a first time, the use of single-walled aluminosilicate nanotubes (SWNT) (imogolite) as a one-dimensional template for the in situ growth of mercaptopropionic acid-capped CdTe QDs. This new nanohybrid hydrogel was synthesized by a simple reaction pathway and their enhanced optical properties were monitored by fluorescence and UV-Vis spectroscopy, confirming that the use of these nanotubes favors the confinement effects of net CdTe QDs. In addition, studies of FT-IR spectroscopy and transmission electron microscopy confirmed the non-covalent functionalization of SWNT. Finally, the antimicrobial activity of SWNT coated with CdTe QDs toward three opportunistic multi-resistant pathogens such as Salmonella typhimurium, Acinetobacter baumannii, and Pseudomonas aeruginosa were tested. Growth inhibition tests were conducted by exposing growing bacteria to CdTe QDs/SWNT hybrid compound showing that the new nano-structured composite is a potential antimicrobial agent for heavy metal-resistant bacteria.

  6. Discovery of a novel class of boron-based antibacterials with activity against gram-negative bacteria.

    PubMed

    Hernandez, Vincent; Crépin, Thibaut; Palencia, Andrés; Cusack, Stephen; Akama, Tsutomu; Baker, Stephen J; Bu, Wei; Feng, Lisa; Freund, Yvonne R; Liu, Liang; Meewan, Maliwan; Mohan, Manisha; Mao, Weimin; Rock, Fernando L; Sexton, Holly; Sheoran, Anita; Zhang, Yanchen; Zhang, Yong-Kang; Zhou, Yasheen; Nieman, James A; Anugula, Mahipal Reddy; Keramane, El Mehdi; Savariraj, Kingsley; Reddy, D Shekhar; Sharma, Rashmi; Subedi, Rajendra; Singh, Rajeshwar; O'Leary, Ann; Simon, Nerissa L; De Marsh, Peter L; Mushtaq, Shazad; Warner, Marina; Livermore, David M; Alley, M R K; Plattner, Jacob J

    2013-03-01

    Gram-negative bacteria cause approximately 70% of the infections in intensive care units. A growing number of bacterial isolates responsible for these infections are resistant to currently available antibiotics and to many in development. Most agents under development are modifications of existing drug classes, which only partially overcome existing resistance mechanisms. Therefore, new classes of Gram-negative antibacterials with truly novel modes of action are needed to circumvent these existing resistance mechanisms. We have previously identified a new a way to inhibit an aminoacyl-tRNA synthetase, leucyl-tRNA synthetase (LeuRS), in fungi via the oxaborole tRNA trapping (OBORT) mechanism. Herein, we show how we have modified the OBORT mechanism using a structure-guided approach to develop a new boron-based antibiotic class, the aminomethylbenzoxaboroles, which inhibit bacterial leucyl-tRNA synthetase and have activity against Gram-negative bacteria by largely evading the main efflux mechanisms in Escherichia coli and Pseudomonas aeruginosa. The lead analogue, AN3365, is active against Gram-negative bacteria, including Enterobacteriaceae bearing NDM-1 and KPC carbapenemases, as well as P. aeruginosa. This novel boron-based antibacterial, AN3365, has good mouse pharmacokinetics and was efficacious against E. coli and P. aeruginosa in murine thigh infection models, which suggest that this novel class of antibacterials has the potential to address this unmet medical need.

  7. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  8. Intestinal bacteria activate estrogenic effect of main constituents puerarin and daidzin of Pueraria thunbergiana.

    PubMed

    Park, Eun-Kyung; Shin, Jieun; Bae, Eun-Ah; Lee, Young-Chul; Kim, Dong-Hyun

    2006-12-01

    To understand the relationship between the metabolites and estrogenic activity of the main isoflavones puerarin and daidzin of the rhizome of Pueraria thunbergiana (PT, family Leguminosae), PT and its isoflavones were transformed by human intestinal bacteria and their estrogenic effects were investigated. All human fecal specimens hydrolyzed puerarin and daidzin to daidzein, but their hydrolyzing activities varied depending on the individuals. All intestinal bacteria isolated from human also hydrolyzed daidzin to daidzein, but a few bacteria transformed puerarin to daidzein. When the estrogenic effect of PT, puerarin and daidzin was compared with those of their metabolites, the metabolites more potently increased proliferation of MCF-7 cells than PT, puerarin and daidzin. The metabolite daidzein also potently increased estrogen-response c-fos mRNA and PR protein expressions. These findings suggest that intestinal bacteria, which can hydrolyze puerarin and/or daidzin, may activate a potent estrogenic activity of PT.

  9. Effects of culture medium compositions on antidiabetic activity and anticancer activity of marine endophitic bacteria isolated from sponge

    NASA Astrophysics Data System (ADS)

    Maryani, Faiza; Mulyani, Hani; Artanti, Nina; Udin, Linar Zalinar; Dewi, Rizna Triana; Hanafi, Muhammad; Murniasih, Tutik

    2017-01-01

    High diversity of Indonesia marine spesies and their ability in producing secondary metabolite that can be used as a drug candidate cause this fascinating topic need to explore. Most of marine organisms explored to discover drug is macroorganism whereas microorganism (such as Indonesia marine bacteria) is very limited. Therefore, in this report, antidiabetic and anticancer activity of Indonesia marine bacteria isolated from Sponges's extract have been studied. Bacteria strain 8.9 which are collection of Research Center for Oseanography, Indonesian Institute of Sciences were from Barrang Lompo Island, Makasar, Indonesia. Bacteria were cultured in different culture medium compositions (such as: different pH, source of glucose and water) for 48 hours on a shaker, then they were extracted with ethyl asetate. Extracts of bacteria were tested by DPPH method (antioxidant activity), alpha glucosidase inhibitory activity method (antidiabetic activity), and Alamar Blue assay (anticancer activity) at 200 ppm. According to result, extract of bacteria in pH 8.0 exhibited the greatest antioxidant (19.27% inhibition), antidiabetic (63.95% inhibition) and anticancer activity of T47D cell line (44.62% cell viability) compared to other extracts. However, effect of addition of sugar sources (such as: glucose, sucrose, and soluble starch) and effect of addition of water/sea water exhibited less influence on their bioactivities. In conclusion, Indonesia marine bacteria isolated from sponge have potential a source of bioactive compound in drug discovery field.

  10. Endolithic Mn-oxidizing bacteria commonly associated with basalts at active Seamounts

    NASA Astrophysics Data System (ADS)

    Templeton, A.; Haucke, L.; Bailey, B.; Staudigel, H.; Tebo, B.

    2005-12-01

    Mn is a trace component of volcanic rocks that is commonly enriched by 1-2 orders of magnitude within the secondary mineral assemblages associated with submarine basalts. Our analysis of relatively young basalts recovered from active seamounts such as Loihi Seamount (Hawaii) and Vailulu'u Seamount (American Samoa) shows that Mn(IV)-oxides readily form during short time-periods (10 years) of low-temperature (~2C) alteration, although the abiotic kinetics of Mn(II)-oxidation are slow at this temperatures and pH. We suggest that the formation of these secondary minerals are likely due to the common presence of heterotrophic bacteria with the functional capability of Mn(II)-oxidation, which accelerate the rates of oxidation several orders of magnitude faster than predicted for water-rock interaction alone. To identify and isolate endolithic Mn(II)-oxidizing microorganisms from naturally-weathered basalt surfaces, samples were recovered from the cold outer-flanks of Loihi and Vailulu'u Seamount via submersible with a sealable biobox. Using a variety of oligotrophic to organic-rich seawater-based media, we have isolated over 40 strains of Mn(II)-oxidizing bacteria. These isolates are primarily alpha- and gamma-Proteobacteria that can grow on low concentrations of simple to complex organics, but not Mn(II) as a sole energy source. None of the isolates, nor their closest relatively, were previously recognized as Mn(II)-oxidizing bacteria. In particular, we have found that there are several strains that are common to the basalts recovered from Loihi & Vailulu'u Seamount, as well as from basalts collected at the East Pacific Rise, particularly Pseudoalteromonas and Sulfitobacter sp. The 16S rRNA gene sequences of the Pseudoalteromonas isolates are also observed in T-RFLP data and 16S clone libraries for microbial mats at Loihi, indicating that these isolates are environmentally-relevant and abundant in-situ. The ubiquitous distribution of these isolates also suggests that

  11. Burkholderia acidipaludis sp. nov., aluminum-tolerant bacteria isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps in South-East Asia.

    PubMed

    Aizawa, Tomoko; Bao Ve, Nguyen; Vijarnsorn, Pisoot; Nakajima, Mutsuyasu; Sunairi, Michio

    2010-09-01

    Two strains of aluminium-tolerant bacteria, SA33(T) and 7A078, were isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps (pH 2-4) in actual acid sulfate soil areas of Vietnam (SA33(T)) and Thailand (7A078). The strains were Gram-negative, aerobic, non-spore-forming rods, 0.6-0.7 mum wide and 1.3-1.7 mum long. These strains showed good growth at pH 3.0-8.0 and 17-37 degrees C. The organisms contained ubiquinone Q-8 as the predominant isoprenoid quinone and C(16 : 0), C(18 : 1) ω 7c and C(17 : 0) cyclo as the major fatty acids. Their fatty acid profiles were similar to those reported for other Burkholderia species. The DNA G+C content of these strains was 64 mol%. On the basis of 16S rRNA gene sequence similarity, the strains were shown to belong to the genus Burkholderia. Although the 16S rRNA gene sequence similarity values calculated for strain SA33(T) to 7A078 and the type strains of Burkholderia kururiensis, B. sacchari and B. tuberum were 100, 97.3, 97.1 and 97.0 %, respectively, strains SA33(T) and 7A078 formed a group that was distinct in the phylogenetic trees; the DNA-DNA relatedness of strain SA33(T) to 7A078 and these three type strains were respectively 90, 47, 46 and 45 %. The results of physiological and biochemical tests, including whole-cell protein pattern analysis, allowed phenotypic differentiation of these strains from described Burkholderia species. Therefore, strains SA33(T) and 7A078 represent a novel species, for which the name Burkholderia acidipaludis sp. nov. is proposed. The type strain is SA33(T) (=NBRC 101816(T) =VTCC-D6-6(T)). Strain 7A078 (=NBRC 103872 =BCC 36999) is a reference strain.

  12. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha.

    PubMed

    Nguyen, Nguyen Khoi; Dong, Ngan Thi Ngoc; Nguyen, Huong Thuy; Le, Phu Hong

    2015-01-01

    Kombucha is sweetened black tea that is fermented by a symbiosis of bacteria and yeast embedded within a cellulose membrane. It is considered a health drink in many countries because it is a rich source of vitamins and may have other health benefits. It has previously been reported that adding lactic acid bacteria (Lactobacillus) strains to kombucha can enhance its biological functions, but in that study only lactic acid bacteria isolated from kefir grains were tested. There are many other natural sources of lactic acid bacteria. In this study, we examined the effects of lactic acid bacteria from various fermented Vietnamese food sources (pickled cabbage, kefir and kombucha) on kombucha's three main biological functions: glucuronic acid production, antibacterial activity and antioxidant ability. Glucuronic acid production was determined by high-performance liquid chromatography-mass spectrometry, antibacterial activity was assessed by the agar-well diffusion method and antioxidant ability was evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. Four strains of food-borne pathogenic bacteria were used in our antibacterial experiments: Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028 and Bacillus cereus ATCC 11778. Our findings showed that lactic acid bacteria strains isolated from kefir are superior to those from other sources for improving glucuronic acid production and enhancing the antibacterial and antioxidant activities of kombucha. This study illustrates the potential of Lactobacillus casei and Lactobacillus plantarum isolated from kefir as biosupplements for enhancing the bioactivities of kombucha.

  13. Mercuric reductase activity and evidence of broad-spectrum mercury resistance among clinical isolates of rapidly growing mycobacteria

    SciTech Connect

    Steingrube, V.A.; Wallace, R.J. Jr.; Steele, L.C.; Pang, Y.J. )

    1991-05-01

    Resistance to mercury was evaluated in 356 rapidly growing mycobacteria belonging to eight taxonomic groups. Resistance to inorganic Hg2+ ranged from 0% among the unnamed third biovariant complex of Mycobacterium fortuitum to 83% among M. chelonae-like organisms. With cell extracts and 203Hg(NO3)2 as the substrate, mercuric reductase (HgRe) activity was demonstrable in six of eight taxonomic groups. HgRe activity was inducible and required NADPH or NADH and a thiol donor for optimai activity. Species with HgRe activity were also resistant to organomercurial compounds, including phenylmercuric acetate. Attempts at intraspecies and intragenus transfer of HgRe activity by conjugation or transformation were unsuccessful. Mercury resistance is common in rapidly growing mycobacteria and appears to function via the same inducible enzyme systems already defined in other bacterial species. This system offers potential as a strain marker for epidemiologic investigations and for studying genetic systems in rapidly growing mycobacteria.

  14. Collective Stop-and-Go Dynamics of Active Bacteria Swarms

    NASA Astrophysics Data System (ADS)

    Svenšek, Daniel; Pleiner, Harald; Brand, Helmut R.

    2013-11-01

    We set up a macroscopic model of bacterial growth and transport based on a dynamic preferred direction—the collective velocity of the bacteria. This collective velocity is subject to the isotropic-nematic transition modeling the density-controlled transformation between immotile and motile bacterial states. The choice of the dynamic preferred direction introduces a distinctive coupling of orientational ordering and transport not encountered otherwise. The approach can also be applied to other systems spontaneously switching between individual (disordered) and collective (ordered) behavior and/or collectively responding to density variations, e.g., bird flocks, fish schools, etc. We observe a characteristic and robust stop-and-go behavior. The inclusion of chirality results in a complex pulsating dynamics.

  15. The antagonism activity of bacteria isolated from potato cultivated soil.

    PubMed

    Mezaache-Aichour, S; Sayah, N; Zerroug, M M; Guechi, A

    2012-01-01

    Soil-borne fungal and bacterial root pathogens can cause serious losses to agricultural crops. Resistant plant varieties are not available for several soil-borne pathogens and chemical control is often insufficiently effective in soil. The enhancement of disease suppressive properties of soils will limit disease development, thus, being of great importance for sustainable agriculture as well as organic farming systems. The aim of this research is to find and identify suppressive soils in the Sétif's areas (potato field located in different regions of Sétif); this allows the selection of the indigenous soil bacteria that are able to develop several mechanisms of action related to biocontrol of phytopathogenic fungi affecting potato crops. Among 50 bacterial strains only 14 showed a wide range of antifungal action against the tested phytopathogenic fungi. With a range of inhibition percent from 0 to 92.30% especially Fusarium oxysporum f. sp. albedinis with 92% inhibition.

  16. [Antibacterial activity of essential oil vapor for histamine-producing bacteria].

    PubMed

    Kamii, Eri; Terada, Gaku; Akiyama, Junki; Isshiki, Kenji

    2011-01-01

    In this study, we evaluated the antibacterial activity of essential oil vapors against histamine-producing bacteria Morganella morganii NBRC3848 and Raultella planticola NBRC3317. We measured the minimum inhibitory dose (MID) of 14 essential oils towards these two strains. Allyl isothiocyanate (AIT) and salicylaldehyde (SA) vapors showed higher antibacterial activity than the other 12 essential oil vapors. Both AIT and SA vapors suppressed growth of total aerobic bacteria and histamine-producing bacteria in bigeye tuna and mackerel meat during storage at 12°C. These vapors also inhibited histamine accumulation in bigeye tuna meat and mackerel meat. Thus, application of AIT and SA vapors is effective for preventing increase of histamine-producing bacteria and histamine formation in fish meat.

  17. Mutations and Misconceptions: The Isolation and Study of Mutant Bacteria.

    ERIC Educational Resources Information Center

    Corner, Thomas R.

    1992-01-01

    Describes simple, inexpensive activities for teaching students about mutants and mutations in bacteria. Explains how to isolate bacteria from soil and leaves and how to grow bacteria on agar or in broth. Describes how to construct a gradient plate for finding the minimum inhibitory concentration of a substance and how to use this set up to find…

  18. Gram-staining characterisation of activated sludge filamentous bacteria by automated colour analysis.

    PubMed

    Pandolfi, Denis; Pons, Marie-Noëlle

    2004-12-01

    An automated image analysis method has been developed for the monitoring of the Gram-staining characteristics of filamentous bacteria in activated sludge. The binary method of pixel classification agreed with manual estimation (level of correlation of 0.9 for Gram-positive bacteria). Its robustness has been assessed by repeatability tests. Population shifts in terms of Gram-staining characteristics have been monitored in laboratory-scale experiments with two feeding schedules using this technique.

  19. Isolation and Analysis of Novel Electrochemically Active Bacteria for Enhanced Power Generation in Microbial Fuel Cells

    DTIC Science & Technology

    2009-03-07

    ISOLATION AND ANALYSIS OF NOVEL ELECTROCHEMICALLY ACTIVE BACTERIA FOR ENHANCED POWER GENERATION IN MICROBIAL FUEL CELLS B.E. Logan, J.M. Regan...new exoelectrogenic bacteria during this project. We isolated Rhodopseudomonas palustris DX-1, and demonstrated for the first time that a pure culture... isolated Ochrobactrum anthropi YZ-1, which had the remarkable characteristic that it was unable to respire using hydrous Fe(lll) oxide but produced

  20. Characterization of anti-competitor activities produced by oral bacteria.

    PubMed

    Qi, Fengxia; Kreth, Jens

    2010-01-01

    Most bacteria in nature exist in multispecies communities known as biofilms. In the natural habitat where resources (nutrient, space, etc.) are usually limited, individual species must compete or collaborate with other neighboring species in order to perpetuate in the multispecies community. The human oral cavity is colonized by >700 microbial species known as the indigenous microflora. This indigenous flora normally maintains an ecological balance through antagonistic as well as mutualistic interspecies interactions. However, environmental perturbation may disrupt this balance, leading to overgrowth of pathogenic species, which could in turn initiate diseases such as dental caries (tooth decay) and periodontitis (gum disease). Understanding the mechanisms of diversity maintenance may help development of novel approaches to manage these "polymicrobial diseases." In this chapter, we will focus on a well-characterized form of biochemical warfare: bacteriocins produced by Streptococcus mutans, a primary dental caries pathogen, and H(2)O(2) produced by Streptococcus sanguinis, an oral commensal. We will describe detailed methodologies on the competition assay, isolation, purification, and characterization of bacteriocins.

  1. Rapid direct methods for enumeration of specific, active bacteria in water and biofilms

    NASA Technical Reports Server (NTRS)

    McFeters, G. A.; Pyle, B. H.; Lisle, J. T.; Broadaway, S. C.

    1999-01-01

    Conventional methods for detecting indicator and pathogenic bacteria in water may underestimate the actual population due to sublethal environmental injury, inability of the target bacteria to take up nutrients and other physiological factors which reduce bacterial culturability. Rapid and direct methods are needed to more accurately detect and enumerate active bacteria. Such a methodological advance would provide greater sensitivity in assessing the microbiological safety of water and food. The principle goal of this presentation is to describe novel approaches we have formulated for the rapid and simultaneous detection of bacteria plus the determination of their physiological activity in water and other environmental samples. The present version of our method involves the concentration of organisms by membrane filtration or immunomagnetic separation and combines an intracellular fluorochrome (CTC) for assessment of respiratory activity plus fluorescent-labelled antibody detection of specific bacteria. This approach has also been successfully used to demonstrate spatial and temporal heterogeneities of physiological activities in biofilms when coupled with cryosectioning. Candidate physiological stains include those capable of determining respiratory activity, membrane potential, membrane integrity, growth rate and cellular enzymatic activities. Results obtained thus far indicate that immunomagnetic separation can provide a high degree of sensitivity in the recovery of seeded target bacteria (Escherichia coli O157:H7) in water and hamburger. The captured and stained target bacteria are then enumerated by either conventional fluorescence microscopy or ChemScan(R), a new instrument that is very sensitive and rapid. The ChemScan(R) laser scanning instrument (Chemunex, Paris, France) provides the detection of individual fluorescently labelled bacterial cells using three emission channels in less than 5 min. A high degree of correlation has been demonstrated between

  2. Surprising Alteration of Antibacterial Activity of 5″-Modified Neomycin against Resistant Bacteria

    PubMed Central

    Zhang, Jianjun; Chiang, Fang-I; Wu, Long; Czyryca, Przemyslaw Greg; Li, Ding; Chang, Cheng-Wei Tom

    2009-01-01

    A facile synthetic protocol for the production of neomycin B derivatives with various modifications at the 5″ position has been developed. Structural activity relationship (SAR) against aminoglycoside resistant bacteria equipped with various aminoglycoside-modifying enzymes (AME's) was investigated. Enzymatic and molecular modeling studies reveal that the superb substrate promiscuity of AME's allows the resistant bacteria to cope with diverse structural modifications despite the observation that several derivatives show enhanced antibacterial activity than the parent neomycin. Surprisingly, when testing synthetic neomycin derivatives against other human pathogens, two leads exhibit prominent activity against both Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) that are known to exert high level of resistance against clinically used aminoglycosides. These findings can be extremely useful in developing new aminoglycoside antibiotics against resistant bacteria. Our result also suggests that new biological and antimicrobial activities can be obtained by chemical modifications of old drugs. PMID:19012394

  3. Cattle tick-associated bacteria exert anti-biofilm and anti-Tritrichomonas foetus activities.

    PubMed

    Zimmer, K R; Seixas, A; Conceição, J M; Zvoboda, D A; Barros, M P; Tasca, T; Macedo, A J; Termignoni, C

    2013-05-31

    Research on microbiota in cattle tick and the evaluation of its activity against other microorganisms can contribute to identify new molecules potentially useful to control infections caused by bacteria and protozoa. Biofilms pose increasing problems worldwide, mainly due to their resistance to antimicrobial therapies and host immune response. In this study we investigate the ability Rhipicephalus (Boophilus) microplus-associated bacteria may exhibit to produce anti-biofilm and trichomonicidal compounds. Gut, ovary, salivary glands, and Gené organ were collected from engorged R. microplus female. Homogenates of each tissue were inoculated onto 15 distinct culture media. Anti-biofilm and trichomonicidal activities were analyzed by culturing each bacterium isolated in a liquid medium. Results showed that R. microplus cattle tick microflora varies for different tissues. Bacteria belonging to different genera (Aeromonas, Bacillus, Brevibacillus, Castelaniella, Comamonas, Kocuria, and Microbacterium) were identified. Interestingly, all bacterial species found displayed pronounced activity against Staphylococcus epidermidis and Pseudomonas aeruginosa biofilms, and also against the cattle pathogen Tritrichomonas foetus, confirming the hypothesis that cattle tick could be a source of bacteria active against pathogens. This is the first study showing that bacteria isolated from a tick exert anti-biofilm and trichomonicidal activities.

  4. Chemical composition and antioxidant activities of ansu apricot oil growing wild in north Xinjiang, China.

    PubMed

    Tian, Hong-Lei; Zhan, Ping

    2011-07-01

    Ansu apricots growing wild in north Xinjiang are recognised as being one of the major wild-plant resources in China. In order to improve the level of comprehensive utilisation and the number of cultivated apricot varieties, the chemical composition of ansu apricot oil was analysed by capillary GC-MS and elucidated based on the standard mass spectral data; the antioxidant activities were also evaluated. Seven components of ansu apricots oil were identified, and the total unsaturated fatty acid (FA) (TUFA) and total essential FA (TEFA) contents of the ansu apricot oil were found to be 90.35 g/100 g and 48.93 g/100 g, respectively. The scavenging capacity of the ansu apricots oil in the superoxide anion radical system and the hydroxyl radical system performed better than in the DPPH radical system. The IC₅₀ values of the ansu apricot oil for the superoxide anion radical system and the hydroxyl radical system were 0.15 mg mL⁻¹ and 0.30 mg mL⁻¹, respectively: stronger than that of the control (ascorbic acid). In the DPPH system, the IC₅₀ value of the ansu apricot oil was 0.50 mg mL⁻¹, and the IC₅₀ value of ascorbic acid was 0.30 mg mL⁻¹, but within the selected dosage, the highest scavenging capacity of ansu apricot oil was higher than the control. The results obtained in this study clearly suggest that ansu apricot oil is a natural source of antioxidants and could serve as a functional food ingredient with potential application in food products and thus provide related health benefits.

  5. Viewing marine bacteria, their activity and response to environmental drivers from orbit: satellite remote sensing of bacteria.

    PubMed

    Grimes, D Jay; Ford, Tim E; Colwell, Rita R; Baker-Austin, Craig; Martinez-Urtaza, Jaime; Subramaniam, Ajit; Capone, Douglas G

    2014-04-01

    Satellite-based remote sensing of marine microorganisms has become a useful tool in predicting human health risks associated with these microscopic targets. Early applications were focused on harmful algal blooms, but more recently methods have been developed to interrogate the ocean for bacteria. As satellite-based sensors have become more sophisticated and our ability to interpret information derived from these sensors has advanced, we have progressed from merely making fascinating pictures from space to developing process models with predictive capability. Our understanding of the role of marine microorganisms in primary production and global elemental cycles has been vastly improved as has our ability to use the combination of remote sensing data and models to provide early warning systems for disease outbreaks. This manuscript will discuss current approaches to monitoring cyanobacteria and vibrios, their activity and response to environmental drivers, and will also suggest future directions.

  6. Methanobactin: a copper binding compound having antibiotic and antioxidant activity isolated from methanotrophic bacteria

    DOEpatents

    DiSpirito, Alan A.; Zahn, James A.; Graham, David W.; Kim, Hyung J.; Alterman, Michail; Larive, Cynthia

    2007-04-03

    A means and method for treating bacterial infection, providing antioxidant activity, and chelating copper using a copper binding compound produced by methanotrophic bacteria is described. The compound, known as methanobactin, is the first of a new class of antibiotics having gram-positive activity. Methanobactin has been sequenced, and its structural formula determined.

  7. Antibacterial activity of plant extracts from Brazil against fish pathogenic bacteria

    PubMed Central

    Castro, S.B.R.; Leal, C.A.G.; Freire, F.R.; Carvalho, D.A.; Oliveira, D.F.; Figueiredo, H.C.P.

    2008-01-01

    The aim of this work was to evaluate the antibacterial activity of Brazilian plants extracts against fish pathogenic bacteria. Forty six methanolic extracts were screened to identify their antibacterial properties against Streptococcus agalactiae, Flavobacterium columnare and Aeromonas hydrophila. Thirty one extracts showed antibacterial activity. PMID:24031303

  8. [Characteristics of microbial community structure during isolation of electrical active bacteria].

    PubMed

    Wang, Min; Zhao, Yang- Guo; Lu, Shan-Shan

    2014-10-01

    To investigate the effect of selective culturing on microorganisms and functional role of electrical active bacteria in biofilm, some exoelectrogens were isolated from microbial fuel cell (MFC) anodic biofilm using Hungate roll-tube technique with iron oxide as indicator. At the same time, the dynamics of the microbial community structure was monitored during the pure culture isolation. The results show that maximum voltages of MFCs feeding with lactic acid, acetic acid and steroid wastewater are 0.57, 0.60 and 0.40 V respectively. The dominant bacteria isolated from seed sludge and anodic films feeding with acetate and lactate belong to phylum Proteobacteria; while steroid wastewater contains relative high diversity of bacteria, i. e. Proteobacteria, Firmicutes and Bacteroidetes. After enriching and culturing, two bacteria were consequently obtained, which shared the highest similarity with Enterobacter ludwigii and Citrobacter freundii respectively. When inoculated in MFC with lactic acid as the substrate, they produced maximum voltage of 0.10 and 0.17 V individually. This study shows that electrical active bacteria can be isolated from the MFC anodic biofilm using anaerobic gradient dilution culture techniques with iron oxide as indicator. Microbial community structure presents markedly shifting during the bacteria isolation owing to its selectivity.

  9. Bactericidal Activity and Mechanism of Photoirradiated Polyphenols against Gram-Positive and -Negative Bacteria.

    PubMed

    Nakamura, Keisuke; Ishiyama, Kirika; Sheng, Hong; Ikai, Hiroyo; Kanno, Taro; Niwano, Yoshimi

    2015-09-09

    The bactericidal effect of various types of photoirradiated polyphenols against Gram-positive and -negative bacteria was evaluated in relation to the mode of action. Gram-positive bacteria (Enterococcus faecalis, Staphylococcus aureus, and Streptococcus mutans) and Gram-negative bacteria (Aggregatibacter actinomycetemcomitans, Escherichia coli, and Pseudomonas aeruginosa) suspended in a 1 mg/mL polyphenol aqueous solution (caffeic acid, gallic acid, chlorogenic acid, epigallocatechin, epigallocatechin gallate, and proanthocyanidin) were exposed to LED light (wavelength, 400 nm; irradiance, 260 mW/cm(2)) for 5 or 10 min. Caffeic acid and chlorogenic acid exerted the highest bactericidal activity followed by gallic acid and proanthocyanidin against both Gram-positive and -negative bacteria. It was also demonstrated that the disinfection treatment induced oxidative damage of bacterial DNA, which suggests that polyphenols are incorporated into bacterial cells. The present study suggests that blue light irradiation of polyphenols could be a novel disinfection treatment.

  10. Bacteriocins active against multi-resistant gram negative bacteria implicated in nosocomial infections.

    PubMed

    Ghodhbane, Hanen; Elaidi, Sabrine; Sabatier, Jean-Marc; Achour, Sami; Benhmida, Jeannette; Regaya, Imed

    2015-01-01

    Multiresistant Gram-negative bacteria are the prime mover of nosocomial infections. Some are naturally resistant to antibiotics, their genetic makes them insensitive to certain families of antibiotics and they transmit these resistors to their offspring. Moreover, when bacteria are subjected to antibiotics, they eventually develop resistance against drugs to which they were previously sensitive. In recent years, many bacteriocins active against gram-negative bacteria have been identified proving their efficacy in treating infections. While further investigation remains necessary before the possibilities for bacteriocins in clinical practice can be described more fully, this review provides an overview of bacteriocins acting on the most common infectious gram negative bacteria (Klebsiella, Acinetobacter, Pseudomonas aeruginosa and E. coli).

  11. Antimicrobial Activities of Bacteria Associated with the Brown Alga Padina pavonica

    PubMed Central

    Ismail, Amel; Ktari, Leila; Ahmed, Mehboob; Bolhuis, Henk; Boudabbous, Abdellatif; Stal, Lucas J.; Cretoiu, Mariana Silvia; El Bour, Monia

    2016-01-01

    Macroalgae belonging to the genus Padina are known to produce antibacterial compounds that may inhibit growth of human- and animal pathogens. Hitherto, it was unclear whether this antibacterial activity is produced by the macroalga itself or by secondary metabolite producing epiphytic bacteria. Here we report antibacterial activities of epiphytic bacteria isolated from Padina pavonica (Peacocks tail) located on northern coast of Tunisia. Eighteen isolates were obtained in pure culture and tested for antimicrobial activities. Based on the 16S rRNA gene sequences the isolates were closely related to Proteobacteria (12 isolates; 2 Alpha- and 10 Gammaproteobacteria), Firmicutes (4 isolates) and Actinobacteria (2 isolates). The antimicrobial activity was assessed as inhibition of growth of 12 species of pathogenic bacteria (Aeromonas salmonicida, A. hydrophila, Enterobacter xiangfangensis, Enterococcus faecium, Escherichia coli, Micrococcus sp., Salmonella typhimurium, Staphylococcus aureus, Streptococcus sp., Vibrio alginoliticus, V. proteolyticus, V. vulnificus) and one pathogenic yeast (Candida albicans). Among the Firmicutes, isolate P8, which is closely related to Bacillus pumilus, displayed the largest spectrum of growth inhibition of the pathogenic bacteria tested. The results emphasize the potential use of P. pavonica associated antagonistic bacteria as producers of novel antibacterial compounds. PMID:27462308

  12. Biomass aggregation influences NaN3 short-term effects on anammox bacteria activity.

    PubMed

    Pedrouso, A; Val Del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A

    2017-03-01

    The main bottleneck to maintain the long-term stability of the partial nitritation-anammox processes, especially those operated at low temperatures and nitrogen concentrations, is the undesirable development of nitrite oxidizing bacteria (NOB). When this occurs, the punctual addition of compounds with the capacity to specifically inhibit NOB without affecting the process efficiency might be of interest. Sodium azide (NaN3) is an already known NOB inhibitor which at low concentrations does not significantly affect the ammonia oxidizing bacteria (AOB) activity. However, studies about its influence on anammox bacteria are unavailable. For this reason, the objective of the present study was to evaluate the effect of NaN3 on the anammox activity. Three different types of anammox biomass were used: granular biomass comprising AOB and anammox bacteria (G1), anammox enriched granules (G2) and previous anammox granules disaggregated (F1). No inhibitory effect of NaN3 was measured on G1 sludge. However, the anammox activity decreased in the case of G2 and F1. Granular biomass activity was less affected (IC50 90 mg/L, G2) than flocculent one (IC50 5 mg/L, F1). Summing up, not only does the granular structure protect the anammox bacteria from the NaN3 inhibitory effect, but also the AOB act as a barrier decreasing the inhibition.

  13. Potential of predominant activated sludge bacteria as recipients in conjugative plasmid transfer.

    PubMed

    Inoue, Daisuke; Sei, Kazunari; Soda, Satoshi; Ike, Michihiko; Fujita, Masanori

    2005-12-01

    We investigated the possibility of conjugative plasmid transfer to the predominant bacteria in activated sludge and the factors influencing the transfer frequency in the activated sludge process. We performed conjugative transfers of a self-transmissible, broad-host-range plasmid RP4 from Escherichia coli C600 to activated sludge bacteria by broth mating. Most of the activated sludge bacteria tested could acquire plasmid RP4, although the transfer frequencies varied from 8.8 x 10(-7) to 1.3 x 10(-2) transconjugants per recipient. The transfer frequencies in several strains were similar to, or higher than, that in intraspecific transfer to E. coli HB101. Matings under various environmental conditions showed that factors relevant to physiological activity, such as temperature and nutrient conditions, seemed to affect the transfer frequency. In addition, conjugative transfer was detected even in filtered raw and treated wastewaters. Thus, the predominant activated sludge bacteria seem to have sufficient potential as recipients in conjugative plasmid transfer under the conditions likely to occur in the activated sludge process. Transfer frequency was reduced by agitation in the presence of suspended solid. This may suggest that conjugative plasmid transfer is physically inhibited in aeration tanks.

  14. Function and the biosynthesis of unusual corrinoids by a novel activation mechanism of aromatic compounds in anaerobic bacteria

    NASA Astrophysics Data System (ADS)

    Stupperich, E.; Eisinger, H. J.

    A corrinoid screening of several phylogenetically diverse ``archaebacteria'' revealed vitamin B12-like corrinoids. This indicates an optimized structure and function relationship of the corrinoids under different bacterial growth conditions during the early evolution of live. Some of these corrinoids have been substituted by modified corrinoids in growing cells without affecting the generation times of the bacteria. In this respect, the discovery of the unique para-cresolyl cobamide from the eubacterium Sporomusa ovata attracted attention. The unusual structure of this corrinoid was achieved by a biosynthesis proceeding via a novel and stereospecific activation mechanism of aromatic compounds. The corrinoid was detected both in the membrane fraction and in the soluble fraction of the cells. Methyltransfer is one of the probable functions of the para-cresolyl cobamide in Sporomusa.

  15. Antimicrobial activity of selected essential oils against cariogenic bacteria.

    PubMed

    Aguiar, G P; Carvalho, C E; Dias, H J; Reis, E B; Martins, M H G; Wakabayashi, K A L; Groppo, M; Martins, C H G; Cunha, W R; Crotti, A E M

    2013-01-01

    The antibacterial activity of nine selected essential oils (EOs) against a panel of oral pathogens was investigated in terms of their minimum inhibitory concentrations (MICs) by using the broth microdilution method. Most of the EOs displayed weak activity or were inactive against the selected oral pathogens, with MIC values ranging from 500 to 4000 μg/mL. However, the EO obtained from the leaves of Bidens sulphurea (Asteraceae) was found to display moderate activity against Streptococcus mutans (MIC = 250 μg/mL) and significant activity against Streptococcus mitis (MIC = 31.25 μg/mL). Germacrene D (38.3%), trans-caryophyllene (18.0%), β-elemene (13.9%) and bicyclogermacrene (13.1%) were identified as the main chemical components of this oil. 2,6-Di-tert-butyl-4-methylphenol, previously described as the major constituent in the EO from the flowers of B. sulphurea, was not detected in this study.

  16. Views of Growing Methane Emissions near Oil and Natural Gas Activity: Satellite, Aircraft, and Ground

    NASA Astrophysics Data System (ADS)

    Kollonige, D. E.; Thompson, A. M.; Diskin, G. S.; Hannigan, J. W.; Nussbaumer, E.

    2015-12-01

    To better understand the discrepancies between current top-down and bottom-up estimates, additional methane (CH4) measurements are necessary for regions surrounding growing oil and natural gas (ONG) development. We have evaluated satellite measurements of CH4 in US regions with ONG operations for their application as "top-down" constraints (part of the NASA Air Quality Applied Sciences Team (AQAST) project). For validation of the satellite instruments' sensitivities to emitted gases, we focus on regions where the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaign deployed ground and aircraft measurements in Maryland (2011), California and Texas (2013), and Colorado (2014). The largest CH4 signals were observed in the Greater Green River and Powder River Basins using Tropospheric Emission Spectrometer (TES) Representative Tropospheric Volume Mixing Ratio (RTVMR) measurements. A long-term comparison between a ground remote-sensing Fourier Transform Spectrometer (FTS) at Boulder and TES for 2010-2013 shows good correlation and differences ranging 2.5-5% for their yearly distribution of total column CH4. To determine any correlation between lower/mid-tropospheric CH4 (where a thermal IR sensor, such as TES, is most sensitive) and near-surface/boundary CH4 (where sources emit), we analyze the variability of DISCOVER-AQ aircraft profiles using principal component analysis and assess the correlation between near-surface (0-2 km) and mid-tropospheric (>2 km) CH4 concentrations. Using these relationships, we estimate near-surface CH4 using mid-tropospheric satellite measurements based on the partial column amounts within vertical layers with a linear regression. From this analysis, we will demonstrate whether the uncertainties of satellite-estimated near-surface CH4 are comparable to observed variability near ONG activity. These results will assist validation of satellite instrument

  17. Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections.

    PubMed

    Caetano da Silva, Sandro Donizete; Mendes de Souza, Maria Gorete; Oliveira Cardoso, Miguel Jorge; da Silva Moraes, Thais; Ambrósio, Sérgio Ricardo; Sola Veneziani, Rodrigo Cássio; Martins, Carlos Henrique G

    2014-12-01

    Endodontic infections have a polymicrobial nature, but anaerobic bacteria prevail among the infectious microbes. Considering that it is easy to eliminate planktonic bacteria, biofilm-forming bacteria still challenge clinicians during the fight against endodontic diseases. The chemical constituents of the oleoresin of Pinus elliottii, a plant belonging to the family Pinaceae, stand out in the search for biologically active compounds based on natural products with potential application in the treatment of endodontic infections. Indeed, plant oleoresins are an abundant natural source of diterpenes that display significant and well-defined biological activities as well as potential antimicrobial action. In this context, this study aimed to (1) evaluate the in vitro antibacterial activity of the oleoresin, fractions, and subfractions of P. elliottii as well as the action of dehydroabietic acid against 11 anaerobic bacteria that cause endodontic infection in both their planktonic and biofilm forms and (2) assess the in vitro antibiofilm activity of dehydroabietic acid against the same group of bacteria. The broth microdilution technique helped to determine the minimum inhibitory concentration (MIC) of the oleoresin and fractions. This same technique aided determination of the MIC values of nine subfractions of Fraction 1, the most active fraction. The MIC, minimum bactericidal concentration, and antibiofilm activity of dehydroabietic acid against the tested anaerobic bacteria were also examined. The oleoresin and fractions, especially fraction PE1, afforded promising MIC values, which ranged from 0.4 to 50 μg/mL. Concerning the nine evaluated subfractions, PE1.3 and PE1.4 furnished the most noteworthy MIC values, between 6.2 and 100 μg/mL. Dehydroabietic acid displayed antibacterial activity, with MIC values lying from 6.2 to 50 μg/mL, as well as bactericidal effect for all the investigated bacteria, except for Prevotella nigrescens. Assessment of the antibiofilm

  18. [Bactericidal activity of colloidal silver against grampositive and gramnegative bacteria].

    PubMed

    Afonina, I A; Kraeva, L A; Tseneva, G Ia

    2010-01-01

    It was shown that colloidal silver solution prepared in cooperation with the A. F. Ioffe Physical Technical Institute of the Russian Academy of Sciences, had significant bactericidal activity. Stable bactericidal effect on gramnegative microorganisms was observed after their 2-hour exposition in the solution of colloidal silver at a concentration of 10 ppm. Grampositive capsule-forming microorganisms were less susceptible to the colloidal silver solution: their death was observed after the 4-hour exposition in the solution.

  19. Elucidation of Small RNAs that Activate Transcription in Bacteria

    DTIC Science & Technology

    2012-03-01

    Synthesis of the target and bait vectors .......................................................................... 16 3.2 Expression of pTRG-var and pBT...coat protein and the MS2 RNA hairpin. The bait plasmid (pBT) was modified by inserting the coding sequence for a MS2 coat protein dimer (Genescript...Figure 1. Screening for RNA transcriptional activation 6 Distribution A: Approved for public release; distribution unlimited. A) The bait plasmid

  20. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol.

    PubMed

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.

  1. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol

    PubMed Central

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds. PMID:27294124

  2. Innate Immune Signaling Activated by MDR Bacteria in the Airway.

    PubMed

    Parker, Dane; Ahn, Danielle; Cohen, Taylor; Prince, Alice

    2016-01-01

    Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation.

  3. Innate Immune Signaling Activated by MDR Bacteria in the Airway

    PubMed Central

    Parker, Dane; Ahn, Danielle; Cohen, Taylor; Prince, Alice

    2015-01-01

    Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation. PMID:26582515

  4. Effect of medium, pH, and inoculum size on activity of ceftizoxime and Sch-34343 against anaerobic bacteria.

    PubMed Central

    Borobio, M V; Pascual, A; Dominguez, M C; Perea, E J

    1986-01-01

    The effect of two media, three pH values, and three inoculum densities on the activity of ceftizoxime and Sch-34343 against anaerobic bacteria was evaluated. The activities of both antimicrobial agents were affected by medium composition, especially against Bacteroides fragilis. Changes in pH and inoculum size affected only the activity of ceftizoxime against anaerobic bacteria. PMID:3466569

  5. Clouds as habitat and seeders of active bacteria

    NASA Astrophysics Data System (ADS)

    Sattler, Birgit; Puxbaum, Hans; Limbeck, Andreas; Psenner, Roland

    2002-02-01

    Transformation of organic and inorganic material in the atmosphere has been presumed to be caused by physical and chemical processes in the gas phase and in aerosol particles. Here we show that bacterial metabolism can play a measurable role in the production and transformation of organic carbon in cloud droplets collected at high altitudes, even at temperatures at or well below 0 degree(s)C. Although bacterial abundance and biomass in cloud water is low, compared to other oligotrophic aquatic environments, growth and carbon production rates per cell are approximately as high as in aquatic ecosystems. We hypothesize that microorganisms could play a crucial role in the transformation of airborne organic matter and the chemical composition of snow and rain. It has been recognized, the microbes can act as cloud condensation nuclei but we consider the impact on the global climate as low. With an increasing trend in cloudiness cloud systems can be seen as an ecosystem for active microbes with a seeding effort both for aquatic and terrestrial realms. Furthermore, air currents can distribute microbes over long distances to remote areas e.g. like ice caps and snow fields.

  6. Antibacterial activity of crotalid venoms against oral snake flora and other clinical bacteria.

    PubMed

    Talan, D A; Citron, D M; Overturf, G D; Singer, B; Froman, P; Goldstein, E J

    1991-07-01

    Despite heavy oral and fang contamination of crotalid species with a wide variety of potentially pathogenic bacteria, crotalid envenomation is associated with a low incidence of bacterial infection. Minimal inhibitory and bactericidal concentrations of venoms from three crotalid species were determined against six aerobic and eight anaerobic reference and oral crotalid microorganisms. All anaerobic isolates were resistant to greater than 20,480 micrograms/ml, whereas variable activity (range, 5-20,480 micrograms/ml) was observed for aerobic strains. Further studies against other aerobic clinical isolates demonstrated that venom had the greatest activity (MIC, less than or equal to 80 micrograms/ml) against staphylococci, Pseudomonas aeruginosa, and Enterobacter, Citrobacter, Proteus, and Morganella species. Inhibitory activity was lost with prolonged incubation for many gram-negative species. Crotalid venoms are broadly active against aerobic gram-negative and -positive bacteria. This activity may play a role in the low incidence of infection after envenomation injuries.

  7. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria

    PubMed Central

    2013-01-01

    Background In response to the propagation of bacteria resistant to many antibiotics also called multi-drug resistant (MDR) bacteria, the discovery of new and more efficient antibacterial agents is primordial. The present study was aimed at evaluating the antibacterial activities of seven Cameroonian dietary plants (Adansonia digitata, Aframomum alboviolaceum, Aframomum polyanthum, Anonidium. mannii, Hibiscus sabdarifa, Ocimum gratissimum and Tamarindus indica). Methods The phytochemical screening of the studied extracts was performed using described methods whilst the liquid broth micro dilution was used for all antimicrobial assays against 27 Gram-negative bacteria. Results The results of the phytochemical tests indicate that all tested extracts contained phenols and triterpenes, other classes of chemicals being selectively present. The studied extracts displayed various degrees of antibacterial activities. The extracts of A. digitata, H. sabdarifa, A. polyanthum, A. alboviolaceum and O. gratissimum showed the best spectra of activity, their inhibitory effects being recorded against 81.48%, 66.66%, 62.96%, 55.55%, and 55.55% of the 27 tested bacteria respectively. The extract of A. polyanthum was very active against E. aerogenes EA294 with the lowest recorded minimal inhibitory concentration (MIC) of 32 μg/ml. Conclusion The results of the present work provide useful baseline information for the potential use of the studied edible plants in the fight against both sensitive and MDR phenotypes. PMID:23837916

  8. Heat stable antimicrobial activity of Allium ascalonicum against bacteria and fungi.

    PubMed

    Amin, M; Kapadnis, B P

    2005-08-01

    To study antimicrobial activity of shallot in comparison with that of garlic and onion against 23 strains of fungi and bacteria, water extracts of garlic, shallot and onion bulbs were prepared. Each extract was studied in different forms for their antimicrobial activity viz., fresh extract, dry extract and autoclaved extract. Minimal inhibitory concentration and minimal lethal concentrations of these extracts were determined against all organisms by broth dilution susceptibility test. Fresh extract of garlic showed greater antimicrobial activity as compared to similar extracts of onion and shallot. However, dried and autoclaved extracts of shallot showed more activity than similar extracts of onion and garlic. Fungi were more sensitive to shallot extract than bacteria. Amongst bacteria, B. cereus was most sensitive (MIC=5 mg ml(-1)). The lowest minimum bactericidal concentration of shallot extract amongst bacteria tested was 5 mg ml(-1) for B. cereus. Amongst fungi, Aureobasidium pullulans and Microsporum gypseum were most sensitive (MIC= 0.15 mg ml(-1)). The lowest minimum lethal concentration was 2.5 mg ml(-1) for Microsporum gypseum and Trichophyton mentagrophytes. It was therefore, expected that the antimicrobial principle of shallot was different than the antimicrobial compounds of onion and garlic. In addition, the antimicrobial component of the shallot extract was stable at 121 degrees C.

  9. Combining phosphate and bacteria removal on chemically active filter membranes allows prolonged storage of drinking water.

    PubMed

    Rotzetter, A C C; Kellenberger, C R; Schumacher, C M; Mora, C; Grass, R N; Loepfe, M; Luechinger, N A; Stark, W J

    2013-11-13

    A chemically active filtration membrane with incorporated lanthanum oxide nanoparticles enables the removal of bacteria and phosphate at the same time and thus provides a simple device for preparation of drinking water and subsequent safe storage without using any kind of disinfectants.

  10. Ice-active characteristics of soil bacteria selected by ice-affinity.

    PubMed

    Wilson, Sandra L; Kelley, Deborah L; Walker, Virginia K

    2006-10-01

    As an initial screen for microorganisms that produce ice-active macromolecules, ice-affinity was used to select microorganisms from soil consortia originating from three temperate regions. Once selected and subsequently purified to single colonies, these microbes were putatively identified by 16S ribosomal RNA sequencing and assayed for various ice-active properties. Ice-affinity selection appeared to select for bacteria with ice-associating activities: inhibition of ice recrystallization; ice nucleation; ice shaping. Although none of these activities were observed in Paenibacillus amyloliticus C8, others such as Chryseobacterium sp. GL8, demonstrated both ice recrystallization inhibition and ice-shaping activities. Pseudomonas borealis DL7 was classified as a type I ice nucleator, Flavobacterium sp. GL7, was identified as a type III ice nucleator and Acinetobacter radioresistens DL5 demonstrated ice recrystallization inhibition. In all, 19 different culturable bacteria were selected from the thousands of microbes in late-summer collected soil samples. Many of the selected microbes have been previously reported in glacial ice cores or polar sea ice, and of five isolates that were further characterized, four showed ice-associating activities. These results indicate the significant potential of ice-affinity selection even with temperate climate soils, suggesting that sampling in more extreme and remote areas is not required for the isolation of ice-active bacteria.

