Science.gov

Sample records for actively pumped alkali

  1. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  2. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  3. Advancements in flowing diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  4. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  5. Diode pumped alkali lasers (DPALs): an overview

    NASA Astrophysics Data System (ADS)

    Krupke, William F.

    2008-05-01

    The concept of power-scalable, high beam-quality diode pumped alkali lasers was introduced in 2003 [Krupke, US Patent No. 6,643,311; Opt. Letters, 28, 2336 (2003)]. Since then several laboratory DPAL devices have been reported on, confirming many of the spectroscopic, kinetic, and laser characteristics projected from literature data. This talk will present an overview of the DPAL concept, summarize key relevant properties of the cesium, rubidium, and potassium alkali vapor gain media so-far examined, outline power scaling considerations, and highlight results of published DPAL laboratory experiments.

  6. High-energy transversely pumped alkali vapor laser

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.

    2011-03-01

    We report on the results from our transversely pumped alkali laser. This system uses an Alexandrite laser to pump a stainless steel laser head. The system uses methane and helium as buffer gasses. Using rubidium, the system produced up to 40 mJ of output energy when pumped with 63 mJ. Slope efficiency was 75%. Using potassium as the lasing species the system produced 32 mJ and a 53% slope efficiency.

  7. Wave optics simulation of diode pumped alkali laser (DPAL)

    NASA Astrophysics Data System (ADS)

    Endo, Masamori; Nagaoka, Ryuji; Nagaoka, Hiroki; Nagai, Toru; Wani, Fumio

    2016-03-01

    A numerical simulation code for a diode pumped alkali laser (DPAL) was developed. The code employs the Fresnel- Kirchhoff diffraction integral for both laser mode and pump light propagations. A three-dimensional rate equation set was developed to determine the local gain. The spectral divergence of the pump beam was represented by a series of monochromatic beams with different wavelengths. The calculated results showed an excellent agreements with relevant experimental results. It was found that the main channel of the pump power drain is the spontaneous emission from the upper level of the lasing transition.

  8. Diode pumped alkali vapor lasers for high power applications

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.; Komashko, A.

    2008-02-01

    General Atomics has been engaged in the development of diode pumped alkali vapor lasers. We have been examining the design space looking for designs that are both efficient and easily scalable to high powers. Computationally, we have looked at the effect of pump bandwidth on laser performance. We have also looked at different lasing species. We have used an alexandrite laser to study the relative merits of different designs. We report on the results of our experimental and computational studies.

  9. Spatial Polarization Profile in an Optically Pumped Alkali Vapor

    NASA Astrophysics Data System (ADS)

    Olsen, Ben; Patton, Brian; Jau, Yuan-Yu; Happer, Will

    2009-05-01

    Spin-Exchange Optical Pumping (SEOP) is a technique used to polarize nuclei in gases, and more recently in solids, in excess of their equilibrium limit. SEOP is achieved by optically pumping an alkali vapor which subsequently transfers angular momentum to the nuclei of interest. The efficiency of SEOP is governed by optical pumping and relaxation of the alkali atoms, relaxation of the target nuclei, and interactions between the alkali and target substance. In this work we investigate the relationship between optical pumping and relaxation in cesium vapor with absorption spectroscopy at high magnetic field (2.7 T). Cesium vapor within a cylindrical glass vapor cell is optically pumped with a strong laser resonant with a D2 transition. The ground-state population of the vapor is measured at various positions along a diameter of the cell with a small, weak D1 laser beam which translates mechanically. The resulting polarization profile elucidates the interplay between optical pumping, diffusion in the buffer gas, and relaxation at the walls of the vapor cell. We report measurements of the spatial polarization profile in vapor cells with bare Pyrex walls and cells coated with paraffin (an anti-relaxation coating) or CsH salt (a target substance for SEOP), and compare them to numerical simulations. Further investigation might yield a new method for characterizing surface relaxation in vapor cells.

  10. Feasibility of supersonic diode pumped alkali lasers: Model calculations

    SciTech Connect

    Barmashenko, B. D.; Rosenwaks, S.

    2013-04-08

    The feasibility of supersonic operation of diode pumped alkali lasers (DPALs) is studied for Cs and K atoms applying model calculations, based on a semi-analytical model previously used for studying static and subsonic flow DPALs. The operation of supersonic lasers is compared with that measured and modeled in subsonic lasers. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.

  11. Spin-Exchange Optical Pumping of Alkali Salts

    NASA Astrophysics Data System (ADS)

    Olsen, Ben; Patton, Brian; Jau, Yuan-Yu; Happer, Will; Ishikawa, Kiyoshi

    2008-05-01

    Spin-Exchange Optical Pumping (SEOP) is a technique used to polarize nuclei in excess of their equilibrium limit. SEOP is achieved by optically pumping an alkali vapor which then transfers angular momentum to the nuclei of interest. We have recently hyperpolarized ^133Cs nuclei in solid CsH using SEOP, achieving magnetizations more than an order of magnitude larger than the thermal equilibrium value.ootnotetextIshikawa et. al., Phys. Rev. Lett. 98, 183004 (2007) In subsequent work, we investigate the mechanisms underlying this transfer of angular momentum. By optically pumping Cs vapor with laser light resonant with several optical transitions, each yielding different nuclear and electronic spin currents to the solid, we attempt to determine the source of transferred angular momentum. Early evidence suggests both electronic and nuclear spin polarization in the vapor contribute to ^133Cs nuclear polarization in the salt. The ^1H polarization is also mildly affected by optical pumping. We compare these results to numerical simulations and to results from other alkali salts. Further studies are warranted to discover if polarization can be transferred to other nuclei (e.g., alkali salts) on the cell walls.

  12. Magnetic Resonance Reversals in Optically Pumped Alkali-Metal Vapor

    NASA Astrophysics Data System (ADS)

    Gong, Fei; Jau, Yuan-Yu; Happer, William

    2007-06-01

    We report an unusual new phenomenon, peculiar sign reversals of the ground-state magnetic resonances and of the ``zero-dip" resonance (Zeeman resonance at zero field) of optically-pumped, alkali-metal vapors. These anomalies occur when a ``weak" circular polarized D1 laser light is tuned to pump atoms predominantly from the lower ground-state hyperfine multiplet. One can understand the signal reversals in simple, semi-quantitative way with reference to this distribution. uantitative computer simulations are in excellent greement with observations.

  13. Magnetic resonance reversals in optically pumped alkali-metal vapor

    NASA Astrophysics Data System (ADS)

    Gong, F.; Jau, Y.-Y.; Happer, W.

    2007-05-01

    We report an unusual phenomenon, peculiar sign reversals of the ground-state magnetic resonances and of the zero-dip resonance (Zeeman resonance at zero field) of optically pumped, alkali-metal vapors. These anomalies occur when a weak circularly polarized D1 laser light is tuned to pump atoms predominantly from the lower ground-state hyperfine multiplet. One can understand the signal reversals in a simple, semiquantitative way with reference to the spin-temperature distribution. Quantitative computer simulations are in excellent agreement with observations.

  14. Supersonic diode pumped alkali lasers: Computational fluid dynamics modeling

    NASA Astrophysics Data System (ADS)

    Rosenwaks, Salman; Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Barmashenko, Boris D.

    2015-10-01

    We report on recent progress on our three-dimensional computational fluid dynamics (3D CFD) modeling of supersonic diode pumped alkali lasers (DPALs), taking into account fluid dynamics and kinetic processes in the lasing medium. For a supersonic Cs DPAL with laser section geometry and resonator parameters similar to those of the 1-kW flowing-gas subsonic Cs DPAL [A.V. Bogachev et al., Quantum Electron. 42, 95 (2012)] the maximum achievable output power, ~ 7 kW, is 25% higher than that achievable in the subsonic case. Comparison between semi-analytical and 3D CFD models for Cs shows that the latter predicts much higher maximum achievable output power than the former. Optimization of the laser parameters using 3D CFD modeling shows that very high power and optical-to-optical efficiency, 35 kW and 82%, respectively, can be achieved in a Cs supersonic device pumped by a collimated cylindrical (0.5 cm diameter) beam. Application of end- or transverse-pumping by collimated rectangular (large cross section ~ 2 - 4 cm2) beam makes it possible to obtain even higher output power, > 250 kW, for ~ 350 kW pumping power. The main processes limiting the power of Cs supersonic DPAL are saturation of the D2 transition and large ~ 40% losses of alkali atoms due to ionization, whereas the influence of gas heating is negligibly small. For supersonic K DPAL both gas heating and ionization effects are shown to be unimportant and the maximum achievable power, ~ 40 kW and 350 kW, for pumping by ~ 100 kW cylindrical and ~ 700 kW rectangular beam, respectively, are higher than those achievable in the Cs supersonic laser. The power achieved in the supersonic K DPAL is two times higher than for the subsonic version with the same resonator and K density at the gas inlet, the maximum optical-to-optical efficiency being 82%.

  15. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  16. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  17. Spin-Exchange Optical Pumping of Solid Alkali Compounds

    NASA Astrophysics Data System (ADS)

    Patton, Brian; Ishikawa, Kiyoshi; Jau, Yuan-Yu; Happer, William

    2007-06-01

    We demonstrate enhancement of the ^133Cs nuclear polarization in a film of cesium hydride which has been placed in contact with an optically pumped cesium vapor. The maximum observed polarization at 9.4 T and 137 ^oC is roughly 4 times the equilibrium polarization, but higher magnetizations are possible at lower magnetic fields. In an attempt to determine the mechanism of spin transfer from the alkali vapor to the solid, we have performed this experiment at intermediate magnetic fields (1-2 tesla) while pumping different optical transitions in the vapor. We will discuss the predicted spin current to the CsH layer in this regime of partial hyperfine decoupling and propose new methods for generating even higher polarizations in the solid. Potential applications of this technique will be mentioned as well as its extension to other compounds.

  18. Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode.

    PubMed

    Zhdanov, B V; Venus, G; Smirnov, V; Glebov, L; Knize, R J

    2015-08-01

    This paper presents results of cooperative efforts on development of a continuous wave Cs diode pumped alkali laser with moderate output power, which can be considered as a prototype of the commercial device. The developed system operates at 895 nm with output power about 4 W and slope efficiency 28%. Measured turn on time of this system from the standby mode is about a minute. PMID:26329171

  19. Spin-Exchange Optical Pumping of Solid Alkali Compounds

    NASA Astrophysics Data System (ADS)

    Patton, Brian; Ishikawa, Kiyoshi; Jau, Yuan-Yu; Happer, William

    2007-03-01

    Spin-exchange optical pumping of noble gases has been used for many years to create highly non-equilibrium spin populations, with applications ranging from fundamental physics[1] to medical imaging[2]. In this procedure, angular momentum is transferred from circularly-polarized laser light to the electron spins of an alkali vapor and ultimately to the nuclei of a gas such as ^3He or ^129Xe. Here we show experimentally that a similar process can be used to polarize the nuclei of a solid film of cesium hydride which coats the walls of an optical pumping cell. We present nuclear magnetic resonance (NMR) data which demonstrate that the nuclear polarization of ^133Cs in CsH can be enhanced above the Boltzmann limit in a 9.4-Tesla magnetic field. Possible spin-exchange mechanisms will be discussed, as well as the extension of this technique to other compounds. [1] T. W. Kornack, R. K. Ghosh, and M. V. Romalis, Phys. Rev. Lett. 95, 23080 (2005). [2] M. S. Conradi, D. A. Yablonskiy, et al., Acad. Radiol. 12, 1406 (2005).

  20. Progress in High-Field Optical Pumping of Alkali Metal Nuclei

    NASA Astrophysics Data System (ADS)

    Patton, B.; Ishikawa, K.; Jau, Y.-Y.; Happer, W.

    2006-05-01

    We present preliminary results of an attempt to polarize alkali metal nuclei via optical pumping in a large (9.4-tesla) magnetic field. NMR measurements of ^87Rb and ^133Cs films in optical cells will be reported. Depopulation pumping of alkalis can easily produce electron polarizations of order unity, as measured during spin-exchange optical pumping of noble gases [1]. At low magnetic fields (< ˜1 kG), the strong hyperfine coupling between the alkali electron and nucleus allows angular momentum exchange from one to the other, resulting in nuclear polarization enhancement through optical pumping. In the high magnetic fields required for NMR, however, this interaction is largely decoupled and electron-nuclear spin exchange must rely upon the δA I .S interaction induced by buffer gas collisions (also called the ``Carver rate''). High-field optical pumping experiments may allow for a more precise measurement of this rate, as well as yielding insight into the transfer of angular momentum from the polarized alkali vapor to the bulk alkali metal on the cell walls. The technical challenges of high-resolution NMR of alkali metals at 9.4 tesla will be discussed. 1. E. Babcock, I. Nelson, S. Kadlecek, et al., Physical Review Letters 91, 123003 (2003).

  1. Geopolymers and Related Alkali-Activated Materials

    NASA Astrophysics Data System (ADS)

    Provis, John L.; Bernal, Susan A.

    2014-07-01

    The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

  2. Multimode-diode-pumped gas (alkali-vapor) laser

    SciTech Connect

    Page, R H; Beach, R J; Kanz, V K

    2005-08-22

    We report the first demonstration of a multimode-diode-pumped gas laser--Rb vapor operating on the 795 nm resonance transition. Peak output of {approx}1 Watt was obtained using a volume-Bragg-grating stabilized pump diode array. The laser's output radiance exceeded the pump radiance by a factor greater than 2000. Power scaling (by pumping with larger diode arrays) is therefore possible.

  3. Durability of Alkali Activated Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  4. Definition and analysis of the lineshape matching coefficient in diode-pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Shen, Binglin; Pan, Bailiang; Yang, Jing; Qian, Aiqing; Jiao, Jian

    2014-12-01

    For diode-pumped alkali lasers (DPALs), the matching of lineshape between D2 absorption line and pump light greatly affects the properties of laser output; however, there is rare theoretical study on the quantitative description of the lineshape matching coefficient. In this paper, we put forward a formula to describe the lineshape matching coefficient that represents the matching degree between D2 absorption line and pump light. Dependences of the matching coefficient and optical-optical efficiency on the linewidth ratio between D2 absorption line and pump light, and the center frequency shift of pump light caused by mode hopping are calculated and compared with experimental results in literatures. Results show the definition of lineshape matching coefficient can provide an effective way to improve the pump efficiency of DPALs.

  5. Decalcification resistance of alkali-activated slag.

    PubMed

    Komljenović, Miroslav M; Baščarević, Zvezdana; Marjanović, Nataša; Nikolić, Violeta

    2012-09-30

    This paper analyses the effects of decalcification in concentrated 6M NH(4)NO(3) solution on mechanical and microstructural properties of alkali-activated slag (AAS). Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Decalcification process led to a decrease in strength, both in AAS and in CEM II, and this effect was more pronounced in CEM II. The decrease in strength was explicitly related to the decrease in Ca/Si atomic ratio of C-S-H gel. A very low ratio of Ca/Si ~0.3 in AAS was the consequence of coexistence of C-S-H(I) gel and silica gel. During decalcification of AAS almost complete leaching of sodium and tetrahedral aluminum from C-S-H(I) gel also took place. AAS showed significantly higher resistance to decalcification in relation to the benchmark CEM II due to the absence of portlandite, high level of polymerization of silicate chains, low level of aluminum for silicon substitution in the structure of C-S-H(I), and the formation of protective layer of polymerized silica gel during decalcification process. In stabilization/solidification processes alkali-activated slag represents a more promising solution than Portland-slag cement due to significantly higher resistance to decalcification. PMID:22818592

  6. Plasma Formation During Operation of a Diode Pumped Alkali Laser (DPAL) in Cs

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Zatsarinny, Oleg; Bartschat, Klaus; Kushner, Mark J.

    2014-10-01

    Diode pumped Alkali Lasers (DPALs) produce laser action on the resonant lines of alkali atoms. Diode lasers resonantly pump the 2P3/2 state of the alkali atom which is collisionally relaxed to the 2P3/2 state which then lases to the ground state 2S1/2. The low optical quality of high power semiconductor diode lasers is converted into high optical quality laser radiation from the alkali vapor. The Cs DPAL system using Ar/Cs/C2H6 mixtures has shown promising results. (C2H6 is the collisional relaxant.) In other studies, resonant excitation of alkali vapor by low power lasers has been used to produce highly ionized channels, initiated through associative ionization and superelastic electron heating. The issue then arises if plasma formation occurs during DPAL by similar mechanisms which would be detrimental to laser performance. In this paper, we report on results from a computational study of a DPAL using Cs vapor. The global model addresses quasi-cw pumping of the Cs(2P3/2) state by laser diodes, and includes a full accounting of the resulting electron kinetics. To enable this study, the B-spline R-matrix (BSR) with pseudostates method was employed to calculate electron impact cross sections for Cs. We found that for pump rates of many to 10 kW/cm2, plasma densities approaching 1013 cm-3 occur during laser oscillation with higher values in the absence of laser oscillation. Supported by DoD High Energy Laser Mult. Res. Initiative and NSF.

  7. Modeling of static and flowing-gas diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Barmashenko, Boris D.; Auslender, Ilya; Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Rosenwaks, Salman

    2016-03-01

    Modeling of static and flowing-gas subsonic, transonic and supersonic Cs and K Ti:Sapphire and diode pumped alkali lasers (DPALs) is reported. A simple optical model applied to the static K and Cs lasers shows good agreement between the calculated and measured dependence of the laser power on the incident pump power. The model reproduces the observed threshold pump power in K DPAL which is much higher than that predicted by standard models of the DPAL. Scaling up flowing-gas DPALs to megawatt class power is studied using accurate three-dimensional computational fluid dynamics model, taking into account the effects of temperature rise and losses of alkali atoms due to ionization. Both the maximum achievable power and laser beam quality are estimated for Cs and K lasers. The performance of subsonic and, in particular, supersonic DPALs is compared with that of transonic, where supersonic nozzle and diffuser are spared and high power mechanical pump (needed for recovery of the gas total pressure which strongly drops in the diffuser), is not required for continuous closed cycle operation. For pumping by beams of the same rectangular cross section, comparison between end-pumping and transverse-pumping shows that the output power is not affected by the pump geometry, however, the intensity of the output laser beam in the case of transverse-pumped DPALs is strongly non-uniform in the laser beam cross section resulting in higher brightness and better beam quality in the far field for the end-pumping geometry where the intensity of the output beam is uniform.

  8. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  9. Spin Transfer from an Optically Pumped Alkali Vapor to a Solid

    NASA Astrophysics Data System (ADS)

    Ishikawa, K.; Patton, B.; Jau, Y.-Y.; Happer, W.

    2007-05-01

    We report enhancement of the spin polarization of Cs133 nuclei in CsH salt by spin transfer from an optically pumped cesium vapor. The nuclear polarization was 4.0 times the equilibrium polarization at 9.4 T and 137°C, with larger enhancements at lower fields. This work is the first demonstration of spin transfer from a polarized alkali vapor to the nuclei of a solid, opening up new possibilities for research in hyperpolarized materials.

  10. Spin Transfer from an Optically Pumped Alkali Vapor to a Solid

    SciTech Connect

    Ishikawa, K.; Patton, B.; Jau, Y.-Y.; Happer, W.

    2007-05-04

    We report enhancement of the spin polarization of {sup 133}Cs nuclei in CsH salt by spin transfer from an optically pumped cesium vapor. The nuclear polarization was 4.0 times the equilibrium polarization at 9.4 T and 137 deg. C, with larger enhancements at lower fields. This work is the first demonstration of spin transfer from a polarized alkali vapor to the nuclei of a solid, opening up new possibilities for research in hyperpolarized materials.

  11. Experimental study of the Cs diode pumped alkali laser operation with different buffer gases

    NASA Astrophysics Data System (ADS)

    Knize, Randall J.; Zhdanov, Boris V.; Rotondaro, Matthew D.; Shaffer, Michael K.

    2016-03-01

    Cs diode pumped alkali laser (DPAL) operation using ethane, methane, and mixtures of these hydrocarbons with the noble gases He and Ar as a buffer gas for spin-orbit relaxation was studied in this work. The best Cs DPAL performance in continuous wave operation with flowing gain medium was achieved using pure methane, pure ethane, or a mixture of ethane (minimum of 200 Torr) and He with a total buffer gas pressure of 300 Torr.

  12. Excimer-pumped alkali vapor lasers: a new class of photoassociation lasers

    NASA Astrophysics Data System (ADS)

    Readle, J. D.; Wagner, C. J.; Verdeyen, J. T.; Spinka, T. M.; Carroll, D. L.; Eden, J. G.

    2010-02-01

    Excimer-pumped alkali vapor lasers (XPALs) are a new class of photoassociation lasers which take advantage of the spectrally broad absorption profiles of alkali-rare gas collision pairs. In these systems, transient alkali-rare gas molecules are photopumped from the thermal continuum to a dissociative X2Σ+ 1/2 interaction potential, subsequently populating the n2P3/2 state of the alkali. The absorption profiles >=5 nm and quantum efficiencies >98% have been observed in oscillator experiments, indicating XPAL compatibility with conventional high power laser diode arrays. An alternative technique for populating the n2P3/2 state is direct photoexcitation on the n2P3/2<--n2S1/2 atomic transition. However, because the XPAL scheme employs an off-resonant optical pump, the strengths of resonantly-enhanced nonlinear processes are minimized. Additionally, the absorption coefficient may be adjusted by altering the number densities of the lasing species and/or perturbers, a valuable asset in the design of large volume, high power lasers. We present an overview of XPAL lasers and their operation, including the characteristics of recently demonstrated systems photopumped with a pulsed dye laser. Lasing has been observed in Cs at both 894 nm and 852 nm by pumping CsAr or CsKr pairs as well as in Rb at 795 nm by pumping RbKr. These results highlight the important role of the perturbing species in determining the strength and position of the excimer absorption profile. It is expected that similar results may be obtained in other gas mixtures as similar collision pair characteristics have historically been observed in a wide variety of transient diatomic species.

  13. Diode-Pumped Alkali Atom Lasers 03-LW-024 Final Report

    SciTech Connect

    Page, R H; Beach, R J

    2005-02-16

    The recent work at LLNL on alkali-atom lasers has been remarkably successful and productive. Three main phases (so far) can be identified. First, the concept and demonstration of red lasers using (Ti:sapphire pumping) took place; during this time, Rubidium and Cesium resonance-line lasers were tested, and theoretical models were developed and shown to describe experimental results very reliably. Work done during this first phase has been well documented, and the models from that period are still in use for their predictions and for designing power-scaled lasers. [1 - 3] Second, attempts were made to produce a blue alkali-vapor laser using sequentially-resonant two-step pumping (again, using Ti:sapphire lasers.) Although a blue laser did not result, the physical limitations of our approach are now better-defined. Third, diode-pumped operation of a red laser (Rubidium) was attempted, and we eventually succeeded in demonstrating the world's first diode-pumped gas laser. [4] Because we have a defensible concept for producing an efficient, compact, lightweight, power-scaled laser (tens of kW,) we are in a position to secure outside funding, and would like to find a sponsor. For descriptions of work done during the ''first phase,'' see References [1 - 3] ''Phase two'' work is briefly described in the section ''Blue laser,'' and ''phase three'' work is presented in the section entitled ''Diode-pumped red laser.''

  14. Simulation of deleterious processes in a static-cell diode pumped alkali laser

    NASA Astrophysics Data System (ADS)

    Oliker, Benjamin Q.; Haiducek, John D.; Hostutler, David A.; Pitz, Greg A.; Rudolph, Wolfgang; Madden, Timothy J.

    2014-02-01

    The complex interactions in a diode pumped alkali laser (DPAL) gain cell provide opportunities for multiple deleterious processes to occur. Effects that may be attributable to deleterious processes have been observed experimentally in a cesium static-cell DPAL at the United States Air Force Academy [B.V. Zhdanov, J. Sell, R.J. Knize, "Multiple laser diode array pumped Cs laser with 48 W output power," Electronics Letters, 44, 9 (2008)]. The power output in the experiment was seen to go through a "roll-over"; the maximum power output was obtained with about 70 W of pump power, then power output decreased as the pump power was increased beyond this point. Research to determine the deleterious processes that caused this result has been done at the Air Force Research Laboratory utilizing physically detailed simulation. The simulations utilized coupled computational fluid dynamics (CFD) and optics solvers, which were three-dimensional and time-dependent. The CFD code used a cell-centered, conservative, finite-volume discretization of the integral form of the Navier-Stokes equations. It included thermal energy transport and mass conservation, which accounted for chemical reactions and state kinetics. Optical models included pumping, lasing, and fluorescence. The deleterious effects investigated were: alkali number density decrease in high temperature regions, convective flow, pressure broadening and shifting of the absorption lineshape including hyperfine structure, radiative decay, quenching, energy pooling, off-resonant absorption, Penning ionization, photoionization, radiative recombination, three-body recombination due to free electron and buffer gas collisions, ambipolar diffusion, thermal aberration, dissociative recombination, multi-photon ionization, alkali-hydrocarbon reactions, and electron impact ionization.

  15. Influence of energy pooling and ionization on physical features of a diode-pumped alkali laser.

    PubMed

    An, Guofei; Wang, You; Han, Juhong; Cai, He; Zhou, Jie; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Gao, Ming; Jiang, Zhigang

    2015-10-01

    In recent years, a diode-pumped alkali laser (DPAL) has become one of the most hopeful candidates to achieve the high power performance. A series of models have been established to analyze the DPAL's kinetic process and most of them were based on the algorithms in which only the ideal 3-level system was considered. In this paper, we developed a systematic model by taking into account the influence of excitation of neutral alkali atoms to even-higher levels and their ionization on the physical features of a static DPAL. The procedures of heat transfer and laser kinetics were combined together in our theoretical model. By using such a theme, the continuous temperature and number density distribution have been evaluated in the transverse section of a cesium vapor cell. The calculated results indicate that both energy pooling and ionization play important roles during the lasing process. The conclusions might deepen the understanding of the kinetic mechanism of a DPAL. PMID:26480154

  16. Computation of three-dimensional temperature distribution in diode-pumped alkali vapor amplifiers

    NASA Astrophysics Data System (ADS)

    Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2016-06-01

    Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor amplifiers, a comprehensive physical model with a cyclic iterative approach for calculating the three-dimensional temperature distribution of the vapor cell is established. Taking into account heat generation, thermal conductivity and convection, the excitation of the alkali atoms to high electronic levels, and their losses due to ionization in the gain medium, the thermal features and output characteristics have been simultaneously obtained. The results are in good agreement with those of the measurement in a static rubidium vapor amplifier. Influences of gas velocity on radial and axial temperature profiles are simulated and analyzed. The results have demonstrated that thermal problems in gaseous gain medium can be significantly reduced by flowing the gain medium with sufficiently high velocity.

  17. Laser demonstration and performance characterization of optically pumped Alkali Laser systems

    NASA Astrophysics Data System (ADS)

    Sulham, Clifford V.

    Diode Pumped Alkali Lasers (DPALs) offer a promising approach for high power lasers in military applications that will not suffer from the long logistical trails of chemical lasers or the thermal management issues of diode pumped solid state lasers. This research focuses on characterizing a DPAL-type system to gain a better understanding of using this type of laser as a directed energy weapon. A rubidium laser operating at 795 nm is optically pumped by a pulsed titanium sapphire laser to investigate the dynamics of DPALs at pump intensities between 1.3 and 45 kW/cm2. Linear scaling as high as 32 times threshold is observed, with no evidence of second order kinetics. Comparison of laser characteristics with a quasi-two level analytic model suggests performance near the ideal steady-state limit, disregarding the mode mis-match. Additionally, the peak power scales linearly as high as 1 kW, suggesting aperture scaling to a few cm2 is sufficient to achieve tactical level laser powers. The temporal dynamics of the 100 ns pump and rubidium laser pulses are presented, and the continually evolving laser efficiency provides insight into the bottlenecking of the rubidium atoms in the 2P3/2 state. Lastly, multiple excited states of rubidium and cesium were accessed through two photon absorption in the red, yielding a blue and an IR photon through amplified stimulated emission. Threshold is modest at 0.3 mJ/pulse, and slope efficiencies increase dramatically with alkali concentrations and peak at 0.4%, with considerable opportunity for improvement. This versatile system might find applications for IR countermeasures or underwater communications.

  18. Blue satellites of absorption spectrum study of sodium based excimer-pumped alkali vapor laser

    NASA Astrophysics Data System (ADS)

    Hu, Shu; Gai, Baodong; Guo, Jingwei; Tan, Yannan; Liu, Jinbo; Li, Hui; Cai, Xianglong; Shi, Zhe; Liu, Wanfa; Jin, Yuqi; Sang, Fengting

    2015-02-01

    Sodium based excimer-pump alkali laser (Na-XPAL) is expected to be an efficient method to generate sodium beacon light, but the information about the spectroscopic characters of Na-XPAL remains sparse so far. In this work, we utilized the relative fluorescence intensity to study the absorption spectrum of blue satellites of complexes of sodium with different collision partners. The yellow fluorescence of Na D1 and D2 line was clearly visible. After processing the fluorescence intensity and the input pumping laser relative intensity, we obtained the Na-CH4 system's blue satellites was from 553nm to 556nm. Meanwhile, we experimentally demonstrated the Na-Ar and Na-Xe system's wavelength range of blue satellites. Also, it was observed that the Na-Xe system's absorption was stronger than the other two systems.

  19. New Class of CW High-Power Diode-Pumped Alkali Lasers (DPALs)

    SciTech Connect

    Krupke, W F; Beach, R J; Kanz, V K; Payne, S A; Early, J T

    2004-03-23

    The new class of diode-pumped alkali vapor lasers (DPALs) offers high efficiency cw laser radiation at near-infrared wavelengths: cesium 895 nm, rubidium 795 nm, and potassium 770 nm. The working physical principles of DPALs will be presented. Initial 795 nm Rb and 895 nm Cs laser experiments performed using a titanium sapphire laser as a surrogate pump source demonstrated DPAL slope power conversion efficiencies in the 50-70% range, in excellent agreement with device models utilizing only literature spectroscopic and kinetic data. Using these benchmarked models for Rb and Cs, optimized DPALs with optical-optical efficiencies >60%, and electrical efficiencies of 25-30% are projected. DPAL device architectures for near-diffraction-limited power scaling into the high kilowatt power regime from a single aperture will be described. DPAL wavelengths of operation offer ideal matches to silicon and gallium arsenide based photovoltaic power conversion cells for efficient power beaming.

  20. Low-pressure cesium and potassium diode pumped alkali lasers: pros and cons

    NASA Astrophysics Data System (ADS)

    Zhdanov, Boris V.; Rotondaro, Matthew D.; Shaffer, Michael K.; Knize, Randall J.

    2016-02-01

    This paper presents the results of our experiments on a comparative study of cesium and potassium diode pumped alkali lasers (DPALs) aimed to determine which of these two lasers has more potential to scale to high powers. For both lasers, we have chosen a "low-pressure DPAL approach," which uses buffer gas pressure of about 1 atm for spin-orbit mixing of the excited states of alkali atoms to provide population inversion in the gain medium. The goal of this study was to determine power-limiting effects, which affect the performance of these DPALs, and find out how these limiting effects can be mitigated. We studied the performance of both lasers in CW and pulsed modes using both static and flowing gain medium and pump with different pulse duration. We observed output power degradation in time from the initial value to the level corresponding to the CW mode of operation. As a result of this study, some essential positive and negative features of both DPALs were revealed, which should be taken into account for power-scaling experiments.

  1. Calculation of transmittance of diode pumped alkali laser in atmosphere propagation

    NASA Astrophysics Data System (ADS)

    Que, Yiqin; Hua, Weihong; Wang, Hongyan; Yang, Zining; Xu, Xiaojun

    2013-05-01

    Diode pumped alkali vapor lasers (DPAL) is a rising high-energy laser. The wavelength of which is consistent with the response curve peak position of solar cell, and it has broad application prospects in laser directed energy transfer. The paper bases on the application of solar unmanned aerial vehicle (UAV) energy transfer in high altitude and longendurance conditions. For the first time by using the MODTRAN and FASCODE, we calculate the transmittance of Potassium, rubidium, cesium laser in the typical atmospheric conditions vertically and different angles of atmospheric slant path by the numbers, The result shows that DPAL has a very high atmospheric transmittance, and also a valuable reference in other applications with the atmospheric transmission.

  2. ALKALI-ACTIVATED SLAG CEMENTS AS A SUSTAINABLE BUILDING MATERIAL

    EPA Science Inventory

    The overall goal of this project is to develop and characterize alkali-activated slag cements with minimal carbon footprints, as well as to answer scientific questions that have yet to be satisfactorily addressed by prior research. These questions include the final disposition...

  3. New studies of optical pumping, spin resonances, and spin exchange in mixtures of inert gases and alkali-metal vapors

    NASA Astrophysics Data System (ADS)

    Jau, Yuan-Yu

    In this thesis, we present new studies of alkali-hyperfine resonances, new optical pumping of alkali-metal atoms, and the new measurements of binary spin-exchange cross-section between alkali-metal atoms and xenon atoms. We report a large light narrowing effect of the hyperfine end-resonance signals, which was predicted from our theory and observed in our experiments. By increasing the intensity of the circularly polarized pumping beam, alkali-metal atoms are optically pumped into a state of static polarization, and trapped into the hyperfine end-state. Spin exchange between alkali-metal atoms has minimal effect on the end-resonance of the highly spin-polarized atoms. This new result will possibly benefit the design of atomic clocks and magnetometer. We also studied the pressure dependence of the atomic-clock resonance linewidth and pointed out that the linewidth was overestimated by people in the community of atomic clock. Next, we present a series study of coherent population trapping (CPT), which is a promising technique with the same or better performance compared to the traditional microwave spectroscopy. For miniature atomic clocks, CPT method is thought to be particularly advantages. From our studies, we invented a new optical-pumping method, push-pull optical pumping, which can pump atoms into nearly pure 0-0 superposition state, the superposition state of the two ground-state hyperfine sublevels with azimuthal quantum number m = 0. We believe this new invention will bring a big advantage to CPT frequency standards, the quantum state preparation for cold atoms or hot vapor, etc. We also investigated the pressure dependence of CPT excitation and the line shape of the CPT resonance theoretically and experimentally. These two properties are important for CPT applications. A theoretical study of "photon cost" of optical pumping is also presented. Finally, we switch our attention to the problem of spin exchange between alkali-metal atoms and xenon gas. This

  4. Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source

    NASA Astrophysics Data System (ADS)

    Cai, He; Wang, You; Han, Juhong; An, Guofei; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Zhou, Jie; Gao, Ming; Jiang, Zhigang

    2015-03-01

    Diode pumped alkali vapor lasers (DPALs) were first developed by in W. F. Krupke at the beginning of the 21th century. In the recent years, DPALs have been rapidly developed because of their high Stokes efficiency, good beam quality, compact size and near-infrared emission wavelengths. The Stokes efficiency of a DPAL can achieve a miraculous level as high as 95.3% for cesium (Cs), 98.1% for rubidium (Rb), and 99.6% for potassium (K), respectively. The thermal effect of a DPAL is theoretically smaller than that of a normal diode-pumped solid-state laser (DPSSL). Additionally, generated heat of a DPAL can be removed by circulating the gases inside a sealed system. Therefore, the thermal management would be relatively simple for realization of a high-powered DPAL. In the meantime, DPALs combine the advantages of both DPSSLs and normal gas lasers but evade the disadvantages of them. Generally, the collisionally broadened cross sections of both the D1 and the D2 lines for a DPAL are much larger than those for the most conventional solid-state, fiber and gas lasers. Thus, DPALs provide an outstanding potentiality for realization of high-powered laser systems. It has been shown that a DPAL is now becoming one of the most promising candidates for simultaneously achieving good beam quality and high output power. With a lot of marvelous merits, a DPAL becomes one of the most hopeful high-powered laser sources of next generation.

  5. Properties and Performance of Alkali-Activated Concrete

    NASA Astrophysics Data System (ADS)

    Thomas, Robert J.

    Alkali-activated concrete (AAC) made with industrial byproducts as the sole binder is rapidly emerging as a sustainable alternative to ordinary portland cement concrete (PCC). Despite its exemplary mechanical performance and durability, there remain several barriers to widespread commercialization of AAC. This dissertation addresses several of these barriers. Mathematical models are proposed which efficiently and accurately predict the compressive strength of AAC as a function of activator composition, binder type, and curing condition. The relationships between compressive strength and other mechanical properties (i.e., tensile strength and modulus of elasticity) are discussed, as are stress-strain relationships. Several aspects related to the durability of AAC are also discussed, including dimensional stability under drying conditions, alkali-silica reactivity, and chloride permeability. The results of these experimental investigations are disseminated in the context of real-world applicability.

  6. The Interfacial Transition Zone in Alkali-Activated Slag Mortars

    NASA Astrophysics Data System (ADS)

    San Nicolas, Rackel; Provis, John

    2015-12-01

    The interfacial transition zone (ITZ) is known to strongly influence the mechanical and transport properties of mortars and concretes. This paper studies the ITZ between siliceous (quartz) aggregates and alkali activated slag binders in the context of mortar specimens. Backscattered electron images (BSE) generated in an environmental scanning electron microscope (ESEM) are used to identify unreacted binder components, reaction products and porosity in the zone surrounding aggregate particles, by composition and density contrast. X-ray mapping is used to exclude the regions corresponding to the aggregates from the BSE image of the ITZ, thus enabling analysis of only the binder phases, which are segmented into binary images by grey level discrimination. A distinct yet dense ITZ region is present in the alkali-activated slag mortars, containing a reduced content of unreacted slag particles compared to the bulk binder. The elemental analysis of this region shows that it contains a (C,N)-A-S-H gel which seems to have a higher content of Na (potentially deposited through desiccation of the pore solution) and a lower content of Ca than the bulk inner and outer products forming in the main binding region. These differences are potentially important in terms of long-term concrete performance, as the absence of a highly porous interfacial transition zone region is expected to provide a positive influence on the mechanical and transport properties of alkali-activated slag concretes.

  7. Alkali-aggregate reactivity of typical siliceious glass and carbonate rocks in alkali-activated fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Lu, Duyou; Liu, Yongdao; Zheng, Yanzeng; Xu, Zhongzi; Shen, Xiaodong

    2013-08-01

    For exploring the behaviour of alkali-aggregate reactivity (AAR) in alkali-activated geopolymeric materials and assessing the procedures for testing AAR in geopolymers, the expansion behaviour of fly ash based geopolymer mortars with pure silica glass and typical carbonate rocks were studied respectively by curing at various conditions, i.e. 23°C and 38°C with relative humidity over 95%, immersed in 1M NaOH solution at 80°C. Results show that, at various curing conditions, neither harmful ASR nor harmful ACR was observed in geopolymers with the criteria specified for OPC system. However, with the change of curing conditions, the geopolymer binder and reactive aggregates may experience different reaction processes leading to quite different dimensional changes, especially with additional alkalis and elevated temperatures. It suggests that high temperature with additional alkali for accelerating AAR in traditional OPC system may not appropriate for assessing the alkali-aggregate reactivity behaviour in geopolymers designed for normal conditions. On the other hand, it is hopeful to control the dimensional change of geopolymer mortar or concrete by selecting the type of aggregates and the appropriate curing conditions, thus changing the harmful AAR in OPC into beneficial AAR in geopolymers and other alkali-activated cementitious systems.

  8. Gas dynamic effect in high energy fluid diode pumped alkali vapor laser

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Li, Wenyu; Wang, Hongyan; Yang, Zining; Xu, Xiaojun

    2012-11-01

    In this paper, a simple one dimensional heated flow analysis model and 3-D finite volume method (FVM) is set to discuss the real gas dynamic effect in FDPAL. We found that huge amount of waste heat deposited in extreme compact volume size will notably affect active medium's local velocity, temperature and the density distribution along flow direction, and would accordingly affect pump beam's absorption and change optimized lasing conditions, hence, a comprehensive model incorporate gas dynamic effect should be built for DPAL's next stage development. We further proposed that expanding fluid channel may be a choice to increase optical thickness along pumping direction and alleviate this effect.

  9. Workability and mechanical properties of alkali activated slag concrete

    SciTech Connect

    Collins, F.G.; Sanjayan, J.G.

    1999-03-01

    This paper reports the results of an investigation on concrete containing alkali activated slag (AAS) as the binder, with emphasis on achievement of reasonable workability and equivalent one-day strength to portland cement concrete at normal curing temperatures. Two types of activators were used: sodium hydroxide in combination with sodium carbonate and sodium silicate in combination with hydrated lime. The fresh concrete properties reported include slump and slump loss, air content, and bleed. Mechanical properties of AAS concrete, including compressive strength, elastic modulus, flexural strength, drying shrinkage, and creep are contrasted with those of portland cement concrete.

  10. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system (part II).

    PubMed

    Han, Juhong; Wang, You; Cai, He; An, Guofei; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Zhou, Jie; Jiang, Zhigang; Gao, Ming

    2015-04-01

    With high efficiency and small thermally-induced effects in the near-infrared wavelength region, a diode-pumped alkali laser (DPAL) is regarded as combining the major advantages of solid-state lasers and gas-state lasers and obviating their main disadvantages at the same time. Studying the temperature distribution in the cross-section of an alkali-vapor cell is critical to realize high-powered DPAL systems for both static and flowing states. In this report, a theoretical algorithm has been built to investigate the features of a flowing-gas DPAL system by uniting procedures in kinetics, heat transfer, and fluid dynamic together. The thermal features and output characteristics have been simultaneously obtained for different gas velocities. The results have demonstrated the great potential of DPALs in the extremely high-powered laser operation. PMID:25968778

  11. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light.

    PubMed

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-01-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach. PMID:27595707

  12. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light

    PubMed Central

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-01-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach. PMID:27595707

  13. Effects of atmospheric transmission of high power diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Rice, Christopher A.; Perram, Glen P.

    2013-03-01

    As diode pumped alkali lasers (DPAL) are scaled to powers exceeding 1 kW, the effects of atmospheric transmission, including thermal blooming, is explored. The cesium and rubidium lasers operate near 894 and 795 nm, respectively, in the vicinity of atmospheric water vapor absorption lines. The potassium laser line lies in the high rotational limit of the O2 X-b (0,0) band near 770 nm. We assess the effects of atmospheric transmission on high power propagation using the High Energy Laser End-to End Operational Simulation. HELEEOS uses the scaling laws of the Scaling the High energy laser And Relay Engagements (SHaRE) toolbox which is anchored to the wave optics code WaveTrain and all significant degradation effects, including thermal blooming due to molecular and aerosol absorption, scattering extinction, and optical turbulence, are represented in the model. The HELEEOS model enables the evaluation of uncertainty in low-altitude high energy laser engagements due to all major low altitude atmospheric effects to include physically-based representations of water clouds, fog, light rain, and aerosols. Worldwide seasonal, diurnal, and geographical spatial-temporal variability in key climatological parameters is organized into probability density function databases in HELEEOS using a variety of recently available resources to include the Extreme and Percentile Environmental Reference Tables (ExPERT) for 408 sites worldwide, the Surface Marine Gridded Climatology (SMGC) database which provides coverage over all ocean areas, the Master Database for Optical Turbulence Research in support of the Airborne Laser, and the Global Aerosol Data Set (GADS) used to provide worldwide aerosol densities. The spectral transmission model is anchored to field data from an open-path Tunable Diode Laser Absorption (TDLAS) system composed of narrow band (~300 kHz) diode laser fiber coupled to a 12" Ritchey-Chrétien transmit telescope. The ruggedized system has been field deployed and tested

  14. Structural Investigation of Alkali Activated Clay Minerals for Application in Water Treatment Systems

    NASA Astrophysics Data System (ADS)

    Bumanis, G.; Bajare, D.; Dembovska, L.

    2015-11-01

    Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.

  15. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements.

    PubMed

    Shi, Caijun; Fernández-Jiménez, A

    2006-10-11

    This paper reviews progresses on the use of alkali-activated cements for stabilization/solidification of hazardous and radioactive wastes. Alkali-activated cements consist of an alkaline activator and cementing components, such as blast furnace slag, coal fly ash, phosphorus slag, steel slag, metakaolin, etc., or a combination of two or more of them. Properly designed alkali-activated cements can exhibit both higher early and later strengths than conventional portland cement. The main hydration product of alkali-activated cements is calcium silicate hydrate (CSH) with low Ca/Si ratios or aluminosilicate gel at room temperature; CSH, tobmorite, xonotlite and/or zeolites under hydrothermal condition, no metastable crystalline compounds such as Ca(OH)(2) and calcium sulphoaluminates exist. Alkali-activated cements also exhibit excellent resistance to corrosive environments. The leachability of contaminants from alkali-activated cement stabilized hazardous and radioactive wastes is lower than that from hardened portland cement stabilized wastes. From all these aspects, it is concluded that alkali-activated cements are better matrix for solidification/stabilization of hazardous and radioactive wastes than Portland cement. PMID:16787699

  16. Self-Pumping Active Gel

    NASA Astrophysics Data System (ADS)

    Wu, Kun-Ta; Hishamunda, Jean Bernard; Fraden, Seth; Dogic, Zvonimir

    Isotropic active gels are the network which is consist of cross-linked building blocks and the structure of which changes randomly and isotropically with time. Dogic et. al. show that pairs of anti-parallel microtubules form extensile bundles, which merge, extend, and buckle. In an unconfined system, the dynamics of these bundles causes spontaneous turbulent-like flow driven by motion of microscopic molecular motors. We found that confining these active gels in a millimeter sized toroids causes a transition into a new dynamical state characterized by circulation currents persisting for hours until ATP is depleted. We show how toroid dimensions impact the properties of self-organized circular currents, how directions of circulation can be designed by engineering ratchet-shaped boundaries, and how circulations of connected toroids can be either synchronized or antisynchronized. Furthermore, we demonstrate that the flow rate in the circulation is independent of curvature and length of flow path. The flow rate persists for centimeters without decay, disregarding conventional pipe flow resistance. Such findings pave the path to self-pumping pipe transport and performing physical work with biological system.

  17. Vertical integration of thermally activated heat pumps

    SciTech Connect

    Chen, F.C.

    1985-01-01

    Many thermally activated heat pump systems are being developed along technology lines, such as, engine-driven and absorption heat pumps. Their thermal performances are temperature dependent. Based on the temperature-dependent behavior of heat pump cycle performance and the energy cascading idea, the concept of vertically integrating various thermally activated heat pump technologies to maximize resources utilization is explored. Based on a preliminary analysis, it is found that integrating a desiccant dehumidification subsystem to an engine-driven heat pump could improve its cooling performance by 36% and integrating an ejector to it could improve its cooling performance by 20%. The added advantage of an ejector-coupled engine-driven heat pump is its system simplicity which should result in equipment cost savings.

  18. Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas

    SciTech Connect

    Romalis, M. V.

    2010-12-10

    Optical pumping of an optically thick atomic vapor typically requires a quenching buffer gas, such as N{sub 2}, to prevent radiation trapping of unpolarized photons which would depolarize the atoms. We show that optical pumping of a trace contamination of Rb present in K metal results in a 4.5 times higher polarization of K than direct optical pumping of K in the absence of N{sub 2}. Such spin-exchange polarization transfer from optically thin species is useful in a variety of areas, including spin-polarized nuclear scattering targets and electron beams, quantum-nondemolition spin measurements, and ultrasensitive magnetometry.

  19. Alkali extraction and in vitro antioxidant activity of Monascus mycelium polysaccharides.

    PubMed

    Wang, Pengrong; Chen, Danfeng; Jiang, Donghua; Dong, Xiameng; Chen, Panpan; Lin, Yaoxue

    2014-07-01

    In the present work, alkali extraction technology was used to optimize the extraction of Monascus mycelium polysaccharides for the first time. The extracting parameters of alkali extracted Monascus mycelium polysaccharides were optimized by Box-Behnken design (BBD). The optimum conditions were extraction temperature 49 °C, alkali concentration 7%, solvent/material ratio 23:1 (ml/g) and extraction time 2.3 h with an enhanced yield of 10.1%, compared with the yield 4.76% of hot water extraction, indicating that alkali extraction is a more efficient way. In order to discuss the biological activity of alkali extracted polysaccharides, we compared the in vitro antioxidant activity of alkali extracted polysaccharides (AMP) with hot water extracted polysaccharides (HMP). The result showed that AMP have the similar capability of scavenging both superoxide radical and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical of HMP in vitro. Therefore, alkali extraction technology is not only a high-efficiency way to extract AMP, but also can retain the natural antioxidant activities of AMP, which can be used in pharmaceutical and food industries. PMID:24966417

  20. Optically pumped alkali laser and amplifier using helium-3 buffer gas

    DOEpatents

    Beach, Raymond J.; Page, Ralph; Soules, Thomas; Stappaerts, Eddy; Wu, Sheldon Shao Quan

    2010-09-28

    In one embodiment, a laser oscillator is provided comprising an optical cavity, the optical cavity including a gain medium including an alkali vapor and a buffer gas, the buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Additionally, an optical excitation source is provided. Furthermore, the laser oscillator is capable of outputting radiation at a first frequency. In another embodiment, an apparatus is provided comprising a gain medium including an alkali vapor and a buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Other embodiments are also disclosed.

  1. Adsorption of superplasticizer admixtures on alkali-activated slag pastes

    SciTech Connect

    Palacios, M. Houst, Y.F.; Bowen, P.; Puertas, F.

    2009-08-15

    Alkali-activated slag (AAS) binders are obtained by a manufacturing process less energy-intensive than ordinary Portland cement (OPC) and involves lower greenhouse gasses emission. These alkaline cements allow the production of high mechanical strength and durable concretes. In the present work, the adsorption of different superplasticizer admixtures (naphthalene-based, melamine-based and a vinyl copolymer) on the slag particles in AAS pastes using alkaline solutions with different pH values have been studied in detail. The effect of the superplasticizers on the yield stress and plastic viscosity of the AAS and OPC pastes have been also evaluated. The results obtained allowed us to conclude that the adsorption of the superplasticizers on AAS pastes is independent of the pH of the alkaline solutions used and lower than on OPC pastes. However, the effect of the admixtures on the rheological parameters depends directly on the type and dosage of the superplasticizer as well as of the binder used and, in the case of the AAS, on the pH of the alkaline activator solution. In 11.7-pH NaOH-AAS pastes the dosages of the superplasticizers required to attain similar reduction in the yield stress are ten-fold lower than for Portland cement. In this case the superplasticizers studied show a fluidizing effect considerably higher in 11.7-pH NaOH-AAS pastes than in OPC pastes. In 13.6-pH NaOH-AAS pastes, the only admixture observed to affect the rheological parameters is the naphthalene-based admixture due to its higher chemical stability in such extremely alkaline media.

