Science.gov

Sample records for activities including anti-tumor

  1. Identification of the anti-tumor activity and mechanisms of nuciferine through a network pharmacology approach

    PubMed Central

    Qi, Quan; Li, Rui; Li, Hui-ying; Cao, Yu-bing; Bai, Ming; Fan, Xiao-jing; Wang, Shu-yan; Zhang, Bo; Li, Shao

    2016-01-01

    Aim: Nuciferine is an aporphine alkaloid extracted from lotus leaves, which is a raw material in Chinese medicinal herb for weight loss. In this study we used a network pharmacology approach to identify the anti-tumor activity of nuciferine and the underlying mechanisms. Methods: The pharmacological activities and mechanisms of nuciferine were identified through target profile prediction, clustering analysis and functional enrichment analysis using our traditional Chinese medicine (TCM) network pharmacology platform. The anti-tumor activity of nuciferine was validated by in vitro and in vivo experiments. The anti-tumor mechanisms of nuciferine were predicted through network target analysis and verified by in vitro experiments. Results: The nuciferine target profile was enriched with signaling pathways and biological functions, including “regulation of lipase activity”, “response to nicotine” and “regulation of cell proliferation”. Target profile clustering results suggested that nuciferine to exert anti-tumor effect. In experimental validation, nuciferine (0.8 mg/mL) markedly inhibited the viability of human neuroblastoma SY5Y cells and mouse colorectal cancer CT26 cells in vitro, and nuciferine (0.05 mg/mL) significantly suppressed the invasion of 6 cancer cell lines in vitro. Intraperitoneal injection of nuciferine (9.5 mg/mL, ip, 3 times a week for 3 weeks) significantly decreased the weight of SY5Y and CT26 tumor xenografts in nude mice. Network target analysis and experimental validation in SY5Y and CT26 cells showed that the anti-tumor effect of nuciferine was mediated through inhibiting the PI3K-AKT signaling pathway and IL-1 levels in SY5Y and CT26 cells. Conclusion: By using a TCM network pharmacology method, nuciferine is identified as an anti-tumor agent against human neuroblastoma and mouse colorectal cancer in vitro and in vivo, through inhibiting the PI3K-AKT signaling pathways and IL-1 levels. PMID:27180984

  2. Anti-tumor activity of a polysaccharide from blueberry.

    PubMed

    Sun, Xiyun; Liu, Ning; Wu, Zhaoxia; Feng, Ying; Meng, Xianjun

    2015-01-01

    Blueberries (Vaccinium spp.) are rich in bioactive compounds. However, the biological activity of polysaccharides from blueberry has not been reported so far. This study evaluated the anti-tumor and immunological activities of a polysaccharide (BBP3-1) from blueberry in S180-bearing mice. The experimental results indicated that BBP3-1 (100 mg·kg-1·d-1) inhibited the tumor growth rate by 73.4%. Moreover, this group, compared with the model control, had shown an effect of increasing both the spleen and thymus indices (p < 0.05), increasing phagocytosis by macrophages (p < 0.05), boosting the proliferation and transformation of lymphocytes (p < 0.01), promoting the secretion of TNF-α, IFN-γ, and IL-2 (p < 0.05) and improving NK cell activity (p < 0.01). From this study, we could easily conclude that BBP3-1 has the ability to inhibit tumor progression and could act as a good immunomodulator. PMID:25734419

  3. [Progress in study of chemical constituents and anti-tumor activities of Cnidium monnieri].

    PubMed

    Zhou, Ze-wei; Liu, Pei-xun

    2005-09-01

    The main pharmacological constituents of Chinese traditional medicine herb Cnidium monnieri are coumarin compounds and volatile oil. In addition, it contains monoterpene polyols, glucides, as well as recently discovered sesquiterpene components. In recent years, rather active investigations of its anti-tumor were performed at home and abroad. C. monnieri possesses multi-aspect and comprehensive anti-tumor functions, involving directly tumor-inhibitory activity, anti-mutagenicity, reversing multi-drug tolerance of tumor, as well as improving immune functions and so on. In this review, chemical constituents, anti-tumor activities and relevant investigations of Fructus Cnidii were summarized recent decade. PMID:16323535

  4. 5α-reductase inhibitors, antiviral and anti-tumor activities of some steroidal cyanopyridinone derivatives.

    PubMed

    Al-Mohizea, Abdullah M; Al-Omar, Mohamed A; Abdalla, Mohamed M; Amr, Abdel-Galil E

    2012-01-01

    We herein report the 5α-reductase inhibitors, antiviral and anti-tumor activities of some synthesized heterocyclic cyanopyridone and cyanothiopyridone derivatives fused with steroidal structure. Initially the acute toxicity of the compounds was assayed via the determination of their LD(50). All the compounds, except 3b, were interestingly less toxic than the reference drug (Prednisolone(®)). Seventeen heterocyclic derivatives containing a cyanopyridone or cyanothiopyridone rings fused to a steroidal moiety were synthesized and screened for their 5α-reductase inhibitors, antiviral and anti-tumor activities comparable to that of Anastrozole, Bicalutamide, Efavirenz, Capravirine, Ribavirin, Oseltamivir and Amantadine as the reference drugs. Some of the compounds exhibited better 5α-reductase inhibitors, antiviral and anti-tumor activities than the reference drugs. The detailed 5α-reductase inhibitors, antiviral and anti-tumor activities of the synthesized compounds were reported. PMID:22057085

  5. [Primary research on anti-tumor activity of panaxadiol fatty acid esters].

    PubMed

    Zhang, Chun-Hong; Zhang, Lian-Xue; Li, Xiang-Gao; Gao, Yu-Gang; Liu, Ya-Jing

    2006-11-01

    For making use of Ginseng resources and finding new anti-tumor drugs, the anti-tumor activity of three kinds of new panaxadiol fatty acid ester derivates: 3beta-acetoxy panaxadiol (I), 3beta-palmitic acid aceloxy panaxadiol (II), 3beta-octadecanoic acid aceloxy panaxadiol (Ill) and panaxaiol were compared through the method of cell stain and counting. Tumor cell was Vero cell line. Positive control was 5-FU. Blank was RPM11640 culture medium. Negative control was RPM11640 culture medium and the solvent for subjected drugs. The result showed that compound I had the strongest anti-tumor activity, second was panaxadiol, II and III had the same and the weakest antitumor activity. Furthermore, the anti-tumor activities of panaxadiol fatty acid ester derivates showed positive correlation with subjects' concentrations, but no relationship with molecular weight of fatty acid. PMID:17228662

  6. The oncolytic virus ΔPK has multimodal anti-tumor activity.

    PubMed

    Aurelian, Laure; Bollino, Dominique; Colunga, Aric

    2016-07-01

    Oncolytic viruses (OVs) are an emerging cancer therapeutic, with a near complete absence of serious adverse effects. However, clinical efficacy is relatively modest, related to poor tumor penetration, failure to lyse cancer stem cells (CSCs) and blockade of immunogenic cell death by the immunosuppressive tumor microenvironment. To overcome such limitations, we developed an OV (known as ΔPK) with multimodal anti-tumor activity. ΔPK has potent anti-tumor activity both in melanoma cell lines and xenograft animal models, associated with virus replication and the induction of multiple independent programmed cell death pathways. It lyses CSCs through autophagy modulation and it reverses the immunosuppressive tumor microenvironment by altering the balance of cytokines secreted by the tumor cells. This includes decreased tumor cell secretion of the immunosuppressive and procancerous cytokines IL-10 and IL-18 and concomitant increased secretion of the proinflammatory cytokines TNF-α, GM-CSF, IL-6 and IL-1β. ΔPK also upregulates the NKG2D ligand, MICA expressed by cytotoxic NK and T cells, and downregulates the negative immune checkpoint regulator cytotoxic T-lymphocyte antigen-4 (CTLA-4). ΔPK is well tolerated in human patients in whom it also alters the Th1/Th2 balance. Further studies are designed to elucidate the role of these contributions in different tumor types. PMID:27242376

  7. Anti-tumor activity of benzylideneacetophenone derivatives via proteasomal inhibition in prostate cancer cells.

    PubMed

    Lee, Yun-hee; Yun, Jaesuk; Jung, Jae-Chul; Oh, Seikwan; Jung, Young-Suk

    2016-05-01

    A number of some chalcone derivatives possess promising biological properties including anti-inflammation, anti-oxidant, and anti-tumor activity. Although it has been shown that some derivatives of chalcone induce apoptosis in different kinds of cancer cells, the involved mechanism of action is not well defined. The purpose of this study is to investigate the primary target of a benzylideneacetophenone derivative (JC3), which is a synthetic compound derived from the chalcone family, in human cancer, using prostate cancer cells as a working model. Herein, we show that JC3 inhibits proteasomal activity as indicated by both in vitro and in cell-based assays. Especially, the JC3-dimer was more potent than monomer in the aspect of proteasome inhibition, which induced apoptosis significantly in the prostate cancer cells. Owing to the critical roles of the proteasome in the biology of human tumor progression, invasion, and metastasis, these findings give an important clue for the development of novel anti-tumor agents. PMID:27348972

  8. Anti-microorganism, anti-tumor, and immune activities of a novel polysaccharide isolated from Tricholoma matsutake

    PubMed Central

    Hou, Yiling; Ding, Xiang; Hou, Wanru; Zhong, Jie; Zhu, Hongqing; Ma, Binxiang; Xu, Ting; Li, Junhua

    2013-01-01

    Background: Many more fungal polysaccharides have been reported to exhibit a variety of biological activities, including anti-tumor, immunostimulation, anti-oxidation, and so on. The non-starch polysaccharides have emerged as an important class of bioactive natural products. Objective: To investigate the anti-microorganism, anti-tumor, and immune activities of a novel polysaccharide (TMP-A) isolated from Tricholoma matsutake. Materials and Methods: The anti-microorganism activity of purified polysaccharides (TMP-A) was evaluated by the inhibition zone diameter, the anti-tumor activity was evaluated by the S180 tumor cells that were implanted subcutaneously into the Kunming strain male mice in vivo, and the immune activity was evaluated by lymphocyte proliferation and macrophage stimulation, respectively. Results: In this study, the most susceptible bacteria of TMP-A at a concentration of 20 mg/ml was Micrococcus lysodeikticus (inhibition zone diameter 24.38 ± 1.19 mm) and the TMP-A did not show any antifungal activity for the tested stains of the fungi. In addition, the inhibitory rate in mice treated with 80 mg/kg TMP-A could reach 68.422%, being the highest in the three doses, which might be comparable to mannatide. The anti-tumor activity of the TMP-A was usually believed to be a consequence of the stimulation of the cell-mediated immune response, because it could significantly promote the lymphocyte and macrophage cells in the dose range of 50–200 μg/mL and in the dose range of 100 – 400 μg/mL in vitro, respectively. Discussion and Conclusion: The results obtained in the present study indicate that the purification polysaccharide of Tricholoma matsutake is a potential source of natural broad-spectrum, anti-microorganism, anti-tumor, and immunomodulation. PMID:23930009

  9. Ganoderma lucidum polysaccharide exerts anti-tumor activity via MAPK pathways in HL-60 acute leukemia cells.

    PubMed

    Yang, Guohua; Yang, Lei; Zhuang, Yun; Qian, Xifeng; Shen, Yunfeng

    2016-01-01

    In this study, we investigated the anti-tumor activity both in vitro and in vivo of a polysaccharide obtained from Ganoderma lucidum on HL-60 acute myeloid leukemia cells, and focused on its targeting effect on mitogen-activated protein kinase (MAPK) pathways. It was found by the methods such as western blot and flow cytometry (FCM), that G. lucidum polysaccharide (GLP) blocked the extracellular signal-regulated kinase/MAPK signaling pathway, simultaneously activated p38 and JNK MAPK pathways, and therefore regulated their downstream genes and proteins, including p53, c-myc, c-fos, c-jun, Bcl-2, Bax, cleaved caspase-3 and cyclin D1. As a result, cycle arrest and apoptosis of HL-60 cells were induced. Therefore, GLP exerted anti-tumor activity via MAPK pathways in HL-60 acute leukemia cells. PMID:25327706

  10. Gamma-irradiated bacterial preparation having anti-tumor activity

    SciTech Connect

    Vass, A.A.; Tyndall, R.L.; Terzaghi-Howe, P.

    1999-11-16

    This application describes a bacterial preparation from Pseudomonas species isolated {number{underscore}sign}15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  11. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOEpatents

    Vass, Arpad A.; Tyndall, Richard L.; Terzaghi-Howe, Peggy

    1999-01-01

    A bacterial preparation from Pseudomonas species isolated #15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  12. Anti-tumor-promoting activity of lignans from the aerial part of Saussurea medusa.

    PubMed

    Takasaki, M; Konoshima, T; Komatsu, K; Tokuda, H; Nishino, H

    2000-09-29

    In the course of our continuing search for novel cancer chemopreventive agents from natural sources, several kinds of Compositae plants were screened. Consequently, the lignans, arctiin (ARC) and arctigenin (ARC-G), were obtained from the aerial part of Saussurea medusaas active constituents. These compounds exhibited the remarkable anti-tumor-promoting effect on two-stage carcinogenesis test of mouse skin tumors induced by 7, 12-dimethylbenz[a]anthracene as an initiator and 12-O-tetradecanoyl phorbol-13-acetate as a promoter by both topical application and oral administration. Furthermore, ARC-G exhibited potent anti-tumor-promoting activity on two-stage carcinogenesis test of mouse pulmonary tumors induced by 4-nitroquinoline-N-oxide as an initiator and glycerol as a promoter. PMID:10940509

  13. The antimicrobial peptide pardaxin exerts potent anti-tumor activity against canine perianal gland adenoma

    PubMed Central

    Pan, Chieh-Yu; Lin, Chao-Nan; Chiou, Ming-Tang; Yu, Chao Yuan; Chen, Jyh-Yih; Chien, Chi-Hsien

    2015-01-01

    Pardaxin is an antimicrobial peptide of 33 amino acids, originally isolated from marine fish. We previously demonstrated that pardaxin has anti-tumor activity against murine fibrosarcoma, both in vitro and in vivo. In this study, we examined the anti-tumor activity, toxicity profile, and maximally-tolerated dose of pardaxin treatment in dogs with different types of refractory tumor. Local injection of pardaxin resulted in a significant reduction of perianal gland adenoma growth between 28 and 38 days post-treatment. Surgical resection of canine histiocytomas revealed large areas of ulceration, suggesting that pardaxin acts like a lytic peptide. Pardaxin treatment was not associated with significant variations in blood biochemical parameters or secretion of immune-related proteins. Our findings indicate that pardaxin has strong therapeutic potential for treating perianal gland adenomas in dogs. These data justify the veterinary application of pardaxin, and also provide invaluable information for veterinary medicine and future human clinical trials. PMID:25544775

  14. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    SciTech Connect

    Peters, Diane E.; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A.; Leppla, Stephen H.; Bugge, Thomas H.

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti-tumor

  15. Models for anti-tumor activity of bisphosphonates using refined topochemical descriptors

    NASA Astrophysics Data System (ADS)

    Goyal, Rakesh K.; Singh, G.; Madan, A. K.

    2011-10-01

    An in silico approach comprising of decision tree (DT), random forest (RF) and moving average analysis (MAA) was successfully employed for development of models for prediction of anti-tumor activity of bisphosphonates. A dataset consisting of 65 analogues of both nitrogen-containing and non-nitrogen-containing bisphosphonates was selected for the present study. Four refinements of eccentric distance sum topochemical index termed as augmented eccentric distance sum topochemical indices 1-4 ( {ξ_{{1c}}^{{ADS}},ξ_{{2c}}^{{ADS}},ξ_{{3c}}^{{ADS}},ξ_{{4c}}^{{ADS}}} ) have been proposed so as to significantly augment discriminating power. Proposed topological indices (TIs) along with the exiting TIs (>1,400) were subsequently utilized for development of models for prediction of anti-tumor activity of bisphosphonates. A total of 43 descriptors of diverse nature, from a large pool of molecular descriptors, calculated through E-Dragon software (version 1.0) and an in-house computer program were selected for development of suitable models by employing DT, RF and MAA. DT identified two TIs as most important and classified the analogues of the dataset with an accuracy of 97% in training set and 90.7% in tenfold cross-validated set. Random forest correctly classified the analogues with an accuracy of 89.2%. Four independent models developed through MAA predicted the activity of analogues of the dataset with an accuracy of 87.6% to 89%. The statistical significance of proposed models was assessed through intercorrelation analysis, specificity, sensitivity and Matthew's correlation coefficient. The proposed models offer a vast potential for providing lead structures for development of potent anti-tumor agents for treatment of cancer that has spread to the bone.

  16. Biodegradable nanoassemblies of piperlongumine display enhanced anti-angiogenesis and anti-tumor activities.

    PubMed

    Liu, Yuanyuan; Chang, Ying; Yang, Chao; Sang, Zitai; Yang, Tao; Ang, Wei; Ye, Weiwei; Wei, Yuquan; Gong, Changyang; Luo, Youfu

    2014-04-21

    Piperlongumine (PL) shows an inhibitory effect on tumor growth; however, lipophilicity has restricted its further applications. Nanotechnology provides an effective method to overcome the poor water solubility of lipophilic drugs. Polymeric micelles with small particle size can passively target tumors by the enhanced permeability and retention (EPR) effect, thus improving their anti-tumor effects. In this study, to improve the water solubility and anti-tumor activity of PL, PL encapsulated polymeric micelles (PL micelles) were prepared by a solid dispersion method. The prepared PL micelles showed a small particle size and high encapsulation efficiency, which could be lyophilized into powder, and the re-dissolved PL micelles are homogenous and stable in water. In addition, a sustained release behavior of PL micelles was observed in vitro. Encapsulation of PL into polymeric micelles could increase the cytotoxicity, cellular uptake, reactive oxygen species (ROS) and oxidized glutathione (GSSG), and reduce glutathione (GSH) levels in vitro. Encapsulation of PL into polymeric micelles enhanced its inhibitory effect on neovascularization both in vitro and in vivo. Compared with free PL, PL micelles showed a stronger inhibitory effect on the proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs). Additionally, in a transgenic zebrafish model, embryonic angiogenesis was inhibited by PL micelles. Furthermore, PL micelles were more effective in inhibiting tumor growth and prolonging survival in a subcutaneous CT-26 murine tumor model in vivo. Therefore, our data revealed that the encapsulation of PL into biodegradable polymeric micelles enhanced its anti-angiogenesis and anti-tumor activities both in vitro and in vivo. PMID:24622772

  17. Biodegradable nanoassemblies of piperlongumine display enhanced anti-angiogenesis and anti-tumor activities

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyuan; Chang, Ying; Yang, Chao; Sang, Zitai; Yang, Tao; Ang, Wei; Ye, Weiwei; Wei, Yuquan; Gong, Changyang; Luo, Youfu

    2014-03-01

    Piperlongumine (PL) shows an inhibitory effect on tumor growth; however, lipophilicity has restricted its further applications. Nanotechnology provides an effective method to overcome the poor water solubility of lipophilic drugs. Polymeric micelles with small particle size can passively target tumors by the enhanced permeability and retention (EPR) effect, thus improving their anti-tumor effects. In this study, to improve the water solubility and anti-tumor activity of PL, PL encapsulated polymeric micelles (PL micelles) were prepared by a solid dispersion method. The prepared PL micelles showed a small particle size and high encapsulation efficiency, which could be lyophilized into powder, and the re-dissolved PL micelles are homogenous and stable in water. In addition, a sustained release behavior of PL micelles was observed in vitro. Encapsulation of PL into polymeric micelles could increase the cytotoxicity, cellular uptake, reactive oxygen species (ROS) and oxidized glutathione (GSSG), and reduce glutathione (GSH) levels in vitro. Encapsulation of PL into polymeric micelles enhanced its inhibitory effect on neovascularization both in vitro and in vivo. Compared with free PL, PL micelles showed a stronger inhibitory effect on the proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs). Additionally, in a transgenic zebrafish model, embryonic angiogenesis was inhibited by PL micelles. Furthermore, PL micelles were more effective in inhibiting tumor growth and prolonging survival in a subcutaneous CT-26 murine tumor model in vivo. Therefore, our data revealed that the encapsulation of PL into biodegradable polymeric micelles enhanced its anti-angiogenesis and anti-tumor activities both in vitro and in vivo.

  18. A natural diterpenoid kamebacetal A with anti-tumor activity: Theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Tang, Fu-ming; Zhang, Yi-Heng; Chen, Zhong

    2010-06-01

    Kamebacetal A ( 1) is an ent-kaurane diterpenoid isolated from Isodon racemosa (Hemsl) Hara. This natural product exhibits significant cytotoxicity against human Bel-7402 and HO-8910 tumor cells. The geometrical conformation of 1 has been optimized at the B3LYP/6-311+G(d) level of theory. The results indicated that the calculated geometric parameters are close to the X-ray crystal structure. The theoretical 13C NMR chemical shifts of 1 were also calculated at the GIAO-B3LYP level of theory with different basis sets. The calculated NMR chemical shifts are in closer agreement with the experimental results. A molecular electrostatic potential (MEP) map was used in an attempt to identify key features of the kamebacetal A to account for its anti-tumor activity. MEP investigations reveal that compound 1, which shows anti-tumor activity, possesses electron-rich regions that extend over the hydroxyl and carbonyl groups of compound 1. The data generated in this study is valuable as it provides an insight into kamebacetal A molecular and structure-activity relationships.

  19. Studies on immunoregulatory and anti-tumor activities of a polysaccharide from Salvia miltiorrhiza Bunge.

    PubMed

    Liu, Lei; Jia, Jun; Zeng, Guang; Zhao, Yan; Qi, Xingshun; He, Chuangye; Guo, Wengang; Fan, Daiming; Han, Guohong; Li, Zhanting

    2013-01-30

    In this study, we purified and characterized a polysaccharide (SMP-W1) from Salvia miltiorrhiza and investigated its anticancer and immunoregulatory potential in vitro and in vivo. The monosaccharide composition, protein content, uronic acid content, total carbohydrate content, viscosity and molecular weight of SMP-W1 were analyzed. In vitro, SMP-W1 had an antiproliferative effect on hepatocellular carcinoma H22 cells, especially at the high concentration of 400 μg/ml. Simultaneously the polysaccharide SMP-W1 significantly inhibited tumor growth and increased serum superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities in rats, as well as the secretion of TNF-α. In addition, the body weight, spleen index and thymus index in tumor-bearing mice were significantly improved by SMP-W1 treatment. Taken together, these results indicated that SMP-W1 possessed strong in vivo and in vitro anti-tumor activity and improves the immune response in tumor-bearing mice. Therefore, it could be developed as an anti-tumor agent with immunomodulatory activity. PMID:23218323

  20. Tivantinib (ARQ-197) exhibits anti-tumor activity with down-regulation of FAK in oral squamous cell carcinoma

    SciTech Connect

    Xi, Wei-Hong; Yang, Li-Yun; Cao, Zhong-Yi; Qian, Yong

    2015-02-20

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and the 5 years survival rate of the patients is about 60% in the USA, due to acquired chemotherapeutic resistance and metastasis of the disease. In this study, we found that tivantinib, a selective MET inhibitor, suppresses OCSS cell proliferation and colony formation, however, anti-tumor activities induced by tivantinib are independent of the inhibition of MET signaling pathway. In addition, tivantinib cause G2/M cell cycle arrest and caspases-dependent apoptosis in OSCC cell lines. We also found that tivantinib dose-dependently suppressed the activation and expression of FAK. In all, these data suggested that tivantinib may be developed as a chemotherapeutic agent to effectively treat certain cancers including OSCC. - Highlights: • Tivantinib suppresses OSCC cell growth independent of the inhibition of HGF/MET signaling pathway. • Tivantinib blocks cell cycle and induces caspases-mediated apoptosis. • Tivantinib elicits its anti-tumor activity with the inhibition of FAK signaling pathway.

  1. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Chang; Gould, Stephen; Nannini, Michelle; Qin, Ann; Deng, Yuzhong; Arrazate, Alfonso; Kam, Kimberly R.; Ran, Yingqing; Wong, Harvey

    2014-04-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.

  2. Clarification of the phenotypic characteristics and anti-tumor activity of Hedyotis diffusa.

    PubMed

    Lee, Hong-Zin; Bau, Da-Tian; Kuo, Chao-Lin; Tsai, Ru-Yin; Chen, Yu-Chang; Chang, Yu-Hao

    2011-01-01

    Hedyotis diffusa Willd. (Rubiaceae) is an important folk herb used to prevent and cure hepatitis and liver cancer in Taiwan. For differentiation of H. diffusa from counterfeits, macroscopic and microscopic characters of H. diffusa, H. corymbosa and H. tenelliflora were examined in this study. According to Trypan blue exclusion assay and Western blot analysis, H. diffusa had a significant inhibition of cell growth and induction of cell apoptosis in COLO 205 (colon cancer), Hep 3B (hepatocellular carcinoma) and H460 (lung cancer) cell lines. This study also used high-performance liquid chromatography (HPLC) to determine the quality control of H. diffusa. The HPLC data showed that ursolic and oleanolic acid are the components of the H. diffusa, consisting of approximately 4.66-4.80% and 1.86-1.96%, respectively. Our study also demonstrated that ursolic acid has significant anti-tumor activity in COLO 205, Hep 3B and H460 cancer cells. PMID:21213409

  3. Anti-tumor activity of CpG-ODN aerosol in mouse lung metastases.

    PubMed

    Sfondrini, Lucia; Sommariva, Michele; Tortoreto, Monica; Meini, Alessandra; Piconese, Silvia; Calvaruso, Marco; Van Rooijen, Nick; Bonecchi, Raffaella; Zaffaroni, Nadia; Colombo, Mario P; Tagliabue, Elda; Balsari, Andrea

    2013-07-15

    Studies in preclinical models have demonstrated the superior anti-tumor effect of CpG oligodeoxynucleotides (CpG-ODN) when administered at the tumor site rather than systemically. We evaluated the effect of aerosolized CpG-ODN on lung metastases in mice injected with immunogenic N202.1A mammary carcinoma cells or weakly immunogenic B16 melanoma cells. Upon reaching the bronchoalveolar space, aerosolized CpG-ODN activated a local immune response, as indicated by production of IL-12p40, IFN-γ and IL-1β and by recruitment and maturation of DC cells in bronchoalveolar lavage fluid of mice. Treatment with aerosolized CpG-ODN induced an expansion of CD4+ cells in lung and was more efficacious than systemic i.p. administration against experimental lung metastases of immunogenic N202.1A mammary carcinoma cells, whereas only i.p. delivery of CpG-ODN provided anti-tumor activity, which correlated with NK cell expansion in the lung, against lung metastases of the poorly immunogenic B16 melanoma. The inefficacy of aerosol therapy to induce NK expansion was related to the presence of immunosuppressive macrophages in B16 tumor-bearing lungs, as mice depleted of these cells by clodronate treatment responded to aerosol CpG-ODN through expansion of the NK cell population and significantly reduced numbers of lung metastases. Our results indicate that tumor immunogenicity and the tumor-induced immunosuppressive environment are critical factors to the success of CpG therapy in the lung, and point to the value of routine sampling of the lung immune environment in defining an optimal immunotherapeutic strategy. PMID:23319306

  4. Anti-tumor activity of calcitriol: pre-clinical and clinical studies.

    PubMed

    Trump, Donald L; Hershberger, Pamela A; Bernardi, Ronald J; Ahmed, Sharmilla; Muindi, Josephia; Fakih, Marwan; Yu, Wei-Dong; Johnson, Candace S

    2004-05-01

    1,25-Dihydroxycholecalciferol (calcitriol) is recognized widely for its effects on bone and mineral metabolism. Epidemiological data suggest that low Vitamin D levels may play a role in the genesis of prostate cancer and perhaps other tumors. Calcitriol is a potent anti-proliferative agent in a wide variety of malignant cell types. In prostate, breast, colorectal, head/neck and lung cancer as well as lymphoma, leukemia and myeloma model systems calcitriol has significant anti-tumor activity in vitro and in vivo. Calcitriol effects are associated with an increase in G0/G1 arrest, induction of apoptosis and differentiation, modulation of expression of growth factor receptors. Glucocorticoids potentiate the anti-tumor effect of calcitriol and decrease calcitriol-induced hypercalcemia. Calcitriol potentiates the antitumor effects of many cytotoxic agents and inhibits motility and invasiveness of tumor cells and formation of new blood vessels. Phase I and II trials of calcitriol either alone or in combination with carboplatin, taxanes or dexamethasone have been initiated in patients with androgen dependent and independent prostate cancer and advanced cancer. Data indicate that high-dose calcitriol is feasible on an intermittent schedule, no dose-limiting toxicity has been encountered and optimal dose and schedule are being delineated. Clinical responses have been seen with the combination of high dose calcitriol+dexamethasone in androgen independent prostate cancer (AIPC) and apparent potentiation of the antitumor effects of docetaxel have been seen in AIPC. These results demonstrate that high intermittent doses of calcitriol can be administered to patients without toxicity, that the MTD is yet to be determined and that calcitriol has potential as an anti-cancer agent. PMID:15225831

  5. T cells conditioned with MDSC show an increased anti-tumor activity after adoptive T cell based immunotherapy

    PubMed Central

    Raber, Patrick L.; Sierra, Rosa A.; Thevenot, Paul T.; Shuzhong, Zhang; Wyczechowska, Dorota D.; Kumai, Takumi; Celis, Esteban; Rodriguez, Paulo C.

    2016-01-01

    The success of adoptive T cell-based immunotherapy (ACT) in cancer is limited in part by the accumulation of myeloid-derived suppressor cells (MDSC), which block several T cell functions, including T cell proliferation and the expression of various cytotoxic mediators. Paradoxically, the inhibition of CD8+ T cell differentiation into cytotoxic populations increased their efficacy after ACT into tumor-bearing hosts. Therefore, we aimed to test the impact of conditioning CD8+ T cells with MDSC on their differentiation potential and ACT efficacy. Our results indicate that MDSC impaired the progression of CD8+ T cells into effector populations, without altering their activation status, production of IL-2, or signaling through the T cell receptor. In addition, culture of CD8+ T cells with MDSC resulted in an increased ACT anti-tumor efficacy, which correlated with a higher frequency of the transferred T cells and elevated IFNγ production. Interestingly, activated CD62L+ CD8+ Tcells were responsible for the enhanced anti-tumor activity showed by MDSC-exposed T cells. Additional results showed a decreased protein synthesis rate and lower activity of the mammalian/mechanistic target of rapamycin (mTOR) in T cells conditioned with MDSC. Silencing of the negative mTOR regulator tuberous sclerosis complex-2 in T cells co-cultured with MDSC restored mTOR activity, but resulted in T cell apoptosis. These results indicate that conditioning of T cells with MDSC induces stress survival pathways mediated by a blunted mTOR signaling, which regulated T cell differentiation and ACT efficacy. Continuation of this research will enable the development of better strategies to increase ACT responses in cancer. PMID:27007050

  6. Anti-tumor activity and the mechanism of SIP-S: A sulfated polysaccharide with anti-metastatic effect.

    PubMed

    Zong, Aizhen; Liu, Yuhong; Zhang, Yan; Song, Xinlei; Shi, Yikang; Cao, Hongzhi; Liu, Chunhui; Cheng, Yanna; Jiang, Wenjie; Du, Fangling; Wang, Fengshan

    2015-09-20

    Our previous studies demonstrated that SIP-S had anti-metastatic activity and inhibited the growth of metastatic foci. Here we report the anti-tumor and immunoregulatory potential of SIP-S. SIP-S could significantly inhibit tumor growth in S180-bearing mice, and the inhibition rates was 43.7% at 30 mg/kg d. Besides, SIP-S could improve the thymus and spleen indices of S180-bearing mice and the mice treated with CTX. The combination of SIP-S (15 mg/kg d) with CTX (12.5 mg/kg d) showed higher anti-tumor potency than CTX (25 mg/kg d) alone. These results indicated that SIP-S had immunoenhancing and anticancer activity, and the immunoenhancing activity might be one mechanism for its anti-tumor activity. Flow cytometry results showed that SIP-S could induce tumor cells apoptosis. Western blot analysis indicated that SIP-S could upregulate the expression of pro-apoptotic proteins, caspase-3, -8, -9 and Bax, and downregulate the expression of anti-apoptotic protein PARP-1 in tumor cells in a dose-dependent manner. In summary, SIP-S has anti-tumor activity, which may be associated with its immunostimulating and pro-apoptotic activity. PMID:26050887

  7. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities.

    PubMed

    Peters, Diane E; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A; Leppla, Stephen H; Bugge, Thomas H

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5-3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. PMID:24971906

  8. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Gandham, Ravi Kumar; Sahoo, A P; Harish, D R; Singh, Arvind Kumar; Tiwari, A K

    2016-02-01

    Many viral proteins have the ability to kill tumor cells specifically without harming the normal cells. These proteins, on ectopic expression, cause lysis or induction of apoptosis in the target tumor cells. Parvovirus NS1 is one of such proteins, which is known to kill high proliferating tumor cells. In the present study, we assessed the apoptosis inducing ability of canine parvovirus type 2 NS1 protein (CPV2.NS1) in vitro in 4T1 cells, and found it to cause significant cell death due to induction of apoptosis through intrinsic or mitochondrial pathway. Further, we also evaluated the oncolytic activity of CPV2.NS1 protein in a mouse mammary tumor model. The results suggested that CPV2.NS1 was able to inhibit the growth of 4T1 induced mouse mammary tumor as indicated by significantly reduced tumor volume, mitotic, AgNOR and PCNA indices. Further, inhibition of tumor growth was found to be because of induction of apoptosis in the tumor cells, which was evident by a significant increase in the number of TUNEL positive cells. Further, CPV2.NS1 was also able to stimulate the immune cells against the tumor antigens as indicated by the increased CD4+ and CD8+ counts in the blood of CVP2.NS1 treated mice. Further optimization of the delivery of NS1 protein and use of an adjuvant may further enhance its anti-tumor activity. PMID:26739427

  9. Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles.

    PubMed

    Gong, Changyang; Deng, Senyi; Wu, Qinjie; Xiang, Mingli; Wei, Xiawei; Li, Ling; Gao, Xiang; Wang, Bilan; Sun, Lu; Chen, Yishan; Li, Yuchen; Liu, Lei; Qian, Zhiyong; Wei, Yuquan

    2013-01-01

    For developing aqueous formulation and improving anti-tumor activity of curcumin (Cur), we prepared Cur encapsulated MPEG-PCL micelles by solid dispersion method without using any surfactants or toxic organic solvent. Cur micelles could be lyophilized into powder form without any cryoprotector or excipient, and the re-dissolved Cur micelles are homogenous and stable. Molecular modeling study suggested that Cur tended to interact with PCL serving as a core embraced by PEG as a shell. After Cur was encapsulated into polymeric micelles, cytotoxicity and cellular uptake were both increased. Cur micelles had a stronger inhibitory effect on proliferation, migration, invasion, and tube formation of HUVECs than free Cur. Besides, Cur micelles showed a sustained in vitro release behavior and slow extravasation from blood vessels in transgenic zebrafish model. Embryonic angiogenesis and tumor-induced angiogenesis were both dramatically inhibited by Cur micelles in transgenic zebrafish model. Furthermore, Cur micelles were more effective in inhibiting tumor growth and prolonged survival in both subcutaneous and pulmonary metastatic LL/2 tumor models. In pharmacokinetic and tissue distribution studies, Cur micelles showed higher concentration and longer retention time in plasma and tumors. Our findings suggested that Cur micelles may have promising applications in pulmonary carcinoma therapy. PMID:23164423

  10. Anti-angiogenesis and anti-tumor activity of recombinant anginex

    SciTech Connect

    Brandwijk, Ricardo J.M.G.E.; Dings, Ruud P.M.; Linden, Edith van der; Mayo, Kevin H.; Thijssen, Victor L.J.L.; Griffioen, Arjan W. . E-mail: aw.griffioen@path.unimaas.nl

    2006-10-27

    Anginex, a synthetic 33-mer angiostatic peptide, specifically inhibits vascular endothelial cell proliferation and migration along with induction of apoptosis in endothelial cells. Here we report on the in vivo characterization of recombinant anginex and use of the artificial anginex gene for gene therapy approaches. Tumor growth of human MA148 ovarian carcinoma in athymic mice was inhibited by 80% when treated with recombinant anginex. Histological analysis of the tumors showed an approximate 2.5-fold reduction of microvessel density, suggesting that angiogenesis inhibition is the cause of the anti-tumor effect. Furthermore, there was a significant correlation between the gene expression patterns of 16 angiogenesis-related factors after treatment with both recombinant and synthetic anginex. To validate the applicability of the anginex gene for gene therapy, stable transfectants of murine B16F10 melanoma cells expressing recombinant anginex were made. Supernatants of these cells inhibited endothelial cell proliferation in vitro. Furthermore, after subcutaneous injection of these cells in C57BL/6 mice, an extensive delay in tumor growth was observed. These data show that the artificial anginex gene can be used to produce a recombinant protein with similar activity as its synthetic counterpart and that the gene can be applied in gene therapy approaches for cancer treatment.

  11. Functional characterization of a chimeric soluble Fas ligand polymer with in vivo anti-tumor activity.

    PubMed

    Daburon, Sophie; Devaud, Christel; Costet, Pierre; Morello, Aurore; Garrigue-Antar, Laure; Maillasson, Mike; Hargous, Nathalie; Lapaillerie, Delphine; Bonneu, Marc; Dechanet-Merville, Julie; Legembre, Patrick; Capone, Myriam; Moreau, Jean-François; Taupin, Jean-Luc

    2013-01-01

    Binding of ligand FasL to its receptor Fas triggers apoptosis via the caspase cascade. FasL itself is homotrimeric, and a productive apoptotic signal requires that FasL be oligomerized beyond the homotrimeric state. We generated a series of FasL chimeras by fusing FasL to domains of the Leukemia Inhibitory Factor receptor gp190 which confer homotypic oligomerization, and analyzed the capacity of these soluble chimeras to trigger cell death. We observed that the most efficient FasL chimera, called pFasL, was also the most polymeric, as it reached the size of a dodecamer. Using a cellular model, we investigated the structure-function relationships of the FasL/Fas interactions for our chimeras, and we demonstrated that the Fas-mediated apoptotic signal did not solely rely on ligand-mediated receptor aggregation, but also required a conformational adaptation of the Fas receptor. When injected into mice, pFasL did not trigger liver injury at a dose which displayed anti-tumor activity in a model of human tumor transplanted to immunodeficient animals, suggesting a potential therapeutic use. Therefore, the optimization of the FasL conformation has to be considered for the development of efficient FasL-derived anti-cancer drugs targeting Fas. PMID:23326557

  12. Study on in-vivo anti-tumor activity of Verbena officinalis extract.

    PubMed

    Kou, Wei-Zheng; Yang, Jun; Yang, Qing-Hui; Wang, Ying; Wang, Zhi-Fen; Xu, Su-Ling; Liu, Jing

    2013-01-01

    We investigated the anti-tumor effects of Verbena officinalis extract on H22 tumor-bearing mice and its effect on immune function. Mice model of H22 solid tumor was established, the mice were divided into five groups and administered the extract, later, tumors were removed and inhibition rates were calculated; spleens were removed and spleen indices were calculated, and the sheep red blood cell-delayed-type hypersensitivity (SRBC-DTH) and the serum hemolysin level were determined. The Verbena officinalis extract had anti-tumor effect, with the inhibition rate reaching 38.78%, it also increased the spleen index to a certain extent, in addition, the changes in DTA and HA were not obvious compared with the model group. The Verbena officinalis extract had in vivo anti-tumor effect, while causing no damage on the immune function. PMID:24146482

  13. Liposomes Encapsulating 10-Hydroxycamptothecin-Cyclodextrin Complexes and Their In Vitro Anti-Tumor Activities.

    PubMed

    Chen, Yang; Chen, Cheng; Xiao, Yiyun; Zhang, Xiuzhen; Chen, Yuxiang

    2015-05-01

    Manufacturing and characterizing hydroxycamptothecin inclusion liposomes, establishing their quality standard and testing their in vitro anti-tumor activity is of significance for potential application. The neutralization agitation method was used to prepare hydroxycamptothecin inclusion and film evaporation method was utilized to manufacture hydroxycamptothecin inclusion liposomes. The phase solubility method, differential scanning calorimetry and infrared spectroscopy were used to identify the prepared inclusion complex. The hydroxycamptothecin inclusion liposomes were characterized for particle morphology, size, in vitro release and stability. The hepatoma (HepG-2), lung cancer (A549), and gastric cancer (SGC-7901) cell lines were used as models for preliminary evaluation of anti-cancer effect from the hydroxycamptothecin inclusion liposomes, done by MTT colorimetry, cytometer experiments, and apoptosis staining. The anti-cancer evaluation was compared with commercially available hydroxycamptothecin. The results showed the hydroxycamptothecin inclusion was successfully prepared by neutralization agitation method. Phase solubility method, differential scanning calorimetry and infrared spectroscopy proved the formation of the hydroxycamptothecin inclusion. The hydroxycamptothecin inclusion liposomes were successfully prepared by film evaporation method. (2) The inclusions were found to be spherical, with average particle size of 119.7 nm, zeta potential of - 45.6 mV, average inclusion rate of 70.55%, and drug-loading was 14.60%. The inclusions were also found to have a sustained release effect, when compared to the commercially available hydroxyccamptothecine. The hydroxyccamptothecine inclusion liposomes had better stability at 4 degrees. (3) The hydroxycamptothecin inclusion liposomes also exhibited better inhibition effect for the three kinds of cancer cell lines above, when compared to the commercially available hydroxycamptothecin the anti-cancer effect being

  14. Myeloma cells can corrupt senescent mesenchymal stromal cells and impair their anti-tumor activity

    PubMed Central

    Özcan, Servet; Alessio, Nicola; Acar, Mustafa Burak; Toprak, Güler; Gönen, Zeynep Burcin; Peluso, Gianfranco; Galderisi, Umberto

    2015-01-01

    Senescent cells secrete several molecules that help to prevent the progression of cancer. However, cancer cells can also misuse these secreted elements to survive and grow. Since the molecular and functional bases of these different elements remain poorly understood, we analyzed the effect of senescent mesenchymal stromal cell (MSC) secretome on the biology of ARH-77 myeloma cells. In addition to differentiating in mesodermal derivatives, MSCs have sustained interest among researchers by supporting hematopoiesis, contributing to tissue homeostasis, and modulating inflammatory response, all activities accomplished primarily by the secretion of cytokines and growth factors. Moreover, senescence profoundly affects the composition of MSC secretome. In this study, we induced MSC senescence by oxidative stress, DNA damage, and replicative exhaustion. While the first two are considered to induce acute senescence, extensive proliferation triggers replicative (i.e., chronic) senescence. We cultivated cancer cells in the presence of acute and chronic senescent MSC-conditioned media and evaluated their proliferation, DNA damage, apoptosis, and senescence. Our findings revealed that senescent secretomes induced apoptosis or senescence, if not both, to different extents. This anti-tumor activity became heavily impaired when secretomes were collected from senescent cells previously in contact (i.e., primed) with cancer cells. Our analysis of senescent MSC secretomes with LC-MS/MS followed by Gene Ontology classification further indicated that priming with cancer profoundly affected secretome composition by abrogating the production of pro-senescent and apoptotic factors. We thus showed for the first time that compared with cancer-primed MSCs, naïve senescent MSCs can exert different effects on tumor progression. PMID:26498687

  15. Anti-tumor activity of N-hydroxy-7-(2-naphthylthio) heptanomide, a novel histone deacetylase inhibitor

    SciTech Connect

    Kim, Dong Hoon; Lee, Jiyong; Kim, Kyung Noo; Kim, Hye Jin; Jeung, Hei Cheul; Chung, Hyun Cheol; Kwon, Ho Jeong . E-mail: kwonhj@yonsei.ac.kr

    2007-04-27

    Histone deacetylase (HDAC), a key enzyme in gene expression and carcinogenesis, is considered an attractive target molecule for cancer therapy. Here, we report a new synthetic small molecule, N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), as a HDAC inhibitor with anti-tumor activity both in vitro and in vivo. The compound inhibited HDAC enzyme activity as well as proliferation of human fibrosarcoma cells (HT1080) in vitro. Treatment of cells with HNHA elicited histone hyperacetylation leading to an up-regulation of p21 transcription, cell cycle arrest, and an inhibition of HT1080 cell invasion. Moreover, HNHA effectively inhibited the growth of tumor tissue in a mouse xenograph assay in vivo. Together, these data demonstrate that this novel HDAC inhibitor could be developed as a potential anti-tumor agent targeting HDAC.

  16. Doxorubicin loaded silica nanorattles actively seek tumors with improved anti-tumor effects

    NASA Astrophysics Data System (ADS)

    Gao, Fuping; Li, Linlin; Liu, Tianlong; Hao, Nanjing; Liu, Huiyu; Tan, Longfei; Li, Hongbo; Huang, Xinglu; Peng, Bo; Yan, Chuanmiao; Yang, Liuqing; Wu, Xiaoli; Chen, Dong; Tang, Fangqiong

    2012-05-01

    Silica nanorattles (SNs) have proven to be promising vehicles for drug delivery. In order to further enhance efficacy and minimize adverse effects, active targeted delivery to tumors is necessary. In this work, SNs modified with a tumor specific targeting ligand, folic acid (FA), was used as carrier of doxorubicin (DOX) (DOX-FA-SNs). Drug loading, cytotoxicity and cellular uptake of DOX-FA-SNs in vitro in human cervical carcinoma cells (HeLa cells) were evaluated. DOX-FA-SNs showed a higher cytotoxicity in human cervical carcinoma cells (HeLa cells) than DOX loaded carboxyl (-COOH) and poly(ethylene glycol) (PEG) modified SNs (DOX-COOH-SNs and DOX-PEG-SNs, respectively). However, DOX-FA-SNs showed lower cytotoxicity in folate receptor negative normal mouse fibroblast cells (L929 cells) compared with free DOX. In vivo tumor-targeted fluorescence imaging indicated specific tumor targeting and uptake of FA-SNs in nude mice bearing subcutaneous HeLa cell-derived xenograft tumors. In vivo anti-tumor experiments demonstrated that DOX-FA-SNs (10 mg kg-1 of DOX) significantly regressed the tumor growth and reduced toxicity compared with free DOX. These results have great significance in developing and optimizing SNs as effective intracellular delivery and specific tumor targeting vehicles.Silica nanorattles (SNs) have proven to be promising vehicles for drug delivery. In order to further enhance efficacy and minimize adverse effects, active targeted delivery to tumors is necessary. In this work, SNs modified with a tumor specific targeting ligand, folic acid (FA), was used as carrier of doxorubicin (DOX) (DOX-FA-SNs). Drug loading, cytotoxicity and cellular uptake of DOX-FA-SNs in vitro in human cervical carcinoma cells (HeLa cells) were evaluated. DOX-FA-SNs showed a higher cytotoxicity in human cervical carcinoma cells (HeLa cells) than DOX loaded carboxyl (-COOH) and poly(ethylene glycol) (PEG) modified SNs (DOX-COOH-SNs and DOX-PEG-SNs, respectively). However, DOX

  17. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia.

    PubMed

    Zhu, Zhen-Yuan; Dong, Fengying; Liu, Xiaocui; Lv, Qian; YingYang; Liu, Fei; Chen, Ling; Wang, Tiantian; Wang, Zheng; Zhang, Yongmin

    2016-04-20

    This study was to investigate the effects of different extraction methods on the yield, chemical structure and antitumor activity of polysaccharides from Cordyceps gunnii (C. gunnii) mycelia. Five extraction methods were used to extract crude polysaccharides (CPS), which include room-temperature water extraction (RWE), hot-water extraction (HWE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and cellulase-assisted extraction (CAE). Then Sephadex G-100 was used for purification of CPS. As a result, the antitumor activities of CPS and PPS on S180 cells were evaluated. Five CPS and purified polysaccharides (PPS) were obtained. The yield of CPS by microwave-assisted extraction (CPSMAE) was the highest and its anti-tumor activity was the best and its macromolecular polysaccharide (3000-1000kDa) ratio was the largest. The PPS had the same monosaccharide composition, but their obvious difference was in the antitumor activity and the physicochemical characteristics, such as intrinsic viscosity, specific rotation, scanning electron microscopy and circular dichroism spectra. PMID:26876874

  18. Compositions and Anti-Tumor Activity of Pyropolyporus fomentarius Petroleum Ether Fraction In Vitro and In Vivo

    PubMed Central

    Zhang, Yanhua; Xiao, Yaping; Wang, Pan; Liu, Quanhong

    2014-01-01

    The chemical compositions and anti-tumor activities of the petroleum ether fraction (PE), from mushroom Pyropolyporus fomentarius, were studied. Upon gas chromatography–mass spectrometry (GC–MS) analysis, nine major constituents were identified in the fraction. In vitro, the PE showed cytotoxic activity against murine sarcoma S180 (S180) cells in a dose- and time-dependent manner, and the cytotoxic effects were associated with apoptosis. The mitochondrial membrane potential loss and the intracellular ROS generation were greatly increased in the Pyropolyporus fomentarius PE treated group, suggesting cell apoptosis, induced by the PE in S180 cells, might be mitochondria dependent and ROS mediated. Consistent with in vitro findings, the in vivo study showed that the Pyropolyporus fomentarius PE was also effective in inhibiting the tumor growth induced by S180 cells and had lower immune organ toxicity. We found that the Pyropolyporus fomentarius PE has significant anti-tumor activity and great potential in screening anti-tumor drugs. PMID:25302783

  19. Compositions and anti-tumor activity of Pyropolyporus fomentarius petroleum ether fraction in vitro and in vivo.

    PubMed

    Zhang, Yanhua; Xiao, Yaping; Wang, Pan; Liu, Quanhong

    2014-01-01

    The chemical compositions and anti-tumor activities of the petroleum ether fraction (PE), from mushroom Pyropolyporus fomentarius, were studied. Upon gas chromatography-mass spectrometry (GC-MS) analysis, nine major constituents were identified in the fraction. In vitro, the PE showed cytotoxic activity against murine sarcoma S180 (S180) cells in a dose- and time-dependent manner, and the cytotoxic effects were associated with apoptosis. The mitochondrial membrane potential loss and the intracellular ROS generation were greatly increased in the Pyropolyporus fomentarius PE treated group, suggesting cell apoptosis, induced by the PE in S180 cells, might be mitochondria dependent and ROS mediated. Consistent with in vitro findings, the in vivo study showed that the Pyropolyporus fomentarius PE was also effective in inhibiting the tumor growth induced by S180 cells and had lower immune organ toxicity. We found that the Pyropolyporus fomentarius PE has significant anti-tumor activity and great potential in screening anti-tumor drugs. PMID:25302783

  20. Anti-tumor and immunomodulatory activity of selenium (Se)-polysaccharide from Se-enriched Grifola frondosa.

    PubMed

    Mao, Guang-Hua; Ren, Yi; Li, Qian; Wu, Hui-Yu; Jin, Dun; Zhao, Ting; Xu, Cai-Quan; Zhang, Deng-Hong; Jia, Qing-Dong; Bai, Yan-Peng; Yang, Liu-Qing; Wu, Xiang-Yang

    2016-01-01

    A polysaccharide termed Se-GP11 was extracted and purified from Se-enriched Grifola frondosa in our previous study. This study investigated the characterization, anti-tumor and immunomodulatory activity of Se-GP11. The results showed that Se-GP11 was composed of mannose, glucose and galactose with a molar ratio of 1:4.91:2.41. The weight-average molecular weight (Mw) and weight-average mean square radius (Rw) of Se-GP11 in 0.1M sodium chloride solution were 3.3×10(4)Da and 32.8 nm. Se-GP11 existed as a globular conformation with random coil structure. Se-GP11 had no anti-tumor activity against HepG-2 cells in vitro, and it significantly inhibited the growth of Heps tumor in vivo. Se-GP11 increased the relatively thymus and spleen weights as well as serum necrosis factor-alpha (TNF-α) and interleukin-2 (IL-2) levels. In addition, Se-GP11 promoted the phagocytosis and NO production of RAW264.7 as compared with that of the normal control group. The results revealed that the Se-GP11 may exhibit the anti-tumor through improving immunologic function of the tumor bearing mice. PMID:26522247

  1. Synthesis and anti-tumor activity evaluation of rhein-aloe emodin hybrid molecule.

    PubMed

    Yuan, Ye-Fei; Hu, Xiang-Yu; He, Ying; Deng, Jia-Gang

    2012-02-01

    To improve the anti-tumor effects of rhein and aloe-emodin, a rhein-aloe-emodin hybrid molecule (RH-AE) was synthesized from rhein and aloe-emodin in the presence of dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP). Chemical and spectroscopic methods, such as 1H and 13C NMR spectroscopy, and HR-ESIMS were used for the structure identification of RH-AE. Using the cell counting kit-8 (CCK-8) assay, the in vitro anti-tumor effects were compared between RH-AE, rhein and aloe-emodin on human hepatoma HepG2, human nasopharyngeal carcinoma CNE, human lung cancer NCI-H460, human ovarian cancer SK-OV-3, and human cervical cancer Hela cells. The results showed that the half inhibitory concentration (IC50) of RH-AE on HepG2, CNE, NCI-H460, SK-OV-3, and Hela cells were significantly lower than those of rhein and aloe-emodin. This showed that RH-AE has a better in vitro anti-tumor effect than rhein and aloe-emodin. PMID:22474959

  2. A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis

    PubMed Central

    Arlia-Ciommo, Anthony; Svistkova, Veronika; Mohtashami, Sadaf; Titorenko, Vladimir I.

    2016-01-01

    A recently conducted chemical genetic screen for pharmaceuticals that can extend longevity of the yeast Saccharomyces cerevisiae has identified lithocholic acid as a potent anti-aging molecule. It was found that this hydrophobic bile acid is also a selective anti-tumor chemical compound; it kills different types of cultured cancer cells if used at concentrations that do not compromise the viability of non-cancerous cells. These studies have revealed that yeast can be successfully used as a model organism for high-throughput screens aimed at the discovery of selectively acting anti-tumor small molecules. Two metabolic traits of rapidly proliferating fermenting yeast, namely aerobic glycolysis and lipogenesis, are known to be similar to those of cancer cells. The mechanisms underlying these key metabolic features of cancer cells and fermenting yeast have been established; such mechanisms are discussed in this review. We also suggest how a yeast-based chemical genetic screen can be used for the high-throughput development of selective anti-tumor pharmaceuticals that kill only cancer cells. This screen consists of searching for chemical compounds capable of increasing the abundance of membrane lipids enriched in unsaturated fatty acids that would therefore be toxic only to rapidly proliferating cells, such as cancer cells and fermenting yeast. PMID:26636650

  3. Aliphatic acid-conjugated antimicrobial peptides--potential agents with anti-tumor, multidrug resistance-reversing activity and enhanced stability.

    PubMed

    Deng, Xin; Qiu, Qianqian; Ma, Ke; Wang, Xuekun; Huang, Wenlong; Qian, Hai

    2015-07-28

    Compared with traditional therapeutics, antimicrobial peptides as novel anti-tumor agents have prominent advantages of higher specificity and circumvention of multi-drug resistance. In a previous study, we found that B1, an antimicrobial peptide derived from Cathelicidin-BF15, presented specific anti-tumor activity against several tumor cells. Since aliphatic chain-conjugated peptides have shown ameliorative activity and stability, we conjugated aliphatic acids with different lengths to the amino terminal of B1. All the conjugated peptides exhibited improved anti-tumor activity over B1. Further investigations revealed that the peptides were capable of disrupting the cell membrane, stimulating cytochrome c release into the cytosol, which results in apoptosis. The peptides also acted against multidrug resistant cells and had multidrug resistance-reversing effects. Additionally, conjugation of aliphatic acid enhanced the peptide stability in plasma. In summary, aliphatic acid-modified peptides might be promising anti-tumor agents in the future. PMID:26083110

  4. Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor Activities in RAS or BRAF Mutant Cancers.

    PubMed

    Peng, Sheng-Bin; Henry, James R; Kaufman, Michael D; Lu, Wei-Ping; Smith, Bryan D; Vogeti, Subha; Rutkoski, Thomas J; Wise, Scott; Chun, Lawrence; Zhang, Youyan; Van Horn, Robert D; Yin, Tinggui; Zhang, Xiaoyi; Yadav, Vipin; Chen, Shih-Hsun; Gong, Xueqian; Ma, Xiwen; Webster, Yue; Buchanan, Sean; Mochalkin, Igor; Huber, Lysiane; Kays, Lisa; Donoho, Gregory P; Walgren, Jennie; McCann, Denis; Patel, Phenil; Conti, Ilaria; Plowman, Gregory D; Starling, James J; Flynn, Daniel L

    2015-09-14

    LY3009120 is a pan-RAF and RAF dimer inhibitor that inhibits all RAF isoforms and occupies both protomers in RAF dimers. Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities. LY3009120 induces BRAF-CRAF dimerization but inhibits the phosphorylation of downstream MEK and ERK, suggesting that it effectively inhibits the kinase activity of BRAF-CRAF heterodimers. Further analyses demonstrated that LY3009120 also inhibits various forms of RAF dimers including BRAF or CRAF homodimers. Due to these unique properties, LY3009120 demonstrates minimal paradoxical activation, inhibits MEK1/2 phosphorylation, and exhibits anti-tumor activities across multiple models carrying KRAS, NRAS, or BRAF mutation. PMID:26343583

  5. Gamma delta T cells are activated by polysaccharide K (PSK) and contribute to the anti-tumor effect of PSK

    PubMed Central

    Inatsuka, Carol; Yang, Yi; Gad, Ekram; Rastetter, Lauren; Disis, Mary L.

    2013-01-01

    Polysaccharide K (PSK) is a widely used mushroom extract that has shown anti-tumor and immunomodulatory effects in both preclinical and clinical studies. Therefore, it is important to understand the mechanism of actions of PSK. We recently reported that PSK can activate toll-like receptor 2 and enhances the function of NK cells. The current study was undertaken to study the effect of PSK on gamma delta (γδ) T cells, another important arm of the innate immunity. In vitro experiments using mouse splenocytes showed that γδ T cells produce IFN-γ after treatment with PSK and have up-regulated expression of CD25, CD69, and CD107a. To investigate whether the effect of PSK on γδ T cells is direct or indirect, purified γδ T cells were cultured either alone or together with bone marrow-derived DC in a co-culture or trans-well system and then stimulated with PSK. Results showed that direct cell-to-cell contact between γδ T cells and DC is required for optimal activation of γδ T cells. There was also reciprocal activation of DC by PSK-activated γδ T cells, as demonstrated by higher expression of costimulatory molecules and enhanced production of IL-12 by DC in the presence of γδ T cells. PSK can also co-stimulate γδ T cells with anti-TCR and anti-CD3 stimulation, in the absence of DC. Finally, in vivo treatment with PSK activates γδ T cells among the tumor infiltrating lymphocytes, and depleting γδ T cells during PSK treatment attenuated the anti-tumor effect of PSK. All together, these results demonstrated that γδ T cells are activated by PSK and contribute to the anti-tumor effect of PSK. PMID:23685781

  6. Novel SHP-1 inhibitors TPI-1 and analogs with pre-clinical anti-tumor activities as tolerated oral agents

    PubMed Central

    Kundu, Suman; Fan, Keke; Cao, Mingli; Lindner, Daniel J.; Zhao, Zhizhaung Joe; Borden, Ernest; Yi, Taolin

    2010-01-01

    SHP-1 has been implicated as a potential cancer therapeutic target by its negative regulation of immune cell activation and the activity of the SHP-1 inhibitor SSG that induced IFNγ+ cells for anti-tumor action. To develop more potent SHP-1-targeted anti-cancer agents, inhibitory leads were identified from a library of 34,000 drug-like compounds. Among the leads and active at low nM for recombinant SHP-1, tyrosine phosphatase inhibitor-1 (TPI-1) selectively increased SHP-1 phospho-substrates (pLck-pY394, pZap70 and pSlp76) in Jurkat T cells but had little effects on pERK1/2 or pLck-pY505 regulated by phosphatases SHP-2 or CD45, respectively. TPI-1 induced mouse splenic-IFNγ+ cells in vitro, ~58-fold more effective than SSG, and increased mouse splenic-pLck-pY394 and -IFNγ+ cells in vivo. TPI-1 also induced IFNγ+ cells in human peripheral blood in vitro. Significantly, TPI-1 inhibited (~83%, p <0.002) the growth of B16 melanoma tumors in mice at a tolerated oral dose in a T cell-dependent manner but had little effects on B16 cell growth in culture. TPI-1 also inhibited B16 tumor growth and prolonged tumor mice survival as a tolerated s.c. agent. TPI-1 analogs were identified with improved activities in IFNγ+ cell induction and in anti-tumor actions. In particular, analog TPI-1a4 as a tolerated oral agent completely inhibited the growth of K1735 melanoma tumors and was more effective than the parental lead against MC-26 colon cancer tumors in mice. These results designate TPI-1 and the analogs as novel SHP-1 inhibitors with anti-tumor activity likely via an immune mechanism, supporting SHP-1 as a novel target for cancer treatment. PMID:20421638

  7. Structure elucidation and anti-tumor activities of water-soluble oligosaccharides from Lactarius deliciosus (L. ex Fr.) Gray

    PubMed Central

    Ding, Xiang; Hou, Yiling; Hou, Wanru; Zhu, Yuanxiu; Fu, Lei; Zhu, Hongqing

    2015-01-01

    Background: Oligosaccharides are composed of a variable number of monosaccharide units and very important in the biologically diverse of biological systems. Materials and Methods: Crude water-soluble oligosaccharide was extracted from the fruiting bodies with water and then successively purified by DEAE–cellulose 52 and Sephadex G-100 column chromatography, yielding one major oligosaccharides fractions: LES-A. Structural features of Lactarius deliciosus (L. ex Fr.) Gray oligosaccharide (LDGO-A) were investigated by a combination of monosaccharide component analysis by thin layer chromatography, infrared spectra, nuclear magnetic resonance spectroscopy, scanning electron microscopy, and high-performance gel permeation chromatography analysis. Result: The results indicated that LDGO-A was composed of D-glucose and D-xylose, and the average molecular sizes was approximately 945 Da. The anti-tumor activity of LDGO-A was evaluated in vivo. The inhibitory rate in mice treated with 40 mg/kg LDGO-A can reach 40.02%, being the highest in the three doses, which may be comparable to mannatide. Histology of immune organs shows that the tissues arranged more regular and firmer, but the tumor tissue arranged looser in LDGO-A group than those in the control group. Meanwhile, there is no obvious damage to other organs, such as heart. The anti-tumor activity of the LDGO-A was usually believed to be a consequence of the stimulation of the cell-mediated immune response because it can significantly promote the lymphocyte and macrophage cells in the dose range of 100–400 μg/mL in vitro. LDGO-A also effected the expression of some housekeeping genes mRNA in S180 tumor. Conclusion: Accordingly, the LDGO-A might serve as an effective healthcare food and source of natural anti-tumor compounds. PMID:26600715

  8. In Vitro and in Vivo Anti-tumor Activity of miR-221/222 Inhibitors in Multiple Myeloma

    PubMed Central

    Di Martino, Maria Teresa; Gullà, Annamaria; Cantafio, Maria Eugenia Gallo; Lionetti, Marta; Leone, Emanuela; Amodio, Nicola; Guzzi, Pietro Hiram; Foresta, Umberto; Conforti, Francesco; Cannataro, Mario; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2013-01-01

    A rising body of evidence suggests that silencing microRNAs (miRNAs) with oncogenic potential may represent a successful therapeutic strategy for human cancer. We investigated the therapeutic activity of miR-221/222 inhibitors against human multiple myeloma (MM) cells. Enforced expression of miR-221/222 inhibitors triggered in vitro anti-proliferative effects and up-regulation of canonic miR-221/222 targets, including p27Kip1, PUMA, PTEN and p57Kip2, in MM cells highly expressing miR-221/222. Conversely, transfection of miR-221/222 mimics increased S-phase and down-regulated p27Kip1 protein expression in MM with low basal miR-221/222 levels. The effects of miR-221/222 inhibitors was also evaluated in MM xenografts in SCID/NOD mice. Significant anti-tumor activity was achieved in xenografted mice by the treatment with miR-221/222 inhibitors, together with up-regulation of canonic protein targets in tumors retrieved from animals. These findings provide proof of principle that silencing the miR-221/222 cluster exerts significant therapeutic activity in MM cells with high miR-221/222 level of expression, which mostly occurs in TC2 and TC4 MM groups. These findings suggest that MM genotyping may predict the therapeutic response. All together our results support a framework for clinical development of miR-221/222 inhibitors-based therapeutic strategy in this still incurable disease. PMID:23479461

  9. In vitro and in vivo anti-tumor activity of miR-221/222 inhibitors in multiple myeloma.

    PubMed

    Di Martino, Maria Teresa; Gullà, Annamaria; Cantafio, Maria Eugenia Gallo; Lionetti, Marta; Leone, Emanuela; Amodio, Nicola; Guzzi, Pietro Hiram; Foresta, Umberto; Conforti, Francesco; Cannataro, Mario; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2013-02-01

    A rising body of evidence suggests that silencing microRNAs (miRNAs) with oncogenic potential may represent a successful therapeutic strategy for human cancer. We investigated the therapeutic activity of miR-221/222 inhibitors against human multiple myeloma (MM) cells. Enforced expression of miR-221/222 inhibitors triggered in vitro anti-proliferative effects and up-regulation of canonic miR-221/222 targets, including p27Kip1, PUMA, PTEN and p57Kip2, in MM cells highly expressing miR-221/222. Conversely, transfection of miR-221/222 mimics increased S-phase and down-regulated p27Kip1 protein expression in MM with low basal miR-221/222 levels. The effects of miR-221/222 inhibitors was also evaluated in MM xenografts in SCID/ NOD mice. Significant anti-tumor activity was achieved in xenografted mice by the treatment with miR-221/222 inhibitors, together with up-regulation of canonic protein targets in tumors retrieved from animals. These findings provide proof of principle that silencing the miR-221/222 cluster exerts significant therapeutic activity in MM cells with high miR-221/222 level of expression, which mostly occurs in TC2 and TC4 MM groups. These findings suggest that MM genotyping may predict the therapeutic response. All together our results support a framework for clinical development of miR-221/222 inhibitors-based therapeutic strategy in this still incurable disease. PMID:23479461

  10. Anti-tumor activity of liposome encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan

    PubMed Central

    Riviere, Kareen; Jerger, Katherine; Szoka, Francis C.

    2011-01-01

    To test the hypothesis that co-delivery of synergistic drug combinations in the same liposome provides a better anti-tumor effect than the drugs administered in separate liposomes, fluoroorotic acid (FOA) alone and in combination with irinotecan (IRN) were encapsulated in liposomes and evaluated for their anti-tumor activity in the C26 colon carcinoma mouse model. Fluoroorotic acid was dissolved in 7 M urea to increase its solubility so it could be passively loaded into liposomes at a high concentration. IRN was remote loaded into liposomes that contained the ammonium salt of the multi-valent 1,2,3,4-butanetetratcarboxylic acid with a greater than 90% efficiency and at a drug to lipid ratio of 0.2/1. When the two molecules were loaded into the same liposome, FOA was used to remote load IRN. Modulation of the drug/lipid ratio, temperature, and loading time allowed for consistent co-encapsulation of FOA + IRN at various molar ratios. The anti-tumor activity of L-FOA, L-IRN, L-FOA-IRN (5:1), and the L-FOA + L-IRN mixture (5:1) were examined in the C26 mouse model. The maximum tolerated dose of L-FOA was 10 mg/kg given weekly as compared to 100 mg/kg of the non-encapsulated FOA. Delivering two drugs in the same liposome provided a statistically better antitumor effect than delivering the drugs in separate liposomes at the same drug ratio. However, the synergistic activity of the 5:1 ratio of free drugs measured on C26 cells in vitro was not observed in the C26 tumor mouse model. These findings point out the challenges to the design of synergistic treatment protocols based upon results from in vitro cytotoxicity studies. L-FOA at 10 mg/kg as a single agent provided the best anti-tumor efficacy which supports previous suggestions that L-FOA has useful properties as a liposome dependent drug. PMID:21600250

  11. Pyrvinium Targets the Unfolded Protein Response to Hypoglycemia and Its Anti-Tumor Activity Is Enhanced by Combination Therapy

    PubMed Central

    Yu, De-Hua; Macdonald, James; Liu, Guohong; Lee, Amy S.; Ly, Mimi; Davis, Timothy; Ke, Ning; Zhou, Demin; Wong-Staal, Flossie; Li, Qi-Xiang

    2008-01-01

    We identified pyrvinium pamoate, an old anthelminthic medicine, which preferentially inhibits anchorage-independent growth of cancer cells over anchorage-dependent growth (∼10 fold). It was also reported by others to have anti-tumor activity in vivo and selective toxicity against cancer cells under glucose starvation in vitro, but with unknown mechanism. Here, we provide evidence that pyrvinium suppresses the transcriptional activation of GRP78 and GRP94 induced by glucose deprivation or 2-deoxyglucose (2DG, a glycolysis inhibitor), but not by tunicamycin or A23187. Other UPR pathways induced by glucose starvation, e.g. XBP-1, ATF4, were also found suppressed by pyrvinium. Constitutive expression of GRP78 via transgene partially protected cells from pyrvinium induced cell death under glucose starvation, suggesting that suppression of the UPR is involved in pyrvinium mediated cytotoxicity under glucose starvation. Xenograft experiments showed rather marginal overall anti-tumor activity for pyrvinium as a monotherapy. However, the combination of pyrvinium and Doxorubicin demonstrated significantly enhanced efficacy in vivo, supporting a mechanistic treatment concept based on tumor hypoglycemia and UPR. PMID:19079611

  12. Anti-tumor activity of Phyllanthus niruri (a medicinal plant) on chemical-induced skin carcinogenesis in mice.

    PubMed

    Sharma, Priyanka; Parmar, Jyoti; Verma, Preeti; Sharma, Priyanka; Goyal, P K

    2009-01-01

    Chemoprevention is an important strategy to control the process of carcinogenesis. The potential of using medicinal herbs as cancer chemopreventive nutraceuticals and functional food is promising. Thus, there is a need for exploring drugs/agents which act as chemopreventive agents. Phyllanthus niruri is a well known medicinal plant which has been used in Ayurvedic medicine as hepatoprotective, antiviral, antibacterial, analgesic, antispasmodic and antidiabetic. The present study was carried out to evaluate the anti-tumor activity of a hydro-alcoholic extract of the whole plant, in 7-9 week old male Swiss albino mice, on the two stage process of skin carcinogenesis induced by a single topical application of 7, 12-dimethylbenz (a)anthracene (100 microg/100 microl acetone) and two weeks later promoted by repeated application of croton oil (1% in acetone/three times a week) till the end of experiment (16 weeks). The oral administration of P. niruri at a dose of 1000 mg/kg/b.wt. at peri- (i.e. 7 days before and 7 days after DMBA application) and post- (i.e. starting from the croton oil application) initiational phase of papillomagenesis caused significant reduction in tumor incidence, tumor yield, tumor burden and cumulative number of papillomas as compared to carcinogen-treated controls. Furthermore, the average latent period was significantly increased in the PNE treated group. The results thus suggest that P. niruri extract exhibits significant anti-tumor activity, which supports the traditional medicinal utilization of this plant. PMID:20192590

  13. A measles virus selectively blind to signaling lymphocytic activation molecule shows anti-tumor activity against lung cancer cells.

    PubMed

    Fujiyuki, Tomoko; Yoneda, Misako; Amagai, Yosuke; Obayashi, Kunie; Ikeda, Fusako; Shoji, Koichiro; Murakami, Yoshinori; Sato, Hiroki; Kai, Chieko

    2015-09-22

    Lung cancer cells, particularly those of non-small-cell lung cancer, are known to express Nectin-4. We previously generated a recombinant measles virus that uses Nectin-4 as its receptor but cannot bind its original principal receptor, signaling lymphocyte activation molecule (SLAM). This virus (rMV-SLAMblind) infects and kills breast cancer cells in vitro and in a subcutaneous xenograft model. However, it has yet to be determined whether rMV-SLAMblind is effective against other cancer types and in other tumor models that more closely represent disease. In this study, we analyzed the anti-tumor activity of this virus towards lung cancer cells using a modified variant that encodes green fluorescent protein (rMV-EGFP-SLAMblind). We found that rMV-EGFP-SLAMblind efficiently infected nine, human, lung cancer cell lines, and its infection resulted in reduced cell viability of six cell lines. Administration of the virus into subcutaneous tumors of xenotransplanted mice suppressed tumor growth. In addition, rMV-EGFP-SLAMblind could target scattered tumor masses grown in the lungs of xenotransplanted mice. These results suggest that rMV-SLAMblind is oncolytic for lung cancer and that it represents a promising tool for the treatment of this disease. PMID:26317644

  14. Extension of the in vivo half-life of endostatin and its improved anti-tumor activities upon fusion to a humanized antibody against tumor-associated glycoprotein 72 in a mouse model of human colorectal carcinoma

    PubMed Central

    Park, Tae Woo; Lee, Kyungmin; Lee, Dong Gwang; Cho, Young-Lai; Lee, Tae Sup; Na, Hee-Jun; Park, Young-Jun; Lee, Hee Gu; Jeong, Mun Sik; Bae, Kwang-Hee; Lee, Sang Chul; Lee, Hyo Jin; Kwon, Young-Guen; Hong, Hyo Jeong; Kim, Jang-Seong; Min, Jeong-Ki

    2015-01-01

    Endostatin is an endogenous angiogenesis inhibitor that exhibits potential anti-tumor efficacy in various preclinical animal models. However, its relatively short in vivo half-life and the long-term, frequent administration of high doses limit its widespread clinical use. In this study, we evaluated whether a fusion protein of murine endostatin (mEndo) to a humanized antibody against tumor-associated glycoprotein 72 (TAG-72), which is highly expressed in several human tumor tissues including colon cancer, can extend the serum half-life and improve the anti-tumor efficacy of endostatin by targeted delivery to the tumor mass. The fusion protein (3E8-mEndo) and mEndo showed improved anti-angiogenic activity in vitro and in vivo, predominantly by interfering with pro-angiogenic signaling triggered by vascular endothelial growth factor (VEGF). Moreover, in mice treated with 3E8-mEndo, we observed a markedly prolonged serum half-life and significantly inhibited tumor growth. The improved anti-tumor activity of 3E8-mEndo can be partially explained by increased local concentration in the tumor mass due to targeted delivery of 3E8-mEndo to implanted colon tumors. Collectively, our data clearly indicate that tumor-targeting antibody fusions to endostatin are a powerful strategy that improves the poor pharmacokinetic profile and anti-tumor efficacy of endostatin. PMID:25762629

  15. Curcumin Inhibits Glyoxalase 1—A Possible Link to Its Anti-Inflammatory and Anti-Tumor Activity

    PubMed Central

    Santel, Thore; Pflug, Gabi; Hemdan, Nasr Y. A.; Schäfer, Angelika; Hollenbach, Marcus; Buchold, Martin; Hintersdorf, Anja; Lindner, Inge; Otto, Andreas; Bigl, Marina; Oerlecke, Ilka; Hutschenreuter, Antje; Sack, Ulrich; Huse, Klaus; Groth, Marco; Birkemeyer, Claudia; Schellenberger, Wolfgang; Gebhardt, Rolf; Platzer, Mathias; Weiss, Thomas; Vijayalakshmi, Mookambeswaran A.; Krüger, Monika; Birkenmeier, Gerd

    2008-01-01

    Background Glyoxalases (Glo1 and Glo2) are involved in the glycolytic pathway by detoxifying the reactive methylglyoxal (MGO) into D-lactate in a two-step reaction using glutathione (GSH) as cofactor. Inhibitors of glyoxalases are considered as anti-inflammatory and anti-carcinogenic agents. The recent finding that various polyphenols modulate Glo1 activity has prompted us to assess curcumin's potency as an Glo1 inhibitor. Methodology/Principal Findings Cultures of whole blood cells and tumor cell lines (PC-3, JIM-1, MDA-MD 231 and 1321N1) were set up to investigate the effect of selected polyphenols, including curcumin, on the LPS-induced cytokine production (cytometric bead-based array), cell proliferation (WST-1 assay), cytosolic Glo1 and Glo2 enzymatic activity, apoptosis/necrosis (annexin V-FITC/propidium iodide staining; flow cytometric analysis) as well as GSH and ATP content. Results of enzyme kinetics revealed that curcumin, compared to the polyphenols quercetin, myricetin, kaempferol, luteolin and rutin, elicited a stronger competitive inhibitory effect on Glo1 (Ki = 5.1±1.4 µM). Applying a whole blood assay, IC50 values of pro-inflammatory cytokine release (TNF-α, IL-6, IL-8, IL-1β) were found to be positively correlated with the Ki-values of the aforementioned polyphenols. Moreover, whereas curcumin was found to hamper the growth of breast cancer (JIMT-1, MDA-MB-231), prostate cancer PC-3 and brain astrocytoma 1321N1 cells, no effect on growth or vitality of human primary hepatocytes was elucidated. Curcumin decreased D-lactate release by tumor cells, another clue for inhibition of intracellular Glo1. Conclusions/Significance The results described herein provide new insights into curcumin's biological activities as they indicate that inhibition of Glo1 by curcumin may result in non-tolerable levels of MGO and GSH, which, in turn, modulate various metabolic cellular pathways including depletion of cellular ATP and GSH content. This may account

  16. Anti-tumor and immunomodulatory activities of an exopolysaccharide from Rhizopus nigricans on CT26 tumor-bearing mice.

    PubMed

    Zhu, Lei; Cao, Jianfeng; Chen, Guochuang; Xu, Yanghui; Lu, Jingbo; Fang, Fang; Chen, Kaoshan

    2016-07-01

    This study was aimed to investigate the anti-tumor and immunomodulatory activities of an exopolysaccharide (EPS) from Rhizopus nigricans. Our results showed EPS could significantly inhibit the tumor growth and increase the immune organs index of CT26 tumor-bearing mice. EPS treatment increased the productions of interleukin-2 (IL-2) and tumor necrosis factor-α (TNF-α) levels in serum. The increase of percentage of CD8(+) cytotoxic T cells among total spleen T lymphocyte was also observed. Furthermore, EPS remarkably stimulate spleen lymphocytes proliferation in the absence or presence of mitogens. In addition, we found that EPS had synergistic effect with chemotherapy and improved immunosuppressive effect induced by 5-Fu. In summary, these findings indicated that the antitumor effects of EPS might be partly due to immune function activation and it might have potential to be used in the treatment for colorectal cancer. PMID:27163210

  17. Natural Killer Cell-Based Therapies Targeting Cancer: Possible Strategies to Gain and Sustain Anti-Tumor Activity

    PubMed Central

    Dahlberg, Carin I. M.; Sarhan, Dhifaf; Chrobok, Michael; Duru, Adil D.; Alici, Evren

    2015-01-01

    Natural killer (NK) cells were discovered 40 years ago, by their ability to recognize and kill tumor cells without the requirement of prior antigen exposure. Since then, NK cells have been seen as promising agents for cell-based cancer therapies. However, NK cells represent only a minor fraction of the human lymphocyte population. Their skewed phenotype and impaired functionality during cancer progression necessitates the development of clinical protocols to activate and expand to high numbers ex vivo to be able to infuse sufficient numbers of functional NK cells to the cancer patients. Initial NK cell-based clinical trials suggested that NK cell-infusion is safe and feasible with almost no NK cell-related toxicity, including graft-versus-host disease. Complete remission and increased disease-free survival is shown in a small number of patients with hematological malignances. Furthermore, successful adoptive NK cell-based therapies from haploidentical donors have been demonstrated. Disappointingly, only limited anti-tumor effects have been demonstrated following NK cell infusion in patients with solid tumors. While NK cells have great potential in targeting tumor cells, the efficiency of NK cell functions in the tumor microenvironment is yet unclear. The failure of immune surveillance may in part be due to sustained immunological pressure on tumor cells resulting in the development of tumor escape variants that are invisible to the immune system. Alternatively, this could be due to the complex network of immune-suppressive compartments in the tumor microenvironment, including myeloid-derived suppressor cells, tumor-associated macrophages, and regulatory T cells. Although the negative effect of the tumor microenvironment on NK cells can be transiently reverted by ex vivo expansion and long-term activation, the aforementioned NK cell/tumor microenvironment interactions upon reinfusion are not fully elucidated. Within this context, genetic modification of NK cells

  18. Natural Killer Cell-Based Therapies Targeting Cancer: Possible Strategies to Gain and Sustain Anti-Tumor Activity.

    PubMed

    Dahlberg, Carin I M; Sarhan, Dhifaf; Chrobok, Michael; Duru, Adil D; Alici, Evren

    2015-01-01

    Natural killer (NK) cells were discovered 40 years ago, by their ability to recognize and kill tumor cells without the requirement of prior antigen exposure. Since then, NK cells have been seen as promising agents for cell-based cancer therapies. However, NK cells represent only a minor fraction of the human lymphocyte population. Their skewed phenotype and impaired functionality during cancer progression necessitates the development of clinical protocols to activate and expand to high numbers ex vivo to be able to infuse sufficient numbers of functional NK cells to the cancer patients. Initial NK cell-based clinical trials suggested that NK cell-infusion is safe and feasible with almost no NK cell-related toxicity, including graft-versus-host disease. Complete remission and increased disease-free survival is shown in a small number of patients with hematological malignances. Furthermore, successful adoptive NK cell-based therapies from haploidentical donors have been demonstrated. Disappointingly, only limited anti-tumor effects have been demonstrated following NK cell infusion in patients with solid tumors. While NK cells have great potential in targeting tumor cells, the efficiency of NK cell functions in the tumor microenvironment is yet unclear. The failure of immune surveillance may in part be due to sustained immunological pressure on tumor cells resulting in the development of tumor escape variants that are invisible to the immune system. Alternatively, this could be due to the complex network of immune-suppressive compartments in the tumor microenvironment, including myeloid-derived suppressor cells, tumor-associated macrophages, and regulatory T cells. Although the negative effect of the tumor microenvironment on NK cells can be transiently reverted by ex vivo expansion and long-term activation, the aforementioned NK cell/tumor microenvironment interactions upon reinfusion are not fully elucidated. Within this context, genetic modification of NK cells

  19. Expression of curcin-transferrin receptor binding peptide fusion protein and its anti-tumor activity.

    PubMed

    Zheng, Qing; Xiong, Yao-Ling; Su, Zhi-Jian; Zhang, Qi-Hao; Dai, Xiao-Yong; Li, Lin-Yan; Xiao, Xue; Huang, Ya-Dong

    2013-06-01

    Curcin can inhibit the proliferation of tumor cells and promote tumor cell apoptosis, but the cytotoxicity of curcin is not selective for tumors or normal cells. In order to enhance the targeting of the anti-tumor ability of curcin, a transferrin receptor (TfR) binding peptide, TfRBP9, was fused with curcin. The curcin-TfRBP9 gene was cloned into pQE-30 and the recombinant vector pQE-30-curcin-TfRBP9 was established. Then the recombinant vector pQE-30-curcin-TfRBP9 was transferred into Escherichia coli M15. After being induced by 0.5mM IPTG for 6h at 37°C, the expressed quantity of the recombinant protein was about 30% of the total protein. Recombinant curcin-TfRBP9 was expressed in the form of an inclusion body. After dissolution, purification and renaturation, the purity of the recombinant curcin-TfRBP9 reached 95%. Immunofluorescence analysis showed that the TfRBP9 significantly enhanced the ability of the curcin binding to HepG2, and was enriched in the cytoplasm. The curcin-TfRBP9 fusion protein had significant proliferation inhibition effects on the HepG2 cells that over-expressed transferrin receptors, had lower inhibitory effects on the SKBR-3 cells that expressed low transferrin receptors, and had the lowest inhibitory effects on the LO-2 cells that were normal human liver cells. Compared with curcin, the curcin-TfRBP9 induced higher apoptosis rates in the HepG2 cells. PMID:23545225

  20. A new activity of anti-HIV and anti-tumor protein GAP31: DNA adenosine glycosidase - Structural and modeling insight into its functions

    SciTech Connect

    Li, Hui-Guang; Huang, Philip L.; Zhang, Dawei; Sun, Yongtao; Chen, Hao-Chia; Zhang, John; Huang, Paul L.; Kong, Xiang-Peng; Lee-Huang, Sylvia

    2010-01-01

    We report here the high-resolution atomic structures of GAP31 crystallized in the presence of HIV-LTR DNA oligonucleotides systematically designed to examine the adenosine glycosidase activity of this anti-HIV and anti-tumor plant protein. Structural analysis and molecular modeling lead to several novel findings. First, adenine is bound at the active site in the crystal structures of GAP31 to HIV-LTR duplex DNA with 5' overhanging adenosine ends, such as the 3'-processed HIV-LTR DNA but not to DNA duplex with blunt ends. Second, the active site pocket of GAP31 is ideally suited to accommodate the 5' overhanging adenosine of the 3'-processed HIV-LTR DNA and the active site residues are positioned to perform the adenosine glycosidase activity. Third, GAP31 also removes the 5'-end adenine from single-stranded HIV-LTR DNA oligonucleotide as well as any exposed adenosine, including that of single nucleotide dAMP but not from AMP. Fourth, GAP31 does not de-purinate guanosine from di-nucleotide GT. These results suggest that GAP31 has DNA adenosine glycosidase activity against accessible adenosine. This activity is distinct from the generally known RNA N-glycosidase activity toward the 28S rRNA. It may be an alternative function that contributes to the antiviral and anti-tumor activities of GAP31. These results provide molecular insights consistent with the anti-HIV mechanisms of GAP31 in its inhibition on the integration of viral DNA into the host genome by HIV-integrase as well as irreversible topological relaxation of the supercoiled viral DNA.

