Science.gov

Sample records for actively growing plants

  1. Antileishmanial activity of some plants growing in Algeria: Juglans regia, Lawsonia inermis and Salvia officinalis.

    PubMed

    Serakta, M; Djerrou, Z; Mansour-Djaalab, H; Kahlouche-Riachi, F; Hamimed, S; Trifa, W; Belkhiri, A; Edikra, N; Hamdi Pacha, Y

    2013-01-01

    The current study was undertaken to evaluate in vitro the antileishmanial activity of three plants growing wild in Algeria : Juglans regia, Lawsonia inermis and Salvia officinalis. The hydroalcoholic extracts of these plants were tested on the growth of the promastigotes of Leishmania major. The plant extract effects were compared with three controls : CRL1 composed of 1 ml RPMI inoculated with 10(6) of promastigotes, CRL2 composed of 1 ml RPMI inoculated with 10(6) of promastigotes and 100 µl of hydroalcoholic solvent, CRL3 composed of 1 ml RPMI inoculated with 10(6) of promastigotes and 100 µl of Glucantim as a reference drug in the management of leishmaniasis. The results showed that both J. regia and L. inermis extracts reduced the promastigotes number significantly (P<0.01). however, S. officinalis showed a total inhibition of the Leishmania major growth.

  2. Birth of space plant growing

    NASA Technical Reports Server (NTRS)

    Mashinskiy, A.; Nechitaylo, G.

    1983-01-01

    The attempts, and successes, to grow plants in space, and get them to fully develop, bloom and produce seeds using orchids are presented. The psychological advantages of the presence of plants onboard space vehicles and space stations is indicated.

  3. Growing plant in space

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Bula, R. J.; Tibbits, T. W.

    1989-01-01

    Space agencies in several countries are planning for the culture of plants in long duration space bases. The challenge of developing crop production procedures suitable for space projects will result in a new approach of problems we may meet today or in the near future in our common production systems. You may keep in mind subjects as: minimizing wastes or pollution problems, saving materials, introductions robotic helps. Discussion between scientists involved with food production for space programmes and protected horticultural cultivation may open new perspectives.

  4. Garbage Grows Great Plants.

    ERIC Educational Resources Information Center

    Brittain, Alexander N.

    1996-01-01

    Describes activities in which students explore composting. Enables students to learn that all organic material returns naturally to the earth through a process of decomposition that involves many living organisms. (JRH)

  5. Method for growing plants aeroponically.

    PubMed

    Zobel, R W; Del Tredici, P; Torrey, J G

    1976-03-01

    A simple, inexpensive system for growing plants with their roots bathed in nutrient mist is described. The aeroponics system uses a spinner from a home humidifier to propel nutrient solution into a polyethylene-lined plywood box atop which plants are supported on plastic light-fixture "egg crating." Success in growing a number of herbaceous and woody species, including nodulated legumes and nonlegumes, is reported.

  6. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina.

    PubMed

    Gillij, Y G; Gleiser, R M; Zygadlo, J A

    2008-05-01

    Mosquitoes are important vectors of diseases and nuisance pests. Repellents minimize contact with mosquitoes. Repellents based on essential oils (EO) are being developed as an alternative to DEET (N,N-diethyl-m-methylbenzamide), an effective compound that has disadvantages including toxic reactions, and damage to plastic and synthetic fabric. This work evaluated the repellency against Aedes aegypti of EO from aromatic plants that grow in Argentina: Acantholippia seriphioides, Achyrocline satureioides, Aloysia citriodora, Anemia tomentosa, Baccharis spartioides, Chenopodium ambrosioides, Eucalyptus saligna, Hyptis mutabilis, Minthostachys mollis, Rosmarinus officinalis, Tagetes minuta and Tagetes pusilla. Most EO were effective. Variations depending on geographic origin of the plant were detected. At a 90% EO concentration, A. satureoides and T. pusilla were the least repellent. At concentrations of 12.5% B. spartioides, R. officinalis and A. citriodora showed the longest repellency times. Comparisons of the principal components of each EO suggest that limonene and camphor were the main components responsible for the repellent effects.

  7. Antinociceptive activity of extracts and secondary metabolites from wild growing and micropropagated plants of Renealmia alpinia

    PubMed Central

    Gómez-Betancur, Isabel; Cortés, Natalie; Benjumea, Dora; Osorio, Edison; León, Francisco; Cutler, Stephen J.

    2015-01-01

    Ethnopharmacological relevance Renealmia alpinia is native to the American continent and can be found from Mexico to Brazil, and in the Caribbean islands. It is known as “matandrea” in Colombia, and it has been commonly used in traditional medicine to treat painful diseases and ailments. Based on its traditional uses, it is of interest to evaluate the pharmacologic effects of this plant and its secondary metabolites. Materials and methods Methanol and aqueous extracts of wild and micropropagated R. alpinia (leaves) were obtained and chemically compared by High Performance Thin Layer Chromatography (HPTLC). The antinociceptive activity of these extracts was examined using an in vivo assay (Siegmund test). Additionally, the dichloromethane extract of R. alpinia was fractionated and pure compounds were isolated by chromatographic methods. The structure elucidation of isolated compounds was performed by NMR experiments and spectroscopic techniques and comparison with the literature data. Purified compounds were evaluated for their in vitro binding affinity for opioids and cannabinoids receptors. Results The dichloromethane extract of the plant’s aerial part afforded sinostrobin (1), naringenin 7,4′-dimethyl ether (2), 2′,6′-dihydroxy-4′-methoxychalcone (3), 4-methoxy-6-(2-phenylethenyl)-2H-pyran-2-one (4), naringenin 7-methyl ether (5) and 3,5-heptanediol, 1,7-diphenyl (6), which were isolated using chromatographic methods. Their chemical structures were established by physical and spectroscopic techniques. The antinociceptive effects observed in mice by extracts of wild and micropropagated plants were similar. The compounds isolated from R. alpinia do not show affinity to opioid or cannabinoid receptors. Conclusion Aqueous and methanol extracts of R. alpinia provide antinociceptive and analgesic effects in an in vivo model. These results contribute additional insight as to why this plant is traditionally used for pain management. Also, this is the first

  8. Growing plants on atoll soils

    SciTech Connect

    Stone, E L; Migvar, L; Robison, W L

    2000-02-16

    Many years ago people living on atolls depended entirely on foods gathered from the sea and reefs and grown on land. Only a few plants, such as coconut (ni), Pandanus (bob), and arrowroot (mok-mok), could be grown on the lower rainfall atolls, although adequate groundwater conditions also allowed taro (iaraj, kotak, wot) to be cultivated. On higher rainfall atolls, breadfruit (ma) was a major food source, and banana (binana, kepran), lime (laim), and taros (iaraj, kotak, wot) could be grown. The early atoll populations were experts in growing plants that were vital to sustaining their nutrition requirements and to providing materials for thatch, basketry, cordage, canoe construction, flowers, and medicine. They knew which varieties of food plants grew well or poorly on their atolls, how to propagate them, and where on their atoll they grew best. They knew the uses of most native plants and what the various woods were well suited for. Many varieties of Pandanus (bob) and breadfruit (ma) grew well with high rainfall, but only a few produced well on drier atolls. Such information had been passed down through the generations although some of it has been lost in the last century. Today there are new plants and new varieties of existing plants that can be grown on atolls. There are also new materials and information on how to grow both the old and new plants more effectively. However, there are also introduced weeds and pests to control. Today, there is also an acute need to grow more of the useful plants adapted to atolls. Increasing numbers of people living on an atoll without an equal increase in income or food production stretches the available food supplies. Much has been written about the poor conditions for plant growth on atolls. As compared with many places in the world where crops are grown, however, atolls can provide some highly favorable conditions. For instance, the driving force for plant growth is sunlight, and on atolls light is abundant throughout the

  9. GrowLab: Activities for Growing Minds.

    ERIC Educational Resources Information Center

    Pranis, Eve; Cohen, Joy

    As students observe plant growth, the questions that naturally arise can provide opportunities for student exploration and discovery. This guide presents a collection of activities for students in grades K-8 that turn students' questions into life sciences learning experiences. The guide contains four chapters, each with background information and…

  10. Testing anti-fungal activity of a soil-like substrate for growing plants in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Nesterenko, E. V.; Kozlov, V. A.; Khizhnyak, S. V.; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu. L.; Liu, Hong; Xing, Yidong; Hu, Enzhu

    2009-10-01

    The object of this research is to study a soil-like substrate (SLS) to grow plants in a Bioregenerative Life Support System (BLSS). Wheat and rice straw were used as raw materials to prepare SLS. Anti-fungal activity of SLS using test cultures of Bipolaris sorokiniana, a plant-pathogenic fungus which causes wheat root rot was studied. Experiments were conducted with SLS samples, using natural soil and sand as controls. Infecting the substrates, was performed at two levels: the first level was done with wheat seeds carrying B. sorokiniana and the second level with seeds and additional conidia of B. sorokiniana from an outside source. We measured wheat disease incidence and severity in two crop plantings. Lowest disease incidence values were obtained from the second planting, SLS: 26% and 41% at the first and the second infection levels, respectively. For soil the values were 60% and 82%, respectively, and for sand they were 67% and 74%, respectively. Wheat root rot in the second crop planting on SLS, at both infection levels was considerably less severe (9% and 13%, respectively) than on natural soil (20% and 33%) and sand (22% and 32%). SLS significantly suppressed the germination of B. sorokiniana conidia. Conidia germination was 5% in aqueous SLS suspension, and 18% in clean water. No significant differences were found regarding the impact on conidia germination between the SLS samples obtained from wheat and rice straw. The anti-fungal activity in SLS increased because of the presence of worms. SLS also contained bacteria stimulating and inhibiting B. sorokiniana growth.

  11. Gardening: A Growing Activity

    ERIC Educational Resources Information Center

    McIntosh, Phyllis

    2011-01-01

    While Americans are as eager as ever to beautify their homes and yards with attractive landscaping, more and more gardeners are looking to the practical aspects of gardening--raising plants for food and choosing easy-care ornamental plants that are friendly to the environment. For some gardeners, raising their own food is a lifestyle choice. With…

  12. Plants growing in Apollo 15 lunar material

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A close view of germ free plants - lettuce (left), tomato (right center and left center) and citrus (right). This type of testing is an effort at the Manned Spacecraft Center (MSC) to grow germ-free plants.

  13. Growing pioneer plants for a lunar base

    NASA Astrophysics Data System (ADS)

    Kozyrovska, N. O.; Lutvynenko, T. L.; Korniichuk, O. S.; Kovalchuk, M. V.; Voznyuk, T. M.; Kononuchenko, O.; Zaetz, I.; Rogutskyy, I. S.; Mytrokhyn, O. V.; Mashkovska, S. P.; Foing, B. H.; Kordyum, V. A.

    A precursory scenario of cultivating the first plants in a lunar greenhouse was elaborated in frames of a conceptual study to grow plants for a permanently manned lunar base. A prototype plant growth system represents an ornamental plant Tagetes patula L. for growing in a lunar rock anorthosite as a substrate. Microbial community anticipated to be in use to support a growth and development of the plant in a substrate of low bioavailability and provide an acceptable growth and blossoming of T. patula under growth limiting conditions.

  14. Method for Growing Plants Aeroponically 1

    PubMed Central

    Zobel, Richard W.; Del Tredici, Peter; Torrey, John G.

    1976-01-01

    A simple, inexpensive system for growing plants with their roots bathed in nutrient mist is described. The aeroponics system uses a spinner from a home humidifier to propel nutrient solution into a polyethylene-lined plywood box atop which plants are supported on plastic light-fixture “egg crating.” Success in growing a number of herbaceous and woody species, including nodulated legumes and nonlegumes, is reported. Images PMID:16659479

  15. Plant Growth Promotion Activity of Keratinolytic Fungi Growing on a Recalcitrant Waste Known as “Hair Waste”

    PubMed Central

    Cavello, Ivana A.; Crespo, Juan M.; García, Sabrina S.; Zapiola, José M.; Luna, María F.; Cavalitto, Sebastián F.

    2015-01-01

    Purpureocillium lilacinum (Thom) Samsom is one of the most studied fungi in the control of plant parasitic nematodes. However, there is not specific information on its ability to inhibit some pathogenic bacteria, fungi, or yeast. This work reports the production of several antifungal hydrolytic enzymes by a strain of P. lilacinum when it is grown in a medium containing hair waste. The growth of several plant-pathogenic fungi, Alternaria alternata, Aspergillus niger, and Fusarium culmorum, was considerably affected by the presence of P. lilacinum's supernatant. Besides antifungal activity, P. lilacinum demonstrates the capability to produce indoleacetic acid and ammonia during time cultivation on hair waste medium. Plant growth-promoting activity by cell-free supernatant was evidenced through the increase of the percentage of tomato seed germination from 71 to 85% after 48 hours. A 21-day plant growth assay using tomato plants indicates that crude supernatant promotes the growth of the plants similar to a reference fertilizer (p > 0.05). These results suggest that both strain and the supernatant may have potential to be considered as a potent biocontrol agent with multiple plant growth-promoting properties. To our knowledge, this is the first report on the antifungal, IAA production and tomato growth enhancing compounds produced by P. lilacinum LPSC #876. PMID:26697226

  16. Ion Frequency Landscape in Growing Plants

    PubMed Central

    Pietruszka, Mariusz; Haduch-Sendecka, Aleksandra

    2015-01-01

    It has been interesting that nearly all of the ion activities that have been analysed thus far have exhibited oscillations that are tightly coupled to growth. Here, we present discrete Fourier transform (DFT) spectra with a finite sampling of tip-growing cells and organs that were obtained from voltage measurements of the elongating coleoptiles of maize in situ. The electromotive force (EMF) oscillations (~ 0.1 μV) were measured in a simple but highly sensitive resistor–inductor circuit (RL circuit), in which the solenoid was initially placed at the tip of the specimen and then was moved thus changing its position in relation to growth (EMF can be measured first at the tip, then at the sub-apical part and finally at the shank). The influx- and efflux-induced oscillations of Ca2+, along with H+, K+ and Cl- were densely sampled (preserving the Nyquist theorem in order to ‘grasp the structure’ of the pulse), the logarithmic amplitude of pulse spectrum was calculated, and the detected frequencies, which displayed a periodic sequence of pulses, were compared with the literature data. A band of life vital individual pulses was obtained in a single run of the experiment, which not only allowed the fundamental frequencies (and intensities of the processes) to be determined but also permitted the phase relations of the various transport processes in the plasma membrane and tonoplast to be established. A discrete (quantised) frequency spectrum was achieved for a growing plant for the first time, while all of the metabolic and enzymatic functions of the life cell cycle were preserved using this totally non-invasive treatment. PMID:26445131

  17. Bioaugmentation in growing plants for lunar bases

    NASA Astrophysics Data System (ADS)

    Zaets, I.; Burlak, O.; Rogutskyy, I.; Vasilenko, A.; Mytrokhyn, O.; Lukashov, D.; Foing, B.; Kozyrovska, N.

    2011-03-01

    Microorganisms may be a key element in a precursory scenario of growing pioneer plants for extraterrestrial exploration. They can be used for plant inoculation to leach nutritional elements from regolith, to alleviate lunar stressors, as well as to decompose both lunar rocks and the plant straw in order to form a protosoil. Bioleaching capacities of both French marigold (Tagetes patula L.) and the associated bacteria in contact with a lunar rock simulant (terrestrial anorthosite) were examined using the model plant-bacteria microcosms under controlled conditions. Marigold accumulated K, Na, Fe, Zn, Ni, and Cr at higher concentrations in anorthosite compared to the podzol soil. Plants inoculated with the consortium of well-defined species of bacteria accumulated higher levels of K, Mg, and Mn, but lower levels of Ni, Cr, Zn, Na, Ca, Fe, which exist at higher levels in anorthosite. Bacteria also affected the Са/Mg and Fe/Mn ratios in the biomass of marigold grown on anorthosite. Despite their growth retardation, the inoculated plants had 15% higher weight on anorthosite than noninoculated plants. The data suggest that the bacteria supplied basic macro-and microelements to the model plant.

  18. Anti-plasmodial and insecticidal activities of the essential oils of aromatic plants growing in the Mediterranean area

    PubMed Central

    2012-01-01

    Background Sardinia is a Mediterranean area endemic for malaria up to the last century. During a screening study to evaluate the anti-plasmodial activity of some aromatic plants traditionally used in Sardinia, Myrtus communis (myrtle, Myrtaceae), Satureja thymbra (savory, Lamiaceae), and Thymus herba-barona (caraway thyme, Lamiaceae) were collected in three vegetative periods: before, during and after flowering. Methods The essential oils were obtained by steam distillation, fractionated by silica gel column chromatography and analysed by GC-FID-MS. Total oil and three main fractions were tested on D10 and W2 strains of Plasmodium falciparum in vitro. Larvicidal and adulticidal activities were tested on Anopheles gambiae susceptible strains. Results The essential oil of savory, rich in thymol, was the most effective against P. falciparum with an inhibitory activity independent from the time of collection (IC50 17–26 μg/ml on D10 and 9–11 μg/ml on W2). Upon fractionation, fraction 1 was enriched in mono-sesquiterpenoid hydrocarbons; fraction 2 in thymol (73-83%); and fraction 3 contained thymol, carvacrol and terpinen-4-ol, with a different composition depending on the time of collection. Thymol-enriched fractions were the most active on both strains (IC50 20–22 μg/ml on D10 and 8–10 μg/ml on W2) and thymol was confirmed as mainly responsible for this activity (IC50 19.7± 3.0 and 10.6 ± 2.0 μg/ml on D10 and W2, respectively). The essential oil of S. thymbra L. showed also larvicidal and adulticidal activities. The larvicidal activity, expressed as LC50, was 0.15 ± 0.002; 0.21 ± 0.13; and 0.15 ± 0.09 μg/ml (mean ± sd) depending on the time of collection: before, during and after flowering, respectively. Conclusions This study provides evidence for the use of essential oils for treating malaria and fighting the vector at both the larval and adult stages. These findings open the possibility for further investigation aimed at

  19. Acoustic properties of low growing plants.

    PubMed

    Horoshenkov, Kirill V; Khan, Amir; Benkreira, Hadj

    2013-05-01

    The plane wave normal incidence acoustic absorption coefficient of five types of low growing plants is measured in the presence and absence of soil. These plants are generally used in green living walls and flower beds. Two types of soil are considered in this work: a light-density, man-made soil and a heavy-density natural clay base soil. The absorption coefficient data are obtained in the frequency range of 50-1600 Hz using a standard impedance tube of diameter 100 mm. The equivalent fluid model for sound propagation in rigid frame porous media proposed by Miki [J. Acoust. Soc. Jpn. (E) 11, 25-28 (1990)] is used to predict the experimentally observed behavior of the absorption coefficient spectra of soils, plants, and their combinations. Optimization analysis is employed to deduce the effective flow resistivity and tortuosity of plants which are assumed to behave acoustically as an equivalent fluid in a rigid frame porous medium. It is shown that the leaf area density and dominant angle of leaf orientation are two key morphological characteristics which can be used to predict accurately the effective flow resistivity and tortuosity of plants.

  20. Diffuse-Illumination Systems for Growing Plants

    NASA Technical Reports Server (NTRS)

    May, George; Ryan, Robert

    2010-01-01

    Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation

  1. Measurements of metabolically active inorganic phosphate in plants growing in natural and agronomic settings and under water stress. [Stromal Phosphate

    SciTech Connect

    Sharkey, T.D.

    1988-01-01

    At high rates of photosynthesis, the conflicting requirements of adenosine triphosphate (ATP) synthesis for phosphate and starch and sucrose synthesis for low phosphate, may limit the overall rate of photosynthesis. This is called feedback limitation of photosynthesis. A nonaqueous fractionation technique was used to measure stromal phosphate levels without contamination from vacuolar phosphate. Under normal conditions the stromal phosphate level was found to be 7mM. Under feedback limited photosynthesis, this value dropped to <1mM. In a related study, the effect of water stress on photosynthesis was examined. Water stress was shown to cause a decrease in total leaf photosynthesis, due not to a total loss of photosynthetic ability, but rather due to photosynthesis only occurring in patches of the leaf. Water stress was shown to cause a reduction in starch and sucrose synthesis. Since this decline can be reversed by increasing the CO{sub 2} level around the plant, this is proposed to be due to closing of stomata due to the water stress. (MHB)

  2. Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants.

    PubMed

    Nenadis, Nikolaos; Llorens, Laura; Koufogianni, Agathi; Díaz, Laura; Font, Joan; Gonzalez, Josep Abel; Verdaguer, Dolors

    2015-12-01

    The effects of UV radiation and rainfall reduction on the seasonal leaf phenolic content/composition and antioxidant activity of the Mediterranean shrub Arbutus unedo were studied. Naturally growing plants of A. unedo were submitted to 97% UV-B reduction (UVA), 95% UV-A+UV-B reduction (UV0) or near-ambient UV levels (UVBA) under two precipitation regimes (natural rainfall or 10-30% rainfall reduction). Total phenol, flavonol and flavanol contents, levels of eight phenols and antioxidant activity [DPPH(●) radical scavenging and Cu (II) reducing capacity] were measured in sun-exposed leaves at the end of four consecutive seasons. Results showed a significant seasonal variation in the leaf content of phenols of A. unedo, with the lowest values found in spring and the highest in autumn and/or winter. Leaf ontogenetic development and/or a possible effect of low temperatures in autumn/winter may account for such findings. Regardless of the watering regime and the sampling date, plant exposure to UV-B radiation decreased the total flavanol content of leaves, while it increased the leaf content in quercitrin (the most abundant quercetin derivative identified). By contrast, UV-A radiation increased the leaf content of theogallin, a gallic acid derivative. Other phenolic compounds (two quercetin derivatives, one of them being avicularin, and one kaempferol derivative, juglanin), as well as the antioxidant activity of the leaves, showed different responses to UV radiation depending on the precipitation regime. Surprisingly, reduced rainfall significantly decreased the total amount of quantified quercetin derivatives as well as the DPPH scavenging activity in A. unedo leaves. To conclude, present findings indicate that leaves of A. unedo can be a good source of antioxidants throughout the year, but especially in autumn and winter.

  3. From growing plants to killing tumors.

    PubMed

    Flinn, E D

    2000-04-01

    A technique called photodynamic therapy, originally developed for commercial plant growth research on the Space Shuttle, has been used by surgeons in two successful operations for brain tumors. The device uses pin-head-size light emitting diodes (LEDs) that release long, cool, wavelengths of light which activate photosensitive antineoplastic drugs. The device is being adapted to non-space uses through a Small Business Innovation Research grant. The LEDs also are used to treat skin cancer, psoriasis, and rheumatoid arthritis. Research is being conducted regarding LED use in wound healing, tissue growth, and prevention of muscle and bone atrophy in astronauts.

  4. Growing Plants Without Soil for Experimental Use.

    ERIC Educational Resources Information Center

    Blankendaal, M.; And Others

    Much of the current research in experimental plant biology requires highly uniform plants. To achieve this, many plants are grown under conditions in which the environment is carefully manipulated. This pamphlet has been prepared, therefore, to present and describe growth procedures which will produce vigorous, healthy, uniform plant material in…

  5. Protocols for growing plant symbioses; rhizobia.

    PubMed

    Gourion, Benjamin; Bourcy, Marie; Cosson, Viviane; Ratet, Pascal

    2013-01-01

    Legume plants are used as a protein source for human and animal nutrition. The high protein content of legume plants is achieved via the establishment of a root symbiosis with rhizobia that allows the reduction of atmospheric nitrogen. In recent years, M. truncatula has been used as a legume model in view of its small, diploid genome, self-fertility, and short life cycle, as well as availability of various genomic and genetic tools. The choice and use of this model legume plant in parallel with the other model legume Lotus japonicus for molecular studies has triggered extensive studies that have now identified the molecular actors corresponding to the first steps of the plant-bacterial interaction. The use of this plant as model in an increasing number of laboratories has resulted in the development of numerous protocols to study the establishment of the symbiosis. The media and growth conditions used in our laboratory to nodulate wild-type or transgenic plants as well as wild-type plants with transgenic hairy root system are described below.

  6. Can plants grow in quasi-vacuum?

    NASA Technical Reports Server (NTRS)

    Andre, M.; Richaud, C.

    1986-01-01

    It was found that the growth of plants is possible under absolute pressure 14 times lower than the atmospheric pressure. In first approximation, plants ignore the absence of nitrogen and only react to the partial pressure of O2. Hence the growth of plantlets was delayed under low pressures of O2 in both cases with and without nitrogen. The CO2 availability being limited by the carbon content of the seed, the final results after 20 days were very similar.

  7. From Kennedy, to Beyond: Growing Plants in Space

    NASA Technical Reports Server (NTRS)

    Flemming, Cedric, II; Seck, Sokhana A.; Massa, Gioia D.; Hummerick, Mary E.; Wheeler, Raymond

    2012-01-01

    Astronauts cannot have their cake and eat it too, but what about growing a salad and eating it? As NASA continues to push the envelope on Space exploration and inhabitance the need for a fresh food source becomes more vital. The Life Support team at NASA is using a system developed by ORBITEC the VEGGIE, in which astronauts aboard the ISS, and potentially the Moon and Mars, will be capable of growing food. The introduction of plants not only gives astronauts a means of independently supplying food, but also recreation, oxygen replenishment and psychological benefits. The plants were grown in "pillows", the system used for growing plants within the VEGGIE. This test included 4 types of media mixtures that are composed of a clay based media called Arcilite and Fafard #2, which is a peat moss-based media ( <1 mm Arcilite, 1-2 mm of Arcilite, 1:1 <1 mm & 1-2 mm mixture and 1:1 Arcilite & Fafard mixture). Currently, 3 lettuce cultivars are being grown in 4 mixtures of media. Tests were being conducted to see which form of media has the ratio of best growth and least amount of microbes that are harmful. That is essential because a person's body becomes more susceptible to illness when they leave Earth. As a result, test must be conducted on the "pillow" system to assess the levels of microbial activity. The cultivars were tested at different stages during their growing process for microbes. Datum show that the mix of Fafard and Arcilite had the best growth, but also the most microbes. This was due to the fact that Fafard is an organic substance so it contains material necessary for microbes to live. Data suggest that the <1 mm Arcilite has an acceptable amount of growth and a lower level of microbes, because it is non-organic.

  8. Progressive Plant Growing Has Business Blooming

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In 1997, AgriHouse, Inc. (d.b.a. Aeroponics International), a leading agri-biology company, united with NASA and BioServe Space Technologies, a nonprofit, NASA-sponsored partnership research center, to design a soil-less plant-growth experiment to be performed in microgravity, aboard the Mir space station. This experiment aimed to gauge the effectiveness of a non-pesticide solution on the immune responses of bean plants. In essence, the research consortium was looking for a means of keeping plants free from infection, without having to rely on the use of pesticides. This research, combined with follow-on grants from NASA, has helped Berthoud, Colorado-based AgriHouse gain credibility in the commercial marketplace with related technology and gross the capital necessary to conduct further research in a new-age field known as bio-pharming.

  9. Gramene: a growing plant comparative genomics resource

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gramene (www.gramene.org) is a curated genetic, genomic and comparative genome analysis resource for the major crop species, such as rice, maize, wheat and many other plant (mainly grass) species. Gramene is an open-source project, with all data and software freely downloadable through the ftp site ...

  10. Chemical Composition and Biological Activity of Essential Oils from Wild Growing Aromatic Plant Species of Skimmia laureola and Juniperus macropoda from Western Himalaya.

    PubMed

    Stappen, Iris; Tabanca, Nurhayat; Ali, Abbas; Wedge, David E; Wanner, Jürgen; Kaul, Vijay K; Lal, Brij; Jaitak, Vikas; Gochev, Velizar K; Schmidt, Erich; Jirovetz, Leopold

    2015-06-01

    The Himalayan region is very rich in a great variety of medicinal plants. In this investigation the essential oils of two selected species are described for their antimicrobial and larvicidal as well as biting deterrent activities. Additionally, the odors are characterized. Analyzed by simultaneous GC-MS and GC-FID, the essential oils' chemical compositions are given. The main components of Skimmia laureola oil were linalool and linalyl acetate whereas sabinene was found as the main compound for Juniperus macropoda essential oil. Antibacterial testing by agar dilution assay revealed highest activity of S. laureola oil against all tested bacteria, followed by J. macropoda oil. Antifungal activity was evaluated against the strawberry anthracnose causing plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Juniperus macropoda essential oil indicated higher antifungal activity against all three pathogens than S. laureola oil. Both essential oils showed biting deterrent activity above solvent control but low larvicidal activity.

  11. Plants grow better if seeds see green.

    PubMed

    Sommer, Andrei P; Franke, Ralf-Peter

    2006-07-01

    We report on the response of dry plant seeds to their irradiation with intense green light applied at biostimulatory doses. Red and near-infrared light delivered by lasers or arrays of light emitting diodes applied at such doses have been shown previously by us to have effects on mammalian cells. Effects include cell proliferation and elevation of cell vitality, and have practical applications in various biomedical fields. Growth processes induced by photoreceptor stimulation (phytochromes and cryptochromes) in plant seeds with green light were described so far only for imbibed seeds. In this paper, we show that irradiation of dry cress, radish and carrot seeds with intense green light (laser or arrays of light emitting diodes), applied at biostimulatory doses, resulted in a significant increase in biomass--14, 26, and 71 days after seeding, respectively. In the case of radish and carrot, the irradiation led to important changes in the root-to-foliage surface ratio. Seeds with a potential to grant growth acceleration could be of special interest in agricultural applications, and could even compensate for shorter growth seasons caused by climate change.

  12. Plants grow better if seeds see green

    NASA Astrophysics Data System (ADS)

    Sommer, Andrei P.; Franke, Ralf-Peter

    2006-07-01

    We report on the response of dry plant seeds to their irradiation with intense green light applied at biostimulatory doses. Red and near-infrared light delivered by lasers or arrays of light emitting diodes applied at such doses have been shown previously by us to have effects on mammalian cells. Effects include cell proliferation and elevation of cell vitality, and have practical applications in various biomedical fields. Growth processes induced by photoreceptor stimulation (phytochromes and cryptochromes) in plant seeds with green light were described so far only for imbibed seeds. In this paper, we show that irradiation of dry cress, radish and carrot seeds with intense green light (laser or arrays of light emitting diodes), applied at biostimulatory doses, resulted in a significant increase in biomass—14, 26, and 71 days after seeding, respectively. In the case of radish and carrot, the irradiation led to important changes in the root-to-foliage surface ratio. Seeds with a potential to grant growth acceleration could be of special interest in agricultural applications, and could even compensate for shorter growth seasons caused by climate change.

  13. But How Do You Grow Plants Without Dirt?

    ERIC Educational Resources Information Center

    Howells, Ronald F.

    1978-01-01

    Describes a class project on hydroponic farming (growing plants in water and in organic nutrients rather than dirt). Students formed a corporation to raise necessary funds and paid dividends from the proceeds earned selling the crop. (JMB)

  14. Chemical composition and biological activity of essential oils from wild growing aromatic plant species of Skimmia laureola and Juniperus macropoda from Western Himalaya

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Himalayan region is very rich in a great variety of medicinal plants. In this investigation the essential oils of two selected species are described for their antimicrobial and larvicidal as well as biting deterrent activities. Additionally, the odors are characterized. Analyzed by simultaneous ...

  15. Design of components for growing higher plants in space

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The overall goal of this project is to design unique systems and components for growing higher plants in microgravity during long-term space missions (Mars and beyond). Specific design tasks were chosen to contribute to and supplement NASA's Controlled Ecological Life Support System (CELSS) project. Selected tasks were automated seeding of plants, plant health sensing, and food processing. Prototype systems for planting both germinated and nongerminated seeds were fabricated and tested. Water and air pressure differences and electrostatic fields were used to trap seeds for separation and transport for planting. An absorption spectrometer was developed to measure chlorophyll levels in plants as an early warning of plant health problems. In the area of food processing, a milling system was created using high-speed rotating blades which were aerodynamically configured to produce circulation and retractable to prevent leakage. The project produced significant results having substantial benefit to NASA. It also provided an outstanding learning experience for the students involved.

  16. [Chicoric and chlorogenic acids in various plants growing in Georgia].

    PubMed

    Chkhikvishvili, I D; Kharebava, G I

    2001-01-01

    Chicoric acid was isolated from dandelion (Taraxacum officinale Wigg.) leaves by column chromatography. Conditions for HPLC analysis of chicoric and chlorogenic acids were optimized. These acids were assayed in some plants growing in Georgia. The optimum conservation temperature for the preservation of chicoric and chlorogenic acids in leaves of dandelion and bilberry (Vaccinium arctostaphylos L.) was determined.

  17. Use of naturally growing aquatic plants for wastewater purification.

    PubMed

    Zimmels, Y; Kirzhner, F; Roitman, S

    2004-01-01

    This paper examines potential uses of naturally growing aquatic plants for wastewater purification. These plants enhance the removal of pollutants by consuming part of them in the form of plant nutrients. This applies to urban and agricultural wastewater, in particular, where treatment units of different sizes can be applied at the pollution source. The effectiveness of wastewater purification by different plants was tested on laboratory and pilot scales. The growth rate of the plants was related to the wastewater content in the water. Batch and semicontinuous experiments verified that the plants are capable of decreasing all tested indicators for water quality to levels that permit the use of the purified water for irrigation. This applies to biochemical oxygen demand (BOD), chemical oxygen demand, total suspended solids. pH, and turbidity. In specific cases, the turbidity reached the level of drinking water. Comparison of BOD concentrations with typical levels in water treatment facilities across the country indicates the effectiveness of water purification with plants. A major effect of treatment with plants was elimination of the disturbing smell from the wastewater. It is shown that mixtures of wastewater and polluted water from the Kishon River are amenable in varying degrees to treatment by the plants. The higher the wastewater content in the mixture, the more effective the treatment by the plants. In this context, a scheme for rehabilitation and restoration of the Kishon River is presented and technical and economical aspects of the purification technology are considered.

  18. Soybeans Growing inside the Advanced Astroculture Plant Growth Chamber

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This composite image shows soybean plants growing in the Advanced Astroculture experiment aboard the International Space Station during June 11-July 2, 2002. DuPont is partnering with NASA and the Wisconsin Center for Space Automation and Robotics (WCSAR) at the University of Wisconsin-Madison to grow soybeans aboard the Space Station to find out if they have improved oil, protein, carbohydrates or secondary metabolites that could benefit farmers and consumers. Principal Investigators: Dr. Tom Corbin, Pioneer Hi-Bred International Inc., a Dupont Company, with headquarters in Des Moines, Iowa, and Dr. Weijia Zhou, Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison.

  19. Formaldehyde removal by common indoor plant species and various growing media

    NASA Astrophysics Data System (ADS)

    Aydogan, Ahu; Montoya, Lupita D.

    2011-05-01

    Three porous materials (growstone, expanded clay and activated carbon) were evaluated as hydroponic growing media and for their individual ability to remove the indoor volatile organic compound formaldehyde under three conditions: growing medium alone, dry medium in a pot, and wet medium in a pot. The total percent-reduction of formaldehyde by each growing media was evaluated over a 10-h period. In all cases, activated carbon achieved the highest removal under the three conditions studied with average percent reductions measured at about 98%. Four common interior plants: Hedera helix (English ivy), Chrysanthemum morifolium (pot mum), Dieffenbachia compacta (dump cane) and Epipremnum aureum (golden pathos) growing in growstone were then tested for their ability to remove formaldehyde. The removal capacity of the aerial plant parts (AP), the root zone (RZ) and the entire plant (EP) growing in growstone were determined by exposing the relevant parts to gaseous formaldehyde (˜2000 μg m -3) in a closed chamber over a 24-h period. The removal efficiency between species and plant parts were compared by determining the time interval required to decrease about 2/3 of the total formaldehyde concentration reduction, T 2/3. The T 2/3 measured were 23, 30, 34 and 56 min for EP of C. morifolium, E. aureum, D. compacta and H. helix, respectively. The formaldehyde removal by the root zone was found to be more rapid than the removal by the aerial plant parts.

  20. Microbial community induces a plant defense system under growing on the lunar regolith analogue

    NASA Astrophysics Data System (ADS)

    Zaetz, Irina; Mytrokhyn, Olexander; Lukashov, Dmitry; Mashkovska, Svitlana; Kozyrovska, Natalia; Foing, Bernard H.

    The lunar rock considered as a potential source of chemical elements essential for plant nutrition, however, this substrate is of a low bioavailability. The use of microorganisms for decomposition of silicate rocks and stimulation of plant growth is a key idea in precursory scenario of growing pioneer plants for a lunar base (Kozyrovska et al., 2004; 2006; Zaetz et al., 2006). In model experiments a consortium of well-defined plant-associated bacteria were used for growing of French marigold (Tagetes patula L.) in anorthosite, analogous to a lunar rock. Inoculated plants appeared better seed germination, more fast development and also increased accumulation of K, Mg, Mn, Co, Cu and lowered level of the toxic Zn, Ni, Cr, comparing to control tagetes'. Bacteria regulate metal homeostasis in plants by changing their bioavailability and by stimulating of plant defense mechanisms. Inoculated plants were being accommodated to growth under stress conditions on anorthosite used as a substrate. In contrast, control plants manifested a heavy metal-induced oxidative stress, as quantified by protein carbonyl accumulation. Depending on the plant organ sampled and developmental stage there were increases or loses in the antioxidant enzyme activities (guaiacol peroxidase and glutathione-S-transferase). These changes were most evident in inoculated plants. Production of phenolic compounds, known as antioxidants and heavy metal chelators, is rised in variants of inoculated marigolds. Guaiacol peroxidase plays the main role, finally, in a reducing toxicity of heavy metals in plant leaves, while glutathione-S-transferase and phenolics overcome stress in roots.

  1. Spectral composition of light and growing of plants in controlled environments

    NASA Technical Reports Server (NTRS)

    Tikhomirov, Alexander A.

    1994-01-01

    The main conclusions of many investigations about general requirements of plants for spectral composition of PAR (photosynthetically active radiation) are based on phylogenetic aspects of plant growth. We think that these aspects are not the main criteria in choosing the spectral composition required for growing plants in controlled conditions. Our approach to this problem is based on plant and crop reaction under long duration growth with specific spectra and intensity. Only in this way can we determine correctly the role of light characteristics for developing crops.

  2. Cell physiology of plants growing in cold environments.

    PubMed

    Lütz, Cornelius

    2010-08-01

    The life of plants growing in cold extreme environments has been well investigated in terms of morphological, anatomical, and ecophysiological adaptations. In contrast, long-term cellular or metabolic studies have been performed by only a few groups. Moreover, a number of single reports exist, which often represent just a glimpse of plant behavior. The review draws together the literature which has focused on tissue and cellular adaptations mainly to low temperatures and high light. Most studies have been done with European alpine plants; comparably well studied are only two phanerogams found in the coastal Antarctic. Plant adaptation in northern polar regions has always been of interest in terms of ecophysiology and plant propagation, but nowadays, this interest extends to the effects of global warming. More recently, metabolic and cellular investigations have included cold and UV resistance mechanisms. Low-temperature stress resistance in plants from cold environments reflects the climate conditions at the growth sites. It is now a matter of molecular analyses to find the induced genes and their products such as chaperones or dehydrins responsible for this resistance. Development of plants under snow or pollen tube growth at 0 degrees C shows that cell biology is needed to explain the stability and function of the cytoskeleton. Many results in this field are based on laboratory studies, but several publications show that it is not difficult to study cellular mechanisms with the plants adapted to a natural stress. Studies on high light and UV loads may be split in two parts. Many reports describe natural UV as harmful for the plants, but these studies were mainly conducted by shielding off natural UV (as controls). Other experiments apply additional UV in the field and have had practically no negative impact on metabolism. The latter group is supported by the observations that green overwintering plants increase their flavonoids under snow even in the absence of

  3. [Plant extracts with cytostatic properties growing in Cuba. II].

    PubMed

    Lopez Abraham, A M; Rojas Hernandez, N M; Jimenez Misas, C A

    1979-01-01

    The study of the cytostatic activity of aqueous, alcoholic and ketonic extracts from 18 parts of 9 species of superior plants of the families Araceae, Borraginacease, Burseraceae, Cesalpinaceae, Meliaceae, Compositae, Rebiaceae, Cruciferaceae and Verbenaceae using the microbiologic method of described by Kubas in 1972 is pursued. The best results were obtained from Hamelia patens. Lippia alba, Lepidium virginicum, Cassia ligustrina, Bursera simaruba and Heliotropium campechianum extracts.

  4. [Plant extracts with cytostatic properties growing in Cuba. I].

    PubMed

    Lopez Abraham, A M; Rojas Hernandez, N M; Jimenez Misas, C A

    1979-01-01

    The cytostatic activity of aqueous, alcoholic and ketonic extracts of 9 species of superior plants of the families Fitolacaceae, Compositae, Moraceae, Zingiberaceae, Martiniaceae, Mirtaceae, Verbenaceae and Annonaceae was assessed. The Kubas microbiologic method and the fungus Ascomiceto Neurospora crassa were used in the assessment. The fungus growth was measured in millimeters. Inhibition percentages for every case regarding control are reported. The best results were obtained from Annona muricata, Costus spiralis, Cecropia peltata, Xanthium chinense and Pluchea adorata extracts.

  5. Two distinct plant respiratory physiotypes might exist which correspond to fast-growing and slow-growing species.

    PubMed

    Nogués, Salvador; Aljazairi, Salvador; Arias, Claudia; Sánchez, Elena; Aranjuelo, Iker

    2014-08-15

    The origin of the carbon atoms in CO2 respired by leaves in the dark of several plant species has been studied using 13C/12C stable isotopes. This study was conducted using an open gas exchange system for isotope labeling that was coupled to an elemental analyzer and further linked to an isotope ratio mass spectrometer (EA-IRMS) or coupled to a gas chromatography-combustion-isotope ratio mass spectrometer (GC-C-IRMS). We demonstrate here that the carbon, which is recently assimilated during photosynthesis, accounts for nearly ca. 50% of the carbon in the CO2 lost through dark respiration (Rd) after illumination in fast-growing and cultivated plants and trees and, accounts for only ca. 10% in slow-growing plants. Moreover, our study shows that fast-growing plants, which had the largest percentages of newly fixed carbon of leaf-respired CO2, were also those with the largest shoot/root ratios, whereas slow-growing plants showed the lowest shoot/root values.

  6. Plants are less negatively affected by flooding when growing in species-rich plant communities.

    PubMed

    Wright, Alexandra J; de Kroon, Hans; Visser, Eric J W; Buchmann, Tina; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Ravenek, Janneke; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang; Voesenek, Laurentius A C J; Mommer, Liesje

    2017-01-01

    Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding.

  7. 76 FR 67581 - Importation of Bromeliad Plants in Growing Media From Belgium, Denmark, and the Netherlands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... origin of the plants and growing media (paragraph (b)), the nature of the growing media (paragraphs (c... of plant diseases such as Fusarium oxysporum f. sp. Additional measures, including a serological test... country and found free from evidence of pests and diseases. Plants to be exported to the United...

  8. Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in pakistan.

    PubMed

    Mehnaz, Samina; Baig, Deeba Noreen; Lazarovits, George

    2010-12-01

    Bacteria were isolated from roots of sugarcane varieties grown in the fields of Punjab. They were identified by using API20E/NE bacterial identification kits and from sequences of 16S rRNA and amplicons of the cpn60 gene. The majority of bacteria were found to belong to the genera of Enterobacter, Pseudomonas, and Klebsiella, but members of genera Azospirillum, Rhizobium, Rahnella, Delftia, Caulobacter, Pannonibacter, Xanthomonas, and Stenotrophomonas were also found. The community, however, was dominated by members of the Pseudomonadaceae and Enterobacteriaceae, as representatives of these genera were found in samples from every variety and location examined. All isolates were tested for the presence of five enzymes and seven factors known to be associated with plant growth promotion. Ten isolates showed lipase activity and eight were positive for protease activity. Cellulase, chitinase, and pectinase were not detected in any strain. Nine strains showed nitrogen fixing ability (acetylene reduction assay) and 26 were capable of solubilizing phosphate. In the presence of 100 mg/l tryptophan, all strains except one produced indole acetic acid in the growth medium. All isolates were positive for ACC deaminase activity. Six strains produced homoserine lactones and three produced HCN and hexamate type siderophores. One isolate was capable of inhibiting the growth of 24 pathogenic fungal strains of Colletotrichum, Fusarium, Pythium, and Rhizoctonia spp. In tests of their abilities to grow under a range of temperature, pH, and NaCl concentrations, all isolates grew well on plates with 3% NaCl and most of them grew well at 4 to 41degrees C and at pH 11.

  9. Growing Greener Cities: A Tree-Planting Handbook.

    ERIC Educational Resources Information Center

    Moll, Gary; Young, Stanley

    This step-by-step guide, developed by the Global ReLeaf organization, presents tree-planting advice and simple steps to organizing a successful community tree-planting and tree-care program. The text is divided into three parts. Part 1 introduces trees and discusses the role they play as components of the living urban environment. Distinctions are…

  10. USING SOIL AND OTHER PLANT GROWING MEDIA EFFECTIVELY. HORTICULTURE-SERVICE OCCUPATIONS, MODULE NO. 5.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO PREPARE HIGH SCHOOL STUDENTS FOR HORTICULTURE SERVICE OCCUPATIONS, THIS MODULE HAS AS ITS MAJOR OBJECTIVE TO DEVELOP THE APPRECIATIONS, UNDERSTANDINGS, AND ABILITIES NEEDED TO USE PLANT GROWING MEDIA IN GROWING HORTICULTURAL PLANTS. IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES.…

  11. Interaction between exercising humans and growing plants in a closed ecological life support system

    NASA Astrophysics Data System (ADS)

    Doerr, D. F.; Convertino, V. A.; Blue, J.; Wheeler, R. M.; Knott, W. M.

    The purpose of this study was to quantify the gas exchange between plants growing in a Closed Environmental Life Support System (CELSS) and the metabolism of human subjects undergoing various levels of physical exercise, and subsequently determine the buffer characteristics in relation to the carbon exchange established for plants in this closed loop life support system. Two men (ages 42 and 45 yr) exercised on a cycle ergometer at three different work intensities, each on a separate day. The CELSS, a 113 m 3 chamber, was sized to meet the needs of one human. The plants, consisting of 20 m 2 of potato, provided oxygen to the human during an artificially lighted photosynthesis phase and the human provided CO 2 to the plants. The average rates of exchange for the subjects were 0.88, 1.69, and 2.47 liters O 2/min and 0.77, 1.47, and 2.21 liters CO 2/min at approximately 25%, 50%, and 75% of their maximal aerobic capacity, respectively. The photosynthetic rate for the CELSS was 0.95 liters/ min. A balance between human CO 2 production and plant utilization was noted at approximately the 50% VO 2max level. The oxygen balance and changes were not within detectable limits of the CELSS instrumentation for the durations of these exercise exposures. If a CELSS environment is the methodology selected for long term spaceflight, it will be important to select plants that efficiently grow at the available light and nutrient levels while balancing the needs for the human crew at their levels of physical activity.

  12. Plant metacaspase activation and activity.

    PubMed

    Minina, Elena A; Stael, Simon; Van Breusegem, Frank; Bozhkov, Peter V

    2014-01-01

    Metacaspases are essential for cell death regulation in plants. Further understanding of biochemistry of metacaspases and their molecular function in plant biology requires a set of robust methods for detection of metacaspase activation and quantitative analysis of corresponding proteolytic activity. Here we describe methods for purification of recombinant metacaspases, measurement of enzymatic activity of recombinant and endogenous metacaspases in vitro and in cell lysates, respectively, and finally detection of metacaspase activation in vivo. Additionally, an in vitro metacaspase protein substrate cleavage assay based on the cell-free production of substrate protein followed by proteolysis with recombinant metacaspase is presented. These methods have been originally developed for type II metacaspases from Arabidopsis and Norway spruce (Picea abies), but they can be used as templates for type I metacaspases, as well as for type II metacaspases from other species.

  13. Are plants growing at abandoned mine sites suitable for phytoremediation of contaminated soils?

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Buffa, Gabriella; Fontana, Silvia; Wahsha, Mohammad

    2013-04-01

    Plants growing on abandoned mine sites are of particular interest in the perspective to remediate contaminated soils by phytoremediation, a low cost and environmental friendly technique which uses metal-accumulator plants to clean up moderately contaminated areas. The choice of plants is a crucial aspect for the practical use of this technique, given the ability to accumulate metals in their tissues, being genetically tolerant to high metal concentrations. Up today, more than 400 native plants that hyperaccumulate metals are reported, Brassicaceae being the family with the largest number of hyperaccumulator species. For example, Alyssum bertoloni is well known as Ni accumulator, as well as Thlaspi caerulescens for Zn and Brassica napus for Pb. However, metal hyperaccumulation is not a common phenomenon in terrestrial higher plants, and many of the European hyperaccumulator plants are of small biomass, and have a slow growth rate. Therefore, there is an urgent need for surveying and screening of plants with ability to accumulate metals in their tissues and a relatively high biomass. In recent years, a survey of soils and plants growing on contaminated areas at several abandoned sulphide mines in Italy was carried out by working groups of the Universities of Florence, Siena, Cagliari, Bologna, Udine and Venice, in order to evaluate the ability of these plants to colonize mine waste and to accumulate metals, in the perspective of an ecological restoration of contaminated sites. We investigated the heavy metal concentration of the waste material, and the soils developed from, in order to determine the extent of heavy metal dispersion, and the uptake by plants, and deserved attention to wild plants growing at that sites, to find out new metal-tolerant species to utilize in soil remediation. Current results of these investigations, with particular emphasis on the Tuscan areas, are reported here. All the studied profiles are strongly enriched in metals; their

  14. Growing Plants to Power Our Engines and Feed the World

    SciTech Connect

    Sayre Dick

    2015-12-15

    Photosynthesis uses light from the sun and carbon dioxide from the air to make chemicals that can be converted into energy-rich biofuels. Plants, however, transform less than five percent of the solar energy they capture into harvestable chemical energy. The New Mexico Consortium and Los Alamos National Laboratory are working on strategies to improve the energy yield in algae and plant systems, resulting in more fuel in our tanks and more food on our plates, without releasing additional carbon into the atmosphere.

  15. Growing Plants to Power Our Engines and Feed the World

    ScienceCinema

    Sayre Dick

    2016-07-12

    Photosynthesis uses light from the sun and carbon dioxide from the air to make chemicals that can be converted into energy-rich biofuels. Plants, however, transform less than five percent of the solar energy they capture into harvestable chemical energy. The New Mexico Consortium and Los Alamos National Laboratory are working on strategies to improve the energy yield in algae and plant systems, resulting in more fuel in our tanks and more food on our plates, without releasing additional carbon into the atmosphere.

  16. Bioaccumulation of 226Ra by plants growing in fresh water ecosystem around the uranium industry at Jaduguda, India.

    PubMed

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K; Shukla, A K; Puranik, V D

    2010-09-01

    A field study has been conducted to evaluate the (226)Ra bioaccumulation among aquatic plants growing in the stream/river adjoining the uranium mining and ore-processing complex at Jaduguda, India. Two types of plant group have been investigated namely free floating algal species submerged into water and plants rooted in stream & riverbed. The highest (226)Ra activity concentration (9850 Bq kg(-1)) was found in filamentous algae growing in the residual water of tailings pond. The concentration ratios of (226)Ra in filamentous algae (activity concentration of (226)Ra in plant Bq kg(-1) fresh weight/activity concentration of (226)Ra in water Bq l(-1)) widely varied i.e. from 1.1 x 10(3) to 8.6 x 10(4). Other aquatic plants were also showing wide variability in the (226)Ra activity concentration. The ln-transformed filamentous algae (226)Ra activity concentration was significantly correlated with that of ln-transformed water concentration (r = 0.89, p < 0.001). There was no correlation between the activity concentrations of (226)Ra in stream/riverbed rooted plants and the substrate. For this group, correlation between (226)Ra activity concentration and Mn, Fe, Cu concentration in plants were statistically significant.

  17. Plants grow with a little help from their organelle friends.

    PubMed

    Van Dingenen, Judith; Blomme, Jonas; Gonzalez, Nathalie; Inzé, Dirk

    2016-12-01

    Chloroplasts and mitochondria are indispensable for plant development. They not only provide energy and carbon sources to cells, but also have evolved to become major players in a variety of processes such as amino acid metabolism, hormone biosynthesis and cellular signalling. As semi-autonomous organelles, they contain a small genome that relies largely on nuclear factors for its maintenance and expression. An intensive crosstalk between the nucleus and the organelles is therefore essential to ensure proper functioning, and the nuclear genes encoding organellar proteins involved in photosynthesis and oxidative phosphorylation are obviously crucial for plant growth. Organ growth is determined by two main cellular processes: cell proliferation and cell expansion. Here, we review how plant growth is affected in mutants of organellar proteins that are differentially expressed during leaf and root development. Our findings indicate a clear role for organellar proteins in plant organ growth, primarily during cell proliferation. However, to date, the role of the nuclear-encoded organellar proteins in the cellular processes driving organ growth has not been investigated in much detail. We therefore encourage researchers to extend their phenotypic characterization beyond macroscopic features in order to get a better view on how chloroplasts and mitochondria regulate the basic processes of cell proliferation and cell expansion, essential to driving growth.

  18. 76 FR 13890 - Importation of Bromeliad Plants in Growing Media From Belgium, Denmark, and the Netherlands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ..., except holidays. To be sure someone is there to help you, please call (202) 690-2817 before coming. Other...); Restricts the source of the seeds or parent plants used to produce the plants, and requires grow-out or treatment of parent plants imported into the exporting country from another country; Specifies the...

  19. Comparative evaluation of oxidative stress status and manganese availability in plants growing on manganese mine.

    PubMed

    Boojar, Massod Mashhadi Akbar; Goodarzi, Faranak

    2008-11-01

    This study pioneered an approach that determined the effects of excess manganese (Mn) on three species; Datura stramonium, Alhagi camelthorn and Chenopodium ambrosioides. We investigated their levels of Mn, antioxidative enzymes and oxidative damage biomarkers in plants (zone 1) in and outside (zone 2) the Mn mine. The results showed that total and available Mn were at toxic levels for plants growing on zone 1. The Mn levels in each plant species were higher in leaves, stems and roots. Mn was only accumulated significantly in leaf vacuoles of A. camelthorn. Antioxidative enzyme activities of C. ambrosioides and/or D. stramonium in zone 1 were higher in leaves, stems and then in their roots. Malondialdehyde (MDA) and dityrosine levels were insignificantly higher in tissues of the studied plants in zone 1 with respect to zone 2. The roots of studied plants showed significantly higher levels of these biomarkers in comparison with their leaves in zone 1. Accordingly, antioxidative enzymatic response to Mn-stress in D. stramonium and C. ambrosioides and possibly accumulation of Mn in leaf vacuoles of A. camelthorn, protected them from oxidative damages and involved in their tolerance in Mn mine.

  20. Plant Growth-Promoting Nitrogen-Fixing Enterobacteria Are in Association with Sugarcane Plants Growing in Guangxi, China

    PubMed Central

    Lin, Li; Li, Zhengyi; Hu, Chunjin; Zhang, Xincheng; Chang, Siping; Yang, Litao; Li, Yangrui; An, Qianli

    2012-01-01

    The current nitrogen fertilization for sugarcane production in Guangxi, the major sugarcane-producing area in China, is very high. We aim to reduce nitrogen fertilization and improve sugarcane production in Guangxi with the help of indigenous sugarcane-associated nitrogen-fixing bacteria. We initially obtained 196 fast-growing bacterial isolates associated with the main sugarcane cultivar ROC22 plants in fields using a nitrogen-deficient minimal medium and screened out 43 nitrogen-fixing isolates. Analysis of 16S rRNA gene sequences revealed that 42 of the 43 nitrogen-fixing isolates were affiliated with the genera Enterobacter and Klebsiella. Most of the nitrogen-fixing enterobacteria possessed two other plant growth-promoting activities of IAA production, siderophore production and phosphate solubilization. Two Enterobacter spp. strains of NN145S and NN143E isolated from rhizosphere soil and surface-sterilized roots, respectively, of the same ROC22 plant were used to inoculate micropropagated sugarcane plantlets. Both strains increased the biomass and nitrogen content of the sugarcane seedlings grown with nitrogen fertilization equivalent to 180 kg urea ha−1, the recommended nitrogen fertilization for ROC22 cane crops at the seedling stage. 15N isotope dilution assays demonstrated that biological nitrogen fixation contributed to plant growth promotion. These results suggested that indigenous nitrogen-fixing enterobacteria have the potential to fix N2 associated with sugarcane plants grown in fields in Guangxi and to improve sugarcane production. PMID:22510648

  1. Growing with EASE: Eating, Activity, and Self-Esteem

    ERIC Educational Resources Information Center

    Huettig, Carol; Rich, Shannon; Engelbrecht, Jo Ann; Sanborn, Charlotte; Essery, Eve; DiMarco, Nancy; Velez, Luisa; Levy, Luba

    2006-01-01

    A diverse group of professionals associated with Texas Woman's University's Institute for Women's Health, working collaboratively with school administrators, teachers, family support teams, and family members, developed Growing with EASE: Eating, Activity, and Self-Esteem, a nutrition program for young children and their families. In tracking the…

  2. Phototropism: Growing towards an Understanding of Plant Movement[OPEN

    PubMed Central

    Liscum, Emmanuel; Askinosie, Scott K.; Leuchtman, Daniel L.; Morrow, Johanna; Willenburg, Kyle T.; Coats, Diana Roberts

    2014-01-01

    Phototropism, or the differential cell elongation exhibited by a plant organ in response to directional blue light, provides the plant with a means to optimize photosynthetic light capture in the aerial portion and water and nutrient acquisition in the roots. Tremendous advances have been made in our understanding of the molecular, biochemical, and cellular bases of phototropism in recent years. Six photoreceptors and their associated signaling pathways have been linked to phototropic responses under various conditions. Primary detection of directional light occurs at the plasma membrane, whereas secondary modulatory photoreception occurs in the cytoplasm and nucleus. Intracellular responses to light cues are processed to regulate cell-to-cell movement of auxin to allow establishment of a trans-organ gradient of the hormone. Photosignaling also impinges on the transcriptional regulation response established as a result of changes in local auxin concentrations. Three additional phytohormone signaling pathways have also been shown to influence phototropic responsiveness, and these pathways are influenced by the photoreceptor signaling as well. Here, we will discuss this complex dance of intra- and intercellular responses that are regulated by these many systems to give rise to a rapid and robust adaptation response observed as organ bending. PMID:24481074

  3. Dieldrin uptake and translocation in plants growing in hydroponic medium.

    PubMed

    Murano, Hirotatsu; Otani, Takashi; Seike, Nobuyasu; Sakai, Mizuki

    2010-01-01

    It has been known that the Cucurbitaceae family takes up a large amount of persistent organic pollutants from soils and that the translocation of those compounds in cucurbits is higher than those in non-cucurbits. To understand the persistent organic pollutant uptake mechanisms of plant species, we compared the dieldrin absorption and transportation potentials of several plants in hydroponic medium. Sorghum (Sorghum vulgare Moench), sunflower (Helianthus annuus L.), soybean (Glycine max), komatsuna (Brassica rapa var. peruviridis), white-flowered gourd (Lagenaria siceraria var. hispida), cucumber (Cucumis sativus L.), and zucchini (Cucurbita pepo L.) were grown in a dieldrin-added hydroponic medium for 10 d, and then the amount of dieldrin in their shoots and roots was measured. All of the roots contained dieldrin, whereas only the cucurbits (white-flowered gourd, cucumber, and zucchini) contained considerable amounts of dieldrin in their shoots. The dieldrin uptake to the roots depended on the concentration of the n-hexane soluble components in the roots, regardless of whether the dieldrin in the roots was translocated to shoots or not. The dieldrin uptake from the solution to the roots was thought to be due to a passive response, such as adsorption on the roots. The translocation of dieldrin from the roots to the shoots was probably through the xylems. The amounts of dieldrin in the shoots per transpiration rates were higher for cucurbits than for non-cucurbits. It seems likely that cucurbits have uptake mechanisms for hydrophobic organic chemicals.

  4. Development of an improved ground-based prototype of space plant-growing facility

    NASA Astrophysics Data System (ADS)

    Guo, S.; Liu, X.; Ai, W.; Tang, Y.; Zhu, J.; Wang, X.; Wei, M.; Qin, L.; Yang, Y.

    Based on a formerly developed ground-based prototype of space plant-growing facility, the development of its improved prototype has been finished, so as to make its operating principle better adapt to the space microgravity environment. According to the developing experience of its first generation prototype and detailed demonstration and design of technique plan, its blueprint design and machining of related components, whole facility installment, debugging and trial operations were all done gradually. Its growing chamber contains a volume of about 0.5 m3 and a growing area of approximate 0.5 m2; the atmospheric environmental parameters in the growing chamber and water content in the growing media were controlled totally and effectively; lighting source is a combination of both red and blue light emitting diodes (LED). The following demonstrating results showed that the entire system design of the prototype is reasonable and its operating principle can nearly meet the requirements of space microgravity environment. Therefore, our plant-growing technique in space was advanced further, which laid an important foundation for next development of the space plant-growing facility and plant-cultivating experimental research in space microgravity condition.

  5. Foraging by Hippodamia convergens for the aphid Sitobion avenae on wheat plants growing in greenhouse plots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated predation by adult convergent lady beetle, Hippodamia convergens Guerin-Meneville, on English grain aphid, Sitobion avenae L., on wheat, Triticum aestivum L., growing in 1.8 x 1.8 m plantings in a greenhouse with a soil floor. The wheat was planted to simulate wheat in a typical pro...

  6. Recombinant Bacillus subtilis that grows on untreated plant biomass.

    PubMed

    Anderson, Timothy D; Miller, J Izaak; Fierobe, Henri-Pierre; Clubb, Robert T

    2013-02-01

    Lignocellulosic biomass is a promising feedstock to produce biofuels and other valuable biocommodities. A major obstacle to its commercialization is the high cost of degrading biomass into fermentable sugars, which is typically achieved using cellulolytic enzymes from Trichoderma reesei. Here, we explore the use of microbes to break down biomass. Bacillus subtilis was engineered to display a multicellulase-containing minicellulosome. The complex contains a miniscaffoldin protein that is covalently attached to the cell wall and three noncovalently associated cellulase enzymes derived from Clostridium cellulolyticum (Cel48F, Cel9E, and Cel5A). The minicellulosome spontaneously assembles, thus increasing the practicality of the cells. The recombinant bacteria are highly cellulolytic and grew in minimal medium containing industrially relevant forms of biomass as the primary nutrient source (corn stover, hatched straw, and switch grass). Notably, growth did not require dilute acid pretreatment of the biomass and the cells achieved densities approaching those of cells cultured with glucose. An analysis of the sugars released from acid-pretreated corn stover indicates that the cells have stable cellulolytic activity that enables them to break down 62.3% ± 2.6% of the biomass. When supplemented with beta-glucosidase, the cells liberated 21% and 33% of the total available glucose and xylose in the biomass, respectively. As the cells display only three types of enzymes, increasing the number of displayed enzymes should lead to even more potent cellulolytic microbes. This work has important implications for the efficient conversion of lignocellulose to value-added biocommodities.

  7. In Vitro Assessment of Plants Growing in Cuba Belonging to Solanaceae Family Against Leishmania amazonensis.

    PubMed

    Monzote, Lianet; Jiménez, Jenny; Cuesta-Rubio, Osmany; Márquez, Ingrid; Gutiérrez, Yamile; da Rocha, Cláudia Quintino; Marchi, Mary; Setzer, William N; Vilegas, Wagner

    2016-11-01

    In this study, an in vitro antileishmanial assessment of plant extracts from 12 genera and 46 species growing in Cuba belonging to Solanaceae family was performed. A total of 226 extracts were screened against promastigotes of Leishmania amazonensis, and cytotoxicity of active extracts [median inhibitory concentration (IC50 ) promastigotes <100 µg/mL] was determined on peritoneal macrophage from BALB/c mice. Extracts that showed selective index >5 were then assayed against intracellular amastigote. Metabolomics analysis of promissory extracts was performed using chemical profile obtained by ultra performance liquid chromatography. Only 11 extracts (4.9%) from nine plants were selected as potentially actives: Brunfelsia cestroides A. Rich, Capsicum annuum L., Capsicum chinense Jacq., Cestrum nocturnum L., Nicotiana plumbaginifolia Viv., Solanum havanense Jacq., Solanum myriacanthum Dunal, Solanum nudum Dunal and Solanum seaforthianum And., with IC50  < 50 µg/mL and selectivity index >5. Metabolomics analysis demonstrated significant differences in the chemical profiles with an average of 42.8 (range 31-88) compounds from m/z 104 to 1477, which demonstrated the complex mixture of compounds. In addition, no common markers among active extracts were identified. The results demonstrate the importance of the Solanaceae family to search new antileishmanial agents, particularly in unexplored species of this family. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Toxicity and DNA damage in tobacco and potato plants growing on soil polluted with heavy metals.

    PubMed

    Gichner, Tomás; Patková, Zdenka; Száková, Jirina; Demnerová, Katerina

    2006-11-01

    Heterezygous tobacco (Nicotiana tabacum var. xanthi) and potato (Solanum tuberosum var. Korela) plants were cultivated on soil from the site Strimice which is highly polluted with heavy metals and on nonpolluted soil from the recreational site Jezerí, both in North Bohemia, Czech Republic. The total content, the content of bioavailable, easily mobile, and potentially mobile components of heavy metals (Cd, Cu, Pb, and Zn) in the tested soils, and the accumulation of these metals in the above-ground biomass and roots of tested plants were analyzed by flame atomic absorption spectrometry or flameless atomic absorption spectrometry. The average tobacco leaf area and potato plant height were significantly reduced in plants growing on the polluted soil. We have measured the DNA damage in nuclei of leaves of both plant species using the Comet assay. A small but significant increase in DNA damage was noted in plants growing on the polluted soil versus controls. As the tobacco and potato plants with increased DNA damage were severely injured (inhibited growth, distorted leaves), this increase may be associated with necrotic or apoptotic DNA fragmentation. No increase in the frequency of somatic mutation was detected in tobacco plants growing on the polluted soil. Thus, the polluted soil probably induced toxic but not genotoxic effects on tobacco and potato plants.

  9. Heavy metals concentration in plants growing on mine tailings in Central Mexico.

    PubMed

    Franco-Hernández, M O; Vásquez-Murrieta, M S; Patiño-Siciliano, A; Dendooven, L

    2010-06-01

    Metal concentrations were measured in plants growing on heavily contaminated tailings from a mine active since about 1800 in San Luis Potosí (Mexico). Viguiera dentata (Cav.) Spreng., Parthenium bipinnatifidum (Ort.) Rollins, Flaveria angustifolia (Cav.) Pers., F. trinervia (Spreng.) C. Mohr. and Sporobolusindicus (L.) R. Br. were tolerant to high As, Cu, Pb and Zn concentrations. Of those, S.indicus excluded heavy metals from its shoots, while P. bipinnatifidum and F. angustifolia accumulated them. V. dentata and P. bipinnatifidum were accumulators of As, but not hyperaccumulators. It was found that V. dentata,P. bipinnatifidum, F. angustifolia, F. trinervia and S.indicus, could be used to vegetate soils contaminated with As, Cu, Pb and Zn. Ambrosiaartemisifolia could be used to remediate soils contaminated with Zn, S. amplexicaulis those with Cu and F. angustifolia and F. trinervia those with As, as they have a strong capacity to accumulate those metals.

  10. Estimating the Sensitivity of CLM-Crop to Plant Date and Growing Season Length

    NASA Astrophysics Data System (ADS)

    Drewniak, B. A.; Kotamarthi, V. R.

    2012-12-01

    The Community Land Model (CLM), the land component of the Community Earth System Model (CESM), is designed to estimate the land surface response to climate through simulated vegetation phenology and soil carbon and nitrogen dynamics. Since human influences play a significant role shaping the land surface, the vegetation has been expanded to include agriculture (CLM-Crop) for three crop types: corn, soybean, and spring wheat. CLM-Crop parameters, which define crop phenology, are optimized against AmeriFlux observations of gross primary productivity, net ecosystem exchange, and stored biomass and carbon, for two sites in the U.S. growing corn and soybean. However, there is uncertainty in the measurements and using a small subset of data to determine model parameters makes validation difficult. In order to account for the differences in plant behavior across climate zones, an input dataset is used to define the planting dates and the length of the growing season. In order to improve model performance, and to understand the impacts of uncertainty from the input data, we evaluate the sensitivity of crop productivity and production against planting date and the length of the growing season. First, CLM-Crop is modified to establish plant date based on temperature trends for the previous 10-day period, constrained against the range of observed planting dates. This new climate-based model is compared with the standard fixed plant dates to determine how sensitive the model is to when seeding occurs, and how comparable the climate calculated plant dates are to the fixed dates. Next, the length of the growing season will be revised to account for an alternative climate. Finally, both the climate-based planting and new growth season will be simulated together. Results of the different model runs will be compared to the standard model and to observations to determine the importance of planting date and growing season length on crop productivity and yield.