  2. Properties of Ce-activated alkali-lutetium double phosphate scintillators

    SciTech Connect

    Wiśniewski, D.; Wojtowicz, A. J.; Boatner, Lynn A

    2010-01-01

    The scintillation properties of Ce-activated alkali-lutetium double phosphate single crystals that vary with the alkali ion type and activation level are summarized and compared. The materials investigated here have been identified as fast and efficient scintillators for the detection of x-ray and radiation, and in case of Li3Lu(PO4)2:Ce, for thermal neutron detection as well.

  3. Alkali-activated binders by use of industrial by-products

    SciTech Connect

    Buchwald, A.; Schulz, M

    2005-05-01

    Cement kiln dust (CKD) materials are used as alkaline accelerators for latent hydraulic substances and as alkali activators for different alumosilicate materials, including ground-granulated blast furnace slag, low-calcium fly ash and metakaolin. The dusts differ in their phase composition, especially in the amount of reactive phases and the kind and amount of alkali salts. The quantitative phase composition, pore solution composition and strength behavior of the activated blends is reported.

  4. Electron collisions with cesium atoms - benchmark calculations and application to modeling an excimer-pumped alkali laser

    NASA Astrophysics Data System (ADS)

    Zatsarinny, Oleg; Bartschat, Klaus; Babaeva, Natalia; Kushner, Mark

    2014-10-01

    The B-spline R-matrix (BSR) with pseudostates method was employed to describe electron collisions with cesium atoms. Over 300 states were kept in the close-coupling expansion, including a large number of pseudostates to model the effect of the Rydberg spectrum and the ionization continuum on the results for transitions between the discrete physical states of interest. Predictions for elastic scattering, excitation, and ionization for incident energies up to 200 eV are presented and compared to previous results [2,3] and experimental data. Our data were used to model plasma formation in the excimer-pumped alkali laser, XPAL, operating on the Cs (62P3 / 2 , 1 / 2 --> (62S1 / 2) (852nm and 894nm) transitions. At sufficiently high operating temperature, pump power, and repetition rate, plasma formation in excess of 1014--1015cm-3 occurs. This may reduce laser output power by electron collisional mixing of the upper and lower laser levels. Work supported by the NSF under PHY-1068140, PHY-1212450, and the XSEDE allocation PHY-090031 (OZ, KB), and by the DoD High Energy Laser Multidisciplinary Research Initiative (NYB, MJK).

  5. Electron collisions with cesium atoms—benchmark calculations and application to modeling an excimer-pumped alkali laser

    NASA Astrophysics Data System (ADS)

    Zatsarinny, Oleg; Bartschat, Klaus; Babaeva, Natalia Yu; Kushner, Mark J.

    2014-06-01

    The B-spline R-matrix (BSR) with pseudostates method is employed to describe electron collisions with cesium atoms. Over 300 states are kept in the close-coupling expansion, including a large number of pseudostates to model the effect of the Rydberg spectrum and, most importantly, the ionization continuum on the results for transitions between the discrete physical states of interest. Predictions for elastic scattering, momentum transfer, excitation and ionization are presented for incident energies up to 200 eV and compared with results from previous calculations and available experimental data. In a second step, the results are used to model plasma formation in an excimer-pumped alkali laser operating on the Cs (62P3/2,1/2 → 62S1/2) (852 nm and 894 nm) transitions. At sufficiently high operating temperature of a Cs-Ar containing quartz cell, pump power, and repetition rate, plasma formation in excess of 1014-1015 cm-3 occurs. This may reduce laser output power by electron collisional mixing of the upper and lower laser levels.

  6. Nanoscale Properties and Stability Simulations of Alkali Activated Cement Phases from First Principle Calculations

    NASA Astrophysics Data System (ADS)

    Ozcelik, Ongun; White, Claire

    Using first principle density functional calculations, we present the nanoscale properties of interactions, local bonds, charge distributions, mechanical properties and strength of alkali activated cement phases which are the most promising alternative to the ordinary Portland cement with a much lower cost to the environment. We present results on the stability and long term durability of various alkali activated cement structures, effects of external alkali agents on their properties and ways of utilizing them for further applications. We compare the calculated properties of alkali activated cement with those of ordinary Portland cement and contribute to the formation of long term durability data of these phases. Comparison with X-ray and neutron scattering experiment results are also provided via pair distribution functions extracted from simulation results.

  7. Low pressure cesium and potassium Diode Pumped Alkali Lasers: pros and cons

    NASA Astrophysics Data System (ADS)

    Zhdanov, Boris V.; Rotondaro, Matthew D.; Shaffer, Michael K.; Knize, Randall J.

    2015-10-01

    This paper based on the talk presented at the Security plus Defence 2015 Conference held at Toulouse, France in September 2015. In this paper we present the results of our experiments on a comparative study of Cesium and Potassium based DPALs aimed to determine which of these two lasers has better potential for scaling to high powers. For both lasers we have chosen a so called "low pressure DPAL approach", which uses buffer gas pressure of about 1 Atm for spin-orbit mixing of the exited states of alkali atoms to provide population inversion in the gain medium. The goal of this study was to determine power limiting effects, which affect performance of these DPALs, and find out how these limiting effects can be mitigated. The experiments were performed using both static and flowing gain medium. In our experiments, we studied the performance of both lasers in CW and pulsed modes with different pulse duration and observed output power degradation in time from the initial value to the level corresponding to the CW mode of operation. As a result of this study, we revealed some essential positive and negative features of both DPALs, which should be taken into account for power scaling experiments.

  8. Design and Implementation of Alkali Activated Cement For Sustainable Development

    NASA Astrophysics Data System (ADS)

    Moseson, Alexander James

    Herein, progress is presented on the design and implementation of technology for sustainable development in general and international development in particular. Necessarily interdisciplinary, the work draws upon the tools and techniques of Mechanical, Materials, and Civil Engineering; and History & Politics. The work was conducted along two paths, the first being the theory and methodology of sustainable development. A flexible design and dissemination framework was developed, Technology Seeding, defined as: development by the transfer and participatory adaptation of appropriate proven conceptual designs. The methodology was developed in part through two case studies which implemented, respectively, wood-turning lathes in Tanzania and upland rice planters in Thailand. The second path is the design and investigation of alkali-activated cements (AACs) for practical use. Those developed herein, for US markets, comprise ground granulated blast furnace slag, soda ash (sodium carbonate), and up to 68 wt.% granular limestone. Mixture Design of Experiment (DOE) was utilized to guide empirical and theoretical analysis of performance (e.g. compressive strength), economic & ecological aspects (e.g. cost, CO2 production, energy consumption), and chemistry (e.g. Rietveld analysis of x-ray diffractograms). Models were derived to understand the impact of mix design on performance and for optimization. Successful formulations are hydraulic and cure at room temperature, with strengths as high as 41 MPa at 3 days and 65 MPa at 28 days. Some of these formulations, compared to OPC, are competitive in performance, reduce cost by up to 40%, and reduce both CO2 production and energy consumption by up to 97%. Major chemical products include calcium silicate hydrates / calcium aluminum silicate hydrates (C-(A)-S-H), gaylussite, and calcite (both newly formed and remaining from limestone). Calcite/dolomite and C-(A)-S-H both contribute to strength. A fraction of the limestone is consumed

  9. Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells

    NASA Astrophysics Data System (ADS)

    Baranga, A. Ben-Amar; Appelt, S.; Erickson, C. J.; Young, A. R.; Happer, W.

    1998-09-01

    We present a detailed experimental analysis of Rb-polarization imaging in high-pressure gas cells. The Rb vapor in these cells is optically pumped by high-power diode-laser arrays. We present images for high (35 G) and low (4 G) magnetic fields and for different He and Xe buffer-gas mixtures. We demonstrate that high-field imaging provides an absolute measurement of the Rb-polarization distribution in the cell, based on the fact that a spin-temperature distribution of the hyperfine magnetic sublevels is established in high-pressure buffer gases. A survey of various mechanisms that broaden the Rb magnetic-resonance lines is presented. These broadening mechanisms determine the limits of the spatial resolution achievable for images of the Rb-polarization distribution.

  10. PV water pumping: NEOS Corporation recent PV water pumping activities

    SciTech Connect

    Lane, C.

    1995-11-01

    NEOS Corporation has been very active in PV-powered water pumping, particularly with respect to electric utilities. Most of the recent activity has been through the Photovoltaic Services Network (PSN). The PSN is an independent, not-for-profit organization comprised of all types of electric utilities: rural electric coops, public power districts, investor-owned utilities, and power marketing agencies. The PSN`s mission is to work pro-actively to promote utility involvement in PV through education and training. PV information is distributed by the PSN in three primary forms: (1) consultation with PSN technical service representatives: (2) literature generated by the PSN; and (3) literature published by other organizations. The PSN can also provide assistance to members in developing PV customer service programs. The PSN`s product support activities include consolidation of information on existing packaged PV systems and facilitation of the development of new PV product packages that meet utility-defined specifications for cost performance, and reliability. The PSN`s initial product support efforts will be focused on commercially available packaged PV systems for a variety of off-grid applications. In parallel with this effort, if no products exist that meet the PSN`s functional specifications, the PSN will initiate the second phase of product development support process by encouraging the development of new packaged systems. Through these services and product support activities, the PSN anticipates engaging all segments for the PV industry, thus providing benefits to PV systems suppliers as well as local PV service contractors.This paper describes field testing of pv power systems for water pumping.

  11. Double resonance fequency light shift compensation in optically oriented laser-pumped alkali atoms

    SciTech Connect

    Baranov, A. A. Ermak, S. V.; Sagitov, E. A.; Smolin, R. V.; Semenov, V. V.

    2015-09-15

    The contributions of the vector and scalar components to the magnetically dependent microwave transition frequency light shift are analyzed and the compensation of these components is experimentally demonstrated for the {sup 87}Rb atoms optically oriented by a laser tuned to the D{sub 2} line of the head doublet. The Allan variance is studied as a function of the averaging time for a tandem of optically pumped quantum magnetometers (OPQMs), one of which is based on a low-frequency spin oscillator while another is based on a quantum microwave discriminator with a resonance frequency that corresponds to magnetically dependent transitions between HFS sublevels with the extremal value of the magnetic quantum number. It is shown that the compensation of the scalar and vector components of the light shift in OPQMs reduces the Allan variance at averaging times that exceed hundreds of seconds compared to a quantum discriminator based on the magnetically independent 0–0 transition. In this case, the minimal Allan variance in OPQMs at the end resonance is achieved at considerably longer averaging times than in the case of the quantum discriminator that is tuned to the 0–0 transition frequency.

  12. Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations.

    PubMed

    Ratheal, Ian M; Virgin, Gail K; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo

    2010-10-26

    The Na/K pump is a P-type ATPase that exchanges three intracellular Na(+) ions for two extracellular K(+) ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na(+) or K(+); site III binds only Na(+)) are poorly understood. We studied cation selectivity by outward-facing sites (high K(+) affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium(+), methylguanidinium(+), and aminoguanidinium(+) produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K(+), and (ii) induction of pump-mediated, guanidinium-derivative-carried inward current at negative potentials without Na(+) and K(+). In contrast, formamidinium(+) and acetamidinium(+) induced K(+)-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K(+) congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li(+) induced Na(+)-like VDI, whereas all metals tested except Na(+) induced K(+)-like outward currents. Pump-mediated K(+)-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium(+) derivatives suggest that Na(+) binds to site III in a hydrated form and that the inward current observed without external Na(+) and K(+) represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites. PMID:20937860

  13. Alkali-Activated Fly ash-slag Cement based nuclear waste forms

    SciTech Connect

    Jiang, W.; Wu, X.; Roy, D.M.

    1993-12-31

    This paper is based on the results of an in-progress research project on Alkali-Activated Cement System at MRL. The objective of this research is to establish the potential for large volume use of fly ash and slag as main components of the cement system. Alkali-activated Fly ash-slag Cement (AFC) was studied as a matrix for immobilization of nuclear waste. AFC is characterized by high early strength, high ultimate strength, low porosity, lower solubilities of the hydrates, and high resistance to chemical corrosion as well as to freezing and thawing. All these advanced properties are particularly favorable to the immobilization the nuclear wastes.

  14. Mechanical and microstructural properties of alkali-activated fly ash geopolymers.

    PubMed

    Komljenović, M; Bascarević, Z; Bradić, V

    2010-09-15

    This paper investigates the properties of geopolymer obtained by alkali-activation of fly ash (FA), i.e. the influence of characteristics of the representative group of FA (class F) from Serbia, as well as that of the nature and concentration of various activators on mechanical and microstructural properties of geopolymers. Aqueous solutions of Ca(OH)(2), NaOH, NaOH+Na(2)CO(3), KOH and sodium silicate (water glass) of various concentrations were used as alkali activators. It was established that the nature and concentration of the activator was the most dominant parameter in the alkali-activation process. In respect of physical characteristics of FA, the key parameter was fineness. The geopolymer based on FA with the highest content of fine particles (<43 microm), showed the highest compressive strength in all cases. Regardless of FA characteristics, nature and concentration of the activator, the alkali-activation products were mainly amorphous. The formation of crystalline phases (zeolites) occurred in some cases, depending on the reaction conditions. The highest compressive strength was obtained using sodium silicate. Together with the increase of sodium silicate SiO(2)/Na(2)O mass ratio, the atomic Si/Al ratio in the reaction products was also increased. Under the experimental conditions of this investigation, high strength was directly related to the high Si/Al ratio. PMID:20554110

  15. Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions.

    PubMed

    Salman, Muhammad; Cizer, Özlem; Pontikes, Yiannis; Snellings, Ruben; Vandewalle, Lucie; Blanpain, Bart; Van Balen, Koen

    2015-04-01

    With an aim of producing high value cementitious binder, stainless steel refining slag containing a high amount of CaO in γ-dicalcium silicate form was activated with NaOH and Na-silicate as well as KOH and K-silicate solutions, followed by steam curing at 80 °C. Higher levels of alkali-silicate in the activating solution resulted in higher cumulative heat suggesting accelerated reaction kinetics. With respect to compressive strength, higher levels of alkali silicate resulted in higher strength and the mortars with Na activator were found to have higher early strength than the ones with K activator. The long term strength was found to be similar, regardless of the alkali metal. Thermogravimetric, QXRD and FTIR analyses showed an increase in the amount of reaction products (C-S-H type) over time, further confirming the reactivity of the crystalline slag. Batch leaching results showed lower leaching of heavy metals and metalloids with K activator compared to the Na activator. These results demonstrate that the alkali type and the ratio of hydroxide to silicates have a significant impact on the hydration and mechanical strength development of the stainless steel slag. The above findings can aid in the recycling and valorization of these type of slags which otherwise end up landfilled. PMID:25577317

  16. Optical pumping of generalized laser active materials.

    PubMed

    Fry, F H

    1967-11-01

    Results are presented of a computer-based study on the rate of excitation in the active cores of two types of optically pumped lasers as a function of a number of parameters of the active core. The absorption bands of the active materials are generated by Lorentzian and Gaussian functions. The excitation rate of the active core is proportional to the width of the absorption band at all depths of penetration. The plots of excitation rate as a function of frequency show curves similar to line reversal spectra and emphasize the importance of excitation some distance from the center of the absorption band in the slab model. In the cylindrical model, this wing pumping is even more important due to focusing. The effect of refractive index on the excitation rate is also described. PMID:20062337

  17. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  18. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  19. Alkali-Activated Aluminium-Silicate Composites as Insulation Materials for Industrial Application

    NASA Astrophysics Data System (ADS)

    Dembovska, L.; Bajare, D.; Pundiene, I.; Bumanis, G.

    2015-11-01

    The article reports on the study of thermal stability of alkali-activated aluminium- silicate composites (ASC) at temperature 800-1100°C. ASC were prepared by using calcined kaolinite clay, aluminium scrap recycling waste, lead-silicate glass waste and quartz sand. As alkali activator, commercial sodium silicate solution modified with an addition of sodium hydroxide was used. The obtained alkali activation solution had silica modulus Ms=1.67. Components of aluminium scrap recycling waste (aluminium nitride (AlN) and iron sulphite (FeSO3)) react in the alkali media and create gases - ammonia and sulphur dioxide, which provide the porous structure of the material [1]. Changes in the chemical composition of ASC during heating were identified and quantitatively analysed by using DTA/TG, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of ASC was determined by XRD. The density of ASC was measured in accordance with EN 1097-7. ASC with density around 560 kg/m3 and heat resistance up to 1100°C with shrinkage less than 5% were obtained. The intended use of this material is the application as an insulation material for industrial purposes at elevated temperatures.

  20. Novel, inorganic composites using porous, alkali-activated, aluminosilicate binders

    NASA Astrophysics Data System (ADS)

    Musil, Sean

    Geopolymers are an inorganic polymeric material composed of alumina, silica, and alkali metal oxides. Geopolymers are chemical and fire resistant, can be used as refractory adhesives, and are processed at or near ambient temperature. These properties make geopolymer an attractive choice as a matrix material for elevated temperature composites. This body of research investigated numerous different reinforcement possibilities and variants of geopolymer matrix material and characterized their mechanical performance in tension, flexure and flexural creep. Reinforcements can then be chosen based on the resulting properties to tailor the geopolymer matrix composites to a specific application condition. Geopolymer matrix composites combine the ease of processing of polymer matrix composites with the high temperature capability of ceramic matrix composites. This study incorporated particulate, unidirectional fiber and woven fiber reinforcements. Sodium, potassium, and cesium based geopolymer matrices were evaluated with cesium based geopolymer showing great promise as a high temperature matrix material. It showed the best strength retention at elevated temperature, as well as a very low coefficient of thermal expansion when crystallized into pollucite. These qualities made cesium geopolymer the best choice for creep resistant applications. Cesium geopolymer binders were combined with unidirectional continuous polycrystalline mullite fibers (Nextel(TM) 720) and single crystal mullite fibers, then the matrix was crystallized to form cubic pollucite. Single crystal mullite fibers were obtained by the internal crystallization method and show excellent creep resistance up to 1400°C. High temperature flexural strength and flexural creep resistance of pollucite and polycrystalline/single-crystal fibers was evaluated at 1000-1400°C.

  1. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL)

    SciTech Connect

    Quarrie, L. E-mail: lindsay.o.quarrie@gmail.com

    2014-09-15

    The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

  2. Charge transfer activation energy for alkali atoms on Re and Ta

    NASA Astrophysics Data System (ADS)

    Gładyszewski, Longin

    1993-09-01

    Ion and atom desorption energies for five alkali metals on Re and Ta were determined using the ion thermal emission noise method. The activation energies for the charge transfer process in the adsorbed state were calculated using a special energetic balance equation, which describes the surface ionization and thermal desorption effect. Energies for desorption of Li, Na, K, Rb and Cs from Re and Ta surfaces were determined by measuring the time autocorrelation function of the ion thermoemission current fluctuations.

  3. Strength and durability performance of alkali-activated rice husk ash geopolymer mortar.

    PubMed

    Kim, Yun Yong; Lee, Byung-Jae; Saraswathy, Velu; Kwon, Seung-Jun

    2014-01-01

    This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm(2) and 45 N/mm(2), respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4 environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete. PMID:25506063

  4. Strength and Durability Performance of Alkali-Activated Rice Husk Ash Geopolymer Mortar

    PubMed Central

    Kim, Yun Yong; Lee, Byung-Jae; Saraswathy, Velu

    2014-01-01

    This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm2 and 45 N/mm2, respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4 environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete. PMID:25506063

  5. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  6. Structural evolution of an alkali sulfate activated slag cement

    NASA Astrophysics Data System (ADS)

    Mobasher, Neda; Bernal, Susan A.; Provis, John L.

    2016-01-01

    In this study, the effect of sodium sulfate content and curing duration (from fresh paste up to 18 months) on the binder structure of sodium sulfate activated slag cements was evaluated. Isothermal calorimetry results showed an induction period spanning the first three days after mixing, followed by an acceleration-deceleration peak corresponding to the formation of bulk reaction products. Ettringite, a calcium aluminium silicate hydrate (C-A-S-H) phase, and a hydrotalcite-like Mg-Al layered double hydroxide have been identified as the main reaction products, independent of the Na2SO4 dose. No changes in the phase assemblage were detected in the samples with curing from 1 month up to 18 months, indicating a stable binder structure. The most significant changes upon curing at advanced ages observed were growth of the AFt phase and an increase in silicate chain length in the C-A-S-H, resulting in higher strength.

  7. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation

    SciTech Connect

    Bernal, Susan A.; Provis, John L.; Walkley, Brant; San Nicolas, Rackel; Gehman, John D.; Brice, David G.; Kilcullen, Adam R.; Duxson, Peter; Deventer, Jannie S.J. van

    2013-11-15

    Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO{sub 2} concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclear magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO{sub 2} exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods.

  8. Accelerometer based calf muscle pump activity monitoring.

    PubMed

    O'Donovan, Karol J; O'Keeffe, Derek T; Grace, Pierce A; Lyons, Gerard M

    2005-10-01

    Long distance travel is associated with increased risk of deep vein thrombosis (DVT). There is an increased risk of travel related DVT in passengers with a predisposition to thrombosis. Assisting blood circulation in the lower limb will reduce the risk of DVT. Leg exercises are recommended as a DVT preventative measure while flying but this fails to account for a passenger who is distracted by in flight entertainment or who falls asleep for an extended period. A method for monitoring calf muscle pump activity using accelerometers has been developed and evaluated. The proposed technique could be used to alert the traveller that there is a need to exercise their calf muscle, thus reducing the risk of DVT. PMID:16139770

  9. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags

    SciTech Connect

    Bernal, Susan A.; Mejia de Gutierrez, Ruby; Provis, John L.; Rose, Volker

    2010-06-15

    Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaolin (MK) blends, by exposure to CO{sub 2}-rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptivity. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO{sub 2}/Na{sub 2}O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na{sup +} present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na{sup +} for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.

  10. Rice proteins, extracted by alkali and α-amylase, differently affect in vitro antioxidant activity.

    PubMed

    Wang, Zhengxuan; Liu, Ye; Li, Hui; Yang, Lin

    2016-09-01

    Alkali treatment and α-amylase degradation are different processes for rice protein (RP) isolation. The major aim of this study was to determine the influence of two different extraction methods on the antioxidant capacities of RPA, extracted by alkaline (0.2% NaOH), and RPE, extracted by α-amylase, during in vitro digestion for 2h with pepsin and for 3h with pancreatin. Upon pepsin-pancreatin digestion, the protein hydrolysates (RPA-S, RPE-S), which were the supernatants in the absence of undigested residue, and the whole protein digests (RPA, RPE), in which undigested residue remained, were measured. RPE exhibited the stronger antioxidant responses to free radical scavenging activity, metal chelating activity, and reducing power, whereas the weakest antioxidant capacities were produced by RPE-S. In contrast, no significant differences in antioxidant activity were observed between RPA and RPA-S. The present study demonstrated that the in vitro antioxidant responses induced by the hydrolysates and the protein digests of RPs could be affected differently by alkali treatment and α-amylase degradation, suggesting that the extraction is a vital processing step to modify the antioxidant capacities of RPs. The results of the current study indicated that the protein digests, in which undigested residues remained, could exhibit more efficacious antioxidant activity compared to the hydrolysates. PMID:27041309

  11. Use of ancient copper slags in Portland cement and alkali activated cement matrices.

    PubMed

    Nazer, Amin; Payá, Jordi; Borrachero, María Victoria; Monzó, José

    2016-02-01

    Some Chilean copper slag dumps from the nineteenth century still remain, without a proposed use that encourages recycling and reduces environmental impact. In this paper, the copper slag abandoned in landfills is proposed as a new building material. The slags studied were taken from Playa Negra and Púquios dumps, both located in the region of Atacama in northern Chile. Pozzolanic activity in lime and Portland cement systems, as well as the alkali activation in pastes with copper slag cured at different temperatures, was studied. The reactivity of the slag was measured using thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), electrical conductivity and pH in aqueous suspension and Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, copper slag-Portland cement mortars with the substitution of 25% (by weight) of cement by copper slag and alkali-activated slag mortars cured at 20 and 65 °C were made, to determine the compressive strength. The results indicate that the ancient copper slags studied have interesting binding properties for the construction sector. PMID:26615227

  12. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    SciTech Connect

    White, Claire E.; Daemen, Luke L.; Hartl, Monika; Page, Katharine

    2015-01-15

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO{sub 2} alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicate (C{sub 3}S), blended C{sub 3}S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C{sub 3}S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements.

  13. The optical pumping of alkali atoms using coherent radiation from semi-conductor injection lasers and incoherent radiation from resonance lamps

    NASA Technical Reports Server (NTRS)

    Singh, G.

    1973-01-01

    An experimental study for creating population differences in the ground states of alkali atoms (Cesium 133) is presented. Studies made on GaAs-junction lasers and the achievement of population inversions among the hyperfine levels in the ground state of Cs 133 by optically pumping it with radiation from a GaAs diode laser. Laser output was used to monitor the populations in the ground state hyperfine levels as well as to perform the hyperfine pumping. A GaAs laser operated at about 77 K was used to scan the 8521 A line of Cs 133. Experiments were performed both with neon-filled and with paraflint-coated cells containing the cesium vapor. Investigations were also made for the development of the triple resonance coherent pulse technique and for the detection of microwave induced hyperfine trasistions by destroying the phase relationships produced by a radio frequency pulse. A pulsed cesium resonance lamp developed, and the lamp showed clean and reproducible switching characteristics.

  14. Failure and deformation mechanisms at macro- and nano-scales of alkali activated clay

    NASA Astrophysics Data System (ADS)

    Sekhar Das, Pradip; Bhattacharya, Manjima; Chanda, Dipak Kr; Dalui, Srikanta; Acharya, Saikat; Ghosh, Swapankumar; Mukhopadhyay, Anoop Kumar

    2016-06-01

    Here we report two qualitative models on failure and deformation mechanisms at macro- and nano-scales of alkali activated clay (AACL), a material of extraordinary importance as a low cost building material. The models were based on experimental data of compressive failure and nanoindentation response of the AACL materials. A 420% improvement in compressive strength (σ c) of the AACL was achieved after 28 days (d) of curing at room temperature and it correlated well with the decrements in the residual alkali and pH concentrations with the increase in curing time. Based on extensive post-mortem FE-SEM examinations, a schematic model for the compressive failure mechanism of AACL was proposed. In addition, the nanoindentation results of AACL provided the first ever experimental evidence of the presence of nano-scale plasticity and a nano-scale contact deformation resistance that increased with the applied load. These results meant the development of a unique strain tolerant microstructure in the AACL of Indian origin. The implications of these new observations were discussed in terms of a qualitative model based on the deformation of layered clay structure.

  15. Characterization of environmentally-friendly alkali activated slag cements and ancient building materials

    NASA Astrophysics Data System (ADS)

    Sakulich, Aaron Richard

    Alternative cement technologies are an area of increasing interest due to growing environmental concerns and the relatively large carbon footprint of the cement industry. Many new cements have been developed, but one of the most promising is that made from granulated, ground blast furnace slag activated by a high-pH solution. Another is related to the discovery that some of the pyramid limestone blocks may have been cast using a combination of diatomaceous earth activated by lime which provides the high pH needed to dissolve the diatomaceous earth and bind the limestone aggregate together. The emphasis of this thesis is not on the latter---which was explored elsewhere---but on the results supplying further evidence that some of the pyramid blocks were indeed reconstituted limestone. The goal of this work is to chemically and mechanically characterize both alkali-activated slag cements as well as a number of historic materials, which may be ancient analogues to cement. Alkali activated slag cements were produced with a number of additives; concretes were made with the addition of a fine limestone aggregate. These materials were characterized mechanically and by XRD, FTIR, SEM, and TGA. Samples from several Egyptian pyramids, an 'ancient floor' in Colorado, and the 'Bosnian Pyramids' were investigated. In the cements, it has been unequivocally shown that C-S-H, the same binding phase that is produced in ordinary portland cement, has been produced, as well as a variety of mineral side products. Significant recarbonation occurs during the first 20 months, but only for the Na2CO3-activated formulae. Radiocarbon dating proves that the 'Bosnian Pyramids' and 'ancient floors' are not made from any type of recarbonated lime; however, Egyptian pyramid limestones were finite, thus suggesting that they are of a synthetic nature. XRD and FTIR results were inconclusive, while TGA results indicate the limestones are identical to naturally occurring limestones, and SEM

  16. Signal correlation in the tandem of a spin oscillator and microwave frequency discriminator with laser-pumped alkali atoms

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.; Ermak, S. V.; Sagitov, E. A.; Smolin, R. V.; Semenov, V. V.

    2016-02-01

    We have studied the influence of low-frequency noise on the stability of resonance frequency of a self-oscillating magnetometer on 87Rb vapor with simultaneous monitoring of the signal of radio-optical resonance on the magnetic-field-dependent microwave transition under laser pumping at the D 2 line of the head doublet. The difference of synchronous records of detected signals reduced to the same scale in magnetic field units was processed to determine the Allan variance as a function of the averaging time. The correlation coefficient characterizing the coupling of detected signals determined by the pumping rate and intensity of radio fields generated in the region of the absorption chamber. The self-oscillating magnetometer can only operate provided that there is laser tuning to the long-wavelength component of the electric-dipole transition.

  17. Possibilities of increasing the pumping efficiency of solid active medium laser generators by optimizing the pumping cavity profile

    NASA Astrophysics Data System (ADS)

    Dontu, O.; Ganatsios, S.; Alexandrescu, N.

    2008-03-01

    The paper presents some design elements concerning the optical pumping cavities of the laser generators with active solid medium, as well as the way of increasing their performance. We start from the fact that the laser cavity is a closed optical system, where the active laser medium and the pumping source are conjugated, in order to achieve a maximum concentration of the light flux of the pumping source towards the active medium. We discuss the simple elliptical section laser pumping cavities (with one pumping lamp) and triple elliptical (with three lamps), also presenting a series on calculus nomograms, very useful to those who design the laser generation optical pumping cavities.

  18. Effect of elevated temperature curing on properties of alkali-activated slag concrete

    SciTech Connect

    Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B.

    1999-10-01

    This investigation is focused on the effect of curing temperature on microstructure, shrinkage, and compressive strength of alkali-activated slag (AAS) concrete. Concrete prepared using sodium silicate and sodium hydroxide as the activator had greater early and flexural strength than ordinary Portland cement concrete of the same water/binder ratio, but it also had high autogenous and drying shrinkage. Heat treatment was found to be very effective in reducing drying shrinkage of AAS concrete and promoting high early strength. However, strength of AAS concrete at later ages was reduced. Microstructural study revealed an inhomogeneity in distribution of hydration product in AAS concrete that can be a cause of strength reduction. Pretreatment at room temperature before elevated temperature curing further improved early strength and considerably decreased shrinkage in AAS concrete.

  19. United States Department of Energy Thermally Activated Heat Pump Program

    SciTech Connect

    Fiskum, R.J.; Adcock, P.W.; DeVault, R.C.

    1996-06-01

    The US Department of Energy (DOE) is working with partners from the gas heating and cooling industry to improve energy efficiency using advance absorption technologies, to eliminate chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), to reduce global warming through more efficient combustion of natural gas, and to impact electric peak demand of air conditioning. To assist industry in developing these gas heating and cooling absorption technologies, the US DOE sponsors the Thermally Activated Heat Pump Program. It is divided into five key activities, addressing residential gas absorption heat pumps, large commercial chillers, advanced absorption fluids, computer-aided design, and advanced ``Hi-Cool`` heat pumps.

  20. Silicate species of water glass and insights for alkali-activated green cement

    SciTech Connect

    Jansson, Helén; Bernin, Diana; Ramser, Kerstin

    2015-06-15

    Despite that sodium silicate solutions of high pH are commonly used in industrial applications, most investigations are focused on low to medium values of pH. Therefore we have investigated such solutions in a broad modulus range and up to high pH values (∼14) by use of infrared (IR) spectroscopy and silicon nuclear magnetic resonance ({sup 29}Si-NMR). The results show that the modulus dependent pH value leads to more or less charged species, which affects the configurations of the silicate units. This in turn, influences the alkali-activation process of low CO{sub 2} footprint cements, i.e. materials based on industrial waste or by-products.

  1. Silicate species of water glass and insights for alkali-activated green cement

    NASA Astrophysics Data System (ADS)

    Jansson, Helén; Bernin, Diana; Ramser, Kerstin

    2015-06-01

    Despite that sodium silicate solutions of high pH are commonly used in industrial applications, most investigations are focused on low to medium values of pH. Therefore we have investigated such solutions in a broad modulus range and up to high pH values (˜14) by use of infrared (IR) spectroscopy and silicon nuclear magnetic resonance (29Si-NMR). The results show that the modulus dependent pH value leads to more or less charged species, which affects the configurations of the silicate units. This in turn, influences the alkali-activation process of low CO2 footprint cements, i.e. materials based on industrial waste or by-products.

  2. Desiccating Stress-Induced MMP Production and Activity Worsens Wound Healing in Alkali-Burned Corneas

    PubMed Central

    Bian, Fang; Pelegrino, Flavia S. A.; Pflugfelder, Stephen C.; Volpe, Eugene A.; Li, De-Quan; de Paiva, Cintia S.

    2015-01-01

    Purpose To evaluate the effects of dry eye on ocular surface protease activity and sight threatening corneal complications following ocular surface chemical injury. Methods C57BL/6 mice were subjected to unilateral alkali burn (AB) with or without concomitant dry eye for 2 or 5 days. Mice were observed daily for appearance of corneal perforation. Whole corneas were harvested and lysed for RNA extraction. Quantitative real-time PCR was performed to measure expression of inflammation cytokines, matrix metalloproteinases (MMP). Matrix metalloproteinase–9 activity, gelatinase activity, and myeloperoxidase (MPO) activity were evaluated in corneal lysates. Presence of infiltrating neutrophils was evaluated by immunohistochemistry and flow cytometry. Results Eyes subjected to the combined model of AB and dry eye (CM) had 20% sterile corneal perforation rate as soon as 1 day after the initial injury, which increased to 35% by 5 days, delayed wound closure and increased corneal opacity. Increased levels of IL-1β, -6, and MMPs-1, -3, -8, -9, and -13, and chemokine (C-X-C motif) ligand 1 (CSCL1) transcripts were found after 2 days in CM compared with AB corneas. Increased MMP-1, -3, -9, and -13 immunoreactivity and gelatinolytic activity were seen in CM corneas compared with AB. Increased neutrophil infiltration and MPO activity was noted in the CM group compared with AB 2 days post injury. Conclusions Desiccating stress worsens outcome of ocular AB, creating a cytokine and protease storm with greater neutrophil infiltration, increasing the risk of corneal perforation. PMID:26225631

  3. Alkali activation of recovered fuel-biofuel fly ash from fluidised-bed combustion: Stabilisation/solidification of heavy metals.

    PubMed

    Yliniemi, Juho; Pesonen, Janne; Tiainen, Minna; Illikainen, Mirja

    2015-09-01

    Recovered fuel-biofuel fly ash from a fluidized bed boiler was alkali-activated and granulated with a sodium-silicate solution in order to immobilise the heavy metals it contains. The effect of blast-furnace slag and metakaolin as co-binders were studied. Leaching standard EN 12457-3 was applied to evaluate the immobilisation potential. The results showed that Ba, Pb and Zn were effectively immobilised. However, there was increased leaching after alkali activation for As, Cu, Mo, Sb and V. The co-binders had minimal or even negative effect on the immobilisation. One exception was found for Cr, in which the slag decreased leaching, and one was found for Cu, in which the slag increased leaching. A sequential leaching procedure was utilized to gain a deeper understanding of the immobilisation mechanism. By using a sequential leaching procedure it is possible fractionate elements into watersoluble, acid-soluble, easily-reduced and oxidisable fractions, yielding a total 'bioavailable' amount that is potentially hazardous for the environment. It was found that the total bioavailable amount was lower following alkali activation for all heavy metals, although the water-soluble fraction was higher for some metals. Evidence from leaching tests suggests the immobilisation mechanism was chemical retention, or trapping inside the alkali activation reaction products, rather than physical retention, adsorption or precipitation as hydroxides. PMID:26054963

  4. The relationship between molecular structure and biological activity of alkali metal salts of vanillic acid: Spectroscopic, theoretical and microbiological studies

    NASA Astrophysics Data System (ADS)

    Świsłocka, Renata; Piekut, Jolanta; Lewandowski, Włodzimierz

    In this paper we investigate the relationship between molecular structure of alkali metal vanillate molecules and their antimicrobial activity. To this end FT-IR, FT-Raman, UV absorption and 1H, 13C NMR spectra for lithium, sodium, potassium, rubidium and caesium vanillates in solid state were registered, assigned and analyzed. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris, Bacillus subtilis and Candida albicans. In order to evaluate the dependence between chemical structure and biological activity of alkali metal vanillates the statistical analysis was performed for selected wavenumbers from FT-IR spectra and parameters describing microbial activity of vanillates. The geometrical structures of the compounds studied were optimized and the structural characteristics were determined by density functional theory (DFT) using at B3LYP method with 6-311++G** as basis set. The obtained statistical equations show the existence of correlation between molecular structure of vanillates and their biological properties.

  5. An assessment of Mercury immobilisation in alkali activated fly ash (AAFA) cements.

    PubMed

    Donatello, Shane; Fernández-Jiménez, Ana; Palomo, Angel

    2012-04-30

    This paper presents total and soluble Mercury contents for three coal fly ashes and alkali-activated fly ash (AAFA) cements consisting of 100% fly ash as starting material. To evaluate the potential of the AAFA cement matrix to immobilise Hg from an external source, another batch of cements, doped with 5000 mg/kg Hg as highly soluble HgCl(2), was prepared. The ashes and control AAFA cements complied with Mercury leaching criteria for non-hazardous wastes according to both TCLP and EN 12457 tests. Fly ash activated cements doped with 5000 mg/kg Hg and aged for 2 days immobilised 98.8-99.6% and 97.3-98.8% of Hg according to TCLP and EN 12457 tests respectively. Evidence from SEM-EDX suggests that Hg was immobilised by precipitation as highly insoluble HgS or Hg(2)S, although partial precipitation as less insoluble HgO or Hg silicates could not be entirely ruled out based on data presented. The results for Hg-doped cements contribute to the growing body of evidence that shows AAFA cement as a useful material for immobilizing elevated concentrations of toxic and hazardous elements. PMID:22341491

  6. Properties of alkali-solubilized collagen solution crosslinked by N-hydroxysuccinimide activated adipic acid

    NASA Astrophysics Data System (ADS)

    Chen, Yihui; Zhang, Min; Liu, Wentao; Li, Guoying

    2011-03-01

    The effect of N-hydroxysuccinimide activated adipic acid (NHS-AA) on the properties of alkali-solubilized collagen solutions was examined. The residual amino group content in crosslinked collagen, determined by trinitrobenzensulfonic acid (TNBS) assay, was decreased with increasing NHS-AA concentration. The results from differential scanning calorimeter (DSC) indicated that the maximum denaturation temperature ( T d) of crosslinked collagen solution was about 4.2°C higher than that of un-crosslinked collagen solution (36.6°C). Moreover, the values of storage modulus ( G'), loss modulus ( G″) and complex viscosity ( η*), obtained by means of dynamic frequency sweeps, were increased as NHS-AA concentration added up to 1.5 mM, and then decreased slightly when further increased NHS-AA concentration. Besides, for collagen solution crosslinked with 1.5 mM NHS-AA, dynamic denaturation temperature ( T dd) was about 1.1°C lower than T d (40.8°C), and the Arrhenius-type time-temperature superposition (TTS) principle was applied to yield the activation energy to be 474.4 kJmol-1.

  7. X-ray microtomography shows pore structure and tortuosity in alkali-activated binders

    SciTech Connect

    Provis, John L.; Myers, Rupert J.; White, Claire E.; Rose, Volker; Deventer, Jannie S.J. van

    2012-06-15

    Durability of alkali-activated binders is of vital importance in their commercial application, and depends strongly on microstructure and pore network characteristics. X-ray microtomography ({mu}CT) offers, for the first time, direct insight into microstructural and pore structure characteristics in three dimensions. Here, {mu}CT is performed on a set of sodium metasilicate-activated fly ash/slag blends, using a synchrotron beamline instrument. Segmentation of the samples into pore and solid regions is then conducted, and pore tortuosity is calculated by a random walker method. Segmented porosity and diffusion tortuosity are correlated, and vary as a function of slag content (slag addition reduces porosity and increases tortuosity), and sample age (extended curing gives lower porosity and higher tortuosity). This is particularly notable for samples with {>=} 50% slag content, where a space-filling calcium (alumino)silicate hydrate gel provides porosity reductions which are not observed for the sodium aluminosilicate ('geopolymer') gels which do not chemically bind water of hydration.

  8. Activation pretreatment of limonitic laterite ores by alkali-roasting using NaOH

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Qu, Jing-Kui; Qi, Tao; Wei, Guang-Ye; Han, Bing-Bing

    2012-02-01

    Activation pretreatment of Cr-containing limonitic laterite ores by NaOH roasting to remove Cr, Al, and Si, as well as its effect on Ni and Co extraction in the subsequent pressure acid leaching process was investigated. Characterization results of X-ray diffraction (XRD) and scanning electron microscopy/X-ray energy dispersive spectroscopy (SEM/XEDS) show that goethite is the major Ni-bearing mineral, and chromite is the minor one. Experimental results show that the leaching rates of Cr, Al, and Si are 95.6wt%, 83.8wt%, and 40.1wt%, respectively, under the optimal alkali-roasting conditions. Compared with the direct pressure acid leaching of laterite ores, the leaching rates of Ni and Co increase from 80.1wt% to 96.9wt% and 70.2wt% to 95.1wt% after pretreatment, respectively. Meanwhile, the grade of acid leaching iron residues increases from 54.4wt% to 62.5wt%, and these residues with low Cr content are more suitable raw materials for iron making.

  9. Properties of adsorbents prepared by the alkali activation of Aleksandriisk brown coal

    SciTech Connect

    Yu.V. Tamarkina; V.G. Kolobrodov; T.G. Shendrik; V.A. Kucherenko

    2009-07-01

    Highly microporous adsorbents (micropore fraction of about 70%) were prepared by the alkali activation-thermolysis (800{sup o}C, 1 h) of brown coal (C{sup daf} = 70.4%) in the presence of potassium hydroxide at the KOH/coal weight ratio R{sub KOH} {le} 2.0 g/g. The dependences of the specific surface areas and adsorption capacities of the adsorbents for methylene blue (A{sub MB}, mg/g), iodine (A{sub I}, mg/g), and hydrogen (A{sub H{sub 2}} wt %) on R{sub KOH} were determined. The adsorbents obtained at R{sub KOH}{ge} 1.0 g/g exhibited developed specific surface areas and good adsorption characteristics (A{sub I} = 1000-1200 mg/g, A{sub MB} = 200-250 mg/g, and A{sub H{sub 2}} {le} 3.16 wt % at 0.33 MPa). The high capacity for hydrogen allowed us to consider brown coal adsorbents as promising materials for use as hydrogen accumulators.

  10. Use of silicon carbide sludge to form porous alkali-activated materials for insulating application

    NASA Astrophysics Data System (ADS)

    Prud'homme, E.; Joussein, E.; Rossignol, S.

    2015-07-01

    One of the objectives in the field of alkali-activated materials is the development of materials having greater thermal performances than conventional construction materials such as aerated concrete. The aim of this paper is to present the possibility to obtain controlled porosity and controlled thermal properties with geopolymer materials including a waste like silicon carbide sludge. The porosity is created by the reaction of free silicon contains in silicon carbide sludge leading to the formation of hydrogen. Two possible ways are investigated to control the porosity: modification of mixture formulation and additives introduction. The first way is the most promising and allowed the formation of materials presenting the same density but various porosities, which shows that the material is adaptable to the application. The insulation properties are logically linked to the porosity and density of materials. A lower value of thermal conductivity of 0.075 W.m-1.K-1 can be reached for a material with a low density of 0.27 g.cm-3. These characteristics are really good for a mineral-based material which always displays non-negligible resistance to manipulation.

  11. Ion specific effects of alkali cations on the catalytic activity of HIV-1 protease.

    PubMed

    Pokorná, Jana; Heyda, Jan; Konvalinka, Jan

    2013-01-01

    Human immunodeficiency virus 1 protease (HIV-1 PR), an important therapeutic target for the treatment of AIDS, is one of the most well-studied enzymes. However, there is still much to learn about the regulation of the activity and inhibition of this key viral enzyme. Specifically, the mechanism of activation of HIV-1 PR from the viral polyprotein upon HIV maturation is still not understood. It has been suggested that external factors like pH or salt concentration might contribute to regulation of this crucial step in the viral life cycle. Recently, we analyzed the activity of HIV-1 PR in aqueous solutions of sodium and potassium chloride by experimental determination of enzyme kinetics and molecular dynamics simulations. We showed that the effect of salt concentration is cation-specific [Heyda et al., Phys. Chem. Chem. Phys., 2009 (11), 7599]. In this study, we extended this analysis for other alkali cations and found that the dependence of the initial velocity of peptide substrate hydrolysis on the nature of the cation follows the Hofmeister series, with the exception of caesium. Significantly higher catalytic efficiencies both in terms of substrate binding (K(M)) and turnover number (kcat) are observed in the presence of K+ compared to Na+ or Li+ at corresponding salt concentrations. Molecular dynamics simulations suggest that both lithium and sodium are attracted more strongly than potassium and caesium to the protein surface, mostly due to stronger interactions with carboxylate side chain groups of aspartates and glutamates. Furthermore, we observed a surprising decrease in the K(M) value for a specific substrate at very low salt concentration. The molecular mechanism of this phenomenon will be further analyzed. PMID:23795510

  12. The role of alumina on performance of alkali-activated slag paste exposed to 50 °C

    SciTech Connect

    Jambunathan, N.; Sanjayan, J.G.; Pan, Z.; Li, G.; Liu, Y.; Korayem, A.H.; Duan, W.H.; Collins, F.

    2013-12-15

    The strength and microstructural evolution of two alkali-activated slags, with distinct alumina content, exposed to 50 °C have been investigated. These two slags are ground-granulated blast furnace slag (containing 13% (wt.) alumina) and phosphorous slag (containing 3% (wt.) alumina). They were hydrated in the presence of a combination of sodium hydroxide and sodium silicate solution at different ratios. The microstructure of the resultant slag pastes was assessed by X-ray diffraction, differential thermogravimetric analysis, and scanning electron microscopy. The results obtained from these techniques reveal the presence of hexagonal hydrates: CAH{sub 10} and C{sub 4}AH{sub 13} in all alkali-activated ground-granulated blast-furnace slag pastes (AAGBS). These hydrates are not observed in pastes formed by alkali-activated ground phosphorous slag (AAGPS). Upon exposure to 50 °C, the aforementioned hydration products of AAGBS pastes convert to C{sub 3}AH{sub 6}, leading to a rapid deterioration in the strength of the paste. In contrast, no strength loss was detected in AAGPS pastes following exposure to 50 °C. -- Highlights: •Strength of alkali-activated slag (AAS) pastes after exposure to 50 °C is studied. •AAS pastes with high alumina content lose strength after the exposure. •C{sub 4}AH{sub 13} and CAH{sub 10} form in these AAS pastes. •Conversion of these calcium alumina hydrates is associated with the strength loss. •AAS pastes with low alumina content maintain its strength after the exposure.

  13. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  14. Comparing the Environmental Impacts of Alkali Activated Mortar and Traditional Portland Cement Mortar using Life Cycle Assessment

    NASA Astrophysics Data System (ADS)

    Matheu, P. S.; Ellis, K.; Varela, B.

    2015-11-01

    Since the year 1908 there has been research into the use alkali activated materials (AAM) in order to develop cementitious materials with similar properties to Ordinary Portland Cement. AAMs are considered green materials since their production and synthesis is not energy intensive. Even though AAMs have a high compressive strength, the average cost of production among other issues limits its feasibility. Previous research by the authors yielded a low cost AAM that uses mine tailings, wollastonite and ground granulated blast furnace slag (GGBFS). This mortar has an average compressive strength of 50MPa after 28 days of curing. In this paper the software SimaPro was used to create a product base cradle to gate Life Cycle Assessment (LCA). This compared the environmental impact of the AAM mortar to an Ordinary Portland Cement mortar (PCHM) with similar compressive strength. The main motivation for this research is the environmental impact of producing Ordinary Portland Cement as compared to alkali activated slag materials. The results of this LCA show that the Alkali Activated Material has a lower environmental impact than traditional Portland cement hydraulic mortar, in 10 out of 12 categories including Global Warming Potential, Ecotoxicity, and Smog. Areas of improvement and possible future work were also discovered with this analysis.

  15. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  16. Long term effect of alkali types on waste activated sludge hydrolytic acidification and microbial community at low temperature.