  1. A New Activity of Anti-HIV and Anti-tumor Protein GAP31: DNA Adenosine Glycosidase – Structural and Modeling Insight into its Functions

    SciTech Connect

    Li, H.; Huang, P; Zhang, D; Sun, Y; Chen, H; Zhang, J; Huang, P; Kong, X; Lee-Huang, S

    2010-01-01

    We report here the high-resolution atomic structures of GAP31 crystallized in the presence of HIV-LTR DNA oligonucleotides systematically designed to examine the adenosine glycosidase activity of this anti-HIV and anti-tumor plant protein. Structural analysis and molecular modeling lead to several novel findings. First, adenine is bound at the active site in the crystal structures of GAP31 to HIV-LTR duplex DNA with 5' overhanging adenosine ends, such as the 3'-processed HIV-LTR DNA but not to DNA duplex with blunt ends. Second, the active site pocket of GAP31 is ideally suited to accommodate the 5' overhanging adenosine of the 3'-processed HIV-LTR DNA and the active site residues are positioned to perform the adenosine glycosidase activity. Third, GAP31 also removes the 5'-end adenine from single-stranded HIV-LTR DNA oligonucleotide as well as any exposed adenosine, including that of single nucleotide dAMP but not from AMP. Fourth, GAP31 does not de-purinate guanosine from di-nucleotide GT. These results suggest that GAP31 has DNA adenosine glycosidase activity against accessible adenosine. This activity is distinct from the generally known RNA N-glycosidase activity toward the 28S rRNA. It may be an alternative function that contributes to the antiviral and anti-tumor activities of GAP31. These results provide molecular insights consistent with the anti-HIV mechanisms of GAP31 in its inhibition on the integration of viral DNA into the host genome by HIV-integrase as well as irreversible topological relaxation of the supercoiled viral DNA.

  2. Enhanced anti-tumor activity of a new curcumin-related compound against melanoma and neuroblastoma cells

    PubMed Central

    2010-01-01

    Background Sharing the common neuroectodermal origin, melanoma and neuroblastoma are tumors widely diffused among adult and children, respectively. Clinical prognosis of aggressive neuroectodermal cancers remains dismal, therefore the search for novel therapies against such tumors is warranted. Curcumin is a phytochemical compound widely studied for its antioxidant, anti-inflammatory and anti-cancer properties. Recently, we have synthesized and tested in vitro various curcumin-related compounds in order to select new anti-tumor agents displaying stronger and selective growth inhibition activity on neuroectodermal tumors. Results In this work, we have demonstrated that the new α,β-unsaturated ketone D6 was more effective in inhibiting tumor cells growth when compared to curcumin. Normal fibroblasts proliferation was not affected by this treatment. Clonogenic assay showed a significant dose-dependent reduction in both melanoma and neuroblastoma colony formation only after D6 treatment. TUNEL assay, Annexin-V staining, caspases activation and PARP cleavage unveiled the ability of D6 to cause tumor cell death by triggering apoptosis, similarly to curcumin, but with a stronger and quicker extent. These apoptotic features appear to be associated with loss of mitochondrial membrane potential and cytochrome c release. In vivo anti-tumor activity of curcumin and D6 was surveyed using sub-cutaneous melanoma and orthotopic neuroblastoma xenograft models. D6 treated mice exhibited significantly reduced tumor growth compared to both control and curcumin treated ones (Melanoma: D6 vs control: P < 0.001 and D6 vs curcumin P < 0.01; Neuroblastoma: D6 vs both control and curcumin: P < 0.001). Conclusions Our data indicate D6 as a good candidate to develop new therapies against neural crest-derived tumors. PMID:20525240

  3. COH-203, a novel microtubule inhibitor, exhibits potent anti-tumor activity via p53-dependent senescence in hepatocellular carcinoma

    SciTech Connect

    Qi, Huan; Zuo, Dai-Ying; Bai, Zhao-Shi; Xu, Jing-Wen; Li, Zeng-Qiang; Shen, Qi-Rong; Wang, Zhi-Wei; Zhang, Wei-Ge; Wu, Ying-Liang

    2014-12-12

    Highlights: • COH-203 exhibits anti-hepatoma effects in vitro and in vivo with low toxicity. • COH-203 inhibits tubulin polymerization. • COH-203 induces mitotic arrest followed by mitotic slippage in BEL-7402 cells. • COH-203 induces p53-dependent senescence in BEL-7402 cells. - Abstract: 5-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-3H-1, 2-dithiol-3-one (COH-203) is a novel synthesized analogue of combretastatin A-4 that can be classified as a microtubule inhibitor. In this study, we evaluated the anti-hepatoma effect of COH-203 in vitro and in vivo and explored the underlying molecular mechanisms. COH-203 was shown to be more effective in inhibiting the proliferation of liver cancer cells compared with normal liver cells. COH-203 also displayed potent anti-tumor activity in a hepatocellular carcinoma xenograft model without significant toxicity. Mechanistic studies demonstrated that treatment with COH-203 induced mitotic arrest by inhibiting tubulin polymerization in BEL-7402 liver cancer cells. Long-term COH-203 treatment in BEL-7402 cells led to mitotic slippage followed by senescence via the p14{sup Arf}–p53–p21 and p16{sup INK4α}–Rb pathways. Furthermore, suppression of p53 via pifithrin-α (p53 inhibitor) and p53-siRNA attenuated COH-203-induced senescence in BEL-7402 cells, suggesting that COH-203 induced senescence p53-dependently. In conclusion, we report for the first time that COH-203, one compound in the combretastatin family, promotes anti-proliferative activity through the induction of p-53 dependent senescence. Our findings will provide a molecular rationale for the development of COH-203 as a promising anti-tumor agent.

  4. Sunitinib facilitates the activation and recruitment of therapeutic anti-tumor immunity in concert with specific vaccination

    PubMed Central

    Bose, Anamika; Taylor, Jennifer L.; Alber, Sean; Watkins, Simon C.; Garcia, Jorge A.; Rini, Brian I.; Ko, Jennifer S.; Cohen, Peter A.; Finke, James H.; Storkus, Walter J.

    2011-01-01

    The multi-kinase inhibitor sunitinib malate (SUT) has been reported to reduce levels of myeloid suppressor cells and Treg cells in cancer patients, hypothetically diminishing intrinsic impediments for active immunization against tumor-associated antigens in such individuals. The goal of this study was to identify longitudinal immune molecular and cellular changes associated with tumor regression and disease-free status after the treatment of established day 7 s.c. MO5 (B16.OVA) melanomas with SUT alone (1 mg/day via oral gavage for 7 days), vaccination using OVA peptide-pulsed DC (VAC) alone, or the combination of SUT and VAC (SUT/VAC). We observed superior anti-tumor efficacy for SUT/VAC combination approaches, particularly when SUT was applied at the time of the initial vaccination or the vaccine boost. Treatment effectiveness was associated with the acute loss of (and/or failure to recruit) cells bearing myeloid-derived suppressor cells (MDSC) or Treg phenotypes within the tumor microenvironment (TME) and the corollary, prolonged enhancement of Type-1 anti-OVA CD8+ T cell responses in the tumor-draining lymph node (TDLN) and the TME. Enhanced Type-1 T cell infiltration of tumors was associated with treatment-induced expression of VCAM-1 and CXCR3 ligand chemokines in vascular/peri-vascular cells within the TME, with SUT/VAC therapy benefits conditionally negated upon adminsitration of CXCR3 or VCAM-1 blocking antibodies. These data support the ability of a short 7 day course of SUT to (re)condition the TME to become more receptive to the recruitment and prolonged therapeutic action of (VAC-induced) anti-tumor Tc1 cells. PMID:21170961

  5. Synthesis of selenium-containing Artemisia sphaerocephala polysaccharides: Solution conformation and anti-tumor activities in vitro.

    PubMed

    Wang, Junlong; Li, Qingyao; Bao, Aijuan; Liu, Xiurong; Zeng, Junyuan; Yang, Xiaopin; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2016-11-01

    It has been reported in our previous work that selenized Artemisia sphaerocephala polysaccharides (SeASPs) with the Se content range of 168-1703μg/g were synthesized by using Na2SeO3/HNO3/BaCl2 system. In the present work, the solution property of SeASP was studied by using size exclusion chromatography combined with multi angle laser light scattering (SEC-MALLS). A decrease in df values indicated that SeASPs with different conformational features that were highly dependent on MW. SeASPs exhibited a more rigid conformation (df value of 1.29-1.52) in low molecular weight range (MW of 1.026-1.426×10(4)g/mol) and compact spherical conformation in high molecular weight range (MW of 2.268-4.363×10(4)g/mol). It could be due to the degradation of polysaccharide chains in HNO3, which was supported in monosaccharide composition analysis. Congo red (CR) spectrophotometric method and atomic force microscopy (AFM) results also confirmed the conformational transition and the evidence on the shape of the rigid chains. In vitro anti-tumor assays, SeASP2 displayed greater anti-proliferative effects against three tumor cell lines (hepatocellular carcinoma HepG-2 cells, lung adenocarcinom A549 cells and cervical squamous carcinoma Hela cells) in a dose-dependent manner. This suggested that selenylation could significantly enhance the anti-tumor activities of polysaccharide derivatives in vitro. PMID:27516251

  6. Evaluation of cytotoxic and anti-tumor activity of partially purified serine protease isolate from the Indian earthworm Pheretima posthuma

    PubMed Central

    Verma, Mahendra Kumar; Xavier, Francies; Verma, Yogendra Kumar; Sobha, Kota

    2013-01-01

    Objective To isolate, partially purify and evaluate the cytotoxic and antitumor activity of a serine protease from the chosen Indian earthworm Pheretima posthuma. Methods Whole animal extract was prepared and purified its protein constituents by size and charge based chromatographic separation techniques using Sephadex G-50 and DEAE-Cellulose resin respectively. Average molecular weight of the protein isolate was determined and analyzed for its cytotoxic property against Vero cells in different dilutions (1: 20 and 1: 40) and anti-tumor activity by MTT assay (a colorimetric assay) using breast cancer cell line MCF-7, with tamoxifen as standard. Results One of the protein constituents after purification was characterized as serine protease by Caseinolytic plate diffusion assay. Average molecular weight of this purified isolate was determined, by SDS-PAGE analysis with standard protein ladder, as of 15 kDa. The performed tests suggested that the 15kDa fraction has potent cytotoxic activity and satisfactory antitumor activity as well in vitro. Conclusions Exact molecular mechanism of the cytotoxic and antitumor activities is yet to be explored and currently we are working on ultra-purification and biophysical characterization of this fraction. Further investigation into the mechanism(s) of cytotoxic and antitumor activities at molecular level would be useful in treatment of various classes of cancer and viral infections in future.

  7. Immune-system-dependent anti-tumor activity of a plant-derived polyphenol rich fraction in a melanoma mouse model.

    PubMed

    Gomez-Cadena, A; Urueña, C; Prieto, K; Martinez-Usatorre, A; Donda, A; Barreto, A; Romero, P; Fiorentino, S

    2016-01-01

    Recent findings suggest that part of the anti-tumor effects of several chemotherapeutic agents require an intact immune system. This is in part due to the induction of immunogenic cell death. We have identified a gallotannin-rich fraction, obtained from Caesalpinia spinosa (P2Et) as an anti-tumor agent in both breast carcinoma and melanoma. Here, we report that P2Et treatment results in activation of caspase 3 and 9, mobilization of cytochrome c and externalization of annexin V in tumor cells, thus suggesting the induction of apoptosis. This was preceded by the onset of autophagy and the expression of immunogenic cell death markers. We further demonstrate that P2Et-treated tumor cells are highly immunogenic in vaccinated mice and induce immune system activation, clearly shown by the generation of interferon gamma (IFN-γ) producing tyrosine-related protein 2 antigen-specific CD8+ T cells. Moreover, the tumor protective effects of P2Et treatment were abolished in immunodeficient mice, and partially lost after CD4 and CD8 depletion, indicating that P2Et's anti-tumor activity is highly dependent on immune system and at least in part of T cells. Altogether, these results support the hypothesis that the gallotannin-rich fraction P2Et's anti-tumor effects are mediated to a great extent by the endogenous immune response following to the exposure to immunogenic dying tumor cells. PMID:27253407

  8. Formation and anti-tumor activity of uncommon in vitro and in vivo metabolites of CPI-613, a novel anti-tumor compound that selectively alters tumor energy metabolism.

    PubMed

    Lee, King C; Shorr, Robert; Rodriguez, Robert; Maturo, Claudia; Boteju, Lakmal W; Sheldon, Adrian

    2011-08-01

    CPI-613 is a novel anti-tumor compound with a mechanism-of-action which appears distinct from the current classes of anti-cancer agents used in the clinic. CPI-613 demonstrates both in vitro and in vivo anti-tumor activity. In vitro metabolic studies using liver S9 were performed which demonstrated that CPI-613 undergoes both phase 1 (oxidation) and phase 2 (glucuronidation) transformations. Its metabolic half-life varied between species and ranged from 8 minutes (Hanford minipig) to 47 minutes (CD-1 mouse). We performed metabolite mass assessments using selected in vitro incubation samples and demonstrated that +16 amu oxidation with and without +176 amu glucuronidation products were generated by human and animal liver S9. LC/MS/MS fragmentation patterns showed that an uncommon sulfoxide metabolite was formed and the O-glucuronidation occurred at the terminal carboxyl moiety. We observed that the +192 amu sulfoxide/glucuronide was generated only in human liver S9 and not by any of the other species tested. Synthetic metabolites were prepared and compared with the enzymatically-generated metabolites. Both the chromatographic retention times and the LC/MS/MS fragmentation patterns were similar, demonstrating that the synthetic metabolites were virtually identical to the S9-generated products. CYP450 reaction phenotyping and inhibition data both suggested that multiple CYP isozymes (2C8 and 3A4, along with minor contributions by 2C9 and 2C19) were involved in CPI-613 metabolism and sulfoxide formation. Plasma samples from human subjects dosed with CPI-613 also contained the sulfoxide ± glucuronide metabolites. These results show that the in vitro- and in vivo-generated phase 1 and phase 2 metabolites were in good agreement. PMID:21722089

  9. Anti-tumor activity of fenretinide complexed with human serum albumin in lung cancer xenograft mouse model

    PubMed Central

    Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Tesei, Anna; Pignatta, Sara; Falconi, Mirella

    2014-01-01

    Sufficient knowledge regarding cellular and molecular basis of lung cancer progression and metastasis would help in the development of novel and effective strategies for the treatment of lung cancer. 4HPR is a synthetic retinoid with potential anti-tumor activity but is still limited because of its poor bioavailability. The use of albumin as a complexing agent for a hydrophobic drug is expected to improve the water solubility and consequently their bioavailability.This study investigated the antitumor activity of a novel complex between albumin and 4-HPR in a mouse model of human lung cancer and focuses on role and mechanism of Cav-1 mainly involved in regulating cancer and Acsvl3 mainly connected with tumor growth. Their expressions were assayed by immunohistochemistry and qRT-PCR, to demonstrate the reduction of the tumor growth following the drug treatment. Our results showed a high antitumor activity of 4HPR-HSA by reduction of the volume of tumor mass and the presence of a high level of apoptotic cell by TUNEL assay. The downregulation of Cav-1 and Acsvl3 suggested a reduction of tumor growth. In conclusion, we demonstrated the great potential of 4HPR-HSA in the treatment of lung cancer. More data about the mechanism of drug delivery the 4HPR-HSA are necessary. PMID:25015569

  10. Anti-Tumor Activity of Peptide Amphiphile Nanofiber-Encapsulated Camptothecin

    PubMed Central

    Soukasene, Stephen; Toft, Daniel J.; Moyer, Tyson J.; Lu, Hsuming; Lee, Hyung-Kun; Standley, Stephany M.; Cryns, Vincent L.; Stupp, Samuel I.

    2011-01-01

    Self-assembling peptide amphiphile (PA) nanofibers were used to encapsulate camptothecin (CPT), a naturally occurring hydrophobic chemotherapy agent, using a solvent evaporation technique. Encapsulation by PA nanofibers was found to improve the aqueous solubility of the CPT molecule by more than 50-fold. PAs self-assembled into nanofibers in the presence of CPT as demonstrated by transmission electron microscopy. Small-angle X-ray scattering results suggest a slight increase in diameter of the nanofiber to accommodate the hydrophobic cargo. In vitro studies using human breast cancer cells show an enhancement in antitumor activity of the CPT when encapsulated by the PA nanofibers. In addition, using a mouse orthotopic model of human breast cancer, treatment with PA nanofiber encapsulated CPT inhibited tumor growth. These results highlight the potential of this model PA system to be adapted for delivery of hydrophobic therapies to treat a variety of diseases including cancer. PMID:22044255

  11. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Macková, Hana; Horák, Daniel; Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich; Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich; Kuzmenko, Oleksandr Ivanovich

    2015-04-01

    Maghemite (γ-Fe2O3) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe2O3 nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe2O3 nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe2O4 particles and the conventional antitumor agent cisplatin.

  12. Clinical features of active tuberculosis that developed during anti-tumor necrosis factor therapy in patients with inflammatory bowel disease

    PubMed Central

    Lee, Jang Wook; Park, Ji Hoon; Kim, Jeong Wook; Kang, Sang Bum; Koo, Ja Seol; Kim, Young-Ho; Kim, You Sun; Joo, Young Eun; Chang, Sae Kyung

    2016-01-01

    Background/Aims Anti-tumor necrosis factor (TNF) therapy for active ulcerative colitis (UC) and Crohn's disease (CD) is associated with increased risks of tuberculosis (TB) infection. We analyzed the incidence and clinical features of Korean patients with inflammatory bowel disease (IBD) who developed active TB during anti-TNF therapy. Methods Ten cases of active TB developed in patients treated with infliximab (n=592) or adalimumab (n=229) for UC (n=160) or CD (n=661) were reviewed. We analyzed demographics, interval between start of anti-TNF therapy and active TB development, tests for latent TB infection (LTBI), concomitant medications, and the details of diagnosis and treatments for TB. Results The incidence of active TB was 1.2% (10/821): 1.5% (9/592) and 0.4% (1/229) in patients receiving infliximab and adalimumab, respectively. The median time to the development of active TB after initiation of anti-TNF therapy was three months (range: 2–36). Three patients had past histories of treatment for TB. Positive findings in a TB skin test (TST) and/or interferon gamma releasing assay (IGRA) were observed in three patients, and two of them received anti-TB prophylaxis. Two patients were negative by both TST and IGRA. The most common site of active TB was the lungs, and the active TB was cured in all patients. Conclusions Active TB can develop during anti-TNF therapy in IBD patients without LTBI, and even in those with histories of TB treatment or LTBI prophylaxis. Physicians should be aware of the potential for TB development during anti-TNF therapy, especially in countries with a high prevalence of TB. PMID:27175115

  13. Ancient Chinese Formula Qiong-Yu-Gao Protects Against Cisplatin-Induced Nephrotoxicity Without Reducing Anti-tumor Activity

    PubMed Central

    Teng, Zhi-Ying; Cheng, Xiao-Lan; Cai, Xue-Ting; Yang, Yang; Sun, Xiao-Yan; Xu, Jin-Di; Lu, Wu-Guang; Chen, Jiao; Hu, Chun-Ping; Zhou, Qian; Wang, Xiao-Ning; Li, Song-Lin; Cao, Peng

    2015-01-01

    Cisplatin is a highly effective anti-cancer chemotherapeutic agent; however, its clinical use is severely limited by serious side effects, of which nephrotoxicity is the most important. In this study, we investigated whether Qiong-Yu-Gao (QYG), a popular traditional Chinese medicinal formula described 840 years ago, exhibits protective effects against cisplatin-induced renal toxicity. Using a mouse model of cisplatin-induced renal dysfunction, we observed that pretreatment with QYG attenuated cisplatin-induced elevations in blood urea nitrogen and creatinine levels, ameliorated renal tubular lesions, reduced apoptosis, and accelerated tubular cell regeneration. Cisplatin-mediated elevations in tumor necrosis factor alpha (TNF-α) mRNA, interleukin-1 beta (IL-1β) mRNA, and cyclooxygenase-2 (COX-2) protein in the kidney were also significantly suppressed by QYG treatment. Furthermore, QYG reduced platinum accumulation in the kidney by decreasing the expression of copper transporter 1 and organic cation transporter 2. An in vivo study using implanted Lewis lung cancer cells revealed that concurrent administration of QYG and cisplatin did not alter the anti-tumor activity of cisplatin. Our findings suggest that the traditional Chinese medicinal formula QYG inhibits cisplatin toxicity by several mechanisms that act simultaneously, without compromising its therapeutic efficacy. Therefore, QYG may be useful in the clinic as a protective agent to prevent cisplatin-induced nephrotoxicity. PMID:26510880

  14. Aurora inhibitor MLN8237 in combination with docetaxel enhances apoptosis and anti-tumor activity in mantle cell lymphoma.

    PubMed

    Qi, Wenqing; Cooke, Laurence S; Liu, Xiaobing; Rimsza, Lisa; Roe, Denise J; Manziolli, Ann; Persky, Daniel O; Miller, Thomas P; Mahadevan, Daruka

    2011-04-01

    Auroras (A and B) are oncogenic serine/threonine kinases that play key roles in the mitotic phase of the eukaryotic cell cycle. Analysis of the leukemia lymphoma molecular profiling project (LLMPP) database indicates Aurora over-expression correlates with poor prognosis. A tissue microarray (TMA) composed of 20 paired mantle cell lymphoma (MCL) patients demonstrated >75% of patients had high levels Aurora expression. Aurora A and B were also found elevated in 13 aggressive B-NHL cell lines. MLN8237, an Aurora inhibitor induced G2/M arrest with polyploidy and abrogated Aurora A and histone-H3 phosphorylation. MLN8237 inhibited aggressive B-NHL cell proliferation at an IC(50) of 10-50 nM and induced apoptosis in a dose- and time-dependent manner. Low dose combinations of MLN8237+docetaxel enhanced apoptosis by ~3-4-fold in cell culture compared to single agents respectively. A mouse xenograft model of MCL demonstrated that MLN8237 (10 or 30 mg/kg) or docetaxel (10mg/kg) alone had modest anti-tumor activity. However, MLN8237 plus docetaxel demonstrated a statistically significant tumor growth inhibition and enhanced survival compared to single agent therapy. Together, our results suggest that MLN8237 plus docetaxel may represent a novel therapeutic strategy that could be evaluated in early phase trials in relapsed/refractory aggressive B-cell NHL. PMID:21291867

  15. Syntheses, structures and anti-tumor activity of four new organotin(iv) carboxylates based on 2-thienylselenoacetic acid.

    PubMed

    Zhang, Yuan-Yuan; Zhang, Ru-Fen; Zhang, Shao-Liang; Cheng, Shuang; Li, Qian-Li; Ma, Chun-Lin

    2016-05-17

    With the 2-thienylselenoacetic acid ligand, four new organotin complexes, [Me3Sn(O2CCH2SeC4H3S-o)]n (), [(Ph3Sn)6(O2CCH2SeC4H3S-o)6] (), [(Me2Sn)4(μ3-O)2(O2CCH2SeC4H3S-o)4] (), and [(PhSn)6(μ3-O)6(O2CCH2SeC4H3S-o)6] (), have been synthesized and characterized by X-ray crystallography, elemental analysis, FT-IR and NMR ((1)H, (13)C, and (119)Sn) spectroscopy. The structure analysis indicates that complex adopts a 1D infinite zig-zag chain structure, while complex shows a centrosymmetric hexanuclear 24-membered macrocycle. In contrast, complex and complex display ladder and drum structures, respectively. Examination of the non-covalent intermolecular contacts in complex reveals the existence of the C-HO and C-Hπ interactions, which play an important function in the supramolecular construction. These compounds are rare examples of selenium carboxylic acid-based organotin derivatives. Furthermore, the anti-tumor activity of complexes has also been studied. Importantly, the anti-proliferative properties and possible mechanism of complex are preliminarily investigated. The results demonstrate that complex could induce apoptotic cell death via accumulation of ROS and collapse of the mitochondrial membrane permeabilization (MMP). PMID:27109561

  16. Interluekin-12 enhances the function and anti-tumor activity in murine and human CD8+ T cells

    PubMed Central

    Rubinstein, Mark P.; Su, Ee Wern; Suriano, Samantha; Cloud, Colleen A.; Andrijauskaite, Kristina; Kesarwani, Pravin; Schwartz, Kristina M.; Williams, Katelyn; Johnson, C. Bryce; Li, Mingli; Scurti, Gina M.; Salem, Mohamed L.; Paulos, Chrystal M.; Garrett-Mayer, Elizabeth; Mehrotra, Shikhar; Cole, David J.

    2016-01-01

    Mouse CD8+ T cells conditioned with Interleukin (IL)-12 ex vivo mediate the potent regression of established melanoma when transferred into lymphodepleted mice. However, the quantitative and qualitative changes induced by IL-12 in the responding mouse CD8+ T cells have not been well defined. Moreover, the mechanisms by which IL-12-conditioning impacts human CD8+ T cells, and how such cells might be expanded prior to infusion into patients is not known. We found that ex vivo IL-12-conditioning of mouse CD8+ T cells led to a 10- to 100-fold increase in persistence and anti-tumor efficacy upon adoptive transfer into lymphodepleted mice. The enhancing effect of IL-12 was associated with maintenance of functional avidity. Importantly, in the context of ongoing ACT clinical trials, human CD8+ T cells genetically modified with a tyrosinase-specific T-cell receptor exhibited significantly enhanced functional activity when conditioned with IL-12 as indicated by heightened granzyme B expression and elevated peptide-specific CD107a degranulation. This effect was sustainable despite the 20 days of in vitro cellular expansion required to expand cells over 1,000-fold allowing adequate cell numbers for administration to cancer patients. Overall, these findings support the efficacy and feasibility of ex vivo IL-12-conditioning of TCR-modified human CD8+ T cells for adoptive transfer and cancer therapy. PMID:25676709

  17. Anti-Tumor and Immune Enhancing Activities of Rice Bran Gramisterol on Acute Myelogenous Leukemia

    PubMed Central

    Somintara, Somsuda; Leardkamolkarn, Vijittra; Suttiarporn, Panawan; Mahatheeranont, Sugunya

    2016-01-01

    Background Acute myelogenous leukemia (AML) is a cancer of the blood that most commonly affects human adults. The specific cause of AML is unclear, but it induces abnormality of white blood cells that grow rapidly and accumulate in bone marrow interfering with the production and functions of the normal blood cells. AML patients face poor prognosis and low quality of life during chemotherapy or transplantation of hematopoietic stem cells due to the progressive impairment of their immune system. The goal of this study is to find natural products that have the potential to delay growth or eliminate the abnormal leukemic cells but cause less harmful effect to the body’s immune system. Methods and Findings The unsaponified fraction of Riceberry rice bran (RBDS) and the main pure compound, gramisterol, were studied for cytotoxicity and biological activities in WEHI-3 cells and in the leukemic mouse model induced by transplantation of WEHI-3 cells intraperitoneally. In the in vitro assay, RBDS and gramisterol exerted sub-G1 phase cell cycle arrest with a potent induction of apoptosis. Both of them effectively decreased cell cycle controlling proteins (cyclin D1 and cyclin E), suppressed cellular DNA synthesis and mitotic division, and reduced anti-apoptosis Bcl-2 protein, but increased apoptotic proteins (p53 and Bax) and activated caspase-3 enzyme in the intrinsic cell death stimulation pathway. In leukemic mice, daily feeding of RBDS significantly increased the amount of immune function-related cells including CD3+, CD19+, and CD11b+, and elevated the serum levels of IFN-γ, TNF-α, IL-2, and IL-12β cytokines, but suppressed IL-10 level. At the tumor sites, CD11b+ cells were polarized and became active phagocytotic cells. Treatment of mice normal immune cells with gramisterol alone or a combination of gramisterol with cytokines released from RBDS-treated leukemic mice splenocytes culture synergistically increased pSTAT1 transcriptional factor that up-regulated the

  18. DNA-demethylating and anti-tumor activity of synthetic miR-29b mimics in multiple myeloma.

    PubMed

    Amodio, Nicola; Leotta, Marzia; Bellizzi, Dina; Di Martino, Maria Teresa; D'Aquila, Patrizia; Lionetti, Marta; Fabiani, Fernanda; Leone, Emanuela; Gullà, Anna Maria; Passarino, Giuseppe; Caraglia, Michele; Negrini, Massimo; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2012-10-01

    Aberrant DNA methylation plays a relevant role in multiple myeloma (MM) pathogenesis. MicroRNAs (miRNAs) are a class of small non-coding RNAs that recently emerged as master regulator of gene expression by targeting protein-coding mRNAs. However, miRNAs involvement in the regulation of the epigenetic machinery and their potential use as therapeutics in MM remain to be investigated. Here, we provide evidence that the expression of de novo DNA methyltransferases (DNMTs) is deregulated in MM cells. Moreover, we show that miR-29b targets DNMT3A and DNMT3B mRNAs and reduces global DNA methylation in MM cells. In vitro transfection of MM cells with synthetic miR-29b mimics significantly impairs cell cycle progression and also potentiates the growth-inhibitory effects induced by the demethylating agent 5-azacitidine. Most importantly, in vivo intratumor or systemic delivery of synthetic miR-29b mimics, in two clinically relevant murine models of human MM, including the SCID-synth-hu system, induces significant anti-tumor effects. All together, our findings demonstrate that aberrant DNMTs expression is efficiently modulated by tumor suppressive synthetic miR-29b mimics, indicating that methyloma modulation is a novel matter of investigation in miRNA-based therapy of MM. PMID:23100393

  19. Anti-tumor promoting activity of bufadienolides from Kalanchoe pinnata and K. daigremontiana x tubiflora.

    PubMed

    Supratman, U; Fujita, T; Akiyama, K; Hayashi, H; Murakami, A; Sakai, H; Koshimizu, K; Ohigashi, H

    2001-04-01

    Five bufadienolides (1-5) isolated from the leaves of Kalanchoe pinnata and K. daigremontiana x tubiflora (Crassulaceae) were examined for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation in Raji cells induced by the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate. All bufadienolides showed inhibitory activity, and bryophyllin A (1) exhibited the most marked inhibition (IC50 = 0.4 microM) among the tested compounds. Bryophyllin C (2), a reduction analogue of 1, and bersaldegenin-3-acetate (3) lacking the orthoacetate moiety were less active. These results strongly suggest that bufadienolides are potential cancer chemopreventive agents. PMID:11388478

  20. Cytotoxic and anti-tumor activities of lignans from the seeds of Vietnamese nutmeg Myristica fragrans.

    PubMed

    Thuong, Phuong Thien; Hung, Tran Manh; Khoi, Nguyen Minh; Nhung, Hoang Thi My; Chinh, Nguyen Thi; Quy, Nguyen Thi; Jang, Tae Su; Na, Minkyun

    2014-03-01

    Four lignans, meso-dihydroguaiaretic acid (DHGA), macelignan, fragransin A2 and nectandrin B, were isolated from the seeds of Myristica fragrans (Vietnamese nutmeg) and investigated for their cytotoxic activity against eight cancer cell lines. Of these, DHGA exhibited potent cytotoxicity against H358 with IC50 value of 10.1 μM. In addition, DHGA showed antitumor activity in allogeneic tumor-bearing mice model. PMID:23877238

  1. Measurement of caspase-2 activation during different anti-tumor drugs induced apoptosis by FRET technique

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Zeng, Shaoqun; Luo, Qingming; Rong, Chen; Zhang, Zhihong

    2007-11-01

    Caspase-2 is important for the engagement of the mitochondrial apoptotic pathway, in the presence of DNA-damaging agents, such as cisplatin; however, the mechanism by which caspase-2 executes apoptosis remains obscure. In this study, we carried out the measurements of the dynamics of caspase-2 activation in a single living cell by a FRET (fluorescence resonance energy transfer) probe. A FRET probe was constructed that encoded a CRS (caspase-2 recognition site) fused with a cyan fluorescent protein (CFP) and a red fluorescent protein (DsRed) (CFP-CRS-DsRed). Using this probe, we found that during TRAIL-induced apoptosis, caspase-2 was not activated, and caspase-2 activation occurred in etoposide and cisplatin treated cells. However, during cisplatin-induced apoptosis caspase-2 activation was initiated much earlier than that of etoposide. Cisplatin and etoposide is one of the most broadly used drugs in the Clinical applications of cancer chemotherapy, and TRAIL, which belongs to the TNF family proteins, can selectively induce apoptosis in many transformed cells but not in normal cells. Most of anticancer drugs can induce apoptosis mediated by the activation of caspase pathway. Thus, the perfect synergistic effect group of multi-drug can be selected by using our FRET probe.

  2. Anti-tumor and anti-virus activity of polysaccharides extracted from Sipunculus nudus(SNP) on Hepg2.2.15.

    PubMed

    Su, Jie; Jiang, Linlin; Wu, Jingna; Liu, Zhiyu; Wu, Yuping

    2016-06-01

    Many polysaccharides have biological activities and have been investigated for their antitumor effects. In this study, we investigated the anti-tumor activity and anti-virus activity of SNP-the water-soluble polysaccharides extracted from Sipunculus nudus on Hepg2.2.15. Flow cytometry analysis demonstrated that SNP induced dose-dependent cell apoptosis on Hepg2.2.15. Real-time PCR and Western Blot analysis showed that SNP down-regulated the synthesis of HBsAg, HBV-DNA and enhanced the expression of pro-apoptosis proteins TNF-α, caspase-3, and Bax, while decreasing the expression of the anti-apoptosis proteins survivin, Bcl-2, and VEGF. These results suggested that SNP suppressed cell viability of Hepg2.2.15 and that could be a novel anti-tumor and anti-HBV agent. PMID:26987430

  3. Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma

    PubMed Central

    Zhu, Yongxia; Ye, Tinghong; Yu, Xi; Lei, Qian; Yang, Fangfang; Xia, Yong; Song, Xuejiao; Liu, Li; Deng, Hongxia; Gao, Tiantao; Peng, Cuiting; Zuo, Weiqiong; Xiong, Ying; Zhang, Lidan; Wang, Ningyu; Zhao, Lifeng; Xie, Yongmei; Yu, Luoting; Wei, Yuquan

    2016-01-01

    Melanoma is a highly malignant neoplasm of melanocytes with considerable metastatic potential and drug resistance, explaining the need for new candidates that inhibit tumor growth and metastasis. The signal transducer and activator of the transcription 3 (Stat3) signaling pathway plays an important role in melanoma and has been validated as promising anticancer target for melanoma therapy. In this study, nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3, was evaluated for its anti-melanoma activity in vitro and in vivo. It had potent anti-proliferative activity against various melanoma cell lines and could induce G2/M phase arrest and cell apoptosis. Moreover, nifuroxazide markedly impaired melanoma cell migration and invasion by down-regulating phosphorylated-Src, phosphorylated-FAK, and expression of matrix metalloproteinase (MMP) -2, MMP-9 and vimentin. It also significantly inhibited tumor growth without obvious side effects in the A375-bearing mice model by inducing apoptosis and reducing cell proliferation and metastasis. Notably, nifuroxazide significantly inhibited pulmonary metastases, which might be associated with the decrease of myeloid-derived suppressor cells (MDSCs). These findings suggested that nifuroxazide might be a potential agent for inhibiting the growth and metastasis of melanoma. PMID:26830149

  4. Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma.

    PubMed

    Zhu, Yongxia; Ye, Tinghong; Yu, Xi; Lei, Qian; Yang, Fangfang; Xia, Yong; Song, Xuejiao; Liu, Li; Deng, Hongxia; Gao, Tiantao; Peng, Cuiting; Zuo, Weiqiong; Xiong, Ying; Zhang, Lidan; Wang, Ningyu; Zhao, Lifeng; Xie, Yongmei; Yu, Luoting; Wei, Yuquan

    2016-01-01

    Melanoma is a highly malignant neoplasm of melanocytes with considerable metastatic potential and drug resistance, explaining the need for new candidates that inhibit tumor growth and metastasis. The signal transducer and activator of the transcription 3 (Stat3) signaling pathway plays an important role in melanoma and has been validated as promising anticancer target for melanoma therapy. In this study, nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3, was evaluated for its anti-melanoma activity in vitro and in vivo. It had potent anti-proliferative activity against various melanoma cell lines and could induce G2/M phase arrest and cell apoptosis. Moreover, nifuroxazide markedly impaired melanoma cell migration and invasion by down-regulating phosphorylated-Src, phosphorylated-FAK, and expression of matrix metalloproteinase (MMP) -2, MMP-9 and vimentin. It also significantly inhibited tumor growth without obvious side effects in the A375-bearing mice model by inducing apoptosis and reducing cell proliferation and metastasis. Notably, nifuroxazide significantly inhibited pulmonary metastases, which might be associated with the decrease of myeloid-derived suppressor cells (MDSCs). These findings suggested that nifuroxazide might be a potential agent for inhibiting the growth and metastasis of melanoma. PMID:26830149

  5. Regulation of osteoprotegerin pro- or anti-tumoral activity by bone tumor microenvironment.

    PubMed

    Lamoureux, F; Moriceau, G; Picarda, G; Rousseau, J; Trichet, V; Rédini, F

    2010-01-01

    Tumor development in bone is often associated with fractures, bone loss and bone pain, and improvement is still needed in therapeutic approaches. Bone tumors are related to the existence of a vicious cycle between bone resorption and tumor proliferation in which the molecular triad osteoprotegerin (OPG)/receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) plays a pivotal role. RANKL, a member of the TNF superfamily, is one of the main inducers of bone resorption. Its soluble receptor OPG represents a promising therapeutic candidate as it prevents bone lesions and inhibits associated tumor growth. However, its therapeutic use in bone tumors remains controversial due to its ability to bind and inhibit another member of the TNF superfamily, TNF related apoptosis inducing ligand (TRAIL), which is a potent inducer of tumor cell apoptosis. Through its heparin binding domain, OPG is also able to bind proteoglycans present in the bone matrix. This paper is an overview of the involvement of the micro-environment, as represented by the balance of RANKL/TRAIL and the presence of proteoglycans in the regulation of OPG biological activity in bone tumors. PMID:19733222

  6. Anti-tumor activity evaluation of novel chrysin-organotin compound in MCF-7 cells.

    PubMed

    Xuan, Hong-Zhuan; Zhang, Jun-Hong; Wang, Yue-Hua; Fu, Chong-Luo; Zhang, Wei

    2016-01-15

    Chrysin (5,7-dihydroxylflavone, Chry) is a natural flavonoid extracted from plants and propolis. In this work, a novel chrysin-organotin (Chry-Sn) compound with enhanced anticancer activities was synthesized by the reaction of chrysin and triphenyltin chloride, and its potential anticancer effects against cancer cells were measured using various methods. Sulforhodamine B (SRB) results showed that chrysin and Chry-Sn had significant inhibition effects on the proliferation of MCF-7, A549 and HeLa human cancer cell lines in a dose- and time- dependent manner. These results suggested that Chry-Sn possessed enhanced anticancer effects. Hoechst 33258 staining and acridine orange staining results showed apoptosis and nuclei fragments significantly increased after being treated with chrysin and Chry-Sn respectively. Moreover, chrysin and Chry-Sn significantly increased ROS levels in MCF-7 cells. Western blot results showed that chrysin and Chry-Sn activated caspase 3 and induced autophagy by increasing LC3-II level. All results showed collectively that Chry-Sn could be a more promising drug than chrysin in anticancer treatment. PMID:26670842

  7. Moxifloxacin increases anti-tumor and anti-angiogenic activity of irinotecan in human xenograft tumors.

    PubMed

    Reuveni, Debby; Halperin, Drora; Fabian, Ina; Tsarfaty, Galia; Askenasy, Nadir; Shalit, Itamar

    2010-04-15

    Camptothecins (CPTs) are topoisomerase I inhibitors chemotherapeutic agents used in combination chemotherapy. We showed previously that combination of moxifloxacin (MXF) and CPT induced inhibitory effects on topoisomerase I activity, on proliferation of HT-29 cells in vitro and enhanced apoptosis, compared to CPT alone. Analysis of secretion of the pro-angiogenic factors IL-8 and VEGF showed significant reduction by MXF. Using a murine model of human colon carcinoma xenograft, we compared the effects of MXF/CPT in vitro to MXF/irinotecan combination in vivo. We show that the MXF/CPT inhibitory effects observed in vitro are reflected in the inhibition of the progressive growth of HT-29 cells implanted in SCID mice. Using caliper measurements, Doppler ultrasonography, image analyses and immunohistochemistry of nuclear proteins (Ki-67) and vascular endothelial cells (CD-31) we show that addition of MXF (45mg/kg) to a relatively ineffective dose of irinotecan (20mg/kg), results in a 50% and 30% decrease, respectively, in tumor size and a decrease in Ki-67 staining. Power Doppler Ultrasound showed a significant, pronounced decrease in the number of blood vessels, as did CD-31 staining, indicating decreased blood flow in tumors in mice treated with MXF alone or MXF/irinotecan compared to irinotecan. These results suggest that the combination of MXF/irinotecan may result in enhanced anti-neoplastic/anti-angiogenic activity. PMID:20025849

  8. Carboxyl-terminal fusion of E7 into Flagellin shifts TLR5 activation to NLRC4/NAIP5 activation and induces TLR5-independent anti-tumor immunity

    PubMed Central

    Lin, Kuo-Hsing; Chang, Li-Sheng; Tian, Chun-Yuan; Yeh, Yi-Chen; Chen, Yu-Jie; Chuang, Tsung-Hsien; Liu, Shih-Jen; Leng, Chih-Hsiang

    2016-01-01

    Flagellin has the capacity to activate both Toll-like receptor 5 (TLR5) and Nod-like receptor C4 (NLRC4)/neuronal apoptosis inhibitory protein 5 (NAIP5) inflammasome signaling. We fused E7m (the inactivated E7 of human papillomavirus) to either end of the flagellin protein, and the resulting recombinant flagellin-E7m proteins (rFliCE7m and rE7mFliC) were used as immunogens. Both fusion proteins activated receptor signaling to different degrees. rE7mFliC-induced TLR5 activity was 10-fold higher than that of rFliCE7m, whereas rFliCE7m activated the NLRC4/NAIP5 pathway more strongly. Therefore, these recombinant proteins provided a tool to investigate which signaling pathway is critical for the induction of antigen-specific T cell responses and anti-tumor immunity. We demonstrated that rFliCE7m induced higher levels of E7-specific IFN-gamma-secreting cells and cytotoxic T lymphocytes (CTLs) than rE7mFliC, and a single injection with rFliCE7m but not rE7mFliC inhibited E7-expressing tumor growth in vivo. Furthermore, we confirmed that CD8+ T cells played a major role in the anti-tumor immunity induced by rFliCE7m. These findings suggested that the NLRC4/NAIP5 intracellular signaling pathway was critical for the induction of anti-tumor immunity. These observations provide important information for the rational design of flagellin-based immunotherapy. PMID:27063435

  9. CD8+ T Cell-Independent Immune-Mediated Mechanisms of Anti-Tumor Activity

    PubMed Central

    Pluhar, G. Elizabeth; Pennell, Christopher A.; Olin, Michael R.

    2016-01-01

    Despite the growing number of preclinical and clinical trials focused on immunotherapy for the treatment of malignant gliomas, the prognosis for this disease remains grim. Cancer immunotherapy seeks to recruit an effective immune response to eliminate tumor cells. To date, cancer vaccines have shown only limited effectiveness because of our incomplete understanding of the necessary effector cells and mechanisms that yield efficient tumor clearance. CD8+ T cell cytotoxic activity has long been proposed as the primary effector function necessary for tumor regression. However, there is increasing evidence that indicates that components of the immune system other than CD8+ T cells play important roles in tumor eradication and control. The following review should provide an understanding of the mechanisms involved in an effective antitumor response to guide future therapeutic designs. The information provided suggests an alternate means of effective tumor clearance in malignant glioma to the canonical CD8+ cytotoxic T cell mechanism. PMID:26351148

  10. Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs.

    PubMed

    Murray, Michael; Hraiki, Adam; Bebawy, Mary; Pazderka, Curtis; Rawling, Tristan

    2015-06-01

    Lipids have the potential for development as anticancer agents. Endogenous membrane lipids, such as ceramides and certain saturated fatty acids, have been found to modulate the viability of tumor cells. In addition, many tumors over-express cyclooxygenase, lipoxygenase or cytochrome P450 enzymes that mediate the biotransformation of ω-6 polyunsaturated fatty acids (PUFAs) to potent eicosanoid regulators of tumor cell proliferation and cell death. In contrast, several analogous products from the biotransformation of ω-3 PUFAs impair particular tumorigenic pathways. For example, the ω-3 17,18-epoxide of eicosapentaenoic acid activates anti-proliferative and proapoptotic signaling cascades in tumor cells and the lipoxygenase-derived resolvins are effective inhibitors of inflammatory pathways that may drive tumor expansion. However, the development of potential anti-cancer drugs based on these molecules is complex, with in vivo stability a major issue. Nevertheless, recent successes with the antitumor alkyl phospholipids, which are synthetic analogues of naturally-occurring membrane phospholipid esters, have provided the impetus for development of further molecules. The alkyl phospholipids have been tested against a range of cancers and show considerable activity against skin cancers and certain leukemias. Very recently, it has been shown that combination strategies, in which alkyl phospholipids are used in conjunction with established anticancer agents, are promising new therapeutic approaches. In future, the evaluation of new lipid-based molecules in single-agent and combination treatments may also be assessed. This could provide a range of important treatment options in the management of advanced and metastatic cancer. PMID:25603423

  11. A Novel Oncolytic Herpes Simplex Virus Type 2 Has Potent Anti-Tumor Activity

    PubMed Central

    Zhuang, Xiufen; Lu, Haizhen; Liang, Jing; Li, Jie; Zhang, Yu; Dong, Ying; Zhang, Youhui; Zhang, Shuren; Liu, Shangmei; Liu, Binlei

    2014-01-01

    Oncolytic viruses are promising treatments for many kinds of solid tumors. In this study, we constructed a novel oncolytic herpes simplex virus type 2: oHSV2. We investigated the cytopathic effects of oHSV2 in vitro and tested its antitumor efficacy in a 4T1 breast cancer model. We compared its effect on the cell cycle and its immunologic impact with the traditional chemotherapeutic agent doxorubicin. In vitro data showed that oHSV2 infected most of the human and murine tumor cell lines and was highly oncolytic. oHSV2 infected and killed 4T1 tumor cells independent of their cell cycle phase, whereas doxorubicin mainly blocked cells that were in S and G2/M phase. In vivo study showed that both oHSV2 and doxorubicin had an antitumor effect, though the former was less toxic. oHSV2 treatment alone not only slowed down the growth of tumors without causing weight loss but also induced an elevation of NK cells and mild decrease of Tregs in spleen. In addition, combination therapy of doxorubicin followed by oHSV2 increased survival with weight loss than oHSV2 alone. The data showed that the oncolytic activity of oHSV2 was similar to oHSV1 in cell lines examined and in vivo. Therefore, we concluded that our virus is a safe and effective therapeutic agent for 4T1 breast cancer and that the sequential use of doxorubicin followed by oHSV2 could improve antitumor activity without enhancing doxorubicin’s toxicity. PMID:24671154

  12. FcγRs Modulate the Anti-tumor Activity of Antibodies Targeting the PD-1/PD-L1 Axis.

    PubMed

    Dahan, Rony; Sega, Emanuela; Engelhardt, John; Selby, Mark; Korman, Alan J; Ravetch, Jeffrey V

    2015-09-14

    Immune checkpoint blockade of the programmed cell death protein 1 (PD-1) pathway by monoclonal antibodies (Abs) has shown promising clinical benefit in the treatment of multiple cancer types. We elucidated the contribution of the fragment crystallizable (Fc) domains of anti-PD-1 and anti-PD-ligand 1 (L1) Abs for their optimal anti-tumor activity. We revealed that distinct Fcγ receptor (FcγRs) dependency and mechanisms account for the in vivo activity of anti-PD-1 versus anti-PD-L1 Abs. Anti-PD-1 Abs were found to be FcγR independent in vivo; the presence of FcγR-binding capacity compromises their anti-tumor activity. In contrast, the anti-PD-L1 Abs show augmented anti-tumor activity when activating FcγR binding is introduced into the molecules, altering myeloid subsets within the tumor microenvironment. PMID:26373277

  13. Anti-tumor activity of ESX1 on cancer cells harboring oncogenic K-ras mutation

    SciTech Connect

    Nakajima, Junta; Ishikawa, Susumu; Hamada, Jun-Ichi; Yanagihara, Masatomo; Koike, Takao; Hatakeyama, Masanori

    2008-05-23

    Human ESX1 is a 65-kilodalton (kDa) paired-like homeoprotein that is proteolytically processed into N-terminal 45-kDa and C-terminal 20-kDa fragments. The N-terminal ESX1 fragment, which contains the homeodomain, localizes to the nucleus and represses mRNA transcription from the K-ras gene. When we inoculated human colorectal carcinoma HCT116 constitutive expressing N-terminal region of ESX1 (N-ESX1) into nude mice, transfectant cells uniformly showed decreased tumor-forming activity compared with that of the parental cells. Furthermore, pretreatment of HCT116 carcinoma cells with a fusion protein consisting of N-ESX1 and the protein-transduction domain derived from the human immunodeficiency virus type-1 TAT protein gave rise to a dramatic reduction in the tumorigenicity of HCT116 cells in nude mice. Our results provide first in vivo evidence for the molecular targeting therapeutic application of the K-ras repressor ESX1, especially TAT-mediated transduction of N-ESX1, in the treatment of human cancers having oncogenic K-ras mutations.

  14. Chemically and biologically synthesized CPP-modified gelonin for enhanced anti-tumor activity.

    PubMed

    Shin, Meong Cheol; Zhang, Jian; David, Allan E; Trommer, Wolfgang E; Kwon, Young Min; Min, Kyoung Ah; Kim, Jin H; Yang, Victor C

    2013-11-28

    The ineffectiveness of small molecule drugs against cancer has generated significant interest in more potent macromolecular agents. Gelonin, a plant-derived toxin that inhibits protein translation, has attracted much attention in this regard. Due to its inability to internalize into cells, however, gelonin exerts only limited tumoricidal effect. To overcome this cell membrane barrier, we modified gelonin, via both chemical conjugation and genetic recombination methods, with low molecular weight protamine (LMWP), a cell-penetrating peptide (CPP) which was shown to efficiently ferry various cargoes into cells. Results confirmed that gelonin-LMWP chemical conjugate (cG-L) and recombinant gelonin-LMWP chimera (rG-L) possessed N-glycosidase activity equivalent to that of unmodified recombinant gelonin (rGel); however, unlike rGel, both gelonin-LMWPs were able to internalize into cells. Cytotoxicity studies further demonstrated that cG-L and rG-L exhibited significantly improved tumoricidal effects, with IC50 values being 120-fold lower than that of rGel. Moreover, when tested against a CT26 s.c. xenograft tumor mouse model, significant inhibition of tumor growth was observed with rG-L doses as low as 2 μg/tumor, while no detectable therapeutic effects were seen with rGel at 10-fold higher doses. Overall, this study demonstrated the potential of utilizing CPP-modified gelonin as a highly potent anticancer drug to overcome limitations of current chemotherapeutic agents. PMID:23973813

  15. Apoptotic human neutrophil peptide-1 anti-tumor activity revealed by cellular biomechanics.

    PubMed

    Gaspar, Diana; Freire, João M; Pacheco, Teresa R; Barata, João T; Castanho, Miguel A R B

    2015-02-01

    Cancer remains a major cause of morbidity and mortality worldwide. Although progress has been made regarding chemotherapeutic agents, new therapies that combine increased selectivity and efficacy with low resistance are still needed. In the search for new anticancer agents, therapies based on biologically active peptides, in particular, antimicrobial peptides (AMPs), have attracted attention for their decreased resistance development and low cytotoxicity. Many AMPs have proved to be tumoricidal agents against human cancer cells, but their mode of action is still controversial. The existence of common properties shared by the membranes of bacteria and tumor cells points to similar lipid-targeting mechanisms in both cases. On the other hand, anticancer peptides (ACPs) also induce apoptosis and inhibit angiogenesis. Human neutrophil peptide-1 (HNP-1) is an endogenous AMP that has been implicated in different cellular phenomena such as tumor proliferation. The presence of HNP-1 in the serum/plasma of oncologic patients turns this peptide into a potential tumor biomarker. The present work reveals the different effects of HNP-1 on the biophysical and nanomechanical properties of solid and hematological tumor cells. Studies on cellular morphology, cellular stiffness, and membrane ultrastructure and charge using atomic force microscopy (AFM) and zeta potential measurements show a preferential binding of HNP-1 to solid tumor cells from human prostate adenocarcinoma when compared to human leukemia cells. AFM also reveals induction of apoptosis with cellular membrane defects at very low peptide concentrations. Understanding ACPs mode(s) of action will certainly open innovative pathways for drug development in cancer treatment. PMID:25447543

  16. Synthesis, anti-hypertensive effect of a novel angiotensin II AT1 receptor antagonist and its anti-tumor activity in prostate cancer.

    PubMed

    Da, Y-J; Yuan, W-D; Zhu, L-F; Chen, Z-L

    2012-12-01

    Since the first non-peptide Ang II receptor antagonist was originally reported, it has become the most common target in the development of new treatments for hypertension. In recent years, all components of the classical RAS have been reported in the prostate, these results suggest the possibility that ARB is a novel therapeutic class of agents for prostate cancer. In this study, a new compound 2-(4-((2-propyl-5-nitro-1H-benzo[d]imidazol-1-yl) methyl)-1H-indol-1-yl) benzoic acid was synthesized and evaluated as a novel angiotensin II AT1 receptor antagonist by radioligand binding assays, anti-hypertensive assays in vivo and oral acute toxicity test. MTT assays and tests in nude mice were used to demonstrate its anti-tumor activity. This new compound showed high affinity to AT1 receptor and anti-hypertensive activity in spontaneously hypertensive rats and renal hypertensive rats. Moreover, in human prostate cancer cells and in athymic nude mice bearing human prostate cancer cells, we observed this new compound had an efficient antiproliferative activity in vitro and anti-tumor activity in vivo. The preliminary pharmacological characteristics with oral acute toxicity test suggested that this new compound can be considered as a candidate for both anti-hypertensive and anti-tumor drug. PMID:23203543

  17. Enhanced anti-tumor activity of trichosanthin after combination with a human-derived cell-penetrating peptide, and a possible mechanism of activity.

    PubMed

    Lu, Ye-Zhou; Li, Peng-Fei; Li, Yan-Zhong; Luo, Fan; Guo, Chao; Lin, Bin; Cao, Xue-Wei; Zhao, Jian; Wang, Fu-Jun

    2016-07-01

    Trichosanthin (TCS), a type I ribosome-inactivating protein (RIP-I) and renowned Chinese traditional medicine, displays a broad spectrum of biological and pharmacological properties. Particularly, its anti-tumor activity has received a great deal of attention. However, the cellular mechanism for TCS uptake varies with different tumor cell lines, leading to discrepancies in its reported ability to penetrate cells. In this study, HBD, a human derived cell-penetrating peptide (CPP), was used to improve the delivery of TCS into several types of tumor cells, including HeLa cells. Recombinant TCS (rTCS) with or without the fused HBD peptide was expressed in Escherichia coli cells and successfully purified by Ni-NTA affinity chromatography. The cellular uptake efficiency of FITC-labelled-rTCS-HBD was observed in HeLa cells and compared with the uptake efficiency of non-HBD conjugated rTCS under the same conditions using laser confocal microscopy. Moreover, the IC50 value of rTCS-HBD in the tested tumor cells was much lower than that of rTCS, indicating that HBD could efficiently deliver the rTCS into tumor cells. When compared with rTCS, rTCS-HBD induced higher rates of apoptosis in HeLa cells as analyzed by flow cytometry. Furthermore, the apoptotic events observed in HeLa cells incubated with HBD-fused rTCS included activation of Caspase-9, decrease in the Bcl-2/Bax ratio, and cleavage of PARP. These results strongly suggest the participation of mitochondria in apoptosis. This report illustrates one possible method for achieving the efficient transport of TCS into cells using a CPP as a vector, and increases the likelihood that TCS can be used in the clinic. PMID:27050721

  18. Potent anti-angiogenesis and anti-tumor activity of a novel human anti-VEGF antibody, MIL60.

    PubMed

    Yang, Jing; Wang, Qun; Qiao, Chunxia; Lin, Zhou; Li, Xinying; Huang, Yifei; Zhou, Tingting; Li, Yan; Shen, Beifen; Lv, Ming; Feng, Jiannan

    2014-05-01

    Angiogenesis is crucial for tumor development, growth and metastasis. Vascular endothelial growth factor (VEGF) has been implicated in promoting solid tumor growth and metastasis via stimulating tumor-associated angiogenesis, and blocking the activity of VEGF can starve tumors. Avastin, which is a humanized anti-VEGF antibody, has been successfully applied in clinics since 2004. However, the price of Avastin is extremely high for Chinese people. Here, we report a novel human anti-VEGF neutralizing antibody, MIL60, which shows an affinity comparable to that of Avastin (the KD value of MIL60 was 44.5 pM, while that of Avastin was 42.7 pM). MIL60 displays favorable actions in inhibiting VEGF-triggered endothelial cell proliferation (the IC50 value of MIL60 was 31±6.4 ng/ml and that of Avastin was 47±8.1 ng/ml), migration (8 µg/ml or 0.8 µg/ml MIL60 versus the control: P<0.05) and tube formation (2 µg/ml or 0.2 µg/ml MIL60 versus the control: P<0.05) via the VEGFR2 signaling pathway. Moreover, MIL60 was shown to inhibit tumor growth and angiogenesis in vivo in xenograft models of human colon carcinoma and ovarian cancer using immunotherapy and immunohistochemistry analysis (MIL60 versus N.S.: P=0.0007; Avastin versus N.S.: P=0.00046). These data suggest that MIL60 is a potential therapeutic, anti-angiogenic agent. Our work provides a novel anti-VEGF antibody, which can be considered an anti-tumor antibody candidate and a new option for patients with various cancers. PMID:24608894

  19. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity

    PubMed Central

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M.; Tinder, Teresa L.; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J.

    2013-01-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo. PMID:22543528

  20. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity.

    PubMed

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M; Tinder, Teresa L; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J; Mukherjee, Pinku

    2012-11-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo. PMID:22543528

  1. Isopentenyl pyrophosphate activated CD56+ γδ T lymphocytes display potent anti-tumor activity towards human squamous cell carcinoma

    PubMed Central

    Alexander, Alan A.Z.; Maniar, Amudhan; Cummings, Jean-Saville; Hebbeler, Andrew M.; Schulze, Dan H.; Gastman, Brian R.; Pauza, C. David; Strome, Scott E.; Chapoval, Andrei I.

    2008-01-01

    Purpose The expression of CD56, a natural killer (NK) cell-associated molecule, on αβ T lymphocytes correlates with their increased anti-tumor effector function. CD56 is also expressed on a subset of γδ T cells. However, anti-tumor effector functions of CD56+ γδ T cells are poorly characterized. Experimental design To investigate the potential effector role of CD56+ γδ T cells in tumor killing, we employed isopentenyl pyrophosphate (IPP) and IL-2 expanded γδ T cells from PBMC of healthy donors. Results Thirty to 70% of IPP+IL-2 expanded γδ T cells express CD56 on their surface. Interestingly, while both CD56+ and CD56− γδ T cells express comparable levels of receptors involved in the regulation of γδ T cell cytotoxicity (e.g. NKG2D and CD94) only CD56+ γδ T lymphocytes are capable of killing squamous cell carcinoma (SCC) and other solid tumor cell lines. This effect is likely mediated by the enhanced release of cytolytic granules, since CD56+ γδ T lymphocytes expressed higher levels of CD107a compared to CD56− controls, following exposure to tumor cell lines. Lysis of tumor cell lines is blocked by concanomycin A and a combination of anti-γδTCR + anti-NKG2D mAb, suggesting that the lytic activity of CD56+ γδ T cells involves the perforin-granzyme pathway and is mainly γδTCR/NKGD2 dependent. Importantly, CD56 expressing γδ T lymphocytes are resistant to Fas ligand and chemically induced apoptosis. Conclusions Our data indicate that CD56+ γδ T cells are potent anti-tumor effectors capable of killing SCC and may play an important therapeutic role in patients with head and neck cancer and other malignancies. PMID:18594005

  2. Structure determination of inonotsuoxides A and B and in vivo anti-tumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus.

    PubMed

    Nakata, Tomoko; Yamada, Takeshi; Taji, Sayaka; Ohishi, Hirofumi; Wada, Shun-Ichi; Tokuda, Harukuni; Sakuma, Kazuo; Tanaka, Reiko

    2007-01-01

    Two new lanostane-type triterpenoids, inonotsuoxides A (1) and B (2) along with three known lanostane-type triterpenoids, inotodiol (3), trametenolic acid (4), and lanosterol (5), were isolated from the sclerotia of Inonotus obliquus (Pers.: Fr.) (Japanese name: Kabanoanakake) (Russian name: Chaga). Their structures were determined to be 22R,25-epoxylanost-8-ene-3beta,24S-diol (1) and 22S,25-epoxylanost-8-ene-3beta,24S-diol (2) on the basis of spectral data including single crystal X-ray analysis. These compounds except for 2 were tested for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), as a test for potential cancer chemopreventive agents. The most abundant triterpene, inotodiol (3), was investigated for the inhibitory effect in a two-stage carcinogenesis test on mouse skin using 7,12-dimethylbenz[a]anthracene (DMBA) as an initiator and TPA as a promoter. Compound 3 was found to exhibit the potent anti-tumor promoting activity in the in vivo carcinogenesis test. PMID:17049251

  3. Physalin A exerts anti-tumor activity in non-small cell lung cancer cell lines by suppressing JAK/STAT3 signaling

    PubMed Central

    Loo, Jacky F.C.; Xia, Dajin; Gao, Sizhi P.; Ma, Zhongjun; Chen, Zhe

    2016-01-01

    The signal transducers and activators of transcription 3 (STAT3) signaling pathway plays critical roles in the pathogenesis and progression of various human cancers, including non-small cell lung cancer (NSCLC). In this study, we aimed to evaluate the therapeutic potential of physalin A, a bioactive withanolide derived from Physalis alkekengi var. francheti used in traditional Chinese medicine, was evaluated in human NSCLC cells. Its and determined whether it effect oninhibited both constitutive and induced STAT3 activity, through repressing the phosphorylation levels of JAK2 and JAK3, resulting in anti-proliferation and pro-apoptotic effects on NSCLC cells was also determined, and. theThe antitumor effects of physalin A were also validated usingin an in vivo mouse xenograft models of NSCLC cells. Physalin A had anti-proliferative and pro-apoptotic effects in NSCLC cells with constitutively activated STAT3; it also suppressed both constitutive and induced STAT3 activity by modulating the phosphorylation of JAK2 and JAK3. Furthermore, physalin A abrogated the nuclear translocation and transcriptional activity of STAT3, thereby decreasing the expression levels of STAT3, its target genes, such as Bcl-2 and XIAP. Knockdown of STAT3 expression by small interfering RNA (siRNA) significantly enhanced the pro-apoptotic effects of physalin A in NSCLC cells. Moreover, physalin A significantly suppressed tumor xenograft growth. Thus, as an inhibitor of JAK2/3-STAT3 signaling, physalin A, has potent anti-tumor activities, which may facilitate the development of a therapeutic strategy for treating NSCLC. PMID:26843613

  4. Physalin A exerts anti-tumor activity in non-small cell lung cancer cell lines by suppressing JAK/STAT3 signaling.

    PubMed

    Zhu, Fanfan; Dai, Chunyan; Fu, Yufei; Loo, Jacky F C; Xia, Dajin; Gao, Sizhi P; Ma, Zhongjun; Chen, Zhe

    2016-02-23

    The signal transducers and activators of transcription 3 (STAT3) signaling pathway plays critical roles in the pathogenesis and progression of various human cancers, including non-small cell lung cancer (NSCLC). In this study, we aimed to evaluate the therapeutic potential of physalin A, a bioactive withanolide derived from Physalis alkekengi var. francheti used in traditional Chinese medicine, was evaluated in human NSCLC cells. Its and determined whether it effect oninhibited both constitutive and induced STAT3 activity, through repressing the phosphorylation levels of JAK2 and JAK3, resulting in anti-proliferation and pro-apoptotic effects on NSCLC cells was also determined, and. theThe antitumor effects of physalin A were also validated usingin an in vivo mouse xenograft models of NSCLC cells. Physalin A had anti-proliferative and pro-apoptotic effects in NSCLC cells with constitutively activated STAT3; it also suppressed both constitutive and induced STAT3 activity by modulating the phosphorylation of JAK2 and JAK3. Furthermore, physalin A abrogated the nuclear translocation and transcriptional activity of STAT3, thereby decreasing the expression levels of STAT3, its target genes, such as Bcl-2 and XIAP. Knockdown of STAT3 expression by small interfering RNA (siRNA) significantly enhanced the pro-apoptotic effects of physalin A in NSCLC cells. Moreover, physalin A significantly suppressed tumor xenograft growth. Thus, as an inhibitor of JAK2/3-STAT3 signaling, physalin A, has potent anti-tumor activities, which may facilitate the development of a therapeutic strategy for treating NSCLC. PMID:26843613

  5. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    PubMed Central

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  6. Elimination of IL-10 inducing T-helper epitopes from an IGFBP-2 vaccine ensures potent anti-tumor activity

    PubMed Central

    Cecil, Denise L.; Holt, Gregory E.; Park, Kyong Hwa; Gad, Ekram; Rastetter, Lauren; Childs, Jennifer; Higgins, Doreen; Disis, Mary L.

    2014-01-01

    Immunization against self-tumor antigens can induce T-regulatory cells which inhibit proliferation of Type I CD4+ T-helper (Th1) and CD8+ cytotoxic T-cells. Type I T-cells are required for potent anti-tumor immunity. We questioned whether immunosuppressive epitopes could be identified and deleted from a cancer vaccine targeting IGFBP-2 and enhance vaccine efficacy. Screening breast cancer patient lymphocytes with IFN-γ and IL-10 ELISPOT, we found epitopes in the N-terminus of IGFBP-2 that elicited predominantly Th1 while the C-terminus stimulated Th2 and mixed Th1/Th2 responses. Epitope-specific Th2 demonstrated a higher functional avidity for antigen than epitopes which induced IFN-γ (p=0.014). We immunized TgMMTV-neu mice with DNA constructs encoding IGFBP-2 N-and C-termini. T-cell lines expanded from the C-terminus vaccinated animals secreted significantly more Type II cytokines than those vaccinated with the N-terminus and could not control tumor growth when infused into tumor-bearing animals. In contrast, N-terminus epitope-specific T-cells secreted Th1 cytokines and significantly inhibited tumor growth, as compared with naïve T-cells, when adoptively transferred (p=0.005). To determine whether removal of Th2 inducing epitopes had any effect on the vaccinated anti-tumor response, we immunized mice with the N-terminus, C-terminus and a mix of equivalent concentrations of both vaccines. The N-terminus vaccine significantly inhibited tumor growth (p<0.001) as compared to the C-terminus vaccine which had no anti-tumor effect. Mixing the C-terminus with the N-terminus vaccine abrogated the anti-tumor response of the N-terminus vaccine alone. The clinical efficacy of cancer vaccines targeting self-tumor antigens may be greatly improved by identification and removal of immunosuppressive epitopes. PMID:24778415

  7. Akbu-LAAO exhibits potent anti-tumor activity to HepG2 cells partially through produced H2O2 via TGF-β signal pathway

    PubMed Central

    Guo, Chunmei; Liu, Shuqing; Dong, Panpan; Zhao, Dongting; Wang, Chengyi; Tao, Zhiwei; Sun, Ming-Zhong

    2015-01-01

    Previously, we characterized the biological properties of Akbu-LAAO, a novel L-amino acid oxidase from Agkistrodon blomhoffii ussurensis snake venom (SV). Current work investigated its in vitro anti-tumor activity and underlying mechanism on HepG2 cells. Akbu-LAAO inhibited HepG2 growth time and dose-dependently with an IC50 of ~38.82 μg/mL. It could induce the apoptosis of HepG2 cells. Akbu-LAAO exhibited cytotoxicity by inhibiting growth and inducing apoptosis of HepG2 as it showed no effect on its cell cycle. The inhibition of Akbu-LAAO to HepG2 growth partially relied on enzymatic-released H2O2 as catalase only partially antagonized this effect. cDNA microarray results indicated TGF-β signaling pathway was linked to the cytotoxicity of Akbu-LAAO on HepG2. TGF-β pathway related molecules CYR61, p53, GDF15, TOB1, BTG2, BMP2, BMP6, SMAD9, JUN, JUNB, LOX, CCND1, CDK6, GADD45A, CDKN1A were deregulated in HepG2 following Akbu-LAAO stimulation. The presence of catalase only slightly restored the mRNA changes induced by Akbu-LAAO for differentially expressed genes. Meanwhile, LDN-193189, a TGF-β pathway inhibitor reduced Akbu-LAAO cytotoxicity on HepG2. Collectively, we reported, for the first time, SV-LAAO showed anti-tumor cell activity via TGF-β pathway. It provides new insight of SV-LAAO exhibiting anti-tumor effect via a novel signaling pathway. PMID:26655928

  8. The bispecific immunoligand ULBP2-aCEA redirects natural killer cells to tumor cells and reveals potent anti-tumor activity against colon carcinoma.

    PubMed

    Rothe, Achim; Jachimowicz, Ron D; Borchmann, Sven; Madlener, Marie; Keßler, Jörg; Reiners, Katrin S; Sauer, Maike; Hansen, Hinrich P; Ullrich, Roland T; Chatterjee, Sampurna; Borchmann, Peter; Yazaki, Paul; Koslowsky, Thomas C; Engert, Andreas; Heukamp, Lukas C; Hallek, Michael; von Strandmann, Elke Pogge

    2014-06-15

    NKG2D, an activating receptor expressed on NK cells and T cells, is critically involved in tumor immunosurveillance. In this study, we explored the potential therapeutic utility of the NKG2D ligand ULBP2 for the treatment of colon carcinoma. To this end we designed a fusion protein consisting of human ULBP2 and an antibody-derived single chain targeting the tumor carcinoembryonic antigen (CEA). The bispecific recombinant fusion protein re-directed NK cells towards malignant cells by binding to both, tumor cells and NK cells, and triggered NK cell-mediated target cell killing in vitro. Moreover, tumor growth was significantly delayed in a syngeneic colon carcinoma mouse model in response to immunoligand treatment. The anti-tumor activity could be attributed to the stimulation of immune cells with an elevated expression of the activation marker CD69 on NK, T and NKT cells and the infiltration of CD45+ immune cells into the solid tumor. In summary, it was demonstrated that immunoligands provide specific tumor targeting by NK cells and exert anti-tumor activity in vitro and in vivo. This technology represents a novel immunotherapeutic strategy for solid tumors with the potential to be further developed for clinical applications. PMID:24242212

  9. Assessment of the in vitro cytotoxicity and in vivo anti-tumor activity of the alcoholic stem bark extract/fractions of Mimusops elengi Linn.

    PubMed

    Kumar, Harish; Savaliya, Mihir; Biswas, Subhankar; Nayak, Pawan G; Maliyakkal, Naseer; Manjunath Setty, M; Gourishetti, Karthik; Pai, K Sreedhara Ranganath

    2016-08-01

    Various parts of Mimusops elengi Linn. (Sapotaceae) have been used widely in traditional Indian medicine for the treatment of pain, inflammation and wounds. The study was conducted to explore the use of stem bark of M. elengi on pharmacological grounds and to evaluate the scientific basis of cytotoxic and anti-tumor activity. Extract/fractions were prepared and in vitro cytotoxicity was assessed using SRB assay. Most effective fractions were subjected to fluorescence microscopy based acridine orange/ethidium bromide (AO/EB) and Hoechst 33342 staining to determine apoptosis induction and DNA fragmentation assay. Comet and micronuclei assay were performed to assess genotoxicity. Cell cycle analysis was also performed. In vivo anti-tumor potential was evaluated by Ehrlich ascites carcinoma (EAC) model in mice. The alcoholic stem bark extract of M. elengi along with four fractions showed potential in vitro cytotoxicity in SRB assay. Of these, dichloromethane and ethyl acetate fractions were selected for further studies. The fractions revealed apoptosis inducing potential in AO/EB and Hoechst 33342 staining, which was further confirmed by DNA fragmentation assay. Genotoxic potential was revealed by comet and micronuclei assay. Fractions also exhibited specific cell cycle inhibition in G0/G1 phase. In EAC model, ethyl acetate fraction along with the standard (cisplatin) effectively reduced the increase in body weight compared to control and improved mean survival time. Both fractions were able to restore the altered hematological and biochemical parameters. Hence, M. elengi stem bark may be a possible therapeutic candidate having cytotoxic and anti-tumor potential. PMID:25701190

  10. Bystander Activation and Anti-Tumor Effects of CD8+ T Cells Following Interleukin-2 Based Immunotherapy Is Independent of CD4+ T Cell Help

    PubMed Central

    Grossenbacher, Steven K.; Hsiao, Hui-Hua; Zamora, Anthony E.; Mirsoian, Annie; Koehn, Brent; Blazar, Bruce R.; Weiss, Jonathan M.; Wiltrout, Robert H.; Sckisel, Gail D.; Murphy, William J.

    2014-01-01

    We have previously demonstrated that immunotherapy combining agonistic anti-CD40 and IL-2 (IT) results in synergistic anti-tumor effects. IT induces expansion of highly cytolytic, antigen-independent “bystander-activated” (CD8+CD44high) T cells displaying a CD25−NKG2D+ phenotype in a cytokine dependent manner, which were responsible for the anti-tumor effects. While much attention has focused on CD4+ T cell help for antigen-specific CD8+ T cell expansion, little is known regarding the role of CD4+ T cells in antigen-nonspecific bystander-memory CD8+ T cell expansion. Utilizing CD4 deficient mouse models, we observed a significant expansion of bystander-memory T cells following IT which was similar to the non-CD4 depleted mice. Expanded bystander-memory CD8+ T cells upregulated PD-1 in the absence of CD4+ T cells which has been published as a hallmark of exhaustion and dysfunction in helpless CD8+ T cells. Interestingly, compared to CD8+ T cells from CD4 replete hosts, these bystander expanded cells displayed comparable (or enhanced) cytokine production, lytic ability, and in vivo anti-tumor effects suggesting no functional impairment or exhaustion and were enriched in an effector phenotype. There was no acceleration of the post-IT contraction phase of the bystander memory CD8+ response in CD4-depleted mice. The response was independent of IL-21 signaling. These results suggest that, in contrast to antigen-specific CD8+ T cell expansion, CD4+ T cell help is not necessary for expansion and activation of antigen-nonspecific bystander-memory CD8+ T cells following IT, but may play a role in regulating conversion of these cells from a central memory to effector phenotype. Additionally, the expression of PD-1 in this model appears to be a marker of effector function and not exhaustion. PMID:25119341

  11. Anti-CCR7 therapy exerts a potent anti-tumor activity in a xenograft model of human mantle cell lymphoma

    PubMed Central

    2013-01-01

    Background The chemokine receptor CCR7 mediates lymphoid dissemination of many cancers, including lymphomas and epithelial carcinomas, thus representing an attractive therapeutic target. Previous results have highlighted the potential of the anti-CCR7 monoclonal antibodies to inhibit migration in transwell assays. The present study aimed to evaluate the in vivo therapeutic efficacy of an anti-CCR7 antibody in a xenografted human mantle cell lymphoma model. Methods NOD/SCID mice were either subcutaneously or intravenously inoculated with Granta-519 cells, a human cell line derived from a leukemic mantle cell lymphoma. The anti-CCR7 mAb treatment (3 × 200 μg) was started on day 2 or 7 to target lymphoma cells in either a peri-implantation or a post-implantation stage, respectively. Results The anti-CCR7 therapy significantly delayed the tumor appearance and also reduced the volumes of tumors in the subcutaneous model. Moreover, an increased number of apoptotic tumor cells was detected in mice treated with the anti-CCR7 mAb compared to the untreated animals. In addition, significantly reduced number of Granta-519 cells migrated from subcutaneous tumors to distant lymphoid organs, such as bone marrow and spleen in the anti-CCR7 treated mice. In the intravenous models, the anti-CCR7 mAb drastically increased survival of the mice. Accordingly, dissemination and infiltration of tumor cells in lymphoid and non-lymphoid organs, including lungs and central nervous system, was almost abrogated. Conclusions The anti-CCR7 mAb exerts a potent anti-tumor activity and might represent an interesting therapeutic alternative to conventional therapies. PMID:24305507

  12. VEGFR2 targeted antibody fused with MICA stimulates NKG2D mediated immunosurveillance and exhibits potent anti-tumor activity against breast cancer

    PubMed Central

    Wang, Youfu; Ren, Xueyan; Wang, Tong; Chen, Zhiguo; Tang, Mingying; Sun, Fumou; Li, Zhaoting; Wang, Min; Zhang, Juan

    2016-01-01

    Binding of MHC class I-related chain molecules A and B (MICA/B) to the natural killer (NK) cell receptor NK group 2, member D (NKG2D) is thought critical for activating NK-mediated immunosurveillance. Angiogenesis is important for tumor growth and interfering with angiogenesis using the fully human IgG1 anti-VEGFR2 (vascular endothelial growth factor receptor 2) antibody (mAb04) can be effective in treating malignancy. In an effort to make mAb04 more effective we have generated a novel antibody fusion protein (mAb04-MICA) consisting of mAb04 and MICA. We found that mAb04-MICA maintained the anti-angiogenic and antineoplastic activities of mAb04, and also enhanced immunosurveillance activated by the NKG2D pathway. Moreover, in human breast tumor-bearing nude mice, mAb04-MICA demonstrated superior anti-tumor efficacy compared to combination therapy of mAb04 + Docetaxel or Avastin + Docetaxel, highlighting the immunostimulatory effect of MICA. In conclusion, mAb04-MICA provided new inspiration for anti-tumor treatment and had prospects for clinical application. PMID:26909862

  13. PHY906(KD018), an adjuvant based on a 1800-year-old Chinese medicine, enhanced the anti-tumor activity of Sorafenib by changing the tumor microenvironment

    PubMed Central

    Lam, Wing; Jiang, Zaoli; Guan, Fulan; Huang, Xiu; Hu, Rong; Wang, Jing; Bussom, Scott; Liu, Shwu-Huey; Zhao, Hongyu; Yen, Yun; Cheng, Yung-Chi

    2015-01-01

    PHY906 (KD018) is a four-herb Chinese Medicine Formula. It has been shown to potentially enhance the therapeutic indices of different class anticancer agents in vivo. Here, PHY906 is reported to enhance the anti-tumor activity of Sorafenib in nude mice bearing HepG2 xenografts. Among the four herbal ingredients of PHY906, Scutellaria baicalensis Georgi (S) and Paeonia lactiflora Pall (P) are required; however, S plays a more important role than P in increasing tumor apoptosis induced by Sorafenib with an increase of mouse(m)FasL and human(h)FasR expression. PHY906 may potentiate Sorafenib action by increasing hMCP1 expression and enhancing infiltration of macrophages into tumors with a higher M1/M2 (tumor rejection) signature expression pattern, as well as affect autophagy by increasing AMPKα-P and ULK1-S555-P of tumors. Depletion of macrophage could counteract PHY906 to potentiate the anti-tumor activity of Sorafenib. It was reported that tumor cells with higher levels of ERK1/2-P are more susceptible to Sorafenib, and the S component of PHY906 may increase ERK1/2-P via inhibition of ERK1/2 phosphatase in HepG2 tumors. PHY906 may potentiate the anti-hepatoma activity of Sorafenib by multiple mechanisms targeting on the inflammatory state of microenvironment of tumor tissue through two major ingredients (P and S) of PHY906. PMID:25819872

  14. Optimization of ultrasonic/microwave assisted extraction (UMAE) of polysaccharides from Inonotus obliquus and evaluation of its anti-tumor activities.

    PubMed

    Chen, Yiyong; Gu, Xiaohong; Huang, Sheng-quan; Li, Jinwei; Wang, Xin; Tang, Jian

    2010-05-01

    Recently, the use of ultrasonic and microwave has attracted considerable interest as an alternative approach to the traditional extraction methods. In this paper, in order to maximize the yield and purity of polysaccharides from Inonotus obliquus, response surface methodology (RSM) was employed to optimize the ultrasonic/microwave assisted extraction (UMAE) conditions. The results indicated that the optimal conditions for UMAE were 90W microwave power, 50W ultrasonic power together with 40kHz ultrasonic frequency, solid/water ratio was 1:20 (W/V) and the extracting time was 19min, respectively. Under the optimal conditions, the yield and purity of polysaccharides were 3.25% and 73.16%, respectively, which are above that of traditional hot water extraction and close to the predicted value (3.07% and 72.54%, respectively). These results confirmed that ultrasonic/microwave assisted extraction (UMAE) of polysaccharides had great potential and efficiency compared with traditional hot water extraction. At the same time, the anti-tumor activities of the polysaccharides from I. obliquus with UMAE were evaluated. The results suggested that polysaccharides from I. obliquus exhibited obvious anti-tumor activities. PMID:20149817

  15. Anti-tumor activity of heat-killed Lactobacillus plantarum BF-LP284 on Meth-A tumor cells in BALB/c mice.

    PubMed

    Shin, Ryoichi; Itoh, Yukie; Kataoka, Motoyuki; Iino-Miura, Shiori; Miura, Ryosuke; Mizutani, Takeo; Fujisawa, Tomohiko

    2016-09-01

    Probiotics exert numerous effects on human well-being. Here, heat-killed Lactobacillus plantarum BF-LP284 (H-Lp) was isolated as a potent immuno-modulator among 15 strains of lactobacilli in terms of TNF-α induction ability in peritoneal macrophages. In vitro TNF-α and IFN-γ induction in Peyer's patch (PP) cells was higher when incubated with H-Lp than with live L. plantarum BF-LP284 (L-Lp). Suppression of syngeneic Meth-A tumors in a murine model by oral administration of H-Lp was also greater than that of L-Lp and of controls. H-Lp stimulated IFN-γ production in spleen cells, which displayed inhibited tumor growth in Winn assays when treated with H-Lp. Moreover, H-Lp increased the ratio of CD3(+ )cells among peripheral blood mononuclear cells in Meth-A tumor-bearing mice, suggesting an H-Lp-mediated anti-tumor mechanism whereby immune cells that are activated by H-Lp in PP and acquire anti-tumor activity in the spleen migrate to tumor sites through lymphocyte homing to inhibit tumor growth. PMID:27198983

  16. Effect of expression of adenine phosphoribosyltransferase on the in vivo anti-tumor activity of prodrugs activated by E. coli purine nucleoside phosphorylase.

    PubMed

    Parker, W B; Allan, P W; Waud, W R; Hong, J S; Sorscher, E J

    2011-06-01

    The use of E. coli purine nucleoside phosphorylase (PNP) to activate prodrugs has demonstrated excellent activity in the treatment of various human tumor xenografts in mice. E. coli PNP cleaves purine nucleoside analogs to generate toxic adenine analogs, which are activated by adenine phosphoribosyl transferase (APRT) to metabolites that inhibit RNA and protein synthesis. We created tumor cell lines that encode both E. coli PNP and excess levels of human APRT, and have used these new cell models to test the hypothesis that treatment of otherwise refractory human tumors could be enhanced by overexpression of APRT. In vivo studies with 6-methylpurine-2'-deoxyriboside (MeP-dR), 2-F-2'-deoxyadenosine (F-dAdo) or 9-β-D-arabinofuranosyl-2-fluoroadenine 5'-monophosphate (F-araAMP) indicated that increased APRT in human tumor cells coexpressing E. coli PNP did not enhance either the activation or the anti-tumor activity of any of the three prodrugs. Interestingly, expression of excess APRT in bystander cells improved the activity of MeP-dR, but diminished the activity of F-araAMP. In vitro studies indicated that increasing the expression of APRT in the cells did not significantly increase the activation of MeP. These results provide insight into the mechanism of bystander killing of the E. coli PNP strategy, and suggest ways to enhance the approach that are independent of APRT. PMID:21394111

  17. The Effects of Different Purifying Methods on the Chemical Properties, in Vitro Anti-Tumor and Immunomodulatory Activities of Abrus cantoniensis Polysaccharide Fractions

    PubMed Central

    Wu, Shaowei; Fu, Xiong; Brennan, Margaret A.; Brennan, Charles S.; Chun, Chen

    2016-01-01

    Abrus cantoniensis (Hance) is a popular Chinese vegetable consumed as a beverage, soup or folk medicine. To fully exploit the potential of the polysaccharide in Abrus cantoniensis, nine polysaccharide fractions of Abrus cantoniensis were isolated and purified (AP-AOH30-1, AP-AOH30-2, AP-AOH80-1, AP-AOH80-2, AP-ACl-1, AP-ACl-2, AP-ACl-3, AP-H and AP-L). Fourier-transform infrared spectroscopy (FT-IR) and gas chromatography (GC) were used to characterize these Abrus polysaccharides fractions (APF). In vitro anti-tumor and immunomodulatory activities were also investigated and compared using the rank-sum ratio (RSR) method. Results demonstrated significant differences in the structure and bioactivities among APF, which were associated to the process used for their purification. Among the APF, AP-ACl-3 yield was 613.5 mg/kg of product and consisted of rhamnose (9.8%), arabinose (8.9%), fructose (3.0%), galactose (9.9%), glucose (4.3%), galacturonic acid (3.0%) and glucuronic acid (61.1%) with a molecular weight of 4.4 × 104 Da. Furthermore, AP-ACl-3 exhibited considerable bioactivities significantly preventing the migration of MCF-7 cells and stimulating lymphocyte proliferation along with nitric oxide (NO) production of peritoneal macrophages. AP-ACl-3 could be explored as a novel potential anti-tumor and immunomodulatory agent. PMID:27058538

  18. The Effects of Different Purifying Methods on the Chemical Properties, in Vitro Anti-Tumor and Immunomodulatory Activities of Abrus cantoniensis Polysaccharide Fractions.

    PubMed

    Wu, Shaowei; Fu, Xiong; Brennan, Margaret A; Brennan, Charles S; Chun, Chen

    2016-01-01

    Abrus cantoniensis (Hance) is a popular Chinese vegetable consumed as a beverage, soup or folk medicine. To fully exploit the potential of the polysaccharide in Abrus cantoniensis, nine polysaccharide fractions of Abrus cantoniensis were isolated and purified (AP-AOH30-1, AP-AOH30-2, AP-AOH80-1, AP-AOH80-2, AP-ACl-1, AP-ACl-2, AP-ACl-3, AP-H and AP-L). Fourier-transform infrared spectroscopy (FT-IR) and gas chromatography (GC) were used to characterize these Abrus polysaccharides fractions (APF). In vitro anti-tumor and immunomodulatory activities were also investigated and compared using the rank-sum ratio (RSR) method. Results demonstrated significant differences in the structure and bioactivities among APF, which were associated to the process used for their purification. Among the APF, AP-ACl-3 yield was 613.5 mg/kg of product and consisted of rhamnose (9.8%), arabinose (8.9%), fructose (3.0%), galactose (9.9%), glucose (4.3%), galacturonic acid (3.0%) and glucuronic acid (61.1%) with a molecular weight of 4.4 × 10⁴ Da. Furthermore, AP-ACl-3 exhibited considerable bioactivities significantly preventing the migration of MCF-7 cells and stimulating lymphocyte proliferation along with nitric oxide (NO) production of peritoneal macrophages. AP-ACl-3 could be explored as a novel potential anti-tumor and immunomodulatory agent. PMID:27058538

  19. [Discovery of Novel Biologically Active Compounds of Natural Origin, with a Focus on Anti-tumor Activity].