  11. A hydroponic system for growing gnotobiotic vs. sterile plants to study phytoremediation processes.

    PubMed

    Kurzbaum, E; Kirzhner, F; Armon, R

    2014-01-01

    In some phytoremediation studies it is desirable to separate and define the specific contribution of plants and root-colonizing bacteria towards contaminant removal. Separating the influence of plants and associated bacteria is a difficult task for soil root environments. Growing plants hydroponically provides more control over the biological factors in contaminant removal. In this study, a hydroponic system was designed to evaluate the role of sterile plant roots, rhizodeposition, and root-associated bacteria in the removal of a model contaminant, phenol. A strain of Pseudomonas pseudoalcaligenes that grows on phenol was inoculated onto plant roots. The introduced biofilm persisted in the root zone and promoted phenol removal over non-augmented controls. These findings indicate that this hydroponic system can be a valuable tool for phytoremediation studies that investigate the effects of biotic and abiotic factors on pollution remediation.

  12. Why would plant species become extinct locally if growing conditions improve?

    PubMed

    Kramer, Koen; Bijlsma, Rienk-Jan; Hickler, Thomas; Thuiller, Wilfried

    2012-01-01

    Two assumptions underlie current models of the geographical ranges of perennial plant species: 1. current ranges are in equilibrium with the prevailing climate, and 2. changes are attributable to changes in macroclimatic factors, including tolerance of winter cold, the duration of the growing season, and water stress during the growing season, rather than to biotic interactions. These assumptions allow model parameters to be estimated from current species ranges. Deterioration of growing conditions due to climate change, e.g. more severe drought, will cause local extinction. However, for many plant species, the predicted climate change of higher minimum temperatures and longer growing seasons means, improved growing conditions. Biogeographical models may under some circumstances predict that a species will become locally extinct, despite improved growing conditions, because they are based on an assumption of equilibrium and this forces the species range to match the species-specific macroclimatic thresholds. We argue that such model predictions should be rejected unless there is evidence either that competition influences the position of the range margins or that a certain physiological mechanism associated with the apparent improvement in growing conditions negatively affects the species performance. We illustrate how a process-based vegetation model can be used to ascertain whether such a physiological cause exists. To avoid potential modelling errors of this type, we propose a method that constrains the scenario predictions of the envelope models by changing the geographical distribution of the dominant plant functional type. Consistent modelling results are very important for evaluating how changes in species areas affect local functional trait diversity and hence ecosystem functioning and resilience, and for inferring the implications for conservation management in the face of climate change.

  13. Functional-structural plant models: a growing paradigm for plant studies.

    PubMed

    Sievänen, Risto; Godin, Christophe; DeJong, Theodore M; Nikinmaa, Eero

    2014-09-01

    A number of research groups in various areas of plant biology as well as computer science and applied mathematics have addressed modelling the spatiotemporal dynamics of growth and development of plants. This has resulted in development of functional-structural plant models (FSPMs). In FSPMs, the plant structure is always explicitly represented in terms of a network of elementary units. In this respect, FSPMs are different from more abstract models in which a simplified representation of the plant structure is frequently used (e.g. spatial density of leaves, total biomass, etc.). This key feature makes it possible to build modular models and creates avenues for efficient exchange of model components and experimental data. They are being used to deal with the complex 3-D structure of plants and to simulate growth and development occurring at spatial scales from cells to forest areas, and temporal scales from seconds to decades and many plant generations. The plant types studied also cover a broad spectrum, from algae to trees. This special issue of Annals of Botany features selected papers on FSPM topics such as models of morphological development, models of physical and biological processes, integrated models predicting dynamics of plants and plant communities, modelling platforms, methods for acquiring the 3-D structures of plants using automated measurements, and practical applications for agronomic purposes.

  14. Plant tissue culture of fast-growing trees for phytoremediation research.

    PubMed

    Couselo, José Luis; Corredoira, Elena; Vieitez, Ana M; Ballester, Antonio

    2012-01-01

    The ability of plants to remove pollutants from the environment is currently used in a simple and low-cost cleaning technology known as phytoremediation. Unfortunately, little is known about the metabolic pathways involved in the transformation of xenobiotic compounds and the ability of certain plants to tolerate, detoxify, and store high concentrations of heavy metals. Plant cell and tissue culture is considered an important tool for fundamental studies that provide information about the plant-contaminant relationships, help to predict plant responses to environmental contaminants, and improve the design of plants with enhanced characteristics for phytoremediation. Callus, cell suspensions, hairy roots, and shoot multiplication cultures are used to study the interactions between plants and pollutants under aseptic conditions. Many plant species have an inherent ability to accumulate/metabolize a variety of pollutants, but they normally produce little biomass. However, fast-growing trees are excellent candidates for phytoremediation because of their rapid growth, extensive root system, and high water uptake. This chapter outlines the in vitro plant production of both somaclonal variants and transgenic plants of Populus spp. that exhibit high tolerance to heavy metals.

  15. Evaluation of the antioxidant activity of environmental plants: activity of the leaf extracts from seashore plants.

    PubMed

    Masuda, T; Yonemori, S; Oyama, Y; Takeda, Y; Tanaka, T; Andoh, T; Shinohara, A; Nakata, M

    1999-04-01

    The antioxidant activity of the methanolic extracts of the leaves of 39 plant species was examined. These leaves were collected from the plants growing on subtropical seashores. The activity was evaluated by three kinds of assay methods, which included the DPPH radical scavenging assay, linoleic acid oxidation assay, and oxidative cell death assay. Two extracts from Excoecaria agallocha and Terminalia catappa showed remarkably potent activity in all assay systems. The HPLC analysis of the extracts indicated the presence of the same antioxidant and isolation work for the compound identified ellagic acid. The isolated ellagic acid showed strong antioxidant activity in the assay systems used.

  16. Diurnal patterns of gas-exchange and metabolic pools in tundra plants during three phases of the arctic growing season

    PubMed Central

    Patankar, Rajit; Mortazavi, Behzad; Oberbauer, Steven F; Starr, Gregory

    2013-01-01

    Arctic tundra plant communities are subject to a short growing season that is the primary period in which carbon is sequestered for growth and survival. This period is often characterized by 24-h photoperiods for several months a year. To compensate for the short growing season tundra plants may extend their carbon uptake capacity on a diurnal basis, but whether this is true remains unknown. Here, we examined in situ diurnal patterns of physiological activity and foliar metabolites during the early, mid, and late growing season in seven arctic species under light-saturated conditions. We found clear diurnal patterns in photosynthesis and respiration, with midday peaks and midnight lulls indicative of circadian regulation. Diurnal patterns in foliar metabolite concentrations were less distinct between the species and across seasons, suggesting that metabolic pools are likely governed by proximate external factors. This understanding of diurnal physiology will also enhance the parameterization of process-based models, which will aid in better predicting future carbon dynamics for the tundra. This becomes even more critical considering the rapid changes that are occurring circumpolarly that are altering plant community structure, function, and ultimately regional and global carbon budgets. PMID:23467719

  17. Diurnal patterns of gas-exchange and metabolic pools in tundra plants during three phases of the arctic growing season.

    PubMed

    Patankar, Rajit; Mortazavi, Behzad; Oberbauer, Steven F; Starr, Gregory

    2013-02-01

    Arctic tundra plant communities are subject to a short growing season that is the primary period in which carbon is sequestered for growth and survival. This period is often characterized by 24-h photoperiods for several months a year. To compensate for the short growing season tundra plants may extend their carbon uptake capacity on a diurnal basis, but whether this is true remains unknown. Here, we examined in situ diurnal patterns of physiological activity and foliar metabolites during the early, mid, and late growing season in seven arctic species under light-saturated conditions. We found clear diurnal patterns in photosynthesis and respiration, with midday peaks and midnight lulls indicative of circadian regulation. Diurnal patterns in foliar metabolite concentrations were less distinct between the species and across seasons, suggesting that metabolic pools are likely governed by proximate external factors. This understanding of diurnal physiology will also enhance the parameterization of process-based models, which will aid in better predicting future carbon dynamics for the tundra. This becomes even more critical considering the rapid changes that are occurring circumpolarly that are altering plant community structure, function, and ultimately regional and global carbon budgets.

  18. `Hearing' alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology

    NASA Astrophysics Data System (ADS)

    Vitasse, Yann; Rebetez, Martine; Filippa, Gianluca; Cremonese, Edoardo; Klein, Geoffrey; Rixen, Christian

    2017-02-01

    In alpine environments, the growing season is severely constrained by low temperature and snow. Here, we aim at determining the climatic factors that best explain the interannual variation in spring growth onset of alpine plants, and at examining whether photoperiod might limit their phenological response during exceptionally warm springs and early snowmelts. We analysed 17 years of data (1998-2014) from 35 automatic weather stations located in subalpine and alpine zones ranging from 1560 to 2450 m asl in the Swiss Alps. These stations are equipped with ultrasonic sensors for snow depth measurements that are also able to detect plant growth in spring and summer, giving a unique opportunity to analyse snow and climate effects on alpine plant phenology. Our analysis showed high phenological variation among years, with one exceptionally early and late spring, namely 2011 and 2013. Overall, the timing of snowmelt and the beginning of plant growth were tightly linked irrespective of the elevation of the station. Snowmelt date was the best predictor of plant growth onset with air temperature after snowmelt modulating the plants' development rate. This multiple series of alpine plant phenology suggests that currently alpine plants are directly tracking climate change with no major photoperiod limitation.

  19. `Hearing' alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology

    NASA Astrophysics Data System (ADS)

    Vitasse, Yann; Rebetez, Martine; Filippa, Gianluca; Cremonese, Edoardo; Klein, Geoffrey; Rixen, Christian

    2016-08-01

    In alpine environments, the growing season is severely constrained by low temperature and snow. Here, we aim at determining the climatic factors that best explain the interannual variation in spring growth onset of alpine plants, and at examining whether photoperiod might limit their phenological response during exceptionally warm springs and early snowmelts. We analysed 17 years of data (1998-2014) from 35 automatic weather stations located in subalpine and alpine zones ranging from 1560 to 2450 m asl in the Swiss Alps. These stations are equipped with ultrasonic sensors for snow depth measurements that are also able to detect plant growth in spring and summer, giving a unique opportunity to analyse snow and climate effects on alpine plant phenology. Our analysis showed high phenological variation among years, with one exceptionally early and late spring, namely 2011 and 2013. Overall, the timing of snowmelt and the beginning of plant growth were tightly linked irrespective of the elevation of the station. Snowmelt date was the best predictor of plant growth onset with air temperature after snowmelt modulating the plants' development rate. This multiple series of alpine plant phenology suggests that currently alpine plants are directly tracking climate change with no major photoperiod limitation.

  20. 'Hearing' alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology.

    PubMed

    Vitasse, Yann; Rebetez, Martine; Filippa, Gianluca; Cremonese, Edoardo; Klein, Geoffrey; Rixen, Christian

    2017-02-01

    In alpine environments, the growing season is severely constrained by low temperature and snow. Here, we aim at determining the climatic factors that best explain the interannual variation in spring growth onset of alpine plants, and at examining whether photoperiod might limit their phenological response during exceptionally warm springs and early snowmelts. We analysed 17 years of data (1998-2014) from 35 automatic weather stations located in subalpine and alpine zones ranging from 1560 to 2450 m asl in the Swiss Alps. These stations are equipped with ultrasonic sensors for snow depth measurements that are also able to detect plant growth in spring and summer, giving a unique opportunity to analyse snow and climate effects on alpine plant phenology. Our analysis showed high phenological variation among years, with one exceptionally early and late spring, namely 2011 and 2013. Overall, the timing of snowmelt and the beginning of plant growth were tightly linked irrespective of the elevation of the station. Snowmelt date was the best predictor of plant growth onset with air temperature after snowmelt modulating the plants' development rate. This multiple series of alpine plant phenology suggests that currently alpine plants are directly tracking climate change with no major photoperiod limitation.

  1. Monitoring of Solar Radiation Intensity using Wireless Sensor Network for Plant Growing

    NASA Astrophysics Data System (ADS)

    Siregar, B.; Fadli, F.; Andayani, U.; Harahap, LA; Fahmi, F.

    2017-01-01

    Abstract— Plant growth is highly depending on the sunlight, if the consumption of sunlight is enough, it will grow well. The plant will be green because of its chlorophyll and it can perform photosynthesis at maximum; but if the plants get less sunlight, it will make the plants be yellowing. Radiation is electromagnetic waves that are good for plants, so-called visible light. In the electromagnetic wave spectrum the best wavelength range from 400-700 nm for the plant. A monitoring of sun intensity is needed in order to obtain sufficient solar radiation consumption and provide notification if there is a high radiation. In this study, several sensors and devices were combined such as photosynthetic solar radiation sensors, GSM / GPRS and waspmote as a main board or a microcontroller. The test was carried out on at least three occasions; the system has a stable radiation in the morning with an average of 505.51 micrometers. IN this study, we have successfully developed a monitoring tools for solar radiation intensity applied on plant growth by using wireless sensor network.

  2. Root growth, mycorrhization and physiological effects of plants growing on oil tailing sands

    NASA Astrophysics Data System (ADS)

    Boldt-Burisch, Katja M.; Naeth, Anne M.; Schneider, Bernd Uwe; Hüttl, Reinhard F.

    2015-04-01

    Surface mining creates large, intense disturbances of soils and produces large volumes of by-products and waste materials. After mining processes these materials often provide the basis for land reclamation and ecosystem restoration. In the present study, tailing sands (TS) and processed mature fine tailings (pMFT) from Fort McMurray (Alberta, Canada) were used. They represent challenging material for ecosystem rebuilding because of very low nutrient contents of TS and oil residuals, high density of MFT material. In this context, little is known about the interactions of pure TS, respectively mixtures of TS and MFT and root growth, mycorrhization and plant physiological effects. Four herbaceous plant species (Elymus trachycaulus, Koeleria macrantha, Deschampsia cespitosa, Lotus corniculatus) were chosen to investigate root development, chlorophyll fluorescence and mycorrhization intensity with and without application of Glomus mosseae (arbuscular mycorrhizae) on mainly tailing sands. Surprisingly both, plants growing on pure TS and plants growing on TS with additional AM-application showed mycorrhization of roots. In general, the mycorrhization intensity was lower for plants growing on pure tailings sands, but it is an interesting fact that there is a potential for mycorrhization available in tailing sands. The mycorrhizal intensity strongly increased with application of G. mosseae for K. macrantha and L. corniculatus and even more for E. trachycaulus. For D. cespitosa similar high mycorrhiza infection frequency was found for both variants, with and without AM-application. By the application of G. mosseae, root growth of E. trachycaulus and K. macrantha was significantly positively influenced. Analysis of leaf chlorophyll fluorescence showed no significant differences for E. trachycaulus but significant positive influence of mycorrhizal application on the physiological status of L. corniculatus. However, this effect could not be detected when TS was mixed with MFT

  3. Control of water and nutrients using a porous tube - A method for growing plants in space

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.; Sager, John C.

    1989-01-01

    A plant nutrient delivery system that uses a microporous, hydrophilic tube was developed with potential application for crop production in the microgravity of space. The tube contains a nutrient solution and delivers it to the roots. Pumps attached to the tubing create a very small suction that holds the solution within the tube. This system was used to grow wheat for 107 d in a controlled environment at suctions of 0.40, 1.48, or 2.58 kPa. The water absorbed through the pores of the tube by baby diaper sections decreased as suction increased. Correspondingly, final plant biomass, seed number, and spikelet number also tended to decrease as suction increased. The reduced yield at higher suction suggests that the plants experienced water stress, although all suctions were below those typical of soils at field capacity.

  4. The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants.

    PubMed

    Angel, Roey; Conrad, Ralf; Dvorsky, Miroslav; Kopecky, Martin; Kotilínek, Milan; Hiiesalu, Inga; Schweingruber, Fritz; Doležal, Jiří

    2016-08-01

    Upward migration of plants to barren subnival areas is occurring worldwide due to raising ambient temperatures and glacial recession. In summer 2012, the presence of six vascular plants, growing in a single patch, was recorded at an unprecedented elevation of 6150 m.a.s.l. close to the summit of Mount Shukule II in the Western Himalayas (Ladakh, India). Whilst showing multiple signs of stress, all plants have managed to establish stable growth and persist for several years. To learn about the role of microbes in the process of plant upward migration, we analysed the root-associated microbial community of the plants (three individuals from each) using microscopy and tagged amplicon sequencing. No mycorrhizae were found on the roots, implying they are of little importance to the establishment and early growth of the plants. However, all roots were associated with a complex bacterial community, with richness and diversity estimates similar or even higher than the surrounding bare soil. Both soil and root-associated communities were dominated by members of the orders Sphingomonadales and Sphingobacteriales, which are typical for hot desert soils, but were different from communities of temperate subnival soils and typical rhizosphere communities. Despite taxonomic similarity on the order level, the plants harboured a unique set of highly dominant operational taxonomic units which were not found in the bare soil. These bacteria have been likely transported with the dispersing seeds and became part of the root-associated community following germination. The results indicate that developing soils act not only as a source of inoculation to plant roots but also possibly as a sink for plant-associated bacteria.

  5. [Genetic effects in populations of plants growing in the zone of Kyshtym and Chernobyl accidents].

    PubMed

    Shevchenko, V A; Kal'chenko, V A; Abramov, V I; Rubanovich, A V; Shevchenko, V V; Grinikh, L I

    1999-01-01

    Studies to analyze the genetic processes in natural populations of plants were started on the territory of the East-Ural Radioactive Trace (EURT) in 1962 and in the zone of the Chernobyl accident in May 1986. The main directions of the genetic studies in both radioactive areas were similar: 1) study of the mutation process intensity depending on the dose and dose rate and analysis of dose-effect relationships for different genetic changes (point mutations, chromosome aberrations in mitosis and meiosis) in irradiated plant populations; 2) study of the mutation process dynamics in generations of chronically (prolongly) irradiated populations of plants; 3) analysis of microevolutionary processes in irradiated plant populations. The report presents an analysis of observed dose-effect relationships under the action of radiation on populations of Arabidopsis thaliana, Pinus sylvestris and a number of other plant species. Analysis of the mutation processes dynamics in 8 Arabidopsis populations growing in the zone of the Chernobyl catastrophe has demonstrated that the level of the embryo lethal mutations 10 years after the accident in the irradiated populations significantly exceeds the control level. The following phenomena observed in chronically irradiated populations have also been considered: increased radioresistance of irradiated populations (radioadaptation), the appearance of abnormal karyotypes and selective markers upon chronic irradiation. The authors call attention to the high importance of monitoring of genetic processes in irradiated plant populations for understanding of the action of radiation on human populations.

  6. Aluminium-phosphorus interactions in plants growing on acid soils: does phosphorus always alleviate aluminium toxicity?

    PubMed

    Chen, Rong Fu; Zhang, Fu Lin; Zhang, Qi Ming; Sun, Qing Bin; Dong, Xiao Ying; Shen, Ren Fang

    2012-03-30

    Aluminium (Al) toxicity and phosphorus (P) deficiency are considered to be the main constraints for crop production in acid soils, which are widely distributed in tropical and subtropical regions. Conventionally, P addition is regarded as capable of alleviating Al toxicity in plants. However, this field is still rife with unsubstantiated theories, especially for different plant species growing on acid soils. In this review, the responses of plants to different methods of Al-P treatments are briefly summarized, and possible reasons are proposed by considering recent results from our laboratory. It is shown that: (1) long-term Al-P alternate treatment is advantageous for studying Al-P interactions in plants; (2) under the long-term Al-P alternate treatment, the roles of P in Al phytotoxicity might be associated with the Al resistance capability and P use efficiency of the plant, and a P/Al molar ratio exceeding 5 in roots may be the threshold of P alleviating Al toxicity based on the calculation of the tested plants; (3) in acid soils, P application may be effective only after Al stress is overcome for Al-sensitive species. Thus it is concluded that P application does not always alleviate Al toxicity under long-term Al-P alternate treatment.

  7. [SCREENING OF WILD SPREAD AND CULTIVATED OF BUXUS SPECIES GROWING IN GEORGIA ON THE CONTENT OF ALKALOIDS AND BIOLOGICAL ACTIVITY].

    PubMed

    Vachnadze, N; Mchedlidze, Q; Novikova, J; Suladze, T; Vachnadze, V

    2016-07-01

    Georgian flora is represented by about 4150 plant species. Many important alkaloid-containing plant species and among of them are species Buxus L. of genus in Adjara. The aims of the research were: sequential screening of the plants for the consistence of alkaloids; Study of anatomical characteristics of Buxus colchica Pojark. and revealing of specific pharmacological activity of steroidal alkaloids. The objects of research were B. colchica, B. balearika and B. sempervirens, growing in Adjara (Georgia), collected in active phase of flowering of the plants. There were revealed 370 species of alkaloid containing plants. Sum of alkaloids and crude aqueous extract have spasmolitic and antihistaminic activity. Experimental anatomical research of diagnostic characteristics of the bines showed the existence of monocyclic transient system with fiber like tracheids, dorsoventral mesophyll of the leaves; the structure for the upper part of epidermis is linear and the lower part is curved, type of stomata is paracitic.

  8. Light Sheet Fluorescence Microscopy of Plant Roots Growing on the Surface of a Gel

    PubMed Central

    von Wangenheim, Daniel; Hauschild, Robert; Friml, Jiří

    2017-01-01

    One of the key questions in understanding plant development is how single cells behave in a larger context of the tissue. Therefore, it requires the observation of the whole organ with a high spatial- as well as temporal resolution over prolonged periods of time, which may cause photo-toxic effects. This protocol shows a plant sample preparation method for light-sheet microscopy, which is characterized by mounting the plant vertically on the surface of a gel. The plant is mounted in such a way that the roots are submerged in a liquid medium while the leaves remain in the air. In order to ensure photosynthetic activity of the plant, a custom-made lighting system illuminates the leaves. To keep the roots in darkness the water surface is covered with sheets of black plastic foil. This method allows long-term imaging of plant organ development in standardized conditions. PMID:28190052

  9. Design and implementation of components for a bioregenerative system for growing higher order plants in space

    NASA Technical Reports Server (NTRS)

    Brakman, B.; Dioso, L.; Parker, D.; Segal, L.; Merriman, C.; Howard, I.; Vu, H.; Anderson, K.; Riley, S.; Amery, D.

    1989-01-01

    This report summarizes the efforts of the NASA/USRA Advanced Design Program during the 1988-89 scholastic year. The primary goal was to address specific needs in the design of an integrated system to grow higher order plants in space. The initial phase of the design effort concentrated on studying such a system and identifying its needs. Once these needs were defined, emphasis was placed on the design and fabrication of devices to meet them. Specific attention was placed on a hand-held harvester, a nutrient concentration sensor, an air-water separator, and a closed-loop biological system simulation.

  10. Antifertility activity of medicinal plants.

    PubMed

    Daniyal, Muhammad; Akram, Muhammad

    2015-07-01

    The aim of this review was to provide a comprehensive summary of medicinal plants used as antifertility agents in females throughout the world by various tribes and ethnic groups. We undertook an extensive bibliographic review by analyzing classical text books and peer reviewed papers, and further consulting well accepted worldwide scientific databases. We performed CENTRAL, Embase, and PubMed searches using terms such as "antifertility", "anti-implantation", "antiovulation", and "antispermatogenic" activity of plants. Plants, including their parts and extracts, that have traditionally been used to facilitate antifertility have been considered as antifertility agents. In this paper, various medicinal plants have been reviewed for thorough studies such as Polygonum hydropiper Linn, Citrus limonum, Piper nigrum Linn, Juniperis communis, Achyanthes aspera, Azadirachta indica, Tinospora cordifolia, and Barleria prionitis. Many of these medicinal plants appear to act through an antizygotic mechanism. This review clearly demonstrates that it is time to expand upon experimental studies to source new potential chemical constituents from medicinal plants; plant extracts and their active constituents should be further investigated for their mechanisms. This review creates a solid foundation upon which to further study the efficacy of plants that are both currently used by women as traditional antifertility medicines, but also could be efficacious as an antifertility agent with additional research and study.

  11. Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide

    PubMed Central

    Leakey, Andrew D. B.; Xu, Fangxiu; Gillespie, Kelly M.; McGrath, Justin M.; Ainsworth, Elizabeth A.; Ort, Donald R.

    2009-01-01

    Photosynthetic and respiratory exchanges of CO2 by plants with the atmosphere are significantly larger than anthropogenic CO2 emissions, and these fluxes will change as growing conditions are altered by climate change. Understanding feedbacks in CO2 exchange is important to predicting future atmospheric [CO2] and climate change. At the tissue and plant scale, respiration is a key determinant of growth and yield. Although the stimulation of C3 photosynthesis by growth at elevated [CO2] can be predicted with confidence, the nature of changes in respiration is less certain. This is largely because the mechanism of the respiratory response is insufficiently understood. Molecular, biochemical and physiological changes in the carbon metabolism of soybean in a free-air CO2 enrichment experiment were investigated over 2 growing seasons. Growth of soybean at elevated [CO2] (550 μmol·mol−1) under field conditions stimulated the rate of nighttime respiration by 37%. Greater respiratory capacity was driven by greater abundance of transcripts encoding enzymes throughout the respiratory pathway, which would be needed for the greater number of mitochondria that have been observed in the leaves of plants grown at elevated [CO2]. Greater respiratory quotient and leaf carbohydrate content at elevated [CO2] indicate that stimulated respiration was supported by the additional carbohydrate available from enhanced photosynthesis at elevated [CO2]. If this response is consistent across many species, the future stimulation of net primary productivity could be reduced significantly. Greater foliar respiration at elevated [CO2] will reduce plant carbon balance, but could facilitate greater yields through enhanced photoassimilate export to sink tissues. PMID:19204289

  12. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants.

    PubMed

    Medina, E; Paredes, C; Pérez-Murcia, M D; Bustamante, M A; Moral, R

    2009-09-01

    This research work was conducted in order to investigate the possibility of using spent mushroom substrate (SMS) in the production of horticultural seedlings replacing part of the peat in the growing media. Three vegetable species with different salt sensitivities, the less sensitive being tomato (Lycopersicon esculentum var. Muchamiel), the moderately salt-sensitive being courgette (Cucurbita pepo L. var. Afrodite F1) and the most salt-sensitive being pepper (Capsicum annum L. var. Lamuyo F1) were grown in 12 media containing SMS of two types of mushroom (Agaricus bisporus (SMS-AB) and Pleurotus ostreatus (SMS-PO)) or a mixture of both 50% (v/v) (SMS-50), as well as peat in various ratios. The proportions of each residue in the mixtures elaborated with peat were 25%, 50%, 75% and 100% v/v residue. A substrate of 100% peat was used as control. The experiment was arranged in a completely-randomised design with two replicates per treatment under greenhouse conditions. Prior to sowing, some physical, physico-chemical and chemical properties of the growing media were determined and seed germination and fresh weight of seedling were also measured. In most of the cases, the addition of SMS to the growing media produced an increase in the pH values, salt contents, macro and micronutrient concentrations and a decrease in the water holding capacity contents in comparison to peat, whereas great differences were found in the air capacity values between SMS-based substrates and peat. Up to 75% SMS can be used in mixtures with peat for seed germination of the plant species studied. Regarding the most suitable SMS-based substrates for plant growth, any substrate could be used for tomato seedling production. However, all SMS-AB-based substrates and the media containing low dose of SMS-PO and SMS-50 were adequate for growth of courgette and pepper.

  13. Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging1[OPEN

    PubMed Central

    Kochs, Johannes; Pflugfelder, Daniel

    2016-01-01

    Precise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g. hydroponics), are severely restricted in the fraction of roots detectable (e.g. rhizotrons), or are destructive (e.g. soil coring). On the other hand, modalities such as magnetic resonance imaging (MRI) are noninvasive and allow high-quality three-dimensional imaging of roots in soil. Here, we present a plant root imaging and analysis pipeline using MRI together with an advanced image visualization and analysis software toolbox named NMRooting. Pots up to 117 mm in diameter and 800 mm in height can be measured with the 4.7 T MRI instrument used here. For 1.5 l pots (81 mm diameter, 300 mm high), a fully automated system was developed enabling measurement of up to 18 pots per day. The most important root traits that can be nondestructively monitored over time are root mass, length, diameter, tip number, and growth angles (in two-dimensional polar coordinates) and spatial distribution. Various validation measurements for these traits were performed, showing that roots down to a diameter range between 200 μm and 300 μm can be quantitatively measured. Root fresh weight correlates linearly with root mass determined by MRI. We demonstrate the capabilities of MRI and the dedicated imaging pipeline in experimental series performed on soil-grown maize (Zea mays) and barley (Hordeum vulgare) plants. PMID:26729797

  14. Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants.

    PubMed

    Piñeros, Miguel A; Larson, Brandon G; Shaff, Jon E; Schneider, David J; Falcão, Alexandre Xavier; Yuan, Lixing; Clark, Randy T; Craft, Eric J; Davis, Tyler W; Pradier, Pierre-Luc; Shaw, Nathanael M; Assaranurak, Ithipong; McCouch, Susan R; Sturrock, Craig; Bennett, Malcolm; Kochian, Leon V

    2016-03-01

    A plant's ability to maintain or improve its yield under limiting conditions, such as nutrient deficiency or drought, can be strongly influenced by root system architecture (RSA), the three-dimensional distribution of the different root types in the soil. The ability to image, track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyping software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimensional RSA of the plant root system, while allowing for aeration, solution replenishment and the imposition of nutrient treatments, as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modifications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity (detection of fine roots and other root details), higher efficiency, and a broad array of growing conditions for plants that more closely mimic those found under field conditions.

  15. Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging.

    PubMed

    van Dusschoten, Dagmar; Metzner, Ralf; Kochs, Johannes; Postma, Johannes A; Pflugfelder, Daniel; Bühler, Jonas; Schurr, Ulrich; Jahnke, Siegfried

    2016-03-01

    Precise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g. hydroponics), are severely restricted in the fraction of roots detectable (e.g. rhizotrons), or are destructive (e.g. soil coring). On the other hand, modalities such as magnetic resonance imaging (MRI) are noninvasive and allow high-quality three-dimensional imaging of roots in soil. Here, we present a plant root imaging and analysis pipeline using MRI together with an advanced image visualization and analysis software toolbox named NMRooting. Pots up to 117 mm in diameter and 800 mm in height can be measured with the 4.7 T MRI instrument used here. For 1.5 l pots (81 mm diameter, 300 mm high), a fully automated system was developed enabling measurement of up to 18 pots per day. The most important root traits that can be nondestructively monitored over time are root mass, length, diameter, tip number, and growth angles (in two-dimensional polar coordinates) and spatial distribution. Various validation measurements for these traits were performed, showing that roots down to a diameter range between 200 μm and 300 μm can be quantitatively measured. Root fresh weight correlates linearly with root mass determined by MRI. We demonstrate the capabilities of MRI and the dedicated imaging pipeline in experimental series performed on soil-grown maize (Zea mays) and barley (Hordeum vulgare) plants.

  16. An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions

    PubMed Central

    2014-01-01

    Background Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. Results We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. Conclusions The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes. PMID:24649917

  17. Growing Slowly 1 locus encodes a PLS-type PPR protein required for RNA editing and plant development in Arabidopsis

    PubMed Central

    Xie, Tingting; Chen, Dan; Wu, Jian; Huang, Xiaorong; Wang, Yifan; Tang, Keli; Li, Jiayang; Sun, Mengxiang; Peng, Xiongbo

    2016-01-01

    Most pentatricopeptide repeat (PPR) proteins are involved in organelle post-transcriptional processes, including RNA editing. The PPR proteins include the PLS subfamily, containing characteristic triplets of P, L, and S motifs; however, their editing mechanisms and roles in developmental processes are not fully understood. In this study, we isolated the Arabidopsis thaliana Growing slowly 1 (AtGRS1) gene and showed that it functions in RNA editing and plant development. Arabidopsis null mutants of grs1 exhibit slow growth and sterility. Further analysis showed that cell division activity was reduced dramatically in the roots of grs1 plants. We determined that GRS1 is a nuclear-encoded mitochondria-localized PPR protein, and is a member of the PLS subfamily. GRS1 is responsible for the RNA editing at four specific sites of four mitochondrial mRNAs: nad1-265, nad4L-55, nad6-103, and rps4-377. The first three of these mRNAs encode for the subunits of complex I of the electron transport chain in mitochondria. Thus, the activity of complex I is strongly reduced in grs1. Changes in RPS4 editing in grs1 plants affect mitochondrial ribosome biogenesis. Expression of the alternative respiratory pathway and the abscisic acid response gene ABI5 were up-regulated in grs1 mutant plants. Genetic analysis revealed that ABI5 is involved in the short root phenotype of grs1. Taken together, our results indicate that AtGRS1 regulates plant development by controlling RNA editing in Arabidopsis. PMID:27670716

  18. Hyperaccumulator of Pb in native plants growing on Peruvian mine tailings

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Roca, Nuria; Boluda, Rafael; Tume, Pedro; Duran, Paola; Poma, Wilfredo; Sanchez, Isidoro

    2014-05-01

    Tailings usually provide an unfavourable substrate for plant growth because of their extreme pH, low organic matter and nutrients, high concentrations of trace elements and physical disturbance, such as bad soil structure, and low water availability. Heavy metal contamination has also been one serious problem in the vicinity of mine sites due to the discharge and dispersion of mine-waste materials into the ecosystem. Moreover, Pb is considered a target metal when undertaking soil remediation, because it is usually quite immobile and not readily accumulated in upper plant parts. The presence of vegetation reduces water and wind erosion, which may decrease the downward migration of contaminants into the groundwater and improve aesthetical aspects. Plants growing on naturally metal-enriched soils are of particular interest in this perspective, since they are genetically tolerant to high metal concentrations, have an excellent adaptation to this multi-stress environment. Efficient phytoextraction requires plant species combining both high metal tolerance and elevated capacity for metal uptake and metal translocation to easily harvestable plant organs (e.g. shoots). Soil and plant samples were taken in Peru, at a polymetallic mine (mainly Ag, Pb and Cu) in Cajamarca Province, Hualgayoc district. Top soils (0-20 cm) were analysed for physical and chemical properties by standard methods. Total Pb concentrations in top soils were determined by ICP-OES. Pb content in plants were analysed separately (aerial and root system) by ICP-MS. Ti content was used as an indicator for contamination of plant samples with soil particles. Translocation Factor (TF) and Shoot Accumulation Factor (SAF) were determined to assess the tolerance strategies developed by these species and to evaluate their potential for phytoremediation purposes. The non-polluted soils had near neutral pH (6.8±0.1), a great content of organic carbon (42 ± 4.0 g•kg-1) and a silt loamy texture. Soil and plant

  19. Antiprotozoal activities of Colombian plants.

    PubMed

    Weniger, B; Robledo, S; Arango, G J; Deharo, E; Aragón, R; Muñoz, V; Callapa, J; Lobstein, A; Anton, R

    2001-12-01

    In our search for therapeutical alternatives for antiprotozoal chemotherapy, we collected a selection of 44 plants from western Colombia upon ethnopharmacological and chemotaxonomic considerations. Polar and apolar extracts of these species were examined for antimalarial activity using in vitro tests with two clones of Plasmodium falciparum. Leishmanicidal and trypanocidal activity were determined in vitro using promastigote and amastigote forms of several strains of Leishmania sp. and epimastigotes of Trypanosoma cruzi. Among the selected plants, the 15 following species showed good or very good antiprotozoal activity in vitro: Aspidosperma megalocarpon, Campnosperma panamense, Conobea scoparioides, Guarea polymera, Guarea guidonia, Guatteria amplifolia, Huberodendron patinoi, Hygrophila guianensis, Jacaranda caucana, Marila laxiflora, Otoba novogranatensis, Otoba parviflora, Protium amplium, Swinglea glutinosa and Tabernaemontana obliqua. Cytotoxicity was assessed in U-937 cells and the ratio of cytotoxicity to antiprotozoal activity was determined for the active extracts. Ten extracts from eight species showed selectivity indexes > or = 10. Among the extracts that showed leishmanicidal activity, the methylene chloride extract of leaves from C. scoparioides showed a selectivity index in the same range that the one of the Glucantime control. Several of the active leishmanicidal plants are traditionally used against leishmaniasis by the population of the concerned area.

  20. HPLC-UV-ESI-MS analysis of phenolic compounds and antioxidant properties of Hypericum undulatum shoot cultures and wild-growing plants.

    PubMed

    Rainha, Nuno; Koci, Kamila; Coelho, Ana Varela; Lima, Elisabete; Baptista, José; Fernandes-Ferreira, Manuel

    2013-02-01

    LC-UV and LC-MS analysis were used to study the phenolic composition of water extracts of Hypericum undulatum (HU) shoot cultures and wild-growing (WG) plants. Total phenolic content (TPC), determined using the Folin-Ciocalteu assay, and the antioxidant activity measured by two complementary methods were also performed for each sample. Mass spectrometry revealed several phenolics acids with quinic acid moieties, flavonols, mostly quercetin, luteolin and apigenin glycosides, flavan-3-ols (catechin and epicatechin) and the xanthonoid mangiferin. Differences in phenolic composition profile and TPC were found between the samples. The major phenolic in HU culture-growing (CG) samples is chlorogenic acid, followed by epicatechin, quercitrin and isoquercitrin. The WG plants presents hyperoside as the main phenolic, followed by isoquercitrin, chlorogenic acid and quercetin. The TPC and antioxidant activity were higher in samples from WG plants.

  1. Testing fungistatic properties of soil-like substrate for growing plants in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Enzhu, Hu; Nesterenko, Elena; Liu, Professor Hong; Manukovsky, N. S.; Kovalev, Vladimir; Gurevich, Yu.; Kozlov, Vladimir; Khizhnyak, Serge; Xing, Yidong; Hu, Enzhu; Enzhu, Hu

    There are two ways of getting vegetable food in BLSS: in hydroponic culture and on soil substrates. In any case there is a chance that the plants will be affected by plant pathogenic microorganisms. The subject of the research was a soil-like substrate (SLS) for growing plants in a Bioregenerative Life Support System (BLSS). We estimated the fungistatic properties of SLS using test cultures of Bipolaris and Alternaria plant pathogenic fungi. Experiments were made with the samples of SLS, natural soil and sand (as control). We tested 2 samples of SLS produced by way of bioconversion of wheat and rice straw. We measured the disease severity of wheat seedlings and the incidence of common root rot in natural (non-infectious) background and man-made (infectious) conditions. The severity of disease on the SLS was considerably smaller both in non-infectious and infectious background conditions (8 and 12%) than on the natural soil (18 and 32%) and sand. It was the soil-like substrate that had the minimal value among the variants being compared (20% in non-infectious and 40% in infectious background conditions). This index in respect of the soil was 55 and 78%, correspondingly, and in respect of the sand - 60%, regardless of the background. It was found that SLS significantly suppressed conidia germination of Bipolaris soroikiniana (p<0.001). In the presence of SLS germination of conidia decreased to 9.9 - 12.2% of the control value. No significant differences were found between SLS samples obtained from wheat and rice straw.

  2. Reserves accumulated in non-photosynthetic organs during the previous growing season drive plant defenses and growth in aspen in the subsequent growing season.

    PubMed

    Najar, Ahmed; Landhäusser, Simon M; Whitehill, Justin G A; Bonello, Pierluigi; Erbilgin, Nadir

    2014-01-01

    Plants store non-structural carbohydrates (NSC), nitrogen (N), as well as other macro and micronutrients, in their stems and roots; the role of these stored reserves in plant growth and defense under herbivory pressure is poorly understood, particularly in trees. Trembling aspen (Populus tremuloides) seedlings with different NSC and N reserves accumulated during the previous growing season were generated in the greenhouse. Based on NSC and N contents, seedlings were assigned to one of three reserve statuses: Low N-Low NSC, High N-Medium NSC, or High N-High NSC. In the subsequent growing season, half of the seedlings in each reserve status was subjected to defoliation by forest tent caterpillar (Malacosoma disstria) while the other half was left untreated. Following defoliation, the effect of reserves was measured on foliar chemistry (N, NSC) and caterpillar performance (larval development). Due to their importance in herbivore feeding, we also quantified concentrations of phenolic glycoside compounds in foliage. Seedlings in Low N-Low NSC reserve status contained higher amounts of induced phenolic glycosides, grew little, and supported fewer caterpillars. In contrast, aspen seedlings in High N-Medium or High NSC reserve statuses contained lower amounts of induced phenolic glycosides, grew faster, and some of the caterpillars which fed on these seedlings developed up to their fourth instar. Furthermore, multiple regression analysis indicated that foliar phenolic glycoside concentration was related to reserve chemistry (NSC, N). Overall, these results demonstrate that reserves accumulated during the previous growing season can influence tree defense and growth in the subsequent growing season. Additionally, our study concluded that the NSC/N ratio of reserves in the previous growing season represents a better measure of resources available for use in defense and growth than the foliar NSC/N ratios.

  3. Growing Places. A Manual on the Planting and Care of Places that Grow, in which Children Can.

    ERIC Educational Resources Information Center

    Schoolworks, Inc., New York, NY.

    A manual in newspaper format, this is a portfolio/resume of a non-profit group's activities in making places and things for children. It includes stories of projects, experiences with children, ideas to share, the history of the group, and useful information about creating furniture, toys, and textured interiors and environments that encourage the…

  4. Activities to Grow On: Buttons, Beads, and Beans.

    ERIC Educational Resources Information Center

    Gonzolis, Amy; And Others

    1992-01-01

    Presents new ideas for using buttons, beans, and beads as teaching manipulatives for elementary school children. The ideas include a button scavenger hunt, a button count, a cup puppet bean game, a numbers guessing game with beans in jars, and a bead stringing activity. (SM)

  5. Contrasting Metabolism in Perenniating Structures of Upland and Lowland Switchgrass Plants Late in the Growing Season

    PubMed Central

    Tobias, Christian M.; Twigg, Paul; Xia, Yuannan; Vogel, Kenneth P.; Madhavan, Soundararajan; Sattler, Scott E.; Sarath, Gautam

    2014-01-01

    Background Switchgrass (Panicum virgatum L.) is being developed as a bioenergy crop for many temperate regions of the world. One way to increase biomass yields is to move southern adapted lowland cultivars to more northern latitudes. However, many southerly adapted switchgrass germplasm can suffer significant winter kill in northerly climes. Materials and Methods Here, we have applied next-generation sequencing in combination with biochemical analyses to query the metabolism of crowns and rhizomes obtained from two contrasting switchgrass cultivars. Crowns and rhizomes from field-grown lowland (cv Kanlow) and upland (cv Summer) switchgrass cultivars were collected from three randomly selected post-flowering plants. Summer plants were senescing, whereas Kanlow plants were not at this harvest date. Results Principal component analysis (PCA) differentiated between both the Summer and Kanlow transcriptomes and metabolomes. Significant differences in transcript abundances were detected for 8,050 genes, including transcription factors such as WRKYs and those associated with phenylpropanoid biosynthesis. Gene-set enrichment analyses showed that a number of pathways were differentially up-regulated in the two populations. For both populations, protein levels and enzyme activities agreed well with transcript abundances for genes involved in the phenylpropanoid pathway that were up-regulated in Kanlow crowns and rhizomes. The combination of these datasets suggests that dormancy-related mechanisms had been triggered in the crowns and rhizomes of the Summer plants, whereas the crowns and rhizomes of Kanlow plants had yet to enter dormancy. Conclusions Delayed establishment of dormancy at more northerly latitudes could be one factor that reduces winter-survival in the high-yielding Kanlow plants. Understanding the cellular signatures that accompany the transition to dormancy can be used in the future to select plants with improved winter hardiness. PMID:25133804

  6. A Novel Growing Device Inspired by Plant Root Soil Penetration Behaviors

    PubMed Central

    Sadeghi, Ali; Tonazzini, Alice; Popova, Liyana; Mazzolai, Barbara

    2014-01-01

    Moving in an unstructured environment such as soil requires approaches that are constrained by the physics of this complex medium and can ensure energy efficiency and minimize friction while exploring and searching. Among living organisms, plants are the most efficient at soil exploration, and their roots show remarkable abilities that can be exploited in artificial systems. Energy efficiency and friction reduction are assured by a growth process wherein new cells are added at the root apex by mitosis while mature cells of the root remain stationary and in contact with the soil. We propose a new concept of root-like growing robots that is inspired by these plant root features. The device penetrates soil and develops its own structure using an additive layering technique: each layer of new material is deposited adjacent to the tip of the device. This deposition produces both a motive force at the tip and a hollow tubular structure that extends to the surface of the soil and is strongly anchored to the soil. The addition of material at the tip area facilitates soil penetration by omitting peripheral friction and thus decreasing the energy consumption down to 70% comparing with penetration by pushing into the soil from the base of the penetration system. The tubular structure provides a path for delivering materials and energy to the tip of the system and for collecting information for exploratory tasks. PMID:24587244

  7. Screening of metal uptake by plant colonizers growing on abandoned copper mine in Kapunda, South Australia.

    PubMed

    Nirola, Ramkrishna; Megharaj, Mallavarapu; Aryal, Rupak; Naidu, Ravi

    2016-01-01

    Systematic site survey for sample collection and analysis was conducted at a derelict copper (Cu) mine at Kapunda, South Australia. Cu concentrations in the soils at this former mine ranged from 65-10107 mg kg(-1). The pH and EC varied widely in the 3.9-8.4 and 152-7311 µS ranges, respectively. Nine plant species growing over the copper mine site were selected to screen for metal uptake to determine their suitability for phytoremediation. The Australian native tree species Eucalyptus camaldulensis indicated enrichment factor (EF) of 2.17, 1.89, and 1.30 for Cu, Zn, and Pb, respectively, suggesting that this species of tree can accumulate these metals to some degree. The stress-resistant exotic olive, Olea europaea exhibited EF of ≤ 0.01 for Cu, Cd, and Pb, and 0.29 for Zn, which is characteristic of an excluder plant. Acacia pycnantha, the Australian pioneer legume species with EF 0.03, 0.80, 0.32, and 0.01 for Cu, Zn, Cd, and Pb, respectively, emerged as another strong metal excluder and consequently as an ideal metal stabilizer.

  8. A Comparative study of Volatile Organic Compounds from two desert plant species growing in Southern Arizona

    NASA Astrophysics Data System (ADS)

    Paasche, K. M.; Meyers, K.; Jardine, K.

    2012-12-01

    Throughout their lives, plants are subjected to a multitude of stressors, ranging from herbivory to changes in weather. In order to survive, plants have created an arsenal of volatile organic compounds (VOCs), including green leaf volatiles (GLVs) and aromatic compounds, to combat these stressors. In this study, two plant species, Baccharis salicifolia (Seep willow) and Dodonaea viscosa (Hopbush) were examined for isoprenoids, GLVs, and aromatic compound emissions. Although, the species are not related, they should share some emitted compounds as they can be seen growing in the same environment, though the majority of the emitted compounds should remain unique to each species type. Both the Seep willow, sampled in Catalina State Park, and the Hopbush, sampled at Biosphere 2, were sampled using a Teflon bag enclosure connected to an apex lite air-sampling device and a thermal desorption (TD) tube, which was used to collect the emitted compounds. TD tube samples were analyzed using a Unity 2 thermal desorption system, which was directly connected to a 5975C series gas chromatograph/electron impact mass spectrometer with a triple-axis detector. The major compounds emitted from the Seep willow were GLVs (Octanal, Decanal, and Nonanal) and aromatics (Benzoic acid, Benzaldehyde, 1,2,3-Trifluorobenzene, and Acetophenone). The major compounds emitted from the Hopbush were isoprene and monoterpenes (1R-α-Pinene, Limonene, and α-Phellandrene.) Our results show the two species emit completely different compounds from each other, which could indicate adaptive differences. The Hopbush may be a hardier species better adapted to the Arizona environment as isoprene and monoterpenes have been indicated in thermo tolerance. GLVs on the other hand indicate the Seep willow is under severe stress.

  9. Compost-based growing media: influence on growth and nutrient use of bedding plants.

    PubMed

    Grigatti, Marco; Giorgioni, Maria Eva; Ciavatta, Claudio

    2007-12-01

    The agronomic performance and the mineral composition and trace element content in Begonia semperflorens "Bellavista F1", Mimulus "Magic x hybridus", Salvia splendens "maestro", and Tagete patula xerecta "Zenith Lemon Yellow", were tested by growing the plants on substrates of white peat and 25-50-75-100% green waste and sewage sludge (80%+20%v/v) compost (CP). A commercial peat medium of black and white peat (2:1v/v) was used as control. At flowering, the agronomic parameters were compared by ANOVA and plant nutritional status was compared by vector analysis. Substrate-species interactions (P<0.001) were evident for all measured parameters. In the 25% CP medium all the species showed an increase or preservation of the studied agronomic parameters. Begonia grown in 25% CP, showed the highest dry weight (DW) and number of flowers. Other treatments were comparable to the control. Mimulus and Salvia showed the highest DW in the 25-50% CP. Mimulus, after a DW increase up to 50% CP, showed the steepest reduction as the CP increased further. Tagete showed no differences in DW up to 50% CP, or in flower number up to 25% CP, compared to the control. The additional increases of CP in the medium showed a DW decrease similar to that of Salvia. Vector analysis showed the use of compost mainly induced a decrease of P concentration in tissues, except for Begonia which remained unchanged. Plant tissues showed a general P reduction due to a dilution effect in the low compost mixtures (25-50%) and a deficiency in the higher CP mixtures. In contrast, an increase of Mg in the aboveground tissues of all species was detectable as compost usage increased, with the exception of Salvia which suffered a Mg deficiency. Vector analysis also highlighted a Ni and partial Fe deficiency in Tagete and Salvia.

  10. Measurement of hydraulic characteristics of porous media used to grow plants in microgravity

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan L.; Poritz, Darwin

    2005-01-01

    Understanding the effect of gravity on hydraulic properties of plant growth medium is essential for growing plants in space. The suitability of existing models to simulate hydraulic properties of porous medium is uncertain due to limited understanding of fundamental mechanisms controlling water and air transport in microgravity. The objective of this research was to characterize saturated and unsaturated hydraulic conductivity (K) of two particle-size distributions of baked ceramic aggregate using direct measurement techniques compatible with microgravity. Steady state (Method A) and instantaneous profile measurement (Method B) methods for K were used in a single experimental unit with horizontal flow through thin sections of porous medium providing an earth-based analog to microgravity. Comparison between methods was conducted using a crossover experimental design compatible with limited resources of space flight. Satiated (natural saturation) K ranged from 0.09 to 0.12 cm s-1 and 0.5 to >1 cm s-1 for 0.25- to 1- and 1- to 2-mm media, respectively. The K at the interaggregate/intraaggregate transition was approximately 10(-4) cm s-1 for both particle-size distributions. Significant differences in log(10)K due to method and porous medium were less than one order of magnitude and were attributed to variability in air entrapment. The van Genuchten/Mualem parametric models provided an adequate prediction of K of the interaggregate pore space, using residual water content for that pore space. The instantaneous profile method covers the range of water contents relevant to plant growth using fewer resources than Method A, all advantages for space flight where mass, volume, and astronaut time are limited.

  11. Designing the Perfect Plant: Activities to Investigate Plant Ecology

    ERIC Educational Resources Information Center

    Lehnhoff, Erik; Woolbaugh, Walt; Rew, Lisa

    2008-01-01

    Plant ecology is an important subject that often receives little attention in middle school, as more time during science classes is devoted to plant biology. Therefore, the authors have developed a series of activities, including a card game--Designing the Perfect Plant--to introduce student's to plant ecology and the ecological trade offs…

  12. Sensitivity of Active and Passive Microwave Observations to Soil Moisture during Growing Corn

    NASA Astrophysics Data System (ADS)

    Judge, J.; Monsivais-Huertero, A.; Liu, P.; De Roo, R. D.; England, A. W.; Nagarajan, K.

    2011-12-01

    Soil moisture (SM) in the root zone is a key factor governing water and energy fluxes at the land surface and its accurate knowledge is critical to predictions of weather and near-term climate, nutrient cycles, crop-yield, and ecosystem productivity. Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The two satellite-based missions dedicated to soil moisture estimation include, the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission and the planned NASA Soil Moisture Active/Passive (SMAP) [4] mission. The SMAP mission will include active and passive sensors at L-band to provide global observations of SM, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture estimates through data assimilation into land surface models (LSMs). Both the active (radar) and passive (radiometer) microwave sensors measure radiation quantities that are functions of soil dielectric constant and exhibit similar sensitivities to SM. In addition to the SM sensitivity, radar backscatter is highly sensitive to roughness of soil surface and scattering within the vegetation. These effects may produce a much larger dynamic range in backscatter than that produced due to SM changes alone. In this study, we discuss the field observations of active and passive signatures of growing corn at L-band from several seasons during the tenth Microwave, Water and Energy Balance Experiment (MicroWEX-10) conducted in North Central Florida, and to understand the sensitivity of these signatures to soil moisture under dynamic vegetation conditions. The MicroWEXs are a series of season-long field experiments conducted during the growing seasons of sweet corn, cotton, and energy cane over the past six years (for example, [22]). The corn was planted on July 5 and harvested on September 23, 2011 during MicroWEX-10. The size of the field was 0.04 km2 and the soils

  13. Fingerprinting antioxidative activities in plants

    PubMed Central

    Saleh, Livia; Plieth, Christoph

    2009-01-01

    Background A plethora of concurrent cellular activities is mobilised in the adaptation of plants to adverse environmental conditions. This response can be quantified by physiological experiments or metabolic profiling. The intention of this work is to reduce the number of metabolic processes studied to a minimum of relevant parameters with a maximum yield of information. Therefore, we inspected 'summary parameters' characteristic for whole classes of antioxidative metabolites and key enzymes. Results Three bioluminescence assays are presented. A horseradish peroxidase-based total antioxidative capacity (TAC) assay is used to probe low molecular weight antioxidants. Peroxidases are quantified by their luminol converting activity (LUPO). Finally, we quantify high molecular weight superoxide anion scavenging activity (SOSA) using coelenterazine. Experiments with Lepidium sativum L. show how salt, drought, cold, and heat influence the antioxidative system represented here by TAC, LUPO, SOSA, catalase, and glutathione reductase (GR). LUPO and SOSA run anti-parallel under all investigated stress conditions suggesting shifts in antioxidative functions rather than formation of antioxidative power. TAC runs in parallel with GR. This indicates that a majority of low molecular weight antioxidants in plants is represented by glutathione. Conclusion The set of assays presented here is capable of characterising antioxidative activities in plants. It is inexpensive, quick and reproducible and delivers quantitative data. 'Summary parameters' like TAC, LUPO, and SOSA are quantitative traits which may be promising for implementation in high-throughput screening for robustness of novel mutants, transgenics, or breeds. PMID:19171044

  14. Laser Induced Chlorophyll Fluorescence Spectra of Cajanus Cajan L Plant Growing Under Cadmium Stress

    NASA Astrophysics Data System (ADS)

    Gopal, Ram; Pandey, J. K.

    2010-06-01

    Laser-induced Chlorophyll fluorescence (LICF) spectra of Cajanus cajan L leaves treated with different concentrations of Cd (0.05, 0.5 and 1 mM) are recorded at 10 and 20 days after first treatment of cadmium. LICF spectra are recorded in the region of 650-780 nm using violet diode laser (405 nm). LICF spectra of plant leaves show two maxima near 685 and 730nm. Fluorescence induction kinetics (FIK) curve are recorded at 685 and 730 nm with red diode laser (635 nm) for excitation. The fluorescence intensity ratios (FIR) F685/F730 are calculated from LICF spectra and vitality index (Rfd) are determined from FIK curve. FIR and Rfd value are good stress indicator of plant health. These parameters along with chlorophyll content are used to analyze the effect of Cd on wheat plants. The result indicates that higher concentrations of Cd hazardous for photosynthetic activity and health of Arhar plants. The lower concentration of 0.05 mM shows stimulatory response up to 10 days while after 20 days this concentration also shows inhibitory response. R. Gopal, K. B. Mishra, M. Zeeshan, S. M. Prasad, and M. M. Joshi Curr. Sci., 83, 880, 2002 K. B. Mishra and R. Gopal Int. J. Rem. Sen., 29, 157, 2008 R. Maurya, S. M. Prasad, and R. Gopal J. Photochem. Photobio. C: Photochem. Rev., 9, 29, 2008

  15. Potential for Plant Growth Promotion of Rhizobacteria Associated with Salicornia Growing in Tunisian Hypersaline Soils

    PubMed Central

    Mapelli, Francesca; Marasco, Ramona; Rolli, Eleonora; Barbato, Marta; Cherif, Hanene; Guesmi, Amel; Ouzari, Imen; Daffonchio, Daniele; Borin, Sara

    2013-01-01

    Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres of Salicornia plants and bulk soils were collected from Sebkhet and Chott hypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated with Salicornia root system. A large collection of 475 halophilic and halotolerant bacteria was established from Salicornia rhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. Twenty Halomonas strains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activities in vitro at 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using a gfp-labelled strain it was possible to demonstrate that Halomonas is capable of successfully colonising Salicornia roots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands. PMID:23781499

  16. Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils.

    PubMed

    Mapelli, Francesca; Marasco, Ramona; Rolli, Eleonora; Barbato, Marta; Cherif, Hanene; Guesmi, Amel; Ouzari, Imen; Daffonchio, Daniele; Borin, Sara

    2013-01-01

    Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres of Salicornia plants and bulk soils were collected from Sebkhet and Chott hypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated with Salicornia root system. A large collection of 475 halophilic and halotolerant bacteria was established from Salicornia rhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. Twenty Halomonas strains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activities in vitro at 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using a gfp-labelled strain it was possible to demonstrate that Halomonas is capable of successfully colonising Salicornia roots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands.

  17. The impact of cotton growing practices on soil microbiology and its relation to plant and soil health

    NASA Astrophysics Data System (ADS)

    Pereg, Lily

    2013-04-01

    different microbes to perform certain activities). Therefore, agricultural practices may determine the ability of beneficial microbes to realise their plant growth promoting potential or the pathogenic expression of others. This presentation will review the current knowledge about the impact of cotton growing practices on microbial communities and soil health in different environments as well as endeavour to identify gaps worthwhile exploring in future research for promoting plant growth in healthy soils.

  18. Uptake of Uranium and Other Elements of Concern by Plants Growing on Uranium Mill Tailings Disposal Cells

    NASA Astrophysics Data System (ADS)

    Joseph, C. N.; Waugh, W.; Glenn, E.

    2015-12-01

    The U.S. Department of Energy (DOE) is responsible for long-term stewardship of disposal cells for uranium mill tailings throughout the United States. Rock-armored disposal cell covers create favorable habitat for deep-rooted plants by reducing soil evaporation, increasing soil water storage, and trapping windblown dust, thereby providing water and nutrients for plant germination and establishment. DOE is studying the tradeoffs of potential detrimental and beneficial effects of plants growing on disposal cell covers to develop a rational and consistent vegetation management policy. Plant roots often extend vertically through disposal cell covers into underlying tailings, therefore, uptake of tailings contaminants and dissemination through animals foraging on stems and leaves is a possible exposure pathway. The literature shows that plant uptake of contaminants in uranium mill tailings occurs, but levels can vary widely depending on plant species, tailings and soil chemistry, and cover soil hydrology. Our empirical field study measured concentrations of uranium, radium, thorium, molybdenum, selenium, manganese, lead, and arsenic in above ground tissues harvested from plants growing on disposal cells near Native American communities in western states that represent a range of climates, cover designs, cover soil types, and vegetation types. For risk screening, contaminant levels in above ground tissues harvested from plants on disposal cells were compared to Maximum Tolerance Levels (MTLs) set for livestock by the National Research Council, and to tissue levels in the same plant species growing in reference areas near disposal cells. Although tailings were covered with uncontaminated soils, for 14 of 46 comparisons, levels of uranium and other contaminants were higher in plants growing on disposal cells compared to reference area plants, indicating possible mobilization of these elements from the tailing into plant tissues. However, with one exception, all plant

  19. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica

    PubMed Central

    Singh, Jaswant; Singh, Rudra P.

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased. PMID:24748743

  20. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica.

    PubMed

    Singh, Jaswant; Singh, Rudra P

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased.

  1. [Coupling Effects of Decomposed Potamogeton crispus and Growing Ceratophyllum demersum on Water Quality and Plant Growth].

    PubMed

    Ma, Yue; Wang, Guo-xiang; Cao, Xun; Wang, Xiao-yun; Ma, Jie

    2015-07-01

    In order to study the coupling effects of decomposed Potamogeton crispus (P. crispus) and growing Ceratophyllum demersum (C. demersum) on water quality and the effects of different decomposed biomass on plant growth, the simulating experiments for seasonal changes of submerged macrophytes were conducted. The results indicated that the nutrient concentrations in water remained at a relatively low level with different decomposed biomass and they remained stable after 29 days of the experiment. The concentrations of total dissolved nitrogen (DTN), total nitrogen (TN), total phosphorous (TP), total dissolved phosphorous (DTP), organic carbon (TOC) and chlorophyll-a (Chl-a) were lower than 0. 514, 0. 559, 0. 080, 0. 014, 13. 94 and 26. 546 mg . L-1, respectively. The obvious improving effects on water quality were observed under coupling condition of decomposition and growth, especially when the treatment of decomposed P. crispus was 20 g, and the removal efficiency of TN, DTN, TP, DTP, TOC and Chl-a reached 89. 67% , 52. 51%, 94. 99%, 55. 59% and 98. 55%, respectively. Compared with the physiology of C. demersum in the early stage, the contents of total chlorophyll, soluble protein and malondialdehyde all increased under different decomposed biomass conditions, which suggested that the nutrient released from decomposed P. crispus promoted the growth of C. demersum. The coupling effects between P. crispus decomposition and C. demersum growth showed better improving effect on water quality and growth of C. demersum with treatment of 20 g decomposed P. crispus.

  2. Relative in vitro growth rates of duckweeds (Lemnaceae) - the most rapidly growing higher plants.

    PubMed

    Ziegler, P; Adelmann, K; Zimmer, S; Schmidt, C; Appenroth, K-J

    2015-01-01

    Relative growth rates (RGR), doubling times (DT) and relative weekly yields (RY) of 39 clones (ecotypes) from 13 species representing all five genera of duckweeds were determined under standardised cultivation conditions. RGR ranged overall from 0.153 to 0.519 day(-1) , DT from 1.34 to 4.54 days and RY from 2.9 to 37.8 week(-1) . The RGR and RY data can be compared directly to other published findings to only a limited extent on account of missing clonal designations for and limited accessibility to previously investigated clones, as well as the use of different data denominators. However, they are consistent with the published results of other comparative duckweed studies of similar scope in showing that RGR does not vary primarily at the level of the genus or species, but rather reflects the adaptation of individual clones to specific local conditions. The RGR data support the widely held assumption that duckweeds can grow faster than other higher plants and that they can thus surpass land-based agricultural crops in productivity. Duckweeds are highly promising for the production of biomass for nutrition and energy, but extensive clonal comparison will be required to identify the most suitable isolates for this purpose.

  3. Microbiology of coke-plant activated sludge

    SciTech Connect

    Owens, J.R.

    1983-01-01

    The biological treatment of coke-plant wastewater represents the most economical means of detoxification and contaminant removal, but little is known about the microbial ecology of this system. Research was therefore undertaken to determine the kinds of microorganisms that survive and function in this environment and to examine the growth patterns that influence treatment efficiency. The microbial flora of coke-plant activated sludge is predominated by populations of aerobic gram negative rods. The principle genera identified were Pseudomonas, Alcaligenes, Flavobacterium and Acinetobacter. The genera Bacillus, Nocardia and Micrococcus were also present at low levels. A single type of rotifer was present along with various protozoans. The ability of microorganisms in coke wastewater to grow on various organic compounds as their sole source of carbon and energy is more restrictive when compared with that of isolates obtained from activated sludge processes treating municipal wastes. The phenol degrading bacteria can be maintained in a continuous culture system with a hydraulic retention time (HRT) of as long as 14 days. Under conditions of increasing HRT the average cell size decreased and the number of cells per milliter increased. As the HRT increased cell yields decreased. At long HRT's (7 to 14 days) cell yields remained constant.

  4. A non-targeted metabolomics approach to quantifying differences in root storage between fast- and slow-growing plants.

    PubMed

    Atkinson, Rebecca R L; Burrell, Mike M; Osborne, Colin P; Rose, Karen E; Rees, Mark

    2012-10-01

    Life history theory posits that slower-growing species should invest proportionally more resources to storage, structural (e.g. stems) or defence traits than fast-growing species. Previously, we showed that the slower-growing monocarpic plants had lower mortality rates and higher bolting probabilities after two defoliation events. Here, we consider a mechanistic explanation, that the slower-growing species invested relatively more resources to storage. We compared the relative levels of root storage compounds between eight monocarpic species using metabolomic profiling, and characterized plant growth using a size-corrected estimate of relative growth rate (RGR). Growth rate was negatively correlated with the proportional allocation of root metabolites identified as sucrose, raffinose and stachyose and with amino acids known for their roles in nitrogen storage, particularly proline and arginine. The total amount and concentration of energy-corrected carbohydrates were also negatively correlated with RGR. Our results show for the first time that slower-growing species invest proportionally more of their total root metabolites in carbon- and nitrogen-storage compounds. We conclude that the increased investment in these reserves is an important resource allocation strategy underlying the growth-survival trade-off in plants.

  5. Lumps of Clay and Growing Plants: Dominant Metaphors of the Role of Education in the Third World, 1950-1980.

    ERIC Educational Resources Information Center

    Zachariah, Mathew

    1985-01-01

    During the 1950s-60s, a "people as clay" metaphor undergirded the most widely accepted English-language, predominantly North American writings on education for Third World development. Writings based on "people as growing plants" challenged the earlier writings from the late 1960s-late 1970s. Late 1970s developments have helped…

  6. ACE and platelet aggregation inhibitors from Tamarix hohenackeri Bunge (host plant of Herba Cistanches) growing in Xinjiang

    PubMed Central

    Xing, Yachao; Liao, Jing; Tang, Yingzhan; Zhang, Peng; Tan, Chengyu; Ni, Hui; Wu, Xueqin; Li, Ning; Jia, Xiaoguang

    2014-01-01

    Background: Tamarix hohenackeri Bunge is a salt cedar that grows widespread in the desert mountains in Xinjiang. T. hohenackeri has not been investigated earlier, although there are many reports of phytochemical work on other Tamarix species. Materials and Methods: To find out natural angiotensin-converting enzyme (ACE) inhibitor and platelet aggregation inhibitors, the bioactive extract (ethyl acetate [EtOAc] fraction) from the dried aerial parts of T. hohenackeri were investigated. The active fraction was purified by repeated column chromatography, including silica gel, Sephadex LH-20 column, medium-pressure liquid chromatography (MPLC) (polyamide column) and high-performance liquid chromatography (HPLC). The isolated major constituents were tested for their anti-platelet aggregation activity. Results: Bioassay-directed separation of the EtOAc fraction of the 70% ethanol extract from the air-dried aerial parts of T. hohenackeri led to the isolation of a new triterpenoid lactone (1), together with 13 known compounds (2-14). It was the first time to focus on screening bioactive constituents for this plant. The chemical structures were established on the basis of spectral data (ESI-MS and NMR). The results showed that the flavonoid compounds (7 and 8) and phenolic compounds (9, 10, 11, and 14) were potential ACE inhibitors. And the flavonoid compounds (5 and 7) showed significant anti-platelet aggregation activities. Conclusion: On the basis of the chemical and biological data, the material basis of ACE inhibitory activity for the active part was the phenolic constituents. However, the flavonoid compounds were responsible for the anti-platelet aggregation. The primary structure and activity relationship were also discussed respectively. PMID:24914275

  7. Trace elements and activity of antioxidative enzymes in Cistus ladanifer L. growing on an abandoned mine area.

    PubMed

    Santos, Erika S; Abreu, Maria Manuela; Nabais, Cristina; Saraiva, Jorge A

    2009-10-01

    The Mediterranean shrub Cistus ladanifer grows naturally in São Domingos (Portugal), an abandoned copper mine. High levels of trace elements in plants can generate oxidative stress increasing the activity of antioxidant enzymes. The aim of this work was to evaluate and compare As, Cu, Pb and Zn concentrations and the activity of the soluble and cell wall ionically bounded forms of the enzymes catalase, peroxidase and superoxide dismutase in leaves of C. ladanifer, collected in spring and summer, growing on São Domingos mine and on a non-contaminated area (Pomarão). São Domingos soils showed high total concentrations of As (2.6 g kg(-1)) and Pb (7.3 g kg(-1)) however the available fraction represented less than 1.5% of the total. C. ladanifer population from mine showed tolerance to Pb and Zn, which attain in leaves concentrations considered toxic for plants. The enzymatic activity of catalase, peroxidise and superoxide dismutase varied with plant populations and seasons, although with no particular trend, being specific to each trace element and enzyme cell localization. Catalase activity was evenly distributed between the soluble and ionically bounded forms, whereas the ionically bounded form of peroxidase predominated relatively to total activity, and the opposite was observed for superoxide dismutase. Spring and summer leaves from the two areas presented enzymatic activities in both fractions except to peroxidase soluble activities in leaves collected in summer. C. ladanifer enzymatic activity seems to be related with the co-existence of different stress factors (trace elements concentration, temperature, UV radiation and drought). The survival and growth of this species on contaminated mining soils is due to the presence of effective antioxidant enzyme-based defence systems.