    PubMed

    Jin, Baodan; Wang, Shuying; Xing, Liqun; Li, Baikun; Peng, Yongzhen

    2016-01-01

    The effect of four alkali reagents (NaOH, KOH, Ca(OH)2, mixed alkali) on waste activated sludge (WAS) hydrolytic acidification and microbial community was studied in semi-continuous fermentation systems at low temperature (15°C) over long term operational time (65day). The results showed that protein and polysaccharide of NaOH (124.26, 11.92) was similar to that of KOH (109.53, 11.30), both were higher than Ca(OH)2 (70.66, 3.74) and mixed alkali (90.66, 8.71). The short chain fatty acids (SCFAs) of NaOH (231.62) was higher than KOH (220.62mg chemical oxygen demand (COD)/g VSS). Although Ca(OH)2 system had strong acidification capacity, the shortage of SCFAs occurred due to the low activity of hydrolase. Illumina MiSeq sequencing revealed that Tissierella and Erysipelothrix were enriched in the NaOH and Ca(OH)2 systems, where Peptostreptococcaceae incertae_sedis was enriched in the NaOH and KOH systems, less Anaerolinea was involved in Ca(OH)2 condition. PMID:26546788

  17. Alkali Activated Systems: Understanding the Influence of Curing Conditions and Activator Type/Chemistry on the Mechanical Strength and Chemical Structure of Fly Ash/Slag Systems

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ussala

    The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and ground granulated blast furnace slag are commonly used for their content of soluble silica and aluminate species that can undergo dissolution, polymerization with the alkali, condensation on particle surfaces and solidification. The following topics are the focus of this thesis: (i) the use of microwave assisted thermal processing, in addition to heat-curing as a means of alkali activation and (ii) the relative effects of alkali cations (K or Na) in the activator (powder activators) on the mechanical properties and chemical structure of these systems. Unsuitable curing conditions instigate carbonation, which in turn lowers the pH of the system causing significant reductions in the rate of fly ash activation and mechanical strength development. This study explores the effects of sealing the samples during the curing process, which effectively traps the free water in the system, and allows for increased aluminosilicate activation. The use of microwave-curing in lieu of thermal-curing is also studied in order to reduce energy consumption and for its ability to provide fast volumetric heating. Potassium-based powder activators dry blended into the slag binder system is shown to be effective in obtaining very high compressive strengths under moist curing conditions (greater than 70 MPa), whereas sodium-based powder activation is much weaker (around 25 MPa). Compressive strength decreases when fly ash is introduced into the system. Isothermal calorimetry is used to evaluate the early hydration process, and to understand the reaction kinetics of the alkali powder activated systems. A qualitative evidence of the alkali

  18. Controlling epileptiform activity with organic electronic ion pumps.

    PubMed

    Williamson, Adam; Rivnay, Jonathan; Kergoat, Loïg; Jonsson, Amanda; Inal, Sahika; Uguz, Ilke; Ferro, Marc; Ivanov, Anton; Sjöström, Theresia Arbring; Simon, Daniel T; Berggren, Magnus; Malliaras, George G; Bernard, Christophe

    2015-05-27

    In treating epilepsy, the ideal solution is to act at a seizure's onset, but only in the affected regions of the brain. Here, an organic electronic ion pump is demonstrated, which directly delivers on-demand pure molecules to specific brain regions. State-of-the-art organic devices and classical pharmacology are combined to control pathological activity in vitro, and the results are verified with electrophysiological recordings. PMID:25866154

  19. Chromium liquid waste inertization in an inorganic alkali activated matrix: leaching and NMR multinuclear approach.

    PubMed

    Ponzoni, Chiara; Lancellotti, Isabella; Barbieri, Luisa; Spinella, Alberto; Saladino, Maria Luisa; Martino, Delia Chillura; Caponetti, Eugenio; Armetta, Francesco; Leonelli, Cristina

    2015-04-01

    A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈ 2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process--from the precursor dissolution to the final geopolymer matrix hardening--of different geopolymers containing a waste amount ranging from 3 to 20%wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of TOT bonds (where T is Al or Si) by (29)Si and (27)Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for geopolymers containing high amounts of waste (10-20%wt). The results show the formation of a stable matrix after only 15 days independently on the waste amount introduced; the longer curing times increase the matrices stabilities and their ability to immobilize chromium cations. The maximum amount of waste that can be inertized is around 10 wt% after a curing time of 28 days

  20. Steady-state heating of active fibres under optical pumping

    SciTech Connect

    Gainov, V V; Shaidullin, R I; Ryabushkin, Oleg A

    2011-07-31

    We have measured the temperature in the core of rare-earth-doped optical fibres under lasing conditions at high optical pump powers using a fibre Mach - Zehnder interferometer and probe light of wavelength far away from the absorption bands of the active ions. From the observed heating kinetics of the active medium, the heat transfer coefficient on the polymer cladding - air interface has been estimated. The temperature of the active medium is shown to depend on the thermal and optical properties of the polymer cladding. (fiber and integrated optics)

  1. Effects of turbulent pumping on stellar activity cycles

    NASA Astrophysics Data System (ADS)

    Do Cao, O.; Brun, A. S.

    2011-12-01

    Stellar magnetic activity of solar like stars is thought to be due to an internal dynamo. While the Sun has been the subject of intense research for refining dynamo models, observations of magnetic cyclic activity in solar type stars have become more and more available, opening a new path to understand the underlying physics behind stellar cycles. For instance, it is key to understand how stellar rotation rate influences magnetic cycle period P_cyc. Recent numerical simulations of advection-dominated Babcock Leighton models have demonstrated that it is difficult to explain this observed trend given a) the strong influence of the cycle period to the meridional circulation amplitude and b) the fact that 3D models indicate that meridional flows become weaker as the rotation rate increases. In this paper, we introduce the turbulent pumping mechanism as another advective process capable also of transporting the magnetic fields. We found that this model is now able to reproduce the observations under the assumption that this effect increases as \\Omega2. The turbulent pumping becomes indeed another major player able to circumvent the meridional circulation. However, for high rotation rates (\\Omega ≃ 5 \\Omega_⊙), its effects dominate those of the meridional circulation, entering a new class of regime dominated by the advection of turbulent pumping and thus leading to a cyclic activity qualitatively different from that of the Sun.

  2. Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers.

    PubMed

    Albach, Daniel; LeTouzé, Geoffroy; Chanteloup, Jean-Christophe

    2011-04-25

    We discuss the deformation of a partially pumped active mirror amplifier as a free standing disk, as implemented in several laser systems. We rely on the Lucia laser project to experimentally evaluate the analytical and numerical deformation models. PMID:21643092

  3. Alkali Bee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The alkali bee, Nomia melanderi, is native to deserts and semi-arid desert basins of the western United States. It is a very effective and manageable pollinator for the production of seed in alfalfa (=lucerne) and some other crops, such as onion. It is the world’s only intensively managed ground-n...

  4. Recent NRC research activities addressing valve and pump issues

    SciTech Connect

    Morrison, D.L.

    1996-12-01

    The mission of the U.S. Nuclear Regulatory Commission (NRC) is to ensure the safe design, construction, and operation of commercial nuclear power plants and other facilities in the U.S.A. One of the main roles that the Office of Nuclear Regulatory Research (RES) plays in achieving the NRC mission is to plan, recommend, and implement research programs that address safety and technical issues deemed important by the NRC. The results of the research activities provide the bases for developing NRC positions or decisions on these issues. Also, RES performs confirmatory research for developing the basis to evaluate industry responses and positions on various regulatory requirements. This presentation summarizes some recent RES supported research activities that have addressed safety and technical issues related to valves and pumps. These activities include the efforts on determining valve and motor-operator responses under dynamic loads and pressure locking events, evaluation of monitoring equipment, and methods for detecting and trending aging of check valves and pumps. The role that RES is expected to play in future years to fulfill the NRC mission is also discussed.

  5. Studies of the regeneration of activated bauxite used as granular sorbent for the control of alkali vapors from hot flue gas of coal combustion

    SciTech Connect

    Lee, S H.D.; Smith, S D; Swift, W M; Johnson, I

    1981-05-01

    Regeneration of activated bauxite was studied by water-leaching and thermal swing (high-temperature desorption) methods. Granular activated bauxite has been identified to be very effective when used as a filter medium (i.e., sorbent) in granular-bed filters to remove gaseous alkali metal compounds from simulated hot flue gas of PFBC. Activated bauxite that had captured alkali chloride vapors was demonstrated to be easily and effectively regenerated for reuse by a simple water-leaching method. Data were obtained on (1) the leaching rate of the adsorbed NaCl, (2) effects on the leaching rate of adsorbed NaCl loading, leaching temperature, and the amount of water, and (3) water retention in activated bauxite after leaching. Observed physical changes and particle attrition of activated bauxite as a result of regeneration are discussed. The sorption mechanisms of activated bauxite toward alkali chloride vapors are interpreted on the basis of (1) the chemical compositions of the leachates from alkali chloride-sorbed activated bauxite and (2) the desorption of adsorbed NaCl vapor from activated bauxite at high temperature.

  6. Buckling of Dielectric Elastomeric Plates for Electrically Active Microfludic Pumps

    NASA Astrophysics Data System (ADS)

    Holmes, Douglas; Tavakol, Behrouz; Bozlar, Michael; Froehlicher, Guillaume; Stone, Howard; Aksay, Ilhan

    2013-11-01

    Fluid flow can be directed and controlled by a variety of mechanisms within industrial and biological environments. Advances in microfluidic technology have required innovative ways to control fluid flow on a small scale, and the ability to actively control fluid flow within microfluidic devices is crucial for advancements in nanofluidics, biomedical fluidic devices, and digital microfluidics. In this work, we present a means for microfluidic control via the electrical actuation of thin, flexible valves within microfluidic channels. These structures consist of a dielectric elastomer confined between two compliant electrodes that can be actively and reversibly buckle out of plane to pump fluids from an applied voltage. The out-of-plane deformation can be quantified using two parameters: net change in surface area and the shape of deformation. Change in surface area depends on the voltage, while the deformation shape, which significantly affects the flow rate, is a function of voltage, and the pressure and volume of the chambers on each side of the thin plate. The use of solid electrodes enables a robust and reversible pumping mechanism that will have will enable advancements in rapid microfluidic diagnostics, adaptive materials, and artificial muscles.

  7. Calf pump activity influencing venous hemodynamics in the lower extremity.

    PubMed

    Recek, Cestmir

    2013-03-01

    Calf muscle pump is the motive force enhancing return of venous blood from the lower extremity to the heart. It causes displacement of venous blood in both vertical and horizontal directions, generates ambulatory pressure gradient between thigh and lower leg veins, and bidirectional streaming within calf perforators. Ambulatory pressure gradient triggers venous reflux in incompetent veins, which induces ambulatory venous hypertension in the lower leg and foot. Bidirectional flow in calf perforators enables quick pressure equalization between deep and superficial veins of the lower leg; the outward (into the superficial veins) oriented component of the bidirectional flow taking place during calf muscle contraction is no pathological reflux but a physiological centripetal flow streaming via great saphenous vein into the femoral vein. Calf perforators are communicating channels between both systems making them conjoined vessels; they are not involved in the generation of pathological hemodynamic situations, nor do they cause ambulatory venous hypertension. The real cause why recurrences develop has not as yet been cleared. Pressure gradient arising during calf pump activity between the femoral vein and the saphenous remnant after abolition of saphenous reflux triggers biophysical and biochemical events, which might induce recurrence. Thus, abolition of saphenous reflux removes the hemodynamic disturbance, but at the same time it generates precondition for reflux recurrence and for the comeback of the previous pathological situation; this chain of events has been called hemodynamic paradox. PMID:24436580

  8. Dielectric elastomer laminates for active membrane pump applications

    NASA Astrophysics Data System (ADS)

    Pope, Kimberly; Tews, Alyson; Frecker, Mary I.; Mockensturm, Eric; Goulbourne, Nakhiah C.; Snyder, Alan J.

    2004-07-01

    Previous research has demonstrated promise for the use of dielectric elastomer (DE) films in diaphragm pump applications. Because the films tend to be quite thin, single layers operate at very low pressures. To make this technology suitable for practical applications, the films may be organized into laminates which will operate at increased pressures. Radially stretched circular diaphragms of two materials were tested: 3M VHB 4905 polyacrylate and spin-cast Nusil CF19-2186 silicone. The diaphragms were stacked, each layer sharing an electrode with the adjacent layer. The stack was mounted on a sealed chamber and energized at varied electric fields while regulated pressure was applied to the interior chamber, displacing the diaphragm. The pressure-volume properties of the stacks were recorded for each activation state.

  9. Synthesis of a novel alkali-activated magnesium slag-based nanostructural composite and its photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zhang, Yao Jun; Kang, Le; Liu, Li Cai; Si, Hai Xiao; Zhang, Ji Fang

    2015-03-01

    A novel type of alkali-activated magnesium slag-based nanostructural composite (AMSNC) co-loaded bimetallic oxide semiconductors of NiO and CuO were synthesized by alkaline activation, ion exchange and wet co-impregnation methods, and then firstly employed as a photocatalyst for the degradation of indigo carmine dye. The XRD, TEM and HRTEM results revealed that CuO in the form of tenorite with mean particle size of about 15 nm and NiO in amorphous phase dispersed on the surface of AMSNC support. The decrease of photoluminescence with increasing amount of NiO and CuO demonstrated that the recombination of photogenerated electrons-holes pairs was prevented when the photogenerated electrons transferred from the metal oxide semiconductor to the AMSNC matrix. The 10(NiO + CuO)/AMSNC specimen showed that the photocatalytic degradation efficiency was up to 100% under UV irradiation for 1 h due to the synergistic effect between the AMSNC and active species of NiO and CuO. The mesoporous structures of specimens acted as critical role for the adsorption of dye molecules, and the photocatalytic degradation of indigo carmine dye obeyed first-order reaction kinetics. A degradation mechanism of photocatalytic oxidation was proposed in the paper.

  10. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential.

    PubMed

    Ruiz-Hernando, M; Martín-Díaz, J; Labanda, J; Mata-Alvarez, J; Llorens, J; Lucena, F; Astals, S

    2014-09-15

    Waste activated sludge is slower to biodegrade under anaerobic conditions than is primary sludge due to the glycan strands present in microbial cell walls. The use of pre-treatments may help to disrupt cell membranes and improve waste activated sludge biodegradability. In the present study, the effect of ultrasound, low-temperature thermal and alkali pre-treatments on the rheology, hygienization and biodegradability of waste activated sludge was evaluated. The optimum condition of each pre-treatment was selected based on rheological criteria (reduction of steady state viscosity) and hygienization levels (reduction of Escherichia coli, somatic coliphages and spores of sulfite-reducing clostridia). The three pre-treatments were able to reduce the viscosity of the sludge, and this reduction was greater with increasing treatment intensity. However, only the alkali and thermal conditioning allowed the hygienization of the sludge, whereas the ultrasonication did not exhibit any notorious effect on microbial indicators populations. The selected optimum conditions were as follows: 27,000 kJ/kg TS for the ultrasound, 80 °C during 15 min for the thermal and 157 g NaOH/kg TS for the alkali. Afterward, the specific methane production was evaluated through biomethane potential tests at the specified optimum conditions. The alkali pre-treatment exhibited the greatest methane production increase (34%) followed by the ultrasonication (13%), whereas the thermal pre-treatment presented a methane potential similar to the untreated sludge. Finally, an assessment of the different treatment scenarios was conducted considering the results together with an energy balance, which revealed that the ultrasound and alkali treatments entailed higher costs. PMID:24907480

  11. Relationship between chemical structure and biological activity of alkali metal o-, m- and p-anisates. FT-IR and microbiological studies

    NASA Astrophysics Data System (ADS)

    Kalinowska, M.; Piekut, J.; Lewandowski, W.

    2011-11-01

    In this work we investigated relationship between molecular structure of alkali metal o-, m-, p-anisate molecules and their antimicrobial activity. For this purpose FT-IR spectra for lithium, sodium, potassium, rubidium and caesium anisates in solid state and solution were recorded, assigned and analysed. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris. In order to evaluate the dependency between chemical structure and biological activity of alkali metal anisates the statistical analysis (multidimensional regression and principal component) was performed for selected wavenumbers from FT-IR spectra and parameters that describe microbial activity of anisates. The obtained statistical equations show the existence of correlation between molecular structure of anisates and their biological properties.

  12. Applicability of alkali activated slag-seeded Egyptian Sinai kaolin for the immobilization of 60Co radionuclide

    NASA Astrophysics Data System (ADS)

    El-Naggar, M. R.

    2014-04-01

    The present work was established to determine the applicability of local Egyptian kaolinite and blast furnace slag (BFS) as raw materials toward the synthesis of geopolymers and subsequent immobilization of cobalt-60, which is one of the most abundant radionuclides generated in radioactive waste streams in Egypt. XRF, XRD, FT-IR, and SEM techniques were used to characterize the local raw materials and their corresponding alkali activated products. Metakaolin (MK) was obtained by thermal treatment of Egyptian Sinai kaolin 750 °C/4 h. MK and five different BFS content (5, 10, 30, 50 and 80%) were used to synthesize geopolymeric matrices using an alkaline activator of Si-modulus = 1.35 at solid/liquid ratios of 0.8. Compressive strength tests were performed indicating that 50% BFS addition gave the highest values of compressive strength. The IAEA standard leaching tests of cobalt-60 from the solidified waste matrices were carried out. The effective diffusion coefficients of cobalt-60 radionuclides from the solidified waste matrices were calculated to be in the order of 10-14 cm2/s. Leaching of radionuclides was examined to be controlled by the wash-off mechanism with very acceptable values. These results gave encouragement that the tested Egyptian raw materials can be conveniently applied for the synthesis of geopolymers that can be used as a low-cost and high-efficiency materials for the immobilization of radioactive waste.

  13. Active magnetic bearings: As applied to centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Nelik, Lev; Cooper, Paul; Jones, Graham; Galecki, Dennis; Pinckney, Frank; Kirk, Gordon

    1992-01-01

    Application of magnetic bearings to boiler feed pumps presents various attractive features, such as longer bearing life, lower maintenance costs, and improved operability through control of the rotordynamics. Magnetic bearings were fitted to an eight-stage, 600 hp boiler feed pump, which generates 2600 ft of heat at 680 gpm and 3560 rpm. In addition to the varied and severe operating environment in steady state operation of this pump in a power plant, it is also subjected to transient loads during frequent starts and stops. These loads can now be measured by the in-built instrumentation of the magnetic bearings. Following site installation, a follow-up bearing tune-up was performed, and pump transient response testing was conducted. The bearing response was completely satisfactory, ensuring trouble-free pump operation even in the range of reduced load. The experience gained so far through design and testing proves feasibility of magnetic bearings for boiler feed pumps, which sets the stage for application of even higher energy centrifugal pumps equipped with magnetic bearings.

  14. Multidrug Pump Inhibitors Uncover Remarkable Activity of Plant Antimicrobials

    PubMed Central

    Tegos, George; Stermitz, Frank R.; Lomovskaya, Olga; Lewis, Kim

    2002-01-01

    Plant antimicrobials are not used as systemic antibiotics at present. The main reason for this is their low level of activity, especially against gram-negative bacteria. The reported MIC is often in the range of 100 to 1,000 μg/ml, orders of magnitude higher than those of common broad-spectrum antibiotics from bacteria or fungi. Major plant pathogens belong to the gram-negative bacteria, which makes the low level of activity of plant antimicrobials against this group of microorganisms puzzling. Gram-negative bacteria have an effective permeability barrier, comprised of the outer membrane, which restricts the penetration of amphipathic compounds, and multidrug resistance pumps (MDRs), which extrude toxins across this barrier. It is possible that the apparent ineffectiveness of plant antimicrobials is largely due to the permeability barrier. We tested this hypothesis in the present study by applying a combination of MDR mutants and MDR inhibitors. A panel of plant antimicrobials was tested by using a set of bacteria representing the main groups of plant pathogens. The human pathogens Pseudomonas aeruginosa, Escherichia coli, and Salmonella enterica serovar Typhimurium were also tested. The results show that the activities of the majority of plant antimicrobials were considerably greater against the gram-positive bacteria Staphylococcus aureus and Bacillus megaterium and that disabling of the MDRs in gram-negative species leads to a striking increase in antimicrobial activity. Thus, the activity of rhein, the principal antimicrobial from rhubarb, was potentiated 100- to 2,000-fold (depending on the bacterial species) by disabling the MDRs. Comparable potentiation of activity was observed with plumbagin, resveratrol, gossypol, coumestrol, and berberine. Direct measurement of the uptake of berberine, a model plant antimicrobial, confirmed that disabling of the MDRs strongly increases the level of penetration of berberine into the cells of gram-negative bacteria. These

  15. The calcium-alkali syndrome.

    PubMed

    Arroyo, Mariangeli; Fenves, Andrew Z; Emmett, Michael

    2013-04-01

    The milk-alkali syndrome was a common cause of hypercalcemia, metabolic alkalosis, and renal failure in the early 20th century. It was caused by the ingestion of large quantities of milk and absorbable alkali to treat peptic ulcer disease. The syndrome virtually vanished after introduction of histamine-2 blockers and proton pump inhibitors. More recently, a similar condition called the calcium-alkali syndrome has emerged as a common cause of hypercalcemia and alkalosis. It is usually caused by the ingestion of large amounts of calcium carbonate salts to prevent or treat osteoporosis and dyspepsia. We describe a 78-year-old woman who presented with weakness, malaise, and confusion. She was found to have hypercalcemia, acute renal failure, and metabolic alkalosis. Upon further questioning, she reported use of large amounts of calcium carbonate tablets to treat recent heartburn symptoms. Calcium supplements were discontinued, and she was treated with intravenous normal saline. After 5 days, the calcium and bicarbonate levels normalized and renal function returned to baseline. In this article, we review the pathogenesis of the calcium-alkali syndrome as well as the differences between the traditional and modern syndromes. PMID:23543983

  16. Alkali metal sources for OLED devices

    NASA Astrophysics Data System (ADS)

    Cattaneo, Lorena; Longoni, Giorgio; Bonucci, Antonio; Tominetti, Stefano

    2005-07-01

    In OLED organic layers electron injection is improved by using alkali metals as cathodes, to lower work function or, as dopants of organic layer at cathode interface. The creation of an alkali metal layer can be accomplished through conventional physical vapor deposition from a heated dispenser. However alkali metals are very reactive and must be handled in inert atmosphere all through the entire process. If a contamination takes place, it reduces the lithium deposition rate and also the lithium total yield in a not controlled way. An innovative alkali metal dispensing technology has been developed to overcome these problems and ensure OLED alkali metal cathode reliability. The alkali Metal dispenser, called Alkamax, will be able to release up to a few grams of alkali metals (in particular Li and Cs) throughout the adoption of a very stable form of the alkali metal. Lithium, for example, can be evaporated "on demand": the evaporation could be stopped and re-activated without losing alkali metal yield because the metal not yet consumed remains in its stable form. A full characterization of dispensing material, dispenser configuration and dispensing process has been carried out in order to optimize the evaporation and deposition dynamics of alkali metals layers. The study has been performed applying also inside developed simulations tools.

  17. Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB

    PubMed Central

    Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena

    2009-01-01

    Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively. PMID:24031313

  18. Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization.

    PubMed

    Ito, Yosuke; Sato, Daichi; Kamada, Keigo; Kobayashi, Tetsuo

    2016-07-11

    An optically pumped K-Rb hybrid atomic magnetometer can be a useful tool for biomagnetic measurements due to the high spatial homogeneity of its sensor property inside a cell. However, because the property varies depending on the densities of potassium and rubidium atoms, optimization of the densities is essential. In this study, by using the Bloch equations of K and Rb and considering the spatial distribution of the spin polarization, we confirmed that the calculation results of spin polarization behavior are in good agreement with the experimental data. Using our model, we calculated the spatial distribution of the spin polarization and found that the optimal density of K atoms is 3 × 1019 m-3 and the optimal density ratio is nK/nRb ~ 400 to maximize the output signal and enhance spatial homogeneity of the sensor property. PMID:27410815

  19. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  20. Material and structural characterization of alkali activated low-calcium brown coal fly ash.

    PubMed

    Skvára, Frantisek; Kopecký, Lubomír; Smilauer, Vít; Bittnar, Zdenek

    2009-09-15

    The waste low-calcium Czech brown coal fly ash represents a considerable environmental burden due to the quantities produced and the potentially high content of leachable heavy metals. The heterogeneous microstucture of the geopolymer M(n) [-(Si-O)(z)-Al-O](n).wH(2)O, that forms during the alkaline activation, was examined by means of microcalorimetry, XRD, TGA, DSC, MIP, FTIR, NMR MAS ((29)Si, (27)Al, (23)Na), ESEM, EDS, and EBSD. The leaching of heavy metals and the evolution of compressive strength were also monitored. The analysis of raw fly ash identified a number of different morphologies, unequal distribution of elements, Fe-rich rim, high internal porosity, and minor crystalline phases of mullite and quartz. Microcalorimetry revealed exothermic reactions with dependence on the activator alkalinity. The activation energy of the geopolymerization process was determined as 86.2kJ/mol. The X-ray diffraction analysis revealed no additional crystalline phases associated with geopolymer formation. Over several weeks, the (29)Si NMR spectrum testified a high degree of polymerization and Al penetration into the SiO(4) tetrahedra. The (23)Na NMR MAS spectrum hypothesized that sodium is bound in the form of Na(H(2)O)(n) rather than Na(+), thus causing efflorescence in a moisture-gradient environment. As and Cr(6+) are weakly bonded in the geopolymer matrix, while excellent immobilization of Zn(2+), Cu(2+), Cd(2+), and Cr(3+) are reported. PMID:19303704

  1. Milk-alkali syndrome

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  2. Bisphenols that stimulate cells to release alkali metal cations: a structure-activity study.

    PubMed

    Hopp, L; Megee, S O; Lloyd, J B

    1998-10-22

    The laxative action of phenolphthalein (5) is believed to result from induction of potassium and water efflux from the colon epithelium. In cultured cells, K+ efflux is promoted by 5 and by a contaminant (1) present in commercial phenol red. Six compounds with chemical structures related to those of 5 and 1 were tested for ability to induce the release of 86Rb from COS-7 cells preloaded with this isotope: 4,4'-(9-fluorenylidene)diphenol (2), 4, 4'-(9-fluorenylidene)dianiline, 4, 4'-(9-fluorenylidene)bisphenoxyethanol, 1,1'-bi-2-naphthol, 4, 4'-biphenol, and bis(4-hydroxyphenyl)methane. With one exception these compounds were all inactive at a concentration of 10 microM. However, 2 caused profound 86Rb efflux at concentrations as low as 100 nM. Concentrations of 5 1-2 orders of magnitude higher were needed to achieve similar levels of activity. The three compounds known to be active in this experimental system share a common feature that is absent in all the inactive compounds: a five-membered ring structure, one of whose carbon atoms is disubstituted with p-hydroxyphenyl residues. Because 2 and 5 are readily available, comparative studies on the mechanism of action of these biphenols at the cellular level can now be undertaken. PMID:9784117

  3. Studies of cryocooler based cryosorption pump with activated carbon panels operating at 11K

    NASA Astrophysics Data System (ADS)

    Kasthurirengan, S.; Behera, Upendra; Gangradey, Ranjana; Udgata, Swarup; Krishnamoorthy, V.

    2012-11-01

    Cryosorption pump is the only solution for pumping helium and hydrogen in fusion reactors. It is chosen because it offers highest pumping speed as well as the only suitable pump for the harsh environments in a tokamak. Towards the development of such cryosorption pumps, the optimal choice of the right activated carbon panels is essential. In order to characterize the performance of the panels with indigenously developed activated carbon, a cryocooler based cryosorption pump with scaled down sizes of panels is experimented. The results are compared with the commercial cryopanel used in a CTI cryosorption (model: Cryotorr 7) pump. The cryopanel is mounted on the cold head of the second stage GM cryocooler which cools the cryopanel down to 11K with first stage reaching about ~50K. With no heat load, cryopump gives the ultimate vacuum of 2.1E-7 mbar. The pumping speed of different gases such as nitrogen, argon, hydrogen, helium are tested both on indigenous and commercial cryopanel. These studies serve as a bench mark towards the development of better cryopanels to be cooled by liquid helium for use with tokamak.

  4. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations.

    PubMed

    Mester, Zoltan; Panagiotopoulos, Athanassios Z

    2015-07-28

    The mean ionic activity coefficients of aqueous KCl, NaF, NaI, and NaCl solutions of varying concentrations have been obtained from molecular dynamics simulations following a recently developed methodology based on gradual insertions of salt molecules [Z. Mester and A. Z. Panagiotopoulos, J. Chem. Phys. 142, 044507 (2015)]. The non-polarizable ion models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)], Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)], Reiser et al. [J. Chem. Phys. 140, 044504 (2014)], and Joung and Cheatham [J. Phys. Chem. B 112, 9020 (2008)] were used along with the extended simple point charge (SPC/E) water model [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)] in the simulations. In addition to the chemical potentials in solution used to obtain the activity coefficients, we also calculated the chemical potentials of salt crystals and used them to obtain the solubility of these alkali halide models in SPC/E water. The models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)] and Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)] provide excellent predictions of the mean ionic activity coefficients at 298.15 K and 1 bar, but significantly underpredict or overpredict the solubilities. The other two models generally predicted the mean ionic activity coefficients only qualitatively. With the exception of NaF for which the solubility is significantly overpredicted, the model of Joung and Cheatham predicts salt solubilities that are approximately 40%-60% of the experimental values. The models of Reiser et al. [J. Chem. Phys. 140, 044504 (2014)] make good predictions for the NaCl and NaI solubilities, but significantly underpredict the solubilities for KCl and NaF. We also tested the transferability of the models to temperatures much higher than were used to parametrize them by performing simulations for NaCl at 373.15 K and 1 bar, and at 473.15 K and 15.5 bar. All models overpredict the drop in the values of mean ionic

  5. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mester, Zoltan; Panagiotopoulos, Athanassios Z.

    2015-07-01

    The mean ionic activity coefficients of aqueous KCl, NaF, NaI, and NaCl solutions of varying concentrations have been obtained from molecular dynamics simulations following a recently developed methodology based on gradual insertions of salt molecules [Z. Mester and A. Z. Panagiotopoulos, J. Chem. Phys. 142, 044507 (2015)]. The non-polarizable ion models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)], Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)], Reiser et al. [J. Chem. Phys. 140, 044504 (2014)], and Joung and Cheatham [J. Phys. Chem. B 112, 9020 (2008)] were used along with the extended simple point charge (SPC/E) water model [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)] in the simulations. In addition to the chemical potentials in solution used to obtain the activity coefficients, we also calculated the chemical potentials of salt crystals and used them to obtain the solubility of these alkali halide models in SPC/E water. The models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)] and Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)] provide excellent predictions of the mean ionic activity coefficients at 298.15 K and 1 bar, but significantly underpredict or overpredict the solubilities. The other two models generally predicted the mean ionic activity coefficients only qualitatively. With the exception of NaF for which the solubility is significantly overpredicted, the model of Joung and Cheatham predicts salt solubilities that are approximately 40%-60% of the experimental values. The models of Reiser et al. [J. Chem. Phys. 140, 044504 (2014)] make good predictions for the NaCl and NaI solubilities, but significantly underpredict the solubilities for KCl and NaF. We also tested the transferability of the models to temperatures much higher than were used to parametrize them by performing simulations for NaCl at 373.15 K and 1 bar, and at 473.15 K and 15.5 bar. All models overpredict the drop in the values of mean ionic

  6. Effect of geothermal waste on strength and microstructure of alkali-activated slag cement mortars

    SciTech Connect

    Escalante-Garcia, J.I.; Gorokhovsky, A.V.; Mendoza, G.; Fuentes, A.F

    2003-10-01

    Mortars of blast furnace slag replaced with 10% of a geothermal silica waste were cured for 90 days. The binder was activated by 6 wt.% Na{sub 2}O equivalent of NaOH and water glass. The presence of the silica enhanced the formation of hydration products as shown by nonevaporable water (NEW) results. Backscattered electron images indicated that the microstructures of blended slag had less porosity than those of neat slag mortars and the interfacial zone between aggregate and hydration products was dense and of homogeneous composition similar to the matrix of hydration products. The main hydration products were C-S-H and for NaOH a hydrotalcite type phase was found as finely intermixed with the C-S-H.

  7. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    SciTech Connect

    Sugama, T.; Pyatina, T.

    2014-11-14

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  8. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    SciTech Connect

    Sugama, T.; Pyatina, T.

    2014-11-01

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  9. Comparison of dissociation mechanism between collisionally activated dissociation and charge inversion using alkali metal targets for chlorophenol isomers

    NASA Astrophysics Data System (ADS)

    Hayakawa, Shigeo; Kawamura, Yoshiaki; Takahashi, Yutaka

    2005-11-01

    Chlorinated aromatic compounds are well-known environmental pollutants whose toxicities depend dramatically on the chlorine substitution pattern, making differentiation of chlorophenol isomers important for environmental analysis. Collisionally activated dissociation (CAD) spectra and charge inversion spectra of ortho-, meta-, and para-chlorophenols (ClC6H4OH) and their partially deuterated forms (ClC6H4OD) were measured using alkali metal targets. The peaks associated with C6H4O+ and C5H5Cl+ ions observed in the CAD spectra result from the loss of HCl and CO fragments, respectively, after the re-arrangement of the hydroxyl hydrogen atom. The peaks associated with C6H4OH- and ClC6H4O- ions observed in the charge inversion spectra result from Cl loss and from hydroxyl bond dissociation, respectively. Isomeric differentiation is possible based on the clear differences observed in the relative intensities of these pairs of peaks. Although the intensities of the peaks associated with C6H4O+ relative to those of C5H5Cl+ in the CAD spectra are independent of the target species, the intensities of the peaks associated with C6H4OH- relative to those of ClC6H4O- in the charge inversion spectra are target dependent. The isomeric dependence of the positive ion distribution patterns in the CAD spectra is proposed to be due to the differences in the rate of the hydrogen atom re-arrangement process. In contrast, the isomeric dependence of the negative ion distribution patterns in the charge inversion spectra is attributed to differences in the bond strength involved in the direct dissociation process in the neutral intermediate species.

  10. Cation Activation of the Basolateral Sodium-Potassium Pump in Turtle Colon

    PubMed Central

    Halm, D R; Dawson, D C

    1983-01-01

    The current generated by electrogenic sodium-potassium exchange at the basolateral membrane of the turtle colon can be measured directly in tissues that have been treated with serosal barium (to block the basolateral potassium conductance) and mucosal amphotericin B (to reduce the cation selectivity of the apical membrane). We studied the activation of this pump current by mucosal sodium and serosal potassium, rubidium, cesium, and ammonium. The kinetics of sodium activation were consistent with binding to three independent sites on the cytoplasmic side of the pump. The pump was not activated by cellular lithium ions. The kinetics of serosal cation activation were consistent with binding to two independent sites with the selectivity Rb > K > Cs > NH4. The properties and kinetics of the basolateral Na/K pump in the turtle colon are at least qualitatively similar to those ofthe well-characterized Na/K-ATPase of the human red blood cell . PMID:24244010

  11. Intumescence and pore structure of alkali-activated volcanic glasses upon exposure to high temperatures

    NASA Astrophysics Data System (ADS)

    Erdogan, S. T.

    2015-12-01

    Structures formed with ground perlite, a natural volcanic glass, activated with NaOH solutions, are shown to possess the ability to expand up to ~225 % of their original volumes upon exposure to temperatures in the 200-600 °C range. Porous solid with 3-7 MPa compressive strength and ˜450 kg/m3 or higher density are obtained. The observed expansion is believed to occur due to a loss of silanol condensation water, as vapor and is accompanied by an up to ~20 % loss in mass. A drop in pH to near-neutral values supports this idea. The size and total amount of pores in the final solid are controlled by concentration of the NaOH solution and thermal processing conditions. The pores formed are observed to be ~1-10 μm to mm-sized. The ability of perlite-based solids to intumesce over specific temperature ranges could be beneficial in applications where absorption of thermal energy is necessary, such as passive fire protection.

  12. Alkali-Metal Spin Maser.

    PubMed

    Chalupczak, W; Josephs-Franks, P

    2015-07-17

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra. PMID:26230788

  13. Interference study of a diode-pumped Nd : GGG active disk

    SciTech Connect

    Bufetova, G A; Nikolaev, D A; Trikshev, A I; Tsvetkov, V B; Shcherbakov, Ivan A

    2011-08-31

    We present the results of interference studies of a diode-pumped active disk element made of a gadolinium - gallium - garnet (GGG:Nd) crystal. The disk is cut perpendicular to the crystallographic axis [001], along which the pump beam propagates. With absorbing pump radiation, a thermal lens, which has been investigated by the interference methods using linearly polarised probe radiation, is formed in the disk. At the absorbed pump power up to 12 W, the interference pattern near the disk surface is a system of concentric rings. With increasing absorbed pump power up to 24 W, the outer rings transform into hexagons. It is shown that such an interference pattern in the garnet crystal is caused by thermally induced birefringence. (lasers)

  14. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct

    NASA Technical Reports Server (NTRS)

    Gashev, Anatoliy A.; Davis, Michael J.; Zawieja, David C.; Delp, M. D. (Principal Investigator)

    2002-01-01

    There are only a few reports of the influence of imposed flow on an active lymph pump under conditions of controlled intraluminal pressure. Thus, the mechanisms are not clearly defined. Rat mesenteric lymphatics and thoracic ducts were isolated, cannulated and pressurized. Input and output pressures were adjusted to impose various flows. Lymphatic systolic and diastolic diameters were measured and used to determine contraction frequency and pump flow indices. Imposed flow inhibited the active lymph pump in both mesenteric lymphatics and in the thoracic duct. The active pump of the thoracic duct appeared more sensitive to flow than did the active pump of the mesenteric lymphatics. Imposed flow reduced the frequency and amplitude of the contractions and accordingly the active pump flow. Flow-induced inhibition of the active lymph pump followed two temporal patterns. The first pattern was a rapidly developing inhibition of contraction frequency. Upon imposition of flow, the contraction frequency immediately fell and then partially recovered over time during continued flow. This effect was dependent on the magnitude of imposed flow, but did not depend on the direction of flow. The effect also depended upon the rate of change in the direction of flow. The second pattern was a slowly developing reduction of the amplitude of the lymphatic contractions, which increased over time during continued flow. The inhibition of contraction amplitude was dependent on the direction of the imposed flow, but independent of the magnitude of flow. Nitric oxide was partly but not completely responsible for the influence of flow on the mesenteric lymph pump. Exposure to NO mimicked the effects of flow, and inhibition of the NO synthase by N (G)-monomethyl-L-arginine attenuated but did not completely abolish the effects of flow.

  15. Elucidation of the Nature of Structural Heterogeneity During Alkali Leaching of Non-activated and Mechanically Activated Boehmite ( γ-AlOOH)

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Alex, Thomas C.

    2015-08-01

    Crystal joints and faces in non-activated boehmite and, state of agglomeration of particles, degree of amorphization, microcrystallite dimension and, strain in mechanically activated boehmite are indicators of structural heterogeneity which influences reactivity of the solid phase. The focus of this paper is on understanding the manifestation of the heterogeneity during alkali leaching of a boehmite (specific surface area—263 m2/g), without and with mechanical activation using planetary milling up to 240 minutes. A two-prong strategy is used for this purpose which involved analysis of the kinetics of leaching by a model-free approach using `isoconversional method' and, in parallel, characterization of the reacting solid after different durations of leaching. Unlike model-fitting methods, the kinetic analysis revealed sample-dependent variation of apparent activation energy with fraction leached. Changes observed in the morphology of samples (by SEM), particle size distribution (by laser diffraction), and crystalline nature (by powder X-ray diffraction) are used to explain activation energy changes and propose mechanisms of leaching. The effect of mechanical activation on rate constant is assessed and it has been found that up to ~23-fold increase in rate is possible depending on the activation time, leaching temperature, and fraction leached. Further, based on binary correlations between activation energy at different fractions leached and initial characteristics of the samples, it is found that the leaching is predominantly influenced by structural changes during milling, namely, degree of amorphization, microcrystallite dimension, and strain, vis-à-vis specific surface area. Significantly, the paper highlights limitation of model-fitting methods used by most researchers to analyze the kinetics of leaching, especially for mechanically activated minerals.

  16. The activation of the sodium pump in pig red blood cells by internal and external cations.

    PubMed

    Brand, S C; Whittam, R

    1985-05-30

    A study has been made with pig red blood cells of the activation of the sodium pump by internal and external cations. Cell Na and K concentrations were altered using a PCMBS cation loading procedure. The procedure was characterised for resultant ionic conditions, maintenance of ATP levels and fragility. The activation of the sodium pump by external K was measured in cells suspended in choline (Na-free) solutions. External Cs was used as a substitute for K and elicited lower rates of pump activity. Both the Vmax and apparent Km for 42K influx and 134Cs influx increased as internal Na concentration was raised (within the non-saturating range). Vmax/apparent Km ratios for cation influx were constant. Raising external Cs concentration exerted a similar influence on pump activation by internal Na: both the maximum pump velocity and the apparent Na-site dissociation constant (K'Na) increased. The results provide evidence for a transmembrane connection between cation binding sites on opposite faces of the membrane and are consistent with a consecutive model for the sodium pump in pig red blood cells. PMID:2581622

  17. Ion permeation through single channels activated by acetylcholine in denervated toad sartorius skeletal muscle fibers: effects of alkali cations.

    PubMed

    Quartararo, N; Barry, P H; Gage, P W

    1987-01-01

    The gigaohm seal technique was used to study ion permeation through acetylcholine-activated channels in cell-attached patches of the extrajunctional membrane of chronically denervated, enzyme-treated cells from the sartorius muscle of the toad Bufo marinus. The most frequently occurring channel type (greater than 95% of channel openings), provisionally classified as 'extrajunctional,' had a chord conductance of approximately 25 pS under normal conditions (-70 mV, 11 degrees C, Normal Toad Ringer's). The less frequently observed channel type (less than 5% of channel openings), classified as a 'junctional' type, had a conductance of 35 pS under the same conditions, and a similar null potential. In many patches, a small percentage (usually less than 2%) of openings of the extrajunctional channel displayed a lower conductance state. The shape of the I-V curves obtained for the extrajunctional channel depended on the predominant extracellular cation. For Cs and K, the I-V curves were essentially linear over the voltage range +50 to -150 mV across the patch, suggesting that the potential independent component of the energy profile within the channel was symmetrical. For Li, the I-V curve was very nonlinear, displaying a significant sublinearity at hyperpolarized potentials. Both an electrodiffusion and a symmetrical uniform four-barrier, three-site rate-theory model provided reasonable fits to the data, whereas symmetrical two-barrier, single-site rate-theory models did not. For the alkali cations examined, the relative permeability sequence was PCs greater than PK greater than PNa greater than PLi--a "proportional" selectivity sequence. This was different from the single channel conductance sequence which was found to be gamma K greater than gamma Cs greater than gamma Na greater than gamma Li implying that ions do not move independently through the channel. The relative binding constant sequence for the channel sites was found to be a "polarizability" sequence, i

  18. Negative relationships between erythrocyte Ca-pump activity and lead levels in mothers and newborns.

    PubMed

    Campagna, D; Huel, G; Hellier, G; Girard, F; Sahuquillo, J; Fagot-Campagna, A; Godin, J; Blot, P

    2000-12-01

    Lead poisoning induces hematological, gastrointestinal and neurological dysfunctions. One of the potential mechanisms is the inhibition of calcium-pump (Ca-pump), a transport protein. We investigated the effects of an environmental low lead exposure on Ca-pump activity in 247 mothers and their newborns. Maternal and cord blood, and newborn and mother hair, were sampled at delivery. Geometric means for mother and cord blood lead (Pb-B), and for mother and newborn hair lead (Pb-H), were 6.3 and 4.8 microg/dl, and 1.7 and 1.1 microg/g. Means for mother and cord basal Ca-pump activities were 2,442 and 2,675 nM/mg/hr. Mother enzymatic activity was negatively related to her Pb-B and Pb-H and to the cord Pb-B and newborn Pb-H levels. Newborn enzymatic activity was negatively related to his Pb-H level only. Adjustment for gestational age, child's sex, mother's age at delivery, alcohol, coffee and tea consumption, and smoking habits during pregnancy did not modify these relationships. Our findings support the hypothesis that lead toxicity could be in part mediated by a reduction of Ca-pump activity. This effect could be observed at low environmental exposure, in mothers and newborns. PMID:11191638

  19. Natriuretic peptides stimulate the cardiac sodium pump via NPR-C-coupled NOS activation.

    PubMed

    William, M; Hamilton, E J; Garcia, A; Bundgaard, H; Chia, K K M; Figtree, G A; Rasmussen, H H

    2008-04-01

    Natriuretic peptides (NPs) and their receptors (NPRs) are expressed in the heart, but their effects on myocyte function are poorly understood. Because NPRs are coupled to synthesis of cGMP, an activator of the sarcolemmal Na(+)-K(+) pump, we examined whether atrial natriuretic peptide (ANP) regulates the pump. We voltage clamped rabbit ventricular myocytes and identified electrogenic Na(+)-K(+) pump current (arising from the 3:2 Na(+):K(+) exchange and normalized for membrane capacitance) as the shift in membrane current induced by 100 micromol/l ouabain. Ten nanomoles per liter ANP stimulated the Na(+)-K(+) pump when the intracellular compartment was perfused with pipette solutions containing 10 mmol/l Na(+) but had no effect when the pump was at near maximal activation with 80 mmol/l Na(+) in the pipette solution. Stimulation was abolished by inhibition of cGMP-activated protein kinase with KT-5823, nitric oxide (NO)-activated guanylyl cyclase with 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ), or NO synthase with N(G)-nitro-L-arginine methyl ester (L-NAME). Since synthesis of cGMP by NPR-A and NPR-B is not NO dependent or ODQ sensitive, we exposed myocytes to AP-811, a highly selective ligand for the NPR-C "clearance" receptor. It abolished ANP-induced pump stimulation. Conversely, the selective NPR-C agonist ANP(4-23) reproduced stimulation. The stimulation was blocked by l-NAME. To examine NO production in response to ANP(4-23), we loaded myocytes with the NO-sensitive fluorescent dye diacetylated diaminofluorescein-2 and examined them by confocal microscopy. ANP(4-23) induced a significant increase in fluorescence, which was abolished by L-NAME. We conclude that NPs stimulate the Na(+)-K(+) pump via an NPR-C and NO-dependent pathway. PMID:18272821

  20. Goldenseal (Hydrastis canadensis L.) extracts synergistically enhance the antibacterial activity of berberine via efflux pump inhibition.

    PubMed

    Ettefagh, Keivan A; Burns, Johnna T; Junio, Hiyas A; Kaatz, Glenn W; Cech, Nadja B

    2011-05-01

    Goldenseal (Hydrastis canadensis L.) is used to combat inflammation and infection. Its antibacterial activity in vitRO has been attributed to its alkaloids, the most abundant of which is berberine. The goal of these studies was to compare the composition, antibacterial activity, and efflux pump inhibitory activity of ethanolic extracts prepared from roots and aerial portions of H. canadensis. Ethanolic extracts were prepared separately from roots and aerial portions of six H. canadensis plants. Extracts were analyzed for alkaloid concentration using LC-MS and tested for antimicrobial activity against Staphylococcus aureus (NCTC 8325-4) and for inhibition of ethidium bromide efflux. Synergistic antibacterial activity was observed between the aerial extract (FIC 0.375) and to a lesser extent the root extract (FIC 0.750) and berberine. The aerial extract inhibited ethidium bromide efflux from wild-type S. aureus but had no effect on the expulsion of this compound from an isogenic derivative deleted for norA. Our studies indicate that the roots of H. canadensis contain higher levels of alkaloids than the aerial portions, but the aerial portions synergize with berberine more significantly than the roots. Furthermore, extracts from the aerial portions of H. canadensis contain efflux pump inhibitors, while efflux pump inhibitory activity was not observed for the root extract. The three most abundant H. canadensis alkaloids, berberine, hydrastine, and canadine, are not responsible for the efflux pump inhibitory activity of the extracts from H. canadensis aerial portions. PMID:21157683

  1. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers

    SciTech Connect

    Oh, Jae Eun; Monteiro, Paulo J.M.; Jun, Ssang Sun; Choi, Sejin; Clark, Simon M.

    2010-02-15

    The increase in strength and evolution of crystalline phases in inorganic polymer cement, made by the alkali activation of slag, Class C and Class F fly ashes, was followed using compressive strength test and synchrotron X-ray diffraction. In order to increase the crystallinity of the product the reactions were carried out at 80 deg. C. We found that hydrotalcite formed in both the alkali-activated slag cements and the fly ash-based geopolymers. Hydroxycancrinite, one member of the ABC-6 family of zeolites, was found only in the fly ash geopolymers. Assuming that the predominantly amorphous geopolymer formed under ambient conditions relates to the crystalline phases found when the mixture is cured at high temperature, we propose that the structure of this zeolitic precursor formed in Na-based high alkaline environment can be regarded as a disordered form of the basic building unit of the ABC-6 group of zeolites which includes poly-types such as hydroxycancrinite, hydroxysodalite and chabazite-Na.

  2. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    PubMed

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. PMID:26496216

  3. Sodium pump molecular activity and membrane lipid composition in two disparate ectotherms, and comparison with endotherms.

    PubMed

    Turner, Nigel; Hulbert, A J; Else, Paul L

    2005-02-01

    Previous research has shown that the lower sodium pump molecular activity observed in tissues of ectotherms compared to endotherms, is largely related to the lower levels of polyunsaturates and higher levels of monounsaturates found in the cell membranes of ectotherms. Marine-based ectotherms, however, have very polyunsaturated membranes, and in the current study, we measured molecular activity and membrane lipid composition in tissues of two disparate ectothermic species, the octopus (Octopus vulgaris) and the bearded dragon lizard (Pogona vitticeps), to determine whether the high level of membrane polyunsaturation generally observed in marine-based ectotherms is associated with an increased sodium pump molecular activity relative to other ectotherms. Phospholipids from all tissues of the octopus were highly polyunsaturated and contained high concentrations of the omega-3 polyunsaturate, docosahexaenoic acid (22:6 (n-3)). In contrast, phospholipids from bearded dragon tissues contained higher proportions of monounsaturates and lower proportions of polyunsaturates. Sodium pump molecular activity was only moderately elevated in tissues of the octopus compared to the bearded dragon, despite the much greater level of polyunsaturation in octopus membranes. When the current data were combined with data for the ectothermic cane toad, a significant (P = 0.003) correlation was observed between sodium pump molecular activity and the content of 22:6 (n-3) in the surrounding membrane. These results are discussed in relation to recent work which shows a similar relationship in endotherms. PMID:15726386

  4. Controlled in-situ dissolution of an alkali metal

    DOEpatents

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  5. Effect of optical pumping on the refractive index and temperature in the core of active fibre

    SciTech Connect

    Gainov, V V; Ryabushkin, Oleg A

    2011-09-30

    This paper examines the refractive index change (RIC) induced in the core of Yb{sup 3+}-doped active silica fibres by pulsed pumping. RIC kinetic measurements with a Mach - Zehnder interferometer make it possible to separately assess the contributions of the electronic and thermal mechanisms to the RIC and evaluate temperature nonuniformities in the fibre.

  6. Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport.