  11. The Antibacterial Activity of Chitosan Products Blended with Monoterpenes and Their Biofilms against Plant Pathogenic Bacteria.

    PubMed

    Badawy, Mohamed E I; Rabea, Entsar I; Taktak, Nehad E M; El-Nouby, Mahmoud A M

    2016-01-01

    This study focuses on the biological activities of eleven chitosan products with a viscosity-average molecular weight ranging from 22 to 846 kDa in combination with the most active monoterpenes (geraniol and thymol), out of 10 tested, against four plant pathogenic bacteria, Agrobacterium tumefaciens, Erwinia carotovora, Corynebacterium fascians, and Pseudomonas solanacearum. The antibacterial activity was evaluated in vitro by the agar dilution technique as a minimum inhibitory concentration (MIC) that was found to be dependent on the type of the microorganism tested. The most active product of chitosan was used for biofilm production enriched with geraniol and thymol (0.1 and 0.5%) and the films were also evaluated against the tested bacteria. The biological bioactivities summarized here may provide novel insights into the functions of chitosan and some monoterpenes and potentially allow their use for food protection from microbial attack.

  12. The Antibacterial Activity of Chitosan Products Blended with Monoterpenes and Their Biofilms against Plant Pathogenic Bacteria

    PubMed Central

    Badawy, Mohamed E. I.; Rabea, Entsar I.; Taktak, Nehad E. M.; El-Nouby, Mahmoud A. M.

    2016-01-01

    This study focuses on the biological activities of eleven chitosan products with a viscosity-average molecular weight ranging from 22 to 846 kDa in combination with the most active monoterpenes (geraniol and thymol), out of 10 tested, against four plant pathogenic bacteria, Agrobacterium tumefaciens, Erwinia carotovora, Corynebacterium fascians, and Pseudomonas solanacearum. The antibacterial activity was evaluated in vitro by the agar dilution technique as a minimum inhibitory concentration (MIC) that was found to be dependent on the type of the microorganism tested. The most active product of chitosan was used for biofilm production enriched with geraniol and thymol (0.1 and 0.5%) and the films were also evaluated against the tested bacteria. The biological bioactivities summarized here may provide novel insights into the functions of chitosan and some monoterpenes and potentially allow their use for food protection from microbial attack. PMID:27127676

  13. Antimicrobial Organometallic Dendrimers with Tunable Activity against Multidrug-Resistant Bacteria.

    PubMed

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola; Overy, David P; Lanteigne, Martin; McQuillan, Katherine; Kerr, Russell G

    2015-11-09

    Multidrug-resistant pathogens are an increasing threat to public health. In an effort to curb the virulence of these pathogens, new antimicrobial agents are sought. Here we report a new class of antimicrobial organometallic dendrimers with tunable activity against multidrug-resistant Gram-positive bacteria that included methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Mechanistically, these redox-active, cationic organometallic dendrimers induced oxidative stress on bacteria and also disrupted the microbial cell membrane. The minimum inhibitory concentrations, which provide a quantitative measure of the antimicrobial activity of these dendrimers, were in the low micromolar range. AlamarBlue cell viability assay also confirms the antimicrobial activity of these dendrimers. Interestingly, these dendrimers were noncytotoxic to epidermal cell lines and to mammalian red blood cells, making them potential antimicrobial platforms for topical applications.

  14. Antimicrobial and antibiofilm activity of quorum sensing peptides and Peptide analogues against oral biofilm bacteria.

    PubMed

    LoVetri, Karen; Madhyastha, Srinivasa

    2010-01-01

    Widespread antibiotic resistance is a major incentive for the investigation of novel ways to treat or prevent infections. Much effort has been put into the discovery of peptides in nature accompanied by manipulation of natural peptides to improve activity and decrease toxicity. The ever increasing knowledge about bacteria and the discovery of quorum sensing have presented itself as another mechanism to disrupt the infection process. We have shown that the natural quorum sensing (QS) peptide, competence-stimulating peptide (CSP), used by the caries causing bacteria Streptococcus mutans when used in higher than normally present concentrations can actually contribute to cell death in S. mutans. Using an analogue of this quorum sensing peptide (KBI-3221), we have shown it to be beneficial at decreasing biofilm of various Streptococcus species. This chapter looks at a number of assay methods to test the inhibitory effects of quorum sensing peptides and their analogues on the growth and biofilm formation of oral bacteria.

  15. Tannins and extracts of fruit byproducts: antibacterial activity against foodborne bacteria and antioxidant capacity.

    PubMed

    Widsten, Petri; Cruz, Cristina D; Fletcher, Graham C; Pajak, Marta A; McGhie, Tony K

    2014-11-19

    The shelf life of fresh fish and meat transported over long distances could be extended by using plant-based extracts to control spoilage bacteria. The goals of the present study were to identify plant-based extracts that effectively suppress the main spoilage bacteria of chilled fish and lamb and to assess their antioxidant capacity. The phenolic compounds in wood-based tannins and extracts isolated from byproducts of the fruit processing industry were identified and/or quantified. The total phenol content, but not the flavonoid to total phenol ratio, was strongly associated with higher antibacterial activity against several fish and lamb spoilage bacteria in zone of inhibition and minimum inhibitory concentration assays as well as greater antioxidant capacity in the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical assay. The most promising compounds in both cases, and thus good candidates for antibacterial packaging or antioxidant dietary supplements, were mango seed extract and tannic acid containing mostly polygalloyl glucose type phenols.

  16. Composition, antibacterial, antioxidant and antiproliferative activities of essential oils from three Origanum species growing wild in Lebanon and Greece.

    PubMed

    Marrelli, Mariangela; Conforti, Filomena; Formisano, Carmen; Rigano, Daniela; Arnold, Nelly Apostolides; Menichini, Francesco; Senatore, Felice

    2016-01-01

    The essential oils from Origanum dictamnus, Origanum libanoticum and Origanum microphyllum were analysed by GC-MS, finding carvacrol, p-cymene, linalool, γ-terpinene and terpinen-4-ol as major components. The antioxidant activity by the DPPH and FRAP tests and the antiproliferative activity against two human cancer cell lines, LoVo and HepG2, were investigated, showing that the essential oil of O. dictamnus was statistically the most inhibitory on both the cell lines, while all the oils exerted a weak antioxidant activity. Furthermore, the samples were tested against 10 Gram-negative and Gram-positive bacteria; all the oils were active on Gram-positive bacteria but O. dictamnus essential oil was the most effective (MIC = 25-50 μg/mL), showing also a good activity against the Gram-negative Escherichia coli (MIC = 50 μg/mL). Data suggest that these essential oils and particularly O. dictamnus oil could be used as valuable new flavours with functional properties for food or nutraceutical products.

  17. Cytochalasin-like activity in cultured aorta smooth muscle cells (ASMC) is increased in extracts of growing cells

    SciTech Connect

    Magargal, W.W.

    1987-05-01

    A cytochalasin-like protein, present in cultured chicken embryo fibroblasts, is increased in cells transformed by Rous sarcoma virus. They find similar activity present in ASMC. Confluent cultured porcine and rat, ASMC, were homogenized in Buffer A and centrifuged at 200,000g for 35 min. Resulting extracts reduced the low shear viscosity of F-actin. To determine whether the activity alters during the growth of non-transformed cells, cultured rat ASMC were plated at 2 x 10/sup 4/ cells/cm/sup 2/ in medium plus 10% fetal bovine serum (FBS). After 3 days actively growing cells (by /sup 3/H-thymidine incorporation) were either scraped into phosphate buffered saline (PBS) or fed media plus 1% FBS. Three days later the fed cells were scraped into PBS (nongrowing, /sup 3/H-thymidine incorporation). Cells in PBS were pelleted, homogenized in Buffer A, and centrifuged as above. Extracts from the growing and nongrowing cells reduced the low shear viscosity of actin. However, the ED/sub 50/ for growing cells was 8..mu..g and 15..mu..g for nongrowing cells. These results support those obtained with normal and transformed CEF's. This evidence indicates a relationship between cytochalasin-like activity and the growth state of cells in culture.

  18. Large-scale pattern formation in active particles suspensions: from interacting microtubules to swimming bacteria

    NASA Astrophysics Data System (ADS)

    Aranson, Igor

    2006-03-01

    We consider two biological systems of active particles exhibiting large-scale collective behavior: microtubules interacting with molecular motors and hydrodynamically entrained swimming bacteria. Starting from a generic stochastic microscopic model of inelastically colliding polar rods with an anisotropic interaction kernel, we derive set of equations for the local rods concentration and orientation. Above certain critical density of rods the model exhibits orientational instability and onset of large-scale coherence. For the microtubules and molecular motors system we demonstrate that the orientational instability leads to the formation of vortices and asters seen in recent experiments. Similar approach is applied to colonies of swimming bacteria Bacillus subtilis confined in thin fluid film. The model is formulated in term of two-dimensional equations for local density and orientation of bacteria coupled to the low Reynolds number Navier-Stokes equation for the fluid flow velocity. The collective swimming of bacteria is represented by additional source term in the Navier-Stokes equation. We demonstrate that this system exhibits formation of dynamic large-scale patterns with the typical scale determined by the density of bacteria.

  19. Active and diverse rainwater bacteria collected at an inland site in spring and summer 2011

    NASA Astrophysics Data System (ADS)

    Cho, Byung Cheol; Jang, Gwang Il

    2014-09-01

    Rainwater is an important natural resource and utilized for various beneficial purposes. However, information on prokaryotes in rainwater is limited. Rainwater samples were collected during three heavy rain events at a suburban site in Seoul in April, May, and July 2011. The highest bacterial abundance (BA) in rainwater was observed in April when airborne bacteria had also been abundant the day before rainwater collection. ATP content in bacterial fraction of the rainwater suggested that the rainwater bacteria were metabolically active. Bacterial community compositions (BCCs) of rainwater samples, analyzed by using 16S rRNA gene-based pyrosequencing, differed considerably among the three rain events. Rainwater bacteria showed potentials of fast growth and drastic shift after incubation in BCCs from fresh rainwater at broad taxonomic levels and the dominant operational taxonomic units (OTUs) level. Presumable marine bacterial OTUs which formed a robust clade with marine bacteria Lacinutrix spp. were at high concentrations in rainwater in April, likely reflecting origin from saline environments. Most of the Flavobacteria sequences unusually high in April rainwater seemed to have marine origins. Further, spore-forming euryhaline marine Firmicutes were isolated from rainwater samples, suggesting possible dispersal of some marine bacteria via rain. A potential human pathogen and Escherichia coli-like sequences were detected in rainwater samples, calling for the need for assessment of health risks of collected rainwater.

  20. Development of an in vitro Assay, Based on the BioFilm Ring Test®, for Rapid Profiling of Biofilm-Growing Bacteria

    PubMed Central

    Di Domenico, Enea G.; Toma, Luigi; Provot, Christian; Ascenzioni, Fiorentina; Sperduti, Isabella; Prignano, Grazia; Gallo, Maria T.; Pimpinelli, Fulvia; Bordignon, Valentina; Bernardi, Thierry; Ensoli, Fabrizio

    2016-01-01

    Microbial biofilm represents a major virulence factor associated with chronic and recurrent infections. Pathogenic bacteria embedded in biofilms are highly resistant to environmental and chemical agents, including antibiotics and therefore difficult to eradicate. Thus, reliable tests to assess biofilm formation by bacterial strains as well as the impact of chemicals or antibiotics on biofilm formation represent desirable tools for a most effective therapeutic management and microbiological risk control. Current methods to evaluate biofilm formation are usually time-consuming, costly, and hardly applicable in the clinical setting. The aim of the present study was to develop and assess a simple and reliable in vitro procedure for the characterization of biofilm-producing bacterial strains for future clinical applications based on the BioFilm Ring Test® (BRT) technology. The procedure developed for clinical testing (cBRT) can provide an accurate and timely (5 h) measurement of biofilm formation for the most common pathogenic bacteria seen in clinical practice. The results gathered by the cBRT assay were in agreement with the traditional crystal violet (CV) staining test, according to the κ coefficient test (κ = 0.623). However, the cBRT assay showed higher levels of specificity (92.2%) and accuracy (88.1%) as compared to CV. The results indicate that this procedure offers an easy, rapid and robust assay to test microbial biofilm and a promising tool for clinical microbiology. PMID:27708625

  1. Modulation of in vitro natural cell-mediated activity against enteropathogenic bacteria by simple sugars.

    PubMed Central

    Nencioni, L; Villa, L; Boraschi, D; Tagliabue, A

    1985-01-01

    Lymphoid cells from mouse Peyer's patches and spleens were tested in a 2-h in vitro assay for their natural activity against the enteropathogenic bacteria Salmonella typhimurium, Salmonella enteritidis, Salmonella tel aviv, and Shigella sp. X16. The antibacterial activity expressed by normal cells was detected against all the bacterial strains tested with the exception of Peyer's patch lymphocytes against S. tel aviv and splenocytes against Shigella sp. X16. To determine whether the different expression of natural antibacterial activity might be due to lectin-like proteins interacting with the saccharidic moieties of the bacterial wall, 11 simple sugars were preincubated with the effector cells before the in vitro assays. We found that some of them could block the natural antibacterial activity as well as induce antibacterial activity when this was not spontaneously expressed. Interestingly, a different panel of sugars among those employed was observed to affect the antibacterial activities for each of the above-mentioned bacterial targets and each effector cell. However, the same panel of sugars was able to block or stimulate the lymphocyte activity when bacteria with the same somatic antigens as two substrains of S. typhimurium and one strain of Salmonella schottmuelleri were employed. To further investigate the interaction between effector cells and bacteria, effector cells or Shigella sp. X16 targets were treated with proteolytic, glycolytic, and lipolytic enzymes before the in vitro assays. Furthermore, EDTA was used to analyze the role of divalent cations in this experimental system. The results obtained suggest that lectin-like proteins playing a role in this interaction are present not only on lymphocytes but also on bacteria and that divalent cations are essential for the expression of in vitro antibacterial activity. PMID:3967926

  2. [The role of cell wall organization and active efflux pump systems in multidrug resistance of bacteria].

    PubMed

    Hasdemir, Ufuk

    2007-04-01

    Multiple antibiotic resistance of clinically important bacteria are of major concern worldwide. Alterations of drug targets or enzymatic inactivation of antimicrobial agents are the well known mechanisms of antimicrobial drug resistance. Besides these well known mechanisms, recent studies have shown that a further resistance mechanism, active drug efflux, has become increasingly important in the current threat of multidrug resistance. It involves certain bacterial transport proteins which pump out toxic antimicrobial compounds from the cell. Drug efflux pump proteins in bacteria fall into five distinct protein super families [ATP binding cassette super family (ABC), Major facilitator super family (MFS), Small multidrug resistance super family (SMR), Multidrug and toxic compound extrusion (MATE) super family, Resistance-nodulation-cell division (RND) super family] and are mostly encoded by chromosomal genes. Among them, the members of RND protein super family are widely distrubuted in Gram negative bacteria and play siginificant role in both, intrinsic and acquired multidrug resistance of these bacteria with very wide substrate specificity. RND type multidrug efflux proteins usually function together with an outer membrane canal protein (OMP) and a membrane fusion protein (MFP) to pump out drugs. AcrAB-TolC of Escherichia coli and MexAB-OprM of Pseudomonas aeruginosa are the typical examples of these tripartite systems. They are constitutively expressed in wild type cells and play significant role in intrinsic resistance of these bacteria. However, multidrug resistance which is of major clinical significance, rises as a result of overexpression of these pump systems due to mutations and elevated levels of resistance are recorded to structurally unrelated antimicrobial drugs such as fluoroquinolones, beta-lactams, tetracyclines, chloramphenicol, trimethoprim, aminoglycosides and toxic compunds. Synthesis of RND type pump proteins are regulated by complex genetic

  3. Identification of active oxalotrophic bacteria by Bromodeoxyuridine DNA labeling in a microcosm soil experiments.

    PubMed

    Bravo, Daniel; Martin, Gaëtan; David, Maude M; Cailleau, Guillaume; Verrecchia, Eric; Junier, Pilar

    2013-11-01

    The oxalate-carbonate pathway (OCP) leads to a potential carbon sink in terrestrial environments. This process is linked to the activity of oxalotrophic bacteria. Although isolation and molecular characterizations are used to study oxalotrophic bacteria, these approaches do not give information on the active oxalotrophs present in soil undergoing the OCP. The aim of this study was to assess the diversity of active oxalotrophic bacteria in soil microcosms using the Bromodeoxyuridine (BrdU) DNA labeling technique. Soil was collected near an oxalogenic tree (Milicia excelsa). Different concentrations of calcium oxalate (0.5%, 1%, and 4% w/w) were added to the soil microcosms and compared with an untreated control. After 12 days of incubation, a maximal pH of 7.7 was measured for microcosms with oxalate (initial pH 6.4). At this time point, a DGGE profile of the frc gene was performed from BrdU-labeled soil DNA and unlabeled soil DNA. Actinobacteria (Streptomyces- and Kribbella-like sequences), Gammaproteobacteria and Betaproteobacteria were found as the main active oxalotrophic bacterial groups. This study highlights the relevance of Actinobacteria as members of the active bacterial community and the identification of novel uncultured oxalotrophic groups (i.e. Kribbella) active in soils.

  4. Identification and Antibacterial Activity of Bacteria Isolated from Marine Sponge Haliclona (Reniera) sp. against Multi-Drug Resistant Human Pathogen

    NASA Astrophysics Data System (ADS)

    Ardhanu Asagabaldan, Meezan; Ayuningrum, D.; Kristiana, R.; Sabdono, A.; Radjasa, O. K.; Trianto, A.

    2017-02-01

    The marine sponge Haliclona (Reniera) sp. was a potential source of natural bioactive compounds. This sponge widely distributed along the coast of Panjang Island, Jepara, Indonesia. The aims of this research were to isolate the associated bacteria with Haliclona (Reniera) sp. and to screen the antibacterial activity against Multi-Drug Resistant (MDR) bacteria. Amount five bacteria were isolated using media selective for bacteria. The antibacterial activities of bacteria were performed by overlay methods. The bacteria strain PSP. 39-04 had the best activity against Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, and Enterobacter cloaceae. Based on colony morphology and phylogenetic characterization using 16S rRNA gene sequencing, PSP 39-04 was closely related with Chromohalobacter salixigens strain DSM3043.

  5. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria.

    PubMed

    Ait Said, L; Zahlane, K; Ghalbane, I; El Messoussi, S; Romane, A; Cavaleiro, C; Salgueiro, L

    2015-01-01

    The aim of this study was to analyse the composition of the essential oil (EO) of Lavandula coronopifolia from Morocco and to evaluate its in vitro antibacterial activity against antibiotic-resistant bacteria isolated from clinical infections. The antimicrobial activity was assessed by a broth micro-well dilution method using multiresistant clinical isolates of 11 pathogenic bacteria: Klebsiella pneumoniae subsp. pneumoniae, Klebsiella ornithinolytica, Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Providencia rettgeri, Citrobacter freundii, Hafnia alvei, Salmonella spp., Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus. The main compounds of the oil were carvacrol (48.9%), E-caryophyllene (10.8%) and caryophyllene oxide (7.7%). The oil showed activity against all tested strains with minimal inhibitory concentration (MIC) values ranging between 1% and 4%. For most of the strains, the MIC value was equivalent to the minimal bactericidal concentration value, indicating a clear bactericidal effect of L. coronopifolia EO.

  6. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria.

    PubMed

    Nicol, Graeme W; Leininger, Sven; Schleper, Christa; Prosser, James I

    2008-11-01

    Autotrophic ammonia oxidation occurs in acid soils, even though laboratory cultures of isolated ammonia oxidizing bacteria fail to grow below neutral pH. To investigate whether archaea possessing ammonia monooxygenase genes were responsible for autotrophic nitrification in acid soils, the community structure and phylogeny of ammonia oxidizing bacteria and archaea were determined across a soil pH gradient (4.9-7.5) by amplifying 16S rRNA and amoA genes followed by denaturing gradient gel electrophoresis (DGGE) and sequence analysis. The structure of both communities changed with soil pH, with distinct populations in acid and neutral soils. Phylogenetic reconstructions of crenarchaeal 16S rRNA and amoA genes confirmed selection of distinct lineages within the pH gradient and high similarity in phylogenies indicated a high level of congruence between 16S rRNA and amoA genes. The abundance of archaeal and bacterial amoA gene copies and mRNA transcripts contrasted across the pH gradient. Archaeal amoA gene and transcript abundance decreased with increasing soil pH, while bacterial amoA gene abundance was generally lower and transcripts increased with increasing pH. Short-term activity was investigated by DGGE analysis of gene transcripts in microcosms containing acidic or neutral soil or mixed soil with pH readjusted to that of native soils. Although mixed soil microcosms contained identical archaeal ammonia oxidizer communities, those adapted to acidic or neutral pH ranges showed greater relative activity at their native soil pH. Findings indicate that different bacterial and archaeal ammonia oxidizer phylotypes are selected in soils of different pH and that these differences in community structure and abundances are reflected in different contributions to ammonia oxidizer activity. They also suggest that both groups of ammonia oxidizers have distinct physiological characteristics and ecological niches, with consequences for nitrification in acid soils.

  7. Predominant bacteria in an activated sludge reactor for the degradation of cutting fluids

    SciTech Connect

    Baker, C.A.; Claus, G.W.; Taylor, P.A.

    1983-01-01

    For the first time, an activated sludge reactor, established for the degradation of cutting fluids, was examined for predominant bacteria. In addition, both total and viable numbers of bacteria in the reactor were determined so that the percentage of each predominant type in the total reactor population could be determined. Three samples were studied, and a total of 15 genera were detected. In each sample, the genus Pseudomonas and the genus Microcyclus were present in high numbers. Three other genera, Acinetobacter, Alcaligenes, and Corynebacterium, were also found in every sample but in lower numbers. In one sample, numerous appendage bacteria were present, and one of these, the genus Seliberia, was the most predominant organism in that sample. However, in the other two samples no appendage bacteria were detected. Six genera were found in this reactor which have not been previously reported in either cutting fluids in use or in other activated sludge systems. These genera were Aeromonas, Hyphomonas, Listeria, Microcyclus, Moraxella, and Spirosoma. None of the predominant bacterial belonged to groups of strict pathogens. 22 references, 6 figures, 3 tables.

  8. Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils.

    PubMed

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Cheng, Hai-xiang; Li, Ji; Liu, Xu; Ren, Qian-qi

    2016-04-01

    Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland.

  9. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina.

    PubMed

    Gillij, Y G; Gleiser, R M; Zygadlo, J A

    2008-05-01

    Mosquitoes are important vectors of diseases and nuisance pests. Repellents minimize contact with mosquitoes. Repellents based on essential oils (EO) are being developed as an alternative to DEET (N,N-diethyl-m-methylbenzamide), an effective compound that has disadvantages including toxic reactions, and damage to plastic and synthetic fabric. This work evaluated the repellency against Aedes aegypti of EO from aromatic plants that grow in Argentina: Acantholippia seriphioides, Achyrocline satureioides, Aloysia citriodora, Anemia tomentosa, Baccharis spartioides, Chenopodium ambrosioides, Eucalyptus saligna, Hyptis mutabilis, Minthostachys mollis, Rosmarinus officinalis, Tagetes minuta and Tagetes pusilla. Most EO were effective. Variations depending on geographic origin of the plant were detected. At a 90% EO concentration, A. satureoides and T. pusilla were the least repellent. At concentrations of 12.5% B. spartioides, R. officinalis and A. citriodora showed the longest repellency times. Comparisons of the principal components of each EO suggest that limonene and camphor were the main components responsible for the repellent effects.

  10. Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria.

    PubMed

    Saavedra, Maria J; Borges, Anabela; Dias, Carla; Aires, Alfredo; Bennett, Richard N; Rosa, Eduardo S; Simões, Manuel

    2010-05-01

    The purpose of the present study was to evaluate the in vitro antibacterial effects of different classes of important and common dietary phytochemicals (5 simple phenolics - tyrosol, gallic acid, caffeic acid, ferulic acid, and chlorogenic acid; chalcone - phloridzin; flavan-3-ol - (-) epicatechin; seco-iridoid - oleuropein glucoside; 3 glucosinolate hydrolysis products - allylisothiocyanate, benzylisothiocyanate and 2-phenylethylisothiocyanate) against Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes and Staphylococcus aureus. Another objective of this study was to evaluate the effects of dual combinations of streptomycin with the different phytochemicals on antibacterial activity. A disc diffusion assay was used to evaluate the antibacterial activity of the phytochemicals and 3 standard antibiotics (ciprofloxacin, gentamicin and streptomycin) against the four bacteria. The antimicrobial activity of single compounds and dual combinations (streptomycin-phytochemicals) were quantitatively assessed by measuring the inhibitory halos. The results showed that all of the isothiocyanates had significant antimicrobial activities, while the phenolics were much less efficient. No antimicrobial activity was observed with phloridzin. In general P. aeruginosa was the most sensitive microorganism and L. monocytogenes the most resistant. The application of dual combinations demonstrated synergy between streptomycin and gallic acid, ferulic acid, chlorogenic acid, allylisothiocyanate and 2-phenylethylisothiocyanate against the Gram-negative bacteria. In conclusion, phytochemical products and more specifically the isothiocyanates were effective inhibitors of the in vitro growth of the Gram-negative and Gram-positive pathogenic bacteria. Moreover, they can act synergistically with less efficient antibiotics to control bacterial growth.

  11. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    PubMed

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  12. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae)

    PubMed Central

    Graça, Ana Patrícia; Viana, Flávia; Bondoso, Joana; Correia, Maria Inês; Gomes, Luis; Humanes, Madalena; Reis, Alberto; Xavier, Joana R.; Gaspar, Helena; Lage, Olga M.

    2015-01-01

    Interest in the study of marine sponges and their associated microbiome has increased both for ecological reasons and for their great biotechnological potential. In this work, heterotrophic bacteria associated with three specimens of the marine sponge Erylus deficiens, were isolated in pure culture, phylogenetically identified and screened for antimicrobial activity. The isolation of bacteria after an enrichment treatment in heterotrophic medium revealed diversity in bacterial composition with only Pseudoalteromonas being shared by two specimens. Of the 83 selected isolates, 58% belong to Proteobacteria, 23% to Actinobacteria and 19% to Firmicutes. Diffusion agar assays for bioactivity screening against four bacterial strains and one yeast, revealed that a high number of the isolated bacteria (68.7%) were active, particularly against Candida albicans and Vibrio anguillarum. Pseudoalteromonas, Microbacterium, and Proteus were the most bioactive genera. After this preliminary screening, the bioactive strains were further evaluated in liquid assays against C. albicans, Bacillus subtilis and Escherichia coli. Filtered culture medium and acetone extracts from three and 5 days-old cultures were assayed. High antifungal activity against C. albicans in both aqueous and acetone extracts as well as absence of activity against B. subtilis were confirmed. Higher levels of activity were obtained with the aqueous extracts when compared to the acetone extracts and differences were also observed between the 3 and 5 day-old extracts. Furthermore, a low number of active strains was observed against E. coli. Potential presence of type-I polyketide synthases (PKS-I) and non-ribosomal peptide synthetases (NRPSs) genes were detected in 17 and 30 isolates, respectively. The high levels of bioactivity and the likely presence of associated genes suggest that Erylus deficiens bacteria are potential sources of novel marine bioactive compounds. PMID:25999928

  13. Distribution and activity of Bacteria and Archaea in the different water masses of the Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Tamburini, Christian; Garel, Marc; Al Ali, Badr; Mérigot, Bastien; Kriwy, Pascal; Charrière, Bruno; Budillon, Giorgio

    2009-05-01

    This study examines the abundance of the Bacteria, Crenarchaeota and Euryarchaeota and bulk activities (phosphatase and aminopeptidase activities, heterotrophic prokaryotic production and dark CO 2 fixation) in the major water masses of the Tyrrhenian Sea (from surface to bottom: Modified Atlantic Water (MAW); Levantine Intermediate Water (LIW) and Tyrrhenian Deep Water (TDW)) in July and December 2005. Data from the catalyzed reporter deposition coupled with fluorescence in situ hybridization (CARD-FISH) analyses indicate that the percentage of Bacteria was always higher than the percentage of Crenarchaeota and Euryarchaeota throughout the water column. While the percentage of Euryarchaeota was relatively homogeneous (˜10%) through the water column, the percentage of Crenarchaeota increased with depth (from 5% to 14% in July and from 7% to 17% in December in MAW and TDW, respectively). Regarding differences between July and December 2005, the percentage of Bacteria in the MAW was lower in July than in December (25% versus 43%, respectively) while quite constant (˜40%) in the TDW. The pattern of phosphatase and aminopeptidase activity varied according to the stations considered, but both ectoenzyme activities showed higher maximum velocity rates in July than in December in the deep-sea waters. Particularly, specific activity of phosphatase in the deep-sea waters (TDW) was 7 times higher (median value) than in surface waters (MAW). Prokaryotic production, aminopeptidase and phosphatase activity measurements were always higher under in situ pressure conditions than after decompression. For the first time, the measurement of the dark CO 2 fixation was investigated under in situ pressure conditions and its decompressed counterparts. These data give new information to understanding the role of prokaryotes (Bacteria and Archaea) in biogeochemical cycles of the meso- and batypelagic waters of the oceans.

  14. The activity and community structure of total bacteria and denitrifying bacteria across soil depths and biological gradients in estuary ecosystem.

    PubMed

    Lee, Seung-Hoon; Kang, Hojeong

    2016-02-01

    The distribution of soil microorganisms often shows variations along soil depth, and even in the same soil layer, each microbial group has a specific niche. In particular, the estuary soil is intermittently flooded, and the characteristics of the surface soil layer are different from those of other terrestrial soils. We investigated the microbial community structure and activity across soil depths and biological gradients composed of invasive and native plants in the shallow surface layer of an estuary ecosystem by using molecular approaches. Our results showed that the total and denitrifying bacterial community structures of the estuarine wetland soil differed according to the short depth gradient. In growing season, gene copy number of 16S rRNA were 1.52(±0.23) × 10(11), 1.10(±0.06) × 10(11), and 4.33(±0.16) × 10(10) g(-1) soil; nirS were 5.41(±1.25) × 10(8), 4.93(±0.94) × 10(8), and 2.61(±0.28) × 10(8) g(-1) soil; and nirK were 9.67(±2.37) × 10(6), 3.42(±0.55) × 10(6), and 2.12(±0.19) × 10(6) g(-1) soil in 0 cm, 5 cm, and 10 cm depth layer, respectively. The depth-based difference was distinct in the vegetated sample and in the growing season, evidencing the important role of plants in structuring the microbial community. In comparison with other studies, we observed differences in the microbial community and functions even across very short depth gradients. In conclusion, our results suggested that (i) in the estuary ecosystem, the denitrifying bacterial community could maintain its abundance and function within shallow surface soil layers through facultative anaerobiosis, while the total bacterial community would be both quantitatively and qualitatively affected by the soil depth, (ii) the nirS gene community, rather than the nirK one, should be the first candidate used as an indicator of the microbial denitrification process in the estuary system, and (iii) as the microbial community is distributed and plays a certain niche role according to

  15. Challenging synergistic activity of poplar-bacteria association for the Cd phytostabilization.

    PubMed

    C, Cocozza; D, Trupiano; G, Lustrato; G, Alfano; D, Vitullo; A, Falasca; T, Lomaglio; V, De Felice; G, Lima; G, Ranalli; S, Scippa; R, Tognetti

    2015-12-01

    The synergistic activity between plants and microorganisms may contribute to the implementation of proactive management strategies in the stabilization of contaminated sites, although heavy metals, such as cadmium (Cd), are potentially toxic to them. The aim of this study was to evaluate the degree of tolerance to Cd contamination (supplying twice 40 mg kg(-1) of Cd) in poplar cuttings [clone I-214, P. × euramericana (Dode) Guinier] inoculated or not with two concentrations of Serratia marcescens strain (1 × 10(7) CFU/g and 2 × 10(7) CFU/g of potting mix). The response of the plant-bacteria system to excess Cd was investigated with special reference to the structural traits of plants and the functional efficiency of bacteria. Bacterial colonization and substrate components were previously assessed in order to define the best solution for formulating the experimental plant growth media. The tested plant-bacteria association, especially when bacteria were provided in double concentration, stimulated specific tolerance mechanisms to Cd through the promotion of the poplar growth. Inoculated plants produced larger leaves and increased stem diameter, while roots grew longer and wider in Cd-treated plants. The effect of bacterial inoculum on plant growth traits and metal partitioning in plant organs was assessed in order to define the potential of this poplar clone to be a suitable candidate for phytostabilization of Cd-contaminated soil. The final effect of the inoculation with bacteria, which alleviated the metal load and Cd phytotoxicity due to their bioaccumulation ability, suggests promising phytostabilization potential of these plant-bacteria associations.

  16. Anti-Quorum Sensing Activity of Substances Isolated from Wild Berry Associated Bacteria

    PubMed Central

    Abudoleh, Suha M.; Mahasneh, Adel M.

    2017-01-01

    Background: Quorum Sensing (QS) is a mechanism used by bacteria to determine their physiological activities and coordinate gene expression based on cell to cell signaling. Many bacterial physiological functions are under the regulation of quorum sensing such as virulence, luminescence, motility, sporulation and biofilm formation. The aim of the present study was to isolate and characterize Quorum Sensing Inhibitory (QSI) substances from epiphytic bacteria residing on wild berries surfaces. Methods: Fifty nine bacterial isolates out of 600 screened bacteria were successfully isolated. These bacteria were obtained from berry surfaces of different plants in the wild forests of Ajloun-Jordan. Screening for QSI activity using Chromobacterium violaceum ATCC 12472 monitor strain, resulted in isolating 6 isolates exhibiting QSI activity only, 11 isolates with QSI and antibacterial activity, and 42 isolates with antibacterial activity only. Three potential isolates S 130, S 153, and S 664, were gram positive rods and spore formers, catalase positive and oxidase negative. These were chosen for further testing and characterization. Results: Different solvent extraction of the QSI substances based on polarity indicated that the activity of S 130 was in the butanol extract, S 153 activity in both chloroform and butanol; and for S 664, the activity was detected in the hexane extract. The chloroform extract of S 153 and hexane extract of S 664 were proteinaceous in nature while QSI substances of the butanol extract of S 130 and S 153 were non-proteinaceous. All the tested QSI substances showed a marked thermal stability when subjected at several time intervals to 70°C, with the highest stability observed for the butanol extract of S 153. Assessing the QSI substances using violacein quantification assay revealed varying degrees of activity depending upon the extracting solvent, type of the producer bacteria and the concentration of the substances. Conclusion: This study

  17. Antibacterial Activity of Marine and Black Band Disease Cyanobacteria against Coral-Associated Bacteria

    PubMed Central

    Gantar, Miroslav; Kaczmarsky, Longin T.; Stanić, Dina; Miller, Aaron W.; Richardson, Laurie L.

    2011-01-01

    Black band disease (BBD) of corals is a cyanobacteria-dominated polymicrobial disease that contains diverse populations of heterotrophic bacteria. It is one of the most destructive of coral diseases and is found globally on tropical and sub-tropical reefs. We assessed ten strains of BBD cyanobacteria, and ten strains of cyanobacteria isolated from other marine sources, for their antibacterial effect on growth of heterotrophic bacteria isolated from BBD, from the surface mucopolysaccharide layer (SML) of healthy corals, and three known bacterial coral pathogens. Assays were conducted using two methods: co-cultivation of cyanobacterial and bacterial isolates, and exposure of test bacteria to (hydrophilic and lipophilic) cyanobacterial cell extracts. During co-cultivation, 15 of the 20 cyanobacterial strains tested had antibacterial activity against at least one of the test bacterial strains. Inhibition was significantly higher for BBD cyanobacteria when compared to other marine cyanobacteria. Lipophilic extracts were more active than co-cultivation (extracts of 18 of the 20 strains were active) while hydrophilic extracts had very limited activity. In some cases co-cultivation resulted in stimulation of BBD and SML bacterial growth. Our results suggest that BBD cyanobacteria are involved in structuring the complex polymicrobial BBD microbial community by production of antimicrobial compounds. PMID:22073011

  18. Real-time PCR for rapidly detecting aniline-degrading bacteria in activated sludge.

    PubMed

    Kayashima, Takakazu; Suzuki, Hisako; Maeda, Toshinari; Ogawa, Hiroaki I

    2013-05-01

    We developed a detection method that uses quantitative real-time PCR (qPCR) and the TaqMan system to easily and rapidly assess the population of aniline-degrading bacteria in activated sludge prior to conducting a biodegradability test on a chemical compound. A primer and probe set for qPCR was designed by a multiple alignment of conserved amino acid sequences encoding the large (α) subunit of aniline dioxygenase. PCR amplification tests showed that the designed primer and probe set targeted aniline-degrading strains such as Acidovorax sp., Gordonia sp., Rhodococcus sp., and Pseudomonas putida, thereby suggesting that the developed method can detect a wide variety of aniline-degrading bacteria. There was a strong correlation between the relative copy number of the α-aniline dioxygenase gene in activated sludge obtained with the developed qPCR method and the number of aniline-degrading bacteria measured by the Most Probable Number method, which is the conventional method, and a good correlation with the lag time of the BOD curve for aniline degradation produced by the biodegradability test in activated sludge samples collected from eight different wastewater treatment plants in Japan. The developed method will be valuable for the rapid and accurate evaluation of the activity of inocula prior to conducting a ready biodegradability test.

  19. Activity and adaptation of nitrilotriacetate (NTA)-degrading bacteria: field and laboratory studies

    NASA Technical Reports Server (NTRS)

    McFeters, G. A.; Egli, T.; Wilberg, E.; Alder, A.; Schneider, R.; Suozzi, M.; Giger, W.

    1990-01-01

    Adaptation of bacterial activity for the degradation of nitrilotriacetate (NTA) was studied using natural sediment samples and an NTA-degrading bacterium (strain ATCC 29600). Sediment samples from a river with persistent levels of NTA had much higher NTA-degradative activity than comparable samples from a less contaminated control site. When sediment from the control site was exposed to high levels of NTA a 5 day lag preceded an abrupt increase in NTA degradation while strain 29600 colonized on sand and grown in the absence of NTA became induced within eight hours. The induction of strain 29600 was compared between bacteria in suspension and cells attached to sand. The sand-associated bacteria became induced 4 to 5 h before the planktonic suspension and displayed over threefold greater specific activity. Suspensions of strain 29600 became adapted within 8 h when placed in membrane diffusion chambers that were immersed within a municipal wastewater reactor containing NTA. These findings support the concept that induction is a part of the process of bacterial adaptation to degrade NTA and sand-associated bacteria can adapt more quickly to and have a greater degradative activity for NTA than planktonic cells.

  20. Physiological and transcriptional responses of nitrifying bacteria exposed to copper in activated sludge.

    PubMed

    Ouyang, Fan; Zhai, Hongyan; Ji, Min; Zhang, Hongyang; Dong, Zhao

    2016-01-15

    Cu inhibition of gene transcription in ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were rarely studied simultaneously in activated sludge. In this study, the transcription of amoA (for AOB) and nxrB (for NOB), nitrification efficiencies, AOB and NOB respiratory rates, and Cu distribution were simultaneously investigated. Modeling the relationships among the aforementioned parameters revealed that in complex activated sludge systems, nitrification efficiency was an insensitive parameter for showing Cu inhibition. Respiration activities and gene transcription were sensitive to Cu and positively correlated with each other. The transcription of amoA and nxrB genes indicated that the Cu had different inhibitory effects on AOB and NOB. AOB were more susceptible to Cu toxicity than NOB. Moreover, the degree of Cu inhibition on ammonia oxidation was greater than on nitrite oxidation. The analysis and related modeling results indicate that the inhibitory actions of Cu on nitrifying bacteria could mainly be attributed to intracellular Cu. The findings from this study provide insight into the mechanism of Cu inhibition on nitrification in complex activated sludge systems.

  1. Treatment with activated water by GlidArc technology of bacteria producing Biofouling

    NASA Astrophysics Data System (ADS)

    Hnatiuc, B.; Ghita, S.; Sabau, A.; Hnatiuc, M.; Dumitrache, C. L.; Wartel, M.

    2015-02-01

    Corrosion in marine environment is an actual problem, being a complex dynamic process influenced mainly by physical, chemical, microbiological and mechanical parameters. Around 70% of the maintenance costs of a ship are associated with the corrosion protection. Times for maintenance related to this phenomenon are greater than 80% of the total repair. Reducing this cost would be a significant saving, and an effective treatment can reduce times related to ships repairing. Biofouling is a main cause of corrosion and for its reduction different methods could be applied, especially in the first part of its production. The atmospheric pressure non-thermal plasmas have been gaining an ever increasing interest for different biodecontamination applications and present potential utilisation in the control of biofouling and biodeterioration. They have a high efficiency of the antimicrobial treatment, including capacity to eradicate microbial biofilms. The adhesion microbial biofilm is mainly influenced by presence of bacteria from the liquid environment. That is why this work concerns the study of annihilation of maximum amount of bacteria from sea water, by using GlidArc technology that produces non-thermal plasma. Bacteria suspended in sea water are placed in contact with activated water. This water is activated by using GlidArc working in humid air. Experimental results refer to the number of different activated and inactivated marine organisms and their evolution, present in solution at certain time intervals after mixing different amounts of seawater with plasma activated water.

  2. Tribolium castaneum defensins are primarily active against Gram-positive bacteria.

    PubMed

    Tonk, Miray; Knorr, Eileen; Cabezas-Cruz, Alejandro; Valdés, James J; Kollewe, Christian; Vilcinskas, Andreas

    2015-11-01

    The red flour beetle Tribolium castaneum is a destructive insect pest of stored food and feed products, and a model organism for development, evolutionary biology and immunity. The insect innate immune system includes antimicrobial peptides (AMPs) with a wide spectrum of targets including viruses, bacteria, fungi and parasites. Defensins are an evolutionarily-conserved class of AMPs and a potential new source of antimicrobial agents. In this context, we report the antimicrobial activity, phylogenetic and structural properties of three T. castaneum defensins (Def1, Def2 and Def3) and their relevance in the immunity of T. castaneum against bacterial pathogens. All three recombinant defensins showed bactericidal activity against Micrococcus luteus and Bacillus thuringiensis serovar tolworthi, but only Def1 and Def2 showed a bacteriostatic effect against Staphylococcus epidermidis. None of the defensins showed activity against the Gram-negative bacteria Escherichia coli and Pseudomonas entomophila or against the yeast Saccharomyces cerevisiae. All three defensins were transcriptionally upregulated following a bacterial challenge, suggesting a key role in the immunity of T. castaneum against bacterial pathogens. Phylogenetic analysis showed that defensins from T. castaneum, mealworms, Udo longhorn beetle and houseflies cluster within a well-defined clade of insect defensins. We conclude that T. castaneum defensins are primarily active against Gram-positive bacteria and that other AMPs may play a more prominent role against Gram-negative species.

  3. The Green Pages Environmental Education Activities K-12: Gardens for Young Growing Lives.

    ERIC Educational Resources Information Center

    Larson, Jan

    1997-01-01

    Describes several gardening activities that can be kept simple or used as a foundation for more in-depth projects. Activities include setting up an indoor garden spot, making compost which helps students understand the terms "decompose" and "compost", watching plants drink in which students measure water movement in plants, making herb gardens,…

  4. Antifungal activity of the essential oil from Calendula officinalis L. (asteraceae) growing in Brazil

    PubMed Central

    Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Diógenes Aparicio Garcia

    2008-01-01

    This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested. PMID:24031180

  5. Induction and activation of meiosis and subsequent parthenogenetic development of growing pig oocytes using calcium ionophore A23187.

    PubMed

    Sedmíková, Markéta; Burdová, Jana; Petr, Jaroslav; Etrych, Milan; Rozinek, Jirí; Jílek, Frantisek

    2003-12-01

    The pig ovary contains a large number of growing oocytes, which do not mature in vitro and cannot be readily used in various biotechnologies. This study was conducted to determine the possibility of inducing meiotic maturation in growing pig oocytes with an internal diameter of 110 microm, which had developed partial meiotic competence. Most of these oocytes spontaneously stopped maturation at the metaphase I stage (68%); a limited number proceeded to the metaphase II stage (26%). Treatment with calcium ionophore A23187 (50 microM for 5 or 10 min) after 24h in vitro culture overcame the block at the metaphase I stage, and treated growing pig oocytes matured to the metaphase II stage (66%). Oocytes in which maturation had been induced by calcium ionophore were again treated with calcium ionophore. Up to 58% of the treated oocytes were activated. Parthenogenetic development in oocytes treated with ionophore for meiosis induction and activation was very limited. The portion which reached morula stage did not exceed 8% and at most 3% developed to the blastocyst stage.

  6. Impact of Faba Bean-Seed Rhizobial Inoculation on Microbial Activity in the Rhizosphere Soil during Growing Season

    PubMed Central

    Siczek, Anna; Lipiec, Jerzy

    2016-01-01

    Inoculation of legume seeds with Rhizobium affects soil microbial community and processes, especially in the rhizosphere. This study aimed at assessing the effect of Rhizobium inoculation on microbial activity in the faba bean rhizosphere during the growing season in a field experiment on a Haplic Luvisol derived from loess. Faba bean (Vicia faba L.) seeds were non-inoculated (NI) or inoculated (I) with Rhizobium leguminosarum bv. viciae and sown. The rhizosphere soil was analyzed for the enzymatic activities of dehydrogenases, urease, protease and acid phosphomonoesterase, and functional diversity (catabolic potential) using the Average Well Color Development, Shannon-Weaver, and Richness indices following the community level physiological profiling from Biolog EcoPlate™. The analyses were done on three occasions corresponding to the growth stages of: 5–6 leaf, flowering, and pod formation. The enzymatic activities were higher in I than NI (p < 0.05) throughout the growing season. However, none of the functional diversity indices differed significantly under both treatments, regardless of the growth stage. This work showed that the functional diversity of the microbial communities was a less sensitive tool than enzyme activities in assessment of rhizobial inoculation effects on rhizosphere microbial activity. PMID:27213363

  7. Preparation of Hollow N-Chloramine-Functionalized Hemispherical Silica Particles with Enhanced Efficacy against Bacteria in the Presence of Organic Load: Synthesis, Characterization, and Antibacterial Activity.

    PubMed

    Rahma, Hakim; Asghari, Sogol; Logsetty, Sarvesh; Gu, Xiaochen; Liu, Song

    2015-06-03

    The fabrication of highly effective antimicrobial materials is an important strategy for coping with the growing concern of bacterial resistance. In this study, N-chloramine-functionalized hollow hemispherical structures were designed and prepared to examine possible enhancement of antimicrobial performance. Antimicrobial testing was carried out on Gram-negative (Escherichia coli) and Gram-positive (Baccilus Cereus) bacteria in the presence and absence of biological medium. The efficacy of the hollow hemispherical particles functionalized with various N-chloramines in killing bacteria was compared among themselves with that of small organic molecules and spherical particles to investigate the effect of the surface charge, chemical structure, and shape of the particles. Results demonstrated that quaternary ammonium salt or amine functions in the chemical structure enhanced the antimicrobial activity of the particles and made the particles more effective than the small molecules in the presence of biological medium. The importance of particle shape in the killing tests was also confirmed.

  8. [Diversity and bacteria community structure of activated carbon used in advanced drinking water treatment].

    PubMed

    Wang, Min; Shang, Hai-tao; Hao, Chun-bo; Luo, Peng; Gu, Jun-nong

    2011-05-01

    Two granular activated carbon (GAC) samples with 1.5 a and 5 a age were collected, Bacterial genome DNA was extracted for the 16S rDNA gene amplification, and then a bacterial 16S rDNA gene clone library was constructed. After the phylogenetic analysis of 16S rDNA sequences, bacterial diversity and community structure of two activated carbon biofilm sample were studied. The results showed the bacteria in GAC with 5 a age could be divided into 11 groups, which were as follows alpha-Proteobacteria (26.5%), beta-Proteobacteria (16.3%), delta-Proteobacteria (16.3%), Planctomycetes (12.2%), Gemmatimonadetes (6.1%), Acidobacteria (4.1%), Nitrospira (2.0%), gamma-Proteobacteria (2.0%), Bacteroidetes (2.0%), Actinobacteria (2.0%), Unclassified Bacteria (10.2%). The bacteria in GAC with 1.5 a age could be divided into 10 groups, which were as follows alpha-Proteobacteria (21.6%), Planctomycetes( 10.8%), Bacteroidetes (10.8%), beta-Proteobacteria (9.0%), Acidobacteria (9.0%), Nitrospira (7.2%), detla-Proteobacteria (7.2%), Unclassified Proteobacteria (5.4%), Gemmatimonadetes (3.6%), Unclassified Bacteria (14.4%). The results revealed a variety of bacterial divisions on the studied GAC biofilm. Proteobacteria had the highest share in the two total clones, and alpha- and beta-Proteobacteria were on a dominant position. A relatively high proportion of delta-Proteobacteria was observed in the biofilm of GAC with 5 a age, and Nitrospira was in a minor proportion. However, a totally converse condition appeared in GAC with 1.5 a age. Two pathogenic bacteria, Afipia and Chryseobacterium, were detected in analyzed GACs, which implies a potential microbial risk in water supply.