  8. The Green Pages Environmental Education Activities K-12: Gardens for Young Growing Lives.

    ERIC Educational Resources Information Center

    Larson, Jan

    1997-01-01

    Describes several gardening activities that can be kept simple or used as a foundation for more in-depth projects. Activities include setting up an indoor garden spot, making compost which helps students understand the terms "decompose" and "compost", watching plants drink in which students measure water movement in plants, making herb gardens,…

  9. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants.

    PubMed

    Wamelink, G W Wieger; Frissel, Joep Y; Krijnen, Wilfred H J; Verwoert, M Rinie; Goedhart, Paul W

    2014-01-01

    When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant); the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.

  10. Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants

    PubMed Central

    Wamelink, G. W. Wieger; Frissel, Joep Y.; Krijnen, Wilfred H. J.; Verwoert, M. Rinie; Goedhart, Paul W.

    2014-01-01

    When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant); the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils. PMID:25162657

  11. Cement dust pollution induces toxicity or deficiency of some essential elements in wild plants growing around a cement factory.

    PubMed

    Mutlu, Salih; Atici, Ökkes; Gülen, Yasir

    2013-06-01

    In the present study, it was aimed to determine the effects of cement dust pollution on contents of some significant essential elements (P, S, K, Ca, Fe and Cl) in wild plants (Medigago varia, Anchusa leptophylla, Euphorbia orientalis, Lactuca serriola, Artemisia spicigera, Crambe orientalis, Convolvulus sepium and Senecio vernalis) using wavelength-dispersive spectrometer X-ray fluorescence technique. Plant samples were collected from different locations around a cement factory which is located at Askale about 50 km from Erzurum (Turkey). The element contents in the plant specimens that existed in both 0-100 m (dense dusted) and 2000 m (undusted) areas were compared. P, S, K and Cl contents were found to be high in the plants growing in areas 0-100 m from the cement factory, compared to same plants at 2000 m far from the factory. However, Ca and Fe contents were determined to be low in plants growing in 0-100 m area from the factory. Results of the study can contribute to understand how mineral deficiency and toxicity lead to detrimental effects on plant growth and development in the fields contaminated by cement dust.

  12. Economic Potentialities of Some Aquatic Plants Growing in North East Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Abu Ziada, M. E.; Mashaly, I. A.; Abd El-Monem, M.; Torky, M.

    The present study provides quantitative assessment of the vegetative yield, growth characteristics, metabolic products, elemental composition and antimicrobial bioactivity of five common macrohydrophytes: Bolboschoenus glaucus (Cyperaceae), Veronica anagallis-aquatica (Scrophulariaceae), Nymphaea lotus (Nymphaceae), Pistia stratiotes (Araceae) and Myriophyllum spicatum (Haloragidaceae). These plants tend to flourish vegetatively during the summer season (June-August). Their relative growth rate, relative assimilating surface growth rate and net assimilation rate were higher during early vegetative stage (February-May). The highest percentages of protein and lipids content were recorded in Nymphaea, while the crude fiber content was higher in Bolboschoenus than in other species. The macronutrient elements were detected with relatively high concentration and sodium cation appeared to be an essential accumulatent as compared with K, Ca and Mg. Myriophyllum appeared to be the major accumulator species of heavy metals, while Pistia appeared to be the minor one. Sterols, alkaloids, flavonoids, tannins, saponins and resins were detected in these plants. Nymphyaea was found to have the most effective antimicrobial activities than the other studied species.

  13. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2.

    PubMed

    Occhialini, Alessandro; Lin, Myat T; Andralojc, P John; Hanson, Maureen R; Parry, Martin A J

    2016-01-01

    Introducing a carbon-concentrating mechanism and a faster Rubisco enzyme from cyanobacteria into higher plant chloroplasts may improve photosynthetic performance by increasing the rate of CO2 fixation while decreasing losses caused by photorespiration. We previously demonstrated that tobacco plants grow photoautotrophically using Rubisco from Synechococcus elongatus, although the plants exhibited considerably slower growth than wild-type and required supplementary CO2 . Because of concerns that vascular plant assembly factors may not be adequate for assembly of a cyanobacterial Rubisco, prior transgenic plants included the cyanobacterial chaperone RbcX or the carboxysomal protein CcmM35. Here we show that neither RbcX nor CcmM35 is needed for assembly of active cyanobacterial Rubisco. Furthermore, by altering the gene regulatory sequences on the Rubisco transgenes, cyanobacterial Rubisco expression was enhanced and the transgenic plants grew at near wild-type growth rates, although still requiring elevated CO2 . We performed detailed kinetic characterization of the enzymes produced with and without the RbcX and CcmM35 cyanobacterial proteins. These transgenic plants exhibit photosynthetic characteristics that confirm the predicted benefits of introduction of non-native forms of Rubisco with higher carboxylation rate constants in vascular plants and the potential nitrogen-use efficiency that may be achieved provided that adequate CO2 is available near the enzyme.

  14. A Plant That Escapes from a Locked Box...and Other Growing Experiments.

    ERIC Educational Resources Information Center

    Kirkman, Will

    1979-01-01

    Seven easy-to-do experiments with plants are outlined to aid in teaching children about plants: their search for water, food, and light; a variety of rooting systems; and the effects of soil temperatures. (JMF)

  15. Strontium concentrations in chamisa (Chrysothamnus nauseosus) shrub plants growing in a former liquid waste disposal area in Bayo Canyon

    SciTech Connect

    Fresquez, P.R.; Foxx, T.S.; Naranjo, L. Jr.

    1995-11-01

    Chamisa (Chrysothamnus nauseosus) shrub plants growing in a former liquid waste disposal site Solid Waste Management Unit [SWMU] 10-003(c) in Bayo Canyon at Los Alamos National Laboratory (LANL) were collected and analyzed for strontium ({sup 90}Sr) and total uranium. Surface soil samples were also collected from below (understory) and between (interspace) shrub canopies. Both chamisa plants growing over SWMU 10-003(c) contained significantly higher concentrations of {sup 90}Sr than a control plant -- one plant, in particular, contained 90, 500 pCi {sup 90}Sr g{sup {minus}1} ash in top-growth material. Similarly, soil surface samples collected underneath and between plants contained {sup 90}Sr concentrations above background and LANL screening action levels; this probably occurred as a result of chamisa plant leaf fall contaminating the soil understory area followed by water and/or winds moving {sup 90}Sr to the soil interspace area. Although some soil surface migration of {sup 90}Sr from SWMU 10-003(c) has occurred, the level of {sup 90}Sr in sediments collected downstream of SWMU 10-003(c) at the Bayo Canyon/State Road 5 intersection was still within regional (background) concentrations.

  16. Promoting Physical Activity in Secondary Schools: Growing Expectations, "Same Old" Issues?

    ERIC Educational Resources Information Center

    Cale, Lorraine; Harris, Jo; Duncombe, Rebecca

    2016-01-01

    There are growing expectations on schools to promote health and physical activity and helping schools to effectively do so is considered a priority. This paper reports on selected findings from a research project that was concerned with supporting secondary schools in the effective promotion of physical activity and establishing their needs in…

  17. A conceptual configuration of the lunar base bioregenerative life support system including soil-like substrate for growing plants

    NASA Astrophysics Data System (ADS)

    Liu, H.; Yu, C. Y.; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu L.; Wang, J.

    2008-09-01

    The paper presents a conceptual configuration of the lunar base bioregenerative life support system (LBLSS), including soil-like substrate (SLS) for growing plants. SLS makes it possible to combine the processes of plant growth and the utilization of plant waste. Plants are to be grown on SLS on the basis of 20 kg of dry SLS mass or 100 kg of wet SLS mass per square meter. The substrate is to be delivered to the base ready-made as part of the plant growth subsystem. Food for the crew was provided by prestored stock 24% and by plant growing system 76%. Total dry weight of the food is 631 g per day (2800 kcal/day) for one crew member (CM). The list of candidate plants to be grown under lunar BLSS conditions included 14 species: wheat, rice, soybean, peanuts, sweet pepper, carrots, tomatoes, coriander, cole, lettuce, radish, squash, onion and garlic. From the prestored stock the crew consumed canned fish, iodinated salt, sugar, beef sauce and seafood sauce. Our calculations show that to provide one CM with plant food requires the area of 47.5 m 2. The balance of substance is achieved by the removal dehydrated urine 59 g, feces 31 g, food waste 50 g, SLS 134 g, and also waters 86 g from system and introduction food 236 g, liquid potassium soap 4 g and mineral salts 120 g into system daily. To reduce system setup time the first plants could be sowed and germinated to a certain age on the Earth.

  18. Testing soil-like substrate for growing plants in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Gros, J. B.; Lasseur, Ch.; Tikhomirov, A. A.; Manukovsky, N. S.; Kovalev, V. S.; Ushakova, S. A.; Zolotukhin, I. G.; Tirranen, L. S.; Karnachuk, R. A.; Dorofeev, V. Yu.

    We studied soil-like substrate (SLS) as a potential candidate for plant cultivation in bioregenerative life support systems (BLSS). The SLS was obtained by successive conversion of wheat straw by oyster mushrooms and worms. Mature SLS contained 9.5% humic acids and 4.9% fulvic acids. First, it was shown that wheat, bean and cucumber yields as well as radish yields when cultivated on mature SLS were comparable to yields obtained on a neutral substrate (expanded clay aggregate) under hydroponics. Second, the possibility of increasing wheat and radish yields on the SLS was assessed at three levels of light intensity: 690, 920 and 1150 μmol m -2 s -1 of photosynthetically active radiation (PAR). The highest wheat yield was obtained at 920 μmol m -2 s -1, while radish yield increased steadily with increasing light intensity. Third, long-term SLS fertility was tested in a BLSS model with mineral and organic matter recycling. Eight cycles of wheat and 13 cycles of radish cultivation were carried out on the SLS in the experimental system. Correlation coefficients between SLS nitrogen content and total wheat biomass and grain yield were 0.92 and 0.97, respectively, and correlation coefficients between nitrogen content and total radish biomass and edible root yield were 0.88 and 0.87, respectively. Changes in hormone content (auxins, gibberellins, cytokinins and abscisic acid) in the SLS during matter recycling did not reduce plant productivity. Quantitative and species compositions of the SLS and irrigation water microflora were also investigated. Microbial community analysis of the SLS showed bacteria from Bacillus, Pseudomonas, Proteus, Nocardia, Mycobacterium, Arthrobacter and Enterobacter genera, and fungi from Trichoderma, Penicillium, Fusarium, Aspergillus, Mucor, Botrytis, and Cladosporium genera.

  19. P-MASS and P-GBA: Two new hardware developments for growing plants in space

    NASA Technical Reports Server (NTRS)

    Hoehn, Alexander; Luttges, Marvin W.; Robinson, Michael C.; Stodieck, Louis S.; Kliss, Mark H.

    1994-01-01

    Plant growth, and especially plant performance experiments in microgravity are limited by the currently available plant growth facilities (low light levels, inadequate nutrient delivery and atmosphere conditioning systems, insufficient science instrumentation, infrequent flight opportunities). In addition, mission durations of 10 to 14 days aboard the NSTS Space Shuttle allow for only brief periods of microgravity exposure with respect to the life cycle of a plant. Based on seed germination experiments, using the Generic BioProcessing Apparatus hardware (GBA), two new payloads have been designed specifically for plant growth. These payloads provide new opportunities for plant gravitational and space biology research and emphasize the investigation of plant performance (photosynthesis, biomass accumulations) in microgravity. The Plant-Module for Autonomous Space Support (P-MASS) was designed to utilize microgravity exposure times in excess of 30 days on the first flight of the recoverable COMET satellite (Commercial Experiment Transporter). The Plant-Generic Bioprocessing Apparatus (P-GBA), is designed for the National Space Transportation System (NSTS) Space Shuttle middeck and the SPACEHAB environment. The P-GBA is an evolution from the GBA hardware and P-MASS (plant chamber and instrumentation). The available light levels of both payloads more than double currently available capabilities.

  20. The universal bundling activity of AtVLN4 in diffusely growing cells.

    PubMed

    Du, Fei; Zhang, Yi; Ren, Haiyun

    2011-09-01

    We recently reported that AtVLN4, a member of villin/gelsolin/fragmin superfamily in Arabidopsis thaliana, participated in root hair growth through its actin bundling activity. To further understand the functions of AtVLN4, we investigated its in vivo expression pattern and roles in diffusely growing cells. Transcription analysis of AtVLN4 and detection of AtVLN 4 promoter-GUS activity consistently indicated that AtVLN4 had a universal expression pattern and was preferentially expressed in vegetative tissues. Observation of actin structures labeled by GFP-fABD2 revealed that there were less actin bundles in many diffusely growing cell types in atvln4-1 seedlings than in wild-type seedlings. Pharmacological studies by treatment with Latrunculin B showed that the actin filaments were much easier to be disrupted in diffusely growing cells of atvln4-1 seedlings. Collectively, these results demonstrate that AtVLN4 has a universal actin bundling activity in diffusely growing cells just like that in the tip growing cell, root hairs.

  1. Selenium uptake and volatilization from plants growing in soil. [Astragalus bisulcatus

    SciTech Connect

    Duckhart, E.C.; Waldron, L.J.; Donner, H.E. )

    1992-02-01

    Selenium volatilization rates from plants and soil confined in a closed transparent chamber varied greatly among five plant species over 3- to 6-day collection periods. Astragalus bisulcatus and broccoli showed the highest rates of volatilization, 1.7 and 1.1 {mu}g Se/kg dry soil/day, respectively. Volatilization rates for soil only, tomato, tall fescue, and alfalfa were 0.7, 0.5, 0.3, and 0.2 {mu}g/kg/day, respectively. Although it was not possible to separate plant and soil microbial volatilization, the large differences between plant species suggest a significant role for plants in Se volatilization from soils. Se(VI) added to soil as sodium selenate was rapidly taken up by all five plant types to the extent that plant uptake dominated Se removal from the soil. Volatilization accounted for only 0.5% (alfalfa) to 6.1% (Astragalus bis.) of the selenium lost from the soil. Although Astragalus had the highest tissue selenium concentration and selenium volatilization rates, it ranked fourth behind broccoli, tomato, and alfalfa in order of selenium removal because of its small biomass at 15 weeks. Alfalfa accumulated 22.1 {mu}g Se/g plant tissue from the Se(VI) amended soil, a concentration exceeded only by Astragalus (80.6) and broccoli (22.3). However, alfalfa had the lowest short-term net volatilization rate of the five plant types.

  2. You grow where you're planted: Community building in Colstrip, Montana

    NASA Astrophysics Data System (ADS)

    Wilson, David Ramsey

    The expansion of energy production in the 1970s resulted in the construction of large extraction and power production facilities in many parts of the American West. Boomtowns almost always accompanied these enterprises. Colstrip, Montana, became the focus of a wide variety of social and environmental controversies when the Montana Power Company began strip mining operations and power plant construction in the early 1970s. Nevertheless, a sense of community attachment in Colstrip has steadily grown. Increased participation in public affairs, often in response to challenges made to the community, has accompanied the integration of Colstrip's residents in the non-economic environments of families, churches, recreation, and school-related activities. Researchers in the 1970s and early '80s often took the view that rapid development disrupts long-standing patterns of community attachment and integration. Using a model derived from Ferdinand Tonnies' Gemeinschaft-Gesell schaft continuum, these researchers undertook to demonstrate the folly of the energy companies' activities. The decline of community has frequently appeared as a theme in sociology and history. Yet the venerable but erroneous and largely sentimental theoretical perspective used by some early social impact assessment researchers did not accurately represent the processes at work in Colstrip and places like it. I suggest that Colstrip demonstrates an evolutionary continuum, but precisely the opposite of Tonnies' proposition. The feeling of attachment and home we call community is a growth-oriented phenomenon, not a simply a passive object subject only to decline. Colstrip, where sociologists found community lacking, is now found by the historian as the model of community.

  3. Engineering sciences design. Design and implementation of components for a bioregenerative system for growing higher order plants in space

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1989-01-01

    The primary goal was to address specific needs in the design of an integrated system to grow higher plants in space. With the needs defined, the emphasis was placed on the design and fabrication of devices to meet these needs. Specific attention was placed on a hand-held harvester, a nutrient concentration sensor, an air-water separator, and a closed-loop biological system simulation.

  4. Chemical composition and antioxidant activities of ansu apricot oil growing wild in north Xinjiang, China.

    PubMed

    Tian, Hong-Lei; Zhan, Ping

    2011-07-01

    Ansu apricots growing wild in north Xinjiang are recognised as being one of the major wild-plant resources in China. In order to improve the level of comprehensive utilisation and the number of cultivated apricot varieties, the chemical composition of ansu apricot oil was analysed by capillary GC-MS and elucidated based on the standard mass spectral data; the antioxidant activities were also evaluated. Seven components of ansu apricots oil were identified, and the total unsaturated fatty acid (FA) (TUFA) and total essential FA (TEFA) contents of the ansu apricot oil were found to be 90.35 g/100 g and 48.93 g/100 g, respectively. The scavenging capacity of the ansu apricots oil in the superoxide anion radical system and the hydroxyl radical system performed better than in the DPPH radical system. The IC₅₀ values of the ansu apricot oil for the superoxide anion radical system and the hydroxyl radical system were 0.15 mg mL⁻¹ and 0.30 mg mL⁻¹, respectively: stronger than that of the control (ascorbic acid). In the DPPH system, the IC₅₀ value of the ansu apricot oil was 0.50 mg mL⁻¹, and the IC₅₀ value of ascorbic acid was 0.30 mg mL⁻¹, but within the selected dosage, the highest scavenging capacity of ansu apricot oil was higher than the control. The results obtained in this study clearly suggest that ansu apricot oil is a natural source of antioxidants and could serve as a functional food ingredient with potential application in food products and thus provide related health benefits.

  5. Large-area experiment on uptake of metals by twelve plants growing in soils contaminated with multiple metals.

    PubMed

    Lai, Hung-Yu; Juang, Kai-Wei; Chen, Zueng-Sang

    2010-01-01

    A site in central Taiwan with an area of 1.3 ha and contaminated with Cr, Cu, Ni, and Zn was selected to examine the feasibility of phytoextraction. Based on the results of a preexperiment at this site, a total of approximately 20,000 plants of 12 species were selected from plants of 33 tested species to be used in a large-area phytoextraction experiment at this site. A comparison with the initial metal concentration of 12 plant species before planting demonstrated that most species accumulated significant amounts of Cr, Cu, Ni, and Zn in their shoots after growing in this contaminated site for 31 d. Among the 12 plant species, the following accumulated higher concentrations of metals in their shoots; Garden canna and Garden verbena (45-60 mg Cr kg(-1)), Chinese ixora and Kalanchoe (30 mg Cu kg(-1)), Rainbow pink and Sunflower (30 mg Ni kg(-1)), French marigold and Sunflower (300-470 mg Zn kg(-1)). The roots of the plants of most of the 12 plant species can accumulate higher concentrations of metals than the shoots and extending the growth period promotes accumulation in the shoots. Large-area experiments demonstrated that phytoextraction is a feasible method to enable metal-contaminated soil in central Taiwan to be reused.

  6. Earlier growing seasons and changes in migration timing influence carbon uptake and plant production in Arctic coastal wetlands

    NASA Astrophysics Data System (ADS)

    Leffler, A. J.; Beard, K. H.; Kelsey, K.; Choi, R. T.; Welker, J. M.

    2015-12-01

    The wetlands of the Yukon-Kuskokwim Delta in western Alaska are important breeding areas for geese and are experiencing rapid climate change, specifically earlier onset of the growing season. Consequently, geese arrive 'later' in the growing season than in the past, potentially setting up a phenological mismatch with consequences for their nutrition, plant growth, and C and N processes in the ecosystem. We examined the interactive effects between the start of the growing season and Black Brant arrival time on these processes in a manipulative experiment. Advancing the growing season had a modest influence on CO2 exchange and plant growth. An early growing season shifted the rate of net ecosystem exchange (NEE) by 1-1.5 µmol m-2 s-1 toward a carbon (C) source. This change was driven by an increase in the rate of ecosystem respiration (ER). The advanced growing season nearly doubled the rate of leaf elongation in the early summer and this difference persisted as taller vegetation later in the year; belowground biomass was not affected. Timing of grazing had greater influence on CO2 exchange and plant growth. Grazing early in the season shifted the system to a carbon source by ca. 2 μmol m-2 s-1 while delaying grazing enhanced the carbon sink by 1 μmol m-2 s-1. Here, the influence was not through ER, but through reducing and enhancing standing leaf area, respectively. Early grazing also reduced season-long root production by over 50% while delayed grazing enhanced root production by 30%. Although delaying grazing enhanced C uptake and promoted plant growth in this ecosystem, leaf tissue in delayed-grazing plots had C:N of 16.7 compared to 14.2 in the typical-grazing plots, potentially reducing the digestibility of goose forage and slowing rates of decomposition. Biotic forcing in arctic tundra can thus be major drivers of ecosystem function and need to be considered as tundra system respond to changing conditions.

  7. Wastewater Plant Operation and Maintenance--A Matter of Growing Concern

    ERIC Educational Resources Information Center

    Water and Wastes Engineering, 1978

    1978-01-01

    Responses of two experts to questions concerning wastewater plant operation and maintenance are presented. The responses discuss the scarcity of good personnel, training education available, and examples of existing improvement projects. (MA)

  8. Growing with siblings: a common ground for cooperation or for fiercer competition among plants?

    PubMed Central

    Milla, Rubén; Forero, Diana M.; Escudero, Adrián; Iriondo, Jose M.

    2009-01-01

    Recent work has shown that certain plants can identify their kin in competitive settings through root recognition, and react by decreasing root growth when competing with relatives. Although this may be a necessary step in kin selection, no clear associated improvement in individual or group fitness has been reported to qualify as such. We designed an experiment to address whether genetic relatedness between neighbouring plants affects individual or group fitness in artificial populations. Seeds of Lupinus angustifolius were sown in groups of siblings, groups of different genotypes from the same population and groups of genotypes from different populations. Both plants surrounded by siblings and by genotypes from the same population had lower individual fitness and produced fewer flowers and less vegetative biomass as a group. We conclude that genetic relatedness entails decreased individual and group fitness in L. angustifolius. This, together with earlier work, precludes the generalization that kin recognition may act as a widespread, major microevolutionary mechanism in plants. PMID:19403541

  9. [Effects of growing time on Panax ginseng rhizosphere soil microbial activity and biomass].

    PubMed

    Xiao, Chun-ping; Yang, Li-min; Ma, Feng-min

    2014-12-01

    Using the field sampling and indoor soil cultivation methods, the dynamic of ginseng rhizosphere soil microbial activity and biomass with three cultivated ages was studied to provide a theory basis for illustrating mechanism of continuous cropping obstacles of ginseng. The results showed that ginseng rhizosphere soil microbial activity and biomass accumulation were inhibited observably by growing time. The soil respiration, soil cellulose decomposition and soil nitrification of ginseng rhizosphere soil microorganism were inhibited significantly (P <0.05), in contrast to the control soil uncultivated ginseng (R0). And the inhibition was gradual augmentation with the number of growing years. The soil microbial activity of 3a ginseng soil (R3) was the lowest, and its activity of soil respiration, soil cellulose decomposition, soil ammonification and soil nitrification was lower than that in R0 with 56.31%, 86.71% and 90. 53% , respectively. The soil ammonification of ginseng rhizosphere soil microbial was significantly promoted compared with R0. The promotion was improved during the early growing time, while the promotion was decreased with the number of growing years. The soil ammonification of R1, R2 and R3 were lower than that in R0 with 32.43%, 80.54% and 66.64% separately. The SMB-C and SMB-N in ginseng rhizosphere soil had a decreased tendency with the number of growing years. The SMB-C difference among 3 cultivated ages was significant, while the SMB-N was not. The SMB of R3 was the lowest. Compared with R0, the SMB-C and the SMB-N were significantly reduced 77.30% and 69.36%. It was considered by integrated analysis that the leading factor of continuous cropping obstacle in ginseng was the changes of the rhizosphere soil microbial species, number and activity as well as the micro-ecological imbalance of rhizosphere soil caused by the accumulation of ginseng rhizosphere secretions.

  10. Synergisms between microbial pathogens in plant disease complexes: a growing trend

    PubMed Central

    Lamichhane, Jay Ram; Venturi, Vittorio

    2015-01-01

    Plant diseases are often thought to be caused by one species or even by a specific strain. Microbes in nature, however, mostly occur as part of complex communities and this has been noted since the time of van Leeuwenhoek. Interestingly, most laboratory studies focus on single microbial strains grown in pure culture; we were therefore unaware of possible interspecies and/or inter-kingdom interactions of pathogenic microbes in the wild. In human and animal infections, it is now being recognized that many diseases are the result of multispecies synergistic interactions. This increases the complexity of the disease and has to be taken into consideration in the development of more effective control measures. On the other hand, there are only a few reports of synergistic pathogen–pathogen interactions in plant diseases and the mechanisms of interactions are currently unknown. Here we review some of these reports of synergism between different plant pathogens and their possible implications in crop health. Finally, we briefly highlight the recent technological advances in diagnostics as these are beginning to provide important insights into the microbial communities associated with complex plant diseases. These examples of synergistic interactions of plant pathogens that lead to disease complexes might prove to be more common than expected and understanding the underlying mechanisms might have important implications in plant disease epidemiology and management. PMID:26074945

  11. Effects of Planted Versus Naturally Growing Vallisneria natans on the Sediment Microbial Community in West Lake, China.

    PubMed

    Wang, Chuan; Liu, Shuangyuan; Zhang, Yi; Liu, Biyun; Zeng, Lei; He, Feng; Zhou, Qiaohong; Wu, Zhenbin

    2017-03-02

    Submerged macrophytes play an important role in aquatic ecosystems, which has led to an increase in studies on vegetation recovery in polluted lakes from which submerged macrophytes have disappeared. The comparison of microbial communities in sediment cloned with planted and naturally growing submerged macrophytes is an interesting but rarely studied topic. In this investigation, Maojiabu and Xilihu, two adjacent sublakes of West Lake (Hangzhou, China), were selected as aquatic areas with planted and naturally growing macrophytes, respectively. Sediment samples from sites with/without Vallisneria natans were collected from both sublakes. The results showed that sediment total nitrogen and organic matter were significantly lower in the plant-covered sites than that in the non-plant sites in Maojiabu. Additionally, the sediment microbial community characterized by 16S ribosomal RNA (rRNA) sequencing differed more significantly for Maojiabu than for Xilihu. The relative abundances of microbes involved in C, N, and S elemental cycling were significantly higher in the sediments with plants than in those without. Results from both fatty acid methyl ester analysis and 16S rRNA sequencing indicated that vegetation significantly influenced the sulfate-reducing bacteria (SRB). Thus, the gene copies and composition of SRB were explored further. The relative gene abundance of SRB was 66% higher with natural vegetation colonization but was not influenced by artificial colonization. An increase in dominant SRB members from the families Syntrophobacteraceae and Thermodesulfovibrionaceae contributed to the increase of total SRB. Thus, macrophyte planting influences sediment nutrient levels and microbial community more than natural growth does, whereas the latter is more beneficial to sediment SRB.

  12. The accumulation of elements in plants growing spontaneously on small heaps left by the historical Zn-Pb ore mining.

    PubMed

    Stefanowicz, Anna M; Stanek, Małgorzata; Woch, Marcin W; Kapusta, Paweł

    2016-04-01

    The study evaluated the levels of nine metals, namely Ca, Cd, Fe, K, Mg, Mn, Pb, Tl, and Zn, in soils and tissues of ten plant species growing spontaneously on heaps left by historical mining for Zn-Pb ores. The concentrations of Cd, Pb, Tl, and Zn in heap soils were much higher than in control soils. Plants growing on heaps accumulated excessive amounts of these elements in tissues, on average 1.3-52 mg Cd kg(-1), 9.4-254 mg Pb kg(-1), 0.06-23 mg Tl kg(-1) and 134-1479 mg Zn kg(-1) in comparison to 0.5-1.1 mg Cd kg(-1), 2.1-11 mg Pb kg(-1), 0.02-0.06 mg Tl kg(-1), and 23-124 mg Zn kg(-1) in control plants. The highest concentrations of Cd, Pb, and Zn were found in the roots of Euphorbia cyparissias, Fragaria vesca, and Potentilla arenaria, and Tl in Plantago lanceolata. Many species growing on heaps were enriched in K and Mg, and depleted in Ca, Fe, and Mn. The concentrations of all elements in plant tissues were dependent on species, organ (root vs. shoot), and species-organ interactions. Average concentrations of Ca, K, and Mg were generally higher in shoots than in roots or similar in the two organs, whereas Cd, Fe, Pb, Tl, and Zn were accumulated predominantly in the roots. Our results imply that heaps left by historical mining for Zn-Pb ores may pose a potential threat to the environment and human health.

  13. How can we make plants grow faster? A source–sink perspective on growth rate

    DOE PAGES

    White, Angela C.; Rogers, Alistair; Rees, Mark; ...

    2015-10-14

    Growth is a major component of fitness in all organisms, an important mediator of competitive interactions in plant communities, and a central determinant of yield in crops. Understanding what limits plant growth is therefore of fundamental importance to plant evolution, ecology, and crop science, but each discipline views the process from a different perspective. This review highlights the importance of source–sink interactions as determinants of growth. The evidence for source- and sink-limitation of growth, and the ways in which regulatory molecular feedback systems act to maintain an appropriate source:sink balance, are first discussed. Evidence clearly shows that future increases inmore » crop productivity depend crucially on a quantitative understanding of the extent to which sources or sinks limit growth, and how this changes during development. In addition, to identify bottlenecks limiting growth and yield, a holistic view of growth is required at the whole-plant scale, incorporating mechanistic interactions between physiology, resource allocation, and plant development. Such a holistic perspective on source–sink interactions will allow the development of a more integrated, whole-system level understanding of growth, with benefits across multiple disciplines.« less

  14. Germination characteristics of six plant species growing on the Hanford Site. [Disturbed land revegetation feasibility studies

    SciTech Connect

    Cox, G.R.; Kirkham, R.R.; Cline, J.F.

    1980-03-01

    Six plant species (Siberian and thickspike wheatgrass, cheatgrass, sand dropseed, Indian ricegrass, and Russian thistle) found on the Hanford Site were studied as part of an investigation into the revegetation of disturbed areas. Germination response to three environmental parameters (soil moisture, soil temperature, and planting depth) were measured. Results indicated that when a polyethylene glycol solution was used to control the osmotic potential of the imbibition media, no significant decrease in germination rate occurred down to -3.0 bars. However, below -7.0 bars all species experienced a decrease in germination. When germinated in soil, all species except Russian thistle exhibited a significant decrease in germination rate at -0.3 bars. Russian thistle was the only species tested that exhibited germination at a soil temperature of 1/sup 0/C. All species gave optimum germination at temperatures between 10 and 15/sup 0/C. Thickspike wheatgrass was the only species tested which was able to germinate and emerge from a planting depth of greater than 2 inches. If supplemental moisture is provided, a shallow planting would be advisable for those species tested. If not overcome by pretreatment prior to planting, seed dormancy may be a significant factor which will reduce the germination potential of some species tested.

  15. How can we make plants grow faster? A source–sink perspective on growth rate

    SciTech Connect

    White, Angela C.; Rogers, Alistair; Rees, Mark; Osborne, Colin P.

    2015-10-14

    Growth is a major component of fitness in all organisms, an important mediator of competitive interactions in plant communities, and a central determinant of yield in crops. Understanding what limits plant growth is therefore of fundamental importance to plant evolution, ecology, and crop science, but each discipline views the process from a different perspective. This review highlights the importance of source–sink interactions as determinants of growth. The evidence for source- and sink-limitation of growth, and the ways in which regulatory molecular feedback systems act to maintain an appropriate source:sink balance, are first discussed. Evidence clearly shows that future increases in crop productivity depend crucially on a quantitative understanding of the extent to which sources or sinks limit growth, and how this changes during development. In addition, to identify bottlenecks limiting growth and yield, a holistic view of growth is required at the whole-plant scale, incorporating mechanistic interactions between physiology, resource allocation, and plant development. Such a holistic perspective on source–sink interactions will allow the development of a more integrated, whole-system level understanding of growth, with benefits across multiple disciplines.

  16. Plant phenological responses to a long-term experimental extension of growing season and soil warming in the tussock tundra of Alaska.

    PubMed

    Khorsand Rosa, Roxaneh; Oberbauer, Steven F; Starr, Gregory; Parker La Puma, Inga; Pop, Eric; Ahlquist, Lorraine; Baldwin, Tracey

    2015-12-01

    Climate warming is strongly altering the timing of season initiation and season length in the Arctic. Phenological activities are among the most sensitive plant responses to climate change and have important effects at all levels within the ecosystem. We tested the effects of two experimental treatments, extended growing season via snow removal and extended growing season combined with soil warming, on plant phenology in tussock tundra in Alaska from 1995 through 2003. We specifically monitored the responses of eight species, representing four growth forms: (i) graminoids (Carex bigellowii and Eriophorum vaginatum); (ii) evergreen shrubs (Ledum palustre, Cassiope tetragona, and Vaccinium vitis-idaea); (iii) deciduous shrubs (Betula nana and Salix pulchra); and (iv) forbs (Polygonum bistorta). Our study answered three questions: (i) Do experimental treatments affect the timing of leaf bud break, flowering, and leaf senescence? (ii) Are responses to treatments species-specific and growth form-specific? and (iii) Which environmental factors best predict timing of phenophases? Treatment significantly affected the timing of all three phenophases, although the two experimental treatments did not differ from each other. While phenological events began earlier in the experimental plots relative to the controls, duration of phenophases did not increase. The evergreen shrub, Cassiope tetragona, did not respond to either experimental treatment. While the other species did respond to experimental treatments, the total active period for these species did not increase relative to the control. Air temperature was consistently the best predictor of phenology. Our results imply that some evergreen shrubs (i.e., C. tetragona) will not capitalize on earlier favorable growing conditions, putting them at a competitive disadvantage relative to phenotypically plastic deciduous shrubs. Our findings also suggest that an early onset of the growing season as a result of decreased snow cover

  17. DynamicRoots: A Software Platform for the Reconstruction and Analysis of Growing Plant Roots.

    PubMed

    Symonova, Olga; Topp, Christopher N; Edelsbrunner, Herbert

    2015-01-01

    We present a software platform for reconstructing and analyzing the growth of a plant root system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, constructs a geometric graph representation together with the function that records the time of growth, and organizes the branches into a hierarchy that reflects the order of creation. The software includes the automatic computation of structural and dynamic traits for each root in the system enabling the quantification of growth on fine-scale. These are important advances in plant phenotyping with applications to the study of genetic and environmental influences on growth.

  18. Effect of probiotic bacteria-fermented medicinal plants (Gynura procumbens, Rehmannia glutinosa, Scutellaria baicalensis) as performance enhancers in growing pigs.

    PubMed

    Jeong, Jin Suk; Kim, In Ho

    2015-06-01

    This study was conducted to investigate the effect of dietary supplementation of mixed fermented medicinal plants (FMP) obtained from exudates of Gynura procumbens, Rehmannia glutinosa and Scutellaria baicalensis fermented with Lactobacillus plantarum, Saccharomyces cerevisiae and Bacillus licheniformis, respectively, on growth performance in growing pigs in order to assess the feasibility of using FMP as an alternative to antibiotic growth promoters (AGP), such as tiamulin. A total of 150 growing pigs (body wieght 25.50 ± 2.50 kg) were used in a 6 weeks experiment and randomly divided into five groups with six replicates of five growing pigs each. The treatments were NC (basal diet), basal diet with 33 ppm tiamulin (PC), basal diet with FMP 0.05% (FMP 0.05), basal diet with FMP 0.1% (FMP 0.1) and basal diet with FMP 0.2% (FMP 0.2). Overall, body weight gain, feed conversion rate, the digestibility of dry matter and gross energy, noxious gas emission all improved with FMP supplementation as compared to NC. Taken together, these results suggest the feasibility of using FMP as an alternative to AGP for enhancing the growth performance, nutrient digestibility and excreta noxious gas emission of growing pigs.

  19. Water activity of poultry litter: Relationship to moisture content during a grow-out.

    PubMed

    Dunlop, Mark W; McAuley, Jim; Blackall, Patrick J; Stuetz, Richard M

    2016-05-01

    Poultry grown on litter floors are in contact with their own waste products. The waste material needs to be carefully managed to reduce food safety risks and to provide conditions that are comfortable and safe for the birds. Water activity (Aw) is an important thermodynamic property that has been shown to be more closely related to microbial, chemical and physical properties of natural products than moisture content. In poultry litter, Aw is relevant for understanding microbial activity; litter handling and rheological properties; and relationships between in-shed relative humidity and litter moisture content. We measured the Aw of poultry litter collected throughout a meat chicken grow-out (from fresh pine shavings bedding material to day 52) and over a range of litter moisture content (10-60%). The Aw increased non-linearly from 0.71 to 1.0, and reached a value of 0.95 when litter moisture content was only 22-33%. Accumulation of manure during the grow-out reduced Aw for the same moisture content. These results are relevant for making decisions regarding litter re-use in multiple grow-outs as well as setting targets for litter moisture content to minimise odour, microbial risks and to ensure necessary litter physical conditions are maintained during a grow-out. Methods to predict Aw in poultry litter from moisture content are proposed.

  20. Evidence of the Internalization of Animal Caliciviruses via the Roots of Growing Strawberry Plants and Dissemination to the Fruit

    PubMed Central

    DiCaprio, Erin; Culbertson, Doug

    2015-01-01

    Human norovirus (NoV) is the leading cause of foodborne disease in the United States, and epidemiological studies have shown that fresh produce is one of the major vehicles for the transmission of human NoV. However, the mechanisms of norovirus contamination and persistence in fresh produce are poorly understood. The objective of this study is to determine whether human NoV surrogates, murine norovirus (MNV-1) and Tulane virus (TV), can attach and become internalized and disseminated in strawberries grown in soil. The soil of growing strawberry plants was inoculated with MNV-1 and TV at a level of 108 PFU/plant. Leaves and berries were harvested over a 14-day period, and the viral titer was determined by plaque assay. Over the course of the study, 31.6% of the strawberries contained internalized MNV-1, with an average titer of 0.81 ± 0.33 log10 PFU/g. In comparison, 37.5% of strawberries were positive for infectious TV, with an average titer of 1.83 ± 0.22 log10 PFU/g. A higher percentage (78.7%) of strawberries were positive for TV RNA, with an average titer of 3.15 ± 0.51 log10 RNA copies/g as determined by real-time reverse transcriptase quantitative PCR (RT-qPCR). In contrast, no or little virus internalization and dissemination were detected when TV was inoculated into bell peppers grown in soil. Collectively, these data demonstrate (i) virally contaminated soils can lead to the internalization of virus via plant roots and subsequent dissemination to the leaf and fruit portions of growing strawberry plants and (ii) the magnitude of internalization is dependent on the type of virus and plant. PMID:25662970

  1. Management of Bacterial Blight of Lilac Caused by Pseudomonas syringae by Growing Plants under Plastic Shelters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas syringae pv. syringae causes some of the most economically-important bacterial diseases affecting woody perennials grown by the nursery industry in the Pacific Northwest of the United States. In this study, we evaluated a cultural control practice, placement of plants in plastic shelter...

  2. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India.

    PubMed

    Kumari, Alka; Lal, Brij; Rai, Upendra Nath

    2016-01-01

    The present investigation was carried out to screen native plants growing in fly ash (FA) contaminated areas near National Thermal Power Corporation (NTPC), Kahalgaon, Bihar, India with a view to using them for the eco-restoration of the area. A total number of 30 plant species (5 aquatic and 25 terrestrial including 6 ferns) were collected and their diversity status and dominance were also studied. After screening of dominant species at highly polluted site, 8 terrestrial and 5 aquatic plants were analyzed for heavy metals (Fe, Zn, Cu, Ni, Si, Al, Pb, Cr, and Cd). Differential accumulations of various heavy metals by different species of plants were observed. Typha latifolia was found to be most efficient metal accumulator of Fe (927), Cu (58), Zn (87), Ni (57), Al (67), Cd (95), and Pb (69), and Azolla pinnata as Cr (93) hyper-accumulator among aquatic species in µg g(-1). In terrestrial species the maximum levels of Fe (998), Zn (81), Ni (93), Al (121), and Si (156) were found in Croton bonplandium. However, there was high spatial variability in total metal accumulation in different species indicated by coefficient of variation (CV%). These results suggest that various aquatic, some dominant terrestrial plants including fern species may be used in a synergistic way to remediate and restore the FA contaminated wastelands.

  3. Characterization of gene expression of QM from Caragana jubata, a plant species that grows under extreme cold.

    PubMed

    Bhardwaj, Pardeep Kumar; Ahuja, Paramvir Singh; Kumar, Sanjay

    2010-02-01

    Caragana [Caragana jubata (Pall.) Poir] is a temperate plant that thrives well under extremes of cold in high altitude of Himalaya and hence the plant is expected to be a source of genes that might play an important role in tolerance to low temperature (LT). In order to identify LT inducible gene(s), differential display of mRNA (DD) was performed using the apical buds growing under snow as well as growing in the near vicinity without snow, and a LT inducible QM gene (CjQM) homologue was identified. Realizing the importance of QM gene (which encodes human Wilms' tumor suppressor QM protein) in aggregation of 40 and 60S ribosomal subunit and that not much has been reported on this gene in plant systems in relation to its relationship with LT, full length cDNA of CjQM was cloned through rapid amplification of cDNA ends. The gene (977 bp), encoded by small gene family, had an open reading frame of 651 bp and was found to be intronless. The gene exhibited up-regulation within 20 min of exposure to LT and abscisic acid (ABA), but no significant change in gene expression was observed in response to drought stress (DS), salicylic acid (SA) and methyl jasmonate (MJ) application. Up-regulation of CjQM was obtained in the tissues growing in situ under snow. Non-responsiveness of CjQM towards DS, SA and MJ, but up-regulation in response to LT and ABA suggested a specific regulation of the gene in Caragana under varied cues.

  4. [Some peculiar features of liquid supply to the root medium of plants growing in microgravity

    NASA Technical Reports Server (NTRS)

    Podol'skii, I. G.; Sychev, V. N.; Levinskikh, M. A.; Strugov, O. M.; Bingham, G. E.; Salisbury, F. B. (Principal Investigator)

    1998-01-01

    Sixteen point probes monitored moisture level in the root medium of the wheat plants grown in greenhouse SVET on the MIR/NASA space science program. The article outlines types of water migration in the absence of gravity. Hydrophysical characteristics of perspective root media have been explored. Results of the water supply monitoring and control in the course of experiment are reported. The authors put forward porous root media to facilitate water migration and aeration.

  5. Evaluation of activity of epiphyseal plates in growing males and females.

    PubMed

    Yang, K-T A; Yang, A D

    2006-06-01

    To investigate the age-related activity of the epiphyseal plates, a retrospective study of (99m)Tc-methylene diphosphonate bone scans was undertaken. The study comprised 81 males and 46 females aged 2 weeks to 24 years. The total percentage (%) whole-body (ratio of total physis activity to whole-body activity) and the regional % whole-body (ratio of physis activity of one region to whole-body activity) were derived. The ratio of physis activity of one region to the total physis activity was defined as % physis. Before age 12, total physis activity was found to contribute about 10% to whole-body activity. All total and regional % whole-body activities followed sigmoid curves with age. The differences of the parameters (transition centers and widths) suggested that there might be a later and longer period for the disappearance of physis activity in males than in females. For all the regions, % physis changed little with age until after puberty. At age <1, the proportion of bone activity in the body was about 30-35% for skull, 20-25% for lower limbs, and 5-15% for the rest of the regions. The maximal changes during growth occurred in the skull and the lower limbs. The age-related changes of physis activity during growth reflect a combination of the potential of bone to grow and the processes of bone growth and bone turnover. Bone scintigraphy is useful in understanding the changes of physis activity during growth.

  6. Effects of elemental sulphur on heavy metal uptake by plants growing on municipal sewage sludge.

    PubMed

    Dede, Gulgun; Ozdemir, Saim

    2016-01-15

    In this study experiment was carried out to determine the phytoextraction potential of six plant species (Conium maculatum, Brassica oleraceae var. oleraceae, Brassica juncea, Datura stramonium, Pelargonium hortorum and Conyza canadensis) grown in a sewage sludge medium amended with metal uptake promoters. The solubility of Cu, Cd and Pb was significantly increased with the application of elemental S due to decrease of pH. Faecal coliform number was markedly decreased by addition of elemental sulphur. The extraction of Cu, Cr and Pb from sewage sludge by using B. juncea plant was observed as 65%, 65% and 54% respectively that is statistically similar to EDTA as sulphur. The bioaccumulation factors were found higher (>1) in the plants tested for Cu and Pb like B. juncea. Translocation index (TI) calculated values for Cd and Pb were greater than one (>1) in both C. maculatum and B. oleraceae var. oleraceae. The results cleared that the amendment of sludge with elemental sulphur showed potential to solubilize heavy metals in phytoremediation as much as EDTA.

  7. Nanosiderite is effective to alleviate iron chlorosis in sensitive plants growing on calcareous soils

    NASA Astrophysics Data System (ADS)

    Sánchez-Alcalá, I.; del Campillo, M. C.; Barrón, V.; Torrent, J.

    2012-04-01

    Key words: siderite, iron chlorosis, calcareous soil, goethite, lepidocrocite Nanosized siderite (FeCO3) prepared by mixing FeSO4 and K2CO3 solutions [either alone or in presence of phosphate (siderites SID and SIDP, respectively)] was used in our experiments. The products of oxidation of siderite in a calcite suspension were goethite or a mixture of goethite and lepidocrocite when phosphate was present. These iron oxides were nanosized and acid NH4oxalate-soluble, which suggested they could be a good source of iron (Fe) for plants sensitive to Fe deficiency yellowing (chlorosis). To evaluate the effectiveness and long-term effects of suspensions of siderite mixed with calcareous soil to prevent Fe chlorosis, a pot growth experiment was carried out with five consecutive crops: chickpea (twice), peanut (twice) and strawberry. Suspensions of siderites (SID and SIDP) were mixed with 220 g of soil at the beginning of the experiment at rates of 0.24, 0.46, 0.93 and 1.40 g siderite (0.12, 0.22, 0.45, and 0.67 g Fe) kg-1 soil. A control (no Fe added) and a positive control (Fe-chelate as FeEDDHA before each cropping) were included. The concentration of chlorophyll in the youngest leaves was estimated three times for chickpea and peanut, and five times for strawberry via the SPAD value (SPAD 502 portable chlorophyll meter). The SPAD for the control plants was lower than that for Fe-fertilized plants. For all crops, times and siderite types, SPAD tended to systematically increase with increasing siderite dose, and SID and SIDP had similar effectiveness. At harvest, the SPAD for the plants fertilized with the highest siderite dose (1.40 g kg-1) did not differ significantly from that for FeEDDHA-fertilized plants. Our results suggest in summary that siderite is effective in preventing iron chlorosis and has a long-lasting effect, as the likely result of the high specific surface and high solubility of the crystalline Fe oxides resulting from its oxidation. Futhermore

  8. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.

    PubMed

    Singh, N K; Raghubanshi, A S; Upadhyay, A K; Rai, U N

    2016-08-01

    The present study was conducted to quantify the arsenic (As) and other heavy metal concentrations in the plants and algae growing naturally in As contaminated blocks of North-24-Pargana and Nandia district, West Bengal, India to assess their bioaccumulation potential. The plant species included five macrophytes and five algae were collected from the nine selected sites for estimation of As and other heavy metals accumulated therein by using Inductively Coupled Plasma Mass Spectrophotometer (ICP-MS). Results revealed that maximum As concentration (117mgkg(-1)) was recorded in the agricultural soil at the Barasat followed by Beliaghat (111mgkg(-1)) sites of North-24-Pargana. Similarly, concentration of selenium (Si, 249mgkg(-1)), lead (Pb, 79.4mgkg(-1)), chromium (Cr, 138mgkg(-1)) was also found maximum in the soil at Barasat and cadmium (Cd, 163mgkg(-1)) nickel (Ni, 36.5mgkg(-1)) at Vijaynagar site. Among the macrophytes, Eichhornia crassipes found more dominating species in As contaminated area and accumulate As (597mgkg(-1)) in the shoot at kanchrapara site. The Lemna minor found to accumulate maximum As (735mgkg(-1)) in the leaves at Sonadanga and Pistia stratiotes accumulated minimum As (24.5mgkg(-1)) in the fronds from Ranaghat site. In case of diatoms, maximum As (760mgkg(-1)) was accumulated at Kanchrapara site followed by Hydrodictiyon reticulatum (403mgkg(-1)) at the Ranaghat site. High concentration of As and other heavy metal in soil indicates long term effects of irrigation with contaminated ground water, however, high concentration of heavy metals in naturally growing plants and algae revealed their mobilization through leaching and possible food chain contamination. Therefore, efficient heavy metal accumulator macrophytes Eichhornia crassipes, Lemna minor, Spirodela polyrhiza may be exploited in removing metals from contaminated water by developing a plant based treatment system. However, As accumulator algal species may be used as a bioresource for

  9. Microbial enrichment of a novel growing substrate and its effect on plant growth.

    PubMed

    Trifonova, R; Postma, J; Schilder, M T; van Elsas, J D

    2009-10-01

    The quality of torrefied grass fibers (TGF) as a new potting soil ingredient was tested in a greenhouse experiment. TGF was colonized with previously selected microorganisms. Four colonization treatments were compared: (1) no inoculants, (2) the fungus Coniochaeta ligniaria F/TGF15 alone, (3) the fungus followed by inoculation with two selected bacteria, and (4) the fungus with seven selected bacteria. Cultivation-based and DNA-based methods, i.e., PCR-DGGE and BOX-PCR, were applied to assess the bacterial and fungal communities established in the TGF. Although colonization was not performed under sterile conditions, all inoculated strains were recovered from TGF up to 26 days incubation. Stable fungal and bacterial populations of 10(8) and 10(9) CFU/g TGF, respectively, were reached. As a side effect of the torrefaction process that aimed at the chemical stabilization of grass fibers, potentially phytotoxic compounds were generated. These phytotoxic compounds were cold-extracted from the fibers and analyzed by gas chromatography mass spectrometry. Four of 15 target compounds that had previously been found in the extract of TGF were encountered, namely phenol, 2-methoxyphenol, benzopyran-2-one, and tetrahydro-5,6,7,7a-benzofuranone. The concentration of these compounds decreased significantly during incubation. The colonized TGF was mixed with peat (P) in a range of 100%:0%, 50%:50%, 20%:80%, and 0%:100% TGF/P (w/w), respectively, to assess suitability for plant growth. Germination of tomato seeds was assessed three times, i.e., with inoculated TGF that had been incubated for 12, 21, and 26 days. In these tests, 90-100% of the seeds germinated in 50%:50% and 20%:80% TGF/P, whereas on average only 50% of the seeds germinated in pure TGF. Germination was not improved by the microbial inoculants. However, plant fresh weight as well as leaf area of 28-day-old tomato plants were significantly increased in all treatments where C. ligniaria F/TGF15 was inoculated compared

  10. Cupriavidus and Burkholderia species associated with agricultural plants that grow in alkaline soils.

    PubMed

    Estrada-de Los Santos, Paulina; Vacaseydel-Aceves, Nora Belinda; Martínez-Aguilar, Lourdes; Cruz-Hernández, María Antonia; Mendoza-Herrera, Alberto; Caballero-Mellado, Jesús

    2011-12-01

    The presence of Burkholderia, Cupriavidus, and Ralstonia species in northeastern Mexico was investigated. An analysis of the root surrounding soil from different agricultural plants led to the isolation of Burkholderia and Cupriavidus species but no Ralstonia strains. Most Cupriavidus species were unknown and grouped into two clusters according to ARDRA profiles. The 16S rRNA sequence analysis showed that the Cupriavidus isolates were highly related among them and with different Cupriavidus species with validated names. However, SDS-PAGE profiles were distinct among the different ARDRA profiles and to other Cupriavidus species examined, suggesting new species in the genus. This shows that Cupriavidus is more widely associated with plants than previously appreciated. The BCC isolate was 99% similar to B. cenocepacia by recA sequence analysis. Additionally, most Cupriavidus strains from the two largest groups grew on media containing up to 0.1 mg/ml of copper, 10.0 mg/ml arsenic and 1.0 mg/ml zinc. Burkholderia strains grew on media containing up to 10.0 mg/ml zinc, 5.0 mg/ml arsenic and 0.1 mg/ml copper.

  11. Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil.

    PubMed

    Khan, A G

    2001-05-01

    Heavy metal-contaminated land is increasingly becoming an important environmental, health, economic, and planning issue in Pakistan. The unplanned disposal of industrial effluent from tannery, for example, has resulted in a many fold increase in chromium (Cr) in the land near a tannery. This study was undertaken to compare the total and the DTPA-available Cr contents in the soil and the roots and leaves of tree species growing on it with those on the nearby noncontaminated reference site at Kala Shah Kakoo, Panjab, Pakistan. A very reduced plant cover on the tannery effluent-contaminated site was noted and there was a sharp boundary between the polluted and nonpolluted reference sites, suggesting a strong selection pressure. Polluted soil contained considerable higher amounts of Cr as compared to the reference soil but no correlation was found between Cr contents in the dried plant tissue and the total DTPA-extractable Cr. Roots of all the three tree species, i.e. Dalbergia sissoo, Acacia arabica, and Populus euroamericana, growing on both the contaminated as well reference site possessed arbuscular mycorrhizal fungal (AMF) infection in their roots and AMF propagules in the associated rhizospheres. D. sissoo and A. arabica roots were also studded with nitrogen-fixing rhizobial root nodules, while those of P. euroamericana possessed AMF as well as ectomycorrhizal infections. The dual infection would encourage mineral nutrition, including Cr. AMF community varied, i.e. trees growing on the reference site were exposed to a wide variety of AMF such as Glomus, Scutellospora, and Acaulospora, whereas those on the contaminated site contained only Gigaspora spp. in their mycorrhizospheres, suggesting a selection pressure. Typical Glomus infection patterns in the roots of D. sissoo growing on the contaminated soil but absence of spores of Glomus spp. in the associated rhizospheres indicate the potential error of using AMF spores to extrapolate the root infection. High Cr

  12. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  13. Indonesia begins to realize its potential: New plants feed growing consumption

    SciTech Connect

    Munthe, G.N.

    1997-02-19

    Compared with its neighbors, Indonesia, rich in oil and natural gas resources, has been slow to develop its petrochemical industry. This is partly because of the government`s past policy of not providing financial incentives for major investments and, conforming with the trend toward free trade in Southeast Asia, not protecting new industries with tariffs. Change is under way, however. With a large population and rapid economic growth forecast, Indonesian and foreign investors realize petrochemicals constitute an opportunity too good to miss. Two new steam cracker projects have recently been announced, while numerous downstream petrochemical plants were confirmed during 1996. Meanwhile, the government has demonstrated during the past year that it is willing to intervene to support new producers with tariffs if necessary.

  14. Pharmacologically active plant metabolites as survival strategy products.

    PubMed

    Attardo, C; Sartori, F

    2003-01-01

    The fact that plant organisms produce chemical substances that are able to positively or negatively interfere with the processes which regulate human life has been common knowledge since ancient times. One of the numerous possible examples in the infusion of Conium maculatum, better known as Hemlock, a plant belonging to the family umbelliferae, used by the ancient Egyptians to cure skin diseases. The current official pharmacopoeia includes various chemical substances produced by secondary plant metabolisms. For example, the immunosuppressive drugs used to prevent organ transplant rejection and the majority of antibiotics are metabolites produced by fungal organisms, pilocarpin, digitalis, strophantus, salicylic acid and curare are examples of plant organism metabolites. For this reason, there has been an increase in research into plants, based on information on their medicinal use in the areas where they grow. The study of plants in relation to local culture and traditions is known as "ethnobotany". Careful study of the behaviour of sick animals has also led to the discovery of medicinal plants. The study of this subject is known as "zoopharmacognosy". The aim of this article is to discuss the fact that "ad hoc" production of such chemical substances, defined as "secondary metabolites", is one of the modes in which plant organisms respond to unfavourable environmental stimuli, such as an attack by predatory phytophagous animals or an excessive number of plant individuals, even of the same species, in a terrain. In the latter case, the plant organisms produce toxic substances, called "allelopathic" which limit the growth of other individuals. "Secondary metabolites" are produced by metabolic systems that are shunts of the primary systems which, when required, may be activated from the beginning, or increased to the detriment of others. The study of the manner in which such substances are produced is the subject of a new branch of learning called "ecological

  15. Amino acid digestibility of plant protein feed ingredients for growing pigs.

    PubMed

    Cotten, B; Ragland, D; Thomson, J E; Adeola, O

    2016-03-01

    Two experiments were designed to determine the N and AA digestibility of various protein sources (potato protein concentrate, soy protein concentrate, soy protein isolate, linseed meal, sunflower meal, cottonseed meal, canola meal, and camelina meal) fed to growing pigs. In each experiment, barrows were surgically fitted with a simple T-cannula at the distal ileum and fed 4 experimental diets and a N-free diet (NFD) on the basis of a replicated 5 × 2 crossover arrangement with 5 diets and 2 periods. For Exp. 1, 20 cannulated 25-kg barrows received potato concentrate, soy concentrate, soy isolate, and linseed meal. The apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of N for potato concentrate, soy concentrate, and soy isolate were similar and greater than that for linseed meal ( < 0.05). The AID and SID of Leu and Thr were greater in potato protein concentrate than soy concentrate ( < 0.05), and AID and SID of Thr were lower in soy isolate than potato concentrate. The AID and SID of all essential AA were similar between soy isolate and soy concentrate. Linseed meal had the lowest AID and SID of N and AA digestibility among protein sources ( < 0.05). In Exp. 2, sunflower meal, cottonseed meal, canola meal, and camelina meal were fed to 42-kg barrows to determine their AID and SID of AA. The AID and SID of N and all AA were greatest for sunflower meal ( < 0.05), and canola meal had similar AID and SID of N, Met, Thr, Leu, and Val. The AID and SID of all essential AA, except for Met and Trp, were lowest for sunflower meal ( < 0.05). Cottonseed meal had lower AID and SID for Lys, Ile, Leu, Met, Thr, and Val compared with the other protein sources ( < 0.05). In conclusion, the digestibility of N and AA varies greatly among oilseed meals.

  16. Comparative study on elemental composition and DNA damage in leaves of a weedy plant species, Cassia occidentalis, growing wild on weathered fly ash and soil.

    PubMed

    Love, Amit; Tandon, Rajesh; Banerjee, B D; Babu, C R

    2009-10-01

    Open dumping of fly ash in fly ash basins has significant adverse environmental impacts due to its elevated trace element content. In situ biomonitoring of genotoxicity is of practical value in realistic hazard identification of fly ash. Genotoxicity of openly disposed fly ash to natural plant populations inhabiting fly ash basins has not been investigated. DNA damage, and concentrations of As, Co, Cr, Cu and Ni in the leaves of natural populations of Cassia occidentalis growing at two contrasting sites-one having weathered fly ash (fly ash basin) and the other having soil (reference site) as plant growth substrates-were assessed. The foliar concentrations of As, Ni and Cr were two to eight fold higher in plants growing on fly ash as compared to the plants growing on soil, whereas foliar concentrations of Cu and Co were similar. We report, for the first time, based upon comet assay results, higher levels of DNA damage in leaf tissues of Cassia occidentalis growing wild on fly ash basin compared to C. occidentalis growing on soil. Correlation analysis between foliar DNA damage and foliar concentrations of trace elements suggests that DNA damage may perhaps be associated with foliar concentrations of As and Ni. Our observations suggest that (1) fly ash triggers genotoxic responses in plants growing naturally on fly ash basins; and (2) plant comet assay is useful for in situ biomonitoring of genotoxicity of fly ash.

  17. The Nutritive Values in Different Varieties of Corn Planted in One Location Fed to Growing Pigs over Three Consecutive Years

    PubMed Central

    Zhang, L.; Li, Y. K.; Li, Z. C.; Li, Q. F.; Lyu, M. B.; Li, D. F.; Lai, C. H.

    2016-01-01

    This experiment was conducted to determine the effect of variety and planting year on the nutritive values of corn fed to growing pigs. Four corn varieties examined in this experiment were planted in the same village located in Longhua County, Heibei Province, China, in 2012, 2013, and 2014, respectively. During each year, corn was hand-harvested in early October and sun dried to about 14% moisture content. Three batches of twenty-four barrows (33.27±4.30, 31.88±2.93, 34.21±3.81 kg body wight [BW] in 2012, 2013, and 2014, respectively) were used and allotted to a complete block design with 4 diets and 6 replicate pigs per diet. Pigs were individually placed in metabolic crates. The four experimental diets were formulated by mixing each variety of corn and vitamins and minerals, respectively. A five-day collection period followed a seven-day diet acclimation period. The results indicated that variety of corn significantly influenced the available energy content (digestible energy [DE] on dry matter basis, p<0.05; metabolizable energy (ME) on dry matter basis, p<0.05, respectively), and the apparent total tract digestibility (ATTD) of organic matter (p<0.01), dry matter (p<0.05), gross energy (p<0.05), neutral detergent fiber (p<0.01), acid detergent fiber and ether extract (p<0.05). The planting year also significantly influenced the available energy contents (DE on dry matter basis, p<0.05; ME on dry matter basis, p<0.01, respectively) and the ATTD of neutral detergent fiber (p<0.01), acid detergent fiber (p<0.01), crude protein (p<0.01), and ether extract (p<0.01). No interaction was observed between the variety and planting year in DE and ME contents in corn. In conclusion, the variety and planting year significantly influenced the available energy and nutrient digestibility of corn fed to growing pigs. PMID:27004815

  18. Production of potato minitubers using advanced environmental control technologies developed for growing plants in space

    NASA Astrophysics Data System (ADS)

    Britt, Robert G.

    1998-01-01

    Development of plant growth systems for use in outer space have been modified for use on earth as the backbone of a new system for rapid growth of potato minitubers. The automation of this new biotechnology provides for a fully controllable method of producing pathogen-free nuclear stock potato minitubers from tissue cultured clones of varieties of potato in a biomanufacturing facility. These minitubers are the beginning stage of seed potato production. Because the new system provides for pathogen-free minitubers by the tens-of-millions, rather than by the thousands which are currently produced in advanced seed potato systems, a new-dimension in seed potato development, breeding and multiplication has been achieved. The net advantage to earth-borne agricultural farming systems will be the elimination of several years of seed multiplication from the current system, higher quality potato production, and access to new potato varieties resistant to diseases and insects which will eliminate the need for chemical controls.

  19. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes.

  20. Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq

    PubMed Central

    Al-Bayati, Firas A.; Al-Mola, Hassan F.

    2008-01-01

    Antimicrobial activity of organic and aqueous extracts from fruits, leaves and roots of Tribulus terrestris L., an Iraqi medicinal plant used as urinary anti-infective in folk medicine, was examined against 11 species of pathogenic and non-pathogenic microorganisms: Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Corynebacterium diphtheriae, Escherichia coli, Proteus vulgaris, Serratia marcescens, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Candida albicans using microdilution method in 96 multiwell microtiter plates. All the extracts from the different parts of the plant showed antimicrobial activity against most tested microorganisms. The most active extract against both Gram-negative and Gram-positive bacteria was ethanol extract from the fruits with a minimal inhibitory concentration (MIC) value of 0.15 mg/ml against B. subtilis, B. cereus, P. vulgaris and C. diphtheriae. In addition, the same extract from the same plant part demonstrated the strongest antifungal activity against C. albicans with an MIC value of 0.15 mg/ml. PMID:18257138

  1. Malassezia globosa tends to grow actively in summer conditions more than other cutaneous Malassezia species.

    PubMed

    Akaza, Narifumi; Akamatsu, Hirohiko; Takeoka, Shiori; Sasaki, Yasuyuki; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko

    2012-07-01

    Malassezia globosa is a major pathogen of Malassezia folliculitis (MF) and the predominant species on human skin. The aim of this study was to clarify the differences between M. globosa and other cutaneous Malassezia species, M. restricta, M. dermatis, M. sympodialis and M. furfur. The optimum growth temperature, effects of compounds of sweat and free fatty acids on growth, and lipase activities of five cutaneous Malassezia species were determined. The growth of M. globosa was promoted strongly by the compounds of sweat and high temperature unlike that of other cutaneous Malassezia species. This result clarified that M. globosa tended to grow actively in summer conditions more than other cutaneous Malassezia species. Furthermore, M. globosa showed high lipase activity. We consider these characteristics of M. globosa to relate to the pathogenesis of MF.

  2. [Antimicrobial activity of Calendula L. plants].

    PubMed

    Radioza, S A; Iurchak, L D

    2007-01-01

    The sap of different organs of genus Calendula plant species has been studied for antimicrobial activity. The sap of racemes demonstrated the most expressed antimicrobial effect while that of the roots - the least one. Calendula species inhibited all tested pathogenic microorganisms, especially Pseudomonas syringae, P. fluorescens, Xanthomonas campestris, Agrobacterium tumefaciens. Calendula suffruticosa was the most active to all investigated microorganisms.

  3. Molluscicidal activity of some Moroccan medicinal plants.

    PubMed

    Hmamouchi, M; Lahlou, M; Agoumi, A

    2000-06-01

    Among 14 plants of Moroccan folk medicine tested for molluscicidal activity, ethyl acetate extract from Origanum compactum and hexane extracts from both Chenopodium ambrosioides and Ruta chalepensis were the most active (LC(90)=2.00, 2.23 and 2.23 mg l(-1), respectively) against the schistosomiasis-transmitting snail Bulinus truncatus.

  4. Growing up Active: A Study into Physical Activity in Long Day Care Centers

    ERIC Educational Resources Information Center

    Cashmore, Aaron W.; Jones, Sandra C.

    2008-01-01

    The child care center is an ideal setting in which to implement strategies to promote physical activity and healthy weight, but there is a paucity of empirical evidence on factors that influence physical activity in these settings. The current study gathered initial qualitative data to explore these factors. Child care workers from five long day…

  5. Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya.

    PubMed

    Giweli, Abdulhmid; Džamić, Ana M; Soković, Marina; Ristić, Mihailo S; Marin, Petar D

    2012-04-26

    The composition of essential oil isolated from Satureja thymbra, growing wild in Libya, was analyzed by GC and GC-MS. The essential oil was characterized by γ-terpinene (39.23%), thymol (25.16%), p-cymene (7.17%) and carvacrol (4.18%) as the major constituents. Antioxidant activity was analyzed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method. It possessed strong antioxidant activity (IC50 = 0.0967 mg/mL). The essential oil was also screened for its antimicrobial activity against eight bacterial and eight fungal species, showing excellent antimicrobial activity against the microorganisms used, in particular against the fungi. The oil of S. thymbra showed bacteriostatic activity at 0.001-0.1 mg/mL and was bactericidal at 0.002-0.2 mg/mL; fungistatic effects at 0.001-0.025 mg/mL and fungicidal effects at 0.001-0.1 mg/mL. The main constituents thymol, carvacrol and γ-terpinene also showed strong antimicrobial activity. The commercial fungicide bifonazole showed much lower antifungal activity than the tested oil.

  6. Use of municipal solid waste compost (MSWC) as a growing medium in the nursery production of tomato plants.

    PubMed

    Herrera, F; Castillo, J E; Chica, A F; López Bellido, L

    2008-01-01

    Five media prepared from old peat (OP), white peat (WP) and municipal solid waste compost (MSWC) were used to determine optimum growing media for tomatoes (Lycopersicum esculentum Mill. cv "Atletico"). The mixtures of substrates used were: OP (65%)+WP (30%)+perlite (5%), OP (65%)+MSWC (30%)+perlite (5%), WP (65%)+OP (30%)+perlite (5%), WP (65%)+MSWC (30%)+perlite (5%), MSWC (65%)+WP (30%)+perlite (5%). Various seedling indices were measured in order to assess the quality of the nursery-produced plant. Nursery-produced tomato seedlings grown in WP (65%)+MSWC (30%) displayed quality indices similar to those recorded for conventional mixtures of old and white peat sphagnum, due to a correct balance between the compost nutrient supply and the porosity and aeration provided by white peat.

  7. Bacterial communities associated with the pitcher fluids of three Nepenthes (Nepenthaceae) pitcher plant species growing in the wild.