    PubMed

    Yokosuka, Akihito

    2015-01-01

    Numerous clinically valuable medicines, including anticancer drugs, have been developed from biologically active natural compounds and their structurally related derivatives. This review discusses novel natural compounds with promising biological activities and those with novel chemical structures. Glaziovianin A, an isoflavone isolated from the leaves of Ateleia glazioviana (Legminosae), inhibited cell cycle progression at the M-phase with an abnormal spindle structure. AU-1 and YG-1, 5β-steroidal glycosides isolated from the whole plants of Agave utahensis and the underground parts of Yucca glauca (Agavaceae), induced apoptosis of HL-60 cells via caspase-3 activation. Lycolicidinol, an alkaloid isolated from the bulbs of Lycoris albiflora (Amaryllidaceae), induced transient autophagy and morphological changes in mitochondria in the early stage of the apoptotic cell death process in HSC-2 cells. Taccasterosides isolated from the rhizomes of Tacca chantrieri (Taccaceae) and stryphnosides isolated from the pericarps of Stryphnodendron fissuratum (Legminosae) are steroidal and triterpene glycosides with unique chemical structures having novel sugar sequences. PMID:26423865

  20. MEK inhibitor PD-0325901 overcomes resistance to CK2 inhibitor CX-4945 and exhibits anti-tumor activity in head and neck cancer.

    PubMed

    Bian, Yansong; Han, Jiawei; Kannabiran, Vishnu; Mohan, Suresh; Cheng, Hui; Friedman, Jay; Zhang, Luo; VanWaes, Carter; Chen, Zhong

    2015-01-01

    The serine-threonine kinase CK2 exhibits genomic alterations and aberrant overexpression in human head and neck squamous cell carcinomas (HNSCC). Here, we investigated the effects of CK2 inhibitor CX-4945 in human HNSCC cell lines and xenograft models. The IC50's of CX-4945 for 9 UM-SCC cell lines measured by MTT assay ranged from 3.4-11.9 μM. CX-4945 induced cell cycle arrest and cell death measured by DNA flow cytometry, and inhibited prosurvival mediators phospho-AKT and p-S6 in UM-SCC1 and UM-SCC46 cells. CX-4945 decreased NF-κB and Bcl-XL reporter gene activities in both cell lines, but upregulated proapoptotic TP53 and p21 reporter activities, and induced phospho-ERK, AP-1, and IL-8 activity in UM-SCC1 cells. CX-4945 exhibited modest anti-tumor activity in UM-SCC1 xenografts. Tumor immunostaining revealed significant inhibition of PI3K-Akt-mTOR pathway and increased apoptosis marker TUNEL, but also induced p-ERK, c-JUN, JUNB, FOSL1 and proliferation (Ki67) markers, as a possible resistance mechanism. To overcome the drug resistance, we tested MEK inhibitor PD-0325901 (PD-901), which inhibited ERK-AP-1 activation alone and in combination with CX-4945. PD-901 alone displayed significant anti-tumor effects in vivo, and the combination of PD-901 and CX-4945 slightly enhanced anti-tumor activity when compared with PD-901 alone. Immunostaining of tumor specimens after treatment revealed inhibition of p-AKT S129 and p-AKT T308 by CX-4945, and inhibition of p-ERK T202/204 and AP-1 family member FOSL-1 by PD-901. Our study reveals a drug resistance mechanism mediated by the MEK-ERK-AP-1 pathway in HNSCC. MEK inhibitor PD-0325901 is active in HNSCC resistant to CX-4945, meriting further clinical investigation. PMID:25798061

  1. A traditional Chinese medicine formulation consisting of Rhizoma Corydalis and Rhizoma Curcumae exerts synergistic anti-tumor activity.

    PubMed

    Gao, Jian-Li; He, Tong-Chuan; Li, Ying-Bo; Wang, Yi-Tao

    2009-11-01

    Synergy analysis of anticancer agents is an important approach to determining the ratio and/or dose of drugs for clinical combination therapy. However, this method is rarely used to evaluate the composition of traditional Chinese medicine formulation. 'Yanhusuo San' (YHSS), which consists of yanhusuo (Rhizoma Corydalis) and Ezhu (Rhizoma Curcumae), has been an archaic Chinese medicine prescription since the Song dynasty (960-1279 AD). We previously demonstrated that either yanhusuo or ezhu has strong anticancer effect. Herein, we sought to determine the possible synergic effect between these two Chinese herbs. We measured the IC50 of each herb extract and both extracts at different ratios of doses by MTT assay. Isobologram and combination index (CI) analyses were used to evaluate the synergistic effect of yanhusuo and ezhu in different fixed ratios. Our results indicated that a combination of two herbal extracts exhibits the strongest anticancer cell proliferation effect at the ratio of 3:2 (ezhu to yanhusuo; referred to as E3Y2). Using Boyden Chamber assay, flow cytometry, and fluorescence microscopy analysis, we found that E3Y2 could markedly reduce the cell invasion ability and induce cytochrome c release rather than single use, but E3Y2 could not influence the cell cycle distribution. When the levels of ERK1/2, p-ERK1/2 and p-Rb were determined by Western blot analysis, we found that the E3Y2 significantly suppresses the level of p-ERK. Thus, our studies provide a plausible molecular basis of the synergistic anti-tumor effect of ezhu and yanhusuo. PMID:19787224

  2. Cancer-Induced Alterations of NK-Mediated Target Recognition: Current and Investigational Pharmacological Strategies Aiming at Restoring NK-Mediated Anti-Tumor Activity.

    PubMed

    Chretien, Anne-Sophie; Le Roy, Aude; Vey, Norbert; Prebet, Thomas; Blaise, Didier; Fauriat, Cyril; Olive, Daniel

    2014-01-01

    Despite evidence of cancer immune-surveillance, which plays a key role in tumor rejection, cancer cells can escape immune recognition through different mechanisms. Thus, evasion to Natural killer (NK) cell-mediated anti-tumor activity is commonly described and is mediated by various mechanisms, mainly cancer cell-induced down-regulation of NK-activating receptors (NCRs, NKG2D, DNAM-1, and CD16) as well as up-regulation of inhibitory receptors (killer-cell immunoglobulin-like receptors, KIRs, NKG2A). Alterations of NK cells lead to an impaired recognition of tumor cells as well as a decreased ability to interact with immune cells. Alternatively, cancer cells downregulate expression of ligands for NK cell-activating receptors and up-regulate expression of the ligands for inhibitory receptors. A better knowledge of the extent and the mechanisms of these defects will allow developing pharmacological strategies to restore NK cell ability to recognize and lyse tumor cells. Combining conventional chemotherapy and immune modulation is a promising approach likely to improve clinical outcome in diverse neoplastic malignancies. Here, we overview experimental approaches as well as strategies already available in the clinics that restore NK cell functionality. Yet successful cancer therapies based on the manipulation of NK cell already have shown efficacy in the context of hematologic malignancies. Additionally, the ability of cytotoxic agents to increase susceptibility of tumors to NK cell lysis has been studied and may require improvement to maximize this effect. More recently, new strategies were developed to specifically restore NK cell phenotype or to stimulate NK cell functions. Overall, pharmacological immune modulation trends to be integrated in therapeutic strategies and should improve anti-tumor effects of conventional cancer therapy. PMID:24715892

  3. [The anti-tumor mechanisms in long-lived rodents].

    PubMed

    Dong, Yanjiao; Pang, Yue; Li, Qingwei

    2016-05-01

    Rodents, including the nude mice with congenital aplasia of the thymus, cancer-resistant naked mole rat (Heterocephalus glaber) and blind mole rat (Spalax galili), are important model organisms that are widely used in biomedical research. The aging process is closely related to cancer incidence in mammals and the aging degree is positively correlated with the risk of cancer. Since rodents account for 40% of mammals, study of the unique antitumor mechanism in long-lived rodents is very important. Replicative senescence is anti-tumor mechanism that prevalently exist in rodents, however, unique anti-tumor mechanisms have been found in naked mole-rats and blind mole-rats. The cancer resistance of Spalax galili is mediated by cell-released IFN-β which activates p53 and Rb signaling pathway and the cells undergoes concerted cell death while that of Heterocephalus glaber is mediated by high molecular weight hyaluronan (HMW-HA) which causes contact inhibition. In addition, highly expressed pro-cell-death and anti-inflammation related genes are found in the genome of both naked mole-rats and blind mole-rats. In this review, we summarize the anti-tumor mechanisms in both Heterocephalus glaber and Spalax galili, which may provide information for related research. PMID:27232489

  4. Combined Treatment of Herbal Mixture Extract H9 with Trastuzumab Enhances Anti-tumor Growth Effect.

    PubMed

    Lee, Sunyi; Han, Sora; Jeong, Ae Lee; Park, Jeong Su; Jung, Seung Hyun; Choi, Kang-Duk; Yang, Young

    2015-07-01

    Extracts from Asian medicinal herbs are known to be successful therapeutic agents against cancer. In this study, the effects of three types of herbal extracts on anti-tumor growth were examined. Among the three types of herbal extracts, H9 showed stronger anti-tumor growth effects than H5 and H11 in vivo. To find the molecular mechanism by which H9 inhibited the proliferation of breast cancer cell lines, the levels of apoptotic markers were examined. Proapoptotic markers, including cleaved PARP and cleaved caspases 3 and 9, were increased, whereas the anti-apoptotic marker Bcl-2 was decreased by H9 treatment. Next, the combined effect of H9 with the chemotherapeutic drugs doxorubicin/cyclophosphamide (AC) on tumor growth was examined using 4T1-tumor-bearing mice. The combined treatment of H9 with AC did not show additive or synergetic anti-tumor growth effects. However, when tumor-bearing mice were co-treated with H9 and the targeted anti-tumor drug trastuzumab, a delay in tumor growth was observed. The combined treatment of H9 and trastuzumab caused an increase of natural killer (NK) cells and a decrease of myeloid-derived suppressor cells (MDSC). Taken together, H9 induces the apoptotic death of tumor cells while increasing anti-tumor immune activity through the enhancement of NK activity and diminishment of MDSC. PMID:25791851

  5. The anti-tumor activities of cerebrosides derived from sea cucumber Acaudina molpadioides and starfish Asterias amurensis in vitro and in vivo.

    PubMed

    Du, Lei; Li, Zhao-Jie; Xu, Jie; Wang, Jing-Feng; Xue, Yong; Xue, Chang-Hu; Takahashi, Koretaro; Wang, Yu-Ming

    2012-01-01

    The present study was undertaken to examine the effect of cerebrosides derived from the sea cucumber Acaudina molpadioides and the starfish Asterias amurensis on the anti-tumor activity in vitro and in vivo. The results indicated that both Acaudina molpadioides cerebrosides (AMC) and Asterias amurensis cerebrosides (AAC) exhibited an inhibitory effect on cell proliferation through induction of apoptosis in S180 cells. Moreover, administration of AMC and AAC (50 mg/kg BW) on S180 tumor bearing mice reduced the tumor weight by 45.24 % and 35.71 %, respectively. In S180 ascites tumor model, AMC and AAC (50 mg/kg BW) treatment exhibited a significant ascites fluid growth inhibition of 31.23 % and 22.72 %. Furthermore, the ascites tumor cell viability ratio in AMC and AAC groups reduced to 50.89 % and 51.69 %, respectively. The life span of AMC and AAC administrated groups increased by 55.28 % and 35.77 % compared to control. Quantitative real-time PCR analysis demonstrated that the administration of AMC and AAC down-regulated the expression of Bcl-2, Bcl-xL, while on the other hand, up-regulated Bax, Cytochrome c, caspase-9 and caspase-3 mRNA level of the S180 ascites tumor cells. It was concluded that AMC and AAC should have potential anti-tumor activity both in vitro and in vivo by inducing apoptosis through the mitochondria-mediated apoptosis pathway. AAC seemed to be more effective than AMC in vitro but less potent in vivo. It may depend on the structural differences in their fatty acid groups and sphingoid bases. PMID:22687777

  6. The hyaluronic acid inhibitor 4-methylumbelliferone is an NSMase2 activator-role of Ceramide in MU anti-tumor activity.

    PubMed

    Qin, Jingdong; Kilkus, John; Dawson, Glyn

    2016-02-01

    Increased synthesis of hyaluronic acid (HA) is often associated with increased metastatic potential and invasivity of tumor cells. 4-Methylumbelliferone (MU) is an inhibitor of HA synthesis, and has been studied as a potential anti-tumor drug to inhibit the growth of primary tumors and distant metastasis of tumor cells. Although several studies reported that the anticancer effects of MU are mediated by inhibition of HA signaling, the mechanism still needs to be clarified. In a previous study we demonstrated the regulation of HA synthesis by ceramide, and now show how MU activated neutral sphingomyelinase2 (NSMase2) generates ceramides and mediates MU induced inhibition of HA synthesis, cell migration and invasion, and apoptosis of tumor cells. Using a HA enriched mouse oligodendroglioma cell line G26-24 we found that MU elevated the activity of NSMase2 and increased ceramide levels, which in turn increased phosphatase PP2A activity. Further, the activated PP2A reduced phosphorylation of Akt, decreased activities of HA synthase2 (HAS2) and calpains, and inhibited both the synthesis of HA, and the migration and invasion of G26-24 tumor cells. In addition, MU mediated ceramide stimulated activation of p53 and caspase-3, reduced SIRT1 expression and decreased G26-24 viability. The mechanism of the MU anticancer therefore initially involves NSMase2/ceramide/PP2A/AKT/HAS2/caspase-3/p53/SIRT1 and the calpain signaling pathway, suggesting that ceramides play a key role in the ability of a tumor to become aggressively metastatic and grow. PMID:26548718

  7. TAE226, a Bis-Anilino Pyrimidine Compound, Inhibits the EGFR-Mutant Kinase Including T790M Mutant to Show Anti-Tumor Effect on EGFR-Mutant Non-Small Cell Lung Cancer Cells.

    PubMed

    Otani, Hiroki; Yamamoto, Hiromasa; Takaoka, Munenori; Sakaguchi, Masakiyo; Soh, Junichi; Jida, Masaru; Ueno, Tsuyoshi; Kubo, Takafumi; Asano, Hiroaki; Tsukuda, Kazunori; Kiura, Katsuyuki; Hatakeyama, Shinji; Kawahara, Eiji; Naomoto, Yoshio; Miyoshi, Shinichiro; Toyooka, Shinichi

    2015-01-01

    TAE226, a bis-anilino pyrimidine compound, has been developed as an inhibitor of focal adhesion kinase (FAK) and insulin-like growth factor-I receptor (IGF-IR). In this study, we investigated the effect of TAE226 on non-small-cell lung cancer (NSCLC), especially focusing on the EGFR mutational status. TAE226 was more effective against cells with mutant EGFR, including the T790M mutant, than against cells with wild-type one. TAE226 preferentially inhibited phospho-EGFR and its downstream signaling mediators in the cells with mutant EGFR than in those with wild-type one. Phosphorylation of FAK and IGF-IR was not inhibited at the concentration at which the proliferation of EGFR-mutant cells was inhibited. Results of the in vitro binding assay indicated significant differences in the affinity for TAE226 between the wild-type and L858R (or delE746_A750) mutant, and the reduced affinity of ATP to the L858R (or delE746_A750) mutant resulted in good responsiveness of the L858R (or delE746_A750) mutant cells to TAE226. Of interest, the L858R/T790M or delE746_A750/T790M mutant enhanced the binding affinity for TAE226 compared with the L858R or delE746_A750 mutant, resulting in the effectiveness of TAE226 against T790M mutant cells despite the T790M mutation restoring the ATP affinity for the mutant EGFR close to that for the wild-type. TAE226 also showed higher affinity of about 15-fold for the L858R/T790M mutant than for the wild-type one by kinetic interaction analysis. The anti-tumor effect against EGFR-mutant tumors including T790M mutation was confirmed in mouse models without any significant toxicity. In summary, we showed that TAE226 inhibited the activation of mutant EGFR and exhibited anti-proliferative activity against NSCLCs carrying EGFR mutations, including T790M mutation. PMID:26090892

  8. TAE226, a Bis-Anilino Pyrimidine Compound, Inhibits the EGFR-Mutant Kinase Including T790M Mutant to Show Anti-Tumor Effect on EGFR-Mutant Non-Small Cell Lung Cancer Cells

    PubMed Central

    Otani, Hiroki; Yamamoto, Hiromasa; Takaoka, Munenori; Sakaguchi, Masakiyo; Soh, Junichi; Jida, Masaru; Ueno, Tsuyoshi; Kubo, Takafumi; Asano, Hiroaki; Tsukuda, Kazunori; Kiura, Katsuyuki; Hatakeyama, Shinji; Kawahara, Eiji; Naomoto, Yoshio; Miyoshi, Shinichiro; Toyooka, Shinichi

    2015-01-01

    TAE226, a bis-anilino pyrimidine compound, has been developed as an inhibitor of focal adhesion kinase (FAK) and insulin-like growth factor-I receptor (IGF-IR). In this study, we investigated the effect of TAE226 on non-small-cell lung cancer (NSCLC), especially focusing on the EGFR mutational status. TAE226 was more effective against cells with mutant EGFR, including the T790M mutant, than against cells with wild-type one. TAE226 preferentially inhibited phospho-EGFR and its downstream signaling mediators in the cells with mutant EGFR than in those with wild-type one. Phosphorylation of FAK and IGF-IR was not inhibited at the concentration at which the proliferation of EGFR-mutant cells was inhibited. Results of the in vitro binding assay indicated significant differences in the affinity for TAE226 between the wild-type and L858R (or delE746_A750) mutant, and the reduced affinity of ATP to the L858R (or delE746_A750) mutant resulted in good responsiveness of the L858R (or delE746_A750) mutant cells to TAE226. Of interest, the L858R/T790M or delE746_A750/T790M mutant enhanced the binding affinity for TAE226 compared with the L858R or delE746_A750 mutant, resulting in the effectiveness of TAE226 against T790M mutant cells despite the T790M mutation restoring the ATP affinity for the mutant EGFR close to that for the wild-type. TAE226 also showed higher affinity of about 15-fold for the L858R/T790M mutant than for the wild-type one by kinetic interaction analysis. The anti-tumor effect against EGFR-mutant tumors including T790M mutation was confirmed in mouse models without any significant toxicity. In summary, we showed that TAE226 inhibited the activation of mutant EGFR and exhibited anti-proliferative activity against NSCLCs carrying EGFR mutations, including T790M mutation. PMID:26090892

  9. A small molecule c-Rel inhibitor reduces alloactivation of T-cells without compromising anti-tumor activity

    PubMed Central

    Shono, Yusuke; Tuckett, Andrea Z; Ouk, Samedy; Liou, Hsiou-Chi; Altan-Bonnet, Grégoire; Tsai, Jennifer J; Oyler, Jennifer E; Smith, Odette M; West, Mallory L; Singer, Natalie V; Doubrovina, Ekaterina; Pankov, Dmitry; Undhad, Chandresh V; Murphy, George F; Lezcano, Cecilia; Liu, Chen; O’Reilly, Richard J; van den Brink, Marcel RM; Zakrzewski, Johannes L

    2014-01-01

    Preventing unfavorable graft-versus-host disease (GVHD) without inducing broad suppression of the immune system presents a major challenge of allogeneic hematopoietic stem cell transplantation. We developed a novel strategy to ameliorate GVHD while preserving graft-versus-tumor (GVT) activity by small molecule-based inhibition of the NF-κB family member c-Rel. Underlying mechanisms included reduced alloactivation, defective gut homing, and impaired negative feedback on IL-2 production resulting in optimal IL-2 levels, which, in the absence of competition by effector T-cells, translated into expansion of regulatory T-cells. c-Rel activity was dispensable for antigen-specific T-cell receptor activation, allowing c-Rel-deficient T-cells to display normal GVT activity. In addition, inhibition of c-Rel activity reduced alloactivation without compromising antigen-specific cytotoxicity of human T-cells. Finally, we were able to demonstrate feasibility and efficacy of systemic c-Rel inhibitor administration. Our findings validate c-Rel as a promising target for immunomodulatory therapy and demonstrate feasibility and efficacy of pharmaceutical inhibition of c-Rel activity. PMID:24550032

  10. Improvement of anti-tumor activity of photodynamic therapy through inhibition of cytoprotective mechanism in tumor cells

    NASA Astrophysics Data System (ADS)

    Nowis, Dominika; Szokalska, Angelika; Makowski, Marcin; Winiarska, Magdalena; Golab, Jakub

    2009-06-01

    Photodynamic therapy (PDT) leads to oxidative damage of cellular macromolecules, including numerous proteins that undergo multiple modifications such as fragmentation, cross-linking and carbonylation that result in protein unfolding and aggregation. Several mechanisms are involved in the protective responses to PDT that include activation of transcription factors, heat shock proteins, antioxidant enzymes and antiapoptotic pathways. Identification of these cytoprotective mechanisms might result in the design of more effective combination strategies to improve the antitumor efficacy of PDT. By using various molecular biology approaches, including microarray-based technologies we have identified genes that are up-regulated following PDT. Subsequent experiments revealed that some of these gene products can become targets for the combined therapeutic regimens encompassing PDT and selective small-molecule inhibitors. These include superoxide dismutase (SOD-2), cyclooxygenase 2 (COX-2), heme oxygenase 1 (HO-1), and proteins engaged in signaling endoplasmatic reticulum (ER) stress and unfolded protein response (UPR). Since a major mechanism for elimination of carbonylated proteins is their degradation by proteasomes, we hypothesized that a combination of PDT with proteasome inhibitors might lead to accumulation of carbonylated proteins in ER, aggravated ER stress and potentiated cytotoxicity towards tumor cells. Indeed, we observed that incubation of tumor cells with three different proteasome inhibitors, including bortezomib, MG132 and PSI gave increased accumulation of carbonylated and ubiquitinated proteins in PDT-treated cells. Proteasome inhibitors effectively sensitized tumor cells to PDT-mediated cytotoxicity and augmented antitumor effects of PDT in vivo.

  11. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    PubMed Central

    Florea, Ana-Maria; Büsselberg, Dietrich

    2011-01-01

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects. PMID:24212665

  12. Anti-tumor activity of the novel hexahydrocannabinol analog LYR-8 in Human colorectal tumor xenograft is mediated through the inhibition of Akt and hypoxia-inducible factor-1α activation.

    PubMed

    Thapa, Dinesh; Kang, Youra; Park, Pil-Hoon; Noh, Seok Kyun; Lee, Yong Rok; Han, Sung Soo; Ku, Sae Kwang; Jung, Yunjin; Kim, Jung-Ae

    2012-01-01

    Cannabinoid compounds have been shown to exert anti-tumor effects by affecting angiogenesis, invasion, and metastasis. In the present study, we examined the action mechanism by which LYR-8, a novel hexahydrocannabinol analog, exerts anti-angiogenic and anti-tumor activity in human cancer xenografts. In the xenografted tumor tissues, LYR-8 significantly reduced the expression of hypoxia-inducible factor-1 alpha (HIF-1α), a transcription factor responsible for induction of angiogenesis-promoting factors, and its target genes, vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). In HT-29 human colon cancer cells treated with a hypoxia-inducing agent (CoCl(2)), LYR-8 dose-dependently suppressed the induction of HIF-1α and subsequently its targets, VEGF and COX-2. In addition, highly elevated prostaglandin E(2) (PGE(2)) concentrations in CoCl(2)-treated HT-29 cells were also significantly suppressed by LYR-8. However, LYR-8 alone in the absence of CoCl(2) did not alter the basal expression of VEGF and COX-2, or PGE(2) production. Furthermore, LYR-8 effectively suppressed Akt signaling, which corresponded to the suppression of CoCl(2)-induced HIF-1α accumulation. Taken together, LYR-8 exerts anti-tumor effects through the inhibition of Akt and HIF-1α activation, and subsequently suppressing factors regulating tumor microenvironment, such as VEGF and COX-2. These results indicate a novel function of cannabinoid-like compound LYR-8 as an anti-tumor agent with a HIF-1α inhibitory activity. PMID:22687485

  13. Structural and conformational features relevant to the anti-tumor activity of calicheamicin γ 1I.

    PubMed

    Ellestad, George A

    2011-09-01

    The structural and conformational features of the potent 10-membered enediyne-containing calicheamicin γ 1I that account for its remarkable DNA site-specific binding and cleavage are reviewed. A variety of spectroscopic and biophysical techniques were used to gain insight into the binding and stereospecific DNA cleavage of this potent antitumor agent. These include gel-shift cleavage assays, atom transfer NMR experiments, drug-DNA conformational studies, circular dichroism, and capillary electrophoresis. Computational descriptions are described for the DNA binding and cleavage of calicheamicin and its activated transient intermediates based on density functional and molecular mechanics calculations. In addition, the structure and clinical utility of calicheamicin immunoconjugates for antibody-targeted chemotherapy is presented. PMID:21800378

  14. Cerdulatinib, a novel dual SYK/JAK kinase inhibitor, has broad anti-tumor activity in both ABC and GCB types of diffuse large B cell lymphoma

    PubMed Central

    Ma, Jiao; Xing, Wei; Coffey, Greg; Dresser, Karen; Lu, Kellie; Guo, Ailin; Raca, Gordana; Pandey, Anjali; Conley, Pamela; Yu, Hongbo; Wang, Y. Lynn

    2015-01-01

    B-cell receptor (BCR) and JAK/STAT pathways play critical roles in diffuse large B-cell lymphoma (DLBCL). Herein, we investigated the anti-lymphoma activity of cerdulatinib, a novel compound that dually targets SYK and JAK/STAT pathways. On a tissue microarray of 62 primary DLBCL tumors, 58% expressed either phosphorylated SYK or STAT3 or both. SYK and STAT3 are also phosphorylated in a panel of eleven DLBCL cell lines although ABC and GCB subtypes exhibited different JAK/STAT and BCR signaling profiles. In both ABC and GCB cell lines, cerdulatinib induced apoptosis that was associated with caspase-3 and PARP cleavage. The compound also blocked G1/S transition and caused cell cycle arrest, accompanied by inhibition of RB phosphorylation and down-regulation of cyclin E. Phosphorylation of BCR components and STAT3 was sensitive to cerdulatinib in both ABC and GCB cell lines under stimulated conditions. Importantly, JAK/STAT and BCR signaling can be blocked by cerdulatinib in primary GCB and non-GCB DLBCL tumor cells that were accompanied by cell death. Our work provides mechanistic insights into the actions of cerdulatinib, suggesting that the drug has a broad anti-tumor activity in both ABC and GCB DLBCL, at least in part by inhibiting SYK and JAK pathways. PMID:26575169

  15. Triplex-forming oligonucleotides targeting c-MYC potentiate the anti-tumor activity of gemcitabine in a mouse model of human cancer.

    PubMed

    Boulware, Stephen B; Christensen, Laura A; Thames, Howard; Coghlan, Lezlee; Vasquez, Karen M; Finch, Rick A

    2014-09-01

    Antimetabolite chemotherapy remains an essential cancer treatment modality, but often produces only marginal benefit due to the lack of tumor specificity, the development of drug resistance, and the refractoriness of slowly proliferating cells in solid tumors. Here, we report a novel strategy to circumvent the proliferation-dependence of traditional antimetabolite-based therapies. Triplex-forming oligonucleotides (TFOs) were used to target site-specific DNA damage to the human c-MYC oncogene, thereby inducing replication-independent, unscheduled DNA repair synthesis (UDS) preferentially in the TFO-targeted region. The TFO-directed UDS facilitated incorporation of the antimetabolite, gemcitabine (GEM), into the damaged oncogene, thereby potentiating the anti-tumor activity of GEM. Mice bearing COLO 320DM human colon cancer xenografts (containing amplified c-MYC) were treated with a TFO targeted to c-MYC in combination with GEM. Tumor growth inhibition produced by the combination was significantly greater than with either TFO or GEM alone. Specific TFO binding to the genomic c-MYC gene was demonstrated, and TFO-induced DNA damage was confirmed by NBS1 accumulation, supporting a mechanism of enhanced efficacy of GEM via TFO-targeted DNA damage-induced UDS. Thus, coupling antimetabolite chemotherapeutics with a strategy that facilitates selective targeting of cells containing amplification of cancer-relevant genes can improve their activity against solid tumors, while possibly minimizing host toxicity. PMID:23681918

  16. Triplex-forming oligonucleotides targeting c-MYC potentiate the anti-tumor activity of gemcitabine in a mouse model of human cancer

    PubMed Central

    Boulware, Stephen B.; Christensen, Laura A.; Thames, Howard; Coghlan, Lezlee; Vasquez, Karen M.; Finch, Rick A.

    2014-01-01

    Antimetabolite chemotherapy remains an essential cancer treatment modality, but often produces only marginal benefit due to the lack of tumor specificity, the development of drug resistance, and the refractoriness of slowly-proliferating cells in solid tumors. Here, we report a novel strategy to circumvent the proliferation-dependence of traditional antimetabolite-based therapies. Triplex-forming oligonucleotides (TFOs) were used to target site-specific DNA damage to the human c-MYC oncogene, thereby inducing replication-independent, unscheduled DNA repair synthesis (UDS) preferentially in the TFO-targeted region. The TFO-directed UDS facilitated incorporation of the antimetabolite, gemcitabine (GEM), into the damaged oncogene, thereby potentiating the anti-tumor activity of GEM. Mice bearing COLO 320DM human colon cancer xenografts (containing amplified c-MYC) were treated with a TFO targeted to c-MYC in combination with GEM. Tumor growth inhibition produced by the combination was significantly greater than with either TFO or GEM alone. Specific TFO binding to the genomic c-MYC gene was demonstrated, and TFO-induced DNA damage was confirmed by NBS1 accumulation, supporting a mechanism of enhanced efficacy of GEM via TFO-targeted DNA damage-induced UDS. Thus, coupling antimetabolite chemotherapeutics with a strategy that facilitates selective targeting of cells containing amplification of cancer-relevant genes can improve their activity against solid tumors, while possibly minimizing host toxicity. PMID:23681918

  17. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma

    PubMed Central

    Overdijk, Marije B; Verploegen, Sandra; Bögels, Marijn; van Egmond, Marjolein; van Bueren, Jeroen J Lammerts; Mutis, Tuna; Groen, Richard WJ; Breij, Esther; Martens, Anton CM; Bleeker, Wim K; Parren, Paul WHI

    2015-01-01

    Daratumumab (DARA) is a human CD38-specific IgG1 antibody that is in clinical development for the treatment of multiple myeloma (MM). The potential for IgG1 antibodies to induce macrophage-mediated phagocytosis, in combination with the known presence of macrophages in the tumor microenvironment in MM and other hematological tumors, led us to investigate the contribution of antibody-dependent, macrophage-mediated phagocytosis to DARA's mechanism of action. Live cell imaging revealed that DARA efficiently induced macrophage-mediated phagocytosis, in which individual macrophages rapidly and sequentially engulfed multiple tumor cells. DARA-dependent phagocytosis by mouse and human macrophages was also observed in an in vitro flow cytometry assay, using a range of MM and Burkitt's lymphoma cell lines. Phagocytosis contributed to DARA's anti-tumor activity in vivo, in both a subcutaneous and an intravenous leukemic xenograft mouse model. Finally, DARA was shown to induce macrophage-mediated phagocytosis of MM cells isolated from 11 of 12 MM patients that showed variable levels of CD38 expression. In summary, we demonstrate that phagocytosis is a fast, potent and clinically relevant mechanism of action that may contribute to the therapeutic activity of DARA in multiple myeloma and potentially other hematological tumors. PMID:25760767

  18. Anti-Tumor Effects of Novel 5-O-Acyl Plumbagins Based on the Inhibition of Mammalian DNA Replicative Polymerase Activity

    PubMed Central

    Kawamura, Moe; Kuriyama, Isoko; Maruo, Sayako; Kuramochi, Kouji; Tsubaki, Kazunori; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2014-01-01

    We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone) inhibits the activity of human mitochondrial DNA polymerase γ (pol γ). In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins). These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol α and human pol γ. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin) showed the strongest suppression of human colon carcinoma (HCT116) cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol α, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50 = 2.9 µM) among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol α inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin. PMID:24520419

  19. Powerful anti-tumor and anti-angiogenic activity of a new anti-vascular endothelial growth factor receptor 1 peptide in colorectal cancer models.

    PubMed

    Cicatiello, Valeria; Apicella, Ivana; Tudisco, Laura; Tarallo, Valeria; Formisano, Luigi; Sandomenico, Annamaria; Kim, Younghee; Bastos-Carvalho, Ana; Orlandi, Augusto; Ambati, Jayakrishna; Ruvo, Menotti; Bianco, Roberto; De Falco, Sandro

    2015-04-30

    To assess the therapeutic outcome of selective block of VEGFR1, we have evaluated the activity of a new specific antagonist of VEGFR1, named iVR1 (inhibitor of VEGFR1), in syngenic and xenograft colorectal cancer models, in an artificial model of metastatization, and in laser-induced choroid neovascularization. iVR1 inhibited tumor growth and neoangiogenesis in both models of colorectal cancer, with an extent similar to that of bevacizumab, a monoclonal antibody anti-VEGF-A. It potently inhibited VEGFR1 phosphorylation in vivo, determining a strong inhibition of the recruitment of monocyte-macrophages and of mural cells as confirmed, in vitro, by the ability to inhibit macrophages migration. iVR1 was able to synergize with irinotecan determining a shrinkage of tumors that became undetectable after three weeks of combined treatment. Such treatment induced a significant prolongation of survival similar to that observed with bevacizumab and irinotecan combination. iVR1 also fully prevented lung invasion by HCT-116 cells injected in mouse tail vein. Also, iVR1 impressively inhibited choroid neovascularization after a single intravitreal injection. Collectively, data showed the strong potential of iVR1 peptide as a new anti-tumor and anti-metastatic agent and demonstrate the high flexibility of VEGFR1 antagonists as therapeutic anti-angiogenic agents in different pathological contexts. PMID:25868854

  20. A modified spontaneous emulsification solvent diffusion method for the preparation of curcumin-loaded PLGA nanoparticles with enhanced in vitro anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Chen, Cen; Yang, Wei; Wang, Dan-Tong; Chen, Chao-Long; Zhuang, Qing-Ye; Kong, Xiang-Dong

    2014-12-01

    To improve the anti-tumor activity of hydrophobic drug curcumin, we prepared curcumin-loaded PLGA nanoparticles (PLGA-Cur NPs) through a modified spontaneous emulsification solvent diffusion (modified-SESD) method. The influence of main preparation parameters was investigated, such as the volume ratio of binary organic solvents and the concentration of surfactant. Results indicated that the synthesized regular spherical PLGA NPs with the average diameter of 189.7 nm exhibited relatively higher yield (58.9%), drug loading (11.0% (w/w)) and encapsulation efficiency (33.5%), and also a controllable drug release profile. In order to evaluate the in vitro cytotoxicity of the prepared NPs, MTT assay was conducted, and results showed that the NPs could effectively inhibit HL60 and HepG2 cells with lower IC50 values compared with free curcumin. Furthermore, confocal microscopy together with flow cytometry analysis proved the enhanced apoptosis-inducing ability of PLGA-Cur NPs. Polymeric NP formulations are potential to be used for hydrophobic drug delivery systems in cancer therapy.

  1. Anti-tumor Activity of Ferulago angulata Boiss. Extract in Gastric Cancer Cell Line via Induction of Apoptosis

    PubMed Central

    Heidari, Shafagh; Akrami, Hassan; Gharaei, Roghaye; Jalili, Ali; Mahdiuni, Hamid; Golezar, Elham

    2014-01-01

    Ferulago angulata Boiss. known in Iran as Chavir, has some bioactive compounds having antioxidant activity. Because of its antioxidant activities, it sounded Chavir extract can be a good candidate for finding chemopreventive agents having inductive apoptosis properties on cancer cells. In this study, the cytotoxic effects and proapoptotic activities of Chavir’s leaf and flower extracts were investigated on human adenocarcinoma gastric cell line (AGS). The ferric reducing antioxidant power (FRAP) assay was used to determine antioxidant activity of the extract. Cytotoxic effects of the extract were performed by trypan blue and neutral red assays. For apoptosis detection, we used Annexin V staining, flow cytometry and DNA fragmentation assays. The FRAP assay results showed that antioxidant activity of leaf extract was higher than flower extract. Cytotoxicity and apoptosis–inducing activity of flower and leaf extracts changed coordinately, indicating the cytotoxicity of chavir extracts is due probably to induce apoptosis. Our results revealed that the cytotoxic effects of F. angulate Boiss. extracts on AGS cell line is close to some other plant extracts such as Rhus verniciflua Stokes (RVS) and Scutellaria litwinowii. This is the first study on cytotoxic and apoptosis–inducing effects of chavir leaf and flower extracts against AGS cell line. The Further investigation can be identification of the agent(s) by which these effects is observed. PMID:25587323

  2. Anti-Tumor Activity of Eurycoma longifolia Root Extracts against K-562 Cell Line: In Vitro and In Vivo Study

    PubMed Central

    Majid, Amin Malik Shah Abdul; Kit-Lam, Chan; Abdullah, Wan Zaidah; Zaki, Abdelhamid; Jamal Din, Shah Kamal Khan; Yusoff, Narazah Mohd

    2014-01-01

    Eurycoma longifolia Jack has been widely used in traditional medicine for its antimalarial, aphrodisiac, anti-diabetic, antimicrobial and anti-pyretic activities. Its anticancer activity has also been recently reported on different solid tumors, however no anti-leukemic activity of this plant has been reported. Thus the present study assesses the in vitro and in vivo anti-proliferative and apoptotic potentials of E. longifolia on K-562 leukemic cell line. The K-562 cells (purchased from ATCC) were isolated from patients with chronic myelocytic leukemia (CML) were treated with the various fractions (TAF273, F3 and F4) of E. longifolia root methanolic extract at various concentrations and time intervals and the anti-proliferative activity assessed by MTS assay. Flow cytometry was used to assess the apoptosis and cell cycle arrest. Nude mice injected subcutaneously with 107 K-562 cells were used to study the anti-leukemic activity of TAF273 in vivo. TAF273, F3 and F4 showed various degrees of growth inhibition with IC50 values of 19, 55 and 62 µg/ml, respectively. TAF273 induced apoptosis in a dose and time dependent manner. TAF273 arrested cell cycle at G1and S phases. Intraperitoneal administration of TAF273 (50 mg/kg) resulted in a significant growth inhibition of subcutaneous tumor in TAF273-treated mice compared with the control mice (P = 0.024). TAF273 shows potent anti-proliferative activity in vitro and in vivo models of CML and therefore, justifies further efforts to define more clearly the potential benefits of using TAF273 as a novel therapeutic strategy for CML management. PMID:24409284

  3. MAP Kinase Inhibition Promotes T Cell and Anti-tumor Activity in Combination with PD-L1 Checkpoint Blockade.

    PubMed

    Ebert, Peter J R; Cheung, Jeanne; Yang, Yagai; McNamara, Erin; Hong, Rebecca; Moskalenko, Marina; Gould, Stephen E; Maecker, Heather; Irving, Bryan A; Kim, Jeong M; Belvin, Marcia; Mellman, Ira

    2016-03-15

    Targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) can induce regression of tumors bearing activating mutations in the Ras pathway but rarely leads to tumor eradication. Although combining MEK inhibition with T-cell-directed immunotherapy might lead to more durable efficacy, T cell responses are themselves at least partially dependent on MEK activity. We show here that MEK inhibition did profoundly block naive CD8(+) T cell priming in tumor-bearing mice, but actually increased the number of effector-phenotype antigen-specific CD8(+) T cells within the tumor. MEK inhibition protected tumor-infiltrating CD8(+) T cells from death driven by chronic TCR stimulation while sparing cytotoxic activity. Combining MEK inhibition with anti-programmed death-ligand 1 (PD-L1) resulted in synergistic and durable tumor regression even where either agent alone was only modestly effective. Thus, despite the central importance of the MAP kinase pathway in some aspects of T cell function, MEK-targeted agents can be compatible with T-cell-dependent immunotherapy. PMID:26944201

  4. Preclinical Evidence of Anti-Tumor Activity Induced by EZH2 Inhibition in Human Models of Synovial Sarcoma.

    PubMed

    Kawano, Satoshi; Grassian, Alexandra R; Tsuda, Masumi; Knutson, Sarah K; Warholic, Natalie M; Kuznetsov, Galina; Xu, Shanqin; Xiao, Yonghong; Pollock, Roy M; Smith, Jesse S; Kuntz, Kevin K; Ribich, Scott; Minoshima, Yukinori; Matsui, Junji; Copeland, Robert A; Tanaka, Shinya; Keilhack, Heike

    2016-01-01

    The catalytic activities of covalent and ATP-dependent chromatin remodeling are central to regulating the conformational state of chromatin and the resultant transcriptional output. The enzymes that catalyze these activities are often contained within multiprotein complexes in nature. Two such multiprotein complexes, the polycomb repressive complex 2 (PRC2) methyltransferase and the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeler have been reported to act in opposition to each other during development and homeostasis. An imbalance in their activities induced by mutations/deletions in complex members (e.g. SMARCB1) has been suggested to be a pathogenic mechanism in certain human cancers. Here we show that preclinical models of synovial sarcoma-a cancer characterized by functional SMARCB1 loss via its displacement from the SWI/SNF complex through the pathognomonic SS18-SSX fusion protein-display sensitivity to pharmacologic inhibition of EZH2, the catalytic subunit of PRC2. Treatment with tazemetostat, a clinical-stage, selective and orally bioavailable small-molecule inhibitor of EZH2 enzymatic activity reverses a subset of synovial sarcoma gene expression and results in concentration-dependent cell growth inhibition and cell death specifically in SS18-SSX fusion-positive cells in vitro. Treatment of mice bearing either a cell line or two patient-derived xenograft models of synovial sarcoma leads to dose-dependent tumor growth inhibition with correlative inhibition of trimethylation levels of the EZH2-specific substrate, lysine 27 on histone H3. These data demonstrate a dependency of SS18-SSX-positive, SMARCB1-deficient synovial sarcomas on EZH2 enzymatic activity and suggests the potential utility of EZH2-targeted drugs in these genetically defined cancers. PMID:27391784

  5. Preclinical Evidence of Anti-Tumor Activity Induced by EZH2 Inhibition in Human Models of Synovial Sarcoma

    PubMed Central

    Tsuda, Masumi; Knutson, Sarah K.; Warholic, Natalie M.; Kuznetsov, Galina; Xu, Shanqin; Xiao, Yonghong; Pollock, Roy M.; Smith, Jesse S.; Kuntz, Kevin K.; Ribich, Scott; Minoshima, Yukinori; Matsui, Junji; Copeland, Robert A.; Tanaka, Shinya; Keilhack, Heike

    2016-01-01

    The catalytic activities of covalent and ATP-dependent chromatin remodeling are central to regulating the conformational state of chromatin and the resultant transcriptional output. The enzymes that catalyze these activities are often contained within multiprotein complexes in nature. Two such multiprotein complexes, the polycomb repressive complex 2 (PRC2) methyltransferase and the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeler have been reported to act in opposition to each other during development and homeostasis. An imbalance in their activities induced by mutations/deletions in complex members (e.g. SMARCB1) has been suggested to be a pathogenic mechanism in certain human cancers. Here we show that preclinical models of synovial sarcoma—a cancer characterized by functional SMARCB1 loss via its displacement from the SWI/SNF complex through the pathognomonic SS18-SSX fusion protein—display sensitivity to pharmacologic inhibition of EZH2, the catalytic subunit of PRC2. Treatment with tazemetostat, a clinical-stage, selective and orally bioavailable small-molecule inhibitor of EZH2 enzymatic activity reverses a subset of synovial sarcoma gene expression and results in concentration-dependent cell growth inhibition and cell death specifically in SS18-SSX fusion-positive cells in vitro. Treatment of mice bearing either a cell line or two patient-derived xenograft models of synovial sarcoma leads to dose-dependent tumor growth inhibition with correlative inhibition of trimethylation levels of the EZH2-specific substrate, lysine 27 on histone H3. These data demonstrate a dependency of SS18-SSX-positive, SMARCB1-deficient synovial sarcomas on EZH2 enzymatic activity and suggests the potential utility of EZH2-targeted drugs in these genetically defined cancers. PMID:27391784

  6. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent anti-tumor activity

    PubMed Central

    Caruso, Hillary G.; Hurton, Lenka V.; Najjar, Amer; Rushworth, David; Ang, Sonny; Olivares, Simon; Mi, Tiejuan; Switzer, Kirsten; Singh, Harjeet; Huls, Helen; Lee, Dean A.; Heimberger, Amy B.; Champlin, Richard E.; Cooper, Laurence J. N.

    2015-01-01

    Many tumors over express tumor-associated antigens relative to normal tissue, such as epidermal growth factor receptor (EGFR). This limits targeting by human T cells modified to express chimeric antigen receptors (CARs) due to potential for deleterious recognition of normal cells. We sought to generate CAR+ T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies which differ in affinity. T cells with low affinity Nimo-CAR selectively targeted cells over-expressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high affinity Cetux-CAR was not impacted by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from non-malignant cells. PMID:26330164

  7. Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy.

    PubMed

    Vara, D; Salazar, M; Olea-Herrero, N; Guzmán, M; Velasco, G; Díaz-Laviada, I

    2011-07-01

    Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. When these tumors are in advanced stages, few therapeutic options are available. Therefore, it is essential to search for new treatments to fight this disease. In this study, we investigated the effects of cannabinoids--a novel family of potential anticancer agents--on the growth of HCC. We found that Δ(9)-tetrahydrocannabinol (Δ(9)-THC, the main active component of Cannabis sativa) and JWH-015 (a cannabinoid receptor 2 (CB(2)) cannabinoid receptor-selective agonist) reduced the viability of the human HCC cell lines HepG2 (human hepatocellular liver carcinoma cell line) and HuH-7 (hepatocellular carcinoma cells), an effect that relied on the stimulation of CB(2) receptor. We also found that Δ(9)-THC- and JWH-015-induced autophagy relies on tribbles homolog 3 (TRB3) upregulation, and subsequent inhibition of the serine-threonine kinase Akt/mammalian target of rapamycin C1 axis and adenosine monophosphate-activated kinase (AMPK) stimulation. Pharmacological and genetic inhibition of AMPK upstream kinases supported that calmodulin-activated kinase kinase β was responsible for cannabinoid-induced AMPK activation and autophagy. In vivo studies revealed that Δ(9)-THC and JWH-015 reduced the growth of HCC subcutaneous xenografts, an effect that was not evident when autophagy was genetically of pharmacologically inhibited in those tumors. Moreover, cannabinoids were also able to inhibit tumor growth and ascites in an orthotopic model of HCC xenograft. Our findings may contribute to the design of new therapeutic strategies for the management of HCC. PMID:21475304

  8. Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy

    PubMed Central

    Vara, D; Salazar, M; Olea-Herrero, N; Guzmán, M; Velasco, G; Díaz-Laviada, I

    2011-01-01

    Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. When these tumors are in advanced stages, few therapeutic options are available. Therefore, it is essential to search for new treatments to fight this disease. In this study, we investigated the effects of cannabinoids – a novel family of potential anticancer agents – on the growth of HCC. We found that Δ9-tetrahydrocannabinol (Δ9-THC, the main active component of Cannabis sativa) and JWH-015 (a cannabinoid receptor 2 (CB2) cannabinoid receptor-selective agonist) reduced the viability of the human HCC cell lines HepG2 (human hepatocellular liver carcinoma cell line) and HuH-7 (hepatocellular carcinoma cells), an effect that relied on the stimulation of CB2 receptor. We also found that Δ9-THC- and JWH-015-induced autophagy relies on tribbles homolog 3 (TRB3) upregulation, and subsequent inhibition of the serine–threonine kinase Akt/mammalian target of rapamycin C1 axis and adenosine monophosphate-activated kinase (AMPK) stimulation. Pharmacological and genetic inhibition of AMPK upstream kinases supported that calmodulin-activated kinase kinase β was responsible for cannabinoid-induced AMPK activation and autophagy. In vivo studies revealed that Δ9-THC and JWH-015 reduced the growth of HCC subcutaneous xenografts, an effect that was not evident when autophagy was genetically of pharmacologically inhibited in those tumors. Moreover, cannabinoids were also able to inhibit tumor growth and ascites in an orthotopic model of HCC xenograft. Our findings may contribute to the design of new therapeutic strategies for the management of HCC. PMID:21475304

  9. In Vivo Anti-Tumor Activity and Toxicological Evaluations of Perillaldehyde 8,9-Epoxide, a Derivative of Perillyl Alcohol

    PubMed Central

    Andrade, Luciana Nalone; Amaral, Ricardo Guimarães; Dória, Grace Anne Azevedo; Fonseca, Cecília Santos; da Silva, Tayane Kayane Mariano; Albuquerque Júnior, Ricardo Luiz Cavalcante; Thomazzi, Sara Maria; do Nascimento, Lázaro Gomes; Carvalho, Adriana Andrade; de Sousa, Damião Pergentino

    2016-01-01

    Recent studies have revealed the high cytotoxicity of p-menthane derivatives against human tumor cells. In this study, the substance perillaldehyde 8,9-epoxide, a p-menthane class derivative obtained from (S)-(−)-perillyl alcohol, was selected in order to assess antitumor activity against experimental sarcoma 180 tumors. Toxicological effects related to the liver, spleen, kidneys and hematology were evaluated in mice submitted to treatment. The tumor growth inhibition rate was 38.4%, 58.7%, 35.3%, 45.4% and 68.1% at doses of 100 and 200 mg/kg/day for perillaldehyde 8,9-epoxide, perillyl alcohol and 25 mg/kg/day for 5-FU intraperitoneal treatments, respectively. No toxicologically significant effect was found in liver and kidney parameters analyzed in Sarcoma 180-inoculated mice treated with perillaldehyde 8,9-epoxide. Histopathological analyses of the liver, spleen, and kidneys were free from any morphological changes in the organs of the animals treated with perillaldehyde 8,9-epoxide. In conclusion, the data suggest that perillaldehyde 8,9-epoxide possesses significant antitumor activity without systemic toxicity for the tested parameters. By comparison, there was no statistical difference for the antitumor activity between perillaldehyde 8,9-epoxide and perillyl alcohol. PMID:26742032

  10. Ferulic Acid Exerts Anti-Angiogenic and Anti-Tumor Activity by Targeting Fibroblast Growth Factor Receptor 1-Mediated Angiogenesis

    PubMed Central

    Yang, Guang-Wei; Jiang, Jin-Song; Lu, Wei-Qin

    2015-01-01

    Most anti-angiogenic therapies currently being evaluated target the vascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here, we identified ferulic acid as a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor and a novel agent with potential anti-angiogenic and anti-cancer activities. Ferulic acid demonstrated inhibition of endothelial cell proliferation, migration and tube formation in response to basic fibroblast growth factor 1 (FGF1). In ex vivo and in vivo angiogenesis assays, ferulic acid suppressed FGF1-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of ferulic acid on different molecular components and found that ferulic acid suppressed FGF1-triggered activation of FGFR1 and phosphatidyl inositol 3-kinase (PI3K)-protein kinase B (Akt) signaling. Moreover, ferulic acid directly inhibited proliferation and blocked the PI3K-Akt pathway in melanoma cell. In vivo, using a melanoma xenograft model, ferulic acid showed growth-inhibitory activity associated with inhibition of angiogenesis. Taken together, our results indicate that ferulic acid targets the FGFR1-mediated PI3K-Akt signaling pathway, leading to the suppression of melanoma growth and angiogenesis. PMID:26473837

  11. Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathway.

    PubMed

    Zou, Xuejing; Liang, Jiyun; Sun, Jingyuan; Hu, Xiaoyun; Lei, Ling; Wu, Dehua; Liu, Li

    2016-08-01

    Drug resistance and hepatic dysfunction are the two major factors that limit the application of chemotherapy for hepatocellular carcinoma (HCC). It has been reported that allicin has the hepatic protective effect and antitumor activity. Hence allicin may be an ideal enhancer to chemotherapy regimen of HCC. In the present study, we demonstrated that allicin enhanced 5-fluorouracil (5-FU) inducing cytotoxicity in HCC cells. In vivo experiment, combined treatment group with allicin (5 mg/kg/d; every two days for 3 weeks) and 5-FU (20 mg/kg/d; 5 consecutive days) showed a dramatic inhibitory effect on the growth of HCC xenograft tumors in nude mice. The co-treatment group showed highly apoptotic level compared with 5-FU treated alone. Cells combined treatment with allicin and 5-FU increased intracellular reactive oxygen species (ROS) level, reduced mitochondrial membrane potential (ΔΨm), activated caspase-3 and PARP, and down-regulated Bcl-2 compared with DMSO, allicin and 5-FU treated alone. Moreover, the increase of activated caspase-3 and PARP was blocked by the ROS inhibitor antioxidant N-acetyl cysteine (NAC). In conclusion, this is the first study to demonstrate that allicin sensitized HCC cells to 5-FU induced apoptosis through ROS-mediated mitochondrial pathway. These results provided evidences for the combination used of allicin and 5-FU as a novel chemotherapy regimen in HCC. PMID:27177453

  12. Enhanced anti-tumor activity and reduced toxicity by combination andrographolide and bleomycin in ascitic tumor-bearing mice.

    PubMed

    Guo, Huizhen; Zhang, Zhenbiao; Su, Zuqing; Sun, Chaoyue; Zhang, Xie; Zhao, Xiaoning; Lai, Xiaoping; Su, Ziren; Li, Yucui; Zhan, Janis Yaxian

    2016-04-01

    Bleomycin (BLM) is an effective anti-carcinogen. With the main detrimental effects of inducing pulmonary fibrosis on patients, its clinical use is limited. Developing agents that enhance the efficacy and attenuate the side effects of cancer chemotherapy are critical. Andrographolide (Andro), an active diterpenoid labdane component extracted from Andrographis panicula, is generally prescribed for treatment of inflammatory associated diseases. The study showed that BLM combined with Andro was significantly more effective than BLM alone on inhibiting the tumor growth, arresting the cell cycle at G0/G1 phase, promoting the capase-3 and capase-8 activity to induce cancer cell apoptosis. The underlying mechanisms may be related to the transcriptional regulation of P53/P21/Cyclin pathways. Moreover, BLM induced pulmonary fibrosis in tumor-bearing mice, but BLM combined with Andro dramatically alleviated the lesion in pulmonary fibrosis by activating the SOD, suppressing MDA and HYP production, in the meanwhile attenuating the IL-1β, TNF- α, IL-6 and TGF-β1 level. These mechanisms were associated with its effect on inhibition of protein expression of TGF-β, α-SMA, p-Smad2/3, enhanced expression of Smad7. Thus, it demonstrated that Andro might be a potential adjuvant therapeutic agent for BLM. PMID:26874212

  13. BRAF kinase inhibitor exerts anti-tumor activity against breast cancer cells via inhibition of FGFR2

    PubMed Central

    Zhang, Zong Xin; Jin, Wen Jun; Yang, Sheng; Ji, Cun Li

    2016-01-01

    Most anti-angiogenic therapies currently being evaluated in clinical trials targetvascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified BRAF kinase inhibitor, vemurafenibas an agent with potential anti-angiogenic and anti-breast cancer activities. Vemurafenib demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor (bFGF). In ex vivo and in vivo angiogenesis assays, vemurafenib suppressed bFGF-induced microvessel sprouting of rat aortic rings and angiogenesis in vivo. To understand the underlying molecular basis, we examined the effects of vemurafenib on different molecular components in treated endothelial cell, and found that vemurafenib suppressed bFGF-triggered activation of FGFR2 and protein kinase B (AKT). Moreover, vemurafenib directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer cells MDA-MB-231, vemurafenib showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Taken together, our results indicate that vemurafenib targets the FGFR2-mediated AKT signaling pathway in endothelial cells, leading to the suppression of tumor growth and angiogenesis. PMID:27293997

  14. Structural modification of resveratrol leads to increased anti-tumor activity, but causes profound changes in the mode of action

    SciTech Connect

    Scherzberg, Maria-Christina; Kiehl, Andreas; Zivkovic, Aleksandra; Stark, Holger; Stein, Jürgen; Fürst, Robert; Steinhilber, Dieter; Ulrich-Rückert, Sandra

    2015-08-15

    (Z)-3,5,4′-Trimethoxystilbene (Z-TMS) is a resveratrol analog with increased antiproliferative activity towards a number of cancer cell lines compared to resveratrol, which has been shown to inhibit tubulin polymerization in vitro. The purpose of this study was to investigate if Z-TMS still shows potential for the prevention of metabolic diseases as known for resveratrol. Cell growth inhibition was determined with IC{sub 50} values for Z-TMS between 0.115 μM and 0.473 μM (resveratrol: 110.7 μM to 190.2 μM). Flow cytometric analysis revealed a G{sub 2}/M arrest after Z-TMS treatment, whereas resveratrol caused S phase arrest. Furthermore, Z-TMS was shown to impair microtubule polymerization. Beneficial effects on lipid accumulation were observed for resveratrol, but not for Z-TMS in an in vitro steatosis model. (E)-Resveratrol was confirmed to elevate cAMP levels, and knockdown of AMPK attenuated the antiproliferative activity, while Z-TMS did not show significant effects in these experiments. SIRT1 and AMPK activities were further measured indirectly via induction of the target gene small heterodimer partner (SHP). Thereby, (E)-resveratrol, but not Z-TMS, showed potent induction of SHP mRNA levels in an AMPK- and SIRT1-dependent manner, as confirmed by knockdown experiments. We provide evidence that Z-TMS does not show beneficial metabolic effects, probably due to loss of activity towards resveratrol target genes. Moreover, our data support previous findings that Z-TMS acts as an inhibitor of tubulin polymerization. These findings confirm that the methylation of resveratrol leads to profound changes in the mode of action, which should be taken into consideration when conducting lead structure optimization approaches. - Highlights: • Methylation of resveratrol leads to profound changes in biologic activity. • Z-TMS does not prevent hepatic steatosis, but inhibits tubulin polymerization. • Resveratrol analog Z-TMS does not influence known targets like

  15. TRAIL conjugated to nanoparticles exhibits increased anti-tumor activities in glioma cells and glioma stem cells in vitro and in vivo

    PubMed Central

    Perlstein, Benny; Finniss, Susan A.; Miller, Cathie; Okhrimenko, Hana; Kazimirsky, Gila; Cazacu, Simona; Lee, Hae Kyung; Lemke, Nancy; Brodie, Shlomit; Umansky, Felix; Rempel, Sandra A.; Rosenblum, Mark; Mikklesen, Tom; Margel, Shlomo; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM) are characterized by resistance to chemotherapy and radiotherapy, and therefore, alternative therapeutic approaches are needed. TRAIL induces apoptosis in cancer but not in normal cells and is considered to be a promising anti-tumor agent. However, its short in vivo half-life and lack of efficient administration modes are serious impediments to its therapeutic efficacy. Nanoparticles (NP) have been used as effective delivery tools for various anticancer drugs. TRAIL was conjugated to magnetic ferric oxide NP by binding the TRAIL primary amino groups to activated double bonds on the surface of the NP. The effect of NP-TRAIL was examined on the apoptosis of glioma cells and self-renewal of glioma stem cells (GSCs). In addition, the ability of the NP-TRAIL to track U251 cell–derived glioma xenografts and to affect cell apoptosis, tumor volume, and survival among xenografted rats was also examined. Conjugation of TRAIL to NP increased its apoptotic activity against different human glioma cells and GSCs, as compared with free recombinant TRAIL. Combined treatment with NP-TRAIL and γ-radiation or bortezomib sensitized TRAIL-resistant GSCs to NP-TRAIL. Using rhodamine-labeled NP and U251 glioma cell–derived xenografts, we demonstrated that the NP-TRAIL were found in the tumor site and induced a significant increase in glioma cell apoptosis, a decrease in tumor volume, and increased animal survival. In summary, conjugation of TRAIL to NP increased its apoptotic activity both in vitro and in vivo. Therefore, NP-TRAIL represents a targeted anticancer agent with more efficient action for the treatment of GBM and the eradication of GSCs. PMID:23144078

  16. Potential anti-tumor effects of FTY720 associated with PP2A activation: a brief review.

    PubMed

    Cristóbal, Ion; Madoz-Gúrpide, Juan; Manso, Rebeca; González-Alonso, Paula; Rojo, Federico; García-Foncillas, Jesús

    2016-06-01

    FTY720 (Fingolimod, Gilenya (†) ) is an FDA-approved immunosuppressant currently used in the treatment of multiple sclerosis. However, a large number of studies over the last few years have shown that FTY720 shows potent antitumor properties that suggest its potential usefulness as a novel anticancer agent. Interestingly, the restoration of protein phosphatase 2A (PP2A) activity mediated by FTY720 could play a key role in its antitumor effects. Taking into account that PP2A inactivation is a common event that determines poor outcome in several tumor types, FTY720 could serve as an alternative therapeutic strategy for cancer patients with such alterations. PMID:26950691

  17. Formulation optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity.

    PubMed

    Valicherla, Guru R; Dave, Kandarp M; Syed, Anees A; Riyazuddin, Mohammed; Gupta, Anand P; Singh, Akhilesh; Wahajuddin; Mitra, Kalyan; Datta, Dipak; Gayen, Jiaur R

    2016-01-01

    Poor bioavailability of Docetaxel (DCT) arising due to its low aqueous solubility and permeability limits its clinical utility. The aim of the present study was to develop DCT loaded self-emulsified drug delivery systems (D-SEDDS) and evaluate its potential ability to improve the oral bioavailability and therapeutic efficacy of DCT. D-SEDDS were characterized for their in vitro antitumor activity, in situ single pass intestinal perfusion (SPIP), bioavailability, chylomicron flow blocking study and bio-distribution profile. The D-SEDDS were prepared using Capryol 90, Vitamin E TPGS, Gelucire 44/14 and Transcutol HP with a ratio of 32.7/29.4/8.3/29.6 using D-Optimal Mixture Design. The solubility of DCT was improved upto 50 mg/mL. The oral bioavailability of the D-SEDDS in rats (21.84 ± 3.12%) was increased by 3.19 fold than orally administered Taxotere (6.85 ± 1.82%). The enhanced bioavailability was probably due to increase in solubility and permeability. In SPIP, effective permeability of D-SEDDS was significantly higher than Taxotere. D-SEDDS showed 25 fold more in vitro cytotoxic activity compared to free DCT. Chylomicron flow blocking study and tissue distribution demonstrated the intestinal lymphatic transport of D-SEDDS and higher retention in tumor than Taxotere. The data suggests that D-SEDDS showed desired stability, enhanced oral bioavailability and in vitro antitumor efficacy. PMID:27241877

  18. Effect of anti-asthma Chinese medicine Chuankezhi on the anti-tumor activity of cytokine-induced killer cells

    PubMed Central

    Zhao, Jing-Jing; Pan, Ke; Wang, Qi-Jing; Xu, Zheng-Di; Weng, De-Sheng; Li, Jian-Jun; Li, Yong-Qiang; Xia, Jian-Chuan

    2013-01-01

    Chuankezhi (CKZ), a new Chinese medicine, plays an important role in immunoregulation. Cytokine-induced killer (CIK) cells have been commonly used for immunotherapy in recent years. In this study, we aimed to investigate the immunoregulatory effect of CKZ on CIK cells. Peripheral blood monocytes were isolated from healthy donors, and CIK cells were generated by culturing monocytes with interferon-gamma (IFN-γ) and interleukin 2. Different concentrations of CKZ were added on day 2. After incubation for 14 days in culture, the antitumor effects of CIK cells were measured by cytotoxicity assay. Flow cytometry was used to explore the effect of CKZ on CIK cell immunophenotype, intracellular cytokine production, and apoptosis. The effect of CKZ on the antitumor activity of CIK cells in nude mice was also investigated. CKZ increased the percentage of CD3+CD56+ CIK cells but did not significantly change the percentage of CD4+, CD8+, or CD4+CD25+ CIK cells. CKZ-conditioned CIK cells showed a greater ability to kill tumor cells, as well as a higher frequency of IFN-γ and TNF-α production, compared with the CIK cells in the control group. CKZ also suppressed the apoptosis of CIK cells in vitro. Furthermore, CKZ combined with CIK cells had a stronger suppressive effect on tumor growth in vivo than the CIK, CKZ, or normal saline control groups. Our results indicate that CKZ enhances the antitumor activity of CIK cells and is a potential medicine for tumor immunotherapy. PMID:23470144

  19. Formulation optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity

    PubMed Central

    Valicherla, Guru R.; Dave, Kandarp M.; Syed, Anees A.; Riyazuddin, Mohammed; Gupta, Anand P.; Singh, Akhilesh; Wahajuddin; Mitra, Kalyan; Datta, Dipak; Gayen, Jiaur R.

    2016-01-01

    Poor bioavailability of Docetaxel (DCT) arising due to its low aqueous solubility and permeability limits its clinical utility. The aim of the present study was to develop DCT loaded self-emulsified drug delivery systems (D-SEDDS) and evaluate its potential ability to improve the oral bioavailability and therapeutic efficacy of DCT. D-SEDDS were characterized for their in vitro antitumor activity, in situ single pass intestinal perfusion (SPIP), bioavailability, chylomicron flow blocking study and bio-distribution profile. The D-SEDDS were prepared using Capryol 90, Vitamin E TPGS, Gelucire 44/14 and Transcutol HP with a ratio of 32.7/29.4/8.3/29.6 using D-Optimal Mixture Design. The solubility of DCT was improved upto 50 mg/mL. The oral bioavailability of the D-SEDDS in rats (21.84 ± 3.12%) was increased by 3.19 fold than orally administered Taxotere (6.85 ± 1.82%). The enhanced bioavailability was probably due to increase in solubility and permeability. In SPIP, effective permeability of D-SEDDS was significantly higher than Taxotere. D-SEDDS showed 25 fold more in vitro cytotoxic activity compared to free DCT. Chylomicron flow blocking study and tissue distribution demonstrated the intestinal lymphatic transport of D-SEDDS and higher retention in tumor than Taxotere. The data suggests that D-SEDDS showed desired stability, enhanced oral bioavailability and in vitro antitumor efficacy. PMID:27241877

  20. Proteomic analysis of anti-tumor effects by tetrandrine treatment in HepG2 cells.

    PubMed

    Cheng, Zhixiang; Wang, Keming; Wei, Jia; Lu, Xiang; Liu, Baorui

    2010-11-01

    Tetrandrine (TET), a bis-benzylisoquinoline alkaloid isolated from the root of Hang-Fang-Chi (Stephenia tetrandra S Moore), exhibits broad pharmacological effects, including anti-tumor activity. Recently, the beneficial effects of TET on cytotoxicity towards tumor cells, radiosensitization, circumventing multidrug resistance, normal tissue radioprotection, and antiangiogenesis have been examined extensively. To explore the potential molecular mechanism of the anti-tumor effect of TET, we applied proteomic tools to profile the proteins in HepG2 cells subjected to TET treatment. The levels of 39 proteins in cells exposed to TET (IC₅₀=5±0.6 μg/ml) for 48 h were observed to undergo significant alterations. Six proteins were identified by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) using peptide fingerprinting from 10 protein spots (density difference >1.5-fold between the control and TET-treated group). Among them, 5 proteins were downregulated (proteasome activator complex subunit 3, 40S ribosomal protein S12, phosphoglycerate mutase 1, destrin, transaldolase) and 1 protein was upregulated (guanylate kinase 1) by TET treatment in HepG2 cells as determined by spot volume (P<0.05). Most of the identified proteins were associated with tumor growth, migration, and anti-tumor drug resistance. These data will be helpful in elucidating the molecular mechanism of TET's anti-tumor effect in HepG2 cells. PMID:20554191

  1. Dysregulation of TGFβ1 Activity in Cancer and Its Influence on the Quality of Anti-Tumor Immunity.

    PubMed

    Hargadon, Kristian M

    2016-01-01

    TGFβ1 is a pleiotropic cytokine that exhibits a variety of physiologic and immune regulatory functions. Although its influence on multiple cell types is critical for the regulation of numerous biologic processes in the host, dysregulation of both TGFβ1 expression and activity is frequently observed in cancer and contributes to various aspects of cancer progression. This review focuses on TGFβ1's contribution to tumor immune suppression and escape, with emphasis on the influence of this regulatory cytokine on the differentiation and function of dendritic cells and T cells. Clinical trials targeting TGFβ1 in cancer patients are also reviewed, and strategies for future therapeutic interventions that build on our current understanding of immune regulation by TGFβ1 are discussed. PMID:27589814

  2. [Structure and Function of a Novel Class of High Mannose-binding Proteins with Anti-viral or Anti-tumor Activity].

    PubMed

    Sato, Yuichiro

    2015-01-01

    The recently discovered high mannose (HM)-binding lectin family in lower organisms such as bacteria, cyanobacteria, and marine algae represents a novel class of anti-viral or anti-tumor compounds. This lectin family shows unique carbohydrate binding properties with exclusive high specificity for HM glycans with core trisaccharide comprising Manα(1-3)Manα(1-6)Man at the D2 arm. At low nanomolar levels, these lectins exhibit potent antiviral activity against HIV and influenza viruses through the recognition of HM glycans on virus spike glycoproteins. In addition, some of these lectins, such as bacterial PFL, show cytotoxicity for various cancer cells at low micromolar levels. Cell surface molecules to which PFL bound were identified as integrin alpha 2 and epidermal growth factor receptor (EGFR) by peptide mass finger printing with MALDI-TOF MS. Upon PFL binding, these molecules were rapidly internalized to cytoplasm. EGFR was time dependently degraded in the presence of PFL, and this process was largely responsible for autophagy. Furthermore, PFL sensitizes cancer cells to the EGFR kinase inhibitor, gefitinib. In vivo experiments showed that intratumoral injection of PFL significantly inhibited the growth of tumors in nude mice. PFL-mediated down regulation of integrin/EGFR ultimately contributed to the inhibition of tumor growth both in vitro and in vivo. Thus, the novel anti-cancer mechanism of PFL suggests that this lectin is potentially useful as an anti-cancer drug or as an adjuvant for other drugs. This class of proteins will likely have beneficial impact as a tool for biochemical and biomedical research because of its unique carbohydrate specificity and various biological activities. PMID:26521877

  3. Conversion of adipose-derived stem cells into natural killer-like cells with anti-tumor activities in nude mice.

    PubMed

    Ning, Hongxiu; Lei, Hong-En; Xu, Yong-De; Guan, Rui-Li; Venstrom, Jeffrey M; Lin, Guiting; Lue, Tom F; Xin, Zhongcheng; Lin, Ching-Shwun

    2014-01-01

    Efforts to develop peripheral blood-derived nature killer (NK) cells into therapeutic products have been hampered by these cells' low abundance and histoincompatibility. On the other hand, derivation of NK-like cells from more abundant cell sources such as embryonic stem cells (ESCs) and umbilical cord blood (UCB) requires the selection of rare CD34+ cells. Thus, we sought to convert adipose-derived stem cells (ADSCs), which are abundant and natively CD34+, into NK-like cells. When grown in hematopoietic induction medium, ADSCs formed sphere clusters and expressed hematopoietic markers CD34, CD45, and KDR. Further induction in NK cell-specific medium resulted in a population of cells that expressed NK cell marker CD56, and thus termed ADSC-NK. Alternatively, the hematopoietically induced ADSCs were transduced with NK cell-specific transcription factor E4BP4 prior to induction in NK cell-specific medium. This latter population of cells, termed ADSC-NKE, expressed CD56 and additional NK cell markers such as CD16, CD94, CD158, CD314, FasL, and NKp46. ADSC-NKE was as potent as NK leukemia cell NKL in killing breast cancer cell MCF7 and prostate cancer cells DU145, PC3, LnCap, DuPro, C4-2 and CWR22, but exhibited no killing activity toward normal endothelial and smooth muscle cells. In nude mice test ADSC-NKE was able to significantly delay the progression of tumors formed by MCF7 and PC3. When injected into immunocompetent rats, ADSC-NKE was detectable in bone marrow and spleen for at least 5 weeks. Together, these results suggest that ADSCs can be converted into NK-like cells with anti-tumor activities. PMID:25162225

  4. Synergistic anti-tumor therapy by a comb-like multifunctional antibody nanoarray with exceptionally potent activity

    NASA Astrophysics Data System (ADS)

    Li, Huafei; Sun, Yun; Chen, Di; Zhao, He; Zhao, Mengxin; Zhu, Xiandi; Ke, Changhong; Zhang, Ge; Jiang, Cheng; Zhang, Li; Zhang, Fulei; Wei, Huafeng; Li, Wei

    2015-10-01

    Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb. Unlike dissociative parental mAbs, the multifunctional mAb nanoarray (PL-RB) constructed from type I/II anti-CD20 mAbs shows good pharmacokinetics. This PL-RB simultaneously targets distinct epitopes on a single antigen (Ag) and neighboring Ags on different lymphocytes. This unique intra- and intercellular Ag cross-linking endows the multifunctional mAb nanoarray with potent apoptosis activity. The exceptional apoptosis, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) that are synchronously evoked by the nano PL-RB are further synergistically promoted via enhanced permeability and retention (EPR), which resulted in high intratumor accumulation and excellent anti-lymphoma efficiency.

  5. Metal based photosensitizers of tetradentate Schiff base: Promising role in anti-tumor activity through singlet oxygen generation mechanism

    NASA Astrophysics Data System (ADS)

    Pradeepa, S. M.; Bhojya Naik, H. S.; Vinay Kumar, B.; Indira Priyadarsini, K.; Barik, Atanu; Ravikumar Naik, T. R.; Prabhakara, M. C.

    2013-11-01

    In the present investigation, a Schiff base N‧1,N‧3-bis[(Z)-(2-hydroxynapthyl)methylidene]benzene-1,3-dicarbodihydrazide (L1) and its Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized as novel photosensitizing agents for photodynamic therapy (PDT). The interaction of these complexes with calf thymus DNA (CT DNA) has been explored using absorption, thermal denaturation and viscometric studies. The experimental results revealed that Co(II) and Ni(II) complexes on binding to CT DNA imply a covalent mode, most possibly involving guanine N7 nitrogen of DNA, with an intrinsic binding constant Kb of 4.5 × 104 M-1 and 4.2 × 104 M-1, respectively. However, interestingly, the Cu(II) complex is involved in the surface binding to minor groove via phosphate backbone of DNA double helix with an intrinsic binding constant Kb of 5.7 × 104 M-1. The Co(II), Ni(II) and Cu(II) complexes are active in cleaving supercoiled (SC) pUC19 DNA on photoexposure to UV-visible light of 365 nm, through 1O2 generation with quantum yields of 0.28, 0.25 and 0.30, respectively. Further, these complexes are cytotoxic in A549 lung cancer cells, showing an enhancement of cytotoxicity upon light irradiation.

  6. Synergistic anti-tumor therapy by a comb-like multifunctional antibody nanoarray with exceptionally potent activity

    PubMed Central

    Li, Huafei; Sun, Yun; Chen, Di; Zhao, He; Zhao, Mengxin; Zhu, Xiandi; Ke, Changhong; Zhang, Ge; Jiang, Cheng; Zhang, Li; Zhang, Fulei; Wei, Huafeng; Li, Wei

    2015-01-01

    Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb. Unlike dissociative parental mAbs, the multifunctional mAb nanoarray (PL-RB) constructed from type I/II anti-CD20 mAbs shows good pharmacokinetics. This PL-RB simultaneously targets distinct epitopes on a single antigen (Ag) and neighboring Ags on different lymphocytes. This unique intra- and intercellular Ag cross-linking endows the multifunctional mAb nanoarray with potent apoptosis activity. The exceptional apoptosis, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) that are synchronously evoked by the nano PL-RB are further synergistically promoted via enhanced permeability and retention (EPR), which resulted in high intratumor accumulation and excellent anti-lymphoma efficiency. PMID:26508306

  7. Combined inhibition of MEK and Plk1 has synergistic anti-tumor activity in NRAS mutant melanoma

    PubMed Central

    Vujic, I; Sanlorenzo, M; Ma, J; Kim, ST; Kleffel, S; Schatton, T; Rappersberger, K; Gutteridge, R; Ahmad, N; Ortiz/Urda, S

    2015-01-01

    About one third of cancers harbor activating mutations in rat sarcoma viral oncogene homolog (RAS) oncogenes. In melanoma, aberrant neuroblastoma-RAS (NRAS) signaling fuels tumor progression in about 20% of patients. Current therapeutics for NRAS driven malignancies barely impact overall survival. To date, pathway interference downstream of mutant NRAS seems to be the most promising approach. In this study, data revealed that mutant NRAS induced Plk1 expression, and pharmacologic inhibition of Plk1 stabilized the size of NRAS mutant melanoma xenografts. The combination of MEK and Plk1 inhibitors resulted in a significant growth reduction of NRAS mutant melanoma cells in vitro, and regression of xenografted NRAS mutant melanoma in vivo. Independent cell cycle arrest and increased induction of apoptosis underlies the synergistic effect of this combination. Data further suggest that the p53 signaling pathway is of key importance to the observed therapeutic efficacy. This study provides in vitro, in vivo and first mechanistic data, that a MEK/Plk1 inhibitor combination might be a promising treatment approach for patients with NRAS driven melanoma. Since mutant NRAS signaling is similar across different malignancies, this inhibitor combination could also offer a previously unreported treatment modality for NRAS mutant tumors of other cell origins. PMID:26016894

  8. B cell regulation of anti-tumor immune response.

    PubMed

    Zhang, Yu; Morgan, Richard; Podack, Eckhard R; Rosenblatt, Joseph

    2013-12-01

    Our laboratory has been investigating the role of B cells on tumor immunity. We have studied the immune response in mice that are genetically lacking in B cells (BCDM) using a variety of syngeneic mouse tumors and compared immune responses in BCDM with those seen in wild type (WT) immunocompetent mice (ICM). A variety of murine tumors are rejected or inhibited in their growth in BCDM, compared with ICM, including the EL4 thymoma, and the MC38 colon carcinoma in C57BL/6 mice, as well as the EMT-6 breast carcinoma in BALB/c mice. In all three murine models, tumors show reduced growth in BCDM which is accompanied by increased T cell and NK cell infiltration, and a more vigorous Th1 cytokine response, and increased cytolytic T cell response in the absence of B cells. Reconstitution of the mice with B cells results in augmented tumor growth due to a diminished anti-tumor immune response and in reduction in CD8+ T cell and NK cell infiltration. Studies involving BCR transgenic mice indicated that B cells inhibit anti-tumor T cell responses through antigen non-specific mechanisms. More recent studies using the EMT-6 model demonstrated that both the number and function of Treg cells in ICM was increased relative to that seen in BCDM. Increased expansion of Treg cells was evident following EMT-6 implantation in ICM relative to that seen in non-tumor-bearing mice or BCDM. The percentage and number of Tregs in spleen, tumor draining lymph nodes, and the tumor bed are increased in ICM compared with BCDM. Treg functional capacity as measured by suppression assays appears to be reduced in BCDM compared with ICM. In contrast to other described types of B regulatory activity, adoptive transfer of B cells can rescue tumor growth independently of the ability of B cells to secrete IL-10, and also independently of MHC-II expression. In experiments using the MC38 adenocarcinoma model, BCDM reconstituted with WT B cells support tumor growth while tumor growth continues to be inhibited

  9. Blocking effect of anti-Dectin-1 antibodies on the anti-tumor activity of 1,3-beta-glucan and the binding of Dectin-1 to 1,3-beta-glucan.

    PubMed

    Ikeda, Yoshihiko; Adachi, Yoshiyuki; Ishii, Takashi; Tamura, Hiroshi; Aketagawa, Jun; Tanaka, Shigenori; Ohno, Naohito

    2007-08-01

    Schizophyllan (SPG) is used to treat cervical cancer in combination with irradiation to enhance the immunological surveillance system. Dectin-1 is a cell surface receptor for 1,3-beta-glucan. In this study, we prepared two anti-Dectin-1 monoclonal antibodies, 4B2 and SC30 having a K(D) of 7.04 x 10(-8) M and 1.55 x 10(-7) M, respectively, and evaluated the role of Dectin-1 in SPG-induced anti-tumor activity in mice. Expression of Dectin-1 on peritoneal macrophages and binding of SPG to the cells were decreased by administration of 4B2 and SC30. SPG-mediated anti-tumor activity was inhibited by 4B2 and SC30. 4B2 and SC30 inhibited the binding of SPG to splenocytes from mice. The binding of SPG-biotin to Dectin-1-transfected HEK293 cells was inhibited by 4B2, but not SC30. 4B2 and SC30 differ in their influence on Dectin-1 between primary cells and transduced cells, and Dectin-1 effects 1,3-beta-glucan-mediated anti-tumor activity in mice by binding to SPG. PMID:17666790

  10. LY2801653 is an orally bioavailable multi-kinase inhibitor with potent activity against MET, MST1R, and other oncoproteins, and displays anti-tumor activities in mouse xenograft models.

    PubMed

    Yan, S Betty; Peek, Victoria L; Ajamie, Rose; Buchanan, Sean G; Graff, Jeremy R; Heidler, Steven A; Hui, Yu-Hua; Huss, Karen L; Konicek, Bruce W; Manro, Jason R; Shih, Chuan; Stewart, Julie A; Stewart, Trent R; Stout, Stephanie L; Uhlik, Mark T; Um, Suzane L; Wang, Yong; Wu, Wenjuan; Yan, Lei; Yang, Wei J; Zhong, Boyu; Walgren, Richard A

    2013-08-01

    The HGF/MET signaling pathway regulates a wide variety of normal cellular functions that can be subverted to support neoplasia, including cell proliferation, survival, apoptosis, scattering and motility, invasion, and angiogenesis. MET over-expression (with or without gene amplification), aberrant autocrine or paracrine ligand production, and missense MET mutations are mechanisms that lead to activation of the MET pathway in tumors and are associated with poor prognostic outcome. We report here preclinical development of a potent, orally bioavailable, small-molecule inhibitor LY2801653 targeting MET kinase. LY2801653 is a type-II ATP competitive, slow-off inhibitor of MET tyrosine kinase with a dissociation constant (Ki) of 2 nM, a pharmacodynamic residence time (Koff) of 0.00132 min(-1) and t1/2 of 525 min. LY2801653 demonstrated in vitro effects on MET pathway-dependent cell scattering and cell proliferation; in vivo anti-tumor effects in MET amplified (MKN45), MET autocrine (U-87MG, and KP4) and MET over-expressed (H441) xenograft models; and in vivo vessel normalization effects. LY2801653 also maintained potency against 13 MET variants, each bearing a single-point mutation. In subsequent nonclinical characterization, LY2801653 was found to have potent activity against several other receptor tyrosine oncokinases including MST1R, FLT3, AXL, MERTK, TEK, ROS1, DDR1/2 and against the serine/threonine kinases MKNK1/2. The potential value of MET and other inhibited targets within a number of malignancies (such as colon, bile ducts, and lung) is discussed. LY2801653 is currently in phase 1 clinical testing in patients with advanced cancer (trial I3O-MC-JSBA, NCT01285037). PMID:23275061

  11. Development of natural anti-tumor drugs by microorganisms.

    PubMed

    Chang, Chia-Che; Chen, Wei-Chuan; Ho, Tsing-Fen; Wu, Ho-Shing; Wei, Yu-Hong

    2011-05-01

    Discoveries of tumor-resistant pharmacological drugs have mainly resulted from screening of natural products and their analogs. Some are also discovered incidentally when studying organisms. The great biodiversity of microorganisms raises the possibility of producing secondary metabolites (e.g., mevastatin, lovastatin, epothilone, salinosporamide A) to cope with adverse environments. Recently, natural plant pigments with anti-tumor activities such as β-carotene, lycopene, curcumin and anthocyanins have been proposed. However, many plants have a long life cycle. Therefore, pigments from microorganisms represent another option for the development of novel anti-tumor drugs. Prodigiosin (PG) is a natural red pigment produced by microorganisms, i.e., Serratia marcescens and other gram-negative bacteria. The anti-tumor potential of PG has been widely demonstrated. The families of PG (PGs), which share a common pyrrolylpyrromethene (PPM) skeleton, are produced by various bacteria. PGs are bioactive pigments and are known to exert immunosuppressive properties, in vitro apoptotic effects, and in vivo anti-tumor activities. Currently the most common strain used for producing PGs is S. marcescens. However, few reports have discussed PGs production. This review therefore describes the development of an anti-tumor drug, PG, that can be naturally produced by microorganisms, and evaluates the microbial production system, fermentation strategies, purification and identification processes. The application potential of PGs is also discussed. PMID:21277252

  12. Lycorine, the Main Phenanthridine Amaryllidaceae Alkaloid, Exhibits Significant Anti-Tumor Activity in Cancer Cells that Display Resistance to Proapoptotic Stimuli: an Investigation of Structure-Activity Relationship and Mechanistic Insight

    PubMed Central

    Lamoral-Theys, Delphine; Andolfi, Anna; Van Goietsenoven, Gwendoline; Cimmino, Alessio; Le Calvé, Benjamin; Wauthoz, Nathalie; Mégalizzi, Véronique; Gras, Thierry; Bruyère, Céline; Dubois, Jacques; Mathieu, Véronique; Kornienko, Alexander; Kiss, Robert; Evidente, Antonio

    2011-01-01

    Twenty-two lycorine-related compounds were investigated for in vitro anti-tumor activity using four cancer cell lines displaying different levels of resistance to pro-apoptotic stimuli and two cancer cell lines sensitive to pro-apoptotic stimuli. Lycorine and six of its congeners exhibited potency in the single-digit micromolar range, while no compound appeared more active than lycorine. Lycorine also displayed the highest potential (in vitro) therapeutic ratio, being at least 15 times more active against cancer than normal cells. Our studies also showed that lycorine exerts its in vitro anti-tumor activity through cytostatic rather than cytotoxic effects. Furthermore, lycorine provided significant therapeutic benefit in mice bearing brain grafts of the B16F10 melanoma model at non-toxic doses. Thus, the results of the current study make lycorine an excellent lead for the generation of compounds able to combat cancers, which are naturally resistant to pro-apoptotic stimuli, such as glioblastoma, melanoma, non-small-cell-lung cancers, metastatic cancers, among others. PMID:19788245

  13. Ex vivo evaluation of the effect of regulatory T cells on the anti-tumor activity of bortezomib in multiple myeloma.

    PubMed

    Ercetin, Ayse Pinar; Ozcan, Mehmet Ali; Aktas, Safiye; Yuksel, Faize; Solmaz, Serife Medeni; Sevindik, Gokmen Omur; Katgi, Abdullah; Piskin, Ozden; Undar, Bulent

    2016-04-01

    Multiple myeloma (MM) is a hematologic cancer characterized by malignant proliferation of plasma cells and their precursors. Immunosuppressive CD4+CD25+Foxp3+ regulatory T (Treg) cells are increased in the peripheral blood of patients with MM. On the basis of this finding, we sought to evaluate the ex vivo effect of CD4+CD25+Foxp3+ Treg cells on the anti-tumor effect of the proteosome inhibitor bortezomib on MM cells. We collected peripheral blood and bone marrow aspiration samples from 20 patients with newly diagnosed MM and isolated CD4+CD25+Foxp3+ Treg cells from peripheral blood mononuclear cells. The bone marrow mononuclear cells were cultivated in RPMI at 37°C and 5% CO2 for 72 hours. The LD50 doses of bortezomib, isolated Treg cells, and their combination were added. After 24 hours, the viability of CD138+ myeloma cells was evaluated by WST-1. We compared the anti-tumor effect of bortezomib alone and in combination with Treg expansion and statistically analyzed the measured differences with respect to the clinical parameters of the patients. Treg cells had varied effects on bortezomib, increasing, decreasing, or not changing its anti-tumor effect. The increased in vitro anti-tumor effect of bortezomib after Treg cell expansion was correlated in patients who did not develop bortezomib resistance in vivo (p = 0.022). These patients with in vivo non-bortezomib-resistant MM also responded to Treg expansion with decreased cell viability (p = 0.024). Our data indicate that the ex vivo expansion of Treg cells increased the cytotoxic effect of bortezomib in clinically sensitive cases. PMID:26774384

  14. Late administration of murine CTLA-4 blockade prolongs CD8-mediated anti-tumor effects following stimulatory cancer immunotherapy

    PubMed Central

    Sckisel, Gail D.; Mirsoian, Annie; Bouchlaka, Myriam N.; Tietze, Julia K.; Chen, Mingyi; Blazar, Bruce R.

