Sample records for activities ambient monitoring

  1. Ambient Monitoring Technology Information Center (AMTIC)

    EPA Pesticide Factsheets

    This site contains information on ambient air quality monitoring programs, monitoring methods, quality assurance and control procedures, and federal regulations related to ambient air quality monitoring.

  2. AMBIENT AIR MONITORING STRATEGY

    EPA Science Inventory

    The Clean Air Act requires EPA to establish national ambient air quality standards and to regulate as necessary, hazardous air pollutants. EPA uses ambient air monitoring to determine current air quality conditions, and to assess progress toward meeting these standards and relat...

  3. From intensive care monitoring to personal health monitoring to ambient intelligence.

    PubMed

    Rienhoff, Otto

    2013-01-01

    The historical roots of IT-based monitoring in health care are described. Since the 1970ies monitoring has been spreading to more and more domains of health care and public health. Today one can observe monitoring of persons in many environments and regarding widely different questions. While these monitoring applications have been introduced ethical questions have been raised to balance the possible positive and negative outcomes of the approaches. Today IT-technology is entering many parts of our life - IT eventually became what had been coined already in the last century by IBM as "electronic dust" which one can find in every part of our environment. As most of these "dust-particles" are able to observe something one can also understand this development as a development into ubiquitous monitoring of nearly everything at any time. The foreseen ambient intelligence worlds are also spaces of ambient monitoring. This article describes this historical development. It emphasizes why ethical and data protection questions are an absolute must in most IT activities today.

  4. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...

  5. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...

  6. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...

  7. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...

  8. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...

  9. Implicit Interaction: A Modality for Ambient Exercise Monitoring

    NASA Astrophysics Data System (ADS)

    Wan, J.; O'Grady, M. J.; O'Hare, G. M. P.

    Ambient Exercise refers to the implicit exercise that people undertake in the course of their everyday duties - a simple example being climbing stairs. Increasing awareness of the potential health benefits of such activities may well contribute to an increase in a person’s well-being. Initially, it is necessary to monitor and quantify such exercise so that personalized fitness plans may be constructed. In this paper, the implicit interaction modality is harnessed to enable the capturing of ambient exercise activity thereby facilitating its subsequent quantification and interpretation. The novelty of the solution proposed lies in its ubiquity and transparency.

  10. Technology review: prototyping platforms for monitoring ambient conditions.

    PubMed

    Afolaranmi, Samuel Olaiya; Ramis Ferrer, Borja; Martinez Lastra, Jose Luis

    2018-05-08

    The monitoring of ambient conditions in indoor spaces is very essential owing to the amount of time spent indoors. Specifically, the monitoring of air quality is significant because contaminated air affects the health, comfort and productivity of occupants. This research work presents a technology review of prototyping platforms for monitoring ambient conditions in indoor spaces. It involves the research on sensors (for CO 2 , air quality and ambient conditions), IoT platforms, and novel and commercial prototyping platforms. The ultimate objective of this review is to enable the easy identification, selection and utilisation of the technologies best suited for monitoring ambient conditions in indoor spaces. Following the review, it is recommended to use metal oxide sensors, optical sensors and electrochemical sensors for IAQ monitoring (including NDIR sensors for CO 2 monitoring), Raspberry Pi for data processing, ZigBee and Wi-Fi for data communication, and ThingSpeak IoT platform for data storage, analysis and visualisation.

  11. AMBIENT CARBON MONOXIDE MONITOR

    EPA Science Inventory

    A portable instrument has been designed and two units have been built to monitor the concentration of CO in ambient air. The air flows through a sampling section that is approximately 43 cm long with a 28-pass optical system that produces a total path of 12 meters. Gas-filter cor...

  12. WORKSHOP ON SOURCE EMISSION AND AMBIENT AIR MONITORING OF MERCURY

    EPA Science Inventory

    AN EPA/ORD Workshop on Source Emission and Ambient Air Monitoring of Mercury was held on 9/13-14/99, Bloomington, Minnesota. The purpose of the workshop was to discuss the state-of-the-science in source and ambient air mercury monitoring as well as mercury monitoring research and...

  13. 78 FR 16184 - Revision to Ambient Nitrogen Dioxide Monitoring Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... Revision to Ambient Nitrogen Dioxide Monitoring Requirements AGENCY: Environmental Protection Agency (EPA... ambient air quality standard (NAAQS) for nitrogen dioxide (NO 2 ) for the near-road component of the NO 2... Nitrogen Dioxide Monitoring Requirements Docket, Docket ID No. EPA-HQ-OAR-2012- 0486, EPA Docket Center...

  14. Single-station monitoring of volcanoes using seismic ambient noise

    NASA Astrophysics Data System (ADS)

    De Plaen, Raphael S. M.; Lecocq, Thomas; Caudron, Corentin; Ferrazzini, Valérie; Francis, Olivier

    2016-08-01

    Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-station" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multidisciplinary continuous monitoring. Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single three-component seismometer.

  15. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...

  16. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...

  17. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...

  18. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...

  19. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...

  20. Test/QA Plan (TQAP) for Verification of Semi-Continuous Ambient Air Monitoring Systems

    EPA Science Inventory

    The purpose of the semi-continuous ambient air monitoring technology (or MARGA) test and quality assurance plan is to specify procedures for a verification test applicable to commercial semi-continuous ambient air monitoring technologies. The purpose of the verification test is ...

  1. Ambient air monitoring of Beijing MSW logistics facilities in 2006.

    PubMed

    Li, Chun-Ping; Li, Guo-Xue; Luo, Yi-Ming; Li, Yan-Fu

    2008-11-01

    In China, "green" integrated waste management methods are being implemented in response to environmental concerns. We measured the air quality at several municipal solid waste (MSW) sites to provide information for the incorporation of logistics facilities within the current integrated waste management system. We monitored ambient air quality at eight MSW collecting stations, five transfer stations, one composting plant, and five disposal sites in Beijing during April 2006. Composite air samples were collected and analyzed for levels of odor, ammonia (NH3), hydrogen sulfide (H2S), total suspended particles (TSPs), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2). The results of our atmospheric monitoring demonstrated that although CO and SO2 were within acceptable emission levels according to ambient standards, levels of H2S, TSP, and NO2 in the ambient air at most MSW logistics facilities far exceeded ambient limits established for China. The primary pollutants in the ambient air at Beijing MSW logistics facilities were H2S, TSPs, NO2, and odor. To improve current environmental conditions at MSW logistics facilities, the Chinese government encourages the separation of biogenic waste from MSW at the source.

  2. Method development estimating ambient mercury concentration from monitored mercury wet deposition

    NASA Astrophysics Data System (ADS)

    Chen, S. M.; Qiu, X.; Zhang, L.; Yang, F.; Blanchard, P.

    2013-05-01

    Speciated atmospheric mercury data have recently been monitored at multiple locations in North America; but the spatial coverage is far less than the long-established mercury wet deposition network. The present study describes a first attempt linking ambient concentration with wet deposition using Beta distribution fitting of a ratio estimate. The mean, median, mode, standard deviation, and skewness of the fitted Beta distribution parameters were generated using data collected in 2009 at 11 monitoring stations. Comparing the normalized histogram and the fitted density function, the empirical and fitted Beta distribution of the ratio shows a close fit. The estimated ambient mercury concentration was further partitioned into reactive gaseous mercury and particulate bound mercury using linear regression model developed by Amos et al. (2012). The method presented here can be used to roughly estimate mercury ambient concentration at locations and/or times where such measurement is not available but where wet deposition is monitored.

  3. METHODOLOGY FOR SITING AMBIENT AIR MONITORS AT THE NEIGHBORHOOD SCALE

    EPA Science Inventory

    In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards for particulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region in order to achieve monitor siting objectives.

    We p...

  4. Coherent ambient infrasound recorded by the International Monitoring System

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; LandèS, Matthieu; Le Pichon, Alexis; Ceranna, Lars; Brown, David

    2013-01-01

    The ability of the International Monitoring System (IMS) infrasound network to detect atmospheric nuclear explosions and other signals of interest is strongly dependent on station-specific ambient noise. This ambient noise includes both incoherent wind noise and real coherent infrasonic waves. Previous ambient infrasound noise models have not distinguished between incoherent and coherent components. We present a first attempt at statistically and systematically characterizing coherent infrasound recorded by the IMS. We perform broadband (0.01-5 Hz) array processing with the IMS continuous waveform archive (39 stations from 1 April 2005 to 31 December 2010) using an implementation of the Progressive Multi-Channel Correlation algorithm in log-frequency space. From these results, we estimate multi-year 5th, 50th, and 95th percentiles of the RMS pressure of coherent signals in 15 frequency bands for each station. We compare the resulting coherent infrasound models with raw power spectral density noise models, which inherently include both incoherent and coherent components. Our results indicate that IMS arrays consistently record coherent ambient infrasound across the broad frequency range from 0.01 to 5 Hz when wind noise levels permit. The multi-year averaging emphasizes continuous signals such as oceanic microbaroms, as well as persistent transient signals such as repetitive volcanic, surf, thunder, or anthropogenic activity. Systematic characterization of coherent infrasound detection is important for quantifying a station's recording environment, signal-to-noise ratio as a function of frequency and direction, and overall performance, which all influence the detection probability of specific signals of interest.

  5. High-throughput in Vitro Data To Inform Prioritization of Ambient Water Monitoring and Testing for Endocrine Active Chemicals.

    PubMed

    Heiger-Bernays, Wendy J; Wegner, Susanna; Dix, David J

    2018-01-16

    The presence of industrial chemicals, consumer product chemicals, and pharmaceuticals is well documented in waters in the U.S. and globally. Most of these chemicals lack health-protective guidelines and many have been shown to have endocrine bioactivity. There is currently no systematic or national prioritization for monitoring waters for chemicals with endocrine disrupting activity. We propose ambient water bioactivity concentrations (AWBCs) generated from high throughput data as a health-based screen for endocrine bioactivity of chemicals in water. The U.S. EPA ToxCast program has screened over 1800 chemicals for estrogen receptor (ER) and androgen receptor (AR) pathway bioactivity. AWBCs are calculated for 110 ER and 212 AR bioactive chemicals using high throughput ToxCast data from in vitro screening assays and predictive pathway models, high-throughput toxicokinetic data, and data-driven assumptions about consumption of water. Chemical-specific AWBCs are compared with measured water concentrations in data sets from the greater Denver area, Minnesota lakes, and Oregon waters, demonstrating a framework for identifying endocrine bioactive chemicals. This approach can be used to screen potential cumulative endocrine activity in drinking water and to inform prioritization of future monitoring, chemical testing and pollution prevention efforts.

  6. Time-Lapse Monitoring with 4D Seismic Coda Waves in Active, Passive and Ambient Noise Data

    NASA Astrophysics Data System (ADS)

    Lumley, D. E.; Kamei, R.; Saygin, E.; Shragge, J. C.

    2017-12-01

    The Earth's subsurface is continuously changing, due to temporal variations in fluid flow, stress, temperature, geomechanics and geochemistry, for example. These physical changes occur at broad tectonic and earthquake scales, and also at very detailed near-surface and reservoir scales. Changes in the physical states of the earth cause time-varying changes in the physical properties of rocks and fluids, which can be monitored with natural or manmade seismic waves. Time-lapse (4D) seismic monitoring is important for applications related to natural and induced seismicity, hydrocarbon and groundwater reservoir depletion, CO2 sequestration etc. An exciting new research area involves moving beyond traditional methods in order to use the full complex time-lapse scattered wavefield (4D coda waves) for both manmade active-source 3D/4D seismic data, and also to use continuous recordings of natural-source passive seismic data, especially (micro) earthquakes and ocean ambient noise. This research involves full wave-equation approaches including waveform inversion (FWI), interferometry, Large N sensor arrays, "big data" information theory, and high performance supercomputing (HPC). I will present high-level concepts and recent data results that are quite spectacular and highly encouraging.

  7. Implications of observed and simulated ambient flow in monitoring wells.

    PubMed

    Elci, B A; Molz, F J; Waldrop, W R

    2001-01-01

    A recent paper by Hutchins and Acree (2000) has called attention to ground water sampling bias due to ambient (natural gradient-induced) flows in monitoring wells. Data collected with borehole flowmeters have shown that such ambient flows are ubiquitous in both confined and unconfined aquifers. Developed herein is a detailed three-dimensional model of flow and transport in the vicinity of a fully penetrating monitoring well. The model was used to simulate a measured ambient flow distribution around a test well in a heterogeneous aquifer at the Savannah River Site (SRS) near Aiken, South Carolina. Simulated ambient flows agreed well with measurements. Natural flow was upward, so water entered the well mainly through high K layers in the lower portion of the aquifer and exited through similar layers in the upper portion. The maximum upward discharge in the well was about 0.28 L/min, which implied an induced exchange of 12 m3/month from the bottom half of the aquifer to the upper half. Tracer transport simulations then illustrated how a contaminant located initially in a lower portion of the aquifer was continuously transported into the upper portion and diluted throughout the entire well by in-flowing water. Even after full purging or micropurging, samples from such a well will yield misleading and ambiguous data concerning solute concentrations, location of a contaminant source, and plume geometry. For all of these reasons, use of long-screened monitoring wells should be phased out, unless an appropriate multilevel sampling device prevents vertical flow.

  8. Assessment of SRS ambient air monitoring network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, K.; Jannik, T.

    Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, ifmore » any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned« less

  9. Environmental Technology Verification Report for Applikon MARGA Semi-Continuous Ambient Air Monitoring System

    EPA Science Inventory

    The verification test was conducted oer a period of 30 days (October 1 to October 31, 2008) and involved the continuous operation of duplicate semi-continuous monitoring technologies at the Burdens Creek Air Monitoring Site, an existing ambient-air monitoring station located near...

  10. A Collaborative Approach to Monitoring Ambient Volcanogenic Pollution at Sulphur Springs, Saint Lucia.

    NASA Astrophysics Data System (ADS)

    Joseph, E. P.; Beckles, D. M.; Cox, L.; Jackson, V. B.; Alexander, D.

    2015-12-01

    The role of volcano tourism is recognized as an important contributor to the economy of volcanic islands in the Lesser Antilles. However, if it is to be promoted as a sustainable sector of the tourism industry, visitors, tour operators, and vendors must be made aware of the potential health hazards facing them in volcanic environments. Volcanogenic air pollutants are of primary concern in this setting. In general, no warning signs, guidelines for recreational use, or emissions monitoring currently exists to provide warning to the public to decrease their vulnerability to the potential risks, or to minimize the liability of the agencies managing these areas. Sulphur Springs Park in Saint Lucia is a popular international destination, and concerns about the volcanic emissions and its possible health effect have been raised by visitors, staff, and management of the Park. As part of the responsibility of the UWI, Seismic Research Centre (SRC) to provide volcanic surveillance through its geothermal monitoring programme, a network was established for quantifying the ambient SO2 concentrations at Sulphur Springs in order to assess the potential risk of unsafe exposure. This effort required collaboration with the National Emergency Management Organization (NEMO) of Saint Lucia, as well as the staff and management of the Soufrière Regional Development Foundation (SRDF). Local personnel were trained in the active field sampling and analytical techniques required for the assessment of ambient SO2 concentrations over the monitoring period, thereby contributing to an active community-based effort. This type of approach was also thought to be an effective option for scientists to engage communities as partners in disaster risk reduction. Lessons learnt from this experience are presented for the benefit of other citizen monitoring projects, including its use as a tool for promoting volcanic hazard education, and enhancing communication and understanding between geoscientists and

  11. Monitoring earthen dams and levees with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Planès, T.; Mooney, M.; Rittgers, J. B.; Kanning, W.; Draganov, D.

    2017-12-01

    Internal erosion is a major cause of failure of earthen dams and levees and is difficult to detect at an early stage by traditional visual inspection techniques. The passive and non-invasive ambient-noise correlation technique could help detect and locate internal changes taking place within these structures. First, we apply this passive seismic method to monitor a canal embankment model submitted to piping erosion, in laboratory-controlled conditions. We then present the monitoring of a sea levee in the Netherlands. A 150m-long section of the dike shows sandboils in the drainage ditch located downstream of the levee. These sandboils are the sign of concentrated seepage and potential initiation of internal erosion in the structure. Using the ambient-noise correlation technique, we retrieve surface waves propagating along the crest of the dike. Temporal variations of the seismic wave velocity are then computed during the tide cycle. These velocity variations are correlated with local in-situ pore water pressure measurements and are possibly influenced by the presence of concentrated seepage paths.

  12. Single station monitoring of volcanoes using seismic ambient noise

    NASA Astrophysics Data System (ADS)

    De Plaen, R. S.; Lecocq, T.; Caudron, C.; Ferrazzini, V.; Francis, O.

    2016-12-01

    During volcanic eruptions, magma transport causes gas release, pressure perturbations and fracturing in the plumbing system. The potential subsequent surface deformation that can be detected using geodetic techniques and deep mechanical processes associated with magma pressurization and/or migration and their spatial-temporal evolution can be monitored with volcanic seismicity. However, these techniques respectively suffer from limited sensitivity to deep changes and a too short-term temporal distribution to expose early aseismic processes such as magma pressurisation. Seismic ambient noise cross-correlation uses the multiple scattering of seismic vibrations by heterogeneities in the crust to retrieves the Green's function for surface waves between two stations by cross-correlating these diffuse wavefields. Seismic velocity changes are then typically measured from the cross-correlation functions with applications for volcanoes, large magnitude earthquakes in the far field and smaller magnitude earthquakes at smaller distances. This technique is increasingly used as a non-destructive way to continuously monitor small seismic velocity changes ( 0.1%) associated with volcanic activity, although it is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-stations" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multi-disciplinary continuous monitoring. Over the past decade, this volcano was increasingly studied using the traditional cross-station approach and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new

  13. Ambient temperature and activation of implantable cardioverter defibrillators

    NASA Astrophysics Data System (ADS)

    McGuinn, L.; Hajat, S.; Wilkinson, P.; Armstrong, B.; Anderson, H. R.; Monk, V.; Harrison, R.

    2013-09-01

    The degree to which weather influences the occurrence of serious cardiac arrhythmias is not fully understood. To investigate, we studied the timing of activation of implanted cardiac defibrillators (ICDs) in relation to daily outdoor temperatures using a fixed stratum case-crossover approach. All patients attending ICD clinics in London between 1995 and 2003 were recruited onto the study. Temperature exposure for each ICD patient was determined by linking each patient's postcode of residence to their nearest temperature monitoring station in London and the South of England. There were 5,038 activations during the study period. Graphical inspection of ICD activation against temperature suggested increased risk at lower but not higher temperatures. For every 1 °C decrease in ambient temperature, risk of ventricular arrhythmias up to 7 days later increased by 1.2 % (95 % CI -0.6 %, 2.9 %). In threshold models, risk of ventricular arrhythmias increased by 11.2 % (0.5 %, 23.1 %) for every 1° decrease in temperature below 2 °C. Patients over the age of 65 exhibited the highest risk. This large study suggests an inverse relationship between ambient outdoor temperature and risk of ventricular arrhythmias. The highest risk was found for patients over the age of 65. This provides evidence about a mechanism for some cases of low-temperature cardiac death, and suggests a possible strategy for reducing risk among selected cardiac patients by encouraging behaviour modification to minimise cold exposure.

  14. Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: laboratory experiments.

    PubMed

    Hadziioannou, Céline; Larose, Eric; Coutant, Olivier; Roux, Philippe; Campillo, Michel

    2009-06-01

    Previous studies have shown that small changes can be monitored in a scattering medium by observing phase shifts in the coda. Passive monitoring of weak changes through ambient noise correlation has already been applied to seismology, acoustics, and engineering. Usually, this is done under the assumption that a properly reconstructed Green function (GF), as well as stable background noise sources, is necessary. In order to further develop this monitoring technique, a laboratory experiment was performed in the 2.5 MHz range in a gel with scattering inclusions, comparing an active (pulse-echo) form of monitoring to a passive (correlation) one. Present results show that temperature changes in the medium can be observed even if the GF of the medium is not reconstructed. Moreover, this article establishes that the GF reconstruction in the correlations is not a necessary condition: The only condition to monitoring with correlation (passive experiment) is the relative stability of the background noise structure.

  15. Ambient air monitoring plan for Ciudad Acuna and Piedra Negras, Coahuila, Mexico. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winberry, J.; Henning, L.; Crume, R.

    1998-01-01

    The Cities of Ciudad Acuna and Piedras Negras and the State of Coahuila in Mexico are interested in improving ambient air quality monitoring capabilities in the two cities through the establishment of a network of ambient air monitors. The purpose of the network is to characterize population exposure to potentially harmful air contaminants, possibly including sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), ozone (O{sub 3}), carbon monoxide (CO), total suspended particulate matter (TSP), particulate matter with aerodynamic diameter less than 100 micrometers PM-10, and lead. This report presents the results of an evaluation of existing air quality monitoring equipmentmore » and facilities in Ciudad Acuna and Piedras Negras. Additionally, the report presents recommendations for developing an air quality monitoring network for PM-10, SO{sub 2}, lead, and ozone in these cities, using a combination of both new and existing equipment. The human resources currently available and ultimately needed to operate and maintain the network are also discussed.« less

  16. The National Ambient Air Monitoring Stategy: Rethinking the Role of National Networks

    EPA Science Inventory

    A current re-engineering of the United States routine ambient monitoring networks intended to improve the balance in addressing both regulatory and scientific objectives is addressed in this paper. Key attributes of these network modifications include the addition of collocated ...

  17. Different relationships between personal exposure and ambient concentration by particle size.

    PubMed

    Guak, Sooyoung; Lee, Kiyoung

    2018-04-06

    Ambient particulate matter (PM) concentrations at monitoring stations were often used as an indicator of population exposure to PM in epidemiological studies. The correlation between personal exposure and ambient concentrations of PM varied because of diverse time-activity patterns. The aim of this study was to determine the relationship between personal exposure and ambient concentrations of PM 10 and PM 2.5 with minimal impact of time-activity pattern on personal exposure. Performance of the MicroPEM, v3.2 was evaluated by collocation with central ambient air monitors for PM 10 and PM 2.5 . A field technician repeatedly conducted measurement of 24 h personal exposures to PM 10 and PM 2.5 with a fixed time-activity pattern of office worker over 26 days in Seoul, Korea. The relationship between the MicroPEM and the ambient air monitor showed good linearity. Personal exposure and ambient concentrations of PM 2.5 were highly correlated with a fixed time-activity pattern compared with PM 10 . The finding implied a high infiltration rate of PM 2.5 and low infiltration rate of PM 10 . The relationship between personal exposure and ambient concentrations of PM 10 and PM 2.5 was different for high level episodes. In the Asian dust episode, staying indoors could reduce personal exposure to PM 10 . However, personal exposure to PM 2.5 could not be reduced by staying indoors during the fine dust advisory episode.

  18. Ambient Air Quality Data Inventory

    EPA Pesticide Factsheets

    The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as state, local, and tribal air pollution control agencies. Its component data sets have been collected over the years from approximately 10,000 monitoring sites, of which approximately 5,000 are currently active. OAR's Office of Air Quality Planning and Standards (OAQPS) and other internal and external users, rely on this data to assess air quality, assist in Attainment/Non-Attainment designations, evaluate State Implementation Plans for Non-Attainment Areas, perform modeling for permit review analysis, and other air quality management functions. Air quality information is also used to prepare reports for Congress as mandated by the Clean Air Act. This data covers air quality data collected after 1980, when the Clean Air Act requirements for monitoring were significantly modified. Air quality data from the Agency's early years (1970s) remains available (see OAR PRIMARY DATA ASSET: Ambient Air Quality Data -- Historical), but because of technical and definitional differences the two data assets are not directly comparable. The Clean Air Act of 1970 provided initial authority for monitoring air quality for Conventional Air Pollutants (CAPs) for which EPA has promulgated National Ambient Air Quality Standards (NAAQS). Requirements for monitoring visibility-related parameters were added in 1977. Requiremen

  19. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    PubMed

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-06

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information.

  20. 77 FR 55832 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of a New Equivalent Method

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... Methods: Designation of a New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of a new equivalent method for monitoring ambient air quality. SUMMARY: Notice is... part 53, a new equivalent method for measuring concentrations of PM 2.5 in the ambient air. FOR FURTHER...

  1. Ambient Noise Monitoring of the Santa Clara and San Gabriel Aquifers

    NASA Astrophysics Data System (ADS)

    Clements, T.; Denolle, M.

    2016-12-01

    Ambient noise cross-correlation is an effective technique to monitor temporal changes in the properties of the solid earth. The technique has had particular success in monitoring over time scales differing by orders of magnitude, with precursors to volcanic eruptions occurring over days [Brenguier, et al., 2008, Nature] and post-seismic relaxation in fault zones occurring over years [Brenguier, et al., 2008, Science]. Recently, the technique was extended to investigate the interaction of the solid earth and climate via ice sheet melt [Mordret et al.,2016]. In that vein, we use ambient noise cross-correlation to monitor basin-scale aquifers. The technique is amenable to studying aquifers, as it has potential for high spatial resolution, on the scale of a basin and can monitor aquifer recharge/draw down on timescales from large, single-day storms to multi-year droughts. Geodetics studies have previously recorded both long term, in the Santa Clara Valley [Chaussard et al., 2014, Schmidt and Burgmann, 2003], and short-term, in the San Gabriel Valley [King et al. 2007], ground uplift due to aquifer recharge. We use the Moving Window Cross Spectral technique [Clarke et al., 2011] to monitor wave-speed perturbation in the Santa Clara valley over the period 2001-2016 and San Gabriel Basin over the period 1995-2016. Preliminary results, using stations from the Berkeley Digital Seismograph Network and the USGS Northern California Regional Network, show that seismic velocities vary 0.1% intra-annually. We explore the temporal variations, along with correlations in observed ground water data, precipitation and geodesic measurements to deduce the poroelastic properties of the aquifers during the last two El-Nino and recent droughts in California.

  2. 75 FR 45627 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR part 53, one new equivalent method for measuring concentrations of lead (Pb) in total...

  3. 75 FR 51039 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... Monitoring Reference and Equivalent Methods: Designation of Two New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of two new equivalent methods for monitoring ambient air... accordance with 40 CFR Part 53, two new equivalent methods for measuring concentrations of PM 10 and sulfur...

  4. 75 FR 30022 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR Part 53, one new equivalent method for measuring concentrations of lead (Pb) in total...

  5. 75 FR 9894 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR part 53, one new equivalent method for measuring concentrations of lead (Pb) in total...

  6. Monitoring activity patterns and trends of older adults.

    PubMed

    Virone, G; Sixsmith, A

    2008-01-01

    This paper presents a pattern mining model developed for the continuous monitoring of high level activities and home-based behaviors for functional and cognitive status assessment with ambient assisted living systems such as in the EU-funded SOPRANO project. Motivating older people to engage in regular physical exercise is a key task of SOPRANO to improve health status and executive functions. A case study has been elaborated through software simulations to show how physical everyday life activity such as walking or sitting could be assessed and controlled for a better health lifestyle using the model.

  7. 76 FR 62402 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... Monitoring Reference and Equivalent Methods; Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR Part 53, one new equivalent method for measuring concentrations of ozone (O 3 ) in the...

  8. 75 FR 22126 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR Part 53, one new equivalent method for measuring concentrations of ozone (O 3 ) in the...

  9. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction

    NASA Astrophysics Data System (ADS)

    Mainsant, Guénolé; Larose, Eric; Brönnimann, Cornelia; Jongmans, Denis; Michoud, Clément; Jaboyedoff, Michel

    2012-03-01

    Given that clay-rich landslides may become mobilized, leading to rapid mass movements (earthflows and debris flows), they pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity in the liquefied zones, which could be detected by monitoring shear wave velocity variations. With this purpose in mind, the ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  10. Ambient changes in tracer concentrations from a multilevel monitoring system in Basalt

    USGS Publications Warehouse

    Bartholomay, Roy C.; Twining, Brian V.; Rose, Peter E.

    2014-01-01

    Starting in 2008, a 4-year tracer study was conducted to evaluate ambient changes in groundwater concentrations of a 1,3,6-naphthalene trisulfonate tracer that was added to drill water. Samples were collected under open borehole conditions and after installing a multilevel groundwater monitoring system completed with 11 discrete monitoring zones within dense and fractured basalt and sediment layers in the eastern Snake River aquifer. The study was done in cooperation with the U.S. Department of Energy to test whether ambient fracture flow conditions were sufficient to remove the effects of injected drill water prior to sample collection. Results from thief samples indicated that the tracer was present in minor concentrations 28 days after coring, but was not present 6 months after coring or 7 days after reaming the borehole. Results from sampling the multilevel monitoring system indicated that small concentrations of the tracer remained in 5 of 10 zones during some period after installation. All concentrations were several orders of magnitude lower than the initial concentrations in the drill water. The ports that had remnant concentrations of the tracer were either located near sediment layers or were located in dense basalt, which suggests limited groundwater flow near these ports. The ports completed in well-fractured and vesicular basalt had no detectable concentrations.

  11. Monitoring Sea Surface Processes Using the High Frequency Ambient Sound Field

    DTIC Science & Technology

    2006-09-30

    Pacific (ITCZ 10ºN, 95ºW), 3) Bering Sea coastal shelf, 4) Ionian Sea, 5) Carr Inlet, Puget Sound , Washington, and 6) Haro Strait, Washington/BC...Southern Resident Killer Whale ( Puget Sound ). In coastal and inland waterways, anthropogenic noise is often present. These signals are usually...Monitoring Sea Surface Processes Using the High Frequency Ambient Sound Field Jeffrey A. Nystuen Applied Physics Laboratory University of

  12. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    USDA-ARS?s Scientific Manuscript database

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  13. Continuous Cough Monitoring Using Ambient Sound Recording During Convalescence from a COPD Exacerbation.

    PubMed

    Crooks, Michael G; den Brinker, Albertus; Hayman, Yvette; Williamson, James D; Innes, Andrew; Wright, Caroline E; Hill, Peter; Morice, Alyn H

    2017-06-01

    Cough is common in chronic obstructive pulmonary disease (COPD) and is associated with frequent exacerbations and increased mortality. Cough increases during acute exacerbations (AE-COPD), representing a possible metric of clinical deterioration. Conventional cough monitors accurately report cough counts over short time periods. We describe a novel monitoring system which we used to record cough continuously for up to 45 days during AE-COPD convalescence. This is a longitudinal, observational study of cough monitoring in AE-COPD patients discharged from a single teaching hospital. Ambient sound was recorded from two sites in the domestic environment and analysed using novel cough classifier software. For comparison, the validated hybrid HACC/LCM cough monitoring system was used on days 1, 5, 20 and 45. Patients were asked to record symptoms daily using diaries. Cough monitoring data were available for 16 subjects with a total of 568 monitored days. Daily cough count fell significantly from mean ± SEM 272.7 ± 54.5 on day 1 to 110.9 ± 26.3 on day 9 (p < 0.01) before plateauing. The absolute cough count detected by the continuous monitoring system was significantly lower than detected by the hybrid HACC/LCM system but normalised counts strongly correlated (r = 0.88, p < 0.01) demonstrating an ability to detect trends. Objective cough count and subjective cough scores modestly correlated (r = 0.46). Cough frequency declines significantly following AE-COPD and the reducing trend can be detected using continuous ambient sound recording and novel cough classifier software. Objective measurement of cough frequency has the potential to enhance our ability to monitor the clinical state in patients with COPD.

  14. Test/QA Plan for Verification of Semi-Continuous Ambient Air Monitoring Systems - Second Round

    EPA Science Inventory

    Test/QA Plan for Verification of Semi-Continuous Ambient Air Monitoring Systems - Second Round. Changes reflect performance of second round of testing at new location and with various changes to personnel. Additional changes reflect general improvements to the Version 1 test/QA...

  15. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  16. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.

    1998-01-01

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  17. A comparative analysis of modeled and monitored ambient hazardous air pollutants in Texas: a novel approach using concordance correlation.

    PubMed

    Lupo, Philip J; Symanski, Elaine

    2009-11-01

    Often, in studies evaluating the health effects of hazardous air pollutants (HAPs), researchers rely on ambient air levels to estimate exposure. Two potential data sources are modeled estimates from the U.S. Environmental Protection Agency (EPA) Assessment System for Population Exposure Nationwide (ASPEN) and ambient air pollutant measurements from monitoring networks. The goal was to conduct comparisons of modeled and monitored estimates of HAP levels in the state of Texas using traditional approaches and a previously unexploited method, concordance correlation analysis, to better inform decisions regarding agreement. Census tract-level ASPEN estimates and monitoring data for all HAPs throughout Texas, available from the EPA Air Quality System, were obtained for 1990, 1996, and 1999. Monitoring sites were mapped to census tracts using U.S. Census data. Exclusions were applied to restrict the monitored data to measurements collected using a common sampling strategy with minimal missing values over time. Comparisons were made for 28 HAPs in 38 census tracts located primarily in urban areas throughout Texas. For each pollutant and by year of assessment, modeled and monitored air pollutant annual levels were compared using standard methods (i.e., ratios of model-to-monitor annual levels). Concordance correlation analysis was also used, which assesses linearity and agreement while providing a formal method of statistical inference. Forty-eight percent of the median model-to-monitor values fell between 0.5 and 2, whereas only 17% of concordance correlation coefficients were significant and greater than 0.5. On the basis of concordance correlation analysis, the findings indicate there is poorer agreement when compared with the previously applied ad hoc methods to assess comparability between modeled and monitored levels of ambient HAPs.

  18. Field testing of new-technology ambient air ozone monitors.

    PubMed

    Ollison, Will M; Crow, Walt; Spicer, Chester W

    2013-07-01

    Multibillion-dollar strategies control ambient air ozone (O3) levels in the United States, so it is essential that the measurements made to assess compliance with regulations be accurate. The predominant method employed to monitor O3 is ultraviolet (UV) photometry. Instruments employ a selective manganese dioxide or heated silver wool "scrubber" to remove O3 to provide a zero reference signal. Unfortunately, such scrubbers remove atmospheric constituents that absorb 254-nm light, causing measurement interference. Water vapor also interferes with the measurement under some circumstances. We report results of a 3-month field test of two new instruments designed to minimize interferences (2B Technologies model 211; Teledyne-API model 265E) that were operated in parallel with a conventional Thermo Scientific model 49C O3 monitor. The field test was hosted by the Houston Regional Monitoring Corporation (HRM). The model 211 photometer scrubs O3 with excess nitric oxide (NO) generated in situ by photolysis of added nitrous oxide (N2O) to provide a reference signal, eliminating the need for a conventional O3 scrubber. The model 265E analyzer directly measures O3-NO chemiluminescence from added excess NO to quantify O3 in the sample stream. Extensive quality control (QC) and collocated monitoring data are assessed to evaluate potential improvements to the accuracy of O3 compliance monitoring. Two new-technology ozone monitors were compared with a conventional monitor under field conditions. Over 3 months the conventional monitor reported more exceedances of the current standard than the new instruments, which could potentially result in an area being misjudged as "nonattainment." Instrument drift can affect O3 data accuracy, and the same degree of drift has a proportionally greater compliance effect as standard stringency is increased. Enhanced data quality assurance and data adjustment may be necessary to achieve the improved accuracy required to judge compliance with

  19. AMBIENT LEVEL VOLATILE ORGANIC COMPOUND (VOC) MONITORING USING SOLID ADSORBANTS - RECENT U.S. EPA STUDIES

    EPA Science Inventory

    Ambient air spiked with 1-10 ppbv concentrations of 41 toxic volatile organic compounds (VOCs) listed in U.S. Environmental Protection Agency (EPA) Compendium Method TO-14A was monitored using solid sorbents for sample collection and a Varian Saturn 2000 ion trap mass spectrome...

  20. The effect of ambient ozone and humidity on the performance of nylon and Teflon filters used in ambient air monitoring filter-pack systems

    Treesearch

    PE Padgett

    2010-01-01

    Nylon and Teflon filter media are frequently used for monitoring ambient air pollutants. These media are subject to many environmental factors that may influence adsorption and retention of particulate and gaseous nitrogenous pollutants. This study evaluated the effects of ozone and humidity on the efficacy of nylon and Teflon filters used in the US dry deposition...

  1. Development of sleep monitoring system for observing the effect of the room ambient toward the quality of sleep

    NASA Astrophysics Data System (ADS)

    Saad, W. H. M.; Khoo, C. W.; Rahman, S. I. Ab; Ibrahim, M. M.; Saad, N. H. M.

    2017-06-01

    Getting enough sleep at the right times can help in improving quality of life and protect mental and physical health. This study proposes a portable sleep monitoring device to determine the relationship between the room ambient and quality of sleep. Body condition parameter such as heart rate, body temperature and body movement was used to determine quality of sleep and Audio/video-based monitoring system. The functionality test on all sensors is carried out to make sure that all sensors is working properly. The functionality of the overall system is designed for a better experience with a very minimal intervention to the user. The simple test on the body condition (body temperature and heart rate) while asleep with several different ambient parameters (humidity, brightness and temperature) are varied and the result shows that someone has a better sleep in a dark and colder ambient. This can prove by lower body temperature and lower heart rate.

  2. Ambient seismic noise monitoring of the Super-Sauze landslide from a very dense temporary seismic array

    NASA Astrophysics Data System (ADS)

    Chtouki, Toufik; Vergne, Jerome; Provost, Floriane; Malet, Jean-Philippe; Burtin, Arnaud; Hibert, Clément

    2017-04-01

    The Super-Sauze landslide is located on the southern part of the Barcelonnette Basin (French Alps) and has developed in a soft clay-shale environment. It is one of the four sites continuously monitored through a wide variety of geophysical and hydro-geological techniques in the framework of the OMIV French national landslide observatory. From early June to mid-July 2016, a temporary dense seismic array has been installed in the most active part of the landslide and at its surroundings. 50 different sites with an average inter-station distance of 50m have been instrumented with 150 miniaturized and autonomous seismic stations (Zland nodes), allowing a continuous record of the seismic signal at frequencies higher than 0.2Hz over an almost regular grid. Concurrently, a Ground-Based InSAR device allowed for a precise and continuous monitoring of the surface deformation. Overall, this experiment is intended to better characterize the spatio-temporal evolution of the deformation processes related to various type of forcing. We analyze the continuous records of ambient seismic noise recorded by the dense array. Using power spectral densities, we characterize the various types of natural and anthropogenic seismic sources, including the effect of water turbulence and bedload transport in the small nearby torrents. We also compute the correlation of the ambient diffuse seismic noise in various frequency bands for the 2448 station pairs to recover the empirical Green functions between them. The temporal evolution of the coda part of these noise correlation functions allows monitoring and localizing shear wave velocity variations in the sliding mass. Here we present some preliminary results of this analysis and compare the seismic variations to meteorological data and surface deformation.

  3. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring

    PubMed Central

    Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K. K.

    2018-01-01

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), and oxidants (Ox) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor. PMID:29360749

  4. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring.

    PubMed

    Wei, Peng; Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K K

    2018-01-23

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO₂), and oxidants (O x ) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO₂ and ozone on a newly introduced oxidant sensor.

  5. Selecting optimal monitoring site locations for peak ambient particulate material concentrations using the MM5-CAMx4 numerical modelling system.

    PubMed

    Sturman, Andrew; Titov, Mikhail; Zawar-Reza, Peyman

    2011-01-15

    Installation of temporary or long term monitoring sites is expensive, so it is important to rationally identify potential locations that will achieve the requirements of regional air quality management strategies. A simple, but effective, numerical approach to selecting ambient particulate matter (PM) monitoring site locations has therefore been developed using the MM5-CAMx4 air pollution dispersion modelling system. A new method, 'site efficiency,' was developed to assess the ability of any monitoring site to provide peak ambient air pollution concentrations that are representative of the urban area. 'Site efficiency' varies from 0 to 100%, with the latter representing the most representative site location for monitoring peak PM concentrations. Four heavy pollution episodes in Christchurch (New Zealand) during winter 2005, representing 4 different aerosol dispersion patterns, were used to develop and test this site assessment technique. Evaluation of the efficiency of monitoring sites was undertaken for night and morning aerosol peaks for 4 different particulate material (PM) spatial patterns. The results demonstrate that the existing long term monitoring site at Coles Place is quite well located, with a site efficiency value of 57.8%. A temporary ambient PM monitoring site (operating during winter 2006) showed a lower ability to capture night and morning peak aerosol concentrations. Evaluation of multiple site locations used during an extensive field campaign in Christchurch (New Zealand) in 2000 indicated that the maximum efficiency achieved by any site in the city would be 60-65%, while the efficiency of a virtual background site is calculated to be about 7%. This method of assessing the appropriateness of any potential monitoring site can be used to optimize monitoring site locations for any air pollution measurement programme. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. 77 FR 60985 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... Methods: Designation of Three New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of three new equivalent methods for monitoring ambient air quality. SUMMARY... equivalent methods, one for measuring concentrations of PM 2.5 , one for measuring concentrations of PM 10...

  7. Structural health monitoring on medium rise reinforced concrete building using ambient vibration method

    NASA Astrophysics Data System (ADS)

    Kamarudin, A. F.; Mokhatar, S. N.; Zainal Abidin, M. H.; Daud, M. E.; Rosli, M. S.; Ibrahim, A.; Ibrahim, Z.; Noh, M. S. Md

    2018-04-01

    Monitoring of structural health from initial stage of building construction to its serviceability is an ideal practise to assess for any structural defects or damages. Structural integrity could be intruded by natural destruction or structural deterioration, and worse if without remedy action on monitoring, building re-assessment or maintenance is taken. In this study the application of ambient vibration (AV) testing is utilized to evaluate the health of eighth stories medium rise reinforced concrete building in Universiti Tun Hussein Onn Malaysia (UTHM), based comparison made between the predominant frequency, fo, determined in year 2012 and 2017. For determination of fo, popular method of Fourier Amplitude Spectra (FAS) was used to transform the ambient vibration time series by using 1 Hz tri-axial seismometer sensors and City SharkII data recorder. From the results, it shows the first mode frequencies from FAS curves indicate at 2.04 Hz in 2012 and 1.97 Hz in 2017 with only 3.14% of frequency reduction. However, steady state frequencies shown at the second and third modes frequencies of 2.42 Hz and 3.31 Hz by both years. Two translation mode shapes were found at the first and second mode frequencies in the North-South (NS-parallel to building transverse axis) and East-West (EsW-parallel to building longitudinal axis) components, and the torsional mode shape shows as the third mode frequency in both years. No excessive deformation amplitude was found at any selective floors based on comparison made between three mode shapes produced, that could bring to potential feature of structural deterioration. Low percentages of natural frequency disparity within five years of duration interval shown by the first mode frequencies under ambient vibration technique was considered in good health state, according to previous researchers recommendation at acceptable percentages below 5 to 10% over the years.

  8. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds

    PubMed Central

    Kok, Gertjan; Persijn, Stefan; Sauerwald, Tilman

    2017-01-01

    This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions. PMID:28657595

  9. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds.

    PubMed

    Spinelle, Laurent; Gerboles, Michel; Kok, Gertjan; Persijn, Stefan; Sauerwald, Tilman

    2017-06-28

    This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions.

  10. The Deployment of Carbon Monoxide Wireless Sensor Network (CO-WSN) for Ambient Air Monitoring

    PubMed Central

    Chaiwatpongsakorn, Chaichana; Lu, Mingming; Keener, Tim C.; Khang, Soon-Jai

    2014-01-01

    Wireless sensor networks are becoming increasingly important as an alternative solution for environment monitoring because they can reduce cost and complexity. Also, they can improve reliability and data availability in places where traditional monitoring methods are difficult to site. In this study, a carbon monoxide wireless sensor network (CO-WSN) was developed to measure carbon monoxide concentrations at a major traffic intersection near the University of Cincinnati main campus. The system has been deployed over two weeks during Fall 2010, and Summer 2011–2012, traffic data was also recorded by using a manual traffic counter and a video camcorder to characterize vehicles at the intersection 24 h, particularly, during the morning and evening peak hour periods. According to the field test results, the 1 hr-average CO concentrations were found to range from 0.1–1.0 ppm which is lower than the National Ambient Air Quality Standards (NAAQS) 35 ppm on a one-hour averaging period. During rush hour periods, the traffic volume at the intersection varied from 2,067 to 3,076 vehicles per hour with 97% being passenger vehicles. Furthermore, the traffic volume based on a 1-h average showed good correlation (R2 = 0.87) with the 1-h average CO-WSN concentrations for morning and evening peak time periods whereas CO-WSN results provided a moderate correlation (R2 = 0.42) with 24 hours traffic volume due to fluctuated changes of meteorological conditions. It is concluded that the performance and the reliability of wireless ambient air monitoring networks can be used as an alternative method for real time air monitoring. PMID:24937527

  11. The deployment of carbon monoxide wireless sensor network (CO-WSN) for ambient air monitoring.

    PubMed

    Chaiwatpongsakorn, Chaichana; Lu, Mingming; Keener, Tim C; Khang, Soon-Jai

    2014-06-16

    Wireless sensor networks are becoming increasingly important as an alternative solution for environment monitoring because they can reduce cost and complexity. Also, they can improve reliability and data availability in places where traditional monitoring methods are difficult to site. In this study, a carbon monoxide wireless sensor network (CO-WSN) was developed to measure carbon monoxide concentrations at a major traffic intersection near the University of Cincinnati main campus. The system has been deployed over two weeks during Fall 2010, and Summer 2011-2012, traffic data was also recorded by using a manual traffic counter and a video camcorder to characterize vehicles at the intersection 24 h, particularly, during the morning and evening peak hour periods. According to the field test results, the 1 hr-average CO concentrations were found to range from 0.1-1.0 ppm which is lower than the National Ambient Air Quality Standards (NAAQS) 35 ppm on a one-hour averaging period. During rush hour periods, the traffic volume at the intersection varied from 2,067 to 3,076 vehicles per hour with 97% being passenger vehicles. Furthermore, the traffic volume based on a 1-h average showed good correlation (R2 = 0.87) with the 1-h average CO-WSN concentrations for morning and evening peak time periods whereas CO-WSN results provided a moderate correlation (R2 = 0.42) with 24 hours traffic volume due to fluctuated changes of meteorological conditions. It is concluded that the performance and the reliability of wireless ambient air monitoring networks can be used as an alternative method for real time air monitoring.

  12. AMBIENT AIR MONITORING AT GROUND ZERO AND LOWER MANHATTAN FOLLOWING THE COLLAPSE OF THE WORLD TRADE CENTER

    EPA Science Inventory

    The U.S. EPA National Exposure Research Laboratory (NERL) collaborated with EPA's Regional offices to establish a monitoring network to characterize ambient air concentrations of particulate matter (PM) and air toxics in lower Manhattan following the collapse of the World Trade...

  13. Prioritization of constituents for national- and regional-scale ambient monitoring of water and sediment in the United States

    USGS Publications Warehouse

    Olsen, Lisa D.; Valder, Joshua F.; Carter, Janet M.; Zogorski, John S.

    2013-01-01

    A total of 2,541 constituents were evaluated and prioritized for national- and regional-scale ambient monitoring of water and sediment in the United States. This prioritization was done by the U.S. Geological Survey (USGS) in preparation for the upcoming third decade (Cycle 3; 2013–23) of the National Water-Quality Assessment (NAWQA) Program. This report provides the methods used to prioritize the constituents and the results of that prioritization. Constituents were prioritized by the NAWQA National Target Analyte Strategy (NTAS) work group on the basis of available information on physical and chemical properties, observed or predicted environmental occurrence and fate, and observed or anticipated adverse effects on human health or aquatic life. Constituents were evaluated within constituent groups that were determined on the basis of physical or chemical properties or on uses or sources. Some constituents were evaluated within more than one constituent group. Although comparable objectives were used in the prioritization of constituents within the different constituent groups, differences in the availability of information accessed for each constituent group led to the development of separate prioritization approaches adapted to each constituent group to make best use of available resources. Constituents were assigned to one of three prioritization tiers: Tier 1, those having the highest priority for inclusion in ambient monitoring of water or sediment on a national or regional scale (including NAWQA Cycle 3 monitoring) on the basis of their likelihood of environmental occurrence in ambient water or sediment, or likelihood of effects on human health or aquatic life; Tier 2, those having intermediate priority for monitoring on the basis of their lower likelihood of environmental occurrence or lower likelihood of effects on human health or aquatic life; and Tier 3, those having low or no priority for monitoring on the basis of evidence of nonoccurrence or lack of

  14. Effects of Ambient Temperature and Relative Humidity on Subsurface Defect Detection in Concrete Structures by Active Thermal Imaging.

    PubMed

    Tran, Quang Huy; Han, Dongyeob; Kang, Choonghyun; Haldar, Achintya; Huh, Jungwon

    2017-07-26

    Active thermal imaging is an effective nondestructive technique in the structural health monitoring field, especially for concrete structures not exposed directly to the sun. However, the impact of meteorological factors on the testing results is considerable and should be studied in detail. In this study, the impulse thermography technique with halogen lamps heat sources is used to detect defects in concrete structural components that are not exposed directly to sunlight and not significantly affected by the wind, such as interior bridge box-girders and buildings. To consider the effect of environment, ambient temperature and relative humidity, these factors are investigated in twelve cases of testing on a concrete slab in the laboratory, to minimize the influence of wind. The results showed that the absolute contrast between the defective and sound areas becomes more apparent with an increase of ambient temperature, and it increases at a faster rate with large and shallow delaminations than small and deep delaminations. In addition, the absolute contrast of delamination near the surface might be greater under a highly humid atmosphere. This study indicated that the results obtained from the active thermography technique will be more apparent if the inspection is conducted on a day with high ambient temperature and humidity.

  15. Applications of Ground-based Mobile Atmospheric Monitoring: Real-time Characterization of Source Emissions and Ambient Concentrations

    NASA Astrophysics Data System (ADS)

    Goetz, J. Douglas

    Gas and particle phase atmospheric pollution are known to impact human and environmental health as well as contribute to climate forcing. While many atmospheric pollutants are regulated or controlled in the developed world uncertainty still remains regarding the impacts from under characterized emission sources, the interaction of anthropogenic and naturally occurring pollution, and the chemical and physical evolution of emissions in the atmosphere, among many other uncertainties. Because of the complexity of atmospheric pollution many types of monitoring have been implemented in the past, but none are capable of perfectly characterizing the atmosphere and each monitoring type has known benefits and disadvantages. Ground-based mobile monitoring with fast-response in-situ instrumentation has been used in the past for a number of applications that fill data gaps not possible with other types of atmospheric monitoring. In this work, ground-based mobile monitoring was implemented to quantify emissions from under characterized emission sources using both moving and portable applications, and used in a novel way for the characterization of ambient concentrations. In the Marcellus Shale region of Pennsylvania two mobile platforms were used to estimate emission rates from infrastructure associated with the production and transmission of natural gas using two unique methods. One campaign investigated emissions of aerosols, volatile organic compounds (VOCs), methane, carbon monoxide (CO), nitrogen dioxide (NO2), and carbon dioxide (CO 2) from natural gas wells, well development practices, and compressor stations using tracer release ratio methods and a developed fenceline tracer release correction factor. Another campaign investigated emissions of methane from Marcellus Shale gas wells and infrastructure associated with two large national transmission pipelines using the "Point Source Gaussian" method described in the EPA OTM-33a. During both campaigns ambient concentrations

  16. Influence of Human Activity Patterns, particle composition, and residential air exchange rates on modeled distributions of PM 2.5 exposure compared with central-site monitoring data

    EPA Science Inventory

    Central-site monitors do not account for factors such as outdoor-to-indoor transport and human activity patterns that influence personal exposures to ambient fine-particulate matter (PM2.5). We describe and compare different ambient PM2.5 exposure estimation...

  17. Properties of ambient cured blended alkali activated cement concrete

    NASA Astrophysics Data System (ADS)

    Talha Junaid, M.

    2017-11-01

    This paper presents results of the development and strength properties of ambient-cured alkali activated geopolymer concrete (GPC). The study looks at the strength properties, such as compressive strength, splitting tensile strength, and elastic modulus of such concretes and its dependency on various parameters. The parameters studied in this work are the type and proportions of pre-cursor materials, type of activator and their respective ratios and the curing time. Two types of pre-cursor material; low calcium fly ash (FA) and ground granulated blast furnace slag (GGBFS) were activated using different proportions of sodium silicate and sodium hydroxide solutions. The results indicate that ambient cured geopolymer concrete can be manufactured to match strength properties of ordinary Portland cement concrete (OPC). The strength properties of GPC are dependent on the type and ratio of activator and the proportion of GGBFS used. Increasing the percentage of GGBFS increased the compressive and tensile strengths, while reducing the setting time of the mix. The effect of GGBFS on strength was more pronounced in mixes that contained sodium silicate as activator solution. Unlike OPC, ambient-cured GPC containing sodium silicate gain most of their strength in the first 7 days and there is no change in strength thereafter. However, GPC mixes not containing sodium silicate only achieve a fraction of their strength at 7 days and extended curing is required for such concretes to gain full strength. The results also indicate that the elastic modulus values of GPC mixes without sodium silicate are comparable to OPC while mixes with sodium silicate have elastic modulus values much lower than ordinary concrete.

  18. Relationship between Individual External Doses, Ambient Dose Rates and Individuals' Activity-Patterns in Affected Areas in Fukushima following the Fukushima Daiichi Nuclear Power Plant Accident.

    PubMed

    Naito, Wataru; Uesaka, Motoki; Yamada, Chie; Kurosawa, Tadahiro; Yasutaka, Tetsuo; Ishii, Hideki

    2016-01-01

    The accident at Fukushima Daiichi Nuclear Power Plant on March 11, 2011, released radioactive material into the atmosphere and contaminated the land in Fukushima and several neighboring prefectures. Five years after the nuclear disaster, the radiation levels have greatly decreased due to physical decay, weathering, and decontamination operations in Fukushima. The populations of 12 communities were forced to evacuate after the accident; as of March 2016, the evacuation order has been lifted in only a limited area, and permanent habitation is still prohibited in most of the areas. In order for the government to lift the evacuation order and for individuals to return to their original residential areas, it is important to assess current and future realistic individual external doses. Here, we used personal dosimeters along with the Global Positioning System and Geographic Information System to understand realistic individual external doses and to relate individual external doses, ambient doses, and activity-patterns of individuals in the affected areas in Fukushima. The results showed that the additional individual external doses were well correlated to the additional ambient doses based on the airborne monitoring survey. The results of linear regression analysis suggested that the additional individual external doses were on average about one-fifth that of the additional ambient doses. The reduction factors, which are defined as the ratios of the additional individual external doses to the additional ambient doses, were calculated to be on average 0.14 and 0.32 for time spent at home and outdoors, respectively. Analysis of the contribution of various activity patterns to the total individual external dose demonstrated good agreement with the average fraction of time spent daily in each activity, but the contribution due to being outdoors varied widely. These results are a valuable contribution to understanding realistic individual external doses and the corresponding

  19. Relationship between Individual External Doses, Ambient Dose Rates and Individuals’ Activity-Patterns in Affected Areas in Fukushima following the Fukushima Daiichi Nuclear Power Plant Accident

    PubMed Central

    Kurosawa, Tadahiro; Yasutaka, Tetsuo; Ishii, Hideki

    2016-01-01

    The accident at Fukushima Daiichi Nuclear Power Plant on March 11, 2011, released radioactive material into the atmosphere and contaminated the land in Fukushima and several neighboring prefectures. Five years after the nuclear disaster, the radiation levels have greatly decreased due to physical decay, weathering, and decontamination operations in Fukushima. The populations of 12 communities were forced to evacuate after the accident; as of March 2016, the evacuation order has been lifted in only a limited area, and permanent habitation is still prohibited in most of the areas. In order for the government to lift the evacuation order and for individuals to return to their original residential areas, it is important to assess current and future realistic individual external doses. Here, we used personal dosimeters along with the Global Positioning System and Geographic Information System to understand realistic individual external doses and to relate individual external doses, ambient doses, and activity-patterns of individuals in the affected areas in Fukushima. The results showed that the additional individual external doses were well correlated to the additional ambient doses based on the airborne monitoring survey. The results of linear regression analysis suggested that the additional individual external doses were on average about one-fifth that of the additional ambient doses. The reduction factors, which are defined as the ratios of the additional individual external doses to the additional ambient doses, were calculated to be on average 0.14 and 0.32 for time spent at home and outdoors, respectively. Analysis of the contribution of various activity patterns to the total individual external dose demonstrated good agreement with the average fraction of time spent daily in each activity, but the contribution due to being outdoors varied widely. These results are a valuable contribution to understanding realistic individual external doses and the corresponding

  20. Monitoring Enzymatic Reactions in Real Time Using Venturi Easy Ambient Sonic-Spray Ionization Mass Spectrometry

    PubMed Central

    2016-01-01

    We developed a technique to monitor spatially confined surface reactions with mass spectrometry under ambient conditions, without the need for voltage or organic solvents. Fused-silica capillaries immersed in an aqueous solution, positioned in close proximity to each other and the functionalized surface, created a laminar flow junction with a resulting reaction volume of ∼5 pL. The setup was operated with a syringe pump, delivering reagents to the surface through a fused-silica capillary. The other fused-silica capillary was connected to a Venturi easy ambient sonic-spray ionization source, sampling the resulting analytes at a slightly higher flow rate compared to the feeding capillary. The combined effects of the inflow and outflow maintains a chemical microenvironment, where the rate of advective transport overcomes diffusion. We show proof-of-concept where acetylcholinesterase was immobilized on an organosiloxane polymer through electrostatic interactions. The hydrolysis of acetylcholine by acetylcholinesterase into choline was monitored in real-time for a range of acetylcholine concentrations, fused-silica capillary geometries, and operating flow rates. Higher reaction rates and conversion yields were observed with increasing acetylcholine concentrations, as would be expected. PMID:27249533

  1. Field testing of a new flow-through directional passive air sampler applied to monitoring ambient nitrogen dioxide.

    PubMed

    Lin, Chun; McKenna, Paul; Timmis, Roger; Jones, Kevin C

    2010-07-08

    This paper reports the first field deployment and testing of a directional passive air sampler (DPAS) which can be used to cost-effectively identify and quantify air pollutants and their sources. The sampler was used for ambient nitrogen dioxide (NO(2)) over ten weeks from twelve directional sectors in an urban setting, and tested alongside an automatic chemiluminescent monitor. The time-integrated passive directional results were compared with the directional analysis of the active monitoring results using wind data recorded at a weather station. The DPAS discriminated air pollutant signals directionally. The attempts to derive quantitative data yielded reasonable results--usually within a factor of two of those obtained by the chemiluminescent analyser. Ultimately, whether DPAS approaches are adopted will depend on their reliability, added value and cost. It is argued that added value was obtained here from the DPAS approach applied in a routine monitoring situation, by identifying source sectors. Both the capital and running costs of DPAS were <5% of those for the automatic monitor. It is envisaged that different sorbents or sampling media will enable this rotatable DPAS design to be used for other airborne pollutants. In summary, there are reasons to be optimistic that directional passive air sampling, together with careful interpretation of results, will be of added value to air quality practitioners in future.

  2. A bio-inspired structural health monitoring system based on ambient vibration

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Kang; Kiremidjian, Anne; Lei, Chi-Yang

    2010-11-01

    A structural health monitoring (SHM) system based on naïve Bayesian (NB) damage classification and DNA-like expression data was developed in this research. Adapted from the deoxyribonucleic acid (DNA) array concept in molecular biology, the proposed structural health monitoring system is constructed utilizing a double-tier regression process to extract the expression array from the structural time history recorded during external excitations. The extracted array is symbolized as the various genes of the structure from the viewpoint of molecular biology and reflects the possible damage conditions prevalent in the structure. A scaled down, six-story steel building mounted on the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark. The structural response at different damage levels and locations under ambient vibration was collected to support the database for the proposed SHM system. To improve the precision of detection in practical applications, the system was enhanced by an optimization process using the likelihood selection method. The obtained array representing the DNA array of the health condition of the structure was first evaluated and ranked. A total of 12 groups of expression arrays were regenerated from a combination of four damage conditions. To keep the length of the array unchanged, the best 16 coefficients from every expression array were selected to form the optimized SHM system. Test results from the ambient vibrations showed that the detection accuracy of the structural damage could be greatly enhanced by the optimized expression array, when compared to the original system. Practical verification also demonstrated that a rapid and reliable result could be given by the final system within 1 min. The proposed system implements the idea of transplanting the DNA array concept from molecular biology into the field of SHM.