    PubMed

    Chou, Lee Yiung; Clarke, Charles M; Dykes, Gary A

    2014-10-01

    Nepenthes pitcher plants produce modified jug-shaped leaves to attract, trap and digest insect prey. We used 16S rDNA cloning and sequencing to compare bacterial communities in pitcher fluids of each of three species, namely Nepenthes ampullaria, Nepenthes gracilis and Nepenthes mirabilis, growing in the wild. In contrast to previous greenhouse-based studies, we found that both opened and unopened pitchers harbored bacterial DNA. Pitchers of N. mirabilis had higher bacterial diversity as compared to other Nepenthes species. The composition of the bacterial communities could be different between pitcher types for N. mirabilis (ANOSIM: R = 0.340, p < 0.05). Other Nepenthes species had similar bacterial composition between pitcher types. SIMPER showed that more than 50 % of the bacterial taxa identified from the open pitchers of N. mirabilis were not found in other groups. Our study suggests that bacteria in N. mirabilis are divided into native and nonnative groups.

  8. Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Gleiser, Raquel M; Bonino, Maria A; Zygadlo, Julio A

    2011-01-01

    Mosquitoes are vectors of pathogens to humans and domestic animals and may also have economical impacts. One approach to prevent mosquito-borne diseases is bite deterrence through the application of repellents. Currently, there is an interest to search for alternative bioactive products to the synthetic active ingredients most widely used in insect repellents. Repellence against Aedes aegypti of essential oils extracted from Acantholippia salsoloides, Aloysia catamarcensis, Aloysia polystachya, Lippia integrifolia, Lippia junelliana (Verbenaceae), Baccharis salicifolia, Euphatorium buniifolium, and Tagetes filifolia (Asteraceae) were assessed. Tests were conducted by alternatively exposing untreated and treated forehand to the mosquitoes and counting probing attempts. All essential oils tested were significantly repellent against A. aegypti when compared to untreated controls; L. junelliana was the most repellent and T. filifolia was the least based on the response of the mosquitoes to different concentrations of the essential oils (EO). Repellence may be attributed to the respective main components of each EO.

  9. Zulu medicinal plants with antibacterial activity.

    PubMed

    Kelmanson, J E; Jäger, A K; van Staden, J

    2000-03-01

    Aqueous, methanolic and ethyl acetate extracts of 14 plants used in traditional Zulu medicine for treatment of ailments of an infectious nature were screened for antibacterial activity. Most of the activity detected was against gram-positive bacteria. Tuber bark extracts of Dioscorea sylvatica had activity against gram-negative Escherichia coli and extracts of Dioscorea dregeana, Cheilanthes viridis and Vernonia colorata were active against Pseudomonas aeruginosa. The highest antibacterial activity was found in extracts of C. viridis, D. dregeana, D. silvatica, Melianthus comosus and V. colorata. In general, methanolic extracts exhibited higher activity than aqueous and ethyl acetate extracts.

  10. Phenotypic diversity and amylolytic activity of fast growing rhizobia from pigeonpea [Cajanus cajan (L.) Millsp.

    PubMed Central

    Júnior, Paulo Ivan Fernandes; de Lima, Andréa Aparecida; Passos, Samuel Ribeiro; Tuão Gava, Carlos Alberto; de Oliveira, Paulo Jansen; Rumjanek, Norma Gouvêa; Xavier, Gustavo Ribeiro

    2012-01-01

    This study evaluated 26 pigeonpea rhizobial isolates according to their cultural characteristics, intrinsic antibiotic resistance, salt and temperature tolerance, carbon source utilization and amylolytic activity. The cultural characterization showed that the majority of them presented the ability to acidify the YMA. Among the 27 isolates evaluated, 25 were able to grow when incubated at 42° C and 11 showed tolerance to 3% (w/v) of NaCl in YMA medium. The patterns of carbon sources utilization was very diverse among the isolates. It was observed the capacity of three strains to metabolize all the carbon sources evaluated and a total of 42% of the bacterial isolates was able to grow in the culture medium supplemented with at least, six carbon sources. The carbon sources mannitol (control) and sucrose were metabilized by all isolates evaluated. The profile of intrinsic resistance to antibiotics showed that the isolates were mostly resistant to streptomycin and ampicillin, but susceptible to kanamycin and chloranphenicol. High amylolytic activity of, at least, four isolates was also demonstrated, especially for isolated 47.3b, which showed the highest enzymatic index. These results indicate the metabolic versatility of the pigeonpea rhizobia, and indicates the isolate 47.3b to further studies regarding the amylase production and characterization. PMID:24031992

  11. Antibacterial, allelopathic and antioxidant activities of essential oil of Salvia officinalis L. growing wild in the Atlas Mountains of Morocco.

    PubMed

    Bouajaj, S; Benyamna, A; Bouamama, H; Romane, A; Falconieri, D; Piras, A; Marongiu, B

    2013-01-01

    Salvia officinalis (Common sage, Culinary sage) is an aromatic plant that is frequently used as a spice in Mediterranean cookery and in the food industry and as a traditional medicine for the treatment of several infectious diseases. The essential oils were obtained by two different methods [hydrodistillation (HD) and microwave (Mw)] from the aerial part of S. officinalis L. growing wild in Ourika-Marrakech in Morocco. Ourika is a large zone of the Atlas Mountains which is considered as a large reserve of Flora, especially medicinal and aromatic plants. The obtained oils were analysed by gas chromatography and gas chromatography-mass spectrometry and compared with that of Tunisia. Thirty-six compounds were identified from the Mw-extracted oil which accounted for 97.32% of the total oil composition. However, 33 compounds obtained by HD representing 98.67%. The major components were trans-thujone (14.10% and 29.84%), 1,8-cineole (5.10% and 16.82%), camphor (4.99% and 9.14%), viridiflorol (16.42% and 9.92%), β-caryophyllene (19.83% and 5.20%) and α-humulene (13.54% and 4.02%). Antibacterial, allelopathic (% germination in lettuce seeds and inhibited root growth obtained after treatment with S. officinalis oils) and antioxidant (IC₅₀ values 22 mg/mL) activities were studied.

  12. Ice-Cap: a method for growing Arabidopsis and tomato plants in 96-well plates for high-throughput genotyping.

    PubMed

    Su, Shih-Heng; Clark, Katie A; Gibbs, Nicole M; Bush, Susan M; Krysan, Patrick J

    2011-11-09

    It is becoming common for plant scientists to develop projects that require the genotyping of large numbers of plants. The first step in any genotyping project is to collect a tissue sample from each individual plant. The traditional approach to this task is to sample plants one-at-a-time. If one wishes to genotype hundreds or thousands of individuals, however, using this strategy results in a significant bottleneck in the genotyping pipeline. The Ice-Cap method that we describe here provides a high-throughput solution to this challenge by allowing one scientist to collect tissue from several thousand seedlings in a single day (1,2). This level of throughput is made possible by the fact that tissue is harvested from plants 96-at-a-time, rather than one-at-a-time. The Ice-Cap method provides an integrated platform for performing seedling growth, tissue harvest, and DNA extraction. The basis for Ice-Cap is the growth of seedlings in a stacked pair of 96-well plates. The wells of the upper plate contain plugs of agar growth media on which individual seedlings germinate. The roots grow down through the agar media, exit the upper plate through a hole, and pass into a lower plate containing water. To harvest tissue for DNA extraction, the water in the lower plate containing root tissue is rapidly frozen while the seedlings in the upper plate remain at room temperature. The upper plate is then peeled away from the lower plate, yielding one plate with 96 root tissue samples frozen in ice and one plate with 96 viable seedlings. The technique is named "Ice-Cap" because it uses ice to capture the root tissue. The 96-well plate containing the seedlings can then wrapped in foil and transferred to low temperature. This process suspends further growth of the seedlings, but does not affect their viability. Once genotype analysis has been completed, seedlings with the desired genotype can be transferred from the 96-well plate to soil for further propagation. We have demonstrated

  13. The novel Solanum tuberosum calcium dependent protein kinase, StCDPK3, is expressed in actively growing organs.

    PubMed

    Grandellis, Carolina; Giammaria, Verónica; Bialer, Magalí; Santin, Franco; Lin, Tian; Hannapel, David J; Ulloa, Rita M

    2012-12-01

    Calcium-dependent protein kinases (CDPKs) are key components of calcium regulated signaling cascades in plants. In this work, isoform StCDPK3 from Solanum tuberosum was studied and fully described. StCDPK3 encodes a 63 kDa protein with an N-terminal variable domain (NTV), rich in prolines and glutamines, which presents myristoylation and palmitoylation consensus sites and a PEST sequence indicative of rapid protein degradation. StCDPK3 gene (circa 11 kb) is localized in chromosome 3, shares the eight exons and seven introns structure with other isoforms from subgroup IIa and contains an additional intron in the 5'UTR region. StCDPK3 expression is ubiquitous being transcripts more abundant in early elongating stolons (ES), leaves and roots, however isoform specific antibodies only detected the protein in leaf particulate extracts. The recombinant 6xHis-StCDPK3 is an active kinase that differs in its kinetic parameters and calcium requirements from StCDPK1 and 2 isoforms. In vitro, StCDPK3 undergoes autophosphorylation regardless of the addition of calcium. The StCDPK3 promoter region (circa 1,800 bp) was subcloned by genome walking and fused to GUS. Light and ABRE responsive elements were identified in the promoter region as well as elements associated to expression in roots. StCDPK3 expression was enhanced by ABA while GA decreased it. Potato transgenic lines harboring StCDPK3 promoter∷GUS construct were generated by Agrobacterium tumefaciens mediated plant transformation. Promoter activity was detected in leaves, root tips and branching points, early ES, tuber eyes and developing sprouts indicating that StCDPK3 is expressed in actively growing organs.

  14. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  15. Ultraviolet induction of antifungal activity in plants.

    PubMed

    Schumpp, O; Bruderhofer, N; Monod, M; Wolfender, J-L; Gindro, K

    2012-11-01

    Ultraviolet-C irradiation as a method to induce the production of plant compounds with antifungal properties was investigated in the leaves of 18 plant species. A susceptibility assay to determine the antifungal susceptibility of filamentous fungi was developed based on an agar dilution series in microtiter plates. UV irradiation strongly induced antifungal properties in five species against a clinical Fusarium solani strain that was responsible for an onychomycosis case that was resistant to classic pharmacological treatment. The antifungal properties of three additional plant species were either unaffected or reduced by UV-C irradiation. This study demonstrates that UV-C irradiation is an effective means of modulating the antifungal activity of very diverse plants from a screening perspective.

  16. Biologically active and antimicrobial peptides from plants.

    PubMed

    Salas, Carlos E; Badillo-Corona, Jesus A; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  17. Design and control of rotating soil-like substrate plant-growing facility based on plant water requirement and computational fluid dynamics simulation

    NASA Astrophysics Data System (ADS)

    Hu, Dawei; Li, Leyuan; Liu, Hui; Zhang, Houkai; Fu, Yuming; Sun, Yi; Li, Liang

    It is necessary to process inedible plant biomass into soil-like substrate (SLS) by bio-compost to realize biological resource sustainable utilization. Although similar to natural soil in structure and function, SLS often has uneven water distribution adversely affecting the plant growth due to unsatisfactory porosity, permeability and gravity distribution. In this article, SLS plant-growing facility (SLS-PGF) were therefore rotated properly for cultivating lettuce, and the Brinkman equations coupled with laminar flow equations were taken as governing equations, and boundary conditions were specified by actual operating characteristics of rotating SLS-PGF. Optimal open-control law of the angular and inflow velocity was determined by lettuce water requirement and CFD simulations. The experimental result clearly showed that water content was more uniformly distributed in SLS under the action of centrifugal and Coriolis force, rotating SLS-PGF with the optimal open-control law could meet lettuce water requirement at every growth stage and achieve precise irrigation.

  18. Lead stress effects on physiobiochemical activities of higher plants.

    PubMed

    Sengar, Rakesh Singh; Gautam, Madhu; Sengar, Rajesh Singh; Garg, Sanjay Kumar; Sengar, Kalpana; Chaudhary, Reshu

    2008-01-01

    Lead is a metallic pollutant emanating from various environmental sources including industrial wastes, combustion of fossil fuels, and use of agrochemicals. Lead may exist in the atmosphere as dusts, fumes, mists, and vapors, and in soil as a mineral. Soils along roadsides are rich in lead because vehicles burn leaded gasoline, which contributes to environmental lead pollution. Other important sources of lead pollution are geological weathering, industrial processing of ores and minerals, leaching of lead from solid wastes, and animal and human excreta. Lead is nondegradable, readily enters the food chain, and can subsequently endanger human and animal health. Lead is one of the most important environment pollutants and deserves the increasing attention it has received in recent decades. The present effort was undertaken to review lead stress effects on the physiobiochemical activity of higher plants. Lead has gained considerable attention as a potent heavy metal pollutant because of growing anthropogenic pressure on the environment. Lead-contaminated soils show a sharp decline in crop productivity. Lead is absorbed by plants mainly through the root system and in minor amounts through the leaves. Within the plants, lead accumulates primarily in roots, but some is translocated to aerial plant parts. Soil pH, soil particle size, cation-exchange capacity, as well as root surface area, root exudation, and mycorrhizal transpiration rate affect the availability and uptake of lead by plants. Only a limited amount of lead is translocated from roots to other organs because there are natural plant barriers in the root endodermis. At lethal concentrations, this barrier is broken and lead may enter vascular tissues. Lead in plants may form deposits of various sizes, present mainly in intercellular spaces, cell walls, and vacuoles. Small deposits of this metal are also seen in the endoplasmic reticulum, dictyosome, and dictyosome-derived vesicles. After entering the cells, lead

  19. Plant growth-promoting hormones activate mammalian guanylate cyclase activity.

    PubMed

    Vesely, D L; Hudson, J L; Pipkin, J L; Pack, L D; Meiners, S E

    1985-05-01

    In vivo injections of plant growth-promoting hormones increase the growth of animals as well as plants. Plant growth-promoting hormones and positive plant growth regulators are known to increase RNA and protein synthesis. Since cyclic GMP also increases RNA and protein synthesis, the object of the present investigation was to determine whether physiological levels of plant growth-promoting hormones and positive plant growth regulators have part of their mechanism(s) of action through stimulation of the guanylate cyclase (EC 4.6.1.2)-cyclic GMP system. Representatives of the three classes of growth-promoting hormones were investigated. Thus, auxins (indole-3-acetic acid, indole-3-butyric acid, beta-naphthoxyacetic acid, and 2,4,5-trichlorophenoxy acetic acid), gibberellins (gibberellic acid), and cytokinins [N6-benzyl adenine, kinetin (6-furfuryl aminopurine), and beta-(2-furyl) acrylic acid] all increased rat lung, small intestine, liver, and renal cortex guanylate cyclase activity 2- to 4-fold at the 1 microM concentration. Dose response curves revealed that maximal stimulation of guanylate cyclase by these plant growth regulators was at 1 microM; there was no augmented cyclase activity at 1 nM. The guanylate cyclase cationic cofactor manganese was not essential for augmentation of guanylate cyclase by these plant growth-promoting regulators. The antioxidant butylated hydroxytoluene did not block the enhancement of guanylate cyclase by these plant growth-promoting factors. These data suggest that guanylate cyclase may play a role in the mechanism of action of plant growth-promoting hormones and even of positive plant regulators at the cellular level.

  20. Planting, Growing, Caring.

    ERIC Educational Resources Information Center

    Carrick, James

    Six units of instruction are provided in this manual designed for deaf students enrolled in an ornamental horticulture program. Unit 1 contains eight lessons (pictures and names) on tool and equipment identification (e.g., cutting and pruning tools, lawn and garden equipment, and power equipment). Unit 2 provides ten lessons on the care of tools…

  1. Planting Seeds, Growing Diversity

    ERIC Educational Resources Information Center

    Hua, Vanessa

    2011-01-01

    Last year, when students at Ridgecrest Intermediate School in Palos Verdes, California, were asked to name scientists, their answers--Benjamin Franklin, Thomas Edison, Albert Einstein, Bill Nye the Science Guy--reflected a common perception. Most of the leading scientists they came up with were white, male, or dead. Although women and people of…

  2. Planting Seeds - Growing Values

    ERIC Educational Resources Information Center

    Schubert, Judith L.

    2004-01-01

    Nurturing positive values with youth often involves connecting with them during times of internal struggle and relating these struggles to external influences in their lives. Care and support provided by adults is crucial in these times, even when a youth's outward expression of struggles create conflict or concern. In this article, the author…

  3. Antimicrobial activity and phytochemical analyses of Polygonum aviculare L. (Polygonaceae), naturally growing in Egypt

    PubMed Central

    Salama, Hediat M.H.; Marraiki, Najat

    2009-01-01

    Polygonum aviculare (Polygonaceae) is an herb commonly distributed in Mediterranean coastal regions in Egypt and used in folkloric medicine. Organic and aqueous solvent extracts and fractions of P. aviculare were investigated for antimicrobial activities on several microorganisms including bacteria and fungi. Phytochemical constituents of air-dried powered plant parts were extracted using aqueous and organic solvents (acetone, ethanol, chloroform and water). Antimicrobial activity of the concentrated extracts was evaluated by determination of the diameter of inhibition zone against both Gram-negative and Gram-positive bacteria and fungi using paper disc diffusion method. Results of the phytochemical studies revealed the presence of tannins, saponins, flavonoids, alkaloids and sesquiterpenes and the extracts were active against both Gram-negative and Gram-positive bacteria. Chloroform extract gave very good and excellent antimicrobial activity against all tested bacteria and good activity against all tested fungi except Candida albicans. Structural spectroscopic analysis that was carried out on the active substances in the chloroform extract led to the identification of panicudine (6-hydroxy-11-deoxy-13 dehydrohetisane). Evaluation of the antimicrobial activity of panicudine indicated significant activity against all tested Gram-negative and Gram-positive organisms. Panicudine displayed considerable activity against the tested fungi with the exception of C. albicans. Antimicrobial activity of the extracts was unaffected after exposure to different heat treatments, but was reduced at alkaline pH. Studies of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of panicudine on the tested organisms showed that the lowest MIC and the MBC were demonstrated against Salmonella paratyphi, Bacillus subtilis and Salmonella typhi and the highest MIC and MBC were against Staphylococcus aureus. PMID:23961059

  4. Creating leptin-like biofunctions by active immunization against chicken leptin receptor in growing chickens.

    PubMed

    Lei, M M; Wu, S Q; Shao, X B; Li, X W; Chen, Z; Ying, S J; Shi, Z D

    2015-01-01

    In this study, immunization against chicken leptin receptor (cLEPR) extracellular domain (ECD) was applied to investigate leptin regulation and LEPR biofunction in growing chicken pullets. A recombinant protein (cLEPR ECD) based on the cLEPR complemenary DNA sequence corresponding to the 582nd to 796th amino acid residues of cLEPR mature peptide was prepared and used as antigen. Immunization against cLEPR ECD in growing chickens increased anti-cLEPR ECD antibody titers in blood, enhanced proportions of phosphorylated janus kinase 2 (JAK2) and served as signal transducer and activator of transcription 3 (STAT3) protein in liver tissue. Chicken live weight gain and abdominal fat mass were significantly decreased (P < 0.05), but feed intake was stimulated by cLEPR ECD immunization (P < 0.05). The treatment also upregulated the gene expression levels of lepR, AMP-activated protein kinase (AMPK), acetyl CoA carboxylase-2 (ACC2), and uncoupling protein 3 (UCP3) in liver, abdominal fat, and breast muscle (P < 0.05) but decreased fasn expression levels (P < 0.01). Apart from that of lepR, the expression of appetite-regulating genes, such as orexigenic genes, agouti-related peptide (AgRP) and neuropeptide Y (NPY), were upregulated (P < 0.01), whereas the anorexigenic gene proopiomelanocortin (POMC) was downregulated in the hypothalamic tissue of cLEPR-immunized pullets (P < 0.01). Blood concentrations of metabolic molecules, such as glucose, triglycerides, and very-low-density lipoprotein, were significantly decreased in cLEPR-immunized pullets but those of cholesterol, high-density lipoprotein, and low-density lipoprotein increased. These results demonstrate that antibodies to membrane proximal cLEPR ECD enhance cLEPR signal transduction, which stimulates metabolism and reduces fat deposition in chickens.

  5. Antimicrobial agents from plants: antibacterial activity of plant volatile oils.

    PubMed

    Dorman, H J; Deans, S G

    2000-02-01

    The volatile oils of black pepper [Piper nigrum L. (Piperaceae)], clove [Syzygium aromaticum (L.) Merr. & Perry (Myrtaceae)], geranium [Pelargonium graveolens L'Herit (Geraniaceae)], nutmeg [Myristica fragrans Houtt. (Myristicaceae), oregano [Origanum vulgare ssp. hirtum (Link) Letsw. (Lamiaceae)] and thyme [Thymus vulgaris L. (Lamiaceae)] were assessed for antibacterial activity against 25 different genera of bacteria. These included animal and plant pathogens, food poisoning and spoilage bacteria. The volatile oils exhibited considerable inhibitory effects against all the organisms under test while their major components demonstrated various degrees of growth inhibition.

  6. Comparative study of volatile oil content and antimicrobial activity of pecan cultivars growing in Egypt.

    PubMed

    El Hawary, Seham S; Zaghloul, Soumaya S; El Halawany, Ali M; El Bishbishy, Mahitab H

    2013-11-01

    The volatile oils obtained from the leaves of four pecan cultivars growing in Egypt were evaluated for their chemical composition and antimicrobial activity. The selected cultivars (cv.) were Carya illinoinensis (Wangneh.) K. Koch. cv. Wichita, C. illinoinensis cv. Western Schley, C. illinoinensis cv. Cherokee, and C. illinoinensis cv. Sioux. The gas chromatography-mass spectrometry analyses revealed that the volatile oils from samples of the different cultivars differ in composition and percentage of their components. β-Curcumene was found as the major constituent of the cv. Wichita oil, whereas germacrene D was the major component of cv. Sioux, cv. Cherokee, and cv. Western Schley. The antimicrobial activity was assayed using the Kirby-Bauer Method by measuring the zone of inhibition of growth. All volatile oils displayed an antimicrobial activity against the tested bacterial strains. On the other hand, only the volatile oil of cv. Wichita showed an antifungal effect on Aspergillus flavus. This work has identified candidates of volatile oils for future in vivo studies to develop antibiotic substitutes for the diminution of human and animal pathogenic bacteria. Nevertheless, the variations of the volatile oil components and antimicrobial potencies of the different studied cultivars, necessitate identifying the cultivars used in future studies.

  7. Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India.

    PubMed

    Pandey, Shikha Kumari; Bhattacharya, Tanushree; Chakraborty, Sukalyan

    2016-01-01

    Three naturally growing plants Ipomoea carnea, Lantana camara, and Solanum surattense were found in fly ash dumpsite of Patratu thermal power station, Jharkhand, India. They were assessed for their metal uptake potential. The fly ash was slightly alkaline with very less nitrogen and organic carbon but enriched with phosphorus and heavy metals. Lantana camara and Ipomoea carnea showed good translocation from root to shoot for most of the metals except Mn and Pb. The order of metal accumulation in stem of both the plants were Fe(205mg/kg)>Mn(65mg/kg)>Cu(22.35mg/kg)>Pb(6.6mg/kg)>Cr(3.05mg/kg)>Ni(1 mg/kg)>Cd(0.5 mg/kg) and Fe(741 mg/kg)>Mn(154.05 mg/kg)>Cu(20.75 mg/kg)>Pb(6.75 mg/kg)>Ni(4.0 mg/kg)>Cr(3.3mg/kg)>Cd(0.05mg/kg), respectively. But Solanum surattense accumulated most of the metals in roots. The order was in the following order, Mn (382.2mg/kg) >Fe (264.1mg/kg) > Cu (25.35mg/kg) >Pb (5.95 mg/kg) > Ni (1.9 mg/kg) > Cr (1.8mg/kg) > Cd (0.55 mg/kg). The order of Bioconcentration factor (BCF) in root and shoot followed almost the same order as, Mn>Fe>Ni>Pb>Cu>Cr≈ Cd in all the three species. ANOVA showed significant variation in metal accumulation by root and stem between the species. Finally, it can be concluded that Solanum surattense can be used as phytostabilizer and other two species as phytoextractor of metal for fly ash dumpsite reclamation.

  8. Antifungal activity of 10 Guadeloupean plants.

    PubMed

    Biabiany, Murielle; Roumy, Vincent; Hennebelle, Thierry; François, Nadine; Sendid, Boualem; Pottier, Muriel; Aliouat, El Moukhtar; Rouaud, Isabelle; Lohézic-Le Dévéhat, Françoise; Joseph, Henry; Bourgeois, Paul; Sahpaz, Sevser; Bailleul, François

    2013-11-01

    Screening of the antifungal activities of ten Guadeloupean plants was undertaken to find new extracts and formulations against superficial mycoses such as onychomycosis, athlete's foot, Pityriasis versicolor, as well as the deep fungal infection Pneumocystis pneumonia. For the first time, the CMI of these plant extracts [cyclohexane, ethanol and ethanol/water (1:1, v/v)] was determined against five dermatophytes, five Candida species, Scytalidium dimidiatum, a Malassezia sp. strain and Pneumocystis carinii. Cytotoxicity tests of the most active extracts were also performed on an HaCat keratinocyte cell line. Results suggest that the extracts of Bursera simaruba, Cedrela odorata, Enterolobium cyclocarpum and Pluchea carolinensis have interesting activities and could be good candidates for developing antifungal formulations.

  9. Near-term lander experiments for growing plants on Mars: requirements for information on chemical and physical properties of Mars regolith.

    PubMed

    Schuerger, Andrew C; Ming, Douglas W; Newsom, Horton E; Ferl, Robert J; McKay, Christopher P

    2002-01-01

    In order to support humans for long-duration missions to Mars, bioregenerative Advanced Life Support (ALS) systems have been proposed that would use higher plants as the primary candidates for photosynthesis. Hydroponic technologies have been suggested as the primary method of plant production in ALS systems, but the use of Mars regolith as a plant growth medium may have several advantages over hydroponic systems. The advantages for using Mars regolith include the likely bioavailability of plant-essential ions, mechanical support for plants, and easy access of the material once on the surface. We propose that plant biology experiments must be included in near-term Mars lander missions in order to begin defining the optimum approach for growing plants on Mars. Second, we discuss a range of soil chemistry and soil physics tests that must be conducted prior to, or in concert with, a plant biology experiment in order to properly interpret the results of plant growth studies in Mars regolith. The recommended chemical tests include measurements on soil pH, electrical conductivity and soluble salts, redox potential, bioavailability of essential plant nutrients, and bioavailability of phytotoxic elements. In addition, a future plant growth experiment should include procedures for determining the buffering and leaching requirements of Mars regolith prior to planting. Soil physical tests useful for plant biology studies in Mars regolith include bulk density, particle size distribution, porosity, water retention, and hydraulic conductivity.

  10. Near-term lander experiments for growing plants on Mars: requirements for information on chemical and physical properties of Mars regolith

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Ming, Douglas W.; Newsom, Horton E.; Ferl, Robert J.; McKay, Christopher P.

    2002-01-01

    In order to support humans for long-duration missions to Mars, bioregenerative Advanced Life Support (ALS) systems have been proposed that would use higher plants as the primary candidates for photosynthesis. Hydroponic technologies have been suggested as the primary method of plant production in ALS systems, but the use of Mars regolith as a plant growth medium may have several advantages over hydroponic systems. The advantages for using Mars regolith include the likely bioavailability of plant-essential ions, mechanical support for plants, and easy access of the material once on the surface. We propose that plant biology experiments must be included in near-term Mars lander missions in order to begin defining the optimum approach for growing plants on Mars. Second, we discuss a range of soil chemistry and soil physics tests that must be conducted prior to, or in concert with, a plant biology experiment in order to properly interpret the results of plant growth studies in Mars regolith. The recommended chemical tests include measurements on soil pH, electrical conductivity and soluble salts, redox potential, bioavailability of essential plant nutrients, and bioavailability of phytotoxic elements. In addition, a future plant growth experiment should include procedures for determining the buffering and leaching requirements of Mars regolith prior to planting. Soil physical tests useful for plant biology studies in Mars regolith include bulk density, particle size distribution, porosity, water retention, and hydraulic conductivity.

  11. Antioxidant activity of wild plants collected in Beni-Sueif governorate, Upper Egypt.

    PubMed

    Abouzid, S; Elshahaat, A; Ali, S; Choudhary, M I

    2008-10-01

    Antioxidant activity of a selection of commonly occurring wild plants growing in Beni-Sueif governorate, Upper Egypt, has been tested. The plants selected are Tamarix nilotica, Ambrosia maritima, Zygophyllum coccenium, Conyza dioscoridis, Chenopodium ambrosioides, and Calotropis procera. The in vitro antioxidant assays used in this study were 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, superoxide anion scavenging activity and iron chelating activity. Extracts prepared from the leaves and flowers of Tamarix nilotica have shown the highest antioxidant activity in the three kinds of assay.

  12. Use of soil-like substrate for growing plant to enhance closedness of biological lie support system

    NASA Astrophysics Data System (ADS)

    Gros, J. B.; Lasseur, C.; Tikhomirov, A. A.; Manuskovsky, N. S.; Kovalev, V. S.; Ushakova, S. A.; Zolotukhin, I. G.; Tirranen, L. S.; Gribovskaya, I. V.

    Soil-like substrate (SLS) a potential candidate for use for growing plants in closed biological life support systems (BLSS) was studied. SLS was made by successive transformation of wheat straw by oyster mushrooms and Californian worms. Fertility of SLS of different degree of maturity has been tested. Mature SLS contained 9.5 % of humus acids and 4.9 % of fulvic acids. Wheat, bean and cucumber crops cultivated on mature SLS were comparable to crops obtained on a neutral substrate (expanded clay aggregate). In the wheat-SLS system, net CO2 absorption started on the sixth day after sowing and stopped 5 days prior to harvesting whereas in the wheat-neutral substrate system, net CO2 absorption was registered throughout vegetation. In the SLS, dominant bacteria included the spore-forming bacteria of the Bacillus genus and dominant fungi included the genus Trichoderma. In the hydroponic cultivation on neutral substrate dominant bacteria were of the Pseudomonas genus, while most commonly found fungi were species of the Fusarium genus. Consequence of SLS incorporation in artificial BLSS for increasing the closure degree of internal mass exchange in comparison with a neutral substrate is considered.

  13. Where do roots take up water? Neutron radiography of water flow into the roots of transpiring plants growing in soil.

    PubMed

    Zarebanadkouki, Mohsen; Kim, Yangmin X; Carminati, Andrea

    2013-09-01

    Where and how fast does water flow from soil into roots? The answer to this question requires direct and in situ measurement of local flow of water into roots of transpiring plants growing in soil. We used neutron radiography to trace the transport of deuterated water (D₂O) in lupin (Lupinus albus) roots. Lupins were grown in aluminum containers (30 × 25 × 1 cm) filled with sandy soil. D₂O was injected in different soil regions and its transport in soil and roots was monitored by neutron radiography. The transport of water into roots was then quantified using a convection-diffusion model of D₂O transport into roots. The results showed that water uptake was not uniform along roots. Water uptake was higher in the upper soil layers than in the lower ones. Along an individual root, the radial flux was higher in the proximal segments than in the distal segments. In lupins, most of the water uptake occurred in lateral roots. The function of the taproot was to collect water from laterals and transport it to the shoot. This function is ensured by a low radial conductivity and a high axial conductivity. Lupin root architecture seems well designed to take up water from deep soil layers.

  14. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO42− and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3−–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4+–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3−–N and NH4+–N was ~31.38% and ~20.50% for the contents of NO3−–N and NH4+–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238

  15. Growing Plants and Scientists: Fostering Positive Attitudes toward Science among All Participants in an Afterschool Hydroponics Program

    NASA Astrophysics Data System (ADS)

    Patchen, Amie K.; Zhang, Lin; Barnett, Michael

    2016-12-01

    This study examines an out-of-school time program targeting elementary-aged youth from populations that are typically underrepresented in science fields (primarily African-American, Hispanic, and/or English Language Learner participants). The program aimed to foster positive attitudes toward science among youth by engaging them in growing plants hydroponically (in water without soil). Participants' attitudes toward science, including anxiety, desire, and self-concept, were examined through pre-post survey data (n = 234) over the course of an afterschool program at three separate sites. Data showed that participants' anxiety decreased and desire increased for both male and female participants over the program. Self-concept increased for female participants at all three sites but did not change significantly for male participants. Participants' first language (English or Spanish) was not a factor in attitude outcomes. The primarily positive outcomes suggest that hydroponics can be a useful educational platform for engaging participants in garden-based programming year round, particularly for settings that do not have the physical space or climate to conduct outdoor gardening. Similarities in positive attitude outcomes at the three sites despite differences in format, implementation, and instructor background experience suggest that the program is resilient to variation in context. Understanding which aspects of the program facilitated positive outcomes in the varied contexts could be useful for the design of future programs.

  16. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    PubMed

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  17. Isomaltulose is actively metabolized in plant cells.

    PubMed

    Wu, Luguang; Birch, Robert G

    2011-12-01

    Isomaltulose is a structural isomer of sucrose (Suc). It has been widely used as a nonmetabolized sugar in physiological studies aimed at better understanding the regulatory roles and transport of sugars in plants. It is increasingly used as a nutritional human food, with some beneficial properties including low glycemic index and acariogenicity. Cloning of genes for Suc isomerases opened the way for direct commercial production in plants. The understanding that plants lack catabolic capabilities for isomaltulose indicated a possibility of enhanced yields relative to Suc. However, this understanding was based primarily on the treatment of intact cells with exogenous isomaltulose. Here, we show that sugarcane (Saccharum interspecific hybrids), like other tested plants, does not readily import or catabolize extracellular isomaltulose. However, among intracellular enzymes, cytosolic Suc synthase (in the breakage direction) and vacuolar soluble acid invertase (SAI) substantially catabolize isomaltulose. From kinetic studies, the specificity constant of SAI for isomaltulose is about 10% of that for Suc. Activity varied against other Suc isomers, with V(max) for leucrose about 6-fold that for Suc. SAI activities from other plant species varied substantially in substrate specificity against Suc and its isomers. Therefore, in physiological studies, the blanket notion of Suc isomers including isomaltulose as nonmetabolized sugars must be discarded. For example, lysis of a few cells may result in the substantial hydrolysis of exogenous isomaltulose, with profound downstream signal effects. In plant biotechnology, different V(max) and V(max)/K(m) ratios for Suc isomers may yet be exploited, in combination with appropriate developmental expression and compartmentation, for enhanced sugar yields.

  18. Mercuric reductase activity and evidence of broad-spectrum mercury resistance among clinical isolates of rapidly growing mycobacteria

    SciTech Connect

    Steingrube, V.A.; Wallace, R.J. Jr.; Steele, L.C.; Pang, Y.J. )

    1991-05-01

    Resistance to mercury was evaluated in 356 rapidly growing mycobacteria belonging to eight taxonomic groups. Resistance to inorganic Hg2+ ranged from 0% among the unnamed third biovariant complex of Mycobacterium fortuitum to 83% among M. chelonae-like organisms. With cell extracts and 203Hg(NO3)2 as the substrate, mercuric reductase (HgRe) activity was demonstrable in six of eight taxonomic groups. HgRe activity was inducible and required NADPH or NADH and a thiol donor for optimai activity. Species with HgRe activity were also resistant to organomercurial compounds, including phenylmercuric acetate. Attempts at intraspecies and intragenus transfer of HgRe activity by conjugation or transformation were unsuccessful. Mercury resistance is common in rapidly growing mycobacteria and appears to function via the same inducible enzyme systems already defined in other bacterial species. This system offers potential as a strain marker for epidemiologic investigations and for studying genetic systems in rapidly growing mycobacteria.

  19. Growing Gardens, Growing Minds

    ERIC Educational Resources Information Center

    Hebert, Terri; Martin, Deb; Slattery, Tracy

    2014-01-01

    The authors present a program where students and family members were involved in a taste-testing to select the items to be planted in the school's garden at Stephenson Elementary. A simple rubric of facial recognition is used. Smiles for the favorites; frowns for the disqualifiers. With the help of the school's leadership team consisting…

  20. Leaf lifetime photosynthetic rate and leaf demography in whole plants of Ipomoea pes-caprae growing with a low supply of calcium, a 'non-mobile' nutrient.

    PubMed

    Suárez, N

    2010-03-01

    The adaptive significance of leaf longevity has been established in relation to restrictive nutrients that can be retranslocated within the plant. However, the effect of deficiencies in 'non-mobile' nutrients on leaf lifespan and photosynthetic carbon gain is uncertain. Calcium is frequently given as an example of an essential nutrient with low phloem mobility that may alter the leaf senescence process. This study has been designed to estimate leaf lifespan, leaf production (L(p)) and leaf death (L(d)) rates, the age structure of leaves, and the decline in maximum photosynthetic rate (A(max)) with age in plants of Ipomoea pes-caprae growing with a full supply of nutrients and with a low Ca supply. The Ca deficiency produced reductions in L(p) and leaf lifespan compared with control plants. In spite of the differences in the demographic parameters between treatments in control and low-Ca plants, the percentage of leaves of a given leaf age class is maintained in such a way that the number of leaves per plant continues to increase. No relationship was found between Ca supply and A(max). However, the decline in A(max) with leaf senescence was rather sudden in control plants compared with plants growing with a low Ca supply. The importance of simultaneously using the total leaf demographic census and the assimilation rate along with leaf lifespan data in order to understand the performance of whole plants under constrained conditions is discussed.

  1. Antileishmanial activity and cytotoxicity of Brazilian plants.

    PubMed

    Ribeiro, Tatiana G; Chávez-Fumagalli, Miguel A; Valadares, Diogo G; Franca, Juçara R; Lage, Paula S; Duarte, Mariana C; Andrade, Pedro H R; Martins, Vivian T; Costa, Lourena E; Arruda, Ana L A; Faraco, André A G; Coelho, Eduardo A F; Castilho, Rachel O

    2014-08-01

    Leishmaniasis is a major public health problem, and the alarming spread of parasite resistance has increased the importance of discovering new therapeutic products. The present study aimed to investigate the in vitro leishmanicidal activity from 16 different Brazilian medicinal plants. Stationary-phase promastigotes of Leishmania amazonensis and murine macrophages were exposed to 44 plant extracts or fractions for 48 h at 37°C, in order to evaluate their antileishmanial activity and cytotoxicity, respectively. The most potent extracts against L. amazonensis were the hexanic extract of Dipteryx alata (IC50 of 0.08 μg/mL), the hexanic extract of Syzygium cumini (IC50 of 31.64 μg/mL), the ethanolic and hexanic extracts of leaves of Hymenaea courbaril (IC50 of 44.10 μg/mL and 35.84 μg/mL, respectively), the ethanolic extract of H. stignocarpa (IC50 of 4.69 μg/mL), the ethanolic extract of Jacaranda caroba (IC50 of 13.22 μg/mL), and the ethanolic extract of J. cuspidifolia leaves (IC50 of 10.96 μg/mL). Extracts of D. alata and J. cuspidifolia presented higher selectivity index, with high leishmanicidal activity and low cytotoxicity in the mammalian cells. The capacity in treated infected macrophages using the extracts and/or fractions of D. alata and J. cuspidifolia was also analyzed, and reductions of 95.80%, 98.31%, and 97.16%, respectively, in the parasite burden, were observed. No nitric oxide (NO) production could be observed in the treated macrophages, after stimulation with the extracts and/or fractions of D. alata and J. cuspidifolia, suggesting that the biological activity could be due to mechanisms other than macrophage activation mediated by NO production. Based on phytochemistry studies, the classes of compounds that could contribute to the observed activities are also discussed. In conclusion, the data presented in this study indicated that traditional medicinal plant extracts present effective antileishmanial activity. Future studies could focus on

  2. Elemental concentration of a native fern from Greece that grows in a monoculture and of corn plants grown in the same soil with different levels of copper

    SciTech Connect

    Procopiou, J.; Wallace, A.

    1982-07-01

    Analysis of a native fern (Pteridium aquilinum L.) growing in large tracts of soil at about 1200 meters mean sea level in Greece indicated that it tolerated low levels of copper. Corn plants (Zea mays L.) grown in potted soil from the area did respond slightly to Cu added to the soil.

  3. How Does Your Garden Grow? Early Conceptualization of Seeds and Their Place in the Plant Growth Cycle.

    ERIC Educational Resources Information Center

    Hickling, Anne K.; Gelman, Susan A.

    1995-01-01

    Examined young children's understanding of seed origins and growth preconditions and the stages of plant growth. Found that, by 4.5 years, children realized that natural causal mechanisms underlie plant growth and appreciated the relationship of seeds to plants. Results suggest that preschoolers hold theory-like understandings of plants similar to…

  4. Chemical composition and antimicrobial activity of essential oils from Scabiosa arenaria Forssk: growing wild in Tunisia.

    PubMed

    Besbes, Malek; Omri, Amel; Cheraif, Imed; Daami, Mejda; Jannet, Hichem Ben; Mastouri, Maha; Aouni, Mahjoub; Selmi, Boulbaba

    2012-04-01

    The essential oils isolated from three organs, i.e., fruits, stems and leaves, and flowers, of the endemic North African plant Scabiosa arenaria Forssk. were screened for their chemical composition, as well as their possible antibacterial, anticandidal, and antifungal properties. According to the GC-FID and GC/MS analyses, 61 (99.26% of the total oil composition), 79 (98.43%), and 51 compounds (99.9%) were identified in the three oils, respectively. While α-thujone (34.39%), camphor (17.48%), and β-thujone (15.29%) constituted the major compounds of the fruit oil, chrysanthenone (23.43%), together with camphor (12.98%) and α-thujone (10.7%), were the main constituents of the stem and leaf oil. In the case of the flower oil, also chrysanthenone (38.52%), camphor (11.75%), and α-thujone (9.5%) were identified as the major compounds. Furthermore, the isolated oils were tested against 16 Gram-positive and Gram-negative bacteria, four Candida species, and nine phytopathogenic fungal strains. It was found that the oils exhibited interesting antibacterial and anticandidal activities, comparable to those of thymol, which was used as positive control, but no activity against the phytopathogenic fungal strains was observed.

  5. Commonly occurring plant flavonoids have estrogenic activity.

    PubMed

    Miksicek, R J

    1993-07-01

    A remarkable diversity of naturally occurring and synthetic compounds have been shown to mimic the biological effects of 17 beta-estradiol by virtue of their ability to bind to and activate the nuclear estrogen receptor. This report extends the family of nonsteroidal estrogens to include several multiply hydroxylated chalcones, flavanones, and flavones. The hormone-like activity of these natural plant products is indicated by their ability to stimulate an estrogen receptor-dependent transcriptional response and to promote growth of estrogen-dependent MCF7 cells in culture. The transcriptional response can be inhibited by the steroidal estrogen antagonist ICI-164,384 and is specific for the estrogen receptor. Evidence is presented to show that selected hydroxylated flavonoids interact directly with the estrogen receptor, based on their ability to compete for the binding of 17 beta-[3H]estradiol to the receptor in cell-free extracts. These compounds are less active, on a molar basis, than 17 beta-estradiol or the synthetic dihydroxystilbene estrogens, but they have potencies comparable to those of other known phytoestrogens. Together, these findings broaden our understanding of the structure-activity relationships for nonsteroidal estrogens and present a series of new chemical prototypes for the future development of potentially useful agonists and antagonists for this nuclear receptor. The wide distribution of weakly estrogenic flavonoid pigments in food crops and medicinal plants raises additional questions about the possible health risks and benefits of these compounds, meriting closer examination of their presence in the human diet.

  6. Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity.

    PubMed

    Lee, Karen J I; Calder, Grant M; Hindle, Christopher R; Newman, Jacob L; Robinson, Simon N; Avondo, Jerome J H Y; Coen, Enrico S

    2016-12-26

    Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale.

  7. Molluscicidal activity of plants from Puerto Rico.

    PubMed

    Meléndez, P A; Capriles, V A

    2002-03-01

    Overall, 173 tropical plants from 72 different families, collected from the north-western and western regions of Puerto Rico, were screened for their molluscicidal properties against Biomphalaria glabrata, the intermediate host of Schistosoma mansoni. Six plant extracts were effective at 50 ppm. The two most effective extracts were those from the leaves of Didymopanax morototoni (Araliaceae) and Mammea americana (Guttiferae), which, at 50 ppm, killed all snails after 24 h of exposure and a day for recovery. Under the same conditions, extracts of Furcraea tuberosa, Argemone mexicana and Paullinia pinnata killed 50% of the snails and that of Solanum americanum killed 33%. The most effective extracts (or their active components or compounds based on them) may have potential as molluscides for the relatively cheap control of human schistosomiasis.

  8. Bacteriocins active against plant pathogenic bacteria.

    PubMed

    Grinter, Rhys; Milner, Joel; Walker, Daniel

    2012-12-01

    Gram-negative phytopathogens cause significant losses in a diverse range of economically important crop plants. The effectiveness of traditional countermeasures, such as the breeding and introduction of resistant cultivars, is often limited by the dearth of available sources of genetic resistance. An alternative strategy to reduce loss to specific bacterial phytopathogens is to use narrow-spectrum protein antibiotics such as colicin-like bacteriocins as biocontrol agents. A number of colicin-like bacteriocins active against phytopathogenic bacteria have been described previously as have strategies for their application to biocontrol. In the present paper, we discuss these strategies and our own recent work on the identification and characterization of candidate bacteriocins and how these potent and selective antimicrobial agents can be effectively applied to the control of economically important plant disease.

  9. The Ethnobotanical, Phytochemical and Mineral Analyses of Phragmanthera Incana (Klotzsch), A Species of Mistletoe Growing on Three Plant Hosts in South-Western Nigeria

    PubMed Central

    Ogunmefun, O. T.; Fasola, T. R.; Saba, A. B.; Oridupa, O. A.

    2013-01-01

    Mistletoe is collected wildly on various plants and Phragmanthera incana is noted to grow on different plant hosts. This study was designed to carry out the ethnobotanical survey, phytochemical and mineral analyses of Phragmanthera incana, a species of mistletoe growing on three plant hosts namely Cocoa (Theobroma cacao), Kolanut (Cola nitida) and Bush mango (Irvingia gabonensis). Mistletoe samples were identified at the Forestry Research Institute of Nigeria Herbarium. Phragmanthera incana was screened for its phytochemical constituents and mineral cations along its hosts following standard methods and to confirm if the mistletoe species is host specific. The powdered samples of the mistletoe species (Phragmanthera incana) was used for both the phytochemical screening and the cation mineral analysis. The uses and the harvesting methods of mistletoe were also reviewed extensively in this paper. PMID:23675287

  10. [Content and distribution of active components in cultivated and wild Taxus chinensis var. mairei plants].

    PubMed

    Yu, Shao-Shuai; Sun, Qi-Wu; Zhang, Xiao-Ping; Tian, Sheng-Ni; Bo, Pei-Lei

    2012-10-01

    Taxus chinensis var. mairei is an endemic and endangered plant species in China. The resources of T. chinensis var. mairei have been excessively exploited due to its anti-cancer potential, accordingly, the extant T. chinensis var. mairei population is decreasing. In this paper, ultrasonic extraction and HPLC were adopted to determine the contents of active components paclitaxel, 7-xylosyltaxol and cephalomannine in cultivated and wild T. chinensis var. mairei plants, with the content distribution of these components in different parts of the plants having grown for different years and at different slope aspects investigated. There existed obvious differences in the contents of these active components between cultivated and wild T. chinensis var. mairei plants. The paclitaxel content in the wild plants was about 0.78 times more than that in the cultivated plants, whereas the 7-xylosyltaxol and cephalomannine contents were slishtly higher in the cultivated plants. The differences in the three active components contents between different parts and tree canopies of the plants were notable, being higher in barks and upper tree canopies. Four-year old plants had comparatively higher contents of paclitaxel, 7-xylosyltaxol and cephalomannine (0.08, 0.91 and 0.32 mg x g(-1), respectively), and the plants growing at sunny slope had higher contents of the three active components, with significant differences in the paclitaxel and 7-xylosyltaxol contents and unapparent difference in the cephalomannine content of the plants at shady slope. It was suggested that the accumulation of the three active components in T. chinensis var. mairei plants were closely related to the sunshine conditions. To appropriately increase the sunshine during the artificial cultivation of T. chinensis var. mairei would be beneficial to the accumulation of the three active components in T. chinensis var. mairei plants.

  11. Effect of Radiation on Seed Germinating Ability Ofwild-Growing and Cultivated Plants, Sources of Bioactive Substances

    NASA Astrophysics Data System (ADS)

    Shabanov, Aleksandr; Tirranen, Lyalya; Zykova, Irina; Bondarenko, Gennadiy

    2016-07-01

    In the above-ground parts of common chickweed (Stellaria media) the content of vitamin C was experimentally quantified, which (in terms of dry matter) was 81.55 mg/100 g; 133 mg/100 g and 161.76 mg/100 g depending on the growing site. 52 components were detected in the essential oil of the above-ground parts of common chickweed (Stellaria media). Chamazulene, neophytodien and phytol are the major components of whole oil. A wide range of elements was identified in the plants and seeds of common chickweed (Stellaria media), and in the seeds of carrots, parsley and lettuce. It was established that UV irradiation (lamp with a wavelength of 254 nm and 283 nm) of chickweed seeds (Stellaria media) for 15 sec. and 100 sec. in a microbiological box on a table at a distance from the object didn't affect their germinating ability. The germinating ability of the experimental seeds was identical to the control (no irradiation) seeds. With the help of an X-ray fluorescence spectrometer Renger 2 (Germany) at a voltage of 1.6 kV during 15 sec. the effect of "soft" radiation on the seed germinating ability of chickweed, carrot, parsley and lettuce seeds was studied.Under the effect of "soft" radiation during 15 sec. all the experimental chickweed seeds sprouted, like in the control. The germinating ability of the exposed lettuce seeds was 100% after one day, while only 45% of the exposed parsley seeds grew after 21 days. The exposed carrot seeds (70%) grew after 18 days. The effect of "hard" radiation on the germinating ability of common chickweed seeds was investigated using an X-ray fluorescence spectrometer S4 Pioneer (Germany) at a voltage of 60 kV for 15 sec and 100 sec. Under the effect of "hard" radiation and during 15 seconds of exposure, where the distance (L) from the focus of the X-ray tube to the seeds of chickweed was 20 mm, the germinating ability of the experimental chickweed seeds was 30 %. At a voltage of 60 kV and 100-second exposure the germinating ability of the

  12. Active DNA Demethylation in Plants and Animals

    PubMed Central

    Zhang, H.; Zhu, J.-K.

    2013-01-01

    Active DNA demethylation regulates many vital biological processes, including early development and locus-specific gene expression in plants and animals. In Arabidopsis, bifunctional DNA glycosylases directly excise the 5-methylcytosine base and then cleave the DNA backbone at the abasic site. Recent evidence suggests that mammals utilize DNA glycosylases after 5-methylcytosine is oxidized and/or deaminated. In both cases, the resultant single-nucleotide gap is subsequently filled with an unmodified cytosine through the DNA base excision repair pathway. The enzymatic removal of 5-methylcytosine is tightly integrated with histone modifications and possibly noncoding RNAs. Future research will increase our understanding of the mechanisms and critical roles of active DNA demethylation in various cellular processes as well as inspire novel genetic and chemical therapies for epigenetic disorders. PMID:23197304

  13. Antibacterial activity of traditional Australian medicinal plants.

    PubMed

    Palombo, E A; Semple, S J

    2001-10-01

    Fifty-six ethanolic extracts of various parts of 39 plants used in traditional Australian Aboriginal medicine were investigated for their antibacterial activities against four Gram-positive (Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus and Streptococcus pyogenes) and four Gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella typhimurium) bacterial species. In a plate-hole diffusion assay, 12 extracts inhibited the growth of one or more of the bacteria, with five extracts showing broad spectrum antibacterial activity against Gram-positive bacteria. B. cereus was the most susceptible bacterium, with all 12 extracts displaying activity against this organism. Extracts from the leaves of Eremophila species (Myoporaceae) were the most active, with Eremophila duttonii exhibiting the greatest activity (against Gram-positive bacteria). The antibacterial effects of E. duttonii were further investigated by time-course growth assays which showed that significant growth inhibition was observed in cultures incubated in the presence of the extract within 1 h for B. cereus, E. faecalis and S. aureus and 2 h for S. pyogenes.

  14. Views of Growing Methane Emissions near Oil and Natural Gas Activity: Satellite, Aircraft, and Ground

    NASA Astrophysics Data System (ADS)

    Kollonige, D. E.; Thompson, A. M.; Diskin, G. S.; Hannigan, J. W.; Nussbaumer, E.

    2015-12-01

    To better understand the discrepancies between current top-down and bottom-up estimates, additional methane (CH4) measurements are necessary for regions surrounding growing oil and natural gas (ONG) development. We have evaluated satellite measurements of CH4 in US regions with ONG operations for their application as "top-down" constraints (part of the NASA Air Quality Applied Sciences Team (AQAST) project). For validation of the satellite instruments' sensitivities to emitted gases, we focus on regions where the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaign deployed ground and aircraft measurements in Maryland (2011), California and Texas (2013), and Colorado (2014). The largest CH4 signals were observed in the Greater Green River and Powder River Basins using Tropospheric Emission Spectrometer (TES) Representative Tropospheric Volume Mixing Ratio (RTVMR) measurements. A long-term comparison between a ground remote-sensing Fourier Transform Spectrometer (FTS) at Boulder and TES for 2010-2013 shows good correlation and differences ranging 2.5-5% for their yearly distribution of total column CH4. To determine any correlation between lower/mid-tropospheric CH4 (where a thermal IR sensor, such as TES, is most sensitive) and near-surface/boundary CH4 (where sources emit), we analyze the variability of DISCOVER-AQ aircraft profiles using principal component analysis and assess the correlation between near-surface (0-2 km) and mid-tropospheric (>2 km) CH4 concentrations. Using these relationships, we estimate near-surface CH4 using mid-tropospheric satellite measurements based on the partial column amounts within vertical layers with a linear regression. From this analysis, we will demonstrate whether the uncertainties of satellite-estimated near-surface CH4 are comparable to observed variability near ONG activity. These results will assist validation of satellite instrument

  15. Chemical composition and antibacterial activity of Pinus halepensis Miller growing in West Northern of Algeria

    PubMed Central

    Fekih, Nadia; Allali, Hocine; Merghache, Salima; Chaïb, Faïza; Merghache, Djamila; El Amine, Mohamed; Djabou, Nassim; Muselli, Alain; Tabti, Boufeldja; Costa, Jean

    2014-01-01

    Objective To find new bioactive natural products, the chemical composition and to sudy the antibacterial activity of essential oil components extracted from the aerial parts of the Algerian aromatic plant Pinus halepensis Miller (P. halepensis) (needles, twigs and buds). Methods The essential oil used in this study was isolated by hydrodistillation using a Clevenger-type apparatus according to the European Pharmacopoeia. The chemical composition was investigated using GC-retention indices (RI) and GC-MS. Results Forty-nine compounds, representing 97.9% of the total collective oil, were identified. Essential oil was dominated by hydrocarbon compounds (80.6%) especially monoterpenes (65.5%). The major compounds from ten oils stations were: myrcene (15.2%-32.0%), α-pinene (12.2%-24.5%), E-β-caryophyllene (7.0%-17.1%), terpinolene (1.8%-13.3%), 2-phenyl ethyl isovalerate (4.8%-10.9%), terpinene-4-ol (1.0%-8.2 %) and sabinene (1.5%-6.3%). The intra-species variations of the chemical compositions of P. halepensis aerial parts essential oils from ten Algerian sample locations were investigated using statistical analysis. Essential oil samples were clustered in 2 groups by hierarchical cluster analysis, according to their chemical composition. The essential oil revealed an interesting antimicrobial effect against Lysteria monocytogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Acinetobacter baumanii, Citrobacter freundii and Klebsiella pneumoniae. Conclusions These results suggest that the essential oil from P. halepensis may be a new potential source as natural antimicrobial applied in pharmaceutical and food industries.

  16. Traffic-related heavy metals uptake by wild plants grow along two main highways in Hunan Province, China: effects of soil factors, accumulation ability, and biological indication potential.

    PubMed

    Zhai, Yunbo; Dai, Qingyun; Jiang, Kang; Zhu, Yun; Xu, Bibo; Peng, Chuan; Wang, Tengfei; Zeng, Guangming

    2016-07-01

    This study was performed to investigate pollution of traffic-related heavy metals (HMs-Zn, Pb, Cu, Cr, and Cd) in roadside soils and their uptake by wild plants growing along highways in Hunan Province, China. For this, we analyzed the concentration and chemical fractionation of HMs in soils and plants. Soil samples were collected with different depths in the profile and different distances from highway edge. And leaves and barks of six high-frequency plants were collected. Results of the modified European Community Bureau of Reference (BCR) showed that the mobile fraction of these HMs was in the order of Cd > Pb > Zn > Cu > Cr. A high percentage of the mobile fraction indicates Cd, Pb, and Zn were labile and available for uptake by wild plants. The total concentration and values of risk assessment code (RAC) showed that Cd was the main risk factor, which were in the range high to very high risk. The accumulation ability of HMs in plants was evaluated by the biological accumulation factor (BAF) and the metal accumulation index (MAI), and the results showed that all those plant species have good phyto-extraction ability, while accumulation capacity for most HMs plants tissues was bark > leaf. The highest MAI value (5.99) in Cinnamomum camphora (L) Presl indicates the potential for bio-monitoring and a good choice for planting along highways where there is contamination with HMs.

  17. Screening of native plants and algae growing on fly-ash affected areas near National Thermal Power Corporation, Tanda, Uttar Pradesh, India for accumulation of toxic heavy metals.

    PubMed

    Dwivedi, S; Srivastava, S; Mishra, S; Dixit, B; Kumar, A; Tripathi, R D

    2008-10-30

    The present investigation was carried out to screen native plants growing in fly-ash (FA) contaminated areas near National Thermal Power Corporation, Tanda, Uttar Pradesh, India with a view to using them for the eco-restoration of the area. A total number of 17 plants (9 aquatic, 6 terrestrial and 2 algal species) were collected and screened for heavy metal (Fe, Zn, Cu, Mo, B, Si, Al, Cr, Pb, Cd, Hg and As) accumulation. Differential accumulation of various heavy metals by different species of plants was observed. Hydrilla verticillata was found to be the most efficient metal accumulator among 9 aquatic plants, Eclipta alba among 6 terrestrial plants and Phormedium papyraceum between 2 algal species. In general, the maximum levels of most metals were found in terrestrial plants while the lowest in algal species. However, translocation of the metals from root to shoot was found to be higher in aquatic plants than terrestrial ones. These results suggest that various aquatic, terrestrial and algal species of plants may be used in a synergistic way to remediate and restore the FA contaminated areas.

  18. Proteolytic activity during senescence of plants

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.

    1990-01-01

    Although information has rapidly developed concerning the intracellular localization of plant proteins, relatively few reports concern the intracellular location of endo- and exo-proteolytic activities. Relatively few proteases have been purified, characterized, and associated with a specific cellular location. With the exception of the processing proteases involved in transport of proteins across membranes, little progress has yet been made concerning determination of in vivo products of specific proteases. Information on the turnover of individual proteins and the assessment of rate-limiting steps in pathways as proteins are turned over is steadily appearing. Since chloroplasts are the major site of both protein synthesis and, during senescence, degradation, it was important to show unambiguously that chloroplasts can degrade their own constituents. Another important contribution was to obtain evidence that the chloroplasts contain proteases capable of degrading their constituents. This work has been more tenuous because of the low activities found and the possibility of contamination by vacuolar enzymes during the isolation of organelles. The possible targeting of cytoplasmic proteins for degradation by facilitating their transport into vacuoles is a field which hopefully will develop more rapidly in the future. Information on targeting of proteins for degradation via the ubiquitin (Ub) degradation pathway is developing rapidly. Future research must determine how much unity exists across the different eukaryotic systems. At present, it has important implications for protein turnover in plants, since apparently Ub is involved in the degradation of phytochrome. Little information has been developed regarding what triggers increased proteolysis with the onset of senescence, although it appears to involve protein synthesis. Thus far, the evidence indicates that the complement of proteases prior to senescence is sufficient to carry out the observed protein

  19. Proteolytic activity during senescence of plants.

    PubMed

    Huffaker, R C

    1990-01-01

    Although information has rapidly developed concerning the intracellular localization of plant proteins, relatively few reports concern the intracellular location of endo- and exo-proteolytic activities. Relatively few proteases have been purified, characterized, and associated with a specific cellular location. With the exception of the processing proteases involved in transport of proteins across membranes, little progress has yet been made concerning determination of in vivo products of specific proteases. Information on the turnover of individual proteins and the assessment of rate-limiting steps in pathways as proteins are turned over is steadily appearing. Since chloroplasts are the major site of both protein synthesis and, during senescence, degradation, it was important to show unambiguously that chloroplasts can degrade their own constituents. Another important contribution was to obtain evidence that the chloroplasts contain proteases capable of degrading their constituents. This work has been more tenuous because of the low activities found and the possibility of contamination by vacuolar enzymes during the isolation of organelles. The possible targeting of cytoplasmic proteins for degradation by facilitating their transport into vacuoles is a field which hopefully will develop more rapidly in the future. Information on targeting of proteins for degradation via the ubiquitin (Ub) degradation pathway is developing rapidly. Future research must determine how much unity exists across the different eukaryotic systems. At present, it has important implications for protein turnover in plants, since apparently Ub is involved in the degradation of phytochrome. Little information has been developed regarding what triggers increased proteolysis with the onset of senescence, although it appears to involve protein synthesis. Thus far, the evidence indicates that the complement of proteases prior to senescence is sufficient to carry out the observed protein

  20. Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil.

    PubMed

    Boechat, Cácio Luiz; Pistóia, Vítor Caçula; Gianelo, Clésio; Camargo, Flávio Anastácio de Oliveira

    2016-02-01

    In recent years, the number of cases of heavy metal contamination has increased worldwide, leading to reports on environmental pollution and human health problems. Phytoremediation can be potentially used to remove heavy metal from contaminated sites. This study determined heavy metal concentrations in the biomass of plant species growing on a multi-metal-contaminated site. Seven plant species and associated rhizospheric soil were collected and analyzed for heavy metal concentrations. While plant Cu, Zn, Cd, Ni, Pb, As, and Ba concentrations ranged from 8.8 to 21.1, 56.4 to 514.3, 0.24 to 2.14, 1.56 to 2.76, 67.8 to 188.2, 0.06 to 1.21, and 0.05 to 0.62 mg kg(-1), respectively, none of the plants was identified as hyperaccumulators. Those in the rhizospheric soil ranged from 10.5 to 49.1, 86.2 to 590.9, 0.32 to 2.0, 3.6 to 8.2, 19.1 to 232.5, 2.0 to 35.6, and 85.8 to 170.3 mg kg(-1), respectively. However, Zn, Cd, Pb, and As concentrations in the soil outside the rhizosphere zone were 499.0, 2.0, 631.0, and 48.0 mg kg(-1), respectively. Senecio brasiliensis was most effective in translocating Cu, Cd, and Ba. The most effective plant for translocating Zn and Pb was Baccharis trimera and, for element As, Dicranopteris nervosa and Hyptis brevipes. Heavy metal and metalloid levels in spontaneous plants greatly exceeded the upper limits for terrestrial plants growing in uncontaminated soil, demonstrating the higher uptake of heavy metal from soil by these plants. It is concluded that naturally occurring species have a potential for phytoremediation programs.

  1. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.

    PubMed

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, p<0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r=0.88, p<0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p<0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent.

  2. Surface Soil Preparetion for Leguminous Plants Growing in Degraded Areas by Mining Located in Amazon Forest-Brazil

    NASA Astrophysics Data System (ADS)

    Irio Ribeiro, Admilson; Hashimoto Fengler, Felipe; Araújo de Medeiros, Gerson; Márcia Longo, Regina; Frederici de Mello, Giovanna; José de Melo, Wanderley

    2015-04-01

    The revegetation of areas degraded by mining usually requires adequate mobilization of surface soil for the development of the species to be implemented. Unlike the traditional tillage, which has periodicity, the mobilization of degraded areas for revegetation can only occur at the beginning of the recovery stage. In this sense, the process of revegetation has as purpose the establishment of local native vegetation with least possible use of inputs and superficial tillage in order to catalyze the process of natural ecological succession, promoting the reintegration of areas and minimizing the negative impacts of mining activities in environmental. In this context, this work describes part of a study of land reclamation by tin exploitation in the Amazon ecosystem in the National Forest Jamari- Rondonia Brazil. So, studied the influence of surface soil mobilization in pit mine areas and tailings a view to the implementation of legumes. The results show that the surface has areas of mobilizing a significant effect on the growth of leguminous plants, areas for both mining and to tailings and pit mine areas.

  3. Antinociceptive, Anti-Inflammatory, and Antipyretic Activity of Mangrove Plants: A Mini Review

    PubMed Central

    Shilpi, J. A.; Islam, M. E.; Billah, M.; Islam, K. M. D.; Sabrin, F.; Uddin, S. J.; Nahar, L.; Sarker, S. D.

    2012-01-01

    Mangrove plants are specialised plants that grow in the tidal coasts of tropic and subtropic regions of the world. Their unique ecology and traditional medicinal uses of mangrove plants have attracted the attention of researchers over the years, and as a result, reports on biological activity of mangrove plants have increased significantly in recent years. This review has been set out to compile and appraise the results on antinociceptive, anti-inflammatory, and antipyretic activity of mangrove plants. While the Web of Knowledge, Google Scholar, and PubMed were the starting points to gather information, other pieces of relevant published literature were also adequately explored for this purpose. A total of 29 reports on 17 plant species have been found to report such activities. While 19 reports were on the biological activity of the crude extracts, 10 reports identified the active compound(s) of various chemical classes of natural products including terpenes, steroids, and flavonoids. This review finds that antinociceptive, anti-inflammatory, and antipyretic activity appears to be widespread in mangrove plants. PMID:22666237

  4. Uptake of strontium by chamisa (Chrysothamnus nauseosus) shrub plants growing over a former liquid waste disposal site at Los Alamos National Laboratory

    SciTech Connect

    Fresquez, P.R.; Foxx, T.S.; Naranjo, L. Jr.

    1996-06-01

    A major concern of managers at low-level waste burial site facilities is that plant roots may translocate contaminants up to the soil surface. This study investigates the uptake of strontium ({sup 90}Sr), a biologically mobile element, by chamisa (Chrysothamnus nauseosus), a deep-rooted shrub plant, growing in a former liquid waste disposal site (Solid Waste Management Unit [SWMU] 10-003[c]) at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Surface soil samples were also collected from below (understory) and between (interspace) shrub canopies. Both chamisa plants growing over SWMU 10-003(c) contained significantly higher concentrations of {sup 90}Sr than a control plant--one plant, in particular, contained 3.35 x 10{sup 6} Bq kg{sup {minus}1} ash (9.05 x 10{sup 4} pCi g{sup {minus}1} ash) in top-growth material. Similarly, soil surface samples collected underneath and between plants contained {sup 90}Sr concentrations above background and LANL screening action levels (> 218 Bq kg{sup {minus}1} dry [5.90 pCi g{sup {minus}1} dry]); this probably occurred as a result of chamisa plant leaf fall contaminating the soil understory area followed by water and/or winds moving {sup 90}Sr to the soil interspace areas. Although some soil surface migration of {sup 90}Sr from SWMU 10-003(c) has occurred, the level of {sup 90}Sr in sediments collected downstream of SWMU 10-003(c) at the LANL boundary was still within regional (background) concentrations.

  5. The influence of certain plant substances and their chemopreventive activity in ovarian cancer.

    PubMed

    Kujawski, Radosław; Dziekan, Karolina; Wolski, Hubert; Barlik, Magdalena; Seremak-Mrozikiewicz, Agnieszka

    2015-06-01

    A steadily growing number of studies have confirmed the beneficial effects of plant-derived substances (preparations) on the effectiveness of pharmacotherapy for ovarian cancer. A prior or parallel application of plant-derived substances and chemotherapy could be the way to strengthen the classic pharmacological treatment. Our paper presents several plant-derived substances with proven antiproliferative activities, in which phenolic and flavonoid bioactive compounds dominate, with particular emphasis on ovarian cancer cells. We are of the opinion that our paper will contribute to better understanding of the molecular basis for the positive interaction effect of concomitant application of the abovementioned plant substances with certain cytostatics. Also, this work may increase the number of preclinical in vivo experiments using these and other phenolic, flavonoid-rich plant substances to better understand their efficacy and safety and, in the future, to initiate clinical trials in this field.

  6. Cytochalasin-like activity in cultured aorta smooth muscle cells (ASMC) is increased in extracts of growing cells

    SciTech Connect

    Magargal, W.W.

    1987-05-01

    A cytochalasin-like protein, present in cultured chicken embryo fibroblasts, is increased in cells transformed by Rous sarcoma virus. They find similar activity present in ASMC. Confluent cultured porcine and rat, ASMC, were homogenized in Buffer A and centrifuged at 200,000g for 35 min. Resulting extracts reduced the low shear viscosity of F-actin. To determine whether the activity alters during the growth of non-transformed cells, cultured rat ASMC were plated at 2 x 10/sup 4/ cells/cm/sup 2/ in medium plus 10% fetal bovine serum (FBS). After 3 days actively growing cells (by /sup 3/H-thymidine incorporation) were either scraped into phosphate buffered saline (PBS) or fed media plus 1% FBS. Three days later the fed cells were scraped into PBS (nongrowing, /sup 3/H-thymidine incorporation). Cells in PBS were pelleted, homogenized in Buffer A, and centrifuged as above. Extracts from the growing and nongrowing cells reduced the low shear viscosity of actin. However, the ED/sub 50/ for growing cells was 8..mu..g and 15..mu..g for nongrowing cells. These results support those obtained with normal and transformed CEF's. This evidence indicates a relationship between cytochalasin-like activity and the growth state of cells in culture.