    PubMed Central

    Ehrenfeld, J; Garcia-Romeu, F; Harvey, B J

    1985-01-01

    Kinetic and electrophysiological studies were carried out in the in vitro Rana esculenta skin, bathed in dilute sodium solution, to characterize the proton pump and coupling between sodium absorption (JNa+n) and proton excretion (JH+n). JNa+n and JH+n were both dependent on transepithelial potential (psi ms); hyperpolarizing the skin decreased JNa+n and increased JH+n; depolarization produced the opposite effects. Amiloride (5 X 10(-5) M) at a clamped psi ms of +50 mV inhibited JNa+n without affecting JH+n. Variations of psi ms or pH had identical effects on JH+n. Ethoxzolamide inhibited JH+n and simultaneously increased psi ms by 15-30 mV. These changes were accompanied by depolarization of the apical membrane potential psi mc from -47 to -25 mV and an increase in apical membrane resistance of 30%; no significant effects on basolateral membrane potential (psi cs) and resistance (Rb) nor on shunt resistance (Rj) were observed. The proton pump appears to be localized at the apical membrane. The proton pump was also inhibited by deoxygenation, oligomycin, dicyclohexylcarbodiimide and vanadate (100, 78, 83 and 100% inhibition respectively). The variations of JH+n and of the measured electrical currents were significantly correlated. These findings are supportive evidence of a primary active proton pump, electrogenic and strictly linked to aerobic metabolism. The current-voltage (I-V) relation of the proton pump was obtained as the difference in the I-V curves of the apical membrane extracted before and after proton-pump inhibition by ethoxzolamide during amiloride block of sodium transport. The proton-pump current (IP) was best described by a saturable exponential function of psi mc. Maximal pump current (ImaxP) was calculated to be 200 nequiv h-1 cm-2 at a psi mc of +50 mV and the pump reversal potential ERP was -130 mV. The effect of ethoxzolamide to depolarize psi mc was dependent on the relation between psi mc and ERP. Maximal induced depolarization occurred at a

  7. Evaluation of a large capacity heat pump concept for active cooling of hypersonic aircraft structure

    NASA Technical Reports Server (NTRS)

    Pagel, L. L.; Herring, R. L.

    1978-01-01

    Results of engineering analyses assessing the conceptual feasibility of a large capacity heat pump for enhancing active cooling of hypersonic aircraft structure are presented. A unique heat pump arrangement which permits cooling the structure of a Mach 6 transport to aluminum temperatures without the aid of thermal shielding is described. The selected concept is compatible with the use of conventional refrigerants, with Freon R-11 selected as the preferred refrigerant. Condenser temperatures were limited to levels compatible with the use of conventional refrigerants by incorporating a unique multipass condenser design, which extracts mechanical energy from the hydrogen fuel, prior to each subsequent pass through the condenser. Results show that it is technically feasible to use a large capacity heat pump in lieu of external shielding. Additional analyses are required to optimally apply this concept.

  8. Insulin regulation of Na/K pump activity in rat hepatoma cells

    SciTech Connect

    Gelehrter, T.D.; Shreve, P.D.; Dilworth, V.M.

    1984-05-01

    Insulin rapidly increases Na/K pump activity in HTC rat hepatoma cells in tissue culture, as measured by the ouabain-sensitive influx of the potassium analogue 86Rb+. Increased influx is observed within minutes and is maximal (70% above control) within 1-2 h. The effect appears to be mediated by the insulin receptors, as: the concentration dependence on insulin is identical to that for insulin induction of tyrosine aminotransferase and stimulation of 2-aminoisobutyric acid transport, proinsulin is 6% as potent as insulin, and the effect is blocked by anti-receptor antibodies. The early stimulation of potassium influx is not blocked by cycloheximide and is not associated with an increased number of pump sites as measured by /sup 3/H-ouabain binding. The insulin effect is blocked by amiloride, which blocks sodium influx, and is mimicked by the sodium ionophore monensin, which increases sodium influx and intracellular accumulation. Insulin also rapidly increases the initial rate of /sup 22/Na+ influx, suggesting that insulin may enhance Na/K pump activity, in part, by increasing intracellular sodium concentration. Incubation of HTC cells with insulin for 24 h causes complete unresponsiveness to the insulin induction of transaminase and stimulation of amino acid transport, a phenomenon mediated by postbinding mechanisms. In contrast, similar incubation with insulin does not cause unresponsiveness to the insulin stimulation of Na/K pump activity. Therefore, the site of regulation of responsiveness to insulin must be distal to, or separate from, those events causing stimulation of ion fluxes.

  9. Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots.

    PubMed

    Pottosin, Igor; Velarde-Buendía, Ana María; Bose, Jayakumar; Fuglsang, Anja T; Shabala, Sergey

    2014-06-01

    Polyamines regulate a variety of cation and K(+) channels, but their potential effects on cation-transporting ATPases are underexplored. In this work, noninvasive microelectrode ion flux estimation and conventional microelectrode techniques were applied to study the effects of polyamines on Ca(2+) and H(+) transport and membrane potential in pea roots. Externally applied spermine or putrescine (1mM) equally activated eosin yellow (EY)-sensitive Ca(2+) pumping across the root epidermis and caused net H(+) influx or efflux. Proton influx induced by spermine was suppressed by EY, supporting the mechanism in which Ca(2+) pump imports 2 H(+) per each exported Ca(2+). Suppression of the Ca(2+) pump by EY diminished putrescine-induced net H(+) efflux instead of increasing it. Thus, activities of Ca(2+) and H(+) pumps were coupled, likely due to the H(+)-pump inhibition by intracellular Ca(2+). Additionally, spermine but not putrescine caused a direct inhibition of H(+) pumping in isolated plasma membrane vesicles. Spermine, spermidine, and putrescine (1mM) induced membrane depolarization by 70, 50, and 35 mV, respectively. Spermine-induced depolarization was abolished by cation transport blocker Gd(3+), was insensitive to anion channels' blocker niflumate, and was dependent on external Ca(2+). Further analysis showed that uptake of polyamines but not polyamine-induced cationic (K(+)+Ca(2+)+H(+)) fluxes were a main cause of membrane depolarization. Polyamine increase is a common component of plant stress responses. Activation of Ca(2+) efflux by polyamines and contrasting effects of polyamines on net H(+) fluxes and membrane potential can contribute to Ca(2+) signalling and modulate a variety of transport processes across the plasma membrane under stress. PMID:24723394

  10. Progress in Understanding Alkali-Alkali Spin Relaxation

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Happer, William; Chann, Bien; Kadlecek, Stephen; Anderson, L. W.; Walker, Thad G.

    2000-06-01

    In extensive experiments we have shown that a spin interaction with a relatively long correlation time causes much of the spin relaxation in very dense alkali-metal vapors. The spin relaxation is affected by the pressure of the helium or nitrogen buffer gas, although there is little dependence at pressures above one atmosphere. There are substantial differences in the relaxation rates for different isotopes of the same element, for example ^87Rb and ^85Rb. We have completed extensive modeling of how singlet and triplet dimers and doublet trimers of the alkali-metal atoms could cause spin relaxation in dense alkali-metal vapors. In the case of doublet trimers or triplet dimers, we assume the main coupling to the nuclear spins is through the Fermi Contact interaction with the unpaired electrons. Spin loss to the rotation of the molecule is assumed to occur through the electronic spin-rotation and spin-axis (dipole-dipole) interactions for the triplet dimers. For the singlet dimers, we assume that the nuclear spins couple directly to the rotational angular momentum of the molecule through the electric quadrupole interaction. We account for all of the total nuclear spin states that occur for the dimers and trimers. We have also considered the possibility that the collisional breakup and formation rates of the dimers or trimers could saturate with increasing buffer gas pressure. Such saturation occurs in many other unimolecular reactions and is often ascribed to breakup through activated states.

  11. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  12. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5-WO3/TiO2 catalyst

    NASA Astrophysics Data System (ADS)

    Yu, Wenchao; Wu, Xiaodong; Si, Zhichun; Weng, Duan

    2013-10-01

    V2O5-WO3/TiO2 catalysts were prepared by wet and dry impregnation methods, respectively, and the deactivation effects of KCl on their NH3-SCR activities were investigated. The catalysts were characterized by powder X-ray diffraction (XRD), inductively coupled plasma (ICP), Brunauer-Emmett-Teller (BET), Raman, H2 temperature-programmed reaction (TPR), infrared spectra (IR) and NH3 oxidation. The wet-impregnated catalyst shows higher SCR activities before and after the alkali poisoning compared with the dry-impregnated one. The Raman results show that more polymeric vanadia species appear on the wet-impregnated sample, whereas the isolated form is predominant on the dry-impregnated sample. The transformation of vanadia from isolated to polymeric species increases the acidity of the catalyst and the NH3 oxidation activity. The activation of the adsorbed ammonia appears to be a determinant of the SCR reaction over V2O5-WO3/TiO2 catalysts, and is responsible for the higher activity of the wet-impregnated catalyst. Furthermore, the isolated vanadia species is more likely to combine with potassium to produce inert materials, and hereby the dry-impregnated catalyst is more severely deactivated.

  13. Soil sampling and analysis plan for the 3718-F Alkali Metal Treatment and Storage Facility closure activities

    SciTech Connect

    Sonnichsen, J.C.

    1997-05-01

    Amendment V.13.B.b to the approved closure plan (DOE-RL 1995a) requires that a soil sampling and analysis plan be prepared and submitted to the Washington State Department of Ecology (Ecology) for review and approval. Amendment V.13.B.c requires that a diagram of the 3718-F Alkali Metal Treatment and Storage Facility unit (the treatment, storage, and disposal [TSD] unit) boundary that is to be closed, including the maximum extent of operation, be prepared and submitted as part is of the soil sampling and analysis plan. This document describes the sampling and analysis that is to be performed in response to these requirements and amends the closure plan. Specifically, this document supersedes Section 6.2, lines 43--46, and Section 7.3.6 of the closure plan. Results from the analysis will be compared to cleanup levels identified in the closure plan. These cleanup levels will be established using residential exposure assumptions in accordance with the Model Toxics Control Act (MTCA) Cleanup Regulation (Washington Administrative Code [WAC] 173-340) as required in Amendment V.13.B.I. Results of all sampling, including the raw analytical data, a summary of analytical results, a data validation package, and a narrative summary with conclusions will be provided to Ecology as specified in Amendment V.13.B.e. The results and process used to collect and analyze the soil samples will be certified by a licensed professional engineer. These results and a certificate of closure for the balance of the TSD unit, as outlined in Chapter 7.0 of the approved closure plan (storage shed, concrete pad, burn building, scrubber, and reaction tanks), will provide the basis for a closure determination.

  14. Multi-photon processes in alkali metal vapors

    NASA Astrophysics Data System (ADS)

    Gai, Baodong; Hu, Shu; Li, Hui; Shi, Zhe; Cai, Xianglong; Guo, Jingwei; Tan, Yannan; Liu, Wanfa; Jin, Yuqi; Sang, Fengting

    2015-02-01

    Achieving population inversion through multi-photon cascade pumping is almost always difficult, and most laser medium work under 1-photon excitation mechanism. But for alkali atoms such as cesium, relatively large absorption cross sections of several low, cascading energy levels enable them properties such as up conversion. Here we carried out research on two-photon excitation alkali fluorescence. Two photons of near infrared region are used to excite alkali atoms to n 2 D5/2, n 2 D3/2 or higher energy levels, then the blue fluorescence of (n+1) 2 P3/2,(n+1) 2 P1/2-->n 2 S1/2 are observed. Different pumping paths are tried and by the recorded spectra, transition routes of cesium are deducted and concluded. Finally the possibility of two-photon style DPALs (diode pumped alkali laser) are discussed, such alkali lasers can give output wavelengths in the shorter end of visual spectroscopy (400-460 nm) and are expected to get application in underwater communication and material laser processing.

  15. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO

    SciTech Connect

    Ben Haha, M.; Lothenbach, B. Le Saout, G.; Winnefeld, F.

    2011-09-15

    The hydration and the microstructure of three alkali activated slags (AAS) with MgO contents between 8 and 13 wt.% are investigated. The slags were hydrated in the presence of two different alkaline activators, NaOH and Na{sub 2}SiO{sub 3}.5H{sub 2}O (WG). Higher MgO content of the slag resulted in a faster reaction and higher compressive strengths during the first days. The formation of C(- A)-S-H and of a hydrotalcite-like phase was observed in all samples by X-ray diffraction (XRD), thermal analysis (TGA) and scanning electron microscopy (SEM) techniques. Increasing the MgO content of the slag from 8 to 13% increased the amount of hydrotalcite and lowered the Al uptake by C-S-H resulting in 9% higher volume of the hydrates and a 50 to 80% increase of the compressive strength after 28 days and longer for WG activated slag pastes. For NaOH activated slags only a slight increase of the compressive strength was measured.

  16. Regulation of pumping function of the heart in developing body under changing regimens of motor activity.

    PubMed

    Vafina, E Z; Abzalov, R A; Abzalov, N I; Nikitin, A S; Gulyakov, A A

    2014-06-01

    We analyzed parameters of the pumping function of the heart in rats subjected to enhanced motor activity after a preliminary 70-day hypokinesia under conditions of α- and β-adrenergic receptor stimulation with norepinephrine followed by blockade of β-adrenergic receptor with propranolol (obsidian) and α1-adrenergic receptors with doxazosin. After norepinephrine administration, the HR and cardiac output were higher in rats with enhanced physical activity after preliminary hypokinesia than in rats with low physical activity. After propranolol administration, stroke volume and cardiac output in 100-day-old rats with limited activity were lower, and HR higher was than in rats with enhanced physical activity after preliminary 70-day hypokinesia. After administration of doxazosin, rats with limited motor activity demonstrated more pronounced changes in HR than rats with enhanced physical activity after preliminary 70-day hypokinesia. PMID:24970234

  17. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  18. An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser

    NASA Astrophysics Data System (ADS)

    Yao, B. Q.; Cui, Z.; Wang, J.; Duan, X. M.; Dai, T. Y.; Du, Y. Q.; Yuan, J. H.; Liu, W.

    2015-02-01

    A continuous wave mode-locked (CWML) Ho: YAG laser based on an acousto-optic modulator (AOM) pumped by a 1.9 μm Tm: YLF laser is demonstrated. This is the first time a report on an active CWML Ho: YAG laser has been published. A maximum output power of 1.04 W at 2097.25 nm in the CWML regime is obtained at a pump power of 13.2 W, corresponding to a slope efficiency of 13.3%. The mode-locked pulse repetition frequency is 82.76 MHz and the single pulse energy is 12.57 nJ. The mode-locked pulse width is 102 ps measured through a no-background second harmonic autocorrelation with KTP as the nonlinear crystal. Furthermore, the M2 factor is calculated to be 1.146.

  19. MBE growth of active regions for electrically pumped, cw-operating GaSb-based VCSELs

    NASA Astrophysics Data System (ADS)

    Kashani-Shirazi, K.; Bachmann, A.; Boehm, G.; Ziegler, S.; Amann, M.-C.

    2009-03-01

    Electrically pumped, cw-operating, single-mode GaSb-based VCSELs are attractive light sources for trace-gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS) [A. Vicet, D.A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, Spectrochimica Acta Part A 58 (2002) 2405-2412]. Only recently, the first electrically pumped (EP) devices emitting at 2.325 μm in cw-mode at room temperature have been reported [A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, Electronics Letters 44(3) (2008) 202-203]. The fabrication of these devices employs the molecular beam epitaxy (MBE) growth of GaSb/AlAsSb-distributed Bragg mirrors, a multi-quantum-well active region made of AlGaAsSb/InGaAsSb and an InAsSb/GaSb-buried-tunnel junction. As VCSELs are usually driven under high injection rates, an optimum electrical design of active regions is essential for high-performance devices. In this paper we present an enhanced simulation of current flow in the active region under operation conditions. The calculation includes carrier transport by drift, diffusion and tunneling. We discuss different design criteria and material compositions for active regions. Active regions with various barrier materials were incorporated into edge emitter samples to evaluate their performance. Aluminum-containing barriers show better internal efficiency compared to active regions with GaSb as the barrier material.

  20. Alkalis and Skin.

    PubMed

    Greenwood, John E; Tan, Jin Lin; Ming, Justin Choong Tzen; Abell, Andrew D

    2016-01-01

    The aim of this editorial is to provide an overview of the chemical interactions occurring in the skin of our patients on contact with alkaline agents. Strongly basic alkali is highly aggressive and will readily hydrolyze (or cleave) key biological molecules such as lipids and proteins. This phenomenon is known as saponification in the case of lipids and liquefactive denaturation for peptides and proteins. A short section on current first-aid concepts is included. A better understanding of the basic science behind alkali burns will make us better teachers and provide an insight into the urgency needed in treating these common and dangerous chemical injuries. PMID:26182072

  1. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  2. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part II: Effect of Al{sub 2}O{sub 3}

    SciTech Connect

    Ben Haha, M.; Lothenbach, B. Le Saout, G.; Winnefeld, F.

    2012-01-15

    The hydration and microstructural evolution of three alkali activated slags (AAS) with Al{sub 2}O{sub 3} contents between 7 and 17% wt.% have been investigated. The slags were hydrated in the presence of two different alkaline activators, NaOH and Na{sub 2}SiO{sub 3}{center_dot}5H{sub 2}O. The formation of C(-A)-S-H and hydrotalcite was observed in all samples by X-ray diffraction, thermal analysis and scanning electron microscopy. Higher Al{sub 2}O{sub 3} content of the slag decreased the Mg/Al ratio of hydrotalcite, increased the Al incorporation in the C(-A)-S-H and led to the formation of straetlingite. Increasing Al{sub 2}O{sub 3} content of the slag slowed down the early hydration and a lower compressive strength during the first days was observed. At 28 days and longer, no significant effects of slag Al{sub 2}O{sub 3} content on the degree of hydration, the volume of the hydrates, the coarse porosity or on the compressive strengths were observed.

  3. Chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt

    SciTech Connect

    Chan, M.; Yen, T.F.

    1980-11-01

    A chemical equilibrium model for interfacial activity of crude in aqueous alkaline solution is proposed. The model predicts the observed effects of pH and concentrations of alkali and salt on the interfacial tension (IFT). The model proposed was shown to describe the observed effects of acid content, pH, and sodium ions on the interfacial activity of crude oil in water. Once the pH of the interface reaches the pKa of the acids, sometimes with the help of addition of some salt, the IFT experiences a sudden steep drop to the range of 10/sup -2/ dynes/cm. After that, further addition of sodium either in the form of NaOH or NaCl is going to increase the IFT due to a shift of equilibriumn to the formation of undissociated soap. This was confirmed by the difference in the observed effect of sodium on the IFT of the extracted soap molecules which are dissociated easily and those which are associated highly and precipitated easily. These soap molecules have dissociation constant values ranging from below 10/sup -2/ to above one. 13 references.

  4. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  5. Alterations in cardiac sarcolemmal Ca/sup 2 +/ pump activity during diabetes mellitus

    SciTech Connect

    Heyliger, C.E.; Prakash, A.; McNeill, J.

    1987-03-01

    Diabetes mellitus is frequently associated with a primary cardiomyopathy. The mechanisms responsible for this heart disease are not clear, but an alteration in myocardial Ca/sup 2 +/ transport is believed to be involved in its development. Even though sarcolemma plays a crucial role in cellular Ca/sup 2 +/ transport, little appears to be known about its Ca/sup 2 +/ transporting capability in the diabetic myocardium. In this regard, the authors have examined the status of the cardiac sarcolemmal Ca/sup 2 +/ pump during diabetes mellitus. Purified sarcolemmal membranes were isolated from male Wistar diabetic rat hearts 8 wk after streptozotocin injection. Ca/sup 2 +/ pump activity assessed by measuring its Ca/sup 2 +/-stimulated adenosine triphosphatase and Ca/sup 2 +/-uptake ability in the absence and presence of calmodulin was significantly depressed in the diabetic myocardium relative to controls. These results did not appear to have been influenced by the minimal sarcoplasmic reticular and mitochondrial contamination of this membrane preparation. Hence, it appears that the sarcolemmal Ca/sup 2 +/ pump is defective in the diabetic myocardium and may be involved in the altered Ca/sup 2 +/ transport of the heart during diabetes mellitus.

  6. Metal Fluoride Inhibition of a P-type H+ Pump: STABILIZATION OF THE PHOSPHOENZYME INTERMEDIATE CONTRIBUTES TO POST-TRANSLATIONAL PUMP ACTIVATION.

    PubMed

    Pedersen, Jesper Torbøl; Falhof, Janus; Ekberg, Kira; Buch-Pedersen, Morten Jeppe; Palmgren, Michael

    2015-08-14

    The plasma membrane H(+)-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H(+)/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H(+)-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H(+)-ATPases is labile in the basal state, which may provide an explanation for the low H(+)/ATP coupling ratio of these pumps in the basal state. PMID:26134563

  7. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  8. Cation activation of the pig kidney sodium pump: transmembrane allosteric effects of sodium.

    PubMed Central

    Karlish, S J; Stein, W D

    1985-01-01

    We have studied activation by Na or Rb ions of different transport modes of the Na-K pump, using phospholipid vesicles reconstituted with pig kidney Na-K-ATPase. The shape of the activation curves, sigmoid or quasi-hyperbolic, depends on the nature of the cation at the opposite surface and not on the specific mode of transport. ATP-dependent Na uptake into K-containing vesicles (Na-K exchange) is activated by cytoplasmic Na along a highly sigmoid curve in the absence of extracellular Na (Hill number, nH = 1.9). Activation displays progressively less-sigmoid curves as extracellular Na is raised to 150 mM (nH = 1.2). The maximal rate of the Na-K exchange is not affected. Na is not transported from the extracellular face by the pump in the presence of excess extracellular K, and the transmembrane effects of the extracellular Na are therefore 'allosteric' in nature. ATP-dependent Na-Na exchange (Lee & Blostein, 1980) and classical ATP-plus-ADP-dependent Na-Na exchange are activated by cytoplasmic Na along hyperbolic curves. ATP-dependent Na uptake into Tris-containing vesicles is activated by cytoplasmic Na along a somewhat sigmoidal curve. (ATP + Pi)-dependent Rb-Rb exchange is activated by cytoplasmic and extracellular Rb along strictly hyperbolic curves. The same applies for Rb-Rb exchange in the presence or absence of ATP or Pi alone. The presence of a high concentration of extracellular Na together with extracellular Rb induces a sigmoidal activation by cytoplasmic Rb of (ATP + Pi)-dependent Rb-Rb exchange (nH = 1.45) but does not affect the maximal rate of exchange. Slow passive Rb fluxes through the pump observed in the absence of other pump ligands (see Karlish & Stein, 1982 alpha) are activated by cytoplasmic Rb along a strictly hyperbolic curve with extracellular Rb, nH = 1.0 (Rb-Rb exchange), along a strongly sigmoid curve with extracellular Na, nH = 1.5 (Rb-Na exchange), and along less-sigmoid curves with extracellular Tris, nH = 1.24 (net Rb flux) or

  9. Density and water content of nanoscale solid C-S-H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage

    SciTech Connect

    Thomas, Jeffrey J.; Allen, Andrew J.; Jennings, Hamlin M.

    2012-02-15

    Alkali-activated slag (AAS) paste was analyzed using small-angle neutron scattering (SANS). The scattering response indicates that the microstructure consists of a uniform matrix of hydration product with a high surface area studded with unhydrated cores of slag particles. In contrast with portland cement paste, no surface fractal scattering regime was detected, and elevated temperature curing (at 60 Degree-Sign C) had no detectable effect on the microstructure at any length scale studied. The specific surface area of the AAS pastes is about 25% higher than that of a portland cement paste cured under the same conditions. The composition and mass density of the nanoscale solid C-S-H phase formed in the AAS paste was determined using a previously developed neutron scattering method, in conjunction with a hydration model. The result ((CaO){sub 0.99}-SiO{sub 2}-(Al{sub 2}O{sub 3}){sub 0.06}-(H{sub 2}O){sub 0.97}, d = (2.73 {+-} 0.02) g/cm{sup 3}) is significantly lower in calcium and in water as compared to portland cement or pure tricalcium silicate paste. These values were used to calculate the chemical shrinkage that would result from complete hydration of the AAS paste. The result, (12.2 {+-} 1.5) cm{sup 3} of volumetric shrinkage per 100 g of unhydrated cement, is about twice the amount of chemical shrinkage exhibited by normal cement pastes.

  10. Influence of ZnO/MgO substitution on sintering, crystallisation, and bio-activity of alkali-free glass-ceramics.

    PubMed

    Kapoor, Saurabh; Goel, Ashutosh; Correia, Ana Filipa; Pascual, Maria J; Lee, Hye-Young; Kim, Hae-Won; Ferreira, José M F

    2015-08-01

    The present study reports on the influence of partial replacement of MgO by ZnO on the structure, crystallisation behaviour and bioactivity of alkali-free bioactive glass-ceramics (GCs). A series of glass compositions (mol%): 36.07 CaO-(19.24-x) MgO-x ZnO-5.61 P2O5-38.49 SiO2-0.59 CaF2 (x=2-10) have been synthesised by melt-quench technique. The structural changes were investigated by solid-state magic angle spinning nuclear magnetic resonance (MAS-NMR), X-ray diffraction and differential thermal analysis. The sintering and crystallisation behaviours of glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. All the glass compositions exhibited good densification ability resulting in well sintered and mechanically strong GCs. The crystallisation and mechanical behaviour were studied under non-isothermal heating conditions at 850 °C for 1h. Diopside was the primary crystalline phase in all the GCs followed by fluorapatite and rankinite as secondary phases. Another phase named petedunnite was identified in GCs with ZnO content >4 mol. The proliferation of mesenchymal stem cells (MSCs) and their alkaline phosphatase activity (ALP) on GCs was revealed to be Zn-dose dependent with the highest performance being observed for 4 mol% ZnO. PMID:26042713

  11. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  12. NorA efflux pump inhibitory activity of coumarins from Mesua ferrea.

    PubMed

    Roy, Somendu K; Kumari, Neela; Pahwa, Sonika; Agrahari, Udai C; Bhutani, Kamlesh K; Jachak, Sanjay M; Nandanwar, Hemraj

    2013-10-01

    The purpose of this investigation was to study the modulator and efflux pump inhibitor activity of coumarins isolated from Mesua ferrea against clinical strains as well as NorA-over expressed strain of Staphylococcus aureus 1199B. Seven coumarins were tested for modulator activity using ethidium bromide (EtBr) as a substrate. Compounds 1, 4-7 modulated the MIC of EtBr by ≥ 2 fold against wild type clinical strains of S. aureus 1199 and S. aureus 1199B, whereas compounds 4-7 modulated the MIC of EtBr by ≥ 16 fold against MRSA 831. Compounds 1, 4-7 also reduced the MIC of norfloxacin by ≥ 8 fold against S. aureus 1199B, and 4-6 reduced the MIC of norfloxacin by ≥ 8 fold against MRSA 831 at half of their MICs. Inhibition of EtBr efflux by NorA-overproducing S. aureus 1199B and MRSA 831 confirmed the role of compounds 4-6 as NorA efflux pump inhibitors (EPI). Dose-dependent activity at sub-inhibitory concentration (6.25 μg/mL) suggested that compounds 4 and 5 are promising EPI compared to verapamil against 1199B and MRSA 831 strains. PMID:23892000

  13. In vitro transport activity of the fully assembled MexAB-OprM efflux pump from Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Verchère, Alice; Dezi, Manuela; Adrien, Vladimir; Broutin, Isabelle; Picard, Martin

    2015-04-01

    Antibiotic resistance is a major public health issue and many bacteria responsible for human infections have now developed a variety of antibiotic resistance mechanisms. For instance, Pseudomonas aeruginosa, a disease-causing Gram-negative bacteria, is now resistant to almost every class of antibiotics. Much of this resistance is attributable to multidrug efflux pumps, which are tripartite membrane protein complexes that span both membranes and actively expel antibiotics. Here we report an in vitro procedure to monitor transport by the tripartite MexAB-OprM pump. By combining proteoliposomes containing the MexAB and OprM portions of the complex, we are able to assay energy-dependent substrate translocation in a system that mimics the dual-membrane architecture of Gram-negative bacteria. This assay facilitates the study of pump transport dynamics and could be used to screen pump inhibitors with potential clinical use in restoring therapeutic activity of old antibiotics.

  14. NASA LEWIS RESEARCH CENTER WATER JET PUMP TEST FACILITY IN TEST CELL SE-12 IN THE ENGINE RESEARCH BU

    NASA Technical Reports Server (NTRS)

    1963-01-01

    NASA LEWIS RESEARCH CENTER WATER JET PUMP TEST FACILITY IN TEST CELL SE-12 IN THE ENGINE RESEARCH BUILDING ERB - ALKALI METAL LOW PRESSURE PUMP FACILITY AND ALKALI METAL HIGH PRESSURE PUMP FACILITY IN CELL W-6 OF THE COMPRESSOR & TURBINE WING C&T

  15. Simple model potential and model wave functions for (H-alkali)+ and (alkali-alkali)+ ions

    NASA Astrophysics Data System (ADS)

    Patil, S. H.; Tang, K. T.

    2000-07-01

    A simple model potential is proposed to describe the interaction of a valence electron with the alkali core, which incorporates the correct asymptotic behavior in terms of dipolar polarizabilities, and the short-range exchange effects in terms of a hard core adjusted to give the correct energy for the valence electron. Based on this potential, simple wave functions are developed to describe the (H-alkali)+ and (alkali-alkali)+ ions. These wave functions exhibit some important structures of the ions, and provide a universal description of the properties of all (H-alkali)+ and (alkali-alkali)+ ions, in particular, the equilibrium separations of the nuclei and the corresponding dissociation energies. They also allow us to calculate the dipolar polarizabilities of Li2+, Na2+, K2+, Rb2+, and Cs2+.

  16. Redox-induced activation of the proton pump in the respiratory complex I

    PubMed Central

    Sharma, Vivek; Belevich, Galina; Gamiz-Hernandez, Ana P.; Róg, Tomasz; Vattulainen, Ilpo; Verkhovskaya, Marina L.; Wikström, Mårten; Hummer, Gerhard; Kaila, Ville R. I.

    2015-01-01

    Complex I functions as a redox-linked proton pump in the respiratory chains of mitochondria and bacteria, driven by the reduction of quinone (Q) by NADH. Remarkably, the distance between the Q reduction site and the most distant proton channels extends nearly 200 Å. To elucidate the molecular origin of this long-range coupling, we apply a combination of large-scale molecular simulations and a site-directed mutagenesis experiment of a key residue. In hybrid quantum mechanics/molecular mechanics simulations, we observe that reduction of Q is coupled to its local protonation by the His-38/Asp-139 ion pair and Tyr-87 of subunit Nqo4. Atomistic classical molecular dynamics simulations further suggest that formation of quinol (QH2) triggers rapid dissociation of the anionic Asp-139 toward the membrane domain that couples to conformational changes in a network of conserved charged residues. Site-directed mutagenesis data confirm the importance of Asp-139; upon mutation to asparagine the Q reductase activity is inhibited by 75%. The current results, together with earlier biochemical data, suggest that the proton pumping in complex I is activated by a unique combination of electrostatic and conformational transitions. PMID:26330610

  17. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    NASA Astrophysics Data System (ADS)

    Tsujimoto, K.; Ban, K.; Hirai, Y.; Sugano, K.; Tsuchiya, T.; Mizutani, N.; Tabata, O.

    2013-11-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN6), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460-490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches.

  18. Developments in alkali-metal atomic magnetometry

    NASA Astrophysics Data System (ADS)

    Seltzer, Scott Jeffrey

    Alkali-metal magnetometers use the coherent precession of polarized atomic spins to detect and measure magnetic fields. Recent advances have enabled magnetometers to become competitive with SQUIDs as the most sensitive magnetic field detectors, and they now find use in a variety of areas ranging from medicine and NMR to explosives detection and fundamental physics research. In this thesis we discuss several developments in alkali-metal atomic magnetometry for both practical and fundamental applications. We present a new method of polarizing the alkali atoms by modulating the optical pumping rate at both the linear and quadratic Zeeman resonance frequencies. We demonstrate experimentally that this method enhances the sensitivity of a potassium magnetometer operating in the Earth's field by a factor of 4, and we calculate that it can reduce the orientation-dependent heading error to less than 0.1 nT. We discuss a radio-frequency magnetometer for detection of oscillating magnetic fields with sensitivity better than 0.2 fT/ Hz , which we apply to the observation of nuclear magnetic resonance (NMR) signals from polarized water, as well as nuclear quadrupole resonance (NQR) signals from ammonium nitrate. We demonstrate that a spin-exchange relaxation-free (SERF) magnetometer can measure all three vector components of the magnetic field in an unshielded environment with comparable sensitivity to other devices. We find that octadecyltrichlorosilane (OTS) acts as an anti-relaxation coating for alkali atoms at temperatures below 170°C, allowing them to collide with a glass surface up to 2,000 times before depolarizing, and we present the first demonstration of high-temperature magnetometry with a coated cell. We also describe a reusable alkali vapor cell intended for the study of interactions between alkali atoms and surface coatings. Finally, we explore the use of a cesium-xenon SERF comagnetometer for a proposed measurement of the permanent electric dipole moments (EDMs

  19. Efflux Pump Blockers in Gram-Negative Bacteria: The New Generation of Hydantoin Based-Modulators to Improve Antibiotic Activity

    PubMed Central

    Otręebska-Machaj, Ewa; Chevalier, Jacqueline; Handzlik, Jadwiga; Szymańska, Ewa; Schabikowski, Jakub; Boyer, Gérard; Bolla, Jean-Michel; Kieć-Kononowicz, Katarzyna; Pagès, Jean-Marie; Alibert, Sandrine

    2016-01-01

    Multidrug resistant (MDR) bacteria are an increasing health problem with the shortage of new active antibiotic agents. Among effective mechanisms that contribute to the spread of MDR Gram-negative bacteria are drug efflux pumps that expel clinically important antibiotic classes out of the cell. Drug pumps are attractive targets to restore the susceptibility toward the expelled antibiotics by impairing their efflux activity. Arylhydantoin derivatives were investigated for their potentiation of activities of selected antibiotics described as efflux substrates in Enterobacter aerogenes expressing or not AcrAB pump. Several compounds increased the bacterial susceptibility toward nalidixic acid, chloramphenicol and sparfloxacin and were further pharmacomodulated to obtain a better activity against the AcrAB producing bacteria. PMID:27199950

  20. Verbascoside isolated from Tectona grandis mediates gastric protection in rats via inhibiting proton pump activity.

    PubMed

    Singh, Neetu; Shukla, Nivedita; Singh, Pratibha; Sharma, Rolee; Rajendran, S M; Maurya, Rakesh; Palit, Gautam

    2010-10-01

    Evidences have suggested that Tectona grandis (TG) attenuates gastric mucosal injury; however its mechanism has not yet been established. The aim of present study was to evaluate the gastroprotective mechanism of ethanolic extract of TG (E-EtOH), butanolic fraction (Fr-Bu) and to identify its active constituents. Anti-ulcer activities were evaluated against cold restraint (CRU) and pyloric ligation (PL) induced gastric ulcer models and further confirmed through H(+) K(+)-ATPase inhibitory activity. Cytoprotective activity was evaluated in alcohol (AL) induced gastric ulcer model and further through PGE(2) level. E-EtOH and Fr-Bu attenuated ulcer formation in CRU. Moreover E-EtOH and Fr-Bu displayed potent anti-secretory activity as evident through reduced free acidity and pepsin activity in PL, confirmed further by in vitro inhibition of H(+) K(+)-ATPase activity. In addition cytoprotective potential of E-EtOH and Fr-Bu were apparent with protection in AL model, increased PGE(2) content and enhanced mucin level in PL. Phytochemical investigations of Fr-Bu yielded terpenoides and a phenolic glycoside, verbascoside. The anti-secretory mechanism of verbascoside mediated apparently through inhibition of H(+) K(+)-ATPase with corresponding decrease in plasma gastrin level, is novel to our finding. Gastroprotection elicited by TG might be through proton pump inhibition and consequent augmentation of the defensive mechanism. PMID:20388534

  1. Inhibition of calmodulin - regulated calcium pump activity in rat brain by toxaphene

    SciTech Connect

    Trottman, C.H.; Moorthy, K.S.

    1986-03-05

    In vivo effects of toxaphene on calcium pump activity in rat brain synaptosomes was studied. Male Sprague-Dawley rats were dosed with toxaphene at 0,25,50, and 100 mg/kg/day for 3 days and sacrificed 24 h after last dose. Ca/sup 2 +/-ATPase activity and /sup 45/Ca uptake were determined in brain P/sub 2/ fraction. Toxaphene inhibited both Ca/sup 2 +/-ATPase activity and /sup 45/Ca/sup 2 +/ uptake and the inhibition was dose dependent. Both substrate and Ca/sup 2 +/ activation kinetics of Ca/sup 2 +/-ATPase indicated non-competitive type of inhibition as evidenced by decreased catalytic velocity but not enzyme-substrate affinity. The inhibited Ca/sup 2 +/-ATPase activity and Ca/sup 2 +/ uptake were restored to normal level by exogenously added calmodulin which increased both velocity and affinity. The inhibition of Ca/sup 2 +/-ATPase activity and Ca/sup 2 +/ uptake and restoration by calmodulin suggests that toxaphene may impair active calcium transport mechanisms by decreasing regulator protein calmodulin levels.

  2. Calmodulin activation of an endoplasmic reticulum-located calcium pump involves an interaction with the N-terminal autoinhibitory domain

    NASA Technical Reports Server (NTRS)

    Hwang, I.; Harper, J. F.; Liang, F.; Sze, H.

    2000-01-01

    To investigate how calmodulin regulates a unique subfamily of Ca(2+) pumps found in plants, we examined the kinetic properties of isoform ACA2 identified in Arabidopsis. A recombinant ACA2 was expressed in a yeast K616 mutant deficient in two endogenous Ca(2+) pumps. Orthovanadate-sensitive (45)Ca(2+) transport into vesicles isolated from transformants demonstrated that ACA2 is a Ca(2+) pump. Ca(2+) pumping by the full-length protein (ACA2-1) was 4- to 10-fold lower than that of the N-terminal truncated ACA2-2 (Delta2-80), indicating that the N-terminal domain normally acts to inhibit the pump. An inhibitory sequence (IC(50) = 4 microM) was localized to a region within valine-20 to leucine-44, because a peptide corresponding to this sequence lowered the V(max) and increased the K(m) for Ca(2+) of the constitutively active ACA2-2 to values comparable to the full-length pump. The peptide also blocked the activity (IC(50) = 7 microM) of a Ca(2+) pump (AtECA1) belonging to a second family of Ca(2+) pumps. This inhibitory sequence appears to overlap with a calmodulin-binding site in ACA2, previously mapped between aspartate-19 and arginine-36 (J.F. Harper, B. Hong, I. Hwang, H.Q. Guo, R. Stoddard, J.F. Huang, M.G. Palmgren, H. Sze inverted question mark1998 J Biol Chem 273: 1099-1106). These results support a model in which the pump is kept "unactivated" by an intramolecular interaction between an autoinhibitory sequence located between residues 20 and 44 and a site in the Ca(2+) pump core that is highly conserved between different Ca(2+) pump families. Results further support a model in which activation occurs as a result of Ca(2+)-induced binding of calmodulin to a site overlapping or immediately adjacent to the autoinhibitory sequence.

  3. Diversity and Mechanisms of Alkali Tolerance in Lactobacilli▿

    PubMed Central

    Sawatari, Yuki; Yokota, Atsushi

    2007-01-01

    We determined the maximum pH that allows growth (pHmax) for 34 strains of lactobacilli. High alkali tolerance was exhibited by strains of Lactobacillus casei, L. paracasei subsp. tolerans, L. paracasei subsp. paracasei, L. curvatus, L. pentosus, and L. plantarum that originated from plant material, with pHmax values between 8.5 and 8.9. Among these, L. casei NRIC 1917 and L. paracasei subsp. tolerans NRIC 1940 showed the highest pHmax, at 8.9. Digestive tract isolates of L. gasseri, L. johnsonii, L. reuteri, L. salivarius subsp. salicinius, and L. salivarius subsp. salivarius exhibited moderate alkali tolerance, with pHmax values between 8.1 and 8.5. Dairy isolates of L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and L. helveticus exhibited no alkali tolerance, with pHmax values between 6.7 and 7.1. Measurement of the internal pH of representative strains revealed the formation of transmembrane proton gradients (ΔpH) in a reversed direction (i.e., acidic interior) at alkaline external-pH ranges, regardless of their degrees of alkali tolerance. Thus, the reversed ΔpH did not determine alkali tolerance diversity. However, the ΔpH contributed to alkali tolerance, as the pHmax values of several strains decreased with the addition of nigericin, which dissipates ΔpH. Although neutral external-pH values resulted in the highest glycolysis activity in the presence of nigericin regardless of alkali tolerance, substantial glucose utilization was still detected in the alkali-tolerant strains, even in a pH range of between 8.0 and 8.5, at which the remaining strains lost most activity. Therefore, the alkali tolerance of glycolysis reactions contributes greatly to the determination of alkali tolerance diversity. PMID:17449704

  4. Compact, Lightweight Electromagnetic Pump for Liquid Metal

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Palzin, Kurt

    2010-01-01

    A proposed direct-current electromagnetic pump for circulating a molten alkali metal alloy would be smaller and lighter and would demand less input power, relative to currently available pumps of this type. (Molten alkali metals are used as heat-transfer fluids in high-temperature stages of some nuclear reactors.) The principle of operation of this or any such pump involves exploitation of the electrical conductivity of the molten metal: An electric current is made to pass through the liquid metal along an axis perpendicular to the longitudinal axis of the flow channel, and a magnetic field perpendicular to both the longitudinal axis and the electric current is superimposed on the flowchannel region containing the electric current. The interaction between the electric current and the magnetic field produces the pumping force along the longitudinal axis. The advantages of the proposed pump over other such pumps would accrue from design features that address overlapping thermal and magnetic issues.

  5. Highly active and stable oxaloacetate decarboxylase Na⁺ pump complex for structural analysis.

    PubMed

    Inoue, Michio; Li, Xiaodan

    2015-11-01

    The oxaloacetate decarboxylase primary Na(+) pump (Oad) produces energy for the surviving of some pathogenic bacteria under anaerobic conditions. Oad composes of three subunits: Oad-α, a biotinylated soluble subunit and catalyzes the decarboxylation of oxaloacetate; Oad-β, a transmembrane subunit and functions as a Na(+) pump; and Oad-γ, a single transmembrane α-helical anchor subunit and assembles Oad-α/β/γ complex. The molecular mechanism of Oad complex coupling the exothermic decarboxylation to generate the Na(+) electrochemical gradient remains unsolved. Our biophysical and biochemical studies suggested that the stoichiometry of Oad complex from Vibrio cholerae composed of α, β, γ in 4:2:2 stoichiometry not that of 4:4:4. The high-resolution structure determination of the Oad complex would reveal the energetic transformation mechanism from the catalytical soluble α subunit to membrane β subunit. Sufficient amount stable, conformational homogenous and active Oad complex with the right stoichiometry is the prerequisite for structural analysis. Here we report an easy and reproducible protocol to obtain high quantity and quality Oad complex protein for structural analysis. PMID:25986323

  6. Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump.

    PubMed Central

    Liu, J; Takiff, H E; Nikaido, H

    1996-01-01

    The lfrA gene cloned from chromosomal DNA of quinolone-resistant Mycobacterium smegmatis mc2-552 conferred low-level resistance to fluoroquinolones when present on multicopy plasmids. Sequence analysis suggested that lfrA encodes a membrane efflux pump of the major facilitator family (H. E. Takiff, M. Cimino, M. C. Musso, T. Weisbrod, R. Martinez, M. B. Delgado, L Salazar, B. R. Bloom, and W. R. Jacbos, Jr., Proc. Natl. Acad. Sci. USA 93:362-366, 1996). In this work, we studied the role of LfrA in the accumulation of fluoroquinolones by M. smegmatis. The steady-state accumulation level of a hydrophilic quinolone, norfloxacin, by M. smegmatis harboring a plasmid carrying the lfrA gene was about 50% of that by the parent strain but was increased to the same level as that of the parent strain by addition of a proton conductor, carbonyl cyanide m-chorophenylhydrazone. Norfloxacin efflux mediated by LfrA was competed for strongly by ciprofloxacin but not by nalidixic acid. Furthermore, we showed that portions of norfloxacin accumulated by starved cells were pumped out upon reenergization of the cells, and the rates of this efflux showed evidence of saturation at higher intracellular concentrations of the drug. These results suggest that the LfrA polypeptide catalyzes the active efflux of several quinolones. PMID:8682782

  7. Mechanisms underlying the activity-dependent regulation of locomotor network performance by the Na+ pump

    PubMed Central

    Zhang, Hong-Yan; Picton, Laurence; Li, Wen-Chang; Sillar, Keith T.

    2015-01-01

    Activity-dependent modification of neural network output usually results from changes in neurotransmitter release and/or membrane conductance. In Xenopus frog tadpoles, spinal locomotor network output is adapted by an ultraslow afterhyperpolarization (usAHP) mediated by an increase in Na+ pump current. Here we systematically explore how the interval between two swimming episodes affects the second episode, which is shorter and slower than the first episode. We find the firing reliability of spinal rhythmic neurons to be lower in the second episode, except for excitatory descending interneurons (dINs). The sodium/proton antiporter, monensin, which potentiates Na+ pump function, induced similar effects to short inter-swim intervals. A usAHP induced by supra-threshold pulses reduced neuronal firing reliability during swimming. It also increased the threshold current for spiking and introduced a delay to the first spike in a train, without reducing subsequent firing frequency. This delay was abolished by ouabain or zero K+ saline, which eliminate the usAHP. We present evidence for an A-type K+ current in spinal CPG neurons which is inactivated by depolarization and de-inactivated by hyperpolarization, and accounts for the prolonged delay. We conclude that the usAHP attenuates neuronal responses to excitatory network inputs by both membrane hyperpolarization and enhanced de-inactivation of an A-current. PMID:26541477

  8. A status of the activities of the NASA/MSFC pump stage technology team

    NASA Technical Reports Server (NTRS)

    Garcia, R.; Williams, R.; Dakhoul, Y.

    1992-01-01

    The Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology was established to aid the transfer of CFD related advancements among academia, government agencies, and industry. The specific goals of the Consortium are to develop CFD methodologies necessary to solve propulsion problems, to validate these methodologies, and to apply these methodologies in the design process. To accomplish these goals, a team of experts in various related fields was formed, a schedule of activities necessary to meet the goals was generated, and funding for the activities was obtained from NASA. During the past year (Mar. 1991 - Mar. 1992) the team's activities have focused on preliminary code validation and on the design of an advanced impeller. Six codes were used to calculate the flow in a Rocketdyne 0.3 flow coefficient inducer, and the results were compared to L2F data available for the inducer. This activity identified shortcomings in the experimental data sets and in the analytical solutions which must be surmounted in any future team activity. The design of the advanced impeller relied heavily on CFD results to obtain an optimized geometry. The optimized geometry was analyzed using four different codes, at design and off-design conditions. Activities for the next year include the optimization of a tandem blade impeller design, benchmark of CFD codes for diffuser and volute flows, the collection of L2F data for 'state-of-the-art' impeller and inducer, and the verification of the advanced pump team impeller design in a water rig.

  9. Methane enhancement through oxidative cleavage and alkali solubilization pre-treatments for corn stover with anaerobic activated sludge.

    PubMed

    Hassan, Muhammad; Ding, Weimin; Bi, Jinhua; Mehryar, Esmaeil; Talha, Zahir Ahmed Ali; Huang, Hongying

    2016-01-01

    In the present study, thermo-chemical pre-treatment was adopted to evaluate methane production potential from corn stover by co-digesting it with anaerobic activated sludge. Three chemicals H2O2, Ca(OH)2 and NaOH were selected with two levels of concentration. All thermo-chemical pre-treatments were found significant (P<0.05) to enhance lignocellulosic digestibility and methane production. The results indicated that the methane yield by H2O2-1, H2O2-2, and NaOH-2 treated corn stover were 293.52, 310.50 and 279.42ml/g.VS which were 57.18%, 66.27% and 49.63% higher than the untreated corn stover respectively. In the previous studies pre-treatment time was reported in days but our method had reduced it to about one hour. H2O2-2 and NaOH-2 treatments remained prominent to increase lignocellulosic degradation vigorously up to 45% and 42% respectively. Process biochemistry during the anaerobic digestion process was taken into consideration to optimize the most feasible thermo-chemical pre-treatment for corn stover. PMID:26512865

  10. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process.

    PubMed

    Grübel, Klaudiusz; Suschka, Jan

    2015-05-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (soluble chemical oxygen demand (SCOD)) to the liquid sludge phase compared with the effects of processes conducted separately. The total SCOD after alkalization at 9 pH (pH in the range of 8.96-9.10, SCOD = 600 mg O2/L) and after hydrodynamic (SCOD = 1450 mg O2/L) disintegration equaled to 2050 mg/L. However, due to the synergistic effect, the obtained SCOD value amounted to 2800 mg/L, which constitutes an additional chemical oxygen demand (COD) dissolution of about 35 %. Similarly, the synergistic effect after alkalization at 10 pH was also obtained. The applied hybrid pre-hydrolysis technology resulted in a disintegration degree of 28-35%. The experiments aimed at selection of the most appropriate procedures in terms of optimal sludge digestion results, including high organic matter degradation (removal) and high biogas production. The analyzed soft hybrid technology influenced the effectiveness of mesophilic/thermophilic anaerobic digestion in a positive way and ensured the sludge minimization. The adopted pre-treatment technology (alkalization + hydrodynamic cavitation) resulted in 22-27% higher biogas production and 13-28% higher biogas yield. After two stages of anaerobic digestion (mesophilic conditions (MAD) + thermophilic anaerobic digestion (TAD)), the highest total solids (TS) reduction amounted to 45.6% and was received for the following sample at 7 days MAD + 17 days TAD. About 7% higher TS reduction was noticed compared with the sample after 9

  11. Na(+)/K(+) pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches.

    PubMed

    Kueh, Daniel; Barnett, William H; Cymbalyuk, Gennady S; Calabrese, Ronald L

    2016-01-01

    The dynamics of different ionic currents shape the bursting activity of neurons and networks that control motor output. Despite being ubiquitous in all animal cells, the contribution of the Na(+)/K(+) pump current to such bursting activity has not been well studied. We used monensin, a Na(+)/H(+) antiporter, to examine the role of the pump on the bursting activity of oscillator heart interneurons in leeches. When we stimulated the pump with monensin, the period of these neurons decreased significantly, an effect that was prevented or reversed when the h-current was blocked by Cs(+). The decreased period could also occur if the pump was inhibited with strophanthidin or K(+)-free saline. Our monensin results were reproduced in model, which explains the pump's contributions to bursting activity based on Na(+) dynamics. Our results indicate that a dynamically oscillating pump current that interacts with the h-current can regulate the bursting activity of neurons and networks. PMID:27588351

  12. Pumping speed offered by activated carbon at liquid helium temperatures by sorbents adhered to indigenously developed hydroformed cryopanel

    NASA Astrophysics Data System (ADS)

    Gangradey, Ranjana; Shanti Mukherjee, Samiran; Panchal, Paresh; Nayak, Pratik; Agarwal, Jyoti; Rana, Chirag; Kasthurirengan, S.; Shankar Mishra, Jyoti; Patel, Haresh; Bairagi, Pawan; Lambade, Vrushabh; Sayani, Reena

    2015-12-01

    Towards the aim of developing a pump with large pumping speed of the order of 1 L/(s-cm2) or above for gases like hydrogen and helium through physical adsorption, development of activated carbon based sorbents like granules, spheres, flocked fibres, knitted and non -knitted cloth was carried out. To investigate the pumping speed offered, a test facility SSCF (Small Scale Cryopump Facility) which can take samples of hydroformed cryopanel (a technology developed in India) of size ∼500 mm × 100 mm was set up as per international standards comprising a dome mounted with gauges, calibrated leak valve, gas analyser, sorbent adhered to cryopanel etc. The cryopanel was shielded by chevron baffles. Pumping speed measurements were carried out for gases like hydrogen, helium and argon at a constant panel temperature in the pressure range of 1×10-7 to 1×10-4 mbar, and pumping speed was found to be in the range of 2000 L/s for a pressure range 1×10-6 to 1×10-4 mbar, and 4000 L/s for pressure range 1×10-7mbar and below for a pumping surface area of ∼1000 cm2 thus giving an average pumping speed of about 2 L/(s-cm2). Using the Monte Carlo codes SSCF was modelled and simulation studies performed. Parameters like sticking coefficient, capture coefficients affecting the pumping speed were studied. This paper describes the experimental setup of SSCF, experimental results and its correlation with Monte-Carlo simulation.