  9. EVALUATION OF THE TEA TREE OIL ACTIVITY TO ANAEROBIC BACTERIA--IN VITRO STUDY.

    PubMed

    Ziółkowska-Klinkosz, Marta; Kedzia, Anna; Meissner, Hhenry O; Kedzia, Andrzej W

    2016-01-01

    The study of the sensitivity to tea tree oil (Australian Company TTD International Pty. Ltd. Sydney) was carried out on 193 strains of anaerobic bacteria isolated from patients with various infections within the oral cavity and respiratory tracts. The susceptibility (MIC) of anaerobes was determined by means of plate dilution technique in Brucella agar supplemented with 5% defibrinated sheep blood, menadione and hemin. Inoculum contained 10(5) CFU per spot was cultured with Steers replicator upon the surface of agar with various tea tree oil concentrations or without oil (anaerobes growth control). Incubation the plates was performed in anaerobic jars under anaerobic conditions at 37 degrees C for 48 h. MIC was defined as the lowest concentrations of the essential oil completely inhibiting growth of anaerobic bacteria. Test results indicate, that among Gram-negative bacteria the most sensitive to essential oil were strains of Veillonella and Porphyromonas species. Essential oil in low concentrations (MIC in the range of = 0.12 - 0.5 mg/mL) inhibited growth of accordingly 80% and 68% strains. The least sensitive were strains of the genus Tannerella, Parabacteroides and Dialister (MIC 1.0 - 2.0 mg/mL). In the case of Gram-positive anaerobic bacteria the tea tree oil was the most active to strains of cocci of the genus Anaerococcus and Ruminococcus (MIC in range = 0.12 - 0.5 mg/mL) or strains of rods of the genus Eubacterium and Eggerthella (MIC = 0.25 mg/mL). Among Gram-positive rods the least sensitive were the strains of the genus Bifidobacterium ( MIC = 2.0 mg/mL). The tea tree oil was more active to Gram-positive than to Gram-negative anaerobic bacteria.

  10. Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan.

    PubMed

    Mikolasch, Annett; Omirbekova, Anel; Schumann, Peter; Reinhard, Anne; Sheikhany, Halah; Berzhanova, Ramza; Mukasheva, Togzhan; Schauer, Frieder

    2015-05-01

    Three microbial strains were isolated from the rhizosphere of alfalfa (Medicago sativa), grass mixture (Festuca rubra, 75 %; Lolium perenne, 20 %; Poa pratensis, 10 %), and rape (Brassica napus) on the basis of their high capacity to use crude oil as the sole carbon and energy source. These isolates used an unusually wide spectrum of hydrocarbons as substrates (more than 80), including n-alkanes with chain lengths ranging from C12 to C32, monomethyl- and monoethyl-substituted alkanes (C12-C23), n-alkylcyclo alkanes with alkyl chain lengths from 4 to 18 carbon atoms, as well as substituted monoaromatic and diaromatic hydrocarbons. These three strains were identified as Gordonia rubripertincta and Rhodococcus sp. SBUG 1968. During their transformation of this wide range of hydrocarbon substrates, a very large number of aliphatic, alicyclic, and aromatic acids was detected, 44 of them were identified by GC/MS analyses, and 4 of them are described as metabolites for the first time. Inoculation of plant seeds with these highly potent bacteria had a beneficial effect on shoot and root development of plants which were grown on oil-contaminated sand.

  11. Isolation, Characterisation and Antagonistic Activity of Bacteria Symbionts Hardcoral Pavona sp. Isolated from Panjang Island, Jepara Against Infectious Multi-drug Resistant (MDR) Bacteria

    NASA Astrophysics Data System (ADS)

    Ayuningrum, D.; Kristiana, R.; Asagabaldan, M. A.; Sabdono, A.; Radjasa, O. K.; Nuryadi, H.; Trianto, A.

    2017-02-01

    Pavona sp. is highly spread over Indonesian waters including Panjang Island. Several studies showed that bacteria symbionts hardcoral were the big source of antibiotic product, but there was limited research of the bacteria symbionts with hardcoral Pavona sp. In this research bacteria symbionts from hardcoral Pavona sp. had been collected from Panjang Island, Jepara. Marine bacteria symbionts were isolated by serial dillution method, while antibacterial activity was performed by using overlay and agar block method. The total of 2 from 5 isolates were active to MDR bacteria such as Enterobacter aerogenes and Acinetobacter baumanii, the code were PHC 44/04 and PHC 44/05. Then both of them were identified by morphological and molecular DNA characterization using 16 S rRNA gene sequence. The result of 16 S rRNA identification shows PHC 44/04 has 99% similarities with Virgibacillus salarius strain sa-Vb 1, while PHC 44/05 shows 99% similarities with Pseudoalteromonas flavipulchra strain NCIMB 2033.

  12. Pesticide side effect on the symbiotic efficiency and nitrogenase activity of Rhizobiaceae bacteria family.

    PubMed

    Niewiadomska, Alicja; Klama, Justyna

    2005-01-01

    The laboratory experiments tested the influence of selected pesticides on the symbiotic efficiency and nitrogenase activity of Rhizobium leguminosarumin bv. trifolii KGL, Sinorhizobiuni melilotii Bp and Badyrhizobium sp. Ornithopus B bacteria entering into symbiosis with clover, lucerne and serradella, respectively. The results obtained indicate that the pesticides used in the experiments (Funaben T seed dressing and Pivot 100SL herbicide) caused reduced nitrogenase activity in active strains tested. In addition, a toxic effect of the applied pesticides on the nodulation and root growth of the tested plants was observed.

  13. Present-day biogeochemical activities of anaerobic bacteria and their relevance to future exobiological investigations

    USGS Publications Warehouse

    Oremland, R.S.

    1989-01-01

    If the primordial atmosphere was reducing, then the first microbial ecosystem was probably composed of anaerobic bacteria. However, despite the presence of an oxygen-rich atmosphere, anaerobic habitats are important, commonplace components of the Earth's present biosphere. The geochemical activities displayed by these anaerobes impact the global cycling of certain elements (e.g., C, N, S, Fe, Mn, etc.). Methane provides an obvious example of how human-enhanced activities on a global scale can influence the content of a "radiative" (i.e., infrared absorbing) trace gas in the atmosphere. Methane can be oxidized by anaerobic bacteria, but this does not appear to support their growth. Acetylene, however, does support such growth. This may form the basis for future exobiological investigations of the atmospheres of anoxic, hydrocarbon-rich planets like Jupiter and Saturn, as well as the latter's satellite Titan. ?? 1989.

  14. [Diversity of culturable filamentous bacteria in the activated sludge from A2O wastewater treatment process].

    PubMed

    Gao, Sha; Jin, De-Cai; Zhao, Zhi-Rui; Qi, Rong; Peng, Xia-Wei; Bai, Zhi-Hui

    2013-07-01

    The anoxic-anaerobic-oxic (A2O) process is widely used in wastewater treatment plant, however, sludge bulking and foaming are the most frequent operational problems in this process. Activated sludge bulking is caused by the overgrowth of some types of filamentous bacteria, especially Microthrix parvicella. In the study, 17 strains of filamentous bacteria were isolated from the bulking sludge of A2O process using Gause's medium. The 16S rRNA genes of the 17 isolates were sequenced to analyze their diversity. The results showed all of the 17 isolates were Streptomyces. Further analysis of these strains by the repetitive sequence based on polymerase chain reaction (rep-PCR) technology showed that there was a high diversity in these isolated Streptomyces. The physiological properties of them were different from Microthrix parvicella. The settleability of activated sludge was improved when some of the isolates were inoculated.

  15. Survival of soil bacteria during prolonged desiccation.

    NASA Technical Reports Server (NTRS)

    Chen, M.; Alexander, M.

    1973-01-01

    A determination was made of the kinds and numbers of bacteria surviving when two soils were maintained in the laboratory under dry conditions for more than half a year. Certain non-spore-forming bacteria were found to survive in the dry condition for long periods. A higher percentage of drought-tolerant than drought-sensitive bacteria was able to grow at low water activities. When they were grown in media with high salt concentrations, bacteria generally became more tolerant of prolonged drought and they persisted longer. The percent of cells in a bacterial population that remained viable when exposed to drought stress varied with the stage of growth.

  16. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria.

    PubMed

    Wang, Yi-Chieh; Yu, Roch-Chui; Chou, Cheng-Chun

    2006-04-01

    To further the goal of developing a probiotic dietary adjunct using soymilk, soymilk is fermented with lactic acid bacteria (Lactobacillus acidophilus CCRC 14079 or Streptococcus thermophilus CCRC 14085) and bifidobacteria (Bifidobacterium infantis CCRC 14633 or Bifidobacterium longum B6) individually, and in conjunction. We investigate several antioxidative activities including the inhibition of ascorbate autoxidation, the scavenging effect of superoxide anion radicals and hydrogen peroxide, and the reducing activity exerted by different varieties of fermented soymilks. In addition, the effect of spray-drying and freeze-drying on changes in antioxidative activity is examined. We find that in fermented soymilk both the inhibition of ascorbate autoxidation, and the reducing activity and scavenging effect of superoxide anion radicals varied with the starters used, but nevertheless are significantly higher than those found in unfermented soymilk. In general, antioxidative activity in soymilk fermented with lactic acid bacteria and bifidobacteria simultaneously is significantly higher (P < 0.05) than that fermented with either individually. Moreover, antioxidative activity increases as the fermentation period is extended. However, unfermented soymilk shows an H2O2-scavenging effect, while there is no scavenging effect except for the accumulation of H2O2 in fermented soymilk. Finally, we find that freeze-drying causes a significantly lesser (P < 0.05) reduction in the antioxidative activity of soymilk than does spray-drying. Irrespective of the drying method and the starters used for fermentation. The antioxidative activity of fermented soymilk reduces after drying yet remains higher than that of dried unfermented soymilk.

  17. The effect of the neural activity on topological properties of growing neural networks.

    PubMed

    Gafarov, F M; Gafarova, V R

    2016-09-01

    The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.

  18. Interaction Activities in the Foreign Classroom, or How to Grow a Tulip-Rose

    ERIC Educational Resources Information Center

    Paulston, Christina Bratt; Selekman, Howard R.

    1976-01-01

    A report is made on the use of foreign language for spontaneous communication in an elementary language class. Four correction-free, peer communicative/interaction activities are outlined according to procedures, objectives, and evaluations. (Author/RM)

  19. Filamentous sulfur bacteria of activated sludge: characterization of Thiothrix, Beggiatoa, and Eikelboom type 021N strains.

    PubMed Central

    Williams, T M; Unz, R F

    1985-01-01

    Seventeen strains of filamentous sulfur bacteria were isolated in axenic culture from activated sludge mixed liquor samples and sulfide-gradient enrichment cultures. Isolation procedures involved plating a concentrated inoculum of washed filaments onto media containing sulfide or thiosulfate. The isolates were identified as Thiothrix spp., Beggiatoa spp., and an organism of uncertain taxonomic status, designated type 021N. All bacteria were gram negative, reduced nitrate, and formed long, multicellular trichomes with internal reserves of sulfur, volutin, and sudanophilic material. Thiothrix spp. formed rosettes and gonidia, and four of six strains were ensheathed. Type 021N organisms utilized glucose, lacked a sheath, and differed from Thiothrix spp. in several aspects of cellular and cultural morphology. Beggiatoa spp. lacked catalase and oxidase, and filaments were motile. Biochemical and physiological characterization of the isolates revealed important distinguishing features between the three groups of bacteria. Strain differences were most evident among the Thiothrix cultures. A comparison of the filamentous sulfur bacteria with freshwater strains of Leucothrix was made also. Images PMID:4004221

  20. Molecular basis of active copper resistance mechanisms in Gram-negative bacteria.

    PubMed

    Bondarczuk, Kinga; Piotrowska-Seget, Zofia

    2013-12-01

    Copper is a metallic element that is crucial for cell metabolism; however, in extended concentrations, it is toxic for all living organisms. The dual nature of copper has forced organisms, including bacteria, to keep a tight hold on cellular copper content. This challenge has led to the evolution of complex mechanisms that on one hand enable them to deliver the essential element and on the other to protect cells against its toxicity. Such mechanisms have been found in both eukaryotic and prokaryotic cells. In bacteria a number of different systems such as extra- and intracellular sequestration, enzymatic detoxification, and metal removal from the cell enabling them to survive in the presence of high concentration of copper have been identified. Gram-negative bacteria, due to their additional compartment, need to deal with both cytoplasmic and periplasmic copper. Therefore, these bacteria have evolved intricate and precisely regulated systems which interact with each other. In this review the active mechanisms of copper resistance at their molecular level are discussed.

  1. Measurement of ice nucleation-active bacteria on plants and in precipitation by quantitative PCR.

    PubMed

    Hill, Thomas C J; Moffett, Bruce F; Demott, Paul J; Georgakopoulos, Dimitrios G; Stump, William L; Franc, Gary D

    2014-02-01

    Ice nucleation-active (INA) bacteria may function as high-temperature ice-nucleating particles (INP) in clouds, but their effective contribution to atmospheric processes, i.e., their potential to trigger glaciation and precipitation, remains uncertain. We know little about their abundance on natural vegetation, factors that trigger their release, or persistence of their ice nucleation activity once airborne. To facilitate these investigations, we developed two quantitative PCR (qPCR) tests of the ina gene to directly count INA bacteria in environmental samples. Each of two primer pairs amplified most alleles of the ina gene and, taken together, they should amplify all known alleles. To aid primer design, we collected many new INA isolates. Alignment of their partial ina sequences revealed new and deeply branching clades, including sequences from Pseudomonas syringae pv. atropurpurea, Ps. viridiflava, Pantoea agglomerans, Xanthomonas campestris, and possibly Ps. putida, Ps. auricularis, and Ps. poae. qPCR of leaf washings recorded ∼10(8) ina genes g(-1) fresh weight of foliage on cereals and 10(5) to 10(7) g(-1) on broadleaf crops. Much lower populations were found on most naturally occurring vegetation. In fresh snow, ina genes from various INA bacteria were detected in about half the samples but at abundances that could have accounted for only a minor proportion of INP at -10°C (assuming one ina gene per INA bacterium). Despite this, an apparent biological source contributed an average of ∼85% of INP active at -10°C in snow samples. In contrast, a thunderstorm hail sample contained 0.3 INA bacteria per INP active at -10°C, suggesting a significant contribution to this sample.

  2. Measurement of Ice Nucleation-Active Bacteria on Plants and in Precipitation by Quantitative PCR

    PubMed Central

    Moffett, Bruce F.; DeMott, Paul J.; Georgakopoulos, Dimitrios G.; Stump, William L.; Franc, Gary D.

    2014-01-01

    Ice nucleation-active (INA) bacteria may function as high-temperature ice-nucleating particles (INP) in clouds, but their effective contribution to atmospheric processes, i.e., their potential to trigger glaciation and precipitation, remains uncertain. We know little about their abundance on natural vegetation, factors that trigger their release, or persistence of their ice nucleation activity once airborne. To facilitate these investigations, we developed two quantitative PCR (qPCR) tests of the ina gene to directly count INA bacteria in environmental samples. Each of two primer pairs amplified most alleles of the ina gene and, taken together, they should amplify all known alleles. To aid primer design, we collected many new INA isolates. Alignment of their partial ina sequences revealed new and deeply branching clades, including sequences from Pseudomonas syringae pv. atropurpurea, Ps. viridiflava, Pantoea agglomerans, Xanthomonas campestris, and possibly Ps. putida, Ps. auricularis, and Ps. poae. qPCR of leaf washings recorded ∼108 ina genes g−1 fresh weight of foliage on cereals and 105 to 107 g−1 on broadleaf crops. Much lower populations were found on most naturally occurring vegetation. In fresh snow, ina genes from various INA bacteria were detected in about half the samples but at abundances that could have accounted for only a minor proportion of INP at −10°C (assuming one ina gene per INA bacterium). Despite this, an apparent biological source contributed an average of ∼85% of INP active at −10°C in snow samples. In contrast, a thunderstorm hail sample contained 0.3 INA bacteria per INP active at −10°C, suggesting a significant contribution to this sample. PMID:24317082

  3. Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria.

    PubMed

    Pham, Thi Huong; Liang, Zhao-Xun; Marcellin, Esteban; Turner, Mark S

    2016-11-01

    Bacteria can sense environmental cues and alter their physiology accordingly through the use of signal transduction pathways involving second messenger nucleotides. One broadly conserved second messenger is cyclic-di-AMP (c-di-AMP) which regulates a range of processes including cell wall homeostasis, potassium uptake, DNA repair, fatty acid synthesis, biofilm formation and central metabolism in bacteria. The intracellular pool of c-di-AMP is maintained by the activities of diadenylate cyclase (DAC) and phosphodiesterase (PDE) enzymes, as well as possibly via c-di-AMP export. Whilst extracellular stimuli regulating c-di-AMP levels in bacteria are poorly understood, recent work has identified effector proteins which directly interact and alter the activity of DACs. These include the membrane bound CdaR and the phosphoglucosamine mutase GlmM which both bind directly to the membrane bound CdaA DAC and the recombination protein RadA which binds directly to the DNA binding DisA DAC. The genes encoding these multiprotein complexes are co-localised in many bacteria providing further support for their functional connection. The roles of GlmM in peptidoglycan synthesis and RadA in Holliday junction intermediate processing suggest that c-di-AMP synthesis by DACs will be responsive to these cellular activities. In addition to these modulatory interactions, permanent dysregulation of DAC activity due to suppressor mutations can occur during selection to overcome growth defects, rapid cell lysis and osmosensitivity. DACs have also been investigated as targets for the development of new antibiotics and several small compound inhibitors have recently been identified. This review aims to provide an overview of how c-di-AMP synthesis by DACs can be regulated.

  4. Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil.

    PubMed

    Armada, Elisabeth; Roldán, Antonio; Azcon, Rosario

    2014-02-01

    The effectiveness of autochthonous plant growth-promoting rhizobacteria was studied in Lavandula dentata and Salvia officinalis growing in a natural arid Mediterranean soil under drought conditions. These bacteria identified as Bacillus megaterium (Bm), Enterobacter sp. (E), Bacillus thuringiensis (Bt), and Bacillus sp. (Bsp). Each bacteria has different potential to meliorate water limitation and alleviating drought stress in these two plant species. B. thuringiensis promoted growth and drought avoidance in Lavandula by increasing K content, by depressing stomatal conductance, and it controlled shoot proline accumulation. This bacterial effect on increasing drought tolerance was related to the decrease of glutathione reductase (GR) and ascorbate peroxidase (APX) that resulted sensitive indexes of lower cellular oxidative damage involved in the adaptative drought response in B. thuringiensis-inoculated Lavandula plants. In contrast, in Salvia, having intrinsic lower shoot/root ratio, higher stomatal conductance and lower APX and GR activities than Lavandula, the bacterial effects on nutritional, physiological and antioxidant enzymatic systems were lower. The benefit of bacteria depended on intrinsic stress tolerance of plant involved. Lavadula demonstrated a greater benefit than Salvia to control drought stress when inoculated with B. thuringiensis. The bacterial drought tolerance assessed as survival, proline, and indolacetic acid production showed the potential of this bacteria to help plants to grow under drought conditions. B. thuringiensis may be used for Lavandula plant establishment in arid environments. Particular characteristic of the plant species as low shoot/root ratio and high stomatal conductance are important factors controlling the bacterial effectiveness improving nutritional, physiological, and metabolic plant activities.

  5. Phylogenetic diversity and antimicrobial activity of marine bacteria associated with the soft coral Sarcophyton glaucum.

    PubMed

    ElAhwany, Amani M D; Ghozlan, Hanan A; ElSharif, Hafed A; Sabry, Soraya A

    2015-01-01

    Coral reefs are the most biodiverse and biologically productive of all marine ecosystems. Corals harbor diverse and abundant prokaryotic groups. However, little is known about the diversity of coral-associated microorganisms. We used molecular techniques to identify and compare the culturable bacterial assemblages associated with the soft coral Sarcophyton glaucum from the Red sea. Different media were utilized for microbial isolation, and the phylogeny of the culturable bacteria associated with the coral was analyzed based on 16S rDNA sequencing. The coral associated bacteria were found to be representatives within the Gammaproteobacteria, Actinobacteria, and Firmicutes. Antimicrobial activities of twenty bacterial isolates were tested against four pathogenic bacteria (Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa, Vibrio fluvialis) and three fungi (Penicillium sp., Aspergillus niger, Candida albicans). A relatively high proportion of bacterial strains displayed distinct antibacterial and antifungal activities, suggesting that soft coral-associated microorganisms may aid their host in protection against marine pathogens. Members of genera Bacillus and Pseudomonas had the highest proportion of antimicrobial activity which supported the hypothesis that they might play a protective role in the coral hosts.

  6. Cold-active hydrolases producing bacteria from two different sub-glacial Himalayan lakes.

    PubMed

    Sahay, Harmesh; Babu, Bandamaravuri Kishore; Singh, Surendra; Kaushik, Rajeev; Saxena, Anil K; Arora, Dilip K

    2013-08-01

    Microorganisms, native to the cold environments have successfully acclimatized their physiological, metabolic, and biological features, exhibiting uniqueness in their enzymes, proteins, and membrane structures. These cold-active enzymes have immense biotechnological potential. The diversity of culturable bacteria in two different water lakes (the sub-glacial freshwater and the brackish) of Himalayas was analyzed using SYBR green staining and cultural methods. A total of 140 bacteria were isolated and were grouped as psychrophiles, psychrotrophs, and psychrotolerant organisms, based on their optimal temperature for growth. The amplified ribosomal DNA restriction analysis using three restriction enzymes facilitated the grouping of these isolates into 96 genotypes at ≥85% polymorphism. Phylogenetic analysis using 16S rRNA gene sequences revealed that the bacterial strains from both lakes belonged to Firmicutes, Proteobacteria (α, β, and γ) or Actinobacteria. Screening of the germplasm for the activity of different cold-active hydrolases such as protease, amylase, xylanase, and cellulase, revealed that about 16 isolates were positive, and exhibiting a wide range of stability at various temperature and pH. Our results suggest that the distinctly different ecosystems of sub-glacial freshwater and brackish water lakes have diverse groups of bacteria, which can be an excellent source of extracellular hydrolases with a wide range of thermal stability.

  7. Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture.

    PubMed

    Cheng, Liang; Cord-Ruwisch, Ralf

    2013-10-01

    In general, bioprocesses can be subdivided into naturally occurring processes, not requiring sterility (e.g., beer brewing, wine making, lactic acid fermentation, or biogas digestion) and other processes (e.g., the production of enzymes and antibiotics) that typically require a high level of sterility to avoid contaminant microbes overgrowing the production strain. The current paper describes the sustainable, non-sterile production of an industrial enzyme using activated sludge as inoculum. By using selective conditions (high pH, high ammonia concentration, and presence of urea) for the target bacterium, highly active ureolytic bacteria, physiologically resembling Sporosarcina pasteurii were reproducibly enriched and then continuously produced via chemostat operation of the bioreactor. When using a pH of 10 and about 0.2 M urea in a yeast extract-based medium, ureolytic bacteria developed under aerobic chemostat operation at hydraulic retention times of about 10 h with urease levels of about 60 μmol min⁻¹ ml⁻¹ culture. For cost minimization at an industrial scale the costly protein-rich yeast extract medium could be replaced by commercial milk powder or by lysed activated sludge. Glutamate, molasses, or glucose-based media did not result in the enrichment of ureolytic bacteria by the chemostat. The concentration of intracellular urease was sufficiently high such that the produced raw effluent from the reactor could be used directly for biocementation in the field.

  8. Trace elements and activity of antioxidative enzymes in Cistus ladanifer L. growing on an abandoned mine area.

    PubMed

    Santos, Erika S; Abreu, Maria Manuela; Nabais, Cristina; Saraiva, Jorge A

    2009-10-01

    The Mediterranean shrub Cistus ladanifer grows naturally in São Domingos (Portugal), an abandoned copper mine. High levels of trace elements in plants can generate oxidative stress increasing the activity of antioxidant enzymes. The aim of this work was to evaluate and compare As, Cu, Pb and Zn concentrations and the activity of the soluble and cell wall ionically bounded forms of the enzymes catalase, peroxidase and superoxide dismutase in leaves of C. ladanifer, collected in spring and summer, growing on São Domingos mine and on a non-contaminated area (Pomarão). São Domingos soils showed high total concentrations of As (2.6 g kg(-1)) and Pb (7.3 g kg(-1)) however the available fraction represented less than 1.5% of the total. C. ladanifer population from mine showed tolerance to Pb and Zn, which attain in leaves concentrations considered toxic for plants. The enzymatic activity of catalase, peroxidise and superoxide dismutase varied with plant populations and seasons, although with no particular trend, being specific to each trace element and enzyme cell localization. Catalase activity was evenly distributed between the soluble and ionically bounded forms, whereas the ionically bounded form of peroxidase predominated relatively to total activity, and the opposite was observed for superoxide dismutase. Spring and summer leaves from the two areas presented enzymatic activities in both fractions except to peroxidase soluble activities in leaves collected in summer. C. ladanifer enzymatic activity seems to be related with the co-existence of different stress factors (trace elements concentration, temperature, UV radiation and drought). The survival and growth of this species on contaminated mining soils is due to the presence of effective antioxidant enzyme-based defence systems.

  9. Coagulase-negative staphylococci: pathogenesis, occurrence of antibiotic resistance genes and in vitro effects of antimicrobial agents on biofilm-growing bacteria.

    PubMed

    Szczuka, Ewa; Jabłońska, Lucyna; Kaznowski, Adam

    2016-12-01

    Coagulase-negative staphylococci (CoNS) are opportunistic pathogens that particularly cause infections in patients with implanted medical devices. The present research was performed to study the virulence potential of 53 clinical isolates of Staphylococcus capitis, Staphylococcus auricularis, Staphylococcus lugdunensis, Staphylococcus simulans, Staphylococcus cohnii and Staphylococcus caprae. All clinical strains were clonally unrelated. Isolates carried genes encoding resistance to β-lactam (mecA) (15 %), aminoglycoside [aac(6')/aph(2″)(11 %), aph (3')-IIIa (15 %), ant(4')-Ia (19 %)] and macrolide, lincosamide and streptogramin B (MLSB) [erm(A) (4 %), erm(B) (13 %), erm(C) (41 %), msr(A) (11 %)] antibiotics. CoNS isolates (64 %) were able to form biofilms. Confocal laser scanning microscopy revealed that these biofilms formed a three-dimensional structure composed mainly of living cells. All biofilm-positive strains carried the ica operon. In vitro studies demonstrated that a combination treatment with tigecycline and rifampicin was more effective against biofilms than one with ciprofloxacin and rifampicin. The minimum biofilm eradication concentration values were 0.062-0.5 µg ml-1 for tigecycline/rifampicin and 0.250-2 µg ml-1 for ciprofloxacin/rifampicin. All CoNS strains adhered to the human epithelial cell line HeLa, and more than half of the isolates were able to invade the HeLa cells, although most invaded relatively poorly. The virulence of CoNS is also attributed to their cytotoxic effects on HeLa cells. Incubation of HeLa cells with culture supernatant of the CoNS isolates resulted in cell death. The results indicate that the pathogenicity of S. capitis, S. auricularis, S. lugdunensis, S. cohnii and S. caprae is multi-factorial, involving the ability of these bacteria to adhere to human epithelial cells, form biofilms and invade and destroy human cells.

  10. Ozonated saline shows activity against planktonic and biofilm growing Staphylococcus aureus in vitro: a potential irrigant for infected wounds.

    PubMed

    Al-Saadi, Hayder; Potapova, Inga; Rochford, Edward Tj; Moriarty, Thomas F; Messmer, Peter

    2016-10-01

    Infections associated with deep wounds require extensive surgical and medical care. New adjunctive treatments are required to aid in the eradication of the bacterial biofilms found on infected wounds and, in particular, any underlying hardware. Ozone has been used as a safe and efficient disinfectant in water treatment plants for many years. The purpose of this study is to investigate the anti-biofilm potential of ozonated saline against biofilms of Staphylococcus aureus, a microorganism commonly implicated in wound infections. A custom-made bacterial biofilm bioreactor was used to grow S. aureus biofilms on discs of medical grade titanium alloy. An ozone generator was connected in-line and biofilms and planktonic bacteria were exposed to ozone in saline. Cytotoxicity was assessed against primary ovine osteoblasts in the same system. In tests against planktonic S. aureus, a 99% reduction in bacterial numbers was detected within 15 minutes of exposure. S. aureus biofilms were significantly more resistant to ozone, although complete eradication of the biofilm was eventually achieved within 5 hours. Ozonated saline was not found to be cytotoxic to primary ovine osteoblasts. Ozonated saline may be suitable as an adjuvant therapy to treat patients as an instillation fluid for wound irrigation and sterilisation.

  11. Growing into Greatness: A Study of a Local History Group of Active-Retired Learners

    ERIC Educational Resources Information Center

    Corrigan, Trudy; Byrne, Brid; Harris, Phyllis; Lalor, Maureen; O'Connor, Maura; O'Reilly, Kathleen; Quinn, Frank; Forde, Kathleen

    2005-01-01

    Research in Canada on the learning needs of older people looked at such issues as how to cope with changes in society, the need to make a contribution and the need to be influential. The White Paper on Adult Education "Learning for Life" notes that strategies for active ageing stress the critical importance of access to learning as a key…

  12. Inequity outside the Classroom: Growing Class Differences in Participation in Extracurricular Activities

    ERIC Educational Resources Information Center

    Snellman, Kaisa; Silva, Jennifer M.; Putnam, Robert D.

    2015-01-01

    In this article, the authors report on research that shows that extracurricular activities help cultivate the skills, connections, and knowledge that prepare children for lifelong success. They add, however, that low-income students are increasingly being excluded from participating. Struggling with budget cuts and deficits, many school districts…

  13. Anti-Biofilm Activities from Marine Cold Adapted Bacteria Against Staphylococci and Pseudomonas aeruginosa

    PubMed Central

    Papa, Rosanna; Selan, Laura; Parrilli, Ermenegilda; Tilotta, Marco; Sannino, Filomena; Feller, Georges; Tutino, Maria L.; Artini, Marco

    2015-01-01

    Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter, and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules. The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules and to test their

  14. Influence of earthworm activity on gene transfer from Pseudomonas fluorescens to indigenous soil bacteria.

    PubMed Central

    Daane, L L; Molina, J A; Berry, E C; Sadowsky, M J

    1996-01-01

    We have developed a model system to assess the influence of earthworm activity on the transfer of plasmid pJP4 from an inoculated donor bacterium, Pseudomonas fluorescens C5t (pJP4), to indigenous soil microorganisms. Three different earthworm species (Lumbricus terrestris, Lumbricus rubellus, and Aporrectodea trapezoides), each with unique burrowing, casting, and feeding behaviors, were evaluated. Soil columns were inoculated on the surface with 10(8) cells per g of soil of the donor bacterium, and after a 2-week incubation period, donor, transconjugant, and total bacteria were enumerated at 5-cm-depth intervals. Transconjugants were confirmed by use of colony hybridization with a mer gene probe. In situ gene transfer of plasmid pJP4 from P. fluorescens C5t to indigenous soil bacteria was detected in all inoculated microcosms. In the absence of earthworms, the depth of recovery was limited to the top 5 cm of the column, with approximately 10(3) transconjugants per g of soil. However, the total number of transconjugants recovered from soil was significantly greater in microcosms containing either L. rubellus or A. trapezoides, with levels reaching about 10(5) CFU/g of soil. In addition, earthworms distributed donor and transconjugant bacteria throughout the microcosm columns, with the depth of recovery dependent on the burrowing behavior of each earthworm species. Donor and transconjugant bacteria were also recovered from earthworm casts and inside developing cocoons. Transconjugant bacteria from the indigenous soil microflora were classified as belonging to Acidovorax spp., Acinetobacter spp., Agrobacterium spp., Pasteurella spp., Pseudomonas spp., and Xanthomonas spp. PMID:8593052

  15. Anti-Biofilm Activities from Marine Cold Adapted Bacteria Against Staphylococci and Pseudomonas aeruginosa.

    PubMed

    Papa, Rosanna; Selan, Laura; Parrilli, Ermenegilda; Tilotta, Marco; Sannino, Filomena; Feller, Georges; Tutino, Maria L; Artini, Marco

    2015-01-01

    Microbial biofilms have great negative impacts on the world's economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter, and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules. The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules and to test their

  16. Antibacterial activities of the methanol extracts of seven Cameroonian dietary plants against bacteria expressing MDR phenotypes.

    PubMed

    Seukep, Jackson A; Fankam, Aimé G; Djeussi, Doriane E; Voukeng, Igor K; Tankeo, Simplice B; Noumdem, Jaurès Ak; Kuete, Antoine Hln; Kuete, Victor

    2013-01-01

    The morbidity and mortality caused by bacterial infections significantly increased with resistance to commonly used antibiotics. This is partially due to the activation of efflux pumps in Gram-negative bacteria. The present work designed to assess the in vitro antibacterial activities of seven Cameroonian dietary plants (Sesamum indicum, Sesamum radiatum, Cinnamomum zeylanicum, Corchous olitorius, Cyperus esculentus, Adansonia digitata, Aframomum kayserianum), against multidrug resistant (MDR) Gram-negative bacteria over expressing active efflux pumps. The standard phytochemical methods were used to detect the main classes of secondary metabolites in the extracts. The antibacterial activities of the studied extracts in the absence or presence of an efflux pump inhibitor (PAβN) were evaluated using liquid microbroth dilution method. The results obtained indicated that apart from the extract of C. esculentus, all other samples contained alkaloids, phenols and polyphenols meanwhile other classes of chemicals were selectively present. The studied extracts displayed antibacterial activities with minimal inhibitory concentrations (MICs) values ranged from 64 to 1024 μg/mL on the majority of the 27 tested microbial strains. The extract of S. indicum was active against 77.77% of the tested microorganisms whilst the lowest MIC value (64 μg/mL) was recorded with that of A. kayserianum against E. aerogenes EA294. The results of the present work provide baseline information on the possible used of the tested Cameroonian dietary plants in the treatment of bacterial infections including multi-drug resistant phenotypes.

  17. [SCREENING OF WILD SPREAD AND CULTIVATED OF BUXUS SPECIES GROWING IN GEORGIA ON THE CONTENT OF ALKALOIDS AND BIOLOGICAL ACTIVITY].

    PubMed

    Vachnadze, N; Mchedlidze, Q; Novikova, J; Suladze, T; Vachnadze, V

    2016-07-01

    Georgian flora is represented by about 4150 plant species. Many important alkaloid-containing plant species and among of them are species Buxus L. of genus in Adjara. The aims of the research were: sequential screening of the plants for the consistence of alkaloids; Study of anatomical characteristics of Buxus colchica Pojark. and revealing of specific pharmacological activity of steroidal alkaloids. The objects of research were B. colchica, B. balearika and B. sempervirens, growing in Adjara (Georgia), collected in active phase of flowering of the plants. There were revealed 370 species of alkaloid containing plants. Sum of alkaloids and crude aqueous extract have spasmolitic and antihistaminic activity. Experimental anatomical research of diagnostic characteristics of the bines showed the existence of monocyclic transient system with fiber like tracheids, dorsoventral mesophyll of the leaves; the structure for the upper part of epidermis is linear and the lower part is curved, type of stomata is paracitic.

  18. Studies on the effect of inoculation of activated sludge with bacteria actively degrading hydrocarbons on the biodegradation of petroleum products.

    PubMed

    Bieszkiewicz, Ewa; Boszczyk-Maleszak, Hanka; Włodarczyk, Anna; Horoch, Maciej

    2002-01-01

    Eighteen strains of bacteria were isolated from activated sludge purifying petroleum-refining wastewaters. These strains were plated on solidified mineral medium supplemented with oil fraction in concentration 1000 mg/l. Four of the strains that grew best in the presence of oil were selected for further studies. The strains were identified based on Bonde's scheme and microscopic observations. Three of them belonged to the genus Arthrobacter and one to the genus Micrococcus. Stationary cultures of single strains and their mixtures were set up in mineral medium containing oil (sterile and non-sterile) as sole carbon source in concentration 1000 mg/l. The oils were found to be removed the most efficiently by a mixture of the strains. After 14 days of culture the amount of oil was utilized by from 63 to 95%. In the next stage of the studies the bacteria were used to inoculate activated sludge. Stationary cultures of the activated sludge were set up in mineral medium with oil. The utilisation of petroleum products by non-inoculated activated sludge (control), activated sludge inoculated with a single strain or a mixture of all four strains was examined. In both inoculated activated sludge cultures approximately 80% of the oils were removed, compared to 60% in the control activated sludge. Therefore, inoculated activated sludge showed 20% higher effectiveness of removal of petroleum derivatives.

  19. Macrophages sense and kill bacteria through carbon monoxide-dependent inflammasome activation.

    PubMed

    Wegiel, Barbara; Larsen, Rasmus; Gallo, David; Chin, Beek Yoke; Harris, Clair; Mannam, Praveen; Kaczmarek, Elzbieta; Lee, Patty J; Zuckerbraun, Brian S; Flavell, Richard; Soares, Miguel P; Otterbein, Leo E

    2014-11-01

    Microbial clearance by eukaryotes relies on complex and coordinated processes that remain poorly understood. The gasotransmitter carbon monoxide (CO) is generated by the stress-responsive enzyme heme oxygenase-1 (HO-1, encoded by Hmox1), which is highly induced in macrophages in response to bacterial infection. HO-1 deficiency results in inadequate pathogen clearance, exaggerated tissue damage, and increased mortality. Here, we determined that macrophage-generated CO promotes ATP production and release by bacteria, which then activates the Nacht, LRR, and PYD domains-containing protein 3 (NALP3) inflammasome, intensifying bacterial killing. Bacterial killing defects in HO-1-deficient murine macrophages were restored by administration of CO. Moreover, increased CO levels enhanced the bacterial clearance capacity of human macrophages and WT murine macrophages. CO-dependent bacterial clearance required the NALP3 inflammasome, as CO did not increase bacterial killing in macrophages isolated from NALP3-deficient or caspase-1-deficient mice. IL-1β cleavage and secretion were impaired in HO-1-deficient macrophages, and CO-dependent processing of IL-1β required the presence of bacteria-derived ATP. We found that bacteria remained viable to generate and release ATP in response to CO. The ATP then bound to macrophage nucleotide P2 receptors, resulting in activation of the NALP3/IL-1β inflammasome to amplify bacterial phagocytosis by macrophages. Taken together, our results indicate that macrophage-derived CO permits efficient and coordinated regulation of the host innate response to invading microbes.

  20. In Vitro Antimicrobial Activity of Embothrium coccineum Used as Traditional Medicine in Patagonia against Multiresistant Bacteria.

    PubMed

    Canales, Nicole; Montenegro, Iván; Párraga, Mario; Olguín, Yusser; Godoy, Patricio; Werner, Enrique; Madrid, Alejandro

    2016-10-31

    Embothrium coccineum J.R. Forst. & G. Forst is an evergreen tree that has been used as a folk remedy for the treatment of neuralgia, tooth pains, wound healing, and glandular conditions, as well as an antiseptic agent against bacterial infection. The antibacterial activities of sequential extracts (hexane, dichloromethane, ethyl acetate, and ethanol) from the leaves of E. coccineum were evaluated by means of the micro-dilution assay against six (Escherichia coli; Klebsiella pneumoniae; Proteus mirabilis; Pseudomonas aeruginosa; Staphylococcus aureus and Streptococcus pyogenes) multiresistant bacteria strains. Ethyl acetate extract showed the best spectra of antibacterial activity against all tested bacteria, and was analyzed by gas chromatography-mass spectrometry (GC-MS) for its composition. The results of the present work provide useful baseline information for the potential development and use of nanoparticles and/or nanofibers doped with extracts of E. coccineum in the fight against multiresistant bacteria, which would allow the validation of the traditional use of E. coccineum by native peoples of Patagonia as an antimicrobial agent in the biomedical Field.

  1. Antibacterial activity of Lactobacillus spp. isolated from the feces of healthy infants against enteropathogenic bacteria.

    PubMed

    Davoodabadi, Abolfazl; Soltan Dallal, Mohammad Mehdi; Rahimi Foroushani, Abbas; Douraghi, Masoumeh; Sharifi Yazdi, Mohammad Kazem; Amin Harati, Farzaneh

    2015-08-01

    Lactobacilli are normal microflora of the gastrointestinal (GI) tract and are a heterogeneous group of lactic acid bacteria (LAB). Lactobacillus strains with Probiotic activity may have health Benefits for human. This study investigates the probiotic potential of Lactobacillus strains obtained from the feces of healthy infants and also explores antibacterial activity of Lactobacillus strains with probiotic potential against enteropathogenic bacteria. Fecal samples were collected from 95 healthy infants younger than 18 months. Two hundred and ninety Lactobacillus strains were isolated and assessed for probiotic potential properties including ability to survive in gastrointestinal conditions (pH 2.0, 0.3% oxgall), adherence to HT-29 cells and antibiotic resistance. Six strains including Lactobacillus fermentum (4 strains), Lactobacillus paracasei and Lactobacillus plantarum showed good probiotic potential and inhibited the growth of enteropathogenic bacteria including ETEC H10407, Shigella flexneri ATCC 12022, Shigella sonnei ATCC 9290, Salmonella enteritidis H7 and Yersinia enterocolitica ATCC 23715. These Lactobacillus strains with probiotic potential may be useful for prevention or treatment of diarrhea, but further in vitro and in vivo studies on these strains are still required.

  2. In vivo activity of nifurzide and nifuroxazide in intestinal bacteria in man and gnotobiotic mice.

    PubMed

    Leonard, F; Andremont, A; Tancrede, C

    1985-06-01

    Although Gram-negative enteropathogenic bacteria are the target strains of nifurzide and nifuroxazide treatments, neither drug affected faecal counts of in vitro-susceptible Enterobacteriaceae in healthy volunteers. This absence of activity was shown to be due to the poor solubility of the drugs tested. Therefore, effect of high doses of nifurzide was investigated in gnotobiotic mice. Activity against in vitro susceptible enteropathogens was then observed. Normal bacterial cells were replaced in the faeces by elongated, nonseptate and unflagellated mutants. Moreover, the resistance to colonization by enterotoxigenic Escherichia coli and Shigella flexeri of an anaerobic flora of human origin was sharply decreased.

  3. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria.

    PubMed

    Shan, Bin; Cai, Yi-Zhong; Brooks, John D; Corke, Harold

    2007-07-11

    Cinnamomum burmannii Blume (cinnamon stick) from Indonesia is a little-investigated spice. In this study, the antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of cinnamon stick extract were evaluated against five common foodborne pathogenic bacteria (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Salmonella anatum). Cinnamon stick extract exhibited significant antibacterial properties. Major compounds in cinnamon stick were tentatively identified by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC-MS) as a predominant volatile oil component ((E)-cinnamaldehyde) and several polyphenols (mainly proanthocyanidins and (epi)catechins). Both (E)-cinnamaldehyde and proanthocyanidins significantly contributed to the antibacterial properties. Additionally, scanning electron microscopy was used to observe morphological changes of bacteria treated with the crude extract of cinnamon stick and its major components. This study suggests that cinnamon stick and its bioactive components have potential for application as natural food preservatives.

  4. Antimicrobial activity of tea catechin against canine oral bacteria and the functional mechanisms

    PubMed Central

    BAI, Lanlan; TAKAGI, Shiaki; ANDO, Tasuke; YONEYAMA, Hiroshi; ITO, Kumiko; MIZUGAI, Hiroyuki; ISOGAI, Emiko

    2016-01-01

    Epigallocatechin gallate (EGCG) is the major polyphenolic compound of green tea. Polyphenolic compounds were extracted from the leaf of Camellia sinensis (Japanese green tea), and the minimum inhibitory concentration against canine oral bacteria was measured. Subsequently, we investigated the inhibitory effects of polyphenolic compounds and EGCG on the growth of canine oral bacteria. EGCG showed antimicrobial activity against a model bacterium, Streptococcus mutans. Our results indicate that EGCG can inhibit the growth and biofilm formation of S. mutans and that EGCG does not interact with streptococcal lipoteichoic acid (LTA). Furthermore, our findings suggest that EGCG interacts with other component(s) of the bacterial membrane aside from streptococcal LTA to inhibit biofilm formation and damage biofilms. PMID:27246281

  5. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    PubMed

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation.

  6. Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium.

    PubMed

    Böttcher-Friebertshäuser, Eva; Klenk, Hans-Dieter; Garten, Wolfgang

    2013-11-01

    Influenza is an acute infection of the respiratory tract, which affects each year millions of people. Influenza virus infection is initiated by the surface glycoprotein hemagglutinin (HA) through receptor binding and fusion of viral and endosomal membranes. HA is synthesized as a precursor protein and requires cleavage by host cell proteases to gain its fusion capacity. Although cleavage of HA is crucial for virus infectivity, little was known about relevant proteases in the human airways for a long time. Recent progress in the identification and characterization of HA-activating host cell proteases has been considerable however and supports the idea of targeting HA cleavage as a novel approach for influenza treatment. Interestingly, certain bacteria have been demonstrated to support HA activation either by secreting proteases that cleave HA or due to activation of cellular proteases and thereby may contribute to virus spread and enhanced pathogenicity. In this review, we give an overview on activation of influenza viruses by proteases from host cells and bacteria with the main focus on recent progress on HA cleavage by proteases HAT and TMPRSS2 in the human airway epithelium. In addition, we outline investigations of HA-activating proteases as potential drug targets for influenza treatment.

  7. Distribution of Metabolically Active Prokaryotes (Archaea and Bacteria) throughout the Profiles of Chernozem and Brown Semidesert Soil

    NASA Astrophysics Data System (ADS)

    Semenov, M. V.; Manucharova, N. A.; Stepanov, A. L.

    2016-02-01

    The distribution of metabolically active cells of archaea and bacteria in the profiles of typical chernozems (Voronezh oblast) and brown semidesert soils (Astrakhan oblast) of natural and agricultural ecosystems was studied using the method of fluorescent in situ hybridization (FISH). The studied soils differed sharply in the microbial biomass and in the numbers of metabolically active cells of archaea and bacteria. The number of active bacterial cells was 3.5-7.0 times greater than that of archaea. In the arable chernozem, the numbers of active cells of archaea and bacteria were 2.6 and 1.5 times, respectively, lower than those in the chernozem under the shelterbelt. The agricultural use of the brown semidesert soil had little effect on the abundances of bacteria and archaea. The soil organic carbon content was the major factor controlling the numbers of metabolically active cells of both domains. However, the dependence of the abundance of bacteria on the organic matter content was more pronounced. The decrease in the organic carbon and total nitrogen contents down the soil profiles was accompanied by the decrease in the bacteria: archaea ratio attesting to a better adaptation of archaea to the permanent deficiency of carbon and nitrogen. The bacteria: archaea ratio can serve as an ecotrophic indicator of the state of soil microbial communities.

  8. ZL-2, a cathelicidin-derived antimicrobial peptide, has a broad antimicrobial activity against gram-positive bacteria and gram-negative bacteria in vitro and in vivo.

    PubMed

    Tu, Jiancheng; Wu, Geping; Zuo, Yun; Zhao, Lei; Wang, Shusheng

    2015-10-01

    Alloferons are a group of naturally occurring peptides primarily isolated from insects that are capable of stimulating mouse and human NK cell cytotoxicity toward cancer cells. In this study, we found that a modified antibacterial peptide had a broad range of action against both gram-positive and gram-negative bacteria. A time-course experiment showed that CFU counts rapidly decreased after ZL-2 treatment, with the bacteria nearly eliminated within 4 h. We also examined the synergy between the peptide and antibiotics. The peptide ZL-2 resulted in a significant synergistic improvement in the potencies of ampicillin, erythromycin and ceftazidime against methicillin-resistant bacteria. In addition, ZL-2 had no detectable cytotoxicity in mouse spleen cells or a mouse animal model. In the mouse model by i.p. inoculation with Escherichia coli, timely treatment of i.p. injection with ZL-2 resulted in 100-fold reduction in bacteria load in blood as well as 80% protection from death in the inoculated animals. In conclusion, we successfully identified a modified peptide with maximal bactericidal activity. This study also provides a potential therapeutic for the treatment of E. coli septicemia by increasing the activity of antimicrobials.

  9. In Vitro Antibacterial Activity of Several Plant Extracts and Oils against Some Gram-Negative Bacteria

    PubMed Central

    Al-Mariri, Ayman; Safi, Mazen

    2014-01-01

    Background: Medicinal plants are considered new resources for producing agents that could act as alternatives to antibiotics in the treatment of antibiotic-resistant bacteria. The aim of this study was to evaluate the antibacterial activity of 28 plant extracts and oils against four Gram-negative bacterial species. Methods: Experimental, in vitro, evaluation of the activities of 28 plant extracts and oils as well as some antibiotics against E. coli O157:H7, Yersinia enterocolitica O9, Proteus spp., and Klebsiella pneumoniae was performed. The activity against 15 isolates of each bacterium was determined by disc diffusion method at a concentration of 5%. Microdilution susceptibility assay was used in order to determine the minimal inhibitory concentrations (MICs) of the plant extracts, oils, and antibiotics. Results: Among the evaluated herbs, only Origanum syriacum L., Thymus syriacus Boiss., Syzygium aromaticum L., Juniperus foetidissima Wild, Allium sativum L., Myristica fragrans Houtt, and Cinnamomum zeylanicum L. essential oils and Laurus nobilis L. plant extract showed anti-bacterial activity. The MIC50 values of these products against the Gram-negative organisms varied from 1.5 (Proteus spp. and K. pneumoniae( and 6.25 µl/ml (Yersinia enterocolitica O9 ) to 12.5 µl/ml (E. coli O:157). Conclusion: Among the studied essential oils, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. essential oils were the most effective. Moreover, Cephalosporin and Ciprofloxacin were the most effective antibiotics against almost all the studied bacteria. Therefore, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. could act as bactericidal agents against Gram-negative bacteria. PMID:24453392

  10. Bacteria as source of diglycosidase activity: Actinoplanes missouriensis produces 6-O-α-L-rhamnosyl-β-D-glucosidase active on flavonoids.