    2016-01-01

    We have demonstrated that immunostimulatory therapies such as interleukin-2 (IL-2) and anti-CD40 (αCD40) can be combined to deliver synergistic anti-tumor effects. While this strategy has shown success, efficacy varies depending on a number of factors including tumor type and severe toxicities can be seen. We sought to determine whether blockade of negative regulators such as cytotoxic T lymphocyte antigen-4 (CTLA-4) could simultaneously prolong CD8+ T cell responses and augment T cell anti-tumor effects. We devised a regimen in which anti-CTLA-4 was administered late so as to delay contraction and minimize toxicities. This late administration both enhanced and prolonged CD8 T cell activation without the need for additional IL-2. The quality of the T cell response was improved with increased frequency of effector/effector memory phenotype cells along with improved lytic ability and bystander expansion. This enhanced CD8 response translated to improved anti-tumor responses both at the primary and metastatic sites. Importantly, toxicities were not exacerbated with combination. This study provides a platform for rational design of immunotherapy combinations to maximize anti-tumor immunity while minimizing toxicities. PMID:26423422

  15. Anti-tumor activity of selective inhibitors of XPO1/CRM1-mediated nuclear export in diffuse malignant peritoneal mesothelioma: the role of survivin

    PubMed Central

    Doldi, Valentina; Lopergolo, Alessia; Deraco, Marcello; Gandellini, Paolo; Friedlander, Sharon; Landesman, Yosef; Kauffman, Michael G.; Shacham, Sharon

    2015-01-01

    Survivin, which is highly expressed and promotes cell survival in diffuse malignant peritoneal mesothelioma (DMPM), exclusively relies on exportin 1 (XPO1/CRM1) to be shuttled into the cytoplasm and perform its anti-apoptotic function. Here, we explored the efficacy of Selective Inhibitors of Nuclear Export (SINE), KPT-251, KPT-276 and the orally available, clinical stage KPT-330 (selinexor), in DMPM preclinical models. Exposure to SINE induced dose-dependent inhibition of cell growth, cell cycle arrest at G1-phase and caspase-dependent apoptosis, which were consequent to a decrease of XPO1/CRM1 protein levels and the concomitant nuclear accumulation of its cargo proteins p53 and CDKN1a. Cell exposure to SINE led to a time-dependent reduction of cytoplasmic survivin levels. In addition, after an initial accumulation, the nuclear protein abundance progressively decreased, as a consequence of an enhanced ubiquitination and proteasome-dependent degradation. SINE and the survivin inhibitor YM155 synergistically cooperated in reducing DMPM cell proliferation. Most importantly, orally administered SINE caused a significant anti-tumor effect in subcutaneous and orthotopic DMPM xenografts without appreciable toxicity. Overall, we have demonstrated a marked efficacy of SINE in DMPM preclinical models that may relay on the interference with survivin intracellular distribution and function. Our study suggests SINE-mediated XPO1/CRM1 inhibition as a novel therapeutic option for DMPM. PMID:25948791

  16. Anti-tumor activity of selective inhibitors of XPO1/CRM1-mediated nuclear export in diffuse malignant peritoneal mesothelioma: the role of survivin.

    PubMed

    De Cesare, Michelandrea; Cominetti, Denis; Doldi, Valentina; Lopergolo, Alessia; Deraco, Marcello; Gandellini, Paolo; Friedlander, Sharon; Landesman, Yosef; Kauffman, Michael G; Shacham, Sharon; Pennati, Marzia; Zaffaroni, Nadia

    2015-05-30

    Survivin, which is highly expressed and promotes cell survival in diffuse malignant peritoneal mesothelioma (DMPM), exclusively relies on exportin 1 (XPO1/CRM1) to be shuttled into the cytoplasm and perform its anti-apoptotic function. Here, we explored the efficacy of Selective Inhibitors of Nuclear Export (SINE), KPT-251, KPT-276 and the orally available, clinical stage KPT-330 (selinexor), in DMPM preclinical models. Exposure to SINE induced dose-dependent inhibition of cell growth, cell cycle arrest at G1-phase and caspase-dependent apoptosis, which were consequent to a decrease of XPO1/CRM1 protein levels and the concomitant nuclear accumulation of its cargo proteins p53 and CDKN1a. Cell exposure to SINE led to a time-dependent reduction of cytoplasmic survivin levels. In addition, after an initial accumulation, the nuclear protein abundance progressively decreased, as a consequence of an enhanced ubiquitination and proteasome-dependent degradation. SINE and the survivin inhibitor YM155 synergistically cooperated in reducing DMPM cell proliferation. Most importantly, orally administered SINE caused a significant anti-tumor effect in subcutaneous and orthotopic DMPM xenografts without appreciable toxicity. Overall, we have demonstrated a marked efficacy of SINE in DMPM preclinical models that may relay on the interference with survivin intracellular distribution and function. Our study suggests SINE-mediated XPO1/CRM1 inhibition as a novel therapeutic option for DMPM. PMID:25948791

  17. 15-Deoxy-{Delta}{sup 12,14}-prostaglandin J{sub 2} enhanced the anti-tumor activity of camptothecin against renal cell carcinoma independently of topoisomerase-II and PPAR{gamma} pathways

    SciTech Connect

    Yamamoto, Yasuhiro; Fujita, Megumi; Koma, Hiromi; Yamamori, Motohiro; Nakamura, Tsutomu; Okamura, Noboru; Yagami, Tatsurou

    2011-07-08

    Highlights: {yields} A topoisomerase-I inhibitor, camptothecin, exhibited synergistically toxicity with 15d-PGJ{sub 2}. {yields} The combination of 15d-PGJ{sub 2} and a topoisomerase-II inhibitor, doxorubicine, did not cause synergistic cell growth inhibition. {yields} A PPAR{gamma} antagonist did not prevent Caki-2 from undergoing 15d-PGJ{sub 2}-induced cytotoxicity. {yields} The treatment of camptothecin combined with 15d-PGJ{sub 2} activated caspase-3 more than the separate treatment. -- Abstract: Renal cell carcinoma (RCC) is chemoresistant cancer. Although several clinical trials were conducted to explore effective medications, the chemoresistance of RCC has not yet been conquered. An endogenous ligand for peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}), 15-deoxy-{Delta}{sup 12,14}-prostaglandin J{sub 2} (15d-PGJ{sub 2}), induces apoptosis in RCC. Here, we examined synergistic effects of several carcinostatics on the anti-tumor activity of 15d-PGJ{sub 2} in Caki-2 cell line by MTT assay. A topoisomerase-I inhibitor, camptothecin (CPT), exhibited synergistically toxicity with 15d-PGJ{sub 2}, but neither 5-fluorouracil nor cisplatin did. The combination of 15d-PGJ{sub 2} and a topoisomerase-II inhibitor, doxorubicine, did not cause synergistic cell growth inhibition. The synergistic effect of topoisomerase-I and II inhibitors was not also detected. A PPAR{gamma} antagonist, GW9662, did not prevent Caki-2 from undergoing 15d-PGJ{sub 2}-induced cytotoxicity. The treatment of CPT combined with 15d-PGJ{sub 2} activated caspase-3 more than the separate treatment. These results suggest that 15d-PGJ{sub 2} exhibited the anti-tumor activity synergistically with CPT independent of topoisomerase-II and PPAR{gamma}.

  18. Retraction: "Concurrent inhibition of NF-κB, cyclooxygenase-2, and epidermal growth factor receptor leads to greater anti-tumor activity in pancreatic cancer" by Ali et al.

    PubMed

    2016-08-01

    The above article, published online on March 8, 2010 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the first author and the corresponding author that found Figures 2A, 4, 6A, and 6C to be inappropriately manipulated. REFERENCE Ali S, Banerjee S, Schaffert JM, El-Rayes BF, Philip PA, Sarkar FH. 2010. Concurrent inhibition of NF-κB, cyclooxygenase-2, and epidermal growth factor receptor leads to greater anti-tumor activity in pancreatic cancer. J Cell Biochem 110:171-181; doi: 10.1002/jcb.22523. PMID:27301888

  19. Anti-tumor effects of DNA vaccine targeting human fibroblast activation protein α by producing specific immune responses and altering tumor microenvironment in the 4T1 murine breast cancer model.

    PubMed

    Xia, Qiu; Zhang, Fang-Fang; Geng, Fei; Liu, Chen-Lu; Xu, Ping; Lu, Zhen-Zhen; Yu, Bin; Wu, Hui; Wu, Jia-Xin; Zhang, Hai-Hong; Kong, Wei; Yu, Xiang-Hui

    2016-05-01

    Fibroblast activation protein α (FAPα) is a tumor stromal antigen overexpressed by cancer-associated fibroblasts (CAFs). CAFs are genetically more stable compared with the tumor cells and immunosuppressive components of the tumor microenvironment, rendering them excellent targets for cancer immunotherapy. DNA vaccines are widely applied due to their safety. To specifically destroy CAFs, we constructed and examined the immunogenicity and anti-tumor immune mechanism of a DNA vaccine expressing human FAPα. This vaccine successfully reduced 4T1 tumor growth through producing FAPα-specific cytotoxic T lymphocyte responses which could kill CAFs, and the decrease in FAPα-expressing CAFs resulted in markedly attenuated expression of collagen I and other stromal factors that benefit the tumor progression. Based on these results, a DNA vaccine targeting human FAPα may be an attractive and effective cancer immunotherapy strategy. PMID:27020681

  20. An Investigation on a Novel Anti-tumor Fusion Peptide of FSH33-53-IIKK

    PubMed Central

    Yang, Runlin; Liu, Ping; Pan, Donghui; zhang, Pengjun; Bai, Zhicheng; Xu, Yuping; Wang, Lizhen; Yan, Junjie; Yan, Yongjun; Liu, Xingdang; Yang, Min

    2016-01-01

    A novel fusion peptide FSH33-53-IIKK was designed and expected to combine the follicle stimulating hormone receptor (FSHR) targeting and tumor toxicity. In vitro and in vivo study showed the anti-tumor activity of FSH33-53-IIKK was enhanced compared to that of IIKK only. FSH33-53-IIKK could inhibit the growth of tumor via apoptosis and autophagy pathways. In summary, combining the tumor marker-target peptide and anti-tumor peptide together may be an efficient way to search for better anti-tumor candidates. PMID:27313792

  1. An Investigation on a Novel Anti-tumor Fusion Peptide of FSH33-53-IIKK.

    PubMed

    Yang, Runlin; Liu, Ping; Pan, Donghui; Zhang, Pengjun; Bai, Zhicheng; Xu, Yuping; Wang, Lizhen; Yan, Junjie; Yan, Yongjun; Liu, Xingdang; Yang, Min

    2016-01-01

    A novel fusion peptide FSH33-53-IIKK was designed and expected to combine the follicle stimulating hormone receptor (FSHR) targeting and tumor toxicity. In vitro and in vivo study showed the anti-tumor activity of FSH33-53-IIKK was enhanced compared to that of IIKK only. FSH33-53-IIKK could inhibit the growth of tumor via apoptosis and autophagy pathways. In summary, combining the tumor marker-target peptide and anti-tumor peptide together may be an efficient way to search for better anti-tumor candidates. PMID:27313792

  2. Synthesis and anti-tumor evaluation of novel 25-hydroxyprotopanaxadiol analogs incorporating natural amino acids.

    PubMed

    Wang, Peng; Bi, Xiu-Li; Xu, Jing; Yuan, Hao-Nan; Piao, Hu-Ri; Zhao, Yu-Qing

    2013-02-01

    In the current study, derivatives of 25-hydroxyprotopanaxadiol (25-OH-PPD) were prepared and their in vitro anti-tumor activities were tested on six different human tumor cell lines by standard MTT assay. The results showed that combining an ester group combined with the presence of an amino acid moiety led to a 10-fold improved anti-tumor activity. Compound 1c exhibited the best anti-tumor activity in the in vitro assays. Compounds 2c, 3c, 4c, 5c, 6c and 8b showed better anti-tumor activities compared to the parent compound 25-OH-PPD. The current results may provide useful data for researching and developing new anti-cancer agents. PMID:23178255

  3. [Research progress on anti-tumor effect of Huaier].

    PubMed

    Yang, Ai-lin; Hu, Zhong-dong; Tu, Peng-fei

    2015-12-01

    Huaier (Trametes robiniophila) has been widely used as an adjuvant drug for cancer treatment in China. The anti-cancer effect of Huaier extract has been confirmed in liver cancer, lung cancer, breast cancer, ovarian cancer, gastric cancer, and so on. The main mechanisms by which Huaier exerts an anti-neoplastic effect include inhibition of the growth and proliferation of cancer cells, induction of apoptosis of cancer cells, suppression of angiogenesis, inhibition of the invasion and migration of cancer cells, regulation of oncogenes and tumor suppressor genes expression, improving immunity, and reversal of drug resistance in cancer cells. In order to provide references for further study and clinical application on anti-tumor effect of Huaier, the latest research progress on anti-tumor effect of Huaier in recent years is summarized in this paper. PMID:27245026

  4. Anti-tumor effects and cellular mechanisms of resveratrol.

    PubMed

    Han, Guohua; Xia, Jufeng; Gao, Jianjun; Inagaki, Yoshinori; Tang, Wei; Kokudo, Norihiro

    2015-02-01

    Resveratrol (3, 5, 4'-trihydroxystilbene) is a phytoalexin contained in a variety of plants, such as grapes, berries and especially in the dried roots of Polygonum cuspidatum Sieb. et Zucc. It has been shown to exhibit anti-oxidative and anti-inflammation activity, and to reverse the effects of aging. Its ability to suppress cell proliferation, induce apoptosis and suppress the metastasis and invasion in a number of cell lines has prompted a large interest from people for its use as an anti-tumor component. In this review, evidence of resveratrol's anti-tumor effects and molecular mechanisms are recapitulated. First, we present the anti-apoptosis, anti-invasion/metastasis and anti-inflammation effect of resveratrol; second, the main signaling pathways involved in these activities are described and summarized with the studies of different tumors involved. Resveratrol not only induces apoptosis of tumor cells through intrinsic/extrinsic pathways and cell cycle arrest, but also inhibits the invasion and metastasis abilities of tumors via modulating collagen degradation-related molecular targets. Altogether, the present findings suggest the anti-tumor potential of resveratrol against various types of cancers. PMID:25788047

  5. A novel quinoline, MT477: suppresses cell signaling through Ras molecular pathway, inhibits PKC activity, and demonstrates in vivo anti-tumor activity against human carcinoma cell lines.

    PubMed

    Jasinski, Piotr; Welsh, Brandon; Galvez, Jorge; Land, David; Zwolak, Pawel; Ghandi, Lori; Terai, Kaoru; Dudek, Arkadiusz Z

    2008-06-01

    MT477 is a novel thiopyrano[2,3-c]quinoline that has been identified using molecular topology screening as a potential anticancer drug with a high activity against protein kinase C (PKC) isoforms. The objective of the present study was to determine the mechanism of action of MT477 and its activity against human cancer cell lines. MT477 interfered with PKC activity as well as phosphorylation of Ras and ERK1/2 in H226 human lung carcinoma cells. It also induced poly-caspase-dependent apoptosis. MT477 had a dose-dependent (0.006 to 0.2 mM) inhibitory effect on cellular proliferation of H226, MCF-7, U87, LNCaP, A431 and A549 cancer cell lines as determined by in vitro proliferation assays. Two murine xenograft models of human A431 and H226 lung carcinoma were used to evaluate tumor response to intraperitoneal administration of MT477 (33 microg/kg, 100 microg/kg, and 1 mg/kg). Tumor growth was inhibited by 24.5% in A431 and 43.67% in H226 xenografts following MT477 treatment, compared to vehicle controls (p < 0.05). In conclusion, our empirical findings are consistent with molecular modeling of MT477's activity against PKC. We also found, however, that its mechanism of action occurs through suppressing Ras signaling, indicating that its effects on apoptosis and tumor growth in vivo may be mediated by Ras as well as PKC. We propose, therefore, that MT477 warrants further development as an anticancer drug. PMID:17957339

  6. Niflumic acid exhibits anti-tumor activity in nasopharyngeal carcinoma cells through affecting the expression of ERK1/2 and the activity of MMP2 and MMP9

    PubMed Central

    Luo, Shengqun; Huang, Guoliang; Wang, Ziyou; Wan, Zheng; Chen, Hua; Liao, Dan; Chen, Chuyan; Li, Huahui; Li, Binbin; Chen, Liyong; Huang, Zunnan; He, Zhiwei

    2015-01-01

    Niflumic acid (NFA) was known to inhibit cell proliferation or migration in several types of cancer. However, the function of NFA in human nasopharyngeal carcinoma (NPC) cells was not clarified. The proliferation of NPC cell line CNE-2Z cells with NFA treatment was detected using the cell counting kit-8 method and transwell assay was employed to assess the effect of NFA on the CNE-2Z cell migration and invasion. The activity of MMP2 and MMP9 was detected by Gelatin Zymography. Cell cycle distribution and apoptosis were detected using flow cytometry. In vitro pull-down assay, western blot, and computational technique were applied to investigate the NFA regulating signaling pathway. Our results indicated that the growth capacity and colony formation potential of CNE-2Z cells in soft agar were significantly suppressed by treatment with NFA. NFA inhibited the proliferation of CNE-2Z cells in a concentration and time-dependent manner. NFA exerted an S phase arrest on the CNE-2Z cells in a concentration-dependent manner, while promoting apoptosis in a dose-dependent manner. Migration and invasion potential of CNE-2Z cells were decreased by NFA treatment in vitro. In vitro pull-down assay and molecular modeling indicated that NFA directly bound with early respond kinase 1 (ERK1). Finally, the anti-tumor effect of NFA was suggested to be mediated by inhibiting early respond kinases (ERK) expression and the MMP2 and MMP9 activities. NFA has proliferation-inhibiting, invasion-suppressing, cell cycle-blocking and apoptosis-promoting effects on CNE-2Z cells through regulation of ERK/MAPK and our results indicates that NFA may serve as a candidate of anticancer drug for NPC. PMID:26617707

  7. Niflumic acid exhibits anti-tumor activity in nasopharyngeal carcinoma cells through affecting the expression of ERK1/2 and the activity of MMP2 and MMP9.

    PubMed

    Luo, Shengqun; Huang, Guoliang; Wang, Ziyou; Wan, Zheng; Chen, Hua; Liao, Dan; Chen, Chuyan; Li, Huahui; Li, Binbin; Chen, Liyong; Huang, Zunnan; He, Zhiwei

    2015-01-01

    Niflumic acid (NFA) was known to inhibit cell proliferation or migration in several types of cancer. However, the function of NFA in human nasopharyngeal carcinoma (NPC) cells was not clarified. The proliferation of NPC cell line CNE-2Z cells with NFA treatment was detected using the cell counting kit-8 method and transwell assay was employed to assess the effect of NFA on the CNE-2Z cell migration and invasion. The activity of MMP2 and MMP9 was detected by Gelatin Zymography. Cell cycle distribution and apoptosis were detected using flow cytometry. In vitro pull-down assay, western blot, and computational technique were applied to investigate the NFA regulating signaling pathway. Our results indicated that the growth capacity and colony formation potential of CNE-2Z cells in soft agar were significantly suppressed by treatment with NFA. NFA inhibited the proliferation of CNE-2Z cells in a concentration and time-dependent manner. NFA exerted an S phase arrest on the CNE-2Z cells in a concentration-dependent manner, while promoting apoptosis in a dose-dependent manner. Migration and invasion potential of CNE-2Z cells were decreased by NFA treatment in vitro. In vitro pull-down assay and molecular modeling indicated that NFA directly bound with early respond kinase 1 (ERK1). Finally, the anti-tumor effect of NFA was suggested to be mediated by inhibiting early respond kinases (ERK) expression and the MMP2 and MMP9 activities. NFA has proliferation-inhibiting, invasion-suppressing, cell cycle-blocking and apoptosis-promoting effects on CNE-2Z cells through regulation of ERK/MAPK and our results indicates that NFA may serve as a candidate of anticancer drug for NPC. PMID:26617707

  8. Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity.

    PubMed

    Lv, Qiang; Yang, Xu-Zhong; Fu, Long-Yun; Lu, Yv-Ting; Lu, Yan-Hua; Zhao, Jian; Wang, Fu-Jun

    2015-07-01

    MAP30 (Momordica Antiviral Protein 30 Kd), a single-stranded type-I ribosome inactivating protein, possesses versatile biological activities including anti-tumor abilities. However, the low efficiency penetrating into tumor cells hampers the tumoricidal effect of MAP30. This paper describes MAP30 fused with a human-derived cell penetrating peptide HBD which overcome the low uptake efficiency by tumor cells and exhibits higher anti-tumor bioactivity. MAP30 gene was cloned from the genomic DNA of Momordica charantia and the recombinant plasmid pET28b-MAP30-HBD was established and transferred into Escherichia coli BL21 (DE3). The recombinant MAP30-HBD protein (rMAP30-HBD) was expressed in a soluble form after being induced by 0.5mM IPTG for 14h at 15°C. The recombinant protein was purified to greater than 95% purity with Ni-NTA affinity chromatography. The rMAP30-HBD protein not only has topological inactivation and protein translation inhibition activity but also showed significant improvements in cytotoxic activity compared to that of the rMAP30 protein without HBD in the tested tumor cell lines, and induced higher apoptosis rates in HeLa cells analyzed by Annexin V-FITC with FACS. This paper demonstrated a new method for improving MAP30 protein anti-tumor activity and might have potential applications in cancer therapy area. PMID:25797209

  9. Latent tuberculosis screening tests and active tuberculosis infection rates in Turkish inflammatory bowel disease patients under anti-tumor necrosis factor therapy

    PubMed Central

    Çekiç, Cem; Aslan, Fatih; Vatansever, Sezgin; Topal, Firdevs; Yüksel, Elif Sarıtaş; Alper, Emrah; Dallı, Ayşe; Ünsal, Belkıs

    2015-01-01

    Background Tumor necrosis factor (TNF)-α inhibitors increase the risk of tuberculosis (TB). The objective of the present study was to determine the rate of active TB infection in inflammatory bowel disease (IBD) patients receiving anti-TNF therapy and to determine the results of their latent TB infection (LTBI) screening tests during the follow up. Methods This is a retrospective observational study of IBD patients receiving anti-TNF therapy. Tuberculin skin test (TST), interferon-γ release assay (IGRA), and chest radiography were used to determine LTBI. Active TB infection rate during anti-TNF treatment was determined. Results Seventy-six IBD patients (25 with ulcerative colitis, 51 with Crohn’s disease; 53 male; mean age 42.0±12.4 years) were included. Forty-four (57.9%) patients received infliximab and 32 (42.1%) adalimumab. Their median duration of anti-TNF therapy was 15 months. Forty-five (59.2%) patients had LTBI and received isoniazid (INH) prophylaxis. During the follow-up period, active TB was identified in 3 (4.7%) patients who were not receiving INH prophylaxis. There was a moderate concordance between the TST and the IGRA (kappa coefficient 0.44, 95% CI 0.24-0.76). Patients with or without immunosuppressive therapy did not differ significantly with respect to TST (P=0.318) and IGRA (P=0.157). Conclusion IBD patients receiving anti-TNF therapy and prophylactic INH have a decreased risk of developing active TB infection. However, despite LTBI screening, the risk of developing active TB infection persists. PMID:25831138

  10. BM6, a new semi-synthetic vinca alkaloid, exhibits its potent in vivo anti-tumor activities via its high binding affinity for tubulin and improved pharmacokinetic profiles.

    PubMed

    Li, Weihong; Shao, Yong; Hu, Lihong; Zhang, Xiongwen; Chen, Yi; Tong, Linjiang; Li, Chuan; Shen, Xu; Ding, Jian

    2007-05-01

    The aim of this study was to evaluate the anti-tumor activities and to establish the mechanism of the action of 3-decarboxyl-acetyloxylmethyl-anhydrovinblastine (BM6), a new semi-synthetic Vinca alkaloid, in an effort towards finding the favorable therapeutics of Vinca alkaloid derivatives. BM6 was characterized by its superior in vivo activity to vinorelbine in preclinical tumor models, though BM6 exerted in vitro cytotoxic activity against a wide spectrum of tumor cell lines with IC(50) values generally 10-fold higher than the classic Vinca alkaloids. Of note, BM6 displayed more potent cytotoxic activity against multidrug-resistant sublines. We further found that BM6 shared the mitotic arresting and tubulin-interacting properties comparable with other Vinca alkaloids. BM6 also induced significant cell cycle arrested in mitosis and cytoskeleton disruption via interacting with the Vinca binding site on tubulin. Encouragingly, the features in term of its higher tubulin binding affinities and better pharmacokinetic profiles highlight BM6 distinct from other Vinca alkaloids, which help provide more data for exploiting new semi-synthetic Vinca alkaloids. PMID:17387272

  11. Selective inhibition of EZH2 by ZLD1039 blocks H3K27 methylation and leads to potent anti-tumor activity in breast cancer.

    PubMed

    Song, Xuejiao; Gao, Tiantao; Wang, Ningyu; Feng, Qiang; You, Xinyu; Ye, Tinghong; Lei, Qian; Zhu, Yongxia; Xiong, Menghua; Xia, Yong; Yang, Fangfang; Shi, Yaojie; Wei, Yuquan; Zhang, Lidan; Yu, Luoting

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2) is a candidate oncogenic driver due to its prevalent overexpression and aberrant repression of tumor suppressor genes in diverse cancers. Therefore, blocking EZH2 enzyme activity may present a valid therapeutic strategy for the treatment of cancers with EZH2 overexpression including breast cancers. Here, we described ZLD1039 a potent, highly selective, and orally bioavailable small molecule inhibitor of EZH2, which inhibited breast tumor growth and metastasis. ZLD1039 considerably inhibited EZH2 methyltransferase activity with nanomolar potency, decreased global histone-3 lysine-27 (H3K27) methylation, and reactivated silenced tumor suppressors connected to increased survival of patients with breast cancer. Comparable to conditional silencing of EZH2, its inhibition by ZLD1039 decreased cell proliferation, cell cycle arrest, and induced apoptosis. Comparably, treatment of xenograft-bearing mice with ZLD1039 led to tumor growth regression and metastasis inhibition. These data confirmed the dependency of breast cancer progression on EZH2 activity and the usefulness of ZLD1039 as a promising treatment for breast cancer. PMID:26868841

  12. Selective inhibition of EZH2 by ZLD1039 blocks H3K27methylation and leads to potent anti-tumor activity in breast cancer

    PubMed Central

    Song, Xuejiao; Gao, Tiantao; Wang, Ningyu; Feng, Qiang; You, Xinyu; Ye, Tinghong; Lei, Qian; Zhu, Yongxia; Xiong, Menghua; Xia, Yong; Yang, Fangfang; Shi, Yaojie; Wei, Yuquan; Zhang, Lidan; Yu, Luoting

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2) is a candidate oncogenic driver due to its prevalent overexpression and aberrant repression of tumor suppressor genes in diverse cancers. Therefore, blocking EZH2 enzyme activity may present a valid therapeutic strategy for the treatment of cancers with EZH2 overexpression including breast cancers. Here, we described ZLD1039 a potent, highly selective, and orally bioavailable small molecule inhibitor of EZH2, which inhibited breast tumor growth and metastasis. ZLD1039 considerably inhibited EZH2 methyltransferase activity with nanomolar potency, decreased global histone-3 lysine-27 (H3K27) methylation, and reactivated silenced tumor suppressors connected to increased survival of patients with breast cancer. Comparable to conditional silencing of EZH2, its inhibition by ZLD1039 decreased cell proliferation, cell cycle arrest, and induced apoptosis. Comparably, treatment of xenograft-bearing mice with ZLD1039 led to tumor growth regression and metastasis inhibition. These data confirmed the dependency of breast cancer progression on EZH2 activity and the usefulness of ZLD1039 as a promising treatment for breast cancer. PMID:26868841

  13. Antagonistic human FcγRIIB (CD32B) antibodies have anti-tumor activity and overcome resistance to antibody therapy in vivo.

    PubMed

    Roghanian, Ali; Teige, Ingrid; Mårtensson, Linda; Cox, Kerry L; Kovacek, Mathilda; Ljungars, Anne; Mattson, Jenny; Sundberg, Annika; Vaughan, Andrew T; Shah, Vallari; Smyth, Neil R; Sheth, Bhavwanti; Chan, H T Claude; Li, Zhan-Chun; Williams, Emily L; Manfredi, Giusi; Oldham, Robert J; Mockridge, C Ian; James, Sonya A; Dahal, Lekh N; Hussain, Khiyam; Nilsson, Björn; Verbeek, J Sjef; Juliusson, Gunnar; Hansson, Markus; Jerkeman, Mats; Johnson, Peter W M; Davies, Andrew; Beers, Stephen A; Glennie, Martin J; Frendéus, Björn; Cragg, Mark S

    2015-04-13

    Therapeutic antibodies have transformed cancer therapy, unlocking mechanisms of action by engaging the immune system. Unfortunately, cures rarely occur and patients display intrinsic or acquired resistance. Here, we demonstrate the therapeutic potential of targeting human (h) FcγRIIB (CD32B), a receptor implicated in immune cell desensitization and tumor cell resistance. FcγRIIB-blocking antibodies prevented internalization of the CD20-specific antibody rituximab, thereby maximizing cell surface accessibility and immune effector cell mediated antitumor activity. In hFcγRIIB-transgenic (Tg) mice, FcγRIIB-blocking antibodies effectively deleted target cells in combination with rituximab, and other therapeutic antibodies, from resistance-prone stromal compartments. Similar efficacy was seen in primary human tumor xenografts, including with cells from patients with relapsed/refractory disease. These data support the further development of hFcγRIIB antibodies for clinical assessment. PMID:25873171

  14. High dose CD11c-driven IL15 is sufficient to drive NK cell maturation and anti-tumor activity in a trans-presentation independent manner

    PubMed Central

    Polansky, Julia K.; Bahri, Rajia; Divivier, Mylene; Duitman, Erwin H.; Vock, Christina; Goyeneche-Patino, Diego A.; Orinska, Zane; Bulfone-Paus, Silvia

    2016-01-01

    The common gamma (γc)-chain cytokine interleukin 15 (IL15) is a multifunctional immune-modulator which impacts the generation, maturation and activity of many cell types of the innate, as well as the adaptive immune system, including natural killer (NK) and CD8+ T cells. Using a new series of transgenic mice, we analyzed the in vivo potential of IL15 as an immune-regulator when available at different concentrations or delivery modes, i.e. soluble monomer or complexed to its specific receptor α (Rα)-chain. We have identified distinct effects on selected IL15-responsive populations. While CD8+ T cells required complexed forms of IL15/IL15Rα for full functionality, mature NK populations were rescued in an IL15/IL15Rα-deficient environment by high levels of CD11c-restricted IL15. These IL15-conditions were sufficient to limit tumor formation in a lung metastasis model indicating that the NK cell populations were fully functional. These data underline the potential of “free” IL15 in the absence of Rα-complex as a powerful and specific immuno-modulator, which may be beneficial where selective immune-activation is desired. PMID:26822794

  15. High dose CD11c-driven IL15 is sufficient to drive NK cell maturation and anti-tumor activity in a trans-presentation independent manner.

    PubMed

    Polansky, Julia K; Bahri, Rajia; Divivier, Mylene; Duitman, Erwin H; Vock, Christina; Goyeneche-Patino, Diego A; Orinska, Zane; Bulfone-Paus, Silvia

    2016-01-01

    The common gamma (γc)-chain cytokine interleukin 15 (IL15) is a multifunctional immune-modulator which impacts the generation, maturation and activity of many cell types of the innate, as well as the adaptive immune system, including natural killer (NK) and CD8(+) T cells. Using a new series of transgenic mice, we analyzed the in vivo potential of IL15 as an immune-regulator when available at different concentrations or delivery modes, i.e. soluble monomer or complexed to its specific receptor α (Rα)-chain. We have identified distinct effects on selected IL15-responsive populations. While CD8(+) T cells required complexed forms of IL15/IL15Rα for full functionality, mature NK populations were rescued in an IL15/IL15Rα-deficient environment by high levels of CD11c-restricted IL15. These IL15-conditions were sufficient to limit tumor formation in a lung metastasis model indicating that the NK cell populations were fully functional. These data underline the potential of "free" IL15 in the absence of Rα-complex as a powerful and specific immuno-modulator, which may be beneficial where selective immune-activation is desired. PMID:26822794

  16. Focal Adhesion Kinase Inhibitors in Combination with Erlotinib Demonstrate Enhanced Anti-Tumor Activity in Non-Small Cell Lung Cancer

    PubMed Central

    Howe, Grant A.; Xiao, Bin; Zhao, Huijun; Al-Zahrani, Khalid N.; Hasim, Mohamed S.; Villeneuve, James; Sekhon, Harmanjatinder S.; Goss, Glenwood D.; Sabourin, Luc A.; Dimitroulakos, Jim; Addison, Christina L.

    2016-01-01

    Blockade of epidermal growth factor receptor (EGFR) activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC). As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs), there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK) activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975) were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271) both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be particularly

  17. Anti-tumor effects of an engineered 'killer' transfer RNA

    SciTech Connect

    Zhou, Dong-hui; Lee, Jiyoung; Frankenberger, Casey; Geslain, Renaud; Rosner, Marsha; Pan, Tao

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer tRNA with anti-cancer effects. Black-Right-Pointing-Pointer tRNA induced protein misfolding. Black-Right-Pointing-Pointer tRNA as anti-tumor agent. -- Abstract: A hallmark of cancer cells is their ability to continuously divide; and rapid proliferation requires increased protein translation. Elevating levels of misfolded proteins can elicit growth arrest due to ER stress and decreased global translation. Failure to correct prolonged ER stress eventually results in cell death via apoptosis. tRNA{sup Ser}(AAU) is an engineered human tRNA{sup Ser} with an anticodon coding for isoleucine. Here we test the possibility that tRNA{sup Ser}(AAU) can be an effective killing agent of breast cancer cells and can effectively inhibit tumor-formation in mice. We found that tRNA{sup Ser}(AAU) exert strong effects on breast cancer translation activity, cell viability, and tumor formation. Translation is strongly inhibited by tRNA{sup Ser}(AAU) in both tumorigenic and non-tumorigenic cells. tRNA{sup Ser}(AAU) significantly decreased the number of viable cells over time. A short time treatment with tRNA{sup Ser}(AAU) was sufficient to eliminate breast tumor formation in a xenograft mouse model. Our results indicate that tRNA{sup Ser}(AAU) can inhibit breast cancer metabolism, growth and tumor formation. This RNA has strong anti-cancer effects and presents an opportunity for its development into an anti-tumor agent. Because tRNA{sup Ser}(AAU) corrupts the protein synthesis mechanism that is an integral component of the cell, it would be extremely difficult for tumor cells to evolve and develop resistance against this anti-tumor agent.

  18. Anti-Tumor Activity of Yuanhuacine by Regulating AMPK/mTOR Signaling Pathway and Actin Cytoskeleton Organization in Non-Small Cell Lung Cancer Cells

    PubMed Central

    Lee, Hye-Jung; Bae, Song Yi; Jung, Cholomi; Park, Hyen Joo; Lee, Sang Kook

    2015-01-01

    Yuanhuacine (YC), a daphnane diterpenoid from the flowers of Daphne genkwa, exhibited a potential growth inhibitory activity against human non-small cell lung cancer (NSCLC) cells. YC also suppressed the invasion and migration of lung cancer cells. However, the precise molecular mechanisms remain to be elucidated. In the present study, we report that YC significantly activated AMP-activated protein kinase (AMPK) signaling pathway and suppressed mTORC2-mediated downstream signaling pathway in H1993 human NSCLC cells. AMPK plays an important role in energy metabolism and cancer biology. Therefore, activators of AMPK signaling pathways can be applicable to the treatment of cancer. YC enhanced the expression of p-AMPKα. The co-treatment of YC and compound C (an AMPK inhibitor) or metformin (an AMPK activator) also confirmed that YC increases p-AMPKα. YC also suppressed the activation of the mammalian target of rapamycin (mTOR) expression, a downstream target of AMPK. Further study revealed that YC modulates mTORC2-associated downstream signaling pathways with a decreased expressions of p-Akt, p-protein kinase C alpha (PKCα), p-ras-related C3 botulinum toxin substrate 1 (Rac1) and filamentous actin (F-actin) that are known to activate cell growth and organize actin cytoskeleton. In addition, YC inhibited the tumor growth in H1993 cell-implanted xenograft nude mouse model. These data suggest the YC could be a potential candidate for cancer chemotherapeutic agents derived from natural products by regulating AMPK/mTORC2 signaling pathway and actin cytoskeleton organization. PMID:26656173

  19. Structure-Activity Relationship and in Vivo Anti-Tumor Evaluations of Dictyoceratin-A and -C, Hypoxia-Selective Growth Inhibitors from Marine Sponge

    PubMed Central

    Sumii, Yuji; Kotoku, Naoyuki; Fukuda, Akinori; Kawachi, Takashi; Arai, Masayoshi; Kobayashi, Motomasa

    2015-01-01

    Oral dictyoceratin-C (1) and A (2), hypoxia-selective growth inhibitors, showed potent in vivo antitumor effects in mice subcutaneously inoculated with sarcoma S180 cells. Structurally modified analogs were synthesized to assess the structure–activity relationship of the natural compounds 1 and 2 isolated from a marine sponge. Biological evaluation of these analogs showed that the exo-olefin and hydroxyl and methyl ester moieties were important for the hypoxia-selective growth inhibitory activities of 1 and 2. Thus far, only substitution of the methyl ester with propargyl amide in 1 was found to be effective for the synthesis of probe molecules for target identification. PMID:26694423

  20. Nordihydroguaiaretic acid ameliorates cisplatin induced nephrotoxicity and potentiates its anti-tumor activity in DMBA induced breast cancer in female Sprague-Dawley rats.

    PubMed

    Mundhe, Nitin Arunrao; Kumar, Parveen; Ahmed, Sahabuddin; Jamdade, Vinayak; Mundhe, Sanjay; Lahkar, Mangala

    2015-09-01

    Cisplatin is a widely used antineoplastic drug, but its clinical usefulness is limited due to dose dependent nephrotoxicity. Nordihydroguaiaretic acid (NDGA) is a natural compound with broad pharmacological properties like antioxidant, anti-inflammatory and anticancer activity. The present study was undertaken to evaluate the possible beneficial effects of NDGA on cisplatin induced nephrotoxicity as well as its anticancer activity in rats bearing DMBA induced mammary tumors. The effect of NDGA on cisplatin induced nephrotoxicity was evaluated by checking serum nephrotoxicity markers, antioxidant enzymes and inflammatory markers level and kidney histopathology. NDGA induced amelioration of cisplatin nephrotoxicity was clearly visible from significant reductions in serum blood urea nitrogen (86.51 g/dl) and creatinine (5.30 g/dl) levels and significant improvement in body weight change (-10.34 g) and kidney weight (728 mg/kg). The protective effect of NDGA against cisplatin induced nephrotoxicity in the rats was further confirmed by significant restoration of antioxidant enzymes like SOD (86.28% inhibition), inflammatory markers like TNF-α (34.6 pg/ml) and histopathological examination. Moreover, our results showed that NDGA potentiated anti-breast cancer activity of cisplatin through an increment in the expression of antioxidant enzymes like SOD (85.35% inhibition) in breast cancer tissue. These results indicated that NDGA potentiated the anti-breast cancer activity of cisplatin, which was clearly evident from the tumor volume and % tumor inhibition in breast cancer rats. The current study demonstrated that NDGA may modify the therapeutic effect of cisplatin in DMBA induced breast cancer in female Sprague-Dawley rats. PMID:26247680

  1. In vitro and In vivo Anti-tumor Activities and DNA Binding Mode of Five Coordinated Cyclometallated Organoplatinum(II) Complexes Containing Biphosphine Ligands

    PubMed Central

    Frezza, Michael; Dou, Q. Ping; Xiao, Yan; Samouei, Hamidreza; Rashidi, Mehdi; Samari, Fayezeh; Hemmateenejad, Bahram

    2011-01-01

    New complexes [Pt(C^N)Cl(dppa)], 1, and [Pt(C^N)Cl(dppm)], 2, C^N, deprotonated 2-phenylpyridine; dppa, bis(diphenylphosphino)amine; dppm, bis(diphenylphosphino)methane, were suggested to have penta-coordinated geometry, as investigated by NMR and conductometry. Pharmacological effects of 1 and 2 were evaluated for their proteasome-inhibitory and apoptosis-inducing activities under in vitro and in vivo conditions, showing significant proteasome-inhibitory activity against purified 20S proteasome, while 2 demonstrated superior inhibitory activity against cellular 26S proteasome. Consistently, this effect was associated with higher levels of proteasome target proteins and apoptosis induction in breast cancer cells. Importantly, preliminary studies show 1 and 2 were able to exert a similar effect in vivo by inhibiting the growth of breast cancer xenografts in mice, which was associated with proteasome inhibition and apoptosis induction. Interaction of 1 and 2 with herring sperm DNA was investigated by fluorimeteric emission suggesting that PtII-containing biphosphine complexes with DNA binding capabilities can also target and inhibit the tumor proteasome. PMID:21815643

  2. Design, synthesis, anti-tumor activity, and molecular modeling of quinazoline and pyrido[2,3-d]pyrimidine derivatives targeting epidermal growth factor receptor.

    PubMed

    Hou, Ju; Wan, Shanhe; Wang, Guangfa; Zhang, Tingting; Li, Zhonghuang; Tian, Yuanxin; Yu, Yonghuan; Wu, Xiaoyun; Zhang, Jiajie

    2016-08-01

    Three series of novel quinazoline and pyrido[2,3-d]pyrimidine derivatives were designed, synthesized and evaluated for their ability to inhibit EGFR tyrosine kinase and a panel of five human cancer cell lines (MCF-7, A549, BT-474, SK-BR-3, and MDA-MB-231). Bioassay results indicated that five of these prepared compounds (12c-12e and 13c-13d) exhibited remarkably higher inhibitory activities against EGFR and SK-BR-3 cell line. Compounds 12c and 12e displayed the most potent EGFR inhibitory activity (IC50 = 2.97 nM and 3.58 nM, respectively) and good anti-proliferative effect against SK-BR-3 cell with the IC50 values of 3.10 μM and 5.87 μM, respectively. Furthermore, molecular docking and molecular dynamics simulation studies verified that compound 12c and 12e shared similar binding pattern with gefitinib in the binding pocket of EGFR. MM-GBSA binding free energy revealed that the compound 12c and 12e have almost the same inhibitory activity against EGFR as gefitinib, and that the dominating effect of van der Waals interactions drives the binding process. PMID:27132165

  3. Irreversible dual inhibitory mode: the novel Btk inhibitor PLS-123 demonstrates promising anti-tumor activity in human B-cell lymphoma

    PubMed Central

    Ding, Ning; Li, Xitao; Shi, Yunfei; Ping, Lingyan; Wu, Lina; Fu, Kai; Feng, Lixia; Zheng, Xiaohui; Song, Yuqin; Pan, Zhengying; Zhu, Jun

    2015-01-01

    The B-cell receptor (BCR) signaling pathway has gained significant attention as a therapeutic target in B-cell malignancies. Recently, several drugs that target the BCR signaling pathway, especially the Btk inhibitor ibrutinib, have demonstrated notable therapeutic effects in relapsed/refractory patients, which indicates that pharmacological inhibition of BCR pathway holds promise in B-cell lymphoma treatment. Here we present a novel covalent irreversible Btk inhibitor PLS-123 with more potent anti-proliferative activity compared with ibrutinib in multiple cellular and in vivo models through effective apoptosis induction and dual-action inhibitory mode of Btk activation. The phosphorylation of BCR downstream activating AKT/mTOR and MAPK signal pathways was also more significantly reduced after treatment with PLS-123 than ibrutinib. Gene expression profile analysis further suggested that the different selectivity profile of PLS-123 led to significant downregulation of oncogenic gene PTPN11 expression, which might also offer new opportunities beyond what ibrutinib has achieved. In addition, PLS-123 dose-dependently attenuated BCR- and chemokine-mediated lymphoma cell adhesion and migration. Taken together, Btk inhibitor PLS-123 suggested a new direction to pharmacologically modulate Btk function and develop novel therapeutic drug for B-cell lymphoma treatment. PMID:25944695

  4. Dual inhibition of Akt/mTOR pathway by nab-rapamycin and perifosine induces anti-tumor activity in multiple myeloma

    PubMed Central

    Cirstea, Diana; Hideshima, Teru; Rodig, Scott; Santo, Loredana; Pozzi, Samantha; Vallet, Sonia; Ikeda, Hiroshi; Perrone, Giulia; Patel, Kishan; Desai, Neil; Sportelli, Peter; Kapoor, Shweta; Vali, Shireen; Mukherjee, Siddhartha; Munshi, Nikhil C.; Anderson, Kenneth C.; Raje, Noopur

    2011-01-01

    The PI3K/Akt/mTOR pathway mediates multiple myeloma (MM) cell proliferation, survival, and development of drug resistance, underscoring the role of mTOR inhibitors such as rapamycin with potential anti-MM activity. However, recent data demonstrate a positive feedback loop from mTOR/S6K1 to Akt, whereby Akt activation confers resistance to mTOR inhibitors. We confirmed that suppression of mTOR signaling in MM cells by rapamycin was associated with upregulation of Akt phosphorylation. We hypothesized that inhibiting this positive feedback by a potent Akt inhibitor perifosine would augment rapamycin-induced cytotoxicity in MM cells. Perifosine inhibited rapamycin-induced p-Akt, resulting in enhanced cytotoxicity in MM.1S cells even in the presence of IL-6, IGF-1 or bone marrow stromal cells. Moreover, rapamycin induced autophagy in MM.1S MM cells as evidenced by electron microscopy and immunocytochemistry, was augmented by perifosine. Combination therapy increased apoptosis detected by Annexin/PI analysis and caspase/PARP cleavage. Importantly, in vivo antitumor activity and prolongation of survival in a MM mouse xenograft model after treatment was enhanced with combination of nab-rapamycin and perifosine. Utilizing the in silico predictive analysis we confirmed our experimental findings of this drug combination on PI3K, Akt, mTOR kinases, and the caspases. Our data suggests that mutual suppression of the PI3K/Akt/mTOR pathway by rapamycin and perifosine combination induces synergistic MM cell cytotoxicity, providing the rationale for clinical trials in patients with relapsed / refractory MM. PMID:20371718

  5. Formation and stabilization of the telomeric antiparallel G-quadruplex and inhibition of telomerase by novel benzothioxanthene derivatives with anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Chen, Min; Ling Wu, Yan; Tanaka, Yoshimasa; Juan Ji, Yan; Lin Zhang, Su; He Wei, Chuan; Xu, Yan

    2015-09-01

    G-quadruplexes formed in telomeric DNA sequences at human chromosome ends can be a novel target for the development of therapeutics for the treatment of cancer patients. Herein, we examined the ability of six novel benzothioxanthene derivatives S1-S6 to induce the formation of and stabilize an antiparallel G-quadruplex by EMSA, UV-melting and CD techniques and the influence of S1-S6 on A549 and SGC7901 cells through real-time cell analysis, wound healing, trap assay methods. Results show that six compounds could differentially induce 26 nt G-rich oligonucleotides to form the G-quadruplex with high selectivity vs C-rich DNA, mutated DNA and double-stranded DNA, stabilize it with high affinity, promote apoptosis and inhibit mobility and telomerase activity of A549 cells and SGC7901 cells. Especially, S1, S3, S4 displayed stronger abilities, of which S3 was the most optimal with the maximum ΔTm value being up to 29.8 °C for G-quadruplex, the minimum IC50 value being 0.53 μM and the maximum cell inhibitory rate being up to 97.2%. This study suggests that this type of compounds that induce the formation of and stabilize the telomeric antiparallel G-quadruplex, and consequently inhibit telomerase activity, leading to cell apoptosis, can be screened for the discovery of novel antitumor therapeutics.

  6. Formation and stabilization of the telomeric antiparallel G-quadruplex and inhibition of telomerase by novel benzothioxanthene derivatives with anti-tumor activity.

    PubMed

    Zhang, Wen; Chen, Min; Ling Wu, Yan; Tanaka, Yoshimasa; Juan Ji, Yan; Lin Zhang, Su; He Wei, Chuan; Xu, Yan

    2015-01-01

    G-quadruplexes formed in telomeric DNA sequences at human chromosome ends can be a novel target for the development of therapeutics for the treatment of cancer patients. Herein, we examined the ability of six novel benzothioxanthene derivatives S1-S6 to induce the formation of and stabilize an antiparallel G-quadruplex by EMSA, UV-melting and CD techniques and the influence of S1-S6 on A549 and SGC7901 cells through real-time cell analysis, wound healing, trap assay methods. Results show that six compounds could differentially induce 26 nt G-rich oligonucleotides to form the G-quadruplex with high selectivity vs C-rich DNA, mutated DNA and double-stranded DNA, stabilize it with high affinity, promote apoptosis and inhibit mobility and telomerase activity of A549 cells and SGC7901 cells. Especially, S1, S3, S4 displayed stronger abilities, of which S3 was the most optimal with the maximum ΔTm value being up to 29.8 °C for G-quadruplex, the minimum IC50 value being 0.53 μM and the maximum cell inhibitory rate being up to 97.2%. This study suggests that this type of compounds that induce the formation of and stabilize the telomeric antiparallel G-quadruplex, and consequently inhibit telomerase activity, leading to cell apoptosis, can be screened for the discovery of novel antitumor therapeutics. PMID:26329134

  7. Formation and stabilization of the telomeric antiparallel G-quadruplex and inhibition of telomerase by novel benzothioxanthene derivatives with anti-tumor activity

    PubMed Central

    Zhang, Wen; Chen, Min; Ling Wu, Yan; Tanaka, Yoshimasa; Juan Ji, Yan; Lin Zhang, Su; He Wei, Chuan; Xu, Yan

    2015-01-01

    G-quadruplexes formed in telomeric DNA sequences at human chromosome ends can be a novel target for the development of therapeutics for the treatment of cancer patients. Herein, we examined the ability of six novel benzothioxanthene derivatives S1–S6 to induce the formation of and stabilize an antiparallel G-quadruplex by EMSA, UV-melting and CD techniques and the influence of S1–S6 on A549 and SGC7901 cells through real-time cell analysis, wound healing, trap assay methods. Results show that six compounds could differentially induce 26 nt G-rich oligonucleotides to form the G-quadruplex with high selectivity vs C-rich DNA, mutated DNA and double-stranded DNA, stabilize it with high affinity, promote apoptosis and inhibit mobility and telomerase activity of A549 cells and SGC7901 cells. Especially, S1, S3, S4 displayed stronger abilities, of which S3 was the most optimal with the maximum ΔTm value being up to 29.8 °C for G-quadruplex, the minimum IC50 value being 0.53 μM and the maximum cell inhibitory rate being up to 97.2%. This study suggests that this type of compounds that induce the formation of and stabilize the telomeric antiparallel G-quadruplex, and consequently inhibit telomerase activity, leading to cell apoptosis, can be screened for the discovery of novel antitumor therapeutics. PMID:26329134

  8. Enzymatic activation and trapping of luminol-substituted peptides and proteins. A possible means of amplifying the cytotoxicity of anti-tumor antibodies.

    PubMed Central

    Parker, C W; Aach, R D; Philpott, G W

    1975-01-01

    Glutathione and glucose oxidase (EC 1.1.3.4) conjugates containing covalently bound luminol were prepared as prototypes for peptides and proteins with latent, enzyme-activatable chemical reactivity. In the presence of small quantities of activated horseradish peroxidase, conjugated luminol molecules were oxidized to unstable free radicals which reacted rapidly with soluble proteins and cells. These observations are of interest in regard to possible sequential localization reactions in which a few molecules of cell-bound antibody-horseradish peroxidase would be used to catalytically alter and trap many molecules of a second (luminol-substituted) enzyme, toxin, or hapten in the same area, as might be desirable in promoting selective cell destruction. PMID:47175

  9. Secretory production of biologically active rat interleukin-2 by Clostridium acetobutylicum DSM792 as a tool for anti-tumor treatment.

    PubMed

    Barbé, Sofie; Van Mellaert, Lieve; Theys, Jan; Geukens, Nick; Lammertyn, Elke; Lambin, Philippe; Anné, Jozef

    2005-05-01

    The search for effective means of selectively delivering high therapeutic doses of anti-cancer agents to tumors has explored a variety of systems in the last decade. The ability of intravenously injected clostridial spores to infiltrate and thence selectively germinate in the hypoxic regions of solid tumors is exquisitely specific, making this system an interesting addition to the anti-cancer therapy arsenal. To increase the number of therapeutic proteins potentially useful for cancer treatment we have tested the possibility of Clostridium acetobutylicum to secrete rat interleukin-2 (rIL2). Therefore, rIL2 cDNA was placed under the control of the endo-beta-1,4-glucanase promoter and signal sequence of C. saccharobutylicum. Recombinant C. acetobutylicum containing the relevant construct secreted up to 800 microgl(-1) biologically active rIL2. The obtained yield should be sufficient to provoke in vivo effects. PMID:15869963

  10. Anti-tumor activity of arjunolic acid against Ehrlich Ascites Carcinoma cells in vivo and in vitro through blocking TGF-β type 1 receptor.

    PubMed

    Elsherbiny, Nehal M; Al-Gayyar, Mohammed M H

    2016-08-01

    We aimed to evaluate therapeutic potential of arjunolic acid (AA), in Terminalia Arjuna bark, on Ehrlich Ascites carcinoma (EAC) in-vivo and in-vitro. EAC was induced in fifty female Swiss albino mice. Two doses of AA was used 100 and 250mg/kg. Arjunulic acid reduced tumor volume and cells count. AA decreased EAC cells viability and increased cell toxicity. Moreover, AA reduced TNF-α, IL-1β, TGF-β, TGF-β type I receptor and latency-associated peptide levels associated with elevated IL-10 in-vivo and in-vitro. In conclusion, AA produced antitumor activity against EAC by increasing cytotoxicity and apoptosis and partially blocking the TGF-βR1 and affecting inflammatory cytokine levels. PMID:27470335

  11. Cellular and Molecular Mechanisms Underlie the Anti-Tumor Activities Exerted by Walterinnesia aegyptia Venom Combined with Silica Nanoparticles against Multiple Myeloma Cancer Cell Types

    PubMed Central

    Badr, Gamal; Al-Sadoon, Mohamed K.; Abdel-Maksoud, Mostafa A.; Rabah, Danny M.; El-Toni, Ahmed M.

    2012-01-01

    Multiple myeloma (MM) is a clonal disease of plasma cells that remains incurable despite the advent of several novel therapeutics. In this study, we aimed to delineate the impact of snake venom extracted from Walterinnesia aegyptia (WEV) alone or in combination with silica nanoparticles (WEV+NP) on primary MM cells isolated from patients diagnosed with MM as well as on two MM cell lines, U266 and RPMI 8226. The IC50 values of WEV and WEV+NP that significantly decreased MM cell viability without affecting the viability of normal peripheral mononuclear cells (PBMCs) were determined to be 25 ng/ml and 10 ng/ml, respectively. Although both WEV (25 ng/ml) and WEV+NP (10 ng/ml) decreased the CD54 surface expression without affecting the expression of CXCR4 (CXCL12 receptor) on MM cells, they significantly reduced the ability of CXC chemokine ligand 12 (CXCL12) to induce actin cytoskeleton rearrangement and the subsequent reduction in chemotaxis. It has been established that the binding of CXCL12 to its receptor CXCR4 activates multiple intracellular signal transduction pathways that regulate MM cell chemotaxis, adhesion, and proliferation. We found that WEV and WEV+NP clearly decreased the CXCL12/CXCR4-mediated activation of AKT, ERK, NFκB and Rho-A using western blot analysis; abrogated the CXCL12-mediated proliferation of MM cells using the CFSE assay; and induced apoptosis in MM cell as determined by PI/annexin V double staining followed by flow cytometry analysis. Monitoring the expression of B-cell CCL/Lymphoma 2 (Bcl-2) family members and their role in apoptosis induction after treatment with WEV or WEV+NP revealed that the combination of WEV with NP robustly decreased the expression of the anti-apoptotic effectors Bcl-2, BclXL and Mcl-1; conversely increased the expression of the pro-apoptotic effectors Bak, Bax and Bim; and altered the mitochondrial membrane potential in MM cells. Taken together, our data reveal the biological effects of WEV and WEV+NP and the

  12. Cellular and molecular mechanisms underlie the anti-tumor activities exerted by Walterinnesia aegyptia venom combined with silica nanoparticles against multiple myeloma cancer cell types.

    PubMed

    Badr, Gamal; Al-Sadoon, Mohamed K; Abdel-Maksoud, Mostafa A; Rabah, Danny M; El-Toni, Ahmed M

    2012-01-01

    Multiple myeloma (MM) is a clonal disease of plasma cells that remains incurable despite the advent of several novel therapeutics. In this study, we aimed to delineate the impact of snake venom extracted from Walterinnesia aegyptia (WEV) alone or in combination with silica nanoparticles (WEV+NP) on primary MM cells isolated from patients diagnosed with MM as well as on two MM cell lines, U266 and RPMI 8226. The IC(50) values of WEV and WEV+NP that significantly decreased MM cell viability without affecting the viability of normal peripheral mononuclear cells (PBMCs) were determined to be 25 ng/ml and 10 ng/ml, respectively. Although both WEV (25 ng/ml) and WEV+NP (10 ng/ml) decreased the CD54 surface expression without affecting the expression of CXCR4 (CXCL12 receptor) on MM cells, they significantly reduced the ability of CXC chemokine ligand 12 (CXCL12) to induce actin cytoskeleton rearrangement and the subsequent reduction in chemotaxis. It has been established that the binding of CXCL12 to its receptor CXCR4 activates multiple intracellular signal transduction pathways that regulate MM cell chemotaxis, adhesion, and proliferation. We found that WEV and WEV+NP clearly decreased the CXCL12/CXCR4-mediated activation of AKT, ERK, NFκB and Rho-A using western blot analysis; abrogated the CXCL12-mediated proliferation of MM cells using the CFSE assay; and induced apoptosis in MM cell as determined by PI/annexin V double staining followed by flow cytometry analysis. Monitoring the expression of B-cell CCL/Lymphoma 2 (Bcl-2) family members and their role in apoptosis induction after treatment with WEV or WEV+NP revealed that the combination of WEV with NP robustly decreased the expression of the anti-apoptotic effectors Bcl-2, Bcl(XL) and Mcl-1; conversely increased the expression of the pro-apoptotic effectors Bak, Bax and Bim; and altered the mitochondrial membrane potential in MM cells. Taken together, our data reveal the biological effects of WEV and WEV+NP and

  13. Semi-synthesis and anti-tumor evaluation of novel 25-hydroxyprotopanaxadiol derivatives.

    PubMed

    Wang, Peng; Bi, Xiu-Li; Guo, Yu-Mei; Cao, Jia-Qing; Zhang, Shi-Jun; Yuan, Hao-Nan; Piao, Hu-Ri; Zhao, Yu-Qing

    2012-09-01

    30 novel compounds have been synthesized from 25-hydroxyprotopanaxadiol (25-OH-PPD) and their in vitro anti-tumor activities were tested on three cancer cell lines and one normal cell line (IOSE144) by standard MTT assay. The results showed that compound 27 exhibited the best anti-tumor activity in the in vitro assays. Compounds 1, 2, 16, 17, 18, 27, 28 and 29 have better anti-tumor activities against MCF-7 and A549 cancer cell lines than 25-OH-PPD, together with low toxicity in the normal cell. The results may provide useful data for researching and developing new antitumor agents. PMID:22840493

  14. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma.

    PubMed

    Patwardhan, Parag P; Ivy, Kathryn S; Musi, Elgilda; de Stanchina, Elisa; Schwartz, Gary K

    2016-01-26

    Sarcomas are rare but highly aggressive mesenchymal tumors with a median survival of 10-18 months for metastatic disease. Mutation and/or overexpression of many receptor tyrosine kinases (RTKs) including c-Met, PDGFR, c-Kit and IGF1-R drive defective signaling pathways in sarcomas. MGCD516 (Sitravatinib) is a novel small molecule inhibitor targeting multiple RTKs involved in driving sarcoma cell growth. In the present study, we evaluated the efficacy of MGCD516 both in vitro and in mouse xenograft models in vivo. MGCD516 treatment resulted in significant blockade of phosphorylation of potential driver RTKs and induced potent anti-proliferative effects in vitro. Furthermore, MGCD516 treatment of tumor xenografts in vivo resulted in significant suppression of tumor growth. Efficacy of MGCD516 was superior to imatinib and crizotinib, two other well-studied multi-kinase inhibitors with overlapping target specificities, both in vitro and in vivo. This is the first report describing MGCD516 as a potent multi-kinase inhibitor in different models of sarcoma, superior to imatinib and crizotinib. Results from this study showing blockade of multiple driver signaling pathways provides a rationale for further clinical development of MGCD516 for the treatment of patients with soft-tissue sarcoma. PMID:26675259

  15. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma

    PubMed Central

    Musi, Elgilda; de Stanchina, Elisa; Schwartz, Gary K.

    2016-01-01

    Sarcomas are rare but highly aggressive mesenchymal tumors with a median survival of 10–18 months for metastatic disease. Mutation and/or overexpression of many receptor tyrosine kinases (RTKs) including c-Met, PDGFR, c-Kit and IGF1-R drive defective signaling pathways in sarcomas. MGCD516 (Sitravatinib) is a novel small molecule inhibitor targeting multiple RTKs involved in driving sarcoma cell growth. In the present study, we evaluated the efficacy of MGCD516 both in vitro and in mouse xenograft models in vivo. MGCD516 treatment resulted in significant blockade of phosphorylation of potential driver RTKs and induced potent anti-proliferative effects in vitro. Furthermore, MGCD516 treatment of tumor xenografts in vivo resulted in significant suppression of tumor growth. Efficacy of MGCD516 was superior to imatinib and crizotinib, two other well-studied multi-kinase inhibitors with overlapping target specificities, both in vitro and in vivo. This is the first report describing MGCD516 as a potent multi-kinase inhibitor in different models of sarcoma, superior to imatinib and crizotinib. Results from this study showing blockade of multiple driver signaling pathways provides a rationale for further clinical development of MGCD516 for the treatment of patients with soft-tissue sarcoma. PMID:26675259

  16. Combining Anti-ERBB3 Antibodies Specific for Domain I and Domain III Enhances the Anti-Tumor Activity over the Individual Monoclonal Antibodies

    PubMed Central

    D’Souza, Jimson W.; Shchaveleva, Irina; Marks, James D.; Litwin, Samuel; Robinson, Matthew K.

    2014-01-01

    Background Inappropriate signaling through the epidermal growth factor receptor family (EGFR1/ERBB1, ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4) of receptor tyrosine kinases leads to unregulated activation of multiple downstream signaling pathways that are linked to cancer formation and progression. In particular, ERBB3 plays a critical role in linking ERBB signaling to the phosphoinositide 3-kinase and Akt signaling pathway and increased levels of ERBB3-dependent signaling is also increasingly recognized as a mechanism for acquired resistance to ERBB-targeted therapies. Methods We had previously reported the isolation of a panel of anti-ERBB3 single-chain Fv antibodies through use of phage-display technology. In the current study scFv specific for domain I (F4) and domain III (A5) were converted into human IgG1 formats and analyzed for efficacy. Results Treatment of cells with an oligoclonal mixture of the A5/F4 IgGs appeared more effective at blocking both ligand-induced and ligand-independent signaling through ERBB3 than either single IgG alone. This correlated with improved ability to inhibit the cell growth both as a single agent and in combination with other ERBB-targeted therapies. Treatment of NCI-N87 tumor xenografts with the A5/F4 oligoclonal led to a statistically significant decrease in tumor growth rate that was further enhanced in combination with trastuzumab. Conclusion These results suggest that an oligoclonal antibody mixture may be a more effective approach to downregulate ERBB3-dependent signaling. PMID:25386657

  17. Lack of anti-tumor activity with the β-catenin expression inhibitor EZN-3892 in the C57BL/6J Min/+ model of intestinal carcinogenesis

    SciTech Connect

    Hasson, Rian M.; Briggs, Alexandra; Rizvi, Hira; Carothers, Adelaide M.; Davids, Jennifer S.; Bertagnolli, Monica M.; Cho, Nancy L.

    2014-02-14

    Highlights: • Wnt/β-catenin signaling is aberrantly activated in most colorectal cancers. • Locked nucleic acid (LNA)-based antisense is a novel tool for cancer therapy. • β-Catenin inhibition was observed in mature intestinal tissue of LNA-treated mice. • Further investigation of Wnt/β-catenin targeted therapies is warranted. - Abstract: Background: Previously, we showed that short-term inhibition of β-catenin expression and reversal of aberrant β-catenin subcellular localization by the selective COX-2 inhibitor celecoxib is associated with adenoma regression in the C57BL/6J Min/+ mouse. Conversly, long-term administration resulted in tumor resistance, leading us to investigate alternative methods for selective β-catenin chemoprevention. In this study, we hypothesized that disruption of β-catenin expression by EZN-3892, a selective locked nucleic acid (LNA)-based β-catenin inhibitor, would counteract the tumorigenic effect of Apc loss in Min/+ adenomas while preserving normal intestinal function. Materials and methods: C57BL/6J Apc{sup +/+} wild-type (WT) and Min/+ mice were treated with the maximum tolerated dose (MTD) of EZN-3892 (30 mg/kg). Drug effect on tumor numbers, β-catenin protein expression, and nuclear β-catenin localization were determined. Results: Although the tumor phenotype and β-catenin nuclear localization in Min/+ mice did not change following drug administration, we observed a decrease in β-catenin expression levels in the mature intestinal tissue of treated Min/+ and WT mice, providing proof of principle regarding successful delivery of the LNA-based antisense vehicle. Higher doses of EZN-3892 resulted in fatal outcomes in Min/+ mice, likely due to β-catenin ablation in the intestinal tissue and loss of function. Conclusions: Our data support the critical role of Wnt/β-catenin signaling in maintaining intestinal homeostasis and highlight the challenges of effective drug delivery to target disease without permanent

  18. A peptide derived from phage display library exhibits anti-tumor activity by targeting GRP78 in gastric cancer multidrug resistance cells.

    PubMed

    Kang, Jianqin; Zhao, Guohong; Lin, Tao; Tang, Shanhong; Xu, Guanghui; Hu, Sijun; Bi, Qian; Guo, Changcun; Sun, Li; Han, Shuang; Xu, Qian; Nie, Yongzhan; Wang, Biaoluo; Liang, Shuhui; Ding, Jie; Wu, Kaichun

    2013-10-10

    Multidrug resistance (MDR) remains a significant challenge to the clinical treatment of gastric cancer (GC). In the present study, using a phage display approach combined with MTT assays, we screened a specific peptide GMBP1 (Gastric cancer MDR cell-specific binding peptide), ETAPLSTMLSPY, which could bind to the surface of GC MDR cells specifically and reverse their MDR phenotypes. Immunocytochemical staining showed that the potential receptor of GMBP1 was located at the membrane and cytoplasm of MDR cells. In vitro and in vivo drug sensitivity assays, FACS analysis and Western blotting confirmed that GMBP1 was able to re-sensitize MDR cells to chemical drugs. Western blotting and proteomic approaches were used to screen the receptor of GMBP1, and GRP78, a MDR-related protein, was identified as a receptor of GMBP1. This result was further supported by immunofluoresence microscopy and Western blot. Additionally, Western blotting demonstrated that pre-incubation of GMBP1 in MDR cells greatly diminished MDR1, Bcl-2 and GRP78 expression but increased the expression of Bax, whereas downregulation of GRP78, function as a receptor and directly target for GMBP1, only inhibited MDR1 expression. Our findings suggest that GMBP1 could re-sensitize GC MDR cells to a variety of chemotherapeutic agents and this role might be mediated partly through down-regulating GRP78 expression and then inhibiting MDR1 expression. These findings indicate that peptide GMBP1 likely recognizes a novel GRP78 receptor and mediates cellular activities associated with the MDR phenotype, which provides new insight into research on the management of MDR in gastric cancer cells. PMID:23792224

  19. The combination of thymoquinone and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer.

    PubMed

    Şakalar, Çağrı; İzgi, Kenan; İskender, Banu; Sezen, Sedat; Aksu, Huriye; Çakır, Mustafa; Kurt, Büşra; Turan, Ali; Canatan, Halit

    2016-04-01

    Thymoquinone (TQ) is the active ingredient of Nigella sativa which has a therapeutic potential in cancer therapy and prevention. In this study, TQ has been shown to induce specific cytotoxicity and apoptosis and to inhibit wound healing in triple-negative breast cancer cell line. TQ also inhibited cancer growth in a mouse tumor model. Moreover, TQ and paclitaxel (Pac) combination inhibited cancer growth in cell culture and in mice. Genes involved in TQ and TQ-Pac-mediated cytotoxicity were studied using focused real-time PCR arrays. After bioinformatic analysis, genes in apoptosis, cytokine, and p53 signaling categories were found to be modulated with a high significance in TQ-treated cells (p < 10(-28), p < 10(-8), and p < 10(-6), respectively). Important to note, TQ has been found to regulate the genes involved in the induction of apoptosis through death receptors (p = 5.5 × 10(-5)). Additionally, tumor suppressor genes such as p21, Brca1, and Hic1 were highly upregulated by TQ and TQ-Pac combination. Interestingly, when cells were treated with high dose TQ, several growth factors such as Vegf and Egf were upregulated and several pro-apoptotic factors such as caspases were downregulated possibly pointing out key pathways manipulated by cancer cells to resist against TQ. In cells treated with the combination of TQ and Pac, genes in apoptosis cascade (p < 10(-12)), p53 signaling (p = 10(-5)), and JAK-STAT signaling (p < 10(-3)) were differentially expressed. TQ has also been shown to induce protein levels of cleaved Caspase-3, Caspase-7, and Caspase-12 and PARP and to reduce phosphorylated p65 and Akt1. The in vivo therapeutic potential of TQ-Pac combination and the genetic network involved in this synergy have been shown for the first time to the best of our knowledge. PMID:26500095

  20. Preparation of intravenous injection nanoformulation of VESylated gemcitabine by co-assembly with TPGS and its anti-tumor activity in pancreatic tumor-bearing mice.

    PubMed

    Xu, Yanyun; Meng, Haijing; Du, Fang; Lu, Wei; Liu, Shiyuan; Huang, Jin; Yu, Jiahui

    2015-11-30

    Our recent publication showed that VES-dFdC nanocapsules in pure water could be obtained via the self-assembling of VES-dFdC prodrug synthesized by coupling gemcitabine (dFdC) with vitamin E succinate (VES). To prepare the intravenous injection nanoformulation, we present here a novel strategy to improve the stability and drug concentration of VES-dFdC nanoformulation in PBS or isotonic solution. Particularly, D-α-tocopheryl polyethylene glycol succinate (TPGS), usually used as drug solubilizer and coincidentally contains the same VES moiety as VES-dFdC prodrug and PEG chain, is selected to co-assemble with VES-dFdC prodrug. The zeta potentials of all the TPGS/VES-dFdC co-assemblies were close to 0 mV, and their particle size measured by dynamic light scattering (DLS) decreased from 113 to 36 nm with increasing TPGS/VES-dFdC molar ratios from 0.15 to 1.5. Stable colloidal suspensions were obtained without aggregates in PBS at 4 °C in one month or isotonic solution at 37 °C in one week, and the weight concentration of VES-dFdC prodrug increased from 7 to 17 mg/mL when the molar ratios of TPGS/VES-dFdC ranged from 0.5/1 to 1.5/1. The concentration of VES-dFdC prodrug was high enough to be used as intravenous injection nanoformulation in nude mice. Interestingly, along with the increase of TPGS/VES-dFdC molar ratios from 0.3/1 to 1.5/1, the morphology of TPGS/VES-dFdC co-assemblies changed from loose nanocapsule to compact micelle revealed by transmission electron microscope (TEM). Finally, the co-assembly of TPGS/VES-dFdC (TPGS/VES-dFdC: 1/1) was selected as intravenous injection nanoformulation to evaluate the antitumor activity. Compared with native dFdC, TPGS/VES-dFdC nanoformulation with 0.2mmol/kg of dosage showed similar low toxicity in vivo, but 4.7 times high of tumor inhibition rate in nude mice with pre-established BxPC-3 tumors. PMID:26410754

  1. Anti-tumor effects of an engineered "killer" transfer RNA.

    PubMed

    Zhou, Dong-hui; Lee, Jiyoung; Frankenberger, Casey; Geslain, Renaud; Rosner, Marsha; Pan, Tao

    2012-10-12

    A hallmark of cancer cells is their ability to continuously divide; and rapid proliferation requires increased protein translation. Elevating levels of misfolded proteins can elicit growth arrest due to ER stress and decreased global translation. Failure to correct prolonged ER stress eventually results in cell death via apoptosis. tRNA(Ser)(AAU) is an engineered human tRNA(Ser) with an anticodon coding for isoleucine. Here we test the possibility that tRNA(Ser)(AAU) can be an effective killing agent of breast cancer cells and can effectively inhibit tumor-formation in mice. We found that tRNA(Ser)(AAU) exert strong effects on breast cancer translation activity, cell viability, and tumor formation. Translation is strongly inhibited by tRNA(Ser)(AAU) in both tumorigenic and non-tumorigenic cells. tRNA(Ser)(AAU) significantly decreased the number of viable cells over time. A short time treatment with tRNA(Ser)(AAU) was sufficient to eliminate breast tumor formation in a xenograft mouse model. Our results indicate that tRNA(Ser)(AAU) can inhibit breast cancer metabolism, growth and tumor formation. This RNA has strong anti-cancer effects and presents an opportunity for its development into an anti-tumor agent. Because tRNA(Ser)(AAU) corrupts the protein synthesis mechanism that is an integral component of the cell, it would be extremely difficult for tumor cells to evolve and develop resistance against this anti-tumor agent. PMID:22989754

  2. Stimulation of anti-tumor immunity by photodynamic therapy

    PubMed Central

    Mroz, Pawel; Hashmi, Javad T; Huang, Ying-Ying; Lange, Norbert; Hamblin, Michael R

    2011-01-01

    Photodynamic therapy (PDT) is a rapidly developing cancer treatment that utilizes the combination of nontoxic dyes and harmless visible light to destroy tumors by generating reactive oxygen species. PDT produces tumor-cell destruction in the context of acute inflammation that acts as a ‘danger signal’ to the innate immune system. Activation of the innate immune system increases the priming of tumor-specific T lymphocytes that have the ability to recognize and destroy distant tumor cells and, in addition, lead to the development of an immune memory that can combat recurrence of the cancer at a later point in time. PDT may be also successfully combined with immunomodulating strategies that are capable of overcoming or bypassing the escape mechanisms employed by the progressing tumor to evade immune attack. This article will cover the role of the immune response in PDT anti-tumor effectiveness. It will highlight the milestones in the development of PDT-mediated anti-tumor immunity and emphasize the combination strategies that may improve this therapy. PMID:21162652

  3. Anti-tumor effect and influence of Gekko gecko Linnaeus on the immune system of sarcoma 180-bearing mice.

    PubMed

    You, Qi; Han, Shiyu; Zhang, Yuanlong; Zheng, Jianhua

    2009-01-01

    Gekko gecko Linnaeus (GgL) is an extract used in traditional Chinese medicine. In the present study, we examined the anti-tumor activity of GgL and its effect on the immune system of mice. Sarcoma 180-bearing mice were used as the animal model, and cisplatin was applied as the positive control drug. The mice were randomly divided into six groups, and each group was treated with a different drug or drug concentration. The effects of GgL were evaluated based on its anti-tumor activity and prolongation of the lifespan, the lymphocyte transformation rate and pathological changes observed in the tumors. The results suggest that GgL has anti-tumor activities and up-regulates the immune system in a dose-dependent manner. This study provides original data related to the anti-tumor and immune up-regulating function of GgL. PMID:21475868

  4. Selection of a Suitable Disc Bioassay for the Screening of Anti-Tumor Molecules

    PubMed Central

    Trigui, Fatma; Pigeon, Pascal; Jalleli, Karim; Top, Siden; Aifa, Sami; El Arbi, Mehdi

    2013-01-01

    The crown gall induced in potato discs by Agrobacterium tumefaciens is becoming largely utilised in screening anti-tumor agents. The present work is showing that beet discs are more adequate for the anti-tumor screening test. In fact, maximal tumor induction was observed on beet discs (87.5%), followed by carrot discs (75%) and potato discs (68.5%). Beet discs present the most sensibility to crown gall disease with a fast expression of symptoms and more visible galls without any staining need. The beet discs bioassay was carried out by using some synthesized organometallics known for their antitumor activity in mammalian cells. We found significant crown gall inhibition (20.7% to 40.55%) of the tested compounds. Overall results supported that beet bioassay might be a potential prescreen system of anti-tumor molecules in mammalian cells. PMID:24711759

  5. The Anti-Tumor Activity of Succinyl Macrolactin A Is Mediated through the β-Catenin Destruction Complex via the Suppression of Tankyrase and PI3K/Akt

    PubMed Central

    Kim, Seung Joo; Banskota, Suhrid; Shah, Sajita; Kim, Jung-Ae

    2015-01-01

    Accumulated gene mutations in cancer suggest that multi-targeted suppression of affected signaling networks is a promising strategy for cancer treatment. In the present study, we report that 7-O-succinyl macrolactin A (SMA) suppresses tumor growth by stabilizing the β-catenin destruction complex, which was achieved through inhibition of regulatory components associated with the complex. SMA significantly reduced the activities of PI3K/Akt, which corresponded with a decrease in GSK3β phosphorylation, an increase in β-catenin phosphorylation, and a reduction in nuclear β-catenin content in HT29 human colon cancer cells. At the same time, the activity of tankyrase, which inhibits the β-catenin destruction complex by destabilizing the axin level, was suppressed by SMA. Despite the low potency of SMA against tankyrase activity (IC50 of 50.1 μM and 15.5 μM for tankyrase 1 and 2, respectively) compared to XAV939 (IC50 of 11 nM for tankyrase 1), a selective and potent tankyrase inhibitor, SMA had strong inhibitory effects on β-catenin-dependent TCF/LEF1 transcriptional activity (IC50 of 39.8 nM), which were similar to that of XAV939 (IC50 of 28.1 nM). In addition to suppressing the colony forming ability of colon cancer cells in vitro, SMA significantly inhibited tumor growth in CT26 syngenic and HT29 xenograft mouse tumor models. Furthermore, treating mice with SMA in combination with 5-FU in a colon cancer xenograft model or with cisplatin in an A549 lung cancer xenograft model resulted in greater anti-tumor activity than did treatment with the drugs alone. In the xenograft tumor tissues, SMA dose-dependently inhibited nuclear β-catenin along with reductions in GSK3β phosphorylation and increases in axin levels. These results suggest that SMA is a possible candidate as an effective anti-cancer agent alone or in combination with cytotoxic chemotherapeutic drugs, such as 5-FU and cisplatin, and that the mode of action for SMA involves stabilization of the

  6. Design, synthesis, and testing of an isoquinoline-3-carboxylic-based novel anti-tumor lead.

    PubMed

    Gao, Fei; Liu, Haiqing; Li, Li; Guo, Jianpeng; Wang, Yuji; Zhao, Ming; Peng, Shiqi

    2015-10-15

    Compound 6, a novel isoquinoline comprising two isoquinoline-3-carboxylic acids and a benzoic acid conjugated together using tris(2-aminoethyl)amine, was synthesized and tested for anti-tumor activity. In vivo evaluations found 6 to be well tolerated, of high therapeutic efficacy and of low systemic toxicity, at effective doses. The results suggest 6 to be a promising lead for future study, and the use of multiple isoquinoline-3-carboxylic acid moieties as pharmacophores in the same molecule to be a useful strategy for the design of anti-tumor drugs. PMID:26386603

  7. In vitro and in vivo anti-tumor activity of CoQ0 against melanoma cells: inhibition of metastasis and induction of cell-cycle arrest and apoptosis through modulation of Wnt/β-catenin signaling pathways

    PubMed Central

    Hseu, You-Cheng; Thiyagarajan, Varadharajan; Tsou, Hsiao-Tung; Lin, Kai-Yuan; Chen, Hui-Jye; Lin, Chung-Ming; Liao, Jiuun-Wang; Yang, Hsin-Ling

    2016-01-01

    Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a novel quinone derivative, has been shown to modulate cellular redox balance. However, effect of this compound on melanoma remains unclear. This study examined the in vitro or in vivo anti-tumor, apoptosis, and anti-metastasis activities of CoQ0 (0-20 μM) through inhibition of Wnt/β-catenin signaling pathway. CoQ0 exhibits a significant cytotoxic effect on melanoma cell lines (B16F10, B16F1, and A2058), while causing little toxicity toward normal (HaCaT) cells. The suppression of β-catenin was seen with CoQ0 administration accompanied by a decrease in the expression of Wnt/β-catenin transcriptional target c-myc, cyclin D1, and survivin through GSK3β-independent pathway. We found that CoQ0 treatment caused G1 cell-cycle arrest by reducing the levels of cyclin E and CDK4. Furthermore, CoQ0 treatment induced apoptosis through caspase-9/-3 activation, PARP degradation, Bcl-2/Bax dysregulation, and p53 expression. Notably, non- or sub-cytotoxic concentrations of CoQ0 markedly inhibited migration and invasion, accompanied by the down-regulation of MMP-2 and -9, and up-regulation of TIMP-1 and -2 expressions in highly metastatic B16F10 cells. Furthermore, the in vivo study results revealed that CoQ0 treatment inhibited the tumor growth in B16F10 xenografted nude mice. Histological analysis and western blotting confirmed that CoQ0 significantly decreased the xenografted tumor progression as demonstrated by induction of apoptosis, suppression of β-catenin, and inhibition of cell cycle-, apoptotic-, and metastatic-regulatory proteins. The data suggest that CoQ0 unveils a novel mechanism by down-regulating Wnt/β-catenin pathways and could be used as a potential lead compound for melanoma chemotherapy. PMID:26968952

  8. ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis

    PubMed Central

    Cubillos-Ruiz, Juan R.; Silberman, Pedro C.; Rutkowski, Melanie R.; Chopra, Sahil; Perales-Puchalt, Alfredo; Song, Minkyung; Zhang, Sheng; Bettigole, Sarah E.; Gupta, Divya; Holcomb, Kevin; Ellenson, Lora H.; Caputo, Thomas; Lee, Ann-Hwee; Conejo-Garcia, Jose R.; Glimcher, Laurie H.