  13. Adsorption on Alkali Halides.

    NASA Astrophysics Data System (ADS)

    Urzua Duran, Gilberto Antonio

    1995-01-01

    Using a variety of interionic potentials, I have computed the configurations of adsorbed alkali halides monomers on the (001) surface of selected alkali halides crystals. In the majority of cases studied it is found that the monomer adsorbs perpendicular to the surface with the cation sitting nearly on top of the surface anion. In about ten percent of the cases though the monomer adsorbs tilted from the vertical. In these cases the ion that is closer to the surface can be the cation or the anion. The effect of polarization forces is found to be important. In order to discuss the effects of surface retaxation with adsorbates, I have evaluated the surface relaxation of the alkali halide crystals, using a shell model for the interionic forces. It is found that surface relaxation and rumpling are generally small, especially when the van der Waals forces are included. A theory of the effect of substrate vibrations on the binding of an adsorbed atom is developed. At T = 0 the binding energy is D_0-E, where D_0 is the surface well depth (classical binding energy) and E is the quantum correction. For several simple models, it is found that E is surprisingly model-independent. We compare D _0-E with the binding energies to a rigid substrate, D_0-E_{rs}, and to a vibrationally averaged substrate, D _0-E_{va}. We prove that E_{va}>=q E>=q E_ {rs} and that similar relations hold at finite temperature for the free energy of binding. In most cases E_{rs} is better than E_{va} as an approximation to E.

  14. Preparation of alkali metal dispersions

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Landel, R. F. (Inventor)

    1968-01-01

    A method is described for producing alkali metal dispersions of high purity. The dispersions are prepared by varying the equilibrium solubility of the alkali metal in a suitable organic solvent in the presence of aromatic hydrocarbons. The equilibrium variation is produced by temperature change. The size of the particles is controlled by controlling the rate of temperature change.

  15. V-ATPase Proton Pumping Activity Is Required for Adult Zebrafish Appendage Regeneration

    PubMed Central

    Monteiro, Joana; Aires, Rita; Becker, Jörg D.; Jacinto, António; Certal, Ana C.; Rodríguez-León, Joaquín

    2014-01-01

    The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration. PMID:24671205

  16. Effect of alcohol and kolanut interaction on brain sodium pump activity in Wistar albino rats.

    PubMed

    Obochi, G O; Abara, A E; Malu, S P; Obi-Abang, M; Edu, F E; Eteng, M U; Umoh, I B

    2007-01-01

    Effect of alcohol-kolanut interaction on sodium pump activity in wistar albino rats was studied. Thirty wistar albino rats were divided into six groups of five (5) rats per group and used for the study. The control group (1) received via oral route a placebo (4 ml of distilled water). Groups 2 to 6 were treated for a period of 21 days, with (10% v/v) of alcohol (group 2), 50mg/kg body weight of kolanut (group 3), 50 mg/kg body weight of caffeine (group 4), 4 ml of 10% v/v of alcohol and 50 mg/kg body weight kolanut (group 5), 4 ml of 10% v/v of alcohol and 50 mg/kg body weight of caffeine in 4.0 ml of the vehicle via gastric intubation respectively. A day after the final exposure, the brain of each rat was harvested and processed to examine several biochemical parameters, i.e., total ATpase, ouabain-insensitive ATpase, ouabain sensitive ATpase (Na(+)-K(+)ATPase), non-enzymatic breakdown of ATP and inorganic phosphate (Pi) released. The results showed that the essential enzyme of the brain responsible for neuronal function, Na(+)-K(+)ATPase, was inhibited by alcohol-kolanut co-administration relative to control, resulting in a decrease in Na(+)-K(+)ATPase activity, ATP production, ion transport and action potential, leading to loss of neuronal activities. PMID:18379627

  17. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  18. Optical Properties of Tm(3+) Ions in Alkali Germanate Glass

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Barnes, Norman P.; Reichle, Donald J.; Jiang, Shibin

    2006-01-01

    Tm-doped alkali germanate glass is investigated for use as a laser material. Spectroscopic investigations of bulk Tm-doped germanate glass are reported for the absorption, emission and luminescence decay. Tm:germanate shows promise as a fiber laser when pumped with 0.792 m diodes because of low phonon energies. Spectroscopic analysis indicates low nonradiative quenching and pulsed laser performance studies confirm this prediction by showing a quantum efficiency of 1.69.

  19. Low temperature diode pumped active mirror Yb3+:YAG disk laser amplifier studies.

    PubMed

    Marrazzo, Samuel; Gonçalvès-Novo, Thierry; Millet, François; Chanteloup, Jean-Christophe

    2016-06-13

    An experimental study of a static helium gas gap heat switch concept for laser amplification is presented. High single pass gains with large co-sintered ceramic Yb:YAG disks are recorded in the 80-200K temperature range on a diode pumped active mirror amplifier. PMID:27410286

  20. High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at 1096 nm wavelength

    NASA Astrophysics Data System (ADS)

    Su, Fufang; Zhang, Xingyu; Wang, Weitao; Cong, Zhenhua; Shi, Men; Yang, Xiuqin; Kong, Weijin; Ma, Lili; Wu, Wendi

    2013-09-01

    With Nd:YAG as the gain medium and KTP crystal as the Raman medium, the characteristics of an LD pumped intracavity actively Q-switched Nd:YAG/KTP Raman laser at 1096 nm wavelength were studied. The output characteristics of 1096 nm were investigated. At a pulse repetition rate of 30 kHz an average power up to 1.97 W was obtained with the incident pump power of 11.75 W, corresponding to a diode-to-Stokes conversion efficiency of 16.8%.

  1. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  2. Temporal evolution of pump beam self-focusing at the High-Frequency Active Auroral Research Program

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.; Pedersen, T.; Mishin, E.; Starks, M.; Gerken-Kendall, E.; Sentman, D.; Oyama, S.; Watkins, B.

    2007-08-01

    On 4 February 2005 the High-Frequency Active Auroral Research Program (HAARP) facility was operated at 2.85 MHz to produce artificial optical emissions in the ionosphere while passing through the second electron gyroharmonic. All-sky optical recordings were performed with 15 s integration, alternating between 557.7 and 630 nm. We report the first optical observations showing the temporal evolution of large-scale pump wave self-focusing in the magnetic zenith, observed in the 557.7 nm images. These clearly show that the maximum intensity was not reached after 15 s of pumping, which is unexpected since the emission delay time is <1 s, and that the optical signature had intensified in a much smaller region within the beam after 45 s of pumping. In addition, adjacent regions within the beam lost intensity. Radar measurements indicate a plasma depletion of ~1% near the HF reflection altitude. Ray tracing of the pump wave through the plasma depletion region, which forms a concave reflecting radio wave mirror, reproduces the optical spatial morphology. A radio wave flux density gain of up to ~30 dB may occur. In addition, the ray trace is consistent with the observed artificial optical emissions for critical plasma frequencies down to ~0.5 MHz below the pump frequency.

  3. Activities of the NASA/Marshall Space Flight Center pump stage technology team

    NASA Technical Reports Server (NTRS)

    Garcia, R.; Mcconnaughey, P.; Eastland, A.

    1992-01-01

    In order to advance rocket propulsion technology, the Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology has been formed at Marshall Space Flight Center (MSFC). The Consortium consists of three Teams: the turbine stage team, the pump stage team (PST), and the combustion devices team. The PST has formulated and is implementing a plan for pump technology development whose end product will be validated CFD codes suitable for application to pump components, test data suitable for validating CFD codes, and advanced pump components optimized using CFD codes. The PST's work during the fall of 1991 and the winter and spring of 1992 is discussed in this paper. This work is highlighted by CFD analyses of an advanced impeller design and collection of laser two-focus velocimeter data for the Space Shuttle Main Engine High Pressure Fuel Pump impeller.

  4. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  5. Influence of the proton pump inhibitor lansoprazole on distribution and activity of doxorubicin in solid tumors

    PubMed Central

    Yu, Man; Lee, Carol; Wang, Marina; Tannock, Ian F

    2015-01-01

    Cellular causes of resistance and limited drug distribution within solid tumors limit therapeutic efficacy of anticancer drugs. Acidic endosomes in cancer cells mediate autophagy, which facilitates survival of stressed cells, and may contribute to drug resistance. Basic drugs (e.g. doxorubicin) are sequestered in acidic endosomes, thereby diverting drugs from their target DNA and decreasing penetration to distal cells. Proton pump inhibitors (PPIs) may raise endosomal pH, with potential to improve drug efficacy and distribution in solid tumors. We determined the effects of the PPI lansoprazole to modify the activity of doxorubicin. To gain insight into its mechanisms, we studied the effects of lansoprazole on endosomal pH, and on the spatial distribution of doxorubicin, and of biomarkers reflecting its activity, using in vitro and murine models. Lansoprazole showed concentration-dependent effects to raise endosomal pH and to inhibit endosomal sequestration of doxorubicin in cultured tumor cells. Lansoprazole was not toxic to cancer cells but potentiated the cytotoxicity of doxorubicin and enhanced its penetration through multilayered cell cultures. In solid tumors, lansoprazole improved the distribution of doxorubicin but also increased expression of biomarkers of drug activity throughout the tumor. Combined treatment with lansoprazole and doxorubicin was more effective in delaying tumor growth as compared to either agent alone. Together, lansoprazole enhances the therapeutic effects of doxorubicin both by improving its distribution and increasing its activity in solid tumors. Use of PPIs to improve drug distribution and to inhibit autophagy represents a promising strategy to enhance the effectiveness of anticancer drugs in solid tumors. PMID:26212113

  6. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities. PMID:26901167

  7. Fiber-laser pumped actively Q-switched Er:LuYAG laser at 1648 nm

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Wang, Y.; Zhao, T.; Zhu, H. Y.; Shen, D. Y.

    2016-02-01

    We demonstrated an acousto-optic Q-switched 1648 nm Er:LuYAG laser resonantly pumped by a cladding-pumped Er,Yb fiber laser at 1532 nm. Stable Q-switching operation was obtained with the pulse repetition rate (PRR) varying from 200 Hz to 10 kHz. At PRR of 200 Hz, the laser yielded Q-switched pulses with 3.3 mJ pulse energy and 65 ns pulse duration, corresponding to a peak power of 50.7 kW for 10.4 W of incident pump power.

  8. Study of wear and galling in aircraft fuel pump drive shafts and gears using the surface layer activation technique

    NASA Astrophysics Data System (ADS)

    Gallmann, A.; Natter, B.; Molinari, M. A.

    1988-10-01

    The surface layer activation technique (SLA) has been applied to study galling and wear in moving parts of Boeing 747 engines. Radioactive 56Co was formed by the reaction 56Fe(p, n) 56Co in fuel pump drive shafts and gears, and their residual activities in these activated parts were measured in situ during routine inspections over more than one year. The study of the wear was done on shafts made of a new alloy and on gears having a new tooth geometry. Wear determined by SLA was corroborated by a profile measurement made when one of the pumps was disassembled. The study of the galling (with release of metallic fragments) of a drive shaft consisted in checking the condition of the critical zone of the splines with the SLA technique. The main originality of the present work is that for the first time such measurements were performed on engines in revenue service.

  9. Alkali-slag cements for the immobilization of radioactive wastes

    SciTech Connect

    Shi, C.; Day, R.L.

    1996-12-31

    Alkali-slag cements consist of glassy slag and an alkaline activator and can show both higher early and later strengths than Type III Portland cement, if a proper alkaline activator is used. An examination of microstructure of hardened alkali-slag cement pastes with the help of XRD and SEM with EDAX shows that the main hydration product is C-S-H (B) with low C/S ratio and no crystalline substances exist such as Ca(OH){sub 2}, Al (OH){sub 3} and sulphoaluminates. Mercury intrusion tests indicate that hardened alkali-slag cement pastes have a lower porosity than ordinary Portland cement, and contain mainly gel pores. The fine pore structure of hardened alkali-slag cement pastes will restrict the ingress of deleterious substances and the leaching of harmful species such as radionuclides. The leachability of Cs{sup + } from hardened alkali-slag cement pastes is only half of that from hardened Portland cement. From all these aspects, it is concluded that alkali-slag cements are a better solidification matrix than Portland cement for radioactive wastes.

  10. Under Pressure: Activities with a Vacuum Pump (and Some Marshmallows) Help Students Learn about Pressure.

    ERIC Educational Resources Information Center

    Galus, Pamela

    2002-01-01

    Introduces a science demonstration that illustrates the effects of pressure and gravity on humans using a marshmallow man and a vacuum pump. Demonstrates the same concept with shaving cream, balloons, and boiling water without raising temperature. (YDS)

  11. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  12. A Three Level Analytic Model for Alkali Vapor Lasers

    SciTech Connect

    Hager, Gordon D.; Perram, Glen P.

    2010-10-08

    A three level analytic model for optically pumped alkali metal vapor lasers is developed considering the steady-state rate equations for the longitudinally averaged number densities of the ground {sup 2}S{sub 1/2} and first excited {sup 2}P{sub 1/2} and {sup 2}P{sub 3/2} states. The threshold pump intensity includes both the requirements to fully bleach the pump transition and exceed optical losses, typically about 200 W/cm{sup 2}. Slope efficiency depends critically on the fraction of incident photons absorbed and the overlap of pump and resonator modes, approaching the quantum efficiency of 0.95-0.98, depending on alkali atom. For efficient operation, the collisional relaxation between the two upper levels should be fast relative to stimulated emission. By assuming a statistical distribution between the upper levels, the limiting analytic solution for the quasi-two level system is achieved. Application of the model and comparisons to recent laser demonstrations is presented.

  13. Phosphorylation of rat kidney Na-K pump at Ser938 is required for rapid angiotensin II-dependent stimulation of activity and trafficking in proximal tubule cells.

    PubMed

    Massey, Katherine J; Li, Quanwen; Rossi, Noreen F; Keezer, Susan M; Mattingly, Raymond R; Yingst, Douglas R

    2016-02-01

    How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser(938) were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K · mg protein(-1) · min(-1) and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser(938) is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells. PMID:26582472

  14. Diode pumped Nd:YAG laser with active Q-switching and mode locking for hole drilling

    NASA Astrophysics Data System (ADS)

    Solokhin, S. A.; Sirotkin, A. A.; Garnov, S. V.

    2011-06-01

    A diode-pumped Nd:YAG laser operating with active-passive Q-switch mode locking, has been developed. The acousto-optic repetition train was one kilohertz with generated pulse train widths 65 ns, single pulse widths 200 ps and an average power of 6.5 W. Improvement of efficiency of small diameter deep holes laser drilling in different materials was studied.

  15. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity

    PubMed Central

    Omotayo, T.I.; Akinyemi, G.S.; Omololu, P.A.; Ajayi, B.O.; Akindahunsi, A.A.; Rocha, J.B.T.; Kade, I.J.

    2014-01-01

    The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA) inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump. PMID:25618580

  16. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity.

    PubMed

    Omotayo, T I; Akinyemi, G S; Omololu, P A; Ajayi, B O; Akindahunsi, A A; Rocha, J B T; Kade, I J

    2015-01-01

    The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe(2+)-mediated in vitro oxidative stress model. The results show that Fe(2+) inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe(2+) inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA) inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe(2+) may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe(2+) and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump. PMID:25618580

  17. Influence of the pump-to-laser beam overlap on the performance of optically pumped cesium vapor laser.

    PubMed

    Cohen, Tom; Lebiush, Eyal; Auslender, Ilya; Barmashenko, Boris D; Rosenwaks, Salman

    2016-06-27

    Experimental and theoretical study of the influence of the pump-to-laser beam overlap, a crucial parameter for optimization of optically pumped alkali atom lasers, is reported for Ti:Sapphire pumped Cs laser. Maximum laser power > 370 mW with an optical-to-optical efficiency of 43% and slope efficiency ~55% was obtained. The dependence of the lasing power on the pump power was found for different pump beam radii at constant laser beam radius. Non monotonic dependence of the laser power (optimized over the temperature of the Cs cell) on the pump beam radius was observed with a maximum achieved at the ratio ~0.7 between the pump and laser beam radii. The optimal temperature decreased with increasing pump beam radius. A simple optical model of the laser, where Gaussian spatial shapes of the pump and laser intensities in any cross section of the beams were assumed, was compared to the experiments. Good agreement was obtained between the measured and calculated dependence of the laser power on the pump power at different pump beam radii and also of the laser power, threshold pump power and optimal temperature on the pump beam radius. The model does not use empirical parameters such as mode overlap efficiency and can be applied to different Ti:Sapphire and diode pumped alkali lasers with arbitrary spatial distributions of the pump and laser beam widths. PMID:27410591

  18. Active radiation hardening of Tm-doped silica fiber based on pump bleaching.

    PubMed

    Xing, Ying-bin; Zhao, Nan; Liao, Lei; Wang, Yi-bo; Li, Hai-qing; Peng, Jing-gang; Yang, Lv-yun; Dai, Neng-li; Li, Jin-yan

    2015-09-21

    Tm-doped fiber laser or amplifier can be applied in varied adverse environments. In this work, we demonstrate the pump bleaching of Tm-doped silica fiber with 793nm pump source under gamma-ray irradiation in the range 50Gy-675Gy. The recovery time, the fiber slope efficiency and the fiber cladding absorption spectra after irradiation and bleaching have been measured. It is found that the recovery time and radiation induce absorption are positively associated with doses, however, the fiber slope efficiency of irradiated TDF and bleached TDF are both negatively correlated with doses. Based on the simulation of the fiber core temperature, the probable mechanism of pump bleaching is also discussed. PMID:26406629

  19. Intracavity optical parametric oscillator pumped by an actively Q-switched Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Wang, Q. P.; Zhang, X. Y.; Liu, Z. J.; Wang, H.; Chang, J.; Fan, S. Z.; Ma, F. S.; Jin, G. F.

    2008-03-01

    A non-critically phase-matched KTiOPO4 optical parametric oscillator (OPO) intracavity pumped by a laser diode end-pumped acousto-optically Q-switchedNd:YAG laser is experimentally demonstrated. The highest average power is obtained at the pulse repetition rate (PRR) of around 15 kHz, which is different from the widely reported Nd:YVO4 laser pumped OPO in which the highest average power is obtained at a very high PRR, e.g. 80 kHz. With an incident laser diode power of 6.93 W and a pulse repetition rate of 15 kHz, an average signal power of 0.72 W is obtained with a peak power of 7.7 kW and an optical-to-optical conversion efficiency of 10.4%.

  20. Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps.

    PubMed

    Tavakol, Behrouz; Bozlar, Michael; Punckt, Christian; Froehlicher, Guillaume; Stone, Howard A; Aksay, Ilhan A; Holmes, Douglas P

    2014-07-21

    Elastic instabilities, when properly implemented within soft, mechanical structures, can generate advanced functionality. In this work, we use the voltage-induced buckling of thin, flexible plates to pump fluids within a microfluidic channel. The soft electrodes that enable electrical actuation are compatible with fluids, and undergo large, reversible deformations. We quantified the onset of voltage-induced buckling, and measured the flow rate within the microchannel. This embeddable, flexible microfluidic pump will aid in the generation of new stand-alone microfluidic devices that require a tunable flow rate. PMID:24905688

  1. A simple one-step synthesis of ZnS nanoparticles via salt-alkali-composited-mediated method and investigation on their comparative photocatalytic activity

    SciTech Connect

    Xiang, Donghu; Zhu, Yabo; He, Zhanjun; Liu, Zhangsheng; Luo, Jin

    2013-02-15

    Graphical abstract: The TEM image shows that the as-synthesized ZnS particle size was estimated to be about 40 nm and this newly synthesized ZnS nanoparticles can be as a promising photocatalytic degradation material for the organic pollutant removal. Display Omitted Highlights: ► ZnS nanoparticles with cubic phase have been successfully synthesized via salt-alkali-composited-mediated method (SACM) for the first time and this method has not been found so far. ► Its band gap (E{sub g}) is a little bigger than commercial ZnS particle mainly due to quantum size effect. ► The as-synthesized ZnS nanoparticles show much more efficient photocatalytic degradation on methyl orange than commercial ZnS powder. -- Abstract: ZnS nanoparticles have been successfully synthesized via salt-alkali-composited-mediated method (SACM) for the first time, using a mixture of LiNO{sub 3} and LiOH (LiNO{sub 3}/LiOH = 60.7:39.3) as a reaction solvent, sodium sulfide and zinc nitrate as reactants at temperature of 210 °C for 24 h in the absence of organic dispersant or capping agents. X-ray diffraction, environment scanning electron microscopy (ESEM) and Transmission electron microscopy (TEM) indicated that the as-synthesized products were well crystallized and belonged to nano-scale. Their UV–vis absorption spectrum demonstrated a band gap of 3.6406 eV corresponding to the absorption edge of 340 nm. The experimental result of photocatalytic degradation on methyl orange by the nano-ZnS showed much better photocatalysis than that by the commercial ZnS powder under the irradiation of ultraviolet light and visible light, respectively.

  2. Negative electrodes for non-aqueous secondary batteries composed on conjugated polymer and alkali metal alloying or inserting material

    SciTech Connect

    Shacklette, L.W.; Jow, T.R.; Toth, E.; Maxfield, M.

    1987-05-26

    A battery is described comprising: an anode comprising as the anode active materials one or more conjugated backbone polymers and one or more electroactive materials selected from the group consisting of metals which alloy with alkali metals and alkali metal cation inserting materials; an electrolyte comprising an organic solvent and an alkali-metal salt, and a cathode. The alkali-metal cations from the electrolyte are inserted into the anode as a metal alloy or as an inserted ion in the alkali metal cation inserting material during the charging of the battery.

  3. Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium against Gram-Positive Pathogenic Bacteria

    PubMed Central

    Fiamegos, Yiannis C.; Kastritis, Panagiotis L.; Exarchou, Vassiliki; Han, Haley; Bonvin, Alexandre M. J. J.; Vervoort, Jacques; Lewis, Kim; Hamblin, Michael R.; Tegos, George P.

    2011-01-01

    Background Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria. Methodology/Principal Findings In this study we report the identification and characterization of 4′,5′-O-dicaffeoylquinic acid (4′,5′-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of Gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3′,5′-ODCQA, 4′,5′-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4′,5′-ODCQA with pump inhibitory activity whereas 3′,5′-ODCQA was ineffective. These intitial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology. Conclusions/Significance These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the

  4. Excitation- and β2-agonist-induced activation of the Na+−K+ pump in rat soleus muscle

    PubMed Central

    Buchanan, Rasmus; Nielsen, Ole Bækgaard; Clausen, Torben

    2002-01-01

    In rat skeletal muscle, Na+–K+ pump activity increases dramatically in response to excitation (up to 20-fold) or β2-agonists (2-fold), leading to a reduction in intracellular Na+. This study examines the time course of these effects and whether they are due to an increased affinity of the Na+–K+ pump for intracellular Na+. Isolated rat soleus muscles were incubated at 30 oC in Krebs-Ringer bicarbonate buffer. The effects of direct electrical stimulation on 86Rb+ uptake rate and intracellular Na+ concentration ([Na+]i) were characterized in the subsequent recovery phase. [Na+]i was varied using monensin or buffers with low Na+. In the [Na+]i range 21–69 mm, both the β2-agonist salbutamol and electrical stimulation produced a left shift of the curves relating 86Rb+ uptake rate to [Na+]i. In the first 10 s after 1 or 10 s pulse trains of 60 Hz, [Na+]i showed no increase, but 86Rb+ uptake rate increased by 22 and 86 %, respectively. Muscles excited in Na+-free Li+-substituted buffer and subsequently allowed to rest in standard buffer also showed a significant increase in 86Rb+ uptake rate and decrease in [Na+]i. Na+ loading induced by monensin or electroporation also stimulated 86Rb+ uptake rate but, contrary to excitation, increased [Na+]i. The increase in the rate of 86Rb+ uptake elicited by electrical stimulation was abolished by ouabain, but not by bumetanide. The results indicate that excitation (like salbutamol) induces a rapid increase in the affinity of the Na+–K+ pump for intracellular Na+. This leads to a Na+–K+ pump activation that does not require Na+ influx, but possibly the generation of action potentials. This improves restoration of the Na+–K+ homeostasis during work and optimizes excitability and contractile performance of the working muscle. PMID:12433963

  5. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  6. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping

    SciTech Connect

    Fang, Jiancheng; Wang, Tao Li, Yang; Zhang, Hong; Zou, Sheng

    2014-12-15

    The hybrid optical pumping atomic magnetometers have not realized its theoretical sensitivity, the optimization is critical for optimal performance. The optimizations proposed in this paper are suitable for hybrid optical pumping atomic magnetometer, which contains two alkali species. To optimize the parameters, the dynamic equations of spin evolution with two alkali species were solved, whose steady-state solution is used to optimize the parameters. The demand of the power of the pump beam is large for hybrid optical pumping. Moreover, the sensitivity of the hybrid optical pumping magnetometer increases with the increase of the power density of the pump beam. The density ratio between the two alkali species is especially important for hybrid optical pumping magnetometer. A simple expression for optimizing the density ratio is proposed in this paper, which can help to determine the mole faction of the alkali atoms in fabricating the hybrid cell before the cell is sealed. The spin-exchange rate between the two alkali species is proportional to the saturated density of the alkali vapor, which is highly dependent on the temperature of the cell. Consequently, the sensitivity of the hybrid optical pumping magnetometer is dependent on the temperature of the cell. We proposed the thermal optimization of the hybrid cell for a hybrid optical pumping magnetometer, which can improve the sensitivity especially when the power of the pump beam is low. With these optimizations, a sensitivity of approximately 5 fT/Hz{sup 1/2} is achieved with gradiometer arrangement.

  7. Solid state cell with alkali metal halo-alkali thiocyanate electrolyte

    SciTech Connect

    Rao, B. M.; Silbernagel, B. G.

    1980-02-26

    A novel electrochemical cell is disclosed utilizing: (A) an anode which contains an alkali metal as an anode-active material; (B) a cathode and (C) an electrolyte comprising an electrolytically effective amount of one or more compounds having the formula: (Ax)ma'scn wherein a is an alkali metal, X is a halogen, a' is an alkali metal and 0.1 < or = N < or = 10. Preferred systems include lithium-containing anodes, lithium-containing electrolytes and cathodes which contain cathode-active material selected from the group consisting of cathode-active sulfurs, halogens, halides, chromates, phosphates, oxides and chalcogenides, especially those chalcogenides of the empirical formula mzm wherein M is one or more metals selected from the group consisting of iron, titanium, zirconium, hafnium, niobium, tantalum and vanadium, Z is one or more chalcogens selected from the group consisting of oxygen, sulfur, selenium and tellurium, and M is a numerical value between about 1.8 and about 3.2.

  8. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  9. Overview of ground coupled heat pump research and technology transfer activities

    NASA Astrophysics Data System (ADS)

    Baxter, V. D.; Mei, V. C.

    Highlights of DOE-sponsored ground coupled heat pump (GCHP) research at Oak Ridge National Laboratory (ORNL) are presented. ORNL, in cooperation with Niagara Mohawk Power Company, Climate Master, Inc., and Brookhaven National Laboratory developed and demonstrated an advanced GCHP design concept with shorter ground coils that can reduce installed costs for northern climates. In these areas it can also enhance the competitiveness of GCHP systems versus air-source heat pumps by lowering their payback from 6 to 7 years to 3 to 5 years. Ground coil heat exchanger models (based primarily on first principles) have been developed and used by others to generate less conservative ground coil sizing methods. An aggressive technology transfer initiative was undertaken to publicize results of this research and make it available to the industry. Included in this effort were an international workshop, trade press releases and articles, and participation in a live teleconference on GCHP technology.

  10. Industrial Pumps

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A flow inducer is a device that increases the pump intake capacity of a Worthington Centrifugal pump. It lifts the suction pressure sufficiently for the rotating main impeller of the centrifugal pump to operate efficiently at higher fluid intake levels. The concept derives from 1960's NASA technology which was advanced by Worthington Pump Division. The pumps are used to recirculate wood molasses, a highly viscous substance.

  11. [Using a modified remote sensing imagery for interpreting changes in cultivated saline-alkali land].

    PubMed

    Gao, Hui; Liu, Hui-tao; Liu, Hong-juan; Liu, Jin-tong

    2015-04-01

    This paper developed a new interpretation symbol system for grading and classifying saline-alkali land, using Huanghua, a cosatal city in Hebei Province as a case. The system was developed by inverting remote sensing images from 1992 to 2011 based on site investigation, plant cover characteristics and features of remote sensing images. Combining this interpretation symbol system with supervising classification method, the information on arable land was obtained for the coastal saline-alkali ecosystem of Huanghua City, and the saline-alkali land area, changes in intensity of salinity-alkalinity and spatial distribution from 1992 to 2011 were analyzed. The results showed that salinization of arable land in Huanghua City alleviated from 1992 to 2011. The severely and moderately saline-alkali land area decreased in 2011 compared with 1992, while the non/slightly saline land area increased. The moderately saline-alkali land in southeast transformed to non/slightly saline-alkaline, while the severely saline-alkali land in west of the city far from the coastal zone became moderately saline-alkaline. The center of gravity (CG) of severely and non/slightly saline-alkali land moved closer the coastline, while that of the moderately saline-alkali land moved from southwest coastal line to northwest. Factors influencing changes in arable land within the saline-alkali ecosystem of Huanghua City were climate, hydrology and human activities. PMID:26259441

  12. Ethidium Bromide MIC Screening for Enhanced Efflux Pump Gene Expression or Efflux Activity in Staphylococcus aureus▿

    PubMed Central

    Patel, Diixa; Kosmidis, Christos; Seo, Susan M.; Kaatz, Glenn W.

    2010-01-01

    Multidrug resistance efflux pumps contribute to antimicrobial and biocide resistance in Staphylococcus aureus. The detection of strains capable of efflux is time-consuming and labor-intensive using currently available techniques. A simple and inexpensive method to identify such strains is needed. Ethidium bromide is a substrate for all but one of the characterized S. aureus multidrug-resistant (MDR) efflux pumps (NorC), leading us to examine the utility of simple broth microtiter MIC determinations using this compound in identifying efflux-proficient strains. Quantitative reverse transcription-PCR identified the increased expression of one or more MDR efflux pump genes in 151/309 clinical strains (49%). Ethidium bromide MIC testing was insensitive (48%) but specific (92%) in identifying strains with gene overexpression, but it was highly sensitive (95%) and specific (99%) in identifying strains capable of ethidium efflux. The increased expression of norA with or without other genes was most commonly associated with efflux, and in the majority of cases that efflux was inhibited by reserpine. Ethidium bromide MIC testing is a simple and straightforward method to identify effluxing strains and can provide accurate predictions of efflux prevalence in large strain sets in a short period of time. PMID:20855743

  13. Structure-Activity Relationships of a Novel Pyranopyridine Series of Gram-negative Bacterial Efflux Pump Inhibitors

    PubMed Central

    Nguyen, Son T.; Kwasny, Steven M.; Ding, Xiaoyuan; Cardinale, Steven C.; McCarthy, Courtney T.; Kim, Hong-Suk; Nikaido, Hiroshi; Peet, Norton P.; Williams, John D.; Bowlin, Terry L.; Opperman, Timothy J.

    2015-01-01

    Recently we described a novel pyranopyridine inhibitor (MBX2319) of RND-type efflux pumps of the Enterobacteriaceae. MBX2319 (3,3-dimethyl-5-cyano-8-morpholino-6-(phenethylthio)-3,4-dihydro-1H-pyrano[3,4-c]pyridine) is structurally distinct from other known Gram-negative efflux pump inhibitors (EPIs), such as 1-(1-naphthylmethyl)-piperazine (NMP), phenylalanylarginine-β-naphthylamide (PAβN), D13-9001, and the pyridopyrimidine derivatives. Here, we report the synthesis and biological evaluation of 60 new analogs of MBX2319 that were designed to probe the structure activity relationships (SARs) of the pyranopyridine scaffold. The results of these studies produced a molecular activity map of the scaffold, which identifies regions that are critical to efflux inhibitory activities and those that can be modified to improve potency, metabolic stability and solubility. Several compounds, such as 22d–f, 22i and 22k, are significantly more effective than MBX2319 at potentiating the antibacterial activity of levofloxacin and piperacillin against Escherichia coli. PMID:25818767

  14. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  15. Synchronously pumped nuclear magnetic oscillator

    NASA Astrophysics Data System (ADS)

    Korver, Anna; Thrasher, Daniel; Bulatowicz, Michael; Walker, Thad

    2015-05-01

    We present progress towards a synchronously pumped nuclear magnetic oscillator. Alkali frequency shifts and quadrupole shifts are the dominant systematic effects in dual Xe isotope co-magnetometers. By synchronously pumping the Xe nuclei using spin-exchange with an oscillating Rb polarization, the Rb and Xe spins precess transverse to the longitudinal bias field. This configuration is predicted to be insensitive to first order quadrupole interactions and alkali spin-exchange frequency shifts. A key feature that allows co-precession of the Rb and Xe spins, despite a ~ 1000 fold ratio of their gyromagnetic ratios, is to apply the bias field in the form of a sequence of Rb 2 π pulses whose repetition frequency is equal to the Rb Larmor frequency. The 2 π pulses result in an effective Rb magnetic moment of zero, while the Xe precession depends only on the time average of the pulsed field amplitude. Polarization modulation of the pumping light at the Xe NMR frequency allows co-precession of the Rb and Xe spins. We will present our preliminary experimental studies of this new approach to NMR of spin-exchange pumped Xe. Support by the NSF and Northrop Grumman Co.

  16. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade

    PubMed Central

    Karimi Galougahi, Keyvan; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A.; Hamilton, Elisha J.; Figtree, Gemma A.

    2015-01-01

    Dysregulated nitric oxide (NO)- and superoxide (O2·−)-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na+-K+ pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na+-K+ pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47phox and membranous p22phox NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47phox to p22phox with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na+-K+ pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22phox with p47phox, abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na+-K+ pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na+-K+ pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes. PMID:26063704

  17. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.

    PubMed

    Karimi Galougahi, Keyvan; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A; Hamilton, Elisha J; Figtree, Gemma A; Rasmussen, Helge H

    2015-09-01

    Dysregulated nitric oxide (NO)- and superoxide (O2 (·-))-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na(+)-K(+) pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na(+)-K(+) pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47(phox) to p22(phox) with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na(+)-K(+) pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22(phox) with p47(phox), abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na(+)-K(+) pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na(+)-K(+) pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes. PMID:26063704

  18. Interleukin-1β activates an Src family kinase to stimulate the plasma membrane Ca2+ pump in hippocampal neurons.

    PubMed

    Ghosh, Biswarup; Green, Matthew V; Krogh, Kelly A; Thayer, Stanley A

    2016-04-01

    The plasma membrane Ca(2+) ATPase (PMCA) plays a major role in clearing Ca(2+) from the neuronal cytoplasm. The cytoplasmic Ca(2+) clearance rate affects neuronal excitability, synaptic plasticity, and neurotransmission. Here, we examined the modulation of PMCA activity by PTKs in hippocampal neurons. PMCA-mediated Ca(2+) clearance slowed in the presence of pyrazolopyrimidine 2, an inhibitor of Src family kinases (SFKs), and accelerated in the presence of C2-ceramide, an activator of PTKs. Ca(2+) clearance kinetics were attenuated in cells expressing a dominant-negative Src mutant, suggesting that the pump is tonically stimulated by a PTK. Tonic stimulation was reduced in hippocampal neurons expressing short hairpin (sh)RNA directed to mRNA for Yes. shRNA-mediated knockdown of PMCA isoform 1 (PMCA1) removed tonic stimulation of Ca(2+) clearance, indicating that the kinase stimulates PMCA1. IL-1β accelerated Ca(2+) clearance in a manner blocked by an IL-1β receptor antagonist or by an inhibitor of neutral sphingomyelinase, the enzyme that produces ceramide. Thus IL-1β activates an SFK to stimulate the plasma membrane Ca(2+) pump, decreasing the duration of Ca(2+) transients in hippocampal neurons. PMID:26843596

  19. Recycle Rate in a Pulsed, Optically Pumped Rubidium Laser

    SciTech Connect

    Miller, Wooddy S.; Sulham, Clifford V.; Holtgrave, Jeremy C.; Perram, Glen P.

    2010-10-08

    A pulsed, optically pumped rubidium laser operating in analogy to the diode pumped alkali laser (DPAL) system at pump intensities as high as 750 kW/cm{sup 2} has been demonstrated with output energies of up to 13 {mu}J/pulse. Output energy is dramatically limited by spin-orbit relaxation rates under these high intensity pump conditions. More than 250 photons are available for every rubidium atom in the pumped volume, requiring a high number of cycles per atom during the 2-8 ns duration of the pump pulse. At 550 Torr of ethane, the spin-orbit relaxation rate is too slow to effectively utilize all the incident pump photons. Indeed, a linear dependence of output energy on pump pulse duration for fixed pump energy is demonstrated.

  20. International Space Station Active Thermal Control Sub-System On-Orbit Pump Performance and Reliability Using Liquid Ammonia as a Coolant

    NASA Technical Reports Server (NTRS)

    Morton, Richard D.; Jurick, Matthew; Roman, Ruben; Adamson, Gary; Bui, Chinh T.; Laliberte, Yvon J.

    2011-01-01

    The International Space Station (ISS) contains two Active Thermal Control Sub-systems (ATCS) that function by using a liquid ammonia cooling system collecting waste heat and rejecting it using radiators. These subsystems consist of a number of heat exchangers, cold plates, radiators, the Pump and Flow Control Subassembly (PFCS), and the Pump Module (PM), all of which are Orbital Replaceable Units (ORU's). The PFCS provides the motive force to circulate the ammonia coolant in the Photovoltaic Thermal Control Subsystem (PVTCS) and has been in operation since December, 2000. The Pump Module (PM) circulates liquid ammonia coolant within the External Active Thermal Control Subsystem (EATCS) cooling the ISS internal coolant (water) loops collecting waste heat and rejecting it through the ISS radiators. These PM loops have been in operation since December, 2006. This paper will discuss the original reliability analysis approach of the PFCS and Pump Module, comparing them against the current operational performance data for the ISS External Thermal Control Loops.

  1. Babcock-Leighton solar dynamo: the role of downward pumping and the equatorward propagation of activity

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Cameron, Robert

    2016-05-01

    We investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer. This allows the negative radial shear in the near-surface layer to effectively act on the radial field to produce a toroidal field. Consequently, we observe a clear equatorward migration of the toroidal field at low latitudes even when there is no meridional flow in the deep CZ. We show a case where the period of a dynamo wave solution is approximately 11 years. Flux transport models are also shown with periods close to 11 years. Both the dynamo wave and flux transport dynamo are thus able to reproduce some of the observed features of solar cycle. The main difference between the two types of dynamo is the value of $\\alpha$ required to produce dynamo action. In both types of dynamo, the surface meridional flow helps to advect and build the polar field in high latitudes, while in flux transport dynamo the equatorward flow near the bottom of CZ advects toroidal field to cause the equatorward migration in butterfly wings and this advection makes the dynamo easier by transporting strong toroidal field to low latitudes where $\\alpha$ effect works. Another conclusion of our study is that the magnetic pumping suppresses the diffusion of fields through the photospheric surface which helps to achieve the 11-year dynamo cycle at a moderately larger value of magnetic diffusivity than has previously been used.

  2. The Influence of Efflux Pump Inhibitors on the Activity of Non-Antibiotic NSAIDS against Gram-Negative Rods

    PubMed Central

    Laudy, Agnieszka E.; Mrowka, Agnieszka; Krajewska, Joanna; Tyski, Stefan

    2016-01-01

    Background Most patients with bacterial infections suffer from fever and various pains that require complex treatments with antibiotics, antipyretics, and analgaesics. The most common drugs used to relieve these symptoms are non-steroidal anti-inflammatory drugs (NSAIDs), which are not typically considered antibiotics. Here, we investigate the effects of NSAIDs on bacterial susceptibility to antibiotics and the modulation of bacterial efflux pumps. Methodology The activity of 12 NSAID active substances, paracetamol (acetaminophen), and eight relevant medicinal products was analyzed with or without pump inhibitors against 89 strains of Gram-negative rods by determining the MICs. Furthermore, the effects of NSAIDs on the susceptibility of clinical strains to antimicrobial agents with or without PAβN (Phe-Arg-β-naphtylamide) were measured. Results The MICs of diclofenac, mefenamic acid, ibuprofen, and naproxen, in the presence of PAβN, were significantly (≥4-fold) reduced, decreasing to 25–1600 mg/L, against the majority of the studied strains. In the case of acetylsalicylic acid only for 5 and 7 out of 12 strains of P. mirabilis and E. coli, respectively, a 4-fold increase in susceptibility in the presence of PAβN was observed. The presence of Aspirin resulted in a 4-fold increase in the MIC of ofloxacin against only two strains of E. coli among 48 tested clinical strains, which included species such as E. coli, K. pneumoniae, P. aeruginosa, and S. maltophilia. Besides, the medicinal products containing the following NSAIDs, diclofenac, mefenamic acid, ibuprofen, and naproxen, did not cause the decrease of clinical strains’ susceptibility to antibiotics. Conclusions The effects of PAβN on the susceptibility of bacteria to NSAIDs indicate that some NSAIDs are substrates for efflux pumps in Gram-negative rods. Morever, Aspirin probably induced efflux-mediated resistance to fluoroquinolones in a few E. coli strains. PMID:26771525

  3. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1995-04-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  4. Calmodulin effects on steroids-regulated plasma membrane calcium pump activity.

    PubMed

    Zylinska, Ludmila; Kowalska, Iwona; Ferenc, Bozena

    2009-03-01

    It is now generally accepted that non-genomic steroids action precedes their genomic effects by modulation of intracellular signaling pathways within seconds after application. Ca(2+) is a very potent and ubiquitous ion in all cells, and its concentration is precisely regulated. The most sensitive on Ca(2+) increase is ATP-consuming plasma membrane calcium pump (PMCA). The enzyme is coded by four genes, but isoforms diversity was detected in excitable and non-excitable cells. It is the only ion pump stimulated directly by calmodulin (CaM). We examined the role of PMCA isoforms composition and CaM effect in regulation of Ca(2+) uptake by estradiol, dehydroepiandrosterone (DHEA), pregnenolone (PREG), and their sulfates in a concentration range from 10(-9) to 10(-6) M, using the membranes from rat cortical synaptosomes, differentiated PC12 cells, and human erythrocytes. In excitable membranes with full set of PMCAs steroids apparently increased Ca(2+) uptake, although to a variable extent. In most of the cases, CaM decreased transport by 30-40% below controls. Erythrocyte PMCA was regulated by the steroids somewhat differently than excitable cells. CaM strongly increased the potency for Ca(2+) extrusion in membranes incubated with 17-beta-estradiol and PREG. Our results indicated that steroids may sufficiently control cytoplasmic calcium concentration within physiological and therapeutic range. The response depended on the cell type, PMCA isoforms expression profile, CaM presence, and the steroids structure. PMID:19226536

  5. ACTIVE MEDIA: Specific features of thermal regimes in rectangular laser slabs under steady-state pumping

    NASA Astrophysics Data System (ADS)

    Alpat'ev, A. N.; Smirnov, V. A.; Shcherbakov, Ivan A.

    2010-01-01

    We continue to investigate the phenomena related to smoothing of temperature profiles in rectangular laser slabs and to an increase in the thresholds of their breakdown under optical pumping with variations in the slab optical density [the effect of smoothing of thermooptical inhomogeneities (STOI effect)]. It is found that the STOI effect is observed not only with increasing but also with decreasing optical density if this occurs due to a decrease in the sample thickness. The dependence of the maximum temperature difference inside the slab on its optical density at the instant of its thermal breakdown is calculated. It is shown that the variations in the optical density caused by variations in both the absorption coefficient and geometric dimensions of the slab differently affect the order of occurrence of two undesirable events — destruction of the slab or boiling of cooling water — with increasing pump power. The calculated relationships reveal two optical density regions corresponding to different orders of occurrence of these events. The maximum allowable temperatures in each region are determined.

  6. TURBULENT PUMPING OF MAGNETIC FLUX REDUCES SOLAR CYCLE MEMORY AND THUS IMPACTS PREDICTABILITY OF THE SUN'S ACTIVITY

    SciTech Connect

    Karak, Bidya Binay; Nandy, Dibyendu E-mail: dnandi@iiserkol.ac.in

    2012-12-10

    Prediction of the Sun's magnetic activity is important because of its effect on space environment and climate. However, recent efforts to predict the amplitude of the solar cycle have resulted in diverging forecasts with no consensus. Yeates et al. have shown that the dynamical memory of the solar dynamo mechanism governs predictability, and this memory is different for advection- and diffusion-dominated solar convection zones. By utilizing stochastically forced, kinematic dynamo simulations, we demonstrate that the inclusion of downward turbulent pumping of magnetic flux reduces the memory of both advection- and diffusion-dominated solar dynamos to only one cycle; stronger pumping degrades this memory further. Thus, our results reconcile the diverging dynamo-model-based forecasts for the amplitude of solar cycle 24. We conclude that reliable predictions for the maximum of solar activity can be made only at the preceding minimum-allowing about five years of advance planning for space weather. For more accurate predictions, sequential data assimilation would be necessary in forecasting models to account for the Sun's short memory.

  7. [The Measuring Method of Atomic Polarization of Alkali Metal Vapor Based on Optical Rotation and the Analysis of the Influence Factors].

    PubMed

    Shang, Hui-ning; Quan, Wei; Chen, Yao; Li, Yang; Li, Hong

    2016-02-01

    High sensitivity measurements of inertia and magnetic field could be achieved by utilizing a category of devices, which manipulate the atomic spins in the spin-exchange-relaxation-free regime. The alkali cell which contains the alkali metal vapor is used to sense magnetic field and inertia. The atomic number density of alkali vapor and the polarization of alkali metal vapor are two of the most important parameters of the cell. They play an important role in the research on atomic spins in the spin-exchange-relaxation-free regime. Besides, optical polarization plays an important role in quantum computing and atomic physics. We propose a measurement of alkali vapor polarization and alkali number density by detecting the optical rotation in one system. This method simplifies existing experimental equipment and processes. A constant bias magnetic field is applied and the Faraday rotation angle is detected by a bunch of the probe beam to deduce alkali-metal density. Then the magnetic field is closed and a bunch of the pump laser is utilized to polarize alkali-metal. Again, the probe beam is utilized to obtain the polarization of alkali metal. The alkali density obtained at first is used to deduce the polarization. This paper applies a numerical method to analyze the Faraday rotation and the polarization rotation. According to the numerical method, the optimal wavelength for the experiment is given. Finally, the fluctuation of magnetic field and wavelength on signal analysis are analyzed. PMID:27209720

  8. Oxygen pumps

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Special considerations to be given to the design, fabrication, and use of centrifugal pumps for liquid O2 to avoid conditions that lead to system failure are given. Emphasis was placed on turbine pumps for flight applications.

  9. Casing pump

    SciTech Connect

    Bass, H.E.; Bass, R.E.

    1987-09-29

    A natural gas operated pump is described for use in the casing of an oil well, comprising: a tubular pump body having an open lower end for admitting well fluids to the interior of the pump body and an open upper end, wherein a downwardly facing seating surface is formed on the inner periphery of the pump body adjacent the upper end thereof; means for forming a seal between the pump body and the casing of the well; a rod extending longitudinally through the seating surface formed in the pump body and protruding from the upper end of the pump body; a valve member mounted on the rod below the seating surface and shaped to mate with the seating surface; and means for vertically positioning the rod in proportion to fluid pressure within the pump body.

  10. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  11. Antibiotic-potentiation activities of four Cameroonian dietary plants against multidrug-resistant Gram-negative bacteria expressing efflux pumps

    PubMed Central

    2014-01-01

    Background The continuous spread of multidrug-resistant (MDR) bacteria, partially due to efflux pumps drastically reduced the efficacy of the antibiotic armory, increasing the frequency of therapeutic failure. The search for new compounds to potentiate the efficacy of commonly used antibiotics is therefore important. The present study was designed to evaluate the ability of the methanol extracts of four Cameroonian dietary plants (Capsicum frutescens L. var. facilulatum, Brassica oleacera L. var. italica, Brassica oleacera L. var. butyris and Basilicum polystachyon (L.) Moench.) to improve the activity of commonly used antibiotics against MDR Gram-negative bacteria expressing active efflux pumps. Methods The qualitative phytochemical screening of the plant extracts was performed using standard methods whilst the antibacterial activity was performed by broth micro-dilution method. Results All the studied plant extracts revealed the presence of alkaloids, phenols, flavonoids, triterpenes and sterols. The minimal inhibitory concentrations (MIC) of the studied extracts ranged from 256-1024 μg/mL. Capsicum frutescens var. facilulatum extract displayed the largest spectrum of activity (73%) against the tested bacterial strains whilst the lower MIC value (256 μg/mL) was recorded with Basilicum polystachyon against E. aerogenes ATCC 13048 and P. stuartii ATCC 29916. In the presence of PAβN, the spectrum of activity of Brassica oleacera var. italica extract against bacteria strains increased (75%). The extracts from Brassica oleacera var. butyris, Brassica oleacera var. italica, Capsicum frutescens var. facilulatum and Basilicum polystachyon showed synergistic effects (FIC ≤ 0.5) against the studied bacteria, with an average of 75.3% of the tested antibiotics. Conclusion These results provide promising information for the potential use of the tested plants alone or in combination with some commonly used antibiotics in the fight against MDR Gram-negative bacteria

  12. Anthocyanins suppress the secretion of proinflammatory mediators and oxidative stress, and restore ion pump activities in demyelination.