  7. ANTI-PARASITIC ACTIVITY OF CERTAIN INDIGEOUS PLANTS

    PubMed Central

    Mathai, Annie; Devi, K.S.

    1992-01-01

    The antiparasitic activity of certain indigenous plant extracts was tested against the model bovine filarial parasite Setaria digitata. Among the plants tested, the extracts of Strebulus asper was found to be most effective. The chloroform and other phase of the organic solvents showed most activity indicating that the active compound may be a non polar substance having low molecular weight. PMID:22556601

  8. 3D deformation field in growing plant roots reveals both mechanical and biological responses to axial mechanical forces.

    PubMed

    Bizet, François; Bengough, A Glyn; Hummel, Irène; Bogeat-Triboulot, Marie-Béatrice; Dupuy, Lionel X

    2016-10-01

    Strong regions and physical barriers in soils may slow root elongation, leading to reduced water and nutrient uptake and decreased yield. In this study, the biomechanical responses of roots to axial mechanical forces were assessed by combining 3D live imaging, kinematics and a novel mechanical sensor. This system quantified Young's elastic modulus of intact poplar roots (32MPa), a rapid <0.2 mN touch-elongation sensitivity, and the critical elongation force applied by growing roots that resulted in bending. Kinematic analysis revealed a multiphase bio-mechanical response of elongation rate and curvature in 3D. Measured critical elongation force was accurately predicted from an Euler buckling model, indicating that no biologically mediated accommodation to mechanical forces influenced bending during this short period of time. Force applied by growing roots increased more than 15-fold when buckling was prevented by lateral bracing of the root. The junction between the growing and the mature zones was identified as a zone of mechanical weakness that seemed critical to the bending process. This work identified key limiting factors for root growth and buckling under mechanical constraints. The findings are relevant to crop and soil sciences, and advance our understanding of root growth in heterogeneous structured soils.

  9. 3D deformation field in growing plant roots reveals both mechanical and biological responses to axial mechanical forces

    PubMed Central

    Bizet, François; Bengough, A. Glyn; Hummel, Irène; Bogeat-Triboulot, Marie-Béatrice; Dupuy, Lionel X.

    2016-01-01

    Strong regions and physical barriers in soils may slow root elongation, leading to reduced water and nutrient uptake and decreased yield. In this study, the biomechanical responses of roots to axial mechanical forces were assessed by combining 3D live imaging, kinematics and a novel mechanical sensor. This system quantified Young’s elastic modulus of intact poplar roots (32MPa), a rapid <0.2 mN touch-elongation sensitivity, and the critical elongation force applied by growing roots that resulted in bending. Kinematic analysis revealed a multiphase bio-mechanical response of elongation rate and curvature in 3D. Measured critical elongation force was accurately predicted from an Euler buckling model, indicating that no biologically mediated accommodation to mechanical forces influenced bending during this short period of time. Force applied by growing roots increased more than 15-fold when buckling was prevented by lateral bracing of the root. The junction between the growing and the mature zones was identified as a zone of mechanical weakness that seemed critical to the bending process. This work identified key limiting factors for root growth and buckling under mechanical constraints. The findings are relevant to crop and soil sciences, and advance our understanding of root growth in heterogeneous structured soils. PMID:27664958

  10. Bioassay of Plant Growth Regulator Activity on Aquatic Plants

    DTIC Science & Technology

    1990-07-01

    weed submersed aquatic plants, hydrilla (Hydrilla verticillata Royle) and Eurasian watermilfoil (11yriophyllum splcatum L .). The gibberellin synthesis...Programs, Mr. J. L . Decell, Manager. The HQUSACE Technical Monitor for the APCRP was Mr. James W. Wolcott. The principal investigator for this work was...supervision of Dr. John Harrison, Chief, EL, and Mr. Donald L . Robey, Chief, ERSD, and under the direct supervision of Dr. Thomas L . Hart, Chief

  11. Plant defense activators: applications and prospects in cereal crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review addresses the current understanding of the plant immune response and the molecular mechanisms responsible for systemic acquired resistance as well as the phenomenon of "priming" in plant defense. A detailed discussion of the role of salicylic acid in activating the plant transcription c...

  12. Cytotoxic activity of four Mexican medicinal plants.

    PubMed

    Vega-Avila, Elisa; Espejo-Serna, Adolfo; Alarcón-Aguilar, Francisco; Velasco-Lezama, Rodolfo

    2009-01-01

    Ibervillea sonorae Greene, Cucurbita ficifolia Bouché, Tagetes lucida Cav and Justicia spicigera Scheltdd are Mexican native plants used in the treatment of different illnesses. The ethanolic extract of J. spicigera and T. lucida as well as aqueous extracts from I. sonorae, C. ficifolia, T. lucida and J. spicigera were investigated using sulforhodamine B assay. These extracts were assessed using two cell line: T47D (Human Breast cancer) and HeLa (Human cervix cancer). Colchicine was used as the positive control. Data are presented as the dose that inhibited 50% control growth (ED50). All of the assessed extracts were cytotoxic (ED50 < 20 microg/ml) against T47D cell line, meanwhile only the aqueous extract from T. lucida and the ethanolic extract from J. spicigera were cytotoxic to HeLa cell line. Ethanolic extract from J. spicigera presented the best cytotoxic effect. The cytotoxic activity of J. spicigera correlated with one of the popular uses, the treatment of cancer.

  13. Plant adaptation to extreme environments: the example of Cistus salviifolius of an active geothermal alteration field.

    PubMed

    Bartoli, Giacomo; Bottega, Stefania; Forino, Laura M C; Ciccarelli, Daniela; Spanò, Carmelina

    2014-02-01

    Cistus salviifolius is able to colonise one of the most extreme active geothermal alteration fields in terms of both soil acidity and hot temperatures. The analyses of morpho-functional and physiological characters, investigated in leaves of plants growing around fumaroles (G leaves) and in leaves developed by the same plants after transfer into growth chamber under controlled conditions (C leaves) evidenced the main adaptive traits developed by this pioneer plant in a stressful environment. These traits involved leaf shape and thickness, mesophyll compactness, stomatal and trichome densities, chloroplast size. Changes of functional and physiological traits concerned dry matter content, peroxide and lipid peroxidation, leaf area, relative water and pigment contents. A higher reducing power and antioxidant enzymatic activity were typical of G leaves. Though the high levels of stress parameters, G leaves showed stress-induced specific morphogenic and physiological responses putatively involved in their surviving in active geothermal habitats.

  14. Reduced Chitinase Activities in Ant Plants of the Genus Macaranga

    NASA Astrophysics Data System (ADS)

    Heil, Martin; Fiala, Brigitte; Linsenmair, K. Eduard; Boller, Thomas

    Many plant species have evolved mutualistic associations with ants, protecting their host against detrimental influences such as herbivorous insects. Letourneau (1998) reported in the case of Piper that ants defend their plants principally against stem-boring insects and also reduce fungal infections on inflorescences. Macaranga plants that were experimentally deprived of their symbiotic Crematogaster ants suffered heavily from shoot borers and pathogenic fungi (Heil 1998). Here we report that ants seem to reduce fungal infections actively in the obligate myrmecophyte Macarangatriloba (Euphorbiaceae), while ant-free plants can be easily infected. We also found extremely low chitinase activity in Macaranga plants. The plants' own biochemical defense seems to be reduced, and low chitinase activity perhaps may represent a predisposition for the evolution of myrmecophytism. These plants are therefore highly dependent on their ants, which obviously function not only as an antiherbivore defense but also as an effective agent against fungal pathogens.

  15. Leguminous plants nodulated by selected strains of Cupriavidus necator grow in heavy metal contaminated soils amended with calcium silicate.

    PubMed

    Avelar Ferreira, Paulo Ademar; Lopes, Guilherme; Bomfeti, Cleide Aparecida; de Oliveira Longatti, Silvia Maria; de Sousa Soares, Cláudio Roberto Fonseca; Guimarães Guilherme, Luiz Roberto; de Souza Moreira, Fatima Maria

    2013-11-01

    Increasing concern regarding mining area environmental contamination with heavy metals has resulted in an emphasis of current research on phytoremediation. The aim of the present study was to assess the efficiency of symbiotic Cupriavidus necator strains on different leguminous plants in soil contaminated with heavy metals following the application of inorganic materials. The application of limestone and calcium silicate induced a significant increase in soil pH, with reductions in zinc and cadmium availability of 99 and 94 %, respectively. In addition, improved nodulation of Mimosa caesalpiniaefolia, Leucaena leucocephala and Mimosa pudica in soil with different levels of contamination was observed. Significant increases in the nitrogen content of the aerial parts of the plant were observed upon nodulation of the root system of Leucaena leucocephala and Mimosa pudica by strain UFLA01-659 (36 and 40 g kg(-1)) and by strain UFLA02-71 in Mimosa caesalpiniaefolia (39 g kg(-1)). The alleviating effect of calcium silicate resulted in higher production of dry matter from the aerial part of the plant, an increase in nodule number and an increase in the nitrogen fixation rate. The results of the present study demonstrate that the combination of rhizobia, leguminous plants and calcium silicate may represent a key factor in the remediation of areas contaminated by heavy metals.

  16. Antibacterial and antifungal activities of some Mexican medicinal plants.

    PubMed

    Ruiz-Bustos, E; Velazquez, C; Garibay-Escobar, A; García, Z; Plascencia-Jatomea, M; Cortez-Rocha, M O; Hernandez-Martínez, J; Robles-Zepeda, R E

    2009-12-01

    In Mexico about 4,000 plant species have some medicinal use. The aim of this work was to evaluate the antimicrobial activity of six Mexican medicinal plants against fungi and Gram-positive and Gram-negative bacteria. Methanolic extracts were prepared from the Mexican medicinal plants Amphypteringium adstrigens, Castella tortuosa, Coutarea latiflora, Ibervillea sonorae, Jatropha cuneata, and Selaginella lepidophylla. The antibacterial and antifungal activities of the plants were determined by the broth microdilution method and the radial growth inhibition assay, respectively. All Mexican plants tested showed antimicrobial activity. Among the six plant extracts analyzed, J. cuneata showed the highest growth-inhibitory activity against fungi, Gram-positive and Gram-negative bacteria (J. cuneata > A. adstrigens > C. latiflora > C. tortuosa > I. sonorae approximately S. lepidophylla). Shigella flexneri and Staphylococcus aureus were the most susceptible bacteria to plant extracts. Complete inhibition of S. flexneri growth was observed with J. cuneata methanolic extract at 90 microg/mL. This plant extract also showed the strongest antifungal activity against Fusarium verticillioides and Aspergillus niger. Our data suggest that the medicinal plants tested have important antimicrobial properties. This is the first report describing the antimicrobial activities of several of the Mexican medicinal plants used in this study.

  17. Accumulation of Pb, Cu, and Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunnan.

    PubMed

    Liu, Xiaohai; Gao, Yuntao; Khan, Sardar; Duan, Gang; Chen, Aikui; Ling, Li; Zhao, Leil; Liu, Zhonghan; Wu, Xuecan

    2008-01-01

    Phytoremediation is one of the cost-effective and environmental friendly technologies used to remove contaminants from contaminated soils, which has been intensively studied during the last decade. Presently, few economical and effective remediation methods are available for the remediation of Pb contaminated sites. This study was conducted to assess the potential of 19 plants growing on contaminated sites in Pb mine area. Plants and associated soil samples were collected and analyzed for total metal concentrations. While total soil Pb, Cu and Zn concentrations varied from 1,239 to 4,311, 36 to 1,020 and 240 to 2,380 mg/kg, those in the plant shoots ranged from 6.3 to 2,029, 20 to 570, and 36 to 690 mg/kg, respectively. Among the plants, we found that one cultivated crop (Ricinus communis L.) and two native species (Tephrosia candida and Debregeasia orientalis) have a great potential for phytoremediation of Pb contaminated soils, the Pb hyperaccumulation capacity of the 3 plants was found as the order: R. communis > D. orientalis > T. candida in the investigated area.

  18. Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal-based thermal power plant of Raebareli district, north India.

    PubMed

    Bajpai, Rajesh; Upreti, Dalip K; Nayaka, S; Kumari, B

    2010-02-15

    The lichen diversity assessment carried out around a coal-based thermal power plant indicated the increase in lichen abundance with the increase in distance from power plant in general. The photosynthetic pigments, protein and heavy metals were estimated in Pyxine cocoes (Sw.) Nyl., a common lichen growing around thermal power plant for further inference. Distributions of heavy metals from power plant showed positive correlation with distance for all directions, however western direction has received better dispersion as indicated by the concentration coefficient-R(2). Least significant difference analysis showed that speed of wind and its direction plays a major role in dispersion of heavy metals. Accumulation of Al, Cr, Fe, Pb and Zn in the thallus suppressed the concentrations of pigments like chlorophyll a, chlorophyll b and total chlorophyll, however, enhanced the level of protein. Further, the concentrations of chlorophyll contents in P. cocoes increased with the decreasing the distance from the power plant, while protein, carotenoid and phaeophytisation exhibited significant decrease.

  19. Antifungal activity of the essential oil from Calendula officinalis L. (asteraceae) growing in Brazil

    PubMed Central

    Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Diógenes Aparicio Garcia

    2008-01-01

    This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested. PMID:24031180

  20. Induction and activation of meiosis and subsequent parthenogenetic development of growing pig oocytes using calcium ionophore A23187.

    PubMed

    Sedmíková, Markéta; Burdová, Jana; Petr, Jaroslav; Etrych, Milan; Rozinek, Jirí; Jílek, Frantisek

    2003-12-01

    The pig ovary contains a large number of growing oocytes, which do not mature in vitro and cannot be readily used in various biotechnologies. This study was conducted to determine the possibility of inducing meiotic maturation in growing pig oocytes with an internal diameter of 110 microm, which had developed partial meiotic competence. Most of these oocytes spontaneously stopped maturation at the metaphase I stage (68%); a limited number proceeded to the metaphase II stage (26%). Treatment with calcium ionophore A23187 (50 microM for 5 or 10 min) after 24h in vitro culture overcame the block at the metaphase I stage, and treated growing pig oocytes matured to the metaphase II stage (66%). Oocytes in which maturation had been induced by calcium ionophore were again treated with calcium ionophore. Up to 58% of the treated oocytes were activated. Parthenogenetic development in oocytes treated with ionophore for meiosis induction and activation was very limited. The portion which reached morula stage did not exceed 8% and at most 3% developed to the blastocyst stage.

  1. Impact of Faba Bean-Seed Rhizobial Inoculation on Microbial Activity in the Rhizosphere Soil during Growing Season

    PubMed Central

    Siczek, Anna; Lipiec, Jerzy

    2016-01-01

    Inoculation of legume seeds with Rhizobium affects soil microbial community and processes, especially in the rhizosphere. This study aimed at assessing the effect of Rhizobium inoculation on microbial activity in the faba bean rhizosphere during the growing season in a field experiment on a Haplic Luvisol derived from loess. Faba bean (Vicia faba L.) seeds were non-inoculated (NI) or inoculated (I) with Rhizobium leguminosarum bv. viciae and sown. The rhizosphere soil was analyzed for the enzymatic activities of dehydrogenases, urease, protease and acid phosphomonoesterase, and functional diversity (catabolic potential) using the Average Well Color Development, Shannon-Weaver, and Richness indices following the community level physiological profiling from Biolog EcoPlate™. The analyses were done on three occasions corresponding to the growth stages of: 5–6 leaf, flowering, and pod formation. The enzymatic activities were higher in I than NI (p < 0.05) throughout the growing season. However, none of the functional diversity indices differed significantly under both treatments, regardless of the growth stage. This work showed that the functional diversity of the microbial communities was a less sensitive tool than enzyme activities in assessment of rhizobial inoculation effects on rhizosphere microbial activity. PMID:27213363

  2. The effect of the neural activity on topological properties of growing neural networks.

    PubMed

    Gafarov, F M; Gafarova, V R

    2016-09-01

    The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.

  3. Interaction Activities in the Foreign Classroom, or How to Grow a Tulip-Rose

    ERIC Educational Resources Information Center

    Paulston, Christina Bratt; Selekman, Howard R.

    1976-01-01

    A report is made on the use of foreign language for spontaneous communication in an elementary language class. Four correction-free, peer communicative/interaction activities are outlined according to procedures, objectives, and evaluations. (Author/RM)

  4. [Bioaccumulation of heavy metals by the dominant plants growing in Huayuan manganese and lead/zinc mineland, Xiangxi].

    PubMed

    Yang, Sheng-Xiang; Tian, Qi-Jian; Liang, Shi-Chu; Zhou, Yao-Yu; Zou, Hui-Cheng

    2012-06-01

    Heavy metal pollution is a major environmental problem of mine wasteland. Finding out the tolerant plants, which can adapt to the local climate and the soil conditions, is the premise of vegetation restoration. An extensive vegetation survey and sampling were conducted in Huayuan Mn and Pb/Zn mineland, 76 species belonging to 69 genera and 39 families were recorded. The main dominant species and their associated soils were determined for heavy metal concentrations. The results showed that soil Pb, Zn and Cd levels exceeded the threshold levels of Class II of China Environmental Quality Standard for Soils, which suggested minesoils might be polluted by the three elements. The main dominant plants can adapt to the unfavorable edaphic conditions of mineland and were tolerant to heavy metals. There were great variations of metal uptake and accumulation among different plant species. They were classified into three types according to the metal concentrations in the plant shoots and roots: the accumulator, e. g. Camellia oleifera and Dicranopteris dichotoma, absorbed a large amount of heavy metals by the roots and transported to the shoots, which can be used to clean up the soils containing light to moderate toxic metal concentration and with high-value; the root compartment, e. g. Rubus tephrodes, R. corchorifolius, R. chroosepalus, Artemisia princeps and Pteridium aquilinum also absorbed a large amount of heavy metals but held in the roots; and the excluder, e. g. Miscanthus sinensis, Imperata cylindrica, Indocalamus tessellatus and Toddalia asiatica, absorbed less heavy metals than the accumulators. The root compartment and the excluder were more suitable for remediation of the mine wastelands with high heavy metal concentration, low-value and extensive area.

  5. Plant Activities for the Pre-Literate Child.

    ERIC Educational Resources Information Center

    Hunken, Jori

    1988-01-01

    Notes several benefits that early childhood activities with plants can provide. Contains suggestions on projects involving children and narcissus bulbs, birdseed gardens, and amaryllis. Includes several extentions to the activities which deal with art and dramatics. (TW)

  6. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia

    PubMed Central

    Hatzenpichler, Roland; Connon, Stephanie A.; Goudeau, Danielle; Malmstrom, Rex R.; Woyke, Tanja; Orphan, Victoria J.

    2016-01-01

    To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probe the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of >16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia. This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought. PMID:27357680

  7. A metabolomics study delineating geographical location-associated primary metabolic changes in the leaves of growing tobacco plants by GC-MS and CE-MS.

    PubMed

    Zhao, Yanni; Zhao, Jieyu; Zhao, Chunxia; Zhou, Huina; Li, Yanli; Zhang, Junjie; Li, Lili; Hu, Chunxiu; Li, Wenzheng; Peng, Xiaojun; Lu, Xin; Lin, Fucheng; Xu, Guowang

    2015-11-09

    Ecological conditions and developmental senescence significantly affect the physiological metabolism of plants, yet relatively little is known about the influence of geographical location on dynamic changes in plant leaves during growth. Pseudotargeted gas chromatography-selected ion monitoring-mass spectrometry and capillary electrophoresis-mass spectrometry were used to investigate a time course of the metabolic responses of tobacco leaves to geographical location. Principal component analysis revealed obvious metabolic discrimination between growing districts relative to cultivars. A complex carbon and nitrogen metabolic network was modulated by environmental factors during growth. When the Xuchang and Dali Districts in China were compared, the results indicated that higher rates of photosynthesis, photorespiration and respiration were utilized in Xuchang District to generate the energy and carbon skeletons needed for the biosynthesis of nitrogen-containing metabolites. The increased abundance of defense-associated metabolites generated from the shikimate-phenylpropanoid pathway in Xuchang relative to Dali was implicated in protection against stress.

  8. Native New Zealand plants with inhibitory activity towards Mycobacterium tuberculosis

    PubMed Central

    2010-01-01

    Background Plants have long been investigated as a source of antibiotics and other bioactives for the treatment of human disease. New Zealand contains a diverse and unique flora, however, few of its endemic plants have been used to treat tuberculosis. One plant, Laurelia novae-zelandiae, was reportedly used by indigenous Maori for the treatment of tubercular lesions. Methods Laurelia novae-zelandiae and 44 other native plants were tested for direct anti-bacterial activity. Plants were extracted with different solvents and extracts screened for inhibition of the surrogate species, Mycobacterium smegmatis. Active plant samples were then tested for bacteriostatic activity towards M. tuberculosis and other clinically-important species. Results Extracts of six native plants were active against M. smegmatis. Many of these were also inhibitory towards M. tuberculosis including Laurelia novae-zelandiae (Pukatea). M. excelsa (Pohutukawa) was the only plant extract tested that was active against Staphylococcus aureus. Conclusions Our data provide support for the traditional use of Pukatea in treating tuberculosis. In addition, our analyses indicate that other native plant species possess antibiotic activity. PMID:20537175

  9. Biological activity of some Patagonian plants.

    PubMed

    Cuadra, Pedro; Furrianca, María; Oyarzún, Alejandra; Yáñez, Erwin; Gallardo, Amalia; Fajardo, Víctor

    2005-12-01

    Citotoxicity (inhibition of cell division in fertilized eggs of Loxechinus albus) and general toxicity (using embryos of Artemia salina) of plants belonging to the genera Senecio, Deschampsia, Alstroemeria, Anarthrophyllum, Chloraea and Geranium were investigated.

  10. Growing into Greatness: A Study of a Local History Group of Active-Retired Learners

    ERIC Educational Resources Information Center

    Corrigan, Trudy; Byrne, Brid; Harris, Phyllis; Lalor, Maureen; O'Connor, Maura; O'Reilly, Kathleen; Quinn, Frank; Forde, Kathleen

    2005-01-01

    Research in Canada on the learning needs of older people looked at such issues as how to cope with changes in society, the need to make a contribution and the need to be influential. The White Paper on Adult Education "Learning for Life" notes that strategies for active ageing stress the critical importance of access to learning as a key…

  11. rRNA promoter activity in the fast-growing bacterium Vibrio natriegens.

    PubMed

    Aiyar, Sarah E; Gaal, Tamas; Gourse, Richard L

    2002-03-01

    The bacterium Vibrio natriegens can double with a generation time of less than 10 min (R. G. Eagon, J. Bacteriol. 83:736-737, 1962), a growth rate that requires an extremely high rate of protein synthesis. We show here that V. natriegens' high potential for protein synthesis results from an increase in ribosome numbers with increasing growth rate, as has been found for other bacteria. We show that V. natriegens contains a large number of rRNA operons, and its rRNA promoters are extremely strong. The V. natriegens rRNA core promoters are at least as active in vitro as Escherichia coli rRNA core promoters with either E. coli RNA polymerase (RNAP) or V. natriegens RNAP, and they are activated by UP elements, as in E. coli. In addition, the E. coli transcription factor Fis activated V. natriegens rrn P1 promoters in vitro. We conclude that the high capacity for ribosome synthesis in V. natriegens results from a high capacity for rRNA transcription, and the high capacity for rRNA transcription results, at least in part, from the same factors that contribute most to high rates of rRNA transcription in E. coli, i.e., high gene dose and strong activation by UP elements and Fis.

  12. Inequity outside the Classroom: Growing Class Differences in Participation in Extracurricular Activities

    ERIC Educational Resources Information Center

    Snellman, Kaisa; Silva, Jennifer M.; Putnam, Robert D.

    2015-01-01

    In this article, the authors report on research that shows that extracurricular activities help cultivate the skills, connections, and knowledge that prepare children for lifelong success. They add, however, that low-income students are increasingly being excluded from participating. Struggling with budget cuts and deficits, many school districts…

  13. Anti-trypanosomal activity of nigerian plants and their constituents.

    PubMed

    Nwodo, Ngozi Justina; Ibezim, Akachukwu; Ntie-Kang, Fidele; Adikwu, Michael Umale; Mbah, Chika John

    2015-04-28

    African trypanosomiasis is a vector-borne parasitic disease causing serious risks to the lives of about 60 million people and 48 million cattle globally. Nigerian medicinal plants are known to contain a large variety of chemical structures and some of the plant extracts have been screened for antitrypanosomal activity, in the search for potential new drugs against the illness. We surveyed the literatures on plants and plant-derived products with antitrypanosomal activity from Nigerian flora published from 1990 to 2014. About 90 plants were identified, with 54 compounds as potential active agents and presented by plant families in alphabetical order. This review indicates that the Nigerian flora may be suitable as a starting point in searching for new and more efficient trypanocidal molecules.

  14. Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings.

    PubMed

    Zhan, Jing; Sun, Qingye

    2012-03-20

    The composition of free-living nitrogen-fixing microbial communities in rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings was studied by the presence of nifH genes using Polymerase Chain Reaction-Denatured Gradient Gel Electrophoresis (PCR-DGGE) approach. Eleven rhizosphere tailing samples and nine non-rhizosphere tailing samples from six plant communities were collected from two wastelands with different discarded periods. The nested PCR method was used to amplify the nifH genes from environmental DNA extracted from tailing samples. Twenty-two of 37 nifH gene sequences retrieved from DGGE gels clustered in Proteobacteria (α-Proteobacteria and β-Proteobacteria) and 15 nifH gene sequences in Cyanobacteria. Most nifH gene fragments sequenced were closely related to uncultured bacteria and cyanobacteria and exhibited less than 90% nucleotide acid identity with bacteria in the database, suggesting that the nifH gene fragments detected in copper mine tailings may represent novel sequences of nitrogen-fixers. Our results indicated that the non-rhizosphere tailings generally presented higher diversity of nitrogen-fixers than rhizosphere tailings and the diversity of free-living nitrogen-fixers in tailing samples was mainly affected by the physico-chemical properties of the wastelands and plant species, especially the changes of nutrient and heavy metal contents caused by the colonization of plant community.

  15. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    PubMed

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  16. Magma-derived CO 2 emissions recorded in 14C and 13C content of plants growing in Furnas caldera, Azores

    NASA Astrophysics Data System (ADS)

    Pasquier-Cardin, Aline; Allard, Patrick; Ferreira, Teresa; Hatte, Christine; Coutinho, Rui; Fontugne, Michel; Jaudon, Michel

    1999-09-01

    The environmental impact of fumarolic and soil emanations of magma-derived carbon dioxide across Furnas caldera has been investigated by measuring the 14C and 13C content of 40 specimens of different C3 plants (leaves) growing within and outside the degassing areas. The results demonstrate a significant to large 14C depletion in many of the plants due to assimilation of 14C-free endogenous CO 2 during photosynthesis and leading to artificial radiocarbon ageing of up to 4400 years. The extent of 14C ageing broadly correlates with the intensity of gas manifestations at the sampling sites, as inferred from field observations and measurements of excess CO 2 concentrations in the volcanic ground. It also provides a time-integrated measure of the amount of volcanic CO 2 locally admixed to the ambient air; at several sites this accounts for 15 to 40% of total CO 2 (420 to 600 ppm) in enriched air. In some of the plant species ( Azalea, Camellia and fern) 14C depletion is correlated with an enrichment of 13C due to assimilation of magma-derived CO 2 with a 4‰ higher δ 13C than normal atmosphere. The rate of 13C enrichment averages ca. 0.18‰ by percent of volcanic carbon fixed in the plant and includes enhanced 13C discrimination during photosynthesis as a consequence of increased ambient pCO 2 (inferred at -0.0306‰ per added ppm of volcanic CO 2). Furnas is one of the few volcanoes where clear 13C enrichment in plants due to endogenous degassing has been evidenced. Our results can be used to estimate the local intensity of volcanic soil gas fluxes in the emanating areas of Furnas caldera. They also have implications for radiocarbon dating of past eruptive events in the caldera, since plants artificially aged by previous degassing could be trapped in volcanic deposits.

  17. Community shifts of actively growing lake bacteria after N-acetyl-glucosamine addition: improving the BrdU-FACS method.

    PubMed

    Tada, Yuya; Grossart, Hans-Peter

    2014-02-01

    In aquatic environments, community dynamics of bacteria, especially actively growing bacteria (AGB), are tightly linked with dissolved organic matter (DOM) quantity and quality. We analyzed the community dynamics of DNA-synthesizing and accordingly AGB by linking an improved bromodeoxyuridine immunocytochemistry approach with fluorescence-activated cell sorting (BrdU-FACS). FACS-sorted cells of even oligotrophic ecosystems in winter were characterized by 16S rRNA gene analysis. In incubation experiments, we examined community shifts of AGB in response to the addition of N-acetyl-glucosamine (NAG), one of the most abundant aminosugars in aquatic systems. Our improved BrdU-FACS analysis revealed that AGB winter communities of oligotrophic Lake Stechlin (northeastern Germany) substantially differ from those of total bacteria and consist of Alpha-, Beta-, Gamma-, Deltaproteobacteria, Actinobacteria, Candidatus OP10 and Chloroflexi. AGB populations with different BrdU-fluorescence intensities and cell sizes represented different phylotypes suggesting that single-cell growth potential varies at the taxon level. NAG incubation experiments demonstrated that a variety of widespread taxa related to Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Planctomycetes, Spirochaetes, Verrucomicrobia and Chloroflexi actively grow in the presence of NAG. The BrdU-FACS approach enables detailed phylogenetic studies of AGB and, thus, to identify those phylotypes which are potential key players in aquatic DOM cycling.

  18. Nitrogen and Potassium Concentrations in the Nutrients Solution for Melon Plants Growing in Coconut Fiber without Drainage

    PubMed Central

    Gratieri, Luiz Augusto; Cecílio Filho, Arthur Bernardes; Barbosa, José Carlos

    2013-01-01

    With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The “Bonus no. 2” was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L−1) and four K concentrations (4, 6, 8, and 10 mmol L−1). The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO3 and of K, and the electrical conductivity (CE) of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L−1) and K (10 mmol L−1) resulted in higher masses for the first (968 g) and the second (951 g) fruits and crop yield (4,425 gm−2). PMID:23864827

  19. Mining the active proteome in plant science and biotechnology.

    PubMed

    Kołodziejek, Izabella; van der Hoorn, Renier A L

    2010-04-01

    Protein activity is essential functional information, yet difficult to predict from transcript or protein data. Activity-based protein profiling (ABPP) displays active proteins in proteomes using small molecule probes that irreversibly label proteins in their active state. Here, we review proof-of-concept ABPP studies in plant science. These studies displayed activities of dozens of plant cysteine proteases, lipases, methylesterases and the proteasome. ABPP in plants revealed differential protein activities in development and immunity and uncovered striking selectivity of pathogen-derived inhibitors and unexpected targets of commercial inhibitors. The unique, high-content information of ABPP and the robustness and simplicity of the assays will make ABPP a powerful tool in future plant science and biotechnology.

  20. Isolation and characterization of yeasts associated with plants growing in heavy-metal- and arsenic-contaminated soils.

    PubMed

    Ramos-Garza, Juan; Bustamante-Brito, Rafael; Ángeles de Paz, Gabriela; Medina-Canales, Ma Gabriela; Vásquez-Murrieta, María Soledad; Wang, En Tao; Rodríguez-Tovar, Aída Verónica

    2016-04-01

    Yeasts were quantified and isolated from the rhizospheres of 5 plant species grown at 2 sites of a Mexican region contaminated with arsenic, lead, and other heavy metals. Yeast abundance was about 10(2) CFU/g of soil and 31 isolates were obtained. On the basis of the phylogenetic analysis of 26S rRNA and internal transcribed spacer fragment, 6 species were identified within the following 5 genera: Cryptococcus (80.64%), Rhodotorula (6.45%), Exophiala (6.45%), Trichosporon (3.22%), and Cystobasidium (3.22%). Cryptococcus spp. was the predominant group. Pectinases (51.6%), proteases (51.6%), and xylanases (41.9%) were the enzymes most common, while poor production of siderophores (16.1%) and indole acetic acid (9.67%) was detected. Isolates of Rhodotorula mucilaginosa and Cystobasidium sloffiae could promote plant growth and seed germination in a bioassay using Brassica juncea. Resistance of isolates by arsenic and heavy metals was as follows: As(3+) ≥ 100 mmol/L, As(5+) ≥ 30 mmol/L, Zn(2+) ≥ 2 mmol/L, Pb(2+) ≥ 1.2 mmol/L, and Cu(2+) ≥ 0.5 mmol/L. Strains of Cryptococcus albidus were able to reduce arsenate (As(5+)) into arsenite (As(3+)), but no isolate was capable of oxidizing As(3+). This is the first study on the abundance and identification of rhizosphere yeasts in a heavy-metal- and arsenic-contaminated soil, and of the reduction of arsenate by the species C. albidus.

  1. Response of Potato Tuber Number and Spatial Distribution to Plant Density in Different Growing Seasons in Southwest China

    PubMed Central

    Zheng, Shun-Lin; Wang, Liang-Jun; Wan, Nian-Xin; Zhong, Lei; Zhou, Shao-Meng; He, Wei; Yuan, Ji-Chao

    2016-01-01

    The aim of this study was to explore the effects of different density treatments on potato spatial distribution and yield in spring and fall. Plant density influenced yield and composition, horizontal, and vertical distribution distances between potato tubers, and spatial distribution position of tuber weights. The results indicated that: (1) Spring potato yield had a convex quadratic curve relationship with density, and the highest value was observed at 15.75 × 104 tubers per hectare. However, the yield of fall potatoes showed a linear relationship with plant density, and the highest value was observed at 18 × 104 tubers per hectare; (2) Density had a greater influence on the tuber weight of spring potatoes and fruit number of single fall potatoes; (3) The number of potato tubers in the longitudinal concentration exhibited a negative linear relationship with density, whereas the average vertical distribution distance of tubers exhibited a positive incremental hyperbolic relationship. For spring and fall potato tubers, the maximum distances were 8.4152 and 6.3316 cm, and the minimum distances 8.7666 and 6.9366 cm, respectively; and (4) Based on the artificial neural network model of the spatial distribution of tuber weight, density mainly affected the number and spatial distribution of tubers over 80 g. Tubers over 80 g were mainly distributed longitudinally (6–10 cm) and transversely (12–20 cm) within the high density treatment, and the transverse distribution scope and number of tubers over 80 g were reduced significantly. Spring potato tubers over 80 g grown at the lowest density were mainly distributed between 12 and 20 cm, whereas those at the highest density were primarily distributed between 10 and 15 cm. PMID:27092146

  2. A Novel Pyrimidin-Like Plant Activator Stimulates Plant Disease Resistance and Promotes Growth

    PubMed Central

    Sun, Tie-Jun; Lu, Yun; Narusaka, Mari; Shi, Chao; Yang, Yu-Bing; Wu, Jian-Xin; Zeng, Hong-Yun; Narusaka, Yoshihiro; Yao, Nan

    2015-01-01

    Plant activators are chemicals that induce plant defense responses to a broad spectrum of pathogens. Here, we identified a new potential plant activator, 5-(cyclopropylmethyl)-6-methyl-2-(2-pyridyl)pyrimidin-4-ol, named PPA (pyrimidin-type plant activator). Compared with benzothiadiazole S-methyl ester (BTH), a functional analog of salicylic acid (SA), PPA was fully soluble in water and increased fresh weight of rice (Oryza sativa) and Arabidopsis plants at low concentrations. In addition, PPA also promoted lateral root development. Microarray data and real-time PCR revealed that PPA-treated leaves not challenged with pathogen showed up-regulation of genes related to reactive oxygen species (ROS), defenses and SA. During bacterial infection, Arabidopsis plants pretreated with PPA showed dramatically decreased disease symptoms and an earlier and stronger ROS burst, compared with plants pretreated with BTH. Microscopy revealed that H2O2 accumulated in the cytosol, plasma membrane and cell wall around intracellular bacteria, and also on the bacterial cell wall, indicating that H2O2 was directly involved in killing bacteria. The increase in ROS-related gene expression also supported this observation. Our results indicate that PPA enhances plant defenses against pathogen invasion through the plant redox system, and as a water-soluble compound that can promote plant growth, has broad potential applications in agriculture. PMID:25849038

  3. Evaluation of the onset and length of growing season to define planting date—`a case study for Mali (West Africa)'

    NASA Astrophysics Data System (ADS)

    Akinseye, F. M.; Agele, S. O.; Traore, P. C. S.; Adam, M.; Whitbread, A. M.

    2016-05-01

    The agroecological zones (AEZ) of Mali fall within the semi-arid climate, the ability to determine efficiently or predict accurately the onset of growing season (OGS), and length of growing season (LGS) cannot be over-emphasized due to highly variable rainfall pattern and the dependence of smallholder farmers practising on rainfed farming agriculture. In this study, we determined the most suitable method for predicting the onset date of rainfall across AEZ that fitted with the planting windows of major cereal crops (maize, millet, and sorghum). Using long-term daily rainfall records from 22 meteorological stations spread across AEZ of Mali, four (4) known methods were applied to determine the onset dates of the rain. The mean onset dates were statistically compared with the farmer's planting window for the selected weather stations to determine the suitable dates of OGS and LGS. The hypothesis considered a time lag minimum of 7 days between the mean onset date and traditional farmer sowing dates for the crops. Then, the preferred method was used to estimate OGS based on early, normal and late dates respectively across the stations. Also, the estimated LGS according to each zone was evaluated using probability distribution chart with duration to maturity for varieties of the same crops. The results showed that Def_4 was found appropriate for Sahelian and Sudano-Sahelian zones; Def_3 satisfied the criteria and exhibited superior capacity into farmer's average planting date over Sudanian and Guinea Savannah zones. These results have an important application in cropping systems in order to prevent crop failure and ensure a better choice of crop variety according to LGS under climate variability and change being experienced across Mali.

  4. Plant PRRs and the activation of innate immune signaling.

    PubMed

    Macho, Alberto P; Zipfel, Cyril

    2014-04-24

    Despite being sessile organisms constantly exposed to potential pathogens and pests, plants are surprisingly resilient to infections. Plants can detect invaders via the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Plant PRRs are surface-localized receptor-like kinases, which comprise a ligand-binding ectodomain and an intracellular kinase domain, or receptor-like proteins, which do not exhibit any known intracellular signaling domain. In this review, we summarize recent discoveries that shed light on the molecular mechanisms underlying ligand perception and subsequent activation of plant PRRs. Notably, plant PRRs appear as central components of multiprotein complexes at the plasma membrane that contain additional transmembrane and cytosolic kinases required for the initiation and specificity of immune signaling. PRR complexes are under tight control by protein phosphatases, E3 ligases, and other regulatory proteins, illustrating the exquisite and complex regulation of these molecular machines whose proper activation underlines a crucial layer of plant immunity.

  5. Antibacterial activity of some Moroccan medicinal plants.

    PubMed

    Larhsini, M; Oumoulid, L; Lazrek, H B; Wataleb, S; Bousaid, M; Bekkouche, K; Jana, M

    2001-05-01

    The extracts of 12 plants selected on the basis of the folk-medicine reports were examined for their antibacterial effects against eight pathogenic bacteria. The n-butanol extract of Calotropis procera flowers and the aqueous extract of Eugenia caryophyllata proved to be the most effective against the bacteria tested.

  6. Traffic-related metal(loid) status and uptake by dominant plants growing naturally in roadside soils in the Tibetan plateau, China.

    PubMed

    Zhang, Hua; Zhang, Yili; Wang, Zhaofeng; Ding, Mingjun; Jiang, Yinghui; Xie, Zhenglei

    2016-12-15

    To understand traffic-related metal(loid) status and uptake by dominant plants growing naturally in roadside soils in the Tibetan plateau, China, aboveground parts and root samples of three dominant plant species (Kalidium slenderbranch, Stipa purpurea, Kobresia pygmaea) were collected along the Qinghai-Tibet highway, and were analyzed for concentrations of traffic-related metal(loid)s such as chromium (Cr), zinc (Zn), copper (Cu), cadmium (Cd), arsenic (As), and lead (Pb). The results indicated that concentrations of metal(loid)s in plant tissues varied greatly among plant species and sites. Tissue distribution of metal(loid)s was significantly related to distance and demonstrated variability as an exponential function of traffic proximity. It was deduced that Cd in Kalidium slenderbranch and Cu and Zn in S. purpurea were mainly derived from soil; Kalidium slenderbranch and Kobresia pygmaea absorbed Zn, and S. purpurea absorbed Cd, mainly through stomata, from atmospheric deposition; enrichments of Pb and As in S. purpurea presented similar characteristics to those of Cd and Pb in Kobresia pygmaea and were affected by both soil and atmospheric deposition. After excluding the effects of the traffic, the highest value obtained for metal(loid)-translocation capacity (7.51 for translocation factor, TF) was observed for S. purpurea collected from Tuotuohe, while the lowest value for metal(loid)-uptake capacity (0.015 for bioaccumulation factor, BF) was for Kalidium slenderbranch collected from Golmud. The three plant species showed limited soil-to-root transfer of metal(loid)s, possibly due to the high soil pH along the Qinghai-Tibet highway, but demonstrated great potential for metal(loid) transfer from roots to aboveground parts.

  7. Mercury-resistant rhizobial bacteria isolated from nodules of leguminous plants growing in high Hg-contaminated soils.

    PubMed

    Ruiz-Díez, Beatriz; Quiñones, Miguel A; Fajardo, Susana; López, Miguel A; Higueras, Pablo; Fernández-Pascual, Mercedes

    2012-10-01

    A survey of symbiotic bacteria from legumes grown in high mercury-contaminated soils (Almadén, Spain) was performed to produce a collection of rhizobia which could be well adapted to the environmental conditions of this region and be used for restoration practices. Nineteen Hg-tolerant rhizobia were isolated from nodules of 11 legume species (of the genera Medicago, Trifolium, Vicia, Lupinus, Phaseolus, and Retama) and characterized. Based on their growth on Hg-supplemented media, the isolates were classified into three susceptibility groups. The minimum inhibitory concentrations (MICs) and the effective concentrations that produce 50% mortality identified the patterns of mercury tolerance and showed that 15 isolates were tolerant. The dynamics of cell growth during incubation with mercury showed that five isolates were unaffected by exposure to Hg concentrations under the MICs. Genetic analyses of the 16S rRNA gene assigned ten strains to Rhizobium leguminosarum, six to Ensifer medicae, two to Bradyrhizobium canariense, and one to Rhizobium radiobacter. Inoculation of host plants and analysis of the nodC genes revealed that most of them were symbiotically effective. Finally, three isolates were selected for bioremediation processes with restoration purposes on the basis of their levels of Hg tolerance, their response to high concentrations of this heavy metal, and their genetic affiliation and nodulation capacity.

  8. How faceted liquid droplets grow tails: from surface topology to active motion

    NASA Astrophysics Data System (ADS)

    Sloutskin, Eli

    Among all possible shapes of a volume V, a sphere has the smallest surface area A. Therefore, liquid droplets are spherical, minimizing their interfacial energy γA for a given interfacial tension γ > 0 . This talk will demonstrate that liquid oil (alkane) droplets in water, stabilized by a common surfactant can be temperature-tuned to adopt icosahedral and other faceted shapes, above the bulk melting temperature of the oil. Although emulsions have been studied for centuries no faceted liquid droplets have ever been reported. The formation of an icosahedral shape is attributed to the interplay between γ and the elastic properties of the interfacial monomolecular layer, which crystallizes here 10-15K above bulk melting, leaving the droplet's bulk liquid. The icosahedral symmetry is dictated by twelve five-fold topological defects, forming within the hexagonally-packed interfacial crystalline monolayer. Moreover, we demonstrate that upon further cooling this `interfacial freezing' effect makes γ transiently switch its sign, leading to a spontaneous splitting of droplets and an active growth of their surface area, reminiscent of the classical spontaneous emulsification, yet driven by completely different physics. The observed phenomena allow deeper insights to be gained into the fundamentals of molecular elasticity and open new vitas for a wide range of novel nanotechnological applications, from self-assembly of complex shapes to new delivery strategies in bio-medicine. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research and to the Kahn Foundation for the purchase of equipment.

  9. Antibacterial Activity of Blue Light against Nosocomial Wound Pathogens Growing Planktonically and as Mature Biofilms

    PubMed Central

    Thwaite, Joanne E.; Burt, Rebecca; Laws, Thomas R.; Raguse, Marina; Moeller, Ralf; Webber, Mark A.; Oppenheim, Beryl A.

    2016-01-01

    ABSTRACT The blue wavelengths within the visible light spectrum are intrinisically antimicrobial and can photodynamically inactivate the cells of a wide spectrum of bacteria (Gram positive and negative) and fungi. Furthermore, blue light is equally effective against both drug-sensitive and -resistant members of target species and is less detrimental to mammalian cells than is UV radiation. Blue light is currently used for treating acnes vulgaris and Helicobacter pylori infections; the utility for decontamination and treatment of wound infections is in its infancy. Furthermore, limited studies have been performed on bacterial biofilms, the key growth mode of bacteria involved in clinical infections. Here we report the findings of a multicenter in vitro study performed to assess the antimicrobial activity of 400-nm blue light against bacteria in both planktonic and biofilm growth modes. Blue light was tested against a panel of 34 bacterial isolates (clinical and type strains) comprising Acinetobacter baumannii, Enterobacter cloacae, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, and Elizabethkingia meningoseptica. All planktonic-phase bacteria were susceptible to blue light treatment, with the majority (71%) demonstrating a ≥5-log10 decrease in viability after 15 to 30 min of exposure (54 J/cm2 to 108 J/cm2). Bacterial biofilms were also highly susceptible to blue light, with significant reduction in seeding observed for all isolates at all levels of exposure. These results warrant further investigation of blue light as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications. IMPORTANCE Blue light shows great promise as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications (e.g., wound closure during surgery). This warrants further

  10. Risks of hormonally active pharmaceuticals to amphibians: a growing concern regarding progestagens.

    PubMed

    Säfholm, Moa; Ribbenstedt, Anton; Fick, Jerker; Berg, Cecilia

    2014-11-19

    Most amphibians breed in water, including the terrestrial species, and may therefore be exposed to water-borne pharmaceuticals during critical phases of the reproductive cycle, i.e. sex differentiation and gamete maturation. The objectives of this paper were to (i) review available literature regarding adverse effects of hormonally active pharmaceuticals on amphibians, with special reference to environmentally relevant exposure levels and (ii) expand the knowledge on toxicity of progestagens in amphibians by determining effects of norethindrone (NET) and progesterone (P) exposure to 0, 1, 10 or 100 ng l(-1) (nominal) on oogenesis in the test species Xenopus tropicalis. Very little information was found on toxicity of environmentally relevant concentrations of pharmaceuticals on amphibians. Research has shown that environmental concentrations (1.8 ng l(-1)) of the pharmaceutical oestrogen ethinylestradiol (EE2) cause developmental reproductive toxicity involving impaired spermatogenesis in frogs. Recently, it was found that the progestagen levonorgestrel (LNG) inhibited oogenesis in frogs by interrupting the formation of vitellogenic oocytes at an environmentally relevant concentration (1.3 ng l(-1)). Results from the present study revealed that 1 ng NET l(-1) and 10 ng P l(-1) caused reduced proportions of vitellogenic oocytes and increased proportions of previtellogenic oocytes compared with the controls, thereby indicating inhibited vitellogenesis. Hence, the available literature shows that the oestrogen EE2 and the progestagens LNG, NET and P impair reproductive functions in amphibians at environmentally relevant exposure concentrations. The progestagens are of particular concern given their prevalence, the range of compounds and that several of them (LNG, NET and P) share the same target (oogenesis) at environmental exposure concentrations, indicating a risk for adverse effects on fertility in exposed wild amphibians.

  11. Risks of hormonally active pharmaceuticals to amphibians: a growing concern regarding progestagens

    PubMed Central

    Säfholm, Moa; Ribbenstedt, Anton; Fick, Jerker; Berg, Cecilia

    2014-01-01

    Most amphibians breed in water, including the terrestrial species, and may therefore be exposed to water-borne pharmaceuticals during critical phases of the reproductive cycle, i.e. sex differentiation and gamete maturation. The objectives of this paper were to (i) review available literature regarding adverse effects of hormonally active pharmaceuticals on amphibians, with special reference to environmentally relevant exposure levels and (ii) expand the knowledge on toxicity of progestagens in amphibians by determining effects of norethindrone (NET) and progesterone (P) exposure to 0, 1, 10 or 100 ng l−1 (nominal) on oogenesis in the test species Xenopus tropicalis. Very little information was found on toxicity of environmentally relevant concentrations of pharmaceuticals on amphibians. Research has shown that environmental concentrations (1.8 ng l−1) of the pharmaceutical oestrogen ethinylestradiol (EE2) cause developmental reproductive toxicity involving impaired spermatogenesis in frogs. Recently, it was found that the progestagen levonorgestrel (LNG) inhibited oogenesis in frogs by interrupting the formation of vitellogenic oocytes at an environmentally relevant concentration (1.3 ng l−1). Results from the present study revealed that 1 ng NET l−1 and 10 ng P l−1 caused reduced proportions of vitellogenic oocytes and increased proportions of previtellogenic oocytes compared with the controls, thereby indicating inhibited vitellogenesis. Hence, the available literature shows that the oestrogen EE2 and the progestagens LNG, NET and P impair reproductive functions in amphibians at environmentally relevant exposure concentrations. The progestagens are of particular concern given their prevalence, the range of compounds and that several of them (LNG, NET and P) share the same target (oogenesis) at environmental exposure concentrations, indicating a risk for adverse effects on fertility in exposed wild amphibians. PMID:25405966

  12. Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India.

    PubMed

    Maiti, Subodh Kumar; Jaiswal, Shishir

    2008-01-01

    A field study was conducted in the fly ash lagoons of Santandih Thermal Power Plant located in West Bengal (India) to find out total, EDTA and DTPA extractable metals in fly ash and their bioaccumulation in root and shoot portion of the naturally growing vegetation. Fly ash sample has alkaline pH and low conductivity. The concentration of total Cu, Zn, Pb and Ni were found higher than weathered fly ash and natural soil, where as Co, Cd and Cr were found traces. Five dominant vegetation namely, Typha latifolia, Fimbristylis dichotoma, Amaranthus defluxes, Saccharum spontaenum and Cynodon dactylon were collected in the winter months (November-December). Bioaccumulation of metals in root and shoot portions were found varied significantly among the species, but all concentration were found within toxic limits. Correlation between total, DTPA and EDTA extractable metals viz. root and shoot metals concentration were studied. Translocation factor (TF) for Cu, Zn and Ni were found less than unity, indicates that these metals are immobilized in the root part of the plants. Metals like Mn have TF greater than unity. The study infers that natural vegetation removed Mn by phytoextraction mechanisms (TF > 1), while other metals like Zn, Cu, Pb and Ni were removed by rhizofiltration mechanisms (TF < 1). The field study revealed that T. latifolia and S. spontaenum plants could be used for bioremediation of fly ash lagoon.

  13. Plant Signals Disrupt (regulate?) Arbuscular Mycorrhizal Fungal Growth Under Enhanced Ozone and CO2 Growing Conditions for Populus tremuloides

    NASA Astrophysics Data System (ADS)

    Miller, R. M.; Podila, G. K.

    2008-12-01

    evaluating microarray data of more than 2300 genes that are regulated (out of 25,000) in aspen mycorrhizal roots, the eCO2 responsive and eO3 tolerant aspen ecotype 271 demonstrated upregulation for antioxidant genes under eCO2+eO3 conditions. We found decreased expression of both neutral and acid invertase genes indicating that the availability of carbohydrate to the fungus is reduced. We also found an increase in plant amino acid transporters under eO3 and eCO2+eO3 that partitions more nitrogen to the plant from mycorrhizal roots and triggers the fungus into an N-starvation and lipid storage mode. This observation is supported by down-regulation of genes involved in nitrogen utilization in Glomus and the enrichment of hyphal 15N content, as well as an increase in the AMF marker storage lipid (neutral fatty acid 16:1w5c)in the root. The up-regulation of pathways involved in the formation of triglycerides that can be taken up by the fungus may be a critical step for changes in Glomus lipid metabolism. Also, in support of the above findings, is the rather high expression of genes involved in iron sequestration by aspen clone 271 when exposed to both eO3 and eCO2+eO3 fumigation. Iron is needed for both fatty acid (FA) desaturases and fatty acid synthase. Under eCO2+eO3, we found down-regulation of FA desaturases in Glomus, suggesting reduced levels of iron could be a potential signal for the fungus to go into storage mode and reduced growth of extraradical hyphae into the soil.

  14. Evaluation of the estrogenic activity of Leguminosae plants.

    PubMed

    Yoo, Hye Hyun; Kim, Taehyeong; Ahn, Soyun; Kim, Yoon Jung; Kim, Hyun Young; Piao, Xiang Lan; Park, Jeong Hill

    2005-03-01

    The plant extracts of the Leguminosae family were screened for their estrogenic activity with the Ishikawa cell system. Of the tested plants, Desmodium oxyphyllum, Dunbaria villosa, Kummerowia striata, Lespedeza bicolor, Maackia amurensis, Maackia fauriei, Pueraria thunbergiana, and Sophora flavescens were highly estrogenic with EC50 values of less than 10 microg/ml.

  15. Chemical composition and antimicrobial activity of the essential oil of Juniperus excelsa M.Bieb. growing wild in Lebanon.

    PubMed

    Khoury, Madona; El Beyrouthy, Marc; Ouaini, Naïm; Iriti, Marcello; Eparvier, Véronique; Stien, Didier

    2014-05-01

    The essential oils (EOs) isolated from the leaves and twigs of Juniperus excelsa M.Bieb. growing wild in Lebanon were characterized, and their antimicrobial activity and antiradical capacity were evaluated. The EOs were obtained by hydrodistillation using a Clevenger-type apparatus and characterized by GC and GC/MS analyses. The antimicrobial activity was evaluated by determining minimal inhibitory concentrations (MICs) against a Gram-positive and a Gram-negative bacterium, a yeast, and a dermatophyte with the broth microdilution technique. A total of 28 constituents was identified and accounted for 90.1 and 95.6% of the twig and leaf EO composition, respectively. Both EOs were essentially composed of monoterpene hydrocarbons (46.7 and 59.6% for twig and leaf EOs, resp.) and sesquiterpenes (39.4 and 32.1%, resp.). The main components were α-pinene, α-cedrol, and δ-car-3-ene. The J. excelsa EOs did not show any antiradical potential, but revealed interesting in vitro antimicrobial activities against Staphylococcus aureus and Trichophyton rubrum (MICs of 64 and 128 μg/ml, resp.). The three major compounds were tested separately and in combination according to their respective amounts in the oil. δ-Car-3-ene was the most active component and is undoubtedly one of the constituents driving the antifungal activity of J. excelsa essential oil, even though synergies are probably involved.

  16. Antioxidant and nitric oxide inhibition activities of Thai medicinal plants.

    PubMed

    Makchuchit, Sunita; Itharat, Arunporn; Tewtrakul, Supinya

    2010-12-01

    Nineteen Thai medicinal plants used in Thai traditional medicine preparation to treat colds, asthma and fever were studied for their antioxidant and NO inhibitory activities. Three extracts were obtained from each plant. First extract obtained by macerating the plant part in 95% ethanol (Et) residue was boiled in water, where water extract (EW) was obtained. The third extract (HW) was obtained by boiling each plant in water similar to that of Thai traditional medicine practice. These extracts were tested for their antioxidant activity using DPPH assay, and anti-inflammatory activity by determination of inhibitory activity on lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 cell lines using Griess reagent. Results indicated that Et, EW and HW of Syzygium aromaticum showed the highest antioxidant activity (EC50 = 6.56, 4.73 and 5.30 microg/ml, respectively). Et of Atractylodes lancea exhibited the most potent inhibitory activity on lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 cells, with IC50 value of 9.70 microg/ml, followed by Et of Angelica sinensis and Cuminum cyminum (IC50 = 12.52 and 13.56 microg/ml, respectively) but water extract (EW, HW) of all plants were apparently inactive. These results of anti-inflammatory activity of these plants correspond with the traditional use for fever; cold, allergic-related diseases and inflammatory-related diseases.

  17. Chinese Wild-Growing Vitis amurensis ICE1 and ICE2 Encode MYC-Type bHLH Transcription Activators that Regulate Cold Tolerance in Arabidopsis

    PubMed Central

    Xu, Weirong; Jiao, Yuntong; Li, Ruimin; Zhang, Ningbo; Xiao, Dongming; Ding, Xiaoling; Wang, Zhenping

    2014-01-01

    Winter hardiness is an important trait for grapevine breeders and producers, so identification of the regulatory mechanisms involved in cold acclimation is of great potential value. The work presented here involves the identification of two grapevine ICE gene homologs, VaICE1 and VaICE2, from an extremely cold-tolerant accession of Chinese wild-growing Vitis amurnensis, which are phylogenetically related to other plant ICE1 genes. These two structurally different ICE proteins contain previously reported ICE-specific amino acid motifs, the bHLH-ZIP domain and the S-rich motif. Expression analysis revealed that VaICE1 is constitutively expressed but affected by cold stress, unlike VaICE2 that shows not such changed expression as a consequence of cold treatment. Both genes serve as transcription factors, potentiating the transactivation activities in yeasts and the corresponding proteins localized to the nucleus following transient expression in onion epidermal cells. Overexpression of either VaICE1 or VaICE2 in Arabidopsis increase freezing tolerance in nonacclimated plants. Moreover, we show that they result in multiple biochemical changes that were associated with cold acclimation: VaICE1/2-overexpressing plants had evaluated levels of proline, reduced contents of malondialdehyde (MDA) and decreased levels of electrolyte leakage. The expression of downstream cold responsive genes of CBF1, COR15A, and COR47 were significantly induced in Arabidopsis transgenically overexpressing VaICE1 or VaICE2 upon cold stress. VaICE2, but not VaICE1 overexpression induced KIN1 expression under cold-acclimation conditions. Our results suggest that VaICE1 and VaICE2 act as key regulators at an early step in the transcriptional cascade controlling freezing tolerance, and modulate the expression levels of various low-temperature associated genes involved in the C-repeat binding factor (CBF) pathway. PMID:25019620

  18. Interesting biological activities from plants traditionally used by Native Australians.

    PubMed

    Pennacchio, Marcello; Kemp, Annabeth S; Taylor, Rory P; Wickens, Kristen M; Kienow, Lucie

    2005-01-15

    Four plants routinely used for medicinal purposes by Native Australians were screened for various biological activities. Methanol extracts of Eremophila maculata, Acacia auriculoformis and Acacia bivenosa exhibited antibiotic effects, while Eremophila alternifolia yielded an extract that induced significant changes to the heart activity of spontaneously hypertensive rats. We report on these biological activities.

  19. Molecular Characterization and Analysis of Antimicrobial Activity of Endophytic Fungi From Medicinal Plants in Saudi Arabia

    PubMed Central

    Gashgari, Rukaia; Gherbawy, Youssuf; Ameen, Fuad; Alsharari, Salam

    2016-01-01

    Background: Endophytic fungi, which have been reported in numerous plant species, are important components of the forest community and contribute significantly to the diversity of natural ecosystems. Objectives: The current study aimed to evaluate and characterize, at the molecular level, the diversity and antimicrobial activities of endophytic fungi from medicinal plants in Saudi Arabia. Materials and Methods: Fungi growing on plant segments were isolated and identified based on morphological and molecular characteristics. The isolates were grouped into 35 distinct operational taxonomic units, based on the sequence of the internal transcribed spacer regions in the rRNA gene. The colonization frequency and the dominant fungi percentage of these endophytic fungi were calculated. A dual culture technique was adopted to investigate the antifungal activity of these endophytes. Results: Tamarix nilotica showed the highest endophytic diversity with a relative frequency of 27.27%, followed by Cressa cretica with a relative frequency of 19.27%. The most frequently isolated species was Penicillium chrysogenum with an overall colonization rate of 98.57%. Seven out of 35 endophytic fungi exhibited strong antifungal activity to all plant fungal pathogens tested. P. chrysogenum, Fusarium oxysporum, and F. nygamai exhibited the highest inhibition against the human pathogenic bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Aspergillus sydowii, P. chrysogenum, and Eupenicillium crustaceum showed strong antimicrobial activity against Enterococcus faecalis. Conclusions: The antimicrobial activity of these endophytic microorganisms could be exploited in biotechnology, medicine, and agriculture. PMID:27099679

  20. Toxicity and mutagenic activity of some selected Nigerian plants.

    PubMed

    Sowemimo, A A; Fakoya, F A; Awopetu, I; Omobuwajo, O R; Adesanya, S A

    2007-09-25

    The toxicity and mutagenic potential of most African plants implicated in the management of cancer have not been investigated. The ethanolic extracts of selected Nigerian plants were subsequently studied using the brine shrimp lethality tests, inhibition of telomerase activity and induction of chromosomal aberrations in vivo in rat lymphocytes. Morinda lucida root bark, Nymphaea lotus whole plant and Garcinia kola root were active in the three test systems. Bryophyllum calycinum whole plant, Annona senegalensis root, Hymenocardia acida stem bark, Erythrophleum suaveolens leaves and Spondiathus preussii stem bark were toxic to brine shrimps and caused chromosomal damage in rat lymphocytes. Ficus exasperata leaves, Chrysophyllum albidum root bark and Hibiscus sabdariffa leaves were non-toxic to all the three test systems. Chenopodium ambrosioides whole plant was non-toxic to brine shrimps and rat lymphocyte chromosomes but showed inhibition in the conventional telomerase assay indicating a possible selectivity for human chromosomes. The result justified the use of the first eight plants and Chenopodium ambrosioides in the management of cancer in south west Nigeria although they appear to be non-selective and their mode of action may be different from plant to plant. All these plants except Chenopodium ambrosioides are also mutagenic and cytotoxic.

  1. Ozonated saline shows activity against planktonic and biofilm growing Staphylococcus aureus in vitro: a potential irrigant for infected wounds.

    PubMed

    Al-Saadi, Hayder; Potapova, Inga; Rochford, Edward Tj; Moriarty, Thomas F; Messmer, Peter

    2016-10-01

    Infections associated with deep wounds require extensive surgical and medical care. New adjunctive treatments are required to aid in the eradication of the bacterial biofilms found on infected wounds and, in particular, any underlying hardware. Ozone has been used as a safe and efficient disinfectant in water treatment plants for many years. The purpose of this study is to investigate the anti-biofilm potential of ozonated saline against biofilms of Staphylococcus aureus, a microorganism commonly implicated in wound infections. A custom-made bacterial biofilm bioreactor was used to grow S. aureus biofilms on discs of medical grade titanium alloy. An ozone generator was connected in-line and biofilms and planktonic bacteria were exposed to ozone in saline. Cytotoxicity was assessed against primary ovine osteoblasts in the same system. In tests against planktonic S. aureus, a 99% reduction in bacterial numbers was detected within 15 minutes of exposure. S. aureus biofilms were significantly more resistant to ozone, although complete eradication of the biofilm was eventually achieved within 5 hours. Ozonated saline was not found to be cytotoxic to primary ovine osteoblasts. Ozonated saline may be suitable as an adjuvant therapy to treat patients as an instillation fluid for wound irrigation and sterilisation.

  2. Plants growing on contaminated and brownfield sites appropriate for use in Organisation for Economic Co-operation and Development terrestrial plant growth test.

    PubMed

    Sinnett, Danielle E; Lawrence, Victoria K; Hutchings, Tony R; Hodson, Mark E

    2011-01-01

    The Organisation for Economic Co-operation and Development (OECD) terrestrial plant test is often used for the ecological risk assessment of contaminated land. However, its origins in plant protection product testing mean that the species recommended in the OECD guidelines are unlikely to occur on contaminated land. Six alternative species were tested on contaminated soils from a former Zn smelter and a metal fragmentizer with elevated concentrations of Cd, Cu, Pb, and Zn. The response of the alternative species was compared with that of two species recommended by the OECD: Lolium perenne (perennial ryegrass) and Trifolium pratense (red clover). Urtica dioica (stinging nettle) and Poa annua (annual meadowgrass) had low emergence rates in the control soil and so may be considered unsuitable. Festuca rubra (Chewings fescue), Holcus lanatus (Yorkshire fog), Senecio vulgaris (common groundsel), and Verbascum thapsus (great mullein) offer good alternatives to the OECD species. In particular, H. lanatus and S. vulgaris were more sensitive to the soils with moderate concentrations of Cd, Cu, Pb, and Zn than the OECD species.

  3. Screening of Tanzanian medicinal plants for anti-Candida activity

    PubMed Central

    Runyoro, Deborah KB; Matee, Mecky IN; Ngassapa, Olipa D; Joseph, Cosam C; Mbwambo, Zakaria H

    2006-01-01

    Background Candida albicans has become resistant to the already limited, toxic and expensive anti-Candida agents available in the market. These factors necessitate the search for new anti-fungal agents. Methods Sixty-three plant extracts, from 56 Tanzanian plant species obtained through the literature and interviews with traditional healers, were evaluated for anti-Candida activity. Aqueous methanolic extracts were screened for anti-Candida activity by bioautography agar overlay method, using a standard strain of Candida albicans (ATCC 90028). Results Twenty- seven (48%) out of the 56 plants were found to be active. Extracts of the root barks of Albizia anthelmintica and Balanites aegyptiaca, and roots of Plectranthus barbatus showed strong activity. Conclusion The extracts that showed strong anti-Candida activity are worth of further investigation in order to isolate and identify the active compounds. PMID:16571139

  4. Screening of Crude Plant Extracts with Anti-Obesity Activity

    PubMed Central

    Roh, Changhyun; Jung, Uhee

    2012-01-01

    Obesity is a global health problem. It is also known to be a risk factor for the development of metabolic disorders, type 2 diabetes, systemic hypertension, cardiovascular disease, dyslipidemia, and atherosclerosis. In this study, we screened crude extracts from 400 plants to test their anti-obesity activity using porcine pancreatic lipase assay (PPL; triacylglycerol lipase, EC 3.1.1.3) in vitro activity. Among the 400 plants species examined, 44 extracts from plants, showed high anti-lipase activity using 2,4-dinitrophenylbutyrate as a substrate in porcine pancreatic lipase assay. Furthermore, 44 plant extracts were investigated for their inhibition of lipid accumulation in 3T3-L1 cells. Among these 44 extracts examined, crude extracts from 4 natural plant species were active. Salicis Radicis Cortex had the highest fat inhibitory activity, whereas Rubi Fructus, Corni Fructus, and Geranium nepalense exhibited fat inhibitory capacity higher than 30% at 100 μg/mL in 3T3-L1 adipocytes, suggesting anti-obesity activity. These results suggest that four potent plant extracts might be of therapeutic interest with respect to the treatment of obesity. PMID:22408418

  5. Activated carbon decreases invasive plant growth by mediating plant–microbe interactions

    PubMed Central

    Nolan, Nicole E.; Kulmatiski, Andrew; Beard, Karen H.; Norton, Jeanette M.

    2015-01-01

    There is growing appreciation for the idea that plant–soil interactions (e.g. allelopathy and plant–microbe feedbacks) may explain the success of some non-native plants. Where this is the case, native plant restoration may require management tools that change plant–soil interactions. Activated carbon (AC) is one such potential tool. Previous research has shown the potential for high concentrations of AC to restore native plant growth to areas dominated by non-natives on a small scale (1 m × 1 m plots). Here we (i) test the efficacy of different AC concentrations at a larger scale (15 m × 15 m plots), (ii) measure microbial responses to AC treatment and (iii) use a greenhouse experiment to identify the primary mechanism, allelopathy versus microbial changes, through which AC impacts native and non-native plant growth. Three years after large-scale applications, AC treatments decreased non-native plant cover and increased the ratio of native to non-native species cover, particularly at concentrations >400 g m−2. Activated carbon similarly decreased non-native plant growth in the greenhouse. This effect, however, was only observed in live soils, suggesting that AC effects were microbially mediated and not caused by direct allelopathy. Bacterial community analysis of field soils indicated that AC increased the relative abundance of an unidentified bacterium and an Actinomycetales and decreased the relative abundance of a Flavobacterium, suggesting that these organisms may play a role in AC effects on plant growth. Results support the idea that manipulations of plant–microbe interactions may provide novel and effective ways of directing plant growth and community development (e.g. native plant restoration). PMID:25387751

  6. Antioxidant enzyme activities in maize plants colonized with Piriformospora indica.

    PubMed

    Kumar, Manoj; Yadav, Vikas; Tuteja, Narendra; Johri, Atul Kumar

    2009-03-01

    The bioprotection performance of Piriformospora indica against the root parasite Fusarium verticillioides was studied. We found that maize plants first grown with F. verticillioides and at day 10 inoculated with P. indica showed improvements in biomass, and root length and number as compared with plants grown with F. verticillioides alone. To validate our finding that inoculation with P. indica suppresses colonization by F. verticillioides, we performed PCR analyses using P. indica- and F. verticillioides-specific primers. Our results showed that inoculation with P. indica suppresses further colonization by F. verticillioides. We hypothesized that as the colonization by P. indica increases, the presence of/colonization by F. verticillioides decreases. In roots, catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST) and superoxide dismutase (SOD) activities were found to be higher in F. verticillioides-colonized plants than in non-colonized plants. Increased activity of antioxidant enzymes minimizes the chances of oxidative burst (excessive production of reactive oxygen species), and therefore F. verticillioides might be protected from the oxidative defence system during colonization. We also observed decreased antioxidant enzyme activities in plants first inoculated with F. verticillioides and at day 10 inoculated with P. indica as compared with plants inoculated with F. verticillioides alone. These decreased antioxidant enzyme activities due to the presence of P. indica help the plant to overcome the disease load of F. verticillioides. We propose that P. indica can be used as a bioprotection agent against the root parasite F. verticillioides.