    PubMed

    Neher, Bárbara D; Mazzaferro, Laura S; Kotik, Michael; Oyhenart, Jorge; Halada, Petr; Křen, Vladimír; Breccia, Javier D

    2016-04-01

    Bacteria represent an underexplored source of diglycosidases. Twenty-five bacterial strains from the genera Actinoplanes, Bacillus, Corynebacterium, Microbacterium, and Streptomyces were selected for their ability to grow in diglycosylated flavonoids-based media. The strains Actinoplanes missouriensis and Actinoplanes liguriae exhibited hesperidin deglycosylation activity (6-O-α-L-rhamnosyl-β-D-glucosidase activity, EC 3.2.1.168), which was 3 to 4 orders of magnitude higher than the corresponding monoglycosidase activities. The diglycosidase production was confirmed in A. missouriensis by zymographic assays and NMR analysis of the released disaccharide, rutinose. The gene encoding the 6-O-α-L-rhamnosyl-β-D-glucosidase was identified in the genome sequence of A. missouriensis 431(T) (GenBank accession number BAL86042.1) and functionally expressed in Escherichia coli. The recombinant protein hydrolyzed hesperidin and hesperidin methylchalcone, but not rutin, which indicates its specificity for 7-O-rutinosylated flavonoids. The protein was classified into the glycoside hydrolase family 55 (GH55) in contrast to the known eukaryotic diglycosidases, which belong to GH1 and GH5. These findings demonstrate that organisms other than plants and filamentous fungi can contribute to an expansion of the diglycosidase toolbox.

  11. Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies.

    PubMed

    Hagman, M; Nielsen, J L; Nielsen, P H; Jansen, J la C

    2008-03-01

    Mixtures of methanol and acetate as carbon source were investigated in order to determine their capacity to enhance denitrification and for analysis of the microbial composition and carbon degradation activity in activated sludge from wastewater treatment plants. Laboratory batch reactors at 20 degrees C were used for nitrate uptake rate (NUR) measurements in order to investigate the anoxic activity, while single and mixed carbon substrates were added to activated sludge. Microautoradiography (MAR) in combination with fluorescence in situ hybridisation (FISH) were applied for microbial analysis during exposure to different carbon sources. The NUR increased with additions of a mixture of acetate and methanol compared with additions of a single carbon source. MAR-FISH measurements demonstrated that the probe-defined group of Azoarcus was the main group of bacteria utilising acetate and the only active group utilising methanol under anoxic conditions. The present study indicated an improved denitrification potential by additions of a mixed carbon source compared with commonly used single-carbon additions. It is also established that Azoarcus bacteria are involved in the degradation of both acetate and methanol in the anoxic activated sludge.

  12. Antimicrobial activity of essential oil of Eucalyptus globulus against fish pathogenic bacteria

    PubMed Central

    Park, Joon-Woo; Wendt, Mitchell

    2016-01-01

    The antibacterial activities of the essential oil of Eucalyptus globulus (EOEG) was determined against 7 fish pathogenic bacteria (Edwardsiella tarda, Streptococcus iniae, S. parauberis, Lactococcus garviae, Vibrio harveyi, V. ichthyoenteri and Photobacterium damselae) obtained from farmed olive flounder. The inhibitory activity was evaluated by three methods: Disc diffusion method, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). According to the disc diffusion test, as the concentration of EOEG (5-40 µg) rises, the inhibitory zone increases in size. Compared with amoxicillin, tetracycline and chloramphenicol, EOEG showed similar antibacterial activity. The MIC of EOEG ranged from 7.8 to 125 mg/mL and MBC values ranged from 62 to 250 mg/mL. These results show that EOEG has antimicrobial activity against all seven bacteria, but there was no marked difference between each genus. From these results, it is suggested that EOEG can be used as an antimicrobial agent against fish bacterial diseases in the fish industry. PMID:27382376

  13. In-vitro activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota.

    PubMed

    Weintraub, Andrej; Rashid, Mamun-Ur; Nord, Carl Erik

    2016-12-01

    Solithromycin is a novel fluoroketolide with high activity against bacteria associated with community-acquired respiratory tract infections as well as gonorrhea. However, data on the activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota are scarce. In this study, 1024 Gram-positive and Gram-negative anaerobic isolates from the normal intestinal microbiota were analyzed for in-vitro susceptibility against solithromycin and compared to azithromycin, amoxicillin/clavulanic acid, ceftriaxone, metronidazole and levofloxacin by determining the minimum inhibitory concentration (MIC). Solithromycin was active against Bifidobacteria (MIC50, 0.008 mg/L) and Lactobacilli (MIC50, 0.008 mg/L). The MIC50 for Clostridia, Bacteroides, Prevotella and Veillonella were 0.5, 0.5, 0.125 and 0.016 mg/L, respectively. Gram-positive anaerobes were more susceptible to solithromycin as compared to the other antimicrobials tested. The activity of solithromycin against Gram-negative anaerobes was equal or higher as compared to other tested agents.

  14. How faceted liquid droplets grow tails: from surface topology to active motion

    NASA Astrophysics Data System (ADS)

    Sloutskin, Eli

    Among all possible shapes of a volume V, a sphere has the smallest surface area A. Therefore, liquid droplets are spherical, minimizing their interfacial energy γA for a given interfacial tension γ > 0 . This talk will demonstrate that liquid oil (alkane) droplets in water, stabilized by a common surfactant can be temperature-tuned to adopt icosahedral and other faceted shapes, above the bulk melting temperature of the oil. Although emulsions have been studied for centuries no faceted liquid droplets have ever been reported. The formation of an icosahedral shape is attributed to the interplay between γ and the elastic properties of the interfacial monomolecular layer, which crystallizes here 10-15K above bulk melting, leaving the droplet's bulk liquid. The icosahedral symmetry is dictated by twelve five-fold topological defects, forming within the hexagonally-packed interfacial crystalline monolayer. Moreover, we demonstrate that upon further cooling this `interfacial freezing' effect makes γ transiently switch its sign, leading to a spontaneous splitting of droplets and an active growth of their surface area, reminiscent of the classical spontaneous emulsification, yet driven by completely different physics. The observed phenomena allow deeper insights to be gained into the fundamentals of molecular elasticity and open new vitas for a wide range of novel nanotechnological applications, from self-assembly of complex shapes to new delivery strategies in bio-medicine. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research and to the Kahn Foundation for the purchase of equipment.

  15. Antinociceptive activity of extracts and secondary metabolites from wild growing and micropropagated plants of Renealmia alpinia

    PubMed Central

    Gómez-Betancur, Isabel; Cortés, Natalie; Benjumea, Dora; Osorio, Edison; León, Francisco; Cutler, Stephen J.

    2015-01-01

    Ethnopharmacological relevance Renealmia alpinia is native to the American continent and can be found from Mexico to Brazil, and in the Caribbean islands. It is known as “matandrea” in Colombia, and it has been commonly used in traditional medicine to treat painful diseases and ailments. Based on its traditional uses, it is of interest to evaluate the pharmacologic effects of this plant and its secondary metabolites. Materials and methods Methanol and aqueous extracts of wild and micropropagated R. alpinia (leaves) were obtained and chemically compared by High Performance Thin Layer Chromatography (HPTLC). The antinociceptive activity of these extracts was examined using an in vivo assay (Siegmund test). Additionally, the dichloromethane extract of R. alpinia was fractionated and pure compounds were isolated by chromatographic methods. The structure elucidation of isolated compounds was performed by NMR experiments and spectroscopic techniques and comparison with the literature data. Purified compounds were evaluated for their in vitro binding affinity for opioids and cannabinoids receptors. Results The dichloromethane extract of the plant’s aerial part afforded sinostrobin (1), naringenin 7,4′-dimethyl ether (2), 2′,6′-dihydroxy-4′-methoxychalcone (3), 4-methoxy-6-(2-phenylethenyl)-2H-pyran-2-one (4), naringenin 7-methyl ether (5) and 3,5-heptanediol, 1,7-diphenyl (6), which were isolated using chromatographic methods. Their chemical structures were established by physical and spectroscopic techniques. The antinociceptive effects observed in mice by extracts of wild and micropropagated plants were similar. The compounds isolated from R. alpinia do not show affinity to opioid or cannabinoid receptors. Conclusion Aqueous and methanol extracts of R. alpinia provide antinociceptive and analgesic effects in an in vivo model. These results contribute additional insight as to why this plant is traditionally used for pain management. Also, this is the first

  16. Chemical composition and antibacterial activity of Pinus halepensis Miller growing in West Northern of Algeria

    PubMed Central

    Fekih, Nadia; Allali, Hocine; Merghache, Salima; Chaïb, Faïza; Merghache, Djamila; El Amine, Mohamed; Djabou, Nassim; Muselli, Alain; Tabti, Boufeldja; Costa, Jean

    2014-01-01

    Objective To find new bioactive natural products, the chemical composition and to sudy the antibacterial activity of essential oil components extracted from the aerial parts of the Algerian aromatic plant Pinus halepensis Miller (P. halepensis) (needles, twigs and buds). Methods The essential oil used in this study was isolated by hydrodistillation using a Clevenger-type apparatus according to the European Pharmacopoeia. The chemical composition was investigated using GC-retention indices (RI) and GC-MS. Results Forty-nine compounds, representing 97.9% of the total collective oil, were identified. Essential oil was dominated by hydrocarbon compounds (80.6%) especially monoterpenes (65.5%). The major compounds from ten oils stations were: myrcene (15.2%-32.0%), α-pinene (12.2%-24.5%), E-β-caryophyllene (7.0%-17.1%), terpinolene (1.8%-13.3%), 2-phenyl ethyl isovalerate (4.8%-10.9%), terpinene-4-ol (1.0%-8.2 %) and sabinene (1.5%-6.3%). The intra-species variations of the chemical compositions of P. halepensis aerial parts essential oils from ten Algerian sample locations were investigated using statistical analysis. Essential oil samples were clustered in 2 groups by hierarchical cluster analysis, according to their chemical composition. The essential oil revealed an interesting antimicrobial effect against Lysteria monocytogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Acinetobacter baumanii, Citrobacter freundii and Klebsiella pneumoniae. Conclusions These results suggest that the essential oil from P. halepensis may be a new potential source as natural antimicrobial applied in pharmaceutical and food industries.

  17. Risks of hormonally active pharmaceuticals to amphibians: a growing concern regarding progestagens.

    PubMed

    Säfholm, Moa; Ribbenstedt, Anton; Fick, Jerker; Berg, Cecilia

    2014-11-19

    Most amphibians breed in water, including the terrestrial species, and may therefore be exposed to water-borne pharmaceuticals during critical phases of the reproductive cycle, i.e. sex differentiation and gamete maturation. The objectives of this paper were to (i) review available literature regarding adverse effects of hormonally active pharmaceuticals on amphibians, with special reference to environmentally relevant exposure levels and (ii) expand the knowledge on toxicity of progestagens in amphibians by determining effects of norethindrone (NET) and progesterone (P) exposure to 0, 1, 10 or 100 ng l(-1) (nominal) on oogenesis in the test species Xenopus tropicalis. Very little information was found on toxicity of environmentally relevant concentrations of pharmaceuticals on amphibians. Research has shown that environmental concentrations (1.8 ng l(-1)) of the pharmaceutical oestrogen ethinylestradiol (EE2) cause developmental reproductive toxicity involving impaired spermatogenesis in frogs. Recently, it was found that the progestagen levonorgestrel (LNG) inhibited oogenesis in frogs by interrupting the formation of vitellogenic oocytes at an environmentally relevant concentration (1.3 ng l(-1)). Results from the present study revealed that 1 ng NET l(-1) and 10 ng P l(-1) caused reduced proportions of vitellogenic oocytes and increased proportions of previtellogenic oocytes compared with the controls, thereby indicating inhibited vitellogenesis. Hence, the available literature shows that the oestrogen EE2 and the progestagens LNG, NET and P impair reproductive functions in amphibians at environmentally relevant exposure concentrations. The progestagens are of particular concern given their prevalence, the range of compounds and that several of them (LNG, NET and P) share the same target (oogenesis) at environmental exposure concentrations, indicating a risk for adverse effects on fertility in exposed wild amphibians.

  18. Risks of hormonally active pharmaceuticals to amphibians: a growing concern regarding progestagens

    PubMed Central

    Säfholm, Moa; Ribbenstedt, Anton; Fick, Jerker; Berg, Cecilia

    2014-01-01

    Most amphibians breed in water, including the terrestrial species, and may therefore be exposed to water-borne pharmaceuticals during critical phases of the reproductive cycle, i.e. sex differentiation and gamete maturation. The objectives of this paper were to (i) review available literature regarding adverse effects of hormonally active pharmaceuticals on amphibians, with special reference to environmentally relevant exposure levels and (ii) expand the knowledge on toxicity of progestagens in amphibians by determining effects of norethindrone (NET) and progesterone (P) exposure to 0, 1, 10 or 100 ng l−1 (nominal) on oogenesis in the test species Xenopus tropicalis. Very little information was found on toxicity of environmentally relevant concentrations of pharmaceuticals on amphibians. Research has shown that environmental concentrations (1.8 ng l−1) of the pharmaceutical oestrogen ethinylestradiol (EE2) cause developmental reproductive toxicity involving impaired spermatogenesis in frogs. Recently, it was found that the progestagen levonorgestrel (LNG) inhibited oogenesis in frogs by interrupting the formation of vitellogenic oocytes at an environmentally relevant concentration (1.3 ng l−1). Results from the present study revealed that 1 ng NET l−1 and 10 ng P l−1 caused reduced proportions of vitellogenic oocytes and increased proportions of previtellogenic oocytes compared with the controls, thereby indicating inhibited vitellogenesis. Hence, the available literature shows that the oestrogen EE2 and the progestagens LNG, NET and P impair reproductive functions in amphibians at environmentally relevant exposure concentrations. The progestagens are of particular concern given their prevalence, the range of compounds and that several of them (LNG, NET and P) share the same target (oogenesis) at environmental exposure concentrations, indicating a risk for adverse effects on fertility in exposed wild amphibians. PMID:25405966

  19. Looking for phosphate-accumulating bacteria in activated sludge processes: a multidisciplinary approach.

    PubMed

    Tarayre, Cédric; Charlier, Raphaëlle; Delepierre, Anissa; Brognaux, Alison; Bauwens, Julien; Francis, Frédéric; Dermience, Michaël; Lognay, Georges; Taminiau, Bernard; Daube, Georges; Compère, Philippe; Meers, Erik; Michels, Evi; Delvigne, Frank

    2017-01-29

    Over the past decades, an increasing need in renewable resources has progressively appeared. This trend concerns not only fossil fuels but also mineral resources. Wastewater and sewage sludge contain significant concentrations in phosphate and can be considered as a fertilizer source of the utmost importance. In wastewater treatment plants, the biological uptake of phosphate is performed by a specific microbiota: the phosphate-accumulating organisms. These microorganisms are recovered in sewage sludge. Here, we aimed to investigate the occurrence of phosphate accumulators in four wastewater treatment plants. A 16S metagenetic analysis identified the main bacterial phyla extracted from the aerobic treatment: α-Proteobacteria, β-Proteobacteria, and Sphingobacteria. An enrichment stage was performed to stimulate the specific growth of phosphate-accumulating bacteria in an acetate medium. An analysis of metabolic activities of sulfur and phosphorus highlighted strong modifications related to phosphorus and much less distinguishable effects with sulfur. A solid acetate medium containing 5-Br-4-Cl-3-indolyl phosphate was used to select potential phosphate-accumulating bacteria from the enriched consortia. The positive strains have been found to belong in the genera Acinetobacter, Corynebacterium, and Pseudomonas. Finally, electron microscopy was applied to the strains and allowed to confirm the presence of polyphosphate granules. Some of these bacteria contained granules the size of which exceeded 100 nm.

  20. Antimicrobial activities of novel cultivable bacteria isolated from marine sponge Tedania anhelans

    NASA Astrophysics Data System (ADS)

    Zeng, Zhen; Zhao, Jing; Ke, Caihuan; Wang, Dexiang

    2013-05-01

    Marine sponge Tedania anhelans distributes throughout the intertidal zone of Fujian, southeastern China, and is a potential source of natural bioactive products. The sponge harbors a large number of bacterial groups that have been identified using various techniques, including fluorescent in situ hybridization (FISH). Fractionation of dissociated sponge allowed isolation of 25 bacterial species. Based on 16S rRNA gene sequencing, phylogenetic analysis attributed most of these eubacteria to α- Proteobacteria, γ- Proteobacteria, Cytophaga / Flavobacterium / Bacteroidetes (CFB group), and the family Bacillaceae of Gram-positive bacteria. In sequence similarity, five putatively novel species were identified with less than 98% similarity to other strains in the NCBI database. Tests for antimicrobial activities were performed against Gram-positive bacteria, Gram-negative bacteria, fungi, antitumor indicators Escherichia coli 343/591 (with DNA repair deficiency), regular E. coli 343/636 (with different DNA repair capacity), and 10 bacterial isolates exhibited inhibitory bioactivities. Among these strains, three isolates were detected involving function gene NRPS-A domains, which were most closely related to the amino acid sequences of linear gramicidin synthetase and pyoverdine synthetase. These results contribute to our knowledge of the microbes associated with marine sponges and further reveal novel bacterial resources for the screening of bioactive marine natural products.

  1. In vivo study of spoilage bacteria on polyphenoloxidase activity and melanosis of modified atmosphere packaged Pacific white shrimp.

    PubMed

    Qian, Yun-Fang; Xie, Jing; Yang, Sheng-Ping; Wu, Wen-Hui; Xiong, Qing; Gao, Zhi-Li

    2014-07-15

    This study investigated the effect of the three spoilage bacteria (Carnobacterium maltaromaticum, Shewanella putrefaciens and Aeromonas salmonicida) on the development of melanosis by inoculating the bacteria on modified atmosphere packaged shrimp. The three bacteria, which inoculated at about 5 log cfu/g, proliferated to a maximum level of 7.49, 6.86 and 6.89 log cfu/g, respectively at the end of storage. In regards to the effect of bacteria on melanosis, it was found that C. maltaromaticum did not display a significant effect on PPO activity and melanosis, and A. salmonicida showed an inhibitory effect on PPO activity with an activity value of less than 1.5 Units/ml. However, the PPO activity of shrimp inoculated S. putrefaciens was about one time higher than other samples and greater melanosis was displayed in the first 48 h. As melanosis can cause sensory quality loss, the growth of S. putrefaciens should be limited.

  2. Isolation of Lactic Acid Bacteria Showing Antioxidative and Probiotic Activities from Kimchi and Infant Feces.

    PubMed

    Ji, Keunho; Jang, Na Young; Kim, Young Tae

    2015-09-01

    The purpose of this study was to investigate lactic acid bacteria with antioxidative and probiotic activities isolated from Korean healthy infant feces and kimchi. Isolates A1, A2, S1, S2, and S3 were assigned to Lactobacillus sp. and isolates A3, A4, E1, E2, E3, and E4 were assigned to Leuconostoc sp. on the basis of their physiological properties and 16S ribosomal DNA sequence analysis. Most strains were confirmed as safe bioresources through nonhemolytic activities and non-production of harmful enzymes such as β-glucosidase, β- glucuronidase and tryptophanase. The 11 isolates showed different resistance to acid and bile acids. In addition, they exhibited antibacterial activity against foodborne bacteria, especially Bacillus cereus, Listeria monocytogenes, and Escherichia coli. Furthermore, all strains showed significantly high levels of hydrophobicity. The antioxidant effects of culture filtrates of the 11 strains included 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging capacity, 2.2'- azino-bis (2-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity, and superoxide dismutase activity. The results revealed that most of the culture filtrates have effective scavenging activity for DPPH and ABTS radicals. All strains appeared to have effective superoxide dismutase activity. In conclusion, the isolated strains A1, A3, S1, and S3 have significant probiotic activities applicable to the development of functional foods and health-related products. These strains might also contribute to preventing and controlling several diseases associated with oxidative stress, when used as probiotics.

  3. Phytate degrading activities of lactic acid bacteria isolated from traditional fermented food

    NASA Astrophysics Data System (ADS)

    Damayanti, Ema; Ratisiwi, Febiyani Ndaru; Istiqomah, Lusty; Sembiring, Langkah; Febrisiantosa, Andi

    2017-03-01

    The objective of this study was to determine the potential of LAB with phytate degrading activity from fermented traditional food grain-based and legume-based. Lactic acid bacteria were isolated from different sources of traditional fermented food from Gunungkidul Yogyakarta Indonesia such as gembus tempeh (tofu waste), soybean tempeh, lamtoro tempeh (Leucaena bean) and kara tempeh. Isolation of LAB was performed using Total Plate Count (TPC) on de Man Rogosa Sharpe Agar (MRSA) medium supplemented with CaCO3. They were screened for their ability to degrade myo-inositol hexaphosphate or IP6 by using qualitative streak platemethod with modified de Man Rogosa-MorpholinoPropanesulfonic Acid Sharpe (MRS-MOPS) medium contained sodium salt of phytic acid as substrate and cobalt chloride staining (plate assay) method. The selected isolates were further assayed for phytase activities using quantitative method with spectrophotometer and the two selected isolates growth were optimized. Furthermore, thhe isolates that shown the highest phytase activity was characterized and identified using API 50 CH kitand 16S rRNA gene sequencing. The results showed that there were 18 LAB isolates obtained from samplesand 13 isolates were able to degrade sodium phytate based on qualitative screening. According to quantitative assay, the highest phytate degrading activities were found in TG-2(23.562 U/mL) and TG-1 (19.641 U/mL) isolated from gembus tempeh. The phytate activity of TG-2 was optimum at 37 °C with agitation, while the phytate activity of TG-1 was optimum at 45 °C without agitation. Characterization and identification of TG-2 isolate with the highest phytate degrading activity using API 50 CH and 16S rRNA showed that TG-2had homology with Lactobacillus fermentum. It could be concluded that LAB from from fermented traditional food grain-based and legume-based produced the extracellular phytase. Keywords: lactic acid bacteria, tempeh, phytatedegrading activity

  4. Chemical composition and antimicrobial activity of the essential oil of Juniperus excelsa M.Bieb. growing wild in Lebanon.

    PubMed

    Khoury, Madona; El Beyrouthy, Marc; Ouaini, Naïm; Iriti, Marcello; Eparvier, Véronique; Stien, Didier

    2014-05-01

    The essential oils (EOs) isolated from the leaves and twigs of Juniperus excelsa M.Bieb. growing wild in Lebanon were characterized, and their antimicrobial activity and antiradical capacity were evaluated. The EOs were obtained by hydrodistillation using a Clevenger-type apparatus and characterized by GC and GC/MS analyses. The antimicrobial activity was evaluated by determining minimal inhibitory concentrations (MICs) against a Gram-positive and a Gram-negative bacterium, a yeast, and a dermatophyte with the broth microdilution technique. A total of 28 constituents was identified and accounted for 90.1 and 95.6% of the twig and leaf EO composition, respectively. Both EOs were essentially composed of monoterpene hydrocarbons (46.7 and 59.6% for twig and leaf EOs, resp.) and sesquiterpenes (39.4 and 32.1%, resp.). The main components were α-pinene, α-cedrol, and δ-car-3-ene. The J. excelsa EOs did not show any antiradical potential, but revealed interesting in vitro antimicrobial activities against Staphylococcus aureus and Trichophyton rubrum (MICs of 64 and 128 μg/ml, resp.). The three major compounds were tested separately and in combination according to their respective amounts in the oil. δ-Car-3-ene was the most active component and is undoubtedly one of the constituents driving the antifungal activity of J. excelsa essential oil, even though synergies are probably involved.

  5. Bacteria-Activated Theranostic Nanoprobes against Methicillin-Resistant Staphylococcus aureus Infection.

    PubMed

    Zhao, Zhiwei; Yan, Rong; Yi, Xuan; Li, Jingling; Rao, Jiaming; Guo, Zhengqing; Yang, Yanmei; Li, Weifeng; Li, Yong-Qiang; Chen, Chunying

    2017-03-30

    Despite numerous advanced imaging and sterilization techniques available nowadays, the sensitive in vivo diagnosis and complete elimination of drug-resistant bacterial infections remain big challenges. Here we report a strategy to design activatable theranostic nanoprobes against methicillin-resistant Staphylococcus aureus (MRSA) infections. This probe is based on silica nanoparticles coated with vancomycin-modified polyelectrolyte-cypate complexes (SiO2-Cy-Van), which is activated by an interesting phenomenon of bacteria-responsive dissociation of the polyelectrolyte from silica nanoparticles. Due to the aggregation of hydrophobic cypate fluorophores on silica nanoparticles to induce ground-state quenching, the SiO2-Cy-Van nanoprobes are nonfluorescent in aqueous environments. We demonstrate that MRSA can effectively pull out the vancomycin-modified polyelectrolyte-cypate complexes from silica nanoparticles and draw them onto their own surface, changing the state of cypate from off (aggregation) to on (disaggregation) and leading to in vitro MRSA-activated near-infrared fluorescence (NIRF) and photothermal elimination involving bacterial cell wall and membrane disruption. In vivo experiments show that this de novo-designed nanoprobe can selectively enable rapid (4 h postinjection) NIRF imaging with high sensitivity (10(5) colony-forming units) and efficient photothermal therapy (PTT) of MRSA infections in mice. Remarkably, the SiO2-Cy-Van nanoprobes can also afford a long-term tracking (16 days) of the development of MRSA infections, allowing real-time estimation of bacterial load in infected tissues and further providing a possible way to monitor the efficacy of antimicrobial treatment. The strategy of bacteria-activated polyelectrolyte dissociation from nanoparticles proposed in this work could also be used as a general method for the design and fabrication of bacteria-responsive functional nanomaterials that offer possibilities to combat drug

  6. Selection of enhanced antimicrobial activity posing lactic acid bacteria characterised by (GTG)5-PCR fingerprinting.

    PubMed

    Šalomskienė, Joana; Abraitienė, Asta; Jonkuvienė, Dovilė; Mačionienė, Irena; Repečkienė, Jūratė

    2015-07-01

    The aim of the study was a detail evaluation of genetic diversity among the lactic acid bacteria (LAB) strains having an advantage of a starter culture in order to select genotypically diverse strains with enhanced antimicrobial effect on some harmfull and pathogenic microorganisms. Antimicrobial activity of LAB was performed by the agar well diffusion method and was examined against the reference strains and foodborne isolates of Bacillus cereus, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Antifungal activity was tested against the foodborne isolates of Candida parapsilosis, Debaromyces hansenii, Kluyveromyces marxianus, Pichia guilliermondii, Yarowia lipolytica, Aspergillus brasiliensis, Aspergillus versicolor, Cladosporium herbarum, Penicillium chrysogenum and Scopulariopsis brevicaulis. A total 40 LAB strains representing Lactobacillus (23 strains), Lactococcus (13 strains) and Streptococcus spp. (4 strains) were characterised by repetitive sequence based polymerase chain reaction fingerprinting which generated highly discriminatory profiles, confirmed the identity and revealed high genotypic heterogeneity among the strains. Many of tested LAB demonstrated strong antimicrobial activity specialised against one or few indicator strains. Twelve LAB strains were superior in suppressing growth of the whole complex of pathogenic bacteria and fungi. These results demonstrated that separate taxonomic units offered different possibilities of selection for novel LAB strains could be used as starter cultures enhancing food preservation.

  7. Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria.

    PubMed

    Park, Miri; Bae, Jungdon; Lee, Dae-Sil

    2008-11-01

    Ginger (Zingiber officinale Roscoe) has been used widely as a food spice and an herbal medicine. In particular, its gingerol-related components have been reported to possess antimicrobial and antifungal properties, as well as several pharmaceutical properties. However, the effective ginger constituents that inhibit the growth of oral bacteria associated with periodontitis in the human oral cavity have not been elucidated. This study revealed that the ethanol and n-hexane extracts of ginger exhibited antibacterial activities against three anaerobic Gram-negative bacteria, Porphyromonas gingivalis ATCC 53978, Porphyromonas endodontalis ATCC 35406 and Prevotella intermedia ATCC 25611, causing periodontal diseases. Thereafter, five ginger constituents were isolated by a preparative high-performance liquid chromatographic method from the active silica-gel column chromatography fractions, elucidated their structures by nuclear magnetic resonance spectroscopy and electrospray ionization mass spectrometry and their antibacterial activity evaluated. In conclusion, two highly alkylated gingerols, [10]-gingerol and [12]-gingerol effectively inhibited the growth of these oral pathogens at a minimum inhibitory concentration (MIC) range of 6-30 microg/mL. These ginger compounds also killed the oral pathogens at a minimum bactericidal concentration (MBC) range of 4-20 microg/mL, but not the other ginger compounds 5-acetoxy-[6]-gingerol, 3,5-diacetoxy-[6]-gingerdiol and galanolactone.

  8. Antimicrobial Activity of Kefir against Various Food Pathogens and Spoilage Bacteria

    PubMed Central

    Kim, Hyunsook

    2016-01-01

    Kefir is a unique fermented dairy product produced by a mixture of lactic acid bacteria, acetic acid bacteria, and yeast. Here, we compared the antimicrobial spectra of four types of kefirs (A, L, M, and S) fermented for 24, 36, 48, or 72 h against eight food-borne pathogens. Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis, Escherichia coli, Salmonella Enteritidis, Pseudomonas aeruginosa, and Cronobacter sakazakii were used as test strains, and antibacterial activity was investigated by the spot on lawn method. The spectra, potencies, and onsets of activity varied according to the type of kefir and the fermentation time. The broadest and strongest antimicrobial spectrum was obtained after at least 36-48 h of fermentation for all kefirs, although the traditional fermentation method of kefir is for 18-24 h at 25℃. For kefir A, B. cereus, E. coli, S. Enteritidis, P. aeruginosa, and C. sakazakii were inhibited, while B. cereus, S. aureus, E. coli, S. Enteritidis, P. aeruginosa, and C. sakazakii were inhibited to different extents by kefirs L, M, and S. Remarkably, S. aureus, S. Enteritidis, and C. sakazakii were only inhibited by kefirs L, M, and S, and L. monocytogenes by kefir M after fermentation for specific times, suggesting that the antimicrobial activity is attributable not only to a low pH but also to antimicrobial substances secreted during the fermentation. PMID:28115890

  9. Bactericidal activity of N-chlorotaurine against biofilm-forming bacteria grown on metal disks.

    PubMed

    Coraça-Huber, Débora C; Ammann, Christoph G; Fille, Manfred; Hausdorfer, Johann; Nogler, Michael; Nagl, Markus

    2014-01-01

    Many orthopedic surgeons consider surgical irrigation and debridement with prosthesis retention as a treatment option for postoperative infections. Usually, saline solution with no added antimicrobial agent is used for irrigation. We investigated the activity of N-chlorotaurine (NCT) against various biofilm-forming bacteria in vitro and thereby gained significant information on its usability as a soluble and well-tolerated active chlorine compound in orthopedic surgery. Biofilms of Staphylococcus aureus were grown on metal alloy disks and in polystyrene dishes for 48 h. Subsequently, they were incubated for 15 min to 7 h in buffered solutions containing therapeutically applicable concentrations of NCT (1%, 0.5%, and 0.1%; 5.5 to 55 mM) at 37°C. NCT inactivated the biofilm in a time- and dose-dependent manner. Scanning electron microscopy revealed disturbance of the biofilm architecture by rupture of the extracellular matrix. Assays with reduction of carboxanilide (XTT) showed inhibition of the metabolism of the bacteria in biofilms. Quantitative cultures confirmed killing of S. aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa biofilms on metal alloy disks by NCT. Clinical isolates were slightly more resistant than ATCC type strains, but counts of CFU were reduced at least 10-fold by 1% NCT within 15 min in all cases. NCT showed microbicidal activity against various bacterial strains in biofilms. Whether this can be transferred to the clinical situation should be the aim of future studies.

  10. Enzymatic activity of lactic acid bacteria (with antimicrobial properties) isolated from a traditional Spanish cheese.

    PubMed

    González, Leticia; Sacristán, Noelia; Arenas, Ricardo; Fresno, José M; Eugenia Tornadijo, M

    2010-08-01

    Twenty-four strains of lactic acid bacteria (LAB) isolated from a traditional Spanish cheese (Genestoso cheese) were evaluated for their enzymatic activities (acidifying and proteolytic abilities and carboxypeptidase, aminopeptidase, dipeptidase, caseinolytic and esterase activities), in order to select indigenous strains of technical interest for the manufacture of cheese. These strains were selected on the basis of their antimicrobial activity relative to five reference strains and were identified as Lactococcus lactis subsp. lactis (thirteen strains), Leuconostoc mesenteroides (two strains), Leuconostoc pseudomesenteroides (one strain), Lactobacillus paracasei (two strains), Lactobacillus plantarum (one strain) and Enterococcus faecalis (five strains). Lactococcus strains were those that showed the greatest degree of acidifying and proteolytic activity. The cell-free extracts (CFE) of L. paracasei exhibited the highest level of aminopeptidase activity. The highest level of caseinolytic activity was shown by the CFE of one strain of L. lactis. High values were also obtained with the CFE of Lactobacillus and of several Leuconostoc. The highest level of dipeptidase activity was found amongst the strains of L. lactis. Carboxypeptidase activity was generally very low or undetectable for the majority of strains. The greatest degree of esterolytic activity was detected for Enterococcus.

  11. Antidiatom activity of marine bacteria associated with sponges from San Juan Island, Washington.

    PubMed

    Jin, Cuili; Xin, Xiaying; Yu, Siyu; Qiu, Jingjing; Miao, Li; Feng, Ke; Zhou, Xiaojian

    2014-04-01

    Crude extracts of 52 marine bacteria associated with sponges, which were collected from the sea near San Juan Island, Washington, USA, were screened using diatom attachment assays against Amphora sp., Nitzschia closterium, Sellaphora sp. and Stauroneis sp. to investigate their antidiatom activities. Among these samples, five expressed strong anti-adhesion effects on all four tested diatoms. There was no negative effect observed from those five active samples on the growth of Amphora sp. Those five active samples were prepared from respective isolates, which all belonged to the genus Bacillus based on 16S rRNA gene sequencing analysis. The results of present study indicate that Bacillus may play important roles for sponges' chemical defence against biofouling of diatoms and that the metabolites of Bacillus may be a potential source of natural antifouling compounds.

  12. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria.

    PubMed

    Zhao, Lei; Zhang, Heyan; Hao, Tianyang; Li, Siran

    2015-11-15

    The objective of this study was to evaluate the antibacterial activities of sugar fatty acid esters, with different fatty acid and saccharide moieties, against five food-related bacteria including Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. Sucrose monocaprate showed the strongest antibacterial activity against all tested bacteria, especially Gram-positive bacteria. The minimum inhibitory concentrations (MICs) for Gram-positive bacteria and Gram-negative bacteria were 2.5 and 10 mM, respectively. The minimum bactericidal concentrations (MBCs) for Gram-positive bacteria were 10 mM. Time-kill assay also showed that sucrose monocaprate significantly inhibit the growth of tested bacteria. The permeability of the cell membrane and intracellular proteins were both changed by sucrose monocaprate according to cell constituents' leakage, SDS-PAGE and scanning electron microscope assays. It is suggested that sucrose monocaprate, with both emulsifying and antibacterial activities, have a potential to serve as a safe multifunctional food additive in food industries.

  13. Seasonal Variation in Population Density and Heterotrophic Activity of Attached and Free-Living Bacteria in Coastal Waters

    PubMed Central

    Iriberri, Juan; Unanue, Marian; Barcina, Isabel; Egea, Luis

    1987-01-01

    The abundance and heterotrophic activity of attached and free-living bacteria were examined seasonally in coastal water. Heterotrophic activity was determined by the uptake of [14C]glucose. The density of attached bacteria was always minor, not showing a seasonal variation, whereas the free-living bacteria were more numerous and showed a marked seasonal variation, their density being higher under warmer conditions. The contribution of the attached bacteria to the total assimilation of [14C]glucose (from 10 to 38%) was lower than that of the free-living bacteria, neither of them showing a seasonal variation. On a cellular basis, attached bacteria were more active, since they assimilated more [14C]glucose and showed, under warmer conditions, a higher cellular volume (0.102 versus 0.047 μm3). We consider that the factors responsible for these observations were the amount and quality of the particulate material, the different availability of organic matter for the two types of bacteria, and in a fundamental way, the variation in water temperature. PMID:16347451

  14. The activity of bacteriocins from Carnobacterium maltaromaticum UAL307 against gram-negative bacteria in combination with EDTA treatment.

    PubMed

    Martin-Visscher, Leah A; Yoganathan, Sabesan; Sit, Clarissa S; Lohans, Christopher T; Vederas, John C

    2011-04-01

    Bacteriocins from gram-positive bacteria are potent antimicrobial peptides that inhibit pathogenic and food-spoilage bacteria. They are usually ineffective against gram-negative bacteria because they cannot penetrate the outer membrane (OM). Disruption of the OM of some gram-negative bacteria was reported to sensitize them to certain bacteriocins. This study evaluates the activity of three purified bacteriocins [carnocyclin A (CclA), carnobacteriocin BM1 (CbnBM1) and piscicolin 126 (PisA)] produced by Carnobacterium maltaromaticum UAL307, which has been approved for preservation of food in United States and Canada, against three gram-negative bacteria (Escherichia coli DH5α, Pseudomonas aeruginosa ATCC 14207 and Salmonella Typhimurium ATCC 23564). Their efficacy is compared with bacteriocins of other classes: the lantibiotics nisin A (positive control) and gallidermin, and the cyclic peptide subtilosin A (SubA). In combination with EDTA, CclA inhibited both E. coli and Pseudomonas. PisA inhibited Pseudomonas, but CbnBM1 showed weak activity toward Pseudomonas. In comparison, nisin and gallidermin inhibited the growth of all three strains, whereas SubA was active against E. coli and Pseudomonas only at high concentrations. The results reveal that UAL307 bacteriocins can inhibit gram-negative bacteria if the OM is weakened, and that the different classes of bacteriocins in this study exert unique modes of action toward such bacteria.

  15. Identification of proteolytic bacteria from the Arctic Chukchi Sea expedition cruise and characterization of cold-active proteases.

    PubMed

    Park, Ha Ju; Lee, Yung Mi; Kim, Sunghui; Wi, Ah Ram; Han, Se Jong; Kim, Han-Woo; Kim, Il-Chan; Yim, Joung Han; Kim, Dockyu

    2014-10-01

    Following collection of seawater samples during an Arctic Chukchi Sea expedition cruise of the Korean icebreaker Araon in 2012, a total of 15,696 bacteria were randomly isolated from Marine Broth 2216 agar plates. Of these, 2,526 (16%) showed proteolytic activity and were identified as mainly Alteromonas (31%), Staphylococcus (27%), and Pseudoalteromonas (14%). Among the proteolytic strains, seven were selected based on their significant ability to grow and produce a halo on skim milk plates at low temperatures (<5°C) owing to cold-active proteases. These strains were affiliated with the genus Pseudoalteromonas and were divided into three groups based on phylogenetic analysis of the 16S rRNA genes. Profiling cell membrane fatty acids confirmed the 16S rRNA-based differentiation and revealed the accordance between the two analyses. Seven genes for serine protease precursors were amplified from the corresponding strains, and based on sequence similarities, these genes were divided into three groups that were identical to those identified by the 16S rRNA phylogenetic analysis. Three protease genes from the representative strains of each group were composed of 2,127-2,130 bp, encoding 708-709 amino acids, and these genes yielded products with calculated molecular weights of approximately 72.3-72.8 kDa. Amino acid sequence analysis suggested that the precursors are members of the subtilase serine endo- and exo-peptidase clan and contain four domains (signal peptide, N-terminal prosequence, catalytic domain, and two pre-peptidase C-terminal domains). Upon expression in E. coli, each recombinant protease exhibited proteolytic activity on zymogram gels.

  16. Gardening: A Growing Activity

    ERIC Educational Resources Information Center

    McIntosh, Phyllis

    2011-01-01

    While Americans are as eager as ever to beautify their homes and yards with attractive landscaping, more and more gardeners are looking to the practical aspects of gardening--raising plants for food and choosing easy-care ornamental plants that are friendly to the environment. For some gardeners, raising their own food is a lifestyle choice. With…

  17. The bacteria binding glycoprotein salivary agglutinin (SAG/gp340) activates complement via the lectin pathway.

    PubMed

    Leito, Jelani T D; Ligtenberg, Antoon J M; van Houdt, Michel; van den Berg, Timo K; Wouters, Diana

    2011-10-01

    Salivary agglutinin (SAG), also known as gp-340 and Deleted in Malignant Brain Tumours 1, is a glycoprotein that is present in tears, lung fluid and mucosal surfaces along the gastrointestinal tract. It is encoded by the Deleted in Malignant Brain Tumours 1 gene, a member of the Scavenger Receptor Cysteine Rich group B protein superfamily. SAG aggregates bacteria thus promoting their clearance from the oral cavity and activates the complement system. Complement proteins may enter the oral cavity in case of serum leakage, which occurs after mucosal damage. The purpose of this study was to investigate the mode of complement activation. We showed a dose-dependent C4 deposition on SAG-coated microplates showing that either the classical or lectin pathway of complement was activated. Antibodies against mannose binding lectin inhibited C4 deposition and SAG induced no C4 deposition in MBL deficient sera showing SAG activated complement through the MBL pathway. Periodate treatment of SAG abolished MBL pathway activation consistent with an involvement of SAG glycans in complement activation. This provides the first evidence for a role of SAG in complement activation through the MBL pathway and suggests a potential role of SAG as a complement activating factor at the mucosal epithelia.

  18. [Effect of protonofore 2,4-dinitrophenol on catalase activity of intact Escherichia coli bacteria].

    PubMed

    Semchyshyn, H M; Lushchak, V I

    2004-01-01

    Catalase activity of intact E. coli bacteria had a broad pH-optimum (4.0-7.5). Addition of protonofore 2,4-dinitrophenol (200 microM) caused pH-dependency modification (6.5-7.0). Both the catalase activity and curves mode of native cells in the presence of dinitrophenol and cell-free extracts are almost identical. The loss of catalase activity at acid pH was caused by cells destruction and dinitrophenol addition, that makes it possible to suppose that this activity is connected with some membrane component functioning. The induction of "acid" catalase by oxidative stress was blocked with addition of chloramphenicol--protein synthesis inhibitor in prokaryotes. Probably this membrane complex is a part of OxyR regulon, because it is activated by hydrogen peroxide. The activation was not detected in the strain E. coli UM202, which is lacked of catalase HPI (H2O2 response). The catalase activity at acid pH was not observed in the strain E. coli AB1157, that produces both catalase forms and probably has the membrane defect. However, known genetic characteristics of AB1157 stain not let to identify a gene responsible for the "acid" catalase activity.

  19. Macrophages sense and kill bacteria through carbon monoxide–dependent inflammasome activation

    PubMed Central

    Wegiel, Barbara; Larsen, Rasmus; Gallo, David; Chin, Beek Yoke; Harris, Clair; Mannam, Praveen; Kaczmarek, Elzbieta; Lee, Patty J.; Zuckerbraun, Brian S.; Flavell, Richard; Soares, Miguel P.; Otterbein, Leo E.

    2014-01-01

    Microbial clearance by eukaryotes relies on complex and coordinated processes that remain poorly understood. The gasotransmitter carbon monoxide (CO) is generated by the stress-responsive enzyme heme oxygenase-1 (HO-1, encoded by Hmox1), which is highly induced in macrophages in response to bacterial infection. HO-1 deficiency results in inadequate pathogen clearance, exaggerated tissue damage, and increased mortality. Here, we determined that macrophage-generated CO promotes ATP production and release by bacteria, which then activates the Nacht, LRR, and PYD domains-containing protein 3 (NALP3) inflammasome, intensifying bacterial killing. Bacterial killing defects in HO-1–deficient murine macrophages were restored by administration of CO. Moreover, increased CO levels enhanced the bacterial clearance capacity of human macrophages and WT murine macrophages. CO-dependent bacterial clearance required the NALP3 inflammasome, as CO did not increase bacterial killing in macrophages isolated from NALP3-deficient or caspase-1–deficient mice. IL-1β cleavage and secretion were impaired in HO-1–deficient macrophages, and CO-dependent processing of IL-1β required the presence of bacteria-derived ATP. We found that bacteria remained viable to generate and release ATP in response to CO. The ATP then bound to macrophage nucleotide P2 receptors, resulting in activation of the NALP3/IL-1β inflammasome to amplify bacterial phagocytosis by macrophages. Taken together, our results indicate that macrophage-derived CO permits efficient and coordinated regulation of the host innate response to invading microbes. PMID:25295542

  20. Cosmic X-ray surveys of distant active galaxies. The demographics, physics, and ecology of growing supermassive black holes

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Alexander, D. M.

    2015-01-01

    We review results from cosmic X-ray surveys of active galactic nuclei (AGNs) over the past years that have dramatically improved our understanding of growing supermassive black holes in the distant universe. First, we discuss the utility of such surveys for AGN investigations and the capabilities of the missions making these surveys, emphasizing Chandra, XMM-Newton, and NuSTAR. Second, we briefly describe the main cosmic X-ray surveys, the essential roles of complementary multiwavelength data, and how AGNs are selected from these surveys. We then review key results from these surveys on the AGN population and its evolution ("demographics"), the physical processes operating in AGNs ("physics"), and the interactions between AGNs and their environments ("ecology"). We conclude by describing some significant unresolved questions and prospects for advancing the field.

  1. Plant Growth Promotion Activity of Keratinolytic Fungi Growing on a Recalcitrant Waste Known as “Hair Waste”

    PubMed Central

    Cavello, Ivana A.; Crespo, Juan M.; García, Sabrina S.; Zapiola, José M.; Luna, María F.; Cavalitto, Sebastián F.

    2015-01-01

    Purpureocillium lilacinum (Thom) Samsom is one of the most studied fungi in the control of plant parasitic nematodes. However, there is not specific information on its ability to inhibit some pathogenic bacteria, fungi, or yeast. This work reports the production of several antifungal hydrolytic enzymes by a strain of P. lilacinum when it is grown in a medium containing hair waste. The growth of several plant-pathogenic fungi, Alternaria alternata, Aspergillus niger, and Fusarium culmorum, was considerably affected by the presence of P. lilacinum's supernatant. Besides antifungal activity, P. lilacinum demonstrates the capability to produce indoleacetic acid and ammonia during time cultivation on hair waste medium. Plant growth-promoting activity by cell-free supernatant was evidenced through the increase of the percentage of tomato seed germination from 71 to 85% after 48 hours. A 21-day plant growth assay using tomato plants indicates that crude supernatant promotes the growth of the plants similar to a reference fertilizer (p > 0.05). These results suggest that both strain and the supernatant may have potential to be considered as a potent biocontrol agent with multiple plant growth-promoting properties. To our knowledge, this is the first report on the antifungal, IAA production and tomato growth enhancing compounds produced by P. lilacinum LPSC #876. PMID:26697226

  2. Chemical Composition and Antimicrobial Activity of Origanum libanoticum, Origanum ehrenbergii, and Origanum syriacum Growing Wild in Lebanon.

    PubMed

    Al Hafi, Monay; El Beyrouthy, Marc; Ouaini, Naim; Stien, Didier; Rutledge, Douglas; Chaillou, Sylvain

    2016-05-01

    The essential oils (EOs) of the aerial parts of Origanum libanoticum and Origanum ehrenbergii, endemic to Lebanon, and Origanum syriacum, endemic to the Levantine, were obtained by distillation with a Clevenger apparatus. GC and GC/MS allowed identification of 96.4%, 93.5%, and 95.2% of their constituents, respectively. Carvacrol was the major component of both O. syriacum EO (79%) and O. ehrenbergii EO (60.8%). This compound was absent in O. libanoticum EO and the major compounds were β-caryophyllene (26.8%), caryophyllene oxide (22.6%), and germacrene D (17.2%). The assessment of their antimicrobial activity against Candida albicans and six pathogenic bacteria revealed that O. libanoticum EO was inactive, while O. syriacum and O. ehrenbergii showed moderate antimicrobial activity with minimal inhibitory concentrations varying from 400 to 1200 μg/ml. These results support the traditional use of these last two species in traditional herbal preparations in Lebanon.

  3. Validation of a new image analysis procedure for quantifying filamentous bacteria in activated sludge.

    PubMed

    Liwarska-Bizukojc, Ewa; Bizukojc, Marcin; Andrzejczak, Olga

    2014-01-01

    Quantification of filamentous bacteria in activated sludge systems can be made by manual counting under a microscope or by the application of various automated image analysis procedures. The latter has been significantly developed in the last two decades. In this work a new method based upon automated image analysis techniques was elaborated and presented. It consisted of three stages: (a) Neisser staining, (b) grabbing of microscopic images, and (c) digital image processing and analysis. This automated image analysis procedure possessed the features of novelty. It simultaneously delivered data about aggregates and filaments in an individual calculation routine, which is seldom met in the procedures described in the literature so far. What is more important, the macroprogram performing image processing and calculation of morphological parameters was written in the same software which was used for grabbing of images. Previously published procedures required using two different types of software, one for image grabbing and another one for image processing and analysis. Application of this new procedure for the quantification of filamentous bacteria in the full-scale as well as laboratory activated sludge systems proved that it was simple, fast and delivered reliable results.