  3. Inferring Meal Eating Activities in Real World Settings from Ambient Sounds: A Feasibility Study

    PubMed Central

    Thomaz, Edison; Zhang, Cheng; Essa, Irfan; Abowd, Gregory D.

    2015-01-01

    Dietary self-monitoring has been shown to be an effective method for weight-loss, but it remains an onerous task despite recent advances in food journaling systems. Semi-automated food journaling can reduce the effort of logging, but often requires that eating activities be detected automatically. In this work we describe results from a feasibility study conducted in-the-wild where eating activities were inferred from ambient sounds captured with a wrist-mounted device; twenty participants wore the device during one day for an average of 5 hours while performing normal everyday activities. Our system was able to identify meal eating with an F-score of 79.8% in a person-dependent evaluation, and with 86.6% accuracy in a person-independent evaluation. Our approach is intended to be practical, leveraging off-the-shelf devices with audio sensing capabilities in contrast to systems for automated dietary assessment based on specialized sensors. PMID:25859566

  4. Ambient Seismic Noise Monitoring of Time-lapse Velocity Changes During CO2 Injection at Otway, South Australia

    NASA Astrophysics Data System (ADS)

    Saygin, E.; Lumley, D. E.

    2017-12-01

    We use continuous seismic data recorded with an array of 909 buried geophones at Otway, South Australia, to investigate the potential of using ambient seismic noise for time-lapse monitoring of the subsurface. The array was installed prior to a 15,000 ton CO2 injection in 2016-17, in order to detect and monitor the evolution of the injected CO2 plume, and any associated microseismic activity. Continuously recorded data from the vertical components of the geophone array were cross-correlated to retrieve the inter-station Green's functions. The dense collection of Green's functions contains diving body waves and surface Rayleigh waves. Green's Functions were then compared with each other at different time frames including the pre-injection period to track subtle changes in the travel times due to the CO2 injection. Our results show a clear change in the velocities of Green's functions at the start of injection for both body waves and surface waves for wave paths traversing the injection area, whereas the observed changes are much smaller for areas which are far from the injection well.

  5. Ambient Seismic Imaging of Hydraulically Active Fractures at km Depths

    NASA Astrophysics Data System (ADS)

    Malin, P. E.; Sicking, C.

    2017-12-01

    Streaming Depth Images of ambient seismic signals using numerous, densely-distributed, receivers have revealed their connection to hydraulically active fractures at 0.5 to 5 km depths. Key for this type of imaging is very high-fold stacking over both multiple receives and periods of a few hours. Also important is suppression of waveforms from fixed, repeating sources such as pumps, generators, and traffic. A typical surface-based ambient SDI survey would use a 3D seismic receiver grid. It would have 1,000 to 4,000 uniformly distributed receivers at a density of 50/km2over the target. If acquired by borehole receivers buried 100 m deep, the density can be dropped by an order of magnitude. We show examples of the acquisition and signal processing scenarios used to produce the ambient images. (Sicking et al., SEG Interpretation, Nov 2017.) While the fracture-fluid source connection of SDI has been verified by drilling and various types of hydraulic tests, the precise nature of the signal's origin is not clear. At the current level of observation, the signals do not have identifiable phases, but can be focused using P wave velocities. Suggested sources are resonances of pressures fluctuations in the fractures, or small, continuous, slips on fractures surfaces. In either case, it appears that the driving mechanism is tectonic strain in an inherently unstable crust. Solid earth tides may enhance these strains. We illustrate the value of the ambient SDI method in its industrial application by showing case histories from energy industry and carbon-capture-sequestration projects. These include ambient images taken before, during, and after hydraulic treatments in un-conventional reservoirs. The results show not only locations of active fractures, but also their time responses to stimulation and production. Time-lapse ambient imaging can forecast and track events such as well interferences and production changes that can result from nearby treatments.

  6. Chromatography related performance of the Monitor for Aerosols and Gases in Ambient Air (MARGA): laboratory and field based evaluation

    EPA Science Inventory

    Evaluation of the semi-continuous Monitor for Aerosols and Gases in Ambient Air (MARGA, Metrohm Applikon B.V.) was conducted with an emphasis on examination of accuracy and precision associated with processing of chromatograms. Using laboratory standards and atmospheric measureme...

  7. Real-Time Personalized Monitoring to Estimate Occupational Heat Stress in Ambient Assisted Working.

    PubMed

    Pancardo, Pablo; Acosta, Francisco D; Hernández-Nolasco, José Adán; Wister, Miguel A; López-de-Ipiña, Diego

    2015-07-13

    Ambient Assisted Working (AAW) is a discipline aiming to provide comfort and safety in the workplace through customization and technology. Workers' comfort may be compromised in many labor situations, including those depending on environmental conditions, like extremely hot weather conduces to heat stress. Occupational heat stress (OHS) happens when a worker is in an uninterrupted physical activity and in a hot environment. OHS can produce strain on the body, which leads to discomfort and eventually to heat illness and even death. Related ISO standards contain methods to estimate OHS and to ensure the safety and health of workers, but they are subjective, impersonal, performed a posteriori and even invasive. This paper focuses on the design and development of real-time personalized monitoring for a more effective and objective estimation of OHS, taking into account the individual user profile, fusing data from environmental and unobtrusive body sensors. Formulas employed in this work were taken from different domains and joined in the method that we propose. It is based on calculations that enable continuous surveillance of physical activity performance in a comfortable and healthy manner. In this proposal, we found that OHS can be estimated by satisfying the following criteria: objective, personalized, in situ, in real time, just in time and in an unobtrusive way. This enables timely notice for workers to make decisions based on objective information to control OHS.

  8. Real-Time Personalized Monitoring to Estimate Occupational Heat Stress in Ambient Assisted Working

    PubMed Central

    Pancardo, Pablo; Acosta, Francisco D.; Hernández-Nolasco, José Adán; Wister, Miguel A.; López-de-Ipiña, Diego

    2015-01-01

    Ambient Assisted Working (AAW) is a discipline aiming to provide comfort and safety in the workplace through customization and technology. Workers' comfort may be compromised in many labor situations, including those depending on environmental conditions, like extremely hot weather conduces to heat stress. Occupational heat stress (OHS) happens when a worker is in an uninterrupted physical activity and in a hot environment. OHS can produce strain on the body, which leads to discomfort and eventually to heat illness and even death. Related ISO standards contain methods to estimate OHS and to ensure the safety and health of workers, but they are subjective, impersonal, performed a posteriori and even invasive. This paper focuses on the design and development of real-time personalized monitoring for a more effective and objective estimation of OHS, taking into account the individual user profile, fusing data from environmental and unobtrusive body sensors. Formulas employed in this work were taken from different domains and joined in the method that we propose. It is based on calculations that enable continuous surveillance of physical activity performance in a comfortable and healthy manner. In this proposal, we found that OHS can be estimated by satisfying the following criteria: objective, personalized, in situ, in real time, just in time and in an unobtrusive way. This enables timely notice for workers to make decisions based on objective information to control OHS. PMID:26184218

  9. Listening to the Deep-Ocean Environment (LIDO): an ESONET Initiative for the Real-Time Monitoring of Geohazards and Marine Ambient Noise

    NASA Astrophysics Data System (ADS)

    André, Michel; Favali, Paolo; Piatteli, Paolo; Miranda, Jorge; Waldmann, Christoph; Esonet Lido Demonstration Mission Team

    2010-05-01

    Understanding the link between natural and anthropogenic processes is essential for predicting the magnitude and impact of future changes of the natural balance of the oceans. Deep-sea observatories have the potential to play a key role in the assessment and monitoring of these changes. ESONET is a European Network of Excellence of deep-sea observatories that includes 55 partners belonging to 14 countries. ESONET NoE is providing data on key parameters from the subsurface down to the seafloor at representative locations that transmit them to shore. The strategies of deployment, data sampling, technological development, standardisation and data management are being integrated with projects dealing with the spatial and near surface time series. LIDO (Listening to the Deep Ocean environment) is one of these projects and proposes to establish a first nucleus of a regional network of multidisciplinary seafloor observatories contributing to the coordination of high quality research in the ESONET NoE by allowing the real-time long-term monitoring of Geohazards and Marine Ambient Noise in the Mediterranean Sea and the adjacent Atlantic waters. Specific activities address the long-term monitoring of earthquakes and tsunamis and the characterisation of ambient noise, marine mammal sounds and anthropogenic sources. The objective of this demonstration mission will be achieved through the extension of the present capabilities of the observatories working in the ESONET key-sites of Eastern Sicily (NEMO-SN1) and of the Gulf of Cadiz (GEOSTAR configured for NEAREST pilot experiment) by installing new sensor equipments related to Bioacoustics and Geohazards, as well as by implementing international standard methods in data acquisition and management.

  10. Monitoring Instrument Performance in Regional Broadband Seismic Network Using Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Ye, F.; Lyu, S.; Lin, J.

    2017-12-01

    In the past ten years, the number of seismic stations has increased significantly, and regional seismic networks with advanced technology have been gradually developed all over the world. The resulting broadband data help to improve the seismological research. It is important to monitor the performance of broadband instruments in a new network in a long period of time to ensure the accuracy of seismic records. Here, we propose a method that uses ambient noise data in the period range 5-25 s to monitor instrument performance and check data quality in situ. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross-correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two-year observation period are evaluated to identify stations with instrument response errors in near real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. We also examine feasibility of the tailing noise using data from stations selected from USArray in different locations and analyze the possible instrumental errors resulting in time-shifts used to verify the method. Additionally, we show an application that effects of instrument response errors that experience pole-zeros variations on monitoring temporal variations in crustal properties appear statistically significant velocity perturbation larger than the standard deviation. The results indicate that monitoring seismic instrument performance helps eliminate data pollution before analysis begins.

  11. Understanding bactericidal performance on ambient light activated TiO2-InVO4 nanostructured films.

    PubMed

    He, Ziming; Xu, Qingchi; Tan, Timothy Thatt Yang

    2011-12-01

    TiO(2)-InVO(4) nanostructured films were coated onto glass substrates and systematically investigated for their bactericidal activities using Escherichia coli (E. coli) as the model bacterium under ambient light illumination. The uniform TiO(2)-InVO(4) nanostructured films were prepared using titanium isopropoxide (TTIP) as the precursor via a simple sol-gel approach. Polyethylenimine (PEI) was used as a surfactant to ensure uniform dispersion of InVO(4) and a sacrificial pore-inducing agent, generating nanostructured films. Compared to unmodified TiO(2) film, the current TiO(2)-InVO(4) films exhibited enhanced bactericidal activities under ambient light illumination. Bacterial cell "photo-fixation" was demonstrated to be crucial in enhancing the bactericidal activity. A bacterial-nanostructured surface interaction mechanism was proposed for the current ambient-light activated nanostructured film.

  12. Laboratory and field based evaluation of chromatography related performance of the Monitor for Aerosols and Gases in Ambient Air (MARGA)

    EPA Science Inventory

    The Monitor for AeRosols and GAses in ambient air (MARGA) is an on-line ion-chromatography-based instrument designed for speciation of the inorganic gas and aerosol ammonium-nitrate-sulfate system. Previous work to characterize the performance of the MARGA has been primarily base...

  13. Different responses of spontaneous and stimulus-related alpha activity to ambient luminance changes.

    PubMed

    Benedetto, Alessandro; Lozano-Soldevilla, Diego; VanRullen, Rufin

    2017-12-04

    Alpha oscillations are particularly important in determining our percepts and have been implicated in fundamental brain functions. Oscillatory activity can be spontaneous or stimulus-related. Furthermore, stimulus-related responses can be phase- or non-phase-locked to the stimulus. Non-phase-locked (induced) activity can be identified as the average amplitude changes in response to a stimulation, while phase-locked activity can be measured via reverse-correlation techniques (echo function). However, the mechanisms and the functional roles of these oscillations are far from clear. Here, we investigated the effect of ambient luminance changes, known to dramatically modulate neural oscillations, on spontaneous and stimulus-related alpha. We investigated the effect of ambient luminance on EEG alpha during spontaneous human brain activity at rest (experiment 1) and during visual stimulation (experiment 2). Results show that spontaneous alpha amplitude increased by decreasing ambient luminance, while alpha frequency remained unaffected. In the second experiment, we found that under low-luminance viewing, the stimulus-related alpha amplitude was lower, and its frequency was slightly faster. These effects were evident in the phase-locked part of the alpha response (echo function), but weaker or absent in the induced (non-phase-locked) alpha responses. Finally, we explored the possible behavioural correlates of these modulations in a monocular critical flicker frequency task (experiment 3), finding that dark adaptation in the left eye decreased the temporal threshold of the right eye. Overall, we found that ambient luminance changes impact differently on spontaneous and stimulus-related alpha expression. We suggest that stimulus-related alpha activity is crucial in determining human temporal segmentation abilities. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. [The health status of children from industrial towns due ambient air pollution].

    PubMed

    Meĭbaliev, M T

    2008-01-01

    The author's observations suggest that hygienic monitoring in an industrial city should be made in two areas: 1) ambient air quality and 2) human health. Ambient air quality should be monitored in each town in accordance with an individual program, by taking into account the volume and nature of hazardous substances from the stationary stations, as well as weather conditions, the planning system of residential areas, and the layout of an industrial zone. Monitoring of the population's health in the industrial town should be adapted to the forms and conditions of ambient air quality monitoring in order to reveal environmental pollution-induced changes.

  15. Multisensor Capacitance Probes for Simultaneously Monitoring Rice Field Soil-Water- Crop-Ambient Conditions.

    PubMed

    Brinkhoff, James; Hornbuckle, John; Dowling, Thomas

    2017-12-26

    Multisensor capacitance probes (MCPs) have traditionally been used for soil moisture monitoring and irrigation scheduling. This paper presents a new application of these probes, namely the simultaneous monitoring of ponded water level, soil moisture, and temperature profile, conditions which are particularly important for rice crops in temperate growing regions and for rice grown with prolonged periods of drying. WiFi-based loggers are used to concurrently collect the data from the MCPs and ultrasonic distance sensors (giving an independent reading of water depth). Models are fit to MCP water depth vs volumetric water content (VWC) characteristics from laboratory measurements, variability from probe-to-probe is assessed, and the methodology is verified using measurements from a rice field throughout a growing season. The root-mean-squared error of the water depth calculated from MCP VWC over the rice growing season was 6.6 mm. MCPs are used to simultaneously monitor ponded water depth, soil moisture content when ponded water is drained, and temperatures in root, water, crop and ambient zones. The insulation effect of ponded water against cold-temperature effects is demonstrated with low and high water levels. The developed approach offers advantages in gaining the full soil-plant-atmosphere continuum in a single robust sensor.

  16. Effect of ambient light exposure of media and embryos on development and quality of porcine parthenogenetically activated embryos.

    PubMed

    Li, Rong; Liu, Ying; Pedersen, Hanne Skovsgaard; Callesen, Henrik

    2015-06-01

    Light exposure is a common stress factor during in vitro handling of oocytes and embryos that originates from both microscope and ambient light. In the current study, the effect of two types of ambient light (daylight and laboratory light) on porcine parthenogenetically activated (PA) embryos was tested in two experiments: (1) ambient light on medium subsequently used for embryo in vitro development; and (2) ambient light exposure on activated oocytes before in vitro development. The results from Experiment 1 showed that exposure of culture medium to both types of ambient light decreased the percentage of blastocysts that showed good morphology, only after 24 h exposure. The results from Experiment 2 revealed a reduction in both blastocyst formation and quality when activated oocytes were exposed to both types of ambient light. This effect was seen after only 1 h exposure and increased with time. In conclusion, exposure to ambient light can be harmful to embryo development, both when medium is exposed for a long period of time and, to a greater extent, when the embryo itself is exposed for >1 h. In practice, it is therefore recommended to protect both culture medium and porcine embryos against ambient light during in vitro handling in the laboratory.

  17. INTERPOLATING VANCOUVER'S DAILY AMBIENT PM 10 FIELD

    EPA Science Inventory

    In this article we develop a spatial predictive distribution for the ambient space- time response field of daily ambient PM10 in Vancouver, Canada. Observed responses have a consistent temporal pattern from one monitoring site to the next. We exploit this feature of the field b...

  18. A Radar-Based Smart Sensor for Unobtrusive Elderly Monitoring in Ambient Assisted Living Applications.

    PubMed

    Diraco, Giovanni; Leone, Alessandro; Siciliano, Pietro

    2017-11-24

    Continuous in-home monitoring of older adults living alone aims to improve their quality of life and independence, by detecting early signs of illness and functional decline or emergency conditions. To meet requirements for technology acceptance by seniors (unobtrusiveness, non-intrusiveness, and privacy-preservation), this study presents and discusses a new smart sensor system for the detection of abnormalities during daily activities, based on ultra-wideband radar providing rich, not privacy-sensitive, information useful for sensing both cardiorespiratory and body movements, regardless of ambient lighting conditions and physical obstructions (through-wall sensing). The radar sensing is a very promising technology, enabling the measurement of vital signs and body movements at a distance, and thus meeting both requirements of unobtrusiveness and accuracy. In particular, impulse-radio ultra-wideband radar has attracted considerable attention in recent years thanks to many properties that make it useful for assisted living purposes. The proposed sensing system, evaluated in meaningful assisted living scenarios by involving 30 participants, exhibited the ability to detect vital signs, to discriminate among dangerous situations and activities of daily living, and to accommodate individual physical characteristics and habits. The reported results show that vital signs can be detected also while carrying out daily activities or after a fall event (post-fall phase), with accuracy varying according to the level of movements, reaching up to 95% and 91% in detecting respiration and heart rates, respectively. Similarly, good results were achieved in fall detection by using the micro-motion signature and unsupervised learning, with sensitivity and specificity greater than 97% and 90%, respectively.

  19. A Radar-Based Smart Sensor for Unobtrusive Elderly Monitoring in Ambient Assisted Living Applications

    PubMed Central

    Leone, Alessandro; Siciliano, Pietro

    2017-01-01

    Continuous in-home monitoring of older adults living alone aims to improve their quality of life and independence, by detecting early signs of illness and functional decline or emergency conditions. To meet requirements for technology acceptance by seniors (unobtrusiveness, non-intrusiveness, and privacy-preservation), this study presents and discusses a new smart sensor system for the detection of abnormalities during daily activities, based on ultra-wideband radar providing rich, not privacy-sensitive, information useful for sensing both cardiorespiratory and body movements, regardless of ambient lighting conditions and physical obstructions (through-wall sensing). The radar sensing is a very promising technology, enabling the measurement of vital signs and body movements at a distance, and thus meeting both requirements of unobtrusiveness and accuracy. In particular, impulse-radio ultra-wideband radar has attracted considerable attention in recent years thanks to many properties that make it useful for assisted living purposes. The proposed sensing system, evaluated in meaningful assisted living scenarios by involving 30 participants, exhibited the ability to detect vital signs, to discriminate among dangerous situations and activities of daily living, and to accommodate individual physical characteristics and habits. The reported results show that vital signs can be detected also while carrying out daily activities or after a fall event (post-fall phase), with accuracy varying according to the level of movements, reaching up to 95% and 91% in detecting respiration and heart rates, respectively. Similarly, good results were achieved in fall detection by using the micro-motion signature and unsupervised learning, with sensitivity and specificity greater than 97% and 90%, respectively. PMID:29186786

  20. Monitoring Business Activity

    DTIC Science & Technology

    2006-03-01

    AFRL-IF-RS-TR-2006-88 Final Technical Report March 2006 MONITORING BUSINESS ACTIVITY New York University...REPORT DATE MARCH 2006 3. REPORT TYPE AND DATES COVERED Final Sep 01 – Oct 05 4. TITLE AND SUBTITLE MONITORING BUSINESS ACTIVITY 6. AUTHOR(S...Accepted to Journal of Machine Learning Research, pending revisions. CeDER Working Paper #CeDER-04-08, Stern School of Business , New York University

  1. Laboratory and field based evaluations of chromatography related performance of the Monitor for AeRosols and GAses in ambient Air (MARGA)

    EPA Science Inventory

    The semi-continuous Monitor for AeRosols and Gases in Ambient air (MARGA) was evaluated using laboratory and field data with a focus on chromatography. The performance and accuracy assessment revealed various errors and uncertainties resulting from mis-identification and mis-int...

  2. Laboratory and field based evaluation of chromatography related performance of the Monitor for AeRosols and Gases in ambient Air (MARGA)

    EPA Science Inventory

    The semi-continuous Monitor for AeRosols and Gases in Ambient air (MARGA) was evaluated using laboratory and field data with a focus on chromatography. The performance and accuracy assessment revealed various errors and uncertainties resulting from mis-identification and mis-int...

  3. Associations between summertime ambient pollutants and respiratory morbidity in New York City: Comparison of results using ambient concentrations versus predicted exposures

    EPA Science Inventory

    Epidemiological analyses of air quality often estimate human exposure from ambient monitoring data, potentially leading to exposure misclassification and subsequent bias in estimated health risks. To investigate this, we conducted a case-crossover study of summertime ambient ozon...

  4. Soil microbes shift C-degrading activity along an ambient and experimental nitrogen gradient

    NASA Astrophysics Data System (ADS)

    Moore, J.; Frey, S. D.

    2017-12-01

    The balance between soil carbon (C) accumulation and decomposition is determined in large part by the activity and biomass of soil microbes, and yet their sensitivity to global changes remains unresolved. Atmospheric nitrogen (N) deposition has increased 22% (for NH4+) in the last two decades despite initiation of the Clean Air Act. Nitrogen deposition alters ecosystem processes by changing nutrient availability and soil pH, creating physiologically stressful environments that select for stress tolerant microbes. The functional fungal community may switch from domination by species with traits associated with decomposition via oxidative enzymes to traits associated with stress tolerance if global changes push fungal physiological limits. We examined changes in soil microbial activity across seven sites representing a gradient of ambient atmospheric N deposition, and five of these sites also had long-term N addition experiments. We measured changes in abundance of decomposition genes and C mineralization rates as indicators of microbial activity. We expected microbes to be less active with high N deposition, thus decreasing C mineralization rates. We found that C mineralization rates declined with total N deposition (ambient plus experimental additions), and this decline was more sensitive to N deposition where it occurred naturally compared to experimental treatments. Carbon mineralization declined by 3% in experimentally fertilized soils compared to 10% in control soils for every 1 kg/ha/y increase in ambient N deposition. Thus, microbes exposed to ambient levels of N deposition (2 - 12 kg/ha/y) had a stronger response than those exposed to fertilized soils (20 - 50 kg/ha/y). Long-term experimental N-addition seems to have selected for a microbial community that is tolerant of high N deposition. In sum, we provide evidence that soil microbial activity responded to N deposition, and may shift over time to a community capable of tolerating environmental change.

  5. Ambient Air Pollution and Apnea and Bradycardia in High-Risk Infants on Home Monitors

    PubMed Central

    Klein, Mitchel; Flanders, W. Dana; Mulholland, James A.; Freed, Gary; Tolbert, Paige E.

    2011-01-01

    Background: Evidence suggests that increased ambient air pollution concentrations are associated with health effects, although relatively few studies have specifically examined infants. Objective: We examined associations of daily ambient air pollution concentrations with central apnea (prolonged pauses in breathing) and bradycardia (low heart rate) events among infants prescribed home cardiorespiratory monitors. Methods: The home monitors record the electrocardiogram, heart rate, and respiratory effort for detected apnea and bradycardia events in high-risk infants [primarily premature and low birth weight (LBW) infants]. From August 1998 through December 2002, 4,277 infants had 8,960 apnea event-days and 29,450 bradycardia event-days in > 179,000 days of follow-up. We assessed the occurrence of apnea and bradycardia events in relation to speciated particulate matter and gaseous air pollution levels using a 2-day average of air pollution (same day and previous day), adjusting for temporal trends, temperature, and infant age. Results: We observed associations between bradycardia and 8-hr maximum ozone [odds ratio (OR) = 1.049 per 25-ppb increase; 95% confidence interval (CI), 1.021–1.078] and 1-hr maximum nitrogen dioxide (OR =1.025 per 20-ppb increase; 95% CI, 1.000–1.050). The association with ozone was robust to different methods of control for time trend and specified correlation structure. In secondary analyses, associations of apnea and bradycardia with pollution were generally stronger in infants who were full term and of normal birth weight than in infants who were both premature and LBW. Conclusions: These results suggest that higher air pollution concentrations may increase the occurrence of apnea and bradycardia in high-risk infants. PMID:21447453

  6. Structural Health Monitoring of Composite Plates Under Ambient and Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Engberg, Robert C.

    2005-01-01

    Methods for structural health monitoring are now being assessed, especially in high-performance, extreme environment, safety-critical applications. One such application is for composite cryogenic fuel tanks. The work presented here attempts to characterize and investigate the feasibility of using imbedded piezoelectric sensors to detect cracks and delaminations under cryogenic and ambient conditions. Different types of excitation and response signals and different sensors are employed in composite plate samples to aid in determining an optimal algorithm, sensor placement strategy, and type of imbedded sensor to use. Variations of frequency and high frequency chirps of the sensors are employed and compared. Statistical and analytic techniques are then used to determine which method is most desirable for a specific type of damage and operating environment. These results are furthermore compared with previous work using externally mounted sensors. More work is needed to accurately account for changes in temperature seen in these environments and be statistically significant. Sensor development and placement strategy are other areas of further work to make structural health monitoring more robust. Results from this and other work might then be incorporated into a larger composite structure to validate and assess its structural health. This could prove to be important in the development and qualification of any 2nd generation reusable launch vehicle using composites as a structural element.

  7. Ambient & Vessel Noise Measurement and Marine Mammal Monitoring in the Stait of Georgia, British-Columbia, Canada.

    NASA Astrophysics Data System (ADS)

    Moloney, J. E.; Hannay, D.; Mouy, X.; Mouy, P. A.; Urazghildiiev, I.; Dakin, T.

    2016-02-01

    Recently JASCO Applied Sciences (Canada) Ltd (JASCO), Ocean Networks Canada (ONC) and the Port of Metro Vancouver (PMV) have collaborated in the installation of a novel, real-time ocean observing (listening) system (PMV-ECHO system deployed in the Strait of Georgia, BC. This system was designed specifically to measure ambient noise, vessel source levels, and to detect, classify, localize and track marine mammals using their vocalization in order to estimate population density. The listening station deployment and monitoring activities are part of the Enhancing Cetacean Habitat and Observation (ECHO) Program. The program aims to better understand and manage the impact of shipping activities on at-risk whales throughout the southern coast of British Columbia. The PMV-ECHO system is composed of two unique spatial arrays of four hydrophones and one active projector each. Both arrays are used to measure and monitor the environment and calibrate the hydrophones over time. Further, a new shored-based data processing and visualization system (JMesh) is used automatically process the data and to enable operators to easily provide measurement information, navigate through large time series of detections, examine spectrograms, listen to detected sounds, validate detections, and compare detections for different species over time and space. The JMesh web platform has been designed to overcome the otherwise overwhelming volume of acoustic data collected by the PMV-ECHO sensor systems. This paper will describe how the PMV-ECHO system along with the automated real-time analysis and visualization software suite can be used study marine mammal distribution and behavior, variation of vessel noises and potential effects of anthropogenic activities on marine mammals. The goal of the PMV-ECHO program is to find ways to reduce shipping impact on at-risk species especially in the approaches to large ports. This program and its scientific and technical approaches should be of interest to

  8. Assessment of ambient air quality in Eskişehir, Turkey.

    PubMed

    Ozden, O; Döğeroğlu, T; Kara, S

    2008-07-01

    This paper presents an assessment of air quality of the city Eskişehir, located 230 km southwest to the capital of Turkey. Only five of the major air pollutants, most studied worldwide and available for the region, were considered for the assessment. Available sulphur dioxide (SO(2)), particulate matter (PM), nitrogen dioxide (NO(2)), ozone (O(3)), and non-methane volatile organic carbons (NMVOCs) data from local emission inventory studies provided relative source contributions of the selected pollutants to the region. The contributions of these typical pollution parameters, selected for characterizing such an urban atmosphere, were compared with the data established for other cities in the nation and world countries. Additionally, regional ambient SO(2) and PM concentrations, determined by semi-automatic monitoring at two sites, were gathered from the National Ambient Air Monitoring Network (NAAMN). Regional data for ambient NO(2) (as a precursor of ozone as VOCs) and ozone concentrations, through the application of the passive sampling method, were provided by the still ongoing local air quality monitoring studies conducted at six different sites, as representatives of either the traffic-dense-, or coal/natural gas burning residential-, or industrial/rural-localities of the city. Passively sampled ozone data at a single rural site were also verified with the data from a continuous automatic ozone monitoring system located at that site. Effects of variations in seasonal-activities, newly established railway system, and switching to natural gas usage on the temporal changes of air quality were all considered for the assessment. Based on the comparisons with the national [AQCR (Air Quality Control Regulation). Ministry of Environment (MOE), Ankara. Official Newspaper 19269; 1986.] and a number of international [WHO (World Health Organization). Guidelines for Air Quality. Geneva; 2000. Downloaded in January 2006, website: http://www.who.int/peh/; EU (European Union

  9. The twilight zone: ambient light levels trigger activity in primitive ants.

    PubMed

    Narendra, Ajay; Reid, Samuel F; Hemmi, Jan M

    2010-05-22

    Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables. We show that the Australian bull ant, Myrmecia pyriformis, starts foraging only during evening twilight throughout the year. The onset occurs neither at a specific temperature nor at a specific time relative to sunset, but at a specific ambient light intensity. Foraging onset occurs later when light intensities at sunset are brighter than normal or earlier when light intensities at sunset are darker than normal. By modifying ambient light intensity experimentally, we provide clear evidence that ants indeed measure light levels and do not rely on an internal rhythm to begin foraging. We suggest that the reason for restricting the foraging onset to twilight and measuring light intensity to trigger activity is to optimize the trade-off between predation risk and ease of navigation.

  10. Ambient lighting: setting international standards for the viewing of softcopy chest images

    NASA Astrophysics Data System (ADS)

    McEntee, Mark F.; Ryan, John; Evanoff, Micheal G.; Keeling, Aoife; Chakraborty, Dev; Manning, David; Brennan, Patrick C.

    2007-03-01

    Clinical radiological judgments are increasingly being made on softcopy LCD monitors. These monitors are found throughout the hospital environment in radiological reading rooms, outpatient clinics and wards. This means that ambient lighting where clinical judgments from images are made can vary widely. Inappropriate ambient lighting has several deleterious effects: monitor reflections reduce contrast; veiling glare adds brightness; dynamic range and detectability of low contrast objects is limited. Radiological images displayed on LCDs are more sensitive to the impact of inappropriate ambient lighting and with these devices problems described above are often more evident. The current work aims to provide data on optimum ambient lighting, based on lesions within chest images. The data provided may be used for the establishment of workable ambient lighting standards. Ambient lighting at 30cms from the monitor was set at 480 Lux (office lighting) 100 Lux (WHO recommendations), 40 Lux and <10 Lux. All monitors were calibrated to DICOM part 14 GSDF. Sixty radiologists were presented with 30 chest images, 15 images having simulated nodular lesions of varying subtlety and size. Lesions were positioned in accordance with typical clinical presentation and were validated radiologically. Each image was presented for 30 seconds and viewers were asked to identify and score any visualized lesion from 1-4 to indicate confidence level of detection. At the end of the session, sensitivity and specificity were calculated. Analysis of the data suggests that visualization of chest lesions is affected by inappropriate lighting with chest radiologists demonstrating greater ambient lighting dependency. JAFROC analyses are currently being performed.

  11. Insights into seasonal active layer dynamics by monitoring relative velocity changes using ambient seismic noise

    NASA Astrophysics Data System (ADS)

    James, S. R.; Knox, H. A.; Cole, C. J.; Abbott, R. E.; Screaton, E.

    2016-12-01

    Seasonal freeze and thaw of the active layer above permafrost results in dramatic changes in seismic velocity. We used daily cross correlations of ambient seismic noise recorded at Poker Flat Research Range in central Alaska to create a nearly continuous 2-year record of relative velocity changes. This analysis required that we modify the Moving Window Cross-spectral Analysis technique used in the Python package MSNoise to reduce the occurrence of cycle skipping. Results show relative velocity variations follow a seasonal pattern, where velocities decrease in late spring through the summer months and increase through the fall and winter months. This timing is consistent with active layer freeze and thaw in this region. These results were compared to a suite of ground- and satellite-based measurements to identify relationships. A decrease in relative velocities in late spring closely follows the timing of snow melt recorded in nearby ground temperatures and snow-depth logs. This transition also aligns with a decrease in the Normalized Difference Snow Index (NDSI) derived from multi-temporal Landsat 8 satellite imagery collected over the study site. A gradual increase in relative velocity through the fall months occurs when temperatures below ground surface remain near zero. We suggest this is due to latent heat feedbacks that keep temperatures constant while active layer velocities increase from continued ice formation. This highlights the value in velocity variations for capturing details on the freezing process. In addition, spatial variations in the magnitude of velocity changes are consistent with thaw probe surveys. Exploring relationships with remote sensing may allow indirect measurements of thaw over larger areas and further surface wave analysis may allow for thickness evolution measurements. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for

  12. Ambient Greenhouse Gas (GHG) Observations in the San Francisco Bay Area of California Using a Fixed-site Monitoring Network

    NASA Astrophysics Data System (ADS)

    Martien, P. T.; Guha, A.; Bower, J.; Perkins, I.; Randall, S.; Young, A.; Hilken, H.; Stevenson, E.

    2016-12-01

    The Bay Area Air Quality Management District is the greater San Francisco Bay metropolitan area's chief air quality regulatory agency. Aligning itself with the Governor's Executive Order S-3-05, the Air District has set a goal to reduce the region's GHG emissions by 80% below 1990 levels by the year 2050. The Air District's 2016 Clean Air Plan will lay out the agency's vision and actions to put the region on a path forward towards achieving the 2050 goal while also reducing air pollution and related health impacts. The 2016 Plan has three overarching objectives: 1) develop a multi-pollutant emissions control strategy, (2) reduce population exposure to harmful air pollutants, especially in vulnerable communities, and (3) protect climate through a comprehensive Regional Climate Protection Strategy. To accomplish one of 2016 Plan's control measures (SL3 - Greenhouse Gas Monitoring and Measurement Network), the Air District has set up a long-term, ambient GHG monitoring network at four sites. The first site is located north and upwind of the urban core at Bodega Bay by the Pacific Coast. It mostly receives clean marine inflow and serves as the regional background site. The other three sites are strategically located at regional exit points for Bay Area plumes that presumably contain well-mixed GHG enhancements from local sources. CO2 and CH4are being measured continuously at the fixed-sites, along with combustion tracer CO and other air pollutants. In the longer term, the network will allow the Air District to monitor ambient concentrations of GHGs and thus evaluate the effectiveness of its policy, regulation and enforcement efforts. We present data trends from the first year of operation of the fixed-site monitoring network including monthly and seasonal patterns, diurnal variations and regional enhancements at individual sites above background concentrations. We also locate an isotopic methane instrument (Picarro, G132-i) for a short duration (a week) at each of the

  13. An Indoor Monitoring System for Ambient Assisted Living Based on Internet of Things Architecture

    PubMed Central

    Marques, Gonçalo; Pitarma, Rui

    2016-01-01

    The study of systems and architectures for ambient assisted living (AAL) is undoubtedly a topic of great relevance given the aging of the world population. The AAL technologies are designed to meet the needs of the aging population in order to maintain their independence as long as possible. As people typically spend more than 90% of their time in indoor environments, indoor air quality (iAQ) is perceived as an imperative variable to be controlled for the inhabitants’ wellbeing and comfort. Advances in networking, sensors, and embedded devices have made it possible to monitor and provide assistance to people in their homes. The continuous technological advancements make it possible to build smart objects with great capabilities for sensing and connecting several possible advancements in ambient assisted living systems architectures. Indoor environments are characterized by several pollutant sources. Most of the monitoring frameworks instantly accessible are exceptionally costly and only permit the gathering of arbitrary examples. iAQ is an indoor air quality system based on an Internet of Things paradigm that incorporates in its construction Arduino, ESP8266, and XBee technologies for processing and data transmission and micro sensors for data acquisition. It also allows access to data collected through web access and through a mobile application in real time, and this data can be accessed by doctors in order to support medical diagnostics. Five smaller scale sensors of natural parameters (air temperature, moistness, carbon monoxide, carbon dioxide, and glow) were utilized. Different sensors can be included to check for particular contamination. The results reveal that the system can give a viable indoor air quality appraisal in order to anticipate technical interventions for improving indoor air quality. Indeed indoor air quality might be distinctively contrasted with what is normal for a quality living environment. PMID:27869682

  14. An Indoor Monitoring System for Ambient Assisted Living Based on Internet of Things Architecture.

    PubMed

    Marques, Gonçalo; Pitarma, Rui

    2016-11-17

    The study of systems and architectures for ambient assisted living (AAL) is undoubtedly a topic of great relevance given the aging of the world population. The AAL technologies are designed to meet the needs of the aging population in order to maintain their independence as long as possible. As people typically spend more than 90% of their time in indoor environments, indoor air quality (iAQ) is perceived as an imperative variable to be controlled for the inhabitants' wellbeing and comfort. Advances in networking, sensors, and embedded devices have made it possible to monitor and provide assistance to people in their homes. The continuous technological advancements make it possible to build smart objects with great capabilities for sensing and connecting several possible advancements in ambient assisted living systems architectures. Indoor environments are characterized by several pollutant sources. Most of the monitoring frameworks instantly accessible are exceptionally costly and only permit the gathering of arbitrary examples. iAQ is an indoor air quality system based on an Internet of Things paradigm that incorporates in its construction Arduino, ESP8266, and XBee technologies for processing and data transmission and micro sensors for data acquisition. It also allows access to data collected through web access and through a mobile application in real time, and this data can be accessed by doctors in order to support medical diagnostics. Five smaller scale sensors of natural parameters (air temperature, moistness, carbon monoxide, carbon dioxide, and glow) were utilized. Different sensors can be included to check for particular contamination. The results reveal that the system can give a viable indoor air quality appraisal in order to anticipate technical interventions for improving indoor air quality. Indeed indoor air quality might be distinctively contrasted with what is normal for a quality living environment.

  15. AREA MONITORING OF AMBIENT DOSE RATES IN PARTS OF SOUTH-WESTERN NIGERIA USING A GPS-INTEGRATED RADIATION SURVEY METER.

    PubMed

    Okeyode, I C; Rabiu, J A; Alatise, O O; Makinde, V; Akinboro, F G; Al-Azmi, D; Mustapha, A O

    2017-04-01

    A radiation monitoring system comprising a Geiger-Muller counter connected to a smart phone via Bluetooth was used for a dose rate survey in some parts of south-western Nigeria. The smart phone has the Geographical Positioning System, which provides the navigation information and saves it along with the dose rate data. A large number of data points was obtained that shows the dose rate distribution within the region. The results show that the ambient dose rates in the region range from 60 to 520 nSv -1 and showed a bias that is attributable to the influence of geology on the ambient radiation dose in the region. The geology influence was demonstrated by superimposing the dose rate plot and the geological map of the area. The potential applications of the device in determining baseline information and in area monitoring, e.g. for lost or abandoned sources, radioactive materials stockpiles, etc., were discussed in the article, particularly against the background of Nigeria's plan to develop its nuclear power program. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    PubMed

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  17. The twilight zone: ambient light levels trigger activity in primitive ants

    PubMed Central

    Narendra, Ajay; Reid, Samuel F.; Hemmi, Jan M.

    2010-01-01

    Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables. We show that the Australian bull ant, Myrmecia pyriformis, starts foraging only during evening twilight throughout the year. The onset occurs neither at a specific temperature nor at a specific time relative to sunset, but at a specific ambient light intensity. Foraging onset occurs later when light intensities at sunset are brighter than normal or earlier when light intensities at sunset are darker than normal. By modifying ambient light intensity experimentally, we provide clear evidence that ants indeed measure light levels and do not rely on an internal rhythm to begin foraging. We suggest that the reason for restricting the foraging onset to twilight and measuring light intensity to trigger activity is to optimize the trade-off between predation risk and ease of navigation. PMID:20129978

  18. Using cross correlations of turbulent flow-induced ambient vibrations to estimate the structural impulse response. Application to structural health monitoring.

    PubMed

    Sabra, Karim G; Winkel, Eric S; Bourgoyne, Dwayne A; Elbing, Brian R; Ceccio, Steve L; Perlin, Marc; Dowling, David R

    2007-04-01

    It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz.

  19. Time-Lapse Monitoring of an Engineering Scaled Excavation at Federal District, Brazil by Passive Ambient NoiseInterferometry

    NASA Astrophysics Data System (ADS)

    Cárdenas-Soto, M., Sr.; Hussain, Y.; Martinez-Carvajal, H., Sr.; Martino, S., Sr.; Rocha, M., Sr.

    2016-12-01

    Understanding the dynamics of stress relief mechanisms that lead to complete material collapse of unstable slopes is challenging. This research is focused on the novel use of Passive Ambient Noise Interferometry (PANI), a new technique that has revolutionized the seismology. In this technique the impulse response or Green function between two sensors is calculated by cross-correlation of the noise rescored at these stations. We applied PANI to monitor the deformational behavior of a prototype field experiment under semi controlled conditions for their use in landsliding early warning systems.The experimental setup consists of a 2 m engineering-scaled excavation,where induced failure was monitored by ambient vibrations propagating in tropical clayey deposits. The experimental setup consisted of dense network of 20 three components short period seismometers (Sercel L4C-3D) installed in three circular arrays with their distances from face of normal slope as 10, 20 and 30 meters, respectively.The frequency response of these seismometers is in range of 2-100 Hz. Recording was done in continuous mode at sampling rate of 1000 Hz with datalogger (RefTek DAS-130/3). Sensors were time synchronized by twenty 130 GPS/01. In this stage, the stress was applied on the one flank of this normal slope dug in the experimental field of University of Brasilia, by a hydraulic jack through a metallic plate. This incremental loading was kept on rising until the slope failure took place. This loading mechanism provided an opportunity to monitoring the changes in Rayleigh wave velocity before, during and after the complete failure. After initial processing, the green function (GF) or impulse response was calculated between each pair of sensors by cross correlation at time step of 4 second. All individual GFs, for entire monitoring period (30 minutes) were stacked to obtained a single reference GF. Stretching (dt/t) in waveform is calculated by subtracting individual GF from average GF, that

  20. Comparison of exposure estimation methods for air pollutants: ambient monitoring data and regional air quality simulation.

    PubMed

    Bravo, Mercedes A; Fuentes, Montserrat; Zhang, Yang; Burr, Michael J; Bell, Michelle L

    2012-07-01

    Air quality modeling could potentially improve exposure estimates for use in epidemiological studies. We investigated this application of air quality modeling by estimating location-specific (point) and spatially-aggregated (county level) exposure concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM(2.5)) and ozone (O(3)) for the eastern U.S. in 2002 using the Community Multi-scale Air Quality (CMAQ) modeling system and a traditional approach using ambient monitors. The monitoring approach produced estimates for 370 and 454 counties for PM(2.5) and O(3), respectively. Modeled estimates included 1861 counties, covering 50% more population. The population uncovered by monitors differed from those near monitors (e.g., urbanicity, race, education, age, unemployment, income, modeled pollutant levels). CMAQ overestimated O(3) (annual normalized mean bias=4.30%), while modeled PM(2.5) had an annual normalized mean bias of -2.09%, although bias varied seasonally, from 32% in November to -27% in July. Epidemiology may benefit from air quality modeling, with improved spatial and temporal resolution and the ability to study populations far from monitors that may differ from those near monitors. However, model performance varied by measure of performance, season, and location. Thus, the appropriateness of using such modeled exposures in health studies depends on the pollutant and metric of concern, acceptable level of uncertainty, population of interest, study design, and other factors. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Noninvasive health condition monitoring device for workers at high altitudes conditions.

    PubMed

    Aqueveque, Pablo; Gutierrez, Cristopher; Saavedra, Francisco; Pino, Esteban J

    2016-08-01

    This work presents the design and implementation of a continuous monitoring device to control the health state of workers, for instance miners, at high altitudes. The extreme ambient conditions are harmful for peoples' health; therefore a continuous control of the workers' vital signs is necessary. The developed system includes physiological variables: electrocardiogram (ECG), respiratory activity and body temperature (BT), and ambient variables: ambient temperature (AT) and relative humidity (RH). The noninvasive sensors are incorporated in a t-shirt to deliver a functional device, and maximum comfort to the users. The device is able to continuously calculate heart rate (HR) and respiration rate (RR), and establish a wireless data transmission to a central monitoring station.

  2. Field evaluations of newly available "interference-free" monitors for nitrogen dioxide and ozone at near-road and conventional National Ambient Air Quality Standards compliance sites.

    PubMed

    Leston, Alan R; Ollison, Will M

    2017-11-01

    Long-standing measurement techniques for determining ground-level ozone (O 3 ) and nitrogen dioxide (NO 2 ) are known to be biased by interfering compounds that result in overestimates of high O 3 and NO 2 ambient concentrations under conducive conditions. An increasing near-ground O 3 gradient (NGOG) with increasing height above ground level is also known to exist. Both the interference bias and NGOG were investigated by comparing data from a conventional Federal Equivalent Method (FEM) O 3 photometer and an identical monitor upgraded with an "interference-free" nitric oxide O 3 scrubber that alternatively sampled at 2 m and 6.2 m inlet heights above ground level (AGL). Intercomparison was also made between a conventional nitrogen oxide (NO x ) chemiluminescence Federal Reference Method (FRM) monitor and a new "direct-measure" NO 2 NO x 405 nm photometer at a near-road air quality measurement site. Results indicate that the O 3 monitor with the upgraded scrubber recorded lower regulatory-oriented concentrations than the deployed conventional metal oxide-scrubbed monitor and that O 3 concentrations 6.2 m AGL were higher than concentrations 2.0 m AGL, the nominal nose height of outdoor populations. Also, a new direct-measure NO 2 photometer recorded generally lower NO 2 regulatory-oriented concentrations than the conventional FRM chemiluminescence monitor, reporting lower daily maximum hourly average concentrations than the conventional monitor about 3 of every 5 days. Employing bias-prone instruments for measurement of ambient ozone or nitrogen dioxide from inlets at inappropriate heights above ground level may result in collection of positively biased data. This paper discusses tests of new regulatory instruments, recent developments in bias-free ozone and nitrogen dioxide measurement technology, and the presence/extent of a near-ground O 3 gradient (NGOG). Collection of unbiased monitor inlet height-appropriate data is crucial for determining accurate design

  3. Source attribution and quantification of benzene event emissions in a Houston ship channel community based on real-time mobile monitoring of ambient air.

    PubMed

    Olaguer, Eduardo P; Erickson, Matthew H; Wijesinghe, Asanga; Neish, Bradley S

    2016-02-01

    A mobile laboratory equipped with a proton transfer reaction mass spectrometer (PTR-MS) operated in Galena Park, Texas, near the Houston Ship Channel during the Benzene and other Toxics Exposure Study (BEE-TEX). The mobile laboratory measured transient peaks of benzene of up to 37 ppbv in the afternoon and evening of February 19, 2015. Plume reconstruction and source attribution were performed using the four-dimensional (4D) variational data assimilation technique and a three-dimensional (3D) micro-scale forward and adjoint air quality model based on mobile PTR-MS data and nearby stationary wind measurements at the Galena Park Continuous Air Monitoring Station (CAMS). The results of inverse modeling indicate that significant pipeline emissions of benzene may at least partly explain the ambient concentration peaks observed in Galena Park during BEE-TEX. Total pipeline emissions of benzene inferred within the 16-km(2) model domain exceeded point source emissions by roughly a factor of 2 during the observational episode. Besides pipeline leaks, the model also inferred significant benzene emissions from marine, railcar, and tank truck loading/unloading facilities, consistent with the presence of a tanker and barges in the Kinder Morgan port terminal during the afternoon and evening of February 19. Total domain emissions of benzene exceeded corresponding 2011 National Emissions Inventory (NEI) estimates by a factor of 2-6. Port operations involving petrochemicals may significantly increase emissions of air toxics from the transfer and storage of materials. Pipeline leaks, in particular, can lead to sporadic emissions greater than in emission inventories, resulting in higher ambient concentrations than are sampled by the existing monitoring network. The use of updated methods for ambient monitoring and source attribution in real time should be encouraged as an alternative to expanding the conventional monitoring network.

  4. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2014-07-01

    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.

  5. Assessing physical activity using wearable monitors: measures of physical activity.

    PubMed

    Butte, Nancy F; Ekelund, Ulf; Westerterp, Klaas R

    2012-01-01

    Physical activity may be defined broadly as "all bodily actions produced by the contraction of skeletal muscle that increase energy expenditure above basal level." Physical activity is a complex construct that can be classified into major categories qualitatively, quantitatively, or contextually. The quantitative assessment of physical activity using wearable monitors is grounded in the measurement of energy expenditure. Six main categories of wearable monitors are currently available to investigators: pedometers, load transducers/foot-contact monitors, accelerometers, HR monitors, combined accelerometer and HR monitors, and multiple sensor systems. Currently available monitors are capable of measuring total physical activity as well as components of physical activity that play important roles in human health. The selection of wearable monitors for measuring physical activity will depend on the physical activity component of interest, study objectives, characteristics of the target population, and study feasibility in terms of cost and logistics. Future development of sensors and analytical techniques for assessing physical activity should focus on the dynamic ranges of sensors, comparability for sensor output across manufacturers, and the application of advanced modeling techniques to predict energy expenditure and classify physical activities. New approaches for qualitatively classifying physical activity should be validated using direct observation or recording. New sensors and methods for quantitatively assessing physical activity should be validated in laboratory and free-living populations using criterion methods of calorimetry or doubly labeled water.

  6. Monitoring binding affinity between drug and α1-acid glycoprotein in real time by Venturi easy ambient sonic-spray ionization mass spectrometry.

    PubMed

    Liu, Ning; Lu, Xin; Yang, YuHan; Yao, Chen Xi; Ning, BaoMing; He, Dacheng; He, Lan; Ouyang, Jin

    2015-10-01

    A new approach for monitoring the binding affinity between drugs and alpha 1-acid glycoprotein in real time was developed based on a combination of drug-protein reaction followed by Venturi easy ambient sonic-spray ionization mass spectrometry determination of the free drug concentrations. A known basic drug, propranolol was used to validate the new built method. Binding constant values calculated by venturi easy ambient sonic-spray ionization mass spectrometry was in good accordance with a traditional ultrafiltration combined with high performance liquid chromatography method. Then six types of basic drugs were used as the samples to conduct the real time analysis. Upon injection of alpha 1-acid glycoprotein to the drug mixture, the ion chromatograms were extracted to show the changes in the free drug concentrations in real time. By observing the drop-out of six types of drugs during the whole binding reaction, the binding affinities of different drugs were distinguished. A volume shift validating experiment and an injection delay correcting experiment were also performed to eliminate extraneous factors and verify the reliability of our experiment. Therefore, the features of Venturi easy ambient sonic-spray ionization mass spectrometry (V-EASI-MS) and the experimental results indicate that our technique is likely to become a powerful tool for monitoring drug-AGP binding affinity in real time. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Using two detectors concurrently to monitor ambient dose equivalent rates in vehicle surveys of radiocesium contaminated land.

    PubMed

    Takeishi, Minoru; Shibamichi, Masaru; Malins, Alex; Kurikami, Hiroshi; Murakami, Mitsuhiro; Saegusa, Jun; Yoneya, Masayuki

    2017-10-01

    In response to the accident at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (FDNPP), vehicle-borne monitoring was used to map radiation levels for radiological protection of the public. By convention measurements from vehicle-borne surveys are converted to the ambient dose equivalent rate at 1 m height in the absence of the vehicle. This allows for comparison with results from other types of survey, including surveys with hand-held or airborne instruments. To improve the accuracy of the converted results from vehicle-borne surveys, we investigated combining measurements from two detectors mounted on the vehicle at different heights above the ground. A dual-detector setup was added to a JAEA monitoring car and compared against hand-held survey meter measurements in Fukushima Prefecture. The results obtained by combining measurements from two detectors were within ±20% of the hand-held reference measurements. The mean absolute percentage deviation from the reference measurements was 7.2%. The combined results from the two detectors were more accurate than those from either the roof-mounted detector, or the detector inside the vehicle, taken alone. One issue with vehicle-borne surveys is that ambient dose equivalent rates above roads are not necessarily representative of adjacent areas. This is because radiocesium is often deficient on asphalt surfaces, as it is easily scrubbed off by rain, wind and vehicle tires. To tackle this issue, we investigated mounting heights for vehicle-borne detectors using Monte Carlo gamma-ray simulations. When radiocesium is deficient on a road compared to the adjacent land, mounting detectors high on vehicles yields results closer to the values adjacent to the road. The ratio of ambient dose equivalent rates reported by detectors mounted at different heights in a dual-detector setup indicates whether radiocesium is deficient on the road compared to the adjacent land. Copyright © 2017 Elsevier Ltd. All rights

  8. An assessment of the performance of Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds

    EPA Science Inventory

    Ambient air monitoring as part of the U.S. Environmental Protection Agency’s (U.S. EPA’s) Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The U.S. EPA is interested in supplementing CASTNet with semi-continuou...

  9. Open Ambient Intelligence Environments.

    PubMed

    Burzagli, Laura; Emiliani, Pier Luigi

    2015-01-01

    The present impact of ambient intelligence concepts in eInclusion is first briefly reviewed. Suggestions and examples of how ambient intelligent environments should be specified, designed and used to favour independent living of people with activity limitations are presented.

  10. Computation of structural flexibility for bridge health monitoring using ambient modal data

    DOT National Transportation Integrated Search

    1996-01-01

    The issues surrounding the use of ambient vibration modes for the location of structural damage via dynamically : measured flexibility are examined. Several methods for obtaining the required mass-normalized : dynamic mode shapes from ambient modal d...

  11. Time-lapse CO2 monitoring using ambient-noise seismic interferometry: a feasibility study from Ketzin, Germany

    NASA Astrophysics Data System (ADS)

    Boullenger, Boris; Verdel, Arie; Paap, Bob; Thorbecke, Jan; Draganov, Deyan

    2015-04-01

    necessarily exclude acceptable time-lapse signal retrieval. Furthermore, the clarity of the time-lapse signal at the reservoir level increases with increasing repeatability of the two passive experiments. The increase in repeatability is achieved when the contributing noise sources form denser clusters that share analogous spatial coverage. To support the merits of the numerical experiments, we applied ANSI (by auto-correlation) to three days of Ketzin passive field-data and compare the retrieved responses with the modelling results. The data are recorded at a permanent array of sensors (hydrophones and geophones) installed above the injection site. We used the records from the buried line of the array that consists of sensors lying at 50-meters depth. These records are less contaminated with surface noise and preserve passive body-wave events better than surface-recorded data. The retrieved responses exhibit significant correspondence with the existing active-seismic field data as well as with our modelled ANSI and active responses. Key reflection events seem to be retrieved at the expected arrival times and support the idea that the settings and characteristics of the ambient noise at Ketzin offer good potential for time-lapse ANSI to monitor CO2 sequestration.

  12. Influence of ambient temperature and minute ventilation on passive and active heat and moisture exchangers.

    PubMed

    Lellouche, François; Qader, Siham; Taillé, Solenne; Lyazidi, Aissam; Brochard, Laurent

    2014-05-01

    During invasive mechanical ventilation, inspired gases must be humidified. We previously showed that high ambient temperature greatly impaired the hygrometric performance of heated wire-heated humidifiers. The aim of this bench and clinical study was to assess the humidification performance of passive and active heat and moisture exchangers (HMEs) and the impact of ambient temperature and ventilator settings. We first tested on the bench a device with passive and active humidification properties (Humid-Heat, Teleflex), and 2 passive hydrophobic/hygroscopic HMEs (Hygrobac and Hygrobac S, Tyco Healthcare). The devices were tested at 3 different ambient temperatures (from 22 to 30 °C), and at 2 minute ventilation settings (10 and 20 L/min). Inspired gas hygrometry was measured at the Y-piece with the psychrometric method. In addition to the bench study, we measured the hygrometry of inspired gases in 2 different clinical studies. In 15 mechanically ventilated patients, we evaluated Humid-Heat at different settings. Additionally, we evaluated Humid-Heat and compared it with Hygrobac in a crossover study in 10 patients. On the bench, with the Hygrobac and Hygrobac S the inspired absolute humidity was ∼ 30 mg H2O/L, and with the Humid-Heat, slightly < 35 mg H2O/L. Ambient temperature and minute ventilation did not have a clinically important difference on the performance of the tested devices. During the clinical evaluation, Humid-Heat provided inspired humidity in a range from 28.5 to 42.0 mg H2O/L, depending on settings, and was only weakly influenced by the patient's body temperature. In this study both passive and active HMEs had stable humidification performance with negligible influence of ambient temperature and minute ventilation. This contrasts with previous findings with heated wire-heated humidifiers. Although there are no clear data demonstrating that higher humidification impacts outcomes, it is worth noting that humidity was significantly higher with the

  13. Ambient Seismic Noise Interferometry on the Island of Hawai`i

    NASA Astrophysics Data System (ADS)

    Ballmer, Silke

    Ambient seismic noise interferometry has been successfully applied in a variety of tectonic settings to gain information about the subsurface. As a passive seismic technique, it extracts the coherent part of ambient seismic noise in-between pairs of seismic receivers. Measurements of subtle temporal changes in seismic velocities, and high-resolution tomographic imaging are then possible - two applications of particular interest for volcano monitoring. Promising results from other volcanic settings motivate its application in Hawai'i, with this work being the first to explore its potential. The dataset used for this purpose was recorded by the Hawaiian Volcano Observatory's permanent seismic network on the Island of Hawai'i. It spans 2.5 years from 5/2007 to 12/2009 and covers two distinct sources of volcanic tremor. After applying standard processing for ambient seismic noise interferometry, we find that volcanic tremor strongly affects the extracted noise information not only close to the tremor source, but unexpectedly, throughout the island-wide network. Besides demonstrating how this long-range observability of volcanic tremor can be used to monitor volcanic activity in the absence of a dense seismic array, our results suggest that care must be taken when applying ambient seismic noise interferometry in volcanic settings. In a second step, we thus exclude days that show signs of volcanic tremor, reducing the dataset to three months, and perform ambient seismic noise tomography. The resulting two-dimensional Rayleigh wave group velocity maps for 0.1 - 0.9 Hz compare very well with images from previous travel time tomography, both, for the main volcanic structures at low frequencies as well as for smaller features at mid-to-high frequencies - a remarkable observation for the temporally truncated dataset. These robust results suggest that ambient seismic noise tomography in Hawai'i is suitable 1) to provide a three-dimensional S-wave model for the volcanoes and 2

  14. SPRUCE Environmental Monitoring Data: 2010-2016

    DOE Data Explorer

    Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Riggs, J. S. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Forrance, C. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Nettles, W. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Hook, L. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A

    2015-11-01

    This data set reports selected ambient environmental monitoring data (public) from the S1 bog for the period June 2010 through 2016. Measurements of the environmental conditions at these stations will serve as a pre-treatment baseline for experimental treatments and provide driver data for future modeling activities.

  15. Introducing a modular activity monitoring system.

    PubMed

    Reiss, Attila; Stricker, Didier

    2011-01-01

    In this paper, the idea of a modular activity monitoring system is introduced. By using different combinations of the system's three modules, different functionality becomes available: 1) a coarse intensity estimation of physical activities 2) different features based on HR-data and 3) the recognition of basic activities and postures. 3D-accelerometers--placed on lower arm, chest and foot--and a heart rate monitor were used as sensors. A dataset with 8 subjects and 14 different activities was recorded to evaluate the performance of the system. The overall performance on the intensity estimation task, relying on the chest-worn accelerometer and the HR-monitor, was 94.37%. The overall performance on the activity recognition task, using all three accelerometer placements and the HR-monitor, was 90.65%. This paper also gives an analysis of the importance of different accelerometer placements and the importance of a HR-monitor for both tasks.