    PubMed

    Carvalho, Fabiano B; Gutierres, Jessié M; Bohnert, Crystiani; Zago, Adriana M; Abdalla, Fátima H; Vieira, Juliano M; Palma, Heloisa E; Oliveira, Sara M; Spanevello, Roselia M; Duarte, Marta M; Lopes, Sonia T A; Aiello, Graciane; Amaral, Marta G; Pippi, Ney Luis; Andrade, Cinthia M

    2015-04-01

    The aim of this study was to investigate the protective effect of anthocyanins (ANT) on oxidative and inflammatory parameters, as well as ion pump activities, in the pons of rats experimentally demyelinated with ethidium bromide (EB). Rats were divided in six groups: control, ANT 30 mg/kg, ANT 100 mg/kg, EB (0.1%), EB plus ANT 30 mg/kg and EB plus ANT 100 mg/kg. The EB cistern pons injection occurred on the first day. On day 7, there was a peak in the demyelination. During the 7 days, the animals were treated once per day with vehicle or ANT. It was observed that demyelination reduced Na(+),K(+)-ATPase and Ca(2+)-ATPase activities and increased 4-hydroxynonenal, malondialdehyde, protein carbonyl and NO2plus NO3 levels. In addition, a depletion of glutathione reduced level/nonprotein thiol content and a decrease in superoxide dismutase activity were also seen. The dose of 100 mg/kg showed a better dose-response to the protective effects. The demyelination did not affect the neuronal viability but did increase the inflammatory infiltrate (myeloperoxidase activity) followed by an elevation in interleukin (IL)-1β, IL-6, tumor necrosis factor-α and interferon-γ levels. ANT promoted a reduction in cellular infiltration and proinflammatory mediators. Furthermore, ANT restored the levels of IL-10. Luxol fast blue staining confirmed the loss of myelin in the EB group and the protective effect of ANT 100 mg/kg. In conclusion, this study was the first to show that ANT are able to restore ion pump activities and protect cellular components against the inflammatory and oxidative damages induced by demyelination. PMID:25632845

  13. Synchronous Spin Exchange Optical Pumping for Precision NMR

    NASA Astrophysics Data System (ADS)

    Korver, Anna; Weber, Josh; Thrasher, Daniel; Walker, Thad

    2016-05-01

    We present the successful execution of synchronous spin exchange optical pumping for precision NMR. In this novel form of NMR, the bias field is applied as a sequence of alkali 2 π pulses; the resulting transverse alkali polarization is then modulated at the NMR frequency and spin exchange collisions build up a transverse precessing noble gas polarization. As compared to longitudinally pumped NMR, this method suppresses the alkali frequency shift by over a factor of 2500. We also discuss how we use synchronous spin exchange optical pumping to excite two noble gas species simultaneously. With dual species operation, we are able to use one species to lock the magnetic field while the other is left to detect nonmagnetic interactions. This method promises to achieve NMR frequency uncertainties of 100nHz/√{ Hz}. Research supported by the NSF and Northrop-Grumman Corp.

  14. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  15. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  16. The "racemic approach" in the evaluation of the enantiomeric NorA efflux pump inhibition activity of 2-phenylquinoline derivatives.

    PubMed

    Carotti, Andrea; Ianni, Federica; Sabatini, Stefano; Di Michele, Alessandro; Sardella, Roccaldo; Kaatz, Glenn W; Lindner, Wolfgang; Cecchetti, Violetta; Natalini, Benedetto

    2016-09-10

    Among the mechanisms adopted by bacteria, efflux pumps (EPs) have been recognized as being significantly involved in contributing to resistance to commonly used antibacterial agents. However, little is known about their three-dimensional structures or the steric requirements for their inhibition. Lack of such knowledge includes NorA, one of the most studied Staphylococcus aureus EPs. In the present study, the use of two commercialized Cinchona alkaloid-based zwitterionic chiral stationary phases allowed the enantioseparation of four 2-((2-(4-propoxyphenyl)quinolin-4-yl)oxy)alkylamines 1-4 previously found to be potent S. aureus NorA efflux pump inhibitors when tested as racemates. In the identified optimal polar-ionic conditions (MeOH/THF/H2O-49/49/2 (v/v/v)+25mM formic acid, 12.5mM diethylamine), repeated consecutive injections of 1 allowed the isolation of sufficient amount of its enantiomers (2.6mg and 2.8mg, for (R)-1 and (S)-1, respectively) and then to evaluate their ability to inhibit the S. aureus NorA efflux pump. The biological evaluation highlighted the main contribution of the (R)-1 enantiomer to both the EtBr efflux inhibition and synergistic effect with against SA-1199B (norA+/A116E GrlA) respect to the racemate activity. The comparison between the experimental electronic circular dichroism and the time-dependent density functional theory calculations spectra of the two isolated enantiomeric fractions allowed for all compounds a clear and easy assignment of the enantiomeric elution order. PMID:27429367

  17. Na+/K+ pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches

    PubMed Central

    Kueh, Daniel; Barnett, William H; Cymbalyuk, Gennady S; Calabrese, Ronald L

    2016-01-01

    The dynamics of different ionic currents shape the bursting activity of neurons and networks that control motor output. Despite being ubiquitous in all animal cells, the contribution of the Na+/K+ pump current to such bursting activity has not been well studied. We used monensin, a Na+/H+ antiporter, to examine the role of the pump on the bursting activity of oscillator heart interneurons in leeches. When we stimulated the pump with monensin, the period of these neurons decreased significantly, an effect that was prevented or reversed when the h-current was blocked by Cs+. The decreased period could also occur if the pump was inhibited with strophanthidin or K+-free saline. Our monensin results were reproduced in model, which explains the pump’s contributions to bursting activity based on Na+ dynamics. Our results indicate that a dynamically oscillating pump current that interacts with the h-current can regulate the bursting activity of neurons and networks. DOI: http://dx.doi.org/10.7554/eLife.19322.001 PMID:27588351

  18. Efflux pump activity in fluoroquinolone and tetracycline resistant Salmonella and E. coli implicated in reduced susceptibility to household antimicrobial cleaning agents.

    PubMed

    Thorrold, C A; Letsoalo, M E; Dusé, A G; Marais, E

    2007-02-15

    It has been shown that the inappropriate use of antimicrobial household agents selects for organisms with resistance mechanisms (e.g. efflux pumps), which could lead to the development of antibiotic resistance. The reverse hypothesis, that antibiotic-resistant organisms become tolerant to other antibacterial agents (e.g. disinfectants) due to the action of efflux pumps, has however not been extensively examined. The objective of this study was to establish whether there is a link between antibiotic resistance in potential gastrointestinal pathogens and reduced sensitivity of these organisms to commonly used household antimicrobial agents. In this study, tetracycline and ofloxacin sensitive and resistant Escherichia coli (9 strains) and Salmonella spp. (8 strains) were isolated from poultry and clinical samples. In order to assess whether these bacteria had active efflux pumps, ethidium bromide accumulation assays were performed. Extrusion of the active components of three commercial household agents (triclosan, sodium salicylate, and ortho-phenylphenol) by efflux pumps was tested using spectrophotometric accumulation assays. In order to simulate the kitchen environment, in-use disinfectant testing using the commercial household agents was performed to determine changes in their efficacy due to antibiotic resistance. Active efflux pump activity and extrusion of all three active ingredients was observed only in the antibiotic resistant organisms. The antibiotic sensitive bacteria were also more susceptible than the resistant isolates to the household antimicrobial agents at concentrations below that recommended by the manufacturer. These resistant bacteria could potentially be selected for and result in hard to treat infections. PMID:17126442

  19. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  20. Superconductivity in alkali metal fullerides

    NASA Astrophysics Data System (ADS)

    Murphy, D. W.; Rosseinsky, M. J.; Haddon, R. C.; Ramirez, A. P.; Hebard, A. F.; Tycko, R.; Fleming, R. M.; Dabbagh, G.

    1991-12-01

    The recent synthesis of macroscopic quantities of spherical molecular carbon compounds, commonly called fullerenes, has stimulated a wide variety of studies of the chemical and physical properties of this novel class of compounds. We discovered that the smallest of the known fullerenes, C 60, could be made conducting and superconducting by reaction with alkali metals. In this paper, an overview of the motivation for these discoveries and some recent results are presented.

  1. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  2. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1994-12-31

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  3. [Continuous ambulatory chemotherapy with elastomer pump].

    PubMed

    Cabrera Figueroa, J; Arias Hernández, M

    2001-09-01

    Continuous perfusion administration of chemotherapy can be performed by means of various devices known as pumps. There are syringe pumps, elastomeric pumps, peristaltic pumps and pumps which can be implanted. In our hospital environment, the elastomeric pump enjoys a high degree of acceptance since it permits a cancer patient to maintain a large degree of autonomy while he/she carries on his/her activities. PMID:12150128

  4. Direct nuclear pumped laser

    DOEpatents

    Miley, George H.; Wells, William E.; DeYoung, Russell J.

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  5. Can Outer Hair Cells Actively Pump Fluid into the Tunnel of Corti?

    NASA Astrophysics Data System (ADS)

    Zagadou, Brissi Franck; Mountain, David C.

    2011-11-01

    Non-classical models of the cochlear traveling wave have been introduced in attempt to capture the unique features of the cochlear amplifier (CA). These models include multiple modes of longitudinal coupling. In one approach, it is hypothesized that two wave modes can add their energies to create amplification such as that desired in the CA. The tunnel of Corti (ToC) was later used to represent the second wave mode for the proposed traveling wave amplifier model, and was incorporated in a multi-compartment cochlea model. The results led to the hypothesis that the CA functions as a fluid pump. However, this hypothesis must be consistent with the anatomical structure of the organ of Corti (OC). The fluid must pass between the outer pillar cells before reaching the ToC, and the ToC fluid and the underlying basilar membrane must constitute an appropriate waveguide. We have analyzed an anatomically based 3D finite element model of the ToC of the gerbil. Our results demonstrate that the OC structure is consistent with the hypothesis.

  6. Simulations of the Spatial Dependence of Populations in High Field Optical Pumping

    NASA Astrophysics Data System (ADS)

    Olsen, Ben; Happer, Will

    2010-03-01

    Optical pumping of alkali atoms forms the basis for many modern experiments including atomic clocks, magnetometers, and hyperpolarization of noble gases and solids. The alkali atoms in these experiments interact with other alkali atoms, the optical pumping laser, buffer gas or noble gas targets, and the glass cell walls or a coating. Recent experimental results at high magnetic fields have shown that ground-state sublevel populations in a cesium vapor exhibit spatial diffusion, each with a different effective diffusion length. At high magnetic fields, each ground-state sublevel can be individually probed with a weak D1 (S1/2->P1/2) laser while a stronger D2 (S1/2->P3/2) laser depopulates a single sublevel. The probe beam is physically translated to measure the populations at different positions in the vapor cell. To try and understand some unexpected features observed in the sublevel populations undergoing optical pumping, we present a numerical model of the density matrix of alkali atoms as a function of position within the vapor cell. Steady-state sublevel populations are shown for atoms undergoing optical pumping, alkali-alkali collisions, alkali-buffer gas collisions, and depolarization at the cell walls, and these results are compared to experimental observations.

  7. No more milk in milk-alkali syndrome: a case report.

    PubMed

    Almusawi, Ali; Alhawaj, Shurooq; Al-Mousawi, Mohammed; Dashti, Tareq

    2012-09-01

    This is a case of Milk-AlKali syndrome in a patient who presented with the classical triad of hypercalcemia, metabolic alkalosis and renal impairment. The source of calcium was over-the-counter calcium-containing antacid (Tums®). Milk-alkali syndrome was first recognized secondary to treatment of peptic ulcer disease with milk and absorbable alkali. Its incidence fell after the introduction of H2-blocker and proton pump inhibitor. However, it is one of the leading causes of hypercalcemia nowadays because of the wide availability, increased marketing and use of calcium carbonate especially in osteoporosis prevention and treatment. The demographics of milk-alkali syndrome have changed compared to when it was initially described. The presentation could be acute, subacute or chronic. Early diagnosis, discounting calcium supplement and intravenous hydration are the mainstay of MAS management. PMID:23074554

  8. Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps

    PubMed Central

    Ransom, Christopher B; Ransom, Bruce R; Sontheimer, Harald

    2000-01-01

    We measured activity-dependent changes in [K+]o with K+-selective microelectrodes in adult rat optic nerve, a CNS white matter tract, to investigate the factors responsible for post-stimulus recovery of [K+]o.Post-stimulus recovery of [K+]o followed a double-exponential time course with an initial, fast time constant, τfast, of 0.9 ± 0.2 s (mean ±s.d.) and a later, slow time constant, τslow, of 4.2 ± 1 s following a 1 s, 100 Hz stimulus. τfast, but not τslow, decreased with increasing activity-dependent rises in [K+]o. τslow, but not τfast, increased with increasing stimulus duration.Post-stimulus recovery of [K+]o was temperature sensitive. The apparent temperature coefficients (Q10, 27–37°C) for the fast and slow components following a 1 s, 100 Hz stimulus were 1.7 and 2.6, respectively.Post-stimulus recovery of [K+]o was sensitive to Na+ pump inhibition with 50 μM strophanthidin. Following a 1 s, 100 Hz stimulus, 50 μM strophanthidin increased τfast and τslow by 81 and 464%, respectively. Strophanthidin reduced the temperature sensitivity of post-stimulus recovery of [K+]o.Post-stimulus recovery of [K+]o was minimally affected by the K+ channel blocker Ba2+ (0.2 mm). Following a 10 s, 100 Hz stimulus, 0.2 mm Ba2+ increased τfast and τslow by 24 and 18%, respectively.Stimulated increases in [K+]o were followed by undershoots of [K+]o. Post-stimulus undershoot amplitude increased with stimulus duration but was independent of the peak preceding [K+]o increase.These observations imply that two distinct processes contribute to post-stimulus recovery of [K+]o in central white matter. The results are compatible with a model of K+ removal that attributes the fast, initial phase of K+ removal to K+ uptake by glial Na+ pumps and the slower, sustained decline to K+ uptake via axonal Na+ pumps. PMID:10713967

  9. Studies of adsorption characteristics of activated carbons down to 4.5 K for the development of cryosorption pumps for fusion systems

    SciTech Connect

    Kasthurirengan, S.; Behera, U.; Vivek, G. A.; Krishnamoorthy, V.; Gangradey, R.; Udgata, S. S.; Tripati, V. S.

    2014-01-29

    Cryosorption pump is the only possible device to pump helium, hydrogen and its isotopes in fusion environment, such as high magnetic field and high plasma temperatures. Activated carbons are known to be the most suitable adsorbent in the development of cryosorption pumps. For this purpose, the data of adsorption characteristics of activated carbons in the temperature range 4.5 K to 77 K are needed, but are not available in the literature. For obtaining the above data, a commercial micro pore analyzer operating at 77 K has been integrated with a two stage GM cryocooler, which enables the cooling of the sample temperature down to 4.5 K. A heat switch mounted between the second stage cold head and the sample chamber helps to raise the sample chamber temperature to 77 K without affecting the performance of the cryocooler. The detailed description of this system is presented elsewhere. This paper presents the results of experimental studies of adsorption isotherms measured on different types of activated carbons in the form of granules, globules, flake knitted and non-woven types in the temperature range 4.5 K to 10 K using Helium gas as the adsorbate. The above results are analyzed to obtain the pore size distributions and surface areas of the activated carbons. The effect of adhesive used for bonding the activated carbons to the panels is also studied. These results will be useful to arrive at the right choice of activated carbon to be used for the development of cryosorption pumps.

  10. High-efficiency diode-pumped actively Q-switched ceramic Nd:YAG/BaWO₄ Raman laser operating at 1666 nm.

    PubMed

    Zhang, H N; Chen, X H; Wang, Q P; Zhang, X Y; Chang, J; Gao, L; Shen, H B; Cong, Z H; Liu, Z J; Tao, X T; Li, P

    2014-05-01

    A diode-pumped actively Q-switched Raman laser employing BaWO4 as the Raman active medium and a ceramic Nd:YAG laser operating at 1444 nm as the pump source is demonstrated. The first-Stokes-Raman generation at 1666 nm is achieved. With a pump power of 20.3 W and pulse repetition frequency rate of 5 kHz, a maximum output power of 1.21 W is obtained, which is the highest output power for a 1.6 μm Raman laser. The corresponding optical-to-optical conversion efficiency is 6%; the pulse energy and peak power are 242 μJ and 8.96 kW, respectively. PMID:24784068

  11. In situ formation of coal gasification catalysts from low cost alkali metal salts

    DOEpatents

    Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  12. Push-Pull Optical Pumping of Pure Superposition States

    NASA Astrophysics Data System (ADS)

    Jau, Y.-Y.; Miron, E.; Post, A. B.; Kuzma, N. N.; Happer, W.

    2004-10-01

    A new optical pumping method, “push-pull pumping,” can produce very nearly pure, coherent superposition states between the initial and the final sublevels of the important field-independent 0-0 clock resonance of alkali-metal atoms. The key requirement for push-pull pumping is the use of D1 resonant light which alternates between left and right circular polarization at the Bohr frequency of the state. The new pumping method works for a wide range of conditions, including atomic beams with almost no collisions, and atoms in buffer gases with pressures of many atmospheres.

  13. Active water management at the cathode of a planar air-breathing polymer electrolyte membrane fuel cell using an electroosmotic pump

    NASA Astrophysics Data System (ADS)

    Fabian, T.; O'Hayre, R.; Litster, S.; Prinz, F. B.; Santiago, J. G.

    In a typical air-breathing fuel cell design, ambient air is supplied to the cathode by natural convection and dry hydrogen is supplied to a dead-ended anode. While this design is simple and attractive for portable low-power applications, the difficulty in implementing effective and robust water management presents disadvantages. In particular, excessive flooding of the open-cathode during long-term operation can lead to a dramatic reduction of fuel cell power. To overcome this limitation, we report here on a novel air-breathing fuel cell water management design based on a hydrophilic and electrically conductive wick in conjunction with an electroosmotic (EO) pump that actively pumps water out of the wick. Transient experiments demonstrate the ability of the EO-pump to "resuscitate" the fuel cell from catastrophic flooding events, while longer term galvanostatic measurements suggest that the design can completely eliminate cathode flooding using less than 2% of fuel cell power, and lead to stable operation with higher net power performance than a control design without EO-pump. This demonstrates that active EO-pump water management, which has previously only been demonstrated in forced-convection fuel cell systems, can also be applied effectively to miniaturized (<5 W) air-breathing fuel cell systems.

  14. Role of proton pump of mitochondria-rich cells for active transport of chloride ions in toad skin epithelium.

    PubMed Central

    Larsen, E H; Willumsen, N J; Christoffersen, B C

    1992-01-01

    1. Active Cl- currents were studied in short-circuited toad skin epithelium in which the passive voltage-activated Cl- current is zero. Under visual control double-barrelled microelectrodes were used for impaling principal cells from the serosal side, or for measuring the pH profile in the solution bathing the apical border. 2. The net inward (active) 36Cl- flux of 27 +/- 8 pmol s-1 cm-2 (16) (mean +/- S.E.M (number of observation)) was abolished by 2 mM-CN- (6.3 +/- 3.5 pmol s-1 cm-2 (8)). The active flux was maintained in the absence of active Na+ transport when the latter was eliminated by either 100 microM-mucosal amiloride, replacement of mucosal Na+ with K+, or by 3 mM-serosal ouabain. 3. In Ringer solution buffered by 24 mM-HCO3- -5% CO2 mucosal amiloride reversed the short circuit current (ISC). The outward ISC was maintained when gluconate replaced mucosal Cl-, and it was reversibly reduced in CO2-free 5 mM-Tris-buffered Ringer solution (pH = 7.40) or by the proton pump inhibitor oligomycin. These observations indicate that the source of the outward ISC is an apical proton pump. 4. Amiloride caused principal cells to hyperpolarize from a basolateral membrane potential, Vb, of -73 +/- 3 (22) to -93 +/- 1 mV (26), and superfusion with CO2-free Tris-buffered Ringer solution induced a further hyperpolarization (Vb = -101 +/- 1 mV (26)) which could be blocked by Ba2+. The CO2-sensitive current changes were null at Vb = EK (potassium reversal potential, -106 +/- 2 mV (55)) implying that they are carried by K+ channels in the basolateral membrane. Such a response cannot account for the inhibition of the outward ISC which by default seems to be located to mitochondria-rich (MR) cells. 5. In the absence of mucosal Cl- a pH gradient was built up above MR cells with pH = 7.02 +/- 0.04 (42) and pH increasing to 7.37 +/- 0.02 (10) above principal cells (pH = 7.40 in bulk solution buffered by 0.1 mM-Tris). This observation localizes a proton pump to the apical membrane

  15. ACTIVE MEDIA: Electronic and thermal lensing in diode end-pumped Yb:YAG laser rods and discs

    NASA Astrophysics Data System (ADS)

    Antipov, Oleg L.; Anashkina, E. A.; Fedorova, K. A.

    2009-12-01

    The lensing effects in diode end-pumped Yb:YAG laser rods and discs are studied. Two mechanisms of refractive-index changes are taken into account, thermal and electronic (due to the difference between the excited- and ground-state Yb3+ polarisabilities), as well as pump-induced deformation of the laser crystal. Under pulsed pumping, the electronic lensing effect prevails over the thermal one in both rods and discs. In rods pumped by a highly focused cw beam, the dioptric power of the electronic lens exceeds that of the thermal lens, whereas in discs steady-state lensing is predominantly due to the thermal mechanism.

  16. Upregulation of the SERCA-type Ca2+ pump activity in response to endoplasmic reticulum stress in PC12 cells

    PubMed Central

    Højmann Larsen, Annette; Frandsen, Aase; Treiman, Marek

    2001-01-01

    Background Ca2+-ATPases of endoplasmic reticulum (SERCAs) are responsible for maintenance of the micro- to millimolar Ca2+ ion concentrations within the endoplasmic reticulum (ER) of eukaryotic cells. This intralumenal Ca2+ storage is important for the generation of Ca2+ signals as well as for the correct folding and posttranslational processing of proteins entering ER after synthesis. ER perturbations such as depletion of Ca2+ or abolishing the oxidative potential, inhibition of glycosylation, or block of secretory pathway, activate the Unfolded Protein Response, consisting of an upregulation of a number of ER-resident chaperones/stress proteins in an effort to boost the impaired folding capacity. Results We show here that in PC12 cells, depletion of ER Ca2+ by EGTA, as well as inhibition of disulphide bridge formation within the ER by dithiotreitol or inhibition of N-glycosylation by tunicamycin, led to a 2- to 3-fold increase of the SERCA-mediated 45Ca2+ transport to microsomes isolated from cells exposed to these stress agents. The time course of this response corresponded to that for transcriptional upregulation of ER stress proteins, as well as to the increase in the SERCA2b mRNA, as we recently observed in an independent study. Conclusions These findings provide the first functional evidence for the increase of SERCA pumping capacity in cells subjected to the ER stress. Since at least three different and unrelated mechanisms of eliciting the ER stress response were found to cause this functional upregulation of Ca2+ transport into the ER, these results support the existence of a coupling between the induction of the UPR pathway in general, and the regulation of expression of at least one of the SERCA pump isoforms. PMID:11319943

  17. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  18. The alkali metals: 200 years of surprises.

    PubMed

    Dye, James L

    2015-03-13

    Alkali metal compounds have been known since antiquity. In 1807, Sir Humphry Davy surprised everyone by electrolytically preparing (and naming) potassium and sodium metals. In 1808, he noted their interaction with ammonia, which, 100 years later, was attributed to solvated electrons. After 1960, pulse radiolysis of nearly any solvent produced solvated electrons, which became one of the most studied species in chemistry. In 1968, alkali metal solutions in amines and ethers were shown to contain alkali metal anions in addition to solvated electrons. The advent of crown ethers and cryptands as complexants for alkali cations greatly enhanced alkali metal solubilities. This permitted us to prepare a crystalline salt of Na(-) in 1974, followed by 30 other alkalides with Na(-), K(-), Rb(-) and Cs(-) anions. This firmly established the -1 oxidation state of alkali metals. The synthesis of alkalides led to the crystallization of electrides, with trapped electrons as the anions. Electrides have a variety of electronic and magnetic properties, depending on the geometries and connectivities of the trapping sites. In 2009, the final surprise was the experimental demonstration that alkali metals under high pressure lose their metallic character as the electrons are localized in voids between the alkali cations to become high-pressure electrides! PMID:25666067

  19. PHYSICAL EFFECTS OCCURRING DURING GENERATION AND AMPLIFICATION OF LASER RADIATION: Kinetic model of the active medium of an XeCl laser pumped by an electron beam

    NASA Astrophysics Data System (ADS)

    Boĭchenko, A. M.; Derzhiev, V. I.; Zhidkov, A. G.; Yakovlenko, Sergei I.

    1989-02-01

    Kinetic models of active media of an XeCl laser are developed for the case when these media are diluted by various buffer gases (helium, neon, argon) and the laser is pumped by an electron beam. The results of the calculations are in satisfactory agreement with experimental data.

  20. Spectroscopic characteristic (FT-IR, FT-Raman, UV, 1H and 13C NMR), theoretical calculations and biological activity of alkali metal homovanillates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Piekut, J.; Regulska, E.; Lewandowski, W.

    2016-04-01

    The structural and vibrational properties of lithium, sodium, potassium, rubidium and cesium homovanillates were investigated in this paper. Supplementary molecular spectroscopic methods such as: FT-IR, FT-Raman in the solid phase, UV and NMR were applied. The geometrical parameters and energies were obtained from density functional theory (DFT) B3LYP method with 6-311++G** basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned. Geometric and magnetic aromaticity indices, atomic charges, dipole moments, HOMO and LUMO energies were also calculated. The microbial activity of investigated compounds was tested against Bacillus subtilis (BS), Pseudomonas aeruginosa (PA), Escherichia coli (EC), Staphylococcus aureus (SA) and Candida albicans (CA). The relationship between the molecular structure of tested compounds and their antimicrobial activity was studied. The principal component analysis (PCA) was applied in order to attempt to distinguish the biological activities of these compounds according to selected band wavenumbers. Obtained data show that the FT-IR spectra can be a rapid and reliable analytical tool and a good source of information for the quantitative analysis of the relationship between the molecular structure of the compound and its biological activity.

  1. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  2. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  3. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  4. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  5. Chimaeras reveal the role of the catalytic core in the activation of the plasma membrane Ca2+ pump.

    PubMed

    Ba-Thein, W; Caride, A J; Enyedi, A; Pászty, K; Croy, C L; Filoteo, A G; Penniston, J T

    2001-05-15

    Isoform 2b of the plasma membrane calcium pump differs from the ubiquitous isoform 4b in the following: (a) higher basal activity in the absence of calmodulin; (b) higher affinity for calmodulin; and (c) higher affinity for Ca(2+) in the presence of calmodulin [Elwess, Filoteo, Enyedi and Penniston (1997) J. Biol. Chem. 272, 17981-17986]. To investigate which parts of the molecule determine these kinetic differences, we made four chimaeric constructs in which portions of isoform 2b were grafted into isoform 4b: chimaera I contains only the C-terminal regulatory region of isoform 2b; chimaera II contains the N-terminal moiety of isoform 2b, including both cytoplasmic loops; chimaera III contains the sequence of isoform 2b starting from the N-terminus to after the end of the first (small) cytoplasmic loop; and chimaera IV contains only the second (large) cytoplasmic loop. Surprisingly, chimaera I showed low basal activity in the absence of calmodulin and low affinity for calmodulin, unlike isoform 2b. In contrast, the chimaera containing both loops showed high basal activity, and Ca(2+) activation curves (both in the absence and in the presence of calmodulin) similar to those of isoform 2b. The rates of activation by calmodulin and of inactivation by calmodulin removal were measured, and the apparent K(d) for calmodulin was calculated from the ratio between these rate constants. The order of affinity was: 2b=II>4b=IV>III=I. From these results it is clear that the construct that most closely resembles isoform 2b is chimaera II. This shows that, in order to obtain an enzyme with properties similar to those of isoform 2b, both cytoplasmic loops are needed. PMID:11336657

  6. Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser

    NASA Astrophysics Data System (ADS)

    Sarychev, Andrey K.; Tartakovsky, Gennady

    2006-08-01

    We consider plasmonic nanoantennas immersed in active host medium. Specifically shaped metal nanoantennas can exhibit strong magnetic properties in the optical spectral range due to the excitation of Magnetic Resonance Plasmons (MRP). A case when a metamaterial comprising such nanoantennas can demonstrate both "left-handiness" and negative permeability in the optical range is considered. We show that high losses predicted for optical "left-handed" materials can be compensated in the gain medium. Gains required to achieve local generation in such magnetic active metamaterials are calculated for real metals

  7. High-resolution nanoprobe X-ray fluorescence characterization of heterogeneous calcium and heavy metal distributions in alkali-activated fly ash.

    PubMed

    Provis, John L; Rose, Volker; Bernal, Susan A; van Deventer, Jannie S J

    2009-10-01

    The nanoscale distribution of elements within fly ash and the aluminosilicate gel products of its alkaline activation ("fly ash geopolymers") are analyzed by means of synchrotron X-ray fluorescence using a hard X-ray Nanoprobe instrument. The distribution of calcium within a hydroxide-activated (fly ash/KOH solution) geopolymer gel is seen to be highly heterogeneous, with these data providing for the first time direct evidence of the formation of discrete high-calcium particles within the binder structure of a geopolymer synthesized from a low-calcium (<2 wt % as oxides) fly ash. The silicate-activated (fly ash/potassium silicate solution) sample, by contrast, shows a much more homogeneous geopolymer gel binder structure surrounding the unreacted fly ash particles. This has important implications for the understanding of calcium chemistry within aluminosilicate geopolymer gel phases. Additionally, chromium and iron are seen to be very closely correlated within the structures of both fly ash and the geopolymer product and remain within the regions of the geopolymer which can be identified as unreacted fly ash particles. Given that the potential for chromium release has been one of the queries surrounding the widespread utilization of construction materials derived from fly ash, the observation that this element appears to be localized within the fly ash rather than dispersed throughout the gel binder indicates that it is unlikely to be released problematically into the environment. PMID:19788232

  8. Compact, efficient, scalable neodymium laser co-doped with activator ions and pumped by visible laser diodes

    NASA Astrophysics Data System (ADS)

    Scheps, Richard

    1994-02-01

    Efficient, low threshold laser emission from a laser crystal doped with chromium and neodymium ions is obtained when pumped by visible laser diodes in the range of 610 nm to 680 nm. A typical laser Cr,Nd:GSGG crystal having an extraordinarily broad absorption bandwidth allows high pump efficiencies when using visible laser diodes, particularly in comparison to the Nd:YAG laser. The broad absorption bandwidth tolerance of the Cr,Nd:GSGG crystal to the pumping wavelengths allows visible diode pumping of the neodymium transition without regard to the wavelength of the visible diodes. Longitudinal or end-pumping to take advantage of the emission properties of the visible laser diodes, a nearly hemispherical laser resonator configuration and other co-doped Cr,Nd laser host materials are disclosed.

  9. In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: A review.

    PubMed

    Cheng, Yaofeng; Woolf, Thomas F; Gan, Jinping; He, Kan

    2016-08-01

    The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity. BSEP transporter assays use one of the following platforms: Xenopus laevis oocytes; canalicular membrane vesicles (CMV); BSEP-expressed membrane vesicles; cell lines expressing BSEP; sandwich cultured hepatocytes (SCH); and hepatocytes in suspension. Two of these, BSEP-expressed insect membrane vesicles and sandwich cultured hepatocytes, are the most commonly used assays. BSEP membrane vesicles prepared from transfected insect cells are useful for assessing BSEP inhibition or substrate specificity and exploring mechanisms of BSEP-associated genetic diseases. This model can be applied in a high-throughput format for discovery-drug screening. However, experimental results from use of membrane vesicles may lack physiological relevance and the model does not allow for investigation of in situ metabolism in modulation of BSEP activity. Hepatocyte-based assays that use the SCH format provide results that are generally more physiologically relevant than membrane assays. The SCH model is useful in detailed studies of the biliary excretion of drugs and BSEP inhibition, but due to the complexity of SCH preparation, this model is used primarily for determining biliary clearance and BSEP inhibition in a limited number of compounds. The newly developed hepatocyte in suspension assay avoids many of the complexities of the SCH method. The use of pooled cryopreserved hepatocytes in suspension minimizes genetic variance and individual differences in BSEP activity and also provides the opportunity for higher throughput screening and cross

  10. An alkaline-active and alkali-stable pectate lyase from Streptomyces sp. S27 with potential in textile industry.

    PubMed

    Yuan, Peng; Meng, Kun; Shi, Pengjun; Luo, Huiying; Huang, Huoqing; Tu, Tao; Yang, Peilong; Yao, Bin

    2012-06-01

    A pectate lyase gene (pl-str) was cloned from Streptomyces sp. S27 and expressed in Escherichia coli Rosetta. The full-length pl-str consists of 972 bp and encodes for a protein of 323 amino acids without signal peptide that belongs to family PF00544. The recombinant enzyme (r-PL-STR) was purified to electrophoretic homogeneity using Ni²⁺-NTA chromatography and showed apparent molecular mass of ~35 kDa. The pH optimum of r-PL-STR was found to be 10.0, and it exhibited >70% of the maximal activity at pH 12.0. After incubation at 37°C for 1 h without substrate, the enzyme retained more than 55% activity at pH 7.0-12.0. Compared with the commercial complex enzyme Scourzyme(@)301L from Novozymes, purified r-PL-STR showed similar efficacy in reducing the intrinsic viscosity of polygalacturonic acid (49.0 vs. 49.7%). When combined with cellulase and α-amylase, r-PL-STR had comparable performance in bioscouring of jute fabric (22.39 vs. 22.99%). Thus, r-PL-STR might represent a good candidate for use in alkaline industries such as textile. PMID:22278674

  11. Proton pumping ATPase mediated fungicidal activity of two essential oil components.

    PubMed

    Bhatia, Rimple; Shreaz, Sheikh; Khan, Neelofar; Muralidhar, Sumathi; Basir, Seemi F; Manzoor, Nikhat; Khan, Luqman A

    2012-10-01

    This work evaluates the antifungal activity of two essential oil components against 28 clinical isolates (17 sensitive, 11 resistant) and 3 standard laboratory strains of Candida. Growth of the organisms was significantly effected in both solid and liquid media at different test compound concentrations. The minimum inhibitory concentrations (MICs) of Isoeugenol (compound 1) against 31 strains of Candida ranged 100-250 μg/ml and those of o -methoxy cinnamaldehyde (compound 2) ranged 200-500 μg/ml, respectively. Insight studies to mechanism suggested that these compounds exert antifungal activity by targeting H(+)-ATPase located in the membranes of pathogenic Candida species. At their respective MIC(90) average inhibition of H(+)-efflux for standard, clinical and resistant isolates caused by compound 1 and compound 2 was 70%, 74%, 82% and 42%, 42% and 43%. Respective inhibition of H(+)-efflux by fluconazole (5 μg/ml) was 94%, 92% and 10%. Inhibition of H(+)-ATPase leads to intracellular acidification and cell death. SEM analysis of Candida cells showed cell membrane breakage and alterations in morphology. Haemolytic activity on human erythrocytes was studied to exclude the possibility of further associated cytotoxicity. PMID:22143929

  12. Alkali burns from wet cement.

    PubMed Central

    Peters, W. J.

    1984-01-01

    When water is added to the dry materials of Portland cement calcium hydroxide is formed; the wet cement is caustic (with a pH as high as 12.9) and can produce third-degree alkali burns after 2 hours of contact. Unlike professional cement workers, amateurs are usually not aware of any danger and may stand or kneel in the cement for long periods. As illustrated in a case report, general physicians may recognize neither the seriousness of the injury in its early stages nor the significance of a history of prolonged contact with wet cement. All people working with cement should be warned about its dangers and advised to immediately wash and dry the skin if contact does occur. Images Fig. 1 PMID:6561052

  13. Effect of Sodium Carboxymethyl Celluloses on Water-catalyzed Self-degradation of 200-degree C-heated Alkali-Activated Cement

    SciTech Connect

    Sugama T.; Pyatina, T.

    2012-05-01

    We investigated the usefulness of sodium carboxymethyl celluloses (CMC) in promoting self-degradation of 200°C-heated sodium silicate-activated slag/Class C fly ash cementitious material after contact with water. CMC emitted two major volatile compounds, CO2 and acetic acid, creating a porous structure in cement. CMC also reacted with NaOH from sodium silicate to form three water-insensitive solid reaction products, disodium glycolate salt, sodium glucosidic salt, and sodium bicarbonate. Other water-sensitive solid reaction products, such as sodium polysilicate and sodium carbonate, were derived from hydrolysates of sodium silicate. Dissolution of these products upon contact with water generated heat that promoted cement’s self-degradation. Thus, CMC of high molecular weight rendered two important features to the water-catalyzed self-degradation of heated cement: One was the high heat energy generated in exothermic reactions in cement; the other was the introduction of extensive porosity into cement.

  14. Wadeite (K2ZrSi3O9), an alkali-zirconosilicate from the Saima agpaitic rocks in northeastern China: Its origin and response to multi-stage activities of alkaline fluids

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Wang, Ru-Cheng; Yang, Jin-Hui; Wu, Fu-Yuan; Zhang, Wen-Lan; Gu, Xiang-Ping; Zhang, Ai-Cheng

    2015-05-01

    The Triassic Saima alkaline complex in the Liaodong Peninsula of northeastern China covers an area of about 20 km2 and is dominated by nepheline syenite, with phonolite at its center, and a concealed body of eudialyte-bearing nepheline syenite in the northwest of the complex. The phonolite has similar features to miaskite, while the nepheline syenites are classified in the agpaitic group according to their mineral assemblage, and the alkalinity and aluminum saturation indexes. Zircon is the dominant Zr-bearing mineral in the phonolite, whereas wadeite occurs as the only primary Zr-bearing mineral in the nepheline syenites. The transitional crystallization from zircon to wadeite reveals an increase in alkalis and a high K/Na ratio as the magmas evolved from the volcanic to the intrusive stage. The primary wadeite grains underwent varying degrees of hydrothermal alteration. Overall, the areas of weak, medium, and strong alteration are characterized by the following respective associations: (1) wadeite + secondary catapleiite/gaidonnayite, (2) wadeite + secondary catapleiite/gaidonnayite + zircon, and (3) pseudomorphs after wadeite. The pseudomorphs are widespread and mainly consist of residual wadeite, secondary zircon, catapleiite/gaidonnayite, K-feldspar, calcite, and some Zr-bearing titanite and vesuvianite. All of the secondary zircon grains in the three associations are typically enriched in Ca and Al compared with the primary Ca-free zircons of the phonolite. The progressive alteration of wadeite suggests that the Saima complex underwent multiple episodes of fluid activity during a hydrothermal stage, including an initial Na-metasomatism via alkaline fluids, then stages most likely involving progressively CO2-rich fluids, and an intensive episode involving a mixture of these fluids with externally derived Ca-rich fluids.

  15. Submersible pump

    SciTech Connect

    Todd, D. B.

    1985-08-27

    A method and apparatus for using a submersible pump to lift reservoir fluids in a well while having the tubing/casing annulus isolated from the produced fluids. The apparatus allows the submersible pump to be positioned above the annular packoff device. The apparatus comprises an outer shield that encloses the pump and can be attached to the production tubing. The lower end of the shield attaches to a short tubing section that seals with the annular packoff device or a receptacle above the annular packoff device.

  16. Weight Optimization of Active Thermal Management Using a Novel Heat Pump

    NASA Technical Reports Server (NTRS)

    Lear, William E.; Sherif, S. A.

    2004-01-01

    Efficient lightweight power generation and thermal management are two important aspects for space applications. Weight is added to the space platforms due to the inherent weight of the onboard power generation equipment and the additional weight of the required thermal management systems. Thermal management of spacecraft relies on rejection of heat via radiation, a process that can result in large radiator mass, depending upon the heat rejection temperature. For some missions, it is advantageous to incorporate an active thermal management system, allowing the heat rejection temperature to be greater than the load temperature. This allows a reduction of radiator mass at the expense of additional system complexity. A particular type of active thermal management system is based on a thermodynamic cycle, developed by the authors, called the Solar Integrated Thermal Management and Power (SITMAP) cycle. This system has been a focus of the authors research program in the recent past (see Fig. 1). One implementation of the system requires no moving parts, which decreases the vibration level and enhances reliability. Compression of the refrigerant working fluid is accomplished in this scheme via an ejector.

  17. Keeping Hearts Pumping

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A collaboration between NASA, Dr. Michael DeBakey, Dr. George Noon, and MicroMed Technology, Inc., resulted in a life-saving heart pump for patients awaiting heart transplants. The MicroMed DeBakey VAD functions as a "bridge to heart transplant" by pumping blood throughout the body to keep critically ill patients alive until a donor heart is available. Weighing less than 4 ounces and measuring 1 inch by 3 inches, the pump is approximately one-tenth the size of other currently marketed pulsatile VADs. This makes it less invasive and ideal for smaller adults and children. Because of the pump's small size, less than 5 percent of the patients implanted developed device-related infections. It can operate up to 8 hours on batteries, giving patients the mobility to do normal, everyday activities.The MicroMed DeBakey VAD is a registered trademark of MicroMed Technology, Inc.

  18. An artificial molecular pump.

    PubMed

    Cheng, Chuyang; McGonigal, Paul R; Schneebeli, Severin T; Li, Hao; Vermeulen, Nicolaas A; Ke, Chenfeng; Stoddart, J Fraser

    2015-06-01

    Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration. PMID:25984834

  19. An artificial molecular pump

    NASA Astrophysics Data System (ADS)

    Cheng, Chuyang; McGonigal, Paul R.; Schneebeli, Severin T.; Li, Hao; Vermeulen, Nicolaas A.; Ke, Chenfeng; Stoddart, J. Fraser

    2015-06-01

    Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration.

  20. Inoculation and alkali coeffect in volatile fatty acids production and microbial community shift in the anaerobic fermentation of waste activated sludge.

    PubMed

    Huang, Long; Chen, Ben; Pistolozzi, Marco; Wu, Zhenqiang; Wang, Jufang

    2014-02-01

    Batch fermentations of waste activated sludge (WAS) at alkaline pH with different inocula were performed. Paper mill anaerobic granular sludge (PAS) and dyeing mill anaerobic sludge (DAS) were used as inocula. At pH 10 the inoculation did not increase the volatile fatty acids (VFAs) production compared to the non-inoculated samples fermented in the same conditions, and the maximal VFAs yield of non-inoculated WAS was higher than inoculated WAS. However, at pH 9 the inoculation with PAS increased the sludge hydrolysis and VFAs production was 1.7-fold higher than that in non-inoculated WAS (yield 52.40mg/g of volatile solid). Denaturing gradient gel electrophoresis analysis revealed that 3 bacterial species, identified as Proteocatella, Tepidibacter, and Clostridium, disappeared when inoculated with PAS at pH 9 or at pH⩾10. The results showed that the inoculation with PAS can be helpful to achieve a relatively high VFAs production from WAS in a moderate alkaline environment. PMID:24345567

  1. Continued studies of co-pumping of deuterium and helium on a single, 4K activated charcoal panel

    SciTech Connect

    Walthers, C.R.; Jenkins, E.M. ); Batzer, T.H. ); Sedgley, D.W. ); Konishi, S.; Ohira, S.; Naruse, Y. )

    1990-09-01

    The short program undertaken in 1989 to evaluate the feasibility of co-pumping deuterium and tritium (DT) and helium on a charcoal sorbent showed that the charcoal will indeed simultaneously pump the gases. Of interest also was the fact that the total accumulation of helium (capacity) was virtually identical in constant throughput runs in which the D{sub 2}/He ratio was changed between runs. The test program described in this paper undertaken to evaluate further the co-pumping capabilities of the charcoal sorbent.

  2. Effects of intra-aortic balloon pump timing on baroreflex activities in a closed-loop cardiovascular hybrid model.

    PubMed

    Fresiello, Libera; Khir, Ashraf William; Di Molfetta, Arianna; Kozarski, Maciej; Ferrari, Gianfranco

    2013-03-01

    Despite 50 years of research to assess the intra-aortic balloon pump (IABP) effects on patients' hemodynamics, some issues related to the effects of this therapy are still not fully understood. One of these issues is the effect of IABP, its inflation timing and duration on peripheral circulation autonomic controls. This work provides a systematic analysis of IABP effects on baroreflex using a cardiovascular hybrid model, which consists of computational and hydraulic submodels. The work also included a baroreflex computational model that was connected to a hydraulic model with a 40-cm(3) balloon. The IABP was operated at different inflation trigger timings (-0.14 to 0.31 s) and inflation durations (0.05-0.45 s), with time of the dicrotic notch being taken as t = 0. Baroreflex-dependent parameters-afferent and efferent pathway activity, heart rate, peripheral resistance, and venous tone-were evaluated at each of the inflation trigger times and durations considered. Balloon early inflation (0.09 s before the dicrotic notch) with inflation duration of 0.25 s generated a maximum net increment of afferent pathway activity of 10%, thus leading to a decrement of efferent sympathetic activity by 15.3% compared with baseline values. These times also resulted in a reduction in peripheral resistance and heart rate by 4 and 4.3% compared with baseline value. We conclude that optimum IABP triggering time results in positive effects on peripheral circulation autonomic controls. Conversely, if the balloon is not properly timed, peripheral resistance and heart rate may even increase, which could lead to detrimental outcomes. PMID:23121229

  3. Spectral mode changes in an alkali rf discharge

    SciTech Connect

    Camparo, J. C.; Mackay, R.

    2007-03-01

    As a result of observations made by Shaw (M.S. thesis, Cornell University, 1964) in the mid-1960s, alkali rf discharges are known to operate in two spectral modes, the so-called ring mode and the red mode. Experience has shown that the ring mode is best for discharge lamps used in quantum-electronic devices such as atomic clocks and optically pumped magnetometers and that the performance of these devices seriously degrades when the lamp operates in the red mode. Understanding the origin of these modes therefore has application to understanding and improving various quantum-electronic devices. Here we show that Shaw's model for these modes is inconsistent with observation, and we propose an alternate model based on the role of radiation trapping in multistep ionization.

  4. Femtosecond Spectroscopy of Alkali Trimers on Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Giese, C.; Grüner, B.; Fechner, L.; Mudrich, M.; Stienkemeier, F.; Hauser, A. W.; Ernst, W. E.

    2010-06-01

    Superfluid helium nanodroplets offer the opportunity to study dopant molecules in the sub-Kelvin range with only weak matrix perturbations. Femtosecond wave packet spectroscopy has been shown to be well suited to obtain high resolution vibrational spectra of cold alkali molecules in weakly bound high-spin states. In a pump-probe scheme a first laser pulse excites a vibrational wave packet that evolves on the molecular potential and is probed by a second ionizing pulse. We present spectroscopic data on Rb_3 and K_3 showing different vibronic progressions. These are assigned with the help of high level ab initio calculations of the electronic structure of the bare trimers. M. Mudrich, P. Heister, T. Hippler, C. Giese, O. Dulieu and F. Stienkemeier, Phys. Rev. A 80, 042512 (2009) J. Nagl, G. Auböck, A.W. Hauser, O. Allard, C. Callegari and W.E. Ernst, Phys. Rev. Lett. 100, 063001 (2008)

  5. Hydrodynamic Effects on Modeling and Control of a High Temperature Active Magnetic Bearing Pump with a Canned Rotor

    SciTech Connect

    Melin, Alexander M; Kisner, Roger A; Fugate, David L; Holcomb, David Eugene

    2015-01-01

    Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.

  6. Lasing properties of selectively pumped Raman-active Nd{sup 3+}-doped molybdate and tungstate crystals

    SciTech Connect

    Basiev, Tasoltan T; Doroshenko, Maxim E; Ivleva, Lyudmila I; Osiko, Vyacheslav V; Kosmyna, M B; Komar', V K; Sulc, J; Jelinkova, H

    2006-08-31

    The lasing efficiency of Nd{sup 3+} ions is studied in laser materials capable of self-Raman frequency conversion. The lasing properties of tungstate and molybdate crystals with the scheelite structure (SrWO{sub 4}, BaWO{sub 4}, PbWO{sub 4}, SrMoO{sub 4}, PbMoO{sub 4}) activated with neodymium ions are investigated upon longitudinal pumping by a 750-nm alexandrite laser or a 800-nm diode laser. The slope lasing efficiency obtained for a Nd{sup 3+}:PbMoO{sub 4} laser emitting at 1054 nm is 54.3% for the total lasing efficiency of 46%, which is the best result for all the crystals with the scheelite structure studied so far. The simultaneous Q-switched lasing and self-Raman frequency conversion were demonstrated in neodymium-doped SrWO{sub 4}, PbWO{sub 4}, and BaWO{sub 4} crystals. (papers devoted to the 90th anniversary of a.m.prokhorov)

  7. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  8. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  9. Integrating Sphere Alkali-Metal Vapor Cells

    NASA Astrophysics Data System (ADS)

    McGuyer, Bart; Ben-Kish, Amit; Jau, Yuan-Yu; Happer, William

    2010-03-01

    An integrating sphere is an optical multi-pass cavity that uses diffuse reflection to increase the optical path length. Typically applied in photometry and radiometry, integrating spheres have previously been used to detect trace gases and to cool and trap alkali-metal atoms. Here, we investigate the potential for integrating spheres to enhance optical absorption in optically thin alkali-metal vapor cells. In particular, we consider the importance of dielectric effects due to a glass container for the alkali-metal vapor. Potential applications include miniature atomic clocks and magnetometers, where multi-passing could reduce the operating temperature and power consumption.

  10. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  11. Electrical conduction in alkali borate glasses; a unique dependence on the concentration of modifier ions

    NASA Astrophysics Data System (ADS)

    Doweidar, H.; Moustafa, Y. M.; El-Damrawi, G. M.; Ramadan, R. M.