  7. Cosmic X-ray surveys of distant active galaxies. The demographics, physics, and ecology of growing supermassive black holes

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Alexander, D. M.

    2015-01-01

    We review results from cosmic X-ray surveys of active galactic nuclei (AGNs) over the past years that have dramatically improved our understanding of growing supermassive black holes in the distant universe. First, we discuss the utility of such surveys for AGN investigations and the capabilities of the missions making these surveys, emphasizing Chandra, XMM-Newton, and NuSTAR. Second, we briefly describe the main cosmic X-ray surveys, the essential roles of complementary multiwavelength data, and how AGNs are selected from these surveys. We then review key results from these surveys on the AGN population and its evolution ("demographics"), the physical processes operating in AGNs ("physics"), and the interactions between AGNs and their environments ("ecology"). We conclude by describing some significant unresolved questions and prospects for advancing the field.

  8. Antimicrobial Activity of Seven Essential Oils From Iranian Aromatic Plants Against Common Causes of Oral Infections

    PubMed Central

    Zomorodian, Kamiar; Ghadiri, Pooria; Saharkhiz, Mohammad Jamal; Moein, Mohammad Reza; Mehriar, Peiman; Bahrani, Farideh; Golzar, Tahereh; Pakshir, Keyvan; Fani, Mohammad Mehdi

    2015-01-01

    Background: Over the past two decades, there has been a growing trend in using oral hygienic products originating from natural resources such as essential oils (EOs) and plant extracts. Seven aromatic plants used in this study are among popular traditional Iranian medicinal plants with potential application in modern medicine as anti-oral infectious diseases. Objectives: This study was conducted to determine the chemical composition and antimicrobial activities of essential oils from seven medicinal plants against pathogens causing oral infections. Materials and Methods: The chemical compositions of EOs distilled from seven plants were analyzed by gas chromatography/mass spectrometry (GC/MS). These plants included Satureja khuzestanica, S. bachtiarica, Ocimum sanctum, Artemisia sieberi, Zataria multiflora, Carum copticum and Oliveria decumbens. The antimicrobial activity of the essential oils was evaluated by broth micro-dilution in 96 well plates as recommended by the Clinical and Laboratory Standards Institute (CLSI) methods. Results: The tested EOs inhibited the growth of examined oral pathogens at concentrations of 0.015-16 µL/mL. Among the examined oral pathogens, Enterococcus faecalis had the highest Minimum Inhibitory Concentrations (MICs) and Minimum Microbicidal Concentrations (MMCs). Of the examined EOs, S. khuzestanica, Z. multiflora and S. bachtiarica, showed the highest antimicrobial activities, respectively, while Artemisia sieberi exhibited the lowest antimicrobial activity. Conclusions: The excellent antimicrobial activities of the tested EOs might be due to their major phenolic or alcoholic monoterpenes with known antimicrobial activities. Hence, these EOs can be possibly used as an antimicrobial agent in treatment and control of oral pathogens. PMID:25793100

  9. Antibacterial activity of alimentary plants against Staphylococcus aureus growth.

    PubMed

    Pérez, C; Anesini, C

    1994-01-01

    Alimentary plants were screened for antibacterial activity against a penicillin G resistant strain of Staphylococcus aureus. Twenty-five samples of plant material corresponding to 21 species from 13 families were used. Both aqueous and ethanol extracts were obtained from them. Antibacterial activity was determined by the agar-well diffusion method, using cephazolin as a standard antibiotic. Seventeen ethanol extracts were found active. Eugenia caryophyllata (clavo de olor*) flowers, Myristica fragans (nuez moscada*) seeds, Theobroma cacao (cacao*) seed bark, Triticum sp (trigo*) fruit, Zea mays (maíz*) fruit and Piper nigrum (pimienta*) ripe fruit produced some of the more active extracts (* = Argentine vulgar names).

  10. Exploring the benefits of growing bioenergy crops to activate lead-contaminated agricultural land: a case study on sweet potatoes.

    PubMed

    Cheng, Shu-Fen; Huang, Chin-Yuan; Chen, Kuo-Lin; Lin, Sheng-Chien; Lin, Yung-Cheng

    2015-03-01

    Phytoremediation is the most environmentally friendly remediation technology for heavy metal contaminated soil. However, the phytoremediation approach requires a long time to yield results, and the plants used must be economically profitable to maintain the sustainability of the process. Because high levels of bioethanol can be produced from sweet potatoes, an experiment was conducted by planting sweet potatoes in a lead-contaminated site to observe their growth and lead-uptake capacity, thereby enabling the evaluation of the phytoremediation efficiency of sweet potatoes. The lead content in the soil was approximately 6000 mg kg(-1), and the phytoavailable Pb content was 1766 mg kg(-1). Three starch-rich sweet potato varieties, Tainung No. 10 (TNG-10), Tainung No. 31 (TNG-31), and Tainung No. 57 (TNG-57), were used in the experiment. The results indicated that TNG-10, TNG-31, and TNG-57 had fresh root tuber yields of 94.5, 133.0, and 47.5 ton ha(-1) year(-1), produced 9450, 13,297, and 4748 L ha(-1) year(-1) of bioethanol, and removed 2.68, 7.73, and 3.22 kg ha(-1) year(-1) of lead, respectively. TNG-31 yielded the highest bioethanol production and the highest lead removal in the lead-contaminated site. Therefore, implementing phytoremediation by planting TNG-31 would decrease lead content and generate income, thereby rendering the sustainable and applicable activation of contaminated soil possible.

  11. Phytochemical screening and antimicrobial activity of Coccinia cordifolia L. plant.

    PubMed

    Khatun, Shahanaz; Pervin, Farzana; Karim, Mohammad Rezaul; Ashraduzzaman, Mohammad; Rosma, Ahmad

    2012-10-01

    The medicinal plant, Coccinia cordifolia L. was analyzed for its chemical composition. The antimicrobial activities of the methanol, water, ethanol and ethyl acetate extracts of Coccinia cordifolia L. plant were evaluated against some Gram positive bacteria (Sarcina lutea, Bacillus subtilis and Staphylococcus aureus), Gram negative bacteria (Salmonella typhi, Shigella dysenteriae and Escherichia coli) and fungi (Candida albicans, Aspergillus niger and Penicillium notatum). Chemical analysis showed that the plant is rich in nutrients, especially antioxidant compounds such as total phenol, vitamin C and β-carotene. Phytochemical screening showed that the methanolic extract contains the bioactive constituents such as tannins, saponins, phenols, flavonoids and terpenoids. In the methanolic extract of the plant, promising antimicrobial potential was observed against the tested microorganism. Methanolic extract showed highest activity against Shigella dysenteriae, Escherichia coli, Staphylococcus aureus, and Candida albicans compared to the other extracts. Water extract showed less antimicrobial activity as compared to other extractants.

  12. Effects of Different Growing Regions on Quality Characteristics, Bioactive Compound Contents, and Antioxidant Activity of Aronia (Aronia melanocarpa) in Korea

    PubMed Central

    Hwang, Eun-Sun; Thi, Nhuan Do

    2016-01-01

    The objective of this study was to determine the effects of different growing regions on quality characteristics, total bioactive compound contents, and in vitro antioxidant activity in aronia. Aronia grown in 3 different regions (Sangjoo, Ulju, and Youngcheon) in Korea was obtained and used fresh or as a freeze-dried powder. No statistically significant differences were observed for moisture, ash, crude lipid, and crude protein contents in aronia sampled from the 3 different regions. Aronia grown in Sangjoo had the highest total acid content and the lowest sugar content and pH value. Conversely, aronia grown in Youngcheon possessed the lowest total acid content and the highest sugar content and pH value. Aronia grown in Sangjoo possessed relatively high levels of polyphenols, flavonoids, and anthocyanins, as well as high antioxidant activity in comparison with aronia produced in other regions. Aronia grown in Youngcheon scored the highest for taste and overall acceptability in sensory evaluations, which may be related to the high sugar content and pH, and the low total acidity of the fruits. It is possible that higher sugar contents and pH, and lower total acidity in the aronia grown in Youngcheon result in more preferable sensory characteristics. However, they also contain relatively low levels of total polyphenols, flavonoids, and anthocyanins, and have low antioxidant activity as measured by 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging assays. PMID:27752502

  13. Effects of Different Growing Regions on Quality Characteristics, Bioactive Compound Contents, and Antioxidant Activity of Aronia (Aronia melanocarpa) in Korea.

    PubMed

    Hwang, Eun-Sun; Thi, Nhuan Do

    2016-09-01

    The objective of this study was to determine the effects of different growing regions on quality characteristics, total bioactive compound contents, and in vitro antioxidant activity in aronia. Aronia grown in 3 different regions (Sangjoo, Ulju, and Youngcheon) in Korea was obtained and used fresh or as a freeze-dried powder. No statistically significant differences were observed for moisture, ash, crude lipid, and crude protein contents in aronia sampled from the 3 different regions. Aronia grown in Sangjoo had the highest total acid content and the lowest sugar content and pH value. Conversely, aronia grown in Youngcheon possessed the lowest total acid content and the highest sugar content and pH value. Aronia grown in Sangjoo possessed relatively high levels of polyphenols, flavonoids, and anthocyanins, as well as high antioxidant activity in comparison with aronia produced in other regions. Aronia grown in Youngcheon scored the highest for taste and overall acceptability in sensory evaluations, which may be related to the high sugar content and pH, and the low total acidity of the fruits. It is possible that higher sugar contents and pH, and lower total acidity in the aronia grown in Youngcheon result in more preferable sensory characteristics. However, they also contain relatively low levels of total polyphenols, flavonoids, and anthocyanins, and have low antioxidant activity as measured by 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging assays.

  14. Endophytic Streptomyces in the traditional medicinal plant Arnica montana L.: secondary metabolites and biological activity.

    PubMed

    Wardecki, Tina; Brötz, Elke; De Ford, Christian; von Loewenich, Friederike D; Rebets, Yuriy; Tokovenko, Bogdan; Luzhetskyy, Andriy; Merfort, Irmgard

    2015-08-01

    Arnica montana L. is a medical plant of the Asteraceae family and grows preferably on nutrient poor soils in mountainous environments. Such surroundings are known to make plants dependent on symbiosis with other organisms. Up to now only arbuscular mycorrhizal fungi were found to act as endophytic symbiosis partners for A. montana. Here we identified five Streptomyces strains, microorganisms also known to occur as endophytes in plants and to produce a huge variety of active secondary metabolites, as inhabitants of A. montana. The secondary metabolite spectrum of these strains does not contain sesquiterpene lactones, but consists of the glutarimide antibiotics cycloheximide and actiphenol as well as the diketopiperazines cyclo-prolyl-valyl, cyclo-prolyl-isoleucyl, cyclo-prolyl-leucyl and cyclo-prolyl-phenylalanyl. Notably, genome analysis of one strain was performed and indicated a huge genome size with a high number of natural products gene clusters among which genes for cycloheximide production were detected. Only weak activity against the Gram-positive bacterium Staphylococcus aureus was revealed, but the extracts showed a marked cytotoxic activity as well as an antifungal activity against Candida parapsilosis and Fusarium verticillioides. Altogether, our results provide evidence that A. montana and its endophytic Streptomyces benefit from each other by completing their protection against competitors and pathogens and by exchanging plant growth promoting signals with nutrients.

  15. Antiprotease activity of selected Slovak medicinal plants.

    PubMed

    Jedinak, A; Valachova, M; Maliar, T; Sturdik, E

    2010-02-01

    Fifty-six methanol extracts obtained from the barks, flowers, leaves and stems of 30 Slovak trees, bushes and herbs used in the traditional medicine of the Small Carpathians, Slovakia, have been screened for antiprotease (trypsin, thrombin and urokinase) activity using chromogenic bioassay. In this study, 14 extracts showed the strong inhibition activity to protease trypsin with IC50 values below 10 microg/mL. The highest inhibition activities were observed for methanol extracts of Acer platanoides IC50 = 1.8 microg/mL, Rhus typhina IC50 = 1.2 microg/mL and Tamarix gallica IC50 = 1.7 microg/mL. However, the results of extracts tested on thrombin were generally different from those observed for trypsin. The most marked inhibition activity to thrombin were estimated for extracts of Castanea sativa IC50 = 73.2 microg/mL, Larix decidua IC50 = 96.9 microg/mL and Rhus typhina IC50 = 20.5 microg/mL. In addition, Acer platanoides and Rhus typhina were the only extracts which showed inhibition activity to urokinase with IC50 = 171.1 microg/mL and IC50 = 38.3 microg/mL, respectively. In addition, Rhus typhina showed the broadest spectrum of inhibition activity to all tested serine proteases and seems to be a prospective new source of natural products as inhibitors of serine proteases.

  16. Crystal growing

    NASA Technical Reports Server (NTRS)

    Neville, J. P.

    1990-01-01

    One objective is to demonstrate the way crystals grow and how they affect the behavior of material. Another objective is to compare the growth of crystals in metals and nonmetals. The procedures, which involve a supersaturated solution of a salt that will separate into crystals on cooling and the pouring off of an eutectic solution to expose the crystals formed by a solid solution when an alloy of two metals forms a solid and eutectic solution on cooling, are described.

  17. Effects of two different dietary fermentable carbohydrates on activity and heat production in group-housed growing pigs.

    PubMed

    Rijnen, M M J A; Verstegen, M W A; Heetkamp, M J W; Schrama, J W

    2003-05-01

    The effects of two sources of dietary fiber (DF) on behavior and heat production (HP) in group-housed growing pigs were studied. Twenty clusters of 14 barrows (50 kg) were fed one of 10 diets. Diets differed mainly in type and content of fermentable DF (fDF) and in content of digestible starch. Five diets contained solvent-extracted coconut meal (SECM) and five diets contained soybean hulls (SBH) as the main fDF source. On an as-fed basis, pigs received 3.5, 13.2, 23.0, 32.7, or 42.4 g x kg(-0.75) x d(-1) of SECM or SBH. A total of 280 crossbred growing pigs were used, divided into clusters of 14 pigs each. Pigs were group-housed and fed at 2.5 times the assumed maintenance energy requirements. All clusters were fed similar amounts of NE, ileal-digestible protein and amino acids, vitamins, and minerals. Consequently, DMI differed among diets because NE content decreased with increasing DF content. After a 32-d preliminary period, HP was measured per cluster during a 7-d experimental period in environmentally controlled respiration chambers. Behavior of the pigs was recorded using time-lapse video recordings during two different days within the experimental period. Intake of digestible starch and fDF was different (P < 0.001) among diets, whereas intake of digestible CP was similar among diets. On average, pigs spent 153 min standing, 42 min sitting, 202 min lying on their chest, and 1,043 min lying on their flanks each day. Pigs fed SECM diets spent, on average, less time (P < 0.05) lying on their chest than pigs fed SBH diets. Total time spent on physical activity (i.e., standing plus sitting, 195 min/d) was not affected by diet. Total HP and resting HP were affected by diet and were on average lower (P < 0.01) for pigs fed SECM diets than for pigs fed SBH diets. Activity-related heat production (AHP) averaged 65 kJ x kg(-0.75) x d(-1) and was not affected by diet. There was a linear relationship (P < 0.001) between fDF intake and HP, but there was no relationship

  18. Aboveground and belowground plant traits as drivers of microbial abundance and activity.

    NASA Astrophysics Data System (ADS)

    Baxendale, Catherine; Lavorel, Sandra; Grigulis, Karl; Legay, Nicolas; Krainer, Ute; Bahn, Michael; Kastl, Eva; Pommier, Thomas; Bardgett, Richard

    2013-04-01

    Although there is growing awareness of the roles that plant-soil interactions play in regulating ecosystem processes, our understanding of the role that specific aboveground and belowground plant traits play in defining them is limited. In this study, we aimed to develop a conceptual model linking plant functional trait impacts on soil microbial functional diversity and their coupled effects on ecosystem processes. This was done by replicating three mesocosm studies, based on model sub-alpine grasslands, across three sites in different parts of Europe as part of the pan-European project, VITAL. We manipulated community plant traits by planting communities of varying abundance and dominance of 4 common grassland species. After 1.5 years, we then measured aboveground traits (specific leaf area, leaf dry matter content, leaf nitrogen and carbon content and leaf C:N ratio), belowground traits (specific root length, average diameter, root dry matter content, root nitrogen and carbon content and root C:N ratio) microbial community abundance (using phospholipid fatty acid (PLFA) analysis and gene abundance of nitrifier and denitrifier communities), and microbial activity (via potential nitrification and denitrification rates). We present links between manipulated community traits, microbial properties and ecosystem processes, supporting the role of plant traits in driving microbial properties.

  19. Reassessing the Potential Activities of Plant CGI-58 Protein.

    PubMed

    Khatib, Abdallah; Arhab, Yani; Bentebibel, Assia; Abousalham, Abdelkarim; Noiriel, Alexandre

    2016-01-01

    Comparative Gene Identification-58 (CGI-58) is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL), the initial enzyme responsible for the triacylglycerol (TAG) catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed.

  20. Reassessing the Potential Activities of Plant CGI-58 Protein

    PubMed Central

    Khatib, Abdallah; Arhab, Yani; Bentebibel, Assia; Abousalham, Abdelkarim; Noiriel, Alexandre

    2016-01-01

    Comparative Gene Identification-58 (CGI-58) is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL), the initial enzyme responsible for the triacylglycerol (TAG) catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed. PMID:26745266

  1. Plant diversity increases soil microbial activity and soil carbon storage.

    PubMed

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos A; Bessler, Holger; Engels, Christoph; Griffiths, Robert I; Mellado-Vázquez, Perla G; Malik, Ashish A; Roy, Jacques; Scheu, Stefan; Steinbeiss, Sibylle; Thomson, Bruce C; Trumbore, Susan E; Gleixner, Gerd

    2015-04-07

    Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon.

  2. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants

    PubMed Central

    Llauro, Christel; Jobet, Edouard; Robakowska-Hyzorek, Dagmara; Lasserre, Eric; Ghesquière, Alain; Panaud, Olivier

    2017-01-01

    Retrotransposons are mobile genetic elements abundant in plant and animal genomes. While efficiently silenced by the epigenetic machinery, they can be reactivated upon stress or during development. Their level of transcription not reflecting their transposition ability, it is thus difficult to evaluate their contribution to the active mobilome. Here we applied a simple methodology based on the high throughput sequencing of extrachromosomal circular DNA (eccDNA) forms of active retrotransposons to characterize the repertoire of mobile retrotransposons in plants. This method successfully identified known active retrotransposons in both Arabidopsis and rice material where the epigenome is destabilized. When applying mobilome-seq to developmental stages in wild type rice, we identified PopRice as a highly active retrotransposon producing eccDNA forms in the wild type endosperm. The mobilome-seq strategy opens new routes for the characterization of a yet unexplored fraction of plant genomes. PMID:28212378

  3. Characteristics of active spectral sensor for plant sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant stress has been estimated by spectral signature using both passive and active sensors. As optical sensors measure reflected light from a target, changes in illumination conditions critically affect sensor response. Active spectral sensors minimize the illumination effects by producing their ...

  4. Plant Pigment Identification: A Classroom and Outreach Activity

    ERIC Educational Resources Information Center

    Garber, Kathleen C. A.; Odendaal, Antoinette Y.; Carlson, Erin E.

    2013-01-01

    Anthocyanins are a class of pigments responsible for the bright colors of many flowers, fruits, and vegetables typically resulting in shades of red, blue, and purple. Students were asked to perform an activity to enable them to identify which anthocyanin was present in one of several possible plant materials through a hands-on activity. Students…

  5. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans.

    PubMed

    Sun, Mengjun; Dong, Jiachen; Xia, Yiru; Shu, Rong

    2017-03-31

    The aim of this study was to evaluate the potential antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm modes of Streptococcus mutans (S. mutans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The effects on planktonic growth and biofilm metabolic activity were evaluated by growth curve determination and MTT assay, respectively. Then, colony forming unit (CFU) counting, scanning electron microscopy (SEM) and real-time PCR were performed to further investigate the actions of DHA and EPA on exponential phase-S. mutans. Confocal laser scanning microscopy (CLSM) was used to detect the influences on mature biofilms. The MICs of DHA and EPA against S. mutans were 100 μM and 50 μM, respectively; the MBC of both compounds was 100 μM. In the presence of 12.5 μM-100 μM DHA or EPA, the planktonic growth and biofilm metabolic activity were reduced in varying degrees. For exponential-phase S. mutans, the viable counts, the bacterial membranes and the biofilm-associated gene expression were damaged by 100 μM DHA or EPA treatment. For 1-day-old biofilms, the thickness was decreased and the proportion of membrane-damaged bacteria was increased in the presence of 100 μM DHA or EPA. These results indicated that, DHA and EPA possessed antibacterial activities against planktonic and biofilm growing S. mutans.

  6. Chemical Composition and In Vitro Cytotoxic Activity of Essential Oil of Leaves of Malus domestica Growing in Western Himalaya (India)

    PubMed Central

    Walia, Mayanka; Mann, Tavleen S.; Kumar, Dharmesh; Agnihotri, Vijai K.; Singh, Bikram

    2012-01-01

    Light pale-colored volatile oil was obtained from fresh leaves of Malus domestica tree, growing in Dhauladhar range of Himalaya (Himachal Pradesh, India), with characteristic eucalyptol dominant fragrance. The oil was found to be a complex mixture of mono-, sesqui-, di-terpenes, phenolics, and aliphatic hydrocarbons. Seventeen compounds accounting for nearly 95.3% of the oil were characterized with the help of capillary GC, GC-MS, and NMR. Major compounds of the oil were characterized as eucalyptol (43.7%), phytol (11.5%), α-farnesene (9.6%), and pentacosane (7.6%). Cytotoxicity of essential oil of leaves of M. domestica was evaluated by sulforhodamine B (SRB) assays. The essential oil of leaves of M. domestica, tested against three cancer cell lines, namely, C-6 (glioma cells), A549 (human lung carcinoma), CHOK1 (Chinese hamster ovary cells), and THP-1 (human acute monocytic leukemia cell). The highest activity showed by essential oil on C-6 cell lines (98.2%) at concentration of 2000 μg/ml compared to control. It is the first paper in literature to exploit the chemical composition and cytotoxic activity of leaves essential oil of M. domestica. PMID:22619691

  7. Active-treatment effects of the Forsus fatigue resistant device during comprehensive Class II correction in growing patients

    PubMed Central

    Cacciatore, Giorgio; Alvetro, Lisa; Defraia, Efisio; Ghislanzoni, Luis Tomas Huanc

    2014-01-01

    Objective To evaluate the active-treatment effects of the Forsus fatigue resistant device (Forsus) during comprehensive correction of Class II malocclusion in growing patients. Methods Fifty-four patients (mean age, 12.5 ± 1.2 years) with Class II division 1 malocclusion were consecutively treated with fixed app-liances in combination with Forsus. Lateral cephalograms were analyzed at the beginning of the fixed treatment (T1), Forsus insertion (T2), its removal (T3), and end of the comprehensive therapy (T4). Statistical comparisons were carried out by repeated-measures ANOVA with Tukey's post-hoc test (p < 0.05). Results The overall therapeutic effects were mainly dentoalveolar and occurred mostly during the active treatment with Forsus (T2-T3, mean duration = 0.5 ± 0.1 years). The overjet and overbite decreased significantly (-3.5 and -1.5 mm, respectively) and the molar relationship improved by 4.3 mm. These changes were associated with significant retroclination of the maxillary incisors (-3.1°), proclination and intrusion of the mandibular incisors (+5.0° and -1.5 mm, respectively), and mesialization of the mandibular molars (+2.0 mm). Conclusions Forsus had mainly dentoalveolar effects and contributed largely to the overall therapeutic outcome. PMID:24892027

  8. Synergistic activity of rifampicin and ethambutol against slow-growing nontuberculous mycobacteria is currently of questionable clinical significance.

    PubMed

    van Ingen, Jakko; Hoefsloot, Wouter; Mouton, Johan W; Boeree, Martin J; van Soolingen, Dick

    2013-07-01

    A key issue in the treatment of disease caused by slow-growing nontuberculous mycobacteria is the limited association between in vitro minimum inhibitory concentrations (MICs) of rifampicin and ethambutol alone and the in vivo outcome of treatment with these drugs. Combined susceptibility testing to rifampicin and ethambutol could provide a more realistic view of the efficacy of these drugs. In this study, Mycobacterium avium (n = 5), Mycobacterium chimaera (n = 6), Mycobacterium intracellulare (n = 4), Mycobacterium xenopi (n = 4), Mycobacterium malmoense (n = 3) and Mycobacterium simiae (n = 2) clinical isolates were selected and the MICs of rifampicin and ethambutol alone and in combination were measured using the Middlebrook 7H10 agar dilution method. Synergy was defined as a fractional inhibitory concentration index ≤ 0.5. Rifampicin and ethambutol showed synergistic activity against the majority of M. avium (4/5), M. chimaera (5/6) and M. intracellulare (3/4) isolates and 1 of 2 eligible M. malmoense isolates. No synergistic activity was measured against M. xenopi and M. simiae. Synergy was neither universal for all species nor for all isolates of one species; it thus needs to be tested for rather than assumed. Even if this synergy exists in vivo, it is questionable whether the MICs to the combined drugs can be overcome by the drug exposure attained by current regimens at the recommended dosages. New dosing strategies for rifampicin and ethambutol should be studied to increase the exposure to these drugs and thus maximise their impact.

  9. Fusarium solani species complex isolates conspecific with Fusarium solani f. sp. cucurbitae race 2 from naturally infected human and plant tissue and environmental sources are equally virulent on plants, grow at 37 degrees C and are interfertile.

    PubMed

    Mehl, Hillary L; Epstein, Lynn

    2007-09-01

    In a previous taxonomic study based on multilocus sequencing of Fusarium from clinical specimens and hospital environments, the most common lineage was Fusarium solani species complex group 1 (FSSC 1) which is conspecific with F. solani f. sp. cucurbitae race 2, a pathogen of cucurbit fruits. The aims of our study were to determine if clinical and environmental isolates of FSSC 1 are plant pathogens and members of the same biological species as cucurbit isolates, and to determine if all isolates can germinate, grow and sporulate at 37 degrees C. Isolates from the different sources did not differ in virulence on zucchini fruits. All FSSC 1 isolates were pathogenic and produced more rot than FSSC isolates from plant hosts other than cucurbits. Both mating types were found among isolates from each of the sources, and all isolates were sexually compatible with cucurbit isolates. All isolates germinated, grew and sporulated at 37 degrees C. This is the first report in which plant pathogenicity has been verified for a collection of human clinical isolates. Our data are consistent with the hypothesis that all FSSC 1 isolates, regardless of source, are a single biological species, equally virulent plant pathogens and tolerant of the human body temperature.

  10. Antibacterial and antifungal activity of Indonesian ethnomedical plants.

    PubMed

    Goun, E; Cunningham, G; Chu, D; Nguyen, C; Miles, D

    2003-09-01

    Methylene chloride and methanol extracts of 20 Indonesian plants with ethnomedical uses have been assessed for in vitro antibacterial and antifungal properties by disk diffusion method. Extracts of the six plants: Terminalia catappa, Swietenia mahagoni Jacq., Phyllanthus acuminatus, Ipomoea spp., Tylophora asthmatica and Hyptis brevipes demonstrated high activity in this bioassay system. These findings should stimulate the search for novel, natural product such as new antibacterial and antifungal agents.

  11. Dynamic regulation of Polycomb group activity during plant development.

    PubMed

    Bemer, Marian; Grossniklaus, Ueli

    2012-11-01

    Polycomb group (PcG) complexes play important roles in phase transitions and cell fate determination in plants and animals, by epigenetically repressing sets of genes that promote either proliferation or differentiation. The continuous differentiation of new organs in plants, such as leaves or flowers, requires a highly dynamic PcG function, which can be induced, modulated, or repressed when necessary. In this review, we discuss the recent advance in understanding PcG function in plants and focus on the diverse molecular mechanisms that have been described to regulate and counteract PcG activity in Arabidopsis.

  12. Activity and specificity of TRV-mediated gene editing in plants.

    PubMed

    Ali, Zahir; Abul-Faraj, Aala; Piatek, Marek; Mahfouz, Magdy M

    2015-01-01

    Plant trait engineering requires efficient targeted genome-editing technologies. Clustered regularly interspaced palindromic repeats (CRISPRs)/ CRISPR associated (Cas) type II system is used for targeted genome-editing applications across eukaryotic species including plants. Delivery of genome engineering reagents and recovery of mutants remain challenging tasks for in planta applications. Recently, we reported the development of Tobacco rattle virus (TRV)-mediated genome editing in Nicotiana benthamiana. TRV infects the growing points and possesses small genome size; which facilitate cloning, multiplexing, and agroinfections. Here, we report on the persistent activity and specificity of the TRV-mediated CRISPR/Cas9 system for targeted modification of the Nicotiana benthamiana genome. Our data reveal the persistence of the TRV- mediated Cas9 activity for up to 30 d post-agroinefection. Further, our data indicate that TRV-mediated genome editing exhibited no off-target activities at potential off-targets indicating the precision of the system for plant genome engineering. Taken together, our data establish the feasibility and exciting possibilities of using virus-mediated CRISPR/Cas9 for targeted engineering of plant genomes.

  13. Phytochemical screening and antiviral activity of some medicinal plants from the island Soqotra.

    PubMed

    Mothana, Ramzi A A; Mentel, Renate; Reiss, Christiane; Lindequist, Ulrike

    2006-04-01

    Methanol and hot-aqueous extracts of 25 different plant species, used in Yemeni traditional medicine and growing, partly as endemic plants, on the island Soqotra have been investigated for their antiviral activity. In addition, the phytochemical identification of the main chemical constituents was performed. The extracts were assayed in two in vitro viral systems, which used influenza virus type A/MDCK cells and herpes simplex virus type 1/Vero cells, at non-cytotoxic concentrations. The herpes simplex virus type 1 showed more sensitivity than the influenza virus type A against the extracts investigated. The methanol extracts of Boswellia ameero, Boswellia elongata, Buxus hildebrandtii, Cissus hamaderohensis, Cleome socotrana, Dracaena cinnabari, Exacum affine, Jatropha unicostata and Kalanchoe farinacea showed anti-influenza virus type A activity with 50% inhibition (IC50) concentrations ranging from 0.7 to 12.5 microg/mL. In addition, 17 plants of the 25 investigated exhibited anti-HSV-1 activity. The antiviral activity of some active extracts was also observed on a molecular level.

  14. Proteolytic activity in some Patagonian plants from Argentina.

    PubMed

    Sequeiros, Cynthia; López, Laura M I; Caffini, Néstor O; Natalucci, Claudia L

    2003-09-01

    Six Patagonian plants were screened for proteolytic activity: Colliguaja integerrima, Euphorbia collina, E. peplus and Stillingia patagonica (Euphorbiaceae), Philibertia gilliesii (Asclepiadaceae) and Grindelia chiloensis (Asteraceae). P. gilliesii extracts showed the highest specific activity, followed by S. patagonica and E. collina. Proteolytic activity was unnoticeable in the other three species studied. Inhibition assays revealed that P. gilliesii and S. patagonica extracts contain cysteine-type peptidases and that in E. collina serine-type peptidases are present.

  15. Screening of some Nigerian plants for molluscicidal activity.

    PubMed

    Kela, S L; Ogunsusi, R A; Ogbogu, V C; Nwude, N

    1989-01-01

    Methanolic (MEOH), evaporated crude water (ECW) and unevaporated crude water (UECW) extracts of 25 Nigerian plants, used for different medicinal and domestic purposes were screened for molluscacidal activity on laboratory-reared Lymnaea natalensis Krauss. Seven of the plants were not active; extracts from 18 (72 per cent) of the plants, some of which are renowned fish poisons, had molluscicidal activity. These were Acacia nilotica, Aristolochia albida, Balanites aegyptiaca, Blighia sapida, Boswellia dalzielii, Detarium microcarpum, Gnidia kraussiana, Kigelia africana, Nauclea latifolia, Opilia celtidefolia, Parkia clappertoniana, Polygonum limbatum, Pseudocedrela kotschyi, Sclerocarya birrea, Securidaca longipedunculata, Ximenia americana, Vetiveria nigritana and Ziziphus abyssinica. The LC50 of these extracts were determined. It is strongly recommended that the toxic effects of these extracts against fish, cercariae, snail eggs and mammals be further investigated so as to determine the right concentration, especially for use in fish ponds.

  16. Calcium promotes activity and confers heat stability on plant peroxidases

    PubMed Central

    Plieth, Christoph; Vollbehr, Sonja

    2012-01-01

    In this paper we demonstrate how peroxidase (PO) activities and their heat stability correlate with the availability of free Ca2+ ions. Calcium ions work as a molecular switch for PO activity and exert a protective function, rendering POs heat stable. The concentration ranges of these two activities differ markedly. POs are activated by µM Ca2+ concentration ranges, whereas heat stabilization is observed in the nM range. This suggests the existence of different Ca2+ binding sites. The heat stability of POs depends on the source plant species. Terrestrial plants have POs that exhibit higher temperature stability than those POs from limnic and marine plants. Different POs from a single species can differ in terms of heat stability. The abundance of different POs within a plant is dependent on age and developmental stage. The heat stability of a PO does not necessarily correlate with the maximum temperature the source species is usually exposed to in its natural habitat. This raises questions on the role of POs in the heat tolerance of plants. Consequently, detailed investigations are needed to identify and characterize individual POs, with regard to their genetic origin, subcellular expression, tissue abundance, developmental emergence and their functions in innate and acquired heat tolerance. PMID:22580695

  17. Calcium promotes activity and confers heat stability on plant peroxidases.

    PubMed

    Plieth, Christoph; Vollbehr, Sonja

    2012-06-01

    In this paper we demonstrate how peroxidase (PO) activities and their heat stability correlate with the availability of free Ca(2+) ions. Calcium ions work as a molecular switch for PO activity and exert a protective function, rendering POs heat stable. The concentration ranges of these two activities differ markedly. POs are activated by µM Ca(2+) concentration ranges, whereas heat stabilization is observed in the nM range. This suggests the existence of different Ca(2+) binding sites. The heat stability of POs depends on the source plant species. Terrestrial plants have POs that exhibit higher temperature stability than those POs from limnic and marine plants. Different POs from a single species can differ in terms of heat stability. The abundance of different POs within a plant is dependent on age and developmental stage. The heat stability of a PO does not necessarily correlate with the maximum temperature the source species is usually exposed to in its natural habitat. This raises questions on the role of POs in the heat tolerance of plants. Consequently, detailed investigations are needed to identify and characterize individual POs, with regard to their genetic origin, subcellular expression, tissue abundance, developmental emergence and their functions in innate and acquired heat tolerance.

  18. Oral insecticidal activity of plant-associated pseudomonads.

    PubMed

    Ruffner, Beat; Péchy-Tarr, Maria; Ryffel, Florian; Hoegger, Patrik; Obrist, Christian; Rindlisbacher, Alfred; Keel, Christoph; Maurhofer, Monika

    2013-03-01

    Biocontrol pseudomonads are most known to protect plants from fungal diseases and to increase plant yield, while intriguing aspects on insecticidal activity have been discovered only recently. Here, we demonstrate that Fit toxin producing pseudomonads, in contrast to a naturally Fit-deficient strain, exhibit potent oral activity against larvae of Spodoptera littoralis, Heliothis virescens and Plutella xylostella, all major insect pests of agricultural crops. Spraying plant leaves with suspensions containing only 1000 Pseudomonas cells per ml was sufficient to kill 70-80% of Spodoptera and Heliothis larvae. Monitoring survival kinetics and bacterial titres in parallel, we demonstrate that Pseudomonas fluorescens CHA0 and Pseudomonas chlororaphis PCL1391, two bacteria harbouring the Fit gene cluster colonize and kill insects via oral infection. Using Fit mutants of CHA0 and PCL1391, we show that production of the Fit toxin contributes substantially to oral insecticidal activity. Furthermore, the global regulator GacA is required for full insecticidal activity. Our findings demonstrate the lethal oral activity of two root-colonizing pseudomonads so far known as potent antagonists of fungal plant pathogens. This adds insecticidal activity to the existing biocontrol repertoire of these bacteria and opens new perspectives for applications in crop pest control and in research on their ecological behaviour.

  19. [Study on the separation process of pharmacological active total alkaloids from Chelidonium majus L. growing in Georgia].

    PubMed

    Bozhadze, A D; Vachnadze, V Iu; Dzhokhadze, M S; Berashvili, D T; Bakuridze, A Dzh

    2013-04-01

    In present article was studied the separation process of pharmacological active total alkaloids from Chelidonium majus L. growing in Georgia. Alkaloids were extracted from medicinal herbal material and separated by liquid extraction, diluents gas and a microfiltration through membrane equipment. The obtained A1, A2, A3 fractions were analyzed by GC/MS method; in all cases separation proceeds by the principle of extraction of the target alkaloids. It was concluded that the A1 is enriched with α and β cryptopins, and protopin, but homochelidonine and chelidonine are in low contents. As accompanying alkaloid is identified dihydrosanguinarine as an artifact; the A2 is enriched with the maximum contents of stylopine and protopin, but the poor contents of chelidonine and homochelidonine; the A3 is enriched with α and β cryptopins and maximum content of chelidonine. Extraction of alkaloids from Chelidonium majus L. proceeds selectively, but depending on a way of separation of the total alkaloids allows varying qualitative and quantitative consistence of the final product.

  20. Volatile constituents and antioxidant activity of peel, flowers and leaf oils of Citrus aurantium L. growing in Greece.

    PubMed

    Sarrou, Eirini; Chatzopoulou, Paschalina; Dimassi-Theriou, Kortessa; Therios, Ioannis

    2013-09-02

    The volatile constituents of the essential oils of the peel, flower (neroli) and leaves (petitgrain) of bitter orange (Citrus aurantium L.) growing in Greece were studied by GC-MS. The analytical procedures enabled the quantitative determination of 31 components. More specifically, the components of the essential oils identified were: twelve in the peel, twenty-six in the flowers, and twenty and sixteen in old and young leaves, respectively. The major constituents of the different parts of Citrus aurantium L. essential oils were: β-pinene (0.62%-19.08%), limonene (0.53%-94.67%), trans-β-ocimene (3.11%-6.06%), linalool (0.76%-58.21%), and α-terpineol (0.13%-12.89%). The DPPH test demonstrated that the essential oils in the old leaves had the maximum antioxidant activity, followed by the flowers, young leaves and the peel in that order. This study updates the data in the literature on the essential oils of bitter orange, and provides information on the composition of the oils for a further evaluation of this product.

  1. [Trials to eliminate the sex odor of growing boars through active immunization with an androstenone-protein conjugate].

    PubMed

    Fliess, F R; Kaiser, H; Bergfeld, J

    1980-01-01

    Determination of immunogenicity in rabbit was followed by the use of 5 alpha-Androst-16-en-3-on cattle serum albumin conjugate (AC-) in Freund's adjuvant for active immunisation of young growing boars against boar pheromone. Two experiments were undertaken. Five boars, aged 140 days, were involved in the first experiment. They received six AC- doses in intervals of 14 days (4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg). Each of the doses was applied to four points, two of them subcutaneous and two intramuscular. In the second experiment, four boars, aged 121 days, received 40 mg AC- each in eight applications, among them three injections in intervals of one week, followed by a pause of two weeks, another three injections again in intervals of one week, and two injections in intervals of four weeks. Another group of four animals received 20 mg AC- in four applications in intervals of four weeks. Five control boars were included in the first experiment and four in the second. Immune response of the experimental animals was detected neither by immunoelectrophoresis nor by radio-immuno-assay. Pheromones in fat samples were determined by means of gas chromatography during treatment and after slaughter. They were increased in some of the cases, albeit not significantly. The nuclear diameters of the interstitional cells of Leydig in testicular sections differed but little, with no significance being recorded.

  2. Community structures of actively growing bacteria shift along a north-south transect in the western North Pacific.

    PubMed

    Taniguchi, Akito; Hamasaki, Koji

    2008-04-01

    Bacterial community structures and their activities in the ocean are tightly coupled with organic matter fluxes and thus control ocean biogeochemical cycles. Bromodeoxyuridine (BrdU), halogenated nucleoside and thymidine analogue, has been recently used to monitor actively growing bacteria (AGB) in natural environments. We labelled DNA of proliferating cells in seawater bacterial assemblages with BrdU and determined community structures of the bacteria that were possible key species in mediating biochemical reactions in the ocean. Surface seawater samples were collected along a north-south transect in the North Pacific in October 2003 and subjected to BrdU magnetic beads immunocapture and PCR-DGGE (BUMP-DGGE) analysis. Change of BrdU-incorporated community structures reflected the change of water masses along a north-south transect from subarctic to subtropical gyres in the North Pacific. We identified 25 bands referred to AGB as BrdU-incorporated phylotypes, belonging to Alphaproteobacteria (5 bands), Betaproteobacteria (1 band), Gammaproteobacteria (4 bands), Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria (5 bands), Gram-positive bacteria (6 bands), and Cyanobacteria (4 bands). BrdU-incorporated phylotypes belonging to Vibrionales, Alteromonadales and Gram-positive bacteria appeared only at sampling stations in a subtropical gyre, while those belonging to Roseobacter-related bacteria and CFB group bacteria appeared at the stations in both subarctic and subtropical gyres. Our result revealed phylogenetic affiliation of AGB and their dynamic change along with north-south environmental gradients in open oceans. Different species of AGB utilize different amount and kinds of substrates, which can affect the change of organic matter fluxes along transect.

  3. Genetic stability, active constituent, and pharmacoactivity of Salvia miltiorrhiza hairy roots and wild plant.

    PubMed

    Yuan, Yuan; Liu, Yunjun; Lu, Dongmei; Huang, Luqi; Liang, Rixin; Yang, Zhaochun; Chen, Shunqin

    2009-01-01

    Salvia miltiorrhiza is an annual plant growing in China, Mongolia, Korea and some other Asian countries. The extract from S. miltiorrhiza roots has been used for supporting healthy cardiovascular and circulatory systems during the last decade. The active constituents of S. miltiorrhiza from different areas vary significantly, and the wild resources are overexploited. To adapt the demand for active constituents of S. miltiorrhiza against cardiovascular-related diseases, alternative materials need to be developed. The aim of the present work was to investigate the possibility of S. miltiorrhiza hairy roots as the alternative materials. The results showed that S. miltiorrhiza hairy roots are genetically stable. The contents of salvianolic acid B and tanshinone IIA, two main active constituents in hairy roots, determined by the assessment of combining flow cytometry and phytochemical analysis, are comparable to or significantly lower than in wild plant roots. The extract from S. miltiorrhiza hairy roots also had similar protection activity for hypoxia and reoxygenation injury in rat cardiac myocytes like that from wild plant roots. S. miltiorrhiza hairy roots may be alternative materials to obtain the drug or healthy food for cardiovascular-related diseases.

  4. Plant biomechanical strategies in response to frequent disturbance: uprooting of Phyllostachys nidularia (Poaceae) growing on landslide-prone slopes in Sichuan, China.

    PubMed

    Stokes, Alexia; Lucas, Adrien; Jouneau, Luc

    2007-07-01

    Bamboo is considered useful for controlling landslides, but we observed numerous shallow-slope failures in forests of big node bamboo (Phyllostachys nidularia) in Sichuan, China. Therefore, we inventoried landslide occurrence and vegetation type along one valley. To quantify bamboo root anchorage, we performed uprooting tests and measured plant morphological characteristics. Landslide occurrence was greatest at sites with bamboo and young trees. Culm failure was common because of the high length to diameter ratio (242 ± 6). Uprooting tests showed that the maximal force to cause failure was small (1615 ± 195 N). Uprooting force was strongly and positively regressed with a combination of the predictors lateral root number and volume (R(2) = 0.92), and root systems were highly superficial (depth = 0.15 ± 0.12 m), contributing little to slope stability. In P. nidularia, which grows on landslide-prone slopes, surprisingly few resources have been allocated to anchorage. We suggest that this strategy puts this pioneer at an advantage on steep slopes, where it contributes little to slope stability and colonizes frequently formed gaps through vegetative regeneration. Fewer disturbances would result in subsequent secondary succession and dying back of this shade intolerant species.

  5. Structurally functional changes in the microbiota of nutrient solution with addition of liquid human wastes, used for growing plants in a closed ecological system

    NASA Astrophysics Data System (ADS)

    Tirranen, L. S.; Borodina, E. V.; Markov, A. A.

    The investigations have proved the dependence of microbial community of nutrient solution development upon the specific conditions of a closed human life-support ecological system: the time of using permanent solution, introduction of additives into the nutrient medium and system gas exchange closure. For the first time, liquid human wastes were introduced into the nutrient solution to increase the mass exchange closure. Correlation analysis revealed the direct dependence between the time of liquid native human excretions introduction into the nutrient solution and the development of organisms participating in nitrogen transformation and growth of microflora potentially dangerous for humans and plants. With the help of correlation analysis it has been determined that particularly close connection exists between the duration of introduction of liquid human wastes and bacteria Escherichia coli, denitrificators, ammonificators and urobacteria. The correlation coefficient for these microbial groups was: r = 0,78. The investigations showed that by the end of experiment the microbial community of nutrient solution fulfilled the role of native urine destructor successfully. Thus, introduction of human native excretions (at 70% substitution of nitrate nitrogen with urine nitrogen) into the nutrient solution used for growing wheat monoculture in a closed ecosystem is possible.

  6. Phytochemical and Biological Activities of Four Wild Medicinal Plants

    PubMed Central

    Ahmad, Shabir; AbdEl-Salam, Naser M.; Fouad, H.; Rehman, Najeeb Ur; Hussain, Hidayat; Saeed, Wajid

    2014-01-01

    The fruits of four wild plants, namely, Capparis decidua, Ficus carica, Syzygium cumini, and Ziziphus jujuba, are separately used as traditional dietary and remedial agents in remote areas of Khyber Pakhtunkhwa, Pakistan. The results of our study on these four plants revealed that the examined fruits were a valuable source of nutraceuticals and exhibited good level of antimicrobial activity. The fruits of these four investigated plants are promising source of polyphenols, flavonoids, alkaloids, terpenoids, and saponins. These four plants' fruits are good sources of iron, zinc, copper, manganese, selenium, and chromium. It was also observed that these fruits are potential source of antioxidant agent and the possible reason could be that these samples had good amount of phytochemicals. Hence, the proper propagation, conservation, and chemical investigation are recommended so that these fruits should be incorporated for the eradication of food and health related problems. PMID:25374941

  7. Phytochemical and biological activities of four wild medicinal plants.

    PubMed

    Shad, Anwar Ali; Ahmad, Shabir; Ullah, Riaz; AbdEl-Salam, Naser M; Fouad, H; Ur Rehman, Najeeb; Hussain, Hidayat; Saeed, Wajid

    2014-01-01

    The fruits of four wild plants, namely, Capparis decidua, Ficus carica, Syzygium cumini, and Ziziphus jujuba, are separately used as traditional dietary and remedial agents in remote areas of Khyber Pakhtunkhwa, Pakistan. The results of our study on these four plants revealed that the examined fruits were a valuable source of nutraceuticals and exhibited good level of antimicrobial activity. The fruits of these four investigated plants are promising source of polyphenols, flavonoids, alkaloids, terpenoids, and saponins. These four plants' fruits are good sources of iron, zinc, copper, manganese, selenium, and chromium. It was also observed that these fruits are potential source of antioxidant agent and the possible reason could be that these samples had good amount of phytochemicals. Hence, the proper propagation, conservation, and chemical investigation are recommended so that these fruits should be incorporated for the eradication of food and health related problems.

  8. Community structures and antagonistic activities of the bacteria associated with surface-sterilized pepper plants grown in different field soils.

    PubMed

    Kang, Sin Ae; Han, Jae Woo; Kim, Beom Seok

    2016-12-01

    Endophytic bacteria may act individually or in consortia in controlling certain plant diseases. In this study, pepper plants (Capsicum annuum L. cv. Nokkwang) were cultivated in glasshouse conditions using field soils collected from two different geographic locations, Deokso (DS) and Gwangyang (GY) in Korea. Community structure and antifungal activity of pepper endophytic bacteria were analyzed using culture-independent (PCR-DGGE) and culture-dependent (plating) methods, respectively. Dissimilarities were observed between DGGE profiles of DS and GY samples at all plant tissues. However, sequencing of the major DGGE bands revealed an enrichment of Firmicutes in the leaves of plants propagated in either soil. Similar results were observed with the culturable assays. Firmicutes dominated the isolates from both leaf samples, DS leaf (100 %) and GY leaf (83.3 %), although the genus compositions of DS leaf and GY leaf isolates were different. We assessed the antifungal activity of each isolate recovered to better understand the potential role that these endophytic bacteria may play. Of the 27 representative isolates from DS plant samples, 17 isolates (63.0 %) had antagonistic activity against at least one of the fungi tested. Seventeen isolates from GY plant samples (58.6 %) displayed antagonistic properties. The results show that the endophytic communities differ in the same plant species when propagated in different soils. Exploring the internal tissues of plants growing in diverse soil environments could be a way to find potential candidates for biocontrol agents.

  9. Pathogen-secreted proteases activate a novel plant immune pathway.

    PubMed

    Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie; Zhang, Xue-Cheng; Woody, Owen Z; Xiong, Yan; Djonović, Slavica; Millet, Yves; Bush, Jenifer; McConkey, Brendan J; Sheen, Jen; Ausubel, Frederick M

    2015-05-14

    Mitogen-activated protein kinase (MAPK) cascades play central roles in innate immune signalling networks in plants and animals. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive. Here we report that pathogen-secreted proteases activate a previously unknown signalling pathway in Arabidopsis thaliana involving the Gα, Gβ, and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of an MAPK cascade. In this pathway, receptor for activated C kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G-protein signalling to downstream activation of an MAPK cascade. The protease-G-protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signalling pathways such as that elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to an MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the new protease-mediated immune signalling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems.

  10. [Occupational radiation exposures during maintenance activities at nuclear power plants].

    PubMed

    Imahori, A

    1987-11-01

    Occupational exposures at nuclear power plants occur mostly during maintenance activities rather than during routine reactor operation. In this paper, statistical summaries of occupational exposures during routine maintenance activities for the years 1982-84 at nuclear power plants in Japan are presented, including comparison of the exposure levels by reactor type and by plant age. Average annual collective doses per reactor for BWRs and PWRs are 7.30 man-Sv and 2.84 man-Sv, respectively, and 78% and 89% of annual doses are incurred during maintenance activities. Average annual outage days of BWRs and PWRs for routine maintenance are 102 d and 97 d. Annual collective doses per reactor, most of which occur during maintenance activities, usually increase with plant age. Higher collective doses are observed for routine maintenance performed on older reactors as compared to newer reactors, especially in BWRs. Collective doses accrued during respective routine maintenance activities have a significant correlation with duration of maintenance and number of workers involved in maintenance.

  11. Growing Up.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides: (1) background information on insect metamorphosis; (2) activities focusing on insect life cycles and how insects change from egg to adult; and (3) student materials (ready-to-copy games, puzzles, coloring pages, worksheets, and/or mazes). Each activity includes objective(s), recommended age levels, subject area(s), list of materials…

  12. Activation of Phospholipase A by Plant Defense Elicitors.

    PubMed Central

    Chandra, S.; Heinstein, P. F.; Low, P. S.

    1996-01-01

    Participation of phospholipase A (PLase A) in plant signal transduction has been documented for auxin stimulation of growth but not for elicitation of any plant defense response. In this paper, we report two independent assays for monitoring PLase A induction in plant cells and have used these assays to evaluate whether transduction of defense-related signals might require PLase A activation. Oligogalacturonic acid, a potent elicitor of the soybean (Glycine max) H2O2 burst, was unable to stimulate endogenous PLase A, suggesting that PLase A activation is not an obligate intermediate in the oligogalacturonic acid-induced burst pathway. In contrast, harpin and an extract from the pathogenic fungus Verticillium dahliae both stimulated the oxidative burst and promoted a rapid increase in PLase A activity. To evaluate the possible role of this inducible PLase A activity in transducing the oxidative burst, we tested the effect of chlorpromazine-HCl, a PLase A inhibitor on elicitor-stimulated burst activity. Pretreatment with chloropromazine was found to inhibit the H2O2 burst triggered by V. dahliae extract at the same concentration at which it blocked PLase A activation. In contrast, neither the harpin- nor oligogalacturonic acid-induced burst was altered by addition of chlorpromazine. These data suggest that PLase A stimulation may be important in certain elicitor-induced oxidative bursts (e.g. V. dahliae) and that other elicitors such as oligogalacturonic acid and harpin must operate through independent signaling intermediates to activate the same defense response. PMID:12226235

  13. Cytotoxic activity screening of Bangladeshi medicinal plant extracts.

    PubMed

    Akter, Raushanara; Uddin, Shaikh J; Grice, I Darren; Tiralongo, Evelin

    2014-01-01

    The cytotoxic activity of 23 crude methanol extracts from 19 Bangladeshi medicinal plants was investigated against healthy mouse fibroblasts (NIH3T3), healthy monkey kidney (VERO) and four human cancer cell lines (gastric, AGS; colon, HT-29; and breast, MCF-7 and MDA-MB-231) using MTT assay. High cytotoxicity across all cell lines tested was exhibited by Aegiceras corniculatum (fruit) and Hymenodictyon excelsum (bark) extracts (IC50 values ranging from 0.0005 to 0.9980 and 0.08 to 0.44 mg/mL, respectively). Fourteen extracts from 11 plant species, namely Clitoria ternatea (flower and leaf), Dillenia indica (leaf), Diospyros peregrina (leaf), Dipterocarpus turbinatus (bark and leaf), Ecbolium viride (leaf), Glinus oppositifolius (whole plant), Gnaphalium luteoalbum (leaf), Jasminum sambac (leaf), Lannea coromandelica (bark and leaf), Mussaenda glabrata (leaf) and Saraca asoca (leaf), were also significantly cytotoxic (IC50 < 1.0 mg/mL) against at least one of the cancer cell lines tested. More selectively, Avicennia alba (leaf), C. ternatea (flower and leaf), Caesalpinia pulcherrima (leaf), E. viride (leaf) and G. oppositifolius (whole plant) showed cytotoxicity only against both of the breast cancer cell lines (MCF-7 and MDA-MB-231). In contrast, C. ternatea (flower and leaf) exhibited high cytotoxic activity against MDA-MB-231 (IC50 values of 0.11 and 0.49 mg/mL, respectively), whereas E. viride and G. oppositifolius whole plant extracts exhibited high activity against MCF-7 cells (IC50 values of 0.06 and 0.15 mg/mL, respectively). The cytotoxic activity test results for 9 of the plant species correlate with their traditional use as anticancer agents, thus making them interesting sources for further drug development.

  14. Anticariogenic activity of some tropical medicinal plants against Streptococcus mutans.

    PubMed

    Hwang, Jae-Kwan; Shim, Jae-Seok; Chung, Jae-Youn

    2004-09-01

    The methanol extracts of five tropical plants, Baeckea frutescens, Glycyrrhiza glabra, Kaempferia pandurata, Physalis angulata and Quercus infectoria, exhibited potent antibacterial activity against the cariogenic bacterium Streptococcus mutans. In particular, G. glabra, K. pandurata and P. angulata conferred fast killing bactericidal effect against S. mutans in 2 min at 50 microg/ml of extract concentration.

  15. Environmental Science: Activities with Plants of the Southwest.

    ERIC Educational Resources Information Center

    Hackley, Sharon; Hackley, Mike

    In this book for students of all ages, the author introduces unusual recipe ideas for the prickly, odd, and pestiferous plants of the American southwestern desert. Students are involved in cooking activities designed to spark interest in ecology, trigger logical thinking, utilize math skills, and build sound environmental concepts. Care was taken…

  16. Plant species richness increases phosphatase activities in an experimental grassland

    NASA Astrophysics Data System (ADS)

    Hacker, Nina; Wilcke, Wolfgang; Oelmann, Yvonne

    2014-05-01

    Plant species richness has been shown to increase aboveground nutrient uptake requiring the mobilization of soil nutrient pools. For phosphorus (P) the underlying mechanisms for increased P release in soil under highly diverse grassland mixtures remain obscure because aboveground P storage and concentrations of inorganic and organic P in soil solution and differently reactive soil P pools are unrelated (Oelmann et al. 2011). The need of plants and soil microorganisms for P can increase the exudation of enzymes hydrolyzing organically bound P (phosphatases) which might represent an important release mechanism of inorganic P in a competitive environment such as highly diverse grassland mixtures. Our objectives were to test the effects of i) plant functional groups (legumes, grasses, non-leguminous tall and small herbs), and of (ii) plant species richness on microbial P (Pmic) and phosphatase activities in soil. In autumn 2013, we measured Pmic and alkaline phosphomonoesterase and phosphodiesterase activities in soil of 80 grassland mixtures comprising different community compositions and species richness (1, 2, 4, 8, 16, 60) in the Jena Experiment. In general, Pmic and enzyme activities were correlated (r = 0.59 and 0.46 for phosphomonoesterase and phosphodiesterase activities, respectively; p

  17. Evaluation of some Moroccan medicinal plant extracts for larvicidal activity.

    PubMed

    Markouk, M; Bekkouche, K; Larhsini, M; Bousaid, M; Lazrek, H B; Jana, M

    2000-11-01

    The larvicidal properties of 16 extracts of four Moroccan medicinal plants: Calotropis procera (Wild.), Cotula cinerea (L.), Solanum sodomaeum (L.) and Solanum elaeagnifolium (CAV.) were tested against Anopheles labranchiae mosquito larvae. Among the extracts tested, nine exhibited high larvicidal activity with LC(50) (24 h) ranging from 28 to 325 ppm.

  18. HPTLC Analysis, Antioxidant and Antigout Activity of Indian Plants

    PubMed Central

    Nile, Shivraj Hariram; Park, Se Won

    2014-01-01

    The HPTLC analysis, antioxidant, and antigout activity of Asparagus racemosus, Withania somnifera, Vitex negundo, Plumbago zeylanica, Butea monosperma and Tephrosia purpurea extracts were investigated. The chemical fingerprinting were carried out by high performance thin layer chromatography (HPTLC), antioxidant activity by ABTS, DPPH, FRAP radical scavenging assays, and antiogout activity by cow milk xanthine oxidase. The HPTLC fingerprint qualitatively revealed predominant amount of flavonoids. The TEAC values ranged from 45.80 to 140 µM trolox/100 g dry weight for ABTS, from 85 to 430 µM trolox/ 100 g dw DPPH, and 185 to 560 µM trolox/100 g dw for FRAP respectively. Plants used in this study was found to inhibit the toxicity, as seen from the decreased LPO and increased GSH, SOD and CAT levels. The total phenolic and flavonoid content ranged from 10.21 to 28.17 and 5.80 to 10.1 mg of gallic acid equivalents (GAE)/100 gdw respectively. The plant extracts demonstrated significant xanthine oxidase inhibitory activity at 100 g/mL and revealed an inhibition greater than 50 % and IC50 values below the standard. This effect was almost similar to the activity of allopurinol (Standard drug) against xanthine oxidase (90.2 ± 0.4 %). These plant root extract will be subjected for further extensive studies to isolate and identify their active constituents which are useful for against inflammation and gout. PMID:25237348

  19. HPTLC Analysis, Antioxidant and Antigout Activity of Indian Plants.

    PubMed

    Nile, Shivraj Hariram; Park, Se Won

    2014-01-01

    The HPTLC analysis, antioxidant, and antigout activity of Asparagus racemosus, Withania somnifera, Vitex negundo, Plumbago zeylanica, Butea monosperma and Tephrosia purpurea extracts were investigated. The chemical fingerprinting were carried out by high performance thin layer chromatography (HPTLC), antioxidant activity by ABTS, DPPH, FRAP radical scavenging assays, and antiogout activity by cow milk xanthine oxidase. The HPTLC fingerprint qualitatively revealed predominant amount of flavonoids. The TEAC values ranged from 45.80 to 140 µM trolox/100 g dry weight for ABTS, from 85 to 430 µM trolox/ 100 g dw DPPH, and 185 to 560 µM trolox/100 g dw for FRAP respectively. Plants used in this study was found to inhibit the toxicity, as seen from the decreased LPO and increased GSH, SOD and CAT levels. The total phenolic and flavonoid content ranged from 10.21 to 28.17 and 5.80 to 10.1 mg of gallic acid equivalents (GAE)/100 gdw respectively. The plant extracts demonstrated significant xanthine oxidase inhibitory activity at 100 g/mL and revealed an inhibition greater than 50 % and IC50 values below the standard. This effect was almost similar to the activity of allopurinol (Standard drug) against xanthine oxidase (90.2 ± 0.4 %). These plant root extract will be subjected for further extensive studies to isolate and identify their active constituents which are useful for against inflammation and gout.

  20. Developmental control of telomere lengths and telomerase activity in plants.

    PubMed Central

    Riha, K; Fajkus, J; Siroky, J; Vyskot, B

    1998-01-01

    Telomere lengths and telomerase activity were studied during the development of a model dioecious plant, Melandrium album (syn Silene latifolia). Telomeric DNA consisted of Arabidopsis-type TTTAGGG tandem repeats. The terminal positions of these repeats were confirmed by both Bal31 exonuclease degradation and in situ hybridization. Analysis of terminal restriction fragments in different tissues and ontogenetic stages showed that telomere lengths are stabilized precisely and do not change during plant growth and development. Telomerase activity tested by using a semiquantitative telomerase repeat amplification protocol correlated with cell proliferation in the tissues analyzed. Highest activity was found in germinating seedlings and root tips, whereas we observed a 100-fold decrease in telomerase activity in leaves and no activity in quiescent seeds. Telomerase also was found in mature pollen grains. Telomerase activity in tissues containing dividing cells and telomere length stability during development suggest their precise control during plant ontogenesis; however, the telomere length regulation mechanism could be unbalanced during in vitro dedifferentiation. PMID:9761795

  1. Antimicrobial activity of Northwestern Mexican plants against Helicobacter pylori.

    PubMed

    Robles-Zepeda, Ramón E; Velázquez-Contreras, Carlos A; Garibay-Escobar, Adriana; Gálvez-Ruiz, Juan C; Ruiz-Bustos, Eduardo

    2011-10-01

    Helicobacter pylori is the major etiologic agent of such gastric disorders as chronic active gastritis and gastric carcinoma. Over the past few years, the appearance of antibiotic-resistant bacteria has led to the development of better treatments, such as the use of natural products. This study evaluated the anti-H. pylori activity of 17 Mexican plants used mainly in the northwestern part of Mexico (Sonora) for the empirical treatment of gastrointestinal disorders. The anti-H. pylori activity of methanolic extracts of the plants was determined by using the broth microdilution method. The 50% minimum inhibitory concentrations ranged from less than 200 to 400 μg/mL for Castella tortuosa, Amphipterygium adstringens, Ibervillea sonorae, Pscalium decompositum, Krameria erecta, Selaginella lepidophylla, Pimpinella anisum, Marrubium vulgare, Ambrosia confertiflora, and Couterea latiflora and were greater than 800 μg/mL for Byophyllum pinnatum, Tecoma stans linnaeus, Kohleria deppena, Jatropha cuneata, Chenopodium ambrosoides, and Taxodium macronatum. Only Equisetum gigantum showed no activity against H. pylori. This study suggests the important role that these plants may have in the treatment of gastrointestinal disorders caused by H. pylori. The findings set the groundwork for further characterization and elucidation of the active compounds responsible for such activity.

  2. Screening of Thai medicinal plant extracts and their active constituents for in vitro antimalarial activity.

    PubMed

    Ichino, C; Soonthornchareonnon, N; Chuakul, W; Kiyohara, H; Ishiyama, A; Sekiguchi, H; Namatame, M; Otoguro, K; Omura, S; Yamada, H

    2006-04-01

    To discover antimalarial substances from plants cultivated in Thailand 80%-EtOH extracts from selected plants were screened for in vitro antimalarial activity against the drug resistant K1 strain of Plasmodium falciparum. In total, 86 Thai medicinal plant samples representing 48 species from 35 genera in 16 families were screened and two species (Polyalthia viridis and Goniothalamus marcanii) were found to show notable antimalarial activity (IC50: 10.0 and 6.3 microg/mL). Marcanine A and 16-hydroxycleroda-3,13(14)Z-dien-15,16-olide were identified as the respective major active constituents in P. viridis and G. marcanii, respectively.

  3. Medicinal plant activity on Helicobacter pylori related diseases

    PubMed Central

    Wang, Yuan-Chuen

    2014-01-01

    More than 50% of the world population is infected with Helicobacter pylori (H. pylori). The bacterium highly links to peptic ulcer diseases and duodenal ulcer, which was classified as a group I carcinogen in 1994 by the WHO. The pathogenesis of H. pylori is contributed by its virulence factors including urease, flagella, vacuolating cytotoxin A (VacA), cytotoxin-associated gene antigen (Cag A), and others. Of those virulence factors, VacA and CagA play the key roles. Infection with H. pylori vacA-positive strains can lead to vacuolation and apoptosis, whereas infection with cagA-positive strains might result in severe gastric inflammation and gastric cancer. Numerous medicinal plants have been reported for their anti-H. pylori activity, and the relevant active compounds including polyphenols, flavonoids, quinones, coumarins, terpenoids, and alkaloids have been studied. The anti-H. pylori action mechanisms, including inhibition of enzymatic (urease, DNA gyrase, dihydrofolate reductase, N-acetyltransferase, and myeloperoxidase) and adhesive activities, high redox potential, and hydrophilic/hydrophobic natures of compounds, have also been discussed in detail. H. pylori-induced gastric inflammation may progress to superficial gastritis, atrophic gastritis, and finally gastric cancer. Many natural products have anti-H. pylori-induced inflammation activity and the relevant mechanisms include suppression of nuclear factor-κB and mitogen-activated protein kinase pathway activation and inhibition of oxidative stress. Anti-H. pylori induced gastric inflammatory effects of plant products, including quercetin, apigenin, carotenoids-rich algae, tea product, garlic extract, apple peel polyphenol, and finger-root extract, have been documented. In conclusion, many medicinal plant products possess anti-H. pylori activity as well as an anti-H. pylori-induced gastric inflammatory effect. Those plant products have showed great potential as pharmaceutical candidates for H. pylori

  4. Draft Genome Sequence of Acinetobacter oleivorans PF1, a Diesel-Degrading and Plant-Growth-Promoting Endophytic Strain Isolated from Poplar Trees Growing on a Diesel-Contaminated Plume

    PubMed Central

    Gkorezis, Panagiotis; Rineau, Francois; Van Hamme, Jonathan; Daghio, Matteo; Thijs, Sofie; Weyens, Nele

    2015-01-01

    We report the 3.7-Mb draft genome of Acinetobacter oleivorans strain PF1, a hydrocarbonoclastic Gram-negative bacterium in the class Gammaproteobacteria, isolated from poplar trees growing on a diesel-contaminated plume at the Ford Motor Company site in Genk, Belgium. Strain PF1 is a potent plant-growth promoter, useful for diesel fuel phytoremediation applications. PMID:25657268

  5. Evaluation of the cytotoxic activity of some Brazilian medicinal plants.

    PubMed

    Ribeiro, Sandra S; de Jesus, Aline M; dos Anjos, Charlene S; da Silva, Thanany B; Santos, Alan D C; de Jesus, Jemmyson R; Andrade, Moacir S; Sampaio, Tais S; Gomes, Wesley F; Alves, Péricles B; Carvalho, Adriana A; Pessoa, Claudia; de Moraes, Manoel O; Pinheiro, Maria L B; Prata, Ana Paula N; Blank, Arie F; Silva-Mann, Renata; Moraes, Valeria R S; Costa, Emmanoel V; Nogueira, Paulo Cesar L; Bezerra, Daniel P

    2012-09-01

    Plants are promising sources of new bioactive compounds. The aim of this study was to investigate the cytotoxic potential of nine plants found in Brazil. The species studied were: Annona pickelii Diels (Annonaceae), Annona salzmannii A. DC. (Annonaceae), Guatteria blepharophylla Mart. (Annonaceae), Guatteria hispida (R. E. Fr.) Erkens & Maas (Annonaceae), Hancornia speciosa Gomes (Apocynaceae), Jatropha curcas L. (Euphorbiaceae), Kielmeyera rugosa Choisy (Clusiaceae), Lippia gracilis Schauer (Verbenaceae), and Hyptis calida Mart. Ex Benth (Lamiaceae). Different types of extractions from several parts of plants resulted in 43 extracts. Their cytotoxicity was tested against HCT-8 (colon carcinoma), MDA-MB-435 (melanoma), SF-295 (glioblastoma), and HL-60 (promielocitic leukemia) human tumor cell lines, using the thiazolyl blue test (MTT) assay. The active extracts were those obtained from G. blepharophylla, G. hispida, J. curcas, K. rugosa, and L. gracilis. In addition, seven compounds isolated from the active extracts were tested; among them, β-pinene found in G. hispida and one coumarin isolated from K. rugora showed weak cytotoxic activity. In summary, this manuscript contributes to the understanding of the potentialities of Brazilian plants as sources of new anticancer drugs.