  4. Nutrient scavenging activity and antagonistic factors of non-photobiont lichen-associated bacteria: a review.

    PubMed

    Sigurbjörnsdóttir, M Auður; Andrésson, Ólafur S; Vilhelmsson, Oddur

    2016-04-01

    Lichens are defined as the specific symbiotic structure comprising a fungus and a green alga and/or cyanobacterium. Up until recently, non-photobiont endothallic bacteria, while known to be present in large numbers, have generally been dismissed as functionally irrelevant cohabitants of the lichen thallus, or even environmental contaminants. Recent analyses of lichen metagenomes and innovative co-culture experiments have uncovered a functionally complex community that appears to contribute to a healthy lichen thallus in several ways. Lichen-associated bacteriomes are typically dominated by several lineages of Proteobacteria, some of which may be specific for lichen species. Recent work has implicated members of these lineages in several important ecophysiological roles. These include nutrient scavenging, including mobilization of iron and phosphate, nitrogen fixation, cellulase, xylanase and amylase activities, and oxidation of recalcitrant compounds, e.g. aromatics and aliphatics. Production of volatile organic compounds, conferring antibacterial and antifungal activity, has also been demonstrated for several lichen-associated isolates. In the present paper we review the nature of non-phototrophic endolichenic bacteria associated with lichens, and give insight into the current state of knowledge on their importance the lichen symbiotic association.

  5. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface

    PubMed Central

    Arakha, Manoranjan; Pal, Sweta; Samantarrai, Devyani; Panigrahi, Tapan K.; Mallick, Bairagi C.; Pramanik, Krishna; Mallick, Bibekanand; Jha, Suman

    2015-01-01

    Investigating the interaction patterns at nano-bio interface is a key challenge for safe use of nanoparticles (NPs) to any biological system. The study intends to explore the role of interaction pattern at the iron oxide nanoparticle (IONP)-bacteria interface affecting antimicrobial propensity of IONP. To this end, IONP with magnetite like atomic arrangement and negative surface potential (n-IONP) was synthesized by co-precipitation method. Positively charged chitosan molecule coating was used to reverse the surface potential of n-IONP, i.e. positive surface potential IONP (p-IONP). The comparative data from fourier transform infrared spectroscope, XRD, and zeta potential analyzer indicated the successful coating of IONP surface with chitosan molecule. Additionally, the nanocrystals obtained were found to have spherical size with 10–20 nm diameter. The BacLight fluorescence assay, bacterial growth kinetic and colony forming unit studies indicated that n-IONP (<50 μM) has insignificant antimicrobial activity against Bacillus subtilis and Escherichia coli. However, coating with chitosan molecule resulted significant increase in antimicrobial propensity of IONP. Additionally, the assay to study reactive oxygen species (ROS) indicated relatively higher ROS production upon p-IONP treatment of the bacteria. The data, altogether, indicated that the chitosan coating of IONP result in interface that enhances ROS production, hence the antimicrobial activity. PMID:26437582

  6. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface

    NASA Astrophysics Data System (ADS)

    Arakha, Manoranjan; Pal, Sweta; Samantarrai, Devyani; Panigrahi, Tapan K.; Mallick, Bairagi C.; Pramanik, Krishna; Mallick, Bibekanand; Jha, Suman

    2015-10-01

    Investigating the interaction patterns at nano-bio interface is a key challenge for safe use of nanoparticles (NPs) to any biological system. The study intends to explore the role of interaction pattern at the iron oxide nanoparticle (IONP)-bacteria interface affecting antimicrobial propensity of IONP. To this end, IONP with magnetite like atomic arrangement and negative surface potential (n-IONP) was synthesized by co-precipitation method. Positively charged chitosan molecule coating was used to reverse the surface potential of n-IONP, i.e. positive surface potential IONP (p-IONP). The comparative data from fourier transform infrared spectroscope, XRD, and zeta potential analyzer indicated the successful coating of IONP surface with chitosan molecule. Additionally, the nanocrystals obtained were found to have spherical size with 10-20 nm diameter. The BacLight fluorescence assay, bacterial growth kinetic and colony forming unit studies indicated that n-IONP (<50 μM) has insignificant antimicrobial activity against Bacillus subtilis and Escherichia coli. However, coating with chitosan molecule resulted significant increase in antimicrobial propensity of IONP. Additionally, the assay to study reactive oxygen species (ROS) indicated relatively higher ROS production upon p-IONP treatment of the bacteria. The data, altogether, indicated that the chitosan coating of IONP result in interface that enhances ROS production, hence the antimicrobial activity.

  7. Multiple-site mutations of phage Bp7 endolysin improves its activities against target bacteria.

    PubMed

    Zhang, Can; Wang, Yuanchao; Sun, Huzhi; Ren, Huiying

    2015-10-01

    The widespread use of antibiotics has caused serious drug resistance. Bacteria that were once easily treatable are now extremely difficult to treat. Endolysin can be used as an alternative to antibiotics for the treatment of drug-resistant bacteria. To analyze the antibacterial activity of the endolysin of phage Bp7 (Bp7e), a 489-bp DNA fragment of endolysin Bp7e was PCR-amplified from a phage Bp7 genome and cloned, and then a pET28a-Bp7e prokaryotic expression vector was constructed. Two amino acids were mutated (L99A, M102E) to construct pET28a-Bp7Δe, with pET28a-Bp7e as a template. Phylogenetic analysis suggested that BP7e belongs to a T4-like phage endolysin group. Bp7e and its mutant Bp7Δe were expressed in Escherichia coli BL21(DE3) as soluble proteins. They were purified by affinity chromatography, and then their antibacterial activities were analyzed. The results demonstrated that the recombinant proteins Bp7e and Bp7Δe showed obvious antibacterial activity against Micrococcus lysodeikticus but no activity against Staphylococcus aureus. In the presence of malic acid, Bp7e and Bp7Δe exhibited an effect on most E. coli strains which could be lysed by phage Bp7, but no effect on Salmonella paratyphi or Pseudomonas aeruginosa. Moreover, Bp7Δe with double-site mutations showed stronger antibacterial activity and a broader lysis range than Bp7e.

  8. A novel cathelicidin from Bufo bufo gargarizans Cantor showed specific activity to its habitat bacteria.

    PubMed

    Sun, Tongyi; Zhan, Bo; Gao, Yuanyuan

    2015-10-25

    Toad Bufo bufo gargarizans Cantor is still used in China as traditional Chinese medicine. However, present investigations on its skin secretions were mainly focused on the bufadienolides, the proteins/peptides contained in the secretions are largely unknown. A cDNA encoding a novel cathelicidin termed BG-CATH was identified by analysis of the toad skin transcriptome. The BG-CATH precursor was predicted to have 2 possible cleavage sites following dibasic cleavage signals at its C-terminal, which will generate two mature peptides, BG-CATH37 and BG-CATH(5-37). Phylogenetic analysis suggests that amphibian cathelicidins might evolve from common ancestors. The two predicted mature cathelicidins from B. bufo gargarizans were synthesized and both of them showed weak antimicrobial activities against human pathogenic bacteria Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus (MIC ≥ 200 μg/mL). However, BG-CATH37 and BG-CATH(5-37) had strong antimicrobial activities against aquatic bacteria of Vibrio splendidus, Streptococcus iniae and Aeromorus hydrophila, which were common microorganisms in the habitat of B. bufo gargarizans (MIC 3.125-40 μg/mL). BG-CATH37 and BG-CATH(5-37) showed no hemolytic activity even at high concentrations (400 μg/mL). CD spectra analysis suggested that structure rigidity of BG-CATH37 and BG-CATH(5-37) might play an important role to regulate their biological activities. Selective antimicrobial activity against habitat microorganisms might reflect the adaptation of amphibians to their living environments.

  9. Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates.

    PubMed

    Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu

    2013-01-01

    To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment.

  10. Manduca sexta gloverin binds microbial components and is active against bacteria and fungi.

    PubMed

    Xu, Xiao-Xia; Zhong, Xue; Yi, Hui-Yu; Yu, Xiao-Qiang

    2012-10-01

    Hyalophora gloveri gloverin is a glycine-rich and heat stable antimicrobial protein with activity mainly against Escherichia coli. However, Spodoptera exigua gloverin is active against a Gram-positive bacterium but inactive against E. coli. In this study, we investigated expression profile, binding ability and antimicrobial activity of Manduca sexta gloverin (MsGlv). Msglv transcript was detected in several tissues of naïve larvae with higher levels in the midgut and testis. Expression of Msglv mRNA in larvae was up-regulated by active Spätzle-C108 and peptidoglycans (PGs) of E. coli and Staphylococcus aureus, and the activation was blocked by pre-injection of antibody to M. sexta Toll, suggesting that Msglv expression is regulated by the Toll-Spätzle pathway. Recombinant MsGlv bound to the O-specific antigen and outer core carbohydrate of lipopolysaccharide (LPS), Gram-positive lipoteichoic acid (LTA) and PG, and laminarin, but not to E. coli PG or mannan. MsGlv was active against Bacillus cereus, Saccharomyces cerevisiae and Cryptococcus neoformans, but was almost inactive against E. coli and S. aureus. Our results suggest that gloverins are active against some bacteria and fungi.

  11. Effects of Different Growing Regions on Quality Characteristics, Bioactive Compound Contents, and Antioxidant Activity of Aronia (Aronia melanocarpa) in Korea

    PubMed Central

    Hwang, Eun-Sun; Thi, Nhuan Do

    2016-01-01

    The objective of this study was to determine the effects of different growing regions on quality characteristics, total bioactive compound contents, and in vitro antioxidant activity in aronia. Aronia grown in 3 different regions (Sangjoo, Ulju, and Youngcheon) in Korea was obtained and used fresh or as a freeze-dried powder. No statistically significant differences were observed for moisture, ash, crude lipid, and crude protein contents in aronia sampled from the 3 different regions. Aronia grown in Sangjoo had the highest total acid content and the lowest sugar content and pH value. Conversely, aronia grown in Youngcheon possessed the lowest total acid content and the highest sugar content and pH value. Aronia grown in Sangjoo possessed relatively high levels of polyphenols, flavonoids, and anthocyanins, as well as high antioxidant activity in comparison with aronia produced in other regions. Aronia grown in Youngcheon scored the highest for taste and overall acceptability in sensory evaluations, which may be related to the high sugar content and pH, and the low total acidity of the fruits. It is possible that higher sugar contents and pH, and lower total acidity in the aronia grown in Youngcheon result in more preferable sensory characteristics. However, they also contain relatively low levels of total polyphenols, flavonoids, and anthocyanins, and have low antioxidant activity as measured by 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging assays. PMID:27752502

  12. Effects of Different Growing Regions on Quality Characteristics, Bioactive Compound Contents, and Antioxidant Activity of Aronia (Aronia melanocarpa) in Korea.

    PubMed

    Hwang, Eun-Sun; Thi, Nhuan Do

    2016-09-01

    The objective of this study was to determine the effects of different growing regions on quality characteristics, total bioactive compound contents, and in vitro antioxidant activity in aronia. Aronia grown in 3 different regions (Sangjoo, Ulju, and Youngcheon) in Korea was obtained and used fresh or as a freeze-dried powder. No statistically significant differences were observed for moisture, ash, crude lipid, and crude protein contents in aronia sampled from the 3 different regions. Aronia grown in Sangjoo had the highest total acid content and the lowest sugar content and pH value. Conversely, aronia grown in Youngcheon possessed the lowest total acid content and the highest sugar content and pH value. Aronia grown in Sangjoo possessed relatively high levels of polyphenols, flavonoids, and anthocyanins, as well as high antioxidant activity in comparison with aronia produced in other regions. Aronia grown in Youngcheon scored the highest for taste and overall acceptability in sensory evaluations, which may be related to the high sugar content and pH, and the low total acidity of the fruits. It is possible that higher sugar contents and pH, and lower total acidity in the aronia grown in Youngcheon result in more preferable sensory characteristics. However, they also contain relatively low levels of total polyphenols, flavonoids, and anthocyanins, and have low antioxidant activity as measured by 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging assays.

  13. Crystal growing

    NASA Technical Reports Server (NTRS)

    Neville, J. P.

    1990-01-01

    One objective is to demonstrate the way crystals grow and how they affect the behavior of material. Another objective is to compare the growth of crystals in metals and nonmetals. The procedures, which involve a supersaturated solution of a salt that will separate into crystals on cooling and the pouring off of an eutectic solution to expose the crystals formed by a solid solution when an alloy of two metals forms a solid and eutectic solution on cooling, are described.

  14. High Inorganic Triphosphatase Activities in Bacteria and Mammalian Cells: Identification of the Enzymes Involved

    PubMed Central

    Lakaye, Bernard; Servais, Anne-Catherine; Scholer, Georges; Fillet, Marianne; Elias, Benjamin; Derochette, Jean-Michel; Crommen, Jacques; Wins, Pierre; Bettendorff, Lucien

    2012-01-01

    Background We recently characterized a specific inorganic triphosphatase (PPPase) from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. Methodology/Principal Findings Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPPi) is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPPi but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. Conclusions and General Significance We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPPi in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPPi, which could be cytotoxic because of its high affinity for Ca2+, thereby interfering with Ca2+ signaling. PMID:22984449

  15. Isolation of free-living dinitrogen-fixing bacteria and their activity in compost containing de-inking paper sludge.

    PubMed

    Beauchamp, Chantal J; Lévesque, Gabriel; Prévost, Danielle; Chalifour, François-P

    2006-05-01

    Knowledge of the microbiology of dinitrogen (N2)-fixing bacteria in compost rich in de-inking paper sludge (DPS) is limited. Dinitrogen (N2)-fixing bacteria from DPS composts were isolated and studied for their N2-fixing activity in vitro and in vivo. Two Gram-negative N2-fixing isolates were identified as Pseudomonas. At 20 degrees C, both isolates revealed that N2-fixing activity was higher than that of three arctic Pseudomonas strains. Their N2-fixing activity was found to occur between 18 and 25 degrees C, a pattern that was similar to the reference isolate Azotobacter ATCC 7486. Composts successfully showed N2-fixing activity after carbohydrate amendments both with and without inoculation of a N2-fixing isolate. These results suggest that DPS composts support N2-fixing bacteria and that N2-fixing activity is dependent on a usable carbohydrate source.

  16. Silencing of Anopheles stephensi Heme Peroxidase HPX15 Activates Diverse Immune Pathways to Regulate the Growth of Midgut Bacteria

    PubMed Central

    Kajla, Mithilesh; Choudhury, Tania P.; Kakani, Parik; Gupta, Kuldeep; Dhawan, Rini; Gupta, Lalita; Kumar, Sanjeev

    2016-01-01

    Anopheles mosquito midgut harbors a diverse group of endogenous bacteria that grow extensively after the blood feeding and help in food digestion and nutrition in many ways. Although, the growth of endogenous bacteria is regulated by various factors, however, the robust antibacterial immune reactions are generally suppressed in this body compartment by a heme peroxidase HPX15 crosslinked mucins barrier. This barrier is formed on the luminal side of the midgut and blocks the direct interactions and recognition of bacteria or their elicitors by the immune reactive midgut epithelium. We hypothesized that in the absence of HPX15, an increased load of exogenous bacteria will enormously induce the mosquito midgut immunity and this situation in turn, can easily regulate mosquito-pathogen interactions. In this study, we found that the blood feeding induced AsHPX15 gene in Anopheles stephensi midgut and promoted the growth of endogenous as well as exogenous fed bacteria. In addition, the mosquito midgut also efficiently regulated the number of these bacteria through the induction of classical Toll and Imd immune pathways. In case of AsHPX15 silenced midguts, the growth of midgut bacteria was largely reduced through the induction of nitric oxide synthase (NOS) gene, a downstream effector molecule of the JAK/STAT pathway. Interestingly, no significant induction of the classical immune pathways was observed in these midguts. Importantly, the NOS is a well known negative regulator of Plasmodium development, thus, we proposed that the induction of diverged immune pathways in the absence of HPX15 mediated midgut barrier might be one of the strategies to manipulate the vectorial capacity of Anopheles mosquito. PMID:27630620

  17. Effects of two different dietary fermentable carbohydrates on activity and heat production in group-housed growing pigs.

    PubMed

    Rijnen, M M J A; Verstegen, M W A; Heetkamp, M J W; Schrama, J W

    2003-05-01

    The effects of two sources of dietary fiber (DF) on behavior and heat production (HP) in group-housed growing pigs were studied. Twenty clusters of 14 barrows (50 kg) were fed one of 10 diets. Diets differed mainly in type and content of fermentable DF (fDF) and in content of digestible starch. Five diets contained solvent-extracted coconut meal (SECM) and five diets contained soybean hulls (SBH) as the main fDF source. On an as-fed basis, pigs received 3.5, 13.2, 23.0, 32.7, or 42.4 g x kg(-0.75) x d(-1) of SECM or SBH. A total of 280 crossbred growing pigs were used, divided into clusters of 14 pigs each. Pigs were group-housed and fed at 2.5 times the assumed maintenance energy requirements. All clusters were fed similar amounts of NE, ileal-digestible protein and amino acids, vitamins, and minerals. Consequently, DMI differed among diets because NE content decreased with increasing DF content. After a 32-d preliminary period, HP was measured per cluster during a 7-d experimental period in environmentally controlled respiration chambers. Behavior of the pigs was recorded using time-lapse video recordings during two different days within the experimental period. Intake of digestible starch and fDF was different (P < 0.001) among diets, whereas intake of digestible CP was similar among diets. On average, pigs spent 153 min standing, 42 min sitting, 202 min lying on their chest, and 1,043 min lying on their flanks each day. Pigs fed SECM diets spent, on average, less time (P < 0.05) lying on their chest than pigs fed SBH diets. Total time spent on physical activity (i.e., standing plus sitting, 195 min/d) was not affected by diet. Total HP and resting HP were affected by diet and were on average lower (P < 0.01) for pigs fed SECM diets than for pigs fed SBH diets. Activity-related heat production (AHP) averaged 65 kJ x kg(-0.75) x d(-1) and was not affected by diet. There was a linear relationship (P < 0.001) between fDF intake and HP, but there was no relationship

  18. Quantity-activity relationship of denitrifying bacteria and environmental scaling in streams of a forested watershed

    USGS Publications Warehouse

    O'Connor, B.L.; Hondzo, Miki; Dobraca, D.; LaPara, T.M.; Finlay, J.A.; Brezonik, P.L.

    2006-01-01

    The spatial variability of subreach denitrification rates in streams was evaluated with respect to controlling environmental conditions, molecular examination of denitrifying bacteria, and dimensional analysis. Denitrification activities ranged from 0 and 800 ng-N gsed-1 d-1 with large variations observed within short distances (<50 m) along stream reaches. A log-normal probability distribution described the range in denitrification activities and was used to define low (16% of the probability distributibn), medium (68%), and high (16%) denitrification potential groups. Denitrifying bacteria were quantified using a competitive polymerase chain reaction (cPCR) technique that amplified the nirK gene that encodes for nitrite reductase. Results showed a range of nirK quantities from 103 to 107 gene-copy-number gsed.-1 A nonparametric statistical test showed no significant difference in nirK quantifies among stream reaches, but revealed that samples with a high denitrification potential had significantly higher nirK quantities. Denitrification activity was positively correlated with nirK quantities with scatter in the data that can be attributed to varying environmental conditions along stream reaches. Dimensional analysis was used to evaluate denitrification activities according to environmental variables that describe fluid-flow properties, nitrate and organic material quantities, and dissolved oxygen flux. Buckingham's pi theorem was used to generate dimensionless groupings and field data were used to determine scaling parameters. The resulting expressions between dimensionless NO3- flux and dimensionless groupings of environmental variables showed consistent scaling, which indicates that the subreach variability in denitrification rates can be predicted by the controlling physical, chemical, and microbiological conditions. Copyright 2006 by the American Geophysical Union.

  19. [Antimicrobial activity of ornidazole and 6 other antibiotics against anaerobic bacteria].

    PubMed

    Alados, J C; Martínez-Brocal, A; Miranda, C; Rojo, M D; García, V; Domínguez, M C; de la Rosa, M

    1991-04-01

    The antimicrobial susceptibility of 235 anaerobic bacterial strains to ornidazole, metronidazole, chloramphenicol, clindamycin, penicillin, cefoxitin and imipenem has been studied using agar-dilution technique. Ornidazole and metronidazole were active against 88.6% and 86% of gram-positive cocci. Overall, 99.1% of Bacteroides group fragilis, and 91.3% of non-fragilis Bacteroides were also sensitive to both drugs. We did not find any Clostridium perfringens resistant strain. Cefoxitin and penicillin showed good activity against all Clostridium perfringens strains, and also against 97.7% and 92.5% of gram-positive cocci. We found one single imipenem resistant strain among gram-positive bacteria. Bacteroides fragilis also showed sensitivity to penicillin (41.5%), cefoxitin (85.7%) and imipenem (97.1%). Clindamycin was active against Clostridium perfringens (90.9%), gram-positive cocci (86.7%) and imipenem (68.6%). Chloramphenicol showed good activity against Clostridium perfringens (100%), gram-positive cocci (95.5%) and Bacteroides spp. (99.4%). Our results showed an overall good activity of all the seven drugs tested against anaerobic gram-positive microorganisms. Of notice, we found a good activity of chloramphenicol, imipenem, metronidazole and ornidazole against Bacteroides spp.

  20. Caspase-9/-3 activation and apoptosis are induced in mouse macrophages upon ingestion and digestion of Escherichia coli bacteria.

    PubMed

    Häcker, Hans; Fürmann, Christine; Wagner, Hermann; Häcker, Georg

    2002-09-15

    A number of highly virulent, intracellular bacteria are known to induce cell death by apoptosis in infected host cells. In this work we demonstrate that phagocytosis of bacteria from the Escherichia coli laboratory strain K12 DH5alpha is a potent cell death stimulus for mouse macrophages. RAW264.7 mouse macrophages took up bacteria and digested them within 2-4 h as investigated with green fluorescent protein-expressing bacteria. No evidence of apoptosis was seen at 8 h postexposure, but at 24 h approximately 70% of macrophages displayed an apoptotic phenotype by a series of parameters. Apoptosis was blocked by inhibition of caspases or by forced expression of the apoptosis-inhibiting protein Bcl-2. Processing of caspase-3 and caspase-9 but not caspase-8 was seen suggesting that the mitochondrial branch of the apoptotic pathway was activated. Active effector caspases could be detected in two different assays. Because the adapter molecule myeloid differentiation factor 88 (MyD88) has been implicated in apoptosis, involvement of the Toll-like receptor pathway was investigated. In RAW264.7 cells, heat-treated bacteria were taken up poorly and failed to induce significant apoptosis. However, cell activation was almost identical between live and heat-inactivated bacteria as measured by extracellular signal-regulated kinase activation, generation of free radicals, and TNF secretion. Furthermore, primary bone marrow-derived macrophages from wild-type as well as from MyD88-deficient mice underwent apoptosis upon phagocytosis of bacteria. These results show that uptake and digestion of bacteria leads to MyD88-independent apoptosis in mouse macrophages. This form of cell death might have implications for the generation of the immune response.

  1. Serum amyloid P component bound to gram-negative bacteria prevents lipopolysaccharide-mediated classical pathway complement activation.

    PubMed

    de Haas, C J; van Leeuwen, E M; van Bommel, T; Verhoef, J; van Kessel, K P; van Strijp, J A

    2000-04-01

    Although serum amyloid P component (SAP) is known to bind many ligands, its biological function is not yet clear. Recently, it was demonstrated that SAP binds to lipopolysaccharide (LPS). In the present study, SAP was shown to bind to gram-negative bacteria expressing short types of LPS or lipo-oligosaccharide (LOS), such as Salmonella enterica serovar Copenhagen Re and Escherichia coli J5, and also to clinical isolates of Haemophilus influenzae. It was hypothesized that SAP binds to the bacteria via the lipid A part of LPS or LOS, since the htrB mutant of the nontypeable H. influenzae strain NTHi 2019-B29-3, which expresses a nonacetylated lipid A, did not bind SAP. This was in contrast to the parental strain NTHi 2019. The binding of SAP resulted in a clear inhibition of the deposition of complement component C3 on the bacteria. SAP inhibited only the activation of the classical complement pathway; the alternative route remained unaffected. In the classical route, SAP prevented the deposition of the first complement component, Clq, probably by interfering with the binding of Clq to LPS. Since antibody-mediated Clq activation was not inhibited by SAP, SAP seems to inhibit only the LPS-induced classical complement pathway activation. The SAP-induced inhibition of C3 deposition strongly diminished the complement-mediated lysis as well as the phagocytosis of the bacteria. The binding of SAP to gram-negative bacteria, therefore, might influence the pathophysiology of an infection with such bacteria.

  2. Chemical Composition and In Vitro Cytotoxic Activity of Essential Oil of Leaves of Malus domestica Growing in Western Himalaya (India)

    PubMed Central

    Walia, Mayanka; Mann, Tavleen S.; Kumar, Dharmesh; Agnihotri, Vijai K.; Singh, Bikram

    2012-01-01

    Light pale-colored volatile oil was obtained from fresh leaves of Malus domestica tree, growing in Dhauladhar range of Himalaya (Himachal Pradesh, India), with characteristic eucalyptol dominant fragrance. The oil was found to be a complex mixture of mono-, sesqui-, di-terpenes, phenolics, and aliphatic hydrocarbons. Seventeen compounds accounting for nearly 95.3% of the oil were characterized with the help of capillary GC, GC-MS, and NMR. Major compounds of the oil were characterized as eucalyptol (43.7%), phytol (11.5%), α-farnesene (9.6%), and pentacosane (7.6%). Cytotoxicity of essential oil of leaves of M. domestica was evaluated by sulforhodamine B (SRB) assays. The essential oil of leaves of M. domestica, tested against three cancer cell lines, namely, C-6 (glioma cells), A549 (human lung carcinoma), CHOK1 (Chinese hamster ovary cells), and THP-1 (human acute monocytic leukemia cell). The highest activity showed by essential oil on C-6 cell lines (98.2%) at concentration of 2000 μg/ml compared to control. It is the first paper in literature to exploit the chemical composition and cytotoxic activity of leaves essential oil of M. domestica. PMID:22619691

  3. Active-treatment effects of the Forsus fatigue resistant device during comprehensive Class II correction in growing patients

    PubMed Central

    Cacciatore, Giorgio; Alvetro, Lisa; Defraia, Efisio; Ghislanzoni, Luis Tomas Huanc

    2014-01-01

    Objective To evaluate the active-treatment effects of the Forsus fatigue resistant device (Forsus) during comprehensive correction of Class II malocclusion in growing patients. Methods Fifty-four patients (mean age, 12.5 ± 1.2 years) with Class II division 1 malocclusion were consecutively treated with fixed app-liances in combination with Forsus. Lateral cephalograms were analyzed at the beginning of the fixed treatment (T1), Forsus insertion (T2), its removal (T3), and end of the comprehensive therapy (T4). Statistical comparisons were carried out by repeated-measures ANOVA with Tukey's post-hoc test (p < 0.05). Results The overall therapeutic effects were mainly dentoalveolar and occurred mostly during the active treatment with Forsus (T2-T3, mean duration = 0.5 ± 0.1 years). The overjet and overbite decreased significantly (-3.5 and -1.5 mm, respectively) and the molar relationship improved by 4.3 mm. These changes were associated with significant retroclination of the maxillary incisors (-3.1°), proclination and intrusion of the mandibular incisors (+5.0° and -1.5 mm, respectively), and mesialization of the mandibular molars (+2.0 mm). Conclusions Forsus had mainly dentoalveolar effects and contributed largely to the overall therapeutic outcome. PMID:24892027

  4. Synergistic activity of rifampicin and ethambutol against slow-growing nontuberculous mycobacteria is currently of questionable clinical significance.

    PubMed

    van Ingen, Jakko; Hoefsloot, Wouter; Mouton, Johan W; Boeree, Martin J; van Soolingen, Dick

    2013-07-01

    A key issue in the treatment of disease caused by slow-growing nontuberculous mycobacteria is the limited association between in vitro minimum inhibitory concentrations (MICs) of rifampicin and ethambutol alone and the in vivo outcome of treatment with these drugs. Combined susceptibility testing to rifampicin and ethambutol could provide a more realistic view of the efficacy of these drugs. In this study, Mycobacterium avium (n = 5), Mycobacterium chimaera (n = 6), Mycobacterium intracellulare (n = 4), Mycobacterium xenopi (n = 4), Mycobacterium malmoense (n = 3) and Mycobacterium simiae (n = 2) clinical isolates were selected and the MICs of rifampicin and ethambutol alone and in combination were measured using the Middlebrook 7H10 agar dilution method. Synergy was defined as a fractional inhibitory concentration index ≤ 0.5. Rifampicin and ethambutol showed synergistic activity against the majority of M. avium (4/5), M. chimaera (5/6) and M. intracellulare (3/4) isolates and 1 of 2 eligible M. malmoense isolates. No synergistic activity was measured against M. xenopi and M. simiae. Synergy was neither universal for all species nor for all isolates of one species; it thus needs to be tested for rather than assumed. Even if this synergy exists in vivo, it is questionable whether the MICs to the combined drugs can be overcome by the drug exposure attained by current regimens at the recommended dosages. New dosing strategies for rifampicin and ethambutol should be studied to increase the exposure to these drugs and thus maximise their impact.

  5. Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria

    PubMed Central

    Kraszewska, Joanna; Beckett, Michael C.; James, Tharappel C.

    2016-01-01

    ABSTRACT Antimicrobial peptides offer potential as novel therapeutics to combat food spoilage and poisoning caused by pathogenic and nonpathogenic bacteria. Our previous studies identified the peptide human beta-defensin 3 (HBD3) as a potent antimicrobial agent against a wide range of beer-spoiling bacteria. Thus, HBD3 is an excellent candidate for development as an additive to prevent food and beverage spoilage. To expand the repertoire of peptides with antimicrobial activity against bacteria associated with food spoilage and/or food poisoning, we carried out an in silico discovery pipeline to identify peptides with structure and activity similar to those of HBD3, focusing on peptides of plant origin. Using a standardized assay, we compared the antimicrobial activities of nine defensin-like plant peptides to the activity of HBD3. Only two of the peptides, fabatin-2 and Cp-thionin-2, displayed antimicrobial activity; however, the peptides differed from HBD3 in being sensitive to salt and were thermostable. We also compared the activities of several ultrashort peptides to that of HBD3. One of the peptides, the synthetic tetrapeptide O3TR, displayed biphasic antimicrobial activity but had a narrower host range than HBD3. Finally, to determine if the peptides might act in concert to improve antimicrobial activity, we compared the activities of the peptides in pairwise combinations. The plant defensin-like peptides fabatin-2 and Cp-thionin-2 displayed a synergistic effect with HBD3, while O3TR was antagonistic. Thus, some plant defensin-like peptides are effective antimicrobials and may act in concert with HBD3 to control bacteria associated with food spoilage and food poisoning. IMPORTANCE Food spoilage and food poisoning caused by bacteria can have major health and economic implications for human society. With the rise in resistance to conventional antibiotics, there is a need to identify new antimicrobials to combat these outbreaks in our food supply. Here we

  6. Effect of afforestation and reforestation of pastures on the activity and population dynamics of methanotrophic bacteria.

    PubMed

    Singh, Brajesh K; Tate, Kevin R; Kolipaka, Gokul; Hedley, Carolyn B; Macdonald, Catriona A; Millard, Peter; Murrell, J Colin

    2007-08-01

    We investigated the effect of afforestation and reforestation of pastures on methane oxidation and the methanotrophic communities in soils from three different New Zealand sites. Methane oxidation was measured in soils from two pine (Pinus radiata) forests and one shrubland (mainly Kunzea ericoides var. ericoides) and three adjacent permanent pastures. The methane oxidation rate was consistently higher in the pine forest or shrubland soils than in the adjacent pasture soils. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of these soils revealed that different methanotrophic communities were active in soils under the different vegetations. The C18 PLFAs (signature of type II methanotrophs) predominated under pine and shrublands, and C16 PLFAs (type I methanotrophs) predominated under pastures. Analysis of the methanotrophs by molecular methods revealed further differences in methanotrophic community structure under the different vegetation types. Cloning and sequencing and terminal-restriction fragment length polymorphism analysis of the particulate methane oxygenase gene (pmoA) from different samples confirmed the PLFA-SIP results that methanotrophic bacteria related to type II methanotrophs were dominant in pine forest and shrubland, and type I methanotrophs (related to Methylococcus capsulatus) were dominant in all pasture soils. We report that afforestation and reforestation of pastures caused changes in methane oxidation by altering the community structure of methanotrophic bacteria in these soils.

  7. A structural perspective on the mechanisms of quorum sensing activation in bacteria.

    PubMed

    Lixa, Carolina; Mujo, Amanda; Anobom, Cristiane D; Pinheiro, Anderson S

    2015-01-01

    Bacteria are able to synchronize the population behavior in order to regulate gene expression through a cell-to-cell communication mechanism called quorum sensing. This phenomenon involves the production, detection and the response to extracellular signaling molecules named autoinducers, which directly or indirectly regulate gene expression in a cell density-dependent manner. Quorum sensing may control a wide range of biological processes in bacteria, such as bioluminescence, virulence factor production, biofilm formation and antibiotic resistance. The autoinducers are recognized by specific receptors that can either be membrane-bound histidine kinase receptors, which work by activating cognate cytoplasmic response regulators, or cytoplasmic receptors acting as transcription factors. In this review, we focused on the cytosolic quorum sensing regulators whose three-dimensional structures helped elucidate their mechanisms of action. Structural studies of quorum sensing receptors may enable the rational design of inhibitor molecules. Ultimately, this approach may represent an effective alternative to treat infections where classical antimicrobial therapy fails to overcome the microorganism virulence.

  8. A mathematical model for electrochemically active filamentous sulfide-oxidising bacteria.

    PubMed

    Fischer, Keelan M; Batstone, Damien J; van Loosdrecht, Mark C M; Picioreanu, Cristian

    2015-04-01

    Oxygen and sulfide in ocean sediments can be consumed biologically over long spatial distances by way of filamentous bacteria in electron-conducting sheaths. To analyse observations, a mathematical model of these filamentous sulfur-oxidising bacteria was developed, including electrical conduction between reactive zones. Mechanisms include Nernst-Planck diffusion and migration of ions coupled with Ohm's law for conduction along filaments, and metabolic activity throughout the filaments. Simulations predict outward biomass growth toward the boundaries of the sediment floor and top surface, resulting in two distinct zones with anode (sulfide consumption) and cathode (oxygen consumption) reactions enabled by electron conduction. Results show inward fluxes of 4.6 mmol O2/m(2)/d and 2.5 mmol S/m(2)/d, with consumption increasing with growth to final fluxes of 8.2 mmol O2/m(2)/d and 4.34 mmol S/m(2)/d. Qualitatively, the effect of varying cell conductivity and substrate affinity is evaluated. Controlling mechanisms are identified to shift from biomass limitation, to substrate limitation, and to conductivity limitations as the lengths of the filaments increase. While most observed data are reflected in the simulation results, a key discrepancy is the lower growth rates, which are largely fixed by thermodynamics, indicating that microbes may utilise secondary substrates or an alternative metabolism.

  9. Antibacterial Activities of Metabolites from Platanus occidentalis (American sycamore) against Fish Pathogenic Bacteria

    PubMed Central

    Schrader, Kevin K; Hamann, Mark T; McChesney, James D; Rodenburg, Douglas L; Ibrahim, Mohamed A

    2016-01-01

    One approach to the management of common fish diseases in aquaculture is the use of antibiotic-laden feed. However, there are public concerns about the use of antibiotics in agriculture and the potential development of antibiotic resistant bacteria. Therefore, the discovery of other environmentally safe natural compounds as alternatives to antibiotics would benefit the aquaculture industries. Four natural compounds, commonly called platanosides, [kaempferol 3-O-α-L-(2″,3″-di-E-p-coumaroyl)rhamnoside (1), kaempferol 3-O-α-L-(2″-E-p-coumaroyl-3″-Z-p-coumaroyl)rhamnoside (2), kaempferol 3-O-α-L-(2″-Z-p-coumaroyl-3″-E-p-coumaroyl)rhamnoside (3), and kaempferol 3-O-α-L-(2″,3″-di-Z-p-coumaroyl)rhamnoside (4)] isolated from the leaves of the American sycamore (Platanus occidentalis) tree were evaluated using a rapid bioassay for their antibacterial activities against common fish pathogenic bacteria including Flavobacterium columnare, Edwardsiella ictaluri, Aeromonas hydrophila, and Streptococcus iniae. The four isomers and a mixture of all four isomers were strongly antibacterial against isolates of F. columnare and S. iniae. Against F. columnare ALM-00-173, 3 and 4 showed the strongest antibacterial activities, with 24-h 50% inhibition concentration (IC50) values of 2.13 ± 0.11 and 2.62 ± 0.23 mg/L, respectively. Against S. iniae LA94-426, 4 had the strongest antibacterial activity, with 24-h IC50 of 1.87 ± 0.23 mg/L. Neither a mixture of the isomers nor any of the individual isomers were antibacterial against isolates of E. ictaluri and A. hydrophila at the test concentrations used in the study. Several of the isomers appear promising for the potential management of columnaris disease and streptococcosis in fish. PMID:27790379

  10. Caspase Inhibitors of the P35 Family Are More Active When Purified from Yeast than Bacteria

    PubMed Central

    Brand, Ingo L.; Civciristov, Srgjan; Taylor, Nicole L.; Talbo, Gert H.; Pantaki-Eimany, Delara; Levina, Vita; Clem, Rollie J.; Perugini, Matthew A.; Kvansakul, Marc; Hawkins, Christine J.

    2012-01-01

    Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a “reactive site loop” within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins) may underestimate their activity. PMID:22720082

  11. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria.

    PubMed

    Borges, Anabela; Saavedra, Maria J; Simões, Manuel

    2012-01-01

    The activity of two phenolic acids, gallic acid (GA) and ferulic acid (FA) at 1000 μg ml(-1), was evaluated on the prevention and control of biofilms formed by Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes. In addition, the effect of the two phenolic acids was tested on planktonic cell susceptibility, bacterial motility and adhesion. Biofilm prevention and control were tested using a microtiter plate assay and the effect of the phenolic acids was assessed on biofilm mass (crystal violet staining) and on the quantification of metabolic activity (alamar blue assay). The minimum bactericidal concentration for P. aeruginosa was 500 μg ml(-1) (for both phenolic acids), whilst for E. coli it was 2500 μg ml(-1) (FA) and 5000 μg ml(-1) (GA), for L. monocytogenes it was >5000 μg ml(-1) (for both phenolic acids), and for S. aureus it was 5000 μg ml(-1) (FA) and >5000 μg ml(-1) (GA). GA caused total inhibition of swimming (L. monocytogenes) and swarming (L. monocytogenes and E. coli) motilities. FA caused total inhibition of swimming (L. monocytogenes) and swarming (L. monocytogenes and E. coli) motilities. Colony spreading of S. aureus was completely inhibited by FA. The interference of GA and FA with bacterial adhesion was evaluated by the determination of the free energy of adhesion. Adhesion was less favorable when the bacteria were exposed to GA (P. aeruginosa, S. aureus and L. monocytogenes) and FA (P. aeruginosa and S. aureus). Both phenolics had preventive action on biofilm formation and showed a higher potential to reduce the mass of biofilms formed by the Gram-negative bacteria. GA and FA promoted reductions in biofilm activity >70% for all the biofilms tested. The two phenolic acids demonstrated the potential to inhibit bacterial motility and to prevent and control biofilms of four important human pathogenic bacteria. This study also emphasizes the potential of phytochemicals as an emergent source of biofilm

  12. Effect of high compost temperature on enzymatic activity and species diversity of culturable bacteria in cattle manure compost.

    PubMed

    Miyatake, Fumihito; Iwabuchi, Kazunori

    2005-11-01

    To clarify the characteristics of thermophilic bacteria in cattle manure compost, enzymatic activity and species diversity of cultivated bacteria were investigated at 54, 60, 63, 66 and 70 degrees C, which were dependent on composting temperature. The highest level of thermophilic bacterial activity was observed at 54 degrees C. Following an increase in temperature to 63 degrees C, a reduction in bacterial diversity was observed. At 66 degrees C, bacterial diversity increased again, and diverse bacteria including Thermus spp. and thermophilic Bacillus spp. appeared to adapt to the higher temperature. At 70 degrees C, bacterial activity measured as superoxide dismutase and catalase activity was significantly higher than at 66 degrees C. However, the decomposition rate of protein in the compost was lower than the rate at 66 degrees C due to the higher compost temperature.

  13. Efflux Pump Blockers in Gram-Negative Bacteria: The New Generation of Hydantoin Based-Modulators to Improve Antibiotic Activity

    PubMed Central

    Otręebska-Machaj, Ewa; Chevalier, Jacqueline; Handzlik, Jadwiga; Szymańska, Ewa; Schabikowski, Jakub; Boyer, Gérard; Bolla, Jean-Michel; Kieć-Kononowicz, Katarzyna; Pagès, Jean-Marie; Alibert, Sandrine

    2016-01-01

    Multidrug resistant (MDR) bacteria are an increasing health problem with the shortage of new active antibiotic agents. Among effective mechanisms that contribute to the spread of MDR Gram-negative bacteria are drug efflux pumps that expel clinically important antibiotic classes out of the cell. Drug pumps are attractive targets to restore the susceptibility toward the expelled antibiotics by impairing their efflux activity. Arylhydantoin derivatives were investigated for their potentiation of activities of selected antibiotics described as efflux substrates in Enterobacter aerogenes expressing or not AcrAB pump. Several compounds increased the bacterial susceptibility toward nalidixic acid, chloramphenicol and sparfloxacin and were further pharmacomodulated to obtain a better activity against the AcrAB producing bacteria. PMID:27199950

  14. A model to assess lactic acid bacteria aminopeptidase activities in Parmigiano Reggiano cheese during ripening.

    PubMed

    Gatti, M; De Dea Lindner, J; Gardini, F; Mucchetti, G; Bevacqua, D; Fornasari, M E; Neviani, E

    2008-11-01

    The aim of this work was to investigate in which phases of ripening of Parmigiano Reggiano cheese lactic acid bacteria aminopeptidases present in cheese extract could be involved in release of free amino acids and to better understand the behavior of these enzymes in physical-chemical conditions that are far from their optimum. In particular, we evaluated 6 different substrates to reproduce broad-specificity aminopeptidase N, broad-specificity aminopeptidase C, glutamyl aminopeptidase A, peptidase with high specificity for leucine and alanine, proline iminopeptidase, and X-prolyl dipeptidyl aminopeptidase activities releasing different N-terminal amino acids. The effects of pH, NaCl concentration, and temperature on the enzyme activities of amino acid beta-naphthylamide (betaNA)-substrates were determined by modulating the variables in 19 different runs of an experimental design, which allowed the building of mathematical models able to assess the effect on aminopeptidases activities over a range of values, obtained with bibliographic data, covering different environmental conditions in different zones of the cheese wheel at different aging times. The aminopeptidases tested in this work were present in cell-free Parmigiano Reggiano cheese extract after a 17-mo ripening and were active when tested in model system. The modeling approach shows that to highlight the individual and interactive effects of chemical-physical variables on enzyme activities, it is helpful to determine the true potential of an amino-peptidase in cheese. Our results evidenced that the 6 different lactic acid bacteria peptidases participate in cheese proteolysis and are induced or inhibited by the cheese production parameters that, in turn, depend on the cheese dimension. Generally, temperature and pH exerted the more relevant effects on the enzymatic activities, and in many cases, a relevant interactive effect of these variables was observed. Increasing salt concentration slowed down broad

  15. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria

    PubMed Central

    Mith, Hasika; Duré, Rémi; Delcenserie, Véronique; Zhiri, Abdesselam; Daube, Georges; Clinquart, Antoine

    2014-01-01

    This study was undertaken to determine the in vitro antimicrobial activities of 15 commercial essential oils and their main components in order to pre-select candidates for potential application in highly perishable food preservation. The antibacterial effects against food-borne pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, and enterohemorrhagic Escherichia coli O157:H7) and food spoilage bacteria (Brochothrix thermosphacta and Pseudomonas fluorescens) were tested using paper disk diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Most of the tested essential oils exhibited antimicrobial activity against all tested bacteria, except galangal oil. The essential oils of cinnamon, oregano, and thyme showed strong antimicrobial activities with MIC ≥ 0.125 μL/mL and MBC ≥ 0.25 μL/mL. Among tested bacteria, P. fluorescens was the most resistant to selected essential oils with MICs and MBCs of 1 μL/mL. The results suggest that the activity of the essential oils of cinnamon, oregano, thyme, and clove can be attributed to the existence mostly of cinnamaldehyde, carvacrol, thymol, and eugenol, which appear to possess similar activities against all the tested bacteria. These materials could be served as an important natural alternative to prevent bacterial growth in food products. PMID:25473498

  16. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria.

    PubMed

    Mith, Hasika; Duré, Rémi; Delcenserie, Véronique; Zhiri, Abdesselam; Daube, Georges; Clinquart, Antoine

    2014-07-01

    This study was undertaken to determine the in vitro antimicrobial activities of 15 commercial essential oils and their main components in order to pre-select candidates for potential application in highly perishable food preservation. The antibacterial effects against food-borne pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, and enterohemorrhagic Escherichia coli O157:H7) and food spoilage bacteria (Brochothrix thermosphacta and Pseudomonas fluorescens) were tested using paper disk diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Most of the tested essential oils exhibited antimicrobial activity against all tested bacteria, except galangal oil. The essential oils of cinnamon, oregano, and thyme showed strong antimicrobial activities with MIC ≥ 0.125 μL/mL and MBC ≥ 0.25 μL/mL. Among tested bacteria, P. fluorescens was the most resistant to selected essential oils with MICs and MBCs of 1 μL/mL. The results suggest that the activity of the essential oils of cinnamon, oregano, thyme, and clove can be attributed to the existence mostly of cinnamaldehyde, carvacrol, thymol, and eugenol, which appear to possess similar activities against all the tested bacteria. These materials could be served as an important natural alternative to prevent bacterial growth in food products.

  17. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    PubMed

    Daskin, Joshua H; Bell, Sara C; Schwarzkopf, Lin; Alford, Ross A

    2014-01-01

    Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata). All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs) from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to avoid

  18. The novel Solanum tuberosum calcium dependent protein kinase, StCDPK3, is expressed in actively growing organs.

    PubMed

    Grandellis, Carolina; Giammaria, Verónica; Bialer, Magalí; Santin, Franco; Lin, Tian; Hannapel, David J; Ulloa, Rita M

    2012-12-01

    Calcium-dependent protein kinases (CDPKs) are key components of calcium regulated signaling cascades in plants. In this work, isoform StCDPK3 from Solanum tuberosum was studied and fully described. StCDPK3 encodes a 63 kDa protein with an N-terminal variable domain (NTV), rich in prolines and glutamines, which presents myristoylation and palmitoylation consensus sites and a PEST sequence indicative of rapid protein degradation. StCDPK3 gene (circa 11 kb) is localized in chromosome 3, shares the eight exons and seven introns structure with other isoforms from subgroup IIa and contains an additional intron in the 5'UTR region. StCDPK3 expression is ubiquitous being transcripts more abundant in early elongating stolons (ES), leaves and roots, however isoform specific antibodies only detected the protein in leaf particulate extracts. The recombinant 6xHis-StCDPK3 is an active kinase that differs in its kinetic parameters and calcium requirements from StCDPK1 and 2 isoforms. In vitro, StCDPK3 undergoes autophosphorylation regardless of the addition of calcium. The StCDPK3 promoter region (circa 1,800 bp) was subcloned by genome walking and fused to GUS. Light and ABRE responsive elements were identified in the promoter region as well as elements associated to expression in roots. StCDPK3 expression was enhanced by ABA while GA decreased it. Potato transgenic lines harboring StCDPK3 promoter∷GUS construct were generated by Agrobacterium tumefaciens mediated plant transformation. Promoter activity was detected in leaves, root tips and branching points, early ES, tuber eyes and developing sprouts indicating that StCDPK3 is expressed in actively growing organs.

  19. Office Paper Platform for Bioelectrochromic Detection of Electrochemically Active Bacteria using Tungsten Trioxide Nanoprobes

    NASA Astrophysics Data System (ADS)

    Marques, A. C.; Santos, L.; Costa, M. N.; Dantas, J. M.; Duarte, P.; Gonçalves, A.; Martins, R.; Salgueiro, C. A.; Fortunato, E.

    2015-04-01

    Electrochemically active bacteria (EAB) have the capability to transfer electrons to cell exterior, a feature that is currently explored for important applications in bioremediation and biotechnology fields. However, the number of isolated and characterized EAB species is still very limited regarding their abundance in nature. Colorimetric detection has emerged recently as an attractive mean for fast identification and characterization of analytes based on the use of electrochromic materials. In this work, WO3 nanoparticles were synthesized by microwave assisted hydrothermal synthesis and used to impregnate non-treated regular office paper substrates. This allowed the production of a paper-based colorimetric sensor able to detect EAB in a simple, rapid, reliable, inexpensive and eco-friendly method. The developed platform was then tested with Geobacter sulfurreducens, as a proof of concept. G. sulfurreducens cells were detected at latent phase with an RGB ratio of 1.10 +/- 0.04, and a response time of two hours.