  16. Assessment of dioxin-like activity in ambient air particulate matter using recombinant yeast assays

    NASA Astrophysics Data System (ADS)

    Olivares, Alba; van Drooge, Barend L.; Pérez Ballesta, Pascual; Grimalt, Joan O.; Piña, Benjamin

    2011-01-01

    Ectopic activation of the aryl hydrocarbon receptor (AhR), also known as dioxin-like activity, is a major component of the toxicity associated with polycyclic aromatic hydrocarbons (PAH). Filtration of ambient air particulate matter through PM 10 filters followed by chemical determination of PAH concentrations and a yeast-based bioassay (RYA) were combined to evaluate and characterize dioxin-like activity in ambient air. Samples were collected in a semirural area of Northern Italy between September 2008 and February 2009. Total PAH contents ranged between 0.3 ng m -3 and 34 ng m -3 and were in correlation with seasonal variations of meteorological conditions and combustion processes. Dioxin-like activity values in air samples showed an excellent correlation (0.71 < R2 < 0.86) with the observed PAH concentrations and the predicted toxicity equivalents for PAH. This RYA-bioassay reported in the present study provides a simple and low-cost routine control for toxic PAH emissions, even at background air concentration levels.

  17. ESTIMATED HOURLY PERSONAL EXPOSURES TO AMBIENT AND NON-AMBIENT PARTICULATE MATTER AMONG SENSITIVE POPULATIONS IN SEATTLE, WASHINGTON

    EPA Science Inventory

    Epidemiological studies of particulate matter (PM) routinely use concentrations measured with stationary outdoor monitors as surrogates for personal exposure. Despite the frequently reported poor correlations between ambient concentrations and total personal exposure, the epidemi...

  18. Mutation design of a thermophilic Rubisco based on three-dimensional structure enhances its activity at ambient temperature.

    PubMed

    Fujihashi, Masahiro; Nishitani, Yuichi; Kiriyama, Tomohiro; Aono, Riku; Sato, Takaaki; Takai, Tomoyuki; Tagashira, Kenta; Fukuda, Wakao; Atomi, Haruyuki; Imanaka, Tadayuki; Miki, Kunio

    2016-10-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) plays a central role in carbon dioxide fixation on our planet. Rubisco from a hyperthermophilic archaeon Thermococcus kodakarensis (Tk-Rubisco) shows approximately twenty times the activity of spinach Rubisco at high temperature, but only one-eighth the activity at ambient temperature. We have tried to improve the activity of Tk-Rubisco at ambient temperature, and have successfully constructed several mutants which showed higher activities than the wild-type enzyme both in vitro and in vivo. Here, we designed new Tk-Rubisco mutants based on its three-dimensional structure and a sequence comparison of thermophilic and mesophilic plant Rubiscos. Four mutations were introduced to generate new mutants based on this strategy, and one of the four mutants, T289D, showed significantly improved activity compared to that of the wild-type enzyme. The crystal structure of the Tk-Rubisco T289D mutant suggested that the increase in activity was due to mechanisms distinct from those involved in the improvement in activity of Tk-Rubisco SP8, a mutant protein previously reported to show the highest activity at ambient temperature. Combining the mutations of T289D and SP8 successfully generated a mutant protein (SP8-T289D) with the highest activity to date both in vitro and in vivo. The improvement was particularly pronounced for the in vivo activity of SP8-T289D when introduced into the mesophilic, photosynthetic bacterium Rhodopseudomonas palustris, which resulted in a strain with nearly two-fold higher specific growth rates compared to that of a strain harboring the wild-type enzyme at ambient temperature. Proteins 2016; 84:1339-1346. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Temporal and spatial patterns of ambient endotoxin concentrations in Fresno, California.

    PubMed

    Tager, Ira B; Lurmann, Frederick W; Haight, Thaddeus; Alcorn, Siana; Penfold, Bryan; Hammond, S Katharine

    2010-10-01

    Endotoxins are found in indoor dust generated by human activity and pets, in soil, and adsorbed onto the surfaces of ambient combustion particles. Endotoxin concentrations have been associated with respiratory symptoms and the risk of atopy and asthma in children. We characterized the temporal and spatial variability of ambient endotoxin in Fresno/Clovis, California, located in California's Central Valley, to identify correlates and potential predictors of ambient endotoxin concentrations in a cohort of children with asthma [Fresno Asthmatic Children's Environment Study (FACES)]. Between May 2001 and October 2004, daily ambient endotoxin and air pollutants were collected at the central ambient monitoring site of the California Air Resources Board in Fresno and, for shorter time periods, at 10 schools and indoors and outdoors at 84 residences in the community. Analyses were restricted to May-October, the dry months during which endotoxin concentrations are highest. Daily endotoxin concentration patterns were determined mainly by meteorologic factors, particularly the degree of air stagnation. Overall concentrations were lowest in areas distant from agricultural activities. Highest concentrations were found in areas immediately downwind from agricultural/pasture land. Among three other measured air pollutants [fine particulate matter, elemental carbon (a marker of traffic in Fresno), and coarse particulate matter (PMc)], PMc was the only pollutant correlated with endotoxin. Endotoxin, however, was the most spatially variable. Our data support the need to evaluate the spatial/temporal variability of endotoxin concentrations, rather than relying on a few measurements made at one location, in studies of exposure and and respiratory health effects, particularly in children with asthma and other chronic respiratory diseases.

  20. 76 FR 60020 - Agency Information Collection Activities: Proposed Collection; Comment Request; Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OAR-2002-0091, FRL-9472-8] Agency Information Collection Activities: Proposed Collection; Comment Request; Ambient Air Quality Surveillance AGENCY: Environmental... . Fax: (202) 566-1741. Mail: Environmental Protection Agency, EPA Docket Center (EPA/DC), Air and...

  1. Design and implementation of an air monitoring program in support of a brownfields redevelopment program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maisel, B.E.; Hunt, G.T.; Devaney, R.J. Jr.

    EPA`s Brownfields Economic Redevelopment Initiative has sparked renewal of industrial and commercial parcels otherwise idled or under-utilized because of real or perceived environmental contamination. In certain cases, restoring such parcels to productive economic use requires a redevelopment effort protective of human health and welfare through minimizing offsite migration of environmental contaminants during cleanup, demolition and remediation activities. To support these objectives, an air monitoring program is often required as an integral element of a comprehensive brownfields redevelopment effort. This paper presents a strategic framework for design and execution of an ambient air monitoring program in support of a brownfields remediationmore » effort ongoing in Lawrence, MA. Based on site characterization, the program included sample collection and laboratory analysis of ambient air samples for polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), total suspended particulate (TSP), inhalable particulate (PM10), and lead. The program included four monitoring phases, identified as background, wintertime, demolition/remediation and post-demolition. Air sampling occurred over a 16 month period during 1996--97, during which time nine sampling locations were utilized to produce approximately 1,500 ambient air samples. Following strict data review and validation procedures, ambient air data interpretation focused on the following: evaluation of upwind/downwind sample pairs, comparison of ambient levels to existing regulatory standards, relation of ambient levels to data reported in the open literature, and, determination of normal seasonal variations in existing background burden, comparison of ambient levels measured during site activity to background levels.« less

  2. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring

    NASA Astrophysics Data System (ADS)

    Crilley, Leigh R.; Shaw, Marvin; Pound, Ryan; Kramer, Louisa J.; Price, Robin; Young, Stuart; Lewis, Alastair C.; Pope, Francis D.

    2018-02-01

    A fast-growing area of research is the development of low-cost sensors for measuring air pollutants. The affordability and size of low-cost particle sensors makes them an attractive option for use in experiments requiring a number of instruments such as high-density spatial mapping. However, for these low-cost sensors to be useful for these types of studies their accuracy and precision need to be quantified. We evaluated the Alphasense OPC-N2, a promising low-cost miniature optical particle counter, for monitoring ambient airborne particles at typical urban background sites in the UK. The precision of the OPC-N2 was assessed by co-locating 14 instruments at a site to investigate the variation in measured concentrations. Comparison to two different reference optical particle counters as well as a TEOM-FDMS enabled the accuracy of the OPC-N2 to be evaluated. Comparison of the OPC-N2 to the reference optical instruments shows some limitations for measuring mass concentrations of PM1, PM2.5 and PM10. The OPC-N2 demonstrated a significant positive artefact in measured particle mass during times of high ambient RH (> 85 %) and a calibration factor was developed based upon κ-Köhler theory, using average bulk particle aerosol hygroscopicity. Application of this RH correction factor resulted in the OPC-N2 measurements being within 33 % of the TEOM-FDMS, comparable to the agreement between a reference optical particle counter and the TEOM-FDMS (20 %). Inter-unit precision for the 14 OPC-N2 sensors of 22 ± 13 % for PM10 mass concentrations was observed. Overall, the OPC-N2 was found to accurately measure ambient airborne particle mass concentration provided they are (i) correctly calibrated and (ii) corrected for ambient RH. The level of precision demonstrated between multiple OPC-N2s suggests that they would be suitable devices for applications where the spatial variability in particle concentration was to be determined.

  3. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Gao, Xu; Lin, Meng-Fang; Mao, Bao-Hua; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Nabatame, Toshihide; Liu, Zhi; Tsukagoshi, Kazuhito; Wang, Sui-Dong

    2017-01-01

    Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O2/air. The device with a thick IGZO layer shows similar electron mobility in O2/air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O2/air due to the electron transfer to adsorbed gas molecules. The O2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results.

  4. Uncertainties in monitoring of SVOCs in air caused by within-sampler degradation during active and passive air sampling

    NASA Astrophysics Data System (ADS)

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Přibylová, Petra; Vojta, Šimon; Kohoutek, Jiří; Lammel, Gerhard; Klánová, Jana

    2017-10-01

    Degradation of semivolatile organic compounds (SVOCs) occurs naturally in ambient air due to reactions with reactive trace gases (e.g., ozone, NOx). During air sampling there is also the possibility for degradation of SVOCs within the air sampler, leading to underestimates of ambient air concentrations. We investigated the possibility of this sampling artifact in commonly used active and passive air samplers for seven classes of SVOCs, including persistent organic pollutants (POPs) typically covered by air monitoring programs, as well as SVOCs of emerging concern. Two active air samplers were used, one equipped with an ozone denuder and one without, to compare relative differences in mass of collected compounds. Two sets of passive samplers were also deployed to determine the influence of degradation during longer deployment times in passive sampling. In active air samplers, comparison of the two sampling configurations suggested degradation of particle-bound polycyclic aromatic hydrocarbons (PAHs), with concentrations up to 2× higher in the denuder-equipped sampler, while halogenated POPs did not have clear evidence of degradation. In contrast, more polar, reactive compounds (e.g., organophosphate esters and current use pesticides) had evidence of losses in the sampler with denuder. This may be caused by the denuder itself, suggesting sampling bias for these compounds can be created when typical air sampling apparatuses are adapted to limit degradation. Passive air samplers recorded up to 4× higher concentrations when deployed for shorter consecutive sampling periods, suggesting that within-sampler degradation may also be relevant in passive air monitoring programs.

  5. Location and site characteristics of the ambient ground-water-quality-monitoring network in West Virginia

    USGS Publications Warehouse

    Kozar, M.D.; Brown, D.P.

    1995-01-01

    Ground-water-quality-monitoring sites have been established in compliance with the 1991 West Virginia "Groundwater Protection Act." One of the provisions of the "Groundwater Protection Act" is to conduct ground-water sampling, data collection, analyses, and evaluation with sufficient frequency so as to ascertain the characteristics and quality of ground water and the sufficiency of the ground- water protection programs established pursuant to the act (Chapter 20 of the code of West Virginia, 1991, Article 5-M). Information for 26 monitoring sites (wells and springs) which comprise the Statewide ambient ground-water-quality-monitoring network is presented. Areas in which monitoring sites were needed were determined by the West Virginia Division of Environmental Protection, Office of Water Resources in consultation with the U.S. Geological Survey (USGS). Initial sites were chosen on the basis of recent hydrogeologic investigations conducted by the USGS and from data stored in the USGS Ground Water Site Inventory database. Land use, aquifer setting, and areal coverage of the State are three of the more important criteria used in site selection. A field reconnaissance was conducted to locate and evaluate the adequacy of selected wells and springs. Descriptive information consisting of site, geologic, well construction, and aquifer-test data has been compiled. The 26 sites will be sampled periodically for iron, manganese, most common ions (for example, calcium, magnesium, sodium, potassium, sulfate, chloride, bicarbonate), volatile and semivolatile organic compounds (for example, pesticides and industrial solvents), and fecal coliform and fecal streptococcus bacteria. Background information explaining ground-water systems and water quality within the State has been included.

  6. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Monitoring activities. 300.120 Section 300.120... CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.120 Monitoring activities. (a) The SEA must carry out activities to ensure that § 300.114 is implemented by each public...

  7. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Monitoring activities. 300.120 Section 300.120... CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.120 Monitoring activities. (a) The SEA must carry out activities to ensure that § 300.114 is implemented by each public...

  8. Physical activity monitoring in patients with peripheral arterial disease: validation of an activity monitor.

    PubMed

    Fokkenrood, H J P; Verhofstad, N; van den Houten, M M L; Lauret, G J; Wittens, C; Scheltinga, M R M; Teijink, J A W

    2014-08-01

    The daily life physical activity (PA) of patients with peripheral arterial disease (PAD) may be severely hampered by intermittent claudication (IC). From a therapeutic, as well as research, point of view, it may be more relevant to determine improvement in PA as an outcome measure in IC. The aim of this study was to validate daily activities using a novel type of tri-axial accelerometer (Dynaport MoveMonitor) in patients with IC. Patients with IC were studied during a hospital visit. Standard activities (locomotion, lying, sitting, standing, shuffling, number of steps and "not worn" detection) were video recorded and compared with activities scored by the MoveMonitor. Inter-rater reliability (expressed in intraclass correlation coefficients [ICC]), sensitivity, specificity, and positive predictive values (PPV) were calculated for each activity. Twenty-eight hours of video observation were analysed (n = 21). Our video annotation method (the gold standard method) appeared to be accurate for most postures (ICC > 0.97), except for shuffling (ICC = 0.38). The MoveMonitor showed a high sensitivity (>86%), specificity (>91%), and PPV (>88%) for locomotion, lying, sitting, and "not worn" detection. Moderate accuracy was found for standing (46%), while shuffling appeared to be undetectable (18%). A strong correlation was found between video recordings and the MoveMonitor with regard to the calculation of the "number of steps" (ICC = 0.90). The MoveMonitor provides accurate information on a diverse set of postures, daily activities, and number of steps in IC patients. However, the detection of low amplitude movements, such as shuffling and "sitting to standing" transfers, is a matter of concern. This tool is useful in assessing the role of PA as a novel, clinically relevant outcome parameter in IC. Copyright © 2014 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  9. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Monitoring activities. 300.120 Section 300.120 Education... DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.120 Monitoring activities. (a) The SEA must carry out activities to ensure that § 300.114 is implemented by each public agency. (b) If there...

  10. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Monitoring activities. 300.120 Section 300.120 Education... DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.120 Monitoring activities. (a) The SEA must carry out activities to ensure that § 300.114 is implemented by each public agency. (b) If there...

  11. Temporal and Spatial Patterns of Ambient Endotoxin Concentrations in Fresno, California

    PubMed Central

    Tager, Ira B.; Lurmann, Frederick W.; Haight, Thaddeus; Alcorn, Siana; Penfold, Bryan; Hammond, S. Katharine

    2010-01-01

    Background Endotoxins are found in indoor dust generated by human activity and pets, in soil, and adsorbed onto the surfaces of ambient combustion particles. Endotoxin concentrations have been associated with respiratory symptoms and the risk of atopy and asthma in children. Objective We characterized the temporal and spatial variability of ambient endotoxin in Fresno/Clovis, California, located in California’s Central Valley, to identify correlates and potential predictors of ambient endotoxin concentrations in a cohort of children with asthma [Fresno Asthmatic Children’s Environment Study (FACES)]. Methods Between May 2001 and October 2004, daily ambient endotoxin and air pollutants were collected at the central ambient monitoring site of the California Air Resources Board in Fresno and, for shorter time periods, at 10 schools and indoors and outdoors at 84 residences in the community. Analyses were restricted to May–October, the dry months during which endotoxin concentrations are highest. Results Daily endotoxin concentration patterns were determined mainly by meteorologic factors, particularly the degree of air stagnation. Overall concentrations were lowest in areas distant from agricultural activities. Highest concentrations were found in areas immediately downwind from agricultural/pasture land. Among three other measured air pollutants [fine particulate matter, elemental carbon (a marker of traffic in Fresno), and coarse particulate matter (PMc)], PMc was the only pollutant correlated with endotoxin. Endotoxin, however, was the most spatially variable. Conclusions Our data support the need to evaluate the spatial/temporal variability of endotoxin concentrations, rather than relying on a few measurements made at one location, in studies of exposure and and respiratory health effects, particularly in children with asthma and other chronic respiratory diseases. PMID:20494854

  12. METHODOLOGY OF AMBIENT AIR MONITORING FOR POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    In the last decade, several studies of polycyclic aromatic hydrocarbons (PAH) in ambient air in the U.S. specifically investigated (1) the sampling efficiency of two sorbents for PAH in air: XAD-2 and polyurethane foam (PUP); (2) the storage stability of PAH on quartz fiber fil...

  13. Two-Step Single Particle Mass Spectrometry for On-Line Monitoring of Polycyclic Aromatic Hydrocarbons Bound to Ambient Fine Particulate Matter

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Bente, M.; Sklorz, M.

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAH) are formed as trace products in combustion processes and are emitted to the atmosphere. Larger PAH have low vapour pressure and are predominantly bound to the ambient fine particulate matter (PM). Upon inhalation, PAH show both, chronic human toxicity (i.e. many PAH are potent carcinogens) as well as acute human toxicity (i.e. inflammatory effects due to oxi-dative stress) and are discussed to be relevant for the observed health effect of ambient PM. Therefore a better understanding of the occurrence, dynamics and particle size dependence of particle bound-PAH is of great interest. On-line aerosol mass spectrometry in principle is the method of choice to investigate the size resolved changes in the chemical speciation of particles as well the status of internal vs. external mixing of chemical constituents. However the present available aerosol mass spectrometers (ATOFMS and AMS) do not allow detection of PAH from ambient air PM. In order to allow a single particle based monitoring of PAH from ambient PM a new single particle laser ionisation mass spectrometer was built and applied. The system is based on ATOFMS principle but uses a two- step photo-ionization. A tracked and sized particle firstly is laser desorbed (LD) by a IR-laser pulse (CO2-laser, λ=10.2 μm) and subsequently the released PAH are selectively ionized by an intense UV-laser pulse (ArF excimer, λ=248 nm) in a resonance enhanced multiphoton ionisation process (REMPI). The PAH-ions are detected in a time of flight mass spectrometer (TOFMS). A virtual impactor enrichment unit is used to increase the detection frequency of the ambient particles. With the current inlet system particles from about 400 nm to 10 μm are accessible. Single particle based temporal profiles of PAH containing particles ion (size distribution and PAH speciation) have been recorded in Oberschleissheim, Germany from ambient air. Furthermore profiles of relevant emission sources (e

  14. An active monitoring method for flood events

    NASA Astrophysics Data System (ADS)

    Chen, Zeqiang; Chen, Nengcheng; Du, Wenying; Gong, Jianya

    2018-07-01

    Timely and active detecting and monitoring of a flood event are critical for a quick response, effective decision-making and disaster reduction. To achieve the purpose, this paper proposes an active service framework for flood monitoring based on Sensor Web services and an active model for the concrete implementation of the active service framework. The framework consists of two core components-active warning and active planning. The active warning component is based on a publish-subscribe mechanism implemented by the Sensor Event Service. The active planning component employs the Sensor Planning Service to control the execution of the schemes and models and plans the model input data. The active model, called SMDSA, defines the quantitative calculation method for five elements, scheme, model, data, sensor, and auxiliary information, as well as their associations. Experimental monitoring of the Liangzi Lake flood in the summer of 2010 is conducted to test the proposed framework and model. The results show that 1) the proposed active service framework is efficient for timely and automated flood monitoring. 2) The active model, SMDSA, is a quantitative calculation method used to monitor floods from manual intervention to automatic computation. 3) As much preliminary work as possible should be done to take full advantage of the active service framework and the active model.

  15. Comparison of two different physical activity monitors.

    PubMed

    Paul, David R; Kramer, Matthew; Moshfegh, Alanna J; Baer, David J; Rumpler, William V

    2007-06-25

    Understanding the relationships between physical activity (PA) and disease has become a major area of research interest. Activity monitors, devices that quantify free-living PA for prolonged periods of time (days or weeks), are increasingly being used to estimate PA. A range of different activity monitors brands are available for investigators to use, but little is known about how they respond to different levels of PA in the field, nor if data conversion between brands is possible. 56 women and men were fitted with two different activity monitors, the Actigraph (Actigraph LLC; AGR) and the Actical (Mini-Mitter Co.; MM) for 15 days. Both activity monitors were fixed to an elasticized belt worn over the hip, with the anterior and posterior position of the activity monitors randomized. Differences between activity monitors and the validity of brand inter-conversion were measured by t-tests, Pearson correlations, Bland-Altman plots, and coefficients of variation (CV). The AGR detected a significantly greater amount of daily PA (216.2 +/- 106.2 vs. 188.0 +/- 101.1 counts/min, P < 0.0001). The average difference between activity monitors expressed as a CV were 3.1 and 15.5% for log-transformed and raw data, respectively. When a conversion equation was applied to convert datasets from one brand to another, the differences were no longer significant, with CV's of 2.2 and 11.7%, log-transformed and raw data, respectively. Although activity monitors predict PA on the same scale (counts/min), the results between these two brands are not directly comparable. However, the data are comparable if a conversion equation is applied, with better results for log-transformed data.

  16. Ambient intelligence for monitoring and research in clinical neurophysiology and medicine: the MIMERICA* project and prototype.

    PubMed

    Pignolo, L; Riganello, F; Dolce, G; Sannita, W G

    2013-04-01

    Ambient Intelligence (AmI) provides extended but unobtrusive sensing and computing devices and ubiquitous networking for human/environment interaction. It is a new paradigm in information technology compliant with the international Integrating Healthcare Enterprise board (IHE) and eHealth HL7 technological standards in the functional integration of biomedical domotics and informatics in hospital and home care. AmI allows real-time automatic recording of biological/medical information and environmental data. It is extensively applicable to patient monitoring, medicine and neuroscience research, which require large biomedical data sets; for example, in the study of spontaneous or condition-dependent variability or chronobiology. In this respect, AML is equivalent to a traditional laboratory for data collection and processing, with minimal dedicated equipment, staff, and costs; it benefits from the integration of artificial intelligence technology with traditional/innovative sensors to monitor clinical or functional parameters. A prototype AmI platform (MIMERICA*) has been implemented and is operated in a semi-intensive unit for the vegetative and minimally conscious states, to investigate the spontaneous or environment-related fluctuations of physiological parameters in these conditions.

  17. Ambient endotoxin in PM10 and association with inflammatory activity, air pollutants, and meteorology, in Chitwan, Nepal.

    PubMed

    Mahapatra, Parth Sarathi; Jain, Sumeet; Shrestha, Sujan; Senapati, Shantibhusan; Puppala, Siva Praveen

    2018-03-15

    Endotoxin associated with ambient PM (particulate matter) has been linked to adverse respiratory symptoms, but there have been few studies of ambient endotoxin and its association with co-pollutants and inflammation. Our aim was to measure endotoxin associated with ambient PM 10 (particulate matter with aerodynamic diameter<10μm) in summer 2016 at four locations in Chitwan, Nepal, and investigate its association with meteorology, co-pollutants, and inflammatory activity. PM 10 concentrations were recorded and filter paper samples were collected using E-samplers; PM 1, PM 2.5 , black carbon (BC), methane (CH 4 ), and carbon monoxide (CO) were also measured. The Limulus amebocyte lysate (LAL) assay was used for endotoxin quantification and the nuclear factor kappa B (NFκB) activation assay to assess inflammatory activity. The mean concentration of PM 10 at the different locations ranged from 136 to 189μg/m 3 , and of endotoxin from 0.29 to 0.53EU/m 3 . Pollutant presence was positively correlated with endotoxin. Apart from relative humidity, meteorological variations had no significant impact on endotoxin concentration. NF-κB activity was negatively correlated with endotoxin concentration. To the best of our knowledge, this study provides the first measurements of ambient endotoxin associated with PM 10 in Nepal. Endotoxin and co-pollutants were positively associated indicating a similar source. Endotoxin was negatively correlated with inflammatory activity as a result of a time-limited forest fire event during the sampling period. Studies of co-pollutants suggested that the higher levels of endotoxin related to biomass burning were accompanied by increased levels of anti-inflammatory agents, which suppressed the endotoxin inflammatory effect. Copyright © 2017. Published by Elsevier B.V.

  18. Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Liu, Chung-Chiun

    2011-01-01

    An ambient temperature oxygen microsensor, based on a Nafion polymer electrolyte, has been developed and was microfabricated using thin-film technologies. A challenge in the operation of Nafion-based sensor systems is that the conductivity of Nafion film depends on the humidity in the film. Nafion film loses conductivity when the moisture content in the film is too low, which can affect sensor operation. The advancement here is the identification of a method to retain the operation of the Nafion films in lower humidity environments. Certain salts can hold water molecules in the Nafion film structure at room temperature. By mixing salts with the Nafion solution, water molecules can be homogeneously distributed in the Nafion film increasing the film s hydration to prevent Nafion film from being dried out in low-humidity environment. The presence of organics provides extra sites in the Nafion film to promote proton (H+) mobility and thus improving Nafion film conductivity and sensor performance. The fabrication of ambient temperature oxygen microsensors includes depositing basic electrodes using noble metals, and metal oxides layer on one of the electrode as a reference electrode. The use of noble metals for electrodes is due to their strong catalytic properties for oxygen reduction. A conducting polymer Nafion, doped with water-retaining components and extra sites facilitating proton movement, was used as the electrolyte material, making the design adequate for low humidity environment applications. The Nafion solution was coated on the electrodes and air-dried. The sensor operates at room temperature in potentiometric mode, which measures voltage differences between working and reference electrodes in different gases. Repeat able responses to 21-percent oxygen in nitrogen were achieved using nitrogen as a baseline gas. Detection of oxygen from 7 to 21 percent has also been demonstrated. The room-temperature oxygen micro sensor developed has extremely low power

  19. Real-time monitoring of BTEX in air via ambient-pressure MPI

    NASA Astrophysics Data System (ADS)

    Swenson, Orven F.; Carriere, Josef P.; Isensee, Harlan; Gillispie, Gregory D.; Cooper, William F.; Dvorak, Michael A.

    1998-05-01

    We have developed and begun to field test a very sensitive method for real-time measurements of single-ring aromatic hydrocarbons in ambient air. In this study, we focus on the efficient 1 + 1 resonance enhanced multiphoton ionization (REMPI) of the BTEX species in the narrow region between 266 and 267 nm. We particularly emphasize 266.7 nm, a wavelength at which both benzene and toluene exhibit a sharp absorbance feature and benzene and its alkylated derivatives all absorb. An optical parametric oscillator system generating 266.7 nm, a REMPI cell, and digital oscilloscope detector are mounted on a breadboard attached to a small cart. In the first field test, the cart was wheeled through the various rooms of a chemistry research complex. Leakage of fuel through the gas caps of cars and light trucks in a parking lot was the subject of the second field test. The same apparatus was also used for a study in which the performance of the REMPI detector and a conventional photoionization detector were compared as a BTEX mixture was eluted by gas chromatography. Among the potential applications of the methodology are on-site analysis of combustion and manufacturing processes, soil gas and water headspace monitoring, space cabin and building air quality, and fuel leak detection.

  20. Predicting Activity Energy Expenditure Using the Actical[R] Activity Monitor

    ERIC Educational Resources Information Center

    Heil, Daniel P.

    2006-01-01

    This study developed algorithms for predicting activity energy expenditure (AEE) in children (n = 24) and adults (n = 24) from the Actical[R] activity monitor. Each participant performed 10 activities (supine resting, three sitting, three house cleaning, and three locomotion) while wearing monitors on the ankle, hip, and wrist; AEE was computed…

  1. Factors affecting measured, modeled and reconstructed estimates of personal exposure to ambient ozone in southern California

    NASA Astrophysics Data System (ADS)

    Gonzales, Melissa

    To evaluate those factors which influence the assignment of ozone ( O3) exposures in an epidemiologic context a field study was conducted in the South Coast Air Basin (SoCAB) during the summer of 19% in which time, location, activity (TLA) information and direct measurements of personal O3 exposure were concurrently collected on a group of college students. Current and past O3 exposures were modeled and evaluated as a function of ambient O 3, activity and mobility patterns, indoor ventilation, and recalled TLA information collected one year later. The effect of these factors on the within- and between-subject exposure variability assigned by ecologic (EC) and microenvironment (MEV) models were examined by two-hour intervals, on weekends and weekdays, and by monitoring week compared to personal exposures measured with a passive sampling device (PSD). The students reported spending 85% of their time inside, 7% outside and 8% in- transit. More time was spent outdoors on weekends than on weekdays. Ambient O3 levels were also higher on weekends. In the study area, where a dense O3 monitoring network and the appropriate topography exist fixed-site O3 accurately assigned ambient O3 levels within a 10 mile radius. The variation in the ecologic exposure assignments was low compared to the estimated variation among PSD-measured and MEV-modeled estimates due to the low spatial variation of ambient O3 levels across the SoCAB areas visited by the students. MEV and PSD exposure estimates better captured the variability of personal exposure in any given ambient spatial regimen compared to ecologic exposure assignments. MEV exposure estimates based on recalled TLA patterns, were similar to the MEV estimates based on diary-recorded TLA patterns. For this study population, PSD-measured O3 exposures were estimated to average 32% lower than ``true'' exposure levels due to indoor/outdoor differences in the PSD collection rate. The level of detail obtained from the TLA diary is not

  2. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...

  3. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...

  4. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...

  5. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...

  6. Trends analyses of 30 years of ambient 8 hour ozone and precursor monitoring data in the South Central U.S.: progress and challenges.

    PubMed

    Sather, Mark E; Cavender, Kevin

    2016-07-13

    In the last 30 years ambient ozone concentrations have notably decreased in the South Central U.S. Yet, current ambient ozone concentrations measured over the past three years 2013-2015 in this area of the U.S. are not meeting the U.S. 2015 8 hour ozone standard of 70 parts per billion (ppb). This paper provides an update on long-term trends analyses of ambient 8 hour ozone and ozone precursor monitoring data collected over the past 30 years (1986-2015) in four South Central U.S. cities, following up on two previously published reviews of 20 and 25 year trends for these cities. All four cities have benefitted from national ozone precursor controls put in place during the 1990s and 2000s involving cleaner vehicles (vehicle fleet turnover/replacement over time), cleaner fuels, cleaner gasoline and diesel engines, and improved inspection/maintenance programs for existing vehicles. Additional ozone precursor emission controls specific to each city are detailed in this paper. The controls have resulted in impressive ambient ozone and ambient ozone precursor concentration reductions in the four South Central U.S. cities over the past 30 years, including 31-70% ambient nitrogen oxides (NOx) concentration declines from historical peaks to the present, 43-72% volatile organic compound (VOC) concentration declines from historical peaks to the present, a related 45-76% VOC reactivity decline for a subset of VOC species from historical peaks to the present, and an 18-38 ppb reduction in city 8 hour ozone design value concentrations. A new challenge for each of the four South Central U.S. cities will be meeting the U.S. 2015 8 hour ozone standard of 70 ppb.

  7. The association between ambient fine particulate air pollution and physical activity: a cohort study of university students living in Beijing.

    PubMed

    Yu, Hongjun; Yu, Miao; Gordon, Shelby Paige; Zhang, Ruiling

    2017-10-05

    Air pollution has become a substantial environmental issue affecting human health and health-related behavior in China. Physical activity is widely accepted as a method to promote health and well-being and is potentially influenced by air pollution. Previous population-based studies have focused on the impact of air pollution on physical activity in the U.S. using a cross-sectional survey method; however, few have examined the impact on middle income countries such as China using follow-up data. The purpose of this study is to examine the impact of ambient fine particulate matter (PM 2.5 ) air pollution on physical activity among freshmen students living in Beijing by use of follow-up data. We conducted 4 follow-up health surveys on 3445 freshmen students from Tsinghua University from 2012 to 2013 and 2480 freshmen completed all 4 surveys. Linear individual fixed-effect regressions were performed based on repeated-measure physical activity-related health behaviors and ambient PM 2.5 concentrations among the follow-up participants. An increase in ambient PM 2.5 concentration by one standard deviation (44.72 μg/m 3 ) was associated with a reduction in 22.32 weekly minutes of vigorous physical activity (95% confidence interval [CI] = 24.88-19.77), a reduction in 10.63 weekly minutes of moderate physical activity (95% CI = 14.61-6.64), a reduction in 32.45 weekly minutes of moderate to vigorous physical activity (MVPA) (95% CI = 37.63-27.28), and a reduction in 226.14 weekly physical activity MET-minute scores (95% CI = 256.06-196.21). The impact of ambient PM 2.5 concentration on weekly total minutes of moderate physical activity tended to be greater among males than among females. Ambient PM 2.5 air pollution significantly discouraged physical activity among Chinese freshmen students living in Beijing. Future studies are warranted to replicate study findings in other Chinese cities and universities, and policy interventions are urgently needed to reduce air

  8. Monitoring ambient sulfur dioxide levels at some residential environments in the Greater Cairo urban Region--Egypt.

    PubMed

    El-Dars, F M S; Mohamed, A M F; Aly, H A T

    2004-07-01

    The impact of the increased sulfur dioxide emissions within the Greater Cairo Urban Region over the part 50 yr has been overwhelming. While previous air-pollution surveys measuring SO2 levels in the region converged upon the study of emissions from specific industrial activities, no correlation between the measured concentrations and the induced health-related impacts in living environments was provided. As well, no inventory of emissions from other sources within some residential areas were accounted for or evaluated. During the study period of January to April 2000, the ambient sulfur dioxide levels in four residential locations within the capital region were investigated. The results indicated that the measured cumulative ambient SO2 concentrations were in excess of the national and the international monthly mean exposure limits, irrespective of the type of local activity. As well, measurements within three of the selected environments surpassed the 0.5 ppm SO2 odor-threshold. The data also showed a significant dependency of the measured content upon the physical layout and topography of the studied environment as well as with respect to the prevailing seasonal weather conditions.

  9. An Electric Propulsion "Shepherd" for Active Debris Removal that Utilizes Ambient Gas as Propellant

    NASA Technical Reports Server (NTRS)

    Matney, Mark J.

    2013-01-01

    There is a growing consensus among the space debris technical community that limiting the long ]term growth of debris in Low-Earth Orbit (LEO) requires that space users limit the accumulation of mass in orbit. This is partially accomplished by mitigation measures for current and future LEO systems, but there is now interest in removing mass that has already accumulated in LEO from more than 50 years of space activity (termed "Active Debris Removal", or ADR). Many ADR proposals face complex technical issues of how to grapple with uncooperative targets. Some researchers have suggested the use of conventional ion thrusters to gently "blow" on objects to gradually change their orbits, without ever having to come into physical contact with the target. The chief drawback with these methods is the cost per object removed. Typically, a space "tug" or an ion-drive "shepherd" can only remove a few objects per mission due to limited propellant. Unless a costeffective way that removes tens of objects per mission can be found, it is not clear that any of the ideas so far proposed will be economically viable. In this paper, a modified version of the ion-drive "shepherd" is proposed that uses ambient atmospheric gases in LEO as propellant for the ion drives. This method has the potential to greatly extend the operational lifetime of an ADR mission, as the only mission limit is the lifetime of the components of the satellite itself, not on its fuel supply. An ambient-gas ion-drive "shepherd" would the local atmospheric drag on an object by ionizing and accelerating the ambient gas the target would have encountered anyway, thereby hastening its decay. Also, the "shepherd" satellite itself has a great deal of flexibility to maneuver back to high altitude and rendezvous with its next target using the ion drive not limited by fuel supply. However, the amount of available ambient gas is closely tied to the altitude of the spacecraft. It may be possible to use a "hybrid" approach that

  10. An Electric Propulsion "Shepherd" for Active Debris Removal that Utilizes Ambient Gas as Propellant

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2013-01-01

    There is a growing consensus among the space debris technical community that limiting the long-term growth of debris in Low-Earth Orbit (LEO) requires that space users limit the accumulation of mass in orbit. This is partially accomplished by mitigation measures for current and future LEO systems, but there is now interest in removing mass that has already accumulated in LEO from more than 50 years of space activity (termed "Active Debris Removal", or ADR). Many ADR proposals face complex technical issues of how to grapple with uncooperative targets. Some researchers have suggested the use of conventional ion thrusters to gently "blow" on objects to gradually change their orbits, without ever having to come into physical contact with the target. The chief drawback with these methods is the cost per object removed. Typically, a space "tug" or an ion-drive "shepherd" can only remove a few objects per mission due to limited propellant. Unless a cost-effective way that removes tens of objects per mission can be found, it is not clear that any of the ideas so far proposed will be economically viable. In this paper, a modified version of the ion-drive "shepherd" is proposed that uses ambient atmospheric gases in LEO as propellant for the ion drives. This method has the potential to greatly extend the operational lifetime of an ADR mission, as the only mission limit is the lifetime of the components of the satellite itself, not on its fuel supply. An ambient-gas ion-drive "shepherd" would enhance the local atmospheric drag on an object by ionizing and accelerating the ambient gas the target would have encountered anyway, thereby hastening its decay. Also, the "shepherd" satellite itself has a great deal of flexibility to maneuver back to high altitude and rendezvous with its next target using the ion drive not limited by fuel supply. However, the amount of available ambient gas is closely tied to the altitude of the spacecraft. It may be possible to use a "hybrid

  11. Basic Information about Air Emissions Monitoring

    EPA Pesticide Factsheets

    This site is about types of air emissions monitoring and the Clean Air Act regulations, including Ambient Air Quality Monitoring, Stationary Source Emissions Monitoring, and Continuous Monitoring Systems.

  12. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...

  13. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...

  14. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...

  15. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...

  16. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...

  17. Validity of physical activity monitors for assessing lower intensity activity in adults.

    PubMed

    Calabró, M Andrés; Lee, Jung-Min; Saint-Maurice, Pedro F; Yoo, Hyelim; Welk, Gregory J

    2014-09-28

    Accelerometers can provide accurate estimates of moderate-to-vigorous physical activity (MVPA). However, one of the limitations of these instruments is the inability to capture light activity within an acceptable range of error. The purpose of the present study was to determine the validity of different activity monitors for estimating energy expenditure (EE) of light intensity, semi-structured activities. Forty healthy participants wore a SenseWear Pro3 Armband (SWA, v.6.1), the SenseWear Mini, the Actiheart, ActiGraph, and ActivPAL monitors, while being monitored with a portable indirect calorimetry (IC). Participants engaged in a variety of low intensity activities but no formalized scripts or protocols were used during these periods. The Mini and SWA overestimated total EE on average by 1.0% and 4.0%, respectively, while the AH, the GT3X, and the AP underestimated total EE on average by 7.8%, 25.5%, and 22.2%, respectively. The pattern-recognition monitors yielded non-significant differences in EE estimates during the semi-structured period (p = 0.66, p = 0.27, and p = 0.21 for the Mini, SWA, and AH, respectively). The SenseWear Mini provided more accurate estimates of EE during light to moderate intensity semi-structured activities compared to other activity monitors. This monitor should be considered when there is interest in tracking low intensity activities in groups of individuals.

  18. Multimodal Wireless Sensor Network-Based Ambient Assisted Living in Real Homes with Multiple Residents

    PubMed Central

    Tunca, Can; Alemdar, Hande; Ertan, Halil; Incel, Ozlem Durmaz; Ersoy, Cem

    2014-01-01

    Human activity recognition and behavior monitoring in a home setting using wireless sensor networks (WSNs) provide a great potential for ambient assisted living (AAL) applications, ranging from health and wellbeing monitoring to resource consumption monitoring. However, due to the limitations of the sensor devices, challenges in wireless communication and the challenges in processing large amounts of sensor data in order to recognize complex human activities, WSN-based AAL systems are not effectively integrated in the home environment. Additionally, given the variety of sensor types and activities, selecting the most suitable set of sensors in the deployment is an important task. In order to investigate and propose solutions to such challenges, we introduce a WSN-based multimodal AAL system compatible for homes with multiple residents. Particularly, we focus on the details of the system architecture, including the challenges of sensor selection, deployment, networking and data collection and provide guidelines for the design and deployment of an effective AAL system. We also present the details of the field study we conducted, using the systems deployed in two different real home environments with multiple residents. With these systems, we are able to collect ambient sensor data from multiple homes. This data can be used to assess the wellbeing of the residents and identify deviations from everyday routines, which may be indicators of health problems. Finally, in order to elaborate on the possible applications of the proposed AAL system and to exemplify directions for processing the collected data, we provide the results of several human activity inference experiments, along with examples on how such results could be interpreted. We believe that the experiences shared in this work will contribute towards accelerating the acceptance of WSN-based AAL systems in the home setting. PMID:24887044

  19. Multimodal wireless sensor network-based ambient assisted living in real homes with multiple residents.

    PubMed

    Tunca, Can; Alemdar, Hande; Ertan, Halil; Incel, Ozlem Durmaz; Ersoy, Cem

    2014-05-30

    Human activity recognition and behavior monitoring in a home setting using wireless sensor networks (WSNs) provide a great potential for ambient assisted living (AAL) applications, ranging from health and wellbeing monitoring to resource consumption monitoring. However, due to the limitations of the sensor devices, challenges in wireless communication and the challenges in processing large amounts of sensor data in order to recognize complex human activities, WSN-based AAL systems are not effectively integrated in the home environment. Additionally, given the variety of sensor types and activities, selecting the most suitable set of sensors in the deployment is an important task. In order to investigate and propose solutions to such challenges, we introduce a WSN-based multimodal AAL system compatible for homes with multiple residents. Particularly, we focus on the details of the system architecture, including the challenges of sensor selection, deployment, networking and data collection and provide guidelines for the design and deployment of an effective AAL system. We also present the details of the field study we conducted, using the systems deployed in two different real home environments with multiple residents. With these systems, we are able to collect ambient sensor data from multiple homes. This data can be used to assess the wellbeing of the residents and identify deviations from everyday routines, which may be indicators of health problems. Finally, in order to elaborate on the possible applications of the proposed AAL system and to exemplify directions for processing the collected data, we provide the results of several human activity inference experiments, along with examples on how such results could be interpreted. We believe that the experiences shared in this work will contribute towards accelerating the acceptance of WSN-based AAL systems in the home setting.

  20. Ambient Dose Equivalent in S. Paulo and Bauru cities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umisedo, Nancy K.; Okuno, Emico; Cancio, Francisco S.

    2008-08-07

    The Laboratory of Dosimetry (Institute of Physics, University of S. Paulo) performs since 1981 the external individual monitoring of workers exposed to X and gamma rays based on thermoluminescent dosimetry (TLD). Personal dose equivalent refers only to the exposure of workers due to the working activities, and the dose due to background radiation, also measured with TLD, must be subtracted to evaluate it. A compilation of ambient dose equivalent was done to evaluate the dose due to the background radiation in the work places, and also to contribute to the knowledge of the level of indoor radiation to which themore » public is exposed.« less

  1. Hands-On Experiences in Deploying Cost-Effective Ambient-Assisted Living Systems

    PubMed Central

    Dasios, Athanasios; Gavalas, Damianos; Pantziou, Grammati; Konstantopoulos, Charalampos

    2015-01-01

    Older adults’ preferences to remain independent in their own homes along with the high costs of nursing home care have motivated the development of Ambient Assisted Living (AAL) technologies which aim at improving the safety, health conditions and wellness of the elderly. This paper reports hands-on experiences in designing, implementing and operating UbiCare, an AAL based prototype system for elderly home care monitoring. The monitoring is based on the recording of environmental parameters like temperature and light intensity as well as micro-level incidents which allows one to infer daily activities like moving, sitting, sleeping, usage of electrical appliances and plumbing components. The prototype is built upon inexpensive, off-the-shelf hardware (e.g., various sensors, Arduino microcontrollers, ZigBee-compatible wireless communication modules) and license-free software, thereby ensuring low system deployment costs. The network comprises nodes placed in a house’s main rooms or mounted on furniture, one wearable node, one actuator node and a centralized processing element (coordinator). Upon detecting significant deviations from the ordinary activity patterns of individuals and/or sudden falls, the system issues automated alarms which may be forwarded to authorized caregivers via a variety of communication channels. Furthermore, measured environmental parameters and activity incidents may be monitored through standard web interfaces. PMID:26094631

  2. Hands-On Experiences in Deploying Cost-Effective Ambient-Assisted Living Systems.

    PubMed

    Dasios, Athanasios; Gavalas, Damianos; Pantziou, Grammati; Konstantopoulos, Charalampos

    2015-06-18

    Older adults' preferences to remain independent in their own homes along with the high costs of nursing home care have motivated the development of Ambient Assisted Living (AAL) technologies which aim at improving the safety, health conditions and wellness of the elderly. This paper reports hands-on experiences in designing, implementing and operating UbiCare, an AAL based prototype system for elderly home care monitoring. The monitoring is based on the recording of environmental parameters like temperature and light intensity as well as micro-level incidents which allows one to infer daily activities like moving, sitting, sleeping, usage of electrical appliances and plumbing components. The prototype is built upon inexpensive, off-the-shelf hardware (e.g., various sensors, Arduino microcontrollers, ZigBee-compatible wireless communication modules) and license-free software, thereby ensuring low system deployment costs. The network comprises nodes placed in a house's main rooms or mounted on furniture, one wearable node, one actuator node and a centralized processing element (coordinator). Upon detecting significant deviations from the ordinary activity patterns of individuals and/or sudden falls, the system issues automated alarms which may be forwarded to authorized caregivers via a variety of communication channels. Furthermore, measured environmental parameters and activity incidents may be monitored through standard web interfaces.

  3. Design and Clinical Feasibility of Personal Wearable Monitor for Measurement of Activity and Environmental Exposure

    PubMed Central

    Ribón Fletcher, Richard; Oreskovic, Nicolas M.; Robinson, Alyssa I.

    2015-01-01

    Human exposure to specific environmental factors (e.g. air quality, lighting, and sound) is known to play an important role in the pathogenesis of many chronic diseases (e.g. asthma) and mental health disorders (e.g. anxiety). However, conventional fixed environmental monitoring stations are sparsely located and, despite environmental models, cannot adequately assess individual exposure levels. New forms of low-cost portable monitors have begun to emerge that enable the collection of higher spatial density “crowd sourced” data; however, the first generation of these low-cost environmental monitors have generally not been suitable for clinical environmental health studies due to practical challenges such as calibration, reproducibility, form factor, and battery life. In this paper, we present a wearable environmental monitor that overcomes these challenges and can be used in clinical studies The new device, called “Eco-Mini,” can be used without a smart phone and is capable of locally sampling and recording a variety of environmental parameters (Ozone, Sulfur Dioxide, Volatile Organic Compounds, humidity, temperature, ambient light color balance, and sound level) as well as individual activity (3-axis accelerometer) and location (GPS). In this paper, we also report findings and discuss lessons learned from a feasibility study conducted for one week with pediatric patients as part of an ongoing asthma research study. PMID:25570098

  4. Ambient Monitoring for Sinclair and Dyes Inlets, Puget Sound, Washington: Chemical Analyses for 2010 Regional Mussel Watch (AMB02)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandenberger, Jill M.; Kuo, Li-Jung; Suslick, Carolynn R.

    The Puget Sound Naval Shipyard & Intermediate Maintenance Facility (PSNS&IMF) and Naval Base Kitsap-Bremerton (Shipyard) located in Bremerton, WA are committed to a culture of continuous process improvement for all aspects of Shipyard operations, including reducing the releases of hazardous materials and waste in discharges from the Shipyard. Under the Project ENVVEST Final Project Agreement, a cooperative project among PSNS&IMF, the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology), and local stakeholders (US Navy, EPA and Ecology 2002) has been helping to improve the environmental quality of the Sinclair and Dyes Inlet Watershed (ENVVEST 2006). Anmore » ambient monitoring program for sediment, water, and indigenous mussels began in 2009 to assess the status and trend of ecological resources, assess the effectiveness of cleanup and pollution control measures, and determine if discharges from all sources are protective of beneficial uses including aquatic life. This document presents the 2010 chemical residue data and stable isotopes of carbon (δ13C) and nitrogen (δ15N) for the regional mussel watch stations located in Sinclair Inlet, Dyes Inlet, Port Orchard Passage, Rich Passage, Agate Passage, Liberty Bay, and Keyport Lagoon. Indigenous bivalves were collected from a small boat and/or from along the shoreline, measured, composited, and analyzed for a suite of trace metals and organic contaminants. The trace metals included silver, arsenic, cadmium, chromium, copper, mercury, nickel, lead, and zinc. The organic contaminants included the list of NOAA Status and Trends 20 polychlorinated biphenyls (PCB) congeners and suite of parent and methylated polycyclic aromatic hydrocarbons (PAHs). These chemical residue data provide the first year of the biota ambient monitoring.« less

  5. Monitoring transient changes within overpressured regions of subduction zones using ambient seismic noise.

    PubMed

    Chaves, Esteban J; Schwartz, Susan Y

    2016-01-01

    In subduction zones, elevated pore fluid pressure, generally linked to metamorphic dehydration reactions, has a profound influence on the mechanical behavior of the plate interface and forearc crust through its control on effective stress. We use seismic noise-based monitoring to characterize seismic velocity variations following the 2012 Nicoya Peninsula, Costa Rica earthquake [M w (moment magnitude) 7.6] that we attribute to the presence of pressurized pore fluids. Our study reveals a strong velocity reduction (~0.6%) in a region where previous work identified high forearc pore fluid pressure. The depth of this velocity reduction is constrained to be below 5 km and therefore not the result of near-surface damage due to strong ground motions; rather, we posit that it is caused by fracturing of the fluid-pressurized weakened crust due to dynamic stresses. Although pressurized fluids have been implicated in causing coseismic velocity reductions beneath the Japanese volcanic arc, this is the first report of a similar phenomenon in a subduction zone setting. It demonstrates the potential to identify pressurized fluids in subduction zones using temporal variations of seismic velocity inferred from ambient seismic noise correlations.

  6. RESULTS FROM EXPOSURE MONITORING PERFORMED DURING THE 1997 BALTIMORE PM PILOT STUDY

    EPA Science Inventory

    An eighteen day winter-time ambient and personal exposure monitoring study of particulate matter (PM) was conducted as part of an.integrated epidemiological-exposure pilot study of an aged population. Goals of the study were to determine the feasibility of performing active per...

  7. National physical activity surveillance: Users of wearable activity monitors as a potential data source.

    PubMed

    Omura, John D; Carlson, Susan A; Paul, Prabasaj; Watson, Kathleen B; Fulton, Janet E

    2017-03-01

    The objective of this study was to assess usage patterns of wearable activity monitors among US adults and how user characteristics might influence physical activity estimates from this type of sample. We analyzed data on 3367 respondents to the 2015 HealthStyles survey, an annual consumer mail panel survey conducted on a nationwide sample. Approximately 1 in 8 respondents (12.5%) reported currently using a wearable activity monitor. Current use varied by sex, age, and education level. Use increased with physical activity level from 4.3% for inactive adults to 17.4% for active adults. Overall, 49.9% of all adults met the aerobic physical activity guideline, while this prevalence was 69.5% among current activity monitor users. Our findings suggest that current users of wearable activity monitors are not representative of the overall US population. Estimates of physical activity levels using data from wearable activity monitors users may be an overestimate and therefore data from users alone may have a limited role in physical activity surveillance.

  8. LITERATURE REVIEW OF PERSONAL AIR MONITORS FOR POTENTIAL USE IN AMBIENT AIR MONITORING OF ORGANIC COMPOUNDS

    EPA Science Inventory

    The open literature, Federal publications, industrial reports, and other sources published between 1975 and 1980 were reviewed for information relevant to personal air samplers potentially useful in sampling organic compounds at ambient levels (50-200 ppt). Seventy one references...

  9. Oviposition activity of Drosophila suzukii as mediated by ambient and fruit temperature

    PubMed Central

    2017-01-01

    The invasive pest Drosophila suzukii was introduced to southern Europe in 2008 and spread throughout Central Europe in the following years. Precise reliable data on the temperature-dependent behavior of D. suzukii are scarce but will help forecasting and cultivation techniques. Depending on physico-chemical properties, surface temperature of objects may differ from ambient temperatures, determining physical activity, and affect oviposition on or into substrate, determining preimaginal development later. Therefore, the preferred ambient temperatures of D. suzukii and fruit temperature for oviposition were examined on a linear temperature gradient device. Thirty adults (15 ♀; 15 ♂) were adapted to different temperatures (10, 20, 30°C) for six days and then exposed to different temperature gradients (10–25, 20–35, 25–40°C). D. suzukii adapted to 10°C remained in cooler regions and suffered from a significantly higher mortality at the 25–40°C gradient. Animals adapted to warmer temperatures had a wider temperature preference on the gradient device. Acclimation to lower temperatures and the resulting lower temperature preferences may allow the flies to disperse better in spring to search for oviposition sites. The oviposition activity decreased continuously at a fruit temperature above 28°C and below 15°C, with highest oviposition activity in fruits with temperatures between 19.7°C and 24.8°C. The preferred fruit temperature is in accordance with the temperature optimum of reproduction biology and preimaginal development of D. suzukii reported in the literature. PMID:29121635

  10. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION AND MAINTENANCE OF THE ECOCHEM REAL-TIME AMBIENT AIR PAH MONITOR (UA-F-24.0)

    EPA Science Inventory

    The purpose of this SOP is to describe the general procedures to be followed for the operation and maintenance of the EcoChem real-time ambient air PAH monitor. This procedure was followed to ensure consistent data retrieval of PAH measurements during the Arizona NHEXAS project ...

  11. A method to characterise site, urban and regional ambient background radiation.

    PubMed

    Passmore, C; Kirr, M

    2011-03-01

    Control dosemeters are routinely provided to customers to monitor the background radiation so that it can be subtracted from the gross response of the dosemeter to arrive at the occupational dose. Landauer, the largest dosimetry processor in the world with subsidiaries in Australia, Brazil, China, France, Japan, Mexico and the UK, has clients in approximately 130 countries. The Glenwood facility processes over 1.1 million controls per year. This network of clients around the world provides a unique ability to monitor the world's ambient background radiation. Control data can be mined to provide useful historical information regarding ambient background rates and provide a historical baseline for geographical areas. Historical baseline can be used to provide site or region-specific background subtraction values, document the variation in ambient background radiation around a client's site or provide a baseline for measuring the efficiency of clean-up efforts in urban areas after a dirty bomb detonation.

  12. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant, January--December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kszos, L.A.

    1996-04-01

    The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (benthic macroinvertebrates, fish). This report focuses on ESD activities occurring from Jan. 1995 to Dec. 1995, although activities conducted outside this period are included as appropriate.

  13. Studying temporal velocity changes with ambient seismic noise at Hawaiian volcanoes

    NASA Astrophysics Data System (ADS)

    Ballmer, S.; Wolfe, C. J.; Okubo, P. G.; Haney, M. M.; Thurber, C. H.

    2012-04-01

    In order to understand the dynamics of volcanoes and to assess the associated hazards, the analysis of ambient seismic noise - a continuous passive source - has been used for both imaging and monitoring temporal changes in seismic velocity. Between pairs of seismic stations, surface wave Green's functions can be retrieved from the background ocean-generated noise being sensitive to the shallow subsurface. Such Green's functions allow the measurement of very small temporal perturbations in seismic velocity with a variety of applications. In particular, velocity decreases prior to some volcanic eruptions have been documented and motivate our present study. Here we perform ambient seismic noise interferometry to study temporal changes in seismic velocities within the shallow (<5km) subsurface of the Hawaiian volcanoes. Our study is the first to assess the potential for using ambient noise analyses as a tool for Hawaiian volcano monitoring. Five volcanoes comprise the island of Hawaii, of which two are active: Mauna Loa volcano, which last erupted in 1984, and Kilauea volcano, where the Pu'u'O'o-Kupaianaha eruption along the east rift zone has been ongoing since 1983. For our analysis, we use data from the USGS Hawaiian Volcano Observatory (HVO) seismic network from 05/2007 to 12/2009. Our study period includes the Father's Day dike intrusion into Kilauea's east rift zone in mid-June 2007 as well as increased summit activity commencing in late 2007 and leading to several minor explosions in early 2008. These volcanic events are of interest for the study of potential associated seismic velocity changes. However, we find that volcanic tremor complicates the measurement of velocity changes. Volcanic tremor is continuously present during most of our study period, and contaminates the recovered Green's functions for station pairs across the entire island. Initial results suggest that a careful quality assessment (i.e. visually inspecting the Green's functions and filtering

  14. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  15. Working Towards Deep-Ocean Temperature Monitoring by Studying the Acoustic Ambient Noise Field in the South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sambell, K.; Evers, L. G.; Snellen, M.

    2017-12-01

    Deriving the deep-ocean temperature is a challenge. In-situ observations and satellite observations are hardly applicable. However, knowledge about changes in the deep ocean temperature is important in relation to climate change. Oceans are filled with low-frequency sound waves created by sources such as underwater volcanoes, earthquakes and seismic surveys. The propagation of these sound waves is temperature dependent and therefore carries valuable information that can be used for temperature monitoring. This phenomenon is investigated by applying interferometry to hydroacoustic data measured in the South Pacific Ocean. The data is measured at hydrophone station H03 which is part of the International Monitoring System (IMS). This network consists of several stations around the world and is in place for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The station consists of two arrays located north and south of Robinson Crusoe Island separated by 50 km. Both arrays consist of three hydrophones with an intersensor distance of 2 km located at a depth of 1200 m. This depth is in range of the SOFAR channel. Hydroacoustic data measured at the south station is cross-correlated for the time period 2014-2017. The results are improved by applying one-bit normalization as a preprocessing step. Furthermore, beamforming is applied to the hydroacoustic data in order to characterize ambient noise sources around the array. This shows the presence of a continuous source at a backazimuth between 180 and 200 degrees throughout the whole time period, which is in agreement with the results obtained by cross-correlation. Studies on source strength show a seasonal dependence. This is an indication that the sound is related to acoustic activity in Antarctica. Results on this are supported by acoustic propagation modeling. The normal mode technique is used to study the sound propagation from possible source locations towards station H03.