    2008-01-01

    The electrical conduction of Li2O-B2O3, Na2O-B2O3 and K2O-B2O3 glasses seems, at first sight, to be dominated by the activation energy. Regardless of the size of the alkali ion, there is a unique dependence of conductivity, at a certain temperature, on the alkali-alkali distance and thus on N (the number of ions per cm3). The linear dependence of logσ on N-3/2 for all types of alkali ions reveals that N is the basic parameter that determines the conductivity at a certain temperature. A derived semi-empirical relation can be used to calculate the conductivity as a function of N and temperature.

  12. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    SciTech Connect

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  13. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  14. Petrology and geochemistry of alkali gabbronorites from lunar breccia 67975

    NASA Technical Reports Server (NTRS)

    James, Odette B.; Flohr, Marta K.; Lindstrom, Marilyn M.

    1987-01-01

    Detailed results of petrologic and compositional studies of three clasts found in thin sections of the Apollo 16 lunar breccia 67975 and of four clasts extracted from the breccia (for instrumental neutron activation analysis) prior to thin sectioning are reported. The alkali gabbronorites of the breccia form two distinct subgroups, magnesian and ferroan. The magnesian gabbronorites are composed of bytownitic plagioclase, hypersthene, augite, a silica mineral, and trace Ba-rich K-feldspar. The ferroan gabbronorites are composed of ternary plagioclase, pigeonite, augite, Ba-rich K-feldspar, and a silica mineral. Trace minerals in both subgroups are apatite, REE-rich whitlockite, and zircon. The magnesian and ferroan alkali gabbronorites appear to have formed by progressive differentiation of the same, or closely related, parent REE-rich magmas.

  15. Insulin receptor-related receptor as an extracellular alkali sensor

    PubMed Central

    Deyev, Igor E.; Sohet, Fabien; Vassilenko, Konstantin P.; Serova, Oxana V.; Popova, Nadezhda V.; Zozulya, Sergey A.; Burova, Elena B.; Houillier, Pascal; Rzhevsky, Dmitry I.; Berchatova, Anastasiya A.; Murashev, Arkady N.; Chugunov, Anton O.; Efremov, Roman G.; Nikol’sky, Nikolai N.; Bertelli, Eugenio; Eladari, Dominique; Petrenko, Alexander G.

    2011-01-01

    SUMMARY The insulin receptor-related receptor (IRR), an orphan receptor tyrosine kinase of the insulin receptor family, can be activated by alkaline media both in vitro and in vivo at pH>7.9. The alkali-sensing property of IRR is conserved in frog, mouse and human. IRR activation is specific, dose-dependent, quickly reversible and demonstrates positive cooperativity. It also triggers receptor conformational changes and elicits intracellular signaling. The pH sensitivity of IRR is primarily defined by its L1F extracellular domains. IRR is predominantly expressed in organs that come in contact with mildly alkaline media. In particular, IRR is expressed in the cell subsets of the kidney that secrete bicarbonate into urine. Disruption of IRR in mice impairs the renal response to alkali loading attested by development of metabolic alkalosis and decreased urinary bicarbonate excretion in response to this challenge. We therefore postulate that IRR is an alkali sensor that functions in the kidney to manage metabolic bicarbonate excess. PMID:21641549

  16. Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.

    PubMed

    Huang, Zhiwei; Li, Hao; Gao, Jiayi; Gu, Xiao; Zheng, Li; Hu, Pingping; Xin, Ying; Chen, Junxiao; Chen, Yaxin; Zhang, Zhaoliang; Chen, Jianmin; Tang, Xingfu

    2015-12-15

    The development of catalysts with simultaneous resistance to alkalis and sulfur poisoning is of great importance for efficiently controlling NOx emissions using the selective catalytic reduction of NOx with NH3 (SCR), because the conventional V2O5/WO3-TiO2 catalysts often suffer severe deactivation by alkalis. Here, we support V2O5 on a hexagonal WO3 (HWO) to develop a V2O5/HWO catalyst, which has exceptional resistance to alkali and sulfur poisoning in the SCR reactions. A 350 μmol g(-1) K(+) loading and the presence of 1,300 mg m(-3) SO2 do not almost influence the SCR activity of the V2O5/HWO catalyst, and under the same conditions, the conventional V2O5/WO3-TiO2 catalysts completely lost the SCR activity within 4 h. The strong resistance to alkali and sulfur poisoning of the V2O5/HWO catalysts mainly originates from the hexagonal structure of the HWO. The HWO allows the V2O5 to be highly dispersed on the external surfaces for catalyzing the SCR reactions and has the relatively smooth surfaces and the size-suitable tunnels specifically for alkalis' diffusion and trapping. This work provides a useful strategy to develop SCR catalysts with exceptional resistance to alkali and sulfur poisoning for controlling NOx emissions from the stationary source and the mobile source. PMID:26587749

  17. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  18. Alkali-metal intercalation in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Béguin, F.; Duclaux, L.; Méténier, K.; Frackowiak, E.; Salvetat, J. P.; Conard, J.; Bonnamy, S.; Lauginie, P.

    1999-09-01

    We report on successful intercalation of multiwall (MWNT) and single wall (SWNT) carbon nanotubes with alkali metals by electrochemical and vapor phase reactions. A LiC10 compound was produced by full electrochemical reduction of MWNT. KC8 and CsC8-MWNT first stage derivatives were synthesized in conditions of alkali vapor saturation. Their identity periods and the 2×2 R 0° alkali superlattice are comparable to their parent graphite compounds. The dysonian shape of KC8 EPR line and the temperature-independent Pauli susceptibility are both characteristic of a metallic behavior, which was confirmed by 13C NMR anisotropic shifts. Exposure of SWNT bundles to alkali vapor led to an increase of the pristine triangular lattice from 1.67 nm to 1.85 nm and 1.87 nm for potassium and rubidium, respectively.

  19. Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity.

    PubMed

    Nielsen, O B; Ørtenblad, N; Lamb, G D; Stephenson, D G

    2004-05-15

    Strenuous exercise causes an increase in extracellular [K(+)] and intracellular Na(+) ([Na(+)](i)) of working muscles, which may reduce sarcolemma excitability. The excitability of the sarcolemma is, however, to some extent protected by a concomitant increase in the activity of muscle Na(+)-K(+) pumps. The exercise-induced build-up of extracellular K(+) is most likely larger in the T-tubules than in the interstitium but the significance of the cation shifts and Na(+)-K(+) pump for the excitability of the T-tubular membrane and the voltage sensors is largely unknown. Using mechanically skinned fibres, we here study the role of the Na(+)-K(+) pump in maintaining T-tubular function in fibres with reduced chemical K(+) gradient. The Na(+)-K(+) pump activity was manipulated by changing [Na(+)](i). The responsiveness of the T-tubules was evaluated from the excitation-induced force production of the fibres. Compared to control twitch force in fibres with a close to normal intracellular [K(+)] ([K(+)](i)), a reduction in [K(+)](i) to below 60 mM significantly reduced twitch force. Between 10 and 50 mM Na(+), the reduction in force depended on [Na(+)](i), the twitch force at 40 mM K(+) being 22 +/- 4 and 54 +/- 9% (of control force) at a [Na(+)](i) of 10 and 20 mM, respectively (n= 4). Double pulse stimulation of fibres at low [K(+)](i) showed that although elevated [Na(+)](i) increased the responsiveness to single action potentials, it reduced the capacity of the T-tubules to respond to high frequency stimulation. It is concluded that a reduction in the chemical gradient for K(+), as takes place during intensive exercise, may depress T-tubular function, but that a concomitant exercise-induced increase in [Na(+)](i) protects T-tubular function by stimulating the Na(+)-K(+) pump. PMID:15034125

  20. Plant proton pumps.

    PubMed

    Gaxiola, Roberto A; Palmgren, Michael G; Schumacher, Karin

    2007-05-25

    Chemiosmotic circuits of plant cells are driven by proton (H(+)) gradients that mediate secondary active transport of compounds across plasma and endosomal membranes. Furthermore, regulation of endosomal acidification is critical for endocytic and secretory pathways. For plants to react to their constantly changing environments and at the same time maintain optimal metabolic conditions, the expression, activity and interplay of the pumps generating these H(+) gradients have to be tightly regulated. In this review, we will highlight results on the regulation, localization and physiological roles of these H(+)- pumps, namely the plasma membrane H(+)-ATPase, the vacuolar H(+)-ATPase and the vacuolar H(+)-PPase. PMID:17412324

  1. Alkali metal intercalates of molybdenum disulfide.

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1973-01-01

    Study of some of the physicochemical properties of compounds obtained by subjecting natural molybdenite and single crystals of molybdenum disulfide grown by chemical vapor transport to intercalation with the alkali group of metals (Li, Na, K, Rb, and Cs) by means of the liquid ammonia technique. Reported data and results include: (1) the intercalation of the entire alkali metal group, (2) stoichiometries and X-ray data on all of the compounds, and (3) superconductivity data for all the intercalation compounds.

  2. Superconductivity in alkali-doped C60

    NASA Astrophysics Data System (ADS)

    Ramirez, Arthur P.

    2015-07-01

    Superconductivity in alkali-doped C60 (A3C60, A = an alkali atom) is well described by an s-wave state produced by phonon mediated pairing. Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures (Tc) up to 33 K in single-phase material. The good understanding of pairing in A3C60 offers a paradigm for the development of new superconducting materials.

  3. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  4. Alkali activation processes for incinerator residues management.

    PubMed

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered. PMID:23756039

  5. Alkali metal crystalline polymer electrolytes.

    PubMed

    Zhang, Chuhong; Gamble, Stephen; Ainsworth, David; Slawin, Alexandra M Z; Andreev, Yuri G; Bruce, Peter G

    2009-07-01

    Polymer electrolytes have been studied extensively because uniquely they combine ionic conductivity with solid yet flexible mechanical properties, rendering them important for all-solid-state devices including batteries, electrochromic displays and smart windows. For some 30 years, ionic conductivity in polymers was considered to occur only in the amorphous state above Tg. Crystalline polymers were believed to be insulators. This changed with the discovery of Li(+) conductivity in crystalline poly(ethylene oxide)(6):LiAsF(6). However, new crystalline polymer electrolytes have proved elusive, questioning whether the 6:1 complex has particular structural features making it a unique exception to the rule that only amorphous polymers conduct. Here, we demonstrate that ionic conductivity in crystalline polymers is not unique to the 6:1 complex by reporting several new crystalline polymer electrolytes containing different alkali metal salts (Na(+), K(+) and Rb(+)), including the best conductor poly(ethylene oxide)(8):NaAsF(6) discovered so far, with a conductivity 1.5 orders of magnitude higher than poly(ethylene oxide)(6):LiAsF(6). These are the first crystalline polymer electrolytes with a different composition and structures to that of the 6:1 Li(+) complex. PMID:19543313

  6. In Vitro Activities of Rabeprazole, a Novel Proton Pump Inhibitor, and Its Thioether Derivative Alone and in Combination with Other Antimicrobials against Recent Clinical Isolates of Helicobacter pylori

    PubMed Central

    Kawakami, Yoshiyuki; Akahane, Takayuki; Yamaguchi, Masaru; Oana, Kozue; Takahashi, Yuko; Okimura, Yukie; Okabe, Tadashi; Gotoh, Akira; Katsuyama, Tsutomu

    2000-01-01

    The MICs of rabeprazole sodium (RPZ), a newly developed benzimidazole proton pump inhibitor (PPI), against 133 clinical Helicobacter pylori strains revealed a higher degree of activity than the another two PPIs, lansoprazole and omeprazole. Time-kill curve assays of RPZ, when combined with amoxicillin, clarithromycin, or metronidazole, disclosed that synergistic effects were demonstrated in combination with each antibiotic examined. Moreover, no apparent antagonistic effect appeared among all of the strains tested. PMID:10639386

  7. Coherent combining of fiber-laser-pumped frequency converters using all fiber electro-optic modulator for active phase control

    NASA Astrophysics Data System (ADS)

    Bourdon, P.; Durécu, A.; Canat, G.; Le Gouët, J.; Goular, D.; Lombard, L.

    2015-03-01

    Coherent beam combining (CBC) by active phase control could be useful for power scaling fiber-laser-pumped optical frequency converters like OPOs. However, a phase modulator operating at the frequency-converted wavelength is needed, which is non standard component. Fortunately, nonlinear conversion processes rely on a phase-matching condition correlating, not only the wave vectors of the coupled waves, but also their phases. This paper demonstrates that, using this phase correlation for indirect control of the phase, coherent combining of optical frequency converters is feasible using standard all-fibered electro-optic modulators. For the sake of demonstration, this new technique is experimentally applied twice for continuous wave second-harmonic-generator (SHG) combination: i) combining 2 SHG of 1.55-μm erbium-doped fiber amplifiers in PPLN crystals generating 775-nm beams; ii) combining 2 SHG of 1.064-μm ytterbium-doped fiber amplifiers in LBO crystals generating 532-nm beams. Excellent CBC efficiency is achieved on the harmonic waves in both these experiments, with λ/20 and λ/30 residual phase error respectively. In the second experiment, I/Q phase detection is added on fundamental and harmonic waves to measure their phase variations simultaneously. These measurements confirm the theoretical expectations and formulae of correlation between the phases of the fundamental and harmonic waves. Unexpectedly, in both experiments, when harmonic waves are phase-locked, a residual phase difference remains between the fundamen tal waves. Measurements of the spectrum of these residual phase differences locate them above 50 Hz, revealing that they most probably originate in fast-varying optical path differences induced by turbulence and acoustic-waves on the experimental breadboard.

  8. Thermal history effects on electrical relaxation and conductivity for potassium silicate glass with low alkali concentrations

    NASA Technical Reports Server (NTRS)

    Angel, Paul W.; Hann, Raiford E.; Cooper, Alfred R.

    1993-01-01

    Electrical response measurements from 10 Hz to 100 kHz between 120 and 540 C were made on potassium-silicate glasses with alkali oxide contents of 2, 3, 5 and 10 mol percent. Low alkali content glasses were chosen in order to try to reduce the Coulombic interactions between alkali ions to the point that frozen structural effects from the glass could be observed. Conductivity and electrical relaxation responses for both annealed and quenched glasses of the same composition were compared. Lower DC conductivity (sigma(sub DC)) activation energies were measured for the quenched compared to the annealed glasses. The two glasses with the lowest alkali contents exhibited a non-Arrhenius concave up curvature in the log(sigma(sub DC)) against 1/T plots, which decreased upon quenching. A sharp decrease in sigma(sub DC) was observed for glasses containing K2O concentrations of 5 mol percent or less. The log modulus loss peak (M'') maximum frequency plots against 1/T all showed Arrhenius behavior for both annealed and quenched samples. The activation energies for these plots closely agreed with the sigma(sub DC) activation energies. A sharp increase in activation energy was observed for both series as the potassium oxide concentration decreased. Changes in the electrical response are attributed to structural effects due to different alkali concentrations. Differences between the annealed and quenched response are linked to a change in the distribution of activation energies (DAE).

  9. Insulin pumps.

    PubMed

    Pickup, J

    2011-02-01

    The last year has seen a continued uptake of insulin pump therapy in most countries. The USA is still a leader in pump use, with probably some 40% of type 1 diabetic patients on continuous subcutaneous insulin infusion (CSII), but the large variation in usage within Europe remains, with relatively high use (> 15%) in, for example, Norway, Austria, Germany and Sweden and low use (< 5%) in Spain, the UK, Finland and Portugal. There is much speculation on the factors responsible for this variation, and the possibilities include physician attitudes to CSII and knowledge about its benefits and indications for its use (and inappropriate beliefs about dangers), the availability of reimbursement from insurance companies or funding from national health services, the availability of sufficient diabetes nurse educators and dietitians trained in pump procedures, and clear referral pathways for the pump candidate from general practitioner or general hospital to specialist pump centre. There are now several comprehensive national guidelines on CSII use (see ATTD Yearbook 2009) but more work needs to be done in unifying uptake and ensuring all those who can benefit do so. Technology developments recently include increasing use of pumps with continuous glucose monitoring (CGM) connectivity (see elsewhere in this volume) and the emergence of numerous manufacturers developing so-called 'patch pumps', often for the type 2 diabetes market. Interestingly, the evidence base for CSII in this group is not well established, and for this reason the selected papers on CSII in this section include several in this area. The use of CSII in diabetic pregnancy is a long-established practice, in spite of the lack of evidence that it is superior to multiple daily injections (MDI), and few randomised controlled trials have been done in recent years. Several papers in this field this year continue the debate about the usefulness of CSII in diabetic pregnancy and are reviewed here. It is pleasing

  10. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  11. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  12. Heat Pumping in Nanomechanical Systems

    NASA Astrophysics Data System (ADS)

    Chamon, Claudio; Mucciolo, Eduardo R.; Arrachea, Liliana; Capaz, Rodrigo B.

    2011-04-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve.

  13. Alkali-Stabilized Pt-OHx Species Catalyze Low-Temperature Water-Gas Shift Reactions

    SciTech Connect

    Zhai, Y.; Pierre, D; Si, R; Deng, W; Ferrin, P; Nilekar, A; Peng, G; Herron, J; Bell, D; et. al.

    2010-01-01

    We report that alkali ions (sodium or potassium) added in small amounts activate platinum adsorbed on alumina or silica for the low-temperature water-gas shift (WGS) reaction (H{sub 2}O + CO {yields} H{sub 2} + CO{sub 2}) used for producing H{sub 2}. The alkali ion-associated surface OH groups are activated by CO at low temperatures ({approx}100 C) in the presence of atomically dispersed platinum. Both experimental evidence and density functional theory calculations suggest that a partially oxidized Pt-alkali-O{sub x}(OH){sub y} species is the active site for the low-temperature Pt-catalyzed WGS reaction. These findings are useful for the design of highly active and stable WGS catalysts that contain only trace amounts of a precious metal without the need for a reducible oxide support such as ceria.

  14. Miniature Lightweight Ion Pump

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.

    2010-01-01

    This design offers a larger surface area for pumping of active gases and reduces the mass of the pump by eliminating the additional vacuum enclosure. There are three main components to this ion pump: the cathode and anode pumping elements assembly, the vacuum enclosure (made completely of titanium and used as the cathode and maintained at ground potential) containing the assembly, and the external magnet. These components are generally put in a noble diode (or differential) configuration of the ion pump technology. In the present state of the art, there are two cathodes, one made of titanium and the other of tantalum. The anodes are made up of an array of stainless steel cylinders positioned between the two cathodes. All the elements of the pump are in a vacuum enclosure. After the reduction of pressure in this enclosure to a few microns, a voltage is applied between the cathode and the anode elements. Electrons generated by the ionization are accelerated toward the anodes that are confined in the anode space by the axial magnetic field. For the generation of the axial field along the anode elements, the magnet is designed in a C-configuration and is fabricated from rare earth magnetic materials (Nd-B-Fe or Sm-Co) possessing high energy product values, and the yoke is fabricated from the high permeability material (Hiperco-50A composed of Fe-Co-V). The electrons in this region collide with the gas molecules and generate their positive ions. These ions are accelerated into the cathode and eject cathode material (Ti). The neutral atoms deposit on the anode surfaces. Because of the chemical activity of Ti, the atoms combine with chemically active gas molecules (e.g. N2, O2, etc.) and remove them. New layers of Ti are continually deposited, and the pumping of active gases is thus accomplished. Pumping of the inert gases is accomplished by their burial several atomic layers deep into the cathode. However, they tend to re-emit if the entrapping lattice atoms are

  15. Synchronous Spin-Exchange Optical Pumping.

    PubMed

    Korver, A; Thrasher, D; Bulatowicz, M; Walker, T G

    2015-12-18

    We demonstrate a new approach to precision NMR with hyperpolarized gases designed to mitigate NMR shifts due to the alkali spin-exchange field. The NMR bias field is implemented as a sequence of alkali (Rb) 2π pulses, allowing the Rb polarization to be optically pumped transverse to the bias field. When the Rb polarization is modulated at the noble-gas (Xe) NMR resonance, spin-exchange collisions buildup a precessing transverse Xe polarization. We study and mitigate novel NMR broadening effects due to the oscillating spin-exchange field. Spin-exchange frequency shifts are suppressed 2500×, and Rb magnetometer gain measurements project photon shot-noise limited NMR frequency uncertainties below 10  nHz/sqrt[Hz]. PMID:26722919

  16. Synchronous Spin-Exchange Optical Pumping

    NASA Astrophysics Data System (ADS)

    Korver, A.; Thrasher, D.; Bulatowicz, M.; Walker, T. G.

    2015-12-01

    We demonstrate a new approach to precision NMR with hyperpolarized gases designed to mitigate NMR shifts due to the alkali spin-exchange field. The NMR bias field is implemented as a sequence of alkali (Rb) 2 π pulses, allowing the Rb polarization to be optically pumped transverse to the bias field. When the Rb polarization is modulated at the noble-gas (Xe) NMR resonance, spin-exchange collisions buildup a precessing transverse Xe polarization. We study and mitigate novel NMR broadening effects due to the oscillating spin-exchange field. Spin-exchange frequency shifts are suppressed 2500 ×, and Rb magnetometer gain measurements project photon shot-noise limited NMR frequency uncertainties below 10 nHz /√{Hz } .

  17. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy.

    PubMed

    Li, Shuo; Liu, Lei; Chen, Rongzhang; Nelsen, Bryan; Huang, Xi; Lu, Yongfeng; Chen, Kevin

    2016-03-01

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, and limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications. PMID:27036765

  18. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Liu, Lei; Chen, Rongzhang; Nelsen, Bryan; Huang, Xi; Lu, Yongfeng; Chen, Kevin

    2016-03-01

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, and limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications.

  19. Activity-Dependent Excitability Changes Suggest Na[superscript +]/K[superscript +] Pump Dysfunction in Diabetic Neuropathy

    ERIC Educational Resources Information Center

    Krishnan, Arun V.; Lin, Cindy S.-Y.; Kiernan, Matthew C.

    2008-01-01

    The present study was undertaken to evaluate the role of Na[superscript +]/K[superscript +] pump dysfunction in the development of diabetic neuropathy (DN). Nerve excitability techniques, which provide information about membrane potential and axonal ion channel function, were undertaken in 15 patients with established DN and in 10 patients with…

  20. Formation of the active medium in high-power repetitively pulsed gas lasers pumped by an electron-beam-controlled discharge

    NASA Astrophysics Data System (ADS)

    Bulaev, V. D.; Lysenko, S. L.

    2015-07-01

    A high-power repetitively pulsed e-beam-controlled discharge CO2 laser is simulated numerically; the simulation results are compared with experimental data. Optimal sizes and design of electrodes and configuration of the external magnetic field are found, which allow one to introduce no less than 90% electric pump energy into a specified volume of the active medium, including the active volume of a laser with an aperture of 110 × 110 cm. The results obtained can also be used to design other types of highpower gas lasers.

  1. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  2. Bioinspired artificial single ion pump.

    PubMed

    Zhang, Huacheng; Hou, Xu; Zeng, Lu; Yang, Fu; Li, Lin; Yan, Dadong; Tian, Ye; Jiang, Lei

    2013-10-30

    Bioinspired artificial functional nanochannels for intelligent molecular and ionic transport control at the nanoscale have wide potential applications in nanofluidics, energy conversion, and biosensors. Although various smart passive ion transport properties of ion channels have been artificially realized, it is still hugely challenging to achieve high level intelligent ion transport features in biological ion pumps. Here we show a unique bioinspired single ion pump based on a cooperative pH response double-gate nanochannel, whose gates could be opened and closed alternately/simultaneously under symmetric/asymmetric pH environments. With the stimulation of the double-gate nanochannel by continuous switching of the symmetric/asymmetric pH stimuli, the bioinspired system systematically realized three key ionic transport features of biological ion pumps, including an alternating gates ion pumping process under symmetric pH stimuli, transformation of the ion pump into an ion channel under asymmetric pH stimuli, and a fail-safe ion pumping feature under both symmetric and asymmetric pH stimuli. The ion pumping processes could well be reproduced under a concentration gradient. With the advantages of the extraordinary ionic transport functions of biological ion pumps, the bioinspired ion pump should find widespread applicability in active transportation-controlling smart nanofluidic devices, efficient energy conversions, and seawater desalinization, and open the way to design and develop novel bioinspired intelligent artificial nanochannel materials. PMID:23773031

  3. Development of high-performance alkali-hybrid polarized 3He targets for electron scattering

    NASA Astrophysics Data System (ADS)

    Singh, Jaideep T.; Dolph, P. A. M.; Tobias, W. A.; Averett, T. D.; Kelleher, A.; Mooney, K. E.; Nelyubin, V. V.; Wang, Yunxiao; Zheng, Yuan; Cates, G. D.

    2015-05-01

    Background: Polarized 3He targets have been used as effective polarized neutron targets for electron scattering experiments for over twenty years. Over the last ten years, the effective luminosity of polarized 3He targets based on spin-exchange optical pumping has increased by over an order of magnitude. This has come about because of improvements in commercially-available lasers and an improved understanding of the physics behind the polarization process. Purpose: We present the development of high-performance polarized 3He targets for use in electron scattering experiments. Improvements in the performance of polarized 3He targets, target properties, and operating parameters are documented. Methods: We utilize the technique of alkali-hybrid spin-exchange optical pumping to polarize the 3He targets. Spectrally narrowed diode lasers used for the optical pumping greatly improved the performance. A simulation of the alkali-hybrid spin-exchange optical pumping process was developed to provide guidance in the design of the targets. Data was collected during the characterization of 24 separate glass target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. Results: From the data obtained we made determinations of the so-called X -factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable 3He polarization to well under 100%. The presence of the X -factor spin-relaxation mechanism was clearly evident in our data. Good agreement between the simulation and the actual target performance was obtained by including details such as off-resonant optical pumping. Included in our results is a measurement of the K -3He spin-exchange rate coefficient kseK=(7.46 ±0.62 ) ×10-20cm3/s over the temperature range 503 K to 563 K. Conclusions: In order to achieve high performance under the operating conditions described in this paper

  4. Alkali metal adsorption on Al(111)

    NASA Astrophysics Data System (ADS)

    Andersen, J. N.; Lundgren, E.; Nyholm, R.; Qvarford, M.

    1993-06-01

    The submonolayer adsorption of Na, K, Rb, and Cs on the Al(111) surface at 100 K and at room temperature is investigated by high resolution core level spectroscopy and low energy electron diffraction. It is found that the first alkali atoms on the surface adsorb at surface defects. At higher coverages, up to approximately one third of the maximum submonolayer coverage, alkali atoms adsorbed at defects coexist with a dispersed phase. At higher coverages island formation is found to occur for the majority of the systems. It is argued that all of the ordered structures formed at room temperature involve a disruption of the Al(111) surface in contrast to the situation at 100 K where the alkali atoms adsorb as adatoms.

  5. SAFE Alkali Metal Heat Pipe Reliability

    NASA Astrophysics Data System (ADS)

    Reid, Robert S.

    2003-01-01

    Alkali metal heat pipes are among the best understood and tested of components for first generation space fission reactors. A flight reactor will require production of a hundred or more heat pipes with assured reliability over a number of years. To date, alkali metal heat pipes have been built mostly in low budget development environments with little formal quality assurance. Despite this, heat pipe test samples suggest that high reliability can be achieved with the care justified for space flight qualification. Fabrication procedures have been established that, if consistently applied, ensure long-term trouble-free heat pipe operation. Alkali metal heat pipes have been successfully flight tested in micro gravity and also have been shown capable of multi-year operation with no evidence of sensitivity to fast neutron fluence up to 1023 n/cm2. This represents 50 times the fluence of the proposed Safe Affordable Fission Engine (SAFE-100) heat pipe reactor core.

  6. Loop laser cavities with self-pumped phase-conjugate mirrors in low-gain active media for phase-locked multichannel laser systems

    SciTech Connect

    Basiev, Tasoltan T; Gavrilov, A V; Ershkov, M N; Smetanin, Sergei N; Fedin, Aleksandr V; Bel'kov, K A; Boreysho, A S; Lebedev, V F

    2011-03-31

    It is proved that lasers with different loop cavities with self-pumped phase-conjugate mirrors in low-gain active media can operate under injection of external laser radiation and can be used for the development of diode-pumped phase-locked multichannel neodymium laser systems operating both on the fundamental laser transition with the wavelength {lambda} = 1.06 {mu}m and on the transition with {lambda} = 1.34 {mu}m. The phase-conjugate oscillation thresholds in the case of injection of an external signal are determined for a multiloop cavity configuration and an increased number of active elements in the cavity. It is shown that phase-conjugate oscillation can occur even if the single-pass gain of the active element is as low as only {approx}2. Under high-power side diode pumping of a multiloop Nd:YAG laser, single-mode output radiation was achieved at {lambda} = 1.064 {mu}m with a pulse energy up to 0.75 J, a pulse repetition rate up to 25 Hz, an average power up to 18.3 W, and an efficiency up to 20%. In a multiloop Nd:YAG laser with three active elements in the cavity, single-mode radiation at {lambda} = 1.34 {mu}m was obtained with a pulse energy up to 0.96 J, a pulse repetition rate up to 10 Hz, and an average power up to 8.5 W. (control of laser radiation parameters)

  7. Uncoupling of attenuated myo-(3H)inositol uptake and dysfunction in Na(+)-K(+)-ATPase pumping activity in hypergalactosemic cultured bovine lens epithelial cells

    SciTech Connect

    Cammarata, P.R.; Tse, D.; Yorio, T. )

    1991-06-01

    Attenuation of both the active transport of myo-inositol and Na(+)-K(+)-ATPase pumping activity has been implicated in the onset of sugar cataract and other diabetic complications in cell culture and animal models of the disease. Cultured bovine lens epithelial cells (BLECs) maintained in galactose-free Eagle's minimal essential medium (MEM) or 40 mM galactose with and without sorbinil for up to 5 days were examined to determine the temporal effects of hypergalactosemia on Na(+)-K(+)-ATPase and myo-inositol uptake. The Na(+)-K(+)-ATPase pumping activity after 5 days of continuous exposure to galactose did not change, as demonstrated by 86Rb uptake. The uptake of myo-(3H)inositol was lowered after 20 h of incubation in galactose and remained below that of the control throughout the 5-day exposure period. The coadministration of sorbinil to the galactose medium normalized the myo-(3H)inositol uptake. No significant difference in the rates of passive efflux of myo-(3H)inositol or 86Rb from preloaded galactose-treated and control cultures was observed. Culture-media reversal studies were also carried out to determine whether the galactose-induced dysfunction in myo-inositol uptake could be corrected. BLECs were incubated in galactose for 5 days, then changed to galactose-free physiological medium with and without sorbinil for a 1-day recovery period. myo-Inositol uptake was reduced to 34% of control after 6 days of continuous exposure to galactose. Within 24 h of media reversal, myo-inositol uptake returned to or exceeded control values in BLECs switched to either MEM or MEM with sorbinil.2+ reversible and occurred independently of changes in Na(+)-K(+)-ATPase pumping activity in cultured lens epithelium, indicating that the two parameters are not strictly associated and that the deficit in myo-inositol uptake occurs rapidly during hypergalactosemia.

  8. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  9. Activation of theMercury Laser System: A Diode-Pumped Solid-State Laser Driver for Inertial Fusion

    SciTech Connect

    Bayramian, A J; Beach, R J; Bibeau, C; Ebbers, C A; Freitas, B L; Kanz, V K; Payne, S A; Schaffers, K I; Skulina, K M; Smith, L K; Tassano, J B

    2001-09-10

    Initial measurements are reported for the Mercury laser system, a scalable driver for rep-rated inertial fusion energy. The performance goals include 10% electrical efficiency at 10 Hz and 100 J with a 2-10 ns pulse length. We report on the first Yb:S-FAP crystals grown to sufficient size for fabricating full size (4 x 6 cm) amplifier slabs. The first of four 160 kW (peak power) diode arrays and pump delivery systems were completed and tested with the following results: 5.5% power droop over a 0.75 ms pulse, 3.95 nm spectral linewidth, far field divergence of 14.0 mrad and 149.5 mrad in the microlensed and unmicrolensed directions respectively, and 83% optical-to-optical transfer efficiency through the pump delivery system.

  10. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate

    SciTech Connect

    Owsiak, Z

    2004-01-01

    The paper discusses results of the research into the influence of high-alkali Portland cement on granite aggregate. The deformation of the concrete structure occurred after 18 months. The research was carried out by means of a scanning electron microscope equipped with a high-energy dispersive X-ray analyzer that allowed observation of unpolished sections of concrete bars exhibiting the cracking pattern typical of the alkali-silica reaction. Both the microscopic observation and the X-ray elemental analysis confirm the presence of alkali-silica gel and secondary ettringite in the cracks.

  11. Use of ground clay brick as a pozzolanic material to reduce the alkali-silica reaction

    SciTech Connect

    Turanli, L.; Bektas, F.; Monteiro, P.J.M

    2003-10-01

    The objective of this experimental study was to use ground clay brick (GCB) as a pozzolanic material to minimize the alkali-silica reaction expansion. Two different types of clay bricks were finely ground and their activity indices were determined. ASTM accelerated mortar bar tests were performed to investigate the effect of GCB when used to replace cement mass. The microstructure of the mortar was investigated using scanning electron microscopy (SEM). The results showed that the GCBs meet the strength activity requirements of ASTM. In addition, the GCBs were found to be effective in suppressing the alkali-silica reaction expansion. The expansion decreased as the amount of GCBs in the mortar increased.

  12. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  13. Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange

    USGS Publications Warehouse

    Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D.

    1994-01-01

    Rates of alkali exchange between alunite and water have been measured in hydrothermal experiments of 1 hour to 259 days duration at 150 to 400??C. Examination of run products by scanning electron microscope indicates that the reaction takes place by dissolution-reprecipitation. This exchange is modeled with an empirical rate equation which assumes a linear decrease in mineral surface area with percent exchange (f) and a linear dependence of the rate on the square root of the affinity for the alkali exchange reaction. This equation provides a good fit of the experimental data for f = 17% to 90% and yields log rate constants which range from -6.25 moles alkali m-2s-1 at 400??C to - 11.7 moles alkali m-2s-1 at 200??C. The variation in these rates with temperature is given by the equation log k* = -8.17(1000/T(K)) + 5.54 (r2 = 0.987) which yields an activation energy of 37.4 ?? 1.5 kcal/mol. For comparison, data from O'Neil and Taylor (1967) and Merigoux (1968) modeled with a pseudo-second-order rate expression give an activation energy of 36.1 ?? 2.9 kcal/mol for alkali-feldspar water Na-K exchange. In the absence of coupled alkali exchange, oxygen isotope exchange between alunite and water also occurs by dissolution-reprecipitation but rates are one to three orders of magnitude lower than those for alkali exchange. In fine-grained alunites, significant D-H exchange occurs by hydrogen diffusion at temperatures as low as 100??C. Computed hydrogen diffusion coefficients range from -15.7 to -17.3 cm2s-1 and suggest that the activation energy for hydrogen diffusion may be as low as 6 kcal/mol. These experiments indicate that rates of alkali exchange in the relatively coarse-grained alunites typical of hydrothermal ore deposits are insignificant, and support the reliability of K-Ar age data from such samples. However, the fine-grained alunites typical of low temperature settings may be susceptible to limited alkali exchange at surficial conditions which could cause

  14. Theory of spin-exchange optical pumping of 3He and 129Xe

    NASA Astrophysics Data System (ADS)

    Appelt, S.; Baranga, A. Ben-Amar; Erickson, C. J.; Romalis, M. V.; Young, A. R.; Happer, W.

    1998-08-01

    We present a comprehensive theory of nuclear spin polarization of 3He and 129Xe gases by spin-exchange collisions with optically pumped alkali-metal vapors. The most important physical processes considered are (1) spin-conserving spin-exchange collisions between like or unlike alkali-metal atoms; (2) spin-destroying collisions of the alkali-metal atoms with each other and with buffer-gas atoms; (3) electron-nuclear spin-exchange collisions between alkali-metal atoms and 3He or 129Xe atoms; (4) spin interactions in van der Waals molecules consisting of a Xe atom bound to an alkali-metal atom; (5) optical pumping by laser photons; (6) spatial diffusion. The static magnetic field is assumed to be small enough that the nuclear spin of the alkali-metal atom is well coupled to the electron spin and the total spin is very nearly a good quantum number. Conditions appropriate for the production of large quantities of spin-polarized 3He or 129Xe gas are assumed, namely, atmospheres of gas pressure and nearly complete quenching of the optically excited alkali-metal atoms by collisions with N2 or H2 gas. Some of the more important results of this work are as follows: (1) Most of the pumping and relaxation processes are sudden with respect to the nuclear polarization. Consequently, the steady-state population distribution of alkali-metal atoms is well described by a spin temperature, whether the rate of spin-exchange collisions between alkali-metal atoms is large or small compared to the optical pumping rate or the collisional spin-relaxation rates. (2) The population distributions that characterize the response to sudden changes in the intensity of the pumping light are not described by a spin temperature, except in the limit of very rapid spin exchange. (3) Expressions given for the radio-frequency (rf) resonance linewidths and areas can be used to make reliable estimates of the local spin polarization of the alkali-metal atoms. (4) Diffusion effects for these high

  15. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  16. Isolated secretion granules from parotid glands of chronically stimulated rats possess an alkaline internal pH and inward-directed H/sup +/ pump activity

    SciTech Connect

    Arvan, P.; Castle, J.D.

    1986-10-01

    Secretion granules have been isolated from the parotid glands of rats that have been chronically stimulated with the ..beta..-adrenergic agonist, isoproterenol. These granules are of interest because they package a quantitatively different set of secretory proteins in comparison with granules from the normal gland. Polypeptides enriched in proline, glycine, and glutamine, which are known to have pI's >10, replace ..cap alpha..-amylase (pI's = 6.8) as the principal content species. The internal pH of granules from the treated rats changes from 7.8 in a potassium sulfate medium to 6.9 in a choline chloride medium. The increased pH over that of normal parotid granules (approx.6.8) appears to protect the change in composition of the secretory contents. Whereas normal mature parotide granules have practically negligible levels of H/sup +/ pumping ATPase activity, the isolated granules from isoproterenol-treated rats undergo a time-dependent internal acidification that requires the presence of ATP and is abolished by an H/sup +/ ionophore. Additionally, an inside-positive granule transmembrane potential develops after ATP addition that depends upon ATP hydrolysis. Two independent methods have been used that exclude the possibility that contaminating organelles are the source of the H/sup +/-ATPase activity. Together these data provide clear evidence for the presence of an H/sup +/ pump in the membranes of parotid granules from chronically stimulated rats. However, despite the presence of H/sup +/-pump activity, fluorescence microscopy with the weak base, acridine orange, reveals that the intragranular pH in live cells is greater than that of the cytoplasm.

  17. Spin-Exchange-Pumped NMR Gyros

    NASA Astrophysics Data System (ADS)

    Walker, T. G.; Larsen, M. S.

    We present the basic theory governing spin-exchange pumped NMR gyros. We review the basic physics of spin-exchange collisions and relaxation as they pertain to precision NMR. We present a simple model of operation as an NMR oscillator and use it to analyze the dynamic response and noise properties of the oscillator. We discuss the primary systematic errors (differential alkali fields, quadrupole shifts, and offset drifts) that limit the bias stability, and discuss methods to minimize them. We give with a brief overview of a practical implementation and performance of an NMR gyro built by Northrop-Grumman Corporation, and conclude with some comments about future prospects.

  18. Faraday rotation density measurements of optically thick alkali metal vapors

    NASA Astrophysics Data System (ADS)

    Vliegen, E.; Kadlecek, S.; Anderson, L. W.; Walker, T. G.; Erickson, C. J.; Happer, William

    2001-03-01

    We investigate the measurement of alkali number densities using the Faraday rotation of linearly polarized light. We find that the alkali number density may be reliably extracted even in regimes of very high buffer gas pressure, and very high alkali number density. We have directly verified our results in potassium using absorption spectroscopy on the second resonance (4 2S→5 2P).

  19. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  20. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  1. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  2. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  3. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  4. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  5. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  6. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  7. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  8. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  9. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  10. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  11. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  12. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  13. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  14. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  15. Impact of mercury atmospheric deposition on soils and streams in a mountainous catchment (Vosges, France) polluted by chlor-alkali industrial activity: the important trapping role of the organic matter.

    PubMed

    Hissler, Christophe; Probst, Jean-Luc

    2006-05-15

    Total atmospheric Hg contamination in a French mountainous catchment upstream from a chlor-alkali industrial site was assessed using Hg concentrations in the deepest soil horizon, in the stream bottom sediments, in river waters and in bryophytes. The natural background level of Hg content deriving from rock weathering was estimated to 32 ng g(-1) in the deepest soil layers. The soils appear to be Hg contaminated in two stages: atmospheric deposition and leaching through the soil profiles of Hg-organic matter complexes. The Hg enrichment factor (EF(Hg)(Sc)) which could be calculated by normalization to a conservative element like Sc, allows to estimate the major contribution (63% to 95%) of the atmospheric inputs, even in the upper part of the basin. This contribution may be attributed to diffuse regional atmospheric deposition of Hg and is mainly due to the geographic location of the chlor-alkali plant. This study shows for the first time that the mercury enrichment is proportional to the carbon content indicating that most of the atmospheric mercury deposition is trapped by the organic matter contained in the soils and in the stream sediments. The Hg stock in the soils of the upper catchment and the soil erosion contribution to the riverine Hg fluxes are estimated for the first time and allow to assess the Hg residence time. It indicates that Hg is trapped in the soils of such a polluted catchment for probably several thousand years. PMID:16168464

  16. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE PAGESBeta

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  17. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  18. Terahertz radiation in alkali vapor plasmas

    SciTech Connect

    Sun, Xuan; Zhang, X.-C.

    2014-05-12

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization.

  19. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  20. Diode-pumped laser research

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, L.; Bufton, J. L.; Chan, K.

    1988-01-01

    The Laboratory for Oceans is currently working on the development of compact laser diode array (LD) pumped Nd:YAG lasers for use in space-based altimetry and ranging. Laser diode-array pumping technology promises to increase the electrical to optical efficiency of solid state lasers by an order of magnitude with a lifetime increase of nearly three orders of magnitude relative to today's conventional flashlamp-pumped laser systems. The small size, efficiency, and ruggedness make LD-pumped solid state lasers ideal for space based applications. In an in-house RTOP effort, a novel multiple-pass LD-pumped Nd:YAG laser amplifier was designed and tested to increase the 100 microjoule output pulse energy of the Lightwave laser oscillator. Preliminary results have yielded a round trip amplifier gain of about 15 percent using 7 microjoule LD-pump energy. As a parallel activity, funding was recently obtained to investigate the possible use of custom made fiber optic arrays to obtain an efficient optical coupling mechanism between the emitting laser diode-arrays and the target solid state laser material. Fiber optic coupling arrays would allow for the easy manipulation of the spatial emitting pattern of the diode pump sources to match either an end or side pumping laser configuration.

  1. Hyaline membrane disease, alkali, and intraventricular haemorrhage.

    PubMed Central

    Wigglesworth, J S; Keith, I H; Girling, D J; Slade, S A

    1976-01-01

    The relation between intraventricular haemorrhage (IVH) and hyaline membrane disease (HMD) was studied in singletons that came to necropsy at Hammersmith Hospital over the years 1966-73. The incidence of IVH in singleton live births was 3-22/1000 and of HMD 4-44/1000. Although the high figures were partily due to the large number of low birthweight infants born at this hospital, the incidence of IVH in babies weighing 1001-1500 g was three times as great as that reported in the 1658 British Perinatal Mortality Survey. Most IVH deaths were in babies with HMD, but the higher frequency of IVH was not associated with any prolongation of survival time of babies who died with HMD as compared with the 1958 survey. IVH was seen frequently at gestations of up to 36 weeks in babies with HMD but was rare above 30 weeks' gestation in babies without HMD. This indicated that factors associated with HMD must cause most cases of IVH seen at gestations above 30 weeks. Comparison of clinical details in infants with HMD who died with or without IVH (at gestations of 30-37 weeks) showed no significant differences between the groups other than a high incidence of fits and greater use of alkali therapy in the babies with IVH. During the 12 hours when most alkali therapy was given, babies dying with IVD received a mean total alkali dosage of 10-21 mmol/kg and those dying without IVH 6-34 mmol/kg (P less than 0-001).There was no difference in severity of hypoxia or of metabolic acidosis between the 2 groups. Babies who died with HMD and germinal layer haemorrhage (GLH) without IVH had received significantly more alkali than those who died with HMD alone, whereas survivors of severe respiratory distress syndrome had received lower alkali doses than other groups. It is suggested that the greatly increased death rate from IVH in babies with HMD indicates some alteration of management of HMD (since 1958) as a causative factor. Liberal use of hypertonic alkali solutions is the common factor

  2. Well pump

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  3. Activation of the Mercury Laser: A Diode-Pumped Solid-State Laser Driver for Inertial Fusion

    SciTech Connect

    Bayramian, A J; Bibeau, C; Beach, R J; Chanteloup, J C; Ebbers, C A; Kanz, K; Nakano, H; Payne, S A; Powell, H T; Schaffers, K I; Seppala, L; Skulina, K; Smith, L K; Sutton, S B; Zapata, L E

    2001-03-07

    Initial measurements are reported for the Mercury laser system, a scalable driver for rep-rated high energy density physics research. The performance goals include 10% electrical efficiency at 10 Hz and 100 J with a 2-10 ns pulse length. This laser is an angularly multiplexed 4-pass gas-cooled amplifier system based on image relaying to minimize wavefront distortion and optical damage risk at the 10 Hz operating point. The efficiency requirements are fulfilled using diode laser pumping of ytterbium doped strontium fluorapatite crystals.

  4. ACTIVE MEDIA. LASERS: Study of a Nd3+:KGW crystal laser transversely pumped by laser diode bars

    NASA Astrophysics Data System (ADS)

    Abazadze, Aleksandr Yu; Zverev, Georgii M.; Kolbatskov, Yurii M.; Ustimenko, N. S.

    2004-01-01

    A Nd3+:KGW crystal laser transversely pumped by laser diode bars is studied experimentally. The optimisation of the laser parameters provided the maximum slope efficiency of ~50 % at 1.067 μm in the free running regime. Using the SRS self-conversion in a Nd3+: KWG laser, lasing was obtained in the eye-safe spectral region at 1.538 nm with the energy up to 5 mJ and a pulse repetition rate up to 20 Hz.

  5. Dissolution Process of Palladium in Hydrochloric Acid: A Route via Alkali Metal Palladates

    NASA Astrophysics Data System (ADS)

    Kasuya, Ryo; Miki, Takeshi; Morikawa, Hisashi; Tai, Yutaka

    2015-12-01

    To improve the safety of the Pd recovery processes that use toxic oxidizers, dissolution of Pd in hydrochloric acid with alkali metal palladates was investigated. Alkali metal palladates were prepared by calcining a mixture of Pd black and alkali metal (Li, Na, and K) carbonates in air. Almost the entire amount of Pd was converted into Li2PdO2 after calcination at 1073 K (800 °C) using Li2CO3. In contrast, PdO was obtained by calcination at 1073 K (800 °C) using Na and K carbonates. Our results indicated that Li2CO3 is the most active reagent among the examined alkali metal carbonates for the formation of palladates. In addition, dissolution of the resulting Li2PdO2 in HCl solutions was evaluated under various conditions. In particular, Li2PdO2 rapidly dissolved in diluted (0.1 M) HCl at ambient temperature. Solubility of Pd of Li2PdO2 was found to be 99 pct or larger after dissolution treatment at 353 K (80 °C) for 5 minutes; in contrast, PdO hardly dissolved in 0.1 M HCl. The dissolution mechanism of Li2PdO2 in HCl was also elucidated by analysis of crystal structures and particulate properties. Since our process is completely free from toxic oxidizers, the dissolution process via alkali metal palladates is much safer than currently employed methods.

  6. Physics and chemistry of alkali-silica reactions

    SciTech Connect

    Diamond, S.; Barneyback, R.S. Jr.; Struble, L.J.

    1981-01-01

    The philosophy underlying recent research on alkali-silica reactions is reviewed and illustrations of recent results are provided. It has been possible to follow the kinetics of the chemical reaction between dissolved alkalis and opal in mortars by monitoring the rate at which alkalis are removed from the pore solutions of reacting mortars. Studies of the expansion behavior of synthetic alkali silica gels under controlled conditions were carried out and show no obvious correlation to chemical composition. The alkali reaction in mortars was found to produce changes in the appearance of opal grains documentable by the use of a scanning electron microscope.

  7. Calcium-Alkali Syndrome in the Modern Era

    PubMed Central

    Patel, Ami M.; Adeseun, Gbemisola A.; Goldfarb, Stanley

    2013-01-01

    The ingestion of calcium, along with alkali, results in a well-described triad of hypercalcemia, metabolic alkalosis, and renal insufficiency. Over time, the epidemiology and root cause of the syndrome have shifted, such that the disorder, originally called the milk-alkali syndrome, is now better described as the calcium-alkali syndrome. The calcium-alkali syndrome is an important cause of morbidity that may be on the rise, an unintended consequence of shifts in calcium and vitamin D intake in segments of the population. We review the pathophysiology of the calcium-alkali syndrome. PMID:24288027

  8. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  9. Alkali element background reduction in laser ICP-MS

    NASA Astrophysics Data System (ADS)

    Magee, C. W., Jr.; Norris, C. A.

    2014-11-01

    Alkali backgrounds in laser ablation ICP-MS analyses can be enhanced by electron-induced ionization of alkali contamination on the skimmer cone, reducing effective detection limits for these elements. Traditionally, this problem is addressed by isolating analyses of high alkali materials onto a designated cone set, or by operating the ICP-MS in a "soft extraction" mode, which reduces the energy of electrons repelled into the potentially contaminated sampling cone by the extraction field. Here we present a novel approach, where we replace the traditional alkali glass tuning standards with synthetic low-alkali glass reference materials. Using this vitreous tuning solution, we find that this approach reduces the amount of alkali contamination produced, halving backgrounds for the heavy alkali elements without any change to analytical procedures. Using segregated cones is still the most effective method for reducing lithium backgrounds, but since the procedures are complimentary both can easily be applied to the routine operations of an analytical lab.

  10. Alkali element background reduction in laser ICP-MS

    NASA Astrophysics Data System (ADS)

    Magee, C. W., Jr.; Norris, C. A.