  6. Photodynamic activity of plant extracts from Sarawak, Borneo.

    PubMed

    Jong, Wan Wui; Tan, Pei Jean; Kamarulzaman, Fadzly Adzhar; Mejin, Michele; Lim, Diana; Ang, Ida; Naming, Margarita; Yeo, Tiong Chia; Ho, Anthony Siong Hock; Teo, Soo Hwang; Lee, Hong Boon

    2013-08-01

    Photodynamic therapy (PDT) is a medical treatment that involves the irradiation of an administered photosensitizing drug with light of a particular wavelength to activate the photosensitizer to kill abnormal cells. To date, only a small number of photosensitizers have been clinically approved for PDT, and researchers continue to look for new molecules that have more desirable properties for clinical applications. Natural products have long been important sources of pharmaceuticals, and there is a great potential for discovery of novel chemotypes from under-explored biodiversities in the world. The objective of this study is to mine the terrestrial plants in Sarawak, Borneo Island, for new photosensitizers for PDT. In a screening program from 2004 to 2008, we prepared and studied 2,400 extracts from 888 plants for their photosensitizing activities. This report details the bioprospecting process, preparation and testing of extracts, analysis of the active samples, fractionation of four samples, and isolation and characterization of photosensitizers.

  7. Anti-Candida activity of Brazilian medicinal plants.

    PubMed

    Duarte, Marta Cristina Teixeira; Figueira, Glyn Mara; Sartoratto, Adilson; Rehder, Vera Lúcia Garcia; Delarmelina, Camila

    2005-02-28

    Essential oils and ethanolic extracts from the leaves and/or roots of 35 medicinal plants commonly used in Brazil were screened for anti-Candida albicans activity. The oils were obtained by water-distillation using a Clevenger-type system. Essential oils from 13 plants showed anti-Candida activity, including Aloysia triphylla, Anthemis nobilis, Cymbopogon martini, Cymbopogon winterianus, Cyperus articulatus, Cyperus rotundus, Lippia alba, Mentha arvensis, Mikania glomerata, Mentha piperita, Mentha sp., Stachys byzantina, and Solidago chilensis. The ethanol extract was not effective at any of the concentrations tested. Chemical analyses showed the presence of compounds with known antimicrobial activity, including 1,8-cineole, geranial, germacrene-D, limonene, linalool, and menthol.

  8. Anammox biofilm in activated sludge swine wastewater treatment plants.

    PubMed

    Suto, Ryu; Ishimoto, Chikako; Chikyu, Mikio; Aihara, Yoshito; Matsumoto, Toshimi; Uenishi, Hirohide; Yasuda, Tomoko; Fukumoto, Yasuyuki; Waki, Miyoko

    2017-01-01

    We investigated anammox with a focus on biofilm in 10 wastewater treatment plants (WWTPs) that use activated sludge treatment of swine wastewater. In three plants, we found red biofilms in aeration tanks or final sedimentation tanks. The biofilm had higher anammox 16S rRNA gene copy numbers (up to 1.35 × 10(12) copies/g-VSS) and higher anammox activity (up to 295 μmoL/g-ignition loss/h) than suspended solids in the same tank. Pyrosequencing analysis revealed that Planctomycetes accounted for up to 17.7% of total reads in the biofilm. Most of them were related to Candidatus Brocadia or Ca. Jettenia. The highest copy number and the highest proportion of Planctomycetes were comparable to those of enriched anammox sludge. Thus, swine WWTPs that use activated sludge treatment can fortuitously acquire anammox biofilm. Thus, concentrated anammox can be detected by focusing on red biofilm.

  9. Antibacterial activity of some selected medicinal plants of Pakistan

    PubMed Central

    2011-01-01

    Background Screening of the ethnobotenical plants is a pre-requisite to evaluate their therapeutic potential and it can lead to the isolation of new bioactive compounds. Methods The crude extracts and fractions of six medicinal important plants (Arisaema flavum, Debregeasia salicifolia, Carissa opaca, Pistacia integerrima, Aesculus indica, and Toona ciliata) were tested against three Gram positive and two Gram negative ATCC bacterial species using the agar well diffusion method. Results The crude extract of P. integerrima and A. indica were active against all tested bacterial strains (12-23 mm zone of inhibition). Other four plant's crude extracts (Arisaema flavum, Debregeasia salicifolia, Carissa opaca, and Toona ciliata) were active against different bacterial strains. The crude extracts showed varying level of bactericidal activity. The aqueous fractions of A. indica and P. integerrima crude extract showed maximum activity (19.66 and 16 mm, respectively) against B. subtilis, while the chloroform fractions of T. ciliata and D. salicifolia presented good antibacterial activities (13-17 mm zone of inhibition) against all the bacterial cultures tested. Conclusion The methanol fraction of Pistacia integerrima, chloroform fractions of Debregeasia salicifolia &Toona ciliata and aqueous fraction of Aesculus indica are suitable candidates for the development of novel antibacterial compounds. PMID:21718504

  10. Zygotic genome activation in isogenic and hybrid plant embryos.

    PubMed

    Del Toro-De León, Gerardo; Lepe-Soltero, Daniel; Gillmor, C Stewart

    2016-02-01

    Zygotic genome activation (ZGA) is the onset of large-scale transcription that occurs after fertilization. In animal embryos, ZGA occurs after a period of transcriptional quiescence that varies between species. In plants, the timing of ZGA may also vary between species, and may or may not occur in a parent-of-origin dependent manner: some studies have shown a maternal bias in mRNA transcripts and gene activity in early embryogenesis, while other experiments have found the contribution of maternal and paternal genomes to be equal. In order to differentiate between maternal and paternal mRNAs, RNA sequencing studies of ZGA in plants have used embryos hybrid for polymorphic accessions. A recent genetic assay in Arabidopsis demonstrated significant variation in paternal allele activity between some hybrid combinations and isogenic embryos, as well as between different hybrid combinations, suggesting a possible source for conflicting results obtained by various experiments on paternal genome activation. We review recent literature on paternal genome activation studies in the zygote in both isogenic and hybrid embryos, and discuss possible explanations for the effects of hybridization on gene expression in early embryogenesis in plants.

  11. The role of activated charcoal in plant tissue culture.

    PubMed

    Thomas, T Dennis

    2008-01-01

    Activated charcoal has a very fine network of pores with large inner surface area on which many substances can be adsorbed. Activated charcoal is often used in tissue culture to improve cell growth and development. It plays a critical role in micropropagation, orchid seed germination, somatic embryogenesis, anther culture, synthetic seed production, protoplast culture, rooting, stem elongation, bulb formation etc. The promotary effects of AC on morphogenesis may be mainly due to its irreversible adsorption of inhibitory compounds in the culture medium and substancially decreasing the toxic metabolites, phenolic exudation and brown exudate accumulation. In addition to this activated charcoal is involved in a number of stimulatory and inhibitory activities including the release of substances naturally present in AC which promote growth, alteration and darkening of culture media, and adsorption of vitamins, metal ions and plant growth regulators, including abscisic acid and gaseous ethylene. The effect of AC on growth regulator uptake is still unclear but some workers believe that AC may gradually release certain adsorbed products, such as nutrients and growth regulators which become available to plants. This review focuses on the various roles of activated charcoal in plant tissue culture and the recent developments in this area.

  12. Antibacterial Activity of Various Plants Extracts Against Antibiotic-resistant Aeromonas hydrophila

    PubMed Central

    Al Laham, Shaza Anwar; Al Fadel, Frdoos Mohammad

    2014-01-01

    Background: Aeromonas hydrophila cause one of the most important diseases in fishes and lead to economic losses, and may be contaminated human beings. Objectives: The current research aimed to investigate the anti-bacterial activity shown by the extracts prepared from different parts of Olea europea, Myrtus communis, Thymus vulgaris, Rosmarinuis officinalis, and Achillea falcata that grow in Syria against A. hydrophila that causes the most dangerous bacterial diseases in fish. Materials and Methods: The study was performed in four stages: First of all, the presence of A. hydrophila was investigated in 450 Samples of Cyprinus Carpio fish using blood agar, Trypticase soya agar, and Analytical Profile Index (API20E). Secondly, the plants extract was obtained using water, absolute alcohol, then ether using Soxhlet extraction apparatus and rotary vacuum evaporator. Thirdly, the antibacterial activity of some antibiotics on these bacteria was evaluated by disk diffusion method. Finally, the antibacterial effect of the extracts was determined by disk diffusion method. Results: The studied antibiotics showed no antibacterial activity against these bacteria, except amikacin which had an acceptable effectiveness. However, the ethanol extracts of the studied plants revealed different antibacterial effects against A. hydrophila which showed antibiotic resistant. T. vulgaris extract had the strongest effect, whereas O. europea extract had the weakest activity. The water and ether petroleum extracts had no antibacterial activities. Conclusions: Ethanol extracts of the studied plants had different antibacterial effects against antibiotic-resistant A. hydrophila. T. vulgaris had the highest activity, R. officinalis had the second, and M. communis and A. falcate were in the third place, while the O. europea had the weakest antibacterial activity. PMID:25368797

  13. Antimicrobial activity of {gamma}-thionin-like soybean SE60 in E. coli and tobacco plants

    SciTech Connect

    Choi, Yeonhee Choi, Yang Do; Lee, Jong Seob

    2008-10-17

    The SE60, a low molecular weight, sulfur-rich protein in soybean, is known to be homologous to wheat {gamma}-purothionin. To elucidate the functional role of SE60, we expressed SE60 cDNA in Escherichia coli and in tobacco plants. A single protein band was detected by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) after anti-FLAG affinity purification of the protein from transformed E. coli. While the control E. coli cells harboring pFLAG-1 showed standard growth with Isopropyl {beta}-D-1-thiogalactopyranoside (IPTG) induction, E. coli cells expressing the SE60 fusion protein did not grow at all, suggesting that SE60 has toxic effects on E. coli growth. Genomic integration and the expression of transgene in the transgenic tobacco plants were confirmed by Southern and Northern blot analysis, respectively. The transgenic plants demonstrated enhanced resistance against the pathogen Pseudomonas syringae. Taken together, these results strongly suggest that SE60 has antimicrobial activity and play a role in the defense mechanism in soybean plants.

  14. Isomaltulose Is Actively Metabolized in Plant Cells1

    PubMed Central

    Wu, Luguang; Birch, Robert G.

    2011-01-01

    Isomaltulose is a structural isomer of sucrose (Suc). It has been widely used as a nonmetabolized sugar in physiological studies aimed at better understanding the regulatory roles and transport of sugars in plants. It is increasingly used as a nutritional human food, with some beneficial properties including low glycemic index and acariogenicity. Cloning of genes for Suc isomerases opened the way for direct commercial production in plants. The understanding that plants lack catabolic capabilities for isomaltulose indicated a possibility of enhanced yields relative to Suc. However, this understanding was based primarily on the treatment of intact cells with exogenous isomaltulose. Here, we show that sugarcane (Saccharum interspecific hybrids), like other tested plants, does not readily import or catabolize extracellular isomaltulose. However, among intracellular enzymes, cytosolic Suc synthase (in the breakage direction) and vacuolar soluble acid invertase (SAI) substantially catabolize isomaltulose. From kinetic studies, the specificity constant of SAI for isomaltulose is about 10% of that for Suc. Activity varied against other Suc isomers, with Vmax for leucrose about 6-fold that for Suc. SAI activities from other plant species varied substantially in substrate specificity against Suc and its isomers. Therefore, in physiological studies, the blanket notion of Suc isomers including isomaltulose as nonmetabolized sugars must be discarded. For example, lysis of a few cells may result in the substantial hydrolysis of exogenous isomaltulose, with profound downstream signal effects. In plant biotechnology, different Vmax and Vmax/Km ratios for Suc isomers may yet be exploited, in combination with appropriate developmental expression and compartmentation, for enhanced sugar yields. PMID:22010106

  15. Antibacterial activity of caffeine against plant pathogenic bacteria.

    PubMed

    Sledz, Wojciech; Los, Emilia; Paczek, Agnieszka; Rischka, Jacek; Motyka, Agata; Zoledowska, Sabina; Piosik, Jacek; Lojkowska, Ewa

    2015-01-01

    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [(3)H]thymidine, [(3)H]uridine or (14)C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions.

  16. How Does Your Garlic Grow?

    ERIC Educational Resources Information Center

    Shimabukuro, Mary A.; Fearing, Vickie

    1993-01-01

    Garlic is an ideal plant for the elementary classroom. It grows rapidly in water without aeration for several weeks and remains relatively free of microbial contamination. Simple experiments with garlic purchased at grocery stores can illustrate various aspects of plant growth. (PR)

  17. Antifungal activities and chemical composition of some medicinal plants.

    PubMed

    Mohammadi, A; Nazari, H; Imani, S; Amrollahi, H

    2014-06-01

    The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists and natural-products scientists are combing the earth for phytochemicals and leads, which could be developed for treatment of infectious diseases. The aim of this study was to investigate the antifungal activities of the essential oils of some medicinal plants such as Stachys pubescens, Thymus kotschyanus, Thymus daenensis and Bupleurum falcatum against Fusarium oxysporum, Aspergillus flavus and Alternaria alternata. The essential oils were used to evaluate their MICs and MFCs compared to the amphotricin B as a standard drug. The essential oils were also analyzed by GC/MS. Essential oils isolated from the S. pubescens, T. kotschyanus and B. falcatum showed strong antifungal activities. The essential oil of T. daenensis exhibited a moderate activity against the selected fungi in comparison with the other plants' essential oils. In addition, the results showed that 26, 23, 22 and 15 components were identified from the essential oils of T. kotschyanus, S. pubescens, T. daenensis and B. falcatum, respectively. These oils exhibited a noticeable antifungal activity against the selected fungi. Regarding obtained results and that natural antimicrobial substances are inexpensive and have fewer side effects, they convey potential for implementation in fungal pathogenic systems.

  18. Consequence of absence of nitrate reductase activity on photosynthesis in Nicotiana plumbaginifolia plants

    SciTech Connect

    Saux, C.; Lemoine, Y.; Marion-Poll, A.; Valadier, M.H.; Deng, M.; Morot-Gaudry, J.F.

    1987-05-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR/sup -/ nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second /sup 14/CO/sub 2/ pulse, the total /sup 14/C incorporation of the mutant leaves was approximately 20/sup 5/ of that of the control. The /sup 14/C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second /sup 14/CO/sub 2/ pulse followed by a 60 second chase with normal CO/sub 2/, /sup 14/C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus.

  19. Chemical composition and antimicrobial activity of the essential oils of Pinus peuce (Pinaceae) growing wild in R. Macedonia.

    PubMed

    Karapandzova, Marija; Stefkova, Gjose; Cvetkovikj, Ivana; Trajkovska-Dokik, Elena; Kaftandzieva, Ana; Kulevanova, Svetlana

    2014-11-01

    antimicrobial activity can be attributed to the differences in the quantitative composition and percentage amounts of the components present in the respective essential oils, although it was evident that there were no differences in the qualitative composition of the essential oils, regardless of the locality of collection, or the type of plant material (T+N or T-N).

  20. [Study of the possibility of utilizing the transpired mositure condensate from sweet potato for growing plants in biological life support systems].

    PubMed

    Derendiaeva, T A

    1976-01-01

    The effect of nonpurified condensate obtained during prolonged cultivation of batata in a sealed chamber upon batata cuttings and seedlings of garden cress, radish and Chinese cabbage was studied. It was shown that nonpurified condensate produced an inhibitory effect on the formation of roots in batata cuttings and on the growth of previously developed roots of batata cuttings and seedlings. The studies which used a chemical model of 3,4-dihydroxy phenylalanine indicated that the condensate contained biologically active substance of organic origin. However, only experiments with the real continuous culture of batata, using real dilutions of the condensate that depend on the size of the greenhouse and the amount of the nutrient solution would clarify wheather condensate of transpiration water of batata plants can be repeatedly utilized in life support systems.

  1. Grow Beasts: Growing Mathematical Understanding

    ERIC Educational Resources Information Center

    Roddy, Mark; Behrend, Kat

    2015-01-01

    What do you do when you want to get your Stage 3 students authentically and enthusiastically engaged in the active construction of their understanding and fluency with measurement, data collection, representation and interpretation? How do you enable them to make choices about their learning, to measure with purpose, to record and organise the…

  2. In Plant Activation: An Inducible, Hyperexpression Platform for Recombinant Protein Production in Plants[W][OPEN

    PubMed Central

    Dugdale, Benjamin; Mortimer, Cara L.; Kato, Maiko; James, Tess A.; Harding, Robert M.; Dale, James L.

    2013-01-01

    In this study, we describe a novel protein production platform that provides both activation and amplification of transgene expression in planta. The In Plant Activation (INPACT) system is based on the replication machinery of tobacco yellow dwarf mastrevirus (TYDV) and is essentially transient gene expression from a stably transformed plant, thus combining the advantages of both means of expression. The INPACT cassette is uniquely arranged such that the gene of interest is split and only reconstituted in the presence of the TYDV-encoded Rep/RepA proteins. Rep/RepA expression is placed under the control of the AlcA:AlcR gene switch, which is responsive to trace levels of ethanol. Transgenic tobacco (Nicotiana tabacum cv Samsun) plants containing an INPACT cassette encoding the β-glucuronidase (GUS) reporter had negligible background expression but accumulated very high GUS levels (up to 10% total soluble protein) throughout the plant, within 3 d of a 1% ethanol application. The GUS reporter was replaced with a gene encoding a lethal ribonuclease, barnase, demonstrating that the INPACT system provides exquisite control of transgene expression and can be adapted to potentially toxic or inhibitory compounds. The INPACT gene expression platform is scalable, not host-limited, and has been used to express both a therapeutic and an industrial protein. PMID:23839786

  3. In plant activation: an inducible, hyperexpression platform for recombinant protein production in plants.

    PubMed

    Dugdale, Benjamin; Mortimer, Cara L; Kato, Maiko; James, Tess A; Harding, Robert M; Dale, James L

    2013-07-01

    In this study, we describe a novel protein production platform that provides both activation and amplification of transgene expression in planta. The In Plant Activation (INPACT) system is based on the replication machinery of tobacco yellow dwarf mastrevirus (TYDV) and is essentially transient gene expression from a stably transformed plant, thus combining the advantages of both means of expression. The INPACT cassette is uniquely arranged such that the gene of interest is split and only reconstituted in the presence of the TYDV-encoded Rep/RepA proteins. Rep/RepA expression is placed under the control of the AlcA:AlcR gene switch, which is responsive to trace levels of ethanol. Transgenic tobacco (Nicotiana tabacum cv Samsun) plants containing an INPACT cassette encoding the β-glucuronidase (GUS) reporter had negligible background expression but accumulated very high GUS levels (up to 10% total soluble protein) throughout the plant, within 3 d of a 1% ethanol application. The GUS reporter was replaced with a gene encoding a lethal ribonuclease, barnase, demonstrating that the INPACT system provides exquisite control of transgene expression and can be adapted to potentially toxic or inhibitory compounds. The INPACT gene expression platform is scalable, not host-limited, and has been used to express both a therapeutic and an industrial protein.

  4. Antimicrobial and Antioxidant Activities of Plants from Northeast of Mexico

    PubMed Central

    Salazar-Aranda, Ricardo; Pérez-López, Luis Alejandro; López-Arroyo, Joel; Alanís-Garza, Blanca Alicia; Waksman de Torres, Noemí

    2011-01-01

    Traditional medicine has a key role in health care worldwide. Obtaining scientific information about the efficacy and safety of the plants from our region is one of the goals of our research group. In this report, 17 plants were selected and collected in different localities from northeast Mexico. The dried plants were separated into leaves, flowers, fruit, stems, roots and bark. Each part was extracted with methanol, and 39 crude extracts were prepared. The extracts were tested for their antimicrobial activity using three Gram-negative bacterial strains (Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii), three Gram-positive bacterial strains (Enterococcus faecalis and two Staphylococcus aureus strains), and seven clinically isolated yeasts (Candida albicans, C. krusei, C. tropicalis, C. parapsilosis and C. glabrata); their antioxidant activity was tested using a DPPH free radical assay. No activity against Gram-negative bacteria was observed with any extract up to the maximum concentration tested, 1000 μg ml−1. We report here for the first time activity of Ceanothus coeruleus against S. aureus (flowers, minimal inhibitory concentration (MIC) 125 μg ml−1), C. glabrata (MICs 31.25 μg ml−1) and C. parapsilosis (MICs between 31.25 and 125 μg ml−1); Chrysanctinia mexicana against C. glabrata (MICs 31.25 μg ml−1); Colubrina greggii against E. faecalis (MICs 250 μg ml−1) and Cordia boissieri against C. glabrata (MIC 125 μg ml−1). Furthermore, this is the first report about antioxidant activity of extracts from Ceanothus coeruleus, Chrysanctinia mexicana, Colubrina greggii and Cyperus alternifolius. Some correlation could exist between antioxidant activity and antiyeast activity against yeasts in the species Ceanothus coeruleus, Schinus molle, Colubrina greggii and Cordia boissieri. PMID:19770266

  5. Antimicrobial and antioxidant activities of plants from northeast of Mexico.

    PubMed

    Salazar-Aranda, Ricardo; Pérez-López, Luis Alejandro; López-Arroyo, Joel; Alanís-Garza, Blanca Alicia; Waksman de Torres, Noemí

    2011-01-01

    Traditional medicine has a key role in health care worldwide. Obtaining scientific information about the efficacy and safety of the plants from our region is one of the goals of our research group. In this report, 17 plants were selected and collected in different localities from northeast Mexico. The dried plants were separated into leaves, flowers, fruit, stems, roots and bark. Each part was extracted with methanol, and 39 crude extracts were prepared. The extracts were tested for their antimicrobial activity using three Gram-negative bacterial strains (Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii), three Gram-positive bacterial strains (Enterococcus faecalis and two Staphylococcus aureus strains), and seven clinically isolated yeasts (Candida albicans, C. krusei, C. tropicalis, C. parapsilosis and C. glabrata); their antioxidant activity was tested using a DPPH free radical assay. No activity against Gram-negative bacteria was observed with any extract up to the maximum concentration tested, 1000 μg ml(-1). We report here for the first time activity of Ceanothus coeruleus against S. aureus (flowers, minimal inhibitory concentration (MIC) 125 μg ml(-1)), C. glabrata (MICs 31.25 μg ml(-1)) and C. parapsilosis (MICs between 31.25 and 125 μg ml(-1)); Chrysanctinia mexicana against C. glabrata (MICs 31.25 μg ml(-1)); Colubrina greggii against E. faecalis (MICs 250 μg ml(-1)) and Cordia boissieri against C. glabrata (MIC 125 μg ml(-1)). Furthermore, this is the first report about antioxidant activity of extracts from Ceanothus coeruleus, Chrysanctinia mexicana, Colubrina greggii and Cyperus alternifolius. Some correlation could exist between antioxidant activity and antiyeast activity against yeasts in the species Ceanothus coeruleus, Schinus molle, Colubrina greggii and Cordia boissieri.

  6. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1990-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells. 10 figs., 2 tabs.

  7. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1991-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells.

  8. Antimicrobial activity of plant extracts against sexually transmitted pathogens.

    PubMed

    Jadhav, Nutan; Kulkarni, Sangeeta; Mane, Arati; Kulkarni, Roshan; Palshetker, Aparna; Singh, Kamalinder; Joshi, Swati; Risbud, Arun; Kulkarni, Smita

    2015-01-01

    Comprehensive management of sexually transmitted infections (STIs) using vaginal or rectal microbicide-based intervention is one of the strategies for prevention of HIV infection. Herbal products have been used for treating STIs traditionally. Herein, we present in vitro activity of 10 plant extracts and their 34 fractions against three sexually transmitted/reproductive tract pathogens - Neisseria gonorrhoeae, Haemophilus ducreyi and Candida albicans. The plant parts were selected; the extracts/fractions were prepared and screened by disc diffusion method. The minimum inhibitory and minimum cidal concentrations were determined. The qualitative phytochemical analysis of selected extracts/fractions showing activity was performed. Of the extracts/fractions tested, three inhibited C. albicans, ten inhibited N. gonorrhoeae and five inhibited H. ducreyi growth. Our study demonstrated that Terminalia paniculata Roth. extracts/fractions inhibited growth of all three organisms. The ethyl acetate fraction of Syzygium cumini Linn. and Bridelia retusa (L.) Spreng. extracts was found to inhibit N. gonorrhoeae at lowest concentrations.

  9. Roles and activities of chromatin remodeling ATPases in plants.

    PubMed

    Han, Soon-Ki; Wu, Miin-Feng; Cui, Sujuan; Wagner, Doris

    2015-07-01

    Chromatin remodeling ATPases and their associated complexes can alter the accessibility of the genome in the context of chromatin by using energy derived from the hydrolysis of ATP to change the positioning, occupancy and composition of nucleosomes. In animals and plants, these remodelers have been implicated in diverse processes ranging from stem cell maintenance and differentiation to developmental phase transitions and stress responses. Detailed investigation of their roles in individual processes has suggested a higher level of selectivity of chromatin remodeling ATPase activity than previously anticipated, and diverse mechanisms have been uncovered that can contribute to the selectivity. This review summarizes recent advances in understanding the roles and activities of chromatin remodeling ATPases in plants.

  10. In vitro antitrypanosomal activity of plant terpenes against Trypanosoma brucei.

    PubMed

    Otoguro, Kazuhiko; Iwatsuki, Masato; Ishiyama, Aki; Namatame, Miyuki; Nishihara-Tukashima, Aki; Kiyohara, Hiroaki; Hashimoto, Toshihiro; Asakawa, Yoshinori; Omura, Satoshi; Yamada, Haruki

    2011-11-01

    During the course of screening to discover antitrypanosomal compounds, 24 known plant terpenes (6 sesquiterpenes, 14 sesquiterpene lactones and 4 diterpenes) were evaluated for in vitro antitrypanosomal activity against Trypanosoma brucei brucei. Among them, 22 terpenes exhibited antitrypanosomal activity. In particular, α-eudesmol, hinesol, nardosinone and 4-peroxy-1,2,4,5-tetrahydro-α-santonin all exhibited selective and potent antitrypanosomal activities in vitro. Detailed here in an in vitro antitrypanosomal properties and cytotoxicities of the 24 terpenes compared with two therapeutic antitrypanosomal drugs (eflornithine and suramin). This finding represents the first report of promising trypanocidal activity of these terpenes. Present results also provide some valuable insight with regard to structure-activity relationships and the possible mode of action of the compounds.

  11. Screening of Australian medicinal plants for antiviral activity.

    PubMed

    Semple, S J; Reynolds, G D; O'Leary, M C; Flower, R L

    1998-03-01

    Extracts of 40 different plant species used in the traditional medicine of the Australian Aboriginal people have been investigated for antiviral activity. The extracts have been tested for activity against one DNA virus, human cytomegalovirus (HCMV) and two RNA viruses, Ross River virus (RRV) and poliovirus type 1, at non-cytotoxic concentrations. The most active extracts were the aerial parts of Pterocaulon sphacelatum (Asteraceae) and roots of Dianella longifolia var. grandis (Liliaceae), which inhibited poliovirus at concentrations of 52 and 250 microg/ml, respectively. The extracts of Euphorbia australis (Euphorbiaceae) and Scaevola spinescens (Goodeniaceae) were the most active against HCMV. Extracts of Eremophila latrobei subsp. glabra (Myoporaceae) and Pittosporum phylliraeoides var. microcarpa (Pittosporaceae) exhibited antiviral activity against RRV.

  12. Anti-inflammatory activity of Chinese medicinal vine plants.

    PubMed

    Li, Rachel W; David Lin, G; Myers, Stephen P; Leach, David N

    2003-03-01

    Anti-inflammatory activities of ethanol extracts from nine vine plants used in traditional Chinese medicine to treat inflammatory conditions were evaluated against a panel of key enzymes relating to inflammation. The enzymes included cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), phospholipase A(2) (PLA(2)), 5-lipoxygenase (5-LO) and 12-lipoxygenase (12-LO). The vine plants studied were: the stem of Spatholobus suberectus Dunn, the stem of Trachelospermum jasminoides Lem., the root from Tripterygium wilfordii Hook. f., the stem of Sinomenium acutum Rehder and Wilson, the stem of Piper kadsura (Choisy) Ohwi, the stem of Polygonum multiflorum Thunb., the root and stem from Tinospora sagittata Gagnep., the root of Tinospora sinensis (Lour.) Merrill, and the stem of Clematis chinensis Osbeck. All of the plant extracts showed inhibitory activities against at least one of the enzymes in various percentages depending upon the concentrations. The extract from S. suberectus was found to be active against all enzymes except COX-2. Its IC(50) values were 158, 54, 31 and 35 microg/ml in COX-1, PLA(2), 5-LO and 12-LO assays, respectively. T. jasminoides showed potent inhibitory activities against both COX-1 (IC(50) 35 microg/ml) and PLA(2) (IC(50) 33 microg/ml). The most potent COX-1, COX-2 and 5-LO inhibition was observed in the extract of T. wilfordii with the IC(50) values of 27, 125 and 22 microg/ml, respectively. The findings of this study may partly explain the use of these vine plants in traditional Chinese medicine for the treatment of inflammatory conditions.

  13. Anxiolytic activity evaluation of four medicinal plants from Cameroon.

    PubMed

    Bum, E Ngo; Soudi, S; Ayissi, E R; Dong, C; Lakoulo, N H; Maidawa, F; Seke, P F E; Nanga, L D; Taiwe, G S; Dimo, T; Njikam, Njifutie; Rakotonirina, A; Rakotonirina, S V; Kamanyi, A

    2011-01-01

    Afrormosia laxiflora (A. laxiflora), Chenopodium ambrosioides (C. ambrosioides), Microglossa pyrifolia (M. pyrifolia) and Mimosa pudica (M. pudica) are plants used in traditional medicine in Cameroon to treat insomnia, epilepsy, anxiety, and agitation. They were evaluated for their anxiolytic like activity in mice. Animal models (elevated plus maze and stress-induced hyperthermia tests) were used. The four plants showed anxiolytic activity. In stress-induced hyperthermia test, A. laxiflora, C. ambrosioides, M. pyrifolia and M. pudica significantly antagonised the increase of temperature. ΔT° decreased from 0.75°C in the control group to 0.36°C at the dose of 110 mg/kg for A. laxiflora; from 1°C in the control group to -1.1°C at the dose of 120 mg/kg for C. ambrosioides; from 1.7°C in the control group to 0.2°C at the dose of 128 mg/kg for M. pyrifolia and from 1.3°C in the control group to 0.5°C at the dose of 180 mg/kg for M. pudica. In the elevated plus maze test, the four plants increased the number of entries into, percentage of entries into, and percentage of time in open arms. A. laxiflora, C. ambrosioides and M. pudica also reduced the percentage of entries and time in closed arms. In addition, C. ambrosioides, M. pyrifolia and M. pudica showed antipyretic activity by reducing the body temperature. The results suggested that C. ambrosioides, M. pyrifolia and M. pudica posses anxiolytic-like and antipyretic activities while A. laxiflora possesses only anxiolytic-like properties. These plants could be helpful in the treatment of anxiety and fever in traditional medicine in Cameroon.

  14. GROWING SEEDS, TEACHER'S GUIDE.

    ERIC Educational Resources Information Center

    Elementary Science Study, Newton, MA.

    THIS TEACHER'S GUIDE IS DESIGNED FOR USE WITH AN ELEMENTARY SCIENCE STUDY UNIT, "GROWING SEEDS," IN WHICH SUCH BASIC SCIENCE SKILLS AND PROCESSES AS MEASUREMENT, OBSERVATION, AND HYPOTHESIS FORMATION ARE INTRODUCED THROUGH STUDENT ACTIVITIES INVOLVING SEEDS, GERMINATION, AND SEEDLING GROWTH. THE MATERIALS WERE DEVELOPED FOR USE IN…

  15. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  16. Climate change in winter versus the growing-season leads to different effects on soil microbial activity in northern hardwood forests

    NASA Astrophysics Data System (ADS)

    Sorensen, P. O.; Templer, P. H.; Finzi, A.

    2014-12-01

    Mean winter air temperatures have risen by approximately 2.5˚ C per decade over the last fifty years in the northeastern U.S., reducing the maximum depth of winter snowpack by approximately 26 cm over this period and the duration of winter snow cover by 3.6 to 4.2 days per decade. Forest soils in this region are projected to experience a greater number of freeze-thaw cycles and lower minimum winter soil temperatures as the depth and duration of winter snow cover declines in the next century. Climate change is likely to result not only in lower soil temperatures during winter, but also higher soil temperatures during the growing-season. We conducted two complementary experiments to determine how colder soils in winter and warmer soils in the growing-season affect microbial activity in hardwood forests at Harvard Forest, MA and Hubbard Brook Experimental Forest, NH. A combination of removing snow via shoveling and buried heating cables were used to induce freeze-thaw events during winter and to warm soils 5˚C above ambient temperatures during the growing-season. Increasing the depth and duration of soil frost via snow-removal resulted in short-term reductions in soil nitrogen (N) production via microbial proteolytic enzyme activity and net N mineralization following snowmelt, prior to tree leaf-out. Declining mass specific rates of carbon (C) and N mineralization associated with five years of snow removal at Hubbard Brook Experimental Forest may be an indication of microbial physiological adaptation to winter climate change. Freeze-thaw cycles during winter reduced microbial extracellular enzyme activity and the temperature sensitivity of microbial C and N mineralization during the growing-season, potentially offsetting nutrient and soil C losses due to soil warming in the growing-season. Our multiple experimental approaches show that winter climate change is likely to contribute to reduced microbial activity in northern hardwood forests.

  17. Screening of Uruguayan plants for deterrent activity against insects.

    PubMed

    Castillo, Lucía; González-Coloma, Azucena; González, Andrés; Díaz, Martina; Santos, Estela; Alonso-Paz, Eduardo; Bassagoda, María Julia; Rossini, Carmen

    2009-01-01

    We evaluated the anti-insectan activity of extracts from different vegetative parts of ten plant species native to Uruguay. The selected plants belong to five families: Bignoniaceae: Clytostoma callistegioides, Dolichandra cynanchoides, Macfadyena unguis-cati; Sapindaceae: Dodonaea viscosa, Allophylus edulis, Serjania meridionalis; Lamiaceae: Salvia procurrens, Salvia guaranitica; Solanaceae: Lycium cestroides; and Phytolaccaceae: Phytolacca dioica. The extracts were evaluated in independent bioassays against four insect pests and one beneficial insect. Aphid settling inhibition was evaluated with a grass specialist, Rhopalosiphum padi, and a feeding generalist, Myzus persicae (both Hemiptera: Aphididae). Antifeedant activity was tested with adults of the specialist Epilachna paenulata (Coleoptera: Coccinellidae) and larvae of the generalist Spodoptera littoralis (Lepidoptera: Noctuidae). Finally, contact toxicity was assessed with honey bees, Apis mellifera (Hymenoptera: Apidae). Strong settling inhibition (SI) activity (expressed as %SI, where 100% means complete inhibition by the extract) was found only for the twig extracts of A. edulis (Sapindaceae) against M. persicae (% SI = 77 +/- 4). Antifeedant activity (expressed as % of feeding reduction (FR), where 100% means no consumption on extract-treated diet) against E. paenulata was significant for the leaf extracts of L. cestroides (Solanaceae) (% FR = 100 +/- 0) as well as of all Bignoniaceae and Sapindaceae species. No extracts were active against S. littoralis larvae, and most of them were innocuous to honey bees, with the exception of L. cestroides and S. meridionalis leaf extracts.

  18. Screening of Uruguayan plants for deterrent activity against insects

    PubMed Central

    Castillo, Lucía; González-Coloma, Azucena; González, Andrés; Díaz, Martina; Santos, Estela; Alonso-Paz, Eduardo; Bassagoda, María Julia; Rossini, Carmen

    2009-01-01

    We evaluated the anti-insectan activity of extracts from different vegetative parts of ten plant species native to Uruguay. The selected plants belong to five families: Bignoniaceae: Clytostoma callistegioides, Dolichandra cynanchoides, Macfadyena unguis-cati; Sapindaceae: Dodonaea viscosa, Allophylus edulis, Serjania meridionalis; Lamiaceae: Salvia procurrens, Salvia guaranitica; Solanaceae: Lycium cestroides; and Phytolaccaceae: Phytolacca dioica. The extracts were evaluated in independent bioassays against four insect pests and one beneficial insect. Aphid settling inhibition was evaluated with a grass specialist, Rhopalosiphum padi, and a feeding generalist, Myzus persicae (both Hemiptera: Aphididae). Antifeedant activity was tested with adults of the specialist Epilachna paenulata (Coleoptera: Coccinellidae) and larvae of the generalist Spodoptera littoralis (Lepidoptera: Noctuidae). Finally, contact toxicity was assessed with honey bees, Apis mellifera (Hymenoptera: Apidae). Strong settling inhibition (SI) activity (expressed as %SI, where 100% means complete inhibition by the extract) was found only for the twig extracts of A. edulis (Sapindaceae) against M. persicae (% SI = 77 ± 4). Antifeedant activity (expressed as % of feeding reduction (FR), where 100% means no consumption on extract-treated diet) against E. paenulata was significant for the leaf extracts of L. cestroides (Solanaceae) (% FR = 100 ± 0) as well as of all Bignoniaceae and Sapindaceae species. No extracts were active against S. littoralis larvae, and most of them were innocuous to honey bees, with the exception of L. cestroides and S. meridionalis leaf extracts. PMID:20046902

  19. Linking economic activities to the distribution of exotic plants.

    PubMed

    Taylor, Brad W; Irwin, Rebecca E

    2004-12-21

    The human enterprise is flooding Earth's ecosystems with exotic species. Human population size is often correlated with species introductions, whereas more proximate mechanisms, such as economic activities, are frequently overlooked. Here we present a hypothesis that links ecology and economics to provide a causal framework for the distribution of exotic plants in the United States. We test two competing hypotheses (the population-only and population-economic models) using a national data set of exotic plants, employing a statistical framework to simultaneously model direct and indirect effects of human population and ecological and economic variables. The population-only model included direct effects of human population and ecological factors as predictors of exotics. In contrast, the population-economic model included the direct effects of economic and ecological factors and the indirect effects of human population as predictors of exotics. The explicit addition of economic activity in the population-economic model provided a better explanation for the distribution of exotics than did the population-only model. The population-economic model explained 75% of the variation in the number of exotic plants in the 50 states and provided a good description of the observed number of exotic plants in the Canadian provinces and in other nations in 85% of the cases. A specific economic activity, real estate gross state product, had the strongest positive effect on the number of exotics. The strong influence of economics on exotics demonstrates that economics matter for resolving the exotic-species problem because the underlying causes, and some of the solutions, may lie in human-economic behaviors.

  20. Hydrogen as an activating fuel for a tidal power plant

    NASA Astrophysics Data System (ADS)

    Gorlov, A. M.

    Tidal projects, offering a clean, inexhaustible, and fairly predictable energy source, require a system for accumulating energy for off-peak periods. Hydrogen produced by electrolysis during off-peak power plant operation can be used as an activating fuel to furnish the plant during peak load demands. Tidal energy is converted into compressed air energy by special chambers on the ocean bed. This compressed air can be heated by combustion of the stored hydrogen and expanded through high speed gas turbine generators. For off-peak periods, the energy of non-heated compressed air is used for the production of hydrogen fuel. The amount of fuel produced at this time is enough for power plant operation during two peak hours, with three times greater plant capacity. The hydrogen fuel storage method does have energy losses and requires extra capital investment for electrolysis and hydrogen storage equipment. It does not, however, require a gas turbine oil fuel, as does the air compressed storage method, nor a low-speed heavy hydro-turbine, as does the hydro-pumped method. Moreover, the gas turbine can be used for both production and consumption of hydrogen fuel.

  1. Plant cysteine proteases that evoke itch activate protease-activated receptors

    PubMed Central

    Reddy, V.B.; Lerner, E.A.

    2013-01-01

    Background Bromelain, ficin and papain are cysteine proteases from plants that produce itch upon injection into skin. Their mechanism of action has not been considered previously. Objectives To determine the mechanism by which these proteases function. Methods The ability of these proteases to activate protease-activated receptors was determined by ratiometric calcium imaging. Results We show here that bromelain, ficin and papain activate protease-activated receptors 2 and 4. Conclusions Bromelain, ficin and papain function as signalling molecules and activate protease-activated receptors. Activation of these receptors is the likely mechanism by which these proteases evoke itch. PMID:20491769

  2. [Peculicidal activity of plant essential oils and their based preparations].

    PubMed

    Lopatina, Iu V; Eremina, O Iu

    2014-01-01

    The peculicidal activity of eight plant essential oils in 75% isopropyl alcohol was in vitro investigated. Of them, the substances that were most active against lice were tea tree (Melaleuca), eucalyptus, neem, citronella (Cymbopogon nardus), and clove (Syzygium aromaticum) oils; KT50 was not more than 3 minutes on average; KT95 was 4 minutes. After evaporating the solvent, only five (tea tree, cassia, clove, anise (Anisum vulgare), and Japanese star anise (Illicium anisatum) oils) of the eight test botanical substances were active against lice. At the same time, KT50 and KT95 showed 1.5-5-fold increases. Citronella and anise oils had incomplete ovicidal activity. Since the lice were permethrin-resistant, the efficacy of preparations based on essential oils was much higher than permethrin.

  3. Antimycobacterial and cytotoxic activity of selected medicinal plant extracts

    PubMed Central

    Nguta, Joseph M.; Appiah-Opong, Regina; Nyarko, Alexander K.; Yeboah-Manu, Dorothy; Addo, Phyllis G.A.; Otchere, Isaac; Kissi-Twum, Abena

    2016-01-01

    Ethnopharmacological relevance Tuberculosis (TB) caused by Mycobacterium tuberculosis remains an ongoing threat to human health. Several medicinal plants are used traditionally to treat tuberculosis in Ghana. The current study was designed to investigate the antimycobacterial activity and cytotoxicity of crude extracts from five selected medicinal plants. Material and methods The microplate alamar blue assay (MABA) was used for antimycobacterial studies while the CellTiter 96® AQueous Assay, which is composed of solutions of a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine methosulfate) PMS, was used for cytotoxic studies. Correlation coefficients were used to compare the activity of crude extracts against nonpathogenic strains and the pathogenic Mycobacterium tuberculosis subsp.tuberculosis. Results Results of the MIC determinations indicated that all the crude extracts were active on all the three tested mycobacterial strains. Minimum inhibitory concentration values as low as 156.3 µg/mL against M. tuberculosis; Strain H37Ra (ATCC® 25,177™) were recorded from the leaves of Solanum torvum Sw. (Solanaceae). Cytotoxicity of the extracts varied, and the leaves from S. torvum had the most promising selectivity index. Activity against M. tuberculosis; Strain H37Ra was the best predictor of activity against pathogenic Mycobacterium tuberculosis subsp.tuberculosis (correlation coefficient=0.8). Conclusion The overall results of the present study provide supportive data on the use of some medicinal plants for tuberculosis treatment. The leaves of Solanum torvum are a potential source of anti-TB natural products and deserve further investigations to develop novel anti-TB agents against sensitive and drug resistant strains of M. tuberculosis. PMID:26875647

  4. Antitrypanosomal activity of some medicinal plants from Nigerian ethnomedicine.

    PubMed

    Abiodun, Oyindamola O; Gbotosho, Grace O; Ajaiyeoba, Edith O; Brun, Reto; Oduola, Ayoade M

    2012-02-01

    Human African trypanosomiasis is a neglected tropical disease with complex clinical presentation, diagnosis, and difficult treatment. The available drugs for the treatment of trypanosomiasis are old, expensive, and less effective, associated with severe adverse reactions and face the problem of drug resistance. This situation underlines the urgent need for the development of new, effective, cheap, and safe drugs for the treatment of trypanosomiasis. The search for new antitrypanosomal agents in this study is based on ethnomedicine. In vitro antitrypanosomal activity of 36 plant extracts from 10 plant species from Nigerian ethnomedicine was evaluated against bloodstream forms of Trypanosoma brucei rhodesiense STIB 900. Cytotoxic activity was determined against mammalian L6 cells. Alamar blue assay was used to measure the endpoint of both antitrypanosomal and toxicity assays. The ethyl acetate extract of leaves of Ocimum gratissimum Linn. (Labiatae) showed the highest antitrypanosomal activity (IC(50) of 2.08 ± 0.01 μg/ml) and a high selective index of 29. Furthermore, the hexane, ethyl acetate, or methanol extracts of Trema orientalis (L.) Blume (Ulmaceae), Pericopsis laxiflora (Benth. ex Baker) Meeuwen, Jatropha curcas Linn. (Euphorbiaceae), Terminalia catappa Linn. (Combretaceae), and Vitex doniana Sweet (Verbenaceae) displayed remarkable antitrypanosomal activity (IC(50) 2.1-17.2 μg/ml) with high selectivity indices (20-80) for trypanosomes. The antitrypanosomal activity of T. catappa and T. orientalis against T. brucei rhodesiense (STIB 900) is being reported for the first time in Nigerian ethnomedicine, and these plants could be a potential source of antitrypanosomal agents.

  5. Complex effects of fertilization on plant and herbivore performance in the presence of a plant competitor and activated carbon.

    PubMed

    Mahdavi-Arab, Nafiseh; Meyer, Sebastian T; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2014-01-01

    Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant's growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance to investigate both

  6. Plants from Brazilian Cerrado with Potent Tyrosinase Inhibitory Activity

    PubMed Central

    Souza, Paula Monteiro; Elias, Silvia Taveira; Simeoni, Luiz Alberto; de Paula, José Elias; Gomes, Sueli Maria; Guerra, Eliete Neves Silva; Fonseca, Yris Maria; Silva, Elton Clementino; Silveira, Dâmaris; Magalhães, Pérola Oliveira

    2012-01-01

    The increased amount of melanin leads to skin disorders such as age spots, freckles, melasma and malignant melanoma. Tyrosinase is known to be the key enzyme in melanin production. Plants and their extracts are inexpensive and rich resources of active compounds that can be utilized to inhibit tyrosinase as well as can be used for the treatment of dermatological disorders associated with melanin hyperpigmentation. Using in vitro tyrosinase inhibitory activity assay, extracts from 13 plant species from Brazilian Cerrado were evaluated. The results showed that Pouteria torta and Eugenia dysenterica extracts presented potent in vitro tyrosinase inhibition compared to positive control kojic acid. Ethanol extract of Eugenia dysenterica leaves showed significant (p<0.05) tyrosinase inhibitory activity exhibiting the IC50 value of 11.88 µg/mL, compared to kojic acid (IC50 value of 13.14 µg/mL). Pouteria torta aqueous extract leaves also showed significant inhibitory activity with IC50 value of 30.01 µg/mL. These results indicate that Pouteria torta and Eugenia dysenterica extracts and their isolated constituents are promising agents for skin-whitening or antimelanogenesis formulations. PMID:23173036

  7. Simultaneous monitoring of electrical capacitance and water uptake activity of plant root system

    NASA Astrophysics Data System (ADS)

    Cseresnyés, Imre; Takács, Tünde; Füzy, Anna; Rajkai, Kálmán

    2014-10-01

    Pot experiments were designed to test the applicability of root electrical capacitance measurement for in situ monitoring of root water uptake activity by growing cucumber and bean cultivars in a growth chamber. Half of the plants were inoculated with Funneliformis mosseae arbuscular mycorrhizal fungi, while the other half served as non-infected controls. Root electrical capacitance and daily transpiration were monitored during the whole plant ontogeny. Phenology-dependent changes of daily transpiration (related to root water uptake) and root electrical capacitance proved to be similar as they showed upward trends from seedling emergence to the beginning of flowering stage, and thereafter decreased continuously during fruit setting. A few days after arbuscular mycorrhizal fungi-colonization, daily transpiration and root electrical capacitance of infected plants became significantly higher than those of non-infected counterparts, and the relative increment of the measured parameters was greater for the more highly mycorrhizal-dependent bean cultivar compared to that of cucumber. Arbuscular mycorrhizal fungi colonization caused 29 and 69% relative increment in shoot dry mass for cucumbers and beans, respectively. Mycorrhization resulted in 37% increase in root dry mass for beans, but no significant difference was observed for cucumbers. Results indicate the potential of root electrical capacitance measurements for monitoring the changes and differences of root water uptake rate.

  8. In vitro activity of Amazon plant extracts against Enterococcus faecalis

    PubMed Central

    de Castilho, Adriana Lígia; da Silva, Juliana Paola Correa; Saraceni, Cintia Helena Coury; Díaz, Ingrit Elida Collantes; Paciencia, Mateus Luís Barradas; Varella, Antonio Drauzio; Suffredini, Ivana Barbosa

    2014-01-01

    Previous studies analyzing 2,200 plant extracts indicated anti-enterococcal activity in 25 extracts obtained from Brazilian forests’ plants. In the present study, these extracts were subjected to microdilution broth assay (MDBA) and disk diffusion assay (DDA) using planktonic Enterococcus faecalis ATCC® 29212™ and were submitted to phytochemical analysis in TLC and HPLC. Three extracts obtained from Ipomoea alba (MIC < 40 μg/mL), Diclinanona calycina (MIC ≤ 40 μg/mL) and Moronobea coccinea (40 < MIC < 80 μg/mL; MBC = 80 μg/mL) showed significant bactericidal activity in the MDBA and four extracts obtained from I. alba (14.04 ± 0.55 mm diameter) S. globulifera (14.43 ± 0.33 mm and 12.18 ± 0.28 mm diameter) and Connarus ruber var. ruber (13.13 ± 0.18 mm diameter) were active in DDA. Residues H2O obtained from Psidium densicomum (mean of 16.78 mm diameter) and from Stryphnodendron pulcherrimum (mean of 15.97 mm diameter) have shown an improved antibacterial activity after fractionation if compared to that obtained from the respective crude extracts. Antioxidant activity was observed in some residues of the active extracts. TLC analysis showed that phenolic compounds are likely to be found in active extracts. Three molecules were isolated from S. globulifera and were identified by 13C NMR lupeol, α-amyrin and 3β-hydroxyglutin-5-ene. The present chemical and biological findings suggest that these extracts are a potential source of new anti-Enterococcus compounds to be introduced in endodontic therapy. PMID:25477906

  9. Application of power plant flue gas in a photobioreactor to grow Spirulina algae, and a bioactivity analysis of the algal water-soluble polysaccharides.

    PubMed

    Chen, Hsiao-Wei; Yang, Tsung-Shi; Chen, Mao-Jing; Chang, Yu-Ching; Lin, Chai-Yi; Wang, Eugene I-Chen; Ho, Chen-Lung; Huang, Kue-Ming; Yu, Chi-Cheng; Yang, Feng-Ling; Wu, Shih-Hsiung; Lu, Ying-Chen; Chao, Louis Kuop-Ping

    2012-09-01

    A novel photobioreactor was developed with a total volume of 30 m(3) which required merely 100 m(3) of land footprint. The bioreactor was capable of utilizing CO(2) in the flue gas of a power plant as the carbon source for the growth of a freshwater alga, Spirulina platensis, mitigating the greenhouse effect caused by the same amount of CO(2) discharge. Results of the study indicated that the photobioreactor was capable of fixing 2,234 kg of CO(2) per annum. Upon deducting the energy consumption of operating the bioreactor unit, the estimated amount of CO(2) to be fixed by a scaled-up reactor would be 74 tons ha(-1)year(-1). In addition, the study prove that protein-free polysaccharides of S. platensis could induce the production of pro-IL-1 and IL-1 proteins through the mediation of ERK, JNK, and p38 MAPKs pathways. As a consequence, immunogenic activities of the macrophage cells were enhanced.

  10. Lysozyme- and chitinase activity in latex bearing plants of genus Euphorbia--A contribution to plant defense mechanism.

    PubMed

    Sytwala, Sonja; Günther, Florian; Melzig, Matthias F

    2015-10-01

    Occurrence of latices in plants is widespread, there are 40 families of plants characterized to establish lactiferous structures. Latices exhibit a constitutive part of plant defense due to the stickiness. The appearance of proteins incorporated in latices is well characterized, and hydrolytic active proteins are considerable. A lot of plants constitute so-called pathogenesis-related (PR) proteins, to overcome stressful conditions. In our investigation we are focused on latex bearing plants of Euphorbiaceae Juss., and investigated the appearance of chitinase- and lysozyme activity in particular. The present outcomes represent a comprehensive study, relating to the occurrence of lysozyme and chitinase activity of genus Euphorbia at the first time. 110 different species of genus Euphorbia L. were tested, and the appearance of chitinase and lysozyme were determined in different quantities. The appearance itself, and the physicochemical properties of latices indicate an efficient interaction for plant defense against pathogen attack.

  11. Ecotoxicological effects of copper and selenium combined pollution on soil enzyme activities in planted and unplanted soils.

    PubMed

    Hu, Bin; Liang, Dongli; Liu, Juanjuan; Xie, Junyu

    2013-04-01

    The present study explored the joint effects of Cu and Se pollution mechanisms on soil enzymes to provide references for the phytoremediation of contaminated areas and agricultural environmental protection. Pot experiments and laboratory analyses were carried out to study the individual and combined influences of Cu and Se on soil enzyme activities. The activities of four soil enzymes (urease, catalase, alkaline phosphatase, and nitrate reductase) were chosen. All soil enzyme activities tested were inhibited by Cu and Se pollution, either individually or combined, in varying degrees, following the order nitrate reductase>urease>catalase>alkaline phosphatase. Growing plants stimulated soil enzyme activity in a similar trend compared with treatments without plants. The joint effects of Cu and Se on catalase activity showed synergism at low concentrations and antagonism at high concentrations, whereas the opposite was observed for urease activity. However, nitrate reductase activity showed synergism both with and without plant treatments. The half maximal effective concentration (EC50) of exchangeable fractions had a similar trend with the EC50 of total content and was lower than that of total content. The EC50 values of nitrate reductase and urease activities were significantly lower for both Se and Cu (p<0.05), which indicated that they were more sensitive than the other two enzymes.

  12. Antibacterial activity of essential oils from Australian native plants.

    PubMed

    Wilkinson, Jenny M; Cavanagh, Heather M A

    2005-07-01

    To date, of the Australian essential oils, only tea tree (Melaleuca alternifolia) and Eucalyptus spp. have undergone extensive investigation. In this study a range of Australian essential oils, including those from Anethole anisata, Callistris glaucophyllia, Melaleuca spp. and Thyptomine calycina, were assayed for in vitro antibacterial activity. M. alternifolia was also included for comparison purposes. Activity was determined using standard disc diffusion assays with each oil assayed at 100%, 10% and 1% against five bacteria (Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa and Alcaligenes faecalis) and the yeast, Candida albicans. All bacteria, with the exception of Ps. aeruginosa, were susceptible to one or more of the essential oils at 100%, with only Eremophilia mitchelli inhibiting the growth of any bacteria at 1% (inhibition of Sal. typhimurium). Where multiple samples of a single oil variety were tested variability in activity profiles were noted. This suggests that different methods of preparation of essential oils, together with variability in plant chemical profiles has an impact on whether or not the essential oil is of use as an antimicrobial agent. These results show that essential oils from Australian plants may be valuable antimicrobial agents for use alone or incorporated into cosmetics, cleaning agents and pharmaceutical products.

  13. An enzyme activity capable of endotransglycosylation of heteroxylan polysaccharides is present in plant primary cell walls.

    PubMed

    Johnston, Sarah L; Prakash, Roneel; Chen, Nancy J; Kumagai, Monto H; Turano, Helen M; Cooney, Janine M; Atkinson, Ross G; Paull, Robert E; Cheetamun, Roshan; Bacic, Antony; Brummell, David A; Schröder, Roswitha

    2013-01-01

    Heteroxylans in the plant cell wall have been proposed to have a role analogous to that of xyloglucans or heteromannans, forming growth-restraining networks by interlocking cellulose microfibrils. A xylan endotransglycosylase has been identified that can transglycosylate heteroxylan polysaccharides in the presence of xylan-derived oligosaccharides. High activity was detected in ripe fruit of papaya (Carica papaya), but activity was also found in a range of other fruits, imbibed seeds and rapidly growing seedlings of cereals. Xylan endotransglycosylase from ripe papaya fruit used a range of heteroxylans, such as wheat arabinoxylan, birchwood glucuronoxylan and various heteroxylans from dicotyledonous primary cell walls purified from tomato and papaya fruit, as donor molecules. As acceptor molecules, the enzyme preferentially used xylopentaitol over xylohexaitol or shorter-length acceptors. Xylan endotransglycosylase was active over a broad pH range and could perform transglycosylation reactions up to 55 °C. Xylan endotransglycosylase activity was purified from ripe papaya fruit by ultrafiltration and cation exchange chromatography. Highest endotransglycosylase activity was identified in fractions that also contained high xylan hydrolase activity and correlated with the presence of the endoxylanase CpaEXY1. Recombinant CpaEXY1 protein transiently over-expressed in Nicotiana benthamiana leaves showed both endoxylanase and xylan endotransglycosylase activities in vitro, suggesting that CpaEXY1 is a single enzyme with dual activity in planta. Purified native CpaEXY1 showed two- to fourfold higher endoxylanase than endotransglycosylase activity, suggesting that CpaEXY1 may act primarily as a hydrolase. We propose that xylan endotransglycosylase activity (like xyloglucan and mannan endotransglycosylase activities) could be involved in remodelling or re-arrangement of heteroxylans of the cellulose-non-cellulosic cell wall framework.

  14. In vitro antibacterial activity of some plant essential oils

    PubMed Central

    Prabuseenivasan, Seenivasan; Jayakumar, Manickkam; Ignacimuthu, Savarimuthu

    2006-01-01

    Background: To evaluate the antibacterial activity of 21 plant essential oils against six bacterial species. Methods: The selected essential oils were screened against four gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris) and two gram-positive bacteria Bacillus subtilis and Staphylococcus aureus at four different concentrations (1:1, 1:5, 1:10 and 1:20) using disc diffusion method. The MIC of the active essential oils were tested using two fold agar dilution method at concentrations ranging from 0.2 to 25.6 mg/ml. Results: Out of 21 essential oils tested, 19 oils showed antibacterial activity against one or more strains. Cinnamon, clove, geranium, lemon, lime, orange and rosemary oils exhibited significant inhibitory effect. Cinnamon oil showed promising inhibitory activity even at low concentration, whereas aniseed, eucalyptus and camphor oils were least active against the tested bacteria. In general, B. subtilis was the most susceptible. On the other hand, K. pneumoniae exhibited low degree of sensitivity. Conclusion: Majority of the oils showed antibacterial activity against the tested strains. However Cinnamon, clove and lime oils were found to be inhibiting both gram-positive and gram-negative bacteria. Cinnamon oil can be a good source of antibacterial agents. PMID:17134518

  15. In vitro antiviral activity of plant extracts from Asteraceae medicinal plants

    PubMed Central

    2013-01-01

    Background Due to the high prevalence of viral infections having no specific treatment and the constant appearance of resistant viral strains, the development of novel antiviral agents is essential. The aim of this study was to evaluate the antiviral activity against bovine viral diarrhea virus, herpes simplex virus type 1 (HSV-1), poliovirus type 2 (PV-2) and vesicular stomatitis virus of organic (OE) and aqueous extracts (AE) from: Baccharis gaudichaudiana, B. spicata, Bidens subalternans, Pluchea sagittalis, Tagetes minuta and Tessaria absinthioides. A characterization of the antiviral activity of B. gaudichaudiana OE and AE and the bioassay-guided fractionation of the former and isolation of one active compound is also reported. Methods The antiviral activity of the OE and AE of the selected plants was evaluated by reduction of the viral cytopathic effect. Active extracts were then assessed by plaque reduction assays. The antiviral activity of the most active extracts was characterized by evaluating their effect on the pretreatment, the virucidal activity and the effect on the adsorption or post-adsorption period of the viral cycle. The bioassay-guided fractionation of B. gaudichaudiana OE was carried out by column chromatography followed by semipreparative high performance liquid chromatography fractionation of the most active fraction and isolation of an active compound. The antiviral activity of this compound was also evaluated by plaque assay. Results B. gaudichaudiana and B. spicata OE were active against PV-2 and VSV. T. absinthioides OE was only active against PV-2. The corresponding three AE were active against HSV-1. B. gaudichaudiana extracts (OE and AE) were the most selective ones with selectivity index (SI) values of 10.9 (PV-2) and >117 (HSV-1). For this reason, both extracts of B. gaudichaudiana were selected to characterize their antiviral effects. Further bioassay-guided fractionation of B. gaudichaudiana OE led to an active fraction, FC (EC50

  16. Impact of defoliation intensities on plant biomass, nutrient uptake and arbuscular mycorrhizal symbiosis in Lotus tenuis growing in a saline-sodic soil.

    PubMed

    García, I; Mendoza, R

    2012-11-01

    The impact of different defoliation intensities on the ability of Lotus tenuis plants to regrowth, mobilise nutrients and to associate with native AM fungi and Rhizobium in a saline-sodic soil was investigated. After 70 days, plants were subjected to 0, 25, 50, 75 and 100% defoliation and shoot regrowth was assessed at the end of subsequent 35 days. Compared to non-defoliated plants, low or moderate defoliation up to 75% did not affect shoot regrowth. However, 100% treatment affected shoot regrowth and the clipped plants were not able to compensate the growth attained by non-defoliated plants. Root growth was more affected by defoliation than shoot growth. P and N concentrations in shoots and roots increased with increasing defoliation while Na(+) concentration in shoots of non-defoliated and moderately defoliated plants was similar. Non-defoliated and moderately defoliated plants prevented increases of Na(+) concentration in shoots through both reducing Na(+) uptake and Na(+) transport to shoots by accumulating Na(+) in roots. At high defoliation, the salinity tolerance mechanism is altered and Na(+) concentration in shoots was higher than in roots. Reduction in the photosynthetic capacity induced by defoliation neither changed the root length colonised by AM fungi nor arbuscular colonisation but decreased the vesicular colonisation. Spore density did not change, but hyphal density and Rhizobium nodules increased with defoliation. The strategy of the AM symbiont consists in investing most of the C resources to preferentially retain arbuscular colonisation as well as inoculum density in the soil.

  17. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    PubMed

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  18. Anti-carcinogenic activity of Taraxacum plant. I.

    PubMed

    Takasaki, M; Konoshima, T; Tokuda, H; Masuda, K; Arai, Y; Shiojima, K; Ageta, H

    1999-06-01

    An extract of the roots of Taraxacum japonicum (Compositae) exhibited strong anti-tumor-promoting activities on the two-stage carcinogenesis of mouse skin tumor induced by dimethylbenz[a] anthracene (DMBA) as an initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter, as well as on that induced by DMBA and fumonisin B1. Further, the extract exhibited anti-tumor-initiating activity on the two-stage carcinogenesis of mouse skin tumor induced by (+/-)-(E)-methyl-2-[(E)-hydroxyimino]-5-nitro-6-methoxy-3-hexen amide (NOR-1) as an initiator and TPA as a promoter. These results suggested that an extract of the roots of the Taraxacum plant could be a valuable chemopreventive agent against chemical carcinogenesis.

  19. Aquaponics: What a Way to Grow! Fifth Graders Design Systems for Fish and Plants While Exploring Human Impacts on the Environment

    ERIC Educational Resources Information Center

    Gillan, Amy; Raja, Shella

    2016-01-01

    In light of increasing populations and dwindling natural resources, elementary teachers play a crucial role in ensuring children understand and commit to more sustainable lifestyles. Climate change, growing pressures on global fisheries, and the harmful effects of traditional agricultural methods exacerbate this call. Coupled with this emphasis is…

  20. Assessment of endotoxin activity in wastewater treatment plants.

    PubMed

    Guizani, Mokhtar; Dhahbi, Mahmoud; Funamizu, Naoyuki

    2009-07-01

    Endotoxic material, commonly associated to biological reactions, is thought to be one of the most important constituents in water. This has become a very important topic because of the common interest in microbial products governed by the possible shift to water reuse for drinking purposes. In this light, this study was conducted to provide an assessment of endotoxic activity in reclaimed wastewater. A bacterial endotoxin test (LAL test) was applied to water samples from several wastewater treatment plants (WWTP) in Sapporo, Japan keeping in view the seasonal variation. Samples were taken from several points in WWTP (influent, effluent, return sludge, advanced treatment effluent). The findings of this study indicated that wastewater shows high endotoxin activity. The value of Endotoxin (Endo) to COD ratio in the effluent is usually higher than that of the influent. Moreover, it is found that wastewater contains initially endotoxic active material. Some of those chemicals are biodegradable and but most of them are non-biodegradable. Batch scale activated sludge studies were undertaken to understand the origin of endotoxic active material in the effluent. This study showed that those chemicals are mainly produced during biological reactions, more precisely during decay process. Moreover, raw wastewater (RWW) contains high amounts of organic matter having endotoxicity which remains in the effluent.

  1. Plant material as bioaccumulator of arsenic in soils affected by mining activities

    NASA Astrophysics Data System (ADS)

    Martínez-López, Salvadora; Martínez-Sánchez, Maria Jose; García-Lorenzo, Maria Luz; Pérez-Sirvent, Carmen

    2010-05-01

    Heavy metal contamination is an important environmental problem, since the metals are harmful to humans, animals and tend to bioaccumulate in the food chain. The aim of this study was to determine the total concentration of As, As (III) and As(V) in soil samples, leaves and roots of plant material, growing in a mining area in Spain (Murcia). Ditichia viscosa was used as the plant of reference. The concentrations of bioavailable As in plant samples were calculated by different soil chemical extraction methods; deionized water, 0.5N NaHCO3 (Olsen extraction), oxidizable medium, 0.5 HCl, 0.05M (NH4)2SO4, 0.005M DTPA and Mehra-Jackson extraction. For this study, fourteen samples were collected in the surrounding area of Sierra Minera and Portman Bay (Murcia, SE Spain). Samples were air dried and sieved to < 2mm for general analytical determinations. To determine the As content, soil samples were first ground to a fine powder using an agate ball mill. Fresh vegetable samples were separated into root and aboveground biomass and then lyophilized. Arsenic levels were obtained by using atomic fluorescence spectrometry with an automated continuous flow hydride generation (HG-AFS) spectrometer. Samples showed pH average values close to neutrality. Most samples showed a very low organic matter percentage. Electrical conductivity and calcium carbonate content were considerably low in most samples. The mineralogical analysis showed that the main minerals were quartz, muscovite, kaolinite and illite, while the minority minerals were alteration products derived of mining activities (iron oxides and hydroxides, siderite, jarosite and gypsum), calcite and feldspars. Although the plants do not absorb arsenic in the same proportion, the results suggest that a good relationship exists between the total content of As in soil and the total content in plant. The results showed that the arsenic content in roots was positively correlated with the oxidizable-organic matter and sulfides

  2. Structure-function relations of strigolactone analogs: activity as plant hormones and plant interactions.

    PubMed

    Cohen, Maja; Prandi, Cristina; Occhiato, Ernesto G; Tabasso, Silvia; Wininger, Smadar; Resnick, Nathalie; Steinberger, Yosef; Koltai, Hinanit; Kapulnik, Yoram

    2013-01-01

    Strigolactones (SLs) have several functions as signaling molecules in their interactions with symbiotic arbuscular mycorrhizal (AM) fungi and the parasitic weeds Orobanche and Striga. SLs are also a new class of plant hormone regulating plant development. In all three organisms, a specific and sensitive receptor-mediated perception system is suggested. By comparing the activity of synthetic SL analogs on Arabidopsis root-hair elongation, Orobanche aegyptiaca seed germination, and hyphal branching of the AM fungus Glomus intraradices, we found that each of the tested organisms differs in its response to the various examined synthetic SL analogs. Structure-function relations of the SL analogs suggest substitutions on the A-ring as the cause of this variation. Moreover, the description of competitive antagonistic analogs suggests that the A-ring of SL can affect not only affinity to the receptor, but also the molecule's ability to activate it. The results support the conclusion that Arabidopsis, Orobanche, and AM fungi possess variations in receptor sensitivity to SL analogs, probably due to variation in SL receptors among the different species.