  16. A Java Program for the Viewing of Ambient Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, A.

    2004-09-03

    The BaBar detector system has a large number of sensors and data feeds, called ambient feeds. These feeds are vital to the operation and monitoring of the Pep rings and the BaBar system. In order to more easily monitor these systems a simple web interface to display graphical representations of the data is needed. Towards this end it was decided that using a Java Web Servlet (Sun Microsystems) would be an effective and simple way to achieve this effect. By combining Web Servlets with the Corba Technology (OMG) this provides a way for many people to access data from anywheremore » in the world. Using this type of program in conjunction with the HEP AIDA systems for graphing makes a powerful tool for the monitoring of the BaBar system. An overview of the BaBar system, and how the Ambient data is given. The uses and limitations of this method for viewing the data as well as examples of other ways to access the data and potential other uses for the servlet are also discussed.« less

  17. Ambient air pollution and risk of tuberculosis: a cohort study.

    PubMed

    Lai, Ting-Chun; Chiang, Chen-Yuan; Wu, Chang-Fu; Yang, Shiang-Lin; Liu, Ding-Ping; Chan, Chang-Chuan; Lin, Hsien-Ho

    2016-01-01

    Several respirable hazards, including smoking and indoor air pollution from biomass, were suggested to increase the risk of tuberculosis. Few studies have been conducted on ambient air pollution and tuberculosis. We investigated the association between exposure to ambient air pollution and incidence of active tuberculosis. We conducted a cohort study using 106,678 participants of a community-based screening service in Taiwan, 2005-2012. We estimated individual exposure to air pollution using data from the nearest air quality monitoring station and the road intensity within a 500 m buffer zone. The incidence of tuberculosis was ascertained from the national tuberculosis registry. After a median follow-up of 6.7 years, 418 cases of tuberculosis occurred. Exposure to fine particulate matter (PM2.5) was associated with increased risk of active tuberculosis (adjusted HR: 1.39/10 μg/m3 (95% CI 0.95 to 2.03)). In addition, traffic-related air pollution including nitrogen dioxide (adjusted HR: 1.33/10 ppb; 95% CI 1.04 to 1.70), nitrogen oxides (adjusted HR: 1.21/10 ppb; 95% CI 1.04 to 1.41) and carbon monoxide (adjusted HR: 1.89/ppm; 95% CI 0.78 to 4.58) was associated with tuberculosis risk. There was a non-significant trend between the length of major roads in the neighbourhood and culture-confirmed tuberculosis (adjusted HR: 1.04/km; 95% CI 0.995 to 1.09). Our study revealed a possible link between ambient air pollution and risk of active tuberculosis. Since people from developing countries continue to be exposed to high levels of ambient air pollution and to experience high rates of tuberculosis, the impact of worsening air pollution on global tuberculosis control warrants further investigation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Is anthropogenic ambient noise in the ocean increasing?

    NASA Astrophysics Data System (ADS)

    McCarthy, Elena; Miller, James H.

    2002-11-01

    It is commonly accepted that the ocean's ambient noise levels are rising due to increased human activities in coastal and offshore areas. It has been estimated that low-frequency noise levels increased more than 10 dB in many parts of the world between 1950 and 1975. [Ross, Acoustics Bulletin, Jan/Feb (1993)]. Several other sources cite an increase in manmade, or anthropogenic, noise over the past few decades. [D. A. Croll et al., Animal Conservation 4(1) (2001); Marine Mammal Commission Report to Congress (1999); C. W. Turl, NOSC Tech. Report 776 (1982)]. However, there are few historical records of ambient noise data to substantiate these claims. This paper examines several sectors of anthropogenic activities to determine their contributions to ambient noise. These activities include shipping, oil and gas exploration, military sonar development, and academic research. A series of indices for each of these industries is developed to predict ambient noise trends in the sea. It is found that the amount of noise generated by individual activities may have decreased overall due to new technologies and improved efficiency even if the intensity of such activities has increased.

  19. Assessing the effects of oil sands related ozone precursor emissions on ambient ozone levels in the Alberta oil sands region, Canada

    NASA Astrophysics Data System (ADS)

    Cho, Sunny; Vijayaraghavan, Krish; Spink, David; Cosic, Biljana; Davies, Mervyn; Jung, Jaegun

    2017-11-01

    A study was undertaken to determine whether, and the extent to which, increased ground-level ozone (O3) precursor emissions from oil sands development have impacted ambient air quality in the north-eastern Alberta, Canada, over the period 1998 to 2012. Temporal trends in emissions of O3 precursors (NOx and VOC) and ambient air concentrations of O3 precursors, and O3 were examined using the Theil-Sen statistical analysis method. Statistically significant correlations between NOx emissions and ambient NOx concentrations were found mainly near surface (open-pit) mining areas where mine fleets are a large source of NOx emissions. No statistically significant trends in the 4th highest daily maximum 8-hr average O3 at any of the continuous and passive ambient air monitoring stations were found. A significant long-term decrease in monthly averaged O3 is observed at some ambient monitoring sites in summer. A visual examination of long-term variations in annual NOx and VOC emissions and annual 4th highest daily maximum 8-hr O3 concentrations does not reveal any indication of a correlation between O3 concentrations and O3 precursor emissions or ambient levels in the study area. Despite a significant increase in oil sands NOx emissions (8%/yr), there is no statistically significant increase in long-term O3 concentrations at any of monitoring stations considered. This suggests that there is surplus NOx available in the environment which results in a titration of ambient O3 in the areas that have ambient monitoring. The limited ambient O3 monitoring data distant from NOx emission sources makes it impossible to assess the impact of these increased O3 precursor levels on O3 levels on a regional scale. As a precautionary measure, the increasing oil sands development O3 precursor emissions would require that priority be given to the management of these emissions to prevent possible future O3 ambient air quality issues.

  20. Pollen and spore monitoring in the world.

    PubMed

    Buters, J T M; Antunes, C; Galveias, A; Bergmann, K C; Thibaudon, M; Galán, C; Schmidt-Weber, C; Oteros, J

    2018-01-01

    Ambient air quality monitoring is a governmental duty that is widely carried out in order to detect non-biological ("chemical") components in ambient air, such as particles of < 10 µm (PM 10 , PM 2.5 ), ozone, sulphur dioxide, and nitrogen oxides. These monitoring networks are publicly funded and air quality data are open to the public. The situation for biological particles that have detrimental effects on health, as is the case of pollen and fungal spores, is however very different. Most pollen and spore monitoring networks are not publicly funded and data are not freely available. The information regarding which biological particle is being monitored, where and by whom, is consequently often not known, even by aerobiologists themselves. This is a considerable problem, as local pollen data are an important tool for the prevention of allergic symptoms. The aim of this study was to review pollen monitoring stations throughout the world and to create an interactive visualization of their distribution. The method employed to collect information was based on: (a) a review of the recent and historical bibliography related to pollen and fungal spore monitoring, and (b) personal surveys of the managers of national and regional monitoring networks. The interactive application was developed using the R programming language. We have created an inventory of the active pollen and spore monitoring stations in the world. There are at least 879 active pollen monitoring stations in the world, most of which are in Europe (> 500). The prevalent monitoring method is based on the Hirst principle (> 600 stations). The inventory is visualised as an interactive and on-line map. It can be searched, its appearance can be adjusted to the users' needs and it is updated regularly, as new stations or changes to those that already exist can be submitted online. The map shows the current situation of pollen and spore monitoring and facilitates collaboration among those individuals who

  1. A high-resolution ambient seismic noise model for Europe

    NASA Astrophysics Data System (ADS)

    Kraft, Toni

    2014-05-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential to the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquake at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. Due to this development an increasing number of seismic monitoring networks are being installed in densely populated areas with strongly heterogeneous, and unfavorable ambient noise conditions. This poses a major challenge on the network design process, which aims to find the sensor geometry that optimizes the

  2. How consumer physical activity monitors could transform human physiology research.

    PubMed

    Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn

    2017-03-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O 2 , and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. Copyright © 2017 the American Physiological Society.

  3. How consumer physical activity monitors could transform human physiology research

    PubMed Central

    Hall Brown, Tyish S.; Collier, Scott R.; Sandberg, Kathryn

    2017-01-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. PMID:28052867

  4. Changes in ambient dose equivalent rates around roads at Kawamata town after the Fukushima accident.

    PubMed

    Kinase, Sakae; Sato, Satoshi; Sakamoto, Ryuichi; Yamamoto, Hideaki; Saito, Kimiaki

    2015-11-01

    Changes in ambient dose equivalent rates noted through vehicle-borne surveys have elucidated ecological half-lives of radioactive caesium in the environment. To confirm that the ecological half-lives are appropriate for predicting ambient dose equivalent rates within living areas, it is important to ascertain ambient dose equivalent rates on/around roads. In this study, radiation monitoring on/around roads at Kawamata town, located about 37 km northwest of the Fukushima Daiichi Nuclear Power Plant, was performed using monitoring vehicles and survey meters. It was found that the ambient dose equivalent rates around roads were higher than those on roads as of October 2012. And withal the ecological half-lives on roads were essentially consistent with those around roads. With dose predictions using ecological half-lives on roads, it is necessary to make corrections to ambient dose equivalent rates through the vehicle-borne surveys against those within living areas. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Technical Testing of the Wristwatch Size Automatic Physiological and Environmental Monitor (WAPEM): Laboratory and Outdoor Evaluations of Environmental Sensors Performance

    DTIC Science & Technology

    2004-03-01

    relative humidity (RH), ambient temperature (Ta), solar radiation (SR), and human activity in a small, water- resistant, durable enclosure. It is fitted...temperature, SR, and human activity . The activity channel is designed to function for sleep scoring (ZGM), as well as monitoring daytime activity with the

  6. Impact of ambient air pollution on physical activity among adults: a systematic review and meta-analysis.

    PubMed

    An, Ruopeng; Zhang, Sheng; Ji, Mengmeng; Guan, Chenghua

    2018-03-01

    This study systematically reviewed literature regarding the impact of ambient air pollution on physical activity among children and adults. Keyword and reference search was conducted in PubMed and Web of Science to systematically identify articles meeting all of the following criteria - study designs: interventions or experiments, retrospective or prospective cohort studies, cross-sectional studies, and case-control studies; subjects: adults; exposures: specific air pollutants and overall air quality; outcomes: physical activity and sedentary behaviour; article types: peer-reviewed publications; and language: articles written in English. Meta-analysis was performed to estimate the pooled effect size of ambient PM 2.5 air pollution on physical inactivity. Seven studies met the inclusion criteria. Among them, six were conducted in the United States, and one was conducted in the United Kingdom. Six adopted a cross-sectional study design, and one used a prospective cohort design. Six had a sample size larger than 10,000. Specific air pollutants assessed included PM 2.5 , PM 10 , O 3 , and NO x , whereas two studies focused on overall air quality. All studies found air pollution level to be negatively associated with physical activity and positively associated with leisure-time physical inactivity. Study participants, and particularly those with respiratory disease, self-reported a reduction in outdoor activities to mitigate the detrimental impact of air pollution. Meta-analysis revealed a one unit (μg/m 3 ) increase in ambient PM 2.5 concentration to be associated with an increase in the odds of physical inactivity by 1.1% (odds ratio = 1.011; 95% confidence interval = 1.001, 1.021; p-value < .001) among US adults. Existing literature in general suggested that air pollution discouraged physical activity. Current literature predominantly adopted a cross-sectional design and focused on the United States. Future studies are warranted to implement a longitudinal

  7. Coherent ambient infrasound recorded by the global IMS network

    NASA Astrophysics Data System (ADS)

    Matoza, R. S.; Landes, M.; Le Pichon, A.; Ceranna, L.; Brown, D.

    2011-12-01

    The International Monitoring System (IMS) includes a global network of infrasound arrays, which is designed to detect atmospheric nuclear explosions anywhere on the planet. The infrasound network also has potential application in detection of natural hazards such as large volcanic explosions and severe weather. Ambient noise recorded by the network includes incoherent wind noise and coherent infrasound. We present a statistical analysis of coherent infrasound recorded by the IMS network. We have applied broadband (0.01 to 5 Hz) array processing systematically to the multi-year IMS historical dataset (2005-present) using an implementation of the Progressive Multi-Channel Correlation (PMCC) algorithm in log-frequency space. We show that IMS arrays consistently record coherent ambient infrasound across the broad frequency range from 0.01 to 5 Hz when wind-noise levels permit. Multi-year averaging of PMCC detection bulletins emphasizes continuous signals such as oceanic microbaroms, as well as persistent transient signals such as repetitive volcanic, surf, or anthropogenic activity (e.g., mining or industrial activity). While many of these continuous or repetitive signals are of interest in their own right, they may dominate IMS array detection bulletins and obscure or complicate detection of specific signals of interest. The new PMCC detection bulletins have numerous further applications, including in volcano and microbarom studies, and in IMS data quality assessment.

  8. Radon-222 related influence on ambient gamma dose.

    PubMed

    Melintescu, A; Chambers, S D; Crawford, J; Williams, A G; Zorila, B; Galeriu, D

    2018-04-03

    Ambient gamma dose, radon, and rainfall have been monitored in southern Bucharest, Romania, from 2010 to 2016. The seasonal cycle of background ambient gamma dose peaked between July and October (100-105 nSv h -1 ), with minimum values in February (75-80 nSv h -1 ), the time of maximum snow cover. Based on 10 m a.g.l. radon concentrations, the ambient gamma dose increased by around 1 nSv h -1 for every 5 Bq m -3 increase in radon. Radon variability attributable to diurnal changes in atmospheric mixing contributed less than 15 nSv h -1 to the overall variability in ambient gamma dose, a factor of 4 more than synoptic timescale changes in air mass fetch. By contrast, precipitation-related enhancements of the ambient gamma dose were 15-80 nSv h -1 . To facilitate routine analysis, and account in part for occasional equipment failure, an automated method for identifying precipitation spikes in the ambient gamma dose was developed. Lastly, a simple model for predicting rainfall-related enhancement of the ambient gamma dose is tested against rainfall observations from events of contrasting duration and intensity. Results are also compared with those from previously published models of simple and complex formulation. Generally, the model performed very well. When simulations underestimated observations the absolute difference was typically less than the natural variability in ambient gamma dose arising from atmospheric mixing influences. Consequently, combined use of the automated event detection method and the simple model of this study could enable the ambient gamma dose "attention limit" (which indicates a potential radiological emergency) to be reduced from 200 to 400% above background to 25-50%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Analysis of vertical flow during ambient and pumped conditions in four monitoring wells at the Pantex Plant, Carson County, Texas, July-September 2008

    USGS Publications Warehouse

    Stanton, Gregory P.; Thomas, Jonathan V.; Stoval, Jeffery

    2009-01-01

    Logs collected in monitoring well PTX06–1068 during ambient conditions indicate a static environment with no flow. During pumping there was upward vertical flow at rates ranging from 0.4 to 4.8 gallons per minute. During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed. Estimated total transmissivity for four production zones identified from Flow–B numerical model results taken together was calculated to be about 200 feet squared per day.

  10. Device-based monitoring in physical activity and public health research.

    PubMed

    Bassett, David R

    2012-11-01

    Measurement of physical activity is important, given the vital role of this behavior in physical and mental health. Over the past quarter of a century, the use of small, non-invasive, wearable monitors to assess physical activity has become commonplace. This review is divided into three sections. In the first section, a brief history of physical activity monitoring is provided, along with a discussion of the strengths and weaknesses of different devices. In the second section, recent applications of physical activity monitoring in physical activity and public health research are discussed. Wearable monitors are being used to conduct surveillance, and to determine the extent and distribution of physical activity and sedentary behaviors in populations around the world. They have been used to help clarify the dose-response relation between physical activity and health. Wearable monitors that provide feedback to users have also been used in longitudinal interventions to motivate research participants and to assess their compliance with program goals. In the third section, future directions for research in physical activity monitoring are discussed. It is likely that new developments in wearable monitors will lead to greater accuracy and improved ease-of-use.

  11. Activity inference for Ambient Intelligence through handling artifacts in a healthcare environment.

    PubMed

    Martínez-Pérez, Francisco E; González-Fraga, Jose Ángel; Cuevas-Tello, Juan C; Rodríguez, Marcela D

    2012-01-01

    Human activity inference is not a simple process due to distinct ways of performing it. Our proposal presents the SCAN framework for activity inference. SCAN is divided into three modules: (1) artifact recognition, (2) activity inference, and (3) activity representation, integrating three important elements of Ambient Intelligence (AmI) (artifact-behavior modeling, event interpretation and context extraction). The framework extends the roaming beat (RB) concept by obtaining the representation using three kinds of technologies for activity inference. The RB is based on both analysis and recognition from artifact behavior for activity inference. A practical case is shown in a nursing home where a system affording 91.35% effectiveness was implemented in situ. Three examples are shown using RB representation for activity representation. Framework description, RB description and CALog system overcome distinct problems such as the feasibility to implement AmI systems, and to show the feasibility for accomplishing the challenges related to activity recognition based on artifact recognition. We discuss how the use of RBs might positively impact the problems faced by designers and developers for recovering information in an easier manner and thus they can develop tools focused on the user.

  12. Activity Inference for Ambient Intelligence Through Handling Artifacts in a Healthcare Environment

    PubMed Central

    Martínez-Pérez, Francisco E.; González-Fraga, Jose Ángel; Cuevas-Tello, Juan C.; Rodríguez, Marcela D.

    2012-01-01

    Human activity inference is not a simple process due to distinct ways of performing it. Our proposal presents the SCAN framework for activity inference. SCAN is divided into three modules: (1) artifact recognition, (2) activity inference, and (3) activity representation, integrating three important elements of Ambient Intelligence (AmI) (artifact-behavior modeling, event interpretation and context extraction). The framework extends the roaming beat (RB) concept by obtaining the representation using three kinds of technologies for activity inference. The RB is based on both analysis and recognition from artifact behavior for activity inference. A practical case is shown in a nursing home where a system affording 91.35% effectiveness was implemented in situ. Three examples are shown using RB representation for activity representation. Framework description, RB description and CALog system overcome distinct problems such as the feasibility to implement AmI systems, and to show the feasibility for accomplishing the challenges related to activity recognition based on artifact recognition. We discuss how the use of RBs might positively impact the problems faced by designers and developers for recovering information in an easier manner and thus they can develop tools focused on the user. PMID:22368512

  13. Determination of beryllium concentrations in UK ambient air

    NASA Astrophysics Data System (ADS)

    Goddard, Sharon L.; Brown, Richard J. C.; Ghatora, Baljit K.

    2016-12-01

    Air quality monitoring of ambient air is essential to minimise the exposure of the general population to toxic substances such as heavy metals, and thus the health risks associated with them. In the UK, ambient air is already monitored under the UK Heavy Metals Monitoring Network for a number of heavy metals, including nickel (Ni), arsenic (As), cadmium (Cd) and lead (Pb) to ensure compliance with legislative limits. However, the UK Expert Panel on Air Quality Standards (EPAQS) has highlighted a need to limit concentrations of beryllium (Be) in air, which is not currently monitored, because of its toxicity. The aim of this work was to analyse airborne particulate matter (PM) sampled onto filter papers from the UK Heavy Metals Monitoring Network for quantitative, trace level beryllium determination and compare the results to the guideline concentration specified by EPAQS. Samples were prepared by microwave acid digestion in a matrix of 2% sulphuric acid and 14% nitric acid, verified by the use of Certified Reference Materials (CRMs). The digested samples were then analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The filters from the UK Heavy Metals Monitoring Network were tested using this procedure and the average beryllium concentration across the network for the duration of the study period was 7.87 pg m-3. The highest site average concentration was 32.0 pg m-3 at Scunthorpe Low Santon, which is significantly lower than levels that are thought to cause harm. However the highest levels were observed at sites monitoring industrial point sources, indicating that beryllium is being used and emitted, albeit at very low levels, from these point sources. Comparison with other metals concentrations and data from the UK National Atmospheric Emissions Inventory suggests that current emissions of beryllium may be significantly overestimated.

  14. Continuous Monitoring via Tethered Electroencephalography of Spontaneous Recurrent Seizures in Mice

    PubMed Central

    Bin, Na-Ryum; Song, Hongmei; Wu, Chiping; Lau, Marcus; Sugita, Shuzo; Eubanks, James H.; Zhang, Liang

    2017-01-01

    We describe here a simple, cost-effective apparatus for continuous tethered electroencephalographic (EEG) monitoring of spontaneous recurrent seizures in mice. We used a small, low torque slip ring as an EEG commutator, mounted the slip ring onto a standard mouse cage and connected rotary wires of the slip ring directly to animal's implanted headset. Modifications were made in the cage to allow for a convenient installation of the slip ring and accommodation of animal ambient activity. We tested the apparatus for hippocampal EEG recordings in adult C57 black mice. Spontaneous recurrent seizures were induced using extended hippocampal kindling (≥95 daily stimulation). Control animals underwent similar hippocampal electrode implantations but no stimulations were given. Combined EEG and webcam monitoring were performed for 24 h daily for 5–9 consecutive days. During the monitoring periods, the animals moved and accessed water and food freely and showed no apparent restriction in ambient cage activities. Ictal-like hippocampal EEG discharges and concurrent convulsive behaviors that are characteristics of spontaneous recurrent seizures were reliably recorded in a majority of the monitoring experiments in extendedly kindled but not in control animals. However, 1–2 rotary wires were disconnected from the implanted headset in some animals after continuous recordings for ≥5 days. The key features and main limitations of our recording apparatus are discussed. PMID:28959196

  15. Earthquake and ambient vibration monitoring of the steel-frame UCLA factor building

    USGS Publications Warehouse

    Kohler, M.D.; Davis, P.M.; Safak, E.

    2005-01-01

    Dynamic property measurements of the moment-resisting steel-frame University of California, Los Angeles, Factor building are being made to assess how forces are distributed over the building. Fourier amplitude spectra have been calculated from several intervals of ambient vibrations, a 24-hour period of strong winds, and from the 28 March 2003 Encino, California (ML = 2.9), the 3 September 2002 Yorba Linda, California (ML = 4.7), and the 3 November 2002 Central Alaska (Mw = 7.9) earthquakes. Measurements made from the ambient vibration records show that the first-mode frequency of horizontal vibration is between 0.55 and 0.6 Hz. The second horizontal mode has a frequency between 1.6 and 1.9 Hz. In contrast, the first-mode frequencies measured from earthquake data are about 0.05 to 0.1 Hz lower than those corresponding to ambient vibration recordings indicating softening of the soil-structure system as amplitudes become larger. The frequencies revert to pre-earthquake levels within five minutes of the Yorba Linda earthquake. Shaking due to strong winds that occurred during the Encino earthquake dominates the frequency decrease, which correlates in time with the duration of the strong winds. The first shear wave recorded from the Encino and Yorba Linda earthquakes takes about 0.4 sec to travel up the 17-story building. ?? 2005, Earthquake Engineering Research Institute.

  16. Integration of ambient seismic noise monitoring, displacement and meteorological measurements to infer the temperature-controlled long-term evolution of a complex prone-to-fall cliff

    NASA Astrophysics Data System (ADS)

    Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Larose, E.; Valentin, J.; Vinciguerra, S.

    2018-06-01

    Monitoring the temporal evolution of resonance frequencies and velocity changes detected from ambient seismic noise recordings can help in recognizing reversible and irreversible modifications within unstable rock volumes. With this aim, the long-term ambient seismic noise data set acquired at the potentially unstable cliff of Madonna delSasso (NW Italian Alps) was analysed in this study, using both spectral analysis and cross-correlation techniques. Noise results were integrated and compared with direct displacement measurements and meteorological data, to understand the long-term evolution of the cliff. No irreversible modifications in the stability of the site were detected over the monitored period. Conversely, daily and seasonal air temperature fluctuations were found to control resonance frequency values, amplitudes and directivities and to induce reversible velocity changes within the fractured rock mass. The immediate modification in the noise parameters due to temperature fluctuations was interpreted as the result of rock mass thermal expansion and contraction, inducing variations in the contact stiffness along the fractures isolating two unstable compartments. Differences with previous case studies were highlighted in the long-term evolution of noise spectral amplitudes and directivities, due to the complex 3-D fracture setting of the site and to the combined effects of the two unstable compartments.

  17. Ambient Construction, LLC Information Sheet

    EPA Pesticide Factsheets

    Ambient Construction, LLC (the Company) is located in Tallahassee, Florida. The settlement involves renovation activities conducted at property constructed prior to 1978, located in Tallahassee, Florida.

  18. AAC Language Activity Monitoring: Entering the New Millennium.

    ERIC Educational Resources Information Center

    Hill, Katya; Romich, Barry

    This report describes how augmentative and alternative communication (AAC) automated language activity monitoring can provide clinicians with the tools they need to collect and analyze language samples from the natural environment of children with disabilities for clinical intervention and outcomes measurements. The Language Activity Monitor (LAM)…

  19. Recognition of Daily Activity in Living Space based on Indoor Ambient Atmosphere and Acquiring Localized Information for Improvement of Recognition Accuracy

    NASA Astrophysics Data System (ADS)

    Hirasawa, Kazuki; Sawada, Shinya; Saitoh, Atsushi

    The system watching over elder's life is very important in a super-aged society Japan. In this paper, we describe a method to recognize resident's daily activities by means of using the information of indoor ambient atmosphere changes. The measuring targets of environmental changes are of gas and smell, temperature, humidity, and brightness. Those changes have much relation with resident's daily activities. The measurement system with 7 sensors (4 gas sensors, a thermistor, humidity sensor, and CdS light sensor) was developed for getting indoor ambient atmosphere changes. Some measurements were done in a one-room type residential space. 21 dimensional activity vectors were composed for each daily activity from acquired data. Those vectors were classified into 9 categories that were main activities by using Self-Organizing Map (SOM) method. From the result, it was found that the recognition of main daily activities based on information on indoor ambient atmosphere changes is possible. Moreover, we also describe the method for getting information of local gas and smell environmental changes. Gas and smell environmental changes are related with daily activities, especially very important action, eating and drinking. And, local information enables the relation of the place and the activity. For such a purpose, a gas sensing module with the operation function that synchronizes with human detection signal was developed and evaluated. From the result, the sensor module had the ability to acquire and to emphasize local gas environment changes caused by the person's activity.

  20. Increased levels of ambient fungal spores in Taiwan are associated with dust events from China

    NASA Astrophysics Data System (ADS)

    Wu, Pei-Chih; Tsai, Jui-Chen; Li, Fang-Chun; Lung, Shih-Chun; Su, Huey-Jen

    2004-09-01

    Fungi are ubiquitous in nature and their spores are often dispersed into the atmosphere through turbulent airstreams. As yellow sandstorm blown from deserts in China had affected the ambient air quality with increasing levels of ambient particulates, often including significant amounts of biologically active particles has therefore become imperative for concerns of their health implications. Our study was aimed to examine the effects of yellow sandstorm events on the fungal composition and concentrations in ambient air. Atmospheric fungal spores were continuously collected using Burkard Volumetric Spore Trap. Samples collected between December 2000 and April 2001 were selected for priority analysis from days when the yellow sandstorms were reported to affect Taiwan according to the Central Weather Bureau in Taiwan. The composition of dominant spores such as Basidiospore, Penicillium/Aspergillus, Nigrospora, Arthrinium, Curvularia, Rusts, Stemphylium, Cercospora, Pithomyces, and unidentified fungi were significantly higher than those of background days. The increase of Basidiospore, Penicillium/Aspergillus, Nigrospora, and those unidentified fungi seems to be significantly associated with the increase of ambient particulate levels with regression coefficients ranging from 0.887 to 31.98. Our study has identified increasing ambient concentrations during sandstorm episodes are observed for some major fungi, Basidiospore, Penicillium, Aspergillus, and those unidentified fungi and the trends of the increase seems to associate with ambient particulate levels. Further efforts to clarify the relationship between those high fungal spore exposures and clinical adverse health effects are suggested in the future. In addition, effects of climatic factors and other particulate levels on the variation of ambient fungal spore levels are also desired in further study. Additional monitoring of ambient fungal spores in the first line of west coastline is hoped to assist in

  1. Ambient intelligence application based on environmental measurements performed with an assistant mobile robot.

    PubMed

    Martinez, Dani; Teixidó, Mercè; Font, Davinia; Moreno, Javier; Tresanchez, Marcel; Marco, Santiago; Palacín, Jordi

    2014-03-27

    This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile.

  2. Ambient Intelligence Application Based on Environmental Measurements Performed with an Assistant Mobile Robot

    PubMed Central

    Martinez, Dani; Teixidó, Mercè; Font, Davinia; Moreno, Javier; Tresanchez, Marcel; Marco, Santiago; Palacín, Jordi

    2014-01-01

    This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile. PMID:24681671

  3. The validity of activity monitors for measuring sleep in elite athletes.

    PubMed

    Sargent, Charli; Lastella, Michele; Halson, Shona L; Roach, Gregory D

    2016-10-01

    There is a growing interest in monitoring the sleep of elite athletes. Polysomnography is considered the gold standard for measuring sleep, however this technique is impractical if the aim is to collect data simultaneously with multiple athletes over consecutive nights. Activity monitors may be a suitable alternative for monitoring sleep, but these devices have not been validated against polysomnography in a population of elite athletes. Participants (n=16) were endurance-trained cyclists participating in a 6-week training camp. A total of 122 nights of sleep were recorded with polysomnography and activity monitors simultaneously. Agreement, sensitivity, and specificity were calculated from epoch-for-epoch comparisons of polysomnography and activity monitor data. Sleep variables derived from polysomnography and activity monitors were compared using paired t-tests. Activity monitor data were analysed using low, medium, and high sleep-wake thresholds. Epoch-for-epoch comparisons showed good agreement between activity monitors and polysomnography for each sleep-wake threshold (81-90%). Activity monitors were sensitive to sleep (81-92%), but specificity differed depending on the threshold applied (67-82%). Activity monitors underestimated sleep duration (18-90min) and overestimated wake duration (4-77min) depending on the threshold applied. Applying the correct sleep-wake threshold is important when using activity monitors to measure the sleep of elite athletes. For example, the default sleep-wake threshold (>40 activity counts=wake) underestimates sleep duration by ∼50min and overestimates wake duration by ∼40min. In contrast, sleep-wake thresholds that have a high sensitivity to sleep (>80 activity counts=wake) yield the best combination of agreement, sensitivity, and specificity. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. 40 CFR 58.60 - Federal monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Federal monitoring. 58.60 Section 58.60... QUALITY SURVEILLANCE Federal Monitoring § 58.60 Federal monitoring. The Administrator may locate and operate an ambient air monitoring site if the State or local agency fails to locate, or schedule to be...

  5. Ambient Intelligence Research Landscapes: Introduction and Overview

    NASA Astrophysics Data System (ADS)

    Streitz, Norbert

    This paper starts out by introducing the "Landscapes" category at the Joint International Conference on Ambient Intelligence (AmI-2010) and provides an overview over the two sessions. The main part of the paper presents a framework for the role of Ambient Intelligence in the development of the cities of the future. This includes the integration of real and virtual worlds resulting in Hybrid Cities and their transformation into Smart Cities. In the context, it is argued that the technological development has to be monitored by guidelines and goals for maintaining and improving the quality of life leading to what is called Humane Cities, addressing, e.g., social awareness and privacy, trust and identity. The paper closes with proposals for a future research agenda.

  6. Real-time breath analysis with active capillary plasma ionization-ambient mass spectrometry.

    PubMed

    Bregy, Lukas; Sinues, Pablo Martinez-Lozano; Nudnova, Maryia M; Zenobi, Renato

    2014-06-01

    On-line analysis of exhaled human breath is a growing area in analytical science, for applications such as fast and non-invasive medical diagnosis and monitoring. In this work, we present a novel approach based on ambient ionization of compounds in breath and subsequent real-time mass spectrometric analysis. We introduce a plasma ionization source for this purpose, which has no need for additional gases, is very small, and is easily interfaced with virtually any commercial atmospheric pressure ionization mass spectrometer (API-MS) without major modifications. If an API-MS instrument exists in a laboratory, the cost to implement this technology is only around [Formula: see text]500, far less than the investment for a specialized mass spectrometric system designed for volatile organic compounds (VOCs) analysis. In this proof-of-principle study we were able to measure mass spectra of exhaled human breath and found these to be comparable to spectra obtained with other electrospray-based methods. We detected over 100 VOCs, including relevant metabolites like fatty acids, with molecular weights extending up to 340 Da. In addition, we were able to monitor the time-dependent evolution of the peaks and show the enhancement of the metabolism after a meal. We conclude that this approach may complement current methods to analyze breath or other types of vapors, offering an affordable option to upgrade any pre-existing API-MS to a real-time breath analyzer.

  7. Active in-database processing to support ambient assisted living systems.

    PubMed

    de Morais, Wagner O; Lundström, Jens; Wickström, Nicholas

    2014-08-12

    As an alternative to the existing software architectures that underpin the development of smart homes and ambient assisted living (AAL) systems, this work presents a database-centric architecture that takes advantage of active databases and in-database processing. Current platforms supporting AAL systems use database management systems (DBMSs) exclusively for data storage. Active databases employ database triggers to detect and react to events taking place inside or outside of the database. DBMSs can be extended with stored procedures and functions that enable in-database processing. This means that the data processing is integrated and performed within the DBMS. The feasibility and flexibility of the proposed approach were demonstrated with the implementation of three distinct AAL services. The active database was used to detect bed-exits and to discover common room transitions and deviations during the night. In-database machine learning methods were used to model early night behaviors. Consequently, active in-database processing avoids transferring sensitive data outside the database, and this improves performance, security and privacy. Furthermore, centralizing the computation into the DBMS facilitates code reuse, adaptation and maintenance. These are important system properties that take into account the evolving heterogeneity of users, their needs and the devices that are characteristic of smart homes and AAL systems. Therefore, DBMSs can provide capabilities to address requirements for scalability, security, privacy, dependability and personalization in applications of smart environments in healthcare.

  8. Seismic and Biological Sources of Ambient Ocean Sound

    NASA Astrophysics Data System (ADS)

    Freeman, Simon Eric

    Sound is the most efficient radiation in the ocean. Sounds of seismic and biological origin contain information regarding the underlying processes that created them. A single hydrophone records summary time-frequency information from the volume within acoustic range. Beamforming using a hydrophone array additionally produces azimuthal estimates of sound sources. A two-dimensional array and acoustic focusing produce an unambiguous two-dimensional `image' of sources. This dissertation describes the application of these techniques in three cases. The first utilizes hydrophone arrays to investigate T-phases (water-borne seismic waves) in the Philippine Sea. Ninety T-phases were recorded over a 12-day period, implying a greater number of seismic events occur than are detected by terrestrial seismic monitoring in the region. Observation of an azimuthally migrating T-phase suggests that reverberation of such sounds from bathymetric features can occur over megameter scales. In the second case, single hydrophone recordings from coral reefs in the Line Islands archipelago reveal that local ambient reef sound is spectrally similar to sounds produced by small, hard-shelled benthic invertebrates in captivity. Time-lapse photography of the reef reveals an increase in benthic invertebrate activity at sundown, consistent with an increase in sound level. The dominant acoustic phenomenon on these reefs may thus originate from the interaction between a large number of small invertebrates and the substrate. Such sounds could be used to take census of hard-shelled benthic invertebrates that are otherwise extremely difficult to survey. A two-dimensional `map' of sound production over a coral reef in the Hawaiian Islands was obtained using two-dimensional hydrophone array in the third case. Heterogeneously distributed bio-acoustic sources were generally co-located with rocky reef areas. Acoustically dominant snapping shrimp were largely restricted to one location within the area surveyed

  9. Alpha-environmental continuous air monitor inlet

    DOEpatents

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  10. Monitoring Biological Activity at Geothermal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has beenmore » evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.« less

  11. Leisure time activities, parental monitoring and drunkenness in adolescents.

    PubMed

    Tomcikova, Zuzana; Veselska, Zuzana; Madarasova Geckova, Andrea; van Dijk, Jitse P; Reijneveld, Sijmen A

    2013-01-01

    The aim of this cross-sectional study was to explore the association between adolescent drunkenness and participation in risky leisure time activities and parental monitoring. A sample of 3,694 Slovak elementary school students (mean age 14.5 years; 49.0% males) was assessed for drunkenness in the previous month, participation in risky leisure activities and parental monitoring. Participation in risky leisure time activities increased the probability of drunkenness among adolescents, while parental monitoring decreased it. The effect did not change after adding the mother's and father's monitoring into the models. Our results imply that adolescents involved in going out with friends, having parties with friends and/or visiting sporting events every day or several times a week are at a higher risk of drunkenness, as are those less monitored by their parents. These less monitored adolescents and their parents should become a target group in prevention. Copyright © 2012 S. Karger AG, Basel.

  12. Region 7 States Air Quality Monitoring Plans - Iowa

    EPA Pesticide Factsheets

    National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo

  13. Region 7 States Air Quality Monitoring Plans - Missouri

    EPA Pesticide Factsheets

    National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo

  14. Region 7 States Air Quality Monitoring Plans - Nebraska

    EPA Pesticide Factsheets

    National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo

  15. Region 7 States Air Quality Monitoring Plans - Kansas

    EPA Pesticide Factsheets

    National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo

  16. Progress in ambient assisted systems for independent living by the elderly.

    PubMed

    Al-Shaqi, Riyad; Mourshed, Monjur; Rezgui, Yacine

    2016-01-01

    One of the challenges of the ageing population in many countries is the efficient delivery of health and care services, which is further complicated by the increase in neurological conditions among the elderly due to rising life expectancy. Personal care of the elderly is of concern to their relatives, in case they are alone in their homes and unforeseen circumstances occur, affecting their wellbeing. The alternative; i.e. care in nursing homes or hospitals is costly and increases further if specialized care is mobilized to patients' place of residence. Enabling technologies for independent living by the elderly such as the ambient assisted living systems (AALS) are seen as essential to enhancing care in a cost-effective manner. In light of significant advances in telecommunication, computing and sensor miniaturization, as well as the ubiquity of mobile and connected devices embodying the concept of the Internet of Things (IoT), end-to-end solutions for ambient assisted living have become a reality. The premise of such applications is the continuous and most often real-time monitoring of the environment and occupant behavior using an event-driven intelligent system, thereby providing a facility for monitoring and assessment, and triggering assistance as and when needed. As a growing area of research, it is essential to investigate the approaches for developing AALS in literature to identify current practices and directions for future research. This paper is, therefore, aimed at a comprehensive and critical review of the frameworks and sensor systems used in various ambient assisted living systems, as well as their objectives and relationships with care and clinical systems. Findings from our work suggest that most frameworks focused on activity monitoring for assessing immediate risks, while the opportunities for integrating environmental factors for analytics and decision-making, in particular for the long-term care were often overlooked. The potential for

  17. MSNoise: a Python Package for Monitoring Seismic Velocity Changes using Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Lecocq, T.; Caudron, C.; Brenguier, F.

    2013-12-01

    Earthquakes occur every day all around the world and are recorded by thousands of seismic stations. In between earthquakes, stations are recording "noise". In the last 10 years, the understanding of this noise and its potential usage have been increasing rapidly. The method, called "seismic interferometry", uses the principle that seismic waves travel between two recorders and are multiple-scattered in the medium. By cross-correlating the two records, one gets an information on the medium below/between the stations. The cross-correlation function (CCF) is a proxy to the Green Function of the medium. Recent developments of the technique have shown those CCF can be used to image the earth at depth (3D seismic tomography) or study the medium changes with time. We present MSNoise, a complete software suite to compute relative seismic velocity changes under a seismic network, using ambient seismic noise. The whole is written in Python, from the monitoring of data archives, to the production of high quality figures. All steps have been optimized to only compute the necessary steps and to use 'job'-based processing. We present a validation of the software on a dataset acquired during the UnderVolc[1] project on the Piton de la Fournaise Volcano, La Réunion Island, France, for which precursory relative changes of seismic velocity are visible for three eruptions betwee 2009 and 2011.

  18. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review.

    PubMed

    Block, Valerie A J; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A C; Allen, Diane D; Gelfand, Jeffrey M

    2016-01-01

    To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability.

  19. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    PubMed Central

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  20. Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John

    2010-01-01

    The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.

  1. Transcriptomic effects-based monitoring for endocrine active chemicals: Assessing relative contribution of treated wastewater to downstream pollution

    USGS Publications Warehouse

    Martinovic-Weigelt, Dalma; Mehinto, Alvine C.; Ankley, Gerald T.; Denslow, Nancy D.; Barber, Larry B.; Lee, Kathy E.; King, Ryan J.; Schoenfuss, Heiko L.; Schroeder, Anthony L.; Villeneuve, Daniel L.

    2014-01-01

    The present study investigated whether a combination of targeted analytical chemistry information with unsupervised, data-rich biological methodology (i.e., transcriptomics) could be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects. The effects of WWTP effluents on fish exposed to ambient, receiving waters were studied at three locations with distinct WWTP and watershed characteristics. At each location, 4 d exposures of male fathead minnows to the WWTP effluent and upstream and downstream ambient waters were conducted. Transcriptomic analyses were performed on livers using 15 000 feature microarrays, followed by a canonical pathway and gene set enrichment analyses. Enrichment of gene sets indicative of teleost brain–pituitary–gonadal–hepatic (BPGH) axis function indicated that WWTPs serve as an important source of endocrine active chemicals (EACs) that affect the BPGH axis (e.g., cholesterol and steroid metabolism were altered). The results indicated that transcriptomics may even pinpoint pertinent adverse outcomes (i.e., liver vacuolization) and groups of chemicals that preselected chemical analytes may miss. Transcriptomic Effects-Based monitoring was capable of distinguishing sites, and it reflected chemical pollution gradients, thus holding promise for assessment of relative contributions of point sources to pollution and the efficacy of pollution remediation.

  2. National Trends in Trace Metals Concentrations in Ambient Particulate Matter

    NASA Astrophysics Data System (ADS)

    McCarthy, M. C.; Hafner, H. R.; Charrier, J. G.

    2007-12-01

    Ambient measurements of trace metals identified as hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2006 were analyzed for long-term trends. Trace metals analyzed include lead, manganese, arsenic, chromium, nickel, cadmium, and selenium. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Trend periods were required to be at least five years. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time or spatially. In addition, routine ambient monitoring methods had method detection limits (MDLs) too high to adequately measure concentrations for trends analysis. Differences between measurement methods at urban and rural sites also confound trends analyses. Improvements in MDLs, and a better understanding of comparability between networks, are needed to better quantify trends in trace metal concentrations in the future.

  3. 40 CFR 58.61 - Monitoring other pollutants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Monitoring other pollutants. 58.61 Section 58.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Federal Monitoring § 58.61 Monitoring other pollutants. The...

  4. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a...

  5. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a...

  6. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a...

  7. PCDD/PCDF and dl-PCB in the ambient air of a tropical Andean city: passive and active sampling measurements near industrial and vehicular pollution sources.

    PubMed

    Cortés, J; González, C M; Morales, L; Abalos, M; Abad, E; Aristizábal, B H

    2014-09-01

    Concentration gradients were observed in gas and particulate phases of PCDD/F originating from industrial and vehicular sources in the densely populated tropical Andean city of Manizales, using passive and active air samplers. Preliminary results suggest greater concentrations of dl-PCB in the mostly gaseous fraction (using quarterly passive samplers) and greater concentrations of PCDD/F in the mostly particle fraction (using daily active samplers). Dioxin-like PCB predominance was associated with the semi-volatility property, which depends on ambient temperature. Slight variations of ambient temperature in Manizales during the sampling period (15°C-27°C) may have triggered higher concentrations in all passive samples. This was the first passive air sampling monitoring of PCDD/F conducted in an urban area of Colombia. Passive sampling revealed that PCDD/F in combination with dioxin-like PCB ranged from 16 WHO-TEQ2005/m(3) near industrial sources to 7 WHO-TEQ2005/m(3) in an intermediate zone-a reduction of 56% over 2.8 km. Active sampling of particulate phase PCDD/F and dl-PCB were analyzed in PM10 samples. PCDD/F combined with dl-PCB ranged from 46 WHO-TEQ2005/m(3) near vehicular sources to 8 WHO-TEQ2005/m(3) in the same intermediate zone, a reduction of 83% over 2.6 km. Toxic equivalent quantities in both PCDD/F and dl-PCB decreased toward an intermediate zone of the city. Variations in congener profiles were consistent with variations expected from nearby sources, such as a secondary metallurgy plant, areas of concentrated vehicular emissions and a municipal solid waste incinerator (MSWI). These variations in congener profile measurements of dioxins and dl-PCBs in passive and active samples can be partly explained by congener variations expected from the various sources. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Validity of Activity Monitor Step Detection Is Related to Movement Patterns.

    PubMed

    Hickey, Amanda; John, Dinesh; Sasaki, Jeffer E; Mavilia, Marianna; Freedson, Patty

    2016-02-01

    There is a need to examine step-counting accuracy of activity monitors during different types of movements. The purpose of this study was to compare activity monitor and manually counted steps during treadmill and simulated free-living activities and to compare the activity monitor steps to the StepWatch (SW) in a natural setting. Fifteen participants performed laboratory-based treadmill (2.4, 4.8, 7.2 and 9.7 km/h) and simulated free-living activities (eg, cleaning room) while wearing an activPAL, Omron HJ720-ITC, Yamax Digi- Walker SW-200, 2 ActiGraph GT3Xs (1 in "low-frequency extension" [AGLFE] and 1 in "normal-frequency" mode), an ActiGraph 7164, and a SW. Participants also wore monitors for 1-day in their free-living environment. Linear mixed models identified differences between activity monitor steps and the criterion in the laboratory/free-living settings. Most monitors performed poorly during treadmill walking at 2.4 km/h. Cleaning a room had the largest errors of all simulated free-living activities. The accuracy was highest for forward/rhythmic movements for all monitors. In the free-living environment, the AGLFE had the largest discrepancy with the SW. This study highlights the need to verify step-counting accuracy of activity monitors with activities that include different movement types/directions. This is important to understand the origin of errors in step-counting during free-living conditions.

  9. The effects of transported Asian dust on the composition and concentration of ambient fungi in Taiwan

    NASA Astrophysics Data System (ADS)

    Chao, H. Jasmine; Chan, Chang-Chuan; Rao, Carol Y.; Lee, Chung-Te; Chuang, Ying-Chih; Chiu, Yueh-Hsiu; Hsu, Hsiao-Hsien; Wu, Yi-Hua

    2012-03-01

    This study was conducted to evaluate the effects of transported Asian dust and other environmental parameters on the levels and compositions of ambient fungi in the atmosphere of northern Taiwan. We monitored Asian dust events in Taipei County, Taiwan from January 2003 to June 2004. We used duplicate Burkard portable air samplers to collect ambient fungi before, during, and after dust events. Six transported Asian dust events were monitored during the study period. Elevated concentrations of Aspergillus ( A. niger, specifically), Coelomycetes, Rhinocladiella, Sporothrix and Verticillium were noted ( p < 0.05) during Asian dust periods. Botryosporium and Trichothecium were only recovered during dust event days. Multiple regression analysis showed that fungal levels were positively associated with temperature, wind speed, rainfall, non-methane hydrocarbons and particulates with aerodynamic diameters ≤10 μm (PM10), and negatively correlated with relative humidity and ozone. Our results demonstrated that Asian dust events affected ambient fungal concentrations and compositions in northern Taiwan. Ambient fungi also had complex dynamics with air pollutants and meteorological factors. Future studies should explore the health impacts of ambient fungi during Asian dust events, adjusting for the synergistic/antagonistic effects of weather and air pollutants.

  10. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

    PubMed

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  11. Ambient temperature and cardiovascular biomarkers in a repeated-measure study in healthy adults: A novel biomarker index approach.

    PubMed

    Wu, Shaowei; Yang, Di; Pan, Lu; Shan, Jiao; Li, Hongyu; Wei, Hongying; Wang, Bin; Huang, Jing; Baccarelli, Andrea A; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2017-07-01

    Associations of ambient temperature with cardiovascular morbidity and mortality have been well documented in numerous epidemiological studies, but the underlying pathways remain unclear. We investigated whether systemic inflammation, coagulation, systemic oxidative stress, antioxidant activity and endothelial function may be the mechanistic pathways associated with ambient temperature. Forty study participants underwent repeated blood collections for 12 times in Beijing, China in 2010-2011. Ambient temperature and air pollution data were measured in central monitors close to student residences. We created five indices as the sum of weighted biomarker percentiles to represent the overall levels of 15 cardiovascular biomarkers in five pathways (systemic inflammation: hs-CRP, TNF-α and fibrinogen; coagulation: fibrinogen, PAI-1, tPA, vWF and sP-selectin; systemic oxidative stress: Ox-LDL and sCD36: antioxidant activity: EC-SOD and GPX1; and endothelial function: ET-1, E-selectin, ICAM-1 and VCAM-1). We used generalized mixed-effects models to estimate temperature effects controlling for air pollution and other covariates. There were significant decreasing trends in the adjusted means of biomarker indices over the lowest to the highest quartiles of daily temperatures before blood collection. A 10°C decrease at 2-d average daily temperature were associated with increases of 2.5% [95% confidence interval (CI): 0.7, 4.2], 1.6% (95% CI: 0.1, 3.1), 2.7% (95% CI: 0.5, 4.8), 5.5% (95% CI: 3.8, 7.3) and 2.0% (95% CI: 0.3, 3.8) in the indices for systemic inflammation, coagulation, systemic oxidative stress, antioxidant activity and endothelial function, respectively. In contrast, the associations between ambient temperature and individual biomarkers had substantial variation in magnitude and strength. The altered cardiovascular biomarker profiles in healthy adults associated with ambient temperature changes may help explain the temperature-related cardiovascular morbidity

  12. Monitoring temporal variations of seismic properties of the crust induced by the 2013 Ruisui earthquake in eastern Taiwan from coda wave interferometry with ambient seismic and strain fields

    NASA Astrophysics Data System (ADS)

    Dai, W. P.; Hung, S. H.; Wu, S. M.; Hsu, Y. J.

    2017-12-01

    Owing to the rapid development in ambient noise seismology, time-lapse variations in delay time and waveform decorrelation of coda derived from noise cross correlation (NCF) have been proved very effective to monitor slight changes in seismic velocity and scattering properties of the crust induced by various loadings such as the earthquake and healing process. In this study, we employ coda wave interferometry to detect the crustal perturbations immediately preceding and following the 2013 Mw 6.2 Ruisui Earthquake which struck the northern segment of the Longitudinal Valley Fault in eastern Taiwan, a seismically very active thrust suture zone separating the Eurasian and Philippine Sea Plate. By comparing the pre- and post-event coda waves extracted from the auto- and cross-correlation functions (ACFs and CCFs) of ambient seismic and strain fields recorded by the seismometers and borehole strainmeters, respectively, in the vicinity of the source region, we present a strong case that not only coseismic velocity reduction but also preceding decorrelation of waveforms are explicitly revealed in both the seismic and strain CCFs filtered in the secondary microseism frequency band of 0.1-0.9 Hz. Such precursory signals susceptible to the scattering properties of the crust are more unequivocally identified in the coda retrieved from the strainmeter data, suggesting that the ambient strain field can act as a more sensible probe to detect tiny structural perturbations in the critically stressed fault zone at the verge of failure. In addition to coseismic velocity changes detected in both the seismic and strain NCFs, we find quasi-periodic velocity variations that only appear in the strain retrieved coda signals, with a predominant cycle of 3-4 months correlating with the groundwater fluctuations observed at Ruisui.

  13. Contributions of Kansas rangeland burning to ambient O3: Analysis of data from 2001 to 2016.

    PubMed

    Liu, Zifei; Liu, Yang; Murphy, James P; Maghirang, Ronaldo

    2018-03-15

    Prescribed range/pasture burning is a common practice in Kansas to enhance the nutritional value of native grasses and control invading weeds, trees, and brush. A major concern associated with the burning is the contribution of smoke to elevated ground level ambient ozone (O 3 ). The objective of this study is to estimate contributions of Kansas rangeland burning to ambient O 3 mixing ratios through regression analysis (1) between observed O 3 data and available satellite burn activity data from 2001 to 2016; and (2) between observed O 3 data and the smoke contributions to PM 2.5 which were resolved from receptor modeling. Positive correlations were observed between ambient O 3 levels and the acres burned each year estimated from satellite imagery. When burned acres in April were larger than or equal to 1.9 million, O 3 >70ppb occurred at least at one of the ten monitoring sites in Kansas. Statistical regression models of daily maximum 8-hour O 3 mixing ratios were developed at each of the ten monitoring sites using meteorological predictors. The O 3 model residuals that were not explained by the meteorological effect models were affected by PM 2.5 contributors including sulfate/industrial sources and emissions that generated secondary organic particles, such as rangeland burning, which were derived from receptor modeling. The average O 3 model residual on the high O 3 days in April was 21±9ppb, which was likely associated with smoke emissions from burning. Research will continue to obtain daily satellite burn activity data and to correlate burn data with daily O 3 data, so that modeling of O 3 levels can be improved under influences of daily burn activities. Less frequency of high O 3 days was observed in April since 2011, which may be partly due to implementation of the Flint Hills Smoke Management Plan which promoted better timing of burns. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Layer-by-layer carbon nanotube bio-templates for in situ monitoring of the metabolic activity of nitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Loh, Kenneth J.; Guest, Jeremy S.; Ho, Genevieve; Lynch, Jerome P.; Love, Nancy G.

    2009-03-01

    Despite the wide variety of effective disinfection and wastewater treatment techniques for removing organic and inorganic wastes, pollutants such as nitrogen remain in wastewater effluents. If left untreated, these nitrogenous wastes can adversely impact the environment by promoting the overgrowth of aquatic plants, depleting dissolved oxygen, and causing eutrophication. Although nitrification/denitrification processes are employed during advanced wastewater treatment, effective and efficient operation of these facilities require information of the pH, dissolved oxygen content, among many other parameters, of the wastewater effluent. In this preliminary study, a biocompatible CNT-based nanocomposite is proposed and validated for monitoring the biological metabolic activity of nitrifying bacteria in wastewater effluent environments (i.e., to monitor the nitrification process). Using carbon nanotubes and a pH-sensitive conductive polymer (i.e., poly(aniline) emeraldine base), a layer-by-layer fabrication technique is employed to fabricate a novel thin film pH sensor that changes its electrical properties in response to variations in ambient pH environments. Laboratory studies are conducted to evaluate the proposed nanocomposite's biocompatibility with wastewater effluent environments and its pH sensing performance.

  15. Ambient and smartphone sensor assisted ADL recognition in multi-inhabitant smart environments.

    PubMed

    Roy, Nirmalya; Misra, Archan; Cook, Diane

    2016-02-01

    Activity recognition in smart environments is an evolving research problem due to the advancement and proliferation of sensing, monitoring and actuation technologies to make it possible for large scale and real deployment. While activities in smart home are interleaved, complex and volatile; the number of inhabitants in the environment is also dynamic. A key challenge in designing robust smart home activity recognition approaches is to exploit the users' spatiotemporal behavior and location, focus on the availability of multitude of devices capable of providing different dimensions of information and fulfill the underpinning needs for scaling the system beyond a single user or a home environment. In this paper, we propose a hybrid approach for recognizing complex activities of daily living (ADL), that lie in between the two extremes of intensive use of body-worn sensors and the use of ambient sensors. Our approach harnesses the power of simple ambient sensors (e.g., motion sensors) to provide additional 'hidden' context (e.g., room-level location) of an individual, and then combines this context with smartphone-based sensing of micro-level postural/locomotive states. The major novelty is our focus on multi-inhabitant environments, where we show how the use of spatiotemporal constraints along with multitude of data sources can be used to significantly improve the accuracy and computational overhead of traditional activity recognition based approaches such as coupled-hidden Markov models. Experimental results on two separate smart home datasets demonstrate that this approach improves the accuracy of complex ADL classification by over 30 %, compared to pure smartphone-based solutions.

  16. Ambient and smartphone sensor assisted ADL recognition in multi-inhabitant smart environments

    PubMed Central

    Misra, Archan; Cook, Diane

    2016-01-01

    Activity recognition in smart environments is an evolving research problem due to the advancement and proliferation of sensing, monitoring and actuation technologies to make it possible for large scale and real deployment. While activities in smart home are interleaved, complex and volatile; the number of inhabitants in the environment is also dynamic. A key challenge in designing robust smart home activity recognition approaches is to exploit the users' spatiotemporal behavior and location, focus on the availability of multitude of devices capable of providing different dimensions of information and fulfill the underpinning needs for scaling the system beyond a single user or a home environment. In this paper, we propose a hybrid approach for recognizing complex activities of daily living (ADL), that lie in between the two extremes of intensive use of body-worn sensors and the use of ambient sensors. Our approach harnesses the power of simple ambient sensors (e.g., motion sensors) to provide additional ‘hidden’ context (e.g., room-level location) of an individual, and then combines this context with smartphone-based sensing of micro-level postural/locomotive states. The major novelty is our focus on multi-inhabitant environments, where we show how the use of spatiotemporal constraints along with multitude of data sources can be used to significantly improve the accuracy and computational overhead of traditional activity recognition based approaches such as coupled-hidden Markov models. Experimental results on two separate smart home datasets demonstrate that this approach improves the accuracy of complex ADL classification by over 30 %, compared to pure smartphone-based solutions. PMID:27042240

  17. Activity monitor intervention to promote physical activity of physicians-in-training: randomized controlled trial.

    PubMed

    Thorndike, Anne N; Mills, Sarah; Sonnenberg, Lillian; Palakshappa, Deepak; Gao, Tian; Pau, Cindy T; Regan, Susan

    2014-01-01

    Physicians are expected to serve as role models for healthy lifestyles, but long work hours reduce time for healthy behaviors. A hospital-based physical activity intervention could improve physician health and increase counseling about exercise. We conducted a two-phase intervention among 104 medical residents at a large hospital in Boston, Massachusetts. Phase 1 was a 6-week randomized controlled trial comparing daily steps of residents assigned to an activity monitor displaying feedback about steps and energy consumed (intervention) or to a blinded monitor (control). Phase 2 immediately followed and was a 6-week non-randomized team steps competition in which all participants wore monitors with feedback. Phase 1 outcomes were: 1) median steps/day and 2) proportion of days activity monitor worn. The Phase 2 outcome was mean steps/day on days monitor worn (≥500 steps/day). Physiologic measurements were collected at baseline and study end. Median steps/day were compared using Wilcoxon rank-sum tests. Mean steps were compared using repeated measures regression analyses. In Phase 1, intervention and control groups had similar activity (6369 vs. 6063 steps/day, p = 0.16) and compliance with wearing the monitor (77% vs. 77% of days, p = 0.73). In Phase 2 (team competition), residents recorded more steps/day than during Phase 1 (CONTROL: 7,971 vs. 7,567, p = 0.002; 7,832 vs. 7,739, p = 0.13). Mean compliance with wearing the activity monitor decreased for both groups during Phase 2 compared to Phase 1 (60% vs. 77%, p<0.001). Mean systolic blood pressure decreased (p = 0.004) and HDL cholesterol increased (p<0.001) among all participants at end of study compared to baseline. Although the activity monitor intervention did not have a major impact on activity or health, the high participation rates of busy residents and modest changes in steps, blood pressure, and HDL suggest that more intensive hospital-based wellness programs have potential for

  18. Active In-Database Processing to Support Ambient Assisted Living Systems

    PubMed Central

    de Morais, Wagner O.; Lundström, Jens; Wickström, Nicholas

    2014-01-01

    As an alternative to the existing software architectures that underpin the development of smart homes and ambient assisted living (AAL) systems, this work presents a database-centric architecture that takes advantage of active databases and in-database processing. Current platforms supporting AAL systems use database management systems (DBMSs) exclusively for data storage. Active databases employ database triggers to detect and react to events taking place inside or outside of the database. DBMSs can be extended with stored procedures and functions that enable in-database processing. This means that the data processing is integrated and performed within the DBMS. The feasibility and flexibility of the proposed approach were demonstrated with the implementation of three distinct AAL services. The active database was used to detect bed-exits and to discover common room transitions and deviations during the night. In-database machine learning methods were used to model early night behaviors. Consequently, active in-database processing avoids transferring sensitive data outside the database, and this improves performance, security and privacy. Furthermore, centralizing the computation into the DBMS facilitates code reuse, adaptation and maintenance. These are important system properties that take into account the evolving heterogeneity of users, their needs and the devices that are characteristic of smart homes and AAL systems. Therefore, DBMSs can provide capabilities to address requirements for scalability, security, privacy, dependability and personalization in applications of smart environments in healthcare. PMID:25120164

  19. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  20. Ambient Assisted Nutritional Advisor for elderly people living at home.

    PubMed

    Lazaro, Juan P; Fides, Alvaro; Navarro, Ana; Guillen, Sergio

    2010-01-01

    Nutrition is a critical aspect when getting older because bad nutrition habits can accelerate the process of degradation of the physical condition of the old person. In order to mitigate this problem, an Ambient Assisted Living service has been developed. Research with this service is focused on demonstrating that with an Ambient Intelligence systems it is possible to make the nutritional management much more effective by influencing the user, by automatically and seamlessly monitoring and by facilitating tools for nutritional management for people that want to be autonomous. In this paper both requirement acquisition and development processes are described as well.