    2015-01-01

    SUMMARY Dendritic cells (DCs) are required to initiate and sustain T cell-dependent anti-cancer immunity. However, tumors often evade immune control by crippling normal DC function. The endoplasmic reticulum (ER) stress response factor XBP1 promotes intrinsic tumor growth directly, but whether it also regulates the host anti-tumor immune response is not known. Here we show that constitutive activation of XBP1 in tumor-associated DCs (tDCs) drives ovarian cancer (OvCa) progression by blunting anti-tumor immunity. XBP1 activation, fueled by lipid peroxidation byproducts, induced a triglyceride biosynthetic program in tDCs leading to abnormal lipid accumulation and subsequent inhibition of tDC capacity to support anti-tumor T cells. Accordingly, DC-specific XBP1 deletion or selective nanoparticle-mediated XBP1 silencing in tDCs restored their immunostimulatory activity in situ and extended survival by evoking protective type 1 anti-tumor responses. Targeting the ER stress response should concomitantly inhibit tumor growth and enhance anti-cancer immunity, thus offering a unique approach to cancer immunotherapy. PMID:26073941

  9. Plasmin releases the anti-tumor peptide from the NC1 domain of collagen XIX.

    PubMed

    Oudart, Jean-Baptiste; Brassart-Pasco, Sylvie; Vautrin, Alexia; Sellier, Christèle; Machado, Carine; Dupont-Deshorgue, Aurelie; Brassart, Bertrand; Baud, S; Dauchez, Manuel; Monboisse, Jean-Claude; Harakat, Dominique; Maquart, François-Xavier; Ramont, Laurent

    2015-02-28

    During tumor invasion, tumor cells degrade the extracellular matrix. Basement membrane degradation is responsible for the production of peptides with anti-tumor properties. Type XIX collagen is associated with basement membranes in vascular, neuronal, mesenchymal and epithelial tissues. Previously, we demonstrated that the non-collagenous NC1, C-terminal, domain of collagen XIX [NC1(XIX)] inhibits the migration capacities of tumor cells and exerts a strong inhibition of tumor growth. Here, we demonstrate that plasmin, one of the most important enzyme involved in tumor invasion, was able to release a fragment of NC1(XIX), which retained the anti-tumor activity. Molecular modeling studies showed that NC1(XIX) and the anti-tumor fragment released by plasmin (F4) adopted locally the same type I β-turn conformation. This suggests that the anti-tumor effect is conformation-dependent. This study demonstrates that collagen XIX is a novel proteolytic substrate for plasmin. Such release may constitute a defense of the organism against tumor invasion. PMID:25668817

  10. Plasmin releases the anti-tumor peptide from the NC1 domain of collagen XIX

    PubMed Central

    Oudart, Jean-Baptiste; Brassart-Pasco, Sylvie; Vautrin, Alexia; Sellier, Christèle; Machado, Carine; Dupont-Deshorgue, Aurelie; Brassart, Bertrand; Baud, S.; Dauchez, Manuel; Monboisse, Jean-Claude; Harakat, Dominique; Maquart, François-Xavier; Ramont, Laurent

    2015-01-01

    During tumor invasion, tumor cells degrade the extracellular matrix. Basement membrane degradation is responsible for the production of peptides with anti-tumor properties. Type XIX collagen is associated with basement membranes in vascular, neuronal, mesenchymal and epithelial tissues. Previously, we demonstrated that the non-collagenous NC1, C-terminal, domain of collagen XIX [NC1(XIX)] inhibits the migration capacities of tumor cells and exerts a strong inhibition of tumor growth. Here, we demonstrate that plasmin, one of the most important enzyme involved in tumor invasion, was able to release a fragment of NC1(XIX), which retained the anti-tumor activity. Molecular modeling studies showed that NC1(XIX) and the anti-tumor fragment released by plasmin (F4) adopted locally the same type I β-turn conformation. This suggests that the anti-tumor effect is conformation-dependent. This study demonstrates that collagen XIX is a novel proteolytic substrate for plasmin. Such release may constitute a defense of the organism against tumor invasion. PMID:25668817

  11. Nitric oxide involvement in the anti-tumor effect of mistletoe (Viscum album L.) extracts Iscador on human macrophages.

    PubMed

    Mossalayi, M Djavad; Alkharrat, Abir; Malvy, Denis

    2006-06-01

    Lectins from different types of mistletoe (Viscum album, VA) have cytotoxic and immunomodulatory properties that may be relevant in the inhibition of tumor growth. The mechanism of this anti-tumoral activity remains unknown, although recent investigations point out the induction of anti-tumoral cytotoxic T cell activation. In this study therapeutically available mistletoe extracts (Iscador) prepared from Quercus (VA-Q), apple (Malus, VA-M) or pine (Pinus, VA-P) were used to investigate their capacity to induce tumor regression through the modulation of another T helper-1 (Th-1)-mediated anti-tumoral activity: the activation of macrophages. Macrophages are essential targets for both pro- or anti-inflammatory drugs and constitute an essential member of the anti-tumoral immune response. Freshly isolated human monocyte-derived macrophages are activated and various VA extracts are directly incorporated to cultures to assay their properties on the inflammatory and/or tumor cytotoxic responses. The data indicate that immunomodulatory activities of VA extracts differ according to their origin. VA-M and VA-P were able to increase anti-tumoral activity of activated human macrophages, with a possible role for nitric oxide in this effect. PMID:16927526

  12. Interleukin-6 Induced "Acute" Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics.

    PubMed

    Xue, Ting; Liu, Ping; Zhou, Yong; Liu, Kun; Yang, Li; Moritz, Robert L; Yan, Wei; Xu, Lisa X

    2016-01-01

    Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ shotgun proteomics. Among them, 53 showed significantly discriminated regulatory patterns over the time course, in which the acute phase response emerged as the most enhanced pathway. The anti-tumor feature of the acute response was further investigated using parallel reaction monitoring target proteomics and flow cytometry on 23 of the 53 significant proteins. We found that cryo-thermal therapy reset the tumor chronic inflammation to an "acute" phenotype, with up-regulation of acute phase proteins including IL-6 as a key regulator. The IL-6 mediated "acute" phenotype transformed IL-4 and Treg-promoting ICOSL expression to Th1-promoting IFN-γ and IL-12 production, augmented complement system activation and CD86(+)MHCII(+) dendritic cells maturation and enhanced the proliferation of Th1 memory cells. In addition, we found an increased production of tumor progression and metastatic inhibitory proteins under such "acute" environment, favoring the anti-metastatic effect. Moreover, cryo-thermal on tumors induced the strongest "acute" response compared to cryo/hyperthermia alone or cryo-thermal on healthy tissues, accompanying by the most pronounced anti-tumor immunological effect. In summary, we demonstrated that cryo-thermal therapy induced, IL-6 mediated "acute" microenvironment shifted the tumor chronic microenvironment from Th2 immunosuppressive and pro-tumorigenic to Th1 immunostimulatory and tumoricidal state. Moreover, the magnitude of "acute" and "danger" signals play a key

  13. IL-15 superagonist/IL-15RαSushi-Fc fusion complex (IL-15SA/IL-15RαSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas.

    PubMed

    Kim, Peter S; Kwilas, Anna R; Xu, Wenxin; Alter, Sarah; Jeng, Emily K; Wong, Hing C; Schlom, Jeffrey; Hodge, James W

    2016-03-29

    Interleukin (IL)-15-N72D superagonist-complexed with IL-15RαSushi-Fc fusion protein (IL-15SA/IL-15RαSu-Fc; ALT-803) has been reported to exhibit significant anti-tumor activity in murine myeloma, rat bladder cancer, and murine glioblastoma models. In this study, we examined the immunomodulatory and anti-tumor effects of IL-15SA/IL-15RαSu-Fc in tumor-free and highly metastatic tumor-bearing mice. Here, IL-15SA/IL-15RαSu-Fc significantly expanded natural killer (NK) and CD8+ T cells. In examining NK cell subsets, the greatest significant increase was in highly cytotoxic and migrating (CD11b+, CD27hi; high effector) NK cells, leading to enhanced function on a per-cell basis. CD8+ T cell subset analysis determined that IL-15SA/IL-15RαSu-Fc significantly increased IL-15 responding memory (CD122+, CD44+) CD8+ T cells, in particular those having the innate (NKG2D+, PD1-) phenotype. In 4T1 breast tumor-bearing mice, IL-15SA/IL-15RαSu-Fc induced significant anti-tumor activity against spontaneous pulmonary metastases, depending on CD8+ T and NK cells, and resulting in prolonged survival. Similar anti-tumor activity was seen in the experimental pulmonary metastasis model of CT26 colon carcinoma cells, particularly when IL-15SA/IL-15RαSu-Fc was combined with a cocktail of checkpoint inhibitors, anti-CTLA-4 and anti-PD-L1. Altogether, these studies showed for the first time that IL-15SA/IL-15RαSu-Fc (1) promoted the development of high effector NK cells and CD8+ T cell responders of the innate phenotype, (2) enhanced function of NK cells, and (3) played a vital role in reducing tumor metastasis and ultimately survival, especially in combination with checkpoint inhibitors. PMID:26910920

  14. IL-15 superagonist/IL-15RαSushi-Fc fusion complex (IL-15SA/IL-15RαSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas

    PubMed Central

    Kim, Peter S.; Kwilas, Anna R.; Xu, Wenxin; Alter, Sarah; Jeng, Emily K.; Wong, Hing C.

    2016-01-01

    Interleukin (IL)-15-N72D superagonist-complexed with IL-15RαSushi-Fc fusion protein (IL-15SA/IL-15RαSu-Fc; ALT-803) has been reported to exhibit significant anti-tumor activity in murine myeloma, rat bladder cancer, and murine glioblastoma models. In this study, we examined the immunomodulatory and anti-tumor effects of IL-15SA/IL-15RαSu-Fc in tumor-free and highly metastatic tumor-bearing mice. Here, IL-15SA/IL-15RαSu-Fc significantly expanded natural killer (NK) and CD8+ T cells. In examining NK cell subsets, the greatest significant increase was in highly cytotoxic and migrating (CD11b+, CD27hi; high effector) NK cells, leading to enhanced function on a per-cell basis. CD8+ T cell subset analysis determined that IL-15SA/IL-15RαSu-Fc significantly increased IL-15 responding memory (CD122+, CD44+) CD8+ T cells, in particular those having the innate (NKG2D+, PD1−) phenotype. In 4T1 breast tumor–bearing mice, IL-15SA/IL-15RαSu-Fc induced significant anti-tumor activity against spontaneous pulmonary metastases, depending on CD8+ T and NK cells, and resulting in prolonged survival. Similar anti-tumor activity was seen in the experimental pulmonary metastasis model of CT26 colon carcinoma cells, particularly when IL-15SA/IL-15RαSu-Fc was combined with a cocktail of checkpoint inhibitors, anti-CTLA-4 and anti-PD-L1. Altogether, these studies showed for the first time that IL-15SA/IL-15RαSu-Fc (1) promoted the development of high effector NK cells and CD8+ T cell responders of the innate phenotype, (2) enhanced function of NK cells, and (3) played a vital role in reducing tumor metastasis and ultimately survival, especially in combination with checkpoint inhibitors. PMID:26910920

  15. Induction of anti-tumor immunity by trifunctional antibodies in patients with peritoneal carcinomatosis

    PubMed Central

    Ströhlein, Michael A; Siegel, Robert; Jäger, Michael; Lindhofer, Horst; Jauch, Karl-Walter; Heiss, Markus M

    2009-01-01

    Peritoneal carcinomatosis (PC) from epithelial tumors is a fatal diagnosis without efficient treatment. Trifunctional antibodies (trAb) are novel therapeutic approaches leading to a concerted anti-tumor activity resulting in tumor cell destruction. In addition, preclinical data in mouse tumor models demonstrated the induction of long lasting tumor immunity after treatment with trAb. We describe the induction of anti-tumor specific T-lymphocytes after intraperitoneal administration of trAb in patients with PC. 9 patients with progressive PC from gastric (n = 6) and ovarian cancer (n = 2), and cancer of unknown primary (n = 1) received 3 escalating doses of trAb after surgery and/or ineffective chemotherapy. The trAb EpCAM × CD3 (10, 20, 40 μg) or HER2/neu × CD3 (10, 40, 80 μg) were applicated by intraperitoneal infusion. Four weeks after the last trAb application, all patients were restimulated by subdermal injection of trAb + autologous PBMC + irradiated autologous tumor cells. Immunological reactivity was tested by analyzing PBMC for specific tumor reactive CD4+/CD8+ T lymphocytes using an IFN-γ secretion assay. In 5 of 9 patients, tumor reactive CD4+/CD8+ T-lymphocytes increased significantly, indicating specific anti-tumor immunity. A clinical response (stable disease, partial regression) has been observed in 5 of 9 patients, with a mean time to progression of 3.6 months. Follow-up showed a mean survival of 11.8 months (median 8.0 months) after trAb therapy. TrAb are able to induce anti-tumor immunity after intraperitoneal application and restimulation. The induction of long-lasting anti-tumor immunity may provide an additional benefit of the intraperitoneal therapy with trAb and should be further elevated in larger clinical trials. PMID:19216794

  16. A Combretastatin-Mediated Decrease in Neutrophil Concentration in Peripheral Blood and the Impact on the Anti-Tumor Activity of This Drug in Two Different Murine Tumor Models

    PubMed Central

    Bohn, Anja Bille; Wittenborn, Thomas; Brems-Eskildsen, Anne Sofie; Laurberg, Tinne; Bertelsen, Lotte Bonde; Nielsen, Thomas; Stødkilde-Jørgensen, Hans; Møller, Bjarne Kuno; Horsman, Michael R.

    2014-01-01

    The vascular disrupting agent combretastatin A-4 disodium phosphate (CA4P) induces fluctuations in peripheral blood neutrophil concentration. Because neutrophils have the potential to induce both vascular damage and angiogenesis we analyzed neutrophil involvement in the anti-tumoral effects of CA4P in C3H mammary carcinomas in CDF1 mice and in SCCVII squamous cell carcinomas in C3H/HeN mice. Flow cytometry analyses of peripheral blood before and up to 144 h after CA4P administration (25 and 250 mg/kg) revealed a decrease 1 h after treatment, followed by an early (3–6 h) and a late (>72 h) increase in the granulocyte concentration. We suggest that the early increase (3–6 h) in granulocyte concentration was caused by the initial decrease at 1 h and found that the late increase was associated with tumor size, and hence independent of CA4P. No alterations in neutrophil infiltration into the C3H tumor after CA4P treatment (25 and 250 mg/kg) were found. Correspondingly, neutrophil depletion in vivo, using an anti-neutrophil antibody, followed by CA4P treatment (25 mg/kg) did not increase the necrotic fraction in C3H tumors significantly. However, by increasing the CA4P dose to 250 mg/kg we found a significant increase of 359% in necrotic fraction when compared to neutrophil-depleted mice; in mice with no neutrophil depletion CA4P induced an 89% change indicating that the presence of neutrophils reduced the effect of CA4P. In contrast, neither CA4P nor 1A8 affected the necrotic fraction in the SCCVII tumors significantly. Hence, we suggest that the initial decrease in granulocyte concentration was caused by non-tumor-specific recruitment of neutrophils and that neutrophils may attenuate CA4P-mediated anti-tumor effect in some tumor models. PMID:25299269

  17. VISTA regulates the development of protective anti-tumor immunity

    PubMed Central

    LeMercier, Isabelle; Chen, Wenna; Lines, Janet L.; Day, Maria; Li, Jiannan; Sergent, Petra; Noelle, Randolph J.; Wang, Li

    2014-01-01

    V-domain Ig suppressor of T cell activation (VISTA) is a novel negative checkpoint ligand that is homologous to PD-L1 and suppresses T cell activation. This study demonstrates the multiple mechanisms whereby VISTA relieves negative regulation by hematopoietic cells and enhances protective anti-tumor immunity. VISTA is highly expressed on myeloid cells and Foxp3+CD4+ regulatory cells, but not on tumor cells within the tumor microenvironment (TME). VISTA monoclonal antibody (mab) treatment increased the number of tumor-specific T cells in the periphery, and enhanced the infiltration, proliferation and effector function of tumor-reactive T cells within the TME. VISTA blockade altered the suppressive feature of the TME, by decreasing the presence of monocytic myeloid-derived suppressor cells and increasing the presence of activated DCs within the TME. In addition, VISTA blockade impaired the suppressive function and reduced the emergence of tumor-specific Foxp3+CD4+ regulatory T cells. Consequently, VISTA mab administration as a monotherapy significantly suppressed the growth of both transplantable and inducible melanoma. Initial studies explored a combinatorial regimen using VISTA blockade and a peptide-based cancer vaccine with TLR agonists as adjuvants. VISTA blockade synergized with the vaccine to effectively impair the growth of established tumors. Our study therefore establishes a foundation for designing VISTA-targeted approaches either as a monotherapy or in combination with additional immune-targeted strategies for cancer immunotherapy. PMID:24691994

  18. Anti-Tumor Effects of Second Generation β-Hydroxylase Inhibitors on Cholangiocarcinoma Development and Progression

    PubMed Central

    Chung, Waihong; de la Monte, Suzanne; Thomas, John-Michael; Olsen, Mark; Carlson, Rolf; Yu, Tunan; Dong, Xiaoqun; Wands, Jack

    2016-01-01

    Cholangiocarcinoma (CCA) has a poor prognosis due to widespread intrahepatic spread. Aspartate β-hydroxylase (ASPH) is a transmembrane protein and catalyzes the hydroxylation of aspartyl and asparaginyl residues in calcium binding epidermal growth factor (cbEGF)-like domains of various proteins, including Notch receptors and ligands. ASPH is highly overexpressed (>95%) in human CCA tumors. We explored the molecular mechanisms by which ASPH mediated the CCA malignant phenotype and evaluated the potential of ASPH as a therapeutic target for CCA. The importance of expression and enzymatic activity of ASPH for CCA growth and progression was examined using shRNA “knockdown” and a mutant construct that reduced its catalytic activity. Second generation small molecule inhibitors (SMIs) of β-hydroxylase activity were developed and used to target ASPH in vitro and in vivo. Subcutaneous and intrahepatic xenograft rodent models were employed to determine anti-tumor effects on CCA growth and development. It was found that the enzymatic activity of ASPH was critical for mediating CCA progression, as well as inhibiting apoptosis. Mechanistically, ASPH overexpression promoted Notch activation and modulated CCA progression through a Notch1-dependent cyclin D1 pathway. Targeting ASPH with shRNAs or a SMI significantly suppressed CCA growth in vivo. PMID:26954680

  19. Phenotypically distinct helper NK cells are required for gp96-mediated anti-tumor immunity

    PubMed Central

    Sedlacek, Abigail L.; Kinner-Bibeau, Lauren B.; Binder, Robert J.

    2016-01-01

    A number of Heat Shock Proteins (HSPs), in the extracellular environment, are immunogenic. Following cross-presentation of HSP-chaperoned peptides by CD91+ antigen presenting cells (APCs), T cells are primed with specificity for the derivative antigen-bearing cell. Accordingly, tumor-derived HSPs are in clinical trials for cancer immunotherapy. We investigate the role of NK cells in gp96-mediated anti-tumor immune responses given their propensity to lyse tumor cells. We show that gp96-mediated rejection of tumors requires a unique and necessary helper role in NK cells. This helper role occurs during the effector phase of the anti-tumor immune response and is required for T cell and APC function. Gp96 activates NK cells indirectly via APCs to a phenotype distinct from NK cells activated by other mechanisms such as IL-2. While NK cells have both lytic and cytokine producing properties, we show that gp96 selectively activates cytokine production in NK cells, which is important in the HSP anti-tumor immune response, and leaves their cytotoxic capacity unchanged. PMID:27431727

  20. Synergistic anti-tumor effects of zoledronic acid and radiotherapy against metastatic hepatocellular carcinoma.

    PubMed

    Morii, Kazuhiko; Aoyama, Yuhki; Nakamura, Shinichiro; Okushin, Hiroaki

    2015-01-01

    A 72-year-old man with advanced hepatocellular carcinoma and decompensated hepatitis C virus-related cirrhosis suffered from a metastatic femoral fracture. After undergoing radiotherapy, he was only treated with supportive care, except for the administration of zoledronic acid (ZA). Thereafter, the initially elevated serum α-fetoprotein and des-gamma carboxyprothrombin levels declined to within the normal ranges. Hepatic and metastatic adrenal tumors, distant from the radiation field, exhibited a surprising regression. ZA is known to inhibit the activity of osteoclasts, bone-residential macrophages, and has been reported to have a direct anti-tumor effect. ZA may adjust the immunological milieu in tumor microenvironments by inhibiting the tumor-associated macrophages. Because radiotherapy can enhance the presentation of tumor-associated antigens, ZA and radiotherapy may exert synergistic anti-tumor effects. PMID:26466697

  1. Perspectives on Reprograming Cancer-Associated Dendritic Cells for Anti-Tumor Therapies

    PubMed Central

    Benencia, Fabian; Muccioli, Maria; Alnaeeli, Mawadda

    2014-01-01

    In recent years, the relevance of the tumor microenvironment (TME) in the progression of cancer has gained considerable attention. It has been shown that the TME is capable of inactivating various components of the immune system responsible for tumor clearance, thus favoring cancer cell growth and tumor metastasis. In particular, effects of the TME on antigen-presenting cells, such as dendritic cells (DCs) include rendering these cells unable to promote specific immune responses or transform them into suppressive cells capable of inducing regulatory T cells. In addition, under the influence of the TME, DCs can produce growth factors that induce neovascularization, therefore further contributing to tumor development. Interestingly, cancer-associated DCs harbor tumor antigens and thus have the potential to become anti-tumor vaccines in situ if properly reactivated. This perspective article provides an overview of the scientific background and experimental basis for reprograming cancer-associated DCs in situ to generate anti-tumor immune responses. PMID:24778991

  2. Osthole promotes anti-tumor immune responses in tumor-bearing mice with hepatocellular carcinoma.

    PubMed

    Zhang, Lurong; Jiang, Guorong; Yao, Fei; Liang, Guoqiang; Wang, Fei; Xu, Heng; Wu, Yan; Yu, Xiao; Liu, Haiyan

    2015-06-01

    Osthole, a natural coumarin derivative, has been shown to have anti-tumor and anti-inflammatory activity. However, the effect of osthole on anti-tumor immune responses in tumor-bearing mice has not yet been reported. In the present study, osthole treatment did not affect the weight and the coefficient of thymus and spleen in tumor-bearing mice with hepatocellular carcinoma (HCC). However, osthole administration significantly elevated the proportion and number of the splenic CD8(+) T cells, the proportion of CD4(+) T and CD8(+) T cells in tumor tissues, and the levels of IL-2 and TNF-α in the serum of HCC tumor-bearing mice. Our results suggested that osthole could promote the activation of the tumor-infiltrating CD4(+) T and CD8(+) T cells, and elevate the proportion of CD4(+) and CD8(+) effector T cells. Osthole treatment also significantly decreased the proportion of CD4(+)CD25(+)Foxp3(+) regulatory T cells in the spleen. Taken together, osthole could enhance the T cell mediated anti-tumor immune responses in the tumor-bearing mice with HCC. PMID:25975579

  3. Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity

    PubMed Central

    Vanpouille-Box, Claire; Hindré, François

    2012-01-01

    Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radiotherapy. However, clinically apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nanodevices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immunostimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome. PMID:23087900

  4. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human.

    PubMed

    Andzinski, Lisa; Kasnitz, Nadine; Stahnke, Stephanie; Wu, Ching-Fang; Gereke, Marcus; von Köckritz-Blickwede, Maren; Schilling, Bastian; Brandau, Sven; Weiss, Siegfried; Jablonska, Jadwiga

    2016-04-15

    The importance of tumor associated neutrophils (TANs) in cancer development is in the meantime well established. Numerous of clinical data document the adverse prognostic effects of neutrophil infiltration in solid tumors. However, certain tumor therapies need functional neutrophils to be effective, suggesting altered neutrophil polarization associated with different outcomes for cancer patients. Therefore, modulation of neutrophilic phenotypes represents a potent therapeutic option, but factors mediating neutrophil polarization are still poorly defined. In this manuscript we provide evidence that type I IFNs alter neutrophilic phenotype into anti-tumor, both in mice and human. In the absence of IFN-β, pro-tumor properties, such as reduced tumor cytotoxicity with low neutrophil extracellular traps (NETs) expression, low ICAM1 and TNF-α expression, dominated neutrophil phenotypes in primary lesion and premetastatic lung. Interestingly, such neutrophils have significantly prolonged life-span. Notably, interferon therapy in mice altered TAN polarization towards anti-tumor N1. Similar changes in neutrophil activation could be observed in melanoma patients undergoing type I IFN therapy. Altogether, these data highlight the therapeutic potential of interferons, suggesting optimization of its clinical use as potent anti-tumor agent. PMID:26619320

  5. A novel liposomal recombinant lipoimmunogen enhances anti-tumor immunity.

    PubMed

    Shen, Kuan-Yin; Liu, Hsin-Yu; Li, Hui-Ju; Wu, Chiao-Chieh; Liou, Gunn-Guang; Chang, Yuan-Chih; Leng, Chih-Hsiang; Liu, Shih-Jen

    2016-07-10

    Synthetic liposomes provide a biocompatible and biodegradable approach for delivering drugs and antigens. In addition, self-adjuvanting recombinant lipoproteins (rlipoproteins) can enhance Th1 anti-tumor immune responses via the TLR2 signaling pathway. To generate a liposomal rlipoprotein for a cancer immunotherapeutic vaccine, we assessed 3 types of synthetic liposomes for use with the rlipoproteins rlipoE7m and rlipoOVA. We determined that the cationic liposome DOTAP could stabilize anionic rlipoproteins and delay rlipoprotein release. Surprisingly, rlipoproteins and DOTAP could synergistically up-regulate CD83 expression in bone marrow-derived dendritic cells (BMDCs). Compared with other liposome formulations, the rlipoprotein/DOTAP formulation elicited higher cytotoxic T-lymphocyte (CTL) responses. To explore the mechanism of BMDC activation by rlipoprotein/DOTAP, we assessed the production of reactive oxygen species (ROS) and the TNF-α secretion of BMDCs. We observed that rlipoprotein/DOTAP induced ROS to the same extent as DOTAP did. In addition, TLR2 signaling was also required for the TNF-α secretion of rlipoprotein/DOTAP-treated BMDCs. Moreover, compared with rlipoOVA-treated BMDCs, rlipoOVA/DOTAP-treated BMDCs increased the levels of IFN-γ produced by OVA-specific T cells. We also observed that rlipoE7m/DOTAP treatment but not rlipoE7m treatment delayed tumor growth. These results indicate that the rlipoprotein/DOTAP formulation can synergistically activate BMDCs via ROS and the TLR2 signaling pathway. In summary, rlipoprotein/DOTAP is a novel and stable formulation for cancer immunotherapy. PMID:27164542

  6. Valproic Acid Enhances the Anti-tumor Effect of (-)-gossypol to Burkitt Lymphoma Namalwa Cells.

    PubMed

    Gong, Yi; Ni, Zhen Hong; Zhang, Xi; Chen, Xing Hua; Zou, Zhong Min

    2015-10-01

    Burkitt lymphoma is a highly aggressive B-cell neoplasm. New therapeutic methods are needed to overcome the adverse effect of intensive chemotherapy regimens. Valproic acid and (-)-gossypol are two kinds of chemical compounds used as new anti-tumor drugs in recent years. To investigate the anti-tumor effect of valproic acid and (-)-gossypol, Burkitt lymphoma Namalwa cells were cultured and treated with valproic acid and (-)-gossypol at different concentrations. The proliferation of Namalwa cells was dramatically suppressed after the combination treatment with 2 mmol/L valproic acid and 5 μmol/L (-)-gossypol. The combined treatment also enhanced intrinsic apoptosis by down-regulating anti-apoptotic protein Mcl-1. Moreover, the autophagy flux significantly increased in Namalwa cells after combined treatment. However, the enhanced autophagy showed little effect on cell survival with present regimen. The results confirmed that combination of valproic acid and (-)-gossypol had synergistic anti-tumor effect to Burkitt lymphoma Namalwa cells. The related mechanisms might include the down-regulation of anti-apoptotic protein Mcl-1 and avianized pro-survival role of autophagy. PMID:26582100

  7. Multi-component self-assembled anti-tumor nano-vaccines based on MUC1 glycopeptides.

    PubMed

    Sun, Z Y; Chen, P G; Liu, Y F; Zhang, B D; Wu, J J; Chen, Y X; Zhao, Y F; Li, Y M

    2016-06-18

    Novel multi-component self-assembled nano-vaccines containing both Pam3CSK4 and CpG were developed for the first time. These multi-component vaccines could effectively activate the macrophages in vitro and elicit strong antibody immune responses and anti-tumor immune responses in vivo. PMID:27216415

  8. Anti-Tumor Effect of Pinus massoniana Bark Proanthocyanidins on Ovarian Cancer through Induction of Cell Apoptosis and Inhibition of Cell Migration

    PubMed Central

    Liu, Jia; Bai, Jing; Jiang, Guoqiang; Li, Xinli; Wang, Jing; Wu, Dachang; Owusu, Lawrence; Zhang, Ershao; Li, Weiling

    2015-01-01

    Pinus massoniana bark proanthocyanidins (PMBPs), an active component isolated from Pinus massoniana bark, has been reported to possess a wide range of biochemical properties. Here, we investigated the anti-tumor effect of PMBPs on ovarian cancer. The results indicated that PMBPs significantly reduced the growth of ovarian cancer cells and induced dose-dependent apoptosis. The underlying mechanisms involved were elucidated to include the loss of mitochondrial membrane potential, down-regulation of the anti-apoptotic protein Bcl-2 and the activation of Caspase 3/9, suggesting that PMBPs triggered apoptosis through activation of mitochondria-associated apoptotic pathway. In addition, wound healing and transwell chamber assays revealed that PMBPs could suppress migration and invasion of ovarian cancer cells. PMBPs dramatically inhibited MMP-9 activity and expression, blocked the activity of NFκB and the activation of ERK1/2 and p38 MAPK. Our findings suggest that PMBPs has the potential to be developed as an anti-tumor drug for ovarian cancer treatment and/ or disease management. PMID:26539720

  9. NKT cells as an ideal anti-tumor immunotherapeutic.

    PubMed

    Fujii, Shin-Ichiro; Shimizu, Kanako; Okamoto, Yoshitaka; Kunii, Naoki; Nakayama, Toshinori; Motohashi, Shinichiro; Taniguchi, Masaru

    2013-01-01

    Human natural killer T (NKT) cells are characterized by their expression of an invariant T cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement. These NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN-γ production had significantly prolonged median survival times of 29.3 months with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 weeks after the combination therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS) cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN-γ in vitro and in vivo upon

  10. Pre-clinical toxicity and immunogenicity evaluation of a MUC1-MBP/BCG anti-tumor vaccine.

    PubMed

    Hu, Boqi; Wang, Juan; Guo, Yingying; Chen, Tanxiu; Ni, Weihua; Yuan, Hongyan; Zhang, Nannan; Xie, Fei; Tai, Guixiang

    2016-04-01

    Mucin 1 (MUC1), as an oncogene, plays a key role in the progression and tumorigenesis of many human adenocarcinomas and is an attractive target in tumor immunotherapy. Our previous study showed that the MUC1-MBP/BCG anti-tumor vaccine induced a MUC1-specific Th1-dominant immune response, simulated MUC1-specific cytotoxic T lymphocyte killing activity, and could significantly inhibit MUC1-expression B16 cells' growth in mice. To help move the vaccine into a Phase I clinical trial, in the current study, a pre-clinical toxicity and immunogenicity evaluation of the vaccine was conducted. The evaluation was comprised of a single-dose acute toxicity study in mice, repeat-dose chronic toxicity and immunogenicity studies in rats, and pilot toxicity and immunogenicity studies in cynomolgus monkeys. The results showed that treatment with the MUC1-MBP/BCG anti-tumor vaccine did not cause any organ toxicity, except for arthritis or local nodules induced by BCG in several rats. Furthermore, the vaccine significantly increased the levels of IFN-γ in rats, indicating that Th1 cells were activated. In addition, the results showed that the MUC1-MBP/BCG anti-tumor vaccine induced a MUC1-specific IgG antibody response both in rats and cynomolgus monkeys. Collectively, these data are beneficial to move the MUC1-MBP/BCG anti-tumor vaccine into a Phase I clinical trial. PMID:26896668

  11. Bovine lactoferrin binds oleic acid to form an anti-tumor complex similar to HAMLET.

    PubMed

    Fang, Bing; Zhang, Ming; Tian, Mai; Jiang, Lu; Guo, Hui Yuan; Ren, Fa Zheng

    2014-04-01

    α-Lactalbumin (α-LA) can bind oleic acid (OA) to form HAMLET-like complexes, which exhibited highly selective anti-tumor activity in vitro and in vivo. Considering the structural similarity to α-LA, we conjectured that lactoferrin (LF) could also bind OA to obtain a complex with anti-tumor activity. In this study, LF-OA was prepared and its activity and structural changes were compared with α-LA-OA. The anti-tumor activity was evaluated by methylene blue assay, while the apoptosis mechanism was analyzed using flow cytometry and Western blot. Structural changes of LF-OA were measured by fluorescence spectroscopy and circular dichroism. The interactions of OA with LF and α-LA were evaluated by isothermal titration calorimetry (ITC). LF-OA was obtained by heat-treatment at pH8.0 with LD50 of 4.88, 4.95 and 4.62μM for HepG2, HT29, and MCF-7 cells, respectively, all of which were 10 times higher than those of α-LA-OA. Similar to HAMLET, LF-OA induced apoptosis in tumor cells through both death receptor- and mitochondrial-mediated pathways. Exposure of tryptophan residues and the hydrophobic regions as well as the loss of tertiary structure were observed in LF-OA. Besides these similarities, LF showed different secondary structure changes when compared with α-LA, with a decrease of α-helix and β-turn and an increase of β-sheet and random coil. ITC results showed that there was a higher binding number of OA to LF than to α-LA, while both of the proteins interacted with OA through van der Waals forces and hydrogen bonds. This study provides a theoretical basis for further exploration of protein-OA complexes. PMID:24368211

  12. Two photon microscopy intravital study of DC-mediated anti-tumor response of NK cells

    NASA Astrophysics Data System (ADS)

    Caccia, Michele; Gorletta, Tatiana; Sironi, Laura; Zanoni, Ivan; Salvetti, Cristina; Collini, Maddalena; Granucci, Francesca; Chirico, Giuseppe

    2010-02-01

    Recent studies have demonstrated that dendritic cells (DCs) play a crucial role in the activation of Natural Killer cells (NKs) that are responsible for anti-tumor innate immune responses. The focus of this report is on the role of pathogen associated molecular pattern (PAMP) activated-DCs in inducing NK cell-mediated anti-tumor responses. Mice transplanted sub-cute (s.c.) with AK7 cells, a mesothelioma cell line sensitive to NK cell responses, are injected with fluorescent NK cells and DC activation is then induced by s.c. injection of Lipopolysaccharide (LPS). Using 4 dimensional tracking we follow the kinetic behavior of NK cells at the Draining Lymph-Node (DLN). As control, noninflammatory conditions are also evaluated. Our data suggest that NK cells are recruited to the DLN where they can interact with activated-DCs with a peculiar kinetic behavior: short lived interactions interleaved by rarer longer ones. We also found that the changes in the NK dynamic behavior in inflammatory conditions clearly affect relevant motility parameters such as the instantaneous and average velocity and the effective diffusion coefficient. This observation suggests that NK cells and activated-DCs might efficiently interact in the DLN, where cells could be activated. Therefore the interaction between activated-DCs and NK cells in DLN is not only a reality but it may be also crucial for the start of the immune response of the NKs.

  13. Interleukin-6 Induced “Acute” Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics

    PubMed Central

    Xue, Ting; Liu, Ping; Zhou, Yong; Liu, Kun; Yang, Li; Moritz, Robert L.; Yan, Wei; Xu, Lisa X.

    2016-01-01

    Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ shotgun proteomics. Among them, 53 showed significantly discriminated regulatory patterns over the time course, in which the acute phase response emerged as the most enhanced pathway. The anti-tumor feature of the acute response was further investigated using parallel reaction monitoring target proteomics and flow cytometry on 23 of the 53 significant proteins. We found that cryo-thermal therapy reset the tumor chronic inflammation to an “acute” phenotype, with up-regulation of acute phase proteins including IL-6 as a key regulator. The IL-6 mediated “acute” phenotype transformed IL-4 and Treg-promoting ICOSL expression to Th1-promoting IFN-γ and IL-12 production, augmented complement system activation and CD86+MHCII+ dendritic cells maturation and enhanced the proliferation of Th1 memory cells. In addition, we found an increased production of tumor progression and metastatic inhibitory proteins under such “acute” environment, favoring the anti-metastatic effect. Moreover, cryo-thermal on tumors induced the strongest “acute” response compared to cryo/hyperthermia alone or cryo-thermal on healthy tissues, accompanying by the most pronounced anti-tumor immunological effect. In summary, we demonstrated that cryo-thermal therapy induced, IL-6 mediated “acute” microenvironment shifted the tumor chronic microenvironment from Th2 immunosuppressive and pro-tumorigenic to Th1 immunostimulatory and tumoricidal state. Moreover, the magnitude of “acute” and

  14. l-arginine and docetaxel synergistically enhance anti-tumor immunity by modifying the immune status of tumor-bearing mice.

    PubMed

    Cao, Yu; Wang, Qinghui; Du, Yunting; Liu, Fei; Zhang, Yanjun; Feng, Yonghui; Jin, Feng

    2016-06-01

    l-arginine (l-Arg) supplementation has been reported to enhance the function of immune cells, including dendritic cells (DCs) and T lymphocytes, in cancer models thereby countering the suppressive effects of myeloid-derived suppressor cells (MDSCs). The balance of the active immune cells is one factor that determines the progression of cancers in vivo. Docetaxel (DTX), an immunomodulatory chemotherapeutic agent, is now widely used in several types of malignancies including breast cancer. We hypothesized that the combination of DTX and l-Arg would elicit a more robust antitumor response than either molecule alone. To test this hypothesis we utilized BALB/c mice inoculated with 4T1 mammary carcinoma cells. DTX and l-Arg synergistically limited tumor growth in vivo and moderately increased the life span of tumor bearing mice. The anti-tumor effects were associated with the proliferation of splenic CD8(+) CTL and CD4(+) Th1 effector cells, as well as increased serum levels of interferon gamma. More importantly, DTX+l-Arg effectively increased anti-tumor immunity within the tumor microenvironment. Furthermore, the combined therapy increased the number of myeloid (mDCs) and plasmacytoid (pDCs) dendritic cells, potent activators of the T cell response, and enhanced expression of the maturation markers CD86 and MHC II (required for antigen presentation). The combination therapy also reduced the proliferation of MDSCs. These data suggest that DTX+l-Arg may be a novel therapeutic strategy for breast cancer patients. PMID:27003114

  15. Anti-tumor immune response after photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.

    2009-06-01

    Anti-tumor immunity is stimulated after PDT due a number of factors including: the acute inflammatory response caused by PDT, release of antigens from PDT-damaged tumor cells, priming of the adaptive immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T-lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy as it would allow the treatment of tumors that may have already metastasized. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. We have carried out in vivo PDT with a BPD-mediated vascular regimen using a pair of BALB/c mouse colon carcinomas: CT26 wild type expressing the naturally occurring retroviral antigen gp70 and CT26.CL25 additionally expressing beta-galactosidase (b-gal) as a model tumor rejection antigen. PDT of CT26.CL25 cured 100% of tumors but none of the CT26WT tumors (all recurred). Cured CT26.CL25 mice were resistant to rechallenge. Moreover mice with two bilateral CT26.CL25 tumors that had only one treated with PDT demonstrated spontaneous regression of 70% of untreated contralateral tumors. T-lymphocytes were isolated from lymph nodes of PDT cured mice that recognized a particular peptide specific to b-gal antigen. T-lymphocytes from LN were able to kill CT26.CL25 target cells in vitro but not CT26WT cells as shown by a chromium release assay. CT26.CL25 tumors treated with PDT and removed five days later had higher levels of Th1 cytokines than CT26 WT tumors showing a higher level of immune response. When mice bearing CT26WT tumors were treated with a regimen of low dose cyclophosphamide (CY) 2 days before, PDT led to 100% of cures (versus 0% without CY) and resistance to rechallenge. Low dose CY is thought to deplete regulatory T-cells (Treg, CD4+CD25+foxp

  16. Engineering of a disulfide loop instead of a Zn binding loop restores the anti-proliferative, anti-angiogenic and anti-tumor activities of the N-terminal fragment of endostatin: Mechanistic and therapeutic insights.

    PubMed

    Chamani, Reyhane; Asghari, S Mohsen; Alizadeh, Ali Mohammad; Eskandari, Sedigheh; Mansouri, Kamran; Khodarahmi, Reza; Taghdir, Majid; Heidari, Zahra; Gorji, Ali; Aliakbar, Alireza; Ranjbar, Bijan; Khajeh, Khosro

    2015-09-01

    Although considerable effort has been devoted to understanding the molecular mechanism of endostatin's anti-cancer activity, the role of its Zn bound N-terminal loop has not been completely clarified. To investigate whether Zn binding or the N-terminal loop is involved in the anti-cancer properties of endostatin, we compared the structure and biological activity of a native Zn binding endostatin peptide (ES-Zn) with three variants: a Zn free variant (ES), a variant containing both a Zn binding site and a disulfide bond (ES-SSZn), and a variant including a disulfide loop but incapable of Zn binding (ES-SS). Spectroscopic studies indicated that ES-Zn and ES-SS consist of random coil and β structures, whereas ES-SSZn and ES fold into random coils. Theoretical analysis proposed that ES-Zn and ES-SS have a similar binding site to αVβ3 integrin. The anti-proliferative activity of endostatin was retained by all peptides except ES, and the in vitro anti-angiogenic property was preserved in ES-Zn and ES-SS. Remarkably, breast tumor growth and CD31 activity were inhibited more effectively by ES-SS than by ES-Zn. Therefore, a correlation exists between the N-terminal loop and anti-cancer properties of endostatin fragment and a disulfide loop may be more promising than a Zn binding loop for inhibiting tumor growth. PMID:26187352

  17. How Does Ionizing Irradiation Contribute to the Induction of Anti-Tumor Immunity?

    PubMed Central

    Rubner, Yvonne; Wunderlich, Roland; Rühle, Paul-Friedrich; Kulzer, Lorenz; Werthmöller, Nina; Frey, Benjamin; Weiss, Eva-Maria; Keilholz, Ludwig; Fietkau, Rainer; Gaipl, Udo S.

    2012-01-01

    Radiotherapy (RT) with ionizing irradiation is commonly used to locally attack tumors. It induces a stop of cancer cell proliferation and finally leads to tumor cell death. During the last years it has become more and more evident that besides a timely and locally restricted radiation-induced immune suppression, a specific immune activation against the tumor and its metastases is achievable by rendering the tumor cells visible for immune attack. The immune system is involved in tumor control and we here outline how RT induces anti-inflammation when applied in low doses and contributes in higher doses to the induction of anti-tumor immunity. We especially focus on how local irradiation induces abscopal effects. The latter are partly mediated by a systemic activation of the immune system against the individual tumor cells. Dendritic cells are the key players in the initiation and regulation of adaptive anti-tumor immune responses. They have to take up tumor antigens and consecutively present tumor peptides in the presence of appropriate co-stimulation. We review how combinations of RT with further immune stimulators such as AnnexinA5 and hyperthermia foster the dendritic cell-mediated induction of anti-tumor immune responses and present reasonable combination schemes of standard tumor therapies with immune therapies. It can be concluded that RT leads to targeted killing of the tumor cells and additionally induces non-targeted systemic immune effects. Multimodal tumor treatments should therefore tend to induce immunogenic tumor cell death forms within a tumor microenvironment that stimulates immune cells. PMID:22848871

  18. Anti-tumor effects in mice induced by survivin-targeted siRNA delivered through polysaccharide nanoparticles.

    PubMed

    Yang, Feifei; Huang, Wei; Li, Yunfei; Liu, Shan; Jin, Mingji; Wang, Yuli; Jia, Lihua; Gao, Zhonggao

    2013-07-01

    Recently, survivin has been attracting great attention because it plays an important role in inhibiting the apoptosis process of tumor cells. Down-regulating the expression of survivin gene by small interfering RNA (siRNA) offers a promising method for anti-tumor therapy. However, lack of appropriate siRNA delivery vector has significantly hindered the successful application of survivin-targeted siRNA in anti-tumor therapy. The purpose of this study was to use polysaccharide vector TAT-g-CS we synthesized to deliver functional siRNA and evaluate its in vivo anti-tumor activity. TAT-g-CS vector was firstly synthesized and well structurally characterized. MTT assay showed that TAT-g-CS vector exhibited good biocompatibility. TAT-g-CS complexed with siRNA offering nanoparticles with an average particle size of 212.2 nm and a polydispersity index of 0.121, and the zeta potential of the nanoparticles was +18.58 mV. Results from reporter gene assay suggested that luciferase-targeted siRNA when delivered by TAT-g-CS could down-regulate the expression of luciferase gene with 75.3% reduction. Most importantly, we use siRNA(Sur) targeting survivin gene to assess the in vitro and in vivo delivery capacity of TAT-g-CS and its anti-tumor effects. Our results demonstrated that TAT-g-CS/siRNA(Sur) nanoparticles not only strongly inhibited the in vitro proliferation of 4T1-Luc tumor cells via inducing cell apoptosis, but also effectively inhibited the in vivo growth and metastasis of malignant breast tumor, which suggested that TAT-g-CS/siRNA nanoparticle was a highly efficient non-viral system for siRNA delivery, especially for anti-tumor therapy based on siRNA therapeutics. PMID:23632321

  19. Computational and anti-tumor studies of 7a-Aza-B-homostigmast-5-eno [7a, 7-d] tetrazole-3β-yl chloride

    NASA Astrophysics Data System (ADS)

    Alam, Mahboob; Alam, Mohammad Jane; Nami, Shahab A. A.; Lee, Dong-Ung; Azam, Mohammad; Ahmad, Shabbir

    2016-03-01

    The present paper reports the detailed computational study including molecular docking of a biologically active steroidal tetrazole, 7a-Aza-B-homostigmast-5-eno [7a,7-d] tetrazole-3β-yl chloride. The molecular structure, IR and NMR (13C and 1H) spectra of the tetrazole were interpreted by comparing the experimental results with the theoretical, B3LYP/6-311G(d,p) calculations. The vibrational bands appearing in the FTIR are assigned with great accuracy using animated modes. Molecular properties like HOMO-LUMO analysis, chemical reactivity descriptors, MEP mapping, dipole moment and natural atomic charges have been presented at the same level of theory. The theoretical results are found in good correlation with the experimental data. Moreover, the Hirshfeld analysis was carried out to ascertain the secondary interactions and associated 2D fingerprint plots. The in vitro anti-tumor activity of 7a-Aza-B-homostigmast-5-eno [7a,7-d] tetrazole-3β-yl chloride has also been carried out against five human tumor cell lines. Doxorubicin is used as a standard drug for the in vitro anti-tumor screening.

  20. In vivo pharmacokinetics, biodistribution and the anti-tumor effect of cyclic RGD-modified doxorubicin-loaded polymers in tumor-bearing mice.

    PubMed

    Wang, Chen; Li, Yuan; Chen, Binbin; Zou, Meijuan

    2016-10-01

    In our previous study, we successfully produced and characterized a multifunctional drug delivery system with doxorubicin (RC/GO/DOX), which was based on graphene oxide (GO) and cyclic RGD-modified chitosan (RC). Its characteristics include: pH-responsiveness, active targeting of hepatocarcinoma cells, and efficient loading with controlled drug release. Here, we report the pharmacokinetics, biodistribution, and anti-tumor efficacy of RC/GO/DOX polymers in tumor-bearing nude mice. The objective of this study is to assess its targeting potential for tumors. Pharmacokinetic and biodistribution profiles demonstrated that tumor accumulation of RC/GO/DOX polymers was almost three times higher than the others, highlighting the efficacy of the active targeting strategy. Furthermore, the tumor inhibition rate of RC/GO/DOX polymers was 56.64%, 2.09 and 2.93 times higher than that of CS/GO/DOX polymers (without modification) and the DOX solution, respectively. Anti-tumor efficacy results indicated that the tumor growth was better controlled by RC/GO/DOX polymers than the others. Hematoxylin and eosin (H&E) staining showed remarkable changes in tumor histology. Compared with the saline group, the tumor section from the RC/GO/DOX group revealed a marked increase in the quantity of apoptotic and necrotic cells, and a reduction in the quantity of the blood vessels. Together, these studies show that this new system could be regarded as a suitable form of DOX-based treatment of the hepatocellular carcinoma. PMID:27244048

  1. Augmented anti-tumor effect of dendritic cells genetically engineered by interleukin-12 plasmid DNA.

    PubMed

    Yoshida, Masataka; Jo, Jun-Ichiro; Tabata, Yasuhiko

    2010-01-01

    The objective of this study was to genetically engineer dendritic cells (DC) for biological activation and evaluate their anti-tumor activity in a tumor-bearing mouse model. Mouse DC were incubated on the surface of culture dishes which had been coated with the complexes of a cationized dextran and luciferase plasmid DNA complexes plus a cell adhesion protein, Pronectin, for gene transfection (reverse transfection). When compared with the conventional transfection where DC were transfected in the medium containing the complexes, the level of gene expression by the reverse method was significantly higher and the time period of gene expression was prolonged. Following the reverse transfection of DC by a plasmid DNA of mouse interleukin-12 (mIL-12) complexed with the cationized dextran, the mIL-12 protein was secreted at higher amounts for a longer time period. When injected intratumorally into mice carrying a mass of B16 tumor cells, the DC genetically activated showed significant anti-tumor activity. PMID:20338099

  2. Selected anti-tumor vaccines merit a place in multimodal tumor therapies

    PubMed Central

    Weiss, Eva-Maria; Wunderlich, Roland; Ebel, Nina; Rubner, Yvonne; Schlücker, Eberhard; Meyer-Pittroff, Roland; Ott, Oliver J.; Fietkau, Rainer; Gaipl, Udo S.; Frey, Benjamin

    2012-01-01

    Multimodal approaches are nowadays successfully applied in cancer therapy. Primary locally acting therapies such as radiotherapy (RT) and surgery are combined with systemic administration of chemotherapeutics. Nevertheless, the therapy of cancer is still a big challenge in medicine. The treatments often fail to induce long-lasting anti-tumor responses. Tumor recurrences and metastases result. Immunotherapies are therefore ideal adjuncts to standard tumor therapies since they aim to activate the patient's immune system against malignant cells even outside the primary treatment areas (abscopal effects). Especially cancer vaccines may have the potential both to train the immune system against cancer cells and to generate an immunological memory, resulting in long-lasting anti-tumor effects. However, despite promising results in phase I and II studies, most of the concepts finally failed. There are some critical aspects in development and application of cancer vaccines that may decide on their efficiency. The time point and frequency of medication, usage of an adequate immune adjuvant, the vaccine's immunogenic potential, and the tumor burden of the patient are crucial. Whole tumor cell vaccines have advantages compared to peptide-based ones since a variety of tumor antigens (TAs) are present. The master requirements of cell-based, therapeutic tumor vaccines are the complete inactivation of the tumor cells and the increase of their immunogenicity. Since the latter is highly connected with the cell death modality, the inactivation procedure of the tumor cell material may significantly influence the vaccine's efficiency. We therefore also introduce high hydrostatic pressure (HHP) as an innovative inactivation technology for tumor cell-based vaccines and outline that HHP efficiently inactivates tumor cells by enhancing their immunogenicity. Finally studies are presented proving that anti-tumor immune responses can be triggered by combining RT with selected immune

  3. High in Vitro Anti-Tumor Efficacy of Dimeric Rituximab/Saporin-S6 Immunotoxin

    PubMed Central

    Bortolotti, Massimo; Bolognesi, Andrea; Battelli, Maria Giulia; Polito, Letizia

    2016-01-01

    The anti-CD20 mAb Rituximab has revolutionized lymphoma therapy, in spite of a number of unresponsive or relapsing patients. Immunotoxins, consisting of toxins coupled to antibodies, are being investigated for their potential ability to augment Rituximab efficacy. Here, we compare the anti-tumor effect of high- and low-molecular-weight Rituximab/saporin-S6 immunotoxins, named HMW-IT and LMW-IT, respectively. Saporin-S6 is a potent and stable plant enzyme belonging to ribosome-inactivating proteins that causes protein synthesis arrest and consequent cell death. Saporin-S6 was conjugated to Rituximab through an artificial disulfide bond. The inhibitory activity of HMW-IT and LMW-IT was evaluated on cell-free protein synthesis and in two CD20+ lymphoma cell lines, Raji and D430B. Two different conjugates were separated on the basis of their molecular weight and further characterized. Both HMW-IT (dimeric) and LMW-IT (monomeric) maintained a high level of enzymatic activity in a cell-free system. HMW-IT, thanks to a higher toxin payload and more efficient antigen capping, showed stronger in vitro anti-tumor efficacy than LMW-IT against lymphoma cells. Dimeric HMW-IT can be used for lymphoma therapy at least for ex vivo treatments. The possibility of using HMW-IT augments the yield in immunotoxin preparation and allows the targeting of antigens with low internalization rates. PMID:27338475

  4. High in Vitro Anti-Tumor Efficacy of Dimeric Rituximab/Saporin-S6 Immunotoxin.

    PubMed

    Bortolotti, Massimo; Bolognesi, Andrea; Battelli, Maria Giulia; Polito, Letizia

    2016-01-01

    The anti-CD20 mAb Rituximab has revolutionized lymphoma therapy, in spite of a number of unresponsive or relapsing patients. Immunotoxins, consisting of toxins coupled to antibodies, are being investigated for their potential ability to augment Rituximab efficacy. Here, we compare the anti-tumor effect of high- and low-molecular-weight Rituximab/saporin-S6 immunotoxins, named HMW-IT and LMW-IT, respectively. Saporin-S6 is a potent and stable plant enzyme belonging to ribosome-inactivating proteins that causes protein synthesis arrest and consequent cell death. Saporin-S6 was conjugated to Rituximab through an artificial disulfide bond. The inhibitory activity of HMW-IT and LMW-IT was evaluated on cell-free protein synthesis and in two CD20⁺ lymphoma cell lines, Raji and D430B. Two different conjugates were separated on the basis of their molecular weight and further characterized. Both HMW-IT (dimeric) and LMW-IT (monomeric) maintained a high level of enzymatic activity in a cell-free system. HMW-IT, thanks to a higher toxin payload and more efficient antigen capping, showed stronger in vitro anti-tumor efficacy than LMW-IT against lymphoma cells. Dimeric HMW-IT can be used for lymphoma therapy at least for ex vivo treatments. The possibility of using HMW-IT augments the yield in immunotoxin preparation and allows the targeting of antigens with low internalization rates. PMID:27338475

  5. Enhanced Anti-tumor Reactivity of Cytotoxic T Lymphocytes Expressing PD-1 Decoy.

    PubMed

    Shin, Jae Hun; Park, Hyung Bae; Choi, Kyungho

    2016-04-01

    Programmed death-1 (PD-1) is a strong negative regulator of T lymphocytes in tumor-microenvironment. By engaging PD-1 ligand (PD-L1) on tumor cells, PD-1 on T cell surface inhibits anti-tumor reactivity of tumor-infiltrating T cells. Systemic blockade of PD-1 function using blocking antibodies has shown significant therapeutic efficacy in clinical trials. However, approximately 10 to 15% of treated patients exhibited serious autoimmune responses due to the activation of self-reactive lymphocytes. To achieve selective activation of tumor-specific T cells, we generated T cells expressing a dominant-negative deletion mutant of PD-1 (PD-1 decoy) via retroviral transduction. PD-1 decoy increased IFN-γ secretion of antigen-specific T cells in response to tumor cells expressing the cognate antigen. Adoptive transfer of PD-1 decoy-expressing T cells into tumor-bearing mice potentiated T cell-mediated tumor regression. Thus, T cell-specific blockade of PD-1 could be a useful strategy for enhancing both efficacy and safety of anti-tumor T cell therapy. PMID:27162530

  6. Enhanced Anti-tumor Reactivity of Cytotoxic T Lymphocytes Expressing PD-1 Decoy

    PubMed Central

    Shin, Jae Hun; Park, Hyung Bae

    2016-01-01

    Programmed death-1 (PD-1) is a strong negative regulator of T lymphocytes in tumor-microenvironment. By engaging PD-1 ligand (PD-L1) on tumor cells, PD-1 on T cell surface inhibits anti-tumor reactivity of tumor-infiltrating T cells. Systemic blockade of PD-1 function using blocking antibodies has shown significant therapeutic efficacy in clinical trials. However, approximately 10 to 15% of treated patients exhibited serious autoimmune responses due to the activation of self-reactive lymphocytes. To achieve selective activation of tumor-specific T cells, we generated T cells expressing a dominant-negative deletion mutant of PD-1 (PD-1 decoy) via retroviral transduction. PD-1 decoy increased IFN-γ secretion of antigen-specific T cells in response to tumor cells expressing the cognate antigen. Adoptive transfer of PD-1 decoy-expressing T cells into tumor-bearing mice potentiated T cell-mediated tumor regression. Thus, T cell-specific blockade of PD-1 could be a useful strategy for enhancing both efficacy and safety of anti-tumor T cell therapy. PMID:27162530

  7. Signaling through OX40 Enhances Anti-tumor Immunity

    PubMed Central

    Jensen, Shawn M.; Maston, Levi D.; Gough, Michael J.; Ruby, Carl E.; Redmond, William L.; Crittenden, Marka; Li, Yuhuan; Puri, Sachin; Poehlein, Christian H.; Morris, Nick; Kovacsovics-Bankowski, Magdalena; Moudgil, Tarsem; Twitty, Chris; Walker, Edwin B.; Hu, Hong-Ming; Urba, Walter J.; Weinberg, Andrew D.; Curti, Brendan D; Fox, Bernard A.

    2010-01-01

    The existence of tumor-specific T cells, as well as their ability to be primed in cancer patients confirms that the immune response can be deployed to combat cancer. However, there are obstacles that must be overcome to convert the ineffective immune response commonly found in the tumor environment to one that leads to sustained destruction of tumor. Members of the tumor necrosis factor (TNF) superfamily direct diverse immune functions. OX40 and its ligand, OX40L, are key TNF members that augment T-cell expansion, cytokine production, and survival. OX40 signaling also controls regulatory T cell differentiation and suppressive function. Studies over the past decade have demonstrated that OX40 agonists enhance anti-tumor immunity in preclinical models using immunogenic tumors; however, treatment of poorly immunogenic tumors has been less successful. Combining strategies that prime tumor-specific T cells together with OX40 signaling could generate and maintain a therapeutic anti-tumor immune response. PMID:21074068

  8. The novel CA IX inhibition antibody chKM4927 shows anti-tumor efficacy in vivo.

    PubMed

    Yamaguchi, Ayami; Usami, Katsuaki; Shimabe, Munetake; Hasegawa, Kazumasa; Asada, Masao; Motoki, Kazuhiro; Tahara, Tomoyuki; Masuda, Kazuhiro

    2015-04-01

    Carbonic anhydrase IX (CA IX) is an attractive target for cancer therapy. Many anti-CA IX antibodies have been reported but few have been shown to possess inhibition activity. Furthermore, effective use of CA IX-inhibition antibodies for cancer immunotherapy has not been well-validated since data are mainly limited to in vitro assays. In this study, we established that chKM4927, an anti-CA IX chimeric antibody, recognizes CA IX and has CA IX-specific inhibition activity. ChKM4927 also retains antibody-dependent cellular cytotoxicity (ADCC) activity against CA IX-expressing cancer cells. Compared to controls, chKM4927 treatment (10 mg/kg) showed anti-tumor activity in the VMRC-RCW xenograft model in vivo. ChKM4927-attenuated ADCC activity showed equally effective anti-tumor activity. These results suggest that the CA IX-inhibition antibody chKM4927 has an anti-tumor effect in the VMRC-RCW xenograft model via an ADCC-independent mechanism. PMID:25862852

  9. Increased anti-tumor effects using IL2 with anti-TGFβ reveals competition between mouse NK and CD8 T cells

    PubMed Central

    Alvarez, Maite; Bouchlaka, Myriam N.; Sckisel, Gail D.; Sungur, Can M.; Chen, Mingyi; Murphy, William J.

    2014-01-01

    Due to increasing interest in the removal of immunosuppressive pathways in cancer, the combination of IL2 with antibodies to neutralize TGFβ, a potent immunosuppressive cytokine, was assessed. Combination immunotherapy resulted in significantly greater anti-tumor effects. These were correlated with significant increases in the numbers and functionality of NK cells, NK progenitors and activated CD8 T cells resulting in the observed anti-tumor effects. Combination immunotherapy was also accompanied with lesser toxicities than IL2 therapy alone. Additionally, we observed a dual competition between NK and activated CD8 T cells such that after immunotherapy, the depletion of either effector population resulted in the increased total expansion of the other population and compensatory anti-tumor effects. This study demonstrates the efficacy of this combination immunotherapeutic regimen as a promising cancer therapy and illustrates the existence of potent competitive regulatory pathways between NK and CD8 T cells in response to systemic activation. PMID:25000978

  10. Gecko Proteins Exert Anti-Tumor Effect against Cervical Cancer Cells Via PI3-Kinase/Akt Pathway

    PubMed Central

    Jeong, Ae-Jin; Chung, Chung-Nam; Kim, Hye-Jin; Bae, Kil Soo; Choi, Song; Jun, Woo Jin; Shim, Sang In; Kang, Tae-Hong; Leem, Sun-Hee

    2012-01-01

    Anti-tumor activity of the proteins from Gecko (GP) on cervical cancer cells, and its signaling mechanisms were assessed by viable cell counting, propidium iodide (PI) staining, and Western blot analysis. GP induced the cell death of HeLa cells in a dose-dependent manner while it did not affect the viability of normal cells. Western blot analysis showed that GP decreased the activation of Akt, and co-administration of GP and Akt inhibitors synergistically exerted anti-tumor activities on HeLa cells, suggesting the involvement of PI3-kinase/Akt pathway in GP-induced cell death of the cancer cells. Indeed, the cytotoxic effect of GP against HeLa cells was inhibited by overexpression of constituvely active form of Akt in HeLa cells. The candidates of the functional proteins in GP were analyzed by Mass-spectrum. Taken together, our results suggest that GP elicits anti-tumor activity against HeLa cells by inhibition of PI3-kinase/Akt pathway. PMID:23118562

  11. Gecko Proteins Exert Anti-Tumor Effect against Cervical Cancer Cells Via PI3-Kinase/Akt Pathway.

    PubMed

    Jeong, Ae-Jin; Chung, Chung-Nam; Kim, Hye-Jin; Bae, Kil Soo; Choi, Song; Jun, Woo Jin; Shim, Sang In; Kang, Tae-Hong; Leem, Sun-Hee; Chung, Jin Woong

    2012-10-01

    Anti-tumor activity of the proteins from Gecko (GP) on cervical cancer cells, and its signaling mechanisms were assessed by viable cell counting, propidium iodide (PI) staining, and Western blot analysis. GP induced the cell death of HeLa cells in a dose-dependent manner while it did not affect the viability of normal cells. Western blot analysis showed that GP decreased the activation of Akt, and co-administration of GP and Akt inhibitors synergistically exerted anti-tumor activities on HeLa cells, suggesting the involvement of PI3-kinase/Akt pathway in GP-induced cell death of the cancer cells. Indeed, the cytotoxic effect of GP against HeLa cells was inhibited by overexpression of constituvely active form of Akt in HeLa cells. The candidates of the functional proteins in GP were analyzed by Mass-spectrum. Taken together, our results suggest that GP elicits anti-tumor activity against HeLa cells by inhibition of PI3-kinase/Akt pathway. PMID:23118562

  12. Anti-tumor potential and acute toxicity of Jacaranda puberula Cham. (Bignoniacea).

    PubMed

    de-Almeida, Michelle Rodrigues-Ayres; Ramos-Leal, Ivana Correa; Ruela, Halliny Siqueira; Justo-Araujo, Maria da-Graça; Martins, Thiago Martino; Pinto-Coelho, Marsen Garcia; Kuster, Ricardo Machado; Carvalho-Sabino, Kátia Costa

    2013-09-01

    Cancer chemotherapy is an important strategy to treat this leading cause of death worldwide and plants may constitute a source of new antineoplastic agents. This work fractionated the ethanolic extract of Jacaranda puberula leaves and studied the in vitro antitumoral action and some toxicological effects of the most bioactive fraction. Cell lines related to worldwide cancers were used. The Dichloromethane (DCM) and PP fractions were the most bioactive ones. The anti-tumoral action of the DCM fraction was higher than that of the crude EtOH extract while that of PP fraction was higher than the original one (DCM) for both breast (MCF-7), prostate (PC3) and lung (A549) tumor cells, chronic leukemia cells. The K562 cells were the most sensitive cell line. The PP fraction (20 μg/mL) cytotoxicity for these cells was similar to that of the ursolic acid triterpene or the antineoplastic ethoposide. The PP fraction inhibited K562 cell proliferation without cell cycle arrest in a specific phase or apoptosis. PP increased the mitochondrial reduction activity of lymphocytes. After a single dose by oral route, PP fraction did not induce intrinsic acute toxicity or animal death. This work demonstrated that the J. puberula fraction (PP) present high in vitro anti-tumoral effect with no cytotoxicity for immune system cells or oral acute toxicity, improving the Jacaranda puberula ethnopharmacology and reporting new biological effects for the genus Jacaranda. PMID:24035942

  13. Anti-tumor effect of β-glucan from Lentinus edodes and the underlying mechanism.

    PubMed

    Xu, Hui; Zou, Siwei; Xu, Xiaojuan; Zhang, Lina

    2016-01-01

    β-Glucans are well known for its various bioactivities, but the underlying mechanism has not been fully understood. This study focuses on the anti-tumor effect and the potential mechanism of a branched β-(1, 3)-glucan (LNT) extracted from Lentinus edodes. The in vivo data indicated that LNT showed a profound inhibition ratio of ~75% against S-180 tumor growth, even significantly higher than the positive control of Cytoxan (~54%). Interestingly, LNT sharply promoted immune cells accumulation into tumors accompanied by cell apoptosis and inhibition of cell proliferation during tumor development. Furthermore, LNT not only up-regulated expressions of the tumor suppressor p53, cell cycle arrestin p21 and pro-apoptotic proteins of Bax and caspase 3/9, but also down-regulated PARP1 and anti-apoptotic protein Bcl-2 expressions in tumor tissues. It was first found that LNT initiated p53-dependent signaling pathway to suppress cell proliferation in vitro, and the caspase-dependent pathway to induce cell apoptosis in vivo. The underlying anti-tumor mechanism was proposed that LNT activated immune responses to induce cell apoptosis through caspase 3-dependent signaling pathway and to inhibit cell proliferation possibly via p53-dependent signaling pathway in vivo. Besides, LNT inhibited angiogenesis by suppressing VEGF expression, leading to slow progression of tumors. PMID:27353254

  14. Anti-tumor effect of β-glucan from Lentinus edodes and the underlying mechanism

    PubMed Central

    Xu, Hui; Zou, Siwei; Xu, Xiaojuan; Zhang, Lina

    2016-01-01

    β-Glucans are well known for its various bioactivities, but the underlying mechanism has not been fully understood. This study focuses on the anti-tumor effect and the potential mechanism of a branched β-(1, 3)-glucan (LNT) extracted from Lentinus edodes. The in vivo data indicated that LNT showed a profound inhibition ratio of ~75% against S-180 tumor growth, even significantly higher than the positive control of Cytoxan (~54%). Interestingly, LNT sharply promoted immune cells accumulation into tumors accompanied by cell apoptosis and inhibition of cell proliferation during tumor development. Furthermore, LNT not only up-regulated expressions of the tumor suppressor p53, cell cycle arrestin p21 and pro-apoptotic proteins of Bax and caspase 3/9, but also down-regulated PARP1 and anti-apoptotic protein Bcl-2 expressions in tumor tissues. It was first found that LNT initiated p53-dependent signaling pathway to suppress cell proliferation in vitro, and the caspase-dependent pathway to induce cell apoptosis in vivo. The underlying anti-tumor mechanism was proposed that LNT activated immune responses to induce cell apoptosis through caspase 3-dependent signaling pathway and to inhibit cell proliferation possibly via p53-dependent signaling pathway in vivo. Besides, LNT inhibited angiogenesis by suppressing VEGF expression, leading to slow progression of tumors. PMID:27353254

  15. Manipulating TLR Signaling Increases the Anti-tumor T Cell Response Induced by Viral Cancer Therapies.

    PubMed

    Rojas, Juan J; Sampath, Padma; Bonilla, Braulio; Ashley, Alexandra; Hou, Weizhou; Byrd, Daniel; Thorne, Steve H

    2016-04-12

    The immune response plays a key role in enhancing the therapeutic activity of oncolytic virotherapies. However, to date, investigators have relied on inherent interactions between the virus and the immune system, often coupled to the expression of a single cytokine transgene. Recently, the importance of TLR activation in mediating adaptive immunity has been demonstrated. We therefore sought to influence the type and level of immune response raised after oncolytic vaccinia therapy through manipulation of TLR signaling. Vaccinia naturally activates TLR2, associated with an antibody response, whereas a CTL response is associated with TLR3-TRIF-signaling pathways. We manipulated TLR signaling by vaccinia through deglycosylation of the viral particle to block TLR2 activation and expression of a TRIF transgene. The resulting vector displayed greatly reduced production of anti-viral neutralizing antibody as well as an increased anti-tumor CTL response. Delivery in both naive and pre-treated mice was enhanced and immunotherapeutic activity dramatically improved. PMID:27050526

  16. Differential Fc-receptor engagement drives an anti-tumor vaccinal effect

    PubMed Central

    DiLillo, David J.; Ravetch, Jeffrey V.

    2015-01-01

    Summary Passively-administered anti-tumor mAbs rapidly kill tumor targets via FcγR-mediated cytotoxicity (ADCC), a short-term process. However, anti-tumor mAb treatment can also induce a vaccinal effect, in which mAb-mediated tumor death induces a long-term anti-tumor cellular immune response. To determine how such responses are generated, we utilized a murine model of an anti-tumor vaccinal effect against a model neoantigen. We demonstrate that FcγR expression by CD11c+ antigen-presenting cells is required to generate anti-tumor T cell responses upon ADCC-mediated tumor clearance. Using FcγR-humanized mice, we demonstrate that anti-tumor huIgG1 must engage hFcγRIIIA on macrophages to mediate ADCC, but also engage hFcγRIIA, the sole hFcγR expressed by human DCs, to generate a potent vaccinal effect. Thus, while next-generation anti-tumor antibodies with enhanced binding to only hFcγRIIIA are now in clinical use, ideal anti-tumor antibodies must be optimized for both cytotoxic effects as well as hFcγRIIA engagement on DCs to stimulate long-term anti-tumor cellular immunity. PMID:25976835

  17. Oligoesculin fraction induces anti-tumor effects and promotes immune responses on B16-F10 mice melanoma.

    PubMed

    Mokdad Bzeouich, Imen; Mustapha, Nadia; Sassi, Aicha; Ghedira, Kamel; Ghoul, Mohamed; Chebil, Latifa; Luis, José; Chekir-Ghedira, Leila

    2016-08-01

    Laccase was used to enzymatically polymerize esculin. Oligoesculin fraction was obtained after ultrafiltration through a 5-kDa membrane. Several studies have been carried out to prove the effectiveness of natural substances such as immunomodulators to promote the anti-cancer activity in situ. The purpose of our report was to explore whether the anti-tumor potential of the oligoesculin fraction in vitro and in vivo is linked to its immunological mechanisms in melanoma-bearing mice. We revealed that oligoesculin fraction reduced B16-F10 proliferation and migration in vitro in a dose-related manner. Moreover, melanin synthesis and tyrosinase activity were inhibited in these melanoma cells in a concentration-dependent way. The anti-tumor potential of oligoesculin fraction was also assessed in vivo. Our results showed that intraperitoneal administration of oligoesculin fraction, at 50 mg/kg body weight (b.w.) for 21 days, reduced tumor size and weight with percentages of inhibition of 94 and 87 %, respectively. Oligoesculin fraction was effective in promoting lysosomal activity and nitric oxide (NO) production by peritoneal macrophages in tumor-implanted mice. In addition, the activities of natural killer (NK), cytotoxic T lymphocytes, and macrophages were significantly enhanced by oligoesculin fraction. These findings suggested that this polymer with its anti-tumor and immunomodulatory properties could be used for the treatment of melanoma. PMID:26960691

  18. Inhibition of the Aurora A kinase augments the anti-tumor efficacy of oncolytic measles virotherapy.

    PubMed

    Iankov, I D; Kurokawa, C B; D'Assoro, A B; Ingle, J N; Domingo-Musibay, E; Allen, C; Crosby, C M; Nair, A A; Liu, M C; Aderca, I; Federspiel, M J; Galanis, E

    2015-09-01

    Oncolytic measles virus (MV) strains have demonstrated broad spectrum preclinical anti-tumor efficacy, including breast cancer. Aurora A kinase controls mitotic spindle formation and has a critical role in malignant transformation. We hypothesized that the Aurora A kinase inhibitor MLN8237 (alisertib) can increase MV oncolytic effect and efficacy by causing mitotic arrest. Alisertib enhanced MV oncolysis in vitro and significantly improved outcome in vivo against breast cancer xenografts. In a disseminated MDA-231-lu-P4 lung metastatic model, the MV/alisertib combination treatment markedly increased median survival to 82.5 days with 20% of the animals being long-term survivors versus 48 days median survival for the control animals. Similarly, in a pleural effusion model of advanced breast cancer, the MV/alisertib combination significantly improved outcome with a 74.5 day median survival versus the single agent groups (57 and 40 days, respectively). Increased viral gene expression and IL-24 upregulation were demonstrated, representing possible mechanisms for the observed increase in anti-tumor effect. Inhibiting Aurora A kinase with alisertib represents a novel approach to enhance MV-mediated oncolysis and antitumor effect. Both oncolytic MV strains and alisertib are currently tested in clinical trials, this study therefore provides the basis for translational applications of this combinatorial strategy in the treatment of patients with advanced breast cancer. PMID:26272026

  19. Antisense oligonucleotides and all-trans retinoic acid have a synergistic anti-tumor effect on oral squamous cell carcinoma

    PubMed Central

    Xu, Qin; Zhang, Zhiyuan; Zhang, Ping; Chen, Wantao

    2008-01-01

    Background Antisense oligonucleotides against hTR (As-ODN-hTR) have shown promising results as treatment strategies for various human malignancies. All-trans retinoic acid (ATRA) is a signalling molecule with important roles in differentiation and apoptosis. Biological responses to ATRA are currently used therapeutically in various human cancers. The aim of this study was to evaluate the anti-tumor effects of As-ODN-hTR combined with ATRA in vivo. Methods In situ human oral squamous cell carcinoma (OSCC) models were established by subcutaneous injection of Tca8113 cells. Mice were treated with sense oligonucleotides against hTR(S-ODN-hTR) alone, As-ODN-hTR alone, ATRA alone, As-ODN-hTR plus ATRA, or S-ODN-hTR plus ATRA. Tumor size and weight were assessed in the mice. Telomerase activity was detected by a TRAP assay, apoptotic cells were evaluated with a Tunel assay, the expression of apoptosis-related proteins (Bcl-2 and Bax) was evaluated by immunohistochemistry and ultrastructural morphological changes in the tumor specimen were examined. Results Both As-ODN-hTR and ATRA can significantly inhibit tumor growth in this OSCC xenograft solid-tumor model, and the combination of the two agents had a synergistic anti-tumorogenic effect. We also demonstrated that this anti-tumor effect correlated with inhibition of telomerase activity. Furthermore, significant increases in the number of apoptotic cells, typical apoptotic morphology and a downregulation of the anti-apoptotic protein, bcl-2 were observed in the treated tissues. Conclusion The combination of As-ODN-hTR and ATRA has a synergistic anti-tumor effect. This anti-tumor effect can be mainly attributed to apoptosis induced by a decrease in telomerase activity. Bcl-2 plays an important role in this process. Therefore, combining As-ODN-hTR and ATRA may be an approach for the treatment of human oral squamous cell carcinoma. PMID:18522733

  20. 1,2,3,4,6-Pentakis[-O-(3,4,5-trihydroxybenzoyl)]-α,β-D-glucopyranose (PGG) analogs: design, synthesis, anti-tumor and anti-oxidant activities.

    PubMed

    Shaikh, Qurat-Ul-Ain; Yang, Meiting; Memon, Khadim Hussain; Lateef, Mehreen; Na, Du; Wan, Shengbiao; Eric, Deslandes; Zhang, Lijuan; Jiang, Tao

    2016-07-22

    1,2,3,4,6-Pentakis[-O-(3,4,5-trihydroxybenzoyl)]-α,β-D-glucopyranose (PGG) 12 has been reported for its antioxidant activities, where the free OH groups in PGG seem to be critical for activities. To explore PGG-based compounds as chemotherapeutic agents and to analyze the contribution of specific OH groups in PGG for anti-cancer activities, we designed and synthesized a series of 27 benzoic and cinnamic acid analogs of PGG. These analogs were tested for cytotoxicities against two human lung (A549 and H1299) and two human colon (HCT116 and HT29) cancer cell lines. Compound 12 (PGG) had highest cytotoxicities against HCT116 and A549 cells with IC50 of 1.61 µM and 3.02 µM, respectively. In contrast, the compound 16 (1,2,3,4,6-pentakis[-O-(4-hydroxy-3-methoxybenzoyl)]-α,β-D-glucopyranose, PVG) was most effective at killing HT29 and H1299 cells with IC50 of 1.76 µM and 3.65 µM, respectively, indicating the mutual contribution of m-methoxy and p-hydroxy groups to the observed cytotoxicities. Moreover, cinnamic acid analogs were less active than the benzoic acid analogs evidenced by higher IC50 values. Furthermore, in cinnamic acid analogs the hydrogenation of double bond to saturated 2-C side chain enhance the cytotoxicities in all four cell lines. Compounds also possess good anti-oxidant and reducing activities. Compound 12 and 26 show the highest antioxidant and reducing activities. PMID:27196315

  1. Anti-tumor necrosis factor-α therapy in uveitis.

    PubMed

    Cordero-Coma, Miguel; Sobrin, Lucia

    2015-01-01

    Since the first reported use in 2001 of an anti-tumor necrosis factor-alpha (TNF-α) agent, infliximab, for the treatment of uveitis, several new anti-TNF-α agents have emerged for the treatment of refractory noninfectious uveitides, although their use remains off-label in the US. These agents have demonstrated remarkable clinical antiinflammatory efficacy and a potential immunoregulatory role in selected uveitis patients, but it is currently unclear whether they can modify the natural history of disease. We review the rationale and clinical indications for this therapy, the differences between agents, how to manage dosing and intervals, and how to screen for and identify potential side effects. We also present a summary of the science behind the use of anti-TNF-α agents in ocular inflammation and the evidence for their efficacy. PMID:26164735

  2. Preparation and anti-tumor metastasis of carboxymethyl chitosan.

    PubMed

    Jiang, Zhiwen; Han, Baoqin; Li, Hui; Li, Xiuhua; Yang, Yan; Liu, Wanshun

    2015-07-10

    Carboxymethyl chitosan (CMCS), one of the most important water soluble chitosan derivatives, has great potentials in biomedical applications due to its excellent water solubility, biodegradability, biocompatibility, and non-toxicity. In the present study, the anti-tumor metastasis effect of CMCS on hepatic tumors was evaluated using human hepatic cancer cell BEL-7402 and mouse hepatoma 22 cells. The results suggested that CMCS could significantly inhibit tumor cell migration in vitro, and reduce the expression of matrix metalloproteinase-9 in BEL-7402 cells in a dose-dependent manner (P<0.05). Furthermore, CMCS significantly inhibited the lung metastasis of hepatoma-22 in Kunming mice (P<0.05). Significant improvement of the lung injury caused by the metastasis of H22 was also observed. The results suggested that the inhibitory effect of CMCS could be attributed in part to the decreased levels of vascular endothelial growth factor and E-selectin in CMCS treated mice. PMID:25857959

  3. Isolation and Assessment of the in Vitro Anti-Tumor Activity of Smenothiazole A and B, Chlorinated Thiazole-Containing Peptide/Polyketides from the Caribbean Sponge, Smenospongia aurea

    PubMed Central

    Esposito, Germana; Teta, Roberta; Miceli, Roberta; Ceccarelli, Luca S.; Della Sala, Gerardo; Camerlingo, Rosa; Irollo, Elena; Mangoni, Alfonso; Pirozzi, Giuseppe; Costantino, Valeria

    2015-01-01

    The study of the secondary metabolites contained in the organic extract of Caribbean sponge Smenospongia aurea led to the isolation of smenothiazole A (3) and B (4), hybrid peptide/polyketide compounds. Assays performed using four solid tumor cell lines showed that smenothiazoles exert a potent cytotoxic activity at nanomolar levels, with selectivity over ovarian cancer cells and a pro-apoptotic mechanism. PMID:25603342

  4. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine.

    PubMed

    Gelbert, Lawrence M; Cai, Shufen; Lin, Xi; Sanchez-Martinez, Concepcion; Del Prado, Miriam; Lallena, Maria Jose; Torres, Raquel; Ajamie, Rose T; Wishart, Graham N; Flack, Robert Steven; Neubauer, Blake Lee; Young, Jamie; Chan, Edward M; Iversen, Philip; Cronier, Damien; Kreklau, Emiko; de Dios, Alfonso

    2014-10-01

    The G1 restriction point is critical for regulating the cell cycle and is controlled by the Rb pathway (CDK4/6-cyclin D1-Rb-p16/ink4a). This pathway is important because of its inactivation in a majority of human tumors. Transition through the restriction point requires phosphorylation of retinoblastoma protein (Rb) by CDK4/6, which are highly validated cancer drug targets. We present the identification and characterization of a potent CDK4/6 inhibitor, LY2835219. LY2835219 inhibits CDK4 and CDK6 with low nanomolar potency, inhibits Rb phosphorylation resulting in a G1 arrest and inhibition of proliferation, and its activity is specific for Rb-proficient cells. In vivo target inhibition studies show LY2835219 is a potent inhibitor of Rb phosphorylation, induces a complete cell cycle arrest and suppresses expression of several Rb-E2F-regulated proteins 24 hours after a single dose. Oral administration of LY2835219 inhibits tumor growth in human tumor xenografts representing different histologies in tumor-bearing mice. LY2835219 is effective and well tolerated when administered up to 56 days in immunodeficient mice without significant loss of body weight or tumor outgrowth. In calu-6 xenografts, LY2835219 in combination with gemcitabine enhanced in vivo antitumor activity without a G1 cell cycle arrest, but was associated with a reduction of ribonucleotide reductase expression. These results suggest LY2835219 may be used alone or in combination with standard-of-care cytotoxic therapy. In summary, we have identified a potent, orally active small-molecule inhibitor of CDK4/6 that is active in xenograft tumors. LY2835219 is currently in clinical development. PMID:24919854

  5. Cancer vaccines: harnessing the potential of anti-tumor immunity.

    PubMed

    Suckow, Mark A

    2013-10-01

    Although the presence of cancer suggests failure of the immune system to protect against development of tumors, the possibility that immunity can be redirected and focused to generate an anti-tumor response offers great translational possibility. The key to this is identifying antigens likely to be present in any given tumor and functionally critical to tumor survival and growth. Such tumor-associated antigens (TAAs) are varied and optimally should be absent from normal tissue. Of particular interest are TAAs associated with the tumor stroma, as immunity directed against the stroma may restrict the ability of the tumor to grow and metastasize. Important to directing the immune system toward an effect anti-tumor response is the understanding of how TAAs are processed and how the tumor is able to evade immune elimination. The process of immunoediting happens in response to the selective pressure that the immune system places upon tumor cell populations and allows for emergence of tumor cells capable of escaping immune destruction. Efforts to harness the immune system for clinical application has been aided by vaccines based on purified recombinant protein or nucleic acid TAAs. For example, a vaccine for canine melanoma has been developed and approved based on immunization with DNA components of tyrosinase, a glycoprotein essential to melanin synthesis. The performance of cancer vaccines has been aided in some cases when supplemented with immunostimulatory molecules such as interleukin 2 or a novel extracellular matrix vaccine adjuvant. Vaccines with the broadest menu of antigenic targets may be those most likely to succeed against cancer. For this reason, tissue vaccines produced from harvested tumor material may offer significant benefit. With several cancer vaccines on the veterinary and human markets, efforts to understand basic tumor immunology are soon to yield great dividends. PMID:23850019

  6. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo

    PubMed Central

    Vendetti, Frank P.; Lau, Alan; Schamus, Sandra; Conrads, Thomas P.; O'Connor, Mark J.; Bakkenist, Christopher J.

    2015-01-01

    ATR and ATM are DNA damage signaling kinases that phosphorylate several thousand substrates. ATR kinase activity is increased at damaged replication forks and resected DNA double-strand breaks (DSBs). ATM kinase activity is increased at DSBs. ATM has been widely studied since ataxia telangiectasia individuals who express no ATM protein are the most radiosensitive patients identified. Since ATM is not an essential protein, it is widely believed that ATM kinase inhibitors will be well-tolerated in the clinic. ATR has been widely studied, but advances have been complicated by the finding that ATR is an essential protein and it is widely believed that ATR kinase inhibitors will be toxic in the clinic. We describe AZD6738, an orally active and bioavailable ATR kinase inhibitor. AZD6738 induces cell death and senescence in non-small cell lung cancer (NSCLC) cell lines. AZD6738 potentiates the cytotoxicity of cisplatin and gemcitabine in NSCLC cell lines with intact ATM kinase signaling, and potently synergizes with cisplatin in ATM-deficient NSCLC cells. In contrast to expectations, daily administration of AZD6738 and ATR kinase inhibition for 14 consecutive days is tolerated in mice and enhances the therapeutic efficacy of cisplatin in xenograft models. Remarkably, the combination of cisplatin and AZD6738 resolves ATM-deficient lung cancer xenografts. PMID:26517239

  7. Optimized anti-tumor effects of anthracyclines plus Vinca alkaloids using a novel, mechanism-based application schedule.

    PubMed

    Ehrhardt, Harald; Schrembs, David; Moritz, Christian; Wachter, Franziska; Haldar, Subrata; Graubner, Ulrike; Nathrath, Michaela; Jeremias, Irmela

    2011-12-01

    Application of anthracyclines and Vinca alkaloids on the same day represents a hallmark of polychemotherapy protocols for hematopoietic malignancies. Here we show, for the first time, that both drugs might act most efficiently if they are applied on different days. Proof-of-concept studies in 18 cell lines revealed that anthracyclines inhibited cell death by Vinca alkaloids in 83% of cell lines. Importantly, in a preclinical mouse model, doxorubicin reduced the anti-tumor effect of vincristine. Both drugs acted in a sequence-dependent manner and the strongest anti-tumor effect was obtained if both drugs were applied on different days. Most notably for clinical relevance, in 34% of 35 fresh primary childhood leukemia cells tested in vitro, doxorubicin reduced the anti-tumor effect of vincristine. As underlying mechanism, doxorubicin activated p53, p53 induced cell-cycle arrest, and cell-cycle arrest disabled inactivation of antiapoptotic Bcl-2 family members by vincristine; therefore, vincristine was unable to activate downstream apoptosis signaling. As molecular proof, antagonism was rescued by knockdown of p53, whereas knockdown of cyclin A inhibited vincristine-induced apoptosis. Our data suggest evaluating anthracyclines and Vinca alkaloids on different days in future trials. Selecting drug combinations based on mechanistic understanding represents a novel conceptional strategy for potent polychemotherapy protocols. PMID:21926351

  8. Optimizing the extraction of anti-tumor polysaccharides from the fruit of Capparis spionosa L. by response surface methodology.