  3. Did trees grow up to the light, up to the wind, or down to the water? How modern high productivity colors perception of early plant evolution.

    PubMed

    Boyce, C Kevin; Fan, Ying; Zwieniecki, Maciej A

    2017-01-05

    Contents I. II. III. IV. V. Acknowledgements References SUMMARY: Flowering plants can be far more productive than other living land plants. Evidence is reviewed that productivity would have been uniformly lower and less CO2 -responsive before angiosperm evolution, particularly during the early evolution of vascular plants and forests in the Devonian and Carboniferous. This introduces important challenges because paleoecological interpretations have been rooted in understanding of modern angiosperm-dominated ecosystems. One key example is tree evolution: although often thought to reflect competition for light, light limitation is unlikely for plants with such low photosynthetic potential. Instead, during this early evolution, the capacities of trees for enhanced propagule dispersal, greater leaf area, and deep-rooting access to nutrients and the water table are all deemed more fundamental potential drivers than light.

  4. Antioxidant Content, Antioxidant Activity, and Antibacterial Activity of Five Plants from the Commelinaceae Family

    PubMed Central

    Tan, Joash Ban Lee; Yap, Wei Jin; Tan, Shen Yeng; Lim, Yau Yan; Lee, Sui Mae

    2014-01-01

    Commelinaceae is a family of herbaceous flowering plants with many species used in ethnobotany, particularly in South America. However, thus far reports of their bioactivity are few and far between. The primary aim of this study was to quantify the antioxidant and antibacterial activity of five Commelinaceae methanolic leaf extracts. The antioxidant content was evaluated by the total phenolic content (TPC), total tannin content (TTC), and total flavonoid content (TFC) assays. The antioxidant activities measured were DPPH free radical scavenging (FRS), ferric reducing power (FRP), and ferrous ion chelating (FIC); of the five plants, the methanolic leaf extract of Tradescantia zebrina showed the highest antioxidant content and activity, and exhibited antibacterial activity against six species of Gram-positive and two species of Gram-negative bacteria in a range of 5–10 mg/mL based on the broth microdilution method. PMID:26785239

  5. Postnatal growth hormone deficiency in growing rats causes marked decline in the activity of spinal cord acetylcholinesterase but not butyrylcholinesterase.

    PubMed

    Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail

    2012-11-01

    The effects of growth hormone (GH) deficiency on the developmental changes in the abundance and activity of cholinesterase enzymes were studied in the developing spinal cord (SC) of postnatal rats by measuring the specific activity of acetylcholinesterase (AChE), a marker for cholinergic neurons and their synaptic compartments, and butyrylcholinesterase (BuChE), a marker for glial cells and neurovascular cells. Specific activities of these two enzymes were measured in SC tissue of 21- and 90 day-old (P21, weaning age; P90, young adulthood) GH deficient spontaneous dwarf (SpDwf) mutant rats which lack anterior pituitary and circulating plasma GH, and were compared with SC tissue of normal age-matched control animals. Assays were carried out for AChE and BuChE activity in the presence of their specific chemical inhibitors, BW284C51 and iso-OMPA, respectively. Results revealed that mean AChE activity was markedly and significantly reduced [28% at P21, 49% at P90, (p<0.01)] in the SC of GH deficient rats compared to age-matched controls. GH deficiency had a higher and more significant effect on AChE activity of the older (P90) rats than the younger ones (P21) ones. In contrast, BuChE activity in SC showed no significant changes in GH deficient rats at either of the two ages studied. Results imply that, in the absence of pituitary GH, the postnatal proliferation of cholinergic synapses in the rat SC, a CNS structure, where AChE activity is abundant, is markedly reduced during both the pre- and postweaning periods; more so in the postweaning than preweaning ages. In contrast, the absence of any effects on BuChE activity implies that GH does not affect the development of non-neuronal elements, e.g., glia, as much as the neuronal and synaptic compartments of the developing rat SC.

  6. Antiplasmodial Activity of Some Medicinal Plants Used in Sudanese Folk-medicine.

    PubMed

    Ahmed, El-Hadi M; Nour, Bakri Y M; Mohammed, Yousif G; Khalid, Hassan S

    2010-02-04

    Ten plants indigenous to Sudan and of common use in Sudanese folk-medicine, were examined in vitro for antimalarial activity against schizonts maturation of Plasmodium falciparum, the major human malaria parasite. All plant samples displayed various antiplasmodial activity. Three plant extracts caused 100% inhibition of the parasite growth at concentrations of plant material active extracts that produced 100% inhibition of the parasite growth at concentration of plant material plant of Aristolochia bracteolata. The ten plants were phytochemically screened for their active constituents. The two most active plants showed the presence of sterols, alkaloids and tannins.

  7. Invertase activity of intact cells of Saccharomyces cerevisiae growing on sugar cane molasses. 1. Steady-state continuous culture tests

    SciTech Connect

    Vitolo, M.; Vairo, M.L.R.; Borzani, W.

    1985-08-01

    During the steady-state continuous culture of Saccharomyces cerevisiae on sugar cane blackstrap molasses under different experimental conditions, oscillatory variations of the invertase activity of the intact yeast cells were observed. The continuous morphological changes of the cells wall and of the periplasmic space affecting the interaction between invertase and sucrose molecules could be responsible by the observed oscillatory phenomena. The average invertase activity at the steady state is linearly correlated to the cell's growth rate.

  8. An ecophysiological study of plants growing on the fly ash deposits from the "Nikola Tesla-A" thermal power station in Serbia.

    PubMed

    Pavlović, Pavle; Mitrović, Miroslava; Djurdjević, Lola

    2004-05-01

    This ecophysiological research on the ash deposits from the "Nikola Tesla-A" thermal power station in Serbia covered 10 plant species (Tamarix gallica, Populus alba, Spiraea van-hauttei, Ambrosia artemisifolia, Amorpha fruticosa, Eupatorium cannabinum, Crepis setosa, Epilobium collinum, Verbascum phlomoides, and Cirsium arvense). This paper presents the results of a water regime analysis, photosynthetic efficiency and trace elements (B, Cu, Mn, Zn, Pb, and Cd) content in vegetative plant parts. Water regime parameters indicate an overall stability in plant-water relations. During the period of summer drought, photosynthetic efficiency (Fv/Fm) was low, ranging from 0.429 to 0.620 for all the species that were analyzed. An analysis of the tissue trace elements content showed a lower trace metal concentration in the plants than in the ash, indicating that heavy metals undergo major concentration during the combustion process and some are not readily taken up by plants. The Zn and Pb concentrations in all of the examined species were normal whereas Cu and Mn concentrations were in the deficiency range. Boron concentrations in plant tissues were high, with some species even showing levels of more than 100 microg/g (Populus sp., Ambrosia sp., Amorpha sp., and Cirsium sp.). The presence of Cd was not detected. In general, it can be concluded from the results of this research that biological recultivation should take into account the existing ecological, vegetation, and floristic potential of an immediate environment that is abundant in life forms and ecological types of plant species that can overgrow the ash deposit relatively quickly. Selected species should be adapted to toxic B concentrations with moderate demands in terms of mineral elements (Cu and Mn).

  9. See How They Grow.

    ERIC Educational Resources Information Center

    Bandy, Marlin Robert

    1983-01-01

    Describes laboratory activities which encourage students to develop and test hypotheses related to the effects of changing environmental factors on plant growth. Uniform (fair) testing and careful observation and measurement, supplemented by graphing, are emphasized as important in reaching valid conclusions. (JM)

  10. In Search of a Better Bean: A Simple Activity to Introduce Plant Biology

    ERIC Educational Resources Information Center

    Spaccarotella, Kim; James, Roxie

    2014-01-01

    Measuring plant stem growth over time is a simple activity commonly used to introduce concepts in growth and development in plant biology (Reid & Pu, 2007). This Quick Fix updates the activity and incorporates a real-world application: students consider possible effects of soil substrate and sunlight conditions on plant growth without needing…

  11. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet.

    PubMed

    Batistela, Emanuele; Pereira, Mayara Peron; Siqueira, Juliany Torres; Paula-Gomes, Silvia; Zanon, Neusa Maria; Oliveira, Eduardo Brandt; Navegantes, Luiz Carlos Carvalho; Kettelhut, Isis C; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda; Baviera, Amanda Martins

    2014-06-01

    The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.

  12. Growing and Growing: Promoting Functional Thinking with Geometric Growing Patterns

    ERIC Educational Resources Information Center

    Markworth, Kimberly A.

    2010-01-01

    Design research methodology is used in this study to develop an empirically-substantiated instruction theory about students' development of functional thinking in the context of geometric growing patterns. The two research questions are: (1) How does students' functional thinking develop in the context of geometric growing patterns? (2) What are…

  13. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    PubMed

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.

  14. Composition, antibacterial, antioxidant and antiproliferative activities of essential oils from three Origanum species growing wild in Lebanon and Greece.

    PubMed

    Marrelli, Mariangela; Conforti, Filomena; Formisano, Carmen; Rigano, Daniela; Arnold, Nelly Apostolides; Menichini, Francesco; Senatore, Felice

    2016-01-01

    The essential oils from Origanum dictamnus, Origanum libanoticum and Origanum microphyllum were analysed by GC-MS, finding carvacrol, p-cymene, linalool, γ-terpinene and terpinen-4-ol as major components. The antioxidant activity by the DPPH and FRAP tests and the antiproliferative activity against two human cancer cell lines, LoVo and HepG2, were investigated, showing that the essential oil of O. dictamnus was statistically the most inhibitory on both the cell lines, while all the oils exerted a weak antioxidant activity. Furthermore, the samples were tested against 10 Gram-negative and Gram-positive bacteria; all the oils were active on Gram-positive bacteria but O. dictamnus essential oil was the most effective (MIC = 25-50 μg/mL), showing also a good activity against the Gram-negative Escherichia coli (MIC = 50 μg/mL). Data suggest that these essential oils and particularly O. dictamnus oil could be used as valuable new flavours with functional properties for food or nutraceutical products.

  15. Growing Out of Stress: The Role of Cell- and Organ-Scale Growth Control in Plant Water-Stress Responses[OPEN

    PubMed Central

    Robbins, Neil E.

    2016-01-01

    Water is the most limiting resource on land for plant growth, and its uptake by plants is affected by many abiotic stresses, such as salinity, cold, heat, and drought. While much research has focused on exploring the molecular mechanisms underlying the cellular signaling events governing water-stress responses, it is also important to consider the role organismal structure plays as a context for such responses. The regulation of growth in plants occurs at two spatial scales: the cell and the organ. In this review, we focus on how the regulation of growth at these different spatial scales enables plants to acclimate to water-deficit stress. The cell wall is discussed with respect to how the physical properties of this structure affect water loss and how regulatory mechanisms that affect wall extensibility maintain growth under water deficit. At a higher spatial scale, the architecture of the root system represents a highly dynamic physical network that facilitates access of the plant to a heterogeneous distribution of water in soil. We discuss the role differential growth plays in shaping the structure of this system and the physiological implications of such changes. PMID:27503468

  16. Antioxidative activities and active compounds of extracts from Catalpa plant leaves.

    PubMed

    Xu, Hongyu; Hu, Gege; Dong, Juane; Wei, Qin; Shao, Hongbo; Lei, Ming

    2014-01-01

    In order to screen the Catalpa plant with high antioxidant activity and confirm the corresponding active fractions from Catalpa ovata G. Don, C. fargesii Bur., and C. bungei C. A. Mey., total flavonoid contents and antioxidant activities of the extracts/fractions of Catalpa plant leaves were determined. The determined total flavonoid content and antioxidant activity were used as assessment criteria. Those compounds with antioxidant activity were isolated with silica gel column chromatography and ODS column chromatography. Our results showed that the total flavonoid content in C. bungei C. A. Mey. (30.07 mg/g · DW) was the highest, followed by those in C. fargesii Bur. (25.55 mg/g · DW) and C. ovata G. Don (24.96 mg/g · DW). According to the determination results of total flavonoid content and antioxidant activity in 3 clones of leaves of C. bungei C. A. Mey., the total flavonoid content and antioxidant activity in crude extracts from C. bungei C. A. Mey. 6 (CA6) leaves were the highest. Moreover, the results showed that the total flavonoid content and antioxidant activities of ethyl acetate (EA) fraction in ethanol crude extracts in CA6 leaves were the highest, followed by n-butanol, petroleum ether (PE), and water fractions. Two flavonoid compounds with antioxidant activity were firstly isolated based on EA fraction. The two compounds were luteolin (1) and apigenin (2), respectively.

  17. Antioxidative Activities and Active Compounds of Extracts from Catalpa Plant Leaves

    PubMed Central

    Xu, Hongyu; Hu, Gege; Dong, Juane; Wei, Qin; Shao, Hongbo; Lei, Ming

    2014-01-01

    In order to screen the Catalpa plant with high antioxidant activity and confirm the corresponding active fractions from Catalpa ovata G. Don, C. fargesii Bur., and C. bungei C. A. Mey., total flavonoid contents and antioxidant activities of the extracts/fractions of Catalpa plant leaves were determined. The determined total flavonoid content and antioxidant activity were used as assessment criteria. Those compounds with antioxidant activity were isolated with silica gel column chromatography and ODS column chromatography. Our results showed that the total flavonoid content in C. bungei C. A. Mey. (30.07 mg/g·DW) was the highest, followed by those in C. fargesii Bur. (25.55 mg/g·DW) and C. ovata G. Don (24.96 mg/g·DW). According to the determination results of total flavonoid content and antioxidant activity in 3 clones of leaves of C. bungei C. A. Mey., the total flavonoid content and antioxidant activity in crude extracts from C. bungei C. A. Mey. 6 (CA6) leaves were the highest. Moreover, the results showed that the total flavonoid content and antioxidant activities of ethyl acetate (EA) fraction in ethanol crude extracts in CA6 leaves were the highest, followed by n-butanol, petroleum ether (PE), and water fractions. Two flavonoid compounds with antioxidant activity were firstly isolated based on EA fraction. The two compounds were luteolin (1) and apigenin (2), respectively. PMID:25431795

  18. Screening of estrogenic and antiestrogenic activities from medicinal plants.

    PubMed

    Kim, In Gyu; Kang, Se Chan; Kim, Kug Chan; Choung, Eui Su; Zee, Ok Pyo

    2008-01-01

    The medicinal plant extracts commercially used in Asia were screened for their estrogenic and antiestrogenic activities in a recombinant yeast system featuring both a human estrogen receptor (ER) expression plasmid and a reporter plasmid. Pueraria lobata (flower) had the highest estrogenic relative potency (RP, 7.75×10(-3); RP of 17β-estradiol=1), followed by Amomum xanthioides (1.25×10(-3)). Next potent were a group consisting of Glycyrrhiza uralensis, Zingiber officinale, Rheum undulatum, Curcuma aromatica, Eriobotrya japonica, Sophora flavescens, Anemarrhena asphodeloides, Polygonum multiflorum, and Pueraria lobata (root) (ranging from 9.5×10(-4) to 1.0×10(-4)). Least potent were Prunus persica, Lycoppus lucidus, and Adenophora stricta (ranging from 9.0×10(-5) to 8.0×10(-5)). The extracts exerting antiestrogenic effects, Cinnamomum cassia and Prunus persica, had relative potencies of 1.14×10(-3) and 7.4×10(-4), respectively (RP of tamoxifen=1). The solvent fractions from selected estrogenic or antiestrogenic herbs had higher estrogenic relative potencies, with their RP ranging from 9.3×10(-1) to 2.7×10(-4) and from 8.2×10(-1) to 9.1×10(-3), respectively. These results support previous reports on the efficacy of Oriental medicinal plants used or not used as phytoestrogens for hormone replacement therapy.

  19. A Review on Antiulcer Activity of Few Indian Medicinal Plants

    PubMed Central

    Vimala, G.; Gricilda Shoba, F.

    2014-01-01

    Ulcer is a common gastrointestinal disorder which is seen among many people. It is basically an inflamed break in the skin or the mucus membrane lining the alimentary tract. Ulceration occurs when there is a disturbance of the normal equilibrium caused by either enhanced aggression or diminished mucosal resistance. It may be due to the regular usage of drugs, irregular food habits, stress, and so forth. Peptic ulcers are a broad term that includes ulcers of digestive tract in the stomach or the duodenum. The formation of peptic ulcers depends on the presence of acid and peptic activity in gastric juice plus a breakdown in mucosal defenses. A number of synthetic drugs are available to treat ulcers. But these drugs are expensive and are likely to produce more side effects when compared to herbal medicines. The literature revealed that many medicinal plants and polyherbal formulations are used for the treatment of ulcer by various ayurvedic doctors and traditional medicinal practitioners. The ideal aims of treatment of peptic ulcer disease are to relieve pain, heal the ulcer, and delay ulcer recurrence. In this review attempts have been made to know about some medicinal plants which may be used in ayurvedic as well as modern science for the treatment or prevention of peptic ulcer. PMID:24971094

  20. Silver nanoparticles synthesised using plant extracts show strong antibacterial activity.

    PubMed

    Kumari, Avnesh; Guliani, Anika; Singla, Rubbel; Yadav, Ramdhan; Yadav, Sudesh Kumar

    2015-06-01

    In this study, three plants Populus alba, Hibiscus arboreus and Lantana camara were explored for the synthesis of silver nanoparticles (SNPs). The effect of reaction temperature and leaf extract (LE) concentration of P. alba, H. arboreus and L. camara was evaluated on the synthesis and size of SNPs. The SNPs were characterised by ultra-violet-visible spectroscopy, scanning electron microscopy and atomic force microscopy. The synthesis rate of SNPs was highest with LE of L. camara followed by H. arboreus and P. alba under similar conditions. L. camara LE showed maximum potential of smaller size SNPs synthesis, whereas bigger particles were formed by H. arboreous LE. The size and shape of L. camara LE synthesised SNPs were analysed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). TEM analysis revealed the formation of SNPs of average size 17±9.5 nm with 5% LE of L. camara. The SNPs synthesised by LE of L. camara showed strong antibacterial activity against Escherichia coli. The results document that desired size SNPs can be synthesised using these plant LEs at a particular temperature for applications in the biomedical field.

  1. Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera.

    PubMed

    Prasad, Ram; Kamal, Shwet; Sharma, Pradeep K; Oelmüller, Ralf; Varma, Ajit

    2013-12-01

    Unorganized collections and over exploitation of naturally occurring medicinal plant Bacopa monniera is leading to rapid depletion of germplasm and is posing a great threat to its survival in natural habitats. The species has already been listed in the list of highly threatened plants of India. This calls for micropropagation based multiplication of potential accessions and understanding of their mycorrhizal associations for obtaining plants with enhanced secondary metabolite contents. The co-cultivation of B. monniera with axenically cultivated root endophyte Piriformospora indica resulted in growth promotion, increase in bacoside content, antioxidant activity and nuclear hypertrophy of this medicinal plant.

  2. Exploring Classroom Hydroponics. Growing Ideas.

    ERIC Educational Resources Information Center

    National Gardening Association, Burlington, VT.

    Growing Ideas, the National Gardening Association's series for elementary, middle, and junior high school educators, helps teachers engage students in using plants and gardens as contexts for developing a deeper, richer understanding of the world around them. This volume's focus is on hydroponics. It presents basic hydroponics information along…

  3. Anticancer Activity, Antioxidant Activity, and Phenolic and Flavonoids Content of Wild Tragopogon porrifolius Plant Extracts

    PubMed Central

    Rishmawi, Suzi; Ariqat, Sharehan H.; Khalid, Mahmoud F.; Warad, Ismail; Salah, Zaidoun

    2016-01-01

    Tragopogon porrifolius, commonly referred to as white salsify, is an edible herb used in folk medicine to treat cancer. Samples of Tragopogon porrifolius plant grown wild in Palestine were extracted with different solvents: water, 80% ethanol, and 100% ethanol. The extracts were analyzed for their total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity (AA). Four different antioxidant assays were used to evaluate AA of the extracts: two measures the reducing power of the extracts (ferric reducing antioxidant power (FRAP) and cupric reducing antioxidant power (CUPRAC)), while two other assays measure the scavenging ability of the extracts (2,2-azino-di-(3-ethylbenzothialozine-sulphonic acid (ABTS)) and 2,2-diphenyl-1-picrylhydrazyl (DPPH)). Anticancer activity of the plant extracts were also tested on HOS and KHOS osteosarcoma cell lines. The results revealed that the polarity of the extraction solvent affects the TPC, TFC, and AA. It was found that both TPC and AA are highest for plant extracted with 80% ethanol, followed by water, and finally with 100% ethanol. TFC however was the highest in the following order: 80% ethanol > 100% ethanol > water. The plant extracts showed anticancer activities against KHOS cancer cell lines; they reduced total cell count and induced cell death in a drastic manner. PMID:27999608

  4. Involvement of Hormone- and ROS-Signaling Pathways in the Beneficial Action of Humic Substances on Plants Growing under Normal and Stressing Conditions

    PubMed Central

    García, Andrés Calderín; Olaetxea, Maite; Santos, Leandro Azevedo; Mora, Verónica; Baigorri, Roberto; Fuentes, Marta; Zamarreño, Angel Maria; Berbara, Ricardo Luis Louro; Garcia-Mina, José María

    2016-01-01

    The importance of soil humus in soil fertility has been well established many years ago. However, the knowledge about the whole mechanisms by which humic molecules in the rhizosphere improve plant growth remains partial and rather fragmentary. In this review we discuss the relationships between two main signaling pathway families that are affected by humic substances within the plant: one directly related to hormonal action and the other related to reactive oxygen species (ROS). In this sense, our aims are to try the integration of all these events in a more comprehensive model and underline some points in the model that remain unclear and deserve further research. PMID:27366744

  5. L-band active/passive time series measurements over a growing season usign the COMRAD ground-based SMAP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scheduled to launch in October 2014, NASA’s Soil Moisture Active Passive (SMAP) mission will provide high-resolution global mapping of soil moisture and freeze/thaw state every 2-3 days. These new measurements of the hydrological condition of the Earth’s surface will build on data from European Spa...

  6. Dehydro-α-lapachone, a plant product with antivascular activity

    PubMed Central

    Garkavtsev, Igor; Chauhan, Vikash P.; Wong, Hon Kit; Mukhopadhyay, Arpita; Glicksman, Marcie A.; Peterson, Randall T.; Jain, Rakesh K.

    2011-01-01

    Antivascular agents have become a standard of treatment for many malignancies. However, most of them target the VEGF pathway and lead to refractoriness. To improve the diversity of options for antivascular therapy, we applied a high-throughput screen for small molecules targeting cell adhesion. We then assayed the resulting antiadhesion hits in a transgenic zebrafish line with endothelial expression of EGFP (Tg(fli1:EGFP)y1) to identify nontoxic molecules with antivascular activity selective to neovasculature. This screen identified dehydro-α-lapachone (DAL), a natural plant product. We found that DAL inhibits vessel regeneration, interferes with vessel anastomosis, and limits plexus formation in zebrafish. Furthermore, DAL induces vascular pruning and growth delay in orthotopic mammary tumors in mice. We show that DAL targets cell adhesion by promoting ubiquitination of the Rho-GTPase Rac1, which is frequently up-regulated in many different cancers. PMID:21709229

  7. Antidiarrhoeal activity of some Egyptian medicinal plant extracts.

    PubMed

    Atta, Attia H; Mouneir, Samar M

    2004-06-01

    The antidiarrhoeal activity of six Egyptian medicinal plant extracts (200 and 400 mg kg(-1)) and their effect on motility of isolated rabbit's duodenum was investigated. Phytochemical screening of the plant extracts for their active constituents was also carried out by TLC. Oral administration of methanol extract from Conyza dioscoridis (CD) or Alhagi maurorum (AM) in a 200 mg kg(-1) dose exhibits a significant antidiarrhoeal effect against castor oil-induced diarrhoea, while Mentha microphylla (MM), Convolvulus arvensis (CA), Conyza linifolia (CL) produced no significant effect. In a dose of 400 mg kg(-1), Mentha microphylla, Conyza dioscoridis, Alhagi maurorum, Zygophyllum album (ZA), and Conyza linifolia produced a significant (P<0.01) effect, while Convolvulus arvensis produced no antidiarrhoeal effect in rats. Methanol extract of Mentha microphylla, Conyza dioscoridis, Zygophyllum album, and Convolvulus arvensis induced a dose-dependent (0.4-2.8 mg ml(-1)) relaxation of rabbit's duodenal smooth muscle. Alhagi maurorum and Conyza linifolia increased the contractile force in concentrations between 0.4 and 1.6 mg ml(-1). Higher concentrations (>3.2 mg ml(-1)) caused a rapid depressant effect. The depressant effect induced by Alhagi maurorum (in a higher dose) and Zygophyllum album appeared to be due to calcium channel blocking effect, since CaCl(2) could not restore the contractile response of the tissue impregnated in calcium free-medium. However, a ganglionic blocking effect appeared to be a possible mechanism of action of Mentha microphylla and Conyza dioscoridis since a stimulant dose of nicotine could not restore the contractile response of the tissue. The effect of Convolvulus arvensis and Conyza linifolia was not through any of the common mediators. Phytochemical screening revealed the presence of tannins, flavonoids, unsaturated sterols/triterpenes, carbohydrates, lactones and proteins/amino acids as major constituents.

  8. Metabolic activity and genetic diversity of microbial communities inhabiting the rhizosphere of halophyton plants.

    PubMed

    Bárány, Agnes; Szili-Kovács, Tibor; Krett, Gergely; Füzy, Anna; Márialigeti, Károly; Borsodi, Andrea K

    2014-09-01

    A preliminary study was conducted to compare the community level physiological profile (CLPP) and genetic diversity of rhizosphere microbial communities of four plant species growing nearby Kiskunság soda ponds, namely Böddi-szék, Kelemen-szék and Zab-szék. CLPP was assessed by MicroResp method using 15 different substrates while Denaturing Gradient Gel Electrophoresis (DGGE) was used to analyse genetic diversity of bacterial communities. The soil physical and chemical properties were quite different at the three sampling sites. Multivariate statistics (PCA and UPGMA) revealed that Zab-szék samples could be separated according to their genetic profile from the two others which might be attributed to the geographical location and perhaps the differences in soil physical properties. Böddi-szék samples could be separated from the two others considering the metabolic activity which could be explained by their high salt and low humus contents. The number of bands in DGGE gels was related to the metabolic activity, and positively correlated with soil humus content, but negatively with soil salt content. The main finding was that geographical location, soil physical and chemical properties and the type of vegetation were all important factors influencing the metabolic activity and genetic diversity of rhizosphere microbial communities.

  9. Chemical composition and antimicrobial activity of the essential oils of Lavandula stoechas L. ssp. stoechas growing wild in Turkey.

    PubMed

    Kirmizibekmez, Hasan; Demirci, Betül; Yeşilada, Erdem; Başer, K Hüsnü Can; Demirci, Fatih

    2009-07-01

    The chemical compositions of the essential oils obtained by hydrodistillation from the dried leaves and flowers of Lavandula stoechas L. ssp. stoechas were separately identified by GC-FID and GC-MS analyses. The main components were alpha-fenchone (41.9 +/- 1.2%), 1,8-cineole (15.6 +/- 0.8%), camphor (12.1 +/- 0.5%), and viridiflorol (4.1 +/- 0.4%) in the leaves; and alpha-fenchone (39.2 +/- 0.9%), myrtenyl acetate (9.5 +/- 0.4%), alpha-pinene (6.1 +/- 0.09%), camphor (5.9 +/- 0.05%) and 1,8-cineole (3.8 +/- 0.1%) in the flowers. Overall, 55 and 66 constituents were identified in the leaf and flower essential oils representing more than 90% and 94% of the total, respectively. In addition, the essential oils were evaluated for their antibacterial and anticandidal activities by broth microdilution. The flower essential oil was found to be relatively more active than the leaf oil towards the tested pathogenic microorganisms. Methicillin-resistant Staphylococcus aureus was more susceptible to the flower oil (MIC = 31.2 microg/mL). The oils, evaluated for their free radical scavenging activity using a TLC-DPPH assay, were inactive at a concentration of 2 mg/mL.

  10. Characterization of Essential Oil Components from Aromatic Plants that Grow Wild in the "Piana del Sele" (Salerno, Southern Italy) using Gas Chromatography-Mass Spectrometry.

    PubMed

    Naviglio, Daniele; Le Grottaglie, Laura; Vitulano, Manuela; Trifuoggi, Marco; Gallo, Monica

    2015-07-01

    Essential oils from Rosmarinus officinalis, Salvia officinalis, Thymus vulgaris, Melissa officinalis and Mentha spicata growing wild in the "Piana del Sele" (Salerno, Southern Italy) have been extracted by hydro-distillation, quantified and characterized by gas chromatography coupled with flame ionization detection (FID) and mass-spectrometry (MS). Sixty-nine compounds were identified and classified according to their chemical classes. The results showed that the composition of the essential oils was extremely variable and specific for each botanical species. Hydrocarbons were the most abundant class in all essential oils except for sage where aldehydes and ketones were the most representative compounds. Only for thyme was a higher content of alcohols found.

  11. Denudation of Actively Growing Mountain Ranges in the Foreland of NE Tibet Inferred From in- Situ Produced Cosmogenic Be-10

    NASA Astrophysics Data System (ADS)

    Palumbo, L.; Hetzel, R.; Tao, M.; Li, X.

    2007-12-01

    At the northeastern edge of the Tibetan Plateau ranges bounded by active thrust faults offer the unique opportunity to study the competing effects of uplift and erosion during the early stages of mountain building. Owing to along- strike variations in relief, slope, and lithology, these ranges are an ideal target for studying the influence of topography, lithology, and active faulting on denudation. Here we report spatially-averaged erosion rates for catchments situated along two of these ranges based on Be-10 concentrations of quartz in stream sediments. The Yumu Shan and the western Long Shou Shan are about 60 km long and their overall shape as well as the presence of wind gaps illustrates their vertical-lateral growth during Plio-Quaternary thrust faulting (Hetzel et al. 2004a). Erosion rates determined so far for 20 small catchments are variable and range from 20 to 550 mm/kyr. The observed variability results from at least three factors: (1) the erosion rate in catchments exposing the same lithology is positively correlated with relief and mean slope, (2) weakly consolidated Cretaceous sediments generally erode faster than low-grade Paleozoic bedrock, and (3) the erosion rate seems to decrease from the centre of the fault-bounded ranges towards their propagating tips. As rates of thrust faulting and rock uplift in the region (600-1200 mm/kyr; Hetzel et al., 2004a, b) exceed the denudation rates, the active growth of mountains and the lateral growth of Tibet has not yet come to rest. References Hetzel, R., Tao, M., Niedermann, S., Strecker, M.R., Ivy-Ochs, S., Kubik, P.W., Gao, B. (2004a). Implications of the fault scaling law for the growth of topography: Mountain ranges in the broken foreland of NE Tibet, Terra Nova 16, 157-162. Hetzel, R., Tao, M., Stokes, S., Niedermann, S., Ivy-Ochs, S., Gao, B., Strecker, M.R., Kubik, P.W. (2004b). Late Pleistocene-Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the

  12. Active immunization against ghrelin decreases weight gain and alters plasma concentrations of growth hormone in growing pigs.

    PubMed

    Vizcarra, J A; Kirby, J D; Kim, S K; Galyean, M L

    2007-08-01

    Ghrelin has been implicated in the control of food intake and in the long-term regulation of body weight. We theorize that preventing the ability of ghrelin to interact with its receptors, would eventually lead to decreased appetite and thereby decrease body weight gain. To test our hypothesis, pigs were actively immunized against ghrelin. Ghrelin((1-10)) was conjugated to BSA and emulsified in Freund's incomplete adjuvant and diethylaminoethyl-dextran. Primary immunization was given at 19 weeks of age (WOA), with booster immunizations given 20 and 40 days after primary immunization. Body weight (BW) and plasma samples were collected weekly beginning at 19 WOA, and feed intake was measured daily. Fourteen days after primary immunization, the percentage of bound (125)I-ghrelin in plasma from immunized pigs was increased compared with control animals (P<0.001). Voluntary feed intake was decreased more than 15% in animals that were actively immunized against ghrelin compared with controls. By the end of the experiment, immunized pigs weighed 10% less than control animals (P<0.1). Concentrations of GH were increased (P<0.05) in immunized pigs. Apoptosis was not observed in post-mortem samples obtained from the fundic region of the stomach. Our observations suggest that immunization against ghrelin induces mild anorexia. This procedure could potentially be used as a treatment to control caloric intake and obesity.

  13. Chemical Composition and Antimicrobial Activity of Origanum libanoticum, Origanum ehrenbergii, and Origanum syriacum Growing Wild in Lebanon.

    PubMed

    Al Hafi, Monay; El Beyrouthy, Marc; Ouaini, Naim; Stien, Didier; Rutledge, Douglas; Chaillou, Sylvain

    2016-05-01

    The essential oils (EOs) of the aerial parts of Origanum libanoticum and Origanum ehrenbergii, endemic to Lebanon, and Origanum syriacum, endemic to the Levantine, were obtained by distillation with a Clevenger apparatus. GC and GC/MS allowed identification of 96.4%, 93.5%, and 95.2% of their constituents, respectively. Carvacrol was the major component of both O. syriacum EO (79%) and O. ehrenbergii EO (60.8%). This compound was absent in O. libanoticum EO and the major compounds were β-caryophyllene (26.8%), caryophyllene oxide (22.6%), and germacrene D (17.2%). The assessment of their antimicrobial activity against Candida albicans and six pathogenic bacteria revealed that O. libanoticum EO was inactive, while O. syriacum and O. ehrenbergii showed moderate antimicrobial activity with minimal inhibitory concentrations varying from 400 to 1200 μg/ml. These results support the traditional use of these last two species in traditional herbal preparations in Lebanon.

  14. Cis-Golgi cisternal assembly and biosynthetic activation occur sequentially in plants and algae.

    PubMed

    Donohoe, Bryon S; Kang, Byung-Ho; Gerl, Mathias J; Gergely, Zachary R; McMichael, Colleen M; Bednarek, Sebastian Y; Staehelin, L Andrew

    2013-05-01

    The cisternal progression/maturation model of Golgi trafficking predicts that cis-Golgi cisternae are formed de novo on the cis-side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high-pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus flytrap) as determined by electron microscopy, electron tomography and immuno-electron microscopy techniques. Our findings are as follows: (i) The cis-most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3-5 COPII vesicles in contact with a C2 cis cisterna. (ii) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (iii) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (iv) C2-Cn cis cisternae grow through COPII vesicle fusion. (v) ER-resident proteins are recycled from cis cisternae to the ER via COPIa-type vesicles. (vi) In S. dubia the C2 cisternae are capable of mediating the self-assembly of scale protein complexes. (vii) In plants, ∼90% of native α-mannosidase I localizes to medial Golgi cisternae. (viii) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre-cis Golgi cisterna layer in mammalian cells.

  15. Cis-Golgi cisternal assembly and biosynthetic activation occur sequentially in plants and algae

    PubMed Central

    Donohoe, Bryon S.; Kang, Byung-Ho; Gerl, Mathias J.; Gergely, Zachary R.; McMichael, Colleen M.; Bednarek, Sebastian Y.; Staehelin, L. Andrew

    2013-01-01

    The cisternal progression/maturation model of Golgi trafficking predicts that cis-Golgi cisternae are formed de novo on the cis-side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high-pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus Flytrap) as determined by electron microscopy, electron tomography and immuno-electron microscopy techniques. Our findings are as follows: (1) The cis-most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3–5 COPII vesicles in contact with a C2 cis cisterna. (2) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (3) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (4) C2-Cn cis cisternae grow through COPII vesicle fusion. (5) ER-resident proteins are recycled from cis cisternae to the ER via COPIa-type vesicles. (6) In S. dubia the C2 cisternae are capable of mediating the self-assembly of scale protein complexes. (7) In plants, ~90% of native α-mannosidase I localizes to medial Golgi cisternae. (8) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre-cis Golgi cisterna layer in mammalian cells. PMID:23369235

  16. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants.

    PubMed

    Fry, S C; Smith, R C; Renwick, K F; Martin, D J; Hodge, S K; Matthews, K J

    1992-03-15

    1. Cell-free extracts of all plants tested contained a novel enzyme activity (xyloglucan endotransglycosylase, XET) able to transfer a high-Mr portion from a donor xyloglucan to a suitable acceptor such as a xyloglucan-derived nonasaccharide (Glc4Xyl3GalFuc; XG9). 2. A simple assay for the enzyme, using [3H]XG9 and based on the ability of the [3H]polysaccharide product to bind to filter paper, is described. 3. The enzyme was highly specific for xyloglucan as the glycosyl donor, and showed negligible transglycosylation of other polysaccharides, including CM-cellulose. 4. The Km for XG9 was 50 microM; certain other 3H-labelled xyloglucan oligosaccharides also acted as acceptors, and certain non-radioactive xyloglucan oligosaccharides competed with [3H]XG9 as acceptor; the minimum acceptor structure was deduced to be: [formula: see text] 5. The pH optimum was approx. 5.5 and the enzyme was less than half as active at pH 7.0. The enzyme was slightly activated by Ca2+, Mg2+, Mn2+, spermidine, ascorbate and 2-mercaptoethanol, and inhibited by Ag+, Hg2+, Zn2+ and La3+. 6. XET activity was essentially completely extracted by aqueous solutions of low ionic strength; Triton X-100, Ca2+, La3+, and Li+ did not enhance extraction. Negligible activity was left in the unextractable (cell-wall-rich) residue. 7. The enzyme differed from the major cellulases (EC 3.2.1.4) of pea in: (a) susceptibility to inhibition by cello-oligosaccharides, (b) polysaccharide substrate specificity, (c) inducibility by auxin, (d) requirement for salt in the extraction buffer and (e) activation by 2-mercaptoethanol. XET is therefore concluded to be a new enzyme activity (xyloglucan: xyloglucan xyloglucanotransferase; EC 2.4.1.-). 8. XET was detected in extracts of the growing portions of dicotyledons, monocotyledons (graminaceous and liliaceous) and bryophytes. 9. The activity was positively correlated with growth rate in different zones of the pea stem. 10. We propose that XET is responsible for

  17. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

    PubMed Central

    Cendrero-Mateo, M. Pilar; Moran, M. Susan; Papuga, Shirley A.; Thorp, K.R.; Alonso, L.; Moreno, J.; Ponce-Campos, G.; Rascher, U.; Wang, G.

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242

  18. Allosteric receptor activation by the plant peptide hormone phytosulfokine.

    PubMed

    Wang, Jizong; Li, Hongju; Han, Zhifu; Zhang, Heqiao; Wang, Tong; Lin, Guangzhong; Chang, Junbiao; Yang, Weicai; Chai, Jijie

    2015-09-10

    Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a β-strand from the island domain of PSKR, forming an anti-β-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR-SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules.

  19. RNA-directed DNA methylation induces transcriptional activation in plants

    PubMed Central

    Shibuya, Kenichi; Fukushima, Setsuko; Takatsuji, Hiroshi

    2009-01-01

    A class-C floral homeotic gene of Petunia, pMADS3, is specifically expressed in the stamen and carpels of developing flowers. We had previously reported the ect-pMADS3 phenomenon in which introduction of a part of the pMADS3 genomic sequence, including intron 2, induces ectopic expression of endogenous pMADS3. Unlike transcriptional or posttranscriptional gene silencing triggered by the introduction of homologous sequences, this observation is unique in that the gene expression is up-regulated. In this study, we demonstrated that the ect-pMADS3 phenomenon is due to transcriptional activation based on RNA-directed DNA methylation (RdDM) occurring in a particular CG in a putative cis-element in pMADS3 intron 2. The CG methylation was maintained over generations, along with pMADS3 ectopic expression, even in the absence of RNA triggers. These results demonstrate a previously undescribed transcriptional regulatory mechanism that could lead to the generation of a transcriptionally active epiallele, thereby contributing to plant evolution. Our results also reveal a putative negative cis-element for organ-specific transcriptional regulation of class-C floral homeotic genes, which could be difficult to identify by other approaches. PMID:19164525

  20. The snail Potamopyrgus antipodarum grows faster and is more active in the shade, independent of food quality.

    PubMed

    Liess, A; Lange, K

    2011-09-01

    Ecological stoichiometry has advanced food web ecology by emphasising the importance of food quality over food quantity for herbivores. Here, we focus on the effects of abiotic factors such as nutrients and light (known to influence food quality) on grazer growth rates. As model organism we used the mudsnail Potamopyrgus antipodarum that is native to New Zealand but invasive elsewhere. In a stream channel experiment in New Zealand, we manipulated light (two levels) and nutrients (four levels) to achieve a range of primary producer carbon: nutrient ratios and added mudsnails (3 densities + ungrazed control) to 128 periphyton covered stream channels in a 2 × 4 × 4 full factorial design. We measured snail growth rate and activity, food quality and nutritional imbalance, to test the predictions that (1) less light and more nutrients increase periphyton food quality and thus snail growth rates, and (2) less crowding leads to higher food availability and thus higher snail growth rates. We found that snail growth rates were higher under low light than under high light intensities and this difference increased with increasing nutrient addition. These changes in growth rate were not mediated by food quality in terms of periphyton nutrient ratios. Furthermore, experimental treatments strongly affected snail behaviour. Snails grazed more actively in the low light treatments, and thus it is more likely that snail growth rates were directly affected by light levels, maybe as a result of innate predator avoidance behaviour or as a reaction to high UV intensities. We conclude that in our stream channels snail growth rate was limited by factors other than food quality and quantity such as UV exposure, algal defences or the relatively low ambient water temperature.

  1. In silico characterization and evolutionary analyses of CCAAT binding proteins in the lycophyte plant Selaginella moellendorffii genome: a growing comparative genomics resource.

    PubMed

    Saha, Jayita; Gupta, Kamala; Gupta, Bhaskar

    2013-12-01

    NF-Y transcription factors encoded by HAP gene family, composed of three subunits (HAP2/NF-YA, HAP3/NF-YB and HAP5/NF-YC), are capable of transcriptional regulation of target genes with high specificity by binding to the CCAAT-containing promoter sequences. Here, we have characterized duplicated HAP genes in Selaginella moellendorffii and explored some features that might be involved in the regulation of gene expression and their function. Subsequently, the evolutionary relationships of LEC1-type of HAP3 genes have been studied starting from lycophytes to angiosperm to reveal the details of conservation and diversification of these genes during plant evolution. Computational analyses demonstrated the variation in length of cis-regulatory region of HAP3 duplicates in S. moellendorffii containing three thermodynamically stable and evolutionarily conserved RNA secondary structures. The homology modeling of NF-Y proteins, secondary structural details, DNA binding large positive patches, binding affinity of H2A-H2B interactive residues of NF-YC subunits on the duplicated NF-YB subunits, conserved domain analyses and protein structural alignments indicated that gene duplication process of HAP genes in S. moellendorffii, followed by structural diversification, provide specific hints about their functional specificity under various circumstances for the survival of this lycophytic plant. We have identified several conserved motifs in LEC1 proteins among all plant lineages during evolution.

  2. Synthesis of Five Known Brassinosteroid Analogs from Hyodeoxycholic Acid and Their Activities as Plant-Growth Regulators

    PubMed Central

    Duran, María Isabel; González, Cesar; Acosta, Alison; Olea, Andrés F.; Díaz, Katy; Espinoza, Luis

    2017-01-01

    Brassinosteroids (BRs) are plant hormones that promote growth in different plant organs and tissues. The structural requirements that these compounds should possess to exhibit this biological activity have been studied. In this work, a series of known BR analogs 5–15, were synthesized starting from hyodeoxycholic acid 4, and maintaining the alkyl side chain as cholic acid or its methyl ester. The growth-promoting effects of brassinolide (1) and synthesized analogs were evaluated by using the rice lamina inclination assay at concentrations ranging from 1 × 10−8–1 × 10−6 M. Our results indicate that in this concentration range the induced bending angle of rice seedlings increases with increasing concentration of BRs. Analysis of the activities, determined at the lowest tested concentration, in terms of BR structures shows that the 2α,3α-dihydroxy-7-oxa-6-ketone moiety existing in brassinolide is required for the plant growing activity of these compounds, as it has been proposed by some structure-activity relationship studies. The effect of compound 8 on cell elongation was assessed by microscopy analysis, and the results indicate that the growth-promoting effect of analog 8 is mainly due to cell elongation of the adaxial sides, instead of an increase on cell number. PMID:28282853

  3. Synthesis of Five Known Brassinosteroid Analogs from Hyodeoxycholic Acid and Their Activities as Plant-Growth Regulators.

    PubMed

    Duran, María Isabel; González, Cesar; Acosta, Alison; Olea, Andrés F; Díaz, Katy; Espinoza, Luis

    2017-03-08

    Brassinosteroids (BRs) are plant hormones that promote growth in different plant organs and tissues. The structural requirements that these compounds should possess to exhibit this biological activity have been studied. In this work, a series of known BR analogs 5-15, were synthesized starting from hyodeoxycholic acid 4, and maintaining the alkyl side chain as cholic acid or its methyl ester. The growth-promoting effects of brassinolide (1) and synthesized analogs were evaluated by using the rice lamina inclination assay at concentrations ranging from 1 × 10(-8)-1 × 10(-6) M. Our results indicate that in this concentration range the induced bending angle of rice seedlings increases with increasing concentration of BRs. Analysis of the activities, determined at the lowest tested concentration, in terms of BR structures shows that the 2α,3α-dihydroxy-7-oxa-6-ketone moiety existing in brassinolide is required for the plant growing activity of these compounds, as it has been proposed by some structure-activity relationship studies. The effect of compound 8 on cell elongation was assessed by microscopy analysis, and the results indicate that the growth-promoting effect of analog 8 is mainly due to cell elongation of the adaxial sides, instead of an increase on cell number.

  4. Fate of linear alkylbenzene sulfonate (LAS) in activated sludge plants.

    PubMed

    Temmink, H; Klapwijk, Bram

    2004-02-01

    Monitoring data were collected in a pilot-scale municipal activated sludge plant to assess the fate of the C12-homologue of linear alkyl benzene sulfonate (LAS-C12). The pilot-plant was operated at influent LAS-C12 concentrations between 2 and 12 mg l(-1) and at sludge retention times of 10 and 27 days. Effluent and waste sludge concentrations varied between 5 and 10 microg l(-1) and between 37 and 69 microg g(-1) VSS, respectively. In the sludge samples only 2-8% was present as dissolved LAS-C12, whereas the remaining 92-98% was found to be adsorbed to the sludge. In spite of this high degree of sorption, more than 99% of the LAS-C12 load was removed by biodegradation, showing that not only the soluble fraction but also the adsorbed fraction of LAS-C12 is readily available for biodegradation. Sorption and biodegradation of LAS-C12 were also investigated separately. Sorption was an extremely fast and reversible process and could be described by a linear isotherm with a partition coefficient of 3.2 l g(-1) volatile suspended solids. From the results of biodegradation kinetic tests it was concluded that primary biodegradation of LAS-C12 cannot be described by a (growth) Monod model, but a secondary utilisation model should be used instead. The apparent affinity of the sludge to biodegrade LAS-C12 increased when the sludge was loaded with higher influent concentrations of LAS-C12.

  5. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    SciTech Connect

    Baljinnyam, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.; Jugder, B.; Norov, N.

    2011-06-28

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves)(0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the ''Reference plant? data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  6. Melanogenesis and antityrosinase activity of selected South african plants.

    PubMed

    Mapunya, Manyatja Brenda; Nikolova, Roumiana Vassileva; Lall, Namrita

    2012-01-01

    Melanin is the pigment that is responsible for the colour of eyes, hair, and skin in humans. Tyrosinase is known to be the key enzyme in melanin biosynthesis. Overactivity of this enzyme leads to dermatological disorders such as age spots, melanoma and sites of actinic damage. Ten plants belonging to four families (Asphodelaceae, Anacardiaceae, Oleaceae, and Rutaceae) were investigated for their effect on tyrosinase using both L-tyrosine and L-DOPA as substrates. Ethanol leaf extracts (500 μg/mL) of Aloe ferox, Aloe aculeata, Aloe pretoriensis, and Aloe sessiliflora showed 60%, 31%, 17%, and 13% inhibition of tyrosinase activity respectively, when L-tyrosine was used as a substrate. Harpephyllum caffrum (leaves) at a concentration of 500 μg/mL had an inhibitory effect of 70% on tyrosinase when L-DOPA was used as a substrate. The IC(50) of Harpephyllum caffrum (leaves and bark) were found to be 51 ± 0.002 and 40 ± 0.035 μg/mL, respectively. Following the results obtained from the tyrosinase assay, extracts from Harpephyllum caffrum were selected for further testing on their effect on melanin production and their cytotoxicity on melanocytes in vitro. The IC(50) of both extracts was found to be 6.25 μg/mL for melanocyte cells. Bark extract of Harpephyllum caffrum showed 26% reduction in melanin content of melanocyte cells at a concentration of 6.25 μg/mL. The leaf extract of this plant showed some toxicity on melanocyte cells. Therefore, the bark extract of Harpephyllum caffrum could be considered as an antityrosinase agent for dermatological disorders such as age spots and melasoma.

  7. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    NASA Astrophysics Data System (ADS)

    Baljinnyam, N.; Jugder, B.; Norov, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.

    2011-06-01

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves) (0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the "Reference plant» data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  8. Volatile oil constituents and antibacterial activity of different parts of Falcaria vulgaris Bernh. growing wild in two localities from Iran.

    PubMed

    Shafaghat, A

    2011-02-01

    The chemical composition of essential oils obtained by hydrodistillation from the flower, leaf and stem of Falcaria vulgaris Bernh., which is endemic to Iran, were analysed by GC and GC/MS (samples were from two different localities: A from Ardabil and B from Khalkhal). α-Pinene was the major constituent in all the three oils (flower, leaf and stem) from sample A (43.8%, 33.0% and 50.9%, respectively). The oil of F. vulgaris flower was characterised by a higher amount of β-caryophyllene (25.2%) and 1,8-cineole (12.8%) among the eight components comprising 96.2% of the total oil detected. α-Terpinyl acetate (23.2%) and limonene (14.4%) predominated in the leaf oil. In the oils of sample B, α-pinene (16.1% in the flower oil, 31.5% in the leaf oil and 34.5% in the stem oil) was the major compound. Limonene (14.2%) and germacrene D (32.1%) were also the main constituents found in the leaf oil from sample B. α-Terpinyl acetate (21.9% in the leaf oil) and limonene (29.8% in stem oil) were the other major compounds obtained from this sample. Antibacterial activity was determined by the measurement of growth inhibitory zones.

  9. Inhibitors of Urokinase Type Plasminogen Activator and Cytostatic Activity from Crude Plants Extracts

    PubMed Central

    Zha, Xueqiang; Diaz, Ricardo; Franco, Jose Javier Rosado; Sanchez, Veronica Forbes; Fasoli, Ezio; Barletta, Gabriel; Carvajal, Augusto; Bansal, Vibha

    2014-01-01

    In view of the clear evidence that urokinase type plasminogen activator (uPA) plays an important role in the processes of tumor cell metastasis, aortic aneurysm, and multiple sclerosis, it has become a target of choice for pharmacological intervention. The goal of this study was thus to determine the presence of inhibitors of uPA in plants known traditionally for their anti-tumor properties. Crude methanol extracts were prepared from the leaves of plants (14) collected from the subtropical dry forest (Guanica, Puerto Rico), and tested for the presence of inhibitors of uPA using the fibrin plate assay. The extracts that tested positive (6) were then partitioned with petroleum ether, chloroform, ethyl acetate and n-butanol, in a sequential manner. The resulting fractions were then tested again using the fibrin plate assay. Extracts from leaves of Croton lucidus (C. lucidus) showed the presence of a strong uPA inhibitory activity. Serial dilutions of these C. lucidus partitions were performed to determine the uPA inhibition IC50 values. The chloroform extract showed the lowest IC50 value (3.52 μg/mL) and hence contained the most potent uPA inhibitor. Further investigations revealed that the crude methanol extract and its chloroform and n-butanol partitions did not significantly inhibit closely related proteases such as the tissue type plasminogen activator (tPA) and plasmin, indicating their selectivity for uPA, and hence superior potential for medicinal use with fewer side effects. In a further evaluation of their therapeutic potential for prevention of cancer metastasis, the C. lucidus extracts displayed cytostatic activity against human pancreatic carcinoma (PaCa-2) cells, as determined through an MTS assay. The cytostatic activities recorded for each of the partitions correlated with their relative uPA inhibitory activities. There are no existing reports of uPA inhibitors being present in any of the plants reported in this study. PMID:23896619

  10. Background levels of some major, trace, and rare earth elements in indigenous plant species growing in Norway and the influence of soil acidification, soil parent material, and seasonal variation on these levels.

    PubMed

    Gjengedal, Elin; Martinsen, Thomas; Steinnes, Eiliv

    2015-06-01

    Baseline levels of 43 elements, including major, trace, and rare earth elements (REEs) in several native plant species growing in boreal and alpine areas, are presented. Focus is placed on species metal levels at different soil conditions, temporal variations in plant tissue metal concentrations, and interspecies variation in metal concentrations. Vegetation samples were collected at Sogndal, a pristine site in western Norway, and at Risdalsheia, an acidified site in southernmost Norway. Metal concentrations in the different species sampled in western Norway are compared with relevant literature data from Norway, Finland, and northwest Russia, assumed to represent natural conditions. Except for aluminium (Al) and macronutrients, the levels of metals were generally lower in western Norway than in southern Norway and may be considered close to natural background levels. In southern Norway, the levels of cadmium (Cd) and lead (Pb) in particular appear to be affected by air pollution, either by direct atmospheric supply or through soil acidification. Levels of some elements show considerable variability between as well as within plant species. Calcium (Ca), magnesium (Mg), and potassium (K) are higher in most species at Sogndal compared to Risdalsheia, despite increased extractable concentrations in surface soil in the south, probably attributed to different buffer mechanisms in surface soil. Antagonism on plant uptake is suggested between Ca, Mg, and K on one hand and Al on the other. Tolerance among calcifuges to acid conditions and a particular ability to detoxify or avoid uptake of Al ions are noticeable for Vaccinium vitis-idaea.

  11. Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste.

    PubMed

    Chandra, Ram; Kumar, Vineet

    2016-11-08

    The safe disposal of post-methanated distillery sludge (PMDS) in the environment is challenging due to high concentrations of heavy metals along with other complex organic pollutants. The study has revealed that PMDS contained high amounts of Fe (2403), Zn (210), Mn (126), Cu (73.62), Cr (21.825), Pb (16.33) and Ni (13.425 mg kg(-1)) along with melanoidins and other co-pollutants. The phytoextraction pattern in 15 potential native plants growing on sludge showed that the Blumea lacera, Parthenium hysterophorous, Setaria viridis, Chenopodium album, Cannabis sativa, Basella alba, Tricosanthes dioica, Amaranthus spinosus L., Achyranthes sp., Dhatura stramonium, Sacchrum munja and Croton bonplandianum were noted as root accumulator for Fe, Zn and Mn, while S. munja, P. hysterophorous, C. sativa, C. album, T. dioica, D. stramonium, B. lacera, B. alba, Kalanchoe pinnata and Achyranthes sp. were found as shoot accumulator for Fe. In addition, A. spinosus L. was found as shoot accumulator for Zn and Mn. Similarly, all plants found as leaf accumulator for Fe, Zn and Mn except A. spinosus L. and Ricinus communis. Further, the BCF of all tested plants were noted <1, while the TF showed >1. This revealed that metal bioavailability to plant is poor due to strong complexation of heavy metals with organic pollutants. This gives a strong evidence of hyperaccumulation for the tested metals from complex distillery waste. Furthermore, the TEM observations of root of P. hysterophorous, C. sativa, Solanum nigrum and R. communis showed formation of multi-nucleolus, multi-vacuoles and deposition of metal granules in cellular component of roots as a plant adaptation mechanism for phytoextraction of heavy metal-rich polluted site. Hence, these native plants may be used as a tool for in situ phytoremediation and eco-restoration of industrial waste-contaminated site.

  12. Analysis of arsenic and antimony distribution within plants growing at an old mine site in Ouche (Cantal, France) and identification of species suitable for site revegetation.

    PubMed

    Jana, Ulrike; Chassany, Vincent; Bertrand, Georges; Castrec-Rouelle, Maryse; Aubry, Emmanuel; Boudsocq, Simon; Laffray, Daniel; Repellin, Anne

    2012-11-15

    One of the objectives of this study was to assess the contamination levels in the tailings of an old antimony mine site located in Ouche (Cantal, France). Throughout the 1.3 ha site, homogenous concentrations of antimony and arsenic, a by-product of the operation, were found along 0-0.5 m-deep profiles. Maximum concentrations for antimony and arsenic were 5780 mg kg(-1) dry tailings and 852 mg kg(-1) dry tailings, respectively. Despite the presence of the contaminants and the low pH and organic matter contents of the tailings, several patches of vegetation were found. Botanical identification determined 12 different genera/species. The largest and most abundant plants were adult pines (Pinus sylvestris), birches (Betula pendula) and the bulrush (Juncus effusus). The distribution of the metalloids within specimens of each genera/species was analysed in order to deduce their concentration and translocation capacities. This was the second goal of this work. All plant specimens were highly contaminated with both metalloids. Most were root accumulators with root to shoot translocation factors <1. Whereas contamination levels were high overall, species with both a low translocation factor and a low root accumulation coefficient were identified as suitable candidates for the complete revegetation of the site. Species combining those characteristics were the perennials P. sylvestris, B. pendula, Cytisus scoparius and the herbaceous Plantago major, and Deschampsia flexuosa.

  13. Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan.

    PubMed

    Mikolasch, Annett; Omirbekova, Anel; Schumann, Peter; Reinhard, Anne; Sheikhany, Halah; Berzhanova, Ramza; Mukasheva, Togzhan; Schauer, Frieder

    2015-05-01

    Three microbial strains were isolated from the rhizosphere of alfalfa (Medicago sativa), grass mixture (Festuca rubra, 75 %; Lolium perenne, 20 %; Poa pratensis, 10 %), and rape (Brassica napus) on the basis of their high capacity to use crude oil as the sole carbon and energy source. These isolates used an unusually wide spectrum of hydrocarbons as substrates (more than 80), including n-alkanes with chain lengths ranging from C12 to C32, monomethyl- and monoethyl-substituted alkanes (C12-C23), n-alkylcyclo alkanes with alkyl chain lengths from 4 to 18 carbon atoms, as well as substituted monoaromatic and diaromatic hydrocarbons. These three strains were identified as Gordonia rubripertincta and Rhodococcus sp. SBUG 1968. During their transformation of this wide range of hydrocarbon substrates, a very large number of aliphatic, alicyclic, and aromatic acids was detected, 44 of them were identified by GC/MS analyses, and 4 of them are described as metabolites for the first time. Inoculation of plant seeds with these highly potent bacteria had a beneficial effect on shoot and root development of plants which were grown on oil-contaminated sand.

  14. Screening of antimutagenicity via antioxidant activity in Cuban medicinal plants.

    PubMed

    Ramos, A; Visozo, A; Piloto, J; García, A; Rodríguez, C A; Rivero, R

    2003-08-01

    The reducing activity on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, z.rad;OH radical scavenging potential, in vitro inhibition of lipid peroxidation and modulation of mutagenicity induced by ter-butyl hydroperoxide (TBH) in Escherichia coli were sequentially screened in 45 species of plants used with medicinal purposes in Cuba, in a search for antioxidant agents which protect DNA against oxidative stress.Five species, e.g. Tamarindus indica L., Lippia alba L., Pimenta dioica (L.) Merr, Rheedia aristata Griseb. and Curcuma longa L. displayed IC(50)<30 micro g/ml in the DPPH radical reduction assay and IC(50)<32 micro g/ml in lipid peroxidation inhibition testing. Pimenta dioica and Curcuma longa L. showed also a 20% inhibition of the in vitro induced z.rad;OH attack to deoxyglucose. Further antimutagenesis assay in Escherichia coli IC 188 evidenced that only Pimenta dioica prevents DNA damage by TBH to the test bacteria. A role of antioxidant enzymes is presumed in this case, as judged by a different response in the isogenic Escherichia coli IC 203 deficient in catalase and alkyl hydroperoxide reductase and the discrete inhibition of oxidative mutagenesis also observed when pre-treatment of the extract was assayed. Eugenol, the main constituent of the essential oil of Pimenta dioica, also inhibited oxidative mutagenesis by TBH in Escherichia coli, at concentrations ranging from 150 to 400 micro g/plate.

  15. Bacterial activity in plant (Schoenoplectus validus) biofilms of constructed wetlands.

    PubMed

    Pollard, Peter C

    2010-12-01

    Biofilm-bacterial communities have been exploited in the treatment of wastewater in 'fixed-film' processes. Our understanding of biofilm dynamics requires a quantitative knowledge of bacterial growth-kinetics in these microenvironments. The aim of this paper was to apply the thymidine assay to quantify bacterial growth without disturbing the biofilm on the surfaces of emergent macrophytes (Schoenoplectus validus) of a constructed wetland. The isotope was rapidly and efficiently taken-up and incorporated into dividing biofilm-bacteria. Isotope diffusion into the biofilm did not limit the growth rate measurement. Isotope dilution was inhibited at >12 μM thymidine. Biofilm-bacterial biomass and growth rates were not correlated to the plant surface area (r(2) < 0.02). The measurements of in situ biofilm-bacterial growth rates both displayed, and accommodated, the inherent heterogeneity of the complex wetland ecosystem. Biofilm-bacterial respiratory activities, measured using the redox dye CTC, and growth rates were measured simultaneously. The dye did not interfere with bacterial growth. Biofilm-bacterial specific growth rates ranged from 1.4 ± 0.6 d(-1) to 3.3 ± 1.3 d(-1). In the constructed wetlands of this study biofilm-bacterial specific growth rates, compared to those of natural ecosystems, could be markedly improved through changes in wetland design that increased bacterial respiration while minimising biofilm growth.

  16. A Fungal Endoglucanase with Plant Cell Wall Extension Activity1

    PubMed Central

    Yuan, Sheng; Wu, Yajun; Cosgrove, Daniel J.

    2001-01-01

    We have identified a wall hydrolytic enzyme from Trichoderma reesei with potent ability to induce extension of heat-inactivated type I cell walls. It is a small (23-kD) endo-1,4-β-glucanase (Cel12A) belonging to glycoside hydrolase family 12. Extension of heat-inactivated walls from cucumber (Cucumis sativus cv Burpee Pickler) hypocotyls was induced by Cel12A after a distinct lag time and was accompanied by a large increase in wall plasticity and elasticity. Cel12A also increased the rate of stress relaxation of isolated walls at very short times (<200 ms; equivalent to reducing t0, a parameter that estimates the minimum relaxation time). Similar changes in wall plasticity and elasticity were observed in wheat (Triticum aestivum cv Pennmore Winter) coleoptile (type II) walls, which showed only a negligible extension in response to Cel12A treatment. Thus, Cel12A modifies both type I and II walls, but substantial extension is found only in type I walls. Cel12A has strong endo-glucanase activity against xyloglucan and (1→3,1→4)-β-glucan, but did not exhibit endo-xylanase, endo-mannase, or endo-galactanase activities. In terms of kinetics of action and effects on wall rheology, wall loosening by Cel12A differs qualitatively from the action by expansins, which induce wall extension by a non-hydrolytic polymer creep mechanism. The action by Cel12A mimics some of the changes in wall rheology found after auxin-induced growth. The strategy used here to identify Cel12A could be used to identify analogous plant enzymes that cause auxin-induced changes in cell wall rheology. PMID:11553760

  17. Global transcription regulation by DNA topoisomerase I in exponentially growing Saccharomyces cerevisiae cells: activation of telomere-proximal genes by TOP1 deletion.

    PubMed

    Lotito, Luca; Russo, Alessandra; Chillemi, Giovanni; Bueno, Susana; Cavalieri, Duccio; Capranico, Giovanni

    2008-03-21

    To establish the cellular functions of DNA topoisomerase I-B (Top1p) at a global level, we have determined the expression profiles and histone modification patterns affected by TOP1 gene deletion (DeltaTOP1) in Saccharomyces cerevisiae. In exponentially growing cells, DeltaTOP1 specifically increases transcription of telomere-proximal genes and decreases glucose utilization and energy production pathways. Immunoprecipitation data demonstrate that Top1p can bind to and is catalytically active at telomeric DNA repeats, and that both DeltaTOP1 and an inactive Y727F Top1p mutant increase H4 histone acetylation at telomere-proximal regions. Interestingly, while the Y727F mutation has no influence on enzyme recruitment to chromatin sites, it has a marked effect on H4 K16 acetylation at subtelomeric regions. The Top1p mutation also increases H3 histone K4 dimethylation, which has been associated with gene transcription, at 3' termini of subtelomeric genes. No major effect of DeltaTOP1 or mutation was detected on Sir3p recruitment; however, DeltaTOP1 has an effect on transcript levels of genes known to regulate telomeric silencing. Thus, the findings indicate that Top1p activity can favor both a repressed chromatin organization and a reduced gene expression level at telomere-proximal regions in yeast. As telomere-proximal regions are known to be enriched for stress-activated genes, our findings show that Top1p can optimize transcript levels for cell growth in exponentially growing cells under a synthetic medium with glucose.

  18. Correlation between erythropoietic activity and body growth rate in hypertransfused polycythemic growing rats as the result of an erythropoietin-dependent operating mechanism

    SciTech Connect

    Bozzini, C.E.; Alippi, R.M.; Barcelo, A.C.; Caro, J.

    1989-02-01

    The established relationship between erythropoietic activity and body growth rate in the polycythemic growing rat could be the result of either an erythropoietin (EPO)-dependent or an EPO-independent operating mechanism. The present study was thus undertaken to elucidate the nature of the aforementioned mechanism by assessing the ratio between plasma immunoreactive EPO (iEPO) concentration and erythropoietic activity in young hypertransfused rats for different body growth rates. Red blood cell (RBC)-59Fe uptake was about 75% in 21-day-old rats; it rapidly decreased with time when the animals were placed on a protein-free diet, approaching a level of about 1% by the 10th day of protein starvation. Over the same period plasma iEPO decreased from 55 mU/ml to 7 mU/ml. Body growth rate was 0. Following this ''protein depletion period'' the rats received diets containing different amounts of casein (''protein repletion period'') added isocalorically to the protein-free diet to elicit a rise in body growth rate. Statistically significant relationships (p less than 0.001) were found between dietary casein concentration and body growth rate (r = 0.991), dietary casein concentration and RBC-59Fe uptake (r = 0.991), dietary casein concentration and plasma iEPO level (r = 0.992), body growth rate and RBC-59Fe (r = 0.986), and body growth rate and plasma iEPO level (r = 0.994) in hypertransfused polycythemic rats during the protein repletion period. These findings suggest that the correlation between erythropoietic activity and growth rate in the growing rat is the result of an erythropoietin-dependent operating mechanism, which appears to be independent of the ratio tissue oxygen supply/tissue oxygen demand.

  19. REE, Uranium (U) and Thorium (Th) contents in Betula pendula leaf growing around Komsomolsk gold concentration plant tailing (Kemerovo region, Western Siberia, Russia)

    NASA Astrophysics Data System (ADS)

    Yusupov, D. V.; Karpenko, Yu A.

    2016-09-01

    The article deals with the research findings of peculiarities of REE, Uranium and Thorium distribution in the territory surrounding the tailing of former Komsomolsk gold concentration plant according to the data from Betula pendula leaf testing. In the leaf element composition the slight deficiency of MREE and substantial excess of HREE are presented. In the nearest impacted area around the tailing, La, Yb, U and Th content, and Th/U ratio are lower than in the distant buffer area. It is shown, that value of Th/U ratio and REE can be an indicator for geochemical transformations of technogenic landscapes in mining districts. The results of the research can be used for biomonitoring of the territory around the tailing.

  20. Acaricidal activity against Panonychus citri and active ingredient of the mangrove plant Cerbera manghas.

    PubMed

    Deng, Yecheng; Yongmei Liao; Li, Jingjing; Yang, Linlin; Zhong, Hui; Zhou, Qiuyan; Qing, Zhen

    2014-09-01

    Cerbera manghas is a mangrove plant which possesses comprehensive biological activities. A great deal of research has been undertaken on the chemical constituents and medical functions of C. manghas; insecticidal and antifungal activities have also been reported, but the acaricidal activity has not been studied. In our study, the acaricidal activity and active substances of C. manghas were investigated using a spray method, which showed that the methanol extracts of the fruit, twigs and leaves exhibited contact activity against female adults of Panonychus citri, with LC50 values at 24 h of 3.39 g L(-1), 4.09 g L(-1) and 4.11 g L(-1), respectively. An acaricidal compound was isolated from C. manghas by an activity-guided isolation method, and identified as (-)-17β-neriifolin, which is a cardiac glycoside. (-)-17β-Neriifolin revealed high contact activity against female adults, nymphae, larvae and eggs of P. citri, with LC50 values at 24 h of 0.28 g L(-1), 0.29 g L(-1), 0.28 g L(-1) and 1.45 g L(-1), respectively.