  1. Toward predicting clay landslide with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Larose, E. F.; Mainsant, G.; Carriere, S.; Chambon, G.; Michoud, C.; Jongmans, D.; Jaboyedoff, M.

    2013-12-01

    Clay-rich pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity, which could be detected by monitoring shear wave velocity variations, The ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010, and then again from fall 2011 on. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results are confirmed by analogous small-scale experiments in the laboratory. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  2. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Monitoring network completion. 58.13... (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a) The network of NCore multipollutant sites must be physically established no later than January 1, 2011...

  3. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Monitoring network completion. 58.13... (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a) The network of NCore multipollutant sites must be physically established no later than January 1, 2011...

  4. Ambulatory monitoring of activities and motor symptoms in Parkinson's disease.

    PubMed

    Zwartjes, Daphne G M; Heida, Tjitske; van Vugt, Jeroen P P; Geelen, Jan A G; Veltink, Peter H

    2010-11-01

    Ambulatory monitoring of motor symptoms in Parkinsons disease (PD) can improve our therapeutic strategies, especially in patients with motor fluctuations. Previously published monitors usually assess only one or a few basic aspects of the cardinal motor symptoms in a laboratory setting. We developed a novel ambulatory monitoring system that provides a complete motor assessment by simultaneously analyzing current motor activity of the patient (e.g. sitting, walking) and the severity of many aspects related to tremor, bradykinesia, and hypokinesia. The monitor consists of a set of four inertial sensors. Validity of our monitor was established in seven healthy controls and six PD patients treated with deep brain stimulation (DBS) of the subthalamic nucleus. Patients were tested at three different levels of DBS treatment. Subjects were monitored while performing different tasks, including motor tests of the Unified Parkinsons Disease Rating Scale (UPDRS). Output of the monitor was compared to simultaneously recorded videos. The monitor proved very accurate in discriminating between several motor activities. Monitor output correlated well with blinded UPDRS ratings during different DBS levels. The combined analysis of motor activity and symptom severity by our PD monitor brings true ambulatory monitoring of a wide variety of motor symptoms one step closer..

  5. COMPARISON OF MEASUREMENTS OF AMBIENT PARTICLE NITRATE WITH SEMI-CONTINUOUS INSTRUMENTS

    EPA Science Inventory

    Comparisons between two different semi-continuous monitors of ambient level particulate nitrate are interpreted for both field and laboratory studies. One instrument involves thermal desorption of particulate nitrate to form a combination of NO and NO2 gases which are detected ...

  6. Evaluating Ambient Concentrations and Local Emissions of Greenhouse Gases (GHGs) in the San Francisco Bay Area of California Using a Comprehensive Fixed-site and Mobile Monitoring Network

    NASA Astrophysics Data System (ADS)

    Guha, A.; Bower, J. P.; Martien, P. T.; Randall, S.; Young, A.; Hilken, H.; Stevenson, E.

    2015-12-01

    The Bay Area Air Quality Management District (hence the Air District) is the greater San Francisco Bay metropolitan region's chief air quality regulatory agency. Aligning itself with Executive Order S-3-05, the Air District has set a goal to reduce the region's GHG emissions by 80% below 1990 levels by the year 2050. The Air District's 10-point Climate Action Work Program lays out the agency's priorities, actions and coordination with regional stakeholders. The Program has three core objectives: (1) to develop a technical and monitoring program to document the region's GHG sources and related emissions, (2) to implement a policy and rule-based approach to control and regulate GHG emissions, and finally, (3) to utilize local governance, incentives and partnerships to encourage GHG emissions reductions.As part of the technical program, the Air District has set up a long term, ambient GHG monitoring network at four sites. The first site is located north and upwind of the urban core at Bodega Bay by the Pacific Coast. It mostly receives clean marine inflow and serves as the regional background site. The other three sites are strategically located at regional exit points for Bay Area plumes that presumably contain GHG enhancements from local sources. These stations are at San Martin, located south of the San Jose metropolitan area; at Patterson Pass at the cross section with California's Central Valley; and at Bethel Island at the mouth of the Sacramento-San Joaquin Delta. At all sites, carbon dioxide (CO2) and methane (CH4) are being measured continuously, along with combustion tracer CO and other air pollutants. The GHG measurements are performed with high precision and fast laser instruments (Picarro Inc). In the longer term, the network will allow the Air District to monitor ambient concentrations of GHGs and thus evaluate the effectiveness of its policy, regulation and enforcement efforts. We present data from the sites in their first few months of operation and

  7. Twenty years of measurement of polycyclic aromatic hydrocarbons (PAHs) in UK ambient air by nationwide air quality networks.

    PubMed

    Brown, Andrew S; Brown, Richard J C; Coleman, Peter J; Conolly, Christopher; Sweetman, Andrew J; Jones, Kevin C; Butterfield, David M; Sarantaridis, Dimitris; Donovan, Brian J; Roberts, Ian

    2013-06-01

    The impact of human activities on the health of the population and of the wider environment has prompted action to monitor the presence of toxic compounds in the atmosphere. Toxic organic micropollutants (TOMPs) are some of the most insidious and persistent of these pollutants. Since 1991 the United Kingdom has operated nationwide air quality networks to assess the presence of TOMPs, including polycyclic aromatic hydrocarbons (PAHs), in ambient air. The data produced in 2010 marked 20 years of nationwide PAH monitoring. This paper marks this milestone by providing a novel and critical review of the data produced since nationwide monitoring began up to the end of 2011 (the latest year for which published data is available), discussing how the networks performing this monitoring has evolved, and elucidating trends in the concentrations of the PAHs measured. The current challenges in the area and a forward look to the future of air quality monitoring for PAHs are also discussed briefly.

  8. Embedded Triboelectric Active Sensors for Real-Time Pneumatic Monitoring.

    PubMed

    Fu, Xian Peng; Bu, Tian Zhao; Xi, Feng Ben; Cheng, Ting Hai; Zhang, Chi; Wang, Zhong Lin

    2017-09-20

    Pneumatic monitoring sensors have great demands for power supply in cylinder systems. Here, we present an embedded sliding triboelectric nanogenerator (TENG) in air cylinder as active sensors for position and velocity monitoring. The embedded TENG is composed of a circular poly(tetrafluoroethylene) polymer and a triangular copper electrode. The working mechanism as triboelectric active sensors and electric output performance are systematically investigated. By integrating into the pneumatic system, the embedded triboelectric active sensors have been used for real-time air pressure/flow monitoring and energy storage. Air pressures are measured from 0.04 to 0.12 MPa at a step of 0.02 MPa with a sensitivity of 49.235 V/MPa, as well as airflow from 50 to 250 L/min at a step of 50 L/min with a sensitivity of 0.002 μA·min/L. This work has first demonstrated triboelectric active sensors for pneumatic monitoring and may promote the development of TENG in intelligent pneumatic system.

  9. Influence of Activity Monitor Location and Bout Duration on Free-Living Physical Activity

    ERIC Educational Resources Information Center

    Heil, Daniel P.; Bennett, Gary G.; Bond, Kathleen S.; Webster, Michael D.; Wolin, Kathleen Y.

    2009-01-01

    The purpose of this study was to evaluate the influence of the location (ankle, hip, wrist) where an activity monitor (AM) is worn and of the minimum bout duration (BD) on physical activity (PA) variables during free-living monitoring. Study 1 participants wore AMs at three locations for 1 day while wearing the Intelligent Device for Energy…

  10. Hanford Site near-facility environmental monitoring annual report, calendar year 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, C.J.

    1998-07-28

    Near-facility environmental monitoring provides a means to measure the impacts of operations, waste management, and remediation activities on the environment adjacent to facilities and ensure compliance with local, state, and federal environmental regulations. Specifically, near-facility environmental monitoring monitors new and existing sites, processes, and facilities for potential impacts and releases; fugitive emissions and diffuse sources associated with contaminated areas, facilities (both active and those undergoing surveillance and maintenance), and environmental restoration activities. External radiation, ambient air particulates, ground and surface water, soil, sediment, and biota (plants and animals) are sampled or monitored. Parameters include, as appropriate, radionuclides; radiation fields; chemicalmore » or physical constituents, such as nitrates; pH; and water temperature. All ambient air results were below the US Department of Energy (DOE) Derived Concentration Guides (DCGs). Groundwater concentrations at the two wells at the 107-N Facility were below both the DOE DCG and US Environmental Protection Agency Interim Drinking Water Standards for gamma emitting radionuclides. Soil and vegetation results were generally within historic ranges and mostly below the Accessible Soil Concentration limits (included in HNF-PRO-454, Inactive Waste Sites) with the exception of one soil sampling location at 1 00 N Area. External radiation fields continued an overall downward trend. Surface water disposal unit samples (water, sediment, and aquatic vegetation) showed radionuclide concentrations below their respective DCG and Accessible Soil Concentration limits. The 100 N Area Columbia river shoreline springs results were below DCGs with the exception of one Sr concentration. More than 4,600 ha (11,300 acres) of radiologically controlled areas were surveyed in 1997, approximately the same as in 1996.« less

  11. Reactive Nitrogen Monitoring Gaps: Issues, Activities and Needs

    EPA Science Inventory

    In this article we demonstrate the importance of ammonia and organic nitrogen to total N deposition budgets and review the current activities to close these monitoring gaps. Finally, remaining monitoring needs and issues are discussed.

  12. Toward refined estimates of ambient PM2.5 exposure: Evaluation of a physical outdoor-to-indoor transport model

    NASA Astrophysics Data System (ADS)

    Hodas, Natasha; Meng, Qingyu; Lunden, Melissa M.; Turpin, Barbara J.

    2014-02-01

    Because people spend the majority of their time indoors, the variable efficiency with which ambient PM2.5 penetrates and persists indoors is a source of error in epidemiologic studies that use PM2.5 concentrations measured at central-site monitors as surrogates for ambient PM2.5 exposure. To reduce this error, practical methods to model indoor concentrations of ambient PM2.5 are needed. Toward this goal, we evaluated and refined an outdoor-to-indoor transport model using measured indoor and outdoor PM2.5 species concentrations and air exchange rates from the Relationships of Indoor, Outdoor, and Personal Air Study. Herein, we present model evaluation results, discuss what data are most critical to prediction of residential exposures at the individual-subject and populations levels, and make recommendations for the application of the model in epidemiologic studies. This paper demonstrates that not accounting for certain human activities (air conditioning and heating use, opening windows) leads to bias in predicted residential PM2.5 exposures at the individual-subject level, but not the population level. The analyses presented also provide quantitative evidence that shifts in the gas-particle partitioning of ambient organics with outdoor-to-indoor transport contribute significantly to variability in indoor ambient organic carbon concentrations and suggest that methods to account for these shifts will further improve the accuracy of outdoor-to-indoor transport models.

  13. Toward refined estimates of ambient PM2.5 exposure: Evaluation of a physical outdoor-to-indoor transport model

    PubMed Central

    Hodas, Natasha; Meng, Qingyu; Lunden, Melissa M.; Turpin, Barbara J.

    2014-01-01

    Because people spend the majority of their time indoors, the variable efficiency with which ambient PM2.5 penetrates and persists indoors is a source of error in epidemiologic studies that use PM2.5 concentrations measured at central-site monitors as surrogates for ambient PM2.5 exposure. To reduce this error, practical methods to model indoor concentrations of ambient PM2.5 are needed. Toward this goal, we evaluated and refined an outdoor-to-indoor transport model using measured indoor and outdoor PM2.5 species concentrations and air exchange rates from the Relationships of Indoor, Outdoor, and Personal Air Study. Herein, we present model evaluation results, discuss what data are most critical to prediction of residential exposures at the individual-subject and populations levels, and make recommendations for the application of the model in epidemiologic studies. This paper demonstrates that not accounting for certain human activities (air conditioning and heating use, opening windows) leads to bias in predicted residential PM2.5 exposures at the individual-subject level, but not the population level. The analyses presented also provide quantitative evidence that shifts in the gas-particle partitioning of ambient organics with outdoor-to-indoor transport contribute significantly to variability in indoor ambient organic carbon concentrations and suggest that methods to account for these shifts will further improve the accuracy of outdoor-to-indoor transport models. PMID:25798047

  14. Ambient noise and temporal patterns of boat activity in the US Virgin Islands National Park.

    PubMed

    Kaplan, Maxwell B; Mooney, T Aran

    2015-09-15

    Human activity is contributing increasing noise to marine ecosystems. Recent studies have examined the effects of boat noise on marine fishes, but there is limited understanding of the prevalence of this type of sound source. This investigation tracks vessel noise on three reefs in the US Virgin Islands National Park over four months in 2013. Ambient noise levels ranged from 106 to 129dBrms re 1μPa (100Hz-20kHz). Boat noise occurred in 6-12% of samples. In the presence of boat noise, ambient noise in a low-frequency band (100-1000Hz) increased by >7dB above baseline levels and sound levels were significantly higher. The frequency with the most acoustic energy shifted to a significantly lower frequency when boat noise was present during the day. These results indicate the abundance of boat noise and its overlap with reef organism sound production, raising concern for the communication abilities of these animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Instructional physical activity monitor video in english and spanish

    USDA-ARS?s Scientific Manuscript database

    The ActiGraph activity monitor is a widely used method for assessing physical activity. Compliance with study procedures in critical. A common procedure is for the research team to meet with participants and demonstrate how and when to attach and remove the monitor and convey how many wear-days are ...

  16. Divergent effects of postmortem ambient temperature on organophosphorus- and carbamate-inhibited brain cholinesterase activity in birds

    USGS Publications Warehouse

    Hill, E.F.

    1989-01-01

    Time- and temperature-dependent postmortem changes in inhibited brain cholinesterase (ChE) activity may confound diagnosis of field poisoning of wildlife by anticholinesterase pesticide. Carbamate-inhibited ChE activity may return to normal within 1 to 2 days of exposure of intact carcass to moderate ambient temperature (18-32C). Organophosphorus-inhibited ChE activity becomes more depressed over the same time. Uninhibited ChE activity was resilient to above freezing temperature to 32C for 1 day and 25C for 3 days. Carbamate- and organophosphorus-inhibited ChE can be separated by incubation of homogenate for 1 hour at physiological temperatures; carbamylated ChE can be readily reactivated while phosphorylated ChE cannot.

  17. Reporters to monitor cellular MMP12 activity

    NASA Astrophysics Data System (ADS)

    Cobos-Correa, Amanda; Mall, Marcus A.; Schultz, Carsten

    2010-02-01

    Macrophage elastase, also called MMP12, belongs to a family of proteolytic enzymes whose best known physiological function is the remodeling of the extracellular matrix. Under certain pathological conditions, including inflammation, chronic overexpression of MMP12 has been observed and its elevated proteolytic activity has been suggested to be the cause of pulmonary emphysema. However, it was until recently impossible to monitor the activity of MMP12 under disease conditions, mainly due to a lack of detection methods. Recent development of new reporters for monitoring MMP12 activity in living cells, such as LaRee1, provided novel insights into the pathobiology of MMP12 in pulmonary inflammation.1 In the future, these reporters might contribute to improved diagnosis and in finding better treatments for chronic inflammatory lung diseases and emphysema. Our approach for visualizing MMP12 activity is based on peptidic, membrane-targeted FRET (Foerster Resonance Energy Transfer) reporters. Here we describe a set of new reporters containing different fluorophore pairs as well as modifications in the membrane-targeting lipid moiety. We studied the influence of these modifications on reporter performance and the reporter mobility on live cell membranes by FRAP (fluorescence recovery after photobleaching). Finally, we generated several new fluorescently labeled MMP inhibitors based on the peptidic reporter structures as prototypes for future tools to inhibit and monitor MMP activity at the same time.

  18. Ambient air quality programmes for health impact assessment in the WHO European region.

    PubMed

    Mücke, H G

    2000-06-01

    An important aim of air quality assessment is to provide information about population exposure and health impact assessment. Numerous epidemiological studies have already shown that exposure to excessive levels of ambient air pollutants are associated with either acute or chronic health effects. Until recently, the adequacy of monitoring population exposure in relation to quantitative assessment of health effects of air pollution was rarely considered in ambient air monitoring strategies. This made the formulation of health-related recommendations to risk management difficult and weakens preventive and other measures to reduce adverse health effects of air pollution. To improve local and national capacities for health impact assessment, the European Centre for Environment and Health of the World Health Organization has prepared methodology guidelines concerning selected aspects of air monitoring. The WHO Collaborating Centre for Air Quality Management and Air Pollution Control support efforts in line with international programmes on quality assurance and control for Europe.

  19. Real-Time ambient carbon monoxide and ultrafine particle concentration mapping in a near-road environment

    EPA Science Inventory

    Ambient air quality has traditionally been monitored using a network of fixed point sampling sites that are strategically placed to represent regional (e.g., county or town) rather than local (e.g., neighborhood) air quality trends. This type of monitoring data has been used to m...

  20. COMPARISON OF MEASUREMENT OF AMBIENT PARTICLE NITRATE WITH SEMI-CONTINUOPUS INSTRUMENTS

    EPA Science Inventory

    Comparisons between two different semi-continuos monitors of ambient level particulate nitrate are interpreted for both field and laboratory studies. One instrument involves flash vaporization of impacted particulate nitrate to form a combination of NO and NO2 gases which are de...

  1. Wearable activity monitors in oncology trials: Current use of an emerging technology.

    PubMed

    Gresham, Gillian; Schrack, Jennifer; Gresham, Louise M; Shinde, Arvind M; Hendifar, Andrew E; Tuli, Richard; Rimel, B J; Figlin, Robert; Meinert, Curtis L; Piantadosi, Steven

    2018-01-01

    Physical activity is an important outcome in oncology trials. Physical activity is commonly assessed using self-reported questionnaires, which are limited by recall and response biases. Recent advancements in wearable technology have provided oncologists with new opportunities to obtain real-time, objective physical activity data. The purpose of this review was to describe current uses of wearable activity monitors in oncology trials. We searched Pubmed, Embase, and the Cochrane Central Register of Controlled Trials for oncology trials involving wearable activity monitors published between 2005 and 2016. We extracted details on study design, types of activity monitors used, and purpose for their use. We summarized activity monitor metrics including step counts, sleep and sedentary time, and time spent in moderate-to-vigorous activity. We identified 41 trials of which 26 (63%) involved cancer survivors (post-treatment) and 15 trials (37%) involved patients with active cancer. Most trials (65%) involved breast cancer patients. Wearable activity monitors were commonly used in exercise (54%) or behavioral (29%) trials. Cancer survivors take between 4660 and 11,000 steps/day and those undergoing treatment take 2885 to 8300steps/day. Wearable activity monitors are increasingly being used to obtain objective measures of physical activity in oncology trials. There is potential for their use to expand to evaluate and predict clinical outcomes such as survival, quality of life, and treatment tolerance in future studies. Currently, there remains a lack of standardization in the types of monitors being used and how their data are being collected, analyzed, and interpreted. Recent advancements in wearable activity monitor technology have provided oncologists with new opportunities to monitor their patients' daily activity in real-world settings. The integration of wearable activity monitors into cancer care will help increase our understanding of the associations between

  2. Real-Time Remote Monitoring with Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Faizal Zainal Abidin, Ahmad; Huzaimy Jusoh, Mohammad; James, Elster; Junid, Syed Abdul Mutalib Al; Mohd Yassin, Ahmad Ihsan

    2015-11-01

    The purpose of this system is to provide monitoring system for an electrical device and enable remote monitoring via web based application. This monitoring system allow the user to monitor the device condition from anywhere as the information will be synchronised to the website. The current and voltage reading of the monitored equipment, ambient temperature and humidity level are monitored and recorded. These parameters will be updated on the web page. All these sensor are connected to the microcontroller and the data will saved in micro secure digital (SD) card and send all the gathered information to a web page using the GPRS service connection synchronously. The collected data will be displayed on the website and the user enable to download the data directly from the website. The system will help user to monitor the devices condition and ambient changes with ease. The system is successfully developed, tested and has been installed at residential area in Taman Cahaya Alam, Section U12, Shah Alam, Selangor, Malaysia.

  3. Activity Monitor Intervention to Promote Physical Activity of Physicians-In-Training: Randomized Controlled Trial

    PubMed Central

    Thorndike, Anne N.; Mills, Sarah; Sonnenberg, Lillian; Palakshappa, Deepak; Gao, Tian; Pau, Cindy T.; Regan, Susan

    2014-01-01

    Background Physicians are expected to serve as role models for healthy lifestyles, but long work hours reduce time for healthy behaviors. A hospital-based physical activity intervention could improve physician health and increase counseling about exercise. Methods We conducted a two-phase intervention among 104 medical residents at a large hospital in Boston, Massachusetts. Phase 1 was a 6-week randomized controlled trial comparing daily steps of residents assigned to an activity monitor displaying feedback about steps and energy consumed (intervention) or to a blinded monitor (control). Phase 2 immediately followed and was a 6-week non-randomized team steps competition in which all participants wore monitors with feedback. Phase 1 outcomes were: 1) median steps/day and 2) proportion of days activity monitor worn. The Phase 2 outcome was mean steps/day on days monitor worn (≥500 steps/day). Physiologic measurements were collected at baseline and study end. Median steps/day were compared using Wilcoxon rank-sum tests. Mean steps were compared using repeated measures regression analyses. Results In Phase 1, intervention and control groups had similar activity (6369 vs. 6063 steps/day, p = 0.16) and compliance with wearing the monitor (77% vs. 77% of days, p = 0.73). In Phase 2 (team competition), residents recorded more steps/day than during Phase 1 (Control: 7,971 vs. 7,567, p = 0.002; Intervention: 7,832 vs. 7,739, p = 0.13). Mean compliance with wearing the activity monitor decreased for both groups during Phase 2 compared to Phase 1 (60% vs. 77%, p<0.001). Mean systolic blood pressure decreased (p = 0.004) and HDL cholesterol increased (p<0.001) among all participants at end of study compared to baseline. Conclusions Although the activity monitor intervention did not have a major impact on activity or health, the high participation rates of busy residents and modest changes in steps, blood pressure, and HDL suggest that more intensive

  4. Panel discussion review: Session two - Interpretation of Observed Associations between Multiple Ambient Air Pollutants and Health Effects in Epidemiologic Analysis

    EPA Science Inventory

    Air pollution epidemiologic research has often utilized ambient air concentrations measured from centrally located monitors as a surrogate measure of exposure to these pollutants. Associations between these ambient concentrations and health outcomes such as lung function, hospita...

  5. Baseline ambient gaseous ammonia concentrations in the Four Corners area and eastern Oklahoma, USA.

    PubMed

    Sather, Mark E; Mathew, Johnson; Nguyen, Nghia; Lay, John; Golod, George; Vet, Robert; Cotie, Joseph; Hertel, Terry; Aaboe, Erik; Callison, Ryan; Adam, Jacque; Keese, Danielle; Freise, Jeremy; Hathcoat, April; Sakizzie, Brenda; King, Michael; Lee, Chris; Oliva, Sylvia; San Miguel, George; Crow, Leon; Geasland, Frank

    2008-11-01

    Ambient ammonia monitoring using Ogawa passive samplers was conducted in the Four Corners area and eastern Oklahoma, USA during 2007. The resulting data will be useful in the multipollutant management of ozone, nitrogen oxides, and visibility (atmospheric regional haze) in the Four Corners area, an area with growing oil/gas production and increasing coal-based power plant construction. The passive monitoring data also add new ambient ammonia concentration information for the U.S. and will be useful to scientists involved in present and future visibility modeling exercises. Three week integrated passive ammonia samples were taken at five sites in the Four Corners area and two sites in eastern Oklahoma from December, 2006 through December, 2007 (January, 2008 for two sites). Results show significantly higher regional background ammonia concentrations in eastern Oklahoma (1.8 parts per billion (ppb) arithmetic mean) compared to the Four Corners area (0.2 ppb arithmetic mean). Annual mean ammonia concentrations for all Four Corners area sites for the 2007 study ranged from 0.2 ppb to 1.5 ppb. Peak ambient ammonia concentrations occurred in the spring and summer in both areas. The passive samplers deployed at the Stilwell, Oklahoma site compared favorably with other passive samplers and a continuous ammonia monitoring instrument.

  6. Trends in Surface-Water Quality at Selected Ambient-Monitoring Network Stations in Kentucky, 1979-2004

    USGS Publications Warehouse

    Crain, Angela S.; Martin, Gary R.

    2009-01-01

    Increasingly complex water-management decisions require water-quality monitoring programs that provide data for multiple purposes, including trend analyses, to detect improvement or deterioration in water quality with time. Understanding surface-water-quality trends assists resource managers in identifying emerging water-quality concerns, planning remediation efforts, and evaluating the effectiveness of the remediation. This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the Kentucky Energy and Environment Cabinet-Kentucky Division of Water, to analyze and summarize long-term water-quality trends of selected properties and water-quality constituents in selected streams in Kentucky's ambient stream water-quality monitoring network. Trends in surface-water quality for 15 properties and water-quality constituents were analyzed at 37 stations with drainage basins ranging in size from 62 to 6,431 square miles. Analyses of selected physical properties (temperature, specific conductance, pH, dissolved oxygen, hardness, and suspended solids), for major ions (chloride and sulfate), for selected metals (iron and manganese), for nutrients (total phosphorus, total nitrogen, total Kjeldahl nitrogen, nitrite plus nitrate), and for fecal coliform were compiled from the Commonwealth's ambient water-quality monitoring network. Trend analyses were completed using the S-Plus statistical software program S-Estimate Trend (S-ESTREND), which detects trends in water-quality data. The trend-detection techniques supplied by this software include the Seasonal Kendall nonparametric methods for use with uncensored data or data censored with only one reporting limit and the Tobit-regression parametric method for use with data censored with multiple reporting limits. One of these tests was selected for each property and water-quality constituent and applied to all station records so that results of the trend procedure could be compared among

  7. Economic activity and trends in ambient air pollution.

    PubMed

    Davis, Mary E; Laden, Francine; Hart, Jaime E; Garshick, Eric; Smith, Thomas J

    2010-05-01

    One challenge in assessing the health effects of human exposure to air pollution in epidemiologic studies is the lack of widespread historical air pollutant monitoring data with which to characterize past exposure levels. Given the availability of long-term economic data, we relate economic activity levels to patterns in vehicle-related particulate matter (PM) over a 30-year period in New Jersey, USA, to provide insight into potential historical surrogate markers of air pollution. We used statewide unemployment and county-level trucking industry characteristics to estimate historical coefficient of haze (COH), a marker of vehicle-related PM predominantly from diesel exhaust. A total of 5,920 observations were included across 25 different locations in New Jersey between 1971 and 2003. A mixed-modeling approach was employed to estimate the impact of economic indicators on measured COH. The model explained approximately 50% of the variability in COH as estimated by the overall R2 value. Peaks and lows in unemployment tracked negatively with similar extremes in COH, whereas employment in the trucking industry was positively associated with COH. Federal air quality regulations also played a large and significant role in reducing COH levels over the study period. This new approach outlines an alternative method to reconstruct historical exposures that may greatly aid epidemiologic research on specific causes of health effects from urban air pollution. Economic activity data provide a potential surrogate marker of changes in exposure levels over time in the absence of direct monitoring data for chronic disease studies, but more research in this area is needed.

  8. Infrared Laser System for Extended Area Monitoring of Air Pollution

    NASA Technical Reports Server (NTRS)

    Snowman, L. R.; Gillmeister, R. J.

    1971-01-01

    An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.

  9. 24 CFR 1000.501 - Who is involved in monitoring activities under NAHASDA?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Recipient Monitoring, Oversight and Accountability § 1000.501 Who is involved in monitoring activities under NAHASDA? The recipient, the grant beneficiary and HUD are involved in monitoring activities under NAHASDA. ...

  10. 24 CFR 1000.501 - Who is involved in monitoring activities under NAHASDA?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Recipient Monitoring, Oversight and Accountability § 1000.501 Who is involved in monitoring activities under NAHASDA? The recipient, the grant beneficiary and HUD are involved in monitoring activities under NAHASDA. ...

  11. 24 CFR 1000.501 - Who is involved in monitoring activities under NAHASDA?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Recipient Monitoring, Oversight and Accountability § 1000.501 Who is involved in monitoring activities under NAHASDA? The recipient, the grant beneficiary and HUD are involved in monitoring activities under NAHASDA. ...

  12. 24 CFR 1000.501 - Who is involved in monitoring activities under NAHASDA?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Recipient Monitoring, Oversight and Accountability § 1000.501 Who is involved in monitoring activities under NAHASDA? The recipient, the grant beneficiary and HUD are involved in monitoring activities under NAHASDA. ...

  13. 24 CFR 1000.501 - Who is involved in monitoring activities under NAHASDA?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Recipient Monitoring, Oversight and Accountability § 1000.501 Who is involved in monitoring activities under NAHASDA? The recipient, the grant beneficiary and HUD are involved in monitoring activities under NAHASDA. ...

  14. Active Job Monitoring in Pilots

    NASA Astrophysics Data System (ADS)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-12-01

    Recent developments in high energy physics (HEP) including multi-core jobs and multi-core pilots require data centres to gain a deep understanding of the system to monitor, design, and upgrade computing clusters. Networking is a critical component. Especially the increased usage of data federations, for example in diskless computing centres or as a fallback solution, relies on WAN connectivity and availability. The specific demands of different experiments and communities, but also the need for identification of misbehaving batch jobs, requires an active monitoring. Existing monitoring tools are not capable of measuring fine-grained information at batch job level. This complicates network-aware scheduling and optimisations. In addition, pilots add another layer of abstraction. They behave like batch systems themselves by managing and executing payloads of jobs internally. The number of real jobs being executed is unknown, as the original batch system has no access to internal information about the scheduling process inside the pilots. Therefore, the comparability of jobs and pilots for predicting run-time behaviour or network performance cannot be ensured. Hence, identifying the actual payload is important. At the GridKa Tier 1 centre a specific tool is in use that allows the monitoring of network traffic information at batch job level. This contribution presents the current monitoring approach and discusses recent efforts and importance to identify pilots and their substructures inside the batch system. It will also show how to determine monitoring data of specific jobs from identified pilots. Finally, the approach is evaluated.

  15. Wireless technologies for the monitoring of strategic civil infrastructures: an ambient vibration test of the Faith Bridge, Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Picozzi, M.; Milkereit, C.; Zulfikar, C.; Ditommaso, R.; Erdik, M.; Safak, E.; Fleming, K.; Ozel, O.; Zschau, J.; Apaydin, N.

    2008-12-01

    The monitoring of strategic civil infrastructures to ensure their structural integrity is a task of major importance, especially in earthquake-prone areas. Classical approaches to such monitoring are based on visual inspections and the use of wired systems. While the former has the drawback that the structure is only superficially examined and discontinuously in time, wired systems are relatively expensive and time consuming to install. Today, however, wireless systems represent an advanced, easily installed and operated tool to be used for monitoring purposes, resulting in a wide and interesting range of possible applications. Within the framework of the earthquake early warning projects SAFER (Seismic eArly warning For EuRope) and EDIM (Earthquake Disaster Information systems for the Marmara Sea region, Turkey), new low-cost wireless sensors with the capability to automatically rearrange their communications scheme are being developed. The reduced sensitivity of these sensors, arising from the use of low-cost components, is compensated by the possibility of deploying high-density self-organizing networks performing real-time data acquisition and analysis. Thanks to the developed system's versatility, it has been possible to perform an experimental ambient vibration test with a network of 24 sensors on the Fatih Sultan Mehmet Bridge, Istanbul (Turkey), a gravity-anchored suspension bridge spanning the Bosphorus Strait with distance between its towers of 1090 m. Preliminary analysis of the data has demonstrated that the main modal properties of the bridge can be retrieved, and may therefore be regularly re-evaluated as part of a long-term monitoring program. Using a multi-hop communications technique, data could be exchanged among groups of sensors over distances of a few hundred meters. Thus, the test showed that, although more work is required to optimize the communication parameters, the performance of the network offers encouragement for us to follow this

  16. Ambient air quality status in Raniganj-Asansol area, India.

    PubMed

    Reddy, G S; Ruj, Biswajit

    2003-12-01

    This investigation presents the assessment of ambient air quality with respect to suspended particulate matter (SPM), sulphur dioxide (SO2) and oxides of nitrogen (NOx) at four sites (RGC, SRS, BBC and BCC) in the Raniganj-Asansol area in West Bengal, India. Ambient air was monitored with a sampling frequency of twenty four hours (3 x 8 hours) at each site on every alternate day (3 days a week) covering a period of one year. A total of 429 samples were collected from RGC, 429 from SRS and 435 each from the BBC and BCC sites. Meteorological parameters such as temperature, relative humidity, wind-speed and wind-direction were also recorded simultaneously during the sampling period. Monthly and seasonal variation of these pollutants have been observed and recorded. The annual average and range values have also been calculated. Results of the investigation indicates that the 95th percentile values of SPM levels exceed the limits (200 microg m(-3)) at RGC, SRS and BBC sites and is within the limit of 500 microg m(-3) at the BCC sites. The 95th percentile values of SO2 levels did not exceed the reference level at any of the monitoring stations. The 95th percentile values of NOx are found to be exceeding the limit (80 microg m(-3)) at RGC, SRS and BBC sites but is within the prescribed limit of 120 microg m(-3) at the BCC site. Further, it has been observed that the concentrations of the pollutants are high in winter in comparison to the summer or the monsoon seasons. Results of the investigation indicates that industrial activities, indiscriminate open air burning of coal by the local inhabitants for cooking as well as coking purposes, vehicular traffic, etc. are responsible for the high concentration of pollutants in this area.

  17. Real-time trace ambient ammonia monitor for haze prevention

    NASA Astrophysics Data System (ADS)

    Nishimura, Katsumi; Sakaguchi, Yuhei; Crosson, Eric; Wahl, Edward; Rella, Chris

    2007-05-01

    In photolithography, haze prevention is of critical importance to integrated circuit chip manufacturers. Numerous studies have established that the presence of ammonia in the photolithography tool can cause haze to form on optical surfaces resulting in permanent damage to costly deep ultra-violet optics. Ammonia is emitted into wafer fab air by various semiconductor processes including coating steps in the track and CMP. The workers in the clean room also emit a significant amount of ammonia. Chemical filters are typically used to remove airborne contamination from critical locations but their lifetime and coverage cannot offer complete protection. Therefore, constant or periodic monitoring of airborne ammonia at parts-per-trillion (ppt) levels is critical to insure the integrity of the lithography process. Real time monitoring can insure that an accidental ammonia release in the clean room is detected before any optics is damaged. We have developed a transportable, highly accurate, highly specific, real-time trace gas monitor that detects ammonia using Cavity Ring-Down Spectroscopy (CRDS). The trace gas monitor requires no calibration gas standards, and can measure ammonia with 200 ppt sensitivity in five minutes with little or no baseline drift. In addition, the high spectral resolution of CRDS makes the analyzer less susceptible to interference from other gases when compared to other detection methods. In this paper we describe the monitor, focus on its performance, discuss the results of a careful comparison with ion chromatography (IC), and present field data measured inside the aligner and the reticule stocker at a semiconductor fab.

  18. The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000{degrees}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miriyala, N.; Liaw, P.K.; McHargue, C.J.

    1997-04-01

    Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000{degrees}C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fibermore » strength.« less

  19. Effect of ambient temperature on the thermal profile of the human forearm, hand, and fingers

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Williams, B. A.

    1976-01-01

    Forearm, hand, and finger skin temperatures were measured on the right and left sides of seven resting men. The purpose was to determine the bilateral symmetry of these segmental temperature profiles at ambient temperatures from 10 to 45 C. Thermistors placed on the right and left forearms, hands, and index fingers were used to monitor the subjects until equilibration was reached at each ambient temperature. Additionally, thermal profiles of both hands were measured with copper-constantan thermocouples. During one experimental condition (23 C ambient), rectal, ear canal, and 24 skin temperatures were measured on each subject. Average body and average skin temperatures are given for each subject at the 23 C ambient condition. Detailed thermal profiles are also presented for the dorsal, ventral, and circumferential left forearm, hand, and finger skin temperatures at 23 C ambient. No significant differences were found between the mean skin temperatures of the right and left contralateral segments at any of the selected ambient temperatures.

  20. Macrophage reactive oxygen species activity of water-soluble and water-insoluble fractions of ambient coarse, PM2.5 and ultrafine particulate matter (PM) in Los Angeles

    NASA Astrophysics Data System (ADS)

    Wang, Dongbin; Pakbin, Payam; Shafer, Martin M.; Antkiewicz, Dagmara; Schauer, James J.; Sioutas, Constantinos

    2013-10-01

    This study describes an investigation of the relative contributions of water-soluble and water-insoluble portions of ambient particulate matter (PM) to cellular redox activity. Size-fractionated ambient PM samples (coarse, PM2.5 and ultrafine PM) were collected in August-September of 2012 at an urban site in Los Angeles, using the Versatile Aerosol Concentration Enrichment System (VACES)/BioSampler tandem system. In this system, size-fractionated ambient PM was concentrated and collected directly into an aqueous suspension, thereby eliminating the need for solvent extraction required for PM collected on filter substrates. Separation of water-soluble and water-insoluble fractions of PM was achieved by 10 kilo-Delton ultra-filtration of the collected suspension slurries. Chemical analysis, including organic carbon, metals and trace elements, and inorganic ions, as well as measurement of macrophage reactive oxygen species (ROS) activity were performed on the slurries. Correlation between ROS activity and different chemical components of PM was evaluated to identify the main drivers of PM toxicity. Results from this study illustrate that both water-soluble and water-insoluble portions of PM play important roles in influencing potential cellular toxicity. While the water-soluble species contribute the large majority of the ROS activity per volume of sampled air, the highest intrinsic ROS activity (i.e. expressed per PM mass) is observed for the water-insoluble portions. Organic compounds in both water-soluble and water-insoluble portions of ambient PM, as well as transition metals, several with recognized redox activity (Mn, V, Cu and Zn), are highly correlated with ROS activity. These results may underscore the potential of these chemicals in driving the toxicity of ambient PM. Results from this study also suggest that collection of particles directly into a liquid suspension for toxicological analysis may be superior to conventional filtration by eliminating the need

  1. Effect of calcium chloride treatments on calcium content, anthracnose severity and antioxidant activity in papaya fruit during ambient storage.

    PubMed

    Madani, Babak; Mirshekari, Amin; Yahia, Elhadi

    2016-07-01

    There have been no reports on the effects of preharvest calcium application on anthracnose disease severity, antioxidant activity and cellular changes during ambient storage of papaya, and therefore the objective of this study was to investigate these effects. Higher calcium concentrations (1.5 and 2% w/v) increased calcium concentration in the peel and pulp tissues, maintained firmness, and reduced anthracnose incidence and severity. While leakage of calcium-treated fruit was lower for 1.5 and 2% calcium treatments compared to the control, microscopic results confirmed that pulp cell wall thickness was higher after 6 days in storage, for the 2% calcium treatment compared to the control. Calcium-treated fruit also had higher total antioxidant activity and total phenolic compounds during storage. Calcium chloride, especially at higher concentrations, is effective in maintaining papaya fruit quality during ambient storage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Characterization of ambient fine particles in the northwestern area and Anchorage, Alaska.

    PubMed

    Kim, Eugene; Hopke, Philip K

    2008-10-01

    Ambient PM2.5 (particulate matter less than 2.5 microm in aerodynamic diameter) in the northwestern United States and Alaska is dominated by carbonaceous compounds associated with wood burning and transportation sources. PM2.5 source characterization studies analyzing recent PM2.5 speciation data have not been previously reported for these areas. In this study, ambient PM2.5 speciation samples collected at two monitoring sites located in the northwestern area, Olympic Peninsula, WA, and Portland, OR, and one monitoring site located in Anchorage, AK, were characterized through source apportionments. Gasoline vehicle, secondary sulfate, and wood smoke were the largest sources of PM2.5 collected at the Anchorage, Olympic, and Portland monitoring sites, respectively. Secondary sulfates showed an April peak at Anchorage and a November peak at Portland that are likely related to the increased photochemical reaction and long-range transport in Anchorage and meteorological stagnation in Portland. Secondary nitrate at the Olympic site showed a weak summer high peak that could be caused by seasonal tourism in the national park. Backward trajectories suggested that the elevated aged sea salt concentrations at the Portland monitoring site could be regional transport of sea salt that passed through other contaminated air sheds along the coast. Oil combustion emissions that might originate from ships and ferries were observed at the Olympic monitoring site.

  3. A bioluminescent caspase-1 activity assay rapidly monitors inflammasome activation in cells.

    PubMed

    O'Brien, Martha; Moehring, Danielle; Muñoz-Planillo, Raúl; Núñez, Gabriel; Callaway, Justin; Ting, Jenny; Scurria, Mike; Ugo, Tim; Bernad, Laurent; Cali, James; Lazar, Dan

    2017-08-01

    Inflammasomes are protein complexes induced by diverse inflammatory stimuli that activate caspase-1, resulting in the processing and release of cytokines, IL-1β and IL-18, and pyroptosis, an immunogenic form of cell death. To provide a homogeneous method for detecting caspase-1 activity, we developed a bioluminescent, plate-based assay that combines a substrate, Z-WEHD-aminoluciferin, with a thermostable luciferase in an optimized lytic reagent added directly to cultured cells. Assay specificity for caspase-1 is conferred by inclusion of a proteasome inhibitor in the lytic reagent and by use of a caspase-1 inhibitor to confirm activity. This approach enables a specific and rapid determination of caspase-1 activation. Caspase-1 activity is stable in the reagent thereby providing assay convenience and flexibility. Using this assay system, caspase-1 activation has been determined in THP-1 cells following treatment with α-hemolysin, LPS, nigericin, gramicidin, MSU, R848, Pam3CSK4, and flagellin. Caspase-1 activation has also been demonstrated in treated J774A.1 mouse macrophages, bone marrow-derived macrophages (BMDMs) from mice, as well as in human primary monocytes. Caspase-1 activity was not detected in treated BMDMs derived from Casp1 -/- mice, further confirming the specificity of the assay. Caspase-1 activity can be measured directly in cultured cells using the lytic reagent, or caspase-1 activity released into medium can be monitored by assay of transferred supernatant. The caspase-1 assay can be multiplexed with other assays to monitor additional parameters from the same cells, such as IL-1β release or cell death. The caspase-1 assay in combination with a sensitive real-time monitor of cell death allows one to accurately establish pyroptosis. This assay system provides a rapid, convenient, and flexible method to specifically and quantitatively monitor caspase-1 activation in cells in a plate-based format. This will allow a more efficient and effective

  4. Ambient concentrations of total suspended particulate matter and its elemental constituents at the wider area of the mining facilities of TVX Hellas in Chalkidiki, Greece.

    PubMed

    Gaidajis, George

    2003-01-01

    To assess ambient air quality at the wider area of TVX Hellas mining facilities, the Total Suspended Particulate matter (TSP) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn are being monitored for more than thirty months as part of the established Environmental Monitoring Program. High Volume air samplers equipped with Tissue Quartz filters were employed for the collection of TSP. Analyses were effected after digestion of the suspended particulate with an HNO3-HCl solution and determination of elemental concentrations with an Atomic Absorption Spectroscopy equipped with graphite furnace. The sampling stations were selected to record representatively the existing ambient air quality in the vicinity of the facilities and at remote sites not affected from industrial activities. Monitoring data indicated that the background TSP concentrations ranged from 5-60 microg/m3. Recorded TSP concentrations at the residential sites close to the facilities ranged between 20-100 microg/m3, indicating only a minimal influence from the mining and milling activities. Similar spatial variation was observed for the TSP constituents and specifically for Pb and Zn. To validate the monitoring procedures, a parallel sampling campaign took place with different High Volume samplers at days where low TSP concentrations were expected. The satisfactory agreement (+/- 11%) at low concentrations (50-100 microg/m3) clearly supported the reproducibility of the techniques employed specifically at the critical range of lower concentrations.

  5. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  6. Long-term sub second-response monitoring of gaseous ammonia in ambient air by positive inhaling ion mobility spectrometry.

    PubMed

    Huang, Wei; Wang, Weiguo; Chen, Chuang; Li, Mei; Peng, Liying; Li, Hang; Liu, Jiwei; Hou, Keyong; Li, Haiyang

    2017-12-01

    A real-time dynamic measurements of ammonia (NH 3 ) is crucial for understanding the atmospheric nucleation process. A novel method was developed for on line monitoring at the sub-second time scale for the gaseous ammonia in ambient air for months, based on a positive inhaling ion mobility spectrometry (IMS) with a 63 Ni ion source. The selective detection of NH 3 was achieved using a high resolution IMS with an optimization of the drift tube temperature above 150°C. This method improved the peak-to-peak resolution significantly, thus avoided the interferences of the adjacent peaks to the quantitative analysis of NH 3 . The time resolution of the IMS was less than 0.1s at a data averaging of 10 times. The limit of detection (LOD) achieved at sub-ppb level while a linear response of peak intensity versus concentration of NH 3 in the range of 10-60ppb and 60-400ppb were obtained. The relative standard deviations (RSD), the confidence level and the errors were 1.06%, 95% and ± 0.21ppb by measuring 100ppb NH 3 for 100 times. The effect of ambient humidity could be greatly reduced by using the drift temperature of over 150°C. At last, the application of measuring the NH 3 concentration evolutions of Dalian city was performed from June 19 to December 3 in 2015. The results illustrated a potential method of using IMS for a real-time measuring atmospheric NH 3 at an unprecedented accuracy and sensitivity with long-term stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure

    PubMed Central

    Katiyar, Amit; Sarkar, Kausik; Forsberg, Flemming

    2011-01-01

    Variation of subharmonic response from contrast microbubbles with ambient pressure is numerically investigated for non-invasive monitoring of organ-level blood pressure. Previously, several contrast microbubbles both in vitro and in vivo registered approximately linear (5–15 dB) subharmonic response reduction with 188 mm Hg change in ambient pressure. In contrast, simulated subharmonic response from a single microbubble is seen here to either increase or decrease with ambient pressure. This is shown using the code BUBBLESIM for encapsulated microbubbles, and then the underlying dynamics is investigated using a free bubble model. The ratio of the excitation frequency to the natural frequency of the bubble is the determining parameter—increasing ambient pressure increases natural frequency thereby changing this ratio. For frequency ratio below a lower critical value, increasing ambient pressure monotonically decreases subharmonic response. Above an upper critical value of the same ratio, increasing ambient pressure increases subharmonic response; in between, the subharmonic variation is non-monotonic. The precise values of frequency ratio for these three different trends depend on bubble radius and excitation amplitude. The modeled increase or decrease of subharmonic with ambient pressure, when one happens, is approximately linear only for certain range of excitation levels. Possible reasons for discrepancies between model and previous experiments are discussed. PMID:21476688

  8. Applying Formal Verification Techniques to Ambient Assisted Living Systems

    NASA Astrophysics Data System (ADS)

    Benghazi, Kawtar; Visitación Hurtado, María; Rodríguez, María Luisa; Noguera, Manuel

    This paper presents a verification approach based on timed traces semantics and MEDISTAM-RT [1] to check the fulfillment of non-functional requirements, such as timeliness and safety, and assure the correct functioning of the Ambient Assisted Living (AAL) systems. We validate this approach by its application to an Emergency Assistance System for monitoring people suffering from cardiac alteration with syncope.

  9. IDEEA activity monitor: validity of activity recognition for lying, reclining, sitting and standing.

    PubMed

    Jiang, Yuyu; Larson, Janet L

    2013-03-01

    Recent evidence demonstrates the independent negative effects of sedentary behavior on health, but there are few objective measures of sedentary behavior. Most instruments measure physical activity and are not validated as measures of sedentary behavior. The purpose of this study was to evaluate the validity of the IDEEA system's measures of sedentary and low-intensity physical activities: lying, reclining, sitting and standing. Thirty subjects, 14 men and 16 women, aged 23 to 77 years, body mass index (BMI) between 18 to 34 kg/m(2), participated in the study. IDEEA measures were compared to direct observation for 27 activities: 10 lying in bed, 3 lying on a sofa, 1 reclining in a lawn chair, 10 sitting and 3 standing. Two measures are reported, the percentage of activities accurately identified and the percentage of monitored time that was accurately labeled by the IDEEA system for all subjects. A total of 91.6% of all observed activities were accurately identified and 92.4% of the total monitored time was accurately labeled. The IDEEA system did not accurately differentiate between lying and reclining so the two activities were combined for calculating accuracy. Using this approach the IDEEA system accurately identified 96% of sitting activities for a total of 97% of the monitored sitting time, 99% and 99% for standing, 87% and 88% for lying in bed, 87% and 88% for lying on the sofa, and 83% and 83% for reclining on a lawn chair. We conclude that the IDEEA system accurately recognizes sitting and standing positions, but it is less accurate in identifying lying and reclining positions. We recommend combining the lying and reclining activities to improve accuracy. The IDEEA system enables researchers to monitor lying, reclining, sitting and standing with a reasonable level of accuracy and has the potential to advance the science of sedentary behaviors and low-intensity physical activities.

  10. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea.

    PubMed

    Baek, Sung-Ok; Suvarapu, Lakshmi Narayana; Seo, Young-Kyo

    2015-08-05

    This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory role in improving

  11. The perceived impacts of monitoring activities on intergovernmental relationships: some lessons from the Ecological Monitoring Network and Water in Focus.

    PubMed

    de Kool, Dennis

    2015-11-01

    An increasing stream of monitoring activities is entering the public sector. This article analyzes the perceived impacts of monitoring activities on intergovernmental relationships. Our theoretical framework is based on three approaches to monitoring and intergovernmental relationships, namely, a rational, a political, and a cultural perspective. Our empirical insights are based on two Dutch case studies, namely, the Ecological Monitoring Network and the Water in Focus reports. The conclusion is that monitoring activities have an impact on intergovernmental relationships in terms of standardizing working processes and methods, formalizing information relationships, ritualizing activities, and developing shared concepts ("common grammar"). An important challenge is to deal with the politicization of intergovernmental relationships, because monitoring reports can also stimulate political discussions about funding, the design of the instrument, administrative burdens, and supervisory relationships.

  12. Ageing-in-place with the use of ambient intelligence technology: perspectives of older users.

    PubMed

    van Hoof, J; Kort, H S M; Rutten, P G S; Duijnstee, M S H

    2011-05-01

    Ambient intelligence technologies are a means to support ageing-in-place by monitoring clients in the home. In this study, monitoring is applied for the purpose of raising an alarm in an emergency situation, and thereby, providing an increased sense of safety and security. Apart from these technological solutions, there are numerous environmental interventions in the home environment that can support people to age-in-place. The aim of this study was to investigate the needs and motives, related to ageing-in-place, of the respondents receiving ambient intelligence technologies, and to investigate whether, and how, these technologies contributed to aspects of ageing-in-place. This paper presents the results of a qualitative study comprised of interviews and observations of technology and environmental interventions in the home environment among 18 community-dwelling older adults with a complex demand for care. These respondents had a prototype of the Unattended Autonomous Surveillance system, an example of ambient intelligence technology, installed in their homes as a means to age-in-place. The UAS-system offers a large range of functionalities, including mobility monitoring, voice response, fire detection, as well as wandering detection and prevention, which can be installed in different configurations. The respondents had various motives to use ambient intelligence technologies to support ageing-in-place. The most prominent reason was to improve the sense of safety and security, in particular, in case of fall incidents, when people were afraid not to be able to use their existing emergency response systems. The ambient intelligence technologies were initially seen as a welcome addition to strategies already adopted by the respondents, including a variety of home modifications and assistive devices. The systems tested increased the sense of safety and security and helped to postpone institutionalisation. Respondents came up with a set of specifications in terms of

  13. Technologies for Metabolic Monitoring Military Section Editorials in Diabetes Technologies and Therapeutics

    DTIC Science & Technology

    2004-12-01

    monitoring, diabetes, IGF-I, patient decision assist, hyperspectral imaging, actigraphy, accelerometry, foot contact time, Con A-glucose sensing, lactate...was reduced in both con - mottling, and rebound of a skin fold could all ditions. contribute to a diagnosis. Current technologies Hyperspectral imaging...information such as ambient con - responses in the context of various external ditions, meals and recent activity, and specific challenges ("green light

  14. Monitoring Neural Activity with Bioluminescence during Natural Behavior

    PubMed Central

    Naumann, Eva A.; Kampff, Adam R.; Prober, David A.; Schier, Alexander F.; Engert, Florian

    2010-01-01

    Existing techniques for monitoring neural activity in awake, freely behaving vertebrates are invasive and difficult to target to genetically identified neurons. Here we describe the use of bioluminescence to non-invasively monitor the activity of genetically specified neurons in freely behaving zebrafish. Transgenic fish expressing the Ca2+-sensitive photoprotein GFP-apoAequorin (GA) in most neurons generated large and fast bioluminescent signals related to neural activity, neuroluminescence, that could be recorded continuously for many days. To test the limits of this technique, GA was specifically targeted to the hypocretin-positive neurons of the hypothalamus. We found that neuroluminescence generated by this group of ~20 neurons was associated with periods of increased locomotor activity and identified two classes of neural activity corresponding to distinct swim latencies. Thus, our neuroluminescence assay can report, with high temporal resolution and sensitivity, the activity of small subsets of neurons during unrestrained behavior. PMID:20305645

  15. The Utility of the Extended Images in Ambient Seismic Wavefield Migration

    NASA Astrophysics Data System (ADS)

    Girard, A. J.; Shragge, J. C.

    2015-12-01

    Active-source 3D seismic migration and migration velocity analysis (MVA) are robust and highly used methods for imaging Earth structure. One class of migration methods uses extended images constructed by incorporating spatial and/or temporal wavefield correlation lags to the imaging conditions. These extended images allow users to directly assess whether images focus better with different parameters, which leads to MVA techniques that are based on the tenets of adjoint-state theory. Under certain conditions (e.g., geographical, cultural or financial), however, active-source methods can prove impractical. Utilizing ambient seismic energy that naturally propagates through the Earth is an alternate method currently used in the scientific community. Thus, an open question is whether extended images are similarly useful for ambient seismic migration processing and verifying subsurface velocity models, and whether one can similarly apply adjoint-state methods to perform ambient migration velocity analysis (AMVA). Herein, we conduct a number of numerical experiments that construct extended images from ambient seismic recordings. We demonstrate that, similar to active-source methods, there is a sensitivity to velocity in ambient seismic recordings in the migrated extended image domain. In synthetic ambient imaging tests with varying degrees of error introduced to the velocity model, the extended images are sensitive to velocity model errors. To determine the extent of this sensitivity, we utilize acoustic wave-equation propagation and cross-correlation-based migration methods to image weak body-wave signals present in the recordings. Importantly, we have also observed scenarios where non-zero correlation lags show signal while zero-lags show none. This may be a valuable missing piece for ambient migration techniques that have yielded largely inconclusive results, and might be an important piece of information for performing AMVA from ambient seismic recordings.

  16. Hot dogs: High ambient temperatures impact reproductive success in a tropical carnivore.

    PubMed

    Woodroffe, Rosie; Groom, Rosemary; McNutt, J Weldon

    2017-10-01

    Climate change imposes an urgent need to recognise and conserve the species likely to be worst affected. However, while ecologists have mostly explored indirect effects of rising ambient temperatures on temperate and polar species, physiologists have predicted direct impacts on tropical species. The African wild dog (Lycaon pictus), a tropical species, exhibits few of the traits typically used to predict climate change vulnerability. Nevertheless, we predicted that wild dog populations might be sensitive to weather conditions, because the species shows strongly seasonal reproduction across most of its geographical range. We explored associations between weather conditions, reproductive costs, and reproductive success, drawing on long-term wild dog monitoring data from sites in Botswana (20°S, 24 years), Kenya (0°N, 12 years), and Zimbabwe (20°S, 6 years). High ambient temperatures were associated with reduced foraging time, especially during the energetically costly pup-rearing period. Across all three sites, packs which reared pups at high ambient temperatures produced fewer recruits than did those rearing pups in cooler weather; at the non-seasonal Kenya site such packs also had longer inter-birth intervals. Over time, rising ambient temperatures at the (longest-monitored) Botswana site coincided with falling wild dog recruitment. Our findings suggest a direct impact of high ambient temperatures on African wild dog demography, indicating that this species, which is already globally endangered, may be highly vulnerable to climate change. This vulnerability would have been missed by simplistic trait-based assessments, highlighting the limitations of such assessments. Seasonal reproduction, which is less common at low latitudes than at higher latitudes, might be a useful indicator of climate change vulnerability among tropical species. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  17. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on themore » liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.« less

  18. MONITORING METHODS ADAPTABLE TO VAPOR INTRUSION MONITORING - USEPA COMPENDIUM METHODS TO-15, TO-15 SUPPLEMENT (DRAFT), AND TO-17

    EPA Science Inventory

    USEPA ambient air monitoring methods for volatile organic compounds (VOCs) using specially-prepared canisters and solid adsorbents are directly adaptable to monitoring for vapors in the indoor environment. The draft Method TO-15 Supplement, an extension of the USEPA Method TO-15,...

  19. Advances in physical activity monitoring and lifestyle interventions in obesity: a review.

    PubMed

    Bonomi, A G; Westerterp, K R

    2012-02-01

    Obesity represents a strong risk factor for developing chronic diseases. Strategies for disease prevention often promote lifestyle changes encouraging participation in physical activity. However, determining what amount of physical activity is necessary for achieving specific health benefits has been hampered by the lack of accurate instruments for monitoring physical activity and the related physiological outcomes. This review aims at presenting recent advances in activity-monitoring technology and their application to support interventions for health promotion. Activity monitors have evolved from step counters and measuring devices of physical activity duration and intensity to more advanced systems providing quantitative and qualitative information on the individuals' activity behavior. Correspondingly, methods to predict activity-related energy expenditure using bodily acceleration and subjects characteristics have advanced from linear regression to innovative algorithms capable of determining physical activity types and the related metabolic costs. These novel techniques can monitor modes of sedentary behavior as well as the engagement in specific activity types that helps to evaluate the effectiveness of lifestyle interventions. In conclusion, advances in activity monitoring have the potential to support the design of response-dependent physical activity recommendations that are needed to generate effective and personalized lifestyle interventions for health promotion.

  20. Activity Monitors Step Count Accuracy in Community-Dwelling Older Adults.

    PubMed

    Johnson, Marquell

    2015-01-01

    Objective: To examine the step count accuracy of activity monitors in community-dwelling older adults. Method : Twenty-nine participants aged 67.70 ± 6.07 participated. Three pedometers and the Actical accelerometer step count functions were compared with actual steps taken during a 200-m walk around an indoor track and during treadmill walking at three different speeds. Results : There was no statistical difference between activity monitors step counts and actual steps during self-selected pace walking. During treadmill walking at 0.67 m∙s -1 , all activity monitors step counts were significantly different from actual steps. During treadmill walking at 0.894m∙s -1 , the Omron HJ-112 pedometer step counts were not significantly different from actual steps. During treadmill walking at 1.12 m∙s -1 , the Yamax SW-200 pedometer steps were significantly different from actual steps. Discussion : Activity monitor selection should be deliberate when examining the walking behaviors of community-dwelling older adults, especially for those who walk at a slower pace.

  1. Step Detection and Activity Recognition Accuracy of Seven Physical Activity Monitors

    PubMed Central

    Storm, Fabio A.; Heller, Ben W.; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications. PMID:25789630

  2. Step detection and activity recognition accuracy of seven physical activity monitors.

    PubMed

    Storm, Fabio A; Heller, Ben W; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications.

  3. Three-component ambient noise beamforming in the Parkfield area

    NASA Astrophysics Data System (ADS)

    Löer, Katrin; Riahi, Nima; Saenger, Erik H.