    PubMed

    Ji, Yu-Bin; Dong, Fang; Ma, Dong-Bin; Miao, Jing; Jin, Li-Na; Liu, Zhen-Feng; Zhang, Ling-Wen

    2012-01-01

    Capparis spionosa L. is a traditional medicinal plant in China and central Asia. In this study, an experiment was designed to investigate the optimization of the extraction of anti-tumor polysaccharides from the fruit of Capparis spionosa L. (CSPS) by response surface methodology (RSM). Four independent variables (extraction temperature, extraction time, ratio of water to sample and extraction cycles) were explored. Meanwhile, the in vivo anti-tumor activity of CSPS was investigated. The results showed that the experimental data could be fitted to a second-order polynomial equation using multiple regression analysis. The optimum extraction conditions were as follows: extraction temperature 92 °C, extraction time 140 min, ratio of water to sample 26 mL/g, and three extraction cycle. Under these conditions, the yield of polysaccharides reached 13.01%, which was comparable to the predicted yield (12.94%, p > 0.05). This indicated that the model was adequate for the extraction process. Additionally, CSPS could prolong the survival time of H22 bearing mice in vivo. The anti-tumor activities of CSPS were dose-dependent. PMID:22699566

  9. Cobalt(II), Nickel(II) and Copper(II) complexes of a tetradentate Schiff base as photosensitizers: Quantum yield of 1O2 generation and its promising role in anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Pradeepa, S. M.; Bhojya Naik, H. S.; Vinay Kumar, B.; Indira Priyadarsini, K.; Barik, Atanu; Ravikumar Naik, T. R.

    2013-01-01

    In the present investigation, a Schiff base N'1,N'3-bis[(E)-(5-bromo-2-hydroxyphenyl)methylidene]benzene-1,3-dicarbohydrazide and its metal complexes have been synthesized and characterized. The DNA-binding studies were performed using absorption spectroscopy, emission spectra, viscosity measurements and thermal denatuaration studies. The experimental evidence indicated that, the Co(II), Ni(II) and Cu(II) complexes interact with calf thymus DNA through intercalation with an intrinsic binding constant Kb of 2.6 × 104 M-1, 5.7 × 104 M-1 and 4.5 × 104 M-1, respectively and they exhibited potent photodamage abilities on pUC19 DNA, through singlet oxygen generation with quantum yields of 0.32, 0.27 and 0.30 respectively. The cytotoxic activity of the complexes resulted that they act as a potent photosensitizers for photochemical reactions.

  10. Synergistic anti-tumor activity of acadesine (AICAR) in combination with the anti-CD20 monoclonal antibody rituximab in in vivo and in vitro models of mantle cell lymphoma

    PubMed Central

    Montraveta, Arnau; Xargay-Torrent, Sílvia; López-Guerra, Mónica; Rosich, Laia; Pérez-Galán, Patricia; Salaverria, Itziar; Beà, Silvia; Kalko, Susana G.; de Frias, Mercè; Campàs, Clara; Roué, Gaël; Colomer, Dolors

    2014-01-01

    Mantle cell lymphoma (MCL) is considered one of the most challenging lymphoma, with limited responses to current therapies. Acadesine, a nucleoside analogue has shown antitumoral effects in different preclinical cancer models as well as in a recent phase I/II clinical trial conducted in patients with chronic lymphocytic leukemia. Here we observed that acadesine exerted a selective antitumoral activity in the majority of MCL cell lines and primary MCL samples, independently of adverse cytogenetic factors. Moreover, acadesine was highly synergistic, both in vitro and in vivo, with the anti-CD20 monoclonal antibody rituximab, commonly used in combination therapy for MCL. Gene expression profiling analysis in harvested tumors suggested that acadesine modulates immune response, actin cytoskeleton organization and metal binding, pointing out a substantial impact on metabolic processes by the nucleoside analog. Rituximab also induced changes on metal binding and immune responses. The combination of both drugs enhanced the gene signature corresponding to each single agent, showing an enrichment of genes involved in inflammation, metabolic stress, apoptosis and proliferation. These effects could be important as aberrant apoptotic and proinflammatory pathways play a significant role in the pathogenesis of MCL. In summary, our results suggest that acadesine exerts a cytotoxic effect in MCL in combination with rituximab, by decreasing the proliferative and survival signatures of the disease, thus supporting the clinical examination of this strategy in MCL patients. PMID:24519895

  11. Potentiating the cellular targeting and anti-tumor activity of Dp44mT via binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells

    PubMed Central

    Merlot, Angelica M.; Sahni, Sumit; Lane, Darius J.R.; Fordham, Ashleigh M.; Pantarat, Namfon; Hibbs, David E.; Richardson, Vera; Doddareddy, Munikumar R.; Ong, Jennifer A.; Huang, Michael L.H.

    2015-01-01

    Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) demonstrates potent anti-cancer activity. We previously demonstrated that 14C-Dp44mT enters and targets cells through a carrier/receptor-mediated uptake process. Despite structural similarity, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT) and pyridoxal isonicotinoyl hydrazone (PIH) enter cells via passive diffusion. Considering albumin alters the uptake of many drugs, we examined the effect of human serum albumin (HSA) on the cellular uptake of Dp44mT, Bp4eT and PIH. Chelator-HSA binding studies demonstrated the following order of relative affinity: Bp4eT≈PIH>Dp44mT. Interestingly, HSA decreased Bp4eT and PIH uptake, potentially due to its high affinity for the ligands. In contrast, HSA markedly stimulated Dp44mT uptake by cells, with two saturable uptake mechanisms identified. The first mechanism saturated at 5-10 μM (Bmax:1.20±0.04 × 107 molecules/cell; Kd:33±3 μM) and was consistent with a previously identified Dp44mT receptor/carrier. The second mechanism was of lower affinity, but higher capacity (Bmax:2.90±0.12 × 107 molecules/cell; Kd:65±6 μM), becoming saturated at 100 μM and was only evident in the presence of HSA. This second saturable Dp44mT uptake process was inhibited by excess HSA and had characteristics suggesting it was mediated by a specific binding site. Significantly, the HSA-mediated increase in the targeting of Dp44mT to cancer cells potentiated apoptosis and could be important for enhancing efficacy. PMID:25848850

  12. Design, Immune Responses and Anti-Tumor Potential of an HPV16 E6E7 Multi-Epitope Vaccine

    PubMed Central

    Chaves, Agatha A. Muniz; Cavalher, Aline Marques; Lopes, Aline Soriano; Diniz, Mariana de Oliveira; Schanoski, Alessandra Soares; de Melo, Robson Lopes; Ferreira, Luís Carlos de Souza; de Oliveira, Maria Leonor S.; Demasi, Marilene; Ho, Paulo Lee

    2015-01-01

    Cervical cancer is a common type of cancer among women worldwide and infection with high-risk human papillomavirus (HPVs) types represents the major risk factor for the etiopathogenesis of the disease. HPV-16 is the most frequently identified HPV type in cervical lesions and expression of E6 and E7 oncoproteins is required for the uncontrolled cellular proliferation. In the present study we report the design and experimental testing of a recombinant multi-epitope protein containing immunogenic epitopes of HPV-16 E6 and E7. Tumor preventive assays, based on the engraftment of TC-1 cells in mice, showed that the E6E7 multi-epitope protein induced a full preventive anti-tumor protection in wild-type mice, as well as in mice deficient in expression of CD4+ T cells and TLR4 receptor. Nonetheless, no anti-tumor protection was observed in mice deficient in CD8+ T cells. Also, the vaccine promoted high activation of E6/E7-specific T cells and in a therapeutic-approach, E6E7 protein conferred full anti-tumor protection in mice. These results show a potential use of this E6E7 multi-epitope antigen as a new and promising antigen for the development of a therapeutic vaccine against tumors induced by HPV. PMID:26390407

  13. Reduction of Splenic Immunosuppressive Cells and Enhancement of Anti-Tumor Immunity by Synergy of Fish Oil and Selenium Yeast

    PubMed Central

    Li, Tsung-Lin; Bauer, Brent A.; Hsia, Simon; Wang, Cheng-Hsu; Huang, Jen-Seng; Wang, Hung-Ming; Yeh, Kun-Yun; Huang, Tse-Hung; Wu, Gwo-Jang; Wu, Chang-Jer

    2013-01-01

    Growing evidence has shown that regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) abnormally increase in cancer cachectic patients. Suppressions of Tregs and MDSCs may enhance anti-tumor immunity for cancer patients. Fish oil and selenium have been known to have many biological activities such as anti-inflammation and anti-oxidation. Whether fish oil and/or selenium have an additional effect on population of immunosuppressive cells in tumor-bearing hosts remained elusive and controversial. To gain insights into their roles on anti-tumor immunity, we studied the fish oil- and/or selenium-mediated tumor suppression and immunity on lung carcinoma, whereof cachexia develops. Advancement of cachexia in a murine lung cancer model manifested with such indicative symptoms as weight loss, chronic inflammation and disturbed immune functionality. The elevation of Tregs and MDSCs in spleens of tumor-bearing mice was positively correlated with tumor burdens. Consumption of either fish oil or selenium had little or no effect on the levels of Tregs and MDSCs. However, consumption of both fish oil and selenium together presented a synergistic effect-The population of Tregs and MDSCs decreased as opposed to increase of anti-tumor immunity when both fish oil and selenium were supplemented simultaneously, whereby losses of body weight and muscle/fat mass were alleviated significantly. PMID:23349693

  14. Plasticity of γδ T Cells: Impact on the Anti-Tumor Response

    PubMed Central

    Lafont, Virginie; Sanchez, Françoise; Laprevotte, Emilie; Michaud, Henri-Alexandre; Gros, Laurent; Eliaou, Jean-François; Bonnefoy, Nathalie

    2014-01-01

    The tumor immune microenvironment contributes to tumor initiation, progression, and response to therapy. Among the immune cell subsets that play a role in the tumor microenvironment, innate-like T cells that express T cell receptors composed of γ and δ chains (γδ T cells) are of particular interest. γδ T cells can contribute to the immune response against many tumor types (lymphoma, myeloma, melanoma, breast, colon, lung, ovary, and prostate cancer) directly through their cytotoxic activity and indirectly by stimulating or regulating the biological functions of other cell types required for the initiation and establishment of the anti-tumor immune response, such as dendritic cells and cytotoxic CD8+ T cells. However, the notion that tumor-infiltrating γδ T cells are a good prognostic marker in cancer was recently challenged by studies showing that the presence of these cells in the tumor microenvironment was associated with poor prognosis in both breast and colon cancer. These findings suggest that γδ T cells may also display pro-tumor activities. Indeed, breast tumor-infiltrating γδ T cells could exert an immunosuppressive activity by negatively regulating dendritic cell maturation. Furthermore, recent studies demonstrated that signals from the microenvironment, particularly cytokines, can confer some plasticity to γδ T cells and promote their differentiation into γδ T cells with regulatory functions. This review focuses on the current knowledge on the functional plasticity of γδ T cells and its effect on their anti-tumor activities. It also discusses the putative mechanisms underlying γδ T cell expansion, differentiation, and recruitment in the tumor microenvironment. PMID:25538706

  15. Mesenchymal stromal cells inhibit murine syngeneic anti-tumor immune responses by attenuating inflammation and reorganizing the tumor microenvironment.

    PubMed

    Modiano, Jaime F; Lindborg, Beth A; McElmurry, Ron T; Lewellen, Mitzi; Forster, Colleen L; Zamora, Edward A; Schaack, Jerome; Bellgrau, Donald; O'Brien, Timothy D; Tolar, Jakub

    2015-11-01

    The potential of mesenchymal stromal cells (MSCs) to inhibit anti-tumor immunity is becoming increasingly well recognized, but the precise steps affected by these cells during the development of an anti-tumor immune response remain incompletely understood. Here, we examined how MSCs affect the steps required to mount an effective anti-tumor immune response following administration of adenovirus Fas ligand (Ad-FasL) in the Lewis lung carcinoma (LL3) model. Administration of bone marrow-derived MSCs with LL3 cells accelerated tumor growth significantly. MSCs inhibited the inflammation induced by Ad-FasL in the primary tumors, precluding their rejection; MSCs also reduced the consequent expansion of tumor-specific T cells in the treated hosts. When immune T cells were transferred to adoptive recipients, MSCs impaired, but did not completely abrogate the ability of these T cells to promote elimination of secondary tumors. This impairment was associated with a modest reduction in tumor-infiltrating T cells, with a significant reduction in tumor-infiltrating macrophages, and with a reorganization of the stromal environment. Our data indicate that MSCs in the tumor environment reduce the efficacy of immunotherapy by creating a functional and anatomic barrier that impairs inflammation, T cell priming and expansion, and T cell function-including recruitment of effector cells. PMID:26250807

  16. Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation.

    PubMed

    Li, Shi-Yong; Liu, Yang; Xu, Cong-Fei; Shen, Song; Sun, Rong; Du, Xiao-Jiao; Xia, Jin-Xing; Zhu, Yan-Hua; Wang, Jun

    2016-06-10

    The core purpose of cancer immunotherapy is the sustained activation and expansion of the tumor specific T cells, especially tumor-infiltrating cytotoxic T lymphocytes (CTLs). Currently, one of the main foci of immunotherapy involving nano-sized carriers is on cancer vaccines and the role of professional antigen presenting cells, such as dendritic cells (DCs) and other phagocytic immune cells. Besides the idea that cancer vaccines promote T cell immune responses, targeting immune inhibitory pathways with nanoparticle delivered regulatory agents such as small interfering RNA (siRNA) to the difficultly-transfected tumor-infiltrating T cells may provide more information on the utility of nanoparticle-mediated cancer immunotherapy. In this study, we constructed nanoparticles to deliver cytotoxic T lymphocyte-associated molecule-4 (CTLA-4)-siRNA (NPsiCTLA-4) and showed the ability of this siRNA delivery system to enter T cells both in vitro and in vivo. Furthermore, T cell activation and proliferation were enhanced after NPsiCTLA-4 treatment in vitro. The ability of direct regulation of T cells of this CTLA-4 delivery system was assessed in a mouse model bearing B16 melanoma. Our results demonstrated that this nanoparticle delivery system was able to deliver CTLA-4-siRNA into both CD4(+) and CD8(+) T cell subsets at tumor sites and significantly increased the percentage of anti-tumor CD8(+) T cells, while it decreased the ratio of inhibitory T regulatory cells (Tregs) among tumor infiltrating lymphocytes (TILs), resulting in augmented activation and anti-tumor immune responses of the tumor-infiltrating T cells. These data support the use of potent nanoparticle-based cancer immunotherapy for melanoma. PMID:26829099

  17. Anti-tumor efficacy of paclitaxel against human lung cancer xenografts.

    PubMed

    Yamori, T; Sato, S; Chikazawa, H; Kadota, T

    1997-12-01

    We examined paclitaxel for anti-tumor activity against human lung cancer xenografts in nude mice and compared its efficacy with that of cisplatin, currently a key drug for lung cancer chemotherapy. Five non-small cell lung cancers (A549, NCI-H23, NCI-H226, NCI-H460 and NCI-H522) and 2 small cell lung cancers (DMS114 and DMS273) were chosen for this study, since these cell lines have been well characterized as regards in vitro and in vivo drug sensitivity. These cells were exposed to graded concentrations of paclitaxel (0.1 to 1000 nM) for 48 h. The 50% growth-inhibitory concentrations (GI50) for the cell lines ranged from 4 to 24 nM, which are much lower than the achievable peak plasma concentration of paclitaxel. In the in vivo study, 4 cell lines (A549, NCI-H23, NCI-H460, DMS-273) were grown as subcutaneous tumors xenografts in nude mice. Paclitaxel was given intravenously as consecutive daily injections for 5 days at the doses of 24 and 12 mg/kg/day. Against every xenograft, paclitaxel produced a statistically significant tumor growth inhibition compared to the saline control. Paclitaxel at 24 mg/kg/day was more effective than cisplatin at 3 mg/kg/day with the same dosing schedule as above, although the toxicity of paclitaxel was similar to or rather lower than that of cisplatin, in terms of body weight loss. In addition, paclitaxel showed potent activity against 2 other lung cancer xenografts (NCI-H226 and DMS114). Therefore, paclitaxel showed more effective, wider-spectrum anti-tumor activity than cisplatin in this panel of 6 lung cancer xenografts. These findings support the potential utility of paclitaxel in the treatment of human lung cancer. PMID:9473739

  18. Fasting protects against the side effects of irinotecan but preserves its anti-tumor effect in Apc15lox mutant mice

    PubMed Central

    Huisman, Sander A; Bijman-Lagcher, Wendy; IJzermans, Jan NM; Smits, Ron; de Bruin, Ron WF

    2015-01-01

    Irinotecan is a widely used topoisomerase-I-inhibitor with a very narrow therapeutic window because of its severe toxicity. In the current study we have examined the effects of fasting prior to irinotecan treatment on toxicity and anti-tumor activity. FabplCre;Apc15lox/+ mice, which spontaneously develop intestinal tumors, of 27 weeks of age were randomized into 3-day fasted and ad libitum fed groups, followed by treatment with a flat-fixed high dose of irinotecan or vehicle. Side-effects were recorded until 11 days after the start of the experiment. Tumor size, and markers for cell-cycle activity, proliferation, angiogenesis, and senescence were measured. Fasted mice were protected against the side-effects of irinotecan treatment. Ad libitum fed mice developed visible signs of discomfort including weight loss, lower activity, ruffled coat, hunched-back posture, diarrhea, and leukopenia. Irinotecan reduced tumor size in fasted and ad libitum fed groups similarly compared to untreated controls (2.4 ± 0.67 mm and 2.4 ± 0.82 mm versus 3.0 ± 1.05 mm and 2.8 ± 1.08 mm respectively, P < 0.001). Immunohistochemical analysis showed reduced proliferation, a reduced number of vascular endothelial cells, and increased levels of senescence in tumors of both irinotecan treated groups. In conclusion, 3 days of fasting protects against the toxic side-effects of irinotecan in a clinically relevant mouse model of spontaneously developing colorectal cancer without affecting its anti-tumor activity. These results support fasting as a powerful way to improve treatment of colorectal carcinoma patients. PMID:25955194

  19. Proteomic Analysis of Anti-Tumor Effects of 11-Dehydrosinulariolide on CAL-27 Cells

    PubMed Central

    Liu, Chih-I; Chen, Cheng-Chi; Chen, Jiing-Chuan; Su, Jui-Hsin; Huang, Han Hsiang; Chen, Jeff Yi-Fu; Wu, Yu-Jen

    2011-01-01

    The anti-tumor effects of 11-dehydrosinulariolide, an active ingredient isolated from soft coral Sinularia leptoclados, on CAL-27 cells were investigated in this study. In the MTT assay for cell proliferation, increasing concentrations of 11-dehydrosinulariolide decreased CAL-27 cell viability. When a concentration of 1.5 μg/mL of 11-dehydrosinulariolide was applied, the CAL-27 cells viability was reduced to a level of 70% of the control sample. The wound healing function decreased as the concentration of 11-dehydrosinulariolide increased. The results in this study indicated that treatment with 11-dehydrosinulariolide for 6 h significantly induced both early and late apoptosis of CAL-27 cells, observed by flow cytometric measurement and microscopic fluorescent observation. A comparative proteomic analysis was conducted to investigate the effects of 11-dehydrosinulariolide on CAL-27 cells at the molecular level by comparison between the protein profiling (revealed on a 2-DE map) of CAL-27 cells treated with 11-dehydrosinulariolide and that of CAL-27 cells without the treatment. A total of 28 differential proteins (12 up-regulated and 16 down-regulated) in CAL-27 cells treated with 11-dehydrosinulariolide have been identified by LC-MS/MS analysis. Some of the differential proteins are associated with cell proliferation, apoptosis, protein synthesis, protein folding, and energy metabolism. The results of this study provided clues for the investigation of biochemical mechanisms of the anti-tumor effects of 11-dehydrosinulariolide on CAL-27 cells and could be valuable information for drug development and progression monitoring of oral squamous cell carcinoma (OSCC). PMID:21822415

  20. Allogeneic IgG combined with dendritic cell stimuli induces anti-tumor T cell immunity

    PubMed Central

    Carmi, Yaron; Spitzer, Matthew H.; Linde, Ian L.; Burt, Bryan M; Prestwood, Tyler R.; Perlman, Nikola; Davidson, Matthew G.; Kenkel, Justin A.; Segal, Ehud; Pusapati, Ganesh V.; Bhattacharya, Nupur; Engleman, Edgar G.

    2015-01-01

    While cancers grow in their hosts and evade host immunity through immunoediting and immunosuppression1–5, tumors are rarely transmissible between individuals. Much like transplanted allogeneic organs, allogeneic tumors are reliably rejected by host T cells, even when the tumor and host share the same major histocompatibility complex (MHC) alleles, the most potent determinants of transplant rejection6–10. How such tumor-eradicating immunity is initiated remains unknown, though elucidating this process could provide a roadmap for inducing similar responses against naturally arising tumors. We found that allogeneic tumor rejection is initiated by naturally occurring tumor-binding IgG antibodies, which enable dendritic cells (DC) to internalize tumor antigens and subsequently activate tumor-reactive T cells. We exploited this mechanism to successfully treat autologous and autochthonous tumors. Either systemic administration of DC loaded with allogeneic IgG (alloIgG)-coated tumor cells or intratumoral injection of alloIgG in combination with DC stimuli induced potent T cell mediated anti-tumor immune responses, resulting in tumor eradication in mouse models of melanoma, pancreas, lung and breast cancer. Moreover, this strategy led to eradication of distant tumors and metastases, as well as the injected primary tumors. To assess the clinical relevance of these findings, we studied antibodies and cells from patients with lung cancer. T cells from these patients responded vigorously to autologous tumor antigens after culture with alloIgG-loaded DC, recapitulating our findings in mice. These results reveal that tumor-binding alloIgG can induce powerful anti-tumor immunity that can be exploited for cancer immunotherapy. PMID:25924063

  1. The Effect of MicroRNA-124 Overexpression on Anti-Tumor Drug Sensitivity

    PubMed Central

    Chen, Shiau-Mei; Chou, Wen-Cheng; Hu, Ling-Yueh; Hsiung, Chia-Ni; Chu, Hou-Wei; Huang, Yuan-Ling; Hsu, Huan-Ming; Yu, Jyh-Cherng; Shen, Chen-Yang

    2015-01-01

    MicroRNAs play critical roles in regulating various physiological processes, including growth and development. Previous studies have shown that microRNA-124 (miR-124) participates not only in regulation of early neurogenesis but also in suppression of tumorigenesis. In the present study, we found that overexpression of miR-124 was associated with reduced DNA repair capacity in cultured cancer cells and increased sensitivity of cells to DNA-damaging anti-tumor drugs, specifically those that cause the formation of DNA strand-breaks (SBs). We then examined which DNA repair–related genes, particularly the genes of SB repair, were regulated by miR-124. Two SB repair–related genes, encoding ATM interactor (ATMIN) and poly (ADP-ribose) polymerase 1 (PARP1), were strongly affected by miR-124 overexpression, by binding of miR-124 to the 3¢-untranslated region of their mRNAs. As a result, the capacity of cells to repair DNA SBs, such as those resulting from homologous recombination, was significantly reduced upon miR-124 overexpression. A particularly important therapeutic implication of this finding is that overexpression of miR-124 enhanced cell sensitivity to multiple DNA-damaging agents via ATMIN- and PARP1-mediated mechanisms. The translational relevance of this role of miR-124 in anti-tumor drug sensitivity is suggested by the finding that increased miR-124 expression correlates with better breast cancer prognosis, specifically in patients receiving chemotherapy. These findings suggest that miR-124 could potentially be used as a therapeutic agent to improve the efficacy of chemotherapy with DNA-damaging agents. PMID:26115122

  2. Comparison of the Anti-tumor Effects of Selective Serotonin Reuptake Inhibitors as Well as Serotonin and Norepinephrine Reuptake Inhibitors in Human Hepatocellular Carcinoma Cells.

    PubMed

    Kuwahara, Jun; Yamada, Takaaki; Egashira, Nobuaki; Ueda, Mitsuyo; Zukeyama, Nina; Ushio, Soichiro; Masuda, Satohiro

    2015-01-01

    The anti-tumor effects of selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs) on several types of cancer cells have been reported. However, comparison of the anti-tumor effects of these drugs on human hepatocellular carcinoma (HepG2) cells has not been studied. We compared the anti-tumor effects of four SSRIs and two SNRIs on HepG2 cells. SSRIs and duloxetine dose-dependently decreased cell viability. Milnacipran had no effect on cell viability. The half-maximal inhibitory concentration was lower in the order of: sertraline, paroxetine, duloxetine, fluvoxamine, escitalopram, and milnacipran. Exposure to sertraline (2 µM) significantly increased caspase-3/7 activity. These results suggest that, of the agents tested here, sertraline had the highest sensitivity to HepG2 cells, and activation of the caspase pathway is involved in the anti-tumor effects of sertraline in HepG2 cells. PMID:26328498

  3. Xanthatin anti-tumor cytotoxicity is mediated via glycogen synthase kinase-3β and β-catenin.

    PubMed

    Tao, Li; Sheng, Xiaobo; Zhang, Lei; Li, Weidong; Wei, Zhonghong; Zhu, Pinting; Zhang, Feng; Wang, Aiyun; Woodgett, James R; Lu, Yin

    2016-09-01

    Xanthatin, a xanthanolide sesquiterpene lactone isolated from Xanthium strumarium L. (Asteraceae), has prominent anti-tumor activity. Initial mechanism of action studies suggested xanthatin triggered activation of Wnt/β-catenin. We examined the effects of xanthatin on signaling pathways in A459 lung cancer cells and mouse embryonic fibroblasts to ascertain requirements for xanthatin-induced cell death and tumor growth in xenografts. Genetic inactivation of GSK-3β, but not the related isoform GSK-3α, compromised xanthatin cytotoxicity while inactivation of β-catenin enhanced xanthatin-mediated cell death. These data provide insight into how xanthatin and related molecules could be effectively targeted toward certain tumors. PMID:27321043

  4. Fine-tuning anti-tumor immunotherapies via stochastic simulations

    PubMed Central

    2012-01-01

    Background Anti-tumor therapies aim at reducing to zero the number of tumor cells in a host within their end or, at least, aim at leaving the patient with a sufficiently small number of tumor cells so that the residual tumor can be eradicated by the immune system. Besides severe side-effects, a key problem of such therapies is finding a suitable scheduling of their administration to the patients. In this paper we study the effect of varying therapy-related parameters on the final outcome of the interplay between a tumor and the immune system. Results This work generalizes our previous study on hybrid models of such an interplay where interleukins are modeled as a continuous variable, and the tumor and the immune system as a discrete-state continuous-time stochastic process. The hybrid model we use is obtained by modifying the corresponding deterministic model, originally proposed by Kirschner and Panetta. We consider Adoptive Cellular Immunotherapies and Interleukin-based therapies, as well as their combination. By asymptotic and transitory analyses of the corresponding deterministic model we find conditions guaranteeing tumor eradication, and we tune the parameters of the hybrid model accordingly. We then perform stochastic simulations of the hybrid model under various therapeutic settings: constant, piece-wise constant or impulsive infusion and daily or weekly delivery schedules. Conclusions Results suggest that, in some cases, the delivery schedule may deeply impact on the therapy-induced tumor eradication time. Indeed, our model suggests that Interleukin-based therapies may not be effective for every patient, and that the piece-wise constant is the most effective delivery to stimulate the immune-response. For Adoptive Cellular Immunotherapies a metronomic delivery seems more effective, as it happens for other anti-angiogenesis therapies and chemotherapies, and the impulsive delivery seems more effective than the piece-wise constant. The expected synergistic

  5. Tetrastatin, the NC1 Domain of the α4(IV) Collagen Chain: A Novel Potent Anti-Tumor Matrikine

    PubMed Central

    Brassart-Pasco, Sylvie; Sénéchal, Karine; Thevenard, Jessica; Ramont, Laurent; Devy, Jérome; Di Stefano, Ludivine; Dupont-Deshorgue, Aurélie; Brézillon, Stéphane; Feru, Jezabel; Jazeron, Jean-François; Diebold, Marie-Danièle; Ricard-Blum, Sylvie; Maquart, François-Xavier; Monboisse, Jean Claude

    2012-01-01

    Background NC1 domains from α1, α2, α3 and α6(IV) collagen chains were shown to exert anti-tumor or anti-angiogenic activities, whereas the NC1 domain of the α4(IV) chain did not show such activities so far. Methodology/Principal Findings We demonstrate in the present paper that the NC1 α4(IV) domain exerts a potent anti-tumor activity both in vitro and in an experimental human melanoma model in vivo. The overexpression of NC1 α4(IV) in human UACC-903 melanoma cells strongly inhibited their in vitro proliferative (–38%) and invasive (–52%) properties. MT1-MMP activation was largely decreased and its cellular distribution was modified, resulting in a loss of expression at the migration front associated with a loss of migratory phenotype. In an in vivo xenograft model in athymic nude mice, the subcutaneous injection of NC1 α4(IV)-overexpressing melanoma cells induced significantly smaller tumors (–80% tumor volume) than the Mock cells, due to a strong inhibition of tumor growth. Exogenously added recombinant human NC1 α4(IV) reproduced the inhibitory effects of NC1 α4(IV) overexpression in UACC-903 cells but not in dermal fibroblasts. An anti-αvβ3 integrin blocking antibody inhibited cell adhesion on recombinant human NC1 α4(IV) substratum. The involvement of αvβ3 integrin in mediating NC1 α4(IV) effect was confirmed by surface plasmon resonance (SPR) binding assays showing that recombinant human NC1 α4(IV) binds to αvβ3 integrin (KD = 148±9.54 nM). Conclusion/Significance Collectively, our results demonstrate that the NC1 α4(IV) domain, named tetrastatin, is a new endogenous anti-tumor matrikine. PMID:22539938

  6. Amplexicaule A exerts anti-tumor effects by inducing apoptosis in human breast cancer

    PubMed Central

    Shu, Guangwen; Wan, Dingrong; He, Feng; Loaec, Morgann; Ding, Yali; Li, Jun; Dovat, Sinisa; Yang, Gaungzhong; Song, Chunhua

    2016-01-01

    Chemotherapy is the main treatment for patients with breast cancer metastases, but natural alternatives have been receiving attention for their potential as novel anti-tumor reagents. Amplexicaule A (APA) is a flavonoid glucoside isolated from rhizomes of Polygonum amplexicaule D. Don var. sinense Forb (PADF). We found that APA has anti-tumor effects in a breast cancer xenograft mouse model and induces apoptosis in breast cancer cell lines. APA increased levels of cleaved caspase-3,-8,-9 and PARP, which resulted from suppression of MCL-1 and BCL-2 expression in the cells. APA also inactivated the Akt/mTOR pathway in breast cancer cells. Thus, APA exerts a strong anti-tumor effect on breast cancer cells, most likely through induction of apoptosis. Our study is the first to identify this novel anti-tumor compound and provides a new strategy for isolation and separation of single compounds from herbs. PMID:26943775

  7. Amplexicaule A exerts anti-tumor effects by inducing apoptosis in human breast cancer.

    PubMed

    Xiang, Meixian; Su, Hanwen; Shu, Guangwen; Wan, Dingrong; He, Feng; Loaec, Morgann; Ding, Yali; Li, Jun; Dovat, Sinisa; Yang, Gaungzhong; Song, Chunhua

    2016-04-01

    Chemotherapy is the main treatment for patients with breast cancer metastases, but natural alternatives have been receiving attention for their potential as novel anti-tumor reagents. Amplexicaule A (APA) is a flavonoid glucoside isolated from rhizomes of Polygonum amplexicaule D. Don var. sinense Forb (PADF). We found that APA has anti-tumor effects in a breast cancer xenograft mouse model and induces apoptosis in breast cancer cell lines. APA increased levels of cleaved caspase-3,-8,-9 and PARP, which resulted from suppression of MCL-1 and BCL-2 expression in the cells. APA also inactivated the Akt/mTOR pathway in breast cancer cells. Thus, APA exerts a strong anti-tumor effect on breast cancer cells, most likely through induction of apoptosis. Our study is the first to identify this novel anti-tumor compound and provides a new strategy for isolation and separation of single compounds from herbs. PMID:26943775

  8. Therapeutic anti-tumor efficacy of anti-CD137 agonistic monoclonal antibody in mouse models of myeloma

    PubMed Central

    Murillo, Oihana; Arina, Ainhoa; Hervas-Stubbs, Sandra; Gupta, Anjana; McCluskey, Brandon; Dubrot, Juan; Palazón, Asís; Azpilikueta, Arantza; Ochoa, Maria C.; Alfaro, Carlos; Solano, Sarai; Pérez-Gracia, José L.; Oyajobi, Babatunde O.; Melero, Ignacio

    2008-01-01

    Purpose: Eradication of post-treatment residual myeloma cells is needed to prevent relapses and immunostimulatory monoclonal antibodies (mAbs) such as anti-CD137, CTLA-4, CD40, etc, that enhance the immune response against malignancies represent a means of achieving this purpose. This study explores anti-CD137 mAbs for mutiple myeloma (MM) treatment in preclinical models of the disease because they safely augment tumor immunity and are in clinical trials for other cancers. Experimental design: The anti-tumor effect of anti-CD137 mAb on mouse plasmacytomas derived from HOPC and NS0 cell lines was studied and compared with that of anti-CTLA-4, anti-CD40 and anti-ICAM-2 mAbs. The anti-tumor effect of anti-CD137 mAb was also examined in a mouse syngeneic disseminated myeloma (5TGM1) model, which more closely resembles human MM. Depletions of specific cell populations and gene-targeted mice were used to unravel the requirements for tumor rejection. Results: Agonistic mAb against CD137 and blocking anti-CTLA-4 mAb showed activity against intra-peritoneal HOPC tumors, resulting in extended survival of mice that also became immune to re-challenge. Anti-CD137 mAbs induced complete eradications of established subcutaneous NS0-derived tumors that were dependent on IFN-γ, NK cells and CD8+ T lymphocytes. NK cells accumulated in tumor draining lymph nodes (TDLNs) and showed increased IFN-γ production. Anti-tumor efficacy of anti-CD137 mAb was preserved in CD28-deficient mice, despite the fact that CD28 signaling increases the expression of CD137 on CD8+ T cells. Importantly, anti-CD137 mAb treatment significantly decreased systemic tumor burden in the disseminated 5TGM1 model. Conclusions: Anti-CD137 mAb's immune-mediated anti-tumor activity in mouse models holds promise for myeloma treatment in humans. PMID:18980984

  9. Acute inflammation induces immunomodulatory effects on myeloid cells associated with anti-tumor responses in a tumor mouse model.

    PubMed

    Salem, Mohamed L; Attia, Zeinab I; Galal, Sohaila M

    2016-03-01

    Given the self nature of cancer, anti-tumor immune response is weak. As such, acute inflammation induced by microbial products can induce signals that result in initiation of an inflammatory cascade that helps activation of immune cells. We aimed to compare the nature and magnitude of acute inflammation induced by toll-like receptor ligands (TLRLs) on the tumor growth and the associated inflammatory immune responses. To induce acute inflammation in tumor-bearing host, CD1 mice were inoculated with intraperitoneal (i.p.) injection of Ehrlich ascites carcinoma (EAC) (5 × 10(5) cells/mouse), and then treated with i.p. injection on day 1, day 7 or days 1 + 7 with: (1) polyinosinic:polycytidylic (poly(I:C)) (TLR3L); (2) Poly-ICLC (clinical grade of TLR3L); (3) Bacillus Calmette Guerin (BCG) (coding for TLR9L); (4) Complete Freund's adjuvant (CFA) (coding for TLR9L); and (5) Incomplete Freund's Adjuvant (IFA). Treatment with poly(I:C), Poly-ICLC, BCG, CFA, or IFA induced anti-tumor activities as measured by 79.1%, 75.94%, 73.94%, 71.88% and 47.75% decreases, respectively in the total number of tumor cells collected 7 days after tumor challenge. Among the tested TLRLs, both poly(I:C) (TLR3L) and BCG (contain TLR9L) showed the highest anti-tumor effects as reflected by the decrease in the number of EAc cells. These effects were associated with a 2-fold increase in the numbers of inflammatory cells expressing the myeloid markers CD11b(+)Ly6G(+), CD11b(+)Ly6G(-), and CD11b(+)Ly6G(-). We concluded that Provision of the proper inflammatory signal with optimally defined magnitude and duration during tumor growth can induce inflammatory immune cells with potent anti-tumor responses without vaccination. PMID:26966565

  10. Acute inflammation induces immunomodulatory effects on myeloid cells associated with anti-tumor responses in a tumor mouse model

    PubMed Central

    Salem, Mohamed L.; Attia, Zeinab I.; Galal, Sohaila M.

    2015-01-01

    Given the self nature of cancer, anti-tumor immune response is weak. As such, acute inflammation induced by microbial products can induce signals that result in initiation of an inflammatory cascade that helps activation of immune cells. We aimed to compare the nature and magnitude of acute inflammation induced by toll-like receptor ligands (TLRLs) on the tumor growth and the associated inflammatory immune responses. To induce acute inflammation in tumor-bearing host, CD1 mice were inoculated with intraperitoneal (i.p.) injection of Ehrlich ascites carcinoma (EAC) (5 × 105 cells/mouse), and then treated with i.p. injection on day 1, day 7 or days 1 + 7 with: (1) polyinosinic:polycytidylic (poly(I:C)) (TLR3L); (2) Poly-ICLC (clinical grade of TLR3L); (3) Bacillus Calmette Guerin (BCG) (coding for TLR9L); (4) Complete Freund’s adjuvant (CFA) (coding for TLR9L); and (5) Incomplete Freund’s Adjuvant (IFA). Treatment with poly(I:C), Poly-ICLC, BCG, CFA, or IFA induced anti-tumor activities as measured by 79.1%, 75.94%, 73.94%, 71.88% and 47.75% decreases, respectively in the total number of tumor cells collected 7 days after tumor challenge. Among the tested TLRLs, both poly(I:C) (TLR3L) and BCG (contain TLR9L) showed the highest anti-tumor effects as reflected by the decrease in the number of EAc cells. These effects were associated with a 2-fold increase in the numbers of inflammatory cells expressing the myeloid markers CD11b+Ly6G+, CD11b+Ly6G−, and CD11b+Ly6G−. We concluded that Provision of the proper inflammatory signal with optimally defined magnitude and duration during tumor growth can induce inflammatory immune cells with potent anti-tumor responses without vaccination. PMID:26966565

  11. Anti-tumor properties of the cGMP/protein kinase G inhibitor DT3 in pancreatic adenocarcinoma.

    PubMed

    Soltek, Sabine; Karakhanova, Svetlana; Golovastova, Marina; D'Haese, Jan G; Serba, Susanne; Nachtigall, Ines; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2015-11-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the world. Therefore, new therapeutic options are urgently needed to improve the survival of PDAC patients. Protein kinase G (PKG) conducts the interlude of cGMP signaling which is important for healthy as well as for cancer cells. DT3 is a specific inhibitor of PKG, and it has been shown to possess an anti-tumor cytotoxic activity in vitro. The main aim of this work was to investigate anti-tumor effects of DT3 upon PDAC in vivo.Expression of PKG was assessed with real-time PCR analysis in the normal and tumor pancreatic cells. In vitro cell viability, proliferation, apoptosis, necrosis, migration, and invasion of the murine PDAC cell line Panc02 were assessed after DT3 treatment. In vivo anti-tumor effects of DT3 were investigated in the murine Panc02 orthotopic model of PDAC. Western blot analysis was used to determine the phosphorylation state of the proteins of interest.Functional PKGI is preferentially expressed in PDAC cells. DT3 was capable to reduce viability, proliferation, and migration of murine PDAC cells in vitro. At the same time, DT3 treatment did not change the viability of normal epithelial cells of murine liver. In vivo, DT3 treatment reduced the tumor volume and metastases in PDAC-bearing mice, but it was ineffective to prolong the survival of the tumor-bearing animals. In addition, DT3 treatment decreased phosphorylation of GSK-3, P38, and CREB in murine PDAC.Inhibition of PKG could be a potential therapeutic strategy for PDAC treatment which should be carefully validated in future pre-clinical studies. PMID:26105003

  12. In vitro generated anti-tumor T lymphocytes exhibit distinct subsets mimicking in vivo antigen experienced cells

    PubMed Central

    Yang, Shicheng; Gattinoni, Luca; Liu, Fang; Ji, Yun; Yu, Zhiya; Restifo, Nicholas P.; Rosenberg, Steven A.; Morgan, Richard A.

    2011-01-01

    The T lymphocyte pool can be sub-divided into naïve (Tn), effector memory (Tem), and central memory (Tcm) T cells. In this study, we characterized in vitro short-term cultured anti-tumor human T lymphocytes generated by lentiviral transduction with an anti-tumor antigen TCR vector. Within two weeks of in vitro culture, the cultured T cells showed a Tcm-like phenotype illustrated by a high percentage of CD62L and CD45RO cells. When the cells were sorted into populations that were CD45RO+/CD62L− (Tem), CD45RO+/CD62L+ (Tcm) or CD45ROlow/CD62L+ (Tn) and co-cultured with antigen-matched tumor lines, the magnitude of cytokine release from these populations for IFNγ (TnTcm>Tem) mimicked the types of immune cell responses observed in vivo. In comparing cell-mediated effector function, Tn were found to be deficient (relative to Tcm and Tem) in the ability to form conjugates with tumor cells and subsequent lytic activity. Moreover, analysis of the gene expression profiles of the in vitro cultured and sorted T cell populations also demonstrated patterns consistent with their in vivo counterparts. When Tcm and Tem were tested for the ability to survive in vivo, Tcm displayed significantly increased engraftment and persistence in NOD/SCID/γc−/− mice. In general, a large percentage of in vitro generated anti-tumor T lymphocytes mimic a Tcm-like phenotype (based on phenotype, effector function, and increased persistence in vivo), which suggests that these Tcm-like cultured T cells may be optimal for adoptive immunotherapy. PMID:21305379

  13. Water-soluble extract of Saxifraga stolonifera has anti-tumor effects on Lewis lung carcinoma-bearing mice.

    PubMed

    Liu, Dong; Yang, Ping; Zhang, Yu-Qing

    2016-10-01

    Saxifraga stolonifera is an evergreen and herbaceous plant well known in Korea, Japan and western China, which has great potential applications in gardening and pharmacology. The aim of this study is to evaluate the anti-tumor effects of S. stolonifera extraction on lung tumors of Lewis mice. By the measurement of MS/MS, we found that there were four main bioactive components in methanol extract of S. stolonifera, including gallic acid, norbergenin, protocatechuic acid and bergenin, and the results of quantitative analysis showed that the contents of gallic acid, protocatechuic acid and bergenin in methanol extract of S. stolonifera were 5.150, 1.492, 24.559mg/g, respectively. Animal experiment showed that the mean tumor weight of Lewis lung carcinoma-bearing mice treated with water-soluble extract of S. stolonifera was obviously smaller than model group (cis-DDP), and its inhibition rate was 49.2%. In addition, histopathological evaluation and immunohistochemical assay confirmed the anti-tumor effects of S. stolonifera. Investigation of four haematological parameters revealed that the Lewis mice fed with S. stolonifera showed good resilience in the level of leukocyte, haemoglobin, blood platelets and red blood cell compared with the model group. In addition, RT-PCR suggested that the relative expression of pro-apoptosis gene p53, Sox and Bax was enhanced, while the relative expression of anti-apoptosis gene Bcl2 was diminished in comparison with model group. These results suggested that water-soluble extract of S. stolonifera has anti-tumor effects on Lewis lung tumors. PMID:27575479

  14. Mechanisms underlying the anti-tumoral effects of Citrus Bergamia juice.

    PubMed

    Delle Monache, Simona; Sanità, Patrizia; Trapasso, Elena; Ursino, Maria Rita; Dugo, Paola; Russo, Marina; Ferlazzo, Nadia; Calapai, Gioacchino; Angelucci, Adriano; Navarra, Michele

    2013-01-01

    Based on the growing deal of data concerning the biological activity of flavonoid-rich natural products, the aim of the present study was to explore in vitro the potential anti-tumoral activity of Citrus Bergamia (bergamot) juice (BJ), determining its molecular interaction with cancer cells. Here we show that BJ reduced growth rate of different cancer cell lines, with the maximal growth inhibition observed in neuroblastoma cells (SH-SY5Y) after 72 hs of exposure to 5% BJ. The SH-SY5Y antiproliferative effect elicited by BJ was not due to a cytotoxic action and it did not induce apoptosis. Instead, BJ stimulated the arrest in the G1 phase of cell cycle and determined a modification in cellular morphology, causing a marked increase of detached cells. The inhibition of adhesive capacity on different physiologic substrates and on endothelial cells monolayer were correlated with an impairment of actin filaments, a reduction in the expression of the active form of focal adhesion kinase (FAK) that in turn caused inhibition of cell migration. In parallel, BJ seemed to hinder the association between the neural cell adhesion molecule (NCAM) and FAK. Our data suggest a mechanisms through which BJ can inhibit important molecular pathways related to cancer-associated aggressive phenotype and offer new suggestions for further studies on the role of BJ in cancer treatment. PMID:23613861

  15. Mechanisms Underlying the Anti-Tumoral Effects of Citrus bergamia Juice

    PubMed Central

    Delle Monache, Simona; Sanità, Patrizia; Trapasso, Elena; Ursino, Maria Rita; Dugo, Paola; Russo, Marina; Ferlazzo, Nadia; Calapai, Gioacchino; Angelucci, Adriano; Navarra, Michele

    2013-01-01

    Based on the growing deal of data concerning the biological activity of flavonoid-rich natural products, the aim of the present study was to explore in vitro the potential anti-tumoral activity of Citrus Bergamia (bergamot) juice (BJ), determining its molecular interaction with cancer cells. Here we show that BJ reduced growth rate of different cancer cell lines, with the maximal growth inhibition observed in neuroblastoma cells (SH-SY5Y) after 72 hs of exposure to 5% BJ. The SH-SY5Y antiproliferative effect elicited by BJ was not due to a cytotoxic action and it did not induce apoptosis. Instead, BJ stimulated the arrest in the G1 phase of cell cycle and determined a modification in cellular morphology, causing a marked increase of detached cells. The inhibition of adhesive capacity on different physiologic substrates and on endothelial cells monolayer were correlated with an impairment of actin filaments, a reduction in the expression of the active form of focal adhesion kinase (FAK) that in turn caused inhibition of cell migration. In parallel, BJ seemed to hinder the association between the neural cell adhesion molecule (NCAM) and FAK. Our data suggest a mechanisms through which BJ can inhibit important molecular pathways related to cancer-associated aggressive phenotype and offer new suggestions for further studies on the role of BJ in cancer treatment. PMID:23613861

  16. Ferulic acid prevents liver injury and increases the anti-tumor effect of diosbulbin B in vivo *

    PubMed Central

    Wang, Jun-ming; Sheng, Yu-chen; Ji, Li-li; Wang, Zheng-tao

    2014-01-01

    The present study is designed to investigate the protection by ferulic acid against the hepatotoxicity induced by diosbulbin B and its possible mechanism, and further observe whether ferulic acid augments diosbulbin B-induced anti-tumor activity. The results show that ferulic acid decreases diosbulbin B-increased serum alanine transaminase/aspartate transaminase (ALT/AST) levels. Ferulic acid also decreases lipid peroxide (LPO) levels which are elevated in diosbulbin B-treated mice. Histological evaluation of the liver demonstrates hydropic degeneration in diosbulbin B-treated mice, while ferulic acid reverses this injury. Moreover, the activities of copper- and zinc-containing superoxide dismutase (CuZn-SOD) and catalase (CAT) are decreased in the livers of diosbulbin B-treated mice, while ferulic acid reverses these decreases. Further results demonstrate that the mRNA expressions of CuZn-SOD and CAT in diosbulbin B-treated mouse liver are significantly decreased, while ferulic acid prevents this decrease. In addition, ferulic acid also augments diosbulbin B-induced tumor growth inhibition compared with diosbulbin B alone. Taken together, the present study shows that ferulic acid prevents diosbulbin B-induced liver injury via ameliorating diosbulbin B-induced liver oxidative stress injury and augments diosbulbin B-induced anti-tumor activity. PMID:24903991

  17. Discovery of NKT cells and development of NKT cell-targeted anti-tumor immunotherapy

    PubMed Central

    TANIGUCHI, Masaru; HARADA, Michishige; DASHTSOODOL, Nyambayar; KOJO, Satoshi

    2015-01-01

    Natural Killer T (NKT) cells are unique lymphocytes characterized by their expression of a single invariant antigen receptor encoded by Vα14Jα18 in mice and Vα24Jα18 in humans, which recognizes glycolipid antigens in association with the monomorphic CD1d molecule. NKT cells mediate adjuvant activity to activate both CD8T cells to kill MHC-positive tumor cells and NK cells to eliminate MHC-negative tumor at the same time in patients, resulting in the complete eradication of tumors without relapse. Therefore, the NKT cell-targeted therapy can be applied to any type of tumor and also to anyone individual, regardless of HLA type. Phase IIa clinical trials on advanced lung cancers and head and neck tumors have been completed and showed significantly prolonged median survival times with only the primary treatment. Another potential treatment option for the future is to use induced pluripotent stem cell (iPS)-derived NKT cells, which induced adjuvant effects on anti-tumor responses, inhibiting in vivo tumor growth in a mouse model. PMID:26194854

  18. Anti-tumor effects of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase {alpha}

    SciTech Connect

    Maeda, Naoki; Kokai, Yasuo; Ohtani, Seiji; Sahara, Hiroeki; Kuriyama, Isoko; Kamisuki, Shinji; Takahashi, Shunya; Sakaguchi, Kengo; Sugawara, Fumio; Yoshida, Hiromi; Sato, Noriyuki; Mizushina, Yoshiyuki . E-mail: mizushin@nutr.kobegakuin.ac.jp

    2007-01-12

    In the screening of selective inhibitors of eukaryotic DNA polymerases (pols), dehydroaltenusin was found to be an inhibitor of pol {alpha} from a fungus (Alternaria tennuis). We succeeded in chemically synthesizing dehydroaltenusin, and the compound inhibited only mammalian pol {alpha} with IC{sub 50} value of 0.5 {mu}M, and did not influence the activities of other replicative pols such as pols {delta} and {epsilon}, but also showed no effect on pol {alpha} activity from another vertebrate, fish, or from a plant species. Dehydroaltenusin also had no influence on the other pols and DNA metabolic enzymes tested. The compound also inhibited the proliferation of human cancer cells with LD{sub 50} values of 38.0-44.4 {mu}M. In an in vivo anti-tumor assay on nude mice bearing solid tumors of HeLa cells, dehydroaltenusin was shown to be a promising suppressor of solid tumors. Histopathological examination revealed that increased tumor necrosis and decreased mitotic index were apparently detected by the compound in vivo. Therefore, dehydroaltenusin could be of interest as not only a mammalian pol {alpha}-specific inhibitor, but also as a candidate drug for anti-cancer treatment.

  19. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses

    PubMed Central

    Chiba, Shiho; Ikushima, Hiroaki; Ueki, Hiroshi; Yanai, Hideyuki; Kimura, Yoshitaka; Hangai, Sho; Nishio, Junko; Negishi, Hideo; Tamura, Tomohiko; Saijo, Shinobu; Iwakura, Yoichiro; Taniguchi, Tadatsugu

    2014-01-01

    The eradication of tumor cells requires communication to and signaling by cells of the immune system. Natural killer (NK) cells are essential tumor-killing effector cells of the innate immune system; however, little is known about whether or how other immune cells recognize tumor cells to assist NK cells. Here, we show that the innate immune receptor Dectin-1 expressed on dendritic cells and macrophages is critical to NK-mediated killing of tumor cells that express N-glycan structures at high levels. Receptor recognition of these tumor cells causes the activation of the IRF5 transcription factor and downstream gene induction for the full-blown tumoricidal activity of NK cells. Consistent with this, we show exacerbated in vivo tumor growth in mice genetically deficient in either Dectin-1 or IRF5. The critical contribution of Dectin-1 in the recognition of and signaling by tumor cells may offer new insight into the anti-tumor immune system with therapeutic implications. DOI: http://dx.doi.org/10.7554/eLife.04177.001 PMID:25149452

  20. Synthesis, luminescence, and anti-tumor properties of MgSiO3:Eu-DOX-DPP-RGD hollow microspheres.

    PubMed

    Lv, Ruichan; Zhong, Chongna; Gulzar, Arif; Gai, Shili; He, Fei; Gu, Rui; Zhang, Shenghuan; Yang, Guixin; Yang, Piaoping

    2015-11-14

    In this report, MgSiO3:Eu-DOX-DPP-RGD hollow microspheres employed for simultaneous imaging and anti-cancer therapy have been designed by sequentially loading the anti-tumor drugs doxorubicin (DOX), light-activated platinum(iv) pro-drug PPD, and a targeted peptide of NH2-Gly-Arg-Gly-Asp-Ser (RGD) onto MgSiO3:Eu mesoporous hollow spheres, which were synthesized using solid SiO2 spheres as sacrificed template by a facile hydrothermal process based on the Kirkendall effect. The photoluminescence intensity of MgSiO3:Eu has been optimized, which can emit a recognized red signal in vitro and in vivo under modest ultraviolet (UV) irradiation. It was found that the platform has high biocompatibility and could become intracellular through fast and effective endocytosis with the aid of the targeted peptide RGD, and chemotherapeutic drugs DOX and light-activated platinum(iv) pro-drug DPP that can be released from the carrier to induce an obvious inhabitation effect to HeLa cancer cells (survival rate of only 17.4%), which has been verified by in vitro and in vivo results. Moreover, the in vitro result using a photosensitizer ZnPc loaded carrier shows that the system is not suitable for ZnPc induced photodynamic therapy. The apparent imaging effect and high anti-tumor efficacy of this functional system give it great potential in actual clinical applications. PMID:26447565

  1. An evaluation of the anti-tumor efficacy of oleanolic acid-loaded PEGylated liposomes

    NASA Astrophysics Data System (ADS)

    Tang, Shengnan; Gao, Dawei; Zhao, Tingting; Zhou, Jing; Zhao, Xiaoning

    2013-06-01

    The effective delivery of oleanolic acid (OA) to the target site has several benefits in therapy for different pathologies. However, the delivery of OA is challenging due to its poor aqueous solubility. The study aims to evaluate the tumor inhibition effect of the PEGylated OA nanoliposome on the U14 cervical carcinoma cell line. In our previous study, OA was successfully encapsulated into PEGylated liposome with the modified ethanol injection method. Oral administration of PEGylated OA liposome was demonstrated to be more efficient in inhibiting xenograft tumors. The results of organ index indicated that PEG liposome exhibited higher anti-tumor activity and lower cytotoxicity. It was also found that OA and OA liposomes induced tumor cell apoptosis detected by flow cytometry. Furthermore, effects of OA on the morphology of tumor and other tissues were observed by hematoxylin and eosin staining. The histopathology sections did not show pathological changes in kidney or liver in tested mice. In contrast, there was a significant difference in tumor tissues between treatment groups and the negative control group. These observations imply that PEGylated liposomes seem to have advantages for cancer therapy in terms of effective delivery of OA.

  2. Supercritical fluid extracts of rosemary leaves exhibit potent anti-inflammation and anti-tumor effects.

    PubMed

    Peng, Chiung-Huei; Su, Jeng-De; Chyau, Charng-Cherng; Sung, Tzu-Ying; Ho, Shin-Shien; Peng, Chiung-Chi; Peng, Robert Y

    2007-09-01

    Supercritical fluid SF-CO2 treatment of Rosemarinus officinalis L. fresh leaves under optimum conditions (80 degrees C at 5,000 psi) yielded 5.3% of extract supercritical fluid extraction (SFE)-80, in which five major active principles were identified by liquid chromatography/mass spectrometry (LC/MS), viz., rosmarinic acid, carnosol, 12-methoxycarnosic acid, carnosic acid, and methyl carnosate. Total phenolic content was 155.8 mg/ gallic acid equivalent (GAE)/g in SFE-80, which showed 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging of 81.86% at 0.01 mg/ml. When treated in RAW 264.7, apparent dose-dependent NO inhibition occurred at dosages of 1.56 to 6.25 microg/ml, and more drastically at 12.5 and 25 microg/ml. At 0.5 to 5.0 microg/ml, SFE-80 exhibited dose-dependent viability suppression and significant tumor necrosis factor alpha (TNF-alpha) production in Hep 3B, whereas no effect was found in Chang liver cells. Furthermore, no effect was observed in RAW 264.7 at dosages of 3.13 to 25 microg/ml, indicating that SFE-80 exhibited a noncytotoxic character. Conclusively, rosemary can be considered an herbal anti-inflammatory and anti-tumor agent. PMID:17827696

  3. Maspin expression in prostate tumor elicits host anti-tumor immunity.

    PubMed

    Dzinic, Sijana H; Chen, Kang; Thakur, Archana; Kaplun, Alexander; Bonfil, R Daniel; Li, Xiaohua; Liu, Jason; Bernardo, M Margarida; Saliganan, Allen; Back, Jessica B; Yano, Hiroshi; Schalk, Dana L; Tomaszewski, Elyse N; Beydoun, Ahmed S; Dyson, Gregory; Mujagic, Adelina; Krass, David; Dean, Ivory; Mi, Qing-Sheng; Heath, Elisabeth; Sakr, Wael; Lum, Lawrence G; Sheng, Shijie

    2014-11-30

    The goal of the current study is to examine the biological effects of epithelial-specific tumor suppressor maspin on tumor host immune response. Accumulated evidence demonstrates an anti-tumor effect of maspin on tumor growth, invasion and metastasis. The molecular mechanism underlying these biological functions of maspin is thought to be through histone deacetylase inhibition, key to the maintenance of differentiated epithelial phenotype. Since tumor-driven stromal reactivities co-evolve in tumor progression and metastasis, it is not surprising that maspin expression in tumor cells inhibits extracellular matrix degradation, increases fibrosis and blocks hypoxia-induced angiogenesis. Using the athymic nude mouse model capable of supporting the growth and progression of xenogeneic human prostate cancer cells, we further demonstrate that maspin expression in tumor cells elicits neutrophil- and B cells-dependent host tumor immunogenicity. Specifically, mice bearing maspin-expressing tumors exhibited increased systemic and intratumoral neutrophil maturation, activation and antibody-dependent cytotoxicity, and decreased peritumoral lymphangiogenesis. These results reveal a novel biological function of maspin in directing host immunity towards tumor elimination that helps explain the significant reduction of xenograft tumor incidence in vivo and the clinical correlation of maspin with better prognosis of several types of cancer. Taken together, our data raised the possibility for novel maspin-based cancer immunotherapies. PMID:25373490

  4. Computational studies on DNA recognition of novel organic and copper anti-tumor compounds

    NASA Astrophysics Data System (ADS)

    Nascimento, Rafael R.; Gonçalves, Marcos B.; Petrilli, Helena M.; Ferreira, Ana M. D. C.; Ippoliti, Emiliano; Dreyer, Jens; Carloni, Paolo

    2013-03-01

    The ability of many organic and coordination compounds to bind to DNA and/or damage cellular structures has been largely exploited in anticancer research. Identifying DNA recognition mechanisms have thus important impact on the chemical biology of gene expression and the development of new drugs and therapies. Previous studies on copper(II) complexes with oxindole-Schiff base ligands have shown their potential anti-tumor activity towards different cells, inducing apoptosis through a preferential attack to DNA and/or mitochondria [SIL11]. The binding mechanism of the organic and copper(II) complexes [Cu(isaepy)2]2 + (1) and [Cu(isaenim)]2 + (2) and their modulation at DNA is investigated through theoretical studies. Here we adopted a multi-scale procedure to simulate this large system using molecular docking and classical molecular dynamics. Hybrid Car-Parrinello/Molecular Mechanics calculations were applied to parameterize the copper(II) complexes by using the force matching approach. Free energies of binding are investigated by metadynamics enhanced sampling methods[VAR08]. [SIL11] V. C. da Silveira et. al. JIB 105 (2011) 1692.[VAR08] A. V. Vargiu et. al. Nucl. Acids Res. 36 (2008) 5910.

  5. Modulation of APC Function and Anti-Tumor Immunity by Anti-Cancer Drugs

    PubMed Central

    Martin, Kea; Schreiner, Jens; Zippelius, Alfred

    2015-01-01

    Professional antigen-presenting cells (APCs), such as dendritic cells (DCs), are central to the initiation and regulation of anti-cancer immunity. However, in the immunosuppressive environment within a tumor APCs may antagonize anti-tumor immunity by inducing regulatory T cells (Tregs) or anergy of effector T cells due to lack of efficient costimulation. Hence, in an optimal setting, anti-cancer drugs have the power to reduce tumor size and thereby may induce the release of tumor antigens and, at the same time, modulate APC function toward efficient priming of antigen-specific effector T cells. Selected cytotoxic agents may revert APC dysfunction either by directly maturing DCs or through induction of immunogenic tumor cell death. Furthermore, specific cytotoxic agents may support adaptive immunity by selectively depleting regulatory subsets, such as Tregs or myeloid-derived suppressor cells. Perspectively, this will allow developing effective combination strategies with novel immunotherapies to exert complementary pressure on tumors via direct toxicity as well as immune activation. We, here, review our current knowledge on the capacity of anti-cancer drugs to modulate APC functions to promote durable anti-cancer immune responses. PMID:26483791

  6. Modified chitosan thermosensitive hydrogel enables sustained and efficient anti-tumor therapy via intratumoral injection.

    PubMed

    Jiang, Yingchun; Meng, Xuanyu; Wu, Zhenghong; Qi, Xiaole

    2016-06-25

    Thermosensitive in situ hydrogels are potential candidates to achieve intratumoral administration, nevertheless their weak mechanical strength always lead to serious drug leakage and burst. Herein, we developed a chitosan based thermosensitive hydrogel of high mechanical strength, which was modified by glutaraldehyde (GA) and polyvinyl alcohol (PVA), for intratumoral delivery of paclitaxel (PTX). The modified hydrogel system could achieve sol-gel transition at 35.79±0.4°C and exhibit a 7.03-fold greater mechanical strength compared with simple chitosan hydrogel. Moreover, the drug release of PTX loaded modified hydrogel in PBS (pH 7.4) was found to be extended to 13 days. After intratumoral administration in mice bearing H22 tumors, PTX-loaded modified hydrogels exhibited a 3.72-fold greater antitumor activity compared with Taxol(®). Overall, these modified hydrogel systems demonstrated to be a promising way to achieve efficient sustained release and enhanced anti-tumor therapy efficiency of anticancer drugs through in situ tumor injectable administration. PMID:27083815

  7. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation.

    PubMed

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X

    2016-01-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient's own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers. PMID:27256519

  8. Altered Hepa1-6 cells by dimethyl sulfoxide (DMSO)-treatment induce anti-tumor immunity in vivo

    PubMed Central

    Jiang, Zhengyu; Zhang, Hongxia; Wang, Ye; Yu, Bin; Wang, Chen; Liu, Changcheng; Lu, Juan; Chen, Fei; Wang, Minjun; Yu, Xinlu; Lin, Jiahao; Pan, Xinghua; Wang, Pin; Zhu, Haiying

    2016-01-01

    Cancer immunotherapy is the use of the immune system to treat cancer. Our current research proposed an optional strategy of activating immune system involving in cancer immunotherapy. When being treated with 2% DMSO in culture medium, Hepa1-6 cells showed depressed proliferation with no significant apoptosis or decreased viability. D-hep cells, Hepa1-6 cells treated with DMSO for 7 days, could restore to the higher proliferation rate in DMSO-free medium, but alteration of gene expression profile was irreversible. Interestingly, tumors from D-hep cells, not Hepa1-6 cells, regressed in wild-type C57BL/6 mice whereas D-hep cells exhibited similar tumorigenesis as Hep1–6 cells in immunodeficient mice. As expected, additional Hepa1-6 cells failed to form tumors in the D-hep-C57 mice in which D-hep cells were eliminated. Further research confirmed that D-hep-C57 mice established anti-tumor immunity against Hepa1-6 cells. Our research proposed viable tumor cells with altered biological features by DMSO-treatment could induce anti-tumor immunity in vivo. PMID:26824185

  9. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-06-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers.

  10. Dendritic cell vaccination with a toll-like receptor agonist derived from mycobacteria enhances anti-tumor immunity.

    PubMed

    Vo, Manh-Cuong; Lee, Hyun-Ju; Kim, Jong-Seok; Hoang, My-Dung; Choi, Nu-Ri; Rhee, Joon Haeng; Lakshmanan, Vinoth-Kumar; Shin, Sung-Jae; Lee, Je-Jung

    2015-10-20

    Dendritic cell (DC)-based vaccines are considered useful in cancer immunotherapy, and the interaction of DC and adjuvants is important in the design of the next generation vaccines. In this study, whether DC combined with Rv2299c derived from mycobacteria could improve anti-tumor immune responses in a colon cancer mouse model was evaluated. MC38 cell lines were injected subcutaneously to establish colon-cancer-bearing mice and the following four groups were evaluated: PBS control, tumor antigen (TA) loaded-DC, Rv2299c, and a combination of TA-loaded-DC and Rv2299c. The combination treatment with TA-loaded-DC and Rv2299c exhibited greater inhibition of tumor growth compared to other groups. These effects were associated with the reduction of suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, and the induction of effector cells, such as CD4+ T cells and CD8+ T cells, in spleen, and with the activation of cytotoxic T Lymphocytes and NK cells. These results suggest that TA-loaded-DC vaccination with Rv2299c derived from mycobacteria enhanced anti-tumor immunity in a mouse colon cancer model by inhibiting the generation of immune-suppressive cells and recovering numbers of effector cells, and demonstrated superior polarization of the Th1/Th2 balance in favor of the Th1 immune response. PMID:26418952

  11. Dendritic cell vaccination with a toll-like receptor agonist derived from mycobacteria enhances anti-tumor immunity

    PubMed Central

    Vo, Manh-Cuong; Lee, Hyun-Ju; Kim, Jong-Seok; Hoang, My-Dung; Choi, Nu-Ri; Rhee, Joon Haeng; Lakshmanan, Vinoth-Kumar; Shin, Sung-Jae; Lee, Je-Jung

    2015-01-01

    Dendritic cell (DC)-based vaccines are considered useful in cancer immunotherapy, and the interaction of DC and adjuvants is important in the design of the next generation vaccines. In this study, whether DC combined with Rv2299c derived from mycobacteria could improve anti-tumor immune responses in a colon cancer mouse model was evaluated. MC38 cell lines were injected subcutaneously to establish colon-cancer-bearing mice and the following four groups were evaluated: PBS control, tumor antigen (TA) loaded-DC, Rv2299c, and a combination of TA-loaded-DC and Rv2299c. The combination treatment with TA-loaded-DC and Rv2299c exhibited greater inhibition of tumor growth compared to other groups. These effects were associated with the reduction of suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, and the induction of effector cells, such as CD4+ T cells and CD8+ T cells, in spleen, and with the activation of cytotoxic T Lymphocytes and NK cells. These results suggest that TA-loaded-DC vaccination with Rv2299c derived from mycobacteria enhanced anti-tumor immunity in a mouse colon cancer model by inhibiting the generation of immune-suppressive cells and recovering numbers of effector cells, and demonstrated superior polarization of the Th1/Th2 balance in favor of the Th1 immune response. PMID:26418952

  12. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    PubMed Central

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-01-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers. PMID:27256519

  13. TCR-MHC/peptide interaction: prospects for new anti-tumoral agents.

    PubMed

    Weidle, Ulrich H; Georges, Guy; Tiefenthaler, Georg

    2014-01-01

    Tumor-related antigens can be presented as peptides forming complexes with major histocompatibility complex (MHC) molecules that interact with T-cell receptors, thus generating an immunologic anti-tumor response. Unfortunately, however, this response can be decreased by many effectors and pathways. On the other hand, such peptide-MHC complexes are unique starting points for therapeutic intervention. We present strategies for eliciting an anti-tumoral response by T-cell receptor-based fusion proteins with interleukin (IL)2 and antibody constant region domains, superantigens, and T-cell recruiting antibodies, as well as using genetically modified autologous T-cells as effectors. Another strategy is to direct peptide-MHC complexes to tumors as fusion proteins with an antibody-derived targeting moiety. Finally, we describe T-cell receptor-mimicking antibodies and antibody conjugates as anti tumoral agents. PMID:25422358

  14. TWEAK mediates anti-tumor effect of tumor-infiltrating macrophage

    SciTech Connect

    Kaduka, Yuki; Takeda, Kazuyoshi . E-mail: ktakeda@med.juntendo.ac.jp; Nakayama, Masafumi; Kinoshita, Katsuyuki; Yagita, Hideo; Okumura, Ko

    2005-06-03

    TWEAK induces diverse cellular responses, including pro-inflammatory chemokine production, migration, proliferation, and cell death through the TWEAK receptor, Fn14. In the present study, we examined the effect of TWEAK or Fn14 expression in tumor cells on tumor outgrowth in vivo. Administration of neutralizing anti-TWEAK mAb significantly reduced the frequency of tumor rejection and shortened the survival of mice intraperitoneally inoculated with TWEAK-sensitive Fn14-expressing tumor cells. Moreover, anti-TWEAK mAb treatment promoted the subcutaneous growth of TWEAK-sensitive Fn14-expressing tumor cells, and this promotion was abolished by the inhibition of macrophage infiltration but not NK cell depletion. In contrast, administration of anti-TWEAK mAb had no apparent effect on the growth of TWEAK-resistant tumor cells, even if tumor cells expressed Fn14. On the other hand, TWEAK expression in tumor cells had no significant effect on subcutaneous tumor growth. These results indicate that TWEAK mediates anti-tumor effect of macrophages in vivo.

  15. Tuberculosis infection versus anti-tumor necrosis factor therapy: screening challenges in psoriatic patients

    PubMed Central

    Solovan, Caius; Chiticariu, Elena; Timofte, Adelina; Stoia-Djeska, Irina

    2012-01-01

    Objectives The aim of this study was to analyze the performance of the tuberculin skin test (TST) for screening and monitoring patients treated with anti-tumor necrosis factor agents, in a high-incidence area. Methods A 3-year retrospective study was carried out on 268 subjects. The study included 68 patients with moderate-to-severe psoriasis, screened for latent tuberculosis infection (LTBI) and subjects without psoriasis (100 adults and 100 children) with close contact with infected individuals. Results Positive tuberculin skin test (TST) results (induration >5 mm) were observed in 70.5% (48/68) of patients with psoriasis, higher than those observed in subjects with suspicion of tuberculosis or with close contact with infected individuals: 51% (51/100) in the adult group and 30% (30/100) in the children group. Conclusions These results show that the prevalence of LTBI evaluated with the TST in the psoriatic group is higher than in subjects without psoriasis. Limitation The positive reactions were not confirmed by other verification methods.

  16. Optimizing production of asperolide A, a potential anti-tumor tetranorditerpenoid originally produced by the algal-derived endophytic fungus Aspergillus wentii EN-48

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Li, Xiaoming; Xu, Gangming; Wang, Bingui

    2016-07-01

    The marine algal-derived endophytic fungus Aspergillus wentii EN-48 produces the potential anti-tumor agent asperolide A, a tetranorlabdane diterpenoid active against lung cancer. However, the fermentation yield of asperolide A was very low and only produced in static cultures. Static fermentation conditions of A. wentii EN-48 were optimized employing response surface methodology to enhance the production of asperolide A. The optimized conditions resulted in a 13.9-fold yield enhancement, which matched the predicted value, and the optimized conditions were successfully used in scale-up fermentation for the production of asperolide A. Exogenous addition of plant hormones (especially 10 μmol/L methyl jasmonate) stimulated asperolide A production. To our knowledge, this is first optimized production of an asperolide by a marine-derived fungus. The optimization is Effective and valuable to supply material for further anti-tumor mechanism studies and preclinical evaluation of asperolide A and other norditerpenoids.

  17. Molecular mistletoe therapy: friend or foe in established anti-tumor protocols? A multicenter, controlled, retrospective pharmaco-epidemiological study in pancreas cancer.

    PubMed

    Matthes, H; Friedel, W E; Bock, P R; Zänker, K S

    2010-06-01

    Mistletoe is often used as complementary therapy in oncology. The anti-tumor effects of mistletoe (Iscador) are well documented in-vitro in respect to inhibition of cell proliferation, induction of apoptosis, segmental activation of immune competent cells and trapping of chemotherapeutic drugs within cancer cells by modulating the inhibitory potential of P-glycoprotein (P-gp)-mediated transport of cell toxifying substances (cytotoxic drugs). However, the clinical activity of mistletoe treatment remains still controversial. Implementation of mistletoe therapy as supportive care into anti-cancer programs should be based on the best evidence and must continually be evaluated to ensure safety, efficacy, collection of new data, and cost-effectiveness. Useful domains that can be evaluated include symptom control, adherence to conventional treatment protocols, quality of life, individual outcome and potential advantages of a whole-system health approach. Here we report the results of a multicenter, controlled, retrospective and observational pharmaco-epidemiological study in patients suffering from a pancreatic carcinoma. After surgery the patients were treated by adjuvant chemotherapy with gemcitabine supported by Iscador, or with gemcitabine alone, or any other best of care, but not including Iscador. Using a novel methodological pharmaco-epidemiological design and statistical approach it could be shown that Iscador offers benefits--symptom control, overall survival--as supportive care within gemcitabine protocols of patients with surgically resected pancreatic carcinoma. PMID:20455850

  18. Vaccination with Irradiated Tumor Cells Engineered to Secrete Murine Granulocyte-Macrophage Colony-Stimulating Factor Stimulates Potent, Specific, and Long-Lasting Anti-Tumor Immunity

    NASA Astrophysics Data System (ADS)

    Dranoff, Glenn; Jaffee, Elizabeth; Lazenby, Audrey; Golumbek, Paul; Levitsky, Hyam; Brose, Katja; Jackson, Valerie; Hamada, Hirofumi; Pardoll, Drew; Mulligan, Richard C.

    1993-04-01

    To compare the ability of different cytokines and other molecules to enhance the immunogenicity of tumor cells, we generated 10 retroviruses encoding potential immunomodulators and studied the vaccination properties of murine tumor cells transduced by the viruses. Using a B16 melanoma model, in which irradiated tumor cells alone do not stimulate significant anti-tumor immunity, we found that irradiated tumor cells expressing murine granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated potent, long-lasting, and specific anti-tumor immunity, requiring both CD4^+ and CD8^+ cells. Irradiated cells expressing interleukins 4 and 6 also stimulated detectable, but weaker, activity. In contrast to the B16 system, we found that in a number of other tumor models, the levels of anti-tumor immunity reported previously in cytokine gene transfer studies involving live, transduced cells could be achieved through the use of irradiated cells alone. Nevertheless, manipulation of the vaccine or challenge doses made it possible to demonstrate the activity of murine GM-CSF in those systems as well. Overall, our results have important implications for the clinical use of genetically modified tumor cells as therapeutic cancer vaccines.

  19. Direct tumor recognition by a human CD4+ T-cell subset potently mediates tumor growth inhibition and orchestrates anti-tumor immune responses

    PubMed Central

    Matsuzaki, Junko; Tsuji, Takemasa; Luescher, Immanuel F.; Shiku, Hiroshi; Mineno, Junichi; Okamoto, Sachiko; Old, Lloyd J.; Shrikant, Protul; Gnjatic, Sacha; Odunsi, Kunle

    2015-01-01

    Tumor antigen-specific CD4+ T cells generally orchestrate and regulate immune cells to provide immune surveillance against malignancy. However, activation of antigen-specific CD4+ T cells is restricted at local tumor sites where antigen-presenting cells (APCs) are frequently dysfunctional, which can cause rapid exhaustion of anti-tumor immune responses. Herein, we characterize anti-tumor effects of a unique human CD4+ helper T-cell subset that directly recognizes the cytoplasmic tumor antigen, NY-ESO-1, presented by MHC class II on cancer cells. Upon direct recognition of cancer cells, tumor-recognizing CD4+ T cells (TR-CD4) potently induced IFN-γ-dependent growth arrest in cancer cells. In addition, direct recognition of cancer cells triggers TR-CD4 to provide help to NY-ESO-1-specific CD8+ T cells by enhancing cytotoxic activity, and improving viability and proliferation in the absence of APCs. Notably, the TR-CD4 either alone or in collaboration with CD8+ T cells significantly inhibited tumor growth in vivo in a xenograft model. Finally, retroviral gene-engineering with T cell receptor (TCR) derived from TR-CD4 produced large numbers of functional TR-CD4. These observations provide mechanistic insights into the role of TR-CD4 in tumor immunity, and suggest that approaches to utilize TR-CD4 will augment anti-tumor immune responses for durable therapeutic efficacy in cancer patients. PMID:26447332

  20. Anti-Tumor Effect of a Novel Soluble Recombinant Human Endostatin: Administered as a Single Agent or in Combination with Chemotherapy Agents in Mouse Tumor Models

    PubMed Central

    Jiang, Wenhong; Dai, Wei; Jiang, Yongping

    2014-01-01

    Background Angiogenesis has become an attractive target in cancer treatment. Endostatin is one of the potent anti-angiogenesis agents. Its recombinant form expressed in the yeast system is currently under clinical trials. Endostatin suppresses tumor formation through the inhibition of blood vessel growth. It is anticipated that combined therapy using endostatin and cytotoxic compounds may exert an additive effect. In the present study, we expressed and purified recombinant human endostatin (rhEndostatin) that contained 3 additional amino acid residues (arginine, glycine, and serine) at the amino-terminus and 6 histidine residues in its carboxyl terminus. The recombinant protein was expressed in E. Coli and refolded into a soluble form in a large scale purification process. The protein exhibited a potent anti-tumor activity in bioassays. Furthermore, rhEndostatin showed an additive effect with chemotherapy agents including cyclophosphamide (CTX) and cisplatin (DDP). Methods rhEndostatin cDNA was cloned into PQE vector and expressed in E. Coli. The protein was refolded through dialysis with an optimized protocol. To establish tumor models, nude mice were subcutaneously injected with human cancer cells (lung carcinoma A549, hepatocellular carcinoma QGY-7703, or breast cancer Bcap37). rhEndostatin and/or DDP was administered peritumorally to evaluate the rate of growth inhibition of A549 tumors. For the tumor metastasis model, mice were injected intravenously with mouse melanoma B16 cells. One day after tumor cell injection, a single dose of rhEndostatin, or in combination with CTX, was administered intravenously or at a site close to the tumor. Results rhEndostatin reduced the growth of A549, QGY-7703, and Bcap37 xenograft tumors in a dose dependent manner. When it was administered peritumorally, rhEndostatin exhibited a more potent inhibitory activity. Furthermore, rhEndostatin displayed an additive effect with CTX or DDP on the inhibition of metastasis of B16 tumors

  1. The Elastin Receptor Complex: A Unique Matricellular Receptor with High Anti-tumoral Potential

    PubMed Central

    Scandolera, Amandine; Odoul, Ludivine; Salesse, Stéphanie; Guillot, Alexandre; Blaise, Sébastien; Kawecki, Charlotte; Maurice, Pascal; El Btaouri, Hassan; Romier-Crouzet, Béatrice; Martiny, Laurent; Debelle, Laurent; Duca, Laurent

    2016-01-01

    Elastin, one of the longest-lived proteins, confers elasticity to tissues with high mechanical constraints. During aging or pathophysiological conditions such as cancer progression, this insoluble polymer of tropoelastin undergoes an important degradation leading to the release of bioactive elastin-derived peptides (EDPs), named elastokines. EDP exhibit several biological functions able to drive tumor development by regulating cell proliferation, invasion, survival, angiogenesis, and matrix metalloproteinase expression in various tumor and stromal cells. Although, several receptors have been suggested to bind elastokines (αvβ3 and αvβ5 integrins, galectin-3), their main receptor remains the elastin receptor complex (ERC). This heterotrimer comprises a peripheral subunit, named elastin binding protein (EBP), associated to the protective protein/cathepsin A (PPCA). The latter is bound to a membrane-associated protein called Neuraminidase-1 (Neu-1). The pro-tumoral effects of elastokines have been linked to their binding onto EBP. Additionally, Neu-1 sialidase activity is essential for their signal transduction. Consistently, EDP-EBP interaction and Neu-1 activity emerge as original anti-tumoral targets. Interestingly, besides its direct involvement in cancer progression, the ERC also regulates diabetes outcome and thrombosis, an important risk factor for cancer development and a vascular process highly increased in patients suffering from cancer. In this review, we will describe ERC and elastokines involvement in cancer development suggesting that this unique receptor would be a promising therapeutic target. We will also discuss the pharmacological concepts aiming at blocking its pro-tumoral activities. Finally, its emerging role in cancer-associated complications and pathologies such as diabetes and thrombotic events will be also considered. PMID:26973522

  2. Epigallocatechin Gallate/Layered Double Hydroxide Nanohybrids: Preparation, Characterization, and In Vitro Anti-Tumor Study

    PubMed Central

    Shafiei, Seyedeh Sara; Solati-Hashjin, Mehran; Samadikuchaksaraei, Ali; Kalantarinejad, Reza; Asadi-Eydivand, Mitra; Abu Osman, Noor Azuan

    2015-01-01

    In recent years, nanotechnology in merging with biotechnology has been employed in the area of cancer management to overcome the challenges of chemopreventive strategies in order to gain promising results. Since most biological processes occur in nano scale, nanoparticles can act as carriers of certain drugs or agents to deliver it to specific cells or targets. In this study, we intercalated Epigallocatechin-3-Gallate (EGCG), the most abundant polyphenol in green tea, into Ca/Al-NO3 Layered double hydroxide (LDH) nanoparticles, and evaluated its efficacy compared to EGCG alone on PC3 cell line. The EGCG loaded LDH nanohybrids were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM) and nanosizer analyses. The anticancer activity of the EGCG-loaded LDH was investigated in prostate cancer cell line (PC3) while the release behavior of EGCG from LDH was observed at pH 7.45 and 4.25. Besides enhancing of apoptotic activity of EGCG, the results showed that intercalation of EGCG into LDH can improve the anti- tumor activity of EGCG over 5-fold dose advantages in in-vitro system. Subsequently, the in-vitro release data showed that EGCG-loaded LDH had longer release duration compared to physical mixture, and the mechanism of diffusion through the particle was rate-limiting step. Acidic attack was responsible for faster release of EGCG molecules from LDH at pH of 4.25 compared to pH of 7.4. The results showed that Ca/Al-LDH nanoparticles could be considered as an effective inorganic host matrix for the delivery of EGCG to PC3 cells with controlled release properties. PMID:26317853

  3. Anti-tumor effects of genetic vaccines against HPV major oncogenes

    PubMed Central

    Cordeiro, Marcelo Nazário; Paolini, Francesca; Massa, Silvia; Curzio, Gianfranca; Illiano, Elena; Duarte Silva, Anna Jéssica; Franconi, Rosella; Bissa, Massimiliano; Morghen, Carlo De Giuli; de Freitas, Antonio Carlos; Venuti, Aldo

    2014-01-01

    Expression of HPV E5, E6 and E7 oncogenes are likely to overcome the regulation of cell proliferation and to escape immunological control, allowing uncontrolled growth and providing the potential for malignant transformation. Thus, their three oncogenic products may represent ideal target antigens for immunotherapeutic strategies. In previous attempts, we demonstrated that genetic vaccines against recombinant HPV16 E7 antigen were able to affect the tumor growth in a pre-clinical mouse model. To improve this anti-HPV strategy we developed a novel approach in which we explored the effects of E5-based genetic immunization. We designed novel HPV16 E5 genetic vaccines based on two different gene versions: whole E5 gene and E5Multi. The last one is a long multi epitope gene designed as a harmless E5 version. Both E5 genes were codon optimized for mammalian expression. In addition, we demonstrated that HPV 16 E5 oncogene is expressed in C3 mouse cell line making it an elective model for the study of E5 based vaccine. In this mouse model the immunological and biological activity of the E5 vaccines were assessed in parallel with the activity of anti-E7 and anti-E6 vaccines already reported to be effective in an immunotherapeutic setting. These E7 and E6 vaccines were made with mutated oncogenes, the E7GGG mutant that does not bind pRb and the E6F47R mutant that is less effective in inhibiting p53, respectively. Results confirmed the immunological activity of genetic formulations based on attenuated HPV16 oncogenes and showed that E5-based genetic immunization provided notable anti-tumor effects. PMID:25483514

  4. Anti-CD40 antibody and toll-like receptor 3 ligand restore dendritic cell-mediated anti-tumor immunity suppressed by morphine

    PubMed Central

    Chang, Ming-Cheng; Chen, Yu-Li; Chiang, Ying-Cheng; Cheng, Ya-Jung; Jen, Yu-Wei; Chen, Chi-An; Cheng, Wen-Fang; Sun, Wei-Zen

    2016-01-01

    The influence of morphine on host immunity and the underlying mechanism are still unclear. In the current study, we investigated the influence of morphine on dendritic cells (DCs), its possible mechanism of action, and the molecules that could reverse these effects. Morphine suppressed DC maturation, antigen presenting abilities, and the ability to activate antigen-specific CD8+ T cells. Morphine-treated DCs also secreted higher concentrations of IL-10, but lower IL-6 and TNF-α. Morphine-treated DCs showed decreased ERK1/2 phosphorylation and reduced p38 dephosphorylation. The in vivo administration of immuno-modulators, anti-CD40 Ab and TLR3 ligand-poly(I:C), enhanced antigen-specific immunity, promoted the anti-tumor effects, and prolonged the survival of morphine-treated, tumor-bearing mice by promoting the maturation and function of BMM-derived DCs by enhancing ERK1/2 phosphorylation and p38 dephosphorylation. We concluded that morphine can inhibit DC-mediated anti-tumor immunity by suppressing DC maturation and function. Immuno-modulators, such as anti-CD40 Abs and TLR agonists, can restore the DC-mediated anti-tumor immunity. Use of immuno-modulators could serve as a useful approach to overcome the immunocompromised state generated by morphine. PMID:27186393

  5. Anti-tumor immunity generated by photodynamic therapy in a metastatic murine tumor model

    NASA Astrophysics Data System (ADS)

    Castano, Ana P.; Hamblin, Michael R.