  20. Fast-Moving Bacteria Self-Organize into Active Two-Dimensional Crystals of Rotating Cells

    NASA Astrophysics Data System (ADS)

    Petroff, Alexander P.; Wu, Xiao-Lun; Libchaber, Albert

    2015-04-01

    We investigate a new form of collective dynamics displayed by Thiovulum majus, one of the fastest-swimming bacteria known. Cells spontaneously organize on a surface into a visually striking two-dimensional hexagonal lattice of rotating cells. As each constituent cell rotates its flagella, it creates a tornadolike flow that pulls neighboring cells towards and around it. As cells rotate against their neighbors, they exert forces on one another, causing the crystal to rotate and cells to reorganize. We show how these dynamics arise from hydrodynamic and steric interactions between cells. We derive the equations of motion for a crystal, show that this model explains several aspects of the observed dynamics, and discuss the stability of these active crystals.

  1. Viewing Marine Bacteria, Their Activity and Response to Environmental Drivers from Orbit

    PubMed Central

    Grimes, D. Jay; Ford, Tim E.; Colwell, Rita R.; Baker-Austin, Craig; Martinez-Urtaza, Jaime; Subramaniam, Ajit; Capone, Douglas G.

    2014-01-01

    Satellite-based remote sensing of marine microorganisms has become a useful tool in predicting human health risks associated with these microscopic targets. Early applications were focused on harmful algal blooms, but more recently methods have been developed to interrogate the ocean for bacteria. As satellite-based sensors have become more sophisticated and our ability to interpret information derived from these sensors has advanced, we have progressed from merely making fascinating pictures from space to developing process models with predictive capability. Our understanding of the role of marine microorganisms in primary production and global elemental cycles has been vastly improved as has our ability to use the combination of remote sensing data and models to provide early warning systems for disease outbreaks. This manuscript will discuss current approaches to monitoring cyanobacteria and vibrios, their activity and response to environmental drivers, and will also suggest future directions. PMID:24477922

  2. Green Synthesis and Characterization of Silver Nanoparticles for Antimicrobial Activity Against Burn Wounds Contaminating Bacteria

    NASA Astrophysics Data System (ADS)

    Rout, Anandini; Jena, Padan K.; Sahoo, Debasish; Parida, Umesh K.; Bindhani, Birendra K.

    2014-04-01

    Silver nanoparticles (AgNPs) were prepared from the plant extract of N. arbor-tristis under atmospheric conditions through green synthesis and characterized by various physicochemical techniques like UV-Visible spectroscopy, IR Spectra, energy dispersive X-ray spectrometry (EDS), X-ray diffraction and transmission electron microscopy (TEM) and the results confirmed the synthesis of homogeneous and stable AgNPs by the plant extracts. The antimicrobial activity of AgNPs was investigated against most common bacteria found in burn wound Staphylococcus epidermidis and Pseudomonas aeruginosa. In these tests, Mueller Hinton agar plates were used with AgNPs of various concentrations, supplemented in liquid systems. P. aeruginosa was inhibited at the low concentration of AgNPs, whereas the growth-inhibitory effect on S. epidermidis was mild. These results suggest that AgNPs can be used as effective growth inhibitors of various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.

  3. Estimating the toxicities of organic chemicals to bioluminescent bacteria and activated sludge.

    PubMed

    Ren, Shijin; Frymier, Paul D

    2002-10-01

    Toxicity assays based on bioluminescent bacteria have several advantages including a quick response and an easily measured signal. The Shk1 assay is a procedure for wastewater toxicity testing based on the bioluminescent bacterium Shk1. Using the Shk1 assay, the toxicity of 98 organic chemicals were measured and EC50 values were obtained. Quantitative structure-activity relationship (QSAR) models based on the logarithm of the octanol-water partition coefficient (log(Kow)) were developed for individual groups of organic chemicals with different functional groups. The correlation coefficients for different groups of organic compounds varied between 0.69 and 0.99. An overall QSAR model without discriminating the functional groups, which can be used for a quick estimate of the toxicities of organic chemicals, was also developed and model predictions were compared to experimental data. The model accuracy was found to be one order of magnitude from the observed values.

  4. Office Paper Platform for Bioelectrochromic Detection of Electrochemically Active Bacteria using Tungsten Trioxide Nanoprobes

    PubMed Central

    Marques, A. C.; Santos, L.; Costa, M. N.; Dantas, J. M.; Duarte, P.; Gonçalves, A.; Martins, R.; Salgueiro, C. A.; Fortunato, E.

    2015-01-01

    Electrochemically active bacteria (EAB) have the capability to transfer electrons to cell exterior, a feature that is currently explored for important applications in bioremediation and biotechnology fields. However, the number of isolated and characterized EAB species is still very limited regarding their abundance in nature. Colorimetric detection has emerged recently as an attractive mean for fast identification and characterization of analytes based on the use of electrochromic materials. In this work, WO3 nanoparticles were synthesized by microwave assisted hydrothermal synthesis and used to impregnate non-treated regular office paper substrates. This allowed the production of a paper-based colorimetric sensor able to detect EAB in a simple, rapid, reliable, inexpensive and eco-friendly method. The developed platform was then tested with Geobacter sulfurreducens, as a proof of concept. G. sulfurreducens cells were detected at latent phase with an RGB ratio of 1.10 ± 0.04, and a response time of two hours. PMID:25891213

  5. Inhibitory activity of Aloe vera gel on some clinically isolated cariogenic and periodontopathic bacteria.

    PubMed

    Fani, Mohammadmehdi; Kohanteb, Jamshid

    2012-03-01

    Aloe vera is a medicinal plant with anti-inflammatory, antimicrobial, antidiabetic and immune-boosting properties. In the present study we investigated the inhibitory activities of Aloe vera gel on some cariogenic (Streptococcus mutans), periodontopathic (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis) and an opportunistic periodontopathogen (Bacteroides fragilis) isolated from patients with dental caries and periodontal diseases. Twenty isolates of each of these bacteria were investigated for their sensitivity to Aloe vera gel using the disk diffusion and microdilution methods. S. mutans was the species most sensitive to Aloe vera gel with a MIC of 12.5 µg/ml, while A. actinomycetemcomitans, P. gingivalis, and B. fragilis were less sensitive, with a MIC of 25-50 µg/ml (P < 0.01). Based on our present findings it is concluded that Aloe vera gel at optimum concentration could be used as an antiseptic for prevention of dental caries and periodontal diseases.

  6. Office paper platform for bioelectrochromic detection of electrochemically active bacteria using tungsten trioxide nanoprobes.

    PubMed

    Marques, A C; Santos, L; Costa, M N; Dantas, J M; Duarte, P; Gonçalves, A; Martins, R; Salgueiro, C A; Fortunato, E

    2015-04-20

    Electrochemically active bacteria (EAB) have the capability to transfer electrons to cell exterior, a feature that is currently explored for important applications in bioremediation and biotechnology fields. However, the number of isolated and characterized EAB species is still very limited regarding their abundance in nature. Colorimetric detection has emerged recently as an attractive mean for fast identification and characterization of analytes based on the use of electrochromic materials. In this work, WO3 nanoparticles were synthesized by microwave assisted hydrothermal synthesis and used to impregnate non-treated regular office paper substrates. This allowed the production of a paper-based colorimetric sensor able to detect EAB in a simple, rapid, reliable, inexpensive and eco-friendly method. The developed platform was then tested with Geobacter sulfurreducens, as a proof of concept. G. sulfurreducens cells were detected at latent phase with an RGB ratio of 1.10 ± 0.04, and a response time of two hours.

  7. Antagonistic activities of several bacteria on in vitro growth of 10 strains of Campylobacter jejuni/coli.

    PubMed

    Chaveerach, P; Lipman, L J A; van Knapen, F

    2004-01-01

    Chicken meat contaminated with Campylobacter jejuni can be the source of human enteritis. To decrease the risk of human infection, Campylobacter should be controlled at farm levels. Orally given probiotic bacteria could prevent colonisation of chicken with pathogenic bacteria like Campylobacter. The aim of this study was to investigate the effect of different bacteria on Campylobacter growth. Our results demonstrated that bacteria isolated from conventional chicken had potential inhibitory activities against Campylobacter. Other bacteria not isolated from chickens but with known antagonistic capacities, e.g. Enterococcus (56 strains) and Escherichia coli (20 strains), did not show any negative effect on Campylobacter. Interestingly, one Lactobacillus (P93) strain isolated from the chicken gut showed bactericidal activity against all tested Campylobacter. The bactericidal effect was characterised as the production of organic acids in combination with probably production of an anti-Campylobacter protein. In a co-culture study of Campylobacter and Lactobacillus (P93), the culturability of Campylobacter was under the detection limit after 48 h of incubation. A chicken experiment is needed to further evaluate the effect of the promising probiotic bacteria against Campylobacter colonisation in chicken.

  8. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    PubMed Central

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  9. Antibacterial Activity of Euphorbia hebecarpa Alcoholic Extracts Against Six Human Pathogenic Bacteria in Planktonic and Biofilm Forms

    PubMed Central

    Mohsenipour, Zeinab; Hassanshahian, Mehdi

    2016-01-01

    Background Biofilm formation is a primary cause of considerable bacterial destruction. Objectives In an effort to combat these industrial and medical bacterial biofilm problems, our study aims to determine the antimicrobial effect of Euphorbia hebecarpa. Materials and Methods The inhibition efficiency of alcoholic extracts on the planktonic form of six pathogenic bacteria was evaluated using a disk diffusion technique. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were determined by means of a macrobroth dilution method. The effects of the extracts on biofilms were calculated using a microtiter plate method. Results The results of the disk diffusion assay (MBC and MIC) confirmed that E. hebecarpa ethanolic extracts were more efficient than methanolic extracts in the inhibition of planktonic forms of bacteria. Also, the inhibitory effect of the extracts in a broth medium was greater than in a solid medium. Extracts of E. hebecarpa were found to inhibit biofilm formation better than demolish of biofilm and preventing metabolic activity of bacteria in biofilm structures. The greatest inhibitory effects of E. hebecarpa extracts were observed for the biofilm formation of B. cereus (92.81%). In addition, the greatest demolition was observed for the S. aureus biofilm (74.49%), and the metabolic activity decrement of this bacteria was highest (78.21%) of all the tested bacteria. Conclusions The results of this study suggest that E. hebecarpa extracts can be used to inhibit the planktonic and biofilm forms of these selected bacteria. PMID:27635214

  10. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Daniels, Dwayne; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50  μ L leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties.

  11. Pectic Enzyme Activities of Bacteria Associated with Rotted Onions (Allium cepa).

    PubMed

    Obi, S K; Umezurike, G M

    1981-10-01

    The aerobic bacteria associated with soft rot in onions (Allium cepa) were isolated and identified as a Vibrio sp., Micrococcus epidermidis, Pseudomonas cepacia, an Acinetobacter sp., a Xanthomonas sp., Bacillus polymyxa, and Bacillus megaterium. With the cup-plate assay method, no pectin hydrolase could be detected from any of these isolates when they were cultured in pectin medium, but lyase and pectinesterases were detectable. Onion tissue cultures showed pectin hydrolase activity for P. cepacia and B. polymyxa and lyase and pectinesterase activities for all of the isolates, usually at higher levels of activity than those of the pectin medium culture filtrates. In both culture media, Vibrio sp. showed the highest lyase and pectinesterase activities. In the viscometric test, all of the isolates achieved at least a 50% decrease in viscosity for lyase enzyme, with M. epidermidis and Vibrio sp. recording viscosity decreases as high as 83%. The ability to cause soft rot in onion bulbs was demonstrated by P. cepacia and Xanthomonas sp. Benzoic acid at a concentration of 0.8 mg/ml caused total suppression of enzyme production, whereas sodium benzoate at this concentration reduced pectinesterase production by 71% and lyase production by 72%. The possible use of these preservatives in the control of soft rot in onions is noted.

  12. Antibiotic resistance and antibacterial activity in heterotrophic bacteria of mineral water origin.

    PubMed

    Messi, Patrizia; Guerrieri, Elisa; Bondi, Moreno

    2005-06-15

    Antibiotic resistance and antibacterial activity were determined on heterotrophic bacteria isolated from mineral waters. Of the 120 isolates Pseudomonas spp. (55.8%) was the predominant group followed by Acinetobacter spp. (14.17%), Flavobacterium spp. (10.83%), Achromobacter spp. (10%), Burkholderia cepacia (3.3%), Agrobacterium/radiobacter (2.5%), Moraxella spp. (1.7%), Aeromonas hydrophila (1.7%). Over 80% of the isolates were resistant to one or more antibiotics and the highest resistance was found for chloramphenicol, ampicillin, colistin and sulfamethizole (60%, 55%, 50% and 47.5%, respectively). Strains with multiple antibiotic resistance (MAR) represented 55% of isolates and the most resistant organism belonged to the genus Pseudomonas. Of 40 randomly selected strains, 27 (67.5%) had antibacterial activity towards one or more indicators. This activity, found in a high percentage in the genus Pseudomonas (92%), emerged mainly against closely related microorganisms. Several producers were active also against Escherichia coli, Salmonella, Listeria monocytogenes and Staphylococcus aureus. Forty-six percent of the isolates harboured 1 to 5 plasmids with molecular weights ranging from 2.1 to 41.5 MDa.

  13. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity.

    PubMed

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-11-19

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit Fe(II)-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail.

  14. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity

    PubMed Central

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-01-01

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit FeII-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail. PMID:26610529

  15. Effect of tributyltin (TBT) in the metabolic activity of TBT-resistant and sensitive estuarine bacteria.

    PubMed

    Cruz, Andreia; Oliveira, Vanessa; Baptista, Inês; Almeida, Adelaide; Cunha, Angela; Suzuki, Satoru; Mendo, Sónia

    2012-01-01

    The effect of tributyltin (TBT) on growth and metabolic activity of three estuarine bacteria with different TBT resistance profiles was investigated in an organic-rich culture medium (TSB) and in phosphate buffered saline (PBS) buffer. Exposure to TBT was assessed by determining its effect on growth (OD(600 nm) measurement), bacterial productivity (leucine incorporation), viability (CFU counts), aggregation and cell size (from Live/Dead analysis), ATP and NADH concentrations. TBT exposure resulted in decrease of bacterial density, cell size, and metabolic activity. In addition, cell aggregates were observed in the TBT-treated cultures. TBT strongly affected bacterial cell metabolism and seemed to exert an effect on its equilibrium, interfering with cell activity. Also, TBT toxicity was lower when cells were grown in TSB than in PBS, suggesting that a nutrient-rich growth medium can protect cells from TBT toxicity. This study contributes to our understanding of the TBT-resistant cell behavior reflected in its physiology and metabolic activity. This information is of utmost importance for further studies of TBT bioremediation.

  16. Antimicrobial activity of essential oils from Mediterranean aromatic plants against several foodborne and spoilage bacteria.

    PubMed

    Silva, Nuno; Alves, Sofia; Gonçalves, Alexandre; Amaral, Joana S; Poeta, Patrícia

    2013-12-01

    The antimicrobial activity of essential oils extracted from a variety of aromatic plants, often used in the Portuguese gastronomy was studied in vitro by the agar diffusion method. The essential oils of thyme, oregano, rosemary, verbena, basil, peppermint, pennyroyal and mint were tested against Gram-positive (Listeria monocytogenes, Clostridium perfringens, Bacillus cereus, Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, and Staphylococcus epidermidis) and Gram-negative strains (Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa). For most essential oils examined, S. aureus, was the most susceptible bacteria, while P. aeruginosa showed, in general, least susceptibility. Among the eight essential oils evaluated, thyme, oregano and pennyroyal oils showed the greatest antimicrobial activity, followed by rosemary, peppermint and verbena, while basil and mint showed the weakest antimicrobial activity. Most of the essential oils considered in this study exhibited a significant inhibitory effect. Thyme oil showed a promising inhibitory activity even at low concentration, thus revealing its potential as a natural preservative in food products against several causal agents of foodborne diseases and food spoilage. In general, the results demonstrate that, besides flavoring the food, the use of aromatic herbs in gastronomy can also contribute to a bacteriostatic effect against pathogens.

  17. In vitro activity of gemifloxacin against recent clinical isolates of bacteria in Korea.

    PubMed Central

    Yong, Dong Eun; Cheong, Hee-Jin; Kim, Yang Soo; Park, Yeon Joon; Kim, Woo-Joo; Woo, Jun Hee; Lee, Kyung Won; Kang, Moon Won; Choo, Youn-Sung

    2002-01-01

    Gemifloxacin is an enhanced-affinity fluoroquinolone with broad-spectrum antibacterial activity. In Korea, resistant bacteria are relatively more prevalent than in other industrialized countries. In this study, we studied the in vitro activities of gemifloxacin, gatifloxacin, moxifloxacin, levofloxacin, ciprofloxacin, and other commonly used antimicrobial agents against 1,689 bacterial strains isolated at four Korean university hospitals during 1999-2000. Minimum inhibitory concentrations (MICs) were determined using the agar dilution method of National Committee for Clinical Laboratory Standards. Gemifloxacin had the lowest MICs for the respiratory pathogens: 90% of Streptococcus pneumoniae, Moraxella catarrhalis, and Haemophilus influenzae were inhibited by 0.06, 0.03, and 0.03 mg/L, respectively. Gemifloxacin was more active than the other fluoroquinolones against methicillin-susceptible Staphylococcus aureus, coagulase-negative staphylococci, streptococci, and Enterococcus faecalis. The MIC90s of gemifloxacin for Klebsiella oxytoca, Proteus vulgaris, and non-typhoidal Salmonella spp. were 0.25, 1.0, and 0.12 mg/L, respectively, while those for other Gram-negative bacilli were 4-64 mg/L. In conclusion, gemifloxacin was the most active among the comparative agents against Gram-positive species, including respiratory pathogens isolated in Korea. PMID:12482994

  18. Galangin expresses bactericidal activity against multiple-resistant bacteria: MRSA, Enterococcus spp. and Pseudomonas aeruginosa.

    PubMed

    Pepeljnjak, Stjepan; Kosalec, Ivan

    2004-11-01

    The antimicrobial activity of three propolis ethanol extracts (EEP) was examined for various Gram-negative and Gram-positive bacterial species, including multiple-resistant Staphylococcus aureus, Enterococcus spp. and Pseudomonas aeruginosa strains. EEP had a good bactericidal activity against Gram-positive species, and all multiple-resistant bacterial strains tested were sensitive to EEP. Minimal inhibitory concentrations (MICs) were lower in samples of higher flavonoid content (from 0.65 to 7.81 mg mL(-1)), indicating the influence of the concentration of some potent bactericidal compound(s) in propolis or synergism among some bactericidal compounds. Antimicrobial-guided separation of flavonoid aglycones (bioassay in situ on thin-layer chromatogram) showed that galangin (3,5,7-trihydroxyflavone) is one compound in EEP with bactericidal activity. Galangin was isolated by preparative chromatography. After determining the quantity present, the MIC against multiple-resistant bacteria was determined. The MIC of galangin against multiple-resistant bacterial strains was significantly lower (from 0.16 to 0.44 mg mL(-1), p < 0.05) than that of EEP. The bactericidal activity of galangin against P. aeruginosa strains was present at 0.17+/-0.05 mg mL(-1).

  19. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria

    NASA Astrophysics Data System (ADS)

    Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya

    2013-03-01

    Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.

  20. Phylogenetic analysis and in situ identification of bacteria in activated sludge.

    PubMed Central

    Snaidr, J; Amann, R; Huber, I; Ludwig, W; Schleifer, K H

    1997-01-01

    The bacterial community structure of activated sludge of a large municipal wastewater treatment plant was investigated by use of the rRNA approach. Almost-full-length genes coding for the small-subunit rRNA (rDNA) were amplified by PCR and subsequently cloned into the pGEM-T vector. Clones were screened by dot blot hybridization with group-specific oligonucleotide probes. The phylogenetic affiliations of clones were compared with the results obtained with the original sample by in situ hybridization with fluorescently labeled, rRNA-targeted oligonucleotide probes and found to be in general agreement. Twenty-five 16S rDNA clones were fully sequenced, 11 were almost fully (> 80%) sequenced, and 27 were partially sequenced. By comparative sequence analyses, the majority of the examined clones (35 of 67) could be affiliated with the beta subclass of the class Proteobacteria. The gamma and alpha subclasses of Proteobacteria were represented by 13 and 4 clones, respectively. Eight clones grouped with the epsilon group of Proteobacteria, and five clones grouped with gram-positive bacteria with a low DNA G+C content. The 16S rDNA of two clones showed similarity with 16S rDNA genes of members of the phyla Chlamydiae and Planctomyces. 16S rRNA-targeted oligonucleotide probes were designed and used for the enumeration of the respective bacteria. Interestingly, potentially pathogenic representatives of the genus Arcobacter were present in significant numbers (4%) in the activated sludge sample examined. Pairs of probes targeted to the 5' and 3' regions were used for detection of chimeric sequences by in situ hybridization. Two clones could be identified as chimera by applying such a pair of probes. PMID:9212435

  1. Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against Aedes aegypti (Diptera: Culicidae).

    PubMed

    da Silva, João Luiz Rosa; Undurraga Schwalm, Fernanda; Eugênio Silva, Carlos; da Costa, Marisa; Heermann, Ralf; Santos da Silva, Onilda

    2017-01-06

    Dengue, Chikungunya, and Zika are important vector-borne diseases, and Aedes aegypti L. is their main transmitter. As the disease management is mainly based on mosquito control strategies, the search for alternative and cost-effective approaches is ongoing. The Gram-negative bacteria Xenorhabdus nematophila and Photorhabdus luminescens are symbiotically associated with entomopathogenic nematodes and are highly pathogenic for insect larvae. After we have recently confirmed the toxicity of these bacteria in Ae. aegypti larvae, we here evaluated the toxic activity of culture fluids on the development of this mosquito species. Larval susceptibility was assessed by exposing larvae to different concentrations of P. luminescens or X. nematophila culture fluids to confirm whether secondary metabolites might cause the mosquitos' death. Xenorhabdus nematophila culture fluid was more effective and stable during the mosquito pathogenicity bioassays compared to that of P. luminescens Larval mortality started a few hours after exposure of the insects to the fluids. Furthermore, the residual effect of larvicidal activity of X. nematophila fluid persisted at full efficiency for 4 d. Particularly, larval mortality was still higher than 50% for up to 8 d. Exposure of larvae to a sublethal dose of X. nematophila fluid delayed pupation as well as emergence of adult mosquitoes and caused cumulative larval mortality higher than 90% by day 14. Here, we describe for the first time the use of stable culture fluids and therefore secondary metabolites of P. luminescens and X. nematophila as a promising basis for the use as biopesticide for control of Ae. aegypti in the future.

  2. Identification of dimethyl disulfide-forming bacteria isolated from activated sludge.

    PubMed Central

    Tomita, B; Inoue, H; Chaya, K; Nakamura, A; Hamamura, N; Ueno, K; Watanabe, K; Ose, Y

    1987-01-01

    Twenty-four strains with high dimethyl disulfide (DMDS)-forming ability were isolated from activated sludge and identified to the genus level. These bacteria were classified into four groups (A, B, C, and D) by the API ZYM System (API System S.A., Montalieu, France). Group A (three strains) was identified as genus Lactobacillus by the API 20B System, by the method of Cowan and Steel, and by production of lactic acid as confirmed by gas-liquid chromatography. Group B (eight strains) was identified as genus Corynebacterium by API 20B and the Cowan and Steel method. Group C (one strain) was suggested to belong to genus Corynebacterium by the API 20B System. Group D (12 strains) was identified as genus Pseudomonas or Alcaligenes by the API 20B System, as genus Alcaligenes by the Cowan and Steel method, and as Achromobacter group Vd by the API 20NE System. However, on the basis of guanine-plus-cytosine contents in DNA and form of flagella, these strains were identified as genus Pseudomonas. Formation of DMDS from DL-methionine and S-methyl-L-cysteine was tested. DMDS-forming bacteria isolated from activated sludge formed DMDS from both precursors. In genus Pseudomonas, P. aeruginosa could not form DMDS from either precursor, but P. acidovorans, P. alcaligenes, P. pseudoalcaligenes, and P. testosteroni formed DMDS. In genus Alcaligenes, A. denitrificans subsp. xylosoxydans, A. denitrificans subsp. denitrificans, A. faecalis, and A. odorans formed DMDS from both precursors. Achromobacter group Vd formed DMDS from S-methyl-L-cysteine, but could not from DL-methionine. PMID:3662505

  3. Proteolytic and antimicrobial activity of lactic acid bacteria grown in goat milk.

    PubMed

    Atanasova, Jivka; Moncheva, Penka; Ivanova, Iskra

    2014-11-02

    We examined 62 strains and 21 trade starter cultures from the collection of LB Bulgaricum PLC for proteolytic and antimicrobial activity of lactic acid bacteria (LAB) grown in goat milk. The aim of this study was to investigate the fermentation of caseins, α-lactalbumin and β-lactoglobulin by LAB, using the o-phthaldialdehyde (OPA) spectrophotometric assay and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The proteolysis targeted mainly caseins, especially β-casein. Whey proteins were proteolyzed, essentially β-lactoglobulin. The proteolytic activity of Lactococcus lactis l598, Streptococcus thermophilus t3D1, Dt1, Lactobacillus lactis 1043 and L. delbrueckii subsp. bulgaricus b38, b122 and b24 was notably high. The proteolysis process gave rise to medium-sized peptide populations. Most of the examined strains showed antimicrobial activity against some food pathogens, such as Escherichia coli, Staphylococcus aureus, Salmonella cholere enteridis, Listeria monocytogenes, Listeria innocua and Enterobacter aerogenes. The most active producers of antimicrobial-active peptides were strains of L. delbrueckii subsp. bulgaricus and S. thermophilus, which are of practical importance. The starter cultures containing the examined species showed high proteolytic and antimicrobial activity in skimmed goat milk. The greatest antimicrobial activity of the cultures was detected against E. aerogenes. The obtained results demonstrated the significant proteolytic potential of the examined strains in goat milk and their potential for application in the production of dairy products from goat's milk. The present results could be considered as the first data on the proteolytic capacity of strains and starter cultures in goat milk for the purposes of trade interest of LB Bulgaricum PLC.

  4. Long-term effects of engineered nanoparticles on enzyme activity and functional bacteria in wastewater treatment plants.

    PubMed

    Zheng, Xiong; Huang, Haining; Su, Yinglong; Wei, Yuanyuan; Chen, Yinguang

    2015-01-01

    The pervasive use of engineered nanoparticles (NPs) in a wide range of fields raises concerns about their potential environmental impacts. Previous studies confirmed that some NPs had already entered wastewater treatment plants (WWTPs). Wastewater nutrient removal depends on the metabolisms of activated sludge bacteria and their related key enzymes. Therefore, this study compared the possible influences of Al2O3, SiO2, TiO2, and ZnO NPs on the key enzymes activities and microbial community structures involved in wastewater treatment facilities. It was found that long-term exposure to these NPs significantly affected the microbial communities and changed the relative abundances of key functional bacteria, such as ammonia-oxidizing bacteria. Also, the gene expressions and catalytic activities of essential enzymes, such as ammonia monooxygenase, nitrite oxidoreductase, nitrate reductase, and nitrite reductase, were decreased, which finally resulted in a lower efficiency of biological nitrogen removal.

  5. [Study on the separation process of pharmacological active total alkaloids from Chelidonium majus L. growing in Georgia].

    PubMed

    Bozhadze, A D; Vachnadze, V Iu; Dzhokhadze, M S; Berashvili, D T; Bakuridze, A Dzh

    2013-04-01

    In present article was studied the separation process of pharmacological active total alkaloids from Chelidonium majus L. growing in Georgia. Alkaloids were extracted from medicinal herbal material and separated by liquid extraction, diluents gas and a microfiltration through membrane equipment. The obtained A1, A2, A3 fractions were analyzed by GC/MS method; in all cases separation proceeds by the principle of extraction of the target alkaloids. It was concluded that the A1 is enriched with α and β cryptopins, and protopin, but homochelidonine and chelidonine are in low contents. As accompanying alkaloid is identified dihydrosanguinarine as an artifact; the A2 is enriched with the maximum contents of stylopine and protopin, but the poor contents of chelidonine and homochelidonine; the A3 is enriched with α and β cryptopins and maximum content of chelidonine. Extraction of alkaloids from Chelidonium majus L. proceeds selectively, but depending on a way of separation of the total alkaloids allows varying qualitative and quantitative consistence of the final product.

  6. Volatile constituents and antioxidant activity of peel, flowers and leaf oils of Citrus aurantium L. growing in Greece.

    PubMed

    Sarrou, Eirini; Chatzopoulou, Paschalina; Dimassi-Theriou, Kortessa; Therios, Ioannis

    2013-09-02

    The volatile constituents of the essential oils of the peel, flower (neroli) and leaves (petitgrain) of bitter orange (Citrus aurantium L.) growing in Greece were studied by GC-MS. The analytical procedures enabled the quantitative determination of 31 components. More specifically, the components of the essential oils identified were: twelve in the peel, twenty-six in the flowers, and twenty and sixteen in old and young leaves, respectively. The major constituents of the different parts of Citrus aurantium L. essential oils were: β-pinene (0.62%-19.08%), limonene (0.53%-94.67%), trans-β-ocimene (3.11%-6.06%), linalool (0.76%-58.21%), and α-terpineol (0.13%-12.89%). The DPPH test demonstrated that the essential oils in the old leaves had the maximum antioxidant activity, followed by the flowers, young leaves and the peel in that order. This study updates the data in the literature on the essential oils of bitter orange, and provides information on the composition of the oils for a further evaluation of this product.

  7. [Trials to eliminate the sex odor of growing boars through active immunization with an androstenone-protein conjugate].

    PubMed

    Fliess, F R; Kaiser, H; Bergfeld, J

    1980-01-01

    Determination of immunogenicity in rabbit was followed by the use of 5 alpha-Androst-16-en-3-on cattle serum albumin conjugate (AC-) in Freund's adjuvant for active immunisation of young growing boars against boar pheromone. Two experiments were undertaken. Five boars, aged 140 days, were involved in the first experiment. They received six AC- doses in intervals of 14 days (4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg). Each of the doses was applied to four points, two of them subcutaneous and two intramuscular. In the second experiment, four boars, aged 121 days, received 40 mg AC- each in eight applications, among them three injections in intervals of one week, followed by a pause of two weeks, another three injections again in intervals of one week, and two injections in intervals of four weeks. Another group of four animals received 20 mg AC- in four applications in intervals of four weeks. Five control boars were included in the first experiment and four in the second. Immune response of the experimental animals was detected neither by immunoelectrophoresis nor by radio-immuno-assay. Pheromones in fat samples were determined by means of gas chromatography during treatment and after slaughter. They were increased in some of the cases, albeit not significantly. The nuclear diameters of the interstitional cells of Leydig in testicular sections differed but little, with no significance being recorded.

  8. Antibacterial, allelopathic and antioxidant activities of essential oil of Salvia officinalis L. growing wild in the Atlas Mountains of Morocco.

    PubMed

    Bouajaj, S; Benyamna, A; Bouamama, H; Romane, A; Falconieri, D; Piras, A; Marongiu, B

    2013-01-01

    Salvia officinalis (Common sage, Culinary sage) is an aromatic plant that is frequently used as a spice in Mediterranean cookery and in the food industry and as a traditional medicine for the treatment of several infectious diseases. The essential oils were obtained by two different methods [hydrodistillation (HD) and microwave (Mw)] from the aerial part of S. officinalis L. growing wild in Ourika-Marrakech in Morocco. Ourika is a large zone of the Atlas Mountains which is considered as a large reserve of Flora, especially medicinal and aromatic plants. The obtained oils were analysed by gas chromatography and gas chromatography-mass spectrometry and compared with that of Tunisia. Thirty-six compounds were identified from the Mw-extracted oil which accounted for 97.32% of the total oil composition. However, 33 compounds obtained by HD representing 98.67%. The major components were trans-thujone (14.10% and 29.84%), 1,8-cineole (5.10% and 16.82%), camphor (4.99% and 9.14%), viridiflorol (16.42% and 9.92%), β-caryophyllene (19.83% and 5.20%) and α-humulene (13.54% and 4.02%). Antibacterial, allelopathic (% germination in lettuce seeds and inhibited root growth obtained after treatment with S. officinalis oils) and antioxidant (IC₅₀ values 22 mg/mL) activities were studied.

  9. Antimicrobial activity against periodontopathogenic bacteria, antioxidant and cytotoxic effects of various extracts from endemic Thermopsis turcica

    PubMed Central

    Bali, Elif Burcu; Açık, Leyla; Akca, Gülçin; Sarper, Meral; Elçi, Mualla Pınar; Avcu, Ferit; Vural, Mecit

    2014-01-01

    Objective To investigate the in vitro antimicrobial potential of Thermopsis turcica Kit Tan, Vural & Küçüködük against periodontopathogenic bacteria, its antioxidant activity and cytotoxic effect on various cancer cell lines. Methods In vitro antimicrobial activities of ethanol, methanol, ethyl acetate (EtAc), n-hexane and water extracts of Thermopsis turcica herb against periodontopathogenic bacteria, Aggregatibacter actinomycetemcomitans ATCC 29523 and Porphyromonas gingivalis ATCC 33277 were tested by agar well diffusion, minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Antioxidant properties of the extracts were evaluated by 1,1-diphenyl-2-picryl-hydrazyl radical scavenging activity and β-carotene bleaching methods. Amounts of phenolic contents of the extracts were also analysed by using the Folin-Ciocalteu reagent. Additionally, cytotoxic activity of the extracts on androgen-insensitive prostate cancer, androgen-sensitive prostate cancer, chronic myelogenous leukemia and acute promyelocytic leukemia human cancer cell lines were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Human gingival fibroblast cells were used as a control. Results Our data showed that EtAc extract had the highest antimicrobial effect on Aggregatibacter actinomycetemcomitans (MIC: 1.562 mg/mL, MBC: 3.124 mg/mL) and Porphyromonas gingivalis (MIC: 0.781 mg/mL, MBC: 1.562 mg/mL). In antioxidant assays, EtAc extract exhibited also the highest radical scavenging activity [IC50=(30.0±0.3) µg/mL] and the highest inhibition [(74.35±0.30)%] against lineloic acide oxidation. The amount of phenolic content of it was also the highest [(162.5±1.2) µg/mg gallic acid]. In cytotoxic assay, only ethanol [IC50=(80.00±1.21) µg/mL] and EtAc extract [IC50=(70.0±0.9) µg/mL] were toxic on acute promyelocytic leukemia cells at 20-100 µg/mL (P<0.05). However, no toxic effect was observed on human gingival fibroblast cells

  10. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria

    PubMed Central

    Ebbensgaard, Anna; Mordhorst, Hanne; Overgaard, Michael Toft; Nielsen, Claus Gyrup; Aarestrup, Frank Møller; Hansen, Egon Bech

    2015-01-01

    Analysis of a Selected Set of Antimicrobial Peptides The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram-negative bacteria. We compared the potency of Cap18, Cap11, Cap11-1-18m2, Cecropin P1, Cecropin B, Bac2A, Bac2A-NH2, Sub5-NH2, Indolicidin, Melittin, Myxinidin, Myxinidin-NH2, Pyrrhocoricin, Apidaecin and Metalnikowin I towards Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Listeria monocytogenes, Campylobacter jejuni, Flavobacterium psychrophilum, Salmonella typhimurium and Yersinia ruckeri by minimal inhibitory concentration (MIC) determinations. Additional characteristics such as cytotoxicity, thermo and protease stability were measured and compared among the different peptides. Further, the antimicrobial activity of a selection of cationic AMPs was investigated in various E. coli LPS mutants. Cap18 Shows a High Broad Spectrum Antimicrobial Activity Of all the tested AMPs, Cap18 showed the most efficient antimicrobial activity, in particular against Gram-negative bacteria. In addition, Cap18 is highly thermostable and showed no cytotoxic effect in a hemolytic assay, measured at the concentration used. However, Cap18 is, as most of the tested AMPs, sensitive to proteolytic digestion in vitro. Thus, Cap18 is an excellent candidate for further development into practical use; however, modifications that should reduce the protease sensitivity would be needed. In addition, our

  11. Investigating on the Correlation Between Some Biological Activities of Marine Sponge-Associated Bacteria Extracts and Isolated Diketopiperazines.

    PubMed

    Abd El-Hady, Faten K; Fayad, Walid; Iodice, Carmine; El-Shahid, Zeinab A; Abdel-Aziz, Mohamed S; Crudele, Egle; Tommonaro, Giuseppina

    2017-01-01

    Marine organisms have been considered as the richest sources of novel bioactive metabolites, which can be used for pharmaceutical purposes. In the last years, the interest for marine microorganisms has grown for their enormous biodiversity and for the evidence that many novel compounds isolated from marine invertebrates are really synthesized by their associated bacteria. Nevertheless, the discovery of a chemical communication Quorum sensing (QS) between bacterial cells and between bacteria and host has gained the researchers to expand the aim of their study toward the role of bacteria associated with marine invertebrates, such as marine sponge. In the present paper, we report the evaluation of biological activities of different extracts of bacteria Vibrio sp. and Bacillus sp. associated with marine sponges Dysidea avara and Ircinia variabilis, respectively. Moreover, we evaluated the biological activities of some diketopiperazines (DKPs), previously isolated, and able to activate QS mechanism. The results showed that all extracts, fractions, and DKPs showed low scavenging activity against DPPH and superoxide anion, low cytotoxic and anti-tyrosinase activities, but no antimicrobial and acetylcholinesterase inhibitory activities. One DKP [cyclo-(trans-4-hydroxy-L-prolyl-L-leucine)] has the highest α-glucosidase inhibitory activity even than the standard acarbose.

  12. Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

    PubMed Central

    Li, Dongxia; Ni, Kuikui; Pang, Huili; Wang, Yanping; Cai, Yimin; Jin, Qingsheng

    2015-01-01

    A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC 43971T, Micrococcus luteus ATCC 4698T and Escherichia coli ATCC 11775T were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at 100°C), but the antimicrobial activity was eliminated after treatment at 121°C for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory. PMID:25924957

  13. Urediospores of rust fungi are ice nucleation active at > -10 °C and harbor ice nucleation active bacteria

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2013-04-01

    Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > -10

  14. Preliminary survey of local bacteriophages with lytic activity against multi-drug resistant bacteria.

    PubMed

    Latz, Simone; Wahida, Adam; Arif, Assuda; Häfner, Helga; Hoß, Mareike; Ritter, Klaus; Horz, Hans-Peter

    2016-10-01

    Bacteriophages (phages) represent a potential alternative for combating multi-drug resistant bacteria. Because of their narrow host range and the ever emergence of novel pathogen variants the continued search for phages is a prerequisite for optimal treatment of bacterial infections. Here we performed an ad hoc survey in the surroundings of a University hospital for the presence of phages with therapeutic potential. To this end, 16 aquatic samples of different origins and locations were tested simultaneously for the presence of phages with lytic activity against five current, but distinct strains each from the ESKAPE-group (i.e., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae). Phages could be isolated for 70% of strains, covering all bacterial species except S. aureus. Apart from samples from two lakes, freshwater samples were largely devoid of phages. By contrast, one liter of hospital effluent collected at a single time point already contained phages active against two-thirds of tested strains. In conclusion, phages with lytic activity against nosocomial pathogens are unevenly distributed across environments with the prime source being the immediate hospital vicinity.

  15. Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms.

    PubMed

    Lo Giudice, Angelina; Bruni, Vivia; Michaud, Luigi

    2007-12-01

    Five-hundreds and eighty bacterial strains, isolated from various Antarctic marine sources and locations, were screened for antimicrobial activity against terrestrial microorganisms. Twenty-two Antarctic isolates (3.8%), mainly retrieved from the water column at Terra Nova Bay (Ross Sea), expressed antagonistic activity against one to three indicator organisms. Escherichia coli and Proteus mirabilis resulted as the more susceptible, followed by Micrococcus luteus and Bacillus subtilis. None of the isolates inhibited the growth of Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella enterica and the eukaryotic fungus Candida albicans. Active Antarctic isolates, identified by 16S rDNA sequencing and phenotypically characterized by classical methods, were phylogenetically affiliated to the Actinobacteria (16 strains) and the gamma-Proteobacteria (6 strains). Inhibition patterns, as well as phenotypic characteristics, highly vary for different isolates, even though they were affiliated to the same genus or closely related to the identical microorganism retrieved from the database, suggesting that these features were more likely strain-rather than species-specific.Results obtained from the present study confirm previous observations and highlight the potentiality of Antarctic marine bacteria as novel source of antibacterial substances.

  16. Andrographolide: antibacterial activity against common bacteria of human health concern and possible mechanism of action.

    PubMed

    Banerjee, Malabika; Parai, Debaprasad; Chattopadhyay, Subrata; Mukherjee, Samir Kumar

    2017-01-17

    Increasing bacterial resistance to common drugs is a major public health concern for the treatment of infectious diseases. Certain naturally occurring compounds of plant sources have long been reported to possess potential antimicrobial activity. This study was aimed to investigate the antibacterial activity and possible mechanism of action of andrographolide (Andro), a diterpenoid lactone from a traditional medicinal herb Andrographis paniculata. Extent of antibacterial action was assessed by minimal bactericidal concentration method. Radiolabeled N-acetyl glucosamine, leucine, thymidine, and uridine were used to determine the effect of Andro on the biosyntheses of cell wall, protein, DNA, and RNA, respectively. In addition, anti-biofilm potential of this compound was also tested. Andro showed potential antibacterial activity against most of the tested Gram-positive bacteria. Among those, Staphylococcus aureus was found to be most sensitive with a minimal inhibitory concentration value of 100 μg/mL. It was found to be bacteriostatic. Specific inhibition of intracellular DNA biosynthesis was observed in a dose-dependent manner in S. aureus. Andro mediated inhibition of biofilm formation by S. aureus was also found. Considering its antimicrobial potency, Andro might be accounted as a promising lead for new antibacterial drug development.

  17. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization.

    PubMed

    Fan, Di; Coughlin, Laura A; Neubauer, Megan M; Kim, Jiwoong; Kim, Min Soo; Zhan, Xiaowei; Simms-Waldrip, Tiffany R; Xie, Yang; Hooper, Lora V; Koh, Andrew Y

    2015-07-01

    Candida albicans colonization is required for invasive disease. Unlike humans, adult mice with mature intact gut microbiota are resistant to C. albicans gastrointestinal (GI) colonization, but the factors that promote C. albicans colonization resistance are unknown. Here we demonstrate that commensal anaerobic bacteria-specifically clostridial Firmicutes (clusters IV and XIVa) and Bacteroidetes-are critical for maintaining C. albicans colonization resistance in mice. Using Bacteroides thetaiotamicron as a model organism, we find that hypoxia-inducible factor-1α (HIF-1α), a transcription factor important for activating innate immune effectors, and the antimicrobial peptide LL-37 (CRAMP in mice) are key determinants of C. albicans colonization resistance. Although antibiotic treatment enables C. albicans colonization, pharmacologic activation of colonic Hif1a induces CRAMP expression and results in a significant reduction of C. albicans GI colonization and a 50% decrease in mortality from invasive disease. In the setting of antibiotics, Hif1a and Camp (which encodes CRAMP) are required for B. thetaiotamicron-induced protection against C. albicans colonization of the gut. Thus, modulating C. albicans GI colonization by activation of gut mucosal immune effectors may represent a novel therapeutic approach for preventing invasive fungal disease in humans.

  18. [Bacteria and viruses modulate FcεRI-dependent mast cell activity].

    PubMed

    Słodka, Aleksandra; Brzezińska-Błaszczyk, Ewa

    2013-03-08

    Undoubtedly, mast cells play a central role in allergic processes. Specific allergen cross-linking of IgE bound to the high affinity receptors (FcεRI) on the mast cell surface leads to the release of preformed mediators and newly synthesized mediators, i.e. metabolites of arachidonic acid and cytokines. More and more data indicate that bacteria and viruses can influence FcεRI-dependent mast cell activation. Some bacterial and viral components can reduce the surface expression of FcεRI. There are also findings that ligation of Toll-like receptors (TLRs) by bacterial or viral antigens can affect IgE-dependent mast cell degranulation and preformed mediator release as well as eicosanoid production. The synergistic interaction of TLR ligands and allergen can also modify cytokine synthesis by mast cells stimulated via FcεRI. Moreover, data suggest that specific IgE for bacterial or viral antigens can influence mast cell activity. What is more, some bacterial and viral components or some endogenous proteins produced during viral infection can act as superantigens by interacting with the VH3 domain of IgE. All these observations indicate that bacterial and viral infections modify the course of allergic diseases by affecting FcεRI-dependent mast cell activation

  19. Screening of lactic acid bacteria from vacuum packaged beef for antimicrobial activity

    PubMed Central

    Oliveira, Roseane B. P.; de L. Oliveira, Afonso; Glória, M. Beatriz A.

    2008-01-01

    The objective of this study was to isolate lactic acid bacteria (LAB) from vacuum packaged beef and to investigate their antagonist activity. LAB mean counts of 5.19 log cfu/cm2 were obtained from five samples of vacuum packaged beef. Two hundred isolates were selected and screened for the inhibitory effect on five ATCC reference Lactobacillus strains. Thirty six isolates showed activity in the agar spot test against at least two of the indicator strains. However, only six cell free supernatants (CFS) from these isolates exhibited activity against the indicator strains using the well-diffusion test and conditions that eliminated the effects of organic acids and hydrogen peroxide. L. acidophilus was the most sensitive indicator tested, whereas L. plantarum and L. fermentum were the most resistant ones. Identification by MIDI system indicated that these LAB isolates were Lactococcus lactis subsp. cremoris, Pediococcus acidilactici, Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus casei GC subgroup A. The antagonistic factors produced by most of these LAB against L. acidophilus were resistant to heat treatment (100°C for 10 min) and stable over a wide pH range (4.0 to 9.0). These data suggest that these isolates could be used as promising hurdles aiming increased safety and extended shelf life of meat products. PMID:24031232

  20. Genetic diversity and some aspects of antimicrobial activity of lactic acid bacteria isolated from goat milk.

    PubMed

    Cavicchioli, Valéria Quintana; Dornellas, Wesley Dos Santos; Perin, Luana Martins; Pieri, Fábio Alessandro; Franco, Bernadette Dora Gombossy de Melo; Todorov, Svetoslav Dimitrov; Nero, Luís Augusto

    2015-03-01

    Lactic acid bacteria (LAB, n = 57) were previously obtained from raw goat milk, identified as Lactococcus spp. (n = 24) and Enterococcus spp. (n = 33), and characterized as bacteriocinogenic. Fingerprinting by pulsed field gel electrophoresis (PFGE) demonstrated high genetic diversity, and 30 strains were selected and exhibited strong antimicrobial activity against 46 target strains (LAB, spoilage, and foodborne pathogens). Six strains (Lactococcus lactis: GLc03 and GLc05; and Enterococcus durans: GEn09, GEn12, GEn14, and GEn17) were selected to characterize their bacteriocinogenic features, using Listeria monocytogenes ATCC 7644 as the target. The six strains produced bacteriocins at higher titer when incubated in MRS at 37 °C up to 12 h, when compared to growth at 25 and 30 °C. The produced bacteriocins kept their antimicrobial activity after exposure to 100 °C for 2 h and 121 °C for 20 min; the antimicrobial activity was also observed after treatment at pH 2.0 to 10.0, except for GLc03. L. monocytogenes populations were reduced approximately two logs after treatment with cell-free supernatants from the selected strains. These data show that goat milk can contain a diverse microbiota able to inhibit L. monocytogenes, a common pathogen found in dairy products, and can be potentially employed in biopreservation of food produced under different processing conditions.

  1. Isolation And Partial Characterization Of Bacteria Activity Associated With Gorgonian Euplexaura sp. Against Methicillin-Resistant Staphylococcus aureus (MRSA)

    NASA Astrophysics Data System (ADS)

    Kristiana, R.; Ayuningrum, D.; Asagabaldan, M. A.; Nuryadi, H.; Sabdono, A.; Radjasa, O. K.; Trianto, A.

    2017-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infection has emerged in around the world and has been resistance to ciprofloxacin, erythromycin, clindamycin. The aims of this study were to isolate, to investigate and to characterize bacterial symbionts gorgonian having activity against MRSA. Euplexaura sp. was collected from Panjang Island, Jepara, Indonesia by snorkling 2-5 m in depth. Bacterias were isolated by using spesific media with dilution method. Bacterias were conducted by using the streak method. Antibacterial activity was investigated by overlay method. The potent bacteria was identified by using molecular identification (DNA extraction, electrophoresis, PCR and phylogenetic analysis using 16S rDNA genes with actinobacteria-spesific primers) and bio-chemical test (among 5 isolated bacteria from gorgonian showed activity against MRSA). The strain PG-344 was the best candidat that has an inhibition zone against MRSA. The result of sequencing bacteria is 100% closely related with Virgibacillus salarius. This becomes a potential new bioactive compounds to against MRSA that can be a new drug discovery.

  2. Contribution of Particle-Bound Bacteria to Total Microheterotrophic Activity in Five Ponds and Two Marshes

    PubMed Central

    Kirchman, David; Mitchell, Ralph

    1982-01-01

    We examined the abundance and heterotrophic uptake of bacteria attached to particulate matter suspended in five coastal ponds and two marshes near Woods Hole, Mass. Although the number of particle-bound bacteria was low (<10%), these bacteria incorporated a large proportion (>40%) of [14C]glucose and [14C]glutamate in selected aquatic systems. The uptake per cell was significantly higher for epibacteria than for unattached bacteria in all systems. Two groups of the aquatic environments sampled were statistically different in the contribution made by particle-bound bacteria to total bacterial abundance and to total assimilation of [14C]glucose and [14C]glutamate. Particle-bound bacteria were more important in those waters with a high particle concentration and not flushed regularly by tides than in waters with a low particle concentration and flushed regularly. PMID:16345921

  3. Growing Up.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides: (1) background information on insect metamorphosis; (2) activities focusing on insect life cycles and how insects change from egg to adult; and (3) student materials (ready-to-copy games, puzzles, coloring pages, worksheets, and/or mazes). Each activity includes objective(s), recommended age levels, subject area(s), list of materials…

  4. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts.