    2018-06-01

    We apply a three-component beamforming algorithm to an ambient noise data set recorded at a seismic array to extract information about both isotropic and anisotropic surface wave velocities. In particular, we test the sensitivity of the method with respect to the array geometry as well as to seasonal variations in the distribution of noise sources. In the earth's crust, anisotropy is typically caused by oriented faults or fractures and can be altered when earthquakes or human activities cause these structures to change. Monitoring anisotropy changes thus provides time-dependent information on subsurface processes, provided they can be distinguished from other effects. We analyse ambient noise data at frequencies between 0.08 and 0.52 Hz recorded at a three-component array in the Parkfield area, California (US), between 2001 November and 2002 April. During this time, no major earthquakes were identified in the area and structural changes are thus not expected. We compute dispersion curves of Love and Rayleigh waves and estimate anisotropy parameters for Love waves. For Rayleigh waves, the azimuthal source coverage is too limited to perform anisotropy analysis. For Love waves, ambient noise sources are more widely distributed and we observe significant and stable surface wave anisotropy for frequencies between 0.2 and 0.4 Hz. Synthetic data experiments indicate that the array geometry introduces apparent anisotropy, especially when waves from multiple sources arrive simultaneously at the array. Both the magnitude and the pattern of apparent anisotropy, however, differ significantly from the anisotropy observed in Love wave data. Temporal variations of anisotropy parameters observed at frequencies below 0.2 Hz and above 0.4 Hz correlate with changes in the source distribution. Frequencies between 0.2 and 0.4 Hz, however, are less affected by these variations and provide relatively stable results over the period of study.

  4. 40 CFR 58.15 - Annual air monitoring data certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Annual air monitoring data certification. 58.15 Section 58.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.15 Annual air monitoring data...

  5. 40 CFR 58.15 - Annual air monitoring data certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Annual air monitoring data certification. 58.15 Section 58.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.15 Annual air monitoring data...

  6. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading ofmore » vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.« less

  7. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus.

    PubMed

    Yang, Yang; Xu-Friedman, Matthew A

    2015-06-01

    Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied "endbulb of Held" synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg(2+)) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate. Copyright © 2015 the American Physiological Society.

  8. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus

    PubMed Central

    Yang, Yang

    2015-01-01

    Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied “endbulb of Held” synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-d-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg2+) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate. PMID:25855696

  9. The effects of ambient music on simulated anaesthesia monitoring.

    PubMed

    Sanderson, P M; Tosh, N; Philp, S; Rudie, J; Watson, M O; Russell, W J

    2005-11-01

    We examined the effect of no music, classical music or rock music on simulated patient monitoring. Twenty-four non-anaesthetist participants with high or low levels of musical training were trained to monitor visual and auditory displays of patients' vital signs. In nine anaesthesia test scenarios, participants were asked every 50-70 s whether one of five vital signs was abnormal and the trend of its direction. Abnormality judgements were unaffected by music or musical training. Trend judgements were more accurate when music was playing (p = 0.0004). Musical participants reported trends more accurately (p = 0.004), and non-musical participants tended to benefit more from music than did the musical participants (p = 0.063). Music may provide a pitch and rhythm standard from which participants can judge changes in vital signs from auditory displays. Nonetheless, both groups reported that it was easier to monitor the patient with no music (p = 0.0001), and easier to rely upon the auditory displays with no music (p = 0.014).

  10. 78 FR 57631 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; Ambient...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ..., tribal entities, environmental groups, academic institutions, industrial groups) use the ambient air... System (AQS) database. Quality assurance/quality control records and monitoring network documentation are...

  11. Ambient seismic noise study in Taiwan for two different scale arrays

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Yao, H.; Liang, W.; Huang, B.; Wen, K.; Huang, W.; van der Hilst, R. D.

    2008-12-01

    It has been demonstrated that Time Domain Empirical Green's Function (TDEGF) from ambient seismic noise cross-correlation can be used to investigate crustal velocity structure from many studies around the world. For surface wave tomographic studies from ambient noise, the maximum exploring depth depends on the aperture of receiver array and the lateral resolution relies on the density of station-pair paths. To decipher subsurface structures in various scales, researchers can utilize some existing continuous-recording seismic stations and/or deploy a newly dense receiver array in the study region. In this study, we perform tomographic applications of ambient seismic noise analysis in Taiwan region for two arrays with very different scales. Taiwan is located at a complex convergent plate boundary zone where the Philippine Sea plate interacts with the Eurasian plate. As a result, the lateral velocity variations show dramatic patterns among different geologic provinces. In the past decade, many continuous-recording broadband stations have already been set up to monitor earthquake activities in the Taiwan region. The BATS (Broadband Array in Taiwan for Seismology) network is being operated by the Institute of Earth Sciences, Academia Sinica (IESAS) since 1994. Currently, there are 20 permanent stations covering approximately 350 km by 400 km area around Taiwan, including some remote islets. In this study we selected 7 years data (2000-2006) from BATS to get the TDEGFs which were then used to measure inter-station phase velocities in the period band 5-30s. Finally we then constructed 2D phase velocity maps. At shorter periods (5-10s), phase velocity distribution can compare well with surface geology. At longer periods (14-22s), there is a saxophone shape low velocity zone beneath the Taiwan Island. Taipei Basin is a high-level artificial noise metropolis with a nearly triangular shape basin located close to northern tip of Taiwan with area just around 20 km by 20 km

  12. Monitoring of environmental influences on seismic velocity at the geological storage site for CO2 in Ketzin (Germany) with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Gassenmeier, M.; Sens-Schönfelder, C.; Delatre, M.; Korn, M.

    2015-01-01

    Regarding the exploitation of natural resources, storage of waste or subsurface construction, there is an increasing need to obtain comprehensive knowledge about the subsurface and its temporal changes. We investigate the possibility of a passive monitoring using ambient seismic noise, which is cheap and continuous compared to active seismics. We work with data acquired with a seismic network in Ketzin (Germany) where 67 271 tons of CO2 were injected from 2008 June until 2013 August into a saline aquifer at a depth of about 650 m. Monitoring the expansion of the CO2 plume is essential for the characterization of the reservoir as well as the detection of potential leakage. By cross-correlating about 4 yr of passive seismic data in a frequency range of 0.05-4.5 Hz we found periodic velocity variations with a period of approximately 1 yr that cannot be caused by the CO2 injection. The prominent direction of the noise wavefield indicates a wind farm as the dominant source providing the temporally stable noise field. This spacial stability excludes variations of the noise source distribution as a cause of spurious velocity variations. Based on an amplitude decrease associated with time windows towards later parts of the coda, we show that the variations must be generated in the shallow subsurface. A comparison to groundwater level data reveals a direct correlation between depth of the groundwater level and the seismic velocity. The influence of ground frost on the seismic velocities is documented by a sharp increase of velocity when the maximum daily temperature stays below 0 °C. Although the observed periodic changes and the changes due to ground frost affect only the shallow subsurface, they mask potential signals of material changes from the reservoir depths.

  13. Photochemical Assessment Monitoring Stations (PAMS)

    EPA Pesticide Factsheets

    Photochemical Assessment Monitoring Stations (PAMS). This file provides information on the numbers and distribution (latitude/longitude) of air monitoring sites which measure ozone precursors (approximately 60 volatile hydrocarbons and carbonyl), as required by the 1990 Clean Air Act Amendments, in areas with persistently high ozone levels (mostly large metropolitan areas). In these areas, the States have established ambient air monitoring sites which collect and report detailed data for volatile organic compounds, nitrogen oxides, ozone and meteorological parameters. This file displays 199 monitoring sites reporting measurements for 2010. A wide range of related monitoring site attributes is also provided.

  14. A novel method for calculating ambient aerosol liquid water content based on measurements of a humidified nephelometer system

    NASA Astrophysics Data System (ADS)

    Kuang, Ye; Zhao, Chun Sheng; Zhao, Gang; Tao, Jiang Chuan; Xu, Wanyun; Ma, Nan; Bian, Yu Xuan

    2018-05-01

    Water condensed on ambient aerosol particles plays significant roles in atmospheric environment, atmospheric chemistry and climate. Before now, no instruments were available for real-time monitoring of ambient aerosol liquid water contents (ALWCs). In this paper, a novel method is proposed to calculate ambient ALWC based on measurements of a three-wavelength humidified nephelometer system, which measures aerosol light scattering coefficients and backscattering coefficients at three wavelengths under dry state and different relative humidity (RH) conditions, providing measurements of light scattering enhancement factor f(RH). The proposed ALWC calculation method includes two steps: the first step is the estimation of the dry state total volume concentration of ambient aerosol particles, Va(dry), with a machine learning method called random forest model based on measurements of the dry nephelometer. The estimated Va(dry) agrees well with the measured one. The second step is the estimation of the volume growth factor Vg(RH) of ambient aerosol particles due to water uptake, using f(RH) and the Ångström exponent. The ALWC is calculated from the estimated Va(dry) and Vg(RH). To validate the new method, the ambient ALWC calculated from measurements of the humidified nephelometer system during the Gucheng campaign was compared with ambient ALWC calculated from ISORROPIA thermodynamic model using aerosol chemistry data. A good agreement was achieved, with a slope and intercept of 1.14 and -8.6 µm3 cm-3 (r2 = 0.92), respectively. The advantage of this new method is that the ambient ALWC can be obtained solely based on measurements of a three-wavelength humidified nephelometer system, facilitating the real-time monitoring of the ambient ALWC and promoting the study of aerosol liquid water and its role in atmospheric chemistry, secondary aerosol formation and climate change.

  15. Monitoring activities of satellite data processing services in real-time with SDDS Live Monitor

    NASA Astrophysics Data System (ADS)

    Duc Nguyen, Minh

    2017-10-01

    This work describes Live Monitor, the monitoring subsystem of SDDS - an automated system for space experiment data processing, storage, and distribution created at SINP MSU. Live Monitor allows operators and developers of satellite data centers to identify errors occurred in data processing quickly and to prevent further consequences caused by the errors. All activities of the whole data processing cycle are illustrated via a web interface in real-time. Notification messages are delivered to responsible people via emails and Telegram messenger service. The flexible monitoring mechanism implemented in Live Monitor allows us to dynamically change and control events being shown on the web interface on our demands. Physicists, whose space weather analysis models are functioning upon satellite data provided by SDDS, can use the developed RESTful API to monitor their own events and deliver customized notification messages by their needs.

  16. The European Marine Strategy: Noise Monitoring in European Marine Waters from 2014.

    PubMed

    Dekeling, René; Tasker, Mark; Ainslie, Michael; Andersson, Mathias; André, Michel; Borsani, Fabrizio; Brensing, Karsten; Castellote, Manuel; Dalen, John; Folegot, Thomas; van der Graaf, Sandra; Leaper, Russell; Liebschner, Alexander; Pajala, Jukka; Robinson, Stephen; Sigray, Peter; Sutton, Gerry; Thomsen, Frank; Werner, Stefanie; Wittekind, Dietrich; Young, John V

    2016-01-01

    The European Marine Strategy Framework Directive requires European member states to develop strategies for their marine waters leading to programs of measures that achieve or maintain good environmental status (GES) in all European seas by 2020. An essential step toward reaching GES is the establishment of monitoring programs, enabling the state of marine waters to be assessed on a regular basis. A register for impulsive noise-generating activities would enable assessment of their cumulative impacts on wide temporal and spatial scales; monitoring of ambient noise would provide essential insight into current levels and any trend in European waters.

  17. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION OF...

  18. Shape-Independent Model of Monitor Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Yusuf, Siaka Ojo

    The technique of monitor neutron activation analysis has been improved by developing a shape-independent model to solve the problem of the treatment of the epithermal reaction contribution to the reaction rate in reactor neutron activation analysis. It is a form of facility characterization in which differential approximations to neither the neutron flux distribution as a function of energy nor the reaction cross section as a function of energy are necessary. The model predicts a linear relationship when the k-factors (ratios of reaction rates of two nuclides at a given irradiation position) for element x, k _{c} (x), is plotted against the k-factor for the monitor, k_{c} (m). The slope of this line, B(x,c,m) is measured for each element x to provide the calibration of the irradiation facility for monitor activation analysis. In this thesis, scandium was chosen as the comparator and antimony as the epithermal monitor. B(x, Sc, Sb) has been accurately measured for a number of nuclides in three different reactors. The measurement was done by irradiating filter papers containing binary mixture of the elements x and the flux monitor Sc at the various irradiation positions in these three reactors. The experiment was designed in such a way that systematic errors due to mass ratios and efficiency ratios cancel out. Also, rate related errors and backgrounds were kept at negligible values. The results show that B(x,c,m) depends not only on x, c, and m, but also on the type of moderator used for the reactor. We want this new approach to be adopted at all laboratories where routine analysis of multi-element samples are done with the monitor method since the choices of c and m are flexible.

  19. Evaluation of a novel canine activity monitor for at-home physical activity analysis.

    PubMed

    Yashari, Jonathan M; Duncan, Colleen G; Duerr, Felix M

    2015-07-04

    Accelerometers are motion-sensing devices that have been used to assess physical activity in dogs. However, the lack of a user-friendly, inexpensive accelerometer has hindered the widespread use of this objective outcome measure in veterinary research. Recently, a smartphone-based, affordable activity monitor (Whistle) has become available for measurement of at-home physical activity in dogs. The aim of this research was to evaluate this novel accelerometer. Eleven large breed, privately owned dogs wore a collar fitted with both the Whistle device and a previously validated accelerometer-based activity monitor (Actical) for a 24-h time period. Owners were asked to have their dogs resume normal daily activities. Total activity time obtained from the Whistle device in minutes was compared to the total activity count from the Actical device. Activity intensity from the Whistle device was calculated manually from screenshots of the activity bars displayed in the smartphone-application and compared to the activity count recorded by the Actical in the same 3-min time period. A total of 3740 time points were compared. There was a strong correlation between activity intensity of both devices for individual time points (Pearson's correlation coefficient 0.81, p < 0.0001). An even stronger correlation was observed between the total activity data between the two devices (Pearson's correlation coefficient 0.925, p < 0.0001). Activity data provided by the Whistle activity monitor may be used as an objective outcome measurement in dogs. The total activity time provided by the Whistle application offers an inexpensive method for obtaining at-home, canine, real-time physical activity data. Limitations of the Whistle device include the limited battery life, the need for manual derivation of activity intensity data and data transfer, and the requirement of Wi-Fi and Bluetooth availability for data transmission.

  20. Studies of ambient noise in shallow water environments off Mexico and Alaska: characteristics, metrics and time-synchronization applications

    NASA Astrophysics Data System (ADS)

    Guerra, Melania

    Sound in the ocean originates from multiple mechanisms, both natural and anthropogenic. Collectively, underwater ambient noise accumulates valuable information about both its sources and the oceanic environment that propagates this noise. Characterizing the features of ambient noise source mechanisms is challenging, but essential, for properly describing an acoustic environment. Disturbances to a local acoustic environment may affect many aquatic species that have adapted to be heavily dependent on this particular sense for survival functions. In the case of marine mammals, which are federally protected, demand exists for understanding such potential impacts, which drives important scientific efforts that utilize passive acoustic monitoring (PAM) tools to inform regulatory decisions. This dissertation presents two independent studies that use PAM data to investigate the characteristics of source mechanisms that dominate ambient noise in two diverse shallow water environments. The study in Chapter 2 directly addresses the concern of how anthropogenic activities can degrade the effectiveness of PAM. In the Alaskan Beaufort Sea, an environment where ambient noise is normally dominated by natural causes, seismic surveys create impulsive sounds to map the composition of the bottom. By inspecting single-sensor PAM data, the spectral characteristics of seismic survey airgun reverberation are measured, and their contribution to the overall ambient noise is quantified. This work is relevant to multiple ongoing mitigation protocols that rely on PAM to acoustically detect marine mammal presence during industrial operations. Meanwhile, Chapter 3 demonstrates that by analyzing data from multiple PAM sensors, features embedded in both directional and omnidirectional ambient noise can be used to develop new time-synchronization processing techniques for aligning autonomous elements of an acoustic array, a tool commonly used in PAM for detecting and tracking marine mammals. Using

  1. Monitoring Active Volcanoes

    NASA Astrophysics Data System (ADS)

    Swanson, Don

    Monitoring volcanoes is a surprisingly controversial enterprise. Some volcanologists argue that monitoring promises too much and delivers too little for risk mitigation. They trust only strict land-use measures (and accompanying high insurance premiums in risky zones) and urge that funds be used for public education and awareness rather than for instrumental monitoring. Others claim that monitoring is more akin to Brownian motion than to science: lots of action but little net progress. Still other volcanologists acknowledge the potential value of monitoring for prediction and warning but despair at the difficulty of it all. And, finally, some shy from surveillance, fearing the legal consequences of a failed monitoring effort during these litigious times. They wonder, “Will I be sued if an eruption is not foreseen or if an instrument fails at a critical time?”

  2. Characteristics, determinants, and spatial variations of ambient fungal levels in the subtropical Taipei metropolis

    NASA Astrophysics Data System (ADS)

    Wu, Yi-Hua; Chan, Chang-Chuan; Rao, Carol Y.; Lee, Chung-Te; Hsu, Hsiao-Hsien; Chiu, Yueh-Hsiu; Chao, H. Jasmine

    This study was conducted to investigate the temporal and spatial distributions, compositions, and determinants of ambient aeroallergens in Taipei, Taiwan, a subtropical metropolis. We monitored ambient culturable fungi in Shin-Jhuang City, an urban area, and Shi-Men Township, a rural area, in Taipei metropolis from 2003 to 2004. We collected ambient fungi in the last week of every month during the study period, using duplicate Burkard portable samplers and Malt Extract Agar. The median concentration of total fungi was 1339 colony-forming units m -3 of air over the study period. The most prevalent fungi were non-sporulating fungi, Cladosporium, Penicillium, Curvularia and Aspergillus at both sites. Airborne fungal concentrations and diversity of fungal species were generally higher in urban than in rural areas. Most fungal taxa had significant seasonal variations, with higher levels in summer. Multivariate analyses showed that the levels of ambient fungi were associated positively with temperature, but negatively with ozone and several other air pollutants. Relative humidity also had a significant non-linear relationship with ambient fungal levels. We concluded that the concentrations and the compositions of ambient fungi are diverse in urban and rural areas in the subtropical region. High ambient fungal levels were related to an urban environment and environmental conditions of high temperature and low ozone levels.

  3. A Comparison of Energy Expenditure Estimation of Several Physical Activity Monitors

    PubMed Central

    Dannecker, Kathryn L.; Sazonova, Nadezhda A.; Melanson, Edward L.; Sazonov, Edward S.; Browning, Raymond C.

    2013-01-01

    Accurately and precisely estimating free-living energy expenditure (EE) is important for monitoring energy balance and quantifying physical activity. Recently, single and multi-sensor devices have been developed that can classify physical activities, potentially resulting in improved estimates of EE. PURPOSE To determine the validity of EE estimation of a footwear-based physical activity monitor and to compare this validity against a variety of research and consumer physical activity monitors. METHODS Nineteen healthy young adults (10 male, 9 female), completed a four-hour stay in a room calorimeter. Participants wore a footwear-based physical activity monitor, as well as Actical, Actigraph, IDEEA, DirectLife and Fitbit devices. Each individual performed a series of postures/activities. We developed models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. RESULTS Estimated EE using the shoe-based device was not significantly different than measured EE (476(20) vs. 478(18) kcal) (Mean (SE)), respectively, and had a root mean square error (RMSE) of (29.6 kcal (6.2%)). The IDEEA and DirectLlife estimates of EE were not significantly different than the measured EE but the Actigraph and Fitbit devices significantly underestimated EE. Root mean square errors were 93.5 (19%), 62.1 kcal (14%), 88.2 kcal (18%), 136.6 kcal (27%), 130.1 kcal (26%), and 143.2 kcal (28%) for Actical, DirectLife, IDEEA, Actigraph and Fitbit respectively. CONCLUSIONS The shoe based physical activity monitor provides a valid estimate of EE while the other physical activity monitors tested have a wide range of validity when estimating EE. Our results also demonstrate that estimating EE based on classification of physical activities can be more accurate and precise than estimating EE based on total physical activity. PMID:23669877

  4. A comparison of energy expenditure estimation of several physical activity monitors.

    PubMed

    Dannecker, Kathryn L; Sazonova, Nadezhda A; Melanson, Edward L; Sazonov, Edward S; Browning, Raymond C

    2013-11-01

    Accurately and precisely estimating free-living energy expenditure (EE) is important for monitoring energy balance and quantifying physical activity. Recently, single and multisensor devices have been developed that can classify physical activities, potentially resulting in improved estimates of EE. This study aimed to determine the validity of EE estimation of a footwear-based physical activity monitor and to compare this validity against a variety of research and consumer physical activity monitors. Nineteen healthy young adults (10 men, 9 women) completed a 4-h stay in a room calorimeter. Participants wore a footwear-based physical activity monitor as well as Actical, ActiGraph, IDEEA, DirectLife, and Fitbit devices. Each individual performed a series of postures/activities. We developed models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. Estimated EE using the shoe-based device was not significantly different than measured EE (mean ± SE; 476 ± 20 vs 478 ± 18 kcal, respectively) and had a root-mean-square error of 29.6 kcal (6.2%). The IDEEA and the DirectLlife estimates of EE were not significantly different than the measured EE, but the ActiGraph and the Fitbit devices significantly underestimated EE. Root-mean-square errors were 93.5 (19%), 62.1 kcal (14%), 88.2 kcal (18%), 136.6 kcal (27%), 130.1 kcal (26%), and 143.2 kcal (28%) for Actical, DirectLife, IDEEA, ActiGraph, and Fitbit, respectively. The shoe-based physical activity monitor provides a valid estimate of EE, whereas the other physical activity monitors tested have a wide range of validity when estimating EE. Our results also demonstrate that estimating EE based on classification of physical activities can be more accurate and precise than estimating EE based on total physical activity.

  5. Quantitative Assessment of Detection Frequency for the INL Ambient Air Monitoring Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sondrup, A. Jeffrey; Rood, Arthur S.

    A quantitative assessment of the Idaho National Laboratory (INL) air monitoring network was performed using frequency of detection as the performance metric. The INL air monitoring network consists of 37 low-volume air samplers in 31 different locations. Twenty of the samplers are located on INL (onsite) and 17 are located off INL (offsite). Detection frequencies were calculated using both BEA and ESER laboratory minimum detectable activity (MDA) levels. The CALPUFF Lagrangian puff dispersion model, coupled with 1 year of meteorological data, was used to calculate time-integrated concentrations at sampler locations for a 1-hour release of unit activity (1 Ci) formore » every hour of the year. The unit-activity time-integrated concentration (TICu) values were calculated at all samplers for releases from eight INL facilities. The TICu values were then scaled and integrated for a given release quantity and release duration. All facilities modeled a ground-level release emanating either from the center of the facility or at a point where significant emissions are possible. In addition to ground-level releases, three existing stacks at the Advanced Test Reactor Complex, Idaho Nuclear Technology and Engineering Center, and Material and Fuels Complex were also modeled. Meteorological data from the 35 stations comprising the INL Mesonet network, data from the Idaho Falls Regional airport, upper air data from the Boise airport, and three-dimensional gridded data from the weather research forecasting model were used for modeling. Three representative radionuclides identified as key radionuclides in INL’s annual National Emission Standards for Hazardous Air Pollutants evaluations were considered for the frequency of detection analysis: Cs-137 (beta-gamma emitter), Pu-239 (alpha emitter), and Sr-90 (beta emitter). Source-specific release quantities were calculated for each radionuclide, such that the maximum inhalation dose at any publicly accessible sampler or the

  6. Influence of alkyl sulfates on waste activated sludge fermentation at ambient temperature.

    PubMed

    Jiang, Su; Chen, Yinguang; Zhou, Qi

    2007-09-05

    Alkyl sulfates (AS), such as sodium dodecyl sulfate (SDS), are widely used in household and industrial products, and can be found in some wastewater and waste activated sludge (WAS). The effect of SDS on the fermentation of WAS at ambient temperature was investigated in this paper. Experimental results showed that the concentrations of protein and carbohydrate in aqueous phase increased with the amount of SDS. The concentrations of both NH(4)(+)-N and PO(4)(3-)-P in fermentation liquor also increased in the presence of SDS. In addition, it was observed that the fermentative short-chain fatty acids (SCFAs) concentration was affected by SDS. With the increase of SDS dosage, the maximum SCFAs concentration increased, and the fermentation time before reaching the maximum SCFAs concentration also increased. Further investigation showed that the produced SCFAs consisted of acetic, propionic, n-butyric, iso-butyric, n-valeric and iso-valeric acids, and acetic, iso-valeric and propionic acids were the three main products. The influence of SDS on methanogenesis was also investigated, and the inhibitory effect of SDS on methanogens activity was observed.

  7. Activity Monitors Step Count Accuracy in Community-Dwelling Older Adults

    PubMed Central

    2015-01-01

    Objective: To examine the step count accuracy of activity monitors in community-dwelling older adults. Method: Twenty-nine participants aged 67.70 ± 6.07 participated. Three pedometers and the Actical accelerometer step count functions were compared with actual steps taken during a 200-m walk around an indoor track and during treadmill walking at three different speeds. Results: There was no statistical difference between activity monitors step counts and actual steps during self-selected pace walking. During treadmill walking at 0.67 m∙s−1, all activity monitors step counts were significantly different from actual steps. During treadmill walking at 0.894m∙s−1, the Omron HJ-112 pedometer step counts were not significantly different from actual steps. During treadmill walking at 1.12 m∙s−1, the Yamax SW-200 pedometer steps were significantly different from actual steps. Discussion: Activity monitor selection should be deliberate when examining the walking behaviors of community-dwelling older adults, especially for those who walk at a slower pace. PMID:28138464

  8. Summary of available state ambient stream-water-quality data, 1990-98, and limitations for national assessment

    USGS Publications Warehouse

    Pope, Larry M.; Rosner, Stacy M.; Hoffman, Darren C.; Ziegler, Andrew C.

    2004-01-01

    The investigation described in this report summarized data from State ambient stream-water-quality monitoring sites for 10 water-quality constituents or measurements (suspended solids, fecal coliform bacteria, ammonia as nitrogen, nitrite plus nitrate as nitrogen, total phosphorus, total arsenic, dissolved solids, chloride, sulfate, and pH). These 10 water-quality constituents or measurements commonly are listed nationally as major contributors to degradation of surface water. Water-quality data were limited to that electronically accessible from the U.S. Environmental Protection Agency Storage and Retrieval System (STORET), the U.S. Geological Survey National Water Information System (NWIS), or individual State databases. Forty-two States had ambient stream-water-quality data electronically accessible for some or all of the constituents or measurements summarized during this investigation. Ambient in this report refers to data collected for the purpose of evaluating stream ecosystems in relation to human health, environmental and ecological conditions, and designated uses. Generally, data were from monitoring sites assessed for State 305(b) reports. Comparisons of monitoring data among States are problematic for several reasons, including differences in the basic spatial design of monitoring networks; water-quality constituents for which samples are analyzed; water-quality criteria to which constituent concentrations are compared; quantity and comprehensiveness of water-quality data; sample collection, processing, and handling; analytical methods; temporal variability in sample collection; and quality-assurance practices. Large differences among the States in number of monitoring sites precluded a general assumption that statewide water-quality conditions were represented by data from these sites. Furthermore, data from individual monitoring sites may not represent water-quality conditions at the sites because sampling conditions and protocols are unknown. Because

  9. Detection of physical activities using a physical activity monitor system for wheelchair users.

    PubMed

    Hiremath, Shivayogi V; Intille, Stephen S; Kelleher, Annmarie; Cooper, Rory A; Ding, Dan

    2015-01-01

    Availability of physical activity monitors for wheelchair users can potentially assist these individuals to track regular physical activity (PA), which in turn could lead to a healthier and more active lifestyle. Therefore, the aim of this study was to develop and validate algorithms for a physical activity monitoring system (PAMS) to detect wheelchair based activities. The PAMS consists of a gyroscope based wheel rotation monitor (G-WRM) and an accelerometer device (wocket) worn on the upper arm or on the wrist. A total of 45 persons with spinal cord injury took part in the study, which was performed in a structured university-based laboratory environment, a semi-structured environment at the National Veterans Wheelchair Games, and in the participants' home environments. Participants performed at least ten PAs, other than resting, taken from a list of PAs. The classification performance for the best classifiers on the testing dataset for PAMS-Arm (G-WRM and wocket on upper arm) and PAMS-Wrist (G-WRM and wocket on wrist) was 89.26% and 88.47%, respectively. The outcomes of this study indicate that multi-modal information from the PAMS can help detect various types of wheelchair-based activities in structured laboratory, semi-structured organizational, and unstructured home environments. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. PM2.5 Monitors in New England | Air Quality Planning Unit ...

    EPA Pesticide Factsheets

    2017-04-10

    The New England states are currently operating a network of 58 ambient PM2.5 air quality monitors that meet EPA's Federal Reference Method (FRM) for PM2.5, which is necessary in order for the resultant data to be used for attainment/non-attainment purposes. These monitors collect particles in the ambient air smaller than 2.5 microns in size on a filter, which is weighed prior and post sampling to produce a 24-hour sample concentration.

  11. An evaluation of ambient sulphur dioxide concentrations from passive degassing of the Sulphur Springs, Saint Lucia geothermal system: Implications for human health

    NASA Astrophysics Data System (ADS)

    Joseph, Erouscilla P.; Beckles, Denise M.; Cox, Leonette; Jackson, Viveka B.; Alexander, Dominic

    2015-10-01

    Sulphur Springs Park in Saint Lucia is a site of energetic geothermal activity associated with the potentially active Soufrière Volcanic Centre. The Park is one of Saint Lucia's most important tourist attractions, and is marketed as the 'world's only drive-in volcano'. It has an on-site staff of tour guides and vendors, as well as over 200,000 visitors annually. There are also a number of residents living in the areas bordering the Park. Recreational use is made of the geothermal waters for bathing, application of mud masques, and in some cases drinking. As part of the University of the West Indies, Seismic Research Centre's (UWI-SRC's) overall volcano monitoring programme for Saint Lucia, the volcanic emissions at Sulphur Springs (hot springs, mud pools and fumaroles) have been regularly monitored since 2001. In recent years, visitors, staff, and management at the Park have expressed concern about the health effects of exposure to volcanic emissions from the hydrothermal system. In response to this, SRC has expanded its regular geothermal monitoring programme to include a preliminary evaluation of ambient sulphur dioxide (SO2) concentrations in and around the Park, to assess the possible implications for human health. Passive diffusion tubes were used to measure the atmospheric SO2 concentrations at various sites in Sulphur Springs Park (SSP), in the town of Soufrière and in the capital of Castries. Measurements of average monthly ambient SO2 with the passive samplers indicated that during the dry season period of April to July 2014 concentration at sites closest to the main vents at SSP (Group 1), which are routinely used by staff and visitors, frequently exceeded the WHO 10-minute AQG for SO2 of 500 μg/m3. However, for sites that were more distal to the main venting area (Groups 2 and 3), the average monthly ambient SO2 did not exceed the WHO 10-minute AQG for SO2 of 500 μg/m3 during the entire monitoring period. The measured concentrations and dispersion

  12. Circadian Rhythm of Ambient Noise Off the Southeast Coast of India

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Latha, G.; Prashanthi Devi, M.

    An ambient noise system consisting of a vertical linear hydrophone array was deployed in the shallow waters off Chennai, southeast coast of India from 1 August to 16 September 2013 to record ambient ocean noise of frequencies up to 10kHz. Biological sounds, which are broadband, short duration signals resulting from Terapon theraps, a native species, are a prominent feature of the ocean soundscape. Terapon activity peaks at 8pm and 11pm, and its presence is not observed after 12 midnight in both the months. In the other period, the ambient noise fluctuation is due to wind and vessel traffic. Hence, the present study focuses on the description of the ambient noise fluctuation over two 12h periods, i.e., 12 midnight-12 noon considered as period I, and 12 noon-12 midnight as period II in order to show the circadian rhythm of ambient noise. In this study area, Terapon vocalization reached 25dB above the ambient noise level and it dominates the short-term spectra records in the 0.4-4kHz range. All Terapon signals had daily patterns of sound production with highest levels of activity after dusk during the study period. The result shows that the circadian rhythm of ambient noise is mainly of biological sound generated by Terapon and it is reported first time in the shallow waters off the southeast coast of India.

  13. Monitoring by Control Technique - Activated Carbon Adsorber

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Activated Carbon Adsorber control techniques used to reduce pollutant emissions.

  14. Validity of consumer-grade activity monitor to identify manual wheelchair propulsion in standardized activities of daily living.

    PubMed

    Leving, Marika T; Horemans, Henricus L D; Vegter, Riemer J K; de Groot, Sonja; Bussmann, Johannes B J; van der Woude, Lucas H V

    2018-01-01

    Hypoactive lifestyle contributes to the development of secondary complications and lower quality of life in wheelchair users. There is a need for objective and user-friendly physical activity monitors for wheelchair-dependent individuals in order to increase physical activity through self-monitoring, goal setting, and feedback provision. To determine the validity of Activ8 Activity Monitors to 1) distinguish two classes of activities: independent wheelchair propulsion from other non-propulsive wheelchair-related activities 2) distinguish five wheelchair-related classes of activities differing by the movement intensity level: sitting in a wheelchair (hands may be moving but wheelchair remains stationary), maneuvering, and normal, high speed or assisted wheelchair propulsion. Sixteen able-bodied individuals performed sixteen various standardized 60s-activities of daily living. Each participant was equipped with a set of two Activ8 Professional Activity Monitors, one at the right forearm and one at the right wheel. Task classification by the Active8 Monitors was validated using video recordings. For the overall agreement, sensitivity and positive predictive value, outcomes above 90% are considered excellent, between 70 and 90% good, and below 70% unsatisfactory. Division in two classes resulted in overall agreement of 82.1%, sensitivity of 77.7% and positive predictive value of 78.2%. 84.5% of total duration of all tasks was classified identically by Activ8 and based on the video material. Division in five classes resulted in overall agreement of 56.6%, sensitivity of 52.8% and positive predictive value of 51.9%. 59.8% of total duration of all tasks was classified identically by Activ8 and based on the video material. Activ8 system proved to be suitable for distinguishing between active wheelchair propulsion and other non-propulsive wheelchair-related activities. The ability of the current system and algorithms to distinguish five various wheelchair-related activities

  15. Validity of consumer-grade activity monitor to identify manual wheelchair propulsion in standardized activities of daily living

    PubMed Central

    Horemans, Henricus L. D.; Vegter, Riemer J. K.; de Groot, Sonja; Bussmann, Johannes B. J.; van der Woude, Lucas H. V.

    2018-01-01

    Background Hypoactive lifestyle contributes to the development of secondary complications and lower quality of life in wheelchair users. There is a need for objective and user-friendly physical activity monitors for wheelchair-dependent individuals in order to increase physical activity through self-monitoring, goal setting, and feedback provision. Objective To determine the validity of Activ8 Activity Monitors to 1) distinguish two classes of activities: independent wheelchair propulsion from other non-propulsive wheelchair-related activities 2) distinguish five wheelchair-related classes of activities differing by the movement intensity level: sitting in a wheelchair (hands may be moving but wheelchair remains stationary), maneuvering, and normal, high speed or assisted wheelchair propulsion. Methods Sixteen able-bodied individuals performed sixteen various standardized 60s-activities of daily living. Each participant was equipped with a set of two Activ8 Professional Activity Monitors, one at the right forearm and one at the right wheel. Task classification by the Active8 Monitors was validated using video recordings. For the overall agreement, sensitivity and positive predictive value, outcomes above 90% are considered excellent, between 70 and 90% good, and below 70% unsatisfactory. Results Division in two classes resulted in overall agreement of 82.1%, sensitivity of 77.7% and positive predictive value of 78.2%. 84.5% of total duration of all tasks was classified identically by Activ8 and based on the video material. Division in five classes resulted in overall agreement of 56.6%, sensitivity of 52.8% and positive predictive value of 51.9%. 59.8% of total duration of all tasks was classified identically by Activ8 and based on the video material. Conclusions Activ8 system proved to be suitable for distinguishing between active wheelchair propulsion and other non-propulsive wheelchair-related activities. The ability of the current system and algorithms to

  16. Prescribing of Electronic Activity Monitors in Cardiometabolic Diseases: Qualitative Interview-Based Study

    PubMed Central

    Macé, Sandrine; Oppert, Jean-Michel

    2017-01-01

    Background The prevalence of noncommunicable diseases, including those such as type 2 diabetes, obesity, dyslipidemia, and hypertension, so-called cardiometabolic diseases, is high and is increasing worldwide. Strong evidence supports the role of physical activity in management of these diseases. There is general consensus that mHealth technology, including electronic activity monitors, can potentially increase physical activity in patients, but their use in clinical settings remains limited. Practitioners’ requirements when prescribing electronic activity monitors have been poorly described. Objective The aims of this qualitative study were (1) to explore how specialist physicians prescribe electronic activity monitors to patients presenting with cardiometabolic conditions, and (2) to better understand their motivation for and barriers to prescribing such monitors. Methods We conducted qualitative semistructured interviews in March to May 2016 with 11 senior physicians from a public university hospital in France with expertise in management of cardiometabolic diseases (type 1 and type 2 diabetes, obesity, hypertension, and dyslipidemia). Interviews lasted 45 to 60 minutes and were audiotaped, transcribed verbatim, and analyzed using directed content analysis. We report our findings following the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist. Results Most physicians we interviewed had never prescribed electronic activity monitors, whereas they frequently prescribed blood glucose or blood pressure self-monitoring devices. Reasons for nonprescription included lack of interest in the data collected, lack of evidence for data accuracy, concern about work overload possibly resulting from automatic data transfer, and risk of patients becoming addicted to data. Physicians expected future marketing of easy-to-use monitors that will accurately measure physical activity duration and intensity and provide understandable motivating feedback

  17. Prescribing of Electronic Activity Monitors in Cardiometabolic Diseases: Qualitative Interview-Based Study.

    PubMed

    Bellicha, Alice; Macé, Sandrine; Oppert, Jean-Michel

    2017-09-23

    The prevalence of noncommunicable diseases, including those such as type 2 diabetes, obesity, dyslipidemia, and hypertension, so-called cardiometabolic diseases, is high and is increasing worldwide. Strong evidence supports the role of physical activity in management of these diseases. There is general consensus that mHealth technology, including electronic activity monitors, can potentially increase physical activity in patients, but their use in clinical settings remains limited. Practitioners' requirements when prescribing electronic activity monitors have been poorly described. The aims of this qualitative study were (1) to explore how specialist physicians prescribe electronic activity monitors to patients presenting with cardiometabolic conditions, and (2) to better understand their motivation for and barriers to prescribing such monitors. We conducted qualitative semistructured interviews in March to May 2016 with 11 senior physicians from a public university hospital in France with expertise in management of cardiometabolic diseases (type 1 and type 2 diabetes, obesity, hypertension, and dyslipidemia). Interviews lasted 45 to 60 minutes and were audiotaped, transcribed verbatim, and analyzed using directed content analysis. We report our findings following the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist. Most physicians we interviewed had never prescribed electronic activity monitors, whereas they frequently prescribed blood glucose or blood pressure self-monitoring devices. Reasons for nonprescription included lack of interest in the data collected, lack of evidence for data accuracy, concern about work overload possibly resulting from automatic data transfer, and risk of patients becoming addicted to data. Physicians expected future marketing of easy-to-use monitors that will accurately measure physical activity duration and intensity and provide understandable motivating feedback. Features of electronic activity monitors

  18. Care services ecosystem for ambient assisted living

    NASA Astrophysics Data System (ADS)

    Camarinha-Matos, Luis M.; Rosas, Joao; Ines Oliveira, Ana; Ferrada, Filipa

    2015-08-01

    Effective provision of care and assistance services in ambient assisted living requires the involvement and collaboration of multiple stakeholders. To support such collaboration, the development of an ecosystem of products and services for active ageing plays an important role. This article introduces a conceptual architecture that supports such care ecosystem. In order to facilitate understanding and better interrelate concepts, a 3-layered model is adopted: Infrastructure layer, Care and assistance services layer and Ambient Assisted Living ecosystem layer. A holistic perspective of ambient assisted living, namely considering four important life settings is adopted: (1) independent living; (2) health and care in life; (3) occupation in life and (4) recreation in life. The proposed architecture is designed in the context of a national Portuguese project and in accordance with the findings of a large European road mapping initiative on ICT and ageing.

  19. Adapting an ambient monitoring program to the challenge of managing emerging pollutants in the San Francisco Estuary.

    PubMed

    Hoenicke, Rainer; Oros, Daniel R; Oram, John J; Taberski, Karen M

    2007-09-01

    While over seven million organic and inorganic compounds that have been indexed by the American Chemical Society's Chemical Abstracts Service in their CAS Registry are commercially available, most pollution monitoring programs focus only on those chemical stressors for which regulatory benchmarks exist, and have been traditionally considered responsible for the most significant human and environmental health risks. Until the late 1990s, the San Francisco Estuary Regional Monitoring Program was no exception in that regard. After a thorough external review, the monitoring program responded to the need for developing a pro-active surveillance approach for emerging pollutants in recognition of the fact that the potential for the growing list of widely used chemical compounds to alter the integrity of water is high. We describe (1) the scientific and analytical bases underlying a new surveillance monitoring approach; (2) summarize approaches used and results obtained from a forensic retrospective; (3) present the growing data set on emerging pollutants from surveillance monitoring and related efforts in the San Francisco Bay Area to characterize newly targeted compounds in wastewater streams, sediment, storm water runoff, and biota; and (4) suggest next steps in monitoring program development and applied research that could move beyond traditional approaches of pollutant characterization. Based on the forensic analysis of archived chromatograms and chemical and toxicological properties of candidate compounds, we quantified a variety of synthetic organic compounds which had previously not been targeted for analysis. Flame retardant compounds, pesticides and insecticide synergists, insect repellents, pharmaceuticals, personal care product ingredients, plasticizers, non-ionic surfactants, and other manufacturing ingredients were detected in water, sediment, and/or biological tissue samples. Several of these compounds, especially polybrominated diphenyl ether flame

  20. Development of a PERCA Instrument for Ambient Peroxy Radical Measurements

    NASA Astrophysics Data System (ADS)

    Dusanter, S.; Duncianu, M.; Lahib, A.; Tomas, A.; Stevens, P. S.

    2017-12-01

    Peroxy radicals (HO2 and RO2) are key species in atmospheric chemistry, which together with the hydroxyl radical (OH), lead to the oxidation of volatile organic compounds and the formation of secondary pollutants such as ozone and secondary organic aerosols. Monitoring these short-lived species during intensive field campaigns and comparing the measured concentrations to model outputs allows assessing the reliability of chemical mechanisms implemented in atmospheric models. However, ambient measurements of peroxy radicals are still considered challenging and only a few techniques have been used for field measurements. The PEroxy Radical Chemical Amplifier (PERCA) approach, whose principle is based on amplification and a conversion of ambient peroxy radicals into nitrogen dioxide (NO2), has recently seen renewed interests due to the availability of sensitive NO2 monitors. We will present (i) the construction of a PERCA instrument, (ii) experiments conducted to quantify the radical chain length for HO2 and several RO2 radicals, including those produced during the OH-oxidation of isoprene, and (iii) a comparison of the conventional CO/NO and recently proposed ethane/NO amplification chemistries. In this context, box modelling of the PERCA chemistry will be discussed.

  1. Integrated active sensor system for real time vibration monitoring.

    PubMed

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  2. Integrated active sensor system for real time vibration monitoring

    PubMed Central

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-01-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293

  3. Monitoring the tidal response of a sea levee with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Planès, Thomas; Rittgers, Justin B.; Mooney, Michael A.; Kanning, Wim; Draganov, Deyan

    2017-03-01

    Internal erosion, a major cause of failure of earthen dams and levees, is often difficult to detect at early stages using traditional visual inspection. The passive seismic-interferometry technique could enable the early detection of internal changes taking place within these structures. We test this technique on a portion of the sea levee of Colijnsplaat, Netherlands, which presents signs of concentrated seepage in the form of sandboils. Applying seismic interferometry to ambient noise collected over a 12-hour period, we retrieve surface waves propagating along the levee. We identify the contribution of two dominant ambient seismic noise sources: the traffic on the Zeeland bridge and a nearby wind turbine. Here, the sea-wave action does not constitute a suitable noise source for seismic interferometry. Using the retrieved surface waves, we compute time-lapse variations of the surface-wave group velocities during the 12-hour tidal cycle for different frequency bands, i.e., for different depth ranges. The estimated group-velocity variations correlate with variations in on-site pore-water pressure measurements that respond to tidal loading. We present lateral profiles of these group-velocity variations along a 180-meter section of the levee, at four different depth ranges (0m-40m). On these profiles, we observe some spatially localized relative group-velocity variations of up to 5% that might be related to concentrated seepage.

  4. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong

    2010-12-01

    Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.

  5. 14 CFR 405.1 - Monitoring of licensed, permitted, and other activities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Monitoring of licensed, permitted, and other activities. Each licensee or permittee must allow access by and... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Monitoring of licensed, permitted, and other activities. 405.1 Section 405.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  6. 14 CFR 405.1 - Monitoring of licensed, permitted, and other activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Monitoring of licensed, permitted, and other activities. Each licensee or permittee must allow access by and... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Monitoring of licensed, permitted, and other activities. 405.1 Section 405.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  7. 14 CFR 405.1 - Monitoring of licensed, permitted, and other activities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Monitoring of licensed, permitted, and other activities. Each licensee or permittee must allow access by and... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Monitoring of licensed, permitted, and other activities. 405.1 Section 405.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  8. 14 CFR 405.1 - Monitoring of licensed, permitted, and other activities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Monitoring of licensed, permitted, and other activities. Each licensee or permittee must allow access by and... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Monitoring of licensed, permitted, and other activities. 405.1 Section 405.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  9. 14 CFR 405.1 - Monitoring of licensed, permitted, and other activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Monitoring of licensed, permitted, and other activities. Each licensee or permittee must allow access by and... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Monitoring of licensed, permitted, and other activities. 405.1 Section 405.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  10. Accuracy of intensity and inclinometer output of three activity monitors for identification of sedentary behavior and light-intensity activity.

    PubMed

    Carr, Lucas J; Mahar, Matthew T

    2012-01-01

    Purpose. To examine the accuracy of intensity and inclinometer output of three physical activity monitors during various sedentary and light-intensity activities. Methods. Thirty-six participants wore three physical activity monitors (ActiGraph GT1M, ActiGraph GT3X+, and StepWatch) while completing sedentary (lying, sitting watching television, sitting using computer, and standing still) light (walking 1.0 mph, pedaling 7.0 mph, pedaling 15.0 mph) intensity activities under controlled settings. Accuracy for correctly categorizing intensity was assessed for each monitor and threshold. Accuracy of the GT3X+ inclinometer function (GT3X+Incl) for correctly identifying anatomical position was also assessed. Percentage agreement between direct observation and the monitor recorded time spent in sedentary behavior and light intensity was examined. Results. All monitors using all thresholds accurately identified over 80% of sedentary behaviors and 60% of light-intensity walking time based on intensity output. The StepWatch was the most accurate in detecting pedaling time but unable to detect pedal workload. The GT3X+Incl accurately identified anatomical position during 70% of all activities but demonstrated limitations in discriminating between activities of differing intensity. Conclusions. Our findings suggest that all three monitors accurately measure most sedentary and light-intensity activities although choice of monitors should be based on study-specific needs.

  11. [Development of a wearable electrocardiogram monitor with recognition of physical activity scene].

    PubMed

    Wang, Zihong; Wu, Baoming; Yin, Jian; Gong, Yushun

    2012-10-01

    To overcome the problems of current electrocardiogram (ECG) tele-monitoring devices used for daily life, according to information fusion thought and by means of wearable technology, we developed a new type of wearable ECG monitor with the capability of physical activity recognition in this paper. The ECG monitor synchronously detected electrocardiogram signal and body acceleration signal, and recognized the scene information of physical activity, and finally determined the health status of the heart. With the advantages of accuracy for measurement, easy to use, comfort to wear, private feelings and long-term continuous in monitoring, this ECG monitor is quite fit for the heart-health monitoring in daily life.

  12. The Cloud Detection and UV Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, L.; Loh, E.; Sokolsky, P.; Streitmatter, R.

    2004-01-01

    We propose a large-area, low-power instrument to perform CLoud detection and Ultraviolet monitoring, CLUE. CLUE will combine the W detection capabilities of the NIGHTGLOW payload, with an array of infrared sensors to perform cloud slicing measurements. Missions such as EUSO and OWL which seek to measure UHE cosmic-rays at 1W20 eV use the atmosphere as a fluorescence detector. CLUE will provide several important correlated measurements for these missions, including: monitoring the atmospheric W emissions &om 330 - 400 nm, determining the ambient cloud cover during those W measurements (with active LIDAR), measuring the optical depth of the clouds (with an array of narrow band-pass IR sensors), and correlating LIDAR and IR cloud cover measurements. This talk will describe the instrument as we envision it.

  13. Comparison of the performance of the activPAL Professional physical activity logger to a discrete accelerometer-based activity monitor.

    PubMed

    Godfrey, A; Culhane, K M; Lyons, G M

    2007-10-01

    The aim of this study was to assess the accuracy of the 'activPAL Professional' physical activity logger by comparing its output to that of a proven discrete accelerometer-based activity monitor during extended measurements on healthy subjects while performing activities of daily living (ADL). Ten healthy adults, with unrestricted mobility, wore both the activPAL and the discrete dual accelerometer (Analog Devices ADXL202)-based activity monitor that recorded in synchronization with each other. The accelerometer derived data were then compared to that generated by the activPAL and a complete statistical and error analysis was performed using a Matlab program. This program determined trunk and thigh inclination angles to distinguish between sitting/lying, standing and stepping for the discrete accelerometer device and amount of time spent on each activity. Analysis was performed on a second-by-second basis and then categorized at 15s intervals in direct comparison with the activPAL generated data. Of the total time monitored (approximately 60 h) the detection accuracies for static and dynamic activities were approximately 98%. In a population of healthy adults, the data obtained from the activPAL Professional physical activity logger for both static and dynamic activities showed a close match to a proven discrete accelerometer data with an offset of approximately 2% between the two systems.

  14. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis.

    PubMed

    Lyons, Elizabeth J; Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-08-15

    Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which these interventions could be translated for

  15. Observations of interference between portable particle counters and NOx monitors

    NASA Astrophysics Data System (ADS)

    Bereznicki, Sarah D.; Kamal, Ali

    2013-08-01

    Studies in environmental exposure science have developed a preference for smaller devices that can be easily co-located without need for gas standards, such as those instruments utilized in the Near-road Exposures and Effects from Urban Air Pollutants Study (NEXUS). One observation from NEXUS was the potential for instrument interference from alcohol-based particle counters on photometric-based nitrogen oxide (NOx) monitors. This article reports the findings from laboratory tests replicating enclosed-shelter monitoring configurations and operation cycles for a common photometric-based NOx monitor and a widely used alcohol-based particle counter. These tests monitored the NOx response while the particle counter sampling interval and ambient airflow rate were varied to (1) confirm that proximity between the instruments induced interferences, (2) identify any dependencies in NOx monitor recovery on ambient airflow, and (3) determine the time needed for the NOx monitor to recover to pre-interference levels under different atmospheric conditions. During particle counter operations, NOx concentrations responded instantaneously with a several-fold jump above the measurement baseline. When the particle counter was operated for more than 10 min, this interference period also showed a marked decline in the NOx baseline. The overall recovery time of the NOx monitor depended less on the time of particle counter operation, and more on the speed of ambient airflow. If photometric-based NOx monitors need to be operated alongside alcohol-based particle counters, mechanisms must be employed to exhaust alcohol-based vapors from enclosed monitoring environments. Given the strong evidence for interference, however, it is recommended these devices not be operated within close proximity to one another.

  16. When a Step Is Not a Step! Specificity Analysis of Five Physical Activity Monitors.

    PubMed

    O'Connell, Sandra; ÓLaighin, Gearóid; Quinlan, Leo R

    2017-01-01

    Physical activity is an essential aspect of a healthy lifestyle for both physical and mental health states. As step count is one of the most utilized measures for quantifying physical activity it is important that activity-monitoring devices be both sensitive and specific in recording actual steps taken and disregard non-stepping body movements. The objective of this study was to assess the specificity of five activity monitors during a variety of prescribed non-stepping activities. Participants wore five activity monitors simultaneously for a variety of prescribed activities including deskwork, taking an elevator, taking a bus journey, automobile driving, washing and drying dishes; functional reaching task; indoor cycling; outdoor cycling; and indoor rowing. Each task was carried out for either a specific duration of time or over a specific distance. Activity monitors tested were the ActivPAL micro™, NL-2000™ pedometer, Withings Smart Activity Monitor Tracker (Pulse O2)™, Fitbit One™ and Jawbone UP™. Participants were video-recorded while carrying out the prescribed activities and the false positive step count registered on each activity monitor was obtained and compared to the video. All activity monitors registered a significant number of false positive steps per minute during one or more of the prescribed activities. The Withings™ activity performed best, registering a significant number of false positive steps per minute during the outdoor cycling activity only (P = 0.025). The Jawbone™ registered a significant number of false positive steps during the functional reaching task and while washing and drying dishes, which involved arm and hand movement (P < 0.01 for both). The ActivPAL™ registered a significant number of false positive steps during the cycling exercises (P < 0.001 for both). As a number of false positive steps were registered on the activity monitors during the non-stepping activities, the authors conclude that non

  17. Comparison of temporal trends in ambient and compliance trace element and PCB data in pool 2 of the Mississippi River, USA, 1985-1995

    USGS Publications Warehouse

    Anderson, J.; Perry, J.

    1999-01-01

    The Intergovernmental Task Force on Monitoring has suggested studies on ambient (in-stream) and compliance (wastewater) data to determine if monitoring can be reduced locally or nationally. The similarity in temporal trends between retrospective ambient and compliance water-quality data collected from Pool 2 of the Mississippi River, USA, was determined for 1985–1995. Constituents studied included the following trace elements: arsenic (As), cadmium (Cd), chromium (Cr), hexavalent chromium (Cr61), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), zinc (Zn), and polychlorinated biphenyls (PCBs). Water-column, bed-sediment, and fish-tissue (fillets) data collected by five government agencies comprised the ambient data set; effluent data from five registered facilities comprised the compliance data set. The nonparametric MannKendall trend test indicated that 33% of temporal trends in all data were statistically significant (P , 0.05). Possible reasons for this were low sample sizes, and a high percentage of samples below the analytical detection limit. Trends in compliance data were more distinct; most trace elements decreased significantly, probably due to improvements in wastewater treatment. Seven trace elements (Cr, Cd, Cu, Pb, Hg, Ni, and Zn) had statistically significant decreases in wastewater and portions of either or both ambient water and bed sediment. No trends were found in fish tissue. Inconsistency in trends between ambient and compliance data were often found for individual constituents, making overall similarity between the data sets difficult to determine. Logistical differences in monitoring programs, such as varying field and laboratory methods among agencies, made it difficult to assess ambient temporal trends.

  18. Using Ambient Seismic Noise to Monitor Post-Seismic Relaxation After the 2010 Mw 7.1 Darfield Earthquake, New Zealand

    NASA Astrophysics Data System (ADS)

    Savage, M. K.; Heckels, R.; Townend, J.

    2015-12-01

    Quantifying seismic velocity changes following large earthquakes can provide insights into the crustal response of the earth. The use of ambient seismic noise to monitor these changes is becoming increasingly widespread. Cross-correlations of long-duration ambient noise records can be used to give stable impulse response functions without the need for repeated seismic events. Temporal velocity changes were detected in the four months following the September 2010 Mw 7.1 Darfield event in South Island, New Zealand, using temporary seismic networks originally deployed to record aftershocks in the region. The arrays consisted of stations lying on and surrounding the fault, with a maximum inter-station distance of 156km. The 2010-2011 Canterbury earthquake sequence occurred largely on previously unknown and buried faults. The Darfield earthquake was the first and largest in a sequence of events that hit the region, rupturing the Greendale Fault. A surface rupture of nearly 30km was observed. The sequence also included the Mw 6.3 February 2011 Christchurch event, which caused widespread damage throughout the city and resulted in almost 200 deaths. Nine-component, day-long Green's functions were computed for frequencies between 0.1 - 1.0 Hz for full waveform seismic data from immediately after the 4th September 2010 earthquake until mid-January 2011. Using the moving window cross-spectral method, stacks of daily functions covering the study period (reference functions), were compared to consecutive 10 day stacks of cross-correlations to measure time delays between them. These were then inverted for seismic velocity changes with respect to the reference functions. Over the study period an increase in seismic velocity of 0.25% ± 0.02% was determined proximal to the Greendale fault. These results are similar to studies in other regions, and we attribute the changes to post-seismic relaxation through crack-healing of the Greendale Fault and throughout the region.

  19. Effect of radiocesium transfer on ambient dose rate in forest environments affected by the Fukushima Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Kato, H.

    2015-12-01

    We investigated the transfer of canopy-intercepted radiocesium to the forest floor during 3 years following the Fukushima Daiichi Nuclear Power Plant accident. The cesium-137 (Cs-137) contents in throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (Japanese oak with red pine). We also measured the ambient dose rate (ADR) at different heights in the forest using a survey meter and a portable Ge gamma-ray detector. Total Cs-137 deposition flux from the canopy to forest floor for the mature cedar, young cedar, and the mixed broad-leaved stands were 166 kBq/m2, 174 kBq/m2, and 60 kBq/m2, respectively. These values correspond to 38%, 40% and 13% of total atmospheric input after the accident. The ambient dose rate in forest exhibited height dependency and its vertical distribution varied with forest type and stand age. The ambient dose rate showed an exponential decrease with time for all the forest sites, however the decreasing trend differed depending on the height of dose measurement and forest type. The ambient dose rate at the canopy (approx. 10 m-height) decreased faster than that expected from physical decay of the two radiocesium isotopes, whereas those at the forest floor varied between the three forest stands. The radiocesium deposition via throughfall seemed to increase ambient dose rate during the first 200 days after the accident, however there was no clear relationship between litterfall and ambient dose rate since 400 days after the accident. These data suggested that the ambient dose rate in forest environment varied both spatially and temporally reflecting the transfer of radiocesium from canopy to forest floor. However, further monitoring investigation and analysis are required to determine the effect of litterfall on long-term trend of ambient dose rate in forest environments.

  20. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea

    PubMed Central

    Baek, Sung-Ok; Suvarapu, Lakshmi Narayana; Seo, Young-Kyo

    2015-01-01

    This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory role in improving

  1. Ambient Information Systems to Support the Elderly in Carrying Out Their Activities of Daily Living

    NASA Astrophysics Data System (ADS)

    García-Vázquez, Juan Pablo; Rodríguez, Marcela D.

    As they age, older adult's present losses in their functional capabilities which cause them can't continue performing their activities of daily living (ADL) independently at home. We propose Ambient Information Systems (AIS) as appropriate pervasive devices to promote their independent living. Therefore our aim is to determine the utility and usability of AIS to support the independent life of older adults by helping them to perform their activities. In this paper we present preliminary results of a case study that we carried out for understanding the problems and needs that older adults face in doing some of their activities of daily living. In particular, we present results regarding the elderly problems to adhere to their medication prescription. Based on these results we propose AIS to support older adults to medicate. Finally, we present the design attributes incorporated into this AIS, which were identified from the design taxonomies of AIS reported in the literature.