    2015-03-01

    Alkali backgrounds in laser ablation ICP-MS analyses can be enhanced by electron-induced ionisation of alkali contamination on the skimmer cone, reducing effective detection limits for these elements. Traditionally, this problem is addressed by isolating analyses of high-alkali materials onto a designated cone set, or by operating the ICP-MS in a "soft extraction" mode, which reduces the energy of electrons repelled into the potentially contaminated sampling cone by the extraction field. Here we present a novel approach, where we replace the traditional alkali glass tuning standards with synthetic low-alkali glass reference materials. Using this vitreous tuning solution, we find that this approach reduces the amount of alkali contamination produced, halving backgrounds for the heavy alkali elements without any change to analytical procedures. Using segregated cones is still the most effective method for reducing lithium backgrounds, but since the procedures are complimentary, both can easily be applied to the routine operations of an analytical lab.

  11. Enhancing electrocatalytic hydrogen evolution by nickel salicylaldimine complexes with alkali metal cations in aqueous media.

    PubMed

    Shao, Haiyan; Muduli, Subas K; Tran, Phong D; Soo, Han Sen

    2016-02-18

    New salicylaldimine nickel complexes, comprising only earth-abundant elements, have been developed for electrocatalytic hydrogen evolution in aqueous media. The second-sphere ether functionalities on the periphery of the complexes enhance the electrocatalytic activity in the presence of alkali metal cations. The electrocatalysts demonstrate improved performances especially in the economical and sustainable seawater reaction medium. PMID:26779580

  12. Groundwater Modeling Of Mercury Pollution At A Former Mercury Cell Chlor Alkali Facility In Pavoldar, Kazakhstan

    EPA Science Inventory

    In Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severly contaminated with mercury and mercury compounds as a result of the industrial activity of this chemical pla...

  13. Mechanisms for plasma formation during high power pumping of XPAL

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Zatsarinny, Oleg; Bartschat, Klaus; Kushner, Mark J.

    2014-02-01

    During operation of the excimer pumped alkali laser, XPAL, large densities of alkali excited states are produced. Through superelastic electron collisional relaxation of these states, any pre-existing electrons will be heated, leading to additional ionization. The end result is plasma formation. A first principles global model has been developed for the Ar/Cs XPAL system to investigate the possible formation of plasma during high repetition rate, high power pumping; and the consequences on laser performance. Four- and five-level pumping schemes were used to enable assessment of XPAL operating on the Cs(62P3/2) → Cs(62S1/2) (852 nm) and Cs(62P1/2) → Cs(62S1/2) (894 nm) transitions. The model was parameterized as a function of pump power, excitation frequency, cell temperature (Cs vapor pressure) and collision mixing agent (N2) mole fraction. We found that at sufficiently high operating temperature, pump power and repetition rate, plasma formation in excess of 1014-1016 cm-3 occurs, which potentially reduces laser output power by electron collisional mixing of the upper and lower laser levels.

  14. Efficiency of spin-exchange optical pumping: theoretical limits and practical limitations

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher; Romalis, Michael; Happer, William

    1998-05-01

    We address the issue of how many optical pumping photons are required to polarize the nucleus of a ^3He atom through spin exchange with an alkali vapor. The optimal efficiency is measured to be a factor of 10 greater for K than for Rb. Considerations of the effects associated with the optical pumping cycle suggest that practical attainable efficiencies may be substantially lower than optimal efficiencies.

  15. Optically pumped gas laser using electronic transitions in the NaRb molecule

    SciTech Connect

    Kaslin, V.M.; Yakushev, O.F.

    1983-12-01

    Laser superradiance was achieved for the first time as a result of an electronic transition in a diatomic heteronuclear molecule as a result of direct optical pumping. This superradiance was observed in the region of 670 nm due to a transition to the ground state X/sup 1/..sigma../sup +/ of the intermetallic alkali molecule NaRb pumped by radiation from a pulsed copper vapor laser (lambda = 510.6 nm).

  16. Experimental research of a chain of diode pumped rubidium amplifiers.

    PubMed

    Li, Yunfei; Hua, Weihong; Li, Lei; Wang, Hongyan; Yang, Zining; Xu, Xiaojun

    2015-10-01

    In this paper, we have set up a diode pumped rubidium MOPA system with a chain of two amplifiers. The experimental results show an amplified laser power of 26W with amplification factor of 16.3 and power extraction efficiency of 53% for a single amplifier, and an amplified laser power of 11W with amplification factor of 7.9 and power extraction efficiency of 26% for a chain of two amplifiers. The reason for lower performance of cascade amplification is mainly due to the limited total pump power, which will be not sufficient for efficient pumping when assigned from a single amplifier into two amplifiers. The situation could be well improved by increasing the seed laser power as well as the pump power for each amplifier to realize high efficient saturated amplification. Such MOPA configuration has the potential for scaling high beam quality alkali laser into high powers. PMID:26480105

  17. Acidic Digestion in a Teleost: Postprandial and Circadian Pattern of Gastric pH, Pepsin Activity, and Pepsinogen and Proton Pump mRNAs Expression

    PubMed Central

    Yúfera, Manuel; Moyano, Francisco J.; Astola, Antonio; Pousão-Ferreira, Pedro; Martínez-Rodríguez, Gonzalo

    2012-01-01

    Two different modes for regulation of stomach acid secretion have been described in vertebrates. Some species exhibit a continuous acid secretion maintaining a low gastric pH during fasting. Others, as some teleosts, maintain a neutral gastric pH during fasting while the hydrochloric acid is released only after the ingestion of a meal. Those different patterns seem to be closely related to specific feeding habits. However, our recent observations suggest that this acidification pattern could be modified by changes in daily feeding frequency and time schedule. The aim of this study was to advance in understanding the regulation mechanisms of stomach digestion and pattern of acid secretion in teleost fish. We have examined the postprandial pattern of gastric pH, pepsin activity, and mRNA expression for pepsinogen and proton pump in white seabream juveniles maintained under a light/dark 12/12 hours cycle and receiving only one morning meal. The pepsin activity was analyzed according to the standard protocol buffering at pH 2 and using the actual pH measured in the stomach. The results show how the enzyme precursor is permanently available while the hydrochloric acid, which activates the zymogen fraction, is secreted just after the ingestion of food. Results also reveal that analytical protocol at pH 2 notably overestimates true pepsin activity in fish stomach. The expression of the mRNA encoding pepsinogen and proton pump exhibited almost parallel patterns, with notable increases during the darkness period and sharp decreases just before the morning meal. These results indicate that white seabream uses the resting hours for recovering the mRNA stock that will be quickly used during the feeding process. Our data clearly shows that both daily illumination pattern and feeding time are involved at different level in the regulation of the secretion of digestive juices. PMID:22448266

  18. The Effects of Hybrid Optical Pumping on the Electron Spin Filter.

    NASA Astrophysics Data System (ADS)

    Rosenberry, Mark; Gay, Timothy

    2016-05-01

    Under the low pressure conditions of our spin filter experiment, optically pumping a single alkali species runs into the problem of radiation trapping. To polarize a significant electron current requires a moderate alkali density, but in the absence of quenching effects such a vapor is limited to modest polarization, and hence the resulting electron polarization is also low. One possible solution is to introduce a second alkali species, which can be polarized by spin exchange with the laser polarized species. Since this second species does not interact with the laser, it does not suffer from radiation trapping, even if it has a substantial density. We report progress in experimental and computational studies of potassium/rubidium hybrid pumping in this regime

  19. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    BREHM, W.F.

    2003-01-01

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  20. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  1. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  2. Quantum magnetism of alkali Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Malinovskaya, Svetlana; Liu, Gengyuan

    2016-05-01

    We discuss a method to control dynamics in many-body spin states of 87Rb Rydberg atoms. The method permits excitation of cold gases and form ordered structures of alkali atoms. It makes use of a two-photon excitation scheme with circularly polarized and linearly chirped pulses. The method aims for controlled quantum state preparation in large ensembles. It is actual for experiments studding the spin hopping dynamics and realization of quantum random walks.

  3. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  4. Alkali metal protective garment and composite material

    SciTech Connect

    Ballif, J.L.; Yuan, W.W.

    1980-09-16

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium are described. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  5. Alkali metal protective garment and composite material

    SciTech Connect

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  6. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  7. Winding for linear pump

    DOEpatents

    Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.

    1989-01-01

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  8. Winding for linear pump

    DOEpatents

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  9. Study of superconducting state parameters of alkali alkali binary alloys by a pseudopotential

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2006-12-01

    A detailed study of the superconducting state parameters (SSP) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ∗, transition temperature TC, isotope effect exponent α and effective interaction strength N OV of ten alkali-alkali binary alloys i.e. Li 1- xNa x, Li 1- xK x, Li 1- xRb x, Li 1- xCs x, Na 1- xK x, Na 1- xRb x, Na 1- xCs x, K 1- xRb x, K 1- xCs x and Rb 1- xCs x are made within the framework of the model potential formalism and employing the pseudo-alloy-atom (PAA) model for the first time. We use the Ashcroft’s empty core (EMC) model potential for evaluating the superconducting properties of alkali alloys. Five different forms of local field correction functions viz. Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used to incorporate the exchange and correlation effects. A considerable influence of various exchange and correlation functions on λ and μ∗ is found from the present study. Reasonable agreement with the theoretical values of the SSP of pure components is found (corresponding to the concentration x = 0 or 1). It is also concluded that nature of the SSP strongly depends on the value of the atomic volume Ω0 of alkali-alkali binary alloys.

  10. Limiting thermal regimes of active disk elements under steady-state pumping and two-dimensional temperature distribution inside the disk

    SciTech Connect

    Alpat'ev, A N; Lis, Denis A; Smirnov, V A; Shcherbakov, Ivan A

    2010-09-10

    An analytic expression describing the stationary two-dimensional axially symmetric temperature distribution in a disk active element (AE) is derived upon pumping the entire disk whose thickness is 0.01 cm {<=} h {<=} 0.3 cm and the diameter-to-thickness ratio is 1 {<=} d/h {<=} 100. Thermomechanical stresses are calculated. It is shown that from the point of view of the disk damage, the tangential stress on the disk side face constitutes the major threat. For different scaling parameters x =d/h, the limiting lasing powers P{sub las} are estimated in multimode approximation, which can be obtained using a disk AE in the case of end and side cooling for different heat exchange coefficients a (by the example of an Nd : YAG crystal). It is found that the side cooling can decrease P{sub las} in some situations. The priority regions are established in the space of the parameters h, x, and a which, while increasing the pump intensity, are accompanied by one of the three events violating the normal operation of the laser: deterioration of spectral and luminescent AE parameters due to heating, malfunctioning of the cooling regime, or thermomechanical damage of the disk. It is shown that an increase in the scaling parameter x smoothes the radial temperature profile and the thermoelastic stress distribution profile. (lasers)

  11. High and rapid alkali cation storage in ultramicroporous carbonaceous materials

    NASA Astrophysics Data System (ADS)

    Yun, Young Soo; Lee, Seulbee; Kim, Na Rae; Kang, Minjee; Leal, Cecilia; Park, Kyu-Young; Kang, Kisuk; Jin, Hyoung-Joon

    2016-05-01

    To achieve better supercapacitor performance, efforts have focused on increasing the specific surface area of electrode materials to obtain higher energy and power density. The control of pores in these materials is one of the most effective ways to increase the surface area. However, when the size of pores decreases to a sub-nanometer regime, it becomes difficult to apply the conventional parallel-plate capacitor model because the charge separation distance (d-value) of the electrical double layer has a similar length scale. In this study, ultramicroporous carbonaceous materials (UCMs) containing sub-nanometer-scale pores are fabricated using a simple in situ carbonization/activation of cellulose-based compounds containing potassium. The results show that alkali cations act as charge carriers in the ultramicropores (<0.7 nm), and these materials can deliver high capacitances of ∼300 F g-1 at 0.5 A g-1 and 130 F g-1, even at a high current rate of 65 A g-1 in an aqueous medium. In addition, the UCM-based symmetric supercapacitors are stable over 10,000 cycles and have a high energy and power densities of 8.4 Wh kg-1 and 15,000 W kg-1, respectively. This study provides a better understanding of the effects of ultramicropores in alkali cation storage.

  12. Dirac Node Lines in Pure Alkali Earth Metals.

    PubMed

    Li, Ronghan; Ma, Hui; Cheng, Xiyue; Wang, Shoulong; Li, Dianzhong; Zhang, Zhengyu; Li, Yiyi; Chen, Xing-Qiu

    2016-08-26

    Beryllium is a simple alkali earth metal, but has been the target of intensive studies for decades because of its unusual electron behavior at surfaces. The puzzling aspects include (i) severe deviations from the description of the nearly free-electron picture, (ii) an anomalously large electron-phonon coupling effect, and (iii) giant Friedel oscillations. The underlying origins for such anomalous surface electron behavior have been under active debate, but with no consensus. Here, by means of first-principles calculations, we discover that this pure metal system, surprisingly, harbors the Dirac node line (DNL) that in turn helps to rationalize many of the existing puzzles. The DNL is featured by a closed line consisting of linear band crossings, and its induced topological surface band agrees well with previous photoemission spectroscopy observations on the Be (0001) surface. We further reveal that each of the elemental alkali earth metals of Mg, Ca, and Sr also harbors the DNL and speculate that the fascinating topological property of the DNL might naturally exist in other elemental metals as well. PMID:27610865

  13. Transport properties of alkali metal doped fullerides

    SciTech Connect

    Yadav, Daluram Yadav, Nishchhal

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  14. Transport properties of alkali metal doped fullerides

    NASA Astrophysics Data System (ADS)

    Yadav, Daluram; Yadav, Nishchhal

    2015-07-01

    We have studied the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, Tc, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported Tc (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  15. Synergistic capture mechanisms for alkali and sulfur species from combustion. Final report

    SciTech Connect

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Mwabe, P.O.

    1994-02-01

    Experimental work was carried out on a 17 kW, 600 cm long, gas laboratory combustor, to investigate the post flame reactive capture of alkali species by kaolinite. Emphasis was on alkali/sorbent interactions occurring in flue gas at temperatures above the alkali dewpoint and on the formation of water insoluble reaction products. Time-temperature studies were carried out by injecting kaolinite at different axial points along the combustor. The effect of chlorine and sulfur on alkali capture was investigated by doping the flame with SO{sub 2} and Cl{sub 2} gases to simulate coal flame environments. Particle time and temperature history was kept as close as possible to that which would ordinarily be found in a practical boiler. Experiments designed to extract apparent initial reaction rates were carried using a narrow range, 1-2 {mu}m modal size sorbent, while, a coarse, multi size sorbent was used to investigate the governing transport mechanisms. The capture reaction has been proposed to be between alkali hydroxide and activated kaolinite, and remains so in the presence of sulfur and chlorine. The presence of sulfur reduces sodium capture by under 10% at 1300{degree}C. Larger reductions at lower temperatures are attributed to the elevated dewpoint of sodium ({approximately}850{degree}C) with subsequent reduction in sorbent residence time in the alkali gas phase domain. Chlorine reduces sodium capture by 30% across the temperature range covered by the present experiments. This result has been linked to thermodynamic equilibria between sodium hydroxide, sodium chloride and water.

  16. Water Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently

  17. Potent inhibitory action of the gastric proton pump inhibitor lansoprazole against urease activity of Helicobacter pylori: unique action selective for H. pylori cells.

    PubMed Central

    Nagata, K; Satoh, H; Iwahi, T; Shimoyama, T; Tamura, T

    1993-01-01

    The gastric proton pump inhibitor lansoprazole, its active analog AG-2000, and omeprazole dose dependently inhibited urease activity extracted with distilled water from Helicobacter pylori cells; the 50% inhibitory concentrations were between 3.6 and 9.5 microM, which were more potent than those of urease inhibitors, such as acetohydroxamic acid, hydroxyurea, and thiourea. These compounds also inhibited urease activity in intact cells of H. pylori and Helicobacter mustelae but did not inhibit ureases from other bacteria, such as Proteus vulgaris, Proteus mirabilis, and Providencia rettgeri. The mechanism of urease inhibition was considered to be blockage of the SH groups of H. pylori urease, since SH residues in the enzyme decreased after preincubation with lansoprazole and glutathione or dithiothreitol completely abolished the inhibitory action. The SH-blocking reagents N-ethylmaleimide and idoacetamide were also examined for their inhibition of the urease activity; their 50% inhibitory concentrations were 100- to 1,000-fold higher than those of lansoprazole. These results suggest that lansoprazole and omeprazole can potently and selectively inhibit H. pylori urease and that inhibition may be related to earlier findings indicating that these compounds have selective activity against HP growth. PMID:8494373

  18. Potent inhibitory action of the gastric proton pump inhibitor lansoprazole against urease activity of Helicobacter pylori: unique action selective for H. pylori cells.

    PubMed

    Nagata, K; Satoh, H; Iwahi, T; Shimoyama, T; Tamura, T

    1993-04-01

    The gastric proton pump inhibitor lansoprazole, its active analog AG-2000, and omeprazole dose dependently inhibited urease activity extracted with distilled water from Helicobacter pylori cells; the 50% inhibitory concentrations were between 3.6 and 9.5 microM, which were more potent than those of urease inhibitors, such as acetohydroxamic acid, hydroxyurea, and thiourea. These compounds also inhibited urease activity in intact cells of H. pylori and Helicobacter mustelae but did not inhibit ureases from other bacteria, such as Proteus vulgaris, Proteus mirabilis, and Providencia rettgeri. The mechanism of urease inhibition was considered to be blockage of the SH groups of H. pylori urease, since SH residues in the enzyme decreased after preincubation with lansoprazole and glutathione or dithiothreitol completely abolished the inhibitory action. The SH-blocking reagents N-ethylmaleimide and idoacetamide were also examined for their inhibition of the urease activity; their 50% inhibitory concentrations were 100- to 1,000-fold higher than those of lansoprazole. These results suggest that lansoprazole and omeprazole can potently and selectively inhibit H. pylori urease and that inhibition may be related to earlier findings indicating that these compounds have selective activity against HP growth. PMID:8494373

  19. Contributions to the mixed-alkali effect in molecular dynamics simulations of alkali silicate glasses

    NASA Astrophysics Data System (ADS)

    Lammert, Heiko; Heuer, Andreas

    2005-12-01

    The mixed-alkali effect in the cation dynamics in silicate glasses is analyzed via molecular dynamics simulations. Observations suggest a description of the dynamics in terms of stable sites mostly specific to one ionic species. As main contributions to the mixed-alkali slow down longer residence times and an increased probability of correlated backjumps are identified. The slow down is related to the limited accessibility of foreign sites. The mismatch experienced in a foreign site is stronger and more retarding for the larger ions, the smaller ions can be temporarily accommodated. Also correlations between unlike as well as like cations are demonstrated that support cooperative behavior.

  20. Method for the safe disposal of alkali metal

    DOEpatents

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  1. PAPERS DEVOTED TO THE 90TH ANNIVERSARY OF A.M.PROKHOROV: Lasing properties of selectively pumped Raman-active Nd3+-doped molybdate and tungstate crystals

    NASA Astrophysics Data System (ADS)

    Basiev, Tasoltan T.; Doroshenko, Maxim E.; Ivleva, Lyudmila I.; Osiko, Vyacheslav V.; Kosmyna, M. B.; Komar', V. K.; Sulc, J.; Jelinkova, H.

    2006-08-01

    The lasing efficiency of Nd3+ ions is studied in laser materials capable of self-Raman frequency conversion. The lasing properties of tungstate and molybdate crystals with the scheelite structure (SrWO4, BaWO4, PbWO4, SrMoO4, PbMoO4) activated with neodymium ions are investigated upon longitudinal pumping by a 750-nm alexandrite laser or a 800-nm diode laser. The slope lasing efficiency obtained for a Nd3+:PbMoO4 laser emitting at 1054 nm is 54.3% for the total lasing efficiency of 46%, which is the best result for all the crystals with the scheelite structure studied so far. The simultaneous Q-switched lasing and self-Raman frequency conversion were demonstrated in neodymium-doped SrWO4, PbWO4, and BaWO4 crystals.

  2. Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin.

    PubMed

    Yang, Y S; Zhou, J T; Lu, H; Yuan, Y L; Zhao, L H

    2011-09-01

    A fungus strain F-3 was selected from fungal strains isolated from forest soil in Dalian of China. It was identified as one Aspergillus sp. stain F-3 with its morphologic, cultural characteristics and high homology to the genus of rDNA sequence. The budges or thickened node-like structures are peculiar structures of hyphae of the strain. The fungus degraded 65% of alkali lignin (2,000 mg l(-1)) after day 8 of incubation at 30°C at pH 7. The removal of colority was up to 100% at 8 days. The biodegradation of lignin by Aspergillus sp. F-3 favored initial pH 7.0. Excess acid or alkali conditions were not propitious to lignin decomposing. Addition of ammonium L: -tartrate or glucose delayed or repressed biodegradation activities. During lignin degradation, manganese peroxidase (28.2 U l(-1)) and laccase (3.5 U l(-1))activities were detected after day 7 of incubation. GC-MS analysis of biodegraded products showed strain F-3 could convert alkali lignin into small molecules or other utilizable products. Strain F-3 may co-culture with white rot fungus and decompose alkali lignin effectively. PMID:21350882

  3. Molecular water pumps.

    PubMed

    Zeuthen, T

    2000-01-01

    There is good evidence that cotransporters of the symport type behave as molecular water pumps, in which a water flux is coupled to the substrate fluxes. The free energy stored in the substrate gradients is utilized, by a mechanism within the protein, for the transport of water. Accordingly, the water flux is secondary active and can proceed uphill against the water chemical potential difference. The effect has been recognized in all symports studied so far (Table 1). It has been studied in details for the K+/Cl- cotransporter in the choroid plexus epithelium, the H+/lactate cotransporter in the retinal pigment epithelium, the intestinal Na+/glucose cotransporter (SGLT1) and the renal Na+/dicarboxylate cotransporter both expressed in Xenopus oocytes. The generality of the phenomenon among symports with widely different primary structures suggests that the property of molecular water pumps derives from a pattern of conformational changes common for this type of membrane proteins. Most of the data on molecular water pumps are derived from fluxes initiated by rapid changes in the composition of the external solution. There was no experimental evidence for unstirred layers in such experiments, in accordance with theoretical evaluations. Even the experimental introduction of unstirred layers did not lead to any measurable water fluxes. The majority of the experimental data supports a molecular model where water is cotransported: A well defined number of water molecules act as a substrate on equal footing with the non-aqueous substrates. The ratio of any two of the fluxes is constant, given by the properties of the protein, and is independent of the driving forces or other external parameters. The detailed mechanism behind the molecular water pumps is as yet unknown. It is, however, possible to combine well established phenomena for enzymes into a working model. For example, uptake and release of water is associated with conformational changes during enzymatic action; a

  4. Determination of the common and rare alkalies in mineral analysis

    USGS Publications Warehouse

    Wells, R.C.; Stevens, R.E.

    1934-01-01

    Methods are described which afford a determination of each member of the alkali group and are successful in dealing with the quantities of the rare alkalies found in rocks and minerals. The procedures are relatively rapid and based chiefly on the use of chloroplatinic acid, absolute alcohol and ether, and ammonium sulfate. The percentages of all the alkalies found in a number of minerals are given.

  5. Environmental mercury contamination around a chlor-alkali plant

    SciTech Connect

    Lodenius, M.; Tulisalo, E.

    1984-04-01

    The chlor-alkali industry is one of the most important emitters of mercury. This metal is effectively spread from chlor-alkali plants into the atmosphere and it has been reported that only a few percent of the mercury emissions are deposited locally the major part spreading over very large areas. The purpose of this investigation was to study the spreading of mercury up to 100 km from a chlor-alkali plant using three different biological indicators.

  6. Multiple pump housing

    DOEpatents

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  7. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  8. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  9. Design of a Mechanical NaK Pump for Fission Space Power

    NASA Technical Reports Server (NTRS)

    Mireles, Omar R.; Bradley, David E.; Godfroy, Thomas

    2011-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid, which has specific pumping requirements. Traditionally, electromagnetic linear induction pumps have been used to provide the required flow and pressure head conditions for NaK systems but they can be limited in performance, efficiency, and number of available vendors. The objective of the project was to develop a mechanical NaK centrifugal pump that takes advantages of technology advances not available in previous liquid metal mechanical pump designs. This paper details the design, build, and performance test of a mechanical NaK pump developed at NASA Marshall Space Flight Center. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  10. Theoretical description of transverse measurements of polarization in optically-pumped Rb vapor cells

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan; Tupa, Dale; Norrgard, Eric; Gay, Timothy

    2012-06-01

    In optical pumping of alkali-metal vapors, the polarization of the atoms is typically determined by probing along the entire length of the pumping beam, resulting in an averaged value of polarization over the length of the cell. Such measurements do not give any information about spatial variations of the polarization along the pump beam axis. Using a D1 probe beam oriented perpendicular to the pumping beam, we have demonstrated a heuristic method for determining the polarization along the pump beam's axis. Adapting a previously developed theory [1], we provide an analysis of the experiment which explains why this method works. The model includes the effects of Rb density, buffer gas pressure, and pump detuning. [4pt] [1] E.B. Norrgard, D. Tupa, J.M. Dreiling, and T.J. Gay, Phys. Rev. A 82, 033408 (2010).

  11. Different effects of proton pump inhibitors and famotidine on the clopidogrel metabolic activation by recombinant CYP2B6, CYP2C19 and CYP3A4.

    PubMed

    Ohbuchi, Masato; Noguchi, Kiyoshi; Kawamura, Akio; Usui, Takashi

    2012-07-01

    Inhibitory potential of proton pump inhibitors (PPIs) and famotidine, an H(2) receptor antagonist, on the metabolic activation of clopidogrel was evaluated using recombinant CYP2B6, CYP2C19 and CYP3A4. Formation of the active metabolite from an intermediate metabolite, 2-oxo-clopidogrel, was investigated by liquid chromatography-tandem mass spectrometry and three peaks corresponding to the pharmacologically active metabolite and its stereoisomers were detected. Omeprazole potently inhibited clopidogrel activation by CYP2C19 with an IC(50) of 12.8 μmol/L and more weakly inhibited that by CYP2B6 and CYP3A4. IC(50) of omeprazole for CYP2C19 and CYP3A4 was decreased about two- and three-fold, respectively, by 30-min preincubation with NADPH. Lansoprazole, esomeprazole, pantoprazole, rabeprazole and rabeprazole thioether, a major metabolite, also inhibited metabolic activation by CYP2C19, with an IC(50) of 4.3, 8.9, 48.3, 36.2 and 30.5 μmol/L, respectively. In contrast, famotidine showed no more than 20% inhibition of clopidogrel activation by CYP2B6, CYP2C19 and CYP3A4 at up to 100 μmol/L and had no time-dependent CYP2C19 and CYP3A4 inhibition. These results provide direct evidence that PPIs inhibit clopidogrel metabolic activation and suggest that CYP2C19 inhibition is the main cause of drug-drug interaction between clopidogrel and omeprazole. Famotidine is considered as a safe anti-acid agent for patients taking clopidogrel. PMID:22313038

  12. Electrodes For Alkali-Metal Thermoelectric Converters

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Wheeler, Bob L.; Jeffries-Nakamura, Barbara; Lamb, James L.; Bankston, C. Perry; Cole, Terry

    1989-01-01

    Combination of thin, porous electrode and overlying collector grid reduces internal resistance of alkali-metal thermoelectric converter cell. Low resistance of new electrode and grid boosts power density nearly to 1 W/cm2 of electrode area at typical operating temperatures of 1,000 to 1,300 K. Conductive grid encircles electrode film on alumina tube. Bus wire runs along tube to collect electrical current from grid. Such converters used to transform solar, nuclear, and waste heat into electric power.

  13. Cathode architectures for alkali metal / oxygen batteries

    SciTech Connect

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  14. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    SciTech Connect

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  15. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    PubMed

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions. PMID:27375042

  16. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 < x < 6.0 ) with Na at Na-beta'-alumina, and Mo with K at K-beta'-alumina. Both liquid metal/solid electrolyte/alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  17. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes

    PubMed Central

    Sompong, Weerachat; Cheng, Henrique; Adisakwattana, Sirichai

    2015-01-01

    Ferulic acid (FA) is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM) significantly reduced the levels of glycated hemoglobin (HbA1c) whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM) prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes. PMID:26053739

  18. The development of high-performance alkali-hybrid polarized He3 targets for electron scattering

    DOE PAGESBeta

    Singh, Jaideep T.; Dolph, Peter A.M.; Tobias, William Al; Averett, Todd D.; Kelleher, Aiden; Mooney, K. E.; Nelyubin, Vladimir V.; Wang, Yunxiao; Zheng, Yuan; Cates, Gordon D.

    2015-05-01

    We present the development of high-performance polarized ³He targets for use in electron scattering experiments that utilize the technique of alkali-hybrid spin-exchange optical pumping. We include data obtained during the characterization of 24 separate target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. The results presented here document dramatic improvement in the performance of polarized ³He targets, as well as the target properties and operating parameters that made those improvements possible. Included in our measurements were determinations of the so-called X-factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable ³He polarization to well under 100%. The presence of this spin-relaxation mechanism was clearly evident in our data. We also present results from a simulation of the alkali-hydrid spin-exchange optical pumping process that was developed to provide guidance in the design of these targets. Good agreement with actual performance was obtained by including details such as off-resonant optical pumping. Now benchmarked against experimental data, the simulation is useful for the design of future targets. Included in our results is a measurement of the K- ³He spin-exchange rate coefficientmore » $$k^\\mathrm{K}_\\mathrm{se} = \\left ( 7.46 \\pm 0.62 \\right )\\!\\times\\!10^{-20}\\ \\mathrm{cm^3/s}$$ over the temperature range 503 K to 563 K.« less

  19. In vitro bioactivity investigation of alkali treated Ti6Al7Nb alloy foams

    NASA Astrophysics Data System (ADS)

    Butev, Ezgi; Esen, Ziya; Bor, Sakir

    2015-02-01

    Biocompatible Ti6Al7Nb alloy foams with 70% porosity manufactured by space holder method were activated via alkali treatment using 5 M NaOH solution at 60 °C. The interconnected pore structures enabled formation of homogenous sodium rich coating on the foam surfaces by allowing penetration of alkali solution throughout the pores which had average size of 200 μm. The resulted coating layer having 500 nm thickness exhibited porous network morphology with 100 nm pore size. On the other hand, heat treatment conducted subsequent to alkali treatment at 600 °C in air transformed sodium rich coating into crystalline bioactive sodium titanate phases. Although the coatings obtained by additional heat treatment were mechanically stable and preserved their morphology, oxidation of the samples deteriorated the compressive strength significantly without affecting the elastic modulus. However, heat treated samples revealed better hydroxyapatite formation when soaked in simulated body fluid (SBF) compared to alkali treated foams. On the other hand, untreated surfaces containing bioactive TiO2 layer were observed to comprise of Ca and P rich precipitates only rather than hydroxyapatite within 15 days. The apatite formed on the treated porous surfaces was observed to have flower-like structure with Ca/P ratio around 1.5 close to that of natural bone.

  20. Design of a Mechanical NaK Pump for Fission Space Power Systems

    NASA Technical Reports Server (NTRS)

    Mireles, Omar R.; Bradley, David; Godfroy, Thomas

    2010-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for mid-range spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid. Traditionally, linear induction pumps have been used to provide the required flow and head conditions for liquid metal systems but can be limited in performance. This paper details the design, build, and check-out test of a mechanical NaK pump. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  1. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, T.H.; Call, W.R.

    Apparatus for continuous pumping using cycling cryopumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels that alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independant pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  2. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  3. Alternative backing up pump for turbomolecular pumps

    DOEpatents

    Myneni, Ganapati Rao

    2003-04-22

    As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

  4. Gastrostomy feeding tube - pump - child

    MedlinePlus

    Feeding - gastrostomy tube - pump; G-tube - pump; Gastrostomy button - pump; Bard Button - pump; MIC-KEY - pump ... Gather supplies: Feeding pump (electronic or battery powered) Feeding set that matches the feeding pump (includes a feeding bag, drip chamber, roller clamp, ...

  5. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations. PMID:27248118

  6. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  7. Unconventional Superconductivity of Alkali-doped Fullerenes

    NASA Astrophysics Data System (ADS)

    Potocnik, Anton; Krajnc, Andraz; Jeglic, Peter; Prassides, Kosmas; Rosseinsky, Matthew J.; Arcon, Denis

    2014-03-01

    The superconductivity of the alkali-doped fullerenes (A3C60, A = alkali metal) has been so far discussed within the standard theory of superconductivity developed by Bardeen, Cooper and Shrieffer (BCS), even thought, they exhibit relatively high critical temperatures (up to Tc = 32 K). However, after our recent high-pressure measurements on Cs3C60 such description became questionable. We have shown that the superconducting phase of A3C60, in fact, borders the antiferromagnetic insulating phase (AFI), commonly observed for high-temperature superconductors like cuprates or pnictides. In addition, we also increased the maximal Tc to 38 K. To investigate this peculiar superconductivity close to the border with AFI state we employed nuclear magnetic resonance technique on Cs3-xRbxC60 and on Cs3C60 at various high pressures. Our results could not be correctly explained either by the standard BCS or the extended BCS that includes electron-electron repulsion interaction - the Migdal-Eliashberg theory. Far better agreement is obtained by the Dynamical Mean Field Theory. Due to similarity with other unconventional superconductors these results could also be relevant to other unconventional high-temperature superconductors.

  8. Dynamics of reactive ultracold alkali polar molecules

    NASA Astrophysics Data System (ADS)

    Quéméner, Goulven; Bohn, John; Petrov, Alexander; Kotochigova, Svetlana

    2011-05-01

    Recently, ultracold polar molecules of KRb have been created. These molecules are chemically reactive and their lifetime in a trap is limited. However, their lifetime increases when they are loaded into a 1D optical lattice in the presence of an electric field. These results naturally raise the question of manipulating ultracold collisions of other species of alkali dimer molecules, with an eye toward both novel stereochemistry, as well as suppressing unwanted reactions, to enable condensed matter applications. In this talk, we report on a comparative study between the bi-alkali polar molecules of LiNa, LiK, LiRb, LiCs which have been predicted to be reactive. We compute the isotropic C6 coefficients of these systems and we predict the elastic and reactive rate coefficients when an electric field is applied in a 1D optical lattice. We will discuss the efficacy of evaporative cooling for each species. This work was supported by a MURI-AFOSR grant.

  9. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical..., chemical destruction and carbon adsorption. (iv) Release to water. Requirements as specified in § 721.90...

  10. Formation of lysinoalanine in egg white under alkali treatment.

    PubMed

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2016-03-01

    To investigate the formation mechanism of lysinoalanine (LAL) in eggs during the alkali treatment process, NaOH was used for the direct alkali treatment of egg white, ovalbumin, and amino acids; in addition, the amount of LAL formed during the alkali treatment process was measured. The results showed that the alkali treatment resulted in the formation of LAL in the egg white. The LAL content increased with increasing pH and temperature, with the LAL content first increasing and then leveling off with increasing time. The amount of LAL formed in the ovalbumin under the alkali treatment condition accounted for approximately 50.51% to 58.68% of the amount of LAL formed in the egg white. Thus, the LAL formed in the ovalbumin was the main source for the LAL in the egg white during the alkali treatment process. Under the alkali treatment condition, free L-serine, L-cysteine, and L-cystine reacted with L-lysine to form LAL; therefore, they are the precursor amino acids of LAL formed in eggs during the alkali treatment process. PMID:26772660

  11. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  12. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  13. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  14. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  15. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  16. Self-discharge in bimetallic cells containing alkali metal

    NASA Technical Reports Server (NTRS)

    Foster, M. S.; Hesson, J. C.; Shimotake, H.

    1969-01-01

    Theoretical analysis of thermally regenerative bimetallic cells with alkali metal anodes shows a relation between the current drawn and the rate of discharge under open-circuit conditions. The self-discharge rate of the cell is due to the dissolution and ionization of alkali metal atoms in the fused-salt electrolyte

  17. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  18. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  19. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl...

  20. Heat pump technology: Responding to new opportunities

    SciTech Connect

    Baxter, V.D.; Creswick, F.A. ); Snelson, W.K. . Institute for Mechnical Engineering)

    1993-01-01

    This paper provides an update on advanced heat pump research and development activities in the United States and Canada. Under the general area of vapor compression technology a major need toward which these research programs are directed is the development of viable alternatives to HCFC-22 for heat pump and air-conditioning applications. The HCFC phaseout provides an opportunity to develop advanced refrigeration equipment for the new refrigerants which has higher energy efficiency than current heat pump systems. Programs are underway in both industry and government laboratories and are characterized by close collaboration between major manufacturers and government agencies to plan and execute the research. Under the general area of thermally activated heat pump technology, there are several cooperative early-commercialization activities being conducted on gas-fired heat pumps and chillers by government, HVAC industry, and gas utility organizations.

  1. Adsorption properties of carbon materials produced by thermolysis of brown coal in the presence of alkali metal hydroxides

    SciTech Connect

    Tamarkina, Y.V.; Maslova, L.A.; Khabarova, T.V.; Kucherenko, V.A.

    2008-07-15

    Activated carbons produced by thermolysis of brown coal impregnated with an alkali metal hydroxide MOH (M = Li, Na, K) at an MOH/coal ratio R-MOH = 80 mol kg{sup -1} were studied. Dependences of the adsorption capacities for iodine and Methylene Blue dye, specific surface area, and yield of activated carbons on the ratio R-MOH were obtained.

  2. Effects of alkali treatments on Ag nanowire transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  3. The interactions of sorbates with gallosilicates and alkali-metal exchanged gallosilicates

    NASA Astrophysics Data System (ADS)

    Limtrakul, J.; Kuno, M.; Treesukol, P.

    1999-11-01

    Structures, energetics and vibrational frequencies of the interaction of adsorbates with H-aluminosilicates (H-AlZ), H-gallosilicates (H-GaZ), alkali-metal exchanged aluminosilicates (X-AlZ) and alkali-metal exchanged gallosilicates (X-GaZ), where X being Li, Na, or K, have been carried out at B3LYP and HF levels of theory with 6-31G(d) as the basis set. The charge compensating alkali-metal ions can affect the catalytically active site (Si-O-T where T=Al or Ga) by weakening the Si-O, Al-O, and Ga-O bonds as compared to their anionic frameworks. Comparing the net stabilization energies, Δ ENSE, of the naked alkali-metal/H 2O adducts with those of the alkali-metal exchanged zeolite/H 2O systems, the latter amounts only to about 50% of the former, which is partly due to the destabilizing role of the negative zeolitic oxygen frameworks surrounding the cations. The interaction of sorbates with the alkali-metal exchanged gallosilicates can be employed to probe the field strength inside the catalytic frameworks as indicated by the plot of the binding energy, Δ E, versus 1/ RX-O w2, with R(X-O w) being the distance between the cationic nucleus and the oxygen atom of the adsorbate. The IR spectra of H 2O adsorbed on Na-AlZ are calculated to be 3584, 3651, and 1686 cm -1. The obtained results are in excellent agreement with the very recent experimental IR spectra of water adsorbed on Na-ZSM-5 of Zecchina et al. (J. Phys. Chem., 100 (1996) 16 484). Other important features, i.e. the correlation between Δ νOH and, Δ E, R(X-O w) , and 1/ RX-O w2, cationic size, demonstrate that the interactions of sorbates with alkali-metal exchanged gallosilicates are well approximated by electrostatic contribution.

  4. Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas. Quarterly report, April-June 1980

    SciTech Connect

    Johnson, I.; Swift, W.M.; Lee, S.H.D.; Boyd, W.A.

    1980-07-01

    In the application of pressurized fluidized-bed combustors (PFBC) to the generation of electricity, hot corrosion of gas turbine components by alkali metal compounds is a potential problem. The objective of this investigation is to develop a method for removing these gaseous alkali metal compounds from the high-pressure high-temperature gas from a PFBC before the gas enters the gas turbine. A granular-bed filter, using either diatomaceous earth or activated bauxite as the bed material, is the concept currently being studied. Results are presented for the testing of diatomaceous earth for alkali vapor sorption at 800/sup 0/C and 9-atm pressure, using a simulated flue gas. Activated bauxite sorbent can be regenerated by leaching with water, and the kinetics of the leaching is under study.

  5. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, J.L.

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  6. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, John E.

    1984-01-01

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  7. Analysis of the pump-beam path in corner-pumped slab laser

    SciTech Connect

    Chen Li; Qiang Liu; Mali Gong; Gang Chen; Ping Yan

    2007-06-30

    The propagation of the pump radiation in active slab elements is considered. Conditions of the total internal reflection of the pump radiation are obtained, and are used to construct a series of graphical illustrations of reflection characteristics of different active elements. (control of laser radiation parameters)

  8. Potentiation of antibacterial activity of the MB-1 siderophore-monobactam conjugate using an efflux pump inhibitor.

    PubMed

    Tomaras, Andrew P; Crandon, Jared L; McPherson, Craig J; Nicolau, David P

    2015-04-01

    Preliminary enthusiasm over the encouraging spectrum and in vitro activities of siderophore conjugates, such as MB-1, was recently tempered by unexpected variability in in vivo efficacy. The need for these conjugates to compete for iron with endogenously produced siderophores has exposed a significant liability for this novel antibacterial strategy. Here, we have exploited dependence on efflux for siderophore secretion in Pseudomonas aeruginosa and provide evidence that efflux inhibition may circumvent this in vivo-relevant resistance liability. PMID:25605364

  9. Potentiation of Antibacterial Activity of the MB-1 Siderophore-Monobactam Conjugate Using an Efflux Pump Inhibitor

    PubMed Central

    Crandon, Jared L.; McPherson, Craig J.; Nicolau, David P.

    2015-01-01

    Preliminary enthusiasm over the encouraging spectrum and in vitro activities of siderophore conjugates, such as MB-1, was recently tempered by unexpected variability in in vivo efficacy. The need for these conjugates to compete for iron with endogenously produced siderophores has exposed a significant liability for this novel antibacterial strategy. Here, we have exploited dependence on efflux for siderophore secretion in Pseudomonas aeruginosa and provide evidence that efflux inhibition may circumvent this in vivo-relevant resistance liability. PMID:25605364

  10. Protective effect of antioxidants against sarcoplasmic reticulum (SR) oxidation by Fenton reaction, however without prevention of Ca-pump activity.

    PubMed

    Voss, Peter; Engels, Martina; Strosova, Miriam; Grune, Tilman; Horakova, Lubica

    2008-10-01

    The Ca(2+)-ATPase of the sarcoplasmic reticulum (SERCA) of rabbit skeletal muscle was oxidized by Fe2+/H2O2/ascorbic acid (AA), a system which generates HO(.) radicals according to the Fenton reaction: (Fe2(+)+H2O2-->HO(.)+OH(-)+Fe(3+)) under conditions similar to the pathological state of inflammation. Under these conditions, when hydroxyl-radicals and/or ferryl-radicals are generated, a 50% decrease of the SERCA activity was observed, a significant decrease of SH groups and an increase of protein carbonyl groups and lipid peroxidation were identified. Two new bands, time dependent in density, appeared in the SERCA protein electrophoresis after incubation with the Fenton system (at approximately 50 and 75kDa), probably due to structural changes as supported also by trypsin digestion. Immunoblotting of DNPH derivatized protein bound carbonyls detected a time dependent increase after incubation of SERCA with the Fenton system. Trolox and the pyridoindole stobadine (50microM) protected SR against oxidation induced via the Fenton system by preventing SH group oxidation and lipid peroxidation. Pycnogenol((R)) and EGb761 (40microg/ml) protected SERCA in addition against protein bound carbonyl formation. In spite of the antioxidant effects, trolox and stobadine were not able to prevent a decrease in the SERCA Ca(2+)-ATPase activity. Pycnogenol and EGb761 even enhanced the decrease of the Ca(2+)-ATPase activity induced by the Fenton system, probably by secondary oxidative reactions. PMID:18692562

  11. Liquid metal enabled pump

    PubMed Central

    Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2014-01-01

    Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485

  12. Insulin pump (image)

    MedlinePlus

    The catheter at the end of the insulin pump is inserted through a needle into the abdominal ... with diabetes. Dosage instructions are entered into the pump's small computer and the appropriate amount of insulin ...

  13. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by glands in ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This is a ...

  14. Sizing pumps for slurries

    SciTech Connect

    Akhtar, S.Z.

    1996-11-01

    Slurry characteristics have a significant impact on centrifugal pump performance. For instance, as particle size increases or the percent solids concentration increases, pump head and efficiency decrease. Therefore, before a slurry pump is selected, it is important to define the slurry characteristics as accurately as possible. The effect of the slurry characteristics on the head and efficiency of the centrifugal pump will be emphasized (the effect on flowrate is less significant). The effect of slurry characteristics is more predominant in smaller pumps (with smaller diameter impellers) than in larger pumps. The data and relationship between the various slurry parameters have been developed from correlations and nomographs published by pump vendors from their field data and test results. The information helps to avoid specifying an undersized pump/motor assembly for slurry service.

  15. Elastic properties of alkali-feldspars

    NASA Astrophysics Data System (ADS)

    Waeselmann, N.; Brown, J.; Angel, R. J.; Ross, N.; Kaminsky, W.

    2013-12-01

    New measurements of single crystal elastic moduli for a suite of the alkali feldspars are reported. In order to interpret Earth's seismic structure, knowledge of the elastic properties of constituent minerals is essential. The elasticity of feldspar minerals, despite being the most abundant phase in Earth's crust (estimated to be more than 60%), were previously poorly characterized. All prior seismic and petrologic studies have utilized 50-year-old results, of questionable quality, based on 1-bar measurements on pseudo-single crystals. Alkali-feldspars present a large experimental challenge associated with their structural complexity. In the K-end member (KAlSi3O8) the symmetry is governed by Al/Si ordering, in the Na-end member (NaAlSi3O8) the symmetry is governed by whether or not there is a displacive collapse of the framework independent of the Al/Si ordering. K-feldspars exhibit monoclinic (C2/m) symmetry (necessitating determination of 13 elastic moduli) if disordered and triclinic (C-1) symmetry (21 elastic moduli) if ordered. Exsolution of Na-rich and K-rich phases is ubiquitous in natural samples, making it difficult to find suitable single phase and untwinned samples for study. The small single domain samples selected for this study were previously characterized by x-ray diffraction and microprobe analysis to ensure adequate sample quality. Surface wave velocities were measured on oriented surfaces of natural and synthetic single crystals using impulsively stimulated light scattering. A surface corrugation with a spacing of about 2 microns was impulsively created by the overlap of 100 ps infrared light pulses. The time evolution of the stimulated standing elastic waves was detected by measuring the intensity of diffraction from the surface corrugation of a variably delayed probe pulse. This method allows accurate (better than 0.2%) determination of velocities on samples smaller than 100 microns. The combination of measured surface wave velocities and

  16. Photovoltaic pump systems

    NASA Astrophysics Data System (ADS)

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  17. Sodium-pump gene-expression, protein abundance and enzyme activity in isolated nephron segments of the aging rat kidney

    PubMed Central

    Scherzer, Pnina; Gal-Moscovici, Anca; Sheikh-Hamad, David; Popovtzer, Mordecai M

    2015-01-01

    Aging is associated with alteration in renal tubular functions, including sodium handling and concentrating ability. Na-K-ATPase plays a key role in driving tubular transport, and we hypothesized that decreased concentrating ability of the aging kidney is due in part to downregulation of Na-K-ATPase. In this study, we evaluated Na and K balance, aldosterone levels, and Na-K-ATPase gene expression, protein abundance, and activity in aging rat kidney. Na-K-ATPase activity (assayed microfluorometrically), mRNA (RT-PCR), and protein abundance (immunoblotting) were quantitated in the following isolated nephron segments: PCT, PST, MTAL, DCT, and CCD from 2, 8, 15, and 24 month-old-rats. In the course of aging, creatinine clearance decreased from 0.48 ± 0.02 mL/min/100 g BW to 0.28 ± 0.06 (P < 0.001) and aldosterone decreased from 23.6 ± 0.8 ng/dL to 13.2 ± 0.6 (P < 0.001). Serum Na+ and K+ increased by 4.0% and 22.5%, respectively. Na-K-ATPase activity, mRNA, and protein abundance of the α1 subunit displayed similar trends in all assayed segments; increasing in PCT and PST; decreasing in MTAL and DCT; increasing in CCD: in PCT they increased by 40%, 75%, and 250%, respectively; while in PST they increased by 80%, 50%, and 100%, respectively (P < 0.001). In MTAL they declined by 36%, 24%, and 34%, respectively, and in DCT by 38%, 59%, and 60%, respectively (P < 0.001). They were higher in CCD by 110%, 115%, and 246%, respectively (P < 0.001). Rats maintained Na/K balance; however with a steady state elevated serum K+. These results reveal quantitative changes in axial distribution of Na-K-ATPase at the level of gene expression, protein abundance, and activity in the nephrons of aging animals and may explain, in part, the pathophysiology of the senescent kidney. PMID:26056060

  18. Reactions between cold methyl halide molecules and alkali-metal atoms

    SciTech Connect

    Lutz, Jesse J.; Hutson, Jeremy M.

    2014-01-07

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH{sub 3}X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH{sub 3}X + A → CH{sub 3} + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  19. Solvent-averaged potentials for alkali-, earth alkali-, and alkylammonium halide aqueous solutions

    NASA Astrophysics Data System (ADS)

    Hess, Berk; van der Vegt, Nico F. A.

    2007-12-01

    We derive effective, solvent-free ion-ion potentials for alkali-, earth alkali-, and alkylammonium halide aqueous solutions. The implicit solvent potentials are parametrized to reproduce experimental osmotic coefficients. The modeling approach minimizes the amount of input required from atomistic (force field) models, which usually predict large variations in the effective ion-ion potentials at short distances. For the smaller ion species, the reported potentials are composed of a Coulomb and a Weeks-Chandler-Andersen term. For larger ions, we find that an additional, attractive potential is required at the contact minimum, which is related to solvent degrees of freedom that are usually not accounted for in standard electrostatics models. The reported potentials provide a simple and accurate force field for use in molecular dynamics and Monte Carlo simulations of (poly-)electrolyte systems.

  20. Alkali oxide-tantalum oxide and alkali oxide-niobium oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Parker, H. S.; Brower, W. S.; Minor, D.

    1974-01-01

    A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems Nb2O5-LiNbO3, Nb2O5-NaNbO3, Nb2O5-KNbO3, Ta2O5-NaTaO3, Ta2O5-LiTaO3, and Ta2O5-KTaO3. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaluated (by the sponsoring agency) by dielectric loss measurements. Attempts were made to grow large crystals of eight different phases. The system Ta2O5-KTaO3 contains at least three phases which showed peaks in dielectric loss vs. temperature. All three contain structures related to the tungsten bronzes with alkali ions in non-stoichiometric crystallographic positions.