    2005-04-01

    Photodynamic therapy (PDT) is a modality for the treatment of cancer involving excitation of photosensitizers with harmless visible light producing reactive oxygen species. The major biological effects of PDT are apoptosis of tumor cells, destruction of the blood supply and activation of the immune system. The objective of this study is to compare in an animal model of metastatic cancer, PDT alone and PDT combined with low-dose cyclophosphamide (CY). Since the tumor we used is highly metastatic, it is necessary to generate anti-tumor immunity using PDT to both cure the primary tumor and prevent death from metastasis. This immunity may be potentiated by low dose CY. In our model we used J774 cells (a Balb/c reticulum cell sarcoma line with the characteristics of macrophages) and the following PDT regimen: benzoporphyrin derivative monoacid ring A (BPD, 2mg/kg injected IV followed after 15 min by 150 J/cm2 of 690-nm light). CY (50 mg/kg i.p.) was injected 48 hours before light delivery. BPD-PDT led to complete regression of the primary tumor in more than half the mice but no permanent cures were obtained. BPD-PDT in combination with CY led to 60% permanent cures. CY alone gave no permanent cures but did provide a survival advantage. To probe permanent immunity cured animals were rechallenged with the same tumor cell line and the tumors were rejected in 71% of mice cured with BPD-PDT plus CY. We conclude that BPD-PDT in combination with CY gives best overall results and that this is attributable to immunological response activation in addition to PDT-mediated destruction of the tumor.

  6. B7H6-specific bispecific T cell engagers (BiTEs) lead to tumor elimination and host anti-tumor immunity1,2

    PubMed Central

    Wu, Ming-Ru; Zhang, Tong; Gacerez, Albert T.; Coupet, Tiffany A.; DeMars, Leslie R.; Sentman, Charles L.

    2015-01-01

    Substantial evidence showed that T cells are the key effectors in immune-mediated tumor eradication. However, most T cells do not exhibit anti-tumor specificity. In this study, a bispecific T cell engager (BiTE) approach was utilized to direct T cells to recognize B7H6+ tumor cells. B7H6 is a specific ligand for the NK cell activating receptor, NKp30. B7H6 is expressed on various types of primary human tumors, including leukemia, lymphoma, and gastrointestinal stromal tumors (GISTs), but it is not constitutively expressed on normal tissues. In this study, data show that B7H6-specific BiTEs direct T cells to mediate cellular cytotoxicity and IFN-γ secretion upon co-culturing with B7H6+ tumors. Furthermore, B7H6-specific BiTE exhibited no self-reactivity to pro-inflammatory monocytes. In vivo, B7H6-specific BiTE greatly enhanced the survival benefit of RMA/B7H6 lymphoma bearing mice through perforin and IFN-γ effector mechanisms. In addition, long term survivor mice were protected against a RMA lymphoma tumor re-challenge. The B7H6-specific BiTE therapy also decreased tumor burden in murine melanoma and ovarian cancer models. In conclusion, B7H6-specific BiTE activates host T cells and has the potential to treat various B7H6+ hematological and solid tumors. PMID:25911747

  7. Promotion of initial anti-tumor effect via polydopamine modified doxorubicin-loaded electrospun fibrous membranes

    PubMed Central

    Yuan, Ziming; Zhao, Xin; Wang, Xiaohu; Qiu, Wangwang; Chen, Xinliang; Zheng, Qi; Cui, Wenguo

    2014-01-01

    Drug-loaded electrospun PLLA membranes are not conducive to adhesion between materials and tissues due to the strong hydrophobicity of PLLA, which possibly attenuate the drugs’ effect loaded on the materials. In the present work, we developed a facile method to improve the hydrophilicity of doxorubicin (DOX)-loaded electrospun PLLA fibrous membranes, which could enhance the anti-tumor effect at the early stage after implantation. A mussel protein, polydopamine (PDA), could be easily grafted on the surface of hydrophobic DOX-loaded electrospun PLLA membranes (PLLA-DOX/pDA) in water solution. The morphology analysis of PLLA-DOX/pDA fibers displayed that though the fiber diameter was slightly swollen, they still maintained a 3D fibrous structure, and the XPS analysis certified that pDA had successfully been grafted onto the surface of the fibers. The results of surface wettability analysis showed that the contact angle decreased from 136.7° to 0° after grafting. In vitro MTT assay showed that the cytotoxicity of PLLA-DOX/pDA fibers was the strongest, and the stereologic cell counting assay demonstrated that the adhesiveness of PLLA/pDA fiber was significantly better than PLLA fiber. In vivo tumor-bearing mice displayed that, after one week of implantation, the tumor apoptosis and necrosis of PLLA-DOX/pDA fibers were the most obvious from histopathology and TUNEL assay. The caspase-3 activity of PLLA-DOX/pDA group was the highest using biochemical techniques, and the Bax: Bcl-2 ratio increased significantly in PLLA-DOX/pDA group through qRT-PCR analysis. All the results demonstrated that pDA can improve the affinity of the electrospun PLLA membranes and enhance the drug effect on tumors. PMID:25337186

  8. Riluzole mediates anti-tumor properties in breast cancer cells independent of metabotropic glutamate receptor-1.

    PubMed

    Speyer, Cecilia L; Nassar, Mahdy A; Hachem, Ali H; Bukhsh, Miriam A; Jafry, Waris S; Khansa, Rafa M; Gorski, David H

    2016-06-01

    Riluzole, the only drug approved by the FDA for treating amyotrophic lateral sclerosis, inhibits melanoma proliferation through its inhibitory effect on glutamatergic signaling. We demonstrated that riluzole also inhibits the growth of triple-negative breast cancer (TNBC) and described a role for metabotropic glutamate receptor-1 (GRM1) in regulating TNBC cell growth and progression. However, the role of GRM1 in mediating riluzole's effects in breast cancer has not been fully elucidated. In this study, we seek to determine how much of riluzole's action in breast cancer is mediated through GRM1. We investigated anti-tumor properties of riluzole in TNBC and ER+ cells using cell growth, invasion, and soft-agar assays and compared riluzole activity with GRM1 levels. Using Lentiviral vectors expressing GRM1 or shGRM1, these studies were repeated in cells expressing high or low GRM1 levels where the gene was either silenced or overexpressed. Riluzole inhibited proliferation, invasion, and colony formation in both TNBC and ER+ cells. There was a trend between GRM1 expression in TNBC cells and their response to riluzole in both cell proliferation and invasion assays. However, silencing and overexpression studies had no effect on cell sensitivity to riluzole. Our results clearly suggest a GRM1-independent mechanism through which riluzole mediates its effects on breast cancer cells. Understanding the mechanism by which riluzole mediates breast cancer progression will be useful in identifying new therapeutic targets for treating TNBC and in facilitating stratification of patients in clinical trials using riluzole in conjunction with conventional therapy. PMID:27146584

  9. Improved local and systemic anti-tumor efficacy for irreversible electroporation in immunocompetent versus immunodeficient mice.

    PubMed

    Neal, Robert E; Rossmeisl, John H; Robertson, John L; Arena, Christopher B; Davis, Erica M; Singh, Ravi N; Stallings, Jonathan; Davalos, Rafael V

    2013-01-01

    Irreversible electroporation (IRE) is a non-thermal focal ablation technique that uses a series of brief but intense electric pulses delivered into a targeted region of tissue, killing the cells by irrecoverably disrupting cellular membrane integrity. This study investigates if there is an improved local anti-tumor response in immunocompetent (IC) BALB/c versus immunodeficient (ID) nude mice, including the potential for a systemic protective effect against rechallenge. Subcutaneous murine renal carcinoma tumors were treated with an IRE pulsing protocol that used 60% of the predicted voltage required to invoke complete regressions in the ID mice. Tumors were followed for 34 days following treatment for 11 treated mice from each strain, and 7 controls from each strain. Mouse survival based on tumor burden and the progression-free disease period was substantially longer in the treated IC mice relative to the treated ID mice and sham controls for both strains. Treated IC mice were rechallenged with the same cell line 18 days after treatment, where growth of the second tumors was shown to be significantly reduced or prevented entirely. There was robust CD3+ cell infiltration in some treated BALB/C mice, with immunocytes focused at the transition between viable and dead tumor. There was no difference in the low immunocyte presence for untreated tumors, nude mice, and matrigel-only injections in both strains. These findings suggest IRE therapy may have greater therapeutic efficacy in immunocompetent patients than what has been suggested by immunodeficient models, and that IRE may invoke a systemic response beyond the targeted ablation region. PMID:23717630

  10. Improved Local and Systemic Anti-Tumor Efficacy for Irreversible Electroporation in Immunocompetent versus Immunodeficient Mice

    PubMed Central

    Neal, Robert E.; Rossmeisl, John H.; Robertson, John L.; Arena, Christopher B.; Davis, Erica M.; Singh, Ravi N.; Stallings, Jonathan; Davalos, Rafael V.

    2013-01-01

    Irreversible electroporation (IRE) is a non-thermal focal ablation technique that uses a series of brief but intense electric pulses delivered into a targeted region of tissue, killing the cells by irrecoverably disrupting cellular membrane integrity. This study investigates if there is an improved local anti-tumor response in immunocompetent (IC) BALB/c versus immunodeficient (ID) nude mice, including the potential for a systemic protective effect against rechallenge. Subcutaneous murine renal carcinoma tumors were treated with an IRE pulsing protocol that used 60% of the predicted voltage required to invoke complete regressions in the ID mice. Tumors were followed for 34 days following treatment for 11 treated mice from each strain, and 7 controls from each strain. Mouse survival based on tumor burden and the progression-free disease period was substantially longer in the treated IC mice relative to the treated ID mice and sham controls for both strains. Treated IC mice were rechallenged with the same cell line 18 days after treatment, where growth of the second tumors was shown to be significantly reduced or prevented entirely. There was robust CD3+ cell infiltration in some treated BALB/C mice, with immunocytes focused at the transition between viable and dead tumor. There was no difference in the low immunocyte presence for untreated tumors, nude mice, and matrigel-only injections in both strains. These findings suggest IRE therapy may have greater therapeutic efficacy in immunocompetent patients than what has been suggested by immunodeficient models, and that IRE may invoke a systemic response beyond the targeted ablation region. PMID:23717630

  11. Anti-Tumor Immunity in Head and Neck Cancer: Understanding the Evidence, How Tumors Escape and Immunotherapeutic Approaches.

    PubMed

    Allen, Clint T; Clavijo, Paul E; Van Waes, Carter; Chen, Zhong

    2015-01-01

    Many carcinogen- and human papilloma virus (HPV)-associated head and neck cancers (HNSCC) display a hematopoietic cell infiltrate indicative of a T-cell inflamed phenotype and an underlying anti-tumor immune response. However, by definition, these tumors have escaped immune elimination and formed a clinically significant malignancy. A number of both genetic and environmental mechanisms may allow such immune escape, including selection of poorly antigenic cancer cell subsets, tumor produced proinflammatory and immunosuppressive cytokines, recruitment of immunosuppressive immune cell subsets into the tumor and expression of checkpoint pathway components that limit T-cell responses. Here, we explore concepts of antigenicity and immunogenicity in solid tumors, summarize the scientific and clinical data that supports the use of immunotherapeutic approaches in patients with head and neck cancer, and discuss immune-based treatment approaches currently in clinical trials. PMID:26690220

  12. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model.

    PubMed

    Mukherjee, P; Pathangey, L B; Bradley, J B; Tinder, T L; Basu, G D; Akporiaye, E T; Gendler, S J

    2007-02-19

    A MUC1-based vaccine was used in a preclinical model of colon cancer. The trial was conducted in a MUC1-tolerant immune competent host injected with MC38 colon cancer cells expressing MUC1. The vaccine included: MHC class I-restricted MUC1 peptides, MHC class II-restricted pan-helper-peptide, unmethylated CpG oligodeoxynucleotide, and granulocyte macrophage-colony stimulating factor. Immunization was successful in breaking MUC1 self-tolerance, and in eliciting a robust anti-tumor response. The vaccine stimulated IFN-gamma-producing CD4(+) helper and CD8(+) cytotoxic T cells against MUC1 and other undefined MC38 tumor antigens. In the prophylactic setting, immunization caused complete rejection of tumor cells, while in the therapeutic regimen, tumor burden was significantly reduced. PMID:17166639

  13. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model

    PubMed Central

    Mukherjee, P.; Pathangey, L.B.; Bradley, J.B.; Tinder, T.L.; Basu, G.D.; Akporiaye, E.T.; Gendler, S.J.

    2007-01-01

    A MUC1-based vaccine was used in a preclinical model of colon cancer. The trial was conducted in a MUC1-tolerant immune competent host injected with MC38 colon cancer cells expressing MUC1. The vaccine included: MHC class I-restricted MUC1 peptides, MHC class II-restricted pan helper peptide, unmethylated CpG oligodeoxynucleotide, and granulocyte macrophage-colony stimulating factor. Immunization was successful in breaking MUC1 self-tolerance, and in eliciting a robust anti-tumor response. The vaccine stimulated IFN-γ-producing CD4+ helper and CD8+ cytotoxic T cells against MUC1 and other undefined MC38 tumor antigens. In the prophylactic setting, immunization caused complete rejection of tumor cells, while in the therapeutic regimen, tumor burden was significantly reduced. PMID:17166639

  14. Anti-Tumor Immunity in Head and Neck Cancer: Understanding the Evidence, How Tumors Escape and Immunotherapeutic Approaches

    PubMed Central

    Allen, Clint T.; Clavijo, Paul E.; Van Waes, Carter; Chen, Zhong

    2015-01-01

    Many carcinogen- and human papilloma virus (HPV)-associated head and neck cancers (HNSCC) display a hematopoietic cell infiltrate indicative of a T-cell inflamed phenotype and an underlying anti-tumor immune response. However, by definition, these tumors have escaped immune elimination and formed a clinically significant malignancy. A number of both genetic and environmental mechanisms may allow such immune escape, including selection of poorly antigenic cancer cell subsets, tumor produced proinflammatory and immunosuppressive cytokines, recruitment of immunosuppressive immune cell subsets into the tumor and expression of checkpoint pathway components that limit T-cell responses. Here, we explore concepts of antigenicity and immunogenicity in solid tumors, summarize the scientific and clinical data that supports the use of immunotherapeutic approaches in patients with head and neck cancer, and discuss immune-based treatment approaches currently in clinical trials. PMID:26690220

  15. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity.

    PubMed

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography-Mass Spectrometry (GC-MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC-MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865

  16. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity

    PubMed Central

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography–Mass Spectrometry (GC–MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC–MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865

  17. Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy

    PubMed Central

    Kwong, Brandon; Liu, Haipeng; Irvine, Darrell J.

    2011-01-01

    Immunostimulatory therapies that activate immune response pathways are of great interest for overcoming the immunosuppression present in advanced tumors. Agonistic anti-CD40 antibodies and CpG oligonucleotides have previously demonstrated potent, synergistic anti-tumor effects, but their clinical use even as monotherapies is hampered by dose-limiting inflammatory toxicity provoked upon systemic exposure. We hypothesized that by anchoring immuno-agonist compounds to lipid nanoparticles we could retain the bio-activity of therapeutics in the local tumor tissue and tumor-draining lymph node, but limit systemic exposure to these potent molecules. We prepared PEGylated liposomes bearing surface-conjugated anti-CD40 and CpG and assessed their therapeutic efficacy and systemic toxicity compared to soluble versions of the same immuno-agonists, injected intratumorally in the B16F10 murine model of melanoma. Anti-CD40/CpG-liposomes significantly inhibited tumor growth and induced a survival benefit similar to locally injected soluble anti-CD40+CpG. Biodistribution analyses following local delivery showed that the liposomal carriers successfully sequestered anti-CD40 and CpG in vivo, reducing leakage into systemic circulation while allowing draining to the tumor-proximal lymph node. Contrary to locally administered soluble immunotherapy, anti-CD40/CpG liposomes did not elicit significant increases in serum levels of ALT enzyme, systemic inflammatory cytokines, or overall weight loss, confirming that off-target inflammatory effects had been minimized. The development of a delivery strategy capable of inducing robust anti-tumor responses concurrent with minimal systemic side effects is crucial for the continued progress of potent immunotherapies toward widespread clinical translation. PMID:21514665

  18. A Novel Copper Chelate Modulates Tumor Associated Macrophages to Promote Anti-Tumor Response of T Cells

    PubMed Central

    Chakraborty, Paramita; Ganguly, Avishek; Adhikary, Arghya; Mukhopadhyay, Debanjan; Ganguli, Sudipta; Banerjee, Rajdeep; Ashraf, Mohammad; Biswas, Jaydip; Das, Pradeep K.; Sa, Gourisankar; Chatterjee, Mitali; Das, Tanya; Choudhuri, Soumitra Kumar

    2009-01-01

    Background At the early stages of carcinogenesis, the induction of tumor specific T cell mediated immunity seems to block the tumor growth and give protective anti-tumor immune response. However, tumor associated macrophages (TAMs) might play an immunosuppressive role and subvert this anti tumor immunity leading to tumor progression and metastasis. Methodology/Principal Findings The Cu (II) complex, (chelate), copper N-(2-hydroxy acetophenone) glycinate (CuNG), synthesized by us, has previously been shown to have a potential usefulness in immunotherapy of multiple drug resistant cancers. The current study demonstrates that CuNG treatment of TAMs modulates their status from immunosuppressive to proimmunogenic nature. Interestingly, these activated TAMs produced high levels of IL-12 along with low levels of IL-10 that not only allowed strong Th1 response marked by generation of high levels of IFN-γ but also reduced activation induced T cell death. Similarly, CuNG treatment of peripheral blood monocytes from chemotherapy and/or radiotherapy refractory cancer patients also modulated their cytokine status. Most intriguingly, CuNG treated TAMs could influence reprogramming of TGF-β producing CD4+CD25+ T cells toward IFN-γ producing T cells. Conclusion/Significance Our results show the potential usefulness of CuNG in immunotherapy of drug-resistant cancers through reprogramming of TAMs that in turn reprogram the T cells and reeducate the T helper function to elicit proper anti-tumorogenic Th1 response leading to effective reduction in tumor growth. PMID:19756150

  19. Platycodin D exerts anti-tumor efficacy in H22 tumor-bearing mice via improving immune function and inducing apoptosis.

    PubMed

    Li, Wei; Tian, Yu-Hong; Liu, Ying; Wang, Zi; Tang, Shan; Zhang, Jing; Wang, Ying-Ping

    2016-01-01

    Platycodin D (PD), a major saponin derived and isolated from the roots of Platycodon grandiflorum, exerts potent growth inhibition and strong cytotoxicity against various cancer cell lines. However, the anti-tumor efficacy of PD on H22 hepatocellular carcinoma remains unknown. In the present study, we aimed to explore the anti-hepatoma activity in vivo and the underlying mechanism of PD in H22 tumor-bearing mice. The results revealed that PD could considerably suppress tumor growth with no significant side effects on immune organs and body weight. Further investigations showed that the levels of serum cytokines, including interferon gamma (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-2 (IL-2), were enhanced by PD administration. On the other hand, PD inhibited the production of vascular endothelial growth factor (VEGF) in serum of H22 tumor mice. Additionally, the observations from H&E and Hoechst 33258 staining results demonstrated that PD noticeably induced apoptosis in H22 hepatocellular carcinoma cells. Importantly, immunohistochemical analysis showed that PD treatment increased Bax expression and decreased Bcl-2 and VEGF expression of H22 tumor tissues in a dose-dependent manner. Taken together, the findings in the present investigation clearly demonstrated that the PD markedly suppressed the tumor growth of H22 transplanted tumor in vivo at least partly via improving the immune functions, inducing apoptosis, and inhibiting angiogenesis. PMID:27193733

  20. Anti-tumor mechanism in IL-12 Gene therapy using liposomal bubbles and ultrasound

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryo; Oda, Yusuke; Koshima, Risa; Hirata, Keiichi; Nomura, Tetsuya; Negishi, Yoichi; Utoguchi, Naoki; Nakagawa, Shinsaku; Maruyama, Kazuo

    2011-09-01

    Sonoporation combined with nano/microbubbles is an attractive technique for developing non-invasive and non-viral gene delivery systems. Previously, we developed novel ultrasound sensitive liposomes (Bubble liposomes) which contain the ultrasound imaging gas perfluoropropane. IL-12 corded plasmid DNA delivery into tumor tissue by sonoporation combined with Bubble liposomes was found to suppress tumor growth. In this study, we examined the mechanism of the anti-tumor effect in this IL-12 gene delivery. This therapeutic effect was T-cell dependent, requiring mainly CD8+ T lymphocytes in the effector phase, as confirmed by a mouse in vivo depletion assay. In addition, migration of CD8+ T cells was observed in the mice. These results suggest that CD8+ T lymphocytes play an important role in the anti-tumor effects of this IL-12 gene therapy.

  1. Revisiting the Prominent Anti-Tumoral Potential of Pre-mNK Cells.

    PubMed

    Guimont-Desrochers, Fanny; Lesage, Sylvie

    2013-01-01

    Interferon-producing killer dendritic cells (IKDC) were first described for their outstanding anti-tumoral properties. The "IKDC" terminology implied the description of a novel DC subset and initiated a debate on their cellular lineage origin. This debate shifted the focus away from their notable anti-tumoral potential. IKDC were recently redefined as precursors to mature NK (mNK) cells and consequently renamed pre-mNK cells. Importantly, a putative human equivalent of pre-mNK cells was recently associated with improved disease outcome in cancer patients. It is thus timely to revisit the functional attributes as well as the therapeutic potential of pre-mNK cells in line with their newly defined NK-cell precursor function. PMID:24376447

  2. The dual role of complement in cancer and its implication in anti-tumor therapy

    PubMed Central

    2016-01-01

    Chronic inflammation has been linked to the initiation of carcinogenesis, as well as the advancement of established tumors. The polarization of the tumor inflammatory microenvironment can contribute to either the control, or the progression of the disease. The emerging participation of members of the complement cascade in several hallmarks of cancer, renders it a potential target for anti-tumor treatment. Moreover, the presence of complement regulatory proteins (CRPs) in most types of tumor cells is known to impede anti-tumor therapies. This review focuses on our current knowledge of complement’s potential involvement in shaping the inflammatory tumor microenvironment and its role on the regulation of angiogenesis and hypoxia. Furthermore, we discuss approaches using complement-based therapies as an adjuvant in tumor immunotherapy. PMID:27563652

  3. Green synthesis and characterization of gold nanoparticles using extract of anti-tumor potent Crocus sativus

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R.; Devi, V.; Adavallan, K.; Saranya, D.

    2011-12-01

    In the present study, we have explored anti-tumor potent Crocus sativus (saffron) as a reducing agent for one pot size controlled green synthesis of gold nanoparticles (AuNps) at ambient conditions. The nanoparticles were characterized using UV-vis, scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and FTIR analysis. The prepared AuNPs showed surface Plasmon resonance centered at 549 nm with average particle size of 15±5 nm. Stable, spherical and triangular crystalline AuNPs with well-defined dimensions were synthesized using anti-tumor potent Crocus sativus (saffron). Crystalline nature of the nanoparticles is confirmed from the HR-TEM, SAED and SEM images, and XRD patterns. From the FTIR spectra it is found that the biomolecules are responsible for capping in gold nanoparticles.

  4. Gemella morbillorum Bacteremia after Anti-Tumor Necrosis Factor Alpha as Acne Inversa Therapy

    PubMed Central

    Vossen, Matthias G.; Gattringer, Klaus B.; Khalifeh, Neda; Koreny, Maria; Spertini, Verena; Mallouhi, Ammar; Willeit, Markus; Volc-Platzer, Beatrix; Asboth, Friederike; Graninger, Wolfgang; Thalhammer, Florian

    2012-01-01

    We present a case of fever, brain abscesses, and Gemella morbillorum bacteremia after anti-tumor necrosis factor alpha (TNF-α) therapy in a 21-year-old acne inversa patient currently taking long-term dapsone. To the best of our knowledge, this is the first report describing such a case. During antimicrobial therapy, the patient developed systemic varicella infection with severe thrombocytopenia. PMID:22189120

  5. Anti-Tumor Effects From Dendritic Cell-Based Cancer Immunotherapy Using Liposomal Bubbles and Ultrasound

    NASA Astrophysics Data System (ADS)

    Oda, Yusuke; Suzuki, Ryo; Hirata, Keiichi; Nomura, Tetsuya; Utoguchi, Naoki; Maruyama, Kazuo

    2011-09-01

    Dendritic cell (DC)-based cancer immunotherapy has the potential to be a minimally invasive therapy that could prevent cancer metastasis and recurrence. Recently, in order to induce effective anti-tumor immunity, we developed a novel antigen delivery system for DCs by the combination of ultrasound (US) and liposomal bubbles (Bubble Liposomes: BLs) with entrapped perfluoropropane gas. In this study, we investigated the induction of antigen specific immune responses in vivo and the anti-tumor effect caused by immunization of DCs treated with BLs and US. For the immunization of DCs which had delivered antigen, using BLs and US, the mice induced antigen specific cytotoxic T lymphocytes (CTLs) were found to be the main effector cells in DC-based cancer immunotherapy. In addition, immunization with DCs that had been pulsed with antigen using BLs and US completely suppressed tumor growth Therefore, immunization of DCs with this antigen delivery system has promise for the efficient induction of anti-tumor immune responses.

  6. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells.

    PubMed

    Ziegler, C G; Ullrich, M; Schally, A V; Bergmann, R; Pietzsch, J; Gebauer, L; Gondek, K; Qin, N; Pacak, K; Ehrhart-Bornstein, M; Eisenhofer, G; Bornstein, S R

    2013-05-22

    Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPCs) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing. PMID:23267837

  7. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model

    NASA Astrophysics Data System (ADS)

    Hu, Zhenlin; Yang, Xiao Yi; Liu, Yunbo; Morse, Michael A.; Lyerly, H. Kim; Clay, Timothy M.; Zhong, Pei

    2006-05-01

    To determine whether HIFU treatment can elicit a systemic, anti-tumor immune response in vivo, MC-38 solid tumors grown subcutaneously at the right hindlimbs of C57BL/6 mice were treated in an experimental HIFU system. Three different treatment strategies that produce thermal, mechanical, or thermal combined with mechanical damage to the tumor tissue were evaluated. To detect anti-tumor immune response, a tumor challenge was performed on the left hindlimbs of the mice one day following the HIFU treatment, and subsequently, cytotoxic T lymphocyte (CTL) response was evaluated on day 14. All three HIFU treatment strategies were found to cause significant regression of the primary tumor, with the best suppressive effect produced by the thermal HIFU. In contrast, the most significant regression of the challenged tumor with concomitantly elevated CTL response were detected in mice treated by the mechanical HIFU, followed by the thermal combined with mechanical HIFU, but not in mice treated by the thermal HIFU alone. These findings suggest that alternative treatment strategies that promote mechanical lysis of the tumor cells (in contrast to purely thermal ablation) may enhance HIFU-induced anti-tumor immune response.

  8. Synergistic anti-tumor efficacy of immunogenic adenovirus ONCOS-102 (Ad5/3-D24-GM-CSF) and standard of care chemotherapy in preclinical mesothelioma model.

    PubMed

    Kuryk, Lukasz; Haavisto, Elina; Garofalo, Mariangela; Capasso, Cristian; Hirvinen, Mari; Pesonen, Sari; Ranki, Tuuli; Vassilev, Lotta; Cerullo, Vincenzo

    2016-10-15

    Malignant mesothelioma (MM) is a rare cancer type caused mainly by asbestos exposure. The median overall survival time of a mesothelioma cancer patient is less than 1-year from diagnosis. Currently there are no curative treatment modalities for malignant mesothelioma, however treatments such as surgery, chemotherapy and radiotherapy can help to improve patient prognosis and increase life expectancy. Pemetrexed-Cisplatin is the only standard of care (SoC) chemotherapy for malignant mesothelioma, but the median PFS/OS (progression-free survival/overall survival) from the initiation of treatment is only up to 12 months. Therefore, new treatment strategies against malignant mesothelioma are in high demand. ONCOS-102 is a dual targeting, chimeric oncolytic adenovirus, coding for human GM-CSF. The safety and immune activating properties of ONCOS-102 have already been assessed in phase 1 study (NCT01598129). In this preclinical study, we evaluated the antineoplastic activity of combination treatment with SoC chemotherapy (Pemetrexed, Cisplatin, Carboplatin) and ONCOS-102 in xenograft BALB/c model of human malignant mesothelioma. We demonstrated that ONCOS-102 is able to induce immunogenic cell death of human mesothelioma cell lines in vitro and showed anti-tumor activity in the treatment of refractory H226 malignant pleural mesothelioma (MPM) xenograft model. While chemotherapy alone showed no anti-tumor activity in the mesothelioma mouse model, ONCOS-102 was able to slow down tumor growth. Interestingly, a synergistic anti-tumor effect was seen when ONCOS-102 was combined with chemotherapy regimens. These findings give a rationale for the clinical testing of ONCOS-102 in combination with first-line chemotherapy in patients suffering from malignant mesothelioma. PMID:27287512

  9. Identification of Anti-tumor Cells Carrying Natural Killer (NK) Cell Antigens in Patients With Hematological Cancers.

    PubMed

    Krzywinska, Ewelina; Allende-Vega, Nerea; Cornillon, Amelie; Vo, Dang-Nghiem; Cayrefourcq, Laure; Panabieres, Catherine; Vilches, Carlos; Déchanet-Merville, Julie; Hicheri, Yosr; Rossi, Jean-François; Cartron, Guillaume; Villalba, Martin

    2015-10-01

    Natural killer (NK) cells, a cytotoxic lymphocyte lineage, are able to kill tumor cells in vitro and in mouse models. However, whether these cells display an anti-tumor activity in cancer patients has not been demonstrated. Here we have addressed this issue in patients with several hematological cancers. We found a population of highly activated CD56(dim)CD16(+) NK cells that have recently degranulated, evidence of killing activity, and it is absent in healthy donors. A high percentage of these cells expressed natural killer cell p46-related protein (NKp46), natural-killer group 2, member D (NKG2D) and killer inhibitory receptors (KIRs) and a low percentage expressed NKG2A and CD94. They are also characterized by a high metabolic activity and active proliferation. Notably, we found that activated NK cells from hematological cancer patients have non-NK tumor cell antigens on their surface, evidence of trogocytosis during tumor cell killing. Finally, we found that these activated NK cells are distinguished by their CD45RA(+)RO(+) phenotype, as opposed to non-activated cells in patients or in healthy donors displaying a CD45RA(+)RO(-) phenotype similar to naïve T cells. In summary, we show that CD45RA(+)RO(+) cells, which resemble a unique NK population, have recognized tumor cells and degranulate in patients with hematological neoplasias. PMID:26629531

  10. Electrotransfer of Plasmid DNA Encoding an Anti-Mouse Endoglin (CD105) shRNA to B16 Melanoma Tumors with Low and High Metastatic Potential Results in Pronounced Anti-Tumor Effects

    PubMed Central

    Dolinsek, Tanja; Sersa, Gregor; Prosen, Lara; Bosnjak, Masa; Stimac, Monika; Razborsek, Urska; Cemazar, Maja

    2015-01-01

    Endoglin overexpression is associated with highly proliferative tumor endothelium and also with some tumors, including melanoma. Its targeting has anti-tumor effectiveness, which can also be obtained by RNA interference. The aim of our study was to explore the anti-tumor effectiveness of endoglin silencing by electrotransfer of plasmid DNA encoding short hairpin RNA against endoglin in two murine B16 melanoma variants with different metastatic potential on cells, spheroids and subcutaneous tumors in mice. The results demonstrate that endoglin silencing with gene electrotransfer reduces the proliferation, survival and migration of melanoma cells and also has anti-tumor effectiveness, as the therapy resulted in a high percentage of tumor cures (23% and 58% on B16F1 and B16F10 tumors, respectively). The effectiveness of the therapy correlated with endoglin expression in melanoma cells; in vitro the effects were more pronounced in B16F1 cells, which express more endoglin than B16F10. However, the opposite was observed in vivo in tumors, where there was a higher expression of endoglin and better anti-tumor effectiveness in the B16F10 tumor. In conclusion, targeting endoglin for the treatment of melanoma seems to be a concept worthy of further exploration due to the increased therapeutic effect of the therapy based on simultaneous vascular targeting and its direct effect on tumor cells. PMID:26712792

  11. Electrotransfer of Plasmid DNA Encoding an Anti-Mouse Endoglin (CD105) shRNA to B16 Melanoma Tumors with Low and High Metastatic Potential Results in Pronounced Anti-Tumor Effects.

    PubMed

    Dolinsek, Tanja; Sersa, Gregor; Prosen, Lara; Bosnjak, Masa; Stimac, Monika; Razborsek, Urska; Cemazar, Maja

    2015-01-01

    Endoglin overexpression is associated with highly proliferative tumor endothelium and also with some tumors, including melanoma. Its targeting has anti-tumor effectiveness, which can also be obtained by RNA interference. The aim of our study was to explore the anti-tumor effectiveness of endoglin silencing by electrotransfer of plasmid DNA encoding short hairpin RNA against endoglin in two murine B16 melanoma variants with different metastatic potential on cells, spheroids and subcutaneous tumors in mice. The results demonstrate that endoglin silencing with gene electrotransfer reduces the proliferation, survival and migration of melanoma cells and also has anti-tumor effectiveness, as the therapy resulted in a high percentage of tumor cures (23% and 58% on B16F1 and B16F10 tumors, respectively). The effectiveness of the therapy correlated with endoglin expression in melanoma cells; in vitro the effects were more pronounced in B16F1 cells, which express more endoglin than B16F10. However, the opposite was observed in vivo in tumors, where there was a higher expression of endoglin and better anti-tumor effectiveness in the B16F10 tumor. In conclusion, targeting endoglin for the treatment of melanoma seems to be a concept worthy of further exploration due to the increased therapeutic effect of the therapy based on simultaneous vascular targeting and its direct effect on tumor cells. PMID:26712792

  12. Everglades National Park Including Biscayne National Park. Activity Book.

    ERIC Educational Resources Information Center

    Ruehrwein, Dick

    Intended to help elementary school children learn about the resources of the Everglades and Biscayne National Parks, this activity book includes information, puzzles, games, and quizzes. The booklet deals with concepts related to: (1) the seasons; (2) fire ecology; (3) water; (4) fish; (5) mammals; (6) mosquitos; (7) birds; (8) venomous snakes;…

  13. Efficient Double Suzuki Cross-Coupling Reactions of 2,5-Dibromo-3-hexylthiophene: Anti-Tumor, Haemolytic, Anti-Thrombolytic and Biofilm Inhibition Studies.

    PubMed

    Ikram, Hafiz Mansoor; Rasool, Nasir; Zubair, Muhammad; Khan, Khalid Mohammed; Abbas Chotana, Ghayoor; Akhtar, Muhammad Nadeem; Abu, Nadiah; Alitheen, Noorjahan Banu; Elgorban, Abdallah Mohamed; Rana, Usman Ali

    2016-01-01

    The present study describes several novel 2,5-biaryl-3-hexylthiophene derivatives (3a-i) synthesized via a Pd(0)-catalyzed Suzuki cross-coupling reaction in moderate to good yields. The novel compounds were also analyzed for their anti-thrombolytic, haemolytic, and biofilm inhibition activities. In addition, the anti-tumor activity was also evaluated in vitro for newly-synthesized compounds, where 3-hexyl-2,5-bis(4-(methylthio)phenyl)thiophene exhibited the best anti-tumor activity against 4T1 cells with IC50 value of 16 μM. Moreover, 2,5-bis(4-methylphenyl)-3-hexylthiophene showed the highest activity against MCF-7 cells with an IC50 value of 26.2 μM. On the other hand, the compound 2,5-bis(4-chloropheny)-3-hexylthiophene exhibited excellent biofilm inhibition activity. Furthermore, the compound 2,5-bis(3-chloro-4-fluorophenyl)-3-hexylthiophene also exhibited better anti-thrombolytic and hemolytic activity results as compared to the other newly-synthesized compounds. PMID:27472312

  14. Rheumatoid arthritis patients fulfilling Korean National Health Insurance reimbursement guidelines for anti-tumor necrosis factor-α treatment and comparison to other guidelines.

    PubMed

    Hur, Jin-Wuk; Choe, Jung-Yoon; Kim, Dong-Wook; Kim, Hyun Ah; Kim, Sang-Hyon; Kim, Wan-Uk; Kim, Yun Sung; Lee, Hye-Soon; Lee, Sang-Heon; Park, Sung-Hwan; Park, Won; Park, Yong-Beom; Suh, Chang-Hee; Shim, Seung-Cheol; Song, Yeong-Wook; Yoon, Bo Young; Yu, Dae Young; Yoo, Dae Hyun

    2015-11-01

    The aim of this study was to compare anti-tumor necrosis factor-α (TNFα) treatment status in rheumatoid arthritis (RA) patients with the Korean National Health Insurance (KNHI) reimbursement eligibility criteria and with American College of Rheumatology (ACR) recommendations, Japan College of Rheumatology (JCR) guidelines and British Society for Rheumatology (BSR) guidelines. Between December 2011 and August 2012, outpatients from 17 South Korean general hospitals diagnosed with RA according to the 1987 ACR criteria were enrolled into a noninterventional, cross-sectional, observational study. Of 1700 patients (1414 female (83.2 %), mean age of 56.6 ± 12.0, mean disease duration 97.9 ± 91.8 months), 306 (18.0 %) had used anti-TNFα agents, and 224 (13.2 %) were currently using an anti-TNFα agent. Of 1394 anti-TNFα-naive patients, 32 (2.3 %) met KNHI reimbursement guidelines, 148 (10.6 %) met ACR recommendations, and 127 (9.1 %) and 126 (9.0 %) were considered eligible for anti-TNFα agents according to JCR and BSR guidelines, respectively. The main discrepancy was the higher active joint count required by the KNHI eligibility criteria. In the opinion of treating rheumatologists, the KNHI reimbursement criteria ineligibility accounted for 15.3 % (n = 213) of the reasons for not initiating anti-TNFα agents in anti-TNFα-naive group. The anti-TNFα user group showed significantly higher disease activity than the anti-TNFα-naive group based on DAS28 score. In comparison with the ACR recommendations and JCR and BSR guidelines, fewer patients met KNHI reimbursement eligibility criteria for anti-TNFα agents. The current amendment of the KNHI criteria based on DAS28 score will improve an access to biologic agents including anti-TNFα treatment for South Korean patients with active RA. PMID:26342296

  15. Anti-tumoral effect of arsenic compound, sodium metaarsenite (KML001), in non-Hodgkin's lymphoma: an in vitro and in vivo study.

    PubMed

    Yoon, Jin Sun; Hwang, Deok Won; Kim, Eun Shil; Kim, Jung Soon; Kim, Sujong; Chung, Hwa Jin; Lee, Sang Kook; Yi, Jun Ho; Uhm, Jieun; Won, Young Woong; Park, Byeong Bae; Choi, Jung Hye; Lee, Young Yiul

    2016-02-01

    Arsenic compounds have been used in traditional medicine for several centuries. KML001 (sodium metaarsenite; NaAsO2) is an orally bio-available arsenic compound with potential anti-cancer activity. However, the effect of KML001 has not been studied in lymphoid neoplasms. The aim of this study is to evaluate the anti-proliferative effect of KML001 in non-Hodgkin's lymphoma and to compare its efficacy with As2O3. KML001 inhibited cellular proliferation in all tested lymphoma cell lines as well as JurkatR cells (adriamycin-resistant Jurkat cells) in a dose-dependent manner, while As2O3 was not effective. Cell cycle regulatory protein studies have suggested that KML001 induces G1 arrest via p27-induced inhibition of the kinase activities of CDK2, 4, and 6. Treatment of KML001 induced apoptosis in Jurkat and JurkatR cells. The apoptotic process was associated with down-regulation of Bcl-2 (antiapoptotic molecule), up-regulation of Bax (proapoptotic molecule), and inhibition of caspase-3, -8, and -9. In addition, cell signaling including the STAT, PI3K/Akt, MAPK, and NF-κB signal pathways were inhibited in KML001-treated Jurkat and JurkatR cells. Furthermore, targeting the telomere by KML001 was observed in the Jurkat and JurkatR cells. The In vivo anti-tumoral activity of KML001 was confirmed in a xenograft murine model. Interestingly, partial responses were seen in two lymphoma patients treated with 10 mg/day (follicular lymphoma for 16 weeks and mantle cell lymphoma for 24 weeks) without severe toxicities. These findings suggest that KML001 may be a candidate agent for the treatment of de novo, refractory, and relapsed non-Hodgkin's lymphoma patients. PMID:26581399

  16. High intensity focused ultrasound enhances anti-tumor immunity by inhibiting the negative regulatory effect of miR-134 on CD86 in a murine melanoma model

    PubMed Central

    Yang, Min; Zha, He; Sun, Hui; Li, Xue-Ru; Li, Ai-Fang; Gu, Yue; Duan, Liang; Luo, Jin-Yong; Li, Chong-Yan; Wang, Yan; Wang, Zhi-Biao; He, Tong-Chuan; Zhou, Lan

    2015-01-01

    HIFU has been demonstrated to enhance anti-tumor immunity, however, the mechanism of which has not been well elucidated. Emerging evidence indicates that miRNAs play important roles in immune response. In this study, we used the B16F10 melanoma allograft mouse model to investigate the role of miRNAs in HIFU-enhanced anti-tumor immunity. We found that HIFU treatment decreased circulating B16F10 cells and pulmonary metastasis nodules while increased IFN-γ and TNF-α in the peripheral blood and cumulative mouse survival, which was associated with inhibition of miR-134 expression and activation of CD86 expression in tumor tissues. Further, we determined that miR-134 directly binds to the 3′UTR of CD86 mRNA to suppress its expression in B16F10 cells. When B16F10 cells transfected with miR-134 were co-cultured with normal splenic lymphocytes, the secretion of IFN-γ and TNF-α from lymphocytes was reduced and B16F10 cell survival was increased. HIFU exposure efficiently decreased miR-134 while increased CD86 expression in B16F10 cells in vitro. CD86 knockdown with siRNA markedly rescued the viability of HIFU-treated B16F10 cells that co-cultured with lymphocytes. Altogether, our results suggest that HIFU down-regulates miR-134 to release the inhibition of miR-134 on CD86 in melanoma cells, thereby enhancing anti-tumor immune response. PMID:26485753

  17. A New in Vitro Anti-Tumor Polypeptide Isolated from Arca inflata

    PubMed Central

    Xu, Jian; Chen, Zhiyan; Song, Liyan; Chen, Lili; Zhu, Jianhua; Lv, Shuangshuang; Yu, Rongmin

    2013-01-01

    A new in vitro anti-tumor polypeptide, coded as J2-C3, was isolated from Arca inflata Reeve and purified by diethyl-aminoethanol (DEAE)-sepharose Fast Flow anion exchange and phenyl sepharose CL-4B hydrophobic chromatography. J2-C3 was identified to be a homogeneous compound by native polyacrylamide gel electrophoresis (Native-PAGE). The purity of J2-C3 was over 99% in reversed phase-high performance liquid chromatography (RP-HPLC). The molecular weight was determined as 20,538.0 Da by electrospray-ionization mass spectrometry (ESI-MS/MS). J2-C3 was rich in Glx (Gln + Glu), Lys, and Asx (Asp + Asn) according to amino acid analysis. Four partial amino acid sequences of this peptide were determined as L/ISMEDVEESR, KNGMHSI/LDVNHDGR, AMKI/LI/LNPKKGI/LVPR and AMGAHKPPKGNEL/IGHR via MALDI-TOF/TOF-MS and de novo sequencing. Secondary structural analysis by CD spectroscopy revealed that J2-C3 had the α-helix (45.2%), β-sheet (2.9%), β-turn (26.0%) and random coil (25.9%). The anti-tumor effect of J2-C3 against human tumor cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the IC50 values of J2-C3 were 65.57, 93.33 and 122.95 µg/mL against A549, HT-29 and HepG2 cell lines, respectively. Therefore, J2-C3 might be developed as a potential anti-tumor agent. PMID:24317469

  18. Anti-tumor effect of bevacizumab on a xenograft model of feline mammary carcinoma

    PubMed Central

    MICHISHITA, Masaki; OHTSUKA, Aya; NAKAHIRA, Rei; TAJIMA, Tsuyoshi; NAKAGAWA, Takayuki; SASAKI, Nobuo; ARAI, Toshiro; TAKAHASHI, Kimimasa

    2015-01-01

    Feline mammary carcinomas are characterized by rapid progression and metastases. Vascular endothelial growth factor (VEGF) is a key regulator of tumor angiogenesis, proliferation and metastasis. The present study aimed to investigate the effects of a single drug therapy of bevacizumab on a xenograft model of feline mammary carcinoma expressing VEGF protein. Bevacizumab treatment suppressed tumor growth by inhibiting angiogenesis and enhancing apoptosis; however, it did not affect the tumor proliferation index. Thus, bevacizumab had anti-tumor effects on a xenograft model, and this may be useful for the treatment of feline mammary carcinoma. PMID:26616000

  19. Purification and Partial Characterization of a Novel Anti-tumor Glycoprotein from Cultured Mycelia of Grifola frondosa.

    PubMed

    Cui, Fengjie; Zan, Xinyi; Li, Yunhong; Yang, Yan; Sun, Wenjing; Zhou, Qiang; Yu, Silian; Dong, Ying

    2013-10-25

    A novel glycoprotein GFG-3a with the molecular weight of 88.01 kDa and potent anti-tumor activity was isolated from the cultured mycelia of Grifola frondosa GF9801. GFG-3a was heat-sensitive with the decreasing anti-proliferative activity after treated from 56°C to 100°C for 10-120min. GFG-3a was a glycoprotein with O-glycosylation and contained 6.20% carbohydrate composed of D-arabinose, D-fructose, D-mannose, and D-glucose with a molar ratio of 1.33:4.51:2.46:1.00. FT-IR and NMR spectra proved that GFG-3a contained protein and carbohydrate portions with 3-O-methyl-galactose residues, (1→4)-linked β- galactose residues, and β-linked glucose residues. Circular dichroism (CD) revealed that GFG-3a was a predominantly β-sheet glycoprotein with a relatively small α-helical content. Protein sequencing and 3D model of GFG-3a were finally obtained by using MALDI-TOF-MS, NCBI blast search and online SWISS-MODLE Workspace service. Our findings will be a reference for the further structure-activity relationship analysis of the mushroom glycoproteins. PMID:24512992

  20. Mechanical Disruption of Tumors by Iron Particles and Magnetic Field Application Results in Increased Anti-Tumor Immune Responses

    PubMed Central

    Bouchlaka, Myriam N.; Sckisel, Gail D.; Wilkins, Danice; Maverakis, Emanual; Monjazeb, Arta M.; Fung, Maxwell; Welniak, Lisbeth; Redelman, Doug; Fuchs, Alan; Evrensel, Cahit A.; Murphy, William J.

    2012-01-01

    The primary tumor represents a potential source of antigens for priming immune responses for disseminated disease. Current means of debulking tumors involves the use of cytoreductive conditioning that impairs immune cells or removal by surgery. We hypothesized that activation of the immune system could occur through the localized release of tumor antigens and induction of tumor death due to physical disruption of tumor architecture and destruction of the primary tumor in situ. This was accomplished by intratumor injection of magneto-rheological fluid (MRF) consisting of iron microparticles, in Balb/c mice bearing orthotopic 4T1 breast cancer, followed by local application of a magnetic field resulting in immediate coalescence of the particles, tumor cell death, slower growth of primary tumors as well as decreased tumor progression in distant sites and metastatic spread. This treatment was associated with increased activation of DCs in the draining lymph nodes and recruitment of both DCs and CD8(+)T cells to the tumor. The particles remained within the tumor and no toxicities were observed. The immune induction observed was significantly greater compared to cryoablation. Further anti-tumor effects were observed when MRF/magnet therapy was combined with systemic low dose immunotherapy. Thus, mechanical disruption of the primary tumor with MRF/magnetic field application represents a novel means to induce systemic immune activation in cancer. PMID:23133545

  1. Anti-tumor effects of bemiparin in HepG2 and MIA PaCa-2 cells.

    PubMed

    Alur, İhsan; Dodurga, Yavuz; Seçme, Mücahit; Elmas, Levent; Bağcı, Gülseren; Gökşin, İbrahim; Avcı, Çığır Biray

    2016-07-10

    Recent researches have demonstrated improved survival in oncologic patients treated with low molecular weight heparins (LMWHs) which are anticoagulant drugs. We evaluated "second generation" LMWH bemiparin and its in vitro anti-tumor effects on HepG2 hepatocellular carcinoma and MIA PaCa-2 cancer cells. The aim of the study is to investigate anti-cancer mechanism of bemiparin in HepG2 and Mia-Paca-2 cancer cells. Cytotoxic effects of bemiparin were determined by XTT assay. IC50 dose of bemiparin was found to be 200IU/mL in the 48th hour in the MiaPaCa-2 cell line and 50IU/mL in the 48th hour in the HepG2 cell line. CCND1 (cyclin D1), CDK4, CDK6, p21, p16, p53, caspase-3, caspase-9, caspase-8, Bcl-2, BID, DR4, DR5, FADD, TRADD, Bax, gene mRNA expressions were evaluated by Real-time PCR. Real-time PCR analysis showed that CCND1 expression was reduced in HepG2 dose the group cells when compared with the control group cells and p53, caspase-3, caspase p21, caspase-8 and expressions were increased in the dose group cells when compared with the control group cells. CCND1, CDK4 and CDK6 expressions were reduced in MIA PaCa-2 dose group cells when compared with the control group cells and p53 expression was increased in the dose group cells when compared with the control group cells. Other expressions of genes were found statistically insignificant both of cell lines. It was found that bemiparin in HepG2 and MIA PaCa-2 cells suppressed invasion, migration, and colony formation by using matrigel invasion chamber, and colony formation assay, respectively. In conclusion, it is thought that bemiparin indicates anti-tumor activity by affecting cell cycle arrest, apoptosis, invasion, migration, and colony formation on cancer cells. PMID:27048831

  2. Type I Interferons as Stimulators of DC-Mediated Cross-Priming: Impact on Anti-Tumor Response

    PubMed Central

    Schiavoni, Giovanna; Mattei, Fabrizio; Gabriele, Lucia

    2013-01-01

    Induction of potent tumor-specific cytotoxic T-cell responses is a fundamental objective in anticancer therapeutic strategies. This event requires that antigen-presenting cells present tumor-associated antigens (Ag) on their MHC class-I molecule, in a process termed cross-presentation. Dendritic cells (DC) are particularly keen on this task and can induce the cross-priming of CD8+ T cells, when exposed to danger or inflammatory signals that stimulate their activation. Type I interferons (IFN-I), a family of long-known immunostimulatory cytokines, have been proven to produce optimal activation signal for DC-induced cross-priming. Recent in vitro and in vivo evidences have suggested that IFN-I-stimulated cross-priming by DC against tumor-associated Ag is a key mechanism for cancer immunosurveillance and may be usefully exploited to boost anti-tumor CD8+ T-cell responses. Here, we will review the cross-presentation properties of different DC subsets, with special focus on cell-associated and tumor Ag, and discuss how IFN-I can modify this function, with the aim of identifying more specific and effective strategies for improving anticancer responses. PMID:24400008

  3. Encapsulated paclitaxel nanoparticles exhibit enhanced anti-tumor efficacy in A549 non-small lung cancer cells.

    PubMed

    Huang, Guojin; Zang, Bao; Wang, Xiaowei; Liu, Gang; Zhao, Jianqiang

    2015-12-01

    In the present study, paclitaxel (PTX) were encapsulated with polyethylene glycol (PEG)-polylactide (PLA)/D-α tocopheryl polyethylene glycol 1000 succinate (TPGS) (PEG-PLA/TPGS) and the enhanced anti-tumor activity of this PTX mixed micelles (PTX-MM) was evaluated in lung cancer cells. The PTX-MM prepared by a solvent evaporation method was demonstrated to have high drug-loading efficiency (23.2%), high encapsulation efficiency (76.4%), and small size (59 nm). In vitro release assay showed the slow release behavior of PTX-MM, suggesting the good stability of the PTX-MM essential for long circulation time. In vitro kinetics assay demonstrated that PTX-MM could promote absorption and increase relative bioavailability. The anti-cancer efficiency of PTX-MM was also examined by both in vitro and in vivo studies. PTX-MM exhibits obvious cytotoxicity against lung cancer cells with much lower IC50 value when compared with commercial formulated PTX or PTX + TPGS. The xenograft tumor model studies on nude mice indicated that PTX-MM inhibits tumor growth more effectively than other formulations. It was also found that most of mixed micelles were integral in tumor site to exhibit anti-cancer activity. Our results suggested that the use of PTX-MM as an anti-cancer drug may be an effective approach to treat lung cancer. PMID:26525950

  4. Synthesis and Characterization of Some New Bis-Pyrazolyl-Thiazoles Incorporating the Thiophene Moiety as Potent Anti-Tumor Agents.

    PubMed

    Gomha, Sobhi M; Edrees, Mastoura M; Altalbawy, Farag M A

    2016-01-01

    A new series of 1,4-bis(1-(5-(aryldiazenyl)thiazol-2-yl)-5-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)benzenes 3a-i were synthesized via reaction of 5,5'-(1,4-phenylene)bis(3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide) (1) with hydrazonoyl halides 2a-i. In addition, reaction of 1 with ethyl chloroacetate afforded bis-thiazolone derivative 8 as the end product. Reaction of compound 8 with methyl glyoxalate gave bis-thiazolone derivative 10. The structures of the newly synthesized compounds were established on the basis of spectroscopic evidences and their alternative syntheses. All the synthesized compounds were evaluated for their anti-tumor activities against hepatocellular carcinoma (HepG2) cell lines, and the results revealed promising activities of compounds 3g, 5e, 3e, 10, 5f, 3i, and 3f with IC50 equal 1.37 ± 0.15, 1.41 ± 0.17, 1.62 ± 0.20, 1.86 ± 0.20, 1.93 ± 0.08, 2.03 ± 0.25, and 2.09 ± 0.19 μM, respectively. PMID:27618013

  5. Separation and purification of an anti-tumor peptide from rapeseed (Brassica campestris L.) and the effect on cell apoptosis.

    PubMed

    Wang, Lifeng; Zhang, Jing; Yuan, Qiang; Xie, Huihui; Shi, Jiayi; Ju, Xingrong

    2016-05-18

    Rapeseed peptides were prepared by means of the combined methods of the laboratory bacteria enzyme synergy and the solid-state fermentation of rapeseed meal. The rapeseed peptides were separated and purified with the tumor cell in vitro anti-proliferative activity as an index. Moreover, a kind of rapeseed peptide component RSP-4-3-3 (rapeseed anti-tumor peptide RSP-4-3-3) with high activity was selected. Furthermore, by using reversed-phase high performance liquid chromatography (RP-HPLC) coupled with electrospray ionization mass spectrometry (ESI-MS/MS), the analysis result of its possible amino acid sequence showed that it was Trp-Thr-Pro (408.2 Da). Inverted microscope observation technology and western blot experiments were applied to explore the antitumor impact of the rapeseed peptide RSP-4-3-3 on tumor cells. The results showed that the rapeseed antitumor peptide RSP-4-3-3 could significantly change the morphological features of the HepG2 cells in vitro and cause apoptosis, thus inhibiting the proliferation of the HepG2 cells. PMID:27116475

  6. Anti-tumoral effects of a trypsin inhibitor derived from buckwheat in vitro and in vivo.

    PubMed

    Bai, Chong-Zhi; Feng, Ma-Li; Hao, Xu-Liang; Zhao, Zhi-Juan; Li, Yu-Ying; Wang, Zhuan-Hua

    2015-08-01

    Native buckwheat, a common component of food products and medicine, has been observed to inhibit cancer cell proliferation in vitro. The aim of the present study was to evaluate the in vitro and in vivo anti-tumoral effects of recombinant buckwheat trypsin inhibitor (rBTI) on hepatic cancer cells and the mechanism of apoptosis involved. Apoptosis in the H22 cell line induced by rBTI was identified using MTT assays, DNA electrophoresis, flow cytometry, morphological observation of the nuclei, measurement of cytochrome C and assessment of caspase activation. It was identified that rBTI decreases cell viability by inducing apoptosis, as evidenced by the formation of apoptotic bodies and DNA fragmentation. rBTI-induced apoptosis occurred in association with mitochondrial dysfunction, leading to the release of cytochrome C from the mitochondria to the cytosol, as well as the activation of caspase-3, -8 and -9. In conclusion, the results of the present study suggested that rBTI specifically inhibited the growth of the H22 hepatic carcinoma cell line in vitro and in vivo in a concentration-dependent and time-dependent manner, while there were minimal effects on the 7702 normal liver cell line. In addition, rBTI‑induced apoptosis in H22 cells was, at least in part, mediated by a mitochondrial pathway via caspase-9. PMID:25901645

  7. Violacein inhibits matrix metalloproteinase mediated CXCR4 expression: potential anti-tumor effect in cancer invasion and metastasis.

    PubMed

    Platt, Derek; Amara, Suneetha; Mehta, Toral; Vercuyssee, Koen; Myles, Elbert L; Johnson, Terrance; Tiriveedhi, Venkataswarup

    2014-12-01

    Matrix metalloproteinases (MMP-2 and -9) play an important role in the tumor metastasis through cleavage of proinflammatory cytokines. Violacein a small molecule produced by Chromobacterium violaceum and has been implicated with anti-cancer effects. In this study we investigated the molecular basis of violacein mediated downregulation of CXCL12/CXCR4, chemokine-receptor ligand interaction. Zymography analysis demonstrated that violacein significantly inhibited the cytokine (TNFα and TGFβ) mediated MMP-2 activation in MCF-7 breast cancer cell line. MMP-2 plays a critical role in the secretion of inflammatory chemokine, CXCL12, involved in cell migration and cancer metastasis. ELISA analysis demonstrated that violacein inhibited the secretion of CXCL12 from the activated MCF-7 cells. Further, we show that MMP-2/-9 act synergistically at two distinct steps towards the membrane expression of the tumor metastasis chemokine receptor, CXCR4. Violacein efficiently downregulated the CXCR4 membrane expression through MMP-9 inhibition. Taken together, these studies demonstrate a unique anti-tumor mechanism of action of violacein through reduction of CXCL12/CXCR4 interaction. These studies could offer a novel venue for violacein in cancer therapy. PMID:25450700

  8. miR-146a is directly regulated by STAT3 in human hepatocellular carcinoma cells and involved in anti-tumor immune suppression

    PubMed Central

    Sun, Xiaoxia; Zhang, Jian; Hou, Zhaohua; Han, Qiuju; Zhang, Cai; Tian, Zhigang

    2015-01-01

    MicroRNAs (miRNAs) play an important role in tumorigenesis, but their role in tumor-induced immune suppression is largely unknown. STAT3 signaling, a key pathway mediating immune suppression in the tumor microenvironment, is responsible for the transcription of several important miRNAs. In this study, we observed that miR-146a, a known important regulator of immune responses, was downregulated by blocking activated STAT3 in hepatocellular carcinoma (HCC) cells. Furthermore, miR-146a inhibition in HCC cells not only altered the STAT3 activation–associated cytokine profile but also reversed HCC-induced NK cell dysfunction in vitro and improved the anti-tumor effect of lymphocytes in vivo. Importantly, ChIP and luciferase reporter assays confirmed that STAT3 directly bound to the miR-146a promoter and induced miR-146a expression. These findings indicated that miR-146a expression was regulated by aberrantly activated STAT3 in HCC cells and exerted negative effects on anti-tumor immune response, which resulted in the upregulation of cytokines such as TGF-β, IL-17, VEGF and downregulation of type I IFN to create an immunosuppressive microenvironment. This further insight into understanding the mechanism responsible for tumor-induced immune suppression highlights the potential application of miR-146a as a novel immunotherapeutic target for HCC. PMID:25607648

  9. Microencapsulation of anti-tumor, antibiotic and thrombolytic drugs in microgravity

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Mosier, Benjamin; Cassanto, John

    1994-01-01

    Encapsulation of cytotoxic or labile drugs enables targeted delivery and sustained release kinetics that are not available with intravenous injection. A new liquid-liquid diffusion process has been developed for forming unique microcapsules that contain both aqueous and hydrocarbon soluble drugs. Microgravity experiments, on sounding rockets (1989-92) and Shuttle missions STS-52 (1992) and STS-56 (1993) using an automated Materials Dispersion Apparatus, produced multi-lamellar microcapsules containing both Cis-platinum (anti-tumor drug) and iodinated poppy seed oil (a radiocontrast medium), surrounded by a polyglyceride skin. Microcapsules formed with amoxicillin (antibiotic) or urokinase (a clot dissolving enzyme), co-encapsulated with IPO, are still intact after two years. Microcapsules were formed with the drug so concentrated that crystals formed inside. Multi-layered microspheres, with both hydrophobic drug compartments, can enable diffusion of complementary drugs from the same microcapsule, e.g. antibiotics and immuno-stimulants to treat resistant infections or multiple fibrinolytic drugs to dissolve emboli. Co-encapsulation of enough radio-contrast medium enables oncologists to monitor the delivery of anti-tumor microcapsules to target tumors using computerized tomography and radiography that would track the distribution of microcapsules after release from the intra-arterial catheter. These microcapsules could have important applications in chemotheraphy of certain liver, kidney, brain and other tumors.

  10. Clinical profiles of moderate and severe Crohn’s disease patients and use of anti-tumor necrosis factor agents: Greek expert consensus guidelines

    PubMed Central

    Mantzaris, Gerassimos J.; Viazis, Nikos; Polymeros, Dimitris; Papamichael, Konstantinos; Bamias, George; Koutroubakis, Ioannis E.

    2015-01-01

    Crohn’s disease (CD) is a chronic idiopathic inflammatory bowel disease (IBD) which affects any site of the gastrointestinal tract and occasionally extraintestinal organs. The natural history of CD varies remarkably but a considerable proportion of patients develop complications leading to hospitalizations and surgeries, impaired quality of life, and disability. In these patients, effective medical therapy should aim beyond control of clinical symptoms to include induction and maintenance of steroid-free clinical and serological remission and mucosal healing, as this has shown to reduce complications, hospitalizations and surgeries, and to decrease the risk of colorectal cancer, at least in the short term. This therapeutic goal can be achieved in a considerable proportion of patients with anti-tumor necrosis factor (TNF)-α agents if applied early in the disease course. Clinical recommendations from a panel of Greek IBD experts are herein provided, regarding the clinical profiles and the use of anti-TNF-α therapy in patients with moderate and severe CD, based on literature review and personal experience. The objectives of this advisory workshop were to define the profiles of patients with moderate and severe CD using routine clinical and laboratory parameters, as well as the clinical profiles of patients with moderate CD, severe CD, perianal CD, and/or extra-intestinal manifestations, who are candidates for biologic therapies. Emphasis was given on patients with newly diagnosed CD. The proposed recommendations may provide a useful and practical approach for improving therapeutic strategies with anti-TNF-α in patients with active moderate and severe CD. PMID:26424173

  11. Clinical profiles of moderate and severe Crohn's disease patients and use of anti-tumor necrosis factor agents: Greek expert consensus guidelines.

    PubMed

    Mantzaris, Gerassimos J; Viazis, Nikos; Polymeros, Dimitris; Papamichael, Konstantinos; Bamias, George; Koutroubakis, Ioannis E

    2015-01-01

    Crohn's disease (CD) is a chronic idiopathic inflammatory bowel disease (IBD) which affects any site of the gastrointestinal tract and occasionally extraintestinal organs. The natural history of CD varies remarkably but a considerable proportion of patients develop complications leading to hospitalizations and surgeries, impaired quality of life, and disability. In these patients, effective medical therapy should aim beyond control of clinical symptoms to include induction and maintenance of steroid-free clinical and serological remission and mucosal healing, as this has shown to reduce complications, hospitalizations and surgeries, and to decrease the risk of colorectal cancer, at least in the short term. This therapeutic goal can be achieved in a considerable proportion of patients with anti-tumor necrosis factor (TNF)-α agents if applied early in the disease course. Clinical recommendations from a panel of Greek IBD experts are herein provided, regarding the clinical profiles and the use of anti-TNF-α therapy in patients with moderate and severe CD, based on literature review and personal experience. The objectives of this advisory workshop were to define the profiles of patients with moderate and severe CD using routine clinical and laboratory parameters, as well as the clinical profiles of patients with moderate CD, severe CD, perianal CD, and/or extra-intestinal manifestations, who are candidates for biologic therapies. Emphasis was given on patients with newly diagnosed CD. The proposed recommendations may provide a useful and practical approach for improving therapeutic strategies with anti-TNF-α in patients with active moderate and severe CD. PMID:26424173

  12. Triterpenoids Amplify Anti-Tumoral Effects of Mistletoe Extracts on Murine B16.F10 Melanoma In Vivo

    PubMed Central

    Strüh, Christian M.; Jäger, Sebastian; Kersten, Astrid; Schempp, Christoph M.; Scheffler, Armin; Martin, Stefan F.

    2013-01-01

    Purpose Mistletoe extracts are often used in complementary cancer therapy although the efficacy of that therapy is controversially discussed. Approved mistletoe extracts contain mainly water soluble compounds of the mistletoe plant, i.e. mistletoe lectins. However, mistletoe also contains water-insoluble triterpenoids (mainly oleanolic acid) that have anti-tumorigenic effects. To overcome their loss in watery extracts we have solubilized mistletoe triterpenoids with cyclodextrins, thus making them available for in vivo cancer experiments. Experimental design B16.F10 subcutaneous melanoma bearing C57BL/6 mice were treated with new mistletoe extracts containing both water soluble compounds and solubilized triterpenoids. Tumor growth and survival was monitored. In addition, histological examinations of the tumor material and tumor surrounding tissue were performed. Results Addition of solubilized triterpenoids increased the anti-tumor effects of the mistletoe extracts, resulting in reduced tumor growth and prolonged survival of the mice. Histological examination of the treated tumors showed mainly tumor necrosis and some apoptotic cells with active caspase-3 and TUNEL staining. A significant decrease of CD31-positive tumor blood vessels was observed after treatment with solubilized triterpenoids and different mistletoe extracts. Conclusion We conclude that the addition of solubilized mistletoe triterpenoids to conventional mistletoe extracts improves the efficacy of mistletoe treatment and may represent a novel treatment option for malignant melanoma. PMID:23614029

  13. Hydrogel-PLGA delivery system prolongs 2-methoxyestradiol-mediated anti-tumor effects in osteosarcoma cells.

    PubMed

    Maran, Avudaiappan; Dadsetan, Mahrokh; Buenz, Colleen M; Shogren, Kristen L; Lu, Lichun; Yaszemski, Michael J

    2013-09-01

    Osteosarcoma is a bone tumor that affects children and young adults. 2-Methoxyestradiol (2-ME), a naturally occurring estrogen metabolite, kills osteosarcoma cells, but does not affect normal osteoblasts. In order to effectively target osteosarcoma and improve the therapeutic index of the drug 2-ME, we have encapsulated 2-ME in a composite of oligo-(polyethylene glycol) fumarate (OPF) hydrogel and poly (lactic-co-glycolic acid) (PLGA) microspheres and investigated the effect of polymer composition on 2-ME release kinetics and osteosarcoma cell survival. The in vitro study shows that 2-ME can be released in a controlled manner over 21-days. The initial burst releases observed on day 1 were 50% and 32% for OPF and OPF/PLGA composites, respectively. The extended release kinetics show that 100% of the encapsulated 2-ME is released by day 12 from OPF, whereas the OPF/PLGA composites showed a release of 85% on day 21. 2-ME released from the polymers was biologically active and blocked osteosarcoma cell proliferation in vitro. Also, comparison of 2-ME delivery in osteosarcoma cells in culture, shows that direct treatment has no effect after 3 days, whereas polymer-mediated delivery produces anti-tumor effects that could be sustained for 21 days. These findings show that the OPF and PLGA polymeric system may prove to be useful in controlled and sustained delivery of 2-ME and could be further explored in the treatment of osteosarcoma. PMID:23355512

  14. Synthesis and pharmacological evaluation of a novel AT1 angiotensin II receptor antagonist with anti-hypertension and anti-tumor effects.

    PubMed

    Bao, Xiaolu; Zhu, Weibo; Da, Yajing; Zhu, Linfeng; Qie, Li; Yan, Yijia; Wang, Li; Tang, Hesheng; Chen, Zhi-long

    2015-01-01

    A new compound 2-(4-((2-butyl-5-nitro-1H-benzo[d]imidazol-1-yl)methyl)-1H-indol-1-yl) benzamide (1) was designed, synthesized and evaluated as a novel AT1 receptor antagonist. Compound 1 displayed high affinity to AT1 receptor with an IC50 value of 1.65 ± 0.2 nM in radio-ligand binding assays. It had an efficient and long-lasting effect in reducing blood pressure which could last for more than 12 h at the dose of 10 mg/kg in spontaneously hypertensive rats. Acute toxicity tests suggested that compound 1 was safe with the LD50 value of 2519.81 mg/kg. Besides, in vitro and in vivo tests suggested its anti-proliferative and anti-tumor activities, respectively. So compound 1 could be considered as a novel anti-hypertension, anti-tumor candidate and deserved further investigation. PMID:25919352

  15. Discovery of 5-substituted pyrrolo[2,3-d]pyrimidine antifolates as dual acting inhibitors of glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis: implications of inhibiting 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase to AMPK activation and anti-tumor activity

    PubMed Central

    Raghavan, Sudhir; Ravindra, Manasa Punaha; Hales, Eric; Orr, Steven; Cherian, Christina; Hou, Zhanjun

    2014-01-01

    We synthesized 5-substituted pyrrolo[2,3-d]pyrimidine antifolates (compounds 5–10) with 1 to 6 bridge carbons and a benozyl ring in the side chain as antitumor agents. Compound 8 with a 4-carbon bridge was the most active analog and potently inhibited proliferation of folate receptor (FR) α-expressing Chinese hamster ovary and KB human tumor cells. Growth inhibition was reversed completely or in part by excess folic acid, indicating that FRα is involved in cellular uptake, and resulted in S-phase accumulation and apoptosis. Anti-proliferative effects of compound 8 toward KB cells were protected by excess adenosine but not thymidine, establishing de novo purine nucleotide biosynthesis as the targeted pathway. However, 5-aminoimidazole-4-carboxamide (AICA) protection was incomplete, suggesting inhibition of both AICA ribonucleotide formyltransferase (AICARFTase) and glycinamide ribonucleotide formyltransferase (GARFTase). Inhibition of GARFTase and AICARFTase by compound 8 was confirmed by cellular metabolic assays and resulted in ATP pool depletion. To our knowledge, this is the first example of an antifolate that acts as a dual inhibitor of GARFTase and AICARFTase as its principal mechanism of action. PMID:24256410

  16. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death

    PubMed Central

    Rao, Enyu; Zhang, Yuwen; Zhu, Ganqian; Hao, Jiaqing; Persson, Xuan-Mai T.; Egilmez, Nejat K.; Suttles, Jill; Li, Bing

    2015-01-01

    A number of studies have linked AMPK, a major metabolic sensor coordinating of multiple cellular functions, to tumor development and progression. However, the exact role of AMPK in tumor development is still controversial. Here we report that activation of AMPK promotes survival and anti-tumor function of T cells, in particular CD8+ T cells, resulting in superior tumor suppression in vivo. While AMPK expression is dispensable for T cell development, genetic deletion of AMPK promotes T cell death during in vitro activation and in vivo tumor development. Moreover, we demonstrate that protein phosphatases are the key mediators of AMPK-dependent effects on T cell death, and inhibition of phosphatase activity by okadaic acid successfully restores T cell survival and function. Altogether, our data suggest a novel mechanism by which AMPK regulates protein phosphatase activity in control of survival and function of CD8+ T cells, thereby enhancing their role in tumor immunosurveillance. PMID:25760243

  17. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity.

    PubMed

    Aaes, Tania Løve; Kaczmarek, Agnieszka; Delvaeye, Tinneke; De Craene, Bram; De Koker, Stefaan; Heyndrickx, Liesbeth; Delrue, Iris; Taminau, Joachim; Wiernicki, Bartosz; De Groote, Philippe; Garg, Abhishek D; Leybaert, Luc; Grooten, Johan; Bertrand, Mathieu J M; Agostinis, Patrizia; Berx, Geert; Declercq, Wim; Vandenabeele, Peter; Krysko, Dmitri V

    2016-04-12

    Successful immunogenic apoptosis in experimental cancer therapy depends on the induction of strong host anti-tumor responses. Given that tumors are often resistant to apoptosis, it is important to identify alternative molecular mechanisms that elicit immunogenic cell death. We have developed a genetic model in which direct dimerization of FADD combined with inducible expression of RIPK3 promotes necroptosis. We report that necroptotic cancer cells release damage-associated molecular patterns and promote maturation of dendritic cells, the cross-priming of cytotoxic T cells, and the production of IFN-γ in response to tumor antigen stimulation. Using both FADD-dependent and FADD-independent RIPK3 induction systems, we demonstrate the efficient vaccination potential of immunogenic necroptotic cells. Our study broadens the current concept of immunogenic cell death and opens doors for the development of new strategies in cancer therapy. PMID:27050509

  18. Progress with anti-tumor necrosis factor therapeutics for the treatment of inflammatory bowel disease.

    PubMed

    Fernandes, Carlos; Allocca, Mariangela; Danese, Silvio; Fiorino, Gionata

    2015-01-01

    Anti-tumor necrosis factor (TNF) therapy is a valid, effective and increasingly used option in inflammatory bowel disease management. Nevertheless, further knowledge and therapeutic indications regarding these drugs are still evolving. Anti-TNF therapy may be essential to achieve recently proposed end points, namely mucosal healing, prevention of bowel damage and prevention of patient's disability. Anti-TNF drugs are also suggested to be more effective in early disease, particularly in early Crohn's disease. Moreover, its efficacy for prevention of postoperative recurrence in Crohn's disease is still debated. Costs and adverse effects, the relevance of drug monitoring and the possibility of anti-TNF therapy withdrawal in selected patients are still debated issues. This review aimed to describe and discuss the most relevant data about the progress with anti-TNF therapy for the management of inflammatory bowel disease. PMID:25713992

  19. Alopecia secondary to anti-tumor necrosis factor-alpha therapy.

    PubMed

    Ribeiro, Lara Beatriz Prata; Rego, Juliana Carlos Gonçalves; Estrada, Bruna Duque; Bastos, Paula Raso; Piñeiro Maceira, Juan Manuel; Sodré, Celso Tavares

    2015-01-01

    Biologic drugs represent a substantial progress in the treatment of chronic inflammatory immunologic diseases. However, its crescent use has revealed seldom reported or unknown adverse reactions, mainly associated with anti-tumor necrosis factor (anti-TNF). Psoriasiform cutaneous reactions and few cases of alopecia can occur in some patients while taking these drugs. Two cases of alopecia were reported after anti-TNF therapy. Both also developed psoriasiform lesions on the body. This is the second report about a new entity described as 'anti-TNF therapy-related alopecia', which combines clinical and histopathological features of both alopecia areata and psoriatic alopecia. The recognition of these effects by specialists is essential for the proper management and guidance of these patients. PMID:25830994

  20. Dickkopf-3 Contributes to the Regulation of Anti-Tumor Immune Responses by Mesenchymal Stem Cells

    PubMed Central

    Lu, Kun-Hui; Tounsi, Amel; Shridhar, Naveen; Küblbeck, Günter; Klevenz, Alexandra; Prokosch, Sandra; Bald, Tobias; Tüting, Thomas; Arnold, Bernd

    2015-01-01

    Mesenchymal stem cells (MSCs) are known to limit immune responses in vivo by multiple soluble factors. Dickkopf-3 (DKK3), a secreted glycoprotein, has recently been identified as a novel immune modulator. Since DKK3 has been reported to be produced by MSCs, we investigated whether DKK3 contributes to the immune suppression of anti-tumor responses by MSCs. Whereas wild-type MSCs inhibited immune responses against two different transplantation tumors, DKK3-deficient MSCs did not affect the rejection process. Increased CD8+ T cell and reduced M2-type macrophages infiltration was observed in tumors inoculated together with DKK3-deficient MSCs. Thus, DKK3 could alter the composition of the tumor stroma, thereby supporting the MSCs-mediated suppression of immune responses against these tumor transplants. PMID:26734010

  1. Targeting amino acid metabolism in cancer growth and anti-tumor immune response

    PubMed Central

    Ananieva, Elitsa

    2015-01-01

    Recent advances in amino acid metabolism have revealed that targeting amino acid metabolic enzymes in cancer therapy is a promising strategy for the development of novel therapeutic agents. There are currently several drugs in clinical trials that specifically target amino acid metabolic pathways in tumor cells. In the context of the tumor microenvironment, however, tumor cells form metabolic relationships with immune cells, and they often compete for common nutrients. Many tumors evolved to escape immune surveillance by taking advantage of their metabolic flexibility and redirecting nutrients for their own advantage. This review outlines the most recent advances in targeting amino acid metabolic pathways in cancer therapy while giving consideration to the impact these pathways may have on the anti-tumor immune response. PMID:26629311

  2. The toxin component of targeted anti-tumor toxins determines their efficacy increase by saponins.

    PubMed

    Weng, Alexander; Thakur, Mayank; Beceren-Braun, Figen; Bachran, Diana; Bachran, Christopher; Riese, Sebastian B; Jenett-Siems, Kristina; Gilabert-Oriol, Roger; Melzig, Matthias F; Fuchs, Hendrik

    2012-06-01

    Tumor-targeting protein toxins are composed of a toxic enzyme coupled to a specific cell binding domain that targets cancer-associated antigens. The anti-tumor treatment by targeted toxins is accompanied by dose-limiting side effects. The future prospects of targeted toxins for therapeutic use in humans will be determined by reduce side effects. Certain plant secondary metabolites (saponins) were shown to increase the efficacy of a particular epidermal growth factor receptor (EGFR)-targeted toxin, paralleled by a tremendous decrease of side effects. This study was conducted in order to investigate the effects of substituting different toxin moieties fused to an EGF ligand binding domain on the augmentative ability of saponins for each against therapeutic potential of the saponin-mediated efficacy increase for different anti-tumor toxins targeting the EGFR. We designed several EGFR-targeted toxins varying in the toxic moiety. Each targeted toxin was used in combination with a purified saponin (SA1641), isolated from the ornamental plant Gypsophila paniculata L. SA1641 was characterized and the SA1641-mediated efficacy increase was investigated on EGFR-transfected NIH-3T3 cells. We observed a high dependency of the SA1641-mediated efficacy increase on the nature of toxin used for the construction of the targeted toxin, indicating high specificity. Structural alignments revealed a high homology between saporin and dianthin-30, the two toxic moieties that benefit most from the combination with SA1641. We further demonstrate that SA1641 did not influence the plasma membrane permeability, indicating an intracellular interaction of SA1641 and the toxin components of targeted toxins. Surface plasmon resonance measurements point to a transient binding of SA1641 to the toxin components of targeted toxins. PMID:22309811

  3. Anti-tumor effect of inhibition of IL-6 signaling in mucoepidermoid carcinoma

    PubMed Central

    Mochizuki, Daiki; Adams, April; Warner, Kristy A.; Zhang, Zhaocheng; Pearson, Alexander T.; Misawa, Kiyoshi; McLean, Scott A.; Wolf, Gregory T.; Nör, Jacques E.

    2015-01-01

    Mucoepidermoid carcinoma (MEC) is the most frequent malignant salivary gland cancer. Response to chemoradiotherapy is modest, and therefore radical surgery remains the standard-of-care. Emerging evidence suggests that Interleukin (IL)-6 signaling correlates with the survival of cancer stem cells and resistance to therapy. Here, we investigated whether inhibition of IL-6 receptor (IL-6R) signaling with tocilizumab (humanized anti-human IL-6R antibody) sensitizes MEC to chemotherapy using human mucoepidermoid carcinoma cell lines (UM-HMC) and correspondent xenograft models. In vitro, we observed that tocilizumab inhibited STAT3 phosphorylation but had no measurable effect in MEC cell viability (UM-HMC-1,-3A,-3B). In contrast, the anti-tumor effect of single agent tocilizumab on MEC xenografts was comparable to paclitaxel or cisplatin. Combination of tocilizumab with cisplatin or paclitaxel enhanced the inhibitory effect of chemotherapy on xenograft growth (P < 0.05), time to failure (P < 0.01), decreased vascular endothelial growth factor (VEGF) expression and tumor microvessel density (P < 0.05) without added systemic toxicities. Notably, tocilizumab decreased the fraction of MEC cancer stem cells (ALDHhighCD44high) in vitro, and prevented paclitaxel-induced increase in the fraction of cancer stem cells in vivo (P < 0.05). Collectively, these findings demonstrate that tocilizumab enhances the anti-tumor effect of conventional chemotherapy in preclinical models of mucoepidermoid carcinoma, and suggest that patients might benefit from combination therapy with an inhibitor of IL-6R signaling and chemotherapeutic agent such as paclitaxel. PMID:26287605

  4. Decreased Anti-Tumor Cytotoxic Immunity among Microsatellite-Stable Colon Cancers from African Americans

    PubMed Central

    Li, Shi; Khan, Mohammad W.; Tian, Mengxi; Tejada, Ruth; Hassan, Avan; Washington, Allen; Mukherjee, Bhramar; Carethers, John M.; McGuire, Kathleen L.

    2016-01-01

    Colorectal cancer is a leading cause of cancer related deaths in the U.S., with African-Americans having higher incidence and mortality rates than Caucasian-Americans. Recent studies have demonstrated that anti-tumor cytotoxic T lymphocytes provide protection to patients with colon cancer while patients deficient in these responses have significantly worse prognosis. To determine if differences in cytotoxic immunity might play a role in racial disparities in colorectal cancer 258 microsatellite-stable colon tumors were examined for infiltrating immune biomarkers via immunohistochemistry. Descriptive summary statistics were calculated using two-sample Wilcoxon rank sum tests, while linear regression models with log-transformed data were used to assess differences in race and Pearson and Spearman correlations were used to correlate different biomarkers. The association between different biomarkers was also assessed using linear regression after adjusting for covariates. No significant differences were observed in CD8+ (p = 0.83), CD57+ (p = 0.55), and IL-17-expressing (p = 0.63) cell numbers within the tumor samples tested. When infiltration of granzyme B+ cells was analyzed, however, a significant difference was observed, with African Americans having lower infiltration of cells expressing this cytotoxic marker than Caucasians (p<0.01). Analysis of infiltrating granzyme B+ cells at the invasive borders of the tumor revealed an even greater difference by race (p<0.001). Taken together, the data presented suggest differences in anti-tumor immune cytotoxicity may be a contributing factor in the racial disparities observed in colorectal cancer. PMID:27310868

  5. Anti-tumor effect of inhibition of IL-6 signaling in mucoepidermoid carcinoma.

    PubMed

    Mochizuki, Daiki; Adams, April; Warner, Kristy A; Zhang, Zhaocheng; Pearson, Alexander T; Misawa, Kiyoshi; McLean, Scott A; Wolf, Gregory T; Nör, Jacques E

    2015-09-01

    Mucoepidermoid carcinoma (MEC) is the most frequent malignant salivary gland cancer. Response to chemoradiotherapy is modest, and therefore radical surgery remains the standard-of-care. Emerging evidence suggests that Interleukin (IL)-6 signaling correlates with the survival of cancer stem cells and resistance to therapy. Here, we investigated whether inhibition of IL-6 receptor (IL-6R) signaling with tocilizumab (humanized anti-human IL-6R antibody) sensitizes MEC to chemotherapy using human mucoepidermoid carcinoma cell lines (UM-HMC) and correspondent xenograft models. In vitro, we observed that tocilizumab inhibited STAT3 phosphorylation but had no measurable effect in MEC cell viability (UM-HMC-1,-3A,-3B). In contrast, the anti-tumor effect of single agent tocilizumab on MEC xenografts was comparable to paclitaxel or cisplatin. Combination of tocilizumab with cisplatin or paclitaxel enhanced the inhibitory effect of chemotherapy on xenograft growth (P < 0.05), time to failure (P < 0.01), decreased vascular endothelial growth factor (VEGF) expression and tumor microvessel density (P < 0.05) without added systemic toxicities. Notably, tocilizumab decreased the fraction of MEC cancer stem cells (ALDH(high)CD44(high)) in vitro, and prevented paclitaxel-induced increase in the fraction of cancer stem cells in vivo (P < 0.05). Collectively, these findings demonstrate that tocilizumab enhances the anti-tumor effect of conventional chemotherapy in preclinical models of mucoepidermoid carcinoma, and suggest that patients might benefit from combination therapy with an inhibitor of IL-6R signaling and chemotherapeutic agent such as paclitaxel. PMID:26287605

  6. Bioassay-guided Separation of Anti-tumor Components from Euphorbia kansui by Means of Two-dimensional Preparative High Performance Liquid Chromatography and Real-time Cell Analysis.