  2. Ambient ultrafine particles activate human monocytes: Effect of dose, differentiation state and age of donors.

    PubMed

    Bliss, Bishop; Tran, Kevin Ivan; Sioutas, Constantinos; Campbell, Arezoo

    2018-02-01

    Exposure to ambient particulate matter (PM) has been linked to adverse pulmonary and cardiovascular health effects. Activation of both inflammatory and oxidative stress pathways has been observed and may be a probable cause of these outcomes. We tested the hypothesis that in human monocytes, PM-induced oxidative and inflammatory responses are interrelated. A human monocytic cell line (THP-1) was used to determine if dose and differentiation state plays a role in the cellular response after a 24hr exposure to particles. Primary human monocytes derived from eight female, non-smoker donors (aged: 21, 24, 27, 28, 48, 49, 54 & 60yo) were used to determine if the age of donors modulates the response. Cells were treated with aqueous suspensions of ambient ultrafine particles (UFP, defined as smaller than 0.2µm in size) or a media control for 24hr. After exposure, reactive oxygen species (ROS) formation was increased irrespective of dose or differentiation state of THP-1 cells. In the primary human monocytes, ROS formation was not significantly changed. The release of the proinflammatory cytokine, tumor necrosis factor alpha (TNF-α), was dose-dependent and greatest in differentiated compared to undifferentiated THP-1 cells exposed to UFP. In the Primary human monocytes, TNF-α secretion was increased irrespective of the age of the donor. Our results suggest that after a 24hr exposure to particles, general reactive oxygen species formation was nonspecific and uncorrelated to cytokine secretion which was consistently enhanced. Cytokines play an important role in orchestrating many immune responses and thus the ability of ambient particles to enhance robust secretion of a proinflammatory cytokine from primary human monocytes, and how this may influence the response to pathogens and alter disease states, needs to be further evaluated. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Monitoring of viable airborne SARS virus in ambient air

    NASA Astrophysics Data System (ADS)

    Agranovski, Igor E.; Safatov, Alexander S.; Pyankov, Oleg V.; Sergeev, Alexander N.; Agafonov, Alexander P.; Ignatiev, Georgy M.; Ryabchikova, Elena I.; Borodulin, Alexander I.; Sergeev, Artemii A.; Doerr, Hans W.; Rabenau, Holger F.; Agranovski, Victoria

    Due to recent SARS related issues (Science 300 (5624) 1394; Nature 423 (2003) 240; Science 300 (5627) 1966), the development of reliable airborne virus monitoring procedures has become galvanized by an exceptional sense of urgency and is presently in a high demand (In: Cox, C.S., Wathers, C.M. (Eds.), Bioaerosols Handbook, Lewis Publishers, Boca Raton, FL, 1995, pp. 247-267). Based on engineering control method (Aerosol Science and Technology 31 (1999) 249; 35 (2001) 852), which was previously applied to the removal of particles from gas carriers, a new personal bioaerosol sampler has been developed. Contaminated air is bubbled through porous medium submerged into liquid and subsequently split into multitude of very small bubbles. The particulates are scavenged by these bubbles, and, thus, effectively removed. The current study explores its feasibility for monitoring of viable airborne SARS virus. It was found that the natural decay of such virus in the collection fluid was around 0.75 and 1.76 lg during 2 and 4 h of continuous operation, respectively. Theoretical microbial recovery rates of higher than 55 and 19% were calculated for 1 and 2 h of operation, respectively. Thus, the new sampling method of direct non-violent collection of viable airborne SARS virus into the appropriate liquid environment was found suitable for monitoring of such stress sensitive virus.

  4. The future is 'ambient'

    NASA Astrophysics Data System (ADS)

    Lugmayr, Artur

    2006-02-01

    The research field of ambient media starts to spread rapidly and first applications for consumer homes are on the way. Ambient media is the logical continuation of research around media. Media has been evolving from old media (e.g. print media), to integrated presentation in one form (multimedia - or new media), to generating a synthetic world (virtual reality), to the natural environment is the user-interface (ambient media), and will be evolving towards real/synthetic undistinguishable media (bio-media or bio-multimedia). After the IT bubble was bursting, multimedia was lacking a vision of potential future scenarios and applications. Within this research paper the potentials, applications, and market available solutions of mobile ambient multimedia are studied. The different features of ambient mobile multimedia are manifold and include wearable computers, adaptive software, context awareness, ubiquitous computers, middleware, and wireless networks. The paper especially focuses on algorithms and methods that can be utilized to realize modern mobile ambient systems.

  5. Ambient and laboratory evaluation of a low-cost particulate matter sensor.

    PubMed

    Kelly, K E; Whitaker, J; Petty, A; Widmer, C; Dybwad, A; Sleeth, D; Martin, R; Butterfield, A

    2017-02-01

    Low-cost, light-scattering-based particulate matter (PM) sensors are becoming more widely available and are being increasingly deployed in ambient and indoor environments because of their low cost and ability to provide high spatial and temporal resolution PM information. Researchers have begun to evaluate some of these sensors under laboratory and environmental conditions. In this study, a low-cost, particulate matter sensor (Plantower PMS 1003/3003) used by a community air-quality network is evaluated in a controlled wind-tunnel environment and in the ambient environment during several winter-time, cold-pool events that are associated with high ambient levels of PM. In the wind-tunnel, the PMS sensor performance is compared to two research-grade, light-scattering instruments, and in the ambient tests, the sensor performance is compared to two federal equivalent (one tapered element oscillating microbalance and one beta attenuation monitor) and gravimetric federal reference methods (FEMs/FRMs) as well as one research-grade instrument (GRIMM). The PMS sensor response correlates well with research-grade instruments in the wind-tunnel tests, and its response is linear over the concentration range tested (200-850 μg/m 3 ). In the ambient tests, this PM sensor correlates better with gravimetric methods than previous studies with correlation coefficients of 0.88. However additional measurements under a variety of ambient conditions are needed. Although the PMS sensor correlated as well as the research-grade instrument to the FRM/FEMs in ambient conditions, its response varies with particle properties to a much greater degree than the research-grade instrument. In addition, the PMS sensors overestimate ambient PM concentrations and begin to exhibit a non-linear response when PM 2.5 concentrations exceed 40 μg/m 3 . These results have important implications for communicating results from low-cost sensor networks, and they highlight the importance of using an

  6. Health Effects of Ambient Air Pollution in Developing Countries.

    PubMed

    Mannucci, Pier Mannuccio; Franchini, Massimo

    2017-09-12

    The deleterious effects of ambient air pollution on human health have been consistently documented by many epidemiologic studies worldwide, and it has been calculated that globally at least seven million deaths are annually attributable to the effects of air pollution. The major air pollutants emitted into the atmosphere by a number of natural processes and human activities include nitrogen oxides, volatile organic compounds, and particulate matter. In addition to the poor ambient air quality, there is increasing evidence that indoor air pollution also poses a serious threat to human health, especially in low-income countries that still use biomass fuels as an energy resource. This review summarizes the current knowledge on ambient air pollution in financially deprived populations.

  7. RE-DEFINING THE ROLES OF SENSORS IN OBJECTIVE PHYSICAL ACTIVITY MONITORING

    PubMed Central

    Chen, Kong Y.; Janz, Kathleen F.; Zhu, Weimo; Brychta, Robert J.

    2011-01-01

    Background As physical activity researchers are increasingly using objective portable devices, this review describes current state of the technology to assess physical activity, with a focus on specific sensors and sensor properties currently used in monitors and their strengths and weakness. Additional sensors and sensor properties desirable for activity measurement and best practices for users and developers also are discussed. Best Practices We grouped current sensors into three broad categories for objectively measuring physical activity: associated body movement, physiology, and context. Desirable sensor properties for measuring physical activity and the importance of these properties in relationship to specific applications are addressed, and the specific roles of transducers and data acquisition systems within the monitoring devices are defined. Technical advancements in sensors, microcomputer processors, memory storage, batteries, wireless communication, and digital filters have made monitors more usable for subjects (smaller, more stable, and longer running time) and for researchers (less costly, higher time resolution and memory storage, shorter download time, and user-defined data features). Future Directions Users and developers of physical activity monitors should learn about the basic properties of their sensors, such as range, accuracy, precision, while considering the data acquisition/filtering steps that may be critical to data quality and may influence the desirable measurement outcome(s). PMID:22157770

  8. Developments in ambient noise analysis for the characterization of dynamic response of slopes to seismic shaking

    NASA Astrophysics Data System (ADS)

    Del Gaudio, Vincenzo; Wasowski, Janusz

    2016-04-01

    In the last few decades, we have witnessed a growing awareness of the role of site dynamic response to seismic shaking in slope failures during earthquakes. Considering the time and costs involved in acquiring accelerometer data on landslide prone slopes, the analysis of ambient noise offers a profitable investigative alternative. Standard procedures of ambient noise analysis, according to the technique known as HVNR or Nakamura's method, were originally devised to interpret data under simple site conditions similar to 1D layering (flat horizontal layering infinitely extended). In such cases, conditions of site amplification, characterized by a strong impedance contrast between a soft surface layer and a stiff bedrock, result in a single pronounced isotropic maximum of spectral ratios between horizontal and vertical component of ambient noise. However, previous studies have shown that the dynamic response of slopes affected by landslides is rather complex, being characterized by multiple resonance peaks with directional variability, thus, the use of standard techniques can encounter difficulties in providing reliable information. A new approach of data analysis has recently been proposed to exploit the potential of information content of Rayleigh waves present in ambient noise, with regard to the identification of frequency and orientation of directional resonance. By exploiting ground motion ellipticity this approach can also provide information on vertical distribution of S-wave velocity, which controls site amplification factors. The method, based on the identification of Rayleigh wave packets from instantaneous polarization properties of ambient noise, was first tested using synthetic signals in order to optimize the data processing system. Then the improved processing scheme is adopted to re-process and re-interpret the ambient noise data acquired on landslide prone slopes around Caramanico Terme (central Italy), at sites monitored also with accelerometer

  9. The Next-Generation PCR-Based Quantification Method for Ambient Waters: Digital PCR.

    PubMed

    Cao, Yiping; Griffith, John F; Weisberg, Stephen B

    2016-01-01

    Real-time quantitative PCR (qPCR) is increasingly being used for ambient water monitoring, but development of digital polymerase chain reaction (digital PCR) has the potential to further advance the use of molecular techniques in such applications. Digital PCR refines qPCR by partitioning the sample into thousands to millions of miniature reactions that are examined individually for binary endpoint results, with DNA density calculated from the fraction of positives using Poisson statistics. This direct quantification removes the need for standard curves, eliminating the labor and materials associated with creating and running standards with each batch, and removing biases associated with standard variability and mismatching amplification efficiency between standards and samples. Confining reactions and binary endpoint measurements to small partitions also leads to other performance advantages, including reduced susceptibility to inhibition, increased repeatability and reproducibility, and increased capacity to measure multiple targets in one analysis. As such, digital PCR is well suited for ambient water monitoring applications and is particularly advantageous as molecular methods move toward autonomous field application.

  10. An Ultrasonic Contactless Sensor for Breathing Monitoring

    PubMed Central

    Arlotto, Philippe; Grimaldi, Michel; Naeck, Roomila; Ginoux, Jean-Marc

    2014-01-01

    The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569). PMID:25140632

  11. A configurable sensor network applied to ambient assisted living.

    PubMed

    Villacorta, Juan J; Jiménez, María I; Del Val, Lara; Izquierdo, Alberto

    2011-01-01

    The rising older people population has increased the interest in ambient assisted living systems. This article presents a system for monitoring the disabled or older persons developed from an existing surveillance system. The modularity and adaptability characteristics of the system allow an easy adaptation for a different purpose. The proposed system uses a network of sensors capable of motion detection that includes fall warning, identification of persons and a configurable control system which allows its use in different scenarios.

  12. Behavior Change Techniques Implemented in Electronic Lifestyle Activity Monitors: A Systematic Content Analysis

    PubMed Central

    Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-01-01

    Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which

  13. The DFKI Competence Center for Ambient Assisted Living

    NASA Astrophysics Data System (ADS)

    Frey, Jochen; Stahl, Christoph; Röfer, Thomas; Krieg-Brückner, Bernd; Alexandersson, Jan

    The DFKI Competence Center for Ambient Assisted Living (CCAAL) is a cross-project and cross-department virtual organization within the German Research Center for Artificial Intelligence coordinating and conducting research and development in the area of Ambient Assisted Living (AAL). Our demonstrators range from multimodal speech dialog systems to fully instrumented environments allowing the development of intelligent assistant systems, for instance an autonomous wheelchair, or the recognition and processing of everyday activities in a smart home. These innovative technologies are then tested, evaluated and demonstrated in DFKI's living labs.

  14. Degradation of the unbiodegradable particulate fraction (XU) from different activated sludges during batch digestion tests at ambient temperature.

    PubMed

    Habermacher, Jonathan; Benetti, Antonio Domingues; Derlon, Nicolas; Morgenroth, Eberhard

    2016-07-01

    One strategy for the management of excess sludge in small wastewater treatment plants (WWTPs) consists in minimizing the excess sludge production by operating the WWTP at very long solids retention times (SRTs > 30 days). A number of recent studies have suggested that sludge minimization at very long SRT results from the degradation of the unbiodegradable particulate fraction (XU) (influent unbiodegradable compounds and endogenous decay products). But the biodegradability of the unbiodegradable particulate fraction has only been evaluated during batch digestion test performed at ambient temperature with sludge fed with synthetic wastewaters. It is not clear to what extent observations made for sludge fed with synthetic influents can be transposed to sludge fed with real influent. The current study thus focused on evaluating the biodegradability of the unbiodegradable particulate fraction for sludge fed with real wastewater. Batch digestion tests (400 days, ambient temperature) were conducted with three different sludges fed with either synthetic or real influents and exposed to aerobic or intermittent aeration conditions. Our results indicate that volatile suspended solids (VSS) decreased even after complete decay of the active biomass (i.e., after 30 days of aerobic batch digestion) indicating that the unbiodegradable particulate fraction is biodegradable. However, very low degradation rates of the unbiodegradable particulate fraction were monitored after day 30 of digestion (0.7-1.7·10(-3) d(-1)). These values were in the lower range of previously published values for synthetic wastewaters (1-7.5·10(-3) d(-1)). The low values determined in our study indicate that the rate could decrease over time or that sludge composition influences the degradability of the unbiodegradable particulate fraction. But our results also demonstrate that extracellular polymeric substances (EPS) have a minor impact on the biodegradability of the unbiodegradable particulate

  15. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  16. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, Claude R.; Ernstberger, Harold G.

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  17. Ambient Dried Aerogels

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  18. PCDD, PCDF, dl-PCB and organochlorine pesticides monitoring in São Paulo City using passive air sampler as part of the Global Monitoring Plan.

    PubMed

    Tominaga, M Y; Silva, C R; Melo, J P; Niwa, N A; Plascak, D; Souza, C A M; Sato, M I Z

    2016-11-15

    The persistent organic pollutants (POPs), such as organochlorine pesticides and PCBs, are ordinarily monitored in the aquatic environment or in soil in the environmental quality monitoring programs in São Paulo, Brazil. One of the core matrices proposed in the POPs Global Monitoring Plan (GMP) from the Stockholm Convention list is the ambient air, which is not a usual matrix for POPs monitoring in the country. In this study POP levels were evaluated in the air samples from an urban site in São Paulo City over five years, starting in 2010 as a capacity building project for Latin America and the Caribbean region for POP monitoring in ambient air using passive samplers. Furthermore, after the end of the Project in 2012, the monitoring continued in the same sampling site as means to improving the analytical capacity building and contribute to the GMP data. The POPs monitored were 17 congeners of 2,3,7,8 chloro-substituted PCDDs and PCDFs, dioxin-like PCBs, indicator PCBs, organochlorine pesticides and toxaphene. The results show a slight decrease in PCDD/F, dl-PCBs and indicator PCBs levels along the five years. The organochlorine pesticide endosulfan was present at its highest concentration at the beginning of the monitoring period, but it was below detection level in the last year of the monitoring. Some other organochlorine pesticides were detected close to or below quantitation limits. The compounds identified were dieldrin, chlordane, α-HCH, γ-HCH, heptachlor, heptachlor epoxide, hexachlorobenzene and DDTs. Toxaphene congeners were not detected. These results have confirmed the efficacy of passive sampling for POP monitoring and the capacity building for POP analysis and monitoring was established. However more needs to be done, including expansion of sampling sites, new POPs and studies on sampling rates to be considered in calculating the concentration of POPs in ambient air using a passive sampler. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Health Effects of Ambient Air Pollution in Developing Countries

    PubMed Central

    Mannucci, Pier Mannuccio; Franchini, Massimo

    2017-01-01

    The deleterious effects of ambient air pollution on human health have been consistently documented by many epidemiologic studies worldwide, and it has been calculated that globally at least seven million deaths are annually attributable to the effects of air pollution. The major air pollutants emitted into the atmosphere by a number of natural processes and human activities include nitrogen oxides, volatile organic compounds, and particulate matter. In addition to the poor ambient air quality, there is increasing evidence that indoor air pollution also poses a serious threat to human health, especially in low-income countries that still use biomass fuels as an energy resource. This review summarizes the current knowledge on ambient air pollution in financially deprived populations. PMID:28895888

  20. Ambient air pollution and cancer in California Seventh-day Adventists.

    PubMed

    Mills, P K; Abbey, D; Beeson, W L; Petersen, F

    1991-01-01

    Cancer incidence and mortality in a cohort of 6,000 Seventh-day Adventist nonsmokers who were residents of California were monitored for a 6-y period, and relationships with long-term ambient concentrations of total suspended particulates (TSPs) and ozone (O3) were studied. Ambient concentrations were expressed as mean concentrations and exceedance frequencies, which are the number of hours during which concentrations exceeded specified cutoffs (e.g., federal and California air quality standards). Risk of malignant neoplasms in females increased concurrently with exceedance frequencies for all TSP cutoffs, except the lowest, and these increased risks were highly statistically significant. An increased risk of respiratory cancers was associated with only one cutoff of O3, and this result was of borderline significance. These results are presented in the context of setting standards for these two air pollutants.

  1. Prototype development and test results of a continuous ambient air monitoring system for hydrazine at the 10 ppb level

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry; Parrish, Clyde; Barile, Ron; Lueck, Dale E.

    1995-01-01

    A Hydrazine Vapor Area Monitor (HVAM) system is currently being field tested as a detector for the presence of hydrazine in ambient air. The MDA/Polymetron Hydrazine Analyzer has been incorporated within the HVAM system as the core detector. This analyzer is a three-electrode liquid analyzer typically used in boiler feed water applications. The HVAM system incorporates a dual-phase sample collection/transport method which simultaneously pulls ambient air samples containing hydrazine and a very dilute sulfuric acid solution (0.0001 M) down a length of 1/4 inch outside diameter (OD) tubing from a remote site to the analyzer. The hydrazine-laden dilute acid stream is separated from the air and the pH is adjusted by addition of a dilute caustic solution to a pH greater than 10.2 prior to analysis. Both the dilute acid and caustic used by the HVAM are continuously generated during system operation on an "as needed" basis by mixing a metered amount of concentrated acid/base with dilution water. All of the waste water generated by the analyzer is purified for reuse by Barnstead ion-exchange cartridges so that the entire system minimizes the generation of waste materials. The pumping of all liquid streams and mixing of the caustic solution and dilution water with the incoming sample are done by a single pump motor fitted with the appropriate mix of peristaltic pump heads. The signal to noise (S/N) ratio of the analyzer has been enhanced by adding a stirrer in the MDA liquid cell to provide mixing normally generated by the high liquid flow rate designed by the manufacturer. An onboard microprocessor continuously monitors liquid levels, sample vacuum, and liquid leak sensors, as well as handles communications and other system functions (such as shut down should system malfunctions or errors occur). The overall system response of the HVAM can be automatically checked at regular intervals by measuring the analyzer response to a metered amount of calibration standard injected

  2. MONITORING AMBIENT AMMONIA CHEMISTRY IN AN AGRICULTURAL REGION WITH A LOW DENSITY OF ANIMAL PRODUCTION

    EPA Science Inventory

    We present several years of ambient ammonia, ammonium, hydrochloric acid, chloride, nitric acid, nitrate, nitrous acid, sulfur dioxide, and sulfate concentrations at a rural site in the Coastal Plain region of North Carolina. Also, the air chemistry of Lewiston, NC and Clinton, N...

  3. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    PubMed Central

    Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír

    2015-01-01

    A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed. PMID:25594591

  4. Using Commercial Activity Monitors to Measure Gait in Patients with Suspected iNPH: Implications for Ambulatory Monitoring

    PubMed Central

    Gaglani, Shiv; Haynes, M Ryan; Hoffberger, Jamie B; Rigamonti, Daniele

    2015-01-01

    Objectives: This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. Methods: This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Results: Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. Conclusions: These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested. PMID:26719825

  5. Using Commercial Activity Monitors to Measure Gait in Patients with Suspected iNPH: Implications for Ambulatory Monitoring.

    PubMed

    Gaglani, Shiv; Moore, Jessica; Haynes, M Ryan; Hoffberger, Jamie B; Rigamonti, Daniele

    2015-11-17

    This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested.

  6. Reactive oxygen species (ROS) activity of ambient fine particles (PM2.5) measured in Seoul, Korea.

    PubMed

    Park, Jieun; Park, Eun Ha; Schauer, James J; Yi, Seung-Muk; Heo, Jongbae

    2018-05-16

    Substantial increase in level of particulate matter has raised concerns in South Korea recently. Ambient particulate matter is classified as Group I carcinogen (IARC, 2013) and multiple epidemiological studies has demonstrated adverse health effects due to exposure of particulate matter. Fine particulate matter (PM 2.5 ) which has a diameter <2.5 μm is likely to penetrate deeply into lung and is known to be eliciting adverse health effects. A number of epidemiological studies have been conducted on adverse health effects of PM-related diseases and mortality rate, yet particulate matter (PM)-induced reactive oxygen species (ROS) activity at the cellular level has not been actively studied in Korea. This study assessed PM-induced oxidative potential by exposure of collected ambient PM 2.5 samples to the rat alveolar macrophage cell line. The characteristics of PM 2.5 in Korea were further characterized by linking chemical constituents and contributing sources to ROS. PM 2.5 mass concentration during the cold season was relatively higher than mass concentration during the warm season and chemical constituents except for Secondary Organic Carbon (SOC) and SO 4 2- which both showed similar trends in both the cold and cold seasons. The concentration of crustal elements was especially high during the cold season which can be an indication of long range transport of Asian dust. Water soluble organic carbon and water soluble transition metals (Cr and Zn) were also shown to be correlated to oxidative potential and metals such as As and V were shown to have a high contribution to ROS activity according to stepwise multiple linear regression. Principal Component Analysis (PCA) results identified six factors that can be interpreted as soil, mobile, industry, secondary inorganic aerosol, secondary organic aerosol and oil combustion. Moreover, through Principal Component Regression (PCR), industry, soil, mobile and SIA were shown to be statistically significant sources in a

  7. Impact of Ambient Temperature on Hyperthermia Induced by (±)3,4-Methylenedioxymethamphetamine in Rhesus Macaques

    PubMed Central

    Von Huben, Stefani N.; Lay, Christopher C.; Crean, Rebecca D.; Davis, Sophia A.; Katner, Simon N.; Taffe, Michael A.

    2007-01-01

    The ambient temperature (TA) under which rodents are exposed to (±)3,4-methylenedioxymethamphetamine (MDMA) affects the direction and magnitude of the body temperature response, and the degree of hypo/hyperthermia generated in subjects can modify the severity of lasting brain changes in “neurotoxicity” models. The thermoregulatory effects of MDMA have not been well described in nonhuman primates and it is unknown if TA has the potential to affect acute hyperthermia and therefore other lasting consequences of MDMA. The objective of this study was to determine if the temperature alteration produced by MDMA in nonhuman primates depends on TA as it does in rats and mice. Body temperature and spontaneous home cage activity were monitored continuously in six male rhesus monkeys via radiotelemetry. The subjects were challenged intramuscularly with 0.56-2.4 mg/kg (±)MDMA under each of three TA conditions (18°C, 24°C, 30°C) in a randomized order. Temperature was significantly elevated following injection with all doses of MDMA under each ambient temperature. The magnitude of mean temperature change was ~1°C in most conditions suggesting a closely controlled thermoregulatory response in monkeys across a range of doses and ambient temperatures. Activity levels were generally suppressed by MDMA, however a 50% increase over vehicle was observed after 0.56 MDMA under the 30°C condition. It is concluded that MDMA produces very a similar degree of hyperthermia in rhesus monkeys across a range of TA conditions which result in hypothermia or exaggerated hyperthermia in rodents. Monkey temperature responses to MDMA appear to be more similar to humans than to rodents and therefore the monkey may offer an improved model of effects related to MDMA-induced hyperthermia. PMID:16641942

  8. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry)more » are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.« less

  9. Development and Evaluation of Alternative Metrics of Ambient Air Pollution Exposure for Use in Epidemiologic Studies

    EPA Science Inventory

    Population-based epidemiologic studies of air pollution have traditionally relied upon imperfect surrogates of personal exposures, such as area-wide ambient air pollution levels based on readily available outdoor concentrations from central monitoring sites. This practice may in...

  10. Human Activity Recognition in AAL Environments Using Random Projections.

    PubMed

    Damaševičius, Robertas; Vasiljevas, Mindaugas; Šalkevičius, Justas; Woźniak, Marcin

    2016-01-01

    Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject's body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL), for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD) data are presented.

  11. Human Activity Recognition in AAL Environments Using Random Projections

    PubMed Central

    Damaševičius, Robertas; Vasiljevas, Mindaugas; Šalkevičius, Justas; Woźniak, Marcin

    2016-01-01

    Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject's body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL), for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD) data are presented. PMID:27413392

  12. Active Cavity Irradiance Monitor Satellite ACRIMSAT Artist Concept

    NASA Image and Video Library

    1999-12-21

    The Active Cavity Irradiance Monitor Satellite, or ACRIMSAT, mission is a climate change investigation that measures changes in how much of the sun's energy reaches Earth's atmosphere. This energy, called solar irradience, creates winds, heats the land and drives ocean currents, and therefore contains significant data that climatologists can use to improve predictions of climate change and global warming. The satellite's Active Cavity Irradiance Monitor III instrument, now in its third generation, has been used since the 1980s to study solar irradiance and its impacts on global warming. Scientists, using data from the instrument, now theorize that there is a significant correlation between solar radiation and global warming. ACRIMSAT completed its five-year primary mission in 2005 when it began operating under its extended mission. http://photojournal.jpl.nasa.gov/catalog/PIA18157

  13. Ambient Tropospheric Particles

    EPA Science Inventory

    Atmospheric particulate matter (PM) is a complex mixture of solid and liquid particles suspended in ambient air (also known as the atmospheric aerosol). Ambient PM arises from a wide-range of sources and/or processes, and consists of particles of different shapes, sizes, and com...

  14. Ambient Cured Alkali Activated Flyash Masonry Units

    NASA Astrophysics Data System (ADS)

    Venugopal, K.; Radhakrishna; Sasalatti, Vinod M.

    2016-09-01

    Geopolymers belong to a category of non-conventional and non-Portland cement based cementitious binders which are produced using industrial by products like fly ash and ground granulated blast furnace slag (GGBFS). This paper reports on the development of geopolymer mortars for production of masonry units. The geopolymer mortars were prepared by mixing various by products with manufactured sand and a liquid mixture of sodium silicate and sodium hydroxide solutions. After curing at ambient conditions, the masonry units were tested for strength properties such as water absorption, initial rate of absorption, compression, shear- bond, and stress-strain behaviour etc. It was observed that the flexural strength of the blocks is more than 2 MPa and shear bond strength is more than 0.4MPa. It was found that the properties of geopolymer blocks were superior to the traditional masonry units. Hence they can be recommended for structural masonry.

  15. Temperature performance of portable radiation survey instruments used for environmental monitoring and clean-up activities in Fukushima

    NASA Astrophysics Data System (ADS)

    Saegusa, Jun; Yanagisawa, Kayo; Hasumi, Atsushi; Shimizu, Takenori; Uchita, Yoshiaki

    2017-08-01

    Following the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011, extensive radiation monitoring and environmental clean-up activities have been conducted throughout the Fukushima region. Outside air temperatures there reach 40 °C in summer and -20 °C in winter, which are beyond the quoted operational range of many radiation survey instruments. Herein, temperature performance of four types of portable Japanese radiation survey instruments widely used in Fukushima was experimentally investigated using a temperature-controlled chamber. They included two ionization chamber type instruments, Fuji NHA1 and Aloka ICS-323C, and two NaI(Tl) scintillation type ones, Fuji NHC7 and Aloka TCS-172B. Experimental results showed significantly diverse characteristics on the temperature dependences from one type of instrument to another. For example, NHA1 overestimated the ambient dose-equivalent rate by as much as 17% at -30 °C and 10% at 40 °C, whereas the TCS-172B readings underestimated the rate by 30% at -30 °C and 7% at 40 °C.

  16. Effects of ambient temperature on mechanomyography of resting quadriceps muscle.

    PubMed

    McKay, William P; Vargo, Michael; Chilibeck, Philip D; Daku, Brian L

    2013-03-01

    It has been speculated that resting muscle mechanical activity, also known as minor tremor, microvibration, and thermoregulatory tonus, has evolved to maintain core temperature in homeotherms, and may play a role in nonshivering thermogenesis. This experiment was done to determine whether resting muscle mechanical activity increases with decreasing ambient temperature. We cooled 20 healthy, human, resting, supine subjects from an ambient temperature of 40° to 12 °C over 65 min. Core temperature, midquadriceps mechanomyography, surface electromyography, and oxygen consumption (VO2) were recorded. Resting muscle mechanical and electrical activity in the absence of shivering increased significantly at temperatures below 21.5 °C. Women defended core temperature more effectively than men, and showed increased resting muscle activity earlier than men. Metabolism measured by VO2 correlated with resting muscle mechanical activity (R = 0.65; p = 0.01). Resting muscle mechanical activity may have evolved, in part, to maintain core temperature in the face of mild cooling.

  17. Ambient pressure environment surrounding the MSX spacecraft during the first year on orbit

    NASA Astrophysics Data System (ADS)

    Boies, Mark T.; Green, B. David; Galica, Gary E.; Uy, O. Manuel; Silver, David M.; Benson, Richard C.; Lesho, Jeffrey C.; Wood, Bob E.; Hall, David F.; Dyer, James S.

    1998-10-01

    The Total Pressure Sensor (TPS) on-board the Midcourse Space Experiment (MSX) Spacecraft has continuously measured the ambient local pressure since launch of MSX on April 24, 1996. The primary goals of the sensor are: 1) to monitor the ambient pressure surrounding the spacecraft's optical telescopes and to indicate when environmental conditions are acceptable for opening the protective covers, and 2) to monitor the long-term decay of the species outgassed from the spacecraft. The water-induced environment was expected to rapidly decay over the first few months to elves more closely approaching the natural environment. The data generally shows decay toward this level, however, the pressure is quite variable with time and can be influenced by discrete illumination and spacecraft orbital events. Several experiments, conducted approximately one year into the mission, indicate that the thermal blankets retain significant quantities of water. The local pressure due to water vapor is shown to increase by a factor of 100 from direct solar illumination of the blankets. Moreover, the multi-layer construction of the blankets causes them to form a deep reservoir, which continues to be a source of water vapor several tens of months into the mission. Additionally, the TPS has monitored numerous events in which the measured ambient pressure on the optics deck has exceeded 10-9 Torr. Several of these events did not include solar illumination of the blankets. These events indicate that sources other than the MLI blankets are the cause for certain high-pressure transients. Finally, these events are not limited to the early mission, outgassing phase of the program. They have been witnessed over a year into the mission. The results documented herein indicate that special consideration must be given in the design of optical sensors to account for long term outgassing of a spacecraft.

  18. Modifications of exposure to ambient particulate matter: Tackling bias in using ambient concentration as surrogate with particle infiltration factor and ambient exposure factor.

    PubMed

    Shi, Shanshan; Chen, Chen; Zhao, Bin

    2017-01-01

    Numerous epidemiological studies explored health risks attributed to outdoor particle pollution. However, a number of these studies routinely utilized ambient concentration as a surrogate for personal exposure to ambient particles. This simplification ignored the difference between indoor and outdoor concentrations of outdoor originated particles and may bias the estimate of particle-health associations. Intending to avoid the bias, particle infiltration factor (F inf ), which describes the penetration of outdoor particles in indoor environment, and ambient exposure factor (α), which represents the fraction of outdoor particles people are truly exposed to, are utilized as modification factors to modify outdoor particle concentration. In this study, the probabilistic distributions of annually-averaged and seasonally-averaged F inf and α were assessed for residences and residents in Beijing. F inf of a single residence and α of an individual was estimated based on the mechanisms governing particle outdoor-to-indoor migration and human time-activity pattern. With this as the core deterministic model, probabilistic distributions of F inf and α were estimated via Monte Carlo Simulation. Annually-averaged F inf of PM 2.5 and PM 10 for residences in Beijing tended to be log-normally distributed as lnN(-0.74,0.14) and lnN(-0.94,0.15) with geometric mean value as 0.47 and 0.39, respectively. Annually-averaged α of PM 2.5 and PM 10 for Beijing residents also tended to be log-normally distributed as lnN(-0.59,0.12) and lnN(-0.73,0.13) with geometric mean value as 0.55 and 0.48, respectively. As for seasonally-averaged results, F inf and α of PM 2.5 and PM 10 were largest in summer and smallest in winter. The obvious difference between these modification factors and unity suggested that modifications of ambient particle concentration need to be considered in epidemiological studies to avoid misclassifications of personal exposure to ambient particles. Moreover

  19. MONITORING AND SOURCE APPORTIONMENT OF PARTICULATE MATTER NEAR A LARGE PHOSPHORUS PRODUCTION FACILITY

    EPA Science Inventory

    A source apportionment study was conducted to identify sources within a large elemental phosphorus plant that contribute to exceedances of the National Ambient Air Quality Standard for 24-h PM10. Ambient data were collected at three monitoring sites from October 1996 through Ju...

  20. Current state of active-fault monitoring in Taiwan

    NASA Astrophysics Data System (ADS)

    Hou, C.; Lin, C.; Chen, Y.; Liu, H.; Chen, C.; Lin, Y.; Chen, C.

    2008-12-01

    The earthquake is one of the major hazard sources in Taiwan where an arc-continent collision is on-going. For the purpose of seismic hazard mitigation, to understand current situation of each already-known active fault is urgently needed. After the 1999 Chi-chi earthquake shocked Taiwan, the Central Geological Survey (CGS) of Taiwan aggressively promoted the tasks on studying the activities of active faults. One of them is the deployment of miscellaneous monitoring networks to cover all the target areas, where the earthquake occurrence potentials on active faults are eager to be answered. Up to the end of 2007, CGS has already deployed over 1000 GPS campaign sites, 44 GPS stations in continuous mode, and 42 leveling transects across the major active faults with a total ground distance of 974 km. The campaign sites and leveling tasks have to be measured once a year. The resulted crustal deformation will be relied on to derive the fault slip model. The time series analysis on continuous mode of GPS can further help understand the details of the fault behavior. In addition, 12 down-hole strain meters, five stations for liquid flux and geochemical proxies, and two for water table monitoring have been also installed to seek possible anomalies related to the earthquake activities. It may help discover reliable earthquake precursors.

  1. Monitoring ATP dynamics in electrically active white matter tracts

    PubMed Central

    Trevisiol, Andrea; Saab, Aiman S; Winkler, Ulrike; Marx, Grit; Imamura, Hiromi; Möbius, Wiebke; Kusch, Kathrin; Nave, Klaus-Armin; Hirrlinger, Johannes

    2017-01-01

    In several neurodegenerative diseases and myelin disorders, the degeneration profiles of myelinated axons are compatible with underlying energy deficits. However, it is presently impossible to measure selectively axonal ATP levels in the electrically active nervous system. We combined transgenic expression of an ATP-sensor in neurons of mice with confocal FRET imaging and electrophysiological recordings of acutely isolated optic nerves. This allowed us to monitor dynamic changes and activity-dependent axonal ATP homeostasis at the cellular level and in real time. We find that changes in ATP levels correlate well with compound action potentials. However, this correlation is disrupted when metabolism of lactate is inhibited, suggesting that axonal glycolysis products are not sufficient to maintain mitochondrial energy metabolism of electrically active axons. The combined monitoring of cellular ATP and electrical activity is a novel tool to study neuronal and glial energy metabolism in normal physiology and in models of neurodegenerative disorders. DOI: http://dx.doi.org/10.7554/eLife.24241.001 PMID:28414271

  2. Air Pollution and Preterm Birth in the U.S. State of Georgia (2002-2006): Associations with Concentrations of 11 Ambient Air Pollutants Estimated by Combining Community Multiscale Air Quality Model (CMAQ) Simulations with Stationary Monitor Measurements.

    PubMed

    Hao, Hua; Chang, Howard H; Holmes, Heather A; Mulholland, James A; Klein, Mitch; Darrow, Lyndsey A; Strickland, Matthew J

    2016-06-01

    Previous epidemiologic studies suggest associations between preterm birth and ambient air pollution. We investigated associations between 11 ambient air pollutants, estimated by combining Community Multiscale Air Quality model (CMAQ) simulations with measurements from stationary monitors, and risk of preterm birth (< 37 weeks of gestation) in the U.S. state of Georgia. Birth records for singleton births ≥ 27 weeks of gestation with complete covariate information and estimated dates of conception between 1 January 2002 and 28 February 2006 were obtained from the Office of Health Indicators for Planning, Georgia Department of Public Health (n = 511,658 births). Daily pollutant concentrations at 12-km resolution were estimated for 11 ambient air pollutants. We used logistic regression with county-level fixed effects to estimate associations between preterm birth and average pollutant concentrations during the first and second trimester. Discrete-time survival models were used to estimate third-trimester and total pregnancy associations. Effect modification was investigated by maternal education, race, census tract poverty level, and county-level urbanicity. Trimester-specific and total pregnancy associations (p < 0.05) were observed for several pollutants. All the traffic-related pollutants (carbon monoxide, nitrogen dioxide, PM2.5 elemental carbon) were associated with preterm birth [e.g., odds ratios for interquartile range increases in carbon monoxide during the first, second, and third trimesters and total pregnancy were 1.005 (95% CI: 1.001, 1.009), 1.007 (95% CI: 1.002, 1.011), 1.010 (95% CI: 1.006, 1.014), and 1.011 (95% CI: 1.006, 1.017)]. Associations tended to be higher for mothers with low educational attainment and African American mothers. Several ambient air pollutants were associated with preterm birth; associations were observed in all exposure windows. Hao H, Chang HH, Holmes HA, Mulholland JA, Klein M, Darrow LA, Strickland MJ. 2016. Air pollution

  3. Ambient Vibration Testing for Story Stiffness Estimation of a Heritage Timber Building

    PubMed Central

    Min, Kyung-Won; Kim, Junhee; Park, Sung-Ah; Park, Chan-Soo

    2013-01-01

    This paper investigates dynamic characteristics of a historic wooden structure by ambient vibration testing, presenting a novel estimation methodology of story stiffness for the purpose of vibration-based structural health monitoring. As for the ambient vibration testing, measured structural responses are analyzed by two output-only system identification methods (i.e., frequency domain decomposition and stochastic subspace identification) to estimate modal parameters. The proposed methodology of story stiffness is estimation based on an eigenvalue problem derived from a vibratory rigid body model. Using the identified natural frequencies, the eigenvalue problem is efficiently solved and uniquely yields story stiffness. It is noteworthy that application of the proposed methodology is not necessarily confined to the wooden structure exampled in the paper. PMID:24227999

  4. The ambient acoustic environment in Laguna San Ignacio, Baja California Sur, Mexico.

    PubMed

    Seger, Kerri D; Thode, Aaron M; Swartz, Steven L; Urbán, Jorge R

    2015-11-01

    Each winter gray whales (Eschrichtius robustus) breed and calve in Laguna San Ignacio, Mexico, where a robust, yet regulated, whale-watching industry exists. Baseline acoustic environments in LSI's three zones were monitored between 2008 and 2013, in anticipation of a new road being paved that will potentially increase tourist activity to this relatively isolated location. These zones differ in levels of both gray whale usage and tourist activity. Ambient sound level distributions were computed in terms of percentiles of power spectral densities. While these distributions are consistent across years within each zone, inter-zone differences are substantial. The acoustic environment in the upper zone is dominated by snapping shrimp that display a crepuscular cycle. Snapping shrimp also affect the middle zone, but tourist boat transits contribute to noise distributions during daylight hours. The lower zone has three source contributors to its acoustic environment: snapping shrimp, boats, and croaker fish. As suggested from earlier studies, a 300 Hz noise minimum exists in both the middle and lower zones of the lagoon, but not in the upper zone.

  5. Characterization of photosynthetically active duckweed (Wolffia australiana) in vitro culture by Respiration Activity Monitoring System (RAMOS).

    PubMed

    Rechmann, Henrik; Friedrich, Andrea; Forouzan, Dara; Barth, Stefan; Schnabl, Heide; Biselli, Manfred; Boehm, Robert

    2007-06-01

    The feasibility of oxygen transfer rate (OTR) measurement to non-destructively monitor plant propagation and vitality of photosynthetically active plant in vitro culture of duckweed (Wolffia australiana, Lemnaceae) was tested using Respiration Activity Monitoring System (RAMOS). As a result, OTR proofed to be a sensitive indicator for plant vitality. The culture characterization under day/night light conditions, however, revealed a complex interaction between oxygen production and consumption, rendering OTR measurement an unsuitable tool to track plant propagation. However, RAMOS was found to be a useful tool in preliminary studies for process development of photosynthetically active plant in vitro cultures.

  6. Monitoring Malware Activity on the LAN Network

    NASA Astrophysics Data System (ADS)

    Skrzewski, Mirosław

    Many security related organizations periodically publish current network and systems security information, with the lists of top malware programs. These lists raises the question how these threats spreads out, if the worms (the only threat with own communication abilities) are low or missing on these lists. The paper discuss the research on malware network activity, aimed to deliver the answer to the question, what is the main infection channel of modern malware, done with the usage of virtual honeypot systems on dedicated, unprotected network. Systems setup, network and systems monitoring solutions, results of over three months of network traffic and malware monitoring are presented, along with the proposed answer to our research question.

  7. GENASIS national and international monitoring networks for persistent organic pollutants

    NASA Astrophysics Data System (ADS)

    Brabec, Karel; Dušek, Ladislav; Holoubek, Ivan; Hřebíček, Jiří; Kubásek, Miroslav; Urbánek, Jaroslav

    2010-05-01

    Persistent organic pollutants (POPs) remain in the centre of scientific attention due to their slow rates of degradation, their toxicity, and potential for both long-range transport and bioaccumulation in living organisms. This group of compounds covers large number of various chemicals from industrial products, such as polychlorinated biphenyls, etc. The GENASIS (Global Environmental Assessment and Information System) information system utilizes data from national and international monitoring networks to obtain as-complete-as-possible set of information and a representative picture of environmental contamination by persistent organic pollutants (POPs). There are data from two main datasets on POPs monitoring: 1.Integrated monitoring of POPs in Košetice Observatory (Czech Republic) which is a long term background site of the European Monitoring and Evaluation Programme (EMEP) for the Central Europe; the data reveals long term trends of POPs in all environmental matrices. The Observatory is the only one in Europe where POPs have been monitored not only in ambient air, but also in wet atmospheric deposition, surface waters, sediments, soil, mosses and needles (integrated monitoring). Consistent data since the year 1996 are available, earlier data (up to 1998) are burdened by high variability and high detection limits. 2.MONET network is ambient air monitoring activities in the Central and Eastern European region (CEEC), Central Asia, Africa and Pacific Islands driven by RECETOX as the Regional Centre of the Stockholm Convention for the region of Central and Eastern Europe under the common name of the MONET networks (MONitoring NETwork). For many of the participating countries these activities generated first data on the atmospheric levels of POPs. The MONET network uses new technologies of air passive sampling, which was developed, tested, and calibrated by RECETOX in cooperation with Environment Canada and Lancaster University, and was originally launched as a

  8. Development of an electronic nose for environmental odour monitoring.

    PubMed

    Dentoni, Licinia; Capelli, Laura; Sironi, Selena; Del Rosso, Renato; Zanetti, Sonia; Della Torre, Matteo

    2012-10-25

    Exhaustive odour impact assessment should involve the evaluation of the impact of odours directly on citizens. For this purpose it might be useful to have an instrument capable of continuously monitoring ambient air quality, detecting the presence of odours and also recognizing their provenance. This paper discusses the laboratory and field tests conducted in order to evaluate the performance of a new electronic nose, specifically developed for monitoring environmental odours. The laboratory tests proved the instrument was able to discriminate between the different pure substances being tested, and to estimate the odour concentrations giving correlation indexes (R2) of 0.99 and errors below 15%. Finally, the experimental monitoring tests conducted in the field, allowed us to verify the effectiveness of this electronic nose for the continuous detection of odours in ambient air, proving its stability to variable atmospheric conditions and its capability to detect odour peaks.

  9. Preliminary information on ambient concentrations measured at the Las Vegas National Near-Road MSAT study site

    EPA Science Inventory

    This paper provides preliminary information on the trends in ambient concentrations observed near a heavily traveled highway in Las Vegas, Nevada. As part of a joint effort by the U.S. Environmental Protection Agency (EPA) and Federal Highway Administration, an air monitoring pro...

  10. Characterization of ambient-generated exposure to fine particles using sulfate as a tracer in the Chinese megacity of Guangzhou.

    PubMed

    Chen, Xiao-Cui; Jahn, Heiko J; Engling, Guenter; Ward, Tony J; Kraemer, Alexander; Ho, Kin-Fai; Chan, Chuen-Yu

    2017-02-15

    Total personal exposures can differ from the concentrations measured at stationary ambient monitoring sites. To provide further insight into factors affecting exposure to particles, chemical tracers were used to separate total personal exposure into its ambient and non-ambient components. Simultaneous measurements of ambient and personal exposure to fine particles (PM 2.5 ) were conducted in eight districts of Guangzhou, a megacity in South China, during the winter of 2011. Considerable significant correlations (Spearman's Rho, r s ) between personal exposures and ambient concentrations of sulfate (SO 4 2- ; r s >0.68) were found in contrast to elemental carbon (EC; r s >0.37). The average fraction of personal SO 4 2- to ambient SO 4 2- resulting in an adjusted ambient exposure factor of α=0.72 and a slope of 0.73 was determined from linear regression analysis when there were minimal indoor sources of SO 4 2- . From all data pooled across the districts, the estimated average ambient-generated and non-ambient-generated exposure to PM 2.5 were 55.3μg/m 3 (SD=23.4μg/m 3 ) and 18.1μg/m 3 (SD=29.1μg/m 3 ), respectively. A significant association was found between ambient-generated exposure and ambient PM 2.5 concentrations (Pearson's r=0.51, p<0.001). As expected, the non-ambient generated exposure was not related to the ambient concentrations. This study highlights the importance of both ambient and non-ambient components of total personal exposure in the megacity of Guangzhou. Our results support the use of SO 4 2- as a tracer of personal exposure to PM 2.5 of ambient origin in environmental and epidemiological studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Interactions Between Housing Density and Ambient Temperature in the Cage Environment: Effects on Mouse Physiology and Behavior.

    PubMed

    Toth, Linda A; Trammell, Rita A; Ilsley-Woods, Megan

    2015-11-01

    To determine how housing density and ambient temperature interact to influence the physiology and behavior of mice, we systematically varied housing density (1 to 5 mice per cage) and ambient temperature (22, 26, or 30 °C) and measured effects on body weight, food intake, diurnal patterns of locomotor activity and core temperature, fecal corticosterone, and serum cytokine and adipokine panels. Temperatures inside cages housing 5 mice were 1 to 2 °C higher than the ambient temperature. As the housing density decreased, in-cage temperatures began to fall at a density of 2 or 3 mice per cage and did not differ from ambient temperature at 1 mouse per cage. Ambient temperature, but not housing density, significantly affected food intake. Although neither ambient temperature nor housing density affected core temperature or activity, hyperthermia and behavioral activation occurred during the 12-h period after cage change. Fecal concentrations of corticosterone metabolites and serum cytokines, chemokines, insulin, and leptin were not influenced by cage density and were only sporadically influenced by ambient temperature. Our data document that the number of mice housed per cage influences the intracage environmental conditions and that ambient temperature influences food intake even when temperatures are within or near recommended or thermoneutral ranges. We conclude that investigators should be cautious when changing the number of mice housed in a cage over the course of a study, because doing so significantly alters the cage environment to which remaining mice are exposed.

  12. Interactions Between Housing Density and Ambient Temperature in the Cage Environment: Effects on Mouse Physiology and Behavior

    PubMed Central

    Toth, Linda A; Trammell, Rita A; Ilsley-Woods, Megan

    2015-01-01

    To determine how housing density and ambient temperature interact to influence the physiology and behavior of mice, we systematically varied housing density (1 to 5 mice per cage) and ambient temperature (22, 26, or 30 °C) and measured effects on body weight, food intake, diurnal patterns of locomotor activity and core temperature, fecal corticosterone, and serum cytokine and adipokine panels. Temperatures inside cages housing 5 mice were 1 to 2 °C higher than the ambient temperature. As the housing density decreased, in-cage temperatures began to fall at a density of 2 or 3 mice per cage and did not differ from ambient temperature at 1 mouse per cage. Ambient temperature, but not housing density, significantly affected food intake. Although neither ambient temperature nor housing density affected core temperature or activity, hyperthermia and behavioral activation occurred during the 12-h period after cage change. Fecal concentrations of corticosterone metabolites and serum cytokines, chemokines, insulin, and leptin were not influenced by cage density and were only sporadically influenced by ambient temperature. Our data document that the number of mice housed per cage influences the intracage environmental conditions and that ambient temperature influences food intake even when temperatures are within or near recommended or thermoneutral ranges. We conclude that investigators should be cautious when changing the number of mice housed in a cage over the course of a study, because doing so significantly alters the cage environment to which remaining mice are exposed. PMID:26632780

  13. Assessing Human Activity in Elderly People Using Non-Intrusive Load Monitoring.

    PubMed

    Alcalá, José M; Ureña, Jesús; Hernández, Álvaro; Gualda, David

    2017-02-11

    The ageing of the population, and their increasing wish of living independently, are motivating the development of welfare and healthcare models. Existing approaches based on the direct heath-monitoring using body sensor networks (BSN) are precise and accurate. Nonetheless, their intrusiveness causes non-acceptance. New approaches seek the indirect monitoring through monitoring activities of daily living (ADLs), which proves to be a suitable solution. ADL monitoring systems use many heterogeneous sensors, are less intrusive, and are less expensive than BSN, however, the deployment and maintenance of wireless sensor networks (WSN) prevent them from a widespread acceptance. In this work, a novel technique to monitor the human activity, based on non-intrusive load monitoring (NILM), is presented. The proposal uses only smart meter data, which leads to minimum intrusiveness and a potential massive deployment at minimal cost. This could be the key to develop sustainable healthcare models for smart homes, capable of complying with the elderly people' demands. This study also uses the Dempster-Shafer theory to provide a daily score of normality with regard to the regular behavior. This approach has been evaluated using real datasets and, additionally, a benchmarking against a Gaussian mixture model approach is presented.

  14. 25 CFR 170.702 - What activities may the Secretary review and monitor?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What activities may the Secretary review and monitor? 170.702 Section 170.702 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Program Oversight and Accountability § 170.702 What activities may the Secretary review and monitor? The Secretary...

  15. 25 CFR 170.702 - What activities may the Secretary review and monitor?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What activities may the Secretary review and monitor? 170.702 Section 170.702 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Program Oversight and Accountability § 170.702 What activities may the Secretary review and monitor? The Secretary...

  16. Validity of Different Activity Monitors to Count Steps in an Inpatient Rehabilitation Setting.

    PubMed

    Treacy, Daniel; Hassett, Leanne; Schurr, Karl; Chagpar, Sakina; Paul, Serene S; Sherrington, Catherine

    2017-05-01

    Commonly used activity monitors have been shown to be accurate in counting steps in active people; however, further validation is needed in slower walking populations. To determine the validity of activity monitors for measuring step counts in rehabilitation inpatients compared with visually observed step counts. To explore the influence of gait parameters, activity monitor position, and use of walkers on activity monitor accuracy. One hundred and sixty-six inpatients admitted to a rehabilitation unit with an average walking speed of 0.4 m/s (SD 0.2) wore 16 activity monitors (7 different devices in different positions) simultaneously during 6-minute and 6-m walks. The number of steps taken during the tests was also counted by a physical therapist. Gait parameters were assessed using the GAITRite system. To analyze the influence of different gait parameters, the percentage accuracy for each monitor was graphed against various gait parameters for each activity monitor. The StepWatch, Fitbit One worn on the ankle and the ActivPAL showed excellent agreement with observed step count (ICC 2,1 0.98; 0.92; 0.78 respectively). Other devices (Fitbit Charge, Fitbit One worn on hip, G-Sensor, Garmin Vivofit, Actigraph) showed poor agreement with the observed step count (ICC 2,1 0.12-0.40). Percentage agreement with observed step count was highest for the StepWatch (mean 98%). The StepWatch and the Fitbit One worn on the ankle maintained accuracy in individuals who walked more slowly and with shorter strides but other devices were less accurate in these individuals. There were small numbers of participants for some gait parameters. The StepWatch showed the highest accuracy and closest agreement with observed step count. This device can be confidently used by researchers for accurate measurement of step counts in inpatient rehabilitation in individuals who walk slowly. If immediate feedback is desired, the Fitbit One when worn on the ankle would be the best choice for this

  17. Air Pollution and Preterm Birth in the U.S. State of Georgia (2002–2006): Associations with Concentrations of 11 Ambient Air Pollutants Estimated by Combining Community Multiscale Air Quality Model (CMAQ) Simulations with Stationary Monitor Measurements

    PubMed Central

    Hao, Hua; Chang, Howard H.; Holmes, Heather A.; Mulholland, James A.; Klein, Mitch; Darrow, Lyndsey A.; Strickland, Matthew J.

    2015-01-01

    Background: Previous epidemiologic studies suggest associations between preterm birth and ambient air pollution. Objective: We investigated associations between 11 ambient air pollutants, estimated by combining Community Multiscale Air Quality model (CMAQ) simulations with measurements from stationary monitors, and risk of preterm birth (< 37 weeks of gestation) in the U.S. state of Georgia. Methods: Birth records for singleton births ≥ 27 weeks of gestation with complete covariate information and estimated dates of conception between 1 January 2002 and 28 February 2006 were obtained from the Office of Health Indicators for Planning, Georgia Department of Public Health (n = 511,658 births). Daily pollutant concentrations at 12-km resolution were estimated for 11 ambient air pollutants. We used logistic regression with county-level fixed effects to estimate associations between preterm birth and average pollutant concentrations during the first and second trimester. Discrete-time survival models were used to estimate third-trimester and total pregnancy associations. Effect modification was investigated by maternal education, race, census tract poverty level, and county-level urbanicity. Results: Trimester-specific and total pregnancy associations (p < 0.05) were observed for several pollutants. All the traffic-related pollutants (carbon monoxide, nitrogen dioxide, PM2.5 elemental carbon) were associated with preterm birth [e.g., odds ratios for interquartile range increases in carbon monoxide during the first, second, and third trimesters and total pregnancy were 1.005 (95% CI: 1.001, 1.009), 1.007 (95% CI: 1.002, 1.011), 1.010 (95% CI: 1.006, 1.014), and 1.011 (95% CI: 1.006, 1.017)]. Associations tended to be higher for mothers with low educational attainment and African American mothers. Conclusion: Several ambient air pollutants were associated with preterm birth; associations were observed in all exposure windows. Citation: Hao H, Chang HH, Holmes HA

  18. Monitoring Unstable Glaciers with Seismic Noise Interferometry

    NASA Astrophysics Data System (ADS)

    Preiswerk, L. E.; Walter, F.

    2016-12-01

    Gravity-driven glacier instabilities are a threat to human infrastructure in alpine terrain, and this hazard is likely to increase with future changes in climate. Seismometers have been used previously on hazardous glaciers to monitor the natural englacial seismicity. In some situations, an increase in "icequake" activity may indicate fracture growth and thus an imminent major break-off. However, without independent constraints on unstable volumes, such mere event counting is of little use. A promising new approach to monitor unstable masses in Alpine terrain is coda wave interferometry of ambient noise. While already established in the solid earth, application to glaciers is not straightforward, because the lack of inhomogeneities typically suppresses seismic coda waves in glacier ice. Only glaciers with pervasive crevasses provide enough scattering to generate long codas. This is requirement is likely met for highly dynamic unstable glaciers. Here, we report preliminary results from a temporary 5-station on-ice array of seismometers (corner frequencies: 1 Hz, array aperture: 500m) on Bisgletscher (Switzerland). The seismometers were deployed in shallow boreholes, directly above the unstable tongue of the glacier. In the frequency band 4-12 Hz, we find stable noise cross-correlations, which in principle allows monitoring on a subdaily scale. The origin and the source processes of the ambient noise in these frequencies are however uncertain. As a first step, we evaluate the stability of the sources in order to separate effects of changing source parameters from changes of englacial properties. Since icequakes occurring every few seconds may dominate the noise field, we compare their temporal and spatial occurrences with the cross-correlation functions (stability over time, the asymmetry between causal and acausal parts of the cross-correlation functions) as well as with results from beamforming to assess the influence of these transient events on the noise field.

  19. Assessment of ambient air quality in the port of Naples.

    PubMed

    Prati, Maria Vittoria; Costagliola, Maria Antonietta; Quaranta, Franco; Murena, Fabio

    2015-08-01

    Two experimental monitoring campaigns were carried out in 2012 to investigate the air quality in the port of Naples, the most important in southern Italy for traffic of passengers and one of the most important for goods. Therefore, it represents an important air pollution source located close to the city of Naples. The concentrations of sulfur dioxide (SO₂), nitrogen dioxide (NO₂), and BTEX (benzene, toluene, ethylbenzene, and xylenes) in the air were measured at 15 points inside the Naples port area through the use of passive samplers. In addition, a mobile laboratory was positioned in a fixed point inside the port area to measure continuous concentration of pollutants together with particulate matter, ambient parameters, and wind direction and intensity. The pollution levels monitored were compared with those observed in the urban area of Naples and in other Mediterranean ports. Even though the observation time was limited, measured concentrations were also compared with limit values established by European legislation. All the measured pollutants were below the limits with the exception of nitrogen dioxide: its average concentration during the exposition time exceeded the yearly limit value. A spatial analysis of data, according to the measured wind direction and intensity, provided information about the effects that ship emissions have on ambient air quality in the port area. The main evidence indicates that ship emissions influence sulfur dioxide concentration more than any other pollutants analyzed.

  20. Towards a rational strategy for monitoring of microbiological quality of ambient waters

    PubMed Central

    Poma, Hugo Ramiro; Cacciabue, Dolores Gutiérrez; Garcé, Beatriz; Gonzo, Elio Emilio; Rajal, Verónica Beatriz

    2012-01-01

    Water is one of the main sources of human exposure to microbiological hazards. Although legislation establishes regulatory standards in terms of fecal indicator bacteria to assess the microbiological quality of water, these do not necessarily predict the presence of pathogens such as parasites and viruses. Better surveillance and management strategies are needed to assess the risk of pathogens waterborne transmission. We established a baseline dataset to characterize river water quality, identify changes over time, and design a rational monitoring strategy. Data from a year-long monthly monitoring campaign of the polluted Arenales River (Argentina), were analyzed to statistically correlate physicochemical and microbiological variables, the seasonal and longitudinal variation of the water quality and determine the similarity between study sites. The measured variables (sixteen) reflected the deterioration in the river quality through the city. Different viruses and parasites found did not correlate with the concentration of total and thermotolerant coliforms. There was significant seasonal variation for temperature, turbidity, conductivity, dissolved oxygen, enterococci, and norovirus. Strong correlations between some variables were found; we selected eight variables (dissolved oxygen, conductivity, turbidity, total and thermotolerant coliforms, Enterococcus, and adenovirus and Microsporidium as viral and parasitological indicators, respectively) for future monitoring. There was similarity between the monitoring locations, which were grouped into four clusters validated by cophenetic correlation and supported by discriminant analysis. This allowed us to reduce the number of sites, from eleven down to five. Sixty seven percent of the total variance and the correlation structure between variables was explained using five principal components. All these analyses led to a new long-term systematic monitoring scheme A rational monitoring strategy based on the selection of

  1. Imaging near surface mineral targets with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Dales, P.; Audet, P.; Olivier, G.