    PubMed

    Yang, En; Fan, Lihua; Jiang, Yueming; Doucette, Craig; Fillmore, Sherry

    2012-09-10

    The biopreservation of foods using bacteriocinogenic lactic acid bacteria (LAB) isolated directly from foods is an innovative approach. The objectives of this study were to isolate and identify bacteriocinogenic LAB from various cheeses and yogurts and evaluate their antimicrobial effects on selected spoilage and pathogenic microorganisms in vitro as well as on a food commodity.LAB were isolated using MRS and M17 media. The agar diffusion bioassay was used to screen for bacteriocin or bacteriocin-like substances (BLS) producing LAB using Lactobacillus sakei and Listeria innocua as indicator organisms. Out of 138 LAB isolates, 28 were found to inhibit these bacteria and were identified as strains of Enterococcus faecium, Streptococcus thermophilus, Lactobacillus casei and Lactobacillus sakei subsp. sakei using 16S rRNA gene sequencing. Eight isolates were tested for antimicrobial activity at 5°C and 20°C against L. innocua, Escherichia coli, Bacillus cereus, Pseudomonas fluorescens, Erwinia carotovora, and Leuconostoc mesenteroides subsp. mesenteroides using the agar diffusion bioassay, and also against Penicillium expansum, Botrytis cinerea and Monilinia frucitcola using the microdilution plate method. The effect of selected LAB strains on L. innocua inoculated onto fresh-cut onions was also investigated.Twenty percent of our isolates produced BLS inhibiting the growth of L. innocua and/or Lact. sakei. Organic acids and/or H2O2 produced by LAB and not the BLS had strong antimicrobial effects on all microorganisms tested with the exception of E. coli. Ent. faecium, Strep. thermophilus and Lact. casei effectively inhibited the growth of natural microflora and L. innocua inoculated onto fresh-cut onions. Bacteriocinogenic LAB present in cheeses and yogurts may have potential to be used as biopreservatives in foods.

  5. Comparative assessment of antibacterial activity of different glass ionomer cements on cariogenic bacteria

    PubMed Central

    Dodamani, Arun Suresh; Jadhav, Harish Chaitram; Deshmukh, Manjiri Abhay

    2016-01-01

    Objectives Glass ionomer cements (GICs), which are biocompatible and adhesive to the tooth surface, are widely used nowadays for tooth restoration. They inhibit the demineralization and promote the remineralization of the tooth structure adjacent to the restoration, as well as interfere with bacterial growth. Hence, the present study was conducted to assess and compare the antimicrobial activity of three commercially available GICs against two cariogenic bacteria. Materials and Methods An agar plate diffusion test was used for evaluating the antimicrobial effect of three different GICs (Fuji IX, Ketac Molar, and d-tech) on Streptococcus mutans (S. mutans) and Lactobacillus acidophilus (L. acidophilus). Thirty plates were prepared and divided into two groups. The first group was inoculated with S. mutans, and the second group was inoculated with L. acidophilus. These plates were then incubated at 37℃ for 24 hours. Zones of bacterial growth inhibition that formed around each well were recorded in millimeters (mm). Results The zones of inhibition for Fuji IX, Ketac Molar, and d-tech on S. mutans were found to be 10.84 ± 0.22 mm, 10.23 ± 0.15 mm, and 15.65 ± 0.31 mm, respectively, whereas those for L. acidophilus were found to be 10.43 ± 0.12 mm, 10.16 ± 0.11 mm, and 15.57 ± 0.13 mm, respectively. Conclusions D-tech cement performed better in terms of the zone of bacterial inhibition against the two test bacteria, than the other two tested glass ionomers. PMID:27847749

  6. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts

    PubMed Central

    2012-01-01

    The biopreservation of foods using bacteriocinogenic lactic acid bacteria (LAB) isolated directly from foods is an innovative approach. The objectives of this study were to isolate and identify bacteriocinogenic LAB from various cheeses and yogurts and evaluate their antimicrobial effects on selected spoilage and pathogenic microorganisms in vitro as well as on a food commodity. LAB were isolated using MRS and M17 media. The agar diffusion bioassay was used to screen for bacteriocin or bacteriocin-like substances (BLS) producing LAB using Lactobacillus sakei and Listeria innocua as indicator organisms. Out of 138 LAB isolates, 28 were found to inhibit these bacteria and were identified as strains of Enterococcus faecium, Streptococcus thermophilus, Lactobacillus casei and Lactobacillus sakei subsp. sakei using 16S rRNA gene sequencing. Eight isolates were tested for antimicrobial activity at 5°C and 20°C against L. innocua, Escherichia coli, Bacillus cereus, Pseudomonas fluorescens, Erwinia carotovora, and Leuconostoc mesenteroides subsp. mesenteroides using the agar diffusion bioassay, and also against Penicillium expansum, Botrytis cinerea and Monilinia frucitcola using the microdilution plate method. The effect of selected LAB strains on L. innocua inoculated onto fresh-cut onions was also investigated. Twenty percent of our isolates produced BLS inhibiting the growth of L. innocua and/or Lact. sakei. Organic acids and/or H2O2 produced by LAB and not the BLS had strong antimicrobial effects on all microorganisms tested with the exception of E. coli. Ent. faecium, Strep. thermophilus and Lact. casei effectively inhibited the growth of natural microflora and L. innocua inoculated onto fresh-cut onions. Bacteriocinogenic LAB present in cheeses and yogurts may have potential to be used as biopreservatives in foods. PMID:22963659

  7. Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species

    PubMed Central

    Bulgasem, Bulgasem Y.; Lani, Mohd Nizam; Wan Yusoff, Wan Mohtar; Fnaish, Sumaya G.

    2016-01-01

    The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly (p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly (p < 0.05) effective against C. krusei, C. glabrata, and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species. PMID:28154488

  8. Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria

    PubMed Central

    2010-01-01

    Background The six organic solvent extracts of Artemisia nilagirica were screened for the potential antimicrobial activity against phytopathogens and clinically important standard reference bacterial strains. Methods The agar disk diffusion method was used to study the antibacterial activity of A. nilagirica extracts against 15 bacterial strains. The Minimum Inhibitory Concentration (MIC) of the plant extracts were tested using two fold agar dilution method at concentrations ranging from 32 to 512 μg/ml. The phytochemical screening of extracts was carried out for major phytochemical derivatives in A. nilagirica. Results All the extracts showed inhibitory activity for gram-positive and gram-negative bacteria except for Klebsiella pneumoniae, Enterococcus faecalis and Staphylococcus aureus. The hexane extract was found to be effective against all phytopathogens with low MIC of 32 μg/ml and the methanol extract exhibited a higher inhibition activity against Escherichia coli, Yersinia enterocolitica, Salmonella typhi, Enterobacter aerogenes, Proteus vulgaris, Pseudomonas aeruginosa (32 μg/ml), Bacillus subtilis (64 μg/ml) and Shigella flaxneri (128 μg/ml). The phytochemical screening of extracts answered for the major derivative of alkaloids, amino acids, flavonoids, phenol, quinines, tannins and terpenoids. Conclusion All the extracts showed antibacterial activity against the tested strains. Of all, methanol and hexane extracts showed high inhibition against clinical and phytopathogens, respectively. The results also indicate the presence of major phytochemical derivatives in the A. nilagirica extracts. Hence, the isolation and purification of therapeutic potential compounds from A. nilagirica could be used as an effective source against bacterial diseases in human and plants. PMID:20109237

  9. Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species.

    PubMed

    Bulgasem, Bulgasem Y; Lani, Mohd Nizam; Hassan, Zaiton; Wan Yusoff, Wan Mohtar; Fnaish, Sumaya G

    2016-12-01

    The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly (p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly (p < 0.05) effective against C. krusei, C. glabrata, and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species.

  10. Short-term effect of ammonia concentration and salinity on activity of ammonia oxidizing bacteria.

    PubMed

    Claros, J; Jiménez, E; Borrás, L; Aguado, D; Seco, A; Ferrer, J; Serralta, J

    2010-01-01

    A continuously aerated SHARON (single reactor high activity ammonia removal over nitrite) system has been operated to achieve partial nitritation. Two sets of batch experiments were carried out to study the effect of ammonia concentration and salinity on the activity of ammonia-oxidizing bacteria (AOB). Activity of AOB raised as free ammonia concentration was increased reaching its maximum value at 4.5 mg NH3-N l(-1). The half saturation constant for free ammonia was determined (K(NH3)=0.32 mg NH3-N l(-1)). Activity decreased at TAN (total ammonium-nitrogen) concentration over 2,000 mg NH4-N l(-1). No free ammonia inhibition was detected. The effect of salinity was studied by adding different concentrations of different salts to the biomass. No significant differences were observed between the experiments carried out with a salt containing or not containing NH4. These results support that AOB are inhibited by salinity, not by free ammonia. A mathematical expression to represent this inhibition is proposed. To compare substrate affinity and salinity inhibitory effect on different AOB populations, similar experiments were carried out with biomass from a biological nutrient removal pilot plant. The AOB activity reached its maximum value at 0.008 mg NH3-N l(-1) and decreased at TAN concentration over 400 mg NH4-N l(-1). These differences can be explained by the different AOB predominating species: Nitrosomonas europaea and N. eutropha in the SHARON biomass and Nitrosomonas oligotropha in the pilot plant.

  11. Chemical composition and antimicrobial activity of the essential oils of Pinus peuce (Pinaceae) growing wild in R. Macedonia.

    PubMed

    Karapandzova, Marija; Stefkova, Gjose; Cvetkovikj, Ivana; Trajkovska-Dokik, Elena; Kaftandzieva, Ana; Kulevanova, Svetlana

    2014-11-01

    The chemical composition and antimicrobial activity of the essential oils isolated from twigs with needles (T+N) and from twigs without needles (T-N) from wild Pinus peuce Griseb. (Pinaceae), from three different locations in R. Macedonia, were investigated. Essential oil yields of T+N ranged from 7.5 mL/kg to 12.5 mL/kg and for T-N from 13.8 mL/kg to 17.3 mL/kg. GC/FID/MS analysis of the essential oils revealed eighty-four components, representing 93.7-95.7% and 91.2-92.0% of the T+N and T-N oils, respectively. The major components in T+N and T-N oils were monoterpenes: α-pinene (23.8-39.9%, 21.2-23.3%), camphene (2.2-5.5%, 0.7-2.0%), β-pinene (10.1-17.1%, 8.2-16.4%), myrcene (1.2-1.41%, 1.6-2.5%), limonene+β-phellandrene (6.8-14.0%, 8.8-23.6%) and bornyl acetate (2.3-6.9%, 1.1-3.4%), followed by the sesquiterpenes: trans-(E)-caryophyllene (3.6-4.3%, 3.2-7.3%), germacrene D (7.1-9.5%, 5.0-10.3%) and δ-cadinene (2.1-3.1%, 3.3-4.2%, respectively). Antimicrobial screening of the essential oils was made by disk diffusion and broth dilution methods against 13 bacterial isolates of Gram-positive and Gram-negative bacteria and one strain of Candida albicans. T-N essential oils showed antimicrobial activity toward Streptococcus pneumoniae, Staphylococcus aureus, S. epidermidis and Candida albicans as well as Streptococcus agalactiae, Acinetobacter spp. and Haemophilus influenzae. The antimicrobial activity of T+N essential oils was greater, especially against Streptococcus agalactiae, S. pyogenes, Enterococcus and Candida albicans, followed by Haemophilus influenzae, Acinetobacter spp., Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and S. epidermidis. Minimal inhibitory concentrations (MICs) of all tested essential oils ranged from 15-125 μL/mL. Summarizing the obtained results, the antimicrobial activity of Pinus peuce T+N and T-N essential oils collected from different localities in R. Macedonia varied considerably. These alterations in the

  12. Electro-responsive supramolecular graphene oxide hydrogels for active bacteria adsorption and removal

    NASA Astrophysics Data System (ADS)

    Xue, Bin; Cao, Yi; Wang, Wei

    Bacteria are major contaminations in drinking water and healthcare products. Bacteria contamination may cause severe health problems, including food poisoning and diseases. Currently water sterilization and purification methods to remove contaminated bacteria are mainly based on the size-exclusion mechanism. In order to completely remove all bacteria in water, the pore sizes of the membranes or cartilages should be comparable to the size of bacteria, which inevitable leads to high cross-membrane water pressure and slow purification speed. Moreover, the membranes can easily get clogged. Therefore it is highly demanded to develop efficient methods and novel materials for water purification. Recently, Cui and coworker have introduced a bacteria inactivation method with high efficiency and fast purification speed based on a kind of complex materials made of silver nanofibers, carbon nanotubes and cotton, operating in an electric field. With the help of electric field, the bacteria can be efficiently kill when passing through the membrance even the pore sizes are larger than bacteria. Inspired by their work, here we report a proof-of-principle demonstration of bacteria removal using electro-reponsive hydrogels. This work is funded by Six talent peaks project in Jiangsu Province, the National Natural Science Foundation of China (Nos. 11304156, 11334004, 31170813, 81421091 and 91127026), the 973 Program of China (No. 2012CB921801 and 2013CB834100), the Priority Ac.

  13. Distribution and relation of total bacteria, active bacteria, bacterivory, and volume of organic detritus in Atlantic continental shelf waters off Cape Hatteras NC, USA

    NASA Astrophysics Data System (ADS)

    Sherr, Evelyn B.; Sherr, Barry F.; Verity, Peter G.

    During the Ocean Margins Program, we obtained data on the abundances of bacterioplankton and heterotrophic flagellates, and on rates of bacterivory, across the mid-Atlantic continental shelf off Cape Hatteras, NC, during four spring and summer cruises from 1993 to 1996. Bacterial and grazing parameters were compared for inner, middle, and outer shelf regions. In 1996, we sampled during two seasons: early spring (March) and mid-summer (July), and in addition determined the fractions of in situ bacterioplankton that had visible nucleoids (NV cells), or that had highly active electron transport systems (ETS), i.e. that were positive for reduction of the fluorogenic formazan compound, 5 cyano-2,3 ditolyl tetrazolium chloride (CTC+ cells), as well as the volumetric concentration of organic detrital particles. Detrital volumes and abundances of bacterioplankton and of heterotrophic flagellates, varied by an order of magnitude, and decreased from inshore to offshore shelf regions. In 1996, bacterial abundances and percentages of CTC+ cells were higher across the shelf during the early spring bloom season (March) compared to the post-bloom season (July). In March 1996, percentages of bacterial cells with visible nucleoids varied between 20% and 70%, but showed little change across the shelf; while fractions of total bacteria with highly active ETS were lower and more variable (1-16% CTC+ cells), and on average were twice as high in the inner shelf region compared to the rest of the shelf. Percentages of CTC+ cells were also higher for particle-associated bacteria. There was a strong positive relationship between percent CTC+ cells and volume of organic detrital particles. However, % CTC+ cells and detrital volume were not consistently related to either bulk particulate organic carbon or chlorophyll. Bacterivory, assessed via rate of ingestion of fluorescently labeled bacteria, could remove 2-9% (4-18% accounting for motile cells) of total bacterial stocks per day. If

  14. Efficacy of β-mannanase supplementation to corn-soya bean meal-based diets on growth performance, nutrient digestibility, blood urea nitrogen, faecal coliform and lactic acid bacteria and faecal noxious gas emission in growing pigs.

    PubMed

    Upadhaya, Santi Devi; Park, Jae Won; Lee, Jae Hwan; Kim, In Ho

    2016-01-01

    A study was conducted to determine the efficacy of β-mannanase supplementation to a diet based on corn and soya bean meal (SBM) on growth performance, nutrient digestibility, blood urea nitrogen (BUN), faecal coliforms and lactic acid bacteria, and noxious gas emission in growing pigs. A total of 140 pigs [(Landrace × Yorkshire) × Duroc; average body weight 25 ± 3 kg] were randomly allotted to a 2 × 2 factorial arrangement with dietary treatments consisting of hulled or dehulled SBM without or with supplementation of 400 U β-mannanase/kg. During the 6 weeks of experimental feeding, β-mannanase supplementation had no effect on body weight gain, feed intake and gain:feed (G:F) ratio. Compared with dehulled SBM, feeding hulled SBM caused an increased feed intake of pigs in the entire trial (p = 0.05). The G:F ratio was improved in pigs receiving dehulled SBM (p < 0.05). Dietary treatments did not influence the total tract digestibility of dry matter, nitrogen and gross energy. Enzyme supplementation reduced (p < 0.05) the population of faecal coliforms and tended to reduce the NH3 concentration after 24 h of fermentation in a closed box containing faecal slurry. Feeding hulled SBM tended to reduce NH3 emission on days 3 and 5 of fermentation. In conclusion, mannanase supplementation had no influence on growth performance and nutrient digestibility but showed a positive effect on reducing coliform population and tended to reduce NH3 emission. Dehulled SBM increased G:F ratio and hulled SBM tended to reduce NH3 emission.

  15. Effect of nitrogen fertilization on the activity and diversity of methane oxidising bacteria in the littoral zone of a boreal lake

    NASA Astrophysics Data System (ADS)

    Saari, A.; Siljanen, H. M. P.; Hämäläinen, S.; Bodrossy, L.; Martikainen, P. J.

    2009-04-01

    Freshwater lakes are generally net sources of CH4 and in boreal lakes a major part of the CH4 emissions originates from the littoral zone during the ice-free season. Aerobic CH4 oxidising bacteria, methanotrophs, significantly limit the flux of CH4 to the atmosphere from sediments. Increased N load causes eutrophication and subsequent anoxia, which probably enhances CH4 production. In addition, inorganic nitrogen (ammonium and nitrate) can inhibit CH4 oxidation. Our study belongs to the research consortium METHECO (Eurodiversity programme of European Science Foundation), where the activity and diversity of methane oxidising bacteria are studied in various European ecosystems. We studied with in situ manipulation the effects of eutrophication (added nitrogen) on the activity and diversity of methanotrophs in a littoral wetland of a small and shallow hyper-eutrophic lake in east-central Finland. We established in the area growing sedges (7-10 m from the shore line) three sampling plots (1.2 m x 1.2 m), which were irrigated four times (from 4th July to 9th August) with ammonium nitrate solution giving 10 g N m-2for the total additional nitrogen load during the growing season. Three control plots were irrigated with equivalent amount of distilled water. The amount of added ammonium nitrate solution or water did not exceed 10% of the long-term (30 years) average rainfall in the area during the growing season. Sediment samples were taken from the depths of 0-2 cm, 2-10cm, 10-20 cm and 20-30 cm before, during and after the N treatment. Methane oxidation potential was studied in 550-ml flasks with sediment slurries and initial headspace CH4 concentration of 0.1%. The diversity of methanotrophs was studied with pmoA-microarray. Methane oxidation was most active in the organic surface sediment layer of 0-10 cm and the activity decreased with depth. Nitrogen addition in situ did not affect significantly the potential CH4 oxidation rates, although nitrate inhibited CH4

  16. In vitro activity of Ozenoxacin against quinolone-susceptible and quinolone-resistant gram-positive bacteria.

    PubMed

    López, Y; Tato, M; Espinal, P; Garcia-Alonso, F; Gargallo-Viola, D; Cantón, R; Vila, J

    2013-12-01

    In vitro activity of ozenoxacin, a novel nonfluorinated topical (L. D. Saravolatz and J. Leggett, Clin. Infect. Dis. 37:1210-1215, 2003) quinolone, was compared with the activities of other quinolones against well-characterized quinolone-susceptible and quinolone-resistant Gram-positive bacteria. Ozenoxacin was 3-fold to 321-fold more active than other quinolones. Ozenoxacin could represent a first-in-class nonfluorinated quinolone for the topical treatment of a broad range of dermatological infections.

  17. Immobilization of degradative bacteria in polyurethane-based foams: embedding efficiency and effect on bacterial activity

    SciTech Connect

    Wilde, E.W.; Radway, J.C.; Hazen, T.C.; Hermann, P.

    1996-09-03

    The immobilization of TCE-degrading bacterium Burkholderia cepacia was evaluated using hydrophilic polyurethane foam. The influence of several foam formulation parameters upon cell retention was examined. Surfactant type was a major determinant of retention, with a lecithin- based compound retaining more cells than pluronic or silicone based surfactants. Excessive amounts of surfactant led to increased washout of bacteria. Increasing the biomass concentration from 4.8% to 10.5% caused fewer cells to be washed out. Embedding at reduced temperature did not significantly affect retention, while the use of a silane binding agent gave inconsistent results. The optimal formulation retained all but 0.2% of total embedded cells during passage of 2 liters of water through columns containing 2 g of foam. All foam formulations tested reduced the culturability of embedded cells by several orders of magnitude. However, O{sub 2} and CO{sub 2} evolution rates of embedded cells were never less than 50% of unembedded cells. Nutrient amendments stimulated an increase in cell volume and ribosomal activity as indicated by hybridization studies using fluorescently labeled ribosomal probes. these results indicated that, although immobilized cells were nonculturable, they were metabolically active and thus could be used for biodegradation of toxic compounds.

  18. Magnetotactic bacteria in microcosms originating from the French Mediterranean Coast subjected to oil industry activities.

    PubMed

    Postec, Anne; Tapia, Nicolas; Bernadac, Alain; Joseph, Manon; Davidson, Sylvain; Wu, Long-Fei; Ollivier, Bernard; Pradel, Nathalie

    2012-01-01

    Magnetotactic bacteria (MTB) mineralize nanosized magnetite or greigite crystals within cells and thus play an important role in the biogeochemical process. Despite decades of research, knowledge of MTB distribution and ecology, notably in areas subjected to oil industry activities, is still limited. In the present study, we investigated the presence of MTB in the Gulf of Fos, French Mediterranean coast, which is subjected to intensive oil industry activities. Microcosms containing sediments/water (1:2, v/v) from several sampling sites were monitored over several weeks. The presence of MTB was revealed in five of eight sites. Diverse and numerous MTB were revealed particularly from one site (named CAR), whilst temporal variations of a homogenous magnetotactic cocci population was shown within the LAV site microcosm over a 4-month period. Phylogenetic analysis revealed that they belonged to Alphaproteobacteria, and a novel genus from the LAV site was evidenced. Among the physicochemical parameters measured, a correlation was shown between the variation of MTB abundance in microcosms and the redox state of sulphur compounds.

  19. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora

    PubMed Central

    Petatán-Sagahón, Iván; Anducho-Reyes, Miguel Angel; Silva-Rojas, Hilda Victoria; Arana-Cuenca, Ainhoa; Tellez-Jurado, Alejandro; Cárdenas-Álvarez, Isabel Oyuki; Mercado-Flores, Yuridia

    2011-01-01

    Stenocarpella maydis and Stenocarpella macrospora are the causal agents of ear rot in corn, which is one of the most destructive diseases in this crop worldwide. These fungi are important mycotoxin producers that cause different pathologies in farmed animals and represent an important risk for humans. In this work, 160 strains were isolated from soil of corn crops of which 10 showed antifungal activity against these phytopathogens, which, were identified as: Bacillus subtilis, Pseudomonas spp., Pseudomonas fluorescens, and Pantoea agglomerans by sequencing of 16S rRNA gene and the phylogenetic analysis. From cultures of each strain, extracellular filtrates were obtained and assayed to determine antifungal activity. The best filtrates were obtained in the stationary phase of B. subtilis cultures that were stable to the temperature and extreme pH values; in addition they did not show a cytotoxicity effect against brine shrimp and inhibited germination of conidia. The bacteria described in this work have the potential to be used in the control of white ear rot disease. PMID:22016606

  20. Antibacterial activity of moxifloxacin on bacteria associated with periodontitis within a biofilm.

    PubMed

    Tsaousoglou, Phoebus; Nietzsche, Sandor; Cachovan, Georg; Sculean, Anton; Eick, Sigrun

    2014-02-01

    The activity of moxifloxacin was compared with ofloxacin and doxycycline against bacteria associated with periodontitis within a biofilm (single strain and mixed population) in vitro. MICs and minimal bactericidal concentrations (MBCs) of moxifloxacin, ofloxacin and doxycyline were determined against single strains and mixed populations in a planktonic state. Single-species biofilms of two Porphyromonas gingivalis and two Aggregatibacter actinomycetemcomitans strains and a multispecies biofilm consisting of 12 species were formed for 3 days. The minimal biofilm eradication concentrations (MBECs) were determined after exposing the biofilms to the antibacterials (0.002-512 µg ml(-1)) for 18 h, addition of nutrient broth for 3 days and subsequent subcultivation. Photographs were taken using confocal laser-scanning microscopy and scanning electron microscopy. The MICs and MBCs did not differ between ofloxacin and moxifloxacin against A. actinomycetemcomitans, whilst moxifloxacin was more active than the other tested antibacterials against anaerobes and the mixed population. The single-species biofilms were eradicated by moderate concentrations of the antibacterials, and the lowest MBECs were always found for moxifloxacin (2-8 µg ml(-1)). MBECs against the multispecies biofilms were 128, >512 and >512 µg ml(-1) for moxifloxacin, ofloxacin and doxycycline, respectively. In summary, moxifloxacin in a topical formulation may have potential as an adjunct to mechanical removal of the biofilms.

  1. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms

    SciTech Connect

    Okabe, Satoshi; Itoh, Tsukasa; Satoh, Hisashi; Watanabe, Yoshimasa

    1999-11-01

    The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O{sub 2}, H{sub 2}S, NO{sub 2}{minus}, NH{sub 2}{sup +}, and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells were evenly distributed throughout the biofilm, even in the toxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations. The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 {micro}m below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S{degree}) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms, which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.

  2. Antimicrobial Activity of Croton macrostachyus Stem Bark Extracts against Several Human Pathogenic Bacteria

    PubMed Central

    Obey, Jackie K.; von Wright, Atte; Orjala, Jimmy; Kauhanen, Jussi; Tikkanen-Kaukanen, Carina

    2016-01-01

    In Kenya, leaves and roots from Croton macrostachyus are used as a traditional medicine for infectious diseases such as typhoid and measles, but reports on possible antimicrobial activity of stem bark do not exist. In this study, the antibacterial and antifungal effects of methanol, ethyl acetate and butanol extracts, and purified lupeol of C. macrostachyus stem bark were determined against important human gram-negative pathogens Escherichia coli, Salmonella typhi, Klebsiella pneumoniae, and Enterobacter aerogenes, gram-positive Listeria monocytogenes, and a fungus Candida albicans. The most promising broad scale antimicrobial activity against all the studied pathogens was shown by the ethyl acetate extract. The ethyl acetate extract induced the zone of inhibition between 10.1 ± 0.6 mm and 16.0 ± 1.2 mm against S. typhi, E. coli, K. pneumoniae, E. aerogenes, and L. monocytogenes with weaker antimicrobial activity against C. albicans (zone of inhibition: 5.6 ± 1.0 mm). The antibiotic controls (amoxicillin, ciprofloxacin, ampicillin, benzylpenicillin, clotrimazole, and cefotaxime) showed antimicrobial activity with zones of inhibition within 13.4 ± 0.7–22.1 ± 0.9 mm. The ethyl acetate extract had MIC in the range of 125–250 mg/mL against all the studied bacteria and against C. albicans MIC was 500 mg/mL. The present results give scientific evidence and support the traditional use of C. macrostachyus stem bark as a source for antimicrobials. We show that C. macrostachyus stem bark lupeol is a promising antimicrobial agent against several important human pathogens. PMID:27293897

  3. Chitin extraction from crab shells by Bacillus bacteria. Biological activities of fermented crab supernatants.

    PubMed

    Hajji, Sawssen; Ghorbel-Bellaaj, Olfa; Younes, Islem; Jellouli, Kemel; Nasri, Moncef

    2015-08-01

    Crab shells waste were fermented using six protease-producing Bacillus species (Bacillus subtilis A26, Bacillus mojavensis A21, Bacillus pumilus A1, Bacillus amyloliquefaciens An6, Bacillus licheniformis NH1 and Bacillus cereus BG1) for the production of chitin and fermented-crab supernatants (FCSs). In medium containing only crab shells, the highest demineralization DM was obtained with B. licheniformis NH1 (83±0.5%) and B. pumilus A1 (80±0.6%), while the highest deproteinization (DP) was achieved with A1 (94±1%) followed by NH1 (90±1.5%) strains. Cultures conducted in medium containing crab shells waste supplemented with 5% (w/v) glucose, were found to remarkably promote demineralization efficiency, and enhance slightly deproteinization rates. FTIR spectra of chitins showed the characteristics bands of α-chitin. FCSs showed varying degrees of antioxidant activities which were in a dose-dependent manner (p<0.01). In fact, FCS produced by B. amyloliquefaciens An6 exhibited the highest DPPH free radical-scavenging activity (92% at 4 mg/ml), while the lowest hydroxyl radical-scavenging activity (60% at 4 mg/ml) was obtained with B. subtilis A26 hydrolysates. However, the highest reducing power (OD700nm=2 at 0.5 mg/ml) was obtained by B.amyloliquefaciens An6 hydrolysates. These results suggest that crab hydrolysates are good sources of natural antioxidants. Further, FCSs were found to exhibit antibacterial activity against Gram-positive and Gram-negative bacteria.

  4. Antimicrobial activity of red clover (Trifolium pratense L.) extract on caprine hyper ammonia-producing bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the inefficiencies in rumen fermentation is the catabolism of feed amino acids and peptides by hyper-ammonia-producing bacteria (HAB). The HAB can be controlled through selective inhibition with antimicrobials. In vitro ammonia production by uncultivated goat rumen bacteria was inhibited by ...

  5. Diversity and antifungal activity of endophytic diazotrophic bacteria colonizing sugarcane in Egypt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The price of nitrogen continues to increase and is a major input in sugarcane production. Sugarcane grown in Egypt was screened for the presence of nitrogen-fixing bacteria. Nitrogen-free medium LGI-P was used to isolate bacteria from cane stalks. Among the 52 isolates subjected to acetylene redu...

  6. Antibacterial activity of plant extracts on foodborne bacterial pathogens and food spoilage bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial foodborne diseases are caused by consumption of foods contaminated with bacteria and/or their toxins. In this study, we evaluated antibacterial properties of twelve different extracts including turmeric, lemon and different kinds of teas against four major pathogenic foodborne bacteria inc...

  7. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria.

    PubMed

    Sun, Mengjun; Zhou, Zichao; Dong, Jiachen; Zhang, Jichun; Xia, Yiru; Shu, Rong

    2016-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two major omega-3 polyunsaturated fatty acids (n-3 PUFAs) with antimicrobial properties. In this study, we evaluated the potential antibacterial and antibiofilm activities of DHA and EPA against two periodontal pathogens, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). MTT assay showed that DHA and EPA still exhibited no cytotoxicity to human oral tissue cells when the concentration came to 100 μM and 200 μM, respectively. Against P. gingivalis, DHA and EPA showed the same minimum inhibitory concentration (MIC) of 12.5 μM, and a respective minimum bactericidal concentration (MBC) of 12.5 μM and 25 μM. However, the MIC and MBC values of DHA or EPA against F. nucleatum were both greater than 100 μM. For early-stage bacteria, DHA or EPA displayed complete inhibition on the planktonic growth and biofilm formation of P. gingivalis from the lowest concentration of 12.5 μM. And the planktonic growth of F. nucleatum was slightly but not completely inhibited by DHA or EPA even at the concentration of 100 μM, however, the biofilm formation of F. nucleatum at 24 h was significantly restrained by 100 μM EPA. For exponential-phase bacteria, 100 μM DHA or EPA completely killed P. gingivalis and significantly decreased the viable counts of F. nucleatum. Meanwhile, the morphology of P. gingivalis was apparently damaged, and the virulence factor gene expression of P. gingivalis and F. nucleatum was strongly downregulated. Besides, the viability and the thickness of mature P. gingivalis biofilm, together with the viability of mature F. nucleatum biofilm were both significantly decreased in the presence of 100 μM DHA or EPA. In conclusion, DHA and EPA possessed antibacterial activities against planktonic and biofilm forms of periodontal pathogens, which suggested that DHA and EPA might be potentially supplementary therapeutic agents for prevention

  8. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants.

    PubMed

    Manitchotpisit, Pennapa; Bischoff, Kenneth M; Price, Neil P J; Leathers, Timothy D

    2013-05-01

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Four bacterial strains, designated as ALT3A, ALT3B, ALT17, and MR1, produced inhibitory effects on growth of LAB. Sequencing of rRNA identified these strains as species of Bacillus subtilis (ALT3A and ALT3B) and B. cereus (ALT17 and MR1). Cell mass from colonies and agar samples from inhibition zones were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The spectra of ALT3A and ALT3B showed a strong signal at m/z 1,060, similar in mass to the surfactin family of antimicrobial lipopeptides. ALT3A and ALT3B were analyzed by zymogram analysis using SDS-PAGE gels placed on agar plates inoculated with LAB. Cell lysates possessed an inhibitory protein of less than 10 kDa, consistent with the production of an antibacterial lipopeptide. Mass spectra of ALT17 and MR1 had notable signals at m/z 908 and 930 in the whole cell extracts and at m/z 687 in agar, but these masses do not correlate with those of previously reported antibacterial lipopeptides, and no antibacterial activity was detected by zymogram. The antibacterial activities produced by these strains may have application in the fuel ethanol industry as an alternative to antibiotics for prevention and control of bacterial contamination.

  9. Antimicrobial activities of chicken β-defensin (4 and 10) peptides against pathogenic bacteria and fungi.

    PubMed

    Yacoub, Haitham A; Elazzazy, Ahmed M; Abuzinadah, Osama A H; Al-Hejin, Ahmed M; Mahmoud, Maged M; Harakeh, Steve M

    2015-01-01

    Host Defense Peptides (HDPs) are small cationic peptides found in several organisms. They play a vital role in innate immunity response and immunomodulatory stimulation. This investigation was designed to study the antimicrobial activities of β-defensin peptide-4 (sAvBD-4) and 10 (sAvBD-4) derived from chickens against pathogenic organisms including bacteria and fungi. Ten bacterial strains and three fungal species were used in investigation. The results showed that the sAvBD-10 displayed a higher bactericidal potency against all the tested bacterial strains than that of sAvBD-4. The exhibited bactericidal activity was significant against almost the different bacterial strains at different peptide concentrations except for that of Pseudomonas aeruginosa (P. aeruginosa) and Streptococcus bovis (Str. bovis) strains where a moderate effect was noted. Both peptides were effective in the inactivation of fungal species tested yielding a killing rate of up to 95%. The results revealed that the synthetic peptides were resistant to salt at a concentration of 50 mM NaCl. However, they lost antimicrobial potency when applied in the presence of high salt concentrations. Based on blood hemolysis studies, a little hemolytic effect was showed in the case of both peptides even when applied at high concentrations. The data obtained from this study indicated that synthetic avian peptides exhibit strong antibacterial and antifungal activity. In conclusion, future work and research should be tailored to a better understanding of the mechanisms of action of those peptides and their potential use in the pharmaceutical industry to help reduce the incidence and impact of infectious agent and be marketed as a naturally occurring antibiotic.

  10. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen.

    PubMed

    Groudieva, Tatiana; Kambourova, Margarita; Yusef, Hoda; Royter, Maryna; Grote, Ralf; Trinks, Hauke; Antranikian, Garabed

    2004-12-01

    The diversity of culturable bacteria associated with sea ice from four permanently cold fjords of Spitzbergen, Arctic Ocean, was investigated. A total of 116 psychrophilic and psychrotolerant strains were isolated under aerobic conditions at 4 degrees C. The isolates were grouped using amplified rDNA restriction analysis fingerprinting and identified by partial sequencing of 16S rRNA gene. The bacterial isolates fell in five phylogenetic groups: subclasses alpha and gamma of Proteobacteria, the Bacillus-Clostridium group, the order Actinomycetales, and the Cytophaga-Flexibacter-Bacteroides (CFB) phylum. Over 70% of the isolates were affiliated with the Proteobacteria gamma subclass. Based on phylogenetic analysis (<98% sequence similarity), over 40% of Arctic isolates represent potentially novel species or genera. Most of the isolates were psychrotolerant and grew optimally between 20 and 25 degrees C. Only a few strains were psychrophilic, with an optimal growth at 10-15 degrees C. The majority of the bacterial strains were able to secrete a broad range of cold-active hydrolytic enzymes into the medium at a cultivation temperature of 4 degrees C. The isolates that are able to degrade proteins (skim milk, casein), lipids (olive oil), and polysaccharides (starch, pectin) account for, respectively, 56, 31, and 21% of sea-ice and seawater strains. The temperature dependences for enzyme production during growth and enzymatic activity were determined for two selected enzymes, alpha-amylase and beta-galactosidase. Interestingly, high levels of enzyme productions were measured at growth temperatures between 4 and 10 degrees C, and almost no production was detected at higher temperatures (20-30 degrees C). Catalytic activity was detected even below the freezing point of water (at -5 degrees C), demonstrating the unique properties of these enzymes.

  11. Skin Anti-Aging Activities of Bacteriochlorophyll a from Photosynthetic Bacteria, Rhodobacter sphaeroides.

    PubMed

    Kim, Nam Young; Yim, Tae Bin; Lee, Hyeon Yong

    2015-10-01

    In this work, the anti-aging skin effects of bacteriochlorophyll a isolated from Rhodobacter sphaeroides are first reported, with notably low cytotoxicity in the range of 1% to 14% in adding 0.00078 (% (w/w)) of the extracts, compared with the normal growth of both human dermal fibroblast and keratinocyte cells without any treatment as a control. The highest production of procollagen from human fibroblast cells (CCD-986sk) was observed as 221.7 ng/ml with 0.001 (% (w/w)) of bacteriochlorophyll a, whereas 150 and 200 ng/ml of procollagen production resulted from addition of 0.001 (% (w/w)) of the photosynthetic bacteria. The bacteriochlorophylla- induced TNF-α production increased to 63.8%, which was lower secretion from HaCaT cells than that from addition of 0.00005 (% (w/w)) of bacteriochlorophyll a. Additionally, bacteriochlorophyll a upregulated the expression of genes related to skin anti-aging (i.e., keratin 10, involucrin, transglutaminase-1, and MMPs), by up to 4-15 times those of the control. However, crude extracts from R. sphaeroides did not enhance the expression level of these genes. Bacteriochlorophyll a showed higher antioxidant activity of 63.8% in DPPH free radical scavenging than those of water, ethanol, and 70% ethanol extracts (14.0%, 57.2%, and 12.6%, respectively). It was also shown that the high antioxidant activity could be attributed to the skin anti-aging effect of bacteriochlorophyll a, although R. sphaeroides itself would not exhibit significant anti-aging activities.

  12. Regulation of the activity of lactate dehydrogenases from four lactic acid bacteria.

    PubMed

    Feldman-Salit, Anna; Hering, Silvio; Messiha, Hanan L; Veith, Nadine; Cojocaru, Vlad; Sieg, Antje; Westerhoff, Hans V; Kreikemeyer, Bernd; Wade, Rebecca C; Fiedler, Tomas

    2013-07-19

    Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the effects of fructose 1,6-bisphosphate (FBP), phosphate (Pi), and ionic strength (NaCl concentration) on six LDHs from four LABs studied at pH 6 and pH 7. We found that 1) the extent of activation by FBP (Kact) differs. Lactobacillus plantarum LDH is not regulated by FBP, but the other LDHs are activated with increasing sensitivity in the following order: Enterococcus faecalis LDH2 ≤ Lactococcus lactis LDH2 < E. faecalis LDH1 < L. lactis LDH1 ≤ Streptococcus pyogenes LDH. This trend reflects the electrostatic properties in the allosteric binding site of the LDH enzymes. 2) For L. plantarum, S. pyogenes, and E. faecalis, the effects of Pi are distinguishable from the effect of changing ionic strength by adding NaCl. 3) Addition of Pi inhibits E. faecalis LDH2, whereas in the absence of FBP, Pi is an activator of S. pyogenes LDH, E. faecalis LDH1, and L. lactis LDH1 and LDH2 at pH 6. These effects can be interpreted by considering the computed binding affinities of Pi to the catalytic and allosteric binding sites of the enzymes modeled in protonation states corresponding to pH 6 and pH 7. Overall, the results show a subtle interplay among the effects of Pi, FBP, and pH that results in different regulatory effects on the LDHs of different LABs.

  13. Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis.

    PubMed

    Ceballos, Isabel; Mosquera, Sandra; Angulo, Mónica; Mira, John J; Argel, Luz Edith; Uribe-Velez, Daniel; Romero-Tabarez, Magally; Orduz-Peralta, Sergio; Villegas, Valeska

    2012-10-01

    Mycosphaerella fijiensis is the etiological agent of Black Sigatoka, a fungal disease that affects production of banana and plantain crops in tropical regions. The sizes of cultivable epiphytic and endophytic bacterial populations, aerobic endospore forming bacteria (AEFB), and antagonist bacteria against M. fijiensis isolated from three Musa spp. cultivars from Urabá (Colombia) were studied, in order to find a suitable screening strategy to isolate antagonistic bacteria. Most of the variability found in the epiphytic and endophytic bacterial community sizes among fruit trees was explained by the cultivar differences. We found population sizes ranging from 1.25 × 10(3) to 9.64 × 10(5) CFU/g of fresh leaf and found that 44 % of total cultivable bacteria belong to the AEFB group. We isolated 648 AEFB from three different cultivars and assessed their antagonistic activity against M. fijiensis using the cell-free supernatant obtained from bacterial liquid cultures in three different in vitro assays. Five percent of those bacteria showed higher percent inhibition than the positive control Bacillus subtilis UA321 has (percent inhibition = 84 ± 5) in the screening phase. Therefore, they were selected as antagonistic bacteria against the pathogen. The strains with the highest percentage of antagonism were found in older leaves for the three cultivars, given support to recommend this group of leaves for future samplings. Some of these isolated bacteria affected the mycelium and ascospores morphology of the fungus. They also presented in vitro characteristics related to a successful colonization of the phylloplane such as indolic compounds, surfactant production, and biofilm formation, which makes them possible, potential candidates as biological control agents.

  14. Antibiotic-potentiation activities of four Cameroonian dietary plants against multidrug-resistant Gram-negative bacteria expressing efflux pumps

    PubMed Central

    2014-01-01

    Background The continuous spread of multidrug-resistant (MDR) bacteria, partially due to efflux pumps drastically reduced the efficacy of the antibiotic armory, increasing the frequency of therapeutic failure. The search for new compounds to potentiate the efficacy of commonly used antibiotics is therefore important. The present study was designed to evaluate the ability of the methanol extracts of four Cameroonian dietary plants (Capsicum frutescens L. var. facilulatum, Brassica oleacera L. var. italica, Brassica oleacera L. var. butyris and Basilicum polystachyon (L.) Moench.) to improve the activity of commonly used antibiotics against MDR Gram-negative bacteria expressing active efflux pumps. Methods The qualitative phytochemical screening of the plant extracts was performed using standard methods whilst the antibacterial activity was performed by broth micro-dilution method. Results All the studied plant extracts revealed the presence of alkaloids, phenols, flavonoids, triterpenes and sterols. The minimal inhibitory concentrations (MIC) of the studied extracts ranged from 256-1024 μg/mL. Capsicum frutescens var. facilulatum extract displayed the largest spectrum of activity (73%) against the tested bacterial strains whilst the lower MIC value (256 μg/mL) was recorded with Basilicum polystachyon against E. aerogenes ATCC 13048 and P. stuartii ATCC 29916. In the presence of PAβN, the spectrum of activity of Brassica oleacera var. italica extract against bacteria strains increased (75%). The extracts from Brassica oleacera var. butyris, Brassica oleacera var. italica, Capsicum frutescens var. facilulatum and Basilicum polystachyon showed synergistic effects (FIC ≤ 0.5) against the studied bacteria, with an average of 75.3% of the tested antibiotics. Conclusion These results provide promising information for the potential use of the tested plants alone or in combination with some commonly used antibiotics in the fight against MDR Gram-negative bacteria

  15. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil.

    PubMed

    Banning, Natasha C; Maccarone, Linda D; Fisk, Louise M; Murphy, Daniel V

    2015-06-08

    Ammonia-oxidising archaea (AOA) and bacteria (AOB) are responsible for the rate limiting step in nitrification; a key nitrogen (N) loss pathway in agricultural systems. Dominance of AOA relative to AOB in the amoA gene pool has been reported in many ecosystems, although their relative contributions to nitrification activity are less clear. Here we examined the distribution of AOA and AOB with depth in semi-arid agricultural soils in which soil organic matter content or pH had been altered, and related their distribution to gross nitrification rates. Soil depth had a significant effect on gene abundances, irrespective of management history. Contrary to reports of AOA dominance in soils elsewhere, AOA gene copy numbers were four-fold lower than AOB in the surface (0-10 cm). AOA gene abundance increased with depth while AOB decreased, and sub-soil abundances were approximately equal (10-90 cm). The depth profile of total archaea did not mirror that of AOA, indicating the likely presence of archaea without nitrification capacity in the surface. Gross nitrification rates declined significantly with depth and were positively correlated to AOB but negatively correlated to AOA gene abundances. We conclude that AOB are most likely responsible for regulating nitrification in these semi-arid soils.

  16. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil

    NASA Astrophysics Data System (ADS)

    Banning, Natasha C.; Maccarone, Linda D.; Fisk, Louise M.; Murphy, Daniel V.

    2015-06-01

    Ammonia-oxidising archaea (AOA) and bacteria (AOB) are responsible for the rate limiting step in nitrification; a key nitrogen (N) loss pathway in agricultural systems. Dominance of AOA relative to AOB in the amoA gene pool has been reported in many ecosystems, although their relative contributions to nitrification activity are less clear. Here we examined the distribution of AOA and AOB with depth in semi-arid agricultural soils in which soil organic matter content or pH had been altered, and related their distribution to gross nitrification rates. Soil depth had a significant effect on gene abundances, irrespective of management history. Contrary to reports of AOA dominance in soils elsewhere, AOA gene copy numbers were four-fold lower than AOB in the surface (0-10 cm). AOA gene abundance increased with depth while AOB decreased, and sub-soil abundances were approximately equal (10-90 cm). The depth profile of total archaea did not mirror that of AOA, indicating the likely presence of archaea without nitrification capacity in the surface. Gross nitrification rates declined significantly with depth and were positively correlated to AOB but negatively correlated to AOA gene abundances. We conclude that AOB are most likely responsible for regulating nitrification in these semi-arid soils.

  17. Biodegradation of geosmin in drinking water by novel bacteria isolated from biologically active carbon.

    PubMed

    Zhou, Beihai; Yuan, Rongfang; Shi, Chunhong; Yu, Liying; Gu, Junnong; Zhang, Chunlei

    2011-01-01

    Three strains of Gram-negative bacteria capable of removing geosmin from drinking water were isolated from biologically active carbon and identified to be Chryseobacterium sp., Sinorhizobium sp. and Stenotrophomonas sp. based on physio-biochemistry analysis and 16S rRNA gene sequence analysis. Removal efficiencies of 2 mg/L geosmin in mineral salts medium were 84.0%, 80.2% and 74.4% for Chryseobacterium sp., Sinorhizobium sp. and Stenotrophomonas sp., respectively, while removal efficiencies of 560 ng/L geosmin in filter influent were 84.8%, 82.3% and 82.5%, respectively. The biodegradation of geosmin was determined to be a pseudo first-order reaction, with rate constants at 2 mg/L and 560 ng/L being 0.097 and 0.086 day(-1), 0.089 and 0.084 day(-1), 0.074 and 0.098 day(-1) for the above mentioned degraders, respectively. The biomass of culture in the presence of geosmin was much higher than that in the absence of geosmin.

  18. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    PubMed Central

    Vander Schaaf, Nicole A.; Cunningham, Anna M. G.; Cluff, Brandon P.; Kraemer, CodyJo K.; Reeves, Chelsea L.; Riester, Carli J.; Slater, Lauren K.; Madigan, Michael T.; Sattley, W. Matthew

    2015-01-01

    The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m) are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes. PMID:27682095

  19. Anti-Listeria Activity of Lactic Acid Bacteria in Two Traditional Sicilian Cheeses

    PubMed Central

    Scatassa, Maria Luisa; Gaglio, Raimondo; Cardamone, Cinzia; Macaluso, Giusi; Arcuri, Luigi; Todaro, Massimo; Mancuso, Isabella

    2017-01-01

    Listeria monocytogenes is a pathogen frequently found in dairy products, and its growth is difficult to control. Bacteriocin-like inhibitory substances (BLIS), produced by lactic acid bacteria (LAB), having proven in vitro anti-Listeria activity, could provide an innovative approach to control L. monocytogenes; however, this application needs to be evaluated in vivo. In this study, twenty LAB strains isolated from different Sicilian dairy environments were tested for control of growth of L. monocytogenes in three different experimental trials. First, raw and UHT milk were inoculated with LAB strains alone, and LAB strains mixed with L. monocytogenes. Second, mini-cheeses containing LAB and/or L. monocytogenes were produced. Third, two traditional Sicilian cheeses inoculated with a multi-strain LAB mixture combined with L. monocytogenes were produced. The addition of BLIS produced by LAB to milk and in mini-cheese production was unable to inhibit the growth of L. monocytogenes. However, an anti-Listeria effect was observed in the Pecorino Siciliano cheeses, where, after 15 days of ripening, the cheeses with added LAB had fewer L. monocytogenes compared to the control cheeses with no added LAB, while in the Vastedda della valle del Belìce cheeses, the multi-strain LAB mixture completely prevented the growth of L. monocytogenes. PMID:28299290

  20. Highly effective bacterial agents against Cimbex quadrimaculatus (Hymenoptera: Cimbicidae): isolation of bacteria and their insecticidal activities.