    PubMed

    Ma, Hong; Yang, Shanshan; Lu, Hong; Zhang, Yaozhou

    2016-01-01

    A new strategy for the convergence of two-dimensional preparative high performance liquid chromatography (HPLC) and real-time cell analysis (RTCA) was developed for rapidly separating and screening anti-tumor components from the ethyl acetate extract of the traditional Chinese medicine (TCM), Euphorbia kansui. Eight compounds: esulone A (1), kansuinin A (2), (3β,11β)-3,11-dihydroxylanosta-8,24-dien-7-one (3), kansuinin E (4), kansuinin B (5), isoscopoletin (6), kansuinin D (7) and kansuinin G (8) were efficiently isolated with purity above 97%. Of all the compounds, esulone A has been isolated from this plant for the first time. The structures were identified by NMR spectroscopy and comparisons were made with the data in previous literature. The anti-tumor bioassay was performed on A549 (human lung cancer cells) and Hep-G2 (human liver cancer cells) with a newly developed RTCA system. The result revealed that compounds 1, 3, 7 and 8 almost entirely inhibited the proliferation of A549 cells and that compound 8 was also thought to be the most active compound against Hep-G2 cells. The method provided considerable assistance for the efficient separation of different polar compounds and rapid screening of anti-tumor active compounds. PMID:27169660

  7. Anti-Tumoral Effects of Anti-Progestins in a Patient-Derived Breast Cancer Xenograft Model.

    PubMed

    Esber, Nathalie; Cherbonnier, Clément; Resche-Rigon, Michèle; Hamze, Abdallah; Alami, Mouad; Fagart, Jérôme; Loosfelt, Hugues; Lombès, Marc; Chabbert-Buffet, Nathalie

    2016-04-01

    Breast cancer is a hormone-dependent disease in which estrogen signaling targeting drugs fail in about 10 % due to resistance. Strong evidences highlighted the mitogen role of progesterone, its ligands, and the corresponding progesterone receptor (PR) isoforms in mammary carcinoma. Several PR antagonists have been synthesized; however, some of them are non-selective and led to side or toxic effects. Herein, we evaluated the anti-tumor activity of a commercially available PR modulator, ulipristal acetate (UPA), and a new selective and passive PR antagonist "APR19" in a novel preclinical approach based on patient-derived breast tumor (HBCx-34) xenografted in nude mice. As opposed to P4 that slightly reduces tumor volume, UPA and APR19 treatment for 42 days led to a significant 30 % reduction in tumor weight, accompanied by a significant 40 % retardation in tumor growth upon UPA exposure while a 1.5-fold increase in necrotic areas was observed in APR19-treated tumors. Interestingly, PR expression was upregulated by a 2.5-fold factor in UPA-treated tumors while APR19 significantly reduced expression of both PR and estrogen receptor α, indicating a potential distinct molecular mechanism among PR antagonists. Cell proliferation was clearly reduced in UPA group compared to vehicle conditions, as revealed by the significant reduction in Ki-67, Cyclin D1, and proliferating cell nuclear antigen (PCNA) expression. Likewise, an increase in activated, cleaved poly(ADP-ribose) polymerase (PARP) expression was also demonstrated upon UPA exposure. Collectively, our findings provide direct in vivo evidence for anti-progestin-mediated control of human breast cancer growth, given their anti-proliferative and pro-apoptotic activities, supporting a potential role in breast cancer therapy. PMID:26941094

  8. Good things come in small packages: Therapeutic anti-tumor immunity induced by microRNA nanoparticles.

    PubMed

    Cubillos-Ruiz, Juan R; Sempere, Lorenzo F; Conejo-Garcia, Jose R

    2012-09-01

    Current ovarian cancer treatments based on surgery/chemotherapy show limited efficacy. Targeting immunosuppression is a requirement for the effectiveness of novel promising anti-tumor immunotherapies. Our latest work in preclinical models shows that nanoparticle-mediated delivery of immunostimulatory microRNAs specifically to tumor-associated leukocytes is sufficient to re-program immunological control of metastatic ovarian cancers. PMID:23162774

  9. The in vitro and in vivo anti-tumor effect of layered double hydroxides nanoparticles as delivery for podophyllotoxin.

    PubMed

    Qin, Lili; Xue, Meng; Wang, Wenrui; Zhu, Rongrong; Wang, Shilong; Sun, Jing; Zhang, Rui; Sun, Xiaoyu

    2010-03-30

    In this research, we intercalated anti-tumor drug podophyllotoxin (PPT) into layered double hydroxides (LDHs) and investigated the in vitro cytotoxicity to tumor cells, the cellular uptake and in vivo anti-tumor inhibition of PPT-LDH. The nanohybrids were prepared by a two-step method with the size of 80-90nm and the zeta potential of 20.3mV. The in vitro cytotoxicity experiment indicated that PPT-LDH nanoparticles show better anti-tumor efficacy than PPT and are more readily taken up by Hela cells. PPT-LDH shows a long-term suppression effect on the tumor growth, and enhances the apoptotic process of tumor cells. The in vivo tests reveal that delivery of PPT via LDH nanoparticles is more efficient, but the mice toxicity of PPT in PPT-LDH hybrids is reduced in comparison with PPT alone. Pharmacokinetics study displays a prolonged circulation time and an increased bioavailability of PPT-LDH than PPT. These observations imply that LDH nanoparticles are the potential carrier of anti-tumor drugs in a range of new therapeutic applications. PMID:20045452

  10. The Anti-Tumor Effect of A3 Adenosine Receptors Is Potentiated by Pulsed Electromagnetic Fields in Cultured Neural Cancer Cells

    PubMed Central

    Vincenzi, Fabrizio; Targa, Martina; Corciulo, Carmen; Gessi, Stefania; Merighi, Stefania; Setti, Stefania; Cadossi, Ruggero; Borea, Pier Andrea; Varani, Katia

    2012-01-01

    A3 adenosine receptors (ARs) play a pivotal role in the development of cancer and their activation is involved in the inhibition of tumor growth. The effects of pulsed electromagnetic fields (PEMFs) on cancer have been controversially discussed and the detailed mechanisms are not yet fully understood. In the past we have demonstrated that PEMFs increased A2A and A3AR density and functionality in human neutrophils, human and bovine synoviocytes, and bovine chondrocytes. In the same cells, PEMF exposure increased the anti-inflammatory effect mediated by A2A and/or A3ARs. The primary aim of the present study was to evaluate if PEMF exposure potentiated the anti-tumor effect of A3ARs in PC12 rat adrenal pheochromocytoma and U87MG human glioblastoma cell lines in comparison with rat cortical neurons. Saturation binding assays and mRNA analysis revealed that PEMF exposure up-regulated A2A and A3ARs that are well coupled to adenylate cyclase activity and cAMP production. The activation of A2A and A3ARs resulted in the decrease of nuclear factor-kappa B (NF-kB) levels in tumor cells, whilst only A3ARs are involved in the increase of p53 expression. A3AR stimulation mediated an inhibition of tumor cell proliferation evaluated by thymidine incorporation. An increase of cytotoxicity by lactate dehydrogenase (LDH) release and apoptosis by caspase-3 activation in PC12 and U87MG cells, but not in cortical neurons, was observed following A3AR activation. The effect of the A3AR agonist in tumor cells was enhanced in the presence of PEMFs and blocked by using a well-known selective antagonist. Together these results demonstrated that PEMF exposure significantly increases the anti-tumor effect modulated by A3ARs. PMID:22761760

  11. Anti-tumor immunity elicited by direct intratumoral administration of a recombinant adenovirus expressing either IL-28A/IFN-λ2 or IL-29/IFN-λ1.

    PubMed

    Hasegawa, K; Tagawa, M; Takagi, K; Tsukamoto, H; Tomioka, Y; Suzuki, T; Nishioka, Y; Ohrui, T; Numasaki, M

    2016-08-01

    Interleukin (IL)-28A/interferon (IFN)-λ2 and IL-29/IFN-λ1 have been demonstrated to elicit direct and indirect anti-tumor actions. In this study, we constructed an adenovirus vector expressing either IL-28A/IFN-λ2 (AdIL-28A) or IL-29/IFN-λ1 (AdIL-29) to evaluate the therapeutic properties of intratumoral injection of recombinant adenovirus to apply for the clinical implementation of cancer gene therapy. Despite the lack of an anti-proliferative effect on MCA205 and B16-F10 cells, a retarded growth of established subcutaneous tumors was observed following multiple injections of either AdIL-28A or AdIL-29 when compared with AdNull. In vivo cell depletion experiments displayed that both NK cells and CD8(+) T cells have a major role in AdIL-28A-mediated tumor growth suppression. A significant increase in the number of infiltrating CD8(+) T cells into the tumors treated with either AdIL-28A or AdIL-29 was observed. Moreover, specific anti-tumor cytotoxic T lymphocyte reactivity was detected in spleen cells from animals treated with either AdIL-28A or AdIL-29. In IFN-γ-deficient mice, anti-tumor activities of AdIL-28A were completely impaired, indicating that IFN-γ is critically involved in the tumor growth inhibition triggered by AdIL-28A. IL-12 provided a synergistic anti-tumor effect when combined with AdIL-28A. These results indicate that AdIL-28A and AdIL-29 could be successfully utilized as an alternative cancer immunogene therapy. PMID:27561689

  12. Dendritic cell vaccine modified by Ag85A gene enhances anti-tumor immunity against bladder cancer.

    PubMed

    Zhang, Pei; Wang, Jinyan; Wang, Danan; Wang, Huan; Shan, Fengping; Chen, Liudan; Hou, Ying; Wang, Enhua; Lu, Chang-Long

    2012-11-01

    The ability of dendritic cells to provide all the signals required for T-cell activation makes them an ideal cancer vaccine platform. With the use of established DC2.4 cell line, originated from C57BL/6 mice and developed by superinfecting GM-CSF transduced bone marrow cells with myc and raf oncogenes, we investigated whether the DC 2.4 cell line transfected with Ag85A gene could enhance immunity against bladder cancer. Both phenotypic and functional analyses of Ag85A-DCs were done with use of FCM and T cell proliferation test. The cytotoxicity of Ag85A-DCs loaded with tumor cell lysate was verified by LDH. Finally, the production of interferon gamma was assayed by both ELISA and FCM. The immunotherapeutic effect of DC vaccine on murine bladder cancer was assessed pharmacologically and pathologically. Our results showed that Ag85A gene transfected DCs expressed high levels of key surface markers such as CD80, CD86 and MHC-II. The CTL primed with MB49 lysate-pulsed Ag85A-DCs elicits higher activity against MB49 tumor cells and upregulated level of IFN-γ production. Furthermore, the significant inhibitive effect on tumor growth in mice was found in the group of Ag85A-DC vaccine. The infiltration of CD4(+) or CD8(+) T cell within established tumor treated by Ag85A-DC vaccine significantly increased as compared with control groups. It is therefore concluded that DCs engineered by Ag85A gene exerts enhanced anti-tumor immunity against bladder cancer and this study might provide a meaningful mode of action with the use of Ag85A engineered DC vaccination in anti-cancer immunotherapy. PMID:22884511

  13. In vitro and in vivo anti-tumor effect of metformin as a novel therapeutic agent in human oral squamous cell carcinoma

    PubMed Central

    2012-01-01

    Background Metformin, which is widely used as an antidiabetic agent, has recently been reported to reduce cancer risk and improve prognosis in certain malignancies. However, the specific mechanisms underlying the effect of metformin on the development and progression of several cancers including oral squamous cell carcinoma (OSCC) remain unclear. In the present study, we investigated the effects of metformin on OSCC cells in vitro and in vivo. Methods OSCC cells treated with or without metformin were counted using a hemocytometer. The clonogenic ability of OSCC cells after metformin treatment was determined by colony formation assay. Cell cycle progression and apoptosis were assessed by flow cytometry, and the activation of related signaling pathways was examined by immunoblotting. The in vivo anti-tumor effect of metformin was examined using a xenograft mouse model. Immunohistochemistry and TUNEL staining were used to determine the expression of cyclin D1 and the presence of apoptotic cells in tumors from mice treated with or without metformin. Results Metformin inhibited proliferation in the OSCC cell lines CAL27, WSU-HN6 and SCC25 in a time- and dose-dependent manner, and significantly reduced the colony formation of OSCC cells in vitro. Metformin induced an apparent cell cycle arrest at the G0/G1 phase, which was accompanied by an obvious activation of the AMP kinase pathway and a strongly decreased activation of mammalian target of rapamycin and S6 kinase. Metformin treatment led to a remarkable decrease of cyclin D1, cyclin-dependent kinase (CDK) 4 and CDK6 protein levels and phosphorylation of retinoblastoma protein, but did not affect p21 or p27 protein expression in OSCC cells. In addition, metformin induced apoptosis in OSCC cells, significantly down-regulating the anti-apoptotic proteins Bcl-2 and Bcl-xL and up-regulating the pro-apoptotic protein Bax. Metformin also markedly reduced the expression of cyclin D1 and increased the numbers of apoptotic

  14. Development and Characterization of a Humanized Anti-HER2 Antibody HuA21 with Potent Anti-Tumor Properties in Breast Cancer Cells

    PubMed Central

    Li, Ruilin; Hu, Siyi; Chang, Yan; Zhang, Zhihui; Zha, Zhao; Huang, Hui; Shen, Guodong; Liu, Jing; Song, Lihua; Wei, Wei

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2) is one of the most studied tumor-associated antigens for cancer immunotherapy. An engineered anti-HER-2 chimeric A21 antibody (chA21) is a chimeric antibody targeted to subdomain I of the HER2 extracellular domain. Here, we report the anti-tumor activity of the novel engineered monoclonal antibody humanized chA21 (HuA21) that targets HER2 on the basis of chA21, and we describe the underlying mechanisms. Our results reveal that HuA21 markedly inhibits the proliferation and migration of HER2-overexpressing breast cancer cells and causes enhanced antibody-dependent cell-mediated cytotoxicity potency against HER2-overexpressing tumor cells. In particular, HuA21, but not trastuzumab (Tra), markedly suppresses growth and enhances the internalization of the antibody in Tra-resistant BT-474 breast cancer cells. These characteristics are highly associated with the intrinsic ability of HuA21 to down-regulate HER2 activation and inhibit the extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) signaling pathways. Furthermore, the combination of HuA21 with Tra synergistically enhances the anti-tumor effects in vitro and in vivo and inhibits HER2 activation and the ERK1/2 and Akt signaling pathways. Altogether, our results suggest that HuA21 may represent a unique anti-HER2 antibody with potential as a therapeutic candidate alone or in combination with other anti-HER2 reagents in cancer therapy. PMID:27092488

  15. Development and Characterization of a Humanized Anti-HER2 Antibody HuA21 with Potent Anti-Tumor Properties in Breast Cancer Cells.

    PubMed

    Li, Ruilin; Hu, Siyi; Chang, Yan; Zhang, Zhihui; Zha, Zhao; Huang, Hui; Shen, Guodong; Liu, Jing; Song, Lihua; Wei, Wei

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2) is one of the most studied tumor-associated antigens for cancer immunotherapy. An engineered anti-HER-2 chimeric A21 antibody (chA21) is a chimeric antibody targeted to subdomain I of the HER2 extracellular domain. Here, we report the anti-tumor activity of the novel engineered monoclonal antibody humanized chA21 (HuA21) that targets HER2 on the basis of chA21, and we describe the underlying mechanisms. Our results reveal that HuA21 markedly inhibits the proliferation and migration of HER2-overexpressing breast cancer cells and causes enhanced antibody-dependent cell-mediated cytotoxicity potency against HER2-overexpressing tumor cells. In particular, HuA21, but not trastuzumab (Tra), markedly suppresses growth and enhances the internalization of the antibody in Tra-resistant BT-474 breast cancer cells. These characteristics are highly associated with the intrinsic ability of HuA21 to down-regulate HER2 activation and inhibit the extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) signaling pathways. Furthermore, the combination of HuA21 with Tra synergistically enhances the anti-tumor effects in vitro and in vivo and inhibits HER2 activation and the ERK1/2 and Akt signaling pathways. Altogether, our results suggest that HuA21 may represent a unique anti-HER2 antibody with potential as a therapeutic candidate alone or in combination with other anti-HER2 reagents in cancer therapy. PMID:27092488

  16. Prediction of clinical and endoscopic responses to anti-tumor necrosis factor-α antibodies in ulcerative colitis.

    PubMed

    Morita, Yukihiro; Bamba, Shigeki; Takahashi, Kenichiro; Imaeda, Hirotsugu; Nishida, Atsushi; Inatomi, Osamu; Sasaki, Masaya; Tsujikawa, Tomoyuki; Sugimoto, Mitsushige; Andoh, Akira

    2016-08-01

    Objective In patients with ulcerative colitis (UC), the relationship between the initial endoscopic findings and the response to anti-tumor necrosis factor (TNF)-α antibodies remains unclear. We herein evaluated the potential of endoscopic assessment using the ulcerative colitis endoscopic index of severity (UCEIS) to predict the response to anti-TNF-α antibodies. Methods We enrolled 64 patients with UC undergoing anti-TNF-α maintenance therapy with infliximab (IFX) or adalimumab (ADA) between April 2010 and March 2015. Anti-TNF-α trough levels were determined by ELISA. Endoscopic disease activity was assessed using the UCEIS. Results The clinical response rate at 8 weeks was 77.4% for IFX and 66.7% for ADA. Serum albumin levels were significantly higher and the UCEIS bleeding descriptor before treatment was significantly lower in the responders than in the non-responders (p < 0.05 each). The CRP levels at 2 weeks were significantly lower in the responders (p < 0.001). The serum albumin levels before treatment were significantly higher and the UCEIS erosions and ulcers descriptor was significantly lower in the mucosal healing group than in the non-mucosal healing group (p < 0.05 each). A significant and negative correlation between the trough levels of anti-TNF-α antibodies and the UCEIS descriptors was observed. The trough levels of anti-TNF-α antibodies to achieve mucosal healing were 2.7 μg/mL for IFX and 10.3 μg/mL for ADA. Conclusions The UCEIS score, as well as some clinical markers (serum albumin and CRP levels), is useful for the prediction of the treatment outcome of UC patients in response to anti-TNF-α antibodies. PMID:26888161

  17. Human TMEM30a Promotes Uptake of Anti-tumor and Bioactive Choline Phospholipids into Mammalian Cells1

    PubMed Central

    Chen, Rui; Brady, Erin; McIntyre, Thomas M.

    2010-01-01

    Anti-tumor alkylphospholipids initiate apoptosis in transformed HL-60 and Jurkat cells while sparing their progenitors. Edelfosine like other short-chained phospholipids—inflammatory Platelet-activating Factor (PAF) and apoptotic oxidatively-truncated phospholipids—are proposed to have intracellular sites of action, yet a conduit for these choline phospholipids into mammalian cells is undefined. Edelfosine is also accumulated by Saccharomyces cerevisiae in process requiring the membrane protein Lem3p, and the human genome contains a Lem3p homolog TMEM30a. We show import of choline phospholipids into S. cerevisiae ⊗Lem3 is partially reconstituted by human TMEM30a and by Lem3p-TMEM30a chimeras, showing the proteins are orthologous. TMEM30a-GFP chimeras expressed in mammalian cells localized in plasma membranes, as well as internal organelles, and ectopic TMEM30a expression promoted uptake of exogenous choline and ethanolamine phospholipids. shRNA knockdown of TMEM30a reduced fluorescent choline phospholipid and [3H]PAF import. This knockdown also reduced mitochondrial depolarization from exogenous Edelfosine or the mitotoxic oxidatively truncated phospholipid azelaoyl phosphatidylcholine, and the knockdown reduced apoptosis in response to these two phospholipids. These results show extracellular choline phospholipids with short sn-2 residues can have intracellular roles and sites of metabolism because they are transport substrates for a TMEM30a phospholipid import system. Variation in this mechanism could limit sensitivity to short-chain choline phospholipids such as Edelfosine, PAF, and pro-apoptotic phospholipids. PMID:21289302

  18. Combination of PDT and a DNA demethylating agent produces anti-tumor immune response in a mouse tumor model

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Hamblin, Michael R.

    2009-06-01

    Epigenetic mechanisms, which involve DNA methylation and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. However, these changes must be actively maintained after each cell division rendering them a promising target for pharmacologic inhibition. DNA methyltransferase inhibitors like 5-aza-deoxycytidine (5-aza-dC) induce and/or up-regulate the expression of MAGE-type antigens in human and mice cancer cells. Photodynamic therapy (PDT) has been shown to be an effective locally ablative anti-cancer treatment that has the additional advantage of stimulating tumor-directed immune response. We studied the effects of a new therapy that combined the demethylating agent 5-aza-dC with PDT in the breast cancer model 4T1 syngenic to immunocompetent BALB/c mice. PDT was used as a locally ablating tumor treatment that is capable of eliciting strong and tumor directed immune response while 5-aza-dC pretreatment was used promote de novo induction of the expression of P1A.protein. This is the mouse homolog of human MAGE family antigens and is reported to function as a tumor rejection antigen in certain mouse tumors. This strategy led to an increase in PDT-mediated immune response and better treatment outcome. These results strongly suggest that the MAGE family antigens are important target for PDT mediated immune response but that their expression can be silenced by epigenetic mechanisms. Therefore the possibility that PDT can be combined with epigenetic strategies to elicit anti-tumor immunity in MAGE-positive tumor models is highly clinically significant and should be studied in detail.

  19. Intestinal microsporidiosis: a hidden risk in rheumatic disease patients undergoing anti-tumor necrosis factor therapy combined with disease-modifying anti-rheumatic drugs?

    PubMed Central

    Aikawa, Nadia Emi; de Oliveira Twardowsky, Aline; de Carvalho, Jozélio Freire; Silva, Clovis A; Silva, Ivan Leonardo Avelino França e; de Medeiros Ribeiro, Ana Cristina; Saad, Carla Gonçalves Schain; Moraes, Julio César Bertacini; de Toledo, Roberto Acayaba; Bonfá, Eloísa

    2011-01-01

    OBJECTIVE: Immunosuppressed patients are at risk of microsporidiosis, and this parasitosis has an increased rate of dissemination in this population. Our objective was to evaluate the presence of microsporidiosis and other intestinal parasites in rheumatic disease patients undergoing anti-tumor necrosis factor/disease-modifying anti-rheumatic drug treatment. METHODS: Ninety-eight patients (47 with rheumatoid arthritis, 31 with ankylosing spondylitis and 11 with psoriatic arthritis) and 92 healthy control patients were enrolled in the study. Three stool samples and cultures were collected from each subject. RESULTS: The frequency of microsporidia was significantly higher in rheumatic disease patients than in control subjects (36 vs. 4%, respectively; p<0.0001), as well as in those with rheumatic diseases (32 vs. 4%, respectively; p<0.0001), ankylosing spondylitis (45 vs. 4%, respectively; p<0.0001) and psoriatic arthritis (40 vs. 4%, respectively; p<0.0001), despite a similar social-economic class distribution in both the patient and control groups (p = 0.1153). Of note, concomitant fecal leukocytes were observed in the majority of the microsporidia-positive patients (79.5%). Approximately 80% of the patients had gastrointestinal symptoms, such as diarrhea (26%), abdominal pain (31%) and weight loss (5%), although the frequencies of these symptoms were comparable in patients with and without this infection (p>0.05). Rheumatoid arthritis, ankylosing spondylitis and psoriatic arthritis disease activity parameters were comparable in both groups (p>0.05). The duration of anti-tumor necrosis factor/disease-modifying anti-rheumatic drugs and glucocorticoid use were also similar in both groups. CONCLUSION: We have documented that microsporidiosis with intestinal mucosa disruption is frequent in patients undergoing concomitant anti-tumor necrosis factor/disease-modifying anti-rheumatic drug therapy. Impaired host defenses due to the combination of the underlying disease

  20. Young T Cells Age During a Redirected Anti-Tumor Attack: Chimeric Antigen Receptor-Provided Dual Costimulation is Half the Battle

    PubMed Central

    Hombach, Andreas A.; Abken, Hinrich

    2013-01-01

    Adoptive therapy with chimeric antigen receptor (CAR)-redirected T cells showed spectacular efficacy in the treatment of leukemia in recent early phase trials. Patient’s T cells were ex vivo genetically engineered with a CAR, amplified and re-administered to the patient. While T cells mediating the primary response were predominantly of young effector and central memory phenotype, repetitive antigen engagement irreversible triggers T cell maturation leaving late memory cells with the KLRG1+ CD57+ CD7− CCR7− phenotype in the long-term. These cells preferentially accumulate in the periphery, are hypo-responsive upon TCR engagement and prone to activation-induced cell death. A recent report indicates that those T cells can be rescued by CAR provided CD28 and OX40 (CD134) stimulation. We discuss the strategy with respect to prolong the anti-tumor response and to improve the over-all efficacy of adoptive cell therapy. PMID:23761793

  1. Young T Cells Age During a Redirected Anti-Tumor Attack: Chimeric Antigen Receptor-Provided Dual Costimulation is Half the Battle.

    PubMed

    Hombach, Andreas A; Abken, Hinrich

    2013-01-01

    Adoptive therapy with chimeric antigen receptor (CAR)-redirected T cells showed spectacular efficacy in the treatment of leukemia in recent early phase trials. Patient's T cells were ex vivo genetically engineered with a CAR, amplified and re-administered to the patient. While T cells mediating the primary response were predominantly of young effector and central memory phenotype, repetitive antigen engagement irreversible triggers T cell maturation leaving late memory cells with the KLRG1(+) CD57(+) CD7(-) CCR7(-) phenotype in the long-term. These cells preferentially accumulate in the periphery, are hypo-responsive upon TCR engagement and prone to activation-induced cell death. A recent report indicates that those T cells can be rescued by CAR provided CD28 and OX40 (CD134) stimulation. We discuss the strategy with respect to prolong the anti-tumor response and to improve the over-all efficacy of adoptive cell therapy. PMID:23761793

  2. Real-life outcome of anti-tumor necrosis factor α in the ambulatory treatment of ulcerative colitis

    PubMed Central

    Baki, Enayatullah; Zwickel, Philipp; Zawierucha, Anna; Ehehalt, Robert; Gotthardt, Daniel; Stremmel, Wolfgang; Gauss, Annika

    2015-01-01

    AIM: To evaluate the outcome of anti-tumor necrosis factor alpha (anti-TNFα) therapy in outpatients with ulcerative colitis at a tertiary referral center. METHODS: All patients with a confirmed diagnosis of ulcerative colitis undergoing therapy with infliximab and/or adalimumab at the outpatient clinic for inflammatory bowel diseases at the University Hospital Heidelberg between January 2011 and February 2014 were retrospectively enrolled. Patients with a follow-up period of less than 6 mo from start of anti-TNFα therapy were excluded. Medical records of all eligible individuals were carefully reviewed. Steroid-free clinical remission of a duration of at least 3 mo, colectomy rate, duration of anti-TNFα therapy, need for anti-TNFα dose escalation, and the occurrence of adverse events were evaluated as the main outcome parameters. RESULTS: Seventy-two patients were included (35 treated with infliximab, 17 with adalimumab, 20 with both consecutively). Median follow-up was 27 mo (range: 6-87 mo). Steroid-free clinical remission was achieved by 22.2% of the patients (median duration: 21 mo until end of follow-up; range: 3-66 mo). Patients attaining steroid-free clinical remission displayed lower hemoglobin and albumin blood levels at the start of treatment than those who did not achieve remission. The overall colectomy rate was 20.8%. Nearly 50% of the patients underwent anti-TNFα dose escalation during the follow-up period. For both the infliximab and the adalimumab treated patients, non-response to anti-TNFα therapy was the major reason for treatment discontinuation. 18.2% of the infliximab-treated patients and 13.5% of the adalimumab-treated patients had to discontinue their therapy due to adverse events. CONCLUSION: Real-life remission rates of ulcerative colitis under anti-TNFα are overall low, but some patients have a clear long-term benefit. PMID:25805935

  3. Cooperative therapeutic anti-tumor effect of IL-15 agonist ALT-803 and co-targeting soluble NKG2D ligand sMIC

    PubMed Central

    Basher, Fahmin; Jeng, Emily K.; Wong, Hing; Wu, Jennifer

    2016-01-01

    Shedding of the human NKG2D ligand MIC (MHC class I-chain-related molecule) from tumor cell surfaces correlates with progression of many epithelial cancers. Shedding-derived soluble MIC (sMIC) enables tumor immune escape through multiple immune suppressive mechanisms, such as disturbing natural killer (NK) cell homeostatic maintenance, impairing NKG2D expression on NK cells and effector T cells, and facilitating the expansion of arginase I+ myeloid suppressor cells. Our recent study has demonstrated that sMIC is an effective cancer therapeutic target. Whether targeting tumor-derived sMIC would enhance current active immunotherapy is not known. Here, we determined the in vivo therapeutic effect of an antibody co-targeting sMIC with the immunostimulatory IL-15 superagonist complex, ALT-803, using genetically engineered transplantable syngeneic sMIC+ tumor models. We demonstrate that combined therapy of a nonblocking antibody neutralizing sMIC and ALT-803 improved the survival of animals bearing sMIC+ tumors in comparison to monotherapy. We further demonstrate that the enhanced therapeutic effect with combined therapy is through concurrent augmentation of NK and CD8 T cell anti-tumor responses. In particular, expression of activation-induced surface molecules and increased functional potential by cytokine secretion are improved greatly by the administration of combined therapy. Depletion of NK cells abolished the cooperative therapeutic effect. Our findings suggest that administration of the sMIC-neutralizing antibody can enhance the anti-tumor effects of ALT-803. With ALT-803 currently in clinical trials to treat progressive solid tumors, the majority of which are sMIC+, our findings provide a rationale for co-targeting sMIC to enhance the therapeutic efficacy of ALT-803 or other IL-15 agonists. PMID:26625316

  4. Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor

    SciTech Connect

    Hamdi, Hamdi K. . E-mail: hkhamdi@gmail.com; Castellon, Raquel

    2005-09-02

    Oleuropein, a non-toxic secoiridoid derived from the olive tree, is a powerful antioxidant and anti-angiogenic agent. Here, we show it to be a potent anti-cancer compound, directly disrupting actin filaments in cells and in a cell-free assay. Oleuropein inhibited the proliferation and migration of advanced-grade tumor cell lines in a dose-responsive manner. In a novel tube-disruption assay, Oleuropein irreversibly rounded cancer cells, preventing their replication, motility, and invasiveness; these effects were reversible in normal cells. When administered orally to mice that developed spontaneous tumors, Oleuropein completely regressed tumors in 9-12 days. When tumors were resected prior to complete regression, they lacked cohesiveness and had a crumbly consistency. No viable cells could be recovered from these tumors. These observations elevate Oleuropein from a non-toxic antioxidant into a potent anti-tumor agent with direct effects against tumor cells. Our data may also explain the cancer-protective effects of the olive-rich Mediterranean diet.

  5. The Safety and Anti-Tumor Effects of Ozonated Water in Vivo

    PubMed Central

    Kuroda, Kohei; Azuma, Kazuo; Mori, Takuro; Kawamoto, Kinya; Murahata, Yusuke; Tsuka, Takeshi; Osaki, Tomohiro; Ito, Norihiko; Imagawa, Tomohiro; Itoh, Fumio; Okamoto, Yoshiharu

    2015-01-01

    Ozonated water is easier to handle than ozone gas. However, there have been no previous reports on the biological effects of ozonated water. We conducted a study on the safety of ozonated water and its anti-tumor effects using a tumor-bearing mouse model and normal controls. Local administration of ozonated water (208 mM) was not associated with any detrimental effects in normal tissues. On the other hand, local administration of ozonated water (20.8, 41.6, 104, or 208 mM) directly into the tumor tissue induced necrosis and inhibited proliferation of tumor cells. There was no significant difference in the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick-end labeling (TUNEL)-positive cells following administration of ozonated water. The size of the necrotic areas was dependent on the concentration of ozonated water. These results indicate that ozonated water does not affect normal tissue and damages only the tumor tissue by selectively inducing necrosis. There is a possibility that it exerts through the production of reaction oxygen species (ROS). In addition, the induction of necrosis rather than apoptosis is very useful in tumor immunity. Based on these results, we believe that administration of ozonated water is a safe and potentially simple adjunct or alternative to existing antineoplastic treatments. PMID:26506343

  6. Retrospective cohort study of anti-tumor necrosis factor agent use in a veteran population

    PubMed Central

    Madkour, Nermeen; Kazerooni, Rashid

    2014-01-01

    Introduction. Anti-tumor necrosis factor (TNF) agents are effective for several immunologic conditions (rheumatoid arthritis (RA), Crohn’s disease (CD), and psoriasis). The purpose of this study was to evaluate the efficacy and safety of anti-TNF agents via chart review. Methods. Single-site, retrospective cohort study that evaluated the efficacy and safety of anti-TNF agents in veterans initiated between 2010 and 2011. Primary aim evaluated response at 12 months post-index date. Secondary aims evaluated initial response prior to 12 months post-index date and infection events. Results. A majority of patients were prescribed anti-TNF agents for CD (27%) and RA (24%). Patients were initiated on etanercept (41%), adalimumab (40%), and infliximab (18%) between 2010 and 2011. No differences in patient demographics were reported. Response rates were high overall. Sixty-five percent of etanercept patients, 82% of adalimumab patients, and 59% of infliximab patients were either partial or full responders, respectively. Approximately 16%, 11%, and 12% of etanercept, adalimumab, and infliximab were non-responders, respectively. Infections between the groups were non-significant. Etanercept and adalimumab patients had higher but non-significant odds of being a responder relative to infliximab. Conclusions. Most patients initiated with anti-TNF agent were responders at 12 months follow-up for all indications in a veteran population. PMID:24883246

  7. Safety of anti-tumor necrosis factor therapy during pregnancy in patients with inflammatory bowel disease.

    PubMed

    Androulakis, Ioannis; Zavos, Christos; Christopoulos, Panagiotis; Mastorakos, George; Gazouli, Maria

    2015-12-21

    Treatment of inflammatory bowel disease has significantly improved since the introduction of biological agents, such as infliximab, adalimumab, certolizumab pegol, and golimumab. The Food and Drug Administration has classified these factors in category B, which means that they do not demonstrate a fetal risk. However, during pregnancy fetuses are exposed to high anti-tumor necrosis factor (TNF) levels that are measurable in their plasma after birth. Since antibodies can transfer through the placenta at the end of the second and during the third trimesters, it is important to know the safety profile of these drugs, particularly for the fetus, and whether maintaining relapse of the disease compensates for the potential risks of fetal exposure. The limited data available for the anti-TNF drugs to date have not demonstrated any significant adverse outcomes in the pregnant women who continued their therapy from conception to the first trimester of gestation. However, data suggest that anti-TNFs should be discontinued during the third trimester, as they may affect the immunological system of the newborn baby. Each decision should be individualized, based on the distinct characteristics of the patient and her disease. Considering all the above, there is a need for more clinical studies regarding the effect of anti-TNF therapeutic agents on pregnancy outcomes. PMID:26715803

  8. Varicella zoster meningitis complicating combined anti-tumor necrosis factor and corticosteroid therapy in Crohn's disease.

    PubMed

    Ma, Christopher; Walters, Brennan; Fedorak, Richard N

    2013-06-01

    Opportunistic viral infections are a well-recognized complication of anti-tumor necrosis factor (TNF) therapy for inflammatory bowel disease (IBD). Cases of severe or atypical varicella zoster virus infection, both primary and latent reactivation, have been described in association with immunosuppression of Crohn's disease (CD) patients. However, central nervous system varicella zoster virus infections have been rarely described, and there are no previous reports of varicella zoster virus meningitis associated with anti-TNF therapy among the CD population. Here, we present the case of a 40-year-old male with severe ileocecal-CD who developed a reactivation of dermatomal herpes zoster after treatment with prednisone and adalimumab. The reactivation presented as debilitating varicella zoster virus meningitis, which was not completely resolved despite aggressive antiviral therapy with prolonged intravenous acyclovir and subsequent oral valacyclovir. This is the first reported case of opportunistic central nervous system varicella zoster infection complicating anti-TNF therapy in the CD population. This paper also reviews the literature on varicella zoster virus infections of immunosuppressed IBD patients and the importance of vaccination prior to initiation of anti-TNF therapy. PMID:23745038

  9. Biorelevant reactions of the potential anti-tumor agent vanadocene dichloride.

    PubMed

    Sanna, Daniele; Serra, Maria; Ugone, Valeria; Manca, Laura; Pirastru, Monica; Buglyó, Péter; Bíró, Linda; Micera, Giovanni; Garribba, Eugenio

    2016-05-01

    The interaction of the potential anti-tumor agent vanadocene dichloride ([Cp2VCl2] or VDC) with some relevant bioligands of the cytosol such as proteins (Hb), amino acids (glycine and histidine), NADH derivatives (NADH, NADPH, NAD(+) and NADP(+)), reductants (GSH and ascorbic acid), phosphates (HPO4(2-), P2O7(4-), cAMP, AMP, ADP and ATP) and carboxylate derivatives (lactate) and its uptake by red blood cells were studied. The results indicated that [Cp2VCl2] transforms at physiological pH into [Cp2V(OH)2] and that only HPO4(2-), P2O7(4-), lactate, ATP and ADP form mixed species with the [Cp2V](2+) moiety replacing the two hydroxide ions. EPR and electronic absorption spectroscopy, agarose gel electrophoresis and spin trapping measurements allow excluding any direct interaction and/or intercalation with DNA and the formation of reactive oxygen species (ROS) in Fenton-like reactions. Uptake experiments by erythrocytes suggested that VDC crosses the membrane and enters inside the cells, whereas 'bare' V(IV) transforms into V(IV)O species with loss of the two cyclopentadienyl rings. This transformation in the cellular environment could be related to the mechanism of action of VDC. PMID:27121101

  10. Peripheral blood-derived, γ9δ2 t cell-enriched cell lines from glioblastoma multiforme patients exert anti-tumoral effects in vitro.

    PubMed

    Marcu-Malina, V; Garelick, D; Peshes-Yeloz, N; Wohl, A; Zach, L; Nagar, M; Amariglio, N; Besser, M J; Cohen, Z R; Bank, I

    2016-01-01

    The goal of this work was to assess the potential of T cells expressing Vγ9Vδ2+ T cell receptors (TCR, γ9δ2T cells) present in peripheral blood (PB) m ononuclear cells (MC, PBMC) of glioblastoma multiforme (GBM) patients to act as anti-tumoral agents. We found that γ9δ2T cell levels were decreased in patients' PB relative to a cohort of healthy donors (HD) (respectively 0.52±0.55%, n=16, vs 1.12±0.6%, n=14, p=0.008) but did not significantly correlate with postoperative survival (R=0.6, p=0.063). Importantly, however, the γ9δ2T cells could be expanded in vitro to consist 51±23% of the cultured lymphocytes (98% CD3+). This was achieved after 14 days of culture in medium containing the amino-bisphosphonate (ABP) Zoledronate (Zol) and interleukin (IL)-2, resulting in γ9δ2T cell-enriched lines (gdTCEL) similar to those of HD derived gdTCEL (54±19%). Moreover, gdTCEL from patients and HD mediated cytotoxicity to GBM-derived cell lines (GBMDCL), which was abrogated by immune-magnetic removal of the γ9δ2T cells. Furthermore, low level interferon (IFN) γ secretion was induced by gdTCEL briefly co-cultured with GBMDCL or autologous - tumor-derived cells, which was greatly amplified in the presence of Zol. Importantly, IFNγ secretion was inhibited by mevastatin but enhanced by cross-linking of butyrophilin 3A1 (CD277) on a CD277+ GBMDCL (U251MG) or by pretreatment of GBMDCL with temozolomide (TMZ). Taken together, these data suggest that γ9δ2T cells in PB of GBM patients can give rise to gdTCEL that mediate anti-tumoral activities. PMID:27049073

  11. Tertiary Lymphoid Structure-Associated B Cells are Key Players in Anti-Tumor Immunity

    PubMed Central

    Germain, Claire; Gnjatic, Sacha; Dieu-Nosjean, Marie-Caroline

    2015-01-01

    It is now admitted that the immune system plays a major role in tumor control. Besides the existence of tumor-specific T cells and B cells, many studies have demonstrated that high numbers of tumor-infiltrating lymphocytes are associated with good clinical outcome. In addition, not only the density but also the organization of tumor-infiltrating immune cells has been shown to determine patient survival. Indeed, more and more studies describe the development within the tumor microenvironment of tertiary lymphoid structures (TLS), whose presence has a positive impact on tumor prognosis. TLS are transient ectopic lymphoid aggregates displaying the same organization and functionality as canonical secondary lymphoid organs, with T-cell-rich and B-cell-rich areas that are sites for the differentiation of effector and memory T cells and B cells. However, factors favoring the emergence of such structures within tumors still need to be fully characterized. In this review, we survey the state of the art of what is known about the general organization, induction, and functionality of TLS during chronic inflammation, and more especially in cancer, with a particular focus on the B-cell compartment. We detail the role played by TLS B cells in anti-tumor immunity, both as antigen-presenting cells and tumor antigen-specific antibody-secreting cells, and raise the question of the capacity of chemotherapeutic and immunotherapeutic agents to induce the development of TLS within tumors. Finally, we explore how to take advantage of our knowledge on TLS B cells to develop new therapeutic tools. PMID:25755654

  12. Tertiary Lymphoid Structure-Associated B Cells are Key Players in Anti-Tumor Immunity.

    PubMed

    Germain, Claire; Gnjatic, Sacha; Dieu-Nosjean, Marie-Caroline

    2015-01-01

    It is now admitted that the immune system plays a major role in tumor control. Besides the existence of tumor-specific T cells and B cells, many studies have demonstrated that high numbers of tumor-infiltrating lymphocytes are associated with good clinical outcome. In addition, not only the density but also the organization of tumor-infiltrating immune cells has been shown to determine patient survival. Indeed, more and more studies describe the development within the tumor microenvironment of tertiary lymphoid structures (TLS), whose presence has a positive impact on tumor prognosis. TLS are transient ectopic lymphoid aggregates displaying the same organization and functionality as canonical secondary lymphoid organs, with T-cell-rich and B-cell-rich areas that are sites for the differentiation of effector and memory T cells and B cells. However, factors favoring the emergence of such structures within tumors still need to be fully characterized. In this review, we survey the state of the art of what is known about the general organization, induction, and functionality of TLS during chronic inflammation, and more especially in cancer, with a particular focus on the B-cell compartment. We detail the role played by TLS B cells in anti-tumor immunity, both as antigen-presenting cells and tumor antigen-specific antibody-secreting cells, and raise the question of the capacity of chemotherapeutic and immunotherapeutic agents to induce the development of TLS within tumors. Finally, we explore how to take advantage of our knowledge on TLS B cells to develop new therapeutic tools. PMID:25755654

  13. Anti-Tumor Effects of Ketogenic Diets in Mice: A Meta-Analysis

    PubMed Central

    Klement, Rainer J.; Champ, Colin E.; Otto, Christoph; Kämmerer, Ulrike

    2016-01-01

    Background Currently ketogenic diets (KDs) are hyped as an anti-tumor intervention aimed at exploiting the metabolic abnormalities of cancer cells. However, while data in humans is sparse, translation of murine tumor models to the clinic is further hampered by small sample sizes, heterogeneous settings and mixed results concerning tumor growth retardation. The aim was therefore to synthesize the evidence for a growth inhibiting effect of KDs when used as a monotherapy in mice. Methods We conducted a Bayesian random effects meta-analysis on all studies assessing the survival (defined as the time to reach a pre-defined endpoint such as tumor volume) of mice on an unrestricted KD compared to a high carbohydrate standard diet (SD). For 12 studies meeting the inclusion criteria either a mean survival time ratio (MR) or hazard ratio (HR) between the KD and SD groups could be obtained. The posterior estimates for the MR and HR averaged over four priors on the between-study heterogeneity τ2 were MR = 0.85 (95% highest posterior density interval (HPDI) = [0.73, 0.97]) and HR = 0.55 (95% HPDI = [0.26, 0.87]), indicating a significant overall benefit of the KD in terms of prolonged mean survival times and reduced hazard rate. All studies that used a brain tumor model also chose a late starting point for the KD (at least one day after tumor initiation) which accounted for 26% of the heterogeneity. In this subgroup the KD was less effective (MR = 0.89, 95% HPDI = [0.76, 1.04]). Conclusions There was an overall tumor growth delaying effect of unrestricted KDs in mice. Future experiments should aim at differentiating the effects of KD timing versus tumor location, since external evidence is currently consistent with an influence of both of these factors. PMID:27159218

  14. Identification of immune factors regulating anti-tumor immunity using polymeric vaccines with multiple adjuvants

    PubMed Central

    Ali, Omar A.; Verbeke, Catia; Johnson, Chris; Sands, Warren; Lewin, Sarah A.; White, Des; Doherty, Edward; Dranoff, Glenn; Mooney, David J.

    2014-01-01

    The innate cellular and molecular components required to mediate effective vaccination against weak tumor-associated antigens remain unclear. In this study we utilized polymeric cancer vaccines incorporating different classes of adjuvants to induce tumor protection, in order to identify dendritic cell subsets and cytokines critical to this efficacy. Three-dimensional, porous polymer matrices loaded with tumor lysates and presenting distinct combinations of GM-CSF and various TLR agonists effected 70–90% prophylactic tumor protection in B16-F10 melanoma models. In aggressive, therapeutic B16 models, the vaccine systems incorporating GM-CSF in combination with P(I:C) or CpG-ODN induced the complete regression of solid tumors (≤40mm2) resulting in 33% long-term survival. Regression analysis revealed that the numbers of vaccine-resident CD8(+) DCs and plasmacytoid DCs, along with local IL-12, and G-CSF concentrations correlated strongly to vaccine efficacy regardless of adjuvant type. Further, vaccine studies in Batf3−/− mice revealed that CD8(+) DCs are required to effect tumor protection, as vaccines in these mice were deficient in cytotoxic T cell priming, and IL-12 induction in comparison to wild-type. These studies broadly demonstrate that three-dimensional polymeric vaccines provide a potent platform for prophylactic and therapeutic protection, and can be used as a tool to identify critical components of a desired immune response. Specifically, these results suggest that CD8(+) DCs, plasmacytoid DCs, IL-12, and G-CSF play important roles in priming effective anti-tumor responses with these vaccines. PMID:24480625

  15. A Potent Gelatinase Inhibitor with Anti-Tumor-Invasive Activity and its Metabolic Disposition

    PubMed Central

    Lee, Mijoon; Celenza, Giuseppe; Boggess, Bill; Blase, Jennifer; Shi, Qicun; Toth, Marta; Bernardo, M. Margarida; Wolter, William R.; Suckow, Mark A.; Hesek, Dusan; Noll, Bruce C.; Fridman, Rafael; Mobashery, Shahriar; Chang, Mayland

    2009-01-01

    Metastatic tumors lead to more than 90% fatality. Despite the importance of invasiveness of tumors to poor disease outcome, no anti-invasive compounds have been commercialized. We describe herein the synthesis and evaluation of 4-(4-(thiiranylmethylsulfonyl)phenoxy)-phenyl methane-sulfonate (compound 2) as a potent and selective inhibitor of gelatinases (matrix metalloproteinases-2 and -9), two enzymes implicated in invasiveness of tumors. It was demonstrated that compound 2 significantly attenuated the invasiveness of human fibrosarcoma cells (HT1080). The metabolism of compound 2 involved hydroxylation at the a-methylene, which generates sulfinic acid, thiirane ring-opening, followed by methylation and oxidation, and cysteine conjugation of both the thiirane and phenyl rings. PMID:19207421

  16. Understanding Toxicities of Targeted Agents: Implications for Anti-tumor Activity and Management.

    PubMed

    Liu, Sariah; Kurzrock, Razelle

    2015-12-01

    Targeted treatments have distinctive side effects: dermatologic problems (rash, hand-food skin reaction, skin/hair whitening), endocrine dysfunction (hyperglycemia, hypothyroidism, dyslipidemia), as well as hypertension, diarrhea, liver problems, ocular toxicity and proteinuria. Toxicities can be classified as: (1) on-target, mechanism-driven toxicities that are either related or unrelated to response; and (2) off-target side effects. Off-target toxicities may be specific to the class of agent, eg, small molecule tyrosine kinase inhibitor versus antibody versus cytotoxic; alternatively, they may also be mediated by metabolites or immune reactions. Both on- and off-target toxicities can be amplified or attenuated by drug concentrations or end-organ sensitivity, which in turn can be attributable to genetic polymorphisms regulating metabolism or tissue responsiveness. On-target side effects are important to identify as some are associated with response and, therefore, controlling these side effects is preferable to dose reduction or treatment discontinuation. Side effects caused by relevant target impact may be recognized when different types of agents, eg, small molecule inhibitors and antibodies, with the same target have the same side effect. These on-target effects may also correlate with better outcomes. We discuss toxicity of targeted agents in the context of understanding target impact, drug-drug interactions, and implications for optimized management. PMID:26615131

  17. Synthesis, characterization, cell imaging and anti-tumor activity of multifunctional nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Qiu-Yun; Tao, Gen-Ping; Liu, Ying-Qi; Yang, Xia

    2012-10-01

    Most anticancer complexes are unable to differentiate between diseased and healthy cells, systemic toxicity and undesired side effects can result. In the current study, a PEG and RGD peptides functionalized fluorescent dye Rhodamine B isothiocyanate (RBITC) doped magnetic silica nanoparticle (MnFe3O4@SiO2-PEG-RGD), carrying a anticancer superparamagnetic Mn(II) complex, was synthesized and characterized using spectroscopic methods. The multifunctional nanoparticles (MnFe3O4@SiO2-PEG-RGD) can image HepG-2 cells and differentiate between HepG-2 and WRL-68 cells based on T1 MR imaging technology. The in vitro fluorescence image and inhibition assay on the proliferation of HeLa cells indicate that MnFe3O4@SiO2-PEG-RGD nanoparticles can effectively reach the tumor site, be internalized by endocytosis and then retain in cancer cells due to the retention effect of nanoparticles. This study demonstrated that a PEG and RGD peptides functionalized silica nanoparticle was a good carrier for the anticancer complexes, and the anticancer complexes loaded multifunctional nanoparticles could be developed as special agents in monitoring therapy of cancer.

  18. The DREAM complex in anti-tumor activity of imatinib mesylate in gastrointestinal stromal tumors (GISTs)

    PubMed Central

    DeCaprio, James A.; Duensing, Anette

    2014-01-01

    Purpose of review Although most gastrointestinal stromal tumors (GISTs) respond well to treatment with the small molecule kinase inhibitor imatinib mesylate (Gleevec), the majority of patients achieve disease stabilization and complete remissions are rare. Furthermore, discontinuation of treatment in the presence of residual tumor mass almost inevitably leads to tumor progression. These observations suggest that a subset of tumor cells not only persists under imatinib treatment, but remains viable. The current article reviews the molecular basis for these findings and explores strategies to exploit them therapeutically. Recent findings Although imatinib can induce apoptosis in a subset of GIST cells, it can induce a reversible exit from the cell division cycle and entry into G0, a cell cycle state called quiescence, in the remaining cells. Mechanistically, this process involves the DREAM complex, a newly identified key regulator of quiescence. Interfering with DREAM complex formation either by siRNA-mediated knockdown or by pharmacological inhibition of the regulatory kinase DYRK1A was shown to enhance imatinib-induced GIST cell death. Summary Targeting the DREAM complex and imatinib-induced quiescence could provide opportunities for future therapeutic interventions toward more efficient imatinib responses. PMID:24840522

  19. Ley specific antibody with potent anti-tumor activity is internalized and degraded in lysosomes.

    PubMed Central

    Garrigues, J.; Garrigues, U.; Hellström, I.; Hellström, K. E.

    1993-01-01

    BR96 is a monoclonal antibody (MAb) that recognizes many human carcinomas and can kill antigen-positive tumor cells in vitro. Using both gold and radiolabeled MAb, the distribution and cellular processing of BR96 during cytolysis has been determined. After a brief (< 3 minutes) MAb treatment, cells in suspension are stained by the nuclear viability dye propidium iodide. Whole MAb and F(ab')2 fragments are equally cytotoxic; monovalent F(ab) fragments, however, have no effect on dye uptake unless cross-linked with goat anti-mouse IgG. The level of toxicity is dependent on both MAb dose and on cell surface receptor density. Cell contact may regulate receptor expression. BR96 receptors are more abundant on cells migrating into the open areas of a scratch wounded confluent culture than on the adjacent contact-inhibited cells. BR96 can also inhibit the anchorage-independent growth of tumor cells in soft agar showing that its effects on propidium iodide staining are not due to transient changes in membrane permeability. Immunogold electron microscopy reveals that, after a 1-minute treatment, BR96 induces significant infolding of the plasma membrane and that internalized MAb is localized to these structures. Immediately thereafter, large cell surface and intracellular vesicles form, mitochondria are swollen, and membrane integrity is lost. Therefore, BR96 seems to cause morphological changes characteristic of necrosis rather than apoptosis. When bound to adherent carcinoma cells, BR96 is distributed uniformly on the apical surface of cells labeled at 4 C and is enriched at points of cell substratum contact. Upon warming of the cells to 37 C, BR96 localizes in small perinuclear clusters and the cell margin is now devoid of label. Immunogold electron microscopy reveals that BR96 undergoes receptor mediated internalization and is localized within the same coated pits, endosomes, and lysosomes as the transferrin receptor. Quantitative studies using iodinated BR96 show that after 6 hours of chase, a maximum of 53% of the radiolabel is located within the intracellular pool. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that 84% of this fraction is nondegraded. BR96 probably cycles between the medium and intracellular pools because the remainder of the radiolabel is in the medium as intact MAb. By 24 hours of chase, the intracellular fraction drops to 30%, while the remaining 70% is present in the culture medium, mostly as low molecular weight degradation products. Images Figure 1 Figure 2 Figure 4 Figure 5 p614-a Figure 6 Figure 7 Figure 8 Figure 9 PMID:8434651

  20. Additive Anti-Tumor Effects of Lovastatin and Everolimus In Vitro through Simultaneous Inhibition of Signaling Pathways

    PubMed Central

    Nölting, Svenja; Maurer, Julian; Spöttl, Gerald; Aristizabal Prada, Elke Tatjana; Reuther, Clemens; Young, Karen; Korbonits, Márta; Göke, Burkhard; Grossman, Ashley; Auernhammer, Christoph J.

    2015-01-01

    Background The mTORC1-inhibitor everolimus shows limited efficacy in treating patients with gastro-entero-pancreatic or pulmonary neuroendocrine tumors (NETs), and poor outcome in patients with malignant pheochromocytoma or hepatic carcinoma. We speculated that any effect may be enhanced by antogonising other signaling pathways. Methods Therefore, we tested the effect of lovastatin—known to inhibit both ERK and AKT signaling—and everolimus, separately and in combination, on cell viability and signaling pathways in human midgut (GOT), pancreatic (BON1), and pulmonary (H727) NET, hepatocellular carcinoma (HepG2, Huh7), and mouse pheochromocytoma (MPC, MTT) cell lines. Results Lovastatin and everolimus separately significantly reduced cell viability in H727, HepG2, Huh7, MPC and MTT cells at clinically relevant doses (P ≤ 0.05). However, high doses of lovastatin were necessary to affect GOT or BON1 cell viability. Clinically relevant doses of both drugs showed additive anti-tumor effects in H727, HepG2, Huh7, MPC and MTT cells (P ≤ 0.05), but not in BON1 or GOT cells. In all cell lines investigated, lovastatin inhibited EGFR and AKT signaling. Subsequently, combination treatment more strongly inhibited EGFR and AKT signaling than everolimus alone, or at least attenuated everolimus-induced EGFR or AKT activation. Vice versa, everolimus constantly decreased pp70S6K and combination treatment more strongly decreased pp70S6K than lovastatin alone, or attenuated lovastatin-induced p70S6K activation: in BON1 cells lovastatin-induced EGFR inhibition was least pronounced, possibly explaining the low efficacy and consequent absent additive effect. Conclusion In summary, clinically relevant doses of lovastatin and everolimus were effective separately and showed additive effects in 5 out of 7 cell lines. Our findings emphasize the importance of targeting several interacting signaling pathways simultaneously when attempting to attenuate tumor growth. However, the variable

  1. Optimal design of active and semi-active suspensions including time delays and preview

    NASA Astrophysics Data System (ADS)

    Hac', A.; Youn, I.

    1993-10-01

    Several control laws for active and semi-active suspension based on a linear half car model are derived and investigated. The strategies proposed take full advantage of the fact that the road input to the rear wheels is a delayed version of that to the front wheels, which in turn can be obtained either from the measurements of the front wheels and body motions or by direct preview of road irregularities if preview sensors are available. The suspension systems are optimized with respect to ride comfort, road holding and suspension rattle space as expressed by the mean-square-values of body acceleration (including effects of heave and pitch), tire deflections and front and rear suspension travels. The optimal control laws that minimize the given performance index and include passivity constraints in the semi-active case are derived using calculus of variation. The optimal semi-active suspension becomes piecewise linear, varying between passive and fully active systems and combinations of them. The performances of active and semi-active systems with and without preview were evaluated by numerical simulation in the time and frequency domains. The results show that incorporation of time delay between the front and rear axles in controller design improves the dynamic behavior of the rear axle and control of body pitch motion, while additional preview improves front wheel dynamics and body heave.

  2. Specific anti-tumor immune response with photodynamic therapy mediated by benzoporphyrin derivative and chlorin(e6)

    NASA Astrophysics Data System (ADS)

    Castano, Ana P.; Gad, Faten; Zahra, Touqir; Hamblin, Michael R.

    2003-07-01

    The purpose of this study was to investigate the induction of anti-tumor immunity by photodynamic therapy (PDT). We used EMT-6 mammary sarcoma, a moderately immunogenic tumor, with 10(6) cells injected s.c. in thighs of immunocompetent Balb/c mice. Mice were treated 10 days later when tumors were 6-mm diameter. Two PDT regimens were equally effective in curing tumors: 1-mg/kg of liposomal benzoporphyrin derivative (BPD) followed after 15 min by 150 J/cm2 690 nm light or 10-mg/kg chlorin(e6) (ce6) followed after 6 hours by 150 J/cm2 665 nm light. BPD-PDT produced a black eschar 24-48 hours after treatment with no visible tumor, followed by healing of the lesion. By contrast ce6-PDT showed no black eschar, but a slow disappearance of tumor over 5-7 days. When cured mice were rechallenged with 10(6) EMT-6 cells in the opposite thigh, all ce6-PDT cured mice rejected the challenge, but BPD-PDT cured mice grew tumors in a proportion of cases. When mice were cured by amputation of the tumor bearing leg, all mice subsequently grew tumors upon rechallenge. Mice were given two EMT6 tumors (1 in each leg) and the mouse was injected with ce6 or BPD but only one tumor was treated with light. Both tumors (PDT-treated and contralateral) regressed at an equal rate until they became undetectable, but in some mice the untreated tumor recurred. Those mice cured of both tumors rejected a subsequent EMT6 rechallenge. Amputation of the tumor bearing leg did not lead to regression of the contralateral tumor. Mice that rejected an EMT6 rechallenge failed to reject a subsequent cross-challenge with J774 reticulum cell sarcoma (an alternative Balb/c murine tumor). These data show that PDT generates a tumor-specific memory immune response, and in addition an active tumoricidal immune response capable of destroying distant established tumors. We hypothesize that ce6-PDT is more effective than BPD-PDT due to more necrotic rather than apoptotic cell death and/or generation of heat

  3. In vivo tumor targeting and anti-tumor effects of 5-fluororacil loaded, folic acid targeted quantum dot system.

    PubMed

    Bwatanglang, Ibrahim Birma; Mohammad, Faruq; Yusof, Nor Azah; Abdullah, Jaafar; Alitheen, Noorjahan Banu; Hussein, Mohd Zubir; Abu, Nadiah; Mohammed, Nurul Elyani; Nordin, Noraini; Zamberi, Nur Rizi; Yeap, Swee Keong

    2016-10-15

    In this study, we modulated the anti-cancer efficacy of 5-Fluorouracil (5-FU) using a carrier system with enhanced targeting efficacy towards folate receptors (FRs) expressing malignant tissues. The 5-FU drug was loaded onto Mn-ZnS quantum dots (QDs) encapsulated with chitosan (CS) biopolymer and conjugated with folic acid (FA) based on a simple wet chemical method. The formation of 5-FU drug loaded composite was confirmed using Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Furthermore, the in vivo biodistribution and tumor targeting specificity of the 5-FU@FACS-Mn:ZnS in the tumor-bearing mice was conducted based on the Zn(2+) tissue bioaccumulation using inductively coupled plasma (ICP) spectroscopy. In addition to the characterization, the in vitro release profile of 5-FU from the conjugates investigated under diffusion controlled method demonstrated a controlled release behaviour as compared against the release behaviour of free 5-FU drug. The as-synthesized 5-FU@FACS-Mn:ZnS nanoparticle (NP) systemically induced higher level of apoptosis in breast cancer cells in vitro as compared to cells treated with free 5-FU drug following both cell cycle and annexin assays, respectively. Also, the in vivo toxicity assessment of the 5-FU@FACS-Mn:ZnS NPs as compared to the control did not cause any significant increase in the activities of the liver and kidney function biomarkers, malondialdehyde (MDA) and nitric oxide (NO) levels. However, based on the FA-FRs chemistry, the 5-FU@FACS-Mn:ZnS NPs specifically accumulated in the tumor of the tumor-bearing mice and thus contributed to the smaller tumor size and less event of metastasis was observed in the lungs when compared to the tumor-bearing mice groups treated with the free 5-FU drug. In summary, the results demonstrated that the 5-FU@FACS-Mn:ZnS QDs exhibits selective anti-tumor effect in MDA-MB231 breast cancer cells in vitro and 4TI breast

  4. An aqueous extract of Limoniastrum guyonianum gall induces anti-tumor effects in melanoma-injected mice via modulation of the immune response.

    PubMed

    Krifa, Mounira; Skandrani, Ines; Pizzi, Antonio; Nasr, Nouha; Ghedira, Zied; Mustapha, Nadia; Ghedira, Kamel; Chekir-Ghedira, Leila

    2014-07-01

    The objectives of this study were to evaluate the in vitro and in vivo anti-tumor potential of the aqueous gall extract (G extract) from Limoniastrum guyonianum and to elucidate its immunological mechanisms, in part, by assessing its effects on the growth of transplanted tumors and the immune response in these tumor-bearing mice. Here, mice were inoculated with B16F10 mouse tumor cells and then treated intraperitoneally with G extract at 25 or 50 mg extract/kg BW for 7, 14, or 21 days. At each timepoint, effects of the extract on the tumor growth, splenocytes proliferation, NK cell activity, and CTL activity among splenocytes isolated from the mice were measured. G extract-induced tumor growth inhibition was associated with characteristic apoptotic changes in the tumor cells, like nuclear condensation. In addition, the extract inhibited melanin synthesis and tyrosinase activity among melanoma cells in a concentration-related manner. G extract did not only significantly inhibit the growth of the transplantable tumor, but also remarkably increased splenocytes proliferation and both NK and CTL activities in tumor-bearing mice. The extract was also seen to have promoted lysosomal activity of host macrophages and gave rise to enhanced cellular anti-oxidant activity in several cell types in mice. PMID:24705020

  5. Photodynamic therapy stimulates anti-tumor immunity in a murine model

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.

    2007-02-01

    Cancer is a leading cause of death among modern peoples largely due to metastatic disease. The ideal cancer treatment should target both the primary tumor and the metastases with the minimal toxicity. This is best accomplished by educating the body's immune system to recognize the tumor as foreign so that after the primary tumor is destroyed, distant metastases will also be eradicated. Photodynamic therapy (PDT) involves the IV administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. We here report on PDT of mice bearing tumors that either do or do not express an established TAA. We utilized a BALB/c colon adenocarcinoma cell line termed CT26.CL25 retrovirally transduced to stably express β-galactosidase ( β-gal, a bacterial protein), and its non-β-gal expressing wild-type counterpart termed CT26 WT, as well as the control cell line consisting of CT26 transduced with the empty retroviral vector termed CT26-neo. All cells expressed class I MHC restriction element H-2Ld syngenic to BALB/c mice. Vascular PDT with a regimen of 1mg/kg BPD injected IV, and 120 J/cm2 of 690-nm laser light after 15 minutes successfully cured 100% of CT26.CL25 tumors but 0% of CT26-neo tumors and 0% of CT26 WT tumors. After 90 days tumor free interval the CT26.CL25 cured mice were rechallenged with CT26.CL25 tumor cells and 96% rejected the rechallenge while the CT26.CL25 cured mice did not reject a CT26 WT tumor cell challenge. Experiments with mice bearing two CT26.CL25 tumors (one

  6. Design and Synthesis of Analogues of Marine Natural Product Galaxamide, an N-methylated Cyclic Pentapeptide, as Potential Anti-Tumor Agent in Vitro.

    PubMed

    Lunagariya, Jignesh; Zhong, Shenghui; Chen, Jianwei; Bai, Defa; Bhadja, Poonam; Long, Weili; Liao, Xiaojian; Tang, Xiaoli; Xu, Shihai

    2016-01-01

    Herein, we report design and synthesis of novel 26 galaxamide analogues with N-methylated cyclo-pentapeptide, and their in vitro anti-tumor activity towards the panel of human tumor cell line, such as, A549, A549/DPP, HepG2 and SMMC-7721 using MTT assay. We have also investigated the effect of galaxamide and its representative analogues on growth, cell-cycle phases, and induction of apoptosis in SMMC-7721 cells in vitro. Reckon with the significance of conformational space and N-Me aminoacid (aa) comprising this compound template, we designed the analogues with modification in N-Me-aa position, change in aa configuration from l to d aa and substitute one Leu-aa to d/l Phe-aa residue with respective to the parent structure. The efficient solid phase parallel synthesis approach is employed for the linear pentapeptide residue containing N-Me aa, followed by solution phase macrocyclisation to afford target cyclo pentapeptide compounds. In the present study, all galaxamide analogues exhibited growth inhibition in A549, A549/DPP, SMMC-7721 and HepG2 cell lines. Compounds 6, 18, and 22 exhibited interesting activities towards all cell line tested, while Compounds 1, 4, 15, and 22 showed strong activity towards SMMC-7221 cell line in the range of 1-2 μg/mL IC50. Flow cytometry experiment revealed that galaxamide analogues namely Compounds 6, 18, and 22 induced concentration dependent SMMC-7721 cell apoptosis after 48 h. These compounds induced G0/G1 phase cell-cycle arrest and morphological changes indicating induction of apoptosis. Thus, findings of our study suggest that the galaxamide and its analogues 6, 18 and 22 exerted growth inhibitory effect on SMMC-7721 cells by arresting the cell cycle in the G0/G1 phase and inducing apoptosis. Compound 1 showed promising anti-tumor activity towards SMMC-7721 cancer cell line, which is 9 and 10 fold higher than galaxamide and reference DPP (cisplatin), respectively. PMID:27598177

  7. Expression of a Recombinant Anti-HIV and Anti-Tumor Protein, MAP30, in Nicotiana tobacum Hairy Roots: A pH-Stable and Thermophilic Antimicrobial Protein

    PubMed Central

    Moghadam, Ali; Niazi, Ali; Afsharifar, Alireza; Taghavi, Seyed Mohsen

    2016-01-01

    In contrast to conventional antibiotics, which microorganisms can readily evade, it is nearly impossible for a microbial strain that is sensitive to antimicrobial proteins to convert to a resistant strain. Therefore, antimicrobial proteins and peptides that are promising alternative candidates for the control of bacterial infections are under investigation. The MAP30 protein of Momordica charantia is a valuable type I ribosome-inactivating protein (RIP) with anti-HIV and anti-tumor activities. Whereas the antimicrobial activity of some type I RIPs has been confirmed, less attention has been paid to the antimicrobial activity of MAP30 produced in a stable, easily handled, and extremely cost-effective protein-expression system. rMAP30-KDEL was expressed in Nicotiana tobacum hairy roots, and its effect on different microorganisms was investigated. Analysis of the extracted total proteins of transgenic hairy roots showed that rMAP30-KDEL was expressed effectively and that this protein exhibited significant antibacterial activity in a dose-dependent manner. rMAP30-KDEL also possessed thermal and pH stability. Bioinformatic analysis of MAP30 and other RIPs regarding their conserved motifs, amino-acid contents, charge, aliphatic index, GRAVY value, and secondary structures demonstrated that these factors accounted for their thermophilicity. Therefore, RIPs such as MAP30 and its derived peptides might have promising applications as food preservatives, and their analysis might provide useful insights into designing clinically applicable antibiotic agents. PMID:27459300

  8. Expression of a Recombinant Anti-HIV and Anti-Tumor Protein, MAP30, in Nicotiana tobacum Hairy Roots: A pH-Stable and Thermophilic Antimicrobial Protein.

    PubMed

    Moghadam, Ali; Niazi, Ali; Afsharifar, Alireza; Taghavi, Seyed Mohsen

    2016-01-01

    In contrast to conventional antibiotics, which microorganisms can readily evade, it is nearly impossible for a microbial strain that is sensitive to antimicrobial proteins to convert to a resistant strain. Therefore, antimicrobial proteins and peptides that are promising alternative candidates for the control of bacterial infections are under investigation. The MAP30 protein of Momordica charantia is a valuable type I ribosome-inactivating protein (RIP) with anti-HIV and anti-tumor activities. Whereas the antimicrobial activity of some type I RIPs has been confirmed, less attention has been paid to the antimicrobial activity of MAP30 produced in a stable, easily handled, and extremely cost-effective protein-expression system. rMAP30-KDEL was expressed in Nicotiana tobacum hairy roots, and its effect on different microorganisms was investigated. Analysis of the extracted total proteins of transgenic hairy roots showed that rMAP30-KDEL was expressed effectively and that this protein exhibited significant antibacterial activity in a dose-dependent manner. rMAP30-KDEL also possessed thermal and pH stability. Bioinformatic analysis of MAP30 and other RIPs regarding their conserved motifs, amino-acid contents, charge, aliphatic index, GRAVY value, and secondary structures demonstrated that these factors accounted for their thermophilicity. Therefore, RIPs such as MAP30 and its derived peptides might have promising applications as food preservatives, and their analysis might provide useful insights into designing clinically applicable antibiotic agents. PMID:27459300

  9. Anti-tumor effects of paeonol in a HepA-hepatoma bearing mouse model via induction of tumor cell apoptosis and stimulation of IL-2 and TNF-alpha production.

    PubMed

    Sun, Guo-Ping; Wang, Hua; Xu, Shu-Ping; Shen, Yu-Xian; Wu, Qiang; Chen, Zhen-Dong; Wei, Wei

    2008-04-28

    Paeonol, a phenolic component from the root bark of Paeonia moutan, is traditionally used as a Chinese herbal medicine to activate the blood flow and remove blood stasis. Evidence shows that paeonol have anti-tumor, anti-inflammatory, and analgesic effects; however, the underlying mechanisms remain unknown. In this study, we investigated the molecular mechanisms by which paeonol exerts the anti-tumor effects by using a murine model of hepatoma established by in vivo injection of mouse HepA-hepatoma cells. Treatment of mice with 100, 200, or 400 mg/kg/day of paeonol significantly inhibited the growth of the HepA tumor in mice, induced HepA cell apoptosis as demonstrated by light microscopy and electron microscopy analyses, decreased the expression of Bcl-2 and increased the expression of Bax in HepA tumor tissues in a dose-related manner. Administration of paeonol in vivo also elevated serum levels of IL-2 and TNF-alpha in tumor-bearing mice. Moreover, splenocytes and macrophages isolated from paeonol-treated HepA tumor-bearing mice produced higher levels of IL-2 and TNF-alpha in response to concanavalin A and lipopolysaccharide stimulation, respectively, compared to these isolated from non-treated HepA tumor-bearing mice. In vitro treatment with paeonol was able to directly stimulate IL-2 and TNF-alpha production in splenocytes and macrophages from tumor-bearing mice, respectively. In conclusion, paeonol has the anti-tumor effect against hepatoma cells, which are likely mediated via induction of tumor cell apoptosis and stimulation of IL-2 and TNF-alpha production. Paeonol could be a promising drug to treat hepatocellular carcinoma. PMID:18329639

  10. Boosting the MHC Class II-Restricted Tumor Antigen Presentation to CD4+ T Helper Cells: A Critical Issue for Triggering Protective Immunity and Re-Orienting the Tumor Microenvironment Toward an Anti-Tumor State

    PubMed Central

    Accolla, Roberto S.; Lombardo, Letizia; Abdallah, Rawan; Raval, Goutham; Forlani, Greta; Tosi, Giovanna

    2014-01-01

    Although the existence of an immune response against tumor cells is well documented, the fact that tumors take off in cancer patients indicates that neoplastic cells can circumvent this response. Over the years many investigators have described strategies to rescue the anti-tumor immune response with the aim of creating specific and long-lasting protection against the disease. When exported to human clinical settings, these strategies have revealed in most cases a very limited, if any, positive outcome. We believe that the failure is mostly due to the inadequate triggering of the CD4+ T helper (TH) cell arm of the adaptive immunity, as TH cells are necessary to trigger all the immune effector mechanisms required to eliminate tumor cells. In this review, we focus on novel strategies that by stimulating MHC class II-restricted activation of TH cells generate a specific and persistent adaptive immunity against the tumor. This point is of critical importance for both preventive and therapeutic anti-tumor vaccination protocols, because adaptive immunity with its capacity to produce specific, long-lasting protection and memory responses is indeed the final goal of vaccination. We will discuss data from our as well as other laboratories which strongly suggest that triggering a specific and persistent anti-tumor CD4+ TH cell response stably modify not only the tumor microenvironment but also tumor-dependent extratumor microenvironments by eliminating and/or reducing the blood-derived tumor infiltrating cells that may have a pro-tumor growth function such as regulatory CD4+/CD25+ T cells and myeloid-derived-suppressor cells. Within this frame, therefore, we believe that the establishment of a pro-tumor environment is not the cause but simply the consequence of the tumor strategy to primarily counteract components of the adaptive cellular immunity, particularly TH lymphocytes. PMID:24600588

  11. Comparison of the Anti-tumor Effects of Two Platinum Agents (Miriplatin and Fine-Powder Cisplatin)

    SciTech Connect

    Watanabe, Shobu Nitta, Norihisa Ohta, Shinichi Sonoda, Akinaga Otani, Hideji Tomozawa, Yuki Nitta-Seko, Ayumi Tsuchiya, Keiko Tanka, Toyohiko Takahashi, Masashi Murata, Kiyoshi

    2012-04-15

    Purpose: This study was designed to evaluate the anti-tumor effects of miriplatin-lipidol and fine-powder cisplatin-lipiodol suspensions. Methods: Assessment of the cytotoxicity of two drugs was performed: a soluble derivative of miriplatin (DPC) and fine-powder cisplatin. We randomly divided 15 rabbits with transplanted VX2 liver tumors into three equal groups. They were infused via the proper hepatic artery with a miriplatin-lipiodol suspension (ML), a fine-powder cisplatin-lipiodol suspension (CL), or saline (control) and the tumor growth rate was determined on MR images acquired before and 7 days after treatment. The concentration of platinum (PCs) in blood was assayed immediately, and 10, 30, and 60 min, and 24 h and 7 days after drug administration. Its concentration in tumor and surrounding normal liver tissues was determined at 7 days postadministration. Results: At high concentrations, fine-powder cisplatin exhibited stronger cytotoxicity than DPC. At low concentrations, both agents manifested weak cytotoxicity. While there was no difference between the tumor growth rate of the ML and the CL groups, the difference between the controls and ML- and CL-treated rabbits was significant. The blood PCs peaked at 10 min and then gradually decreased over time. On the other hand, no platinum was detected at any point after the administration of ML. There was no difference between the ML and CL groups in the PCs in tumor tissues; however, in normal hepatic tissue, the PCs were higher in ML- than CL-treated rabbits. Conclusions: We confirmed the anti-tumor effect of ML and CL. There was no significant difference between the anti-tumor effect of ML and CL at 7 days postadministration.

  12. Immune-Modulation by Epidermal Growth Factor Receptor Inhibitors: Implication on Anti-Tumor Immunity in Lung Cancer

    PubMed Central

    Herrmann, Amanda C.; Bernatchez, Chantale; Haymaker, Cara; Molldrem, Jeffrey J.; Hong, Waun Ki; Perez-Soler, Roman

    2016-01-01

    Skin toxicity is the most common toxicity caused by Epidermal Growth Factor Receptor (EGFR) inhibitors, and has been associated with clinical efficacy. As EGFR inhibitors enhance the expression of antigen presenting molecules in affected skin keratinocytes, they may concurrently facilitate neo-antigen presentation in lung cancer tumor cells contributing to anti-tumor immunity. Here, we investigated the modulatory effect of the EGFR inhibitor, erlotinib on antigen presenting molecules and PD-L1, prominent immune checkpoint protein, of skin keratinocytes and lung cancer cell lines to delineate the link between EGFR signaling pathway inhibition and potential anti-tumor immunity. Erlotinib up-regulated MHC-I and MHC-II proteins on IFNγ treated keratinocytes but abrogated IFNγ-induced expression of PD-L1, suggesting the potential role of infiltrating autoreactive T cells in the damage of keratinocytes in affected skin. Interestingly, the surface expression of MHC-I, MHC-II, and PD-L1 was up-regulated in response to IFNγ more often in lung cancer cell lines sensitive to erlotinib, but only expression of PD-L1 was inhibited by erlotinib. Further, erlotinib significantly increased T cell mediated cytotoxicity on lung cancer cells. Lastly, the analysis of gene expression dataset of 186 lung cancer cell lines from Cancer Cell Line Encyclopedia demonstrated that overexpression of PD-L1 was associated with sensitivity to erlotinib and higher expression of genes related to antigen presenting pathways and IFNγ signaling pathway. Our findings suggest that the EGFR inhibitors can facilitate anti-tumor adaptive immune responses by breaking tolerance especially in EGFR driven lung cancer that are associated with overexpression of PD-L1 and genes related to antigen presentation and inflammation. PMID:27467256

  13. Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic, anti-tumor effects

    PubMed Central

    Yoo, Ji Young; Hurwitz, Brian S; Bolyard, Chelsea; Yu, Jun-Ge; Zhang, Jianying; Selvendiran, Karuppaiyah; Rath, Kellie S; He, Shun; Bailey, Zachary; Eaves, David; Cripe, Timothy P; Parris, Deborah S.; Caligiuri, Michael A.; Yu, Jianhua; Old, Matthew; Kaur, Balveen

    2014-01-01

    Background Bortezomib is an FDA-approved proteasome inhibitor, and oncolytic HSV-1 (oHSV) is a promising therapeutic approach for cancer. We tested the impact of combining bortezomib with oHSV for anti-tumor efficacy. Methods The synergistic interaction between oHSV and bortezomib was calculated using Chou-Talalay analysis. Viral replication was evaluated using plaque assay and immune fluorescence. Western-blot assays were used to evaluate induction of ER stress and unfolded protein response (UPR). Inhibitors targeting Hsp90 were utilized to investigate the mechanism of cell killing. Anti-tumor efficacy in vivo was evaluated using subcutaneous and intracranial tumor xenografts of glioma and head and neck cancer. Survival was analyzed by Kaplan-Meier curves and two-sided log rank test. Results Combination treatment with bortezomib and oHSV, 34.5ENVE, displayed strong synergistic interaction in ovarian cancer, head & neck cancer, glioma, and malignant peripheral nerve sheath tumor (MPNST) cells. Bortezomib treatment induced ER stress, evident by strong induction of Grp78, CHOP, PERK and IRE1α (western blot analysis) and the UPR (induction of hsp40, 70 and 90). Bortezomib treatment of cells at both sublethal and lethal doses increased viral replication (p value <0.001), but inhibition of Hsp90 ablated this response, reducing viral replication and synergistic cell killing. The combination of bortezomib and 34.5ENVE significantly enhanced anti-tumor efficacy in multiple different tumor models in vivo. Conclusions The dramatic synergy of bortezomib and 34.5ENVE is mediated by bortezomib- induced UPR and warrants future clinical testing in patients. PMID:24815720

  14. Isorhamnetin augments the anti-tumor effect of capeciatbine through the negative regulation of NF-κB signaling cascade in gastric cancer.

    PubMed

    Manu, Kanjoormana A; Shanmugam, Muthu K; Ramachandran, Lalitha; Li, Feng; Siveen, Kodappully Sivaraman; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman Ali; Arfuso, Frank; Kumar, Alan Prem; Ahn, Kwang Seok; Sethi, Gautam

    2015-07-10

    Development of drug resistance to standard chemotherapy is a common phenomenon that leads to poor prognosis in patients. Thus, novel agents that can attenuate chemoresistance are urgently needed. Therefore, we analyzed whether isorhamnetin (IH), a 3'-O-methylated metabolite of quercetin, can enhance the potential efficacy of capecitabine in gastric cancer. The potential effect of IH on viability was analyzed by MTT assay, apoptosis by flow cytometric analysis, and NF-κB activation by DNA binding as well as Western blot assays. The in vivo effect of IH was also examined on the growth of subcutaneously implanted tumors in nude mice. IH inhibited the viability, potentiated the apoptotic effects of capecitabine, abrogated NF-κB activation, and suppressed the expression of various NF-κB regulated gene products in tumor cells. In a gastric cancer xenograft model, administration of IH alone (1 mg/kg body weight, i.p.) significantly suppressed the tumor growth alone as well as in combination with capecitabine. IH further reduced NF-κB activation and the expression of various proliferative and oncogenic biomarkers in tumor tissues. Overall, our results demonstrate that IH can significantly enhance the anti-tumor effects of capecitabine through the negative regulation of NF-κB regulated oncogenic genes. PMID:25827070

  15. The in vitro and in vivo anti-tumor effects of MTX-Fe3O 4-PLLA-PEG-PLLA microspheres prepared by suspension-enhanced dispersion by supercritical CO2.

    PubMed

    Chen, AiZheng; Dang, TingTing; Wang, ShiBin; Tang, Na; Liu, YuanGang; Wu, WenGuo

    2014-07-01

    The in vitro and in vivo anti-tumor efficacy of methotrexate-loaded Fe3O4-poly-L-lactide-poly(ethylene glycol)-poly-L-lactide magnetic composite microspheres (MTX-Fe3O4-PLLA-PEG-PLLA MCMs, MMCMs), which were produced by co-precipitation (C) and microencapsulation (M) in a supercritical process, was evaluated at various levels: cellular, molecular, and integrated. The results at the cellular level indicate that MMCMs (M) show a better anti-proliferation activity than raw MTX and could induce morphological changes of cells undergoing apoptosis. At the molecular level, MMCMs (M) lead to a significantly higher relative mRNA expression of bax/bcl-2 and caspase-3 than MMCMs (C) at 10 μg mL(-1) (P<0.01); and the pro-caspase-3 protein expression measured by Western blot analysis also demonstrates that MMCMs (M) can effectively activate pro-caspase-3. At the integrated level, mice bearing a sarcoma-180 tumor are used; in vivo anti-tumor activity tests reveal that MMCMs (M) with magnetic induction display a much higher tumor suppression rate and lower toxicity than raw MTX. Pharmacokinetic studies show that MMCMs (M) with magnetic induction significantly increase the accumulation of MTX in the tumor tissue compared with the other treatments. These results suggest that the MMCMs (M) prepared by the SpEDS process have great potential to play a positive role in the magnetic targeted therapy field. PMID:24935781

  16. Anti-tumor effect in human breast cancer by TAE226, a dual inhibitor for FAK and IGF-IR in vitro and in vivo

    SciTech Connect

    Kurio, Naito; Shimo, Tsuyoshi; Fukazawa, Takuya; Takaoka, Munenori; Okui, Tatsuo; Hassan, Nur Mohammad Monsur; Honami, Tatsuki; Hatakeyama, Shinji; Ikeda, Masahiko; Naomoto, Yoshio; Sasaki, Akira

    2011-05-01

    Focal adhesion kinase (FAK) is a 125-kDa non-receptor type tyrosine kinase that localizes to focal adhesions. FAK overexpression is frequently found in invasive and metastatic cancers of the breast, colon, thyroid, and prostate, but its role in osteolytic metastasis is not well understood. In this study, we have analyzed anti-tumor effects of the novel FAK Tyr{sup 397} inhibitor TAE226 against bone metastasis in breast cancer by using TAE226. Oral administration of TAE226 in mice significantly decreased bone metastasis and osteoclasts involved which were induced by MDA-MB-231 breast cancer cells and increased the survival rate of the mouse models of bone metastasis. TAE226 also suppressed the growth of subcutaneous tumors in vivo and the proliferation and migration of MDA-MB-231 cells in vitro. Significantly, TAE226 inhibited the osteoclast formation in murine pre-osteoclastic RAW264.7 cells, and actin ring and pit formation in mature osteoclasts. Moreover, TAE226 inhibited the receptor activator for nuclear factor {kappa} B Ligand (RANKL) gene expression induced by parathyroid hormone-related protein (PTHrP) in bone stromal ST2 cells and blood free calcium concentration induced by PTHrP administration in vivo. These findings suggest that FAK was critically involved in osteolytic metastasis and activated in tumors, pre-osteoclasts, mature osteoclasts, and bone stromal cells and TAE226 can be effectively used for the treatment of cancer induced bone metastasis and other bone diseases.

  17. Synthesis and biological evaluation of new fluorine substituted derivatives as angiotensin II receptor antagonists with anti-hypertension and anti-tumor effects.

    PubMed

    Da, Ya-jing; Yuan, Wei-dong; Xin, Ting; Nie, Yong-yan; Ye, Ying; Yan, Yi-Jia; Liang, Li-sha; Chen, Zhi-long

    2012-12-15

    The synthesis and pharmaceutical activity of new potent non-tetrazole angiotensin II (Ang II) receptor antagonists were described. These compounds were fluorine substituted derivatives of Losartan, Valsartan and Irbesartan with carboxylic acid group as replacements to the known potent tetrazole moiety at the 2'-biphenyl position. Their activities were evaluated by Ang II receptor binding assay as well as by in vivo assay. All of the synthesized compounds showed nanomolar affinity for the AT(1) receptor subtype. The vivo biological evaluation showed that compounds 1a, 2 and 4 produced a dose-dependent antihypertensive effect both in spontaneously hypertensive rats (SHR) and renal hypertensive rats (RHR). Compound 4 especially showed an efficient and long-lasting effect in reducing blood pressure which can last more than 24 h at dose of 10 mg/kg in SHR, which was much better than control Losartan and Valsartan. Compound 4 can also inhibit the prostate cancer in vitro and in vivo. So compound 4 was selected for in-depth investigation as potent, novel and long-lasting non-tetrazole anti-hypertension and anti-tumor drug candidate. PMID:23122933

  18. TLR7/8 agonists promote NK-DC cross-talk to enhance NK cell anti-tumor effects in hepatocellular carcinoma.

    PubMed

    Zhou, Zhixia; Yu, Xin; Zhang, Jian; Tian, Zhigang; Zhang, Cai

    2015-12-28

    Hepatocellular carcinoma (HCC) is a common cancer worldwide and the third leading cause of cancer death. Immunotherapy is considered a promising treatment with the aim to boost or arouse HCC-specific immune responses. TLR7 and TLR8 agonists are effective immunomodulators and have been applied topically for the treatment of certain skin tumors and viral infections. Here, we explored the role of TLR7 and TLR8 agonists on the activation of dendritic cells (DCs) and natural killer (NK) cells. We demonstrated that these agonists could directly activate NK cells, promoting the maturation of immature DCs. Meanwhile, DCs also assisted in the function of NK cells, resulting in enhanced anti-tumor immune responses to HCC. Importantly, the combination therapy with NK cells stimulated with DCs and TLR7/8 agonist Gardiquimod (GDQ) significantly suppresses the growth of human HepG2 liver carcinoma xenografts. This study provides a new immunotherapeutic approach for human HCC based on DC-NK cross-talk and also suggests that TLR7 and/or TLR8 agonists, particularly GDQ, may serve as potent innate and adaptive immune response immunomodulators in tumor therapy. PMID:26433159