    2017-12-01

    To keep up with global metal and mineral demand, new ore-deposits have to be discovered on a regular basis. This task is becoming increasingly difficult, since easily accessible deposits have been exhausted to a large degree. The typical procedure for mineral exploration begins with geophysical surveys followed by a drilling program to investigate potential targets. Since the retrieved drill core samples are one-dimensional observations, the many holes needed to interpolate and interpret potential deposits can lead to very high costs. To reduce the amount of drilling, active seismic imaging is sometimes used as an intermediary, however the active sources (e.g. large vibrating trucks or explosive shots) are expensive and unsuitable for operation in remote or environmentally sensitive areas. In recent years, passive seismic imaging using ambient noise has emerged as a novel, low-cost and environmentally sensitive approach for exploring the sub-surface. This technique dispels with active seismic sources and instead uses ambient seismic noise such as ocean waves, traffic or minor earthquakes. Unfortunately at this point, passive surveys are not capable of reaching the required resolution to image the vast majority of the ore-bodies that are being explored. In this presentation, we will show the results of an experiment where ambient seismic noise recorded on 60 seismic stations was used to image a near-mine target. The target consists of a known ore-body that has been partially exhausted by mining efforts roughly 100 years ago. The experiment examined whether ambient seismic noise interferometry can be used to image the intact and exhausted ore deposit. A drilling campaign was also conducted near the target which offers the opportunity to compare the two methods. If the accuracy and resolution of passive seismic imaging can be improved to that of active surveys (and beyond), this method could become an inexpensive intermediary step in the exploration process and result

  2. Applicability of ambient toxicity testing to national or regional water-quality assessment

    USGS Publications Warehouse

    Elder, J.F.

    1989-01-01

    Comprehensive assessment of the quality of natural waters requires a multifaceted approach. Based on experimentation designed to monitor responses of organisms to environmental stresses, toxicity testing may have diverse purposes in water quality assessments. These purposes may include identification that warrant further study because of poor water quality or unusual ecological features, verification of other types of monitoring, or assessment of contaminant effects on aquatic communities. A wide variety of toxicity test methods have been developed to fulfill the needs of diverse applications. The methods differ primarily in the full selections made relative to four characteristics: (1) test species, (2) endpoints (acute or chronic), (3) test enclosure type, and (4) test substance (toxicant) that functions as the environmental stress. Toxicity test approachs vary in their capacity to meet the needs of large-scale assessments of existing water quality. Ambient testing is more likely to meet these needs than are the procedures that call for exposure of the test organisms to known concentrations of a single toxicant. However, meaningful interpretation of ambient test results depend on the existence of accompanying chemical analysis of the ambient media. The ambient test substance may be water or sediments. Sediment tests have had limited application, but they are useful because of the fact that most toxicants tend to accumulate in sediments, and many test species either inhabit the sediments or are in frequent contact with them. Biochemical testing methods, which have been developing rapidly in recent years, are likely to be among the most useful procedures for large-scale water quality assessments. They are relatively rapid and simple, and more importantly, they focus on biochemical changes that are the initial responses of virtually all organisms to environmental stimuli. Most species are sensitive to relatively few toxicants and their sensitivities vary as

  3. Nonradioactive Ambient Air Monitoring at Los Alamos National Laboratory 2001--2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Gladney; J.Dewart, C.Eberhart; J.Lochamy

    2004-09-01

    During the spring of 2000, the Cerro Grande forest fire reached Los Alamos National Laboratory (LANL) and ignited both above-ground vegetation and disposed materials in several landfills. During and after the fire, there was concern about the potential human health impacts from chemicals emitted by the combustion of these Laboratory materials. Consequently, short-term, intensive air-monitoring studies were performed during and shortly after the fire. Unlike the radiological data from many years of AIRNET sampling, LANL did not have an adequate database of nonradiological species under baseline conditions with which to compare data collected during the fire. Therefore, during 2001 themore » Meteorology and Air Quality Group designed and implemented a new air-monitoring program, entitled NonRadNET, to provide nonradiological background data under normal conditions. The objectives of NonRadNET were to: (1) develop the capability for collecting nonradiological air-monitoring data, (2) conduct monitoring to develop a database of typical background levels of selected nonradiological species in the communities nearest the Laboratory, and (3) determine LANL's potential contribution to nonradiological air pollution in the surrounding communities. NonRadNET ended in late December 2002 with five quarters of data. The purpose of this paper is to organize and describe the NonRadNET data collected over 2001-2002 to use as baseline data, either for monitoring during a fire, some other abnormal event, or routine use. To achieve that purpose, in this paper we will: (1) document the NonRadNET program procedures, methods, and quality management, (2) describe the usual origins and uses of the species measured, (3) compare the species measured to LANL and other area emissions, (4) present the five quarters of data, (5) compare the data to known typical environmental values, and (6) evaluate the data against exposure standards.« less

  4. Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms.

    PubMed

    Gubin, D G; Weinert, D; Rybina, S V; Danilova, L A; Solovieva, S V; Durov, A M; Prokopiev, N Y; Ushakov, P A

    2017-01-01

    The aim of the present study was to investigate the impact of endogenous and exogenous factors for the expression of the daily rhythms of body temperature (BT), blood pressure (BP) and heart rate (HR). One hundred and seventy-three young adults (YA), 17-24 years old (y.o.), of both genders were studied under a modified constant-routine (CR) protocol for 26 h. Participants were assigned randomly to groups with different lighting regimens: CR-LD, n = 77, lights (>400 l×) on from 09:00 to 17:00 h and off (<10 l×) from 17:00 to 09:00 next morning; CR-LL, n = 81, lights on (>400 l×) during the whole experimental session; CR-DD, n = 15, constant dim light (<10 l×) during the whole experiment. Systolic (SBP) and diastolic (DBP) BP, HR and BT were measured every 2 h. For comparison, the results of the former studies performed under conditions of regular life with an activity period from 07:00 to 23:00 h and sleep from 23:00 till 07:00 h (Control) were reanalyzed. Seven-day Ambulatory Blood Pressure Monitoring (ABPM) records from 27 YA (16-38 y.o.) and BT self-measurement data from 70 YA (17-30 y.o.) taken on ≥ 3 successive days at 08:00, 11:00, 14:00, 17:00, 20:00, 23:00 and 03:00 were available. The obtained daily patterns were different between Control and CR-DD groups, due to effects of activity, sleep and light. The comparison of Control and CR-LD groups allowed the effects of sleep and activity to be estimated since the lighting conditions were similar. The activity level substantially elevated SBP, but not DBP. Sleep, on the other hand, lowered the nighttime DBP, but has no effect on SBP. HR was affected both by activity and sleep. In accordance with previous studies, these results confirm that the steep BP increase in the morning is not driven by the circadian clock, but rather by sympathoadrenal factors related to awakening and corresponding anticipatory mechanisms. The effect on BT was not significant. To investigate the impact of light during the former

  5. Using metal ratios to detect emissions from municipal waste incinerators in ambient air pollution data

    NASA Astrophysics Data System (ADS)

    Font, Anna; de Hoogh, Kees; Leal-Sanchez, Maria; Ashworth, Danielle C.; Brown, Richard J. C.; Hansell, Anna L.; Fuller, Gary W.

    2015-07-01

    This study aimed to fingerprint emissions from six municipal waste incinerators (MWIs) and then test if these fingerprint ratios could be found in ambient air samples. Stack emissions tests from MWIs comprised As, Cd, Cr, Cu, Pb, Mn, Ni, V and Hg. Those pairs of metals showing good correlation (R > 0.75) were taken as tracers of MWI emissions and ratios calculated: Cu/Pb; Cd/Pb; Cd/Cu and Cr/Pb. Emissions ratios from MWIs differed significantly from those in ambient rural locations and those close to traffic. In order to identify MWI emissions in ambient air two analysis tests were carried out. The first, aimed to explore if MWI emissions dominate the ambient concentrations. The mean ambient ratio of each of the four metal ratios were calculated for six ambient sampling sites within 10 km from a MWI under stable meteorological conditions when the wind blew from the direction of the incinerator. Under these meteorological conditions ambient Cd/Pb was within the range of MWI emissions at one location, two monitoring sites measured mean Cr/Pb ratios representative of the MWI emissions and the four sites measured values of Cu/Pb within the range of MWI emissions. No ambient measurements had mean Cd/Cu ratios within the MWI values. Even though MWI was not the main source determining the ambient metal ratios, possible occasional plume grounding might have occurred. The second test then examined possible plume grounding by identifying the periods when all metal ratios differed from rural and traffic values at the same time and were consistent with MWI emissions. Metal ratios consistent with MWI emissions were found in ambient air within 10 km of one MWI for about 0.2% of study period. Emissions consistent with a second MWI were similarly detected at two ambient measurement sites about 0.1% and 0.02% of the time. Where plume grounding was detected, the maximum annual mean particulate matter (PM) from the MWI was estimated to be 0.03 μg m-3 to 0.12 μg m-3; 2-3 orders of

  6. Immersion Freezing of Total Ambient Aerosols and Ice Residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Gourihar

    This laboratory study reports pre-activation measurements of the size-selected un-activated ambient or total aerosols at the temperature range from -26 to -34°C using two continuous-flow diffusion chamber style ice nucleation chambers. Two different experiments (A and B) were performed in immersion freezing mode. In experiment A, frozen fraction of total aerosol was measured, whereas in experiment B frozen fraction of ice residuals (IR) obtained through sublimation of nucleated ice crystals was measured. Frozen fractions at respective temperatures from experiment B were observed to be higher than A, and therefore it was concluded that ambient particles show pre-activation phenomenon. Furthermore, single-particlemore » elemental composition analyses of the total aerosols showed that majority of the particles are dust particles coated by organic matter. In general, this study suggests that such internally mixed complex total aerosols are efficient ice nucleating particles (INPs) and motivates further research to examine the physio-chemical properties of IR particles to explain the phenomenon of pre-activation.« less

  7. Overview of the new National Near-Road Air Quality Monitoring Network

    EPA Science Inventory

    In 2010, EPA promulgated new National Ambient Air Quality Standards (NAAQS) for nitrogen dioxide (NO2). As part of this new NAAQS, EPA required the establishment of a national near-road air quality monitoring network. This network will consist of one NO2 near-road monitoring st...

  8. OLAM: A wearable, non-contact sensor for continuous heart-rate and activity monitoring.

    PubMed

    Albright, Ryan K; Goska, Benjamin J; Hagen, Tory M; Chi, Mike Y; Cauwenberghs, G; Chiang, Patrick Y

    2011-01-01

    A wearable, multi-modal sensor is presented that can non-invasively monitor a patient's activity level and heart function concurrently for more than a week. The 4 in(2) sensor incorporates both a non-contact heartrate sensor and a 5-axis inertial measurement unit (IMU), allowing simultaneous heart, respiration, and movement monitoring without requiring physical contact with the skin [1]. Hence, this Oregon State University Life and Activity Monitor (OLAM) provides the unique opportunity to combine motion data with heart-rate information, enabling assessment of actual physical activity beyond conventional movement sensors. OLAM also provides a unique platform for non-contact sensing, enabling the filtering of movement artifacts generated by the non-contact capacitive interface, using the IMU data as a movement noise channel. Intended to be used in clinical trials for weeks at a time with no physician intervention, the OLAM allows continuous non-invasive monitoring of patients, providing the opportunity for long-term observation into a patient's physical activity and subtle longitudinal changes.

  9. Development of a low cost method to estimate the seismic signature of a geothermal field form ambient noise analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tibuleac, Ileana

    2016-06-30

    A new, cost effective and non-invasive exploration method using ambient seismic noise has been tested at Soda Lake, NV, with promising results. The material included in this report demonstrates that, with the advantage of initial S-velocity models estimated from ambient noise surface waves, the seismic reflection survey, although with lower resolution, reproduces the results of the active survey when the ambient seismic noise is not contaminated by strong cultural noise. Ambient noise resolution is less at depth (below 1000m) compared to the active survey. In general, the results are promising and useful information can be recovered from ambient seismic noise,more » including dipping features and fault locations.« less

  10. Monitoring of Crew Activity with FAMOS

    NASA Astrophysics Data System (ADS)

    Wolf, L.; Cajochen, C.; Bromundt, V.

    2007-10-01

    The success of long duration space missions, such as manned missions to Mars, depends on high and sustained levels of vigilance and performance of astronauts and operators working in the technology rich environment of a spacecraft. Experiment 'Monitoring of Crew Activity with FAMOS' was set up to obtain operational experience with complimentary methods / technologies to assess the alertness / sleepiness status of selected AustroMars crewmembers on a daily basis. We applied a neurobehavioral test battery consisting of 1) Karolinska Sleepiness Scale KSS, 2) Karolinska Drowsiness Test KDT, 3) Psychomotor Vigilance Task PVT, combined with 4) left eye video recordings with an early prototype of the FAMOS Fatigue Monitoring System headset currently being developed by Sowoon Technologies (CH), and 5) Actiwatches that were worn continuously. A test battery required approximately 15 minutes and was repeated up to 4 times daily by 2 to 4 subjects. Here we present the data analysis of methods 1, 2, 3, and 5, while data analysis of method 4 is still in progress.

  11. 76 FR 54293 - Review of National Ambient Air Quality Standards for Carbon Monoxide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ...This rule is being issued at this time as required by a court order governing the schedule for completion of this review of the air quality criteria and the national ambient air quality standards (NAAQS) for carbon monoxide (CO). Based on its review, the EPA concludes the current primary standards are requisite to protect public health with an adequate margin of safety, and is retaining those standards. After review of the air quality criteria, EPA further concludes that no secondary standard should be set for CO at this time. EPA is also making changes to the ambient air monitoring requirements for CO, including those related to network design, and is updating, without substantive change, aspects of the Federal reference method.

  12. Assessing Human Activity in Elderly People Using Non-Intrusive Load Monitoring

    PubMed Central

    Alcalá, José M.; Ureña, Jesús; Hernández, Álvaro; Gualda, David

    2017-01-01

    The ageing of the population, and their increasing wish of living independently, are motivating the development of welfare and healthcare models. Existing approaches based on the direct heath-monitoring using body sensor networks (BSN) are precise and accurate. Nonetheless, their intrusiveness causes non-acceptance. New approaches seek the indirect monitoring through monitoring activities of daily living (ADLs), which proves to be a suitable solution. ADL monitoring systems use many heterogeneous sensors, are less intrusive, and are less expensive than BSN, however, the deployment and maintenance of wireless sensor networks (WSN) prevent them from a widespread acceptance. In this work, a novel technique to monitor the human activity, based on non-intrusive load monitoring (NILM), is presented. The proposal uses only smart meter data, which leads to minimum intrusiveness and a potential massive deployment at minimal cost. This could be the key to develop sustainable healthcare models for smart homes, capable of complying with the elderly people’ demands. This study also uses the Dempster-Shafer theory to provide a daily score of normality with regard to the regular behavior. This approach has been evaluated using real datasets and, additionally, a benchmarking against a Gaussian mixture model approach is presented. PMID:28208672

  13. Integrated Solution for Physical Activity Monitoring Based on Mobile Phone and PC.

    PubMed

    Lee, Mi Hee; Kim, Jungchae; Jee, Sun Ha; Yoo, Sun Kook

    2011-03-01

    This study is part of the ongoing development of treatment methods for metabolic syndrome (MS) project, which involves monitoring daily physical activity. In this study, we have focused on detecting walking activity from subjects which includes many other physical activities such as standing, sitting, lying, walking, running, and falling. Specially, we implemented an integrated solution for various physical activities monitoring using a mobile phone and PC. We put the iPod touch has built in a tri-axial accelerometer on the waist of the subjects, and measured change in acceleration signal according to change in ambulatory movement and physical activities. First, we developed of programs that are aware of step counts, velocity of walking, energy consumptions, and metabolic equivalents based on iPod. Second, we have developed the activity recognition program based on PC. iPod synchronization with PC to transmit measured data using iPhoneBrowser program. Using the implemented system, we analyzed change in acceleration signal according to the change of six activity patterns. We compared results of the step counting algorithm with different positions. The mean accuracy across these tests was 99.6 ± 0.61%, 99.1 ± 0.87% (right waist location, right pants pocket). Moreover, six activities recognition was performed using Fuzzy c means classification algorithm recognized over 98% accuracy. In addition we developed of programs that synchronization of data between PC and iPod for long-term physical activity monitoring. This study will provide evidence on using mobile phone and PC for monitoring various activities in everyday life. The next step in our system will be addition of a standard value of various physical activities in everyday life such as household duties and a health guideline how to select and plan exercise considering one's physical characteristics and condition.

  14. AAC Best Practice Using Automated Language Activity Monitoring.

    ERIC Educational Resources Information Center

    Hill, Katya; Romich, Barry

    This brief paper describes automated language activity monitoring (LAM), an augmentative and alternative communication (AAC) methodology for the collection, editing, and analysis of language data in structured or natural situations with people who have severe communication disorders. The LAM function records each language event (letters, words,…

  15. A daily living activity remote monitoring system for solitary elderly people.

    PubMed

    Maki, Hiromichi; Ogawa, Hidekuni; Matsuoka, Shingo; Yonezawa, Yoshiharu; Caldwell, W Morton

    2011-01-01

    A daily living activity remote monitoring system has been developed for supporting solitary elderly people. The monitoring system consists of a tri-axis accelerometer, six low-power active filters, a low-power 8-bit microcontroller (MC), a 1GB SD memory card (SDMC) and a 2.4 GHz low transmitting power mobile phone (PHS). The tri-axis accelerometer attached to the subject's chest can simultaneously measure dynamic and static acceleration forces produced by heart sound, respiration, posture and behavior. The heart rate, respiration rate, activity, posture and behavior are detected from the dynamic and static acceleration forces. These data are stored in the SD. The MC sends the data to the server computer every hour. The server computer stores the data and makes a graphic chart from the data. When the caregiver calls from his/her mobile phone to the server computer, the server computer sends the graphical chart via the PHS. The caregiver's mobile phone displays the chart to the monitor graphically.

  16. Statistical Analysis of Time-Series from Monitoring of Active Volcanic Vents

    NASA Astrophysics Data System (ADS)

    Lachowycz, S.; Cosma, I.; Pyle, D. M.; Mather, T. A.; Rodgers, M.; Varley, N. R.

    2016-12-01

    Despite recent advances in the collection and analysis of time-series from volcano monitoring, and the resulting insights into volcanic processes, challenges remain in forecasting and interpreting activity from near real-time analysis of monitoring data. Statistical methods have potential to characterise the underlying structure and facilitate intercomparison of these time-series, and so inform interpretation of volcanic activity. We explore the utility of multiple statistical techniques that could be widely applicable to monitoring data, including Shannon entropy and detrended fluctuation analysis, by their application to various data streams from volcanic vents during periods of temporally variable activity. Each technique reveals changes through time in the structure of some of the data that were not apparent from conventional analysis. For example, we calculate the Shannon entropy (a measure of the randomness of a signal) of time-series from the recent dome-forming eruptions of Volcán de Colima (Mexico) and Soufrière Hills (Montserrat). The entropy of real-time seismic measurements and the count rate of certain volcano-seismic event types from both volcanoes is found to be temporally variable, with these data generally having higher entropy during periods of lava effusion and/or larger explosions. In some instances, the entropy shifts prior to or coincident with changes in seismic or eruptive activity, some of which were not clearly recognised by real-time monitoring. Comparison with other statistics demonstrates the sensitivity of the entropy to the data distribution, but that it is distinct from conventional statistical measures such as coefficient of variation. We conclude that each analysis technique examined could provide valuable insights for interpretation of diverse monitoring time-series.

  17. 40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specific air pollution concentration at a particular air quality monitoring location. (2) Demonstration to... exceptional event caused a specific air pollution concentration in excess of one or more national ambient air... specific air pollution concentration in excess of one or more national ambient air quality standards at a...

  18. Activity Learning as a Foundation for Security Monitoring in Smart Homes.

    PubMed

    Dahmen, Jessamyn; Thomas, Brian L; Cook, Diane J; Wang, Xiaobo

    2017-03-31

    Smart environment technology has matured to the point where it is regularly used in everyday homes as well as research labs. With this maturation of the technology, we can consider using smart homes as a practical mechanism for improving home security. In this paper, we introduce an activity-aware approach to security monitoring and threat detection in smart homes. We describe our approach using the CASAS smart home framework and activity learning algorithms. By monitoring for activity-based anomalies we can detect possible threats and take appropriate action. We evaluate our proposed method using data collected in CASAS smart homes and demonstrate the partnership between activity-aware smart homes and biometric devices in the context of the CASAS on-campus smart apartment testbed.

  19. Activity Learning as a Foundation for Security Monitoring in Smart Homes

    PubMed Central

    Dahmen, Jessamyn; Thomas, Brian L.; Cook, Diane J.; Wang, Xiaobo

    2017-01-01

    Smart environment technology has matured to the point where it is regularly used in everyday homes as well as research labs. With this maturation of the technology, we can consider using smart homes as a practical mechanism for improving home security. In this paper, we introduce an activity-aware approach to security monitoring and threat detection in smart homes. We describe our approach using the CASAS smart home framework and activity learning algorithms. By monitoring for activity-based anomalies we can detect possible threats and take appropriate action. We evaluate our proposed method using data collected in CASAS smart homes and demonstrate the partnership between activity-aware smart homes and biometric devices in the context of the CASAS on-campus smart apartment testbed. PMID:28362342

  20. Ambient Noise in an Urbanized Tidal Channel

    NASA Astrophysics Data System (ADS)

    Bassett, Christopher

    the pressure fluctuations when the turbulent scales are on order of, or smaller than, the characteristic size of the hydrophone. At both sites, flow-noise levels can exceed ambient noise levels during slack currents by more than 50 dB at 20 Hz and flow-noise is measured at frequencies greater than 500 Hz. In Admiralty Inlet, the use of a compact flow shield is shown to reduce flow-noise levels by up to 30 dB. Below 1 kHz, the dominant source of ambient noise is vessel traffic, though during periods of strong currents, the propagating noise from vessels can be difficult to identify because of flow-noise. At frequencies above 1 kHz, during periods of strong currents, the dominant source of ambient noise is bedload transport. Observation of this higher frequency sound is not affected by flow-noise, which is limited to lower frequencies in northern Admiralty Inlet. These results are combined with marine species hearing thresholds, a turbine source spectrum, and a simple propagation model to roughly quantify the probability of marine animals detecting the sound of operating turbines against ambient noise. The results suggest that the likely detection range of operating turbines is limited to less than 1 km under most conditions. The sound produced by operating tidal turbines at the proposed demonstration-scale tidal power project is not likely to have any significant behavioral effect at greater range. Finally, the ambient statistics at the site are also combined with a sound propagation model and vocalization characteristics of Southern Resident killer whales to determine the effective range for passive acoustic monitoring techniques at the proposed project location. Due to the frequency overlap between sediment-generated noise and killer whale vocalizations, during peak currents the detection range for vocalizations is reduced by up to 90% when compared to slack current noise levels. Although the reduction in detection range is significant, this analysis suggests that

  1. Changes in ambient temperature differentially alter the thermoregulatory, cardiac and locomotor stimulant effects of 4-methylmethcathinone (mephedrone).

    PubMed

    Miller, M L; Creehan, K M; Angrish, D; Barlow, D J; Houseknecht, K L; Dickerson, T J; Taffe, M A

    2013-01-01

    The substituted cathinone compound known as mephedrone (4-methylmethcathinone; 4-MMC) has become popular with recreational users of psychomotor-stimulant compounds. Only recently have the first preclinical studies provided information about this drug in the scientific literature; nevertheless, media reports have led to drug control actions in the UK and across several US states. Rodent studies indicate that 4-MMC exhibits neuropharmacological similarity to 3,4-methylenedioxymethamphetamine (MDMA) and prompt investigation of the thermoregulatory, cardiac and locomotor effects of 4-MMC. This study focuses on the role of ambient temperature, which has been shown to shift the effects of MDMA from hyperthermic to hypothermic. Male Sprague-Dawley rats were monitored after subcutaneous administration of 4-MMC (1.0-5.6 mg/kg) using an implantable radiotelemetry system under conditions of low (20 °C) and high (30 °C) ambient temperature. A pharmacokinetic study found a T(max) of 0.25 h and a C(max) of 1206 ng/ml after 5.6 mg/kg 4-MMC. A dose-dependent reduction of body temperature was produced by 4-MMC at 20 °C but there was no temperature change at 30 °C. Increased locomotor activity was observed after 4-MMC administration under both ambient temperatures, however, significantly more activity was observed at 30 °C. Heart rate was slowed by 1.0 and 5.6 mg/kg 4-MMC at 20°C, and was slower in the 30 °C vs. 20 °C condition across all treatments. These results show that the cathinone analog 4-MMC exhibits in vivo thermoregulatory properties that are distinct from those produced by MDMA. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. The Canadian Immunization Monitoring Program, ACTive (IMPACT): Active surveillance for vaccine adverse events and vaccine-preventable diseases

    PubMed Central

    Bettinger, JA; Halperin, SA; Vaudry, W; Law, BJ; Scheifele, DW

    2014-01-01

    For almost 25 years the Canadian Immunization Monitoring Program, ACTive (IMPACT) has been conducting active surveillance for severe adverse events following immunization (AEFIs) and vaccine-preventable diseases in children. The network, which consists of volunteer paediatric infectious diseases investigators at 12 tertiary care paediatric hospitals, is an important component of Canada’s AEFI monitoring. The network employs nurses at each of the sites to search for and report possible AEFIs to local, provincial and national public health authorities. The active nature of the surveillance ensures a high level of vigilance for severe AEFIs in children. PMID:29769912

  3. Sentinel-1 Contribution to Monitoring Maritime Activity in the Arctic

    NASA Astrophysics Data System (ADS)

    Santamaria, Carlos; Greidanus, Harm; Fournier, Melanie; Eriksen, Torkild; Vespe, Michele; Alvarez, Marlene; Arguedas, Virginia Fernandez; Delaney, Conor; Argentieri, Pietro

    2016-08-01

    This paper presents results on the use of Sentinel-1 combined with satellite AIS to monitor maritime activity in the Arctic. Such activities are expected to increase, even if not uniformly across the Arctic, as the ice cover in the region retreats due to changes in climate. The objectives of monitoring efforts in the region can vary from country to country, but are generally related to increasing awareness on non- cooperative, small and cruise ships, fisheries, safety at sea, and Search and Rescue. A ship monitoring study has been conducted, involving more than 2,000 Sentinel-1 images acquired during one year in the central Arctic, where the ship densities are high. The main challenges to SAR-based monitoring in this area are described, solutions for some of them are proposed, and analyses of the results are shown. With the high detection thresholds needed to prevent false alarms from sea ice, 16% of the ships detected overall in the Sentinel-1 images have not been correlated to AIS- transmitting ships, and 48% of the AIS-transmitting ships are not correlated to ships detected in the images.

  4. Energy harvesting schemes for building interior environment monitoring

    NASA Astrophysics Data System (ADS)

    Zylka, Pawel; Pociecha, Dominik

    2016-11-01

    A vision to supply microelectronic devices without batteries making them perpetual or extending time of service in battery-oriented mobile supply schemes is the driving force of the research related to ambient energy harvesting. Energy harnessing aims thus at extracting energy from various ambient energy "pools", which generally are cost- or powerineffective to be scaled up for full-size, power-plant energy generation schemes supplying energy in electric form. These include - but are not limited to - waste heat, electromagnetic hum, vibrations, or human-generated power in addition to traditional renewable energy resources like water flow, tidal and wind energy or sun radiation which can also be exploited at the miniature scale by energy scavengers. However, in case of taking advantage of energy harvesting strategies to power up sensors monitoring environment inside buildings adaptable energy sources are restrained to only some which additionally are limited in spatial and temporal accessibility as well as available power. The paper explores experimentally an energy harvesting scheme exploiting human kinesis applicable in indoor environment for supplying a wireless indoor micro-system, monitoring ambient air properties (pressure, humidity and temperature).

  5. Reduced Healthcare Use and Apparent Savings with Passive Home Monitoring Technology: A Pilot Study.

    PubMed

    Finch, Michael; Griffin, Kristen; Pacala, James T

    2017-06-01

    To conduct a cost analysis of ambient assisted living technology, which is promising for improving the ability of individuals and care providers to monitor daily activities and gain better awareness through proactive management of health and safety. Three-arm cohort study. Homes of enrollees of a state-based healthcare plan for older adults. Enrollees dually eligible for Medicare and Medicaid (N = 268). Health and safety passive remote patient monitoring (PRPM) systems were installed in enrollees' homes (the intervention group) with monitoring and proactive intervention of a case manager when deviation from baseline subject behavior was detected. Claims data were collected over 12 months to assess healthcare use and costs in the intervention group and to compare use and costs with those of two control groups: a concurrent group of enrollees who declined the technology and a historical cohort matched on age to the participation group. Although the small sample size precluded cost differences that were statistically significant, the participant group used substantially less custodial care, emergency department (ED) services, inpatient stays, and ED costs than the two control groups. In this pilot study, the PRPM system was associated with apparent healthcare cost savings. Although more cost analyses are warranted, ambient assisted living technologies are a potentially valuable investment for older adult care. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  6. An overview of existing raptor contaminant monitoring activities in Europe.

    PubMed

    Gómez-Ramírez, P; Shore, R F; van den Brink, N W; van Hattum, B; Bustnes, J O; Duke, G; Fritsch, C; García-Fernández, A J; Helander, B O; Jaspers, V; Krone, O; Martínez-López, E; Mateo, R; Movalli, P; Sonne, C

    2014-06-01

    Biomonitoring using raptors as sentinels can provide early warning of the potential impacts of contaminants on humans and the environment and also a means of tracking the success of associated mitigation measures. Examples include detection of heavy metal-induced immune system impairment, PCB-induced altered reproductive impacts, and toxicity associated with lead in shot game. Authorisation of such releases and implementation of mitigation is now increasingly delivered through EU-wide directives but there is little established pan-European monitoring to quantify outcomes. We investigated the potential for EU-wide coordinated contaminant monitoring using raptors as sentinels. We did this using a questionnaire to ascertain the current scale of national activity across 44 European countries. According to this survey, there have been 52 different contaminant monitoring schemes with raptors over the last 50years. There were active schemes in 15 (predominantly western European) countries and 23 schemes have been running for >20years; most monitoring was conducted for >5years. Legacy persistent organic compounds (specifically organochlorine insecticides and PCBs), and metals/metalloids were monitored in most of the 15 countries. Fungicides, flame retardants and anticoagulant rodenticides were also relatively frequently monitored (each in at least 6 countries). Common buzzard (Buteo buteo), common kestrel (Falco tinnunculus), golden eagle (Aquila chrysaetos), white-tailed sea eagle (Haliaeetus albicilla), peregrine falcon (Falco peregrinus), tawny owl (Strix aluco) and barn owl (Tyto alba) were most commonly monitored (each in 6-10 countries). Feathers and eggs were most widely analysed although many schemes also analysed body tissues. Our study reveals an existing capability across multiple European countries for contaminant monitoring using raptors. However, coordination between existing schemes and expansion of monitoring into Eastern Europe is needed. This would enable

  7. A pilot crossover study: effects of an intervention using an activity monitor with computerized game functions on physical activity and body composition.

    PubMed

    Nishiwaki, Masato; Kuriyama, Akinori; Ikegami, Yumi; Nakashima, Nana; Matsumoto, Naoyuki

    2014-12-02

    Wearing an activity monitor as a motivational tool and incorporating a behavior-based reward system or a computerized game element might have a synergistic effect on an increase in daily physical activity, thereby inducing body fat reduction. This pilot crossover study aimed to examine the effects of a short-term lifestyle intervention using an activity monitor with computerized game functions on physical activity and body composition. Twenty healthy volunteers (31 ± 3 years) participated in a 12-week crossover study. The participants were randomly assigned to either Group A (a 6-week game intervention followed by a 6-week normal intervention) or Group B (a 6-week normal intervention followed by a 6-week game intervention). The participants wore both a normal activity monitor (Lifecorder EX) and an activity monitor with computerized game functions (Yuuhokei) during the game intervention, whereas they only wore a normal activity monitor during the normal intervention. Before, during, and after the intervention, body composition was assessed. Significantly more daily steps were recorded for the game intervention than for the normal intervention (10,520 ± 562 versus 8,711 ± 523 steps/day, P < 0.01). The participants performed significantly more physical activity at an intensity of ≥ 3 metabolic equivalents (METs) in the game intervention than in the normal intervention (3.1 ± 0.2 versus 2.4 ± 0.2 METs · hour/day, P < 0.01). Although body mass and fat were significantly reduced in both periods (P < 0.01), the difference in body fat reduction was significantly greater in the game intervention than in the normal intervention (P < 0.05). A short-term intervention using an activity monitor with computerized game functions increases physical activity and reduces body fat more effectively than an intervention using a standard activity monitor.

  8. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of conduct...

  9. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of conduct...

  10. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of conduct...

  11. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of conduct...

  12. Use of a consumer market activity monitoring and feedback device improves exercise capacity and activity levels in COPD.

    PubMed

    Caulfield, Brian; Kaljo, Indira; Donnelly, Seamas

    2014-01-01

    COPD is associated with a gradual decline in physical activity, which itself contributes to a worsening of the underlying condition. Strategies that improve physical activity levels are critical to halt this cycle. Wearable sensor based activity monitoring and persuasive feedback might offer a potential solution. However it is not clear just how much intervention might be needed in this regard - i.e. whether programmes need to be tailored specifically for the target clinical population or whether more simple activity monitoring and feedback solutions, such as that offered in consumer market devices, might be sufficient. This research was carried out to investigate the impact of 4 weeks of using an off the shelf consumer market activity monitoring and feedback application on measures of physical activity, exercise capacity, and health related quality of life in a population of 10 Stage I and II COPD patients. Results demonstrate a significant and positive effect on exercise capacity (measured using a 6-minute walk test) and activity levels (measured in terms of average number of steps per hour) yet no impact on health related quality of life (St Georges Respiratory Disease Questionnaire).

  13. Security architecture for health grid using ambient intelligence.

    PubMed

    Naqvi, S; Riguidel, M; Demeure, I

    2005-01-01

    To propose a novel approach of incorporating ambient intelligence in the health grid security architecture. Security concerns are severely impeding the grid community effort in spreading its wings in health applications. In this paper, we have proposed a high level approach to incorporate ambient intelligence for health grid security architecture and have argued that this will significantly improve the current state of the grid security paradigm with an enhanced user-friendly environment. We believe that the time is right to shift the onus of traditional security mechanisms onto the new technologies. The incorporation of ambient intelligence in the security architecture of a grid will not only render a security paradigm robust but also provide an attractive vision for the future of computing by bringing the two worlds together. In this article we propose an evolutionary approach of utilizing smart devices for grid security architecture. We argue that such an infrastructure will impart unique features to the existing grid security paradigms by offering fortified and relentless monitoring. This new security architecture will be comprehensive in nature but will not be cumbersome for the users due to its typical characteristics of not prying into their lives and adapting to their needs. We have identified a new paradigm of the security architecture for a health grid that will not only render a security mechanism robust but will also provide the high levels of user-friendliness. As our approach is a first contribution to this problem, a number of other issues for future research remain open. However, the prospects are fascinating.

  14. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  15. 40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Annual monitoring network plan and periodic network assessment. 58.10 Section 58.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.10 Annual...

  16. 40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Annual monitoring network plan and periodic network assessment. 58.10 Section 58.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.10 Annual...

  17. Wireless pilot monitoring system for extreme race conditions.

    PubMed

    Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W

    2012-01-01

    This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring.

  18. 77 FR 32632 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... Hydrogen Peroxide Filter Extraction'' In this method, total suspended particulate matter (TSP) is collected on glass fiber filters according to 40 CFR Appendix G to part 50, EPA Reference Method for the Determination of Lead in Suspended Particulate Matter Collected From Ambient Air. The filter samples are...

  19. Profiling quinones in ambient air samples collected from the Athabasca region (Canada).

    PubMed

    Wnorowski, Andrzej; Charland, Jean-Pierre

    2017-12-01

    This paper presents new findings on polycyclic aromatic hydrocarbon oxidation products-quinones that were collected in ambient air samples in the proximity of oil sands exploration. Quinones were characterized for their diurnal concentration variability, phase partitioning, and molecular size distribution. Gas-phase (GP) and particle-phase (PM) ambient air samples were collected separately in the summer; a lower quinone content was observed in the PM samples from continuous 24-h sampling than from combined 12-h sampling (day and night). The daytime/nocturnal samples demonstrated that nighttime conditions led to lower concentrations and some quinones not being detected. The highest quinone levels were associated with wind directions originating from oil sands exploration sites. The statistical correlation with primary pollutants directly emitted from oil sands industrial activities indicated that the bulk of the detected quinones did not originate directly from primary emission sources and that quinone formation paralleled a reduction in primary source NO x levels. This suggests a secondary chemical transformation of primary pollutants as the origin of the determined quinones. Measurements of 19 quinones included five that have not previously been reported in ambient air or in Standard Reference Material 1649a/1649b and seven that have not been previously measured in ambient air in the underivatized form. This is the first paper to report on quinone characterization in secondary organic aerosols originating from oil sands activities, to distinguish chrysenequinone and anthraquinone positional isomers in ambient air, and to report the requirement of daylight conditions for benzo[a]pyrenequinone and naphthacenequinone to be present in ambient air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. Monitoring activities of daily living based on wearable wireless body sensor network.

    PubMed

    Kańtoch, E; Augustyniak, P; Markiewicz, M; Prusak, D

    2014-01-01

    With recent advances in microprocessor chip technology, wireless communication, and biomedical engineering it is possible to develop miniaturized ubiquitous health monitoring devices that are capable of recording physiological and movement signals during daily life activities. The aim of the research is to implement and test the prototype of health monitoring system. The system consists of the body central unit with Bluetooth module and wearable sensors: the custom-designed ECG sensor, the temperature sensor, the skin humidity sensor and accelerometers placed on the human body or integrated with clothes and a network gateway to forward data to a remote medical server. The system includes custom-designed transmission protocol and remote web-based graphical user interface for remote real time data analysis. Experimental results for a group of humans who performed various activities (eg. working, running, etc.) showed maximum 5% absolute error compared to certified medical devices. The results are promising and indicate that developed wireless wearable monitoring system faces challenges of multi-sensor human health monitoring during performing daily activities and opens new opportunities in developing novel healthcare services.

  1. Active subjects of passive monitoring: responses to a passive monitoring system in low-income independent living

    PubMed Central

    BERRIDGE, CLARA

    2016-01-01

    Passive monitoring technology is beginning to be reimbursed by third-party payers in the United States of America. Given the low voluntary uptake of these technologies on the market, it is important to understand the concerns and perspectives of users, former users and non-users. In this paper, the range of ways older adults relate to passive monitoring in low-income independent-living residences is presented. This includes experiences of adoption, non-adoption, discontinuation and creative ‘misuse’. The analysis of interviews reveals three key insights. First, assumptions built into the technology about how older adults live present a problem for many users who experience unwanted disruptions and threats to their behavioural autonomy. Second, resident response is varied and challenges the dominant image of residents as passive subjects of a passive monitoring system. Third, the priorities of older adults (e.g. safety, autonomy, privacy, control, contact) are more diverse and multi-faceted than those of the housing organisation staff and family members (e.g. safety, efficiency) who drive the passive monitoring intervention. The tension between needs, desires and the daily lives of older adults and the technological solutions offered to them is made visible by their active responses, including resistance to them. This exposes the active and meaningful qualities of older adults’ decisions and practices. PMID:28239211

  2. Combining fast walking training and a step activity monitoring program to improve daily walking activity after stroke: a preliminary study

    PubMed Central

    Danks, Kelly A.; Pohlig, Ryan; Reisman, Darcy S.

    2016-01-01

    Objective To determine preliminary efficacy and to identify baseline characteristics predicting who would benefit most from fast walking training plus a step activity monitoring program (FAST+SAM) compared to fast walking training alone (FAST) in persons with chronic stroke. Design Randomized controlled trial with blinded assessors Setting Outpatient clinical research laboratory Participants 37 individuals greater than 6 months post-stroke. Interventions Subjects were assigned to either FAST which was walking training at their fastest possible speed on the treadmill (30 minutes) and over ground 3 times/week for 12 weeks or FAST plus a step activity monitoring program (FAST+SAM). The step activity monitoring program consisted of daily step monitoring with a StepWatch Activity monitor, goal setting, and identification of barriers to activity and strategies to overcome barriers. Main Outcome Measures Daily step activity metrics (steps/day, time walking/day), walking speed and six minute walk test distance (6MWT). Results There was a significant effect of time for both groups with all outcomes improving from pre to post-training, (all p<0.05). The FAST+SAM was superior to FAST for 6MWT (p=0.018), with a larger increase in the FAST+SAM group. The interventions had differential effectiveness based on baseline step activity. Sequential moderated regression models demonstrated that for subjects with baseline levels of step activity and 6MWT distances that were below the mean, the FAST+SAM intervention was more effective than FAST (1715±1584 vs. 254±933 steps/day, respectively; p<0.05 for overall model and ΔR2 for steps/day and 6MWT). Conclusions The addition of a step activity monitoring program to a fast walking training intervention may be most effective in persons with chronic stroke that have initial low levels of walking endurance and activity. Regardless of baseline performance, the FAST + SAM intervention was more effective for improving walking endurance. PMID

  3. Low-power sensor module for long-term activity monitoring.

    PubMed

    Leuenberger, Kaspar; Gassert, Roger

    2011-01-01

    Wearable sensor modules are a promising approach to collecting data on functional motor activities, both for repeated and long-term assessments, as well as to investigate the transfer of therapy to activities of daily living at home, but have so far either had limited sensing capabilities, or were not laid out for long-term monitoring. This paper presents ReSense, a miniature sensor unit optimized for long-term monitoring of functional activity. Inertial MEMS sensors capture accelerations along six degrees of freedom and a barometric pressure sensor serves as a precise altimeter. Data is written to an integrated memory card. The realized module measures Ø25 × 10 mm, weighs 10 g and can record continuously for 27 h at 25 Hz and over 22 h at 100 Hz. The integrated power-management system detects inactivity and extends the operating time by about a factor of two, as shown by initial 24 h recordings on five energetic healthy adults. The integrated barometric pressure sensor allowed to identify activities incorporating a change in altitude, such as going up/down stairs or riding an elevator. By taking into account data from the inertial sensors during the altitude changes, it becomes possible to distinguish between these two activities.

  4. Easy ambient sonic-spray ionization mass spectrometry combined with thin-layer chromatography.

    PubMed

    Haddad, Renato; Milagre, Humberto M S; Catharino, Rodrigo Ramos; Eberlin, Marcos N

    2008-04-15

    On-spot detection and analyte characterization on thin-layer chromatography (TLC) plates is performed via ambient desorption/ionization and (tandem) mass spectrometry detection, that is, via easy ambient sonic spray ionization mass spectrometry (EASI-MS). As proof-of-principle cases, mixtures of semipolar nitrogenated compounds as well as pharmaceutical drugs and vegetable oils have been tested. The technique has also been applied to monitor a chemical reaction of synthetic importance. EASI is the simplest and gentlest ambient ionization technique currently available, assisted solely by N2 (or air). It uses no voltages, no electrical discharges; no UV or laser beams, and no high temperature and is most easily implemented in all API mass spectrometers. TLC is also the simplest, fastest, and most easily performed chromatographic technique. TLC plus EASI-MS therefore provide a simple and advantageous combination of chromatographic separation and sensitive detection of the TLC spots as well as on-spot MS or MS/MS characterization. The favorable characteristics of TLC-EASI-MS indicate advantageous applications in several areas such as drug and oil analysis, phytochemistry and synthetic chemistry, forensics via reliable counterfeit detection, and quality control.

  5. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  6. A Wearable System for Real-Time Continuous Monitoring of Physical Activity

    PubMed Central

    2018-01-01

    Over the last decades, wearable systems have gained interest for monitoring of physiological variables, promoting health, and improving exercise adherence in different populations ranging from elite athletes to patients. In this paper, we present a wearable system for the continuous real-time monitoring of respiratory frequency (fR), heart rate (HR), and movement cadence during physical activity. The system has been experimentally tested in the laboratory (by simulating the breathing pattern with a mechanical ventilator) and by collecting data from one healthy volunteer. Results show the feasibility of the proposed device for real-time continuous monitoring of fR, HR, and movement cadence both in resting condition and during activity. Finally, different synchronization techniques have been investigated to enable simultaneous data collection from different wearable modules. PMID:29849993

  7. Effect of poverty on the relationship between personal exposures and ambient concentrations of air pollutants in Ho Chi Minh City

    NASA Astrophysics Data System (ADS)

    Mehta, Sumi; Sbihi, Hind; Dinh, Tuan Nguyen; Xuan, Dan Vu; Le Thi Thanh, Loan; Thanh, Canh Truong; Le Truong, Giang; Cohen, Aaron; Brauer, Michael

    2014-10-01

    Socioeconomic factors often affect the distribution of exposure to air pollution. The relationships between health, air pollution, and poverty potentially have important public health and policy implications, especially in areas of Asia where air pollution levels are high and income disparity is large. The objective of the study was to characterize the levels, determinants of exposure, and relationships between children personal exposures and ambient concentrations of multiple air pollutants amongst different socioeconomic segments of the population of Ho Chi Minh City, Vietnam. Using repeated (N = 9) measures personal exposure monitoring and determinants of exposure modeling, we compared daily average PM2.5, PM10, PM2.5 absorbance and NO2 concentrations measured at ambient monitoring sites to measures of personal exposures for (N = 64) caregivers of young children from high and low socioeconomic groups in two districts (urban and peri-urban), across two seasons. Personal exposures for both PM sizes were significantly higher among the poor compared to non-poor participants in each district. Absolute levels of personal exposures were under-represented by ambient monitors with median individual longitudinal correlations between personal exposures and ambient concentrations of 0.4 for NO2, 0.6 for PM2.5 and PM10 and 0.7 for absorbance. Exposures of the non-poor were more highly correlated with ambient concentrations for both PM size fractions and absorbance while those for NO2 were not significantly affected by socioeconomic position. Determinants of exposure modeling indicated the importance of ventilation quality, time spent in the kitchen, air conditioner use and season as important determinant of exposure that are not fully captured by the differences in socioeconomic position. Our results underscore the need to evaluate how socioeconomic position affects exposure to air pollution. Here, differential exposure to major sources of pollution, further influenced by

  8. 40 CFR 61.184 - Ambient air monitoring for inorganic arsenic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard... this subpart applies shall operate a continuous monitoring system for the measurement of inorganic... operator shall submit a written plan describing, and explaining the basis for, the design and adequacy of...

  9. 40 CFR 61.184 - Ambient air monitoring for inorganic arsenic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard... this subpart applies shall operate a continuous monitoring system for the measurement of inorganic... operator shall submit a written plan describing, and explaining the basis for, the design and adequacy of...

  10. 40 CFR 61.184 - Ambient air monitoring for inorganic arsenic.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard... this subpart applies shall operate a continuous monitoring system for the measurement of inorganic... operator shall submit a written plan describing, and explaining the basis for, the design and adequacy of...

  11. 4D monitoring of actively failing rockslopes

    NASA Astrophysics Data System (ADS)

    Rosser, Nick; Williams, Jack; Hardy, Richard; Brain, Matthew

    2017-04-01

    Assessing the conditions which promote rockfall to collapse relies upon detailed monitoring, ideally before, during and immediately after failure. With standard repeat surveys it is common that surveys do not coincide with or capture precursors, or that surveys are widely spaced relative to the timing and duration of driving forces such as storms. As a result gaining insight into the controls on failure and the timescales over which precursors operate remains difficult to establish with certainty, and establishing direct links between environmental conditions and rock-falls, or sequences of events prior to rockfall, remain difficult to define. To address this, we present analysis of a high-frequency 3D laser scan dataset captured using a new permanently installed system developed to constantly monitor actively failing rock slopes. The system is based around a time of flight laser scanner, integrated with and remotely controlled by dedicated controls and analysis software. The system is configured to capture data at 0.1 m spacing across > 22,000 m3 at up to 30 minute intervals. Here we present results captured with this system over a period of 9 months, spanning spring to winter 2015. Our analysis is focussed upon improving the understanding of the nature of small (< 1m^3) rockfalls falling from near vertical rock cliffs. We focus here on the development of a set of algorithms for differencing that trade-off the temporal resolution of frequent surveys (hourly) against high spatial resolution point clouds (< 0.05 m) to enhance the precision of change detection, allowing both deformation and detachments to be monitored through time. From this dataset we derive rockfall volume frequency distributions based upon short-interval surveys, and identify the presence and/or absence of precursors, in what we believe to be the first constant volumetric measurement of rock face erosion. The results hold implications for understanding of rockfall mechanics, but also for how

  12. Continuous Activity Monitoring During Concurrent Chemoradiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohri, Nitin, E-mail: ohri.nitin@gmail.com; Kabarriti, Rafi; Bodner, William R.

    Purpose: To perform a prospective trial testing the feasibility and utility of acquiring activity data as a measure of health status during concurrent chemoradiotherapy. Methods and Materials: Ambulatory patients who were planned for treatment with concurrent chemoradiotherapy with curative intent for cancers of the head and neck, lung, or gastrointestinal tract were provided with activity monitors before treatment initiation. Patients were asked to wear the devices continuously throughout the radiation therapy course. Step count data were downloaded weekly during radiation therapy and 2 and 4 weeks after radiation therapy completion. The primary objective was to demonstrate feasibility, defined as collection ofmore » step counts for 80% of the days during study subjects' radiation therapy courses. Secondary objectives included establishing step count as a dynamic predictor of unplanned hospitalization risk. Results: Thirty-eight enrolled patients were treated with concurrent chemoradiotherapy. Primary diagnoses included head and neck cancer (n=11), lung cancer (n=13), and a variety of gastrointestinal cancers (n=14). Step data were collected for 1524 of 1613 days (94%) during patients' radiation therapy courses. Fourteen patients were hospitalized during radiation therapy or within 4 weeks of radiation therapy completion. Cox regression modeling demonstrated a significant association between recent step counts (3-day average) and hospitalization risk, with a 38% reduction in the risk of hospitalization for every 1000 steps taken each day (hazard ratio 0.62, 95% confidence interval 0.46-0.83, P=.002). Inferior quality of life scores and impaired performance status were not associated with increased hospitalization risk. Conclusion: Continuous activity monitoring during concurrent chemoradiotherapy is feasible and well-tolerated. Step counts may serve as powerful, objective, and dynamic indicators of hospitalization risk.« less

  13. New screening approach for risk assessment of pesticides in ambient air

    NASA Astrophysics Data System (ADS)

    Yusà, Vicent; Coscollà, Clara; Millet, Maurice

    2014-10-01

    We present a novel screening approach for inhalation risk assessment of currently used pesticides (CUPs) in ambient air, based on the measurements of pesticide levels in the inhalable fraction of the particulate matter (PM10). Total concentrations in ambient air (gas + particle phases) were estimated using a theoretical model of distribution of semi-volatile organic compounds between the gas and the particulate phase based on the octanol-air partition (Koa) of each pesticide. The proposed approach was used in a pilot study conducted in a rural station in Valencia (Spain) from April through to October 2010. Twenty out of 82 analysed pesticides were detected in average concentrations ranging from 1.63 to 117.01 pg m-3. For adults, children and infants the estimated chronic inhalation risk, expressed as Hazard Quotient (HQ) was <1 for all pesticides. Likewise, the cumulative exposure for detected organophosphorus, pyrethroids and carbamates pesticides, was estimated using as metrics the Hazard Index (HI), which was less than 1 for the three families of pesticides assessed. The cancer risk estimated for the detected pesticides classified as Likely or Possible carcinogens was less than 1.15E-7 for infants. In our opinion, the screening approach proposed could be used in the monitoring and risk assessment of pesticides in ambient air.

  14. A framework for supervising lifestyle diseases using long-term activity monitoring.

    PubMed

    Han, Yongkoo; Han, Manhyung; Lee, Sungyoung; Sarkar, A M Jehad; Lee, Young-Koo

    2012-01-01

    Activity monitoring of a person for a long-term would be helpful for controlling lifestyle associated diseases. Such diseases are often linked with the way a person lives. An unhealthy and irregular standard of living influences the risk of such diseases in the later part of one's life. The symptoms and the initial signs of these diseases are common to the people with irregular lifestyle. In this paper, we propose a novel healthcare framework to manage lifestyle diseases using long-term activity monitoring. The framework recognizes the user's activities with the help of the sensed data in runtime and reports the irregular and unhealthy activity patterns to a doctor and a caregiver. The proposed framework is a hierarchical structure that consists of three modules: activity recognition, activity pattern generation and lifestyle disease prediction. We show that it is possible to assess the possibility of lifestyle diseases from the sensor data. We also show the viability of the proposed framework.

  15. A Survey on Ambient Intelligence in Health Care.

    PubMed

    Acampora, Giovanni; Cook, Diane J; Rashidi, Parisa; Vasilakos, Athanasios V

    2013-12-01

    Ambient Intelligence (AmI) is a new paradigm in information technology aimed at empowering people's capabilities by the means of digital environments that are sensitive, adaptive, and responsive to human needs, habits, gestures, and emotions. This futuristic vision of daily environment will enable innovative human-machine interactions characterized by pervasive, unobtrusive and anticipatory communications. Such innovative interaction paradigms make ambient intelligence technology a suitable candidate for developing various real life solutions, including in the health care domain. This survey will discuss the emergence of ambient intelligence (AmI) techniques in the health care domain, in order to provide the research community with the necessary background. We will examine the infrastructure and technology required for achieving the vision of ambient intelligence, such as smart environments and wearable medical devices. We will summarize of the state of the art artificial intelligence methodologies used for developing AmI system in the health care domain, including various learning techniques (for learning from user interaction), reasoning techniques (for reasoning about users' goals and intensions) and planning techniques (for planning activities and interactions). We will also discuss how AmI technology might support people affected by various physical or mental disabilities or chronic disease. Finally, we will point to some of the successful case studies in the area and we will look at the current and future challenges to draw upon the possible future research paths.

  16. Ambient-Light-Canceling Camera Using Subtraction of Frames

    NASA Technical Reports Server (NTRS)

    Morookian, John Michael

    2004-01-01

    The ambient-light-canceling camera (ALCC) is a proposed near-infrared electronic camera that would utilize a combination of (1) synchronized illumination during alternate frame periods and (2) subtraction of readouts from consecutive frames to obtain images without a background component of ambient light. The ALCC is intended especially for use in tracking the motion of an eye by the pupil center corneal reflection (PCCR) method. Eye tracking by the PCCR method has shown potential for application in human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological deficiencies. In the PCCR method, an eye is illuminated by near-infrared light from a lightemitting diode (LED). Some of the infrared light is reflected from the surface of the cornea. Some of the infrared light enters the eye through the pupil and is reflected from back of the eye out through the pupil a phenomenon commonly observed as the red-eye effect in flash photography. An electronic camera is oriented to image the user's eye. The output of the camera is digitized and processed by algorithms that locate the two reflections. Then from the locations of the centers of the two reflections, the direction of gaze is computed. As described thus far, the PCCR method is susceptible to errors caused by reflections of ambient light. Although a near-infrared band-pass optical filter can be used to discriminate against ambient light, some sources of ambient light have enough in-band power to compete with the LED signal. The mode of operation of the ALCC would complement or supplant spectral filtering by providing more nearly complete cancellation of the effect of ambient light. In the operation of the ALCC, a near-infrared LED would be pulsed on during one camera frame period and off during the next frame period. Thus, the scene would be illuminated by both the LED (signal) light and the ambient (background) light

  17. Bioluminescence Monitoring of Neuronal Activity in Freely Moving Zebrafish Larvae

    PubMed Central

    Knafo, Steven; Prendergast, Andrew; Thouvenin, Olivier; Figueiredo, Sophie Nunes; Wyart, Claire

    2017-01-01

    The proof of concept for bioluminescence monitoring of neural activity in zebrafish with the genetically encoded calcium indicator GFP-aequorin has been previously described (Naumann et al., 2010) but challenges remain. First, bioluminescence signals originating from a single muscle fiber can constitute a major pitfall. Second, bioluminescence signals emanating from neurons only are very small. To improve signals while verifying specificity, we provide an optimized 4 steps protocol achieving: 1) selective expression of a zebrafish codon-optimized GFP-aequorin, 2) efficient soaking of larvae in GFP-aequorin substrate coelenterazine, 3) bioluminescence monitoring of neural activity from motor neurons in free-tailed moving animals performing acoustic escapes and 4) verification of the absence of muscle expression using immunohistochemistry. PMID:29130058

  18. 77 FR 59664 - Agency Information Collection Activities: Extension Requested; Comments Requested, Monitoring...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... DEPARTMENT OF JUSTICE [OMB Number 1103-0100] Agency Information Collection Activities: Extension Requested; Comments Requested, Monitoring Information Collections ACTION: 60-day notice. The Department of.... (2) Title of the Form/Collection: Monitoring Information Collections. (3) Agency form number, if any...

  19. Active Monitoring of Travelers for Ebola Virus Disease-New York City, October 25, 2014-December 29, 2015.

    PubMed

    Saffa, Alhaji; Tate, Anna; Ezeoke, Ifeoma; Jacobs-Wingo, Jasmine; Iqbal, Maryam; Baumgartner, Jennifer; Fine, Anne; Perri, Bianca R; McIntosh, Natasha; Levy Stennis, Natalie; Lee, Kristen; Peterson, Eric; Jones, Lucretia; Helburn, Lisa; Heindrichs, Caroline; Guthartz, Seth; Chamany, Shadi; Starr, David; Scaccia, Allison; Raphael, Marisa; Varma, Jay K; Vora, Neil M

    The CDC recommended active monitoring of travelers potentially exposed to Ebola virus during the 2014 West African Ebola virus disease outbreak, which involved daily contact between travelers and health authorities to ascertain the presence of fever or symptoms for 21 days after the travelers' last potential Ebola virus exposure. From October 25, 2014, to December 29, 2015, the New York City Department of Health and Mental Hygiene (DOHMH) monitored 5,359 persons for Ebola virus disease, corresponding to 5,793 active monitoring events. Most active monitoring events were in travelers classified as low (but not zero) risk (n = 5,778; 99%). There were no gaps in contact with DOHMH of ≥2 days during 95% of active monitoring events. Instances of not making any contact with travelers decreased after CDC began distributing mobile telephones at the airport. Ebola virus disease-like symptoms or a temperature ≥100.0°F were reported in 122 (2%) active monitoring events. In the final month of active monitoring, an optional health insurance enrollment referral was offered for interested travelers, through which 8 travelers are known to have received coverage. Because it is possible that active monitoring will be used again for an infectious threat, the experience we describe might help to inform future such efforts.

  20. Large Subduction Earthquake Simulations using Finite Source Modeling and the Offshore-Onshore Ambient Seismic Field

    NASA Astrophysics Data System (ADS)

    Viens, L.; Miyake, H.; Koketsu, K.

    2016-12-01

    Large subduction earthquakes have the potential to generate strong long-period ground motions. The ambient seismic field, also called seismic noise, contains information about the elastic response of the Earth between two seismic stations that can be retrieved using seismic interferometry. The DONET1 network, which is composed of 20 offshore stations, has been deployed atop the Nankai subduction zone, Japan, to continuously monitor the seismotectonic activity in this highly seismically active region. The surrounding onshore area is covered by hundreds of seismic stations, which are operated the National Research Institute for Earth Science and Disaster Prevention (NIED) and the Japan Meteorological Agency (JMA), with a spacing of 15-20 km. We retrieve offshore-onshore Green's functions from the ambient seismic field using the deconvolution technique and use them to simulate the long-period ground motions of moderate subduction earthquakes that occurred at shallow depth. We extend the point source method, which is appropriate for moderate events, to finite source modeling to simulate the long-period ground motions of large Mw 7 class earthquake scenarios. The source models are constructed using scaling relations between moderate and large earthquakes to discretize the fault plane of the large hypothetical events into subfaults. Offshore-onshore Green's functions are spatially interpolated over the fault plane to obtain one Green's function for each subfault. The interpolated Green's functions are finally summed up considering different rupture velocities. Results show that this technique can provide additional information about earthquake ground motions that can be used with the existing physics-based simulations to improve seismic hazard assessment.