    PubMed

    Cakici, Filiz Ozkan; Ozgen, İnanc; Bolu, Halil; Erbas, Zeynep; Demirbağ, Zihni; Demir, İsmail

    2015-01-01

    Cimbex quadrimaculatus (Hymenoptera: Cimbicidae) is one of the serious pests of almonds in Turkey and worldwide. Since there is no effective control application against this pest, it has been a serious problem up to now. Therefore, we aimed to find an effective bacterium that can be utilized as a biocontrol agent against C. quadrimaculatus in pest management. We isolated seven bacteria from dead and live C. quadrimaculatus larvae, and evaluated the larvicidal potency of all isolates on the respective pest. Based on the morphological, physiological, biochemical and molecular properties (partial sequence of 16S rRNA gene), the isolates were identified to be Bacillus safensis (CQ1), Bacillus subtilis (CQ2), Bacillus tequilensis (CQ3), Enterobacter sp. (CQ4), Kurthia gibsonii (CQ5), Staphylococcus sp. (CQ6) and Staphylococcus sciuri (CQ7). The results of the larvicidal activities of these isolates indicated that the mortality value obtained from all treatments changed from 58 to 100 %, and reached 100 % with B. safensis (CQ1) and B. subtilis (CQ2) on the 3rd instar larvae within 10 days of application of 1.89 × 10(9) cfu/mL bacterial concentration at 25 °C under laboratory conditions. Findings from this study indicate that these isolates appear to be a promising biocontrol agent for C. quadrimaculatus.

  1. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil

    PubMed Central

    Banning, Natasha C.; Maccarone, Linda D.; Fisk, Louise M.; Murphy, Daniel V.

    2015-01-01

    Ammonia-oxidising archaea (AOA) and bacteria (AOB) are responsible for the rate limiting step in nitrification; a key nitrogen (N) loss pathway in agricultural systems. Dominance of AOA relative to AOB in the amoA gene pool has been reported in many ecosystems, although their relative contributions to nitrification activity are less clear. Here we examined the distribution of AOA and AOB with depth in semi-arid agricultural soils in which soil organic matter content or pH had been altered, and related their distribution to gross nitrification rates. Soil depth had a significant effect on gene abundances, irrespective of management history. Contrary to reports of AOA dominance in soils elsewhere, AOA gene copy numbers were four-fold lower than AOB in the surface (0–10 cm). AOA gene abundance increased with depth while AOB decreased, and sub-soil abundances were approximately equal (10–90 cm). The depth profile of total archaea did not mirror that of AOA, indicating the likely presence of archaea without nitrification capacity in the surface. Gross nitrification rates declined significantly with depth and were positively correlated to AOB but negatively correlated to AOA gene abundances. We conclude that AOB are most likely responsible for regulating nitrification in these semi-arid soils. PMID:26053257

  2. Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria.

    PubMed

    Sudha, S S; Rajamanickam, Karthic; Rengaramanujam, J

    2013-05-01

    Silver nanoparticles is known to have antimicrobial affects. Cyanobacteria isolates from muthupet mangrove includes Aphanothece sp, Oscillatoria sp, Microcoleus sp, Aphanocapsa sp, Phormidium sp, Lyngbya sp, Gleocapsa sp, Synechococcus sp, Spirulina sp with were set in compliance with their cellular mechanism of nano silver creation, and were investigated by UV-VIS spectrophotometer, Energy-dispersive X-ray (EDX) and scanning electron microscopy (SEM). Silver nanoparticles were spherical shaped well distributed without aggregation in solution with an average size of about 40- 80 nm. Synthesised nano silver had antibacterial production on various organisms that provoked various diseases in humans. The cellular metabolites of Microcoleus sp. only created nano silver and it enhanced the antibacterial activity against test pathogenic bacteria from MTCC (Proteus vulgaris, Salmonella typhi, Vibrio cholera, Streptococcus sp., Bacillus subtilis, Staphylococcus aureus, Escherichia coli.) The antimicrobial assay was performed using 0.001 M concentration of nano silver in well diffusion method with positive control of appropriate standard antibiotic discs Cephotaxime, Ampicillin, Tetracyclin, Cephalexin etc. Synthesised silver nanoparticles acted as an effective antimicrobial agent and proved as an alternative for the development of new antimicrobial agents to combat the problem of resistance.

  3. Oxalic Acid from Lentinula edodes Culture Filtrate: Antimicrobial Activity on Phytopathogenic Bacteria and Qualitative and Quantitative Analyses

    PubMed Central

    Kwak, A-Min; Lee, In-Kyoung; Lee, Sang-Yeop

    2016-01-01

    The culture filtrate of Lentinula edodes shows potent antimicrobial activity against the plant pathogenic bacteria Ralstonia solanacearum. Bioassay-guided fractionation was conducted using Diaion HP-20 column chromatography, and the insoluble active compound was not adsorbed on the resin. Further fractionation by high-performance liquid chromatography (HPLC) suggested that the active compounds were organic acids. Nine organic acids were detected in the culture filtrate of L. edodes; oxalic acid was the major component and exhibited antibacterial activity against nine different phytopathogenic bacteria. Quantitative analysis by HPLC revealed that the content of oxalic acid was higher in the water extract from spent mushroom substrate than in liquid culture. This suggests that the water extract of spent L. edodes substrate is an eco-friendly control agent for plant diseases. PMID:28154495

  4. Behavior, activities, and effects of bacteria on synthetic quartz monocrystal surfaces.

    PubMed

    Rades-Rohkohl, E; Fränzle, O; Hirsch, P

    1977-09-01

    Two strains ofBacillus sp. and a strain ofBrevibacterium sp., originally isolated from a natural quartzite surface, were characterized and employed as test strains with several methods: acridine orange fluorochromation and epifluorescence microscopy were used for detection of individual cells; scanning and transmission microscopy for studying attachment behavior; replica techniques in combination with electron microscopy for following surface interaction effects; and chemical analysis of SiO2 for detecting possible silica leaching activities. The experimental results clearly showed that the three test strains were able to attach to and grow on the precleaned quartz surfaces. Attachment modes were either by direct sorption mechanisms (Brevibacterium sp. S) or the production of adhesive polymers (Bacillus sp. U andBacillus sp. W). In short-term contact incubation experiments with rich media, neither quartz crystal surface structures nor bacterial cell surfaces appeared to be changed. Likewise, significant biochemical dissolution and mechanical dislocation of SiO2 (which would have indicated rapid bacterial weathering activities) could not be detected. The importance of quartz purity and crystalline structure for the initiation of weathering processes is discussed.

  5. Mineral-Association and Activity of Bacteria and Archaea in the Deep Subsurface South Pacific Gyre Sediment

    NASA Astrophysics Data System (ADS)

    Steele, J. A.; Dekas, A. E.; Harrison, B. K.; Morono, Y.; Inagaki, F.; Ziebis, W.; Orphan, V. J.

    2012-12-01

    Although the subsurface biosphere is now recognized as an important reservoir of life on our planet, until recently the microbial community beneath open-ocean oligotrophic gyres (making up the majority of the seafloor) has just begun to be studied in detail. IODP Expedition 329 and the KNOX-022RR site survey cruise have taken some of the first steps at characterizing the microbial community beneath the South Pacific Gyre, a region with low organic carbon burial rates (10-8 and 10-10 moles C cm-1 yr-1), deep oxygen penetration (sediments are oxidized to the basement), and low prokaryotic cell counts (106 cells cm-3 to <103 cells cm-3). In these sediments, the dominant fraction of organic carbon may be aggregated or adsorbed to minerals, suggesting that microbes that are able to grow on the minerals may create potential "hotspots" of activity. In this study, we performed magnetic separation on oligotrophic sediment samples and examined the bacterial and archaeal communities using 16S rRNA tag sequencing. To determine if the mineral-associated cells were autotrophic and/or utilizing nitrate, we performed long-term (20 month) incubations with 13CO2 and 15NO3- from sediment taken at depths ~2-70 mbsf beneath the oligotrophic gyre and outside of the oligotrophic gyre (IODP Exp. 329 stations U1368-U1371). Subsequently we used the DNA stain SYBR Green I, and CARD-FISH-NanoSIMS to identify cells which were actively taking up the isotopic label. We then used SEM-EDS to identify the mineral particle composition. Preliminary results found the magnetic fraction in oligotrophic sediment (KNOX-022RR station SPG-5) from 1.2-2.6 mbsf showed a greater diversity of both bacteria and archaea. OTUs from Chloroflexi groups SO85 and SAR202 were dominant in the magnetic fraction. Firmicutes, Bacteroidetes, δ-Proteobacteria, Verrucomicrobia, Deferribacteres, WS3, OP10, and OP1 OTUs were found only in the magnetic fraction. Crenarchaeal OTUs from Marine Benthic Group B and Marine Group I

  6. Bioconservation of deteriorated monumental calcarenite stone and identification of bacteria with carbonatogenic activity.

    PubMed

    Jroundi, Fadwa; Fernández-Vivas, Antonia; Rodriguez-Navarro, Carlos; Bedmar, Eulogio J; González-Muñoz, María Teresa

    2010-07-01

    The deterioration of the stone built and sculptural heritage has prompted the search and development of novel consolidation/protection treatments that can overcome the limitations of traditional ones. Attention has been drawn to bioconservation, particularly bacterial carbonatogenesis (i.e. bacterially induced calcium carbonate precipitation), as a new environmentally friendly effective conservation strategy, especially suitable for carbonate stones. Here, we study the effects of an in situ bacterial bioconsolidation treatment applied on porous limestone (calcarenite) in the sixteenth century San Jeronimo Monastery in Granada, Spain. The treatment consisted in the application of a nutritional solution (with and without Myxococcus xanthus inoculation) on decayed calcarenite stone blocks. The treatment promoted the development of heterotrophic bacteria able to induce carbonatogenesis. Both the consolidation effect of the treatment and the response of the culturable bacterial community present in the decayed stone were evaluated. A significant surface strengthening (consolidation) of the stone, without altering its surface appearance or inducing any detrimental side effect, was achieved upon application of the nutritional solution. The treatment efficacy was independent of the presence of M. xanthus (which is known as an effective carbonatogenic bacterium). The genetic diversity of 116 bacterial strains isolated from the stone, of which 113 strains showed carbonatogenic activity, was analysed by repetitive extragenic palindromic-polymerase chain reaction (REP-PCR) and 16S rRNA gene sequencing. The strains were distributed into 31 groups on the basis of their REP-PCR patterns, and a representative strain of each group was subjected to 16S rRNA gene sequencing. Analysis of these sequences showed that isolates belong to a wide variety of phylogenetic groups being closely related to species of 15 genera within the Proteobacteria, Firmicutes and the Actinobacteria. This

  7. Applicability of tetrazolium salts for the measurement of respiratory activity and viability of groundwater bacteria

    USGS Publications Warehouse

    Hatzinger, P.B.; Palmer, P.; Smith, R.L.; Penarrieta, C.T.; Yoshinari, T.

    2003-01-01

    A study was undertaken to measure aerobic respiration by indigenous bacteria in a sand and gravel aquifer on western Cape Cod, MA using tetrazolium salts and by direct oxygen consumption using gas chromatography (GC). In groundwater and aquifer slurries, the rate of aerobic respiration calculated from the direct GC assay was more than 600 times greater than that using the tetrazolium salt 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride (INT). To explain this discrepancy, the toxicity of INT and two additional tetrazolium salts, sodium 3???-[1-(phenylamino)-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzenesulfonic acid hydrate (XTT) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), to bacterial isolates from the aquifer was investigated. Each of the three tetrazolium salts was observed to be toxic to some of the groundwater isolates at concentrations normally used in electron transport system (ETS) and viability assays. For example, incubation of cells with XTT (3 mM) caused the density of four of the five groundwater strains tested to decline by more than four orders of magnitude. A reasonable percentage (>57%) of cells killed by CTC and INT contained visible formazan crystals (the insoluble, reduced form of the salts) after 4 h of incubation. Thus, many of the cells reduced enough CTC or INT prior to dying to be considered viable by microscopic evaluation. However, one bacterium (Pseudomonas fluorescens) that remained viable and culturable in the presence of INT and CTC, did not incorporate formazan crystals into more than a few percent of cells, even after 24 h of incubation. This strain would be considered nonviable based on traditional tetrazolium salt reduction assays. The data show that tetrazolium salt assays are likely to dramatically underestimate total ETS activity in groundwater and, although they may provide a reasonable overall estimate of viable cell numbers in a community of groundwater bacteria, some specific strains may

  8. Activity of human beta-defensin 3 alone or combined with other antimicrobial agents against oral bacteria.

    PubMed

    Maisetta, Giuseppantonio; Batoni, Giovanna; Esin, Semih; Luperini, Filippo; Pardini, Manuela; Bottai, Daria; Florio, Walter; Giuca, Maria Rita; Gabriele, Mario; Campa, Mario

    2003-10-01

    The in vitro activities of human beta-defensin 3 (hBD-3) alone or combined with lysozyme, metronidazole, amoxicillin, and chlorhexidine were investigated with the oral bacteria Streptococcus mutans, Streptococcus sanguinis, Streptococcus sobrinus, Lactobacillus acidophilus, Actinobacillus actinomycetemcomitans, and Porphyromonas gingivalis. hBD-3 showed bactericidal activity against all of the bacterial species tested. The bactericidal effect was enhanced when the peptide was used in combination with the antimicrobial agents mentioned above.

  9. NETosing Neutrophils Activate Complement Both on Their Own NETs and Bacteria via Alternative and Non-alternative Pathways

    PubMed Central

    Yuen, Joshua; Pluthero, Fred G.; Douda, David N.; Riedl, Magdalena; Cherry, Ahmed; Ulanova, Marina; Kahr, Walter H. A.; Palaniyar, Nades; Licht, Christoph

    2016-01-01

    Neutrophils deposit antimicrobial proteins, such as myeloperoxidase and proteases on chromatin, which they release as neutrophil extracellular traps (NETs). Neutrophils also carry key components of the complement alternative pathway (AP) such as properdin or complement factor P (CFP), complement factor B (CFB), and C3. However, the contribution of these complement components and complement activation during NET formation in the presence and absence of bacteria is poorly understood. We studied complement activation on NETs and a Gram-negative opportunistic bacterial pathogen Pseudomonas aeruginosa (PA01, PAKwt, and PAKgfp). Here, we show that anaphylatoxin C5a, formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol myristate acetate (PMA), which activates NADPH oxidase, induce the release of CFP, CFB, and C3 from neutrophils. In response to PMA or P. aeruginosa, neutrophils secrete CFP, deposit it on NETs and bacteria, and induce the formation of terminal complement complexes (C5b–9). A blocking anti-CFP antibody inhibited AP-mediated but not non-AP-mediated complement activation on NETs and P. aeruginosa. Therefore, NET-mediated complement activation occurs via both AP- and non AP-based mechanisms, and AP-mediated complement activation during NETosis is dependent on CFP. These findings suggest that neutrophils could use their “AP tool kit” to readily activate complement on NETs and Gram-negative bacteria, such as P. aeruginosa, whereas additional components present in the serum help to fix non-AP-mediated complement both on NETs and bacteria. This unique mechanism may play important roles in host defense and help to explain specific roles of complement activation in NET-related diseases. PMID:27148258

  10. Antibacterial activity of plasma from crocodile (Crocodylus siamensis) against pathogenic bacteria

    PubMed Central

    2012-01-01

    membranes. The effect of the crude plasma was not toxic by the yellow tetrazolium bromide (MTT) assay using a macrophage-like cell, RAW 264.7. The pooled four fractions, designated as fractions D1-D4, were obtained by column chromatography, and only fraction D1 showed growth inhibition in the reference strains and the clinical, human pathogenic isolates. Conclusions The crude and purified plasma from the Siamese crocodile significantly showed antibacterial activity against pathogenic bacteria and reference strains by damage cell membrane of target bacterial cells. From the MTT assay, the Siamese crocodile plasma was not cytotoxic to the cells. PMID:22846342

  11. Grow Beasts: Growing Mathematical Understanding

    ERIC Educational Resources Information Center

    Roddy, Mark; Behrend, Kat

    2015-01-01

    What do you do when you want to get your Stage 3 students authentically and enthusiastically engaged in the active construction of their understanding and fluency with measurement, data collection, representation and interpretation? How do you enable them to make choices about their learning, to measure with purpose, to record and organise the…

  12. Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge.

    PubMed

    Zhang, Guo Xia; Ren, Sui Zhou; Xu, Mei Ying; Zeng, Guo Qu; Luo, Hui Dong; Chen, Jin Lin; Tan, Zhi Yuan; Sun, Guo Ping

    2011-04-01

    Three aniline-degrading bacteria, strains DN316(T), DN316-1 and DN365, were isolated from activated sludge. According to 16S rRNA gene sequence-based phylogenetic analysis, the isolates belonged to the genus Rhizobium, with Rhizobium ( = Agrobacterium) radiobacter LMG 140(T) as the closest relative, with 96.5 % sequence similarity. Phylogenetic analysis of the representative strain DN316(T) using sequences of the glnA, thrC and recA genes and the 16S-23S intergenic spacer region confirmed the phylogenetic arrangement obtained from analysis of the 16S rRNA gene. DNA-DNA relatedness between DN316(T) and R. radiobacter LMG 140(T) was 43.7 %, clearly indicating that the representative strain DN316(T) represents a novel species. Phenotypic and biochemical characterization of the isolates and insertion sequence-PCR fingerprinting patterns showed several distinctive features that differentiated them from closely related species. The major components of the cellular fatty acids were C(18 : 1)ω7c (57.10 %), C(16 : 0) (11.31 %) and C(19 : 0) cyclo ω8c (10.13 %). Based on our taxonomic analysis, the three isolates from activated sludge represent a novel species of the genus Rhizobium, for which the name Rhizobium borbori sp. nov. is proposed. The type strain is DN316(T) ( = CICC 10378(T)  = LMG 23925(T)).

  13. Blood group isoantibody stimulation in man by feeding blood group-active bacteria

    PubMed Central

    Springer, Georg F.; Horton, Richard E.

    1969-01-01

    It was investigated whether or not the human blood group isoantibodies A and B could be induced by immunogenic stimuli via natural routes with a kind of antigenic substance to which all humans are commonly exposed, or if the appearance of these antibodies is independent of antigenic stimuli as has long been believed. Escherichia coli O86, which possess high human blood group B and faint A activity in vitro, were fed to healthy humans and those with intestinal disorders. 80% of the sick individuals of blood group O and A responded with a significant rise of anti-B antibodies which was frequently de novo in infants; significant increase of anti-A isoantibodies among blood group O individuals was less frequent. Over one-third of the healthy individuals also had a significant isoantibody increase. Intestinal lesions favor isoantibody stimulation by intestinal bacteria; this view was supported by the study of control infants. Persons of blood group A responded more frequently with anti-B and anti-E. coli O86 antibody production than those of blood group O. Isoantibody increase was accompanied with antibody rise against E. coli O86. Inhalation of E. coli O86 or blood group AH(O)-specific hog mucin also evoked isoantibodies. The induced isoantibodies were specifically inhibited by small amounts of human blood group substances. E. coli O86-induced anti-blood group antibodies in germ-free chickens and preexisting blood group antibodies in ordinary chickens were neutralized by intravenous injection of E. coli O86 lipopolysaccharide. This study demonstrates that human isoantibodies A and B are readily elicited via physiological routes, by blood group-active E. coli, provided the genetically determined apparatus of the host is responsive. Antibodies against a person's own blood group were not formed. Interpretation of these results permits some careful generalizations as to the origin of so-called natural antibodies. PMID:4893685

  14. Impacts of Organic and Conventional Crop Management on Diversity and Activity of Free-Living Nitrogen Fixing Bacteria and Total Bacteria Are Subsidiary to Temporal Effects

    PubMed Central

    Orr, Caroline H.; Leifert, Carlo; Cummings, Stephen P.; Cooper, Julia M.

    2012-01-01

    A three year field study (2007–2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted using the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. Fertility management appeared to have little impact on both diazotrophic and total bacterial communities. However, copy numbers of the nifH gene did appear to be negatively impacted by conventional crop protection measures across all years suggesting diazotrophs may be particularly sensitive to pesticides. Impacts of crop management were greatly overshadowed by the influence of temporal effects with diazotrophic communities changing on a year by year basis and from season to season. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions. PMID:23285218

  15. Evaluation of antimicrobial activity of extracts of Tibouchina candolleana (melastomataceae), isolated compounds and semi-synthetic derivatives against endodontic bacteria

    PubMed Central

    dos Santos, Fernanda M.; de Souza, Maria Gorete; Crotti, Antônio E. Miller; Martins, Carlos H. G.; Ambrósio, Sérgio R.; Veneziani, Rodrigo C. S.; e Silva, Márcio L. Andrade; Cunha, Wilson R.

    2012-01-01

    This work describes the phytochemical study of the extracts from aerial parts of Tibouchina candolleana as well as the evaluation of the antimicrobial activity of extracts, isolated compounds, and semi-synthetic derivatives of ursolic acid against endodontic bacteria. HRGC analysis of the n-hexane extract of T. candolleana allowed identification of β-amyrin, α-amyrin, and β-sitosterol as major constituents. The triterpenes ursolic acid and oleanolic acid were isolated from the methylene chloride extract and identified. In addition, the flavonoids luteolin and genistein were isolated from the ethanol extract and identified. The antimicrobial activity was investigated via determination of the minimum inhibitory concentration (MIC) using the broth microdilution method. Amongst the isolated compounds, ursolic acid was the most effective against the selected endodontic bacteria. As for the semi-synthetic ursolic acid derivatives, only the methyl ester derivative potentiated the activity against Bacteroides fragilis. PMID:24031892

  16. GROWING SEEDS, TEACHER'S GUIDE.

    ERIC Educational Resources Information Center

    Elementary Science Study, Newton, MA.

    THIS TEACHER'S GUIDE IS DESIGNED FOR USE WITH AN ELEMENTARY SCIENCE STUDY UNIT, "GROWING SEEDS," IN WHICH SUCH BASIC SCIENCE SKILLS AND PROCESSES AS MEASUREMENT, OBSERVATION, AND HYPOTHESIS FORMATION ARE INTRODUCED THROUGH STUDENT ACTIVITIES INVOLVING SEEDS, GERMINATION, AND SEEDLING GROWTH. THE MATERIALS WERE DEVELOPED FOR USE IN…

  17. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  18. Cathelicidin Antimicrobial Peptides with Reduced Activation of Toll-Like Receptor Signaling Have Potent Bactericidal Activity against Colistin-Resistant Bacteria

    PubMed Central

    Lin, Xiaoyan; Yi, Guanghui; Zhang, Yunliang; Rowe-Magnus, Dean A.; Bush, Karen

    2016-01-01

    ABSTRACT The world is at the precipice of a postantibiotic era in which medical procedures and minor injuries can result in bacterial infections that are no longer effectively treated by antibiotics. Cathelicidins are peptides produced by animals to combat bacterial infections and to regulate innate immune responses. However, cathelicidins are potent activators of the inflammatory response. Cathelicidins with reduced proinflammatory activity and potent bactericidal activity in the low micromolar range against Gram-negative bacteria have been identified. Motifs in cathelicidins that impact bactericidal activity and cytotoxicity to human cells have been elucidated and used to generate peptides that have reduced activation of proinflammatory cytokine production and reduced cytotoxicity to human cells. The resultant peptides have bactericidal activities comparable to that of colistin and can kill colistin-resistant bacteria. PMID:27651360

  19. Climate change in winter versus the growing-season leads to different effects on soil microbial activity in northern hardwood forests

    NASA Astrophysics Data System (ADS)

    Sorensen, P. O.; Templer, P. H.; Finzi, A.

    2014-12-01

    Mean winter air temperatures have risen by approximately 2.5˚ C per decade over the last fifty years in the northeastern U.S., reducing the maximum depth of winter snowpack by approximately 26 cm over this period and the duration of winter snow cover by 3.6 to 4.2 days per decade. Forest soils in this region are projected to experience a greater number of freeze-thaw cycles and lower minimum winter soil temperatures as the depth and duration of winter snow cover declines in the next century. Climate change is likely to result not only in lower soil temperatures during winter, but also higher soil temperatures during the growing-season. We conducted two complementary experiments to determine how colder soils in winter and warmer soils in the growing-season affect microbial activity in hardwood forests at Harvard Forest, MA and Hubbard Brook Experimental Forest, NH. A combination of removing snow via shoveling and buried heating cables were used to induce freeze-thaw events during winter and to warm soils 5˚C above ambient temperatures during the growing-season. Increasing the depth and duration of soil frost via snow-removal resulted in short-term reductions in soil nitrogen (N) production via microbial proteolytic enzyme activity and net N mineralization following snowmelt, prior to tree leaf-out. Declining mass specific rates of carbon (C) and N mineralization associated with five years of snow removal at Hubbard Brook Experimental Forest may be an indication of microbial physiological adaptation to winter climate change. Freeze-thaw cycles during winter reduced microbial extracellular enzyme activity and the temperature sensitivity of microbial C and N mineralization during the growing-season, potentially offsetting nutrient and soil C losses due to soil warming in the growing-season. Our multiple experimental approaches show that winter climate change is likely to contribute to reduced microbial activity in northern hardwood forests.

  20. Chemical Composition and Biological Activity of Essential Oils from Wild Growing Aromatic Plant Species of Skimmia laureola and Juniperus macropoda from Western Himalaya.

    PubMed

    Stappen, Iris; Tabanca, Nurhayat; Ali, Abbas; Wedge, David E; Wanner, Jürgen; Kaul, Vijay K; Lal, Brij; Jaitak, Vikas; Gochev, Velizar K; Schmidt, Erich; Jirovetz, Leopold

    2015-06-01

    The Himalayan region is very rich in a great variety of medicinal plants. In this investigation the essential oils of two selected species are described for their antimicrobial and larvicidal as well as biting deterrent activities. Additionally, the odors are characterized. Analyzed by simultaneous GC-MS and GC-FID, the essential oils' chemical compositions are given. The main components of Skimmia laureola oil were linalool and linalyl acetate whereas sabinene was found as the main compound for Juniperus macropoda essential oil. Antibacterial testing by agar dilution assay revealed highest activity of S. laureola oil against all tested bacteria, followed by J. macropoda oil. Antifungal activity was evaluated against the strawberry anthracnose causing plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Juniperus macropoda essential oil indicated higher antifungal activity against all three pathogens than S. laureola oil. Both essential oils showed biting deterrent activity above solvent control but low larvicidal activity.

  1. Community structure and in situ activity of nitrifying bacteria in Phragmites root-associated biofilms.

    PubMed

    Okabe, Satoshi; Nakamura, Yoshiyuki; Satoh, Hisashi

    2012-01-01

    The amount of oxygen released by Phragmites roots and the community structure and in situ activity of nitrifying bacteria in the root biofilms were analyzed by the combined use of 16S rRNA gene-cloning analysis, quantitative PCR (qPCR) assay and microelectrodes. Axial and radial O₂ microprofiles were obtained for individual roots of Phragmites in a horizontal flow reactor fed with artificial medium continuously. Axial O₂ profiles revealed that O₂ was released at a rate of 0.21 μmol O₂ cm⁻² (root surface area) h⁻¹ only in the apical region (up to ca. 40 mm from the root apex), where there was a high abundance (10⁷ to 10⁸ copies g⁻¹ biomass) of Nitrosomonas-like AOB and Nitrospira-like NOB. This abundance, however, sharply declined to the detection limit at positions more basal than 80 mm. Phylogenetic analysis based on 16S rRNA gene identified strains related to Nitrosomonas oligotropha and Nitrosomonas cryotolerans as the predominant AOB and strains related to Nitrospira marina and Nitrospira moscoviensis as the predominant NOB in the root biofilms. Based on radial O₂ microprofiles, the oxic region only extended about 0.5 mm into the surrounding sediment due to a high rate of O₂ consumption in the rhizosphere. The net NH₄⁺ and O₂ consumption rates in the apical region were higher than those determined at the oxic sediment surface in which the abundance of AOB and NOB was one order of magnitude lower than in the rhizosphere. These results clearly indicated that Phragmites root biofilms played an important role in nitrification in the waterlogged anoxic sediment.

  2. Anaerobic activities of bacteria and fungi in moderately acidic conifer and deciduous leaf litter.

    PubMed

    Reith, Frank; Drake, Harold L; Küsel, Kirsten

    2002-07-01

    Abstract The litter layer of forest soils harbors high amounts of labile organic matter, and anaerobic decomposition processes can be initiated when oxygen is consumed more rapidly than it is supplied by diffusion. In this study, two adjacent moderately acidic forest sites, a spruce and a beech-oak forest, were selected to compare the anaerobic bacterial and fungal activities and populations of conifer and deciduous leaf litter. Most probable number (MPN) estimates of general heterotrophic aerobes and anaerobes from conifer litter equaled those from deciduous leaf litter. H(2), ethanol, formate, and lactate were initially produced with similar rates in both anoxic conifer and deciduous leaf litter microcosms. These products were rapidly consumed in deciduous leaf but not in conifer litter microcosms. Supplemental ethanol and H(2) were consumed only by deciduous leaf litter and yielded additional amounts of acetate in stoichiometries indicative of ethanol- or H(2)-dependent acetogenesis. The negligible turnover of primary fermentation products in conifer litter might be due to the low numbers of acetogens and secondary fermenters present in conifer litter compared to deciduous leaf litter. Fungi capable of anaerobic growth made up only 0.01-0.1% of the total anaerobic microorganisms cultured from conifer and deciduous leaf litter, respectively. Metabolic product profiles obtained from the highest anoxic, growth-positive MPN dilutions supplemented with antibacterial agents indicated that the dominant population of fungi, apparently mainly yeast-like cells, produced H(2), ethanol, acetate, and lactate both in conifer and deciduous leaf litter. Thus, despite acidic conditions, bacteria appear to dominate in the decomposition of carbon in anoxic microsites of both conifer and deciduous leaf litter.

  3. Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees.

    PubMed

    Yang, Jiang-Ke; Zhang, Jing-Jing; Yu, Heng-Yu; Cheng, Jian-Wen; Miao, Li-Hong

    2014-02-01

    Cellulolytic bacteria in forest soil provide carbon sources to improve the soil fertility and sustain the nutrient balance of the forest ecological system through the decomposition of cellulosic remains. These bacteria can also be utilized for the biological conversion of biomass into renewable biofuels. In this study, the community compositions and activities of cellulolytic bacteria in the soils of forests planted with broad-leaved deciduous (Chang Qing Garden, CQG) and broad-leaved evergreen (Forest Park, FP) trees in Wuhan, China were resolved through restriction fragment length polymorphism (RFLP) and sequencing analysis of the 16S rRNA gene. All of the isolates exhibited 35 RFLP fingerprint patterns and were clustered into six groups at a similarity level of 50 %. The phylogeny analysis based on the 16S rRNA gene sequence revealed that these RFLP groups could be clustered into three phylogenetic groups and further divided into six subgroups at a higher resolution. Group I consists of isolates from Bacillus cereus, Bacillus subtilis complex (I-A) and from Paenibacillus amylolyticus-related complex (I-B) and exhibited the highest cellulase activity among all of the cellulolytic bacteria isolates. Cluster II consists of isolates belonging to Microbacterium testaceum (II-A), Chryseobacterium indoltheticum (II-B), and Flavobacterium pectinovorum and the related complex (II-C). Cluster III consists of isolates belonging to Pseudomonas putida-related species. The community shift with respect to the plant species and the soil properties was evidenced by the phylogenetic composition of the communities. Groups I-A and I-B, which account for 36.0 % of the cellulolytic communities in the CQG site, are the dominant groups (88.4 %) in the FP site. Alternatively, the ratio of the bacteria belonging to group III (P. putida-related isolates) shifted from 28.0 % in CQG to 4.0 % in FP. The soil nutrient analysis revealed that the CQG site planted with deciduous broad

  4. Direct Quantification of Ice Nucleation Active Bacteria in Aerosols and Precipitation: Their Potential Contribution as Ice Nuclei

    NASA Astrophysics Data System (ADS)

    Hill, T. C.; DeMott, P. J.; Garcia, E.; Moffett, B. F.; Prenni, A. J.; Kreidenweis, S. M.; Franc, G. D.

    2013-12-01

    Ice nucleation active (INA) bacteria are a potentially prodigious source of highly active (≥-12°C) atmospheric ice nuclei, especially from agricultural land. However, we know little about the conditions that promote their release (eg, daily or seasonal cycles, precipitation, harvesting or post-harvest decay of litter) or their typical contribution to the pool of boundary layer ice nucleating particles (INP). To initiate these investigations we developed a quantitative Polymerase Chain Reaction (qPCR) test of the ina gene, the gene that codes for the ice nucleating protein, to directly count INA bacteria in environmental samples. The qPCR test amplifies most forms of the gene and is highly sensitive, able to detect perhaps a single gene copy (ie, a single bacterium) in DNA extracted from precipitation. Direct measurement of the INA bacteria is essential because environmental populations will be a mixture of living, viable-but-not culturable, moribund and dead cells, all of which may retain ice nucleating proteins. Using the qPCR test on leaf washings of plants from three farms in Wyoming, Colorado and Nebraska we found INA bacteria to be abundant on crops, especially on cereals. Mid-summer populations on wheat and barley were ~108/g fresh weigh of foliage. Broadleaf crops, such as corn, alfalfa, sugar beet and potato supported 105-107/g. Unexpectedly, however, in the absence of a significant physical disturbance, such as harvesting, we were unable to detect the ina gene in aerosols sampled above the crops. Likewise, in fresh snow samples taken over two winters, ina genes from a range of INA bacteria were detected in about half the samples but at abundances that equated to INA bacterial numbers that accounted for only a minor proportion of INP active at -10°C. By contrast, in a hail sample from a summer thunderstorm we found 0.3 INA bacteria per INP at -10°C and ~0.5 per hail stone. Although the role of the INA bacteria as warm-temperature INP in these samples

  5. Stable Isotope Probing Analysis of the Diversity and Activity of Methanotrophic Bacteria in Soils from the Canadian High Arctic ▿

    PubMed Central

    Martineau, Christine; Whyte, Lyle G.; Greer, Charles W.

    2010-01-01

    The melting of permafrost and its potential impact on CH4 emissions are major concerns in the context of global warming. Methanotrophic bacteria have the capacity to mitigate CH4 emissions from melting permafrost. Here, we used quantitative PCR (qPCR), stable isotope probing (SIP) of DNA, denaturing gradient gel electrophoresis (DGGE) fingerprinting, and sequencing of the 16S rRNA and pmoA genes to study the activity and diversity of methanotrophic bacteria in active-layer soils from Ellesmere Island in the Canadian high Arctic. Results showed that most of the soils had the capacity to oxidize CH4 at 4°C and at room temperature (RT), but the oxidation rates were greater at RT than at 4°C and were significantly enhanced by nutrient amendment. The DGGE banding patterns associated with active methanotrophic bacterial populations were also different depending on the temperature of incubation and the addition of nutrients. Sequencing of the 16S rRNA and pmoA genes indicated a low diversity of the active methanotrophic bacteria, with all methanotroph 16S rRNA and pmoA gene sequences being related to type I methanotrophs from Methylobacter and Methylosarcina. The dominance of type I methanotrophs over type II methanotrophs in the native soil samples was confirmed by qPCR of the 16S rRNA gene with primers specific for these two groups of bacteria. The 16S rRNA and pmoA gene sequences related to those of Methylobacter tundripaludum were found in all soils, regardless of the incubation conditions, and they might therefore play a role in CH4 degradation in situ. This work is providing new information supporting the potential importance of Methylobacter spp. in Arctic soils found in previous studies and contributes to the limited body of knowledge on methanotrophic activity and diversity in this extreme environment. PMID:20622133

  6. In vitro sensitivity of oral, gram-negative, facultative bacteria to the bactericidal activity of human neutrophil defensins.

    PubMed Central

    Miyasaki, K T; Bodeau, A L; Ganz, T; Selsted, M E; Lehrer, R I

    1990-01-01

    Neutrophils play a major role in defending the periodontium against infection by oral, gram-negative, facultative bacteria, such as Actinobacillus actinomycetemcomitans, Eikenella corrodens, and Capnocytophaga spp. We examined the sensitivity of these bacteria to a mixture of low-molecular-weight peptides and highly purified individual defensin peptides (HNP-1, HNP-2, and HNP-3) isolated from human neutrophils. Whereas the Capnocytophaga spp. strains were killed significantly by the mixed human neutrophil peptides, the A. actinomycetemcomitans and E. corrodens strains were resistant. Killing was attributable to the defensins. The bactericidal activities of purified defensins HNP-1 and HNP-2 were equal, and both of these activities were greater than HNP-3 activity against strains of Capnocytophaga sputigena and Capnocytophaga gingivalis. The strain of Capnocytophaga ochracea was more sensitive to defensin-mediated bactericidal activity than either C. sputigena or C. gingivalis was. The three human defensins were equipotent in killing C. ochracea. C. ochracea was killed under aerobic and anaerobic conditions and over a broad pH range. Killing was most effective under hypotonic conditions but also occurred at physiologic salt concentrations. We concluded that Capnocytophaga spp. are sensitive to oxygen-independent killing by human defensins. Additional studies will be required to identify other components that may equip human neutrophils to kill A. actinomycetemcomitans, E. corrodens, and other oral gram-negative bacteria. Images PMID:2254020

  7. Chemical Composition and In Vitro Antibacterial Activity of Mentha spicata Essential Oil against Common Food-Borne Pathogenic Bacteria.

    PubMed

    Shahbazi, Yasser

    2015-01-01

    The aim of the present study was to investigate chemical composition and antibacterial activity of essential oil from the leaf of Mentha spicata plant against common food-borne pathogenic bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli O157:H7). Chemical composition of the essential oil was identified by gas chromatography coupled with mass spectrometer detector (GC-MS). The antibacterial activity of the essential oil was evaluated by broth microdilution method and agar disk diffusion assay. According to the result of GC-MS analysis, 18 components were identified, accounting for 99.89% of the whole essential oil. The main components were carvone (78.76%), limonene (11.50%), β-bourbonene (11.23%), cis-dihydrocarveol (1.43%), trans-caryophyllene (1.04%), menthone (1.01%), menthol (1%), and terpinen-4-ol (0.99). The essential oil exhibited moderate level of antibacterial activity against all test microorganisms. In general, Gram-positive bacteria were more susceptible to M. spicata essential oil than Gram-negative bacteria. L. monocytogenes was the most sensitive of the microorganisms to the antibacterial activity of M. spicata essential oil (inhibition zone = 22 mm and MIC and MBC = 2.5 µL/mL). Based on our results, the essential oil of M. spicata plant collected from Kermanshah province, west of Iran, has a potential to be applied as antibacterial agent.

  8. Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida

    PubMed Central

    Lyu, Yinfeng; Yang, Yang; Lyu, Xiting; Dong, Na; Shan, Anshan

    2016-01-01

    Antimicrobial peptides (AMPs) have recently attracted a great deal of attention as promising antibiotic candidates, but some obstacles such as toxicity and high synthesis cost must be addressed before developing them further. For developing short peptides with improved cell selectivity, we designed a series of modified PMAP-36 analogues. Antimicrobial assays showed that decreasing chain length in a certain range retained the high antimicrobial activity of the parental peptide and reduced hemolysis. The 18-mer peptide RI18 exhibited excellent antimicrobial activity against both bacteria and fungi, and its hemolytic activity was observably lower than PMAP-36 and melittin. The selectivity indexes of RI18 against bacteria and fungi were improved approximately 19-fold and 108-fold, respectively, compared to PMAP-36. In addition, serum did not affect the antibacterial activity of RI18 against E. coli but inhibited the antifungal efficiency against C. albicans. Flow cytometry and electron microscopy observation revealed that RI18 killed microbial cells primarily by damaging membrane integrity, leading to whole cell lysis. Taken together, these results suggest that RI18 has potential for further therapeutic research against frequently-encountered bacteria and fungi. Meanwhile, modification of AMPs is a promising strategy for developing novel antimicrobials to overcome drug-resistance. PMID:27251456

  9. Chemical Composition and In Vitro Antibacterial Activity of Mentha spicata Essential Oil against Common Food-Borne Pathogenic Bacteria

    PubMed Central

    Shahbazi, Yasser

    2015-01-01

    The aim of the present study was to investigate chemical composition and antibacterial activity of essential oil from the leaf of Mentha spicata plant against common food-borne pathogenic bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli O157:H7). Chemical composition of the essential oil was identified by gas chromatography coupled with mass spectrometer detector (GC-MS). The antibacterial activity of the essential oil was evaluated by broth microdilution method and agar disk diffusion assay. According to the result of GC-MS analysis, 18 components were identified, accounting for 99.89% of the whole essential oil. The main components were carvone (78.76%), limonene (11.50%), β-bourbonene (11.23%), cis-dihydrocarveol (1.43%), trans-caryophyllene (1.04%), menthone (1.01%), menthol (1%), and terpinen-4-ol (0.99). The essential oil exhibited moderate level of antibacterial activity against all test microorganisms. In general, Gram-positive bacteria were more susceptible to M. spicata essential oil than Gram-negative bacteria. L. monocytogenes was the most sensitive of the microorganisms to the antibacterial activity of M. spicata essential oil (inhibition zone = 22 mm and MIC and MBC = 2.5 µL/mL). Based on our results, the essential oil of M. spicata plant collected from Kermanshah province, west of Iran, has a potential to be applied as antibacterial agent. PMID:26351584

  10. Acid base activity of live bacteria: Implications for quantifying cell wall charge

    NASA Astrophysics Data System (ADS)

    Claessens, Jacqueline; van Lith, Yvonne; Laverman, Anniet M.; Van Cappellen, Philippe

    2006-01-01

    To distinguish the buffering capacity associated with functional groups in the cell wall from that resulting from metabolic processes, base or acid consumption by live and dead cells of the Gram-negative bacterium Shewanella putrefaciens was measured in a pH stat system. Live cells exhibited fast consumption of acid (pH 4) or base (pH 7, 8, 9, and 10) during the first few minutes of the experiments. At pH 5.5, no acid or base was required to maintain the initial pH constant. The initial amounts of acid or base consumed by the live cells at pH 4, 8, and 10 were of comparable magnitudes as those neutralized at the same pHs by intact cells killed by exposure to gamma radiation or ethanol. Cells disrupted in a French press required higher amounts of acid or base, due to additional buffering by intracellular constituents. At pH 4, acid neutralization by suspensions of live cells stopped after 50 min, because of loss of viability. In contrast, under neutral and alkaline conditions, base consumption continued for the entire duration of the experiments (5 h). This long-term base neutralization was, at least partly, due to active respiration by the cells, as indicated by the build-up of succinate in solution. Qualitatively, the acid-base activity of live cells of the Gram-positive bacterium Bacillus subtilis resembled that of S. putrefaciens. The pH-dependent charging of ionizable functional groups in the cell walls of the live bacteria was estimated from the initial amounts of acid or base consumed in the pH stat experiments. From pH 4 to 10, the cell wall charge increased from near-zero values to about -4 × 10 -16 mol cell -1 and -6.5 × 10 -16 mol cell -1 for S. putrefaciens and B. subtilis, respectively. The similar cell wall charging of the two bacterial strains is consistent with the inferred low contribution of lipopolysaccharides to the buffering capacity of the Gram-negative cell wall (of the order of 10%).

  11. The sludge loading rate regulates the growth and release of heterotrophic bacteria resistant to six types of antibiotics in wastewater activated sludge.

    PubMed

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    Wastewater treatment plants are considered as hot reservoirs of antimicrobial resistance. However, the fates of antibiotic-resistant bacteria during biological treatment processes and relevant influencing factors have not been fully understood. This study evaluated the effects of the sludge loading rate on the growth and release of six kinds of antibiotic-resistant bacteria in an activated sludge system. The results indicated that higher sludge loading rates amplified the growth of all six types of antibiotic resistant bacteria. The release of most antibiotic-resistant bacteria through both the effluent and biosolids was amplified with increased sludge loading rate. Biosolids were the main pattern for all antibiotic-resistant bacteria release in an activated sludge system, which was determined primarily by their growth in the activated sludge. A higher sludge loading rate reactor tended to retain more antibiotic resistance. An activated sludge system with lower sludge loading rates was considered more conducive to the control of antibiotic resistance.

  12. β-Cyanoalanine Production by Marine Bacteria on Cyanide-Free Medium and Its Specific Inhibitory Activity toward Cyanobacteria

    PubMed Central

    Yoshikawa, Kazuhiro; Adachi, Kyoko; Nishijima, Miyuki; Takadera, Takahide; Tamaki, Seiji; Harada, Ken-ichi; Mochida, Kenichi; Sano, Hiroshi

    2000-01-01

    In screening the culture broth of marine bacteria collected at Yap (Micronesia), Palau (Belau), and Okinawa (the southwest islands of Japan) for antimicroalgal activity, 37 out of 2,594 bacterial isolates tested were found to produce anticyanobacterial substances against Oscillatoria amphibia NIES-361. One strain, C-979, identified as a Vibrio sp., was selected and cultured in 2.4 liters of marine broth 2216 to identify the bioactive compound produced by the strain. The purified very hydrophilic compound (16.4 mg) was determined to be β-cyano-l-alanine (l-CNAla) by instrumental analyses and the application of the advanced Marfey method. l-CNAla did not inhibit the growth of bacteria, yeast, or eukaryotic microalgae, but some cyanobacteria were found to be sensitive to l-CNAla at a concentration of 0.4 to 25 μg/ml. The effect of l-CNAla on some other environmental organisms, including invertebrates and a macroalgae, is discussed. CNAla production in marine broth was examined by thin-layer chromatography for the 37 bacterial isolates which produced an anticyanobacterial substance. The broth of 36 of these strains contained CNAla, suggesting the wide distribution of CNAla production by marine bacteria. This is the first report on bacteria that produce CNAla without a supply of the cyanide ion in the medium. PMID:10653741

  13. Antimicrobial activity against bacteria with dermatological relevance and skin tolerance of the essential oil from Coriandrum sativum L. fruits.

    PubMed

    Casetti, F; Bartelke, S; Biehler, K; Augustin, M; Schempp, C M; Frank, U

    2012-03-01

    The aim of this work was to determine the antibacterial activity of essential coriander oil (ECO) on bacteria with dermatological relevance and to assess the skin tolerance of antimicrobial effective ECO concentrations. Essential coriander oil was tested on clinical isolates of different bacteria species, all of which may cause superficial skin infections. Antimicrobial susceptibility testing was performed using a standardized macrodilution test. Essential coriander oil showed good antibacterial activity towards the majority of the bacterial strains tested, including Streptococcus pyogenes (Lancefield group A) and methicillin resistant Staphylococcus aureus (MRSA), with mean minimal inhibitory concentrations of 0.04% v/v and 0.25% v/v, respectively. The skin tolerance of a cream and a lotion containing 0.5% and 1.0% ECO was assessed in 40 healthy volunteers using the occlusive patch test. No skin irritation could be observed by sensitive photometric assessment in any of the volunteers. Because of its activity against Streptococcus pyogenes, Staphylococcus aureus and MRSA combined with excellent skin tolerance, ECO might be useful as an antiseptic for the prevention and treatment of skin infections with Gram-positive bacteria.

  14. Chemical Composition and Antibacterial Activity of Essential Oils of Tagetes minuta (Asteraceae) against Selected Plant Pathogenic Bacteria

    PubMed Central

    Wagacha, John M.; Dossaji, Saifuddin F.

    2016-01-01

    The objective of this study was to determine the chemical composition and antibacterial activity of essential oils (EOs) of Tagetes minuta against three phytopathogenic bacteria Pseudomonas savastanoi pv. phaseolicola, Xanthomonas axonopodis pv. phaseoli, and Xanthomonas axonopodis pv. manihotis. The essential oils were extracted using steam distillation method in a modified Clevenger-type apparatus while antibacterial activity of the EOs was evaluated by disc diffusion method. Gas chromatography coupled to mass spectrometry (GC/MS) was used for analysis of the chemical profile of the EOs. Twenty compounds corresponding to 96% of the total essential oils were identified with 70% and 30% of the identified components being monoterpenes and sesquiterpenes, respectively. The essential oils of T. minuta revealed promising antibacterial activities against the test pathogens with Pseudomonas savastanoi pv. phaseolicola being the most susceptible with mean inhibition zone diameters of 41.83 and 44.83 mm after 24 and 48 hours, respectively. The minimum inhibitory concentrations and minimum bactericidal concentrations of the EOs on the test bacteria were in the ranges of 24–48 mg/mL and 95–190 mg/mL, respectively. These findings provide a scientific basis for the use of T. minuta essential oils as a botanical pesticide for management of phytopathogenic bacteria. PMID:27721831

  15. Chemical Composition and Antibacterial Activity of Essential Oils of Tagetes minuta (Asteraceae) against Selected Plant Pathogenic Bacteria.

    PubMed

    Gakuubi, Martin Muthee; Wagacha, John M; Dossaji, Saifuddin F; Wanzala, Wycliffe

    2016-01-01

    The objective of this study was to determine the chemical composition and antibacte