Science.gov

Sample records for activities including antibacterial

  1. In Vitro Antibacterial and Antibiofilm Activities of Chlorogenic Acid against Clinical Isolates of Stenotrophomonas maltophilia including the Trimethoprim/Sulfamethoxazole Resistant Strain

    PubMed Central

    Karunanidhi, Arunkumar; Thomas, Renjan; van Belkum, Alex; Neela, Vasanthakumari

    2013-01-01

    The in vitro antibacterial and antibiofilm activity of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia was investigated through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill and biofilm assays. A total of 9 clinical S. maltophilia isolates including one isolate resistant to trimethoprim/sulfamethoxazole (TMP/SMX) were tested. The inhibition zone sizes for the isolates ranged from 17 to 29 mm, while the MIC and MBC values ranged from 8 to 16 μg mL−1 and 16 to 32 μg mL−1. Chlorogenic acid appeared to be strongly bactericidal at 4x MIC, with a 2-log reduction in viable bacteria at 10 h. In vitro antibiofilm testing showed a 4-fold reduction in biofilm viability at 4x MIC compared to 1x MIC values (0.085 < 0.397 A 490 nm) of chlorogenic acid. The data from this study support the notion that the chlorogenic acid has promising in vitro antibacterial and antibiofilm activities against S. maltophilia. PMID:23509719

  2. Antibacterial activity of antibacterial cutting boards in household kitchens.

    PubMed

    Kounosu, Masayuki; Kaneko, Seiichi

    2007-12-01

    We examined antibacterial cutting boards with antibacterial activity values of either "2" or "4" in compliance with the JIS Z 2801 standard, and compared their findings with those of cutting boards with no antibacterial activity. These cutting boards were used in ten different households, and we measured changes in the viable cell counts of several types of bacteria with the drop plate method. We also identified the detected bacterial flora and measured the minimum antimicrobial concentrations of several commonly used antibacterial agents against the kinds of bacteria identified to determine the expected antibacterial activity of the respective agents. Cutting boards with activity values of both "2" and "4" proved to be antibacterial in actual use, although no correlation between the viable cell counts and the antibacterial activity values was observed. In the kitchen environment, large quantities of Pseudomonas, Flavobacterium, Micrococcus, and Bacillus were detected, and it was confirmed that common antibacterial agents used in many antibacterial products are effective against these bacterial species. In addition, we measured the minimum antimicrobial concentrations of the agents against lactobacillus, a typical good bacterium, and discovered that this bacterium is less sensitive to these antibacterial agents compared to more common bacteria. PMID:18198718

  3. Antibacterial activity of baking soda.

    PubMed

    Drake, D

    1996-01-01

    The antibacterial activity of baking soda (sodium bicarbonate) was assessed using three different experimental approaches. Standard minimum inhibitory concentration analyses revealed substantial inhibitory activity against Streptococcus mutans that was not due to ionic strength or high osmolarity. Short-term exposure assays showed significant killing of bacterial suspensions when baking soda was combined with the detergent sodium dodecylsulfate. Multiple, brief exposures of sucrose-colonized S mutans to baking soda and sodium dodecylsulfate caused statistically significant decreases in numbers of viable cells. Use of oral health care products with high concentrations of baking soda could conceivably result in decreased levels of cariogenic S mutans in saliva and plaque. PMID:11524862

  4. Antibacterial activity of baking soda.

    PubMed

    Drake, D

    1997-01-01

    The antibacterial activity of baking soda (sodium bicarbonate) was assessed using three different experimental approaches. Standard minimum inhibitory concentration analyses revealed substantial inhibitory activity against Streptococcus mutans that was not due to ionic strength or high osmolarity. Short-term exposure assays showed significant killing of bacterial suspensions when baking soda was combined with the detergent sodium dodecylsulfate. Multiple, brief exposures of sucrose-colonized S mutans to baking soda and sodium dodecylsulfate caused statistically significant decreases in numbers of viable cells. Use of oral health care products with high concentrations of baking soda could conceivably result in decreased levels of cariogenic S mutans in saliva and plaque. PMID:12017929

  5. Indirect conductimetric assay of antibacterial activities.

    PubMed

    Sawai, J; Doi, R; Maekawa, Y; Yoshikawa, T; Kojima, H

    2002-11-01

    The applicability of indirect conductimetric assays for evaluation of antibacterial activity was examined. The minimal inhibitory concentration (MIC) obtained by the indirect method was consistent with that by the direct conductimetric assay and the turbidity method. The indirect assay allows use of growth media, which cannot be used in the direct conductimetric assay, making it possible to evaluate the antibacterial activity of insoluble or slightly soluble materials with high turbidity, such as antibacterial ceramic powders. PMID:12407467

  6. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  7. Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers.

    PubMed

    Wang, Hui; Shi, Xuefeng; Yu, Danfeng; Zhang, Jian; Yang, Guang; Cui, Yingxian; Sun, Keji; Wang, Jinben; Yan, Haike

    2015-12-22

    The current study is aimed at investigating the effect of cationic charge density and hydrophobicity on the antibacterial and hemolytic activities. Two kinds of cationic surfmers, containing single or double hydrophobic tails (octyl chains or benzyl groups), and the corresponding homopolymers were synthesized. The antimicrobial activity of these candidate antibacterials was studied by microbial growth inhibition assays against Escherichia coli, and hemolysis activity was carried out using human red blood cells. It was interestingly found that the homopolymers were much more effective in antibacterial property than their corresponding monomers. Furthermore, the geminized homopolymers had significantly higher antibacterial activity than that of their counterparts but with single amphiphilic side chains in each repeated unit. Geminized homopolymers, with high positive charge density and moderate hydrophobicity (such as benzyl groups), combine both advantages of efficient antibacterial property and prominently high selectivity. To further explain the antibacterial performance of the novel polymer series, the molecular interaction mechanism is proposed according to experimental data which shows that these specimens are likely to kill microbes by disrupting bacterial membranes, leading them unlikely to induce resistance. PMID:26606647

  8. Antibacterial activity of N-benzylsalicylthioamides.

    PubMed

    Petrlíková, E; Waisser, K; Jílek, P; Dufková, I

    2010-09-01

    The in-vitro biological activity of N-benzylsalicylthioamides against 8 bacterial strains was determined by broth microdilution method; results were compared with those obtained with neomycin, penicillin G, ciprofloxacin and penicillin V. The compounds showed moderate to high activity against G(+) bacteria; especially compounds 4, 6, 13, 16-21 and 24 exhibited comparable or higher activity than reference drugs. The antibacterial activity was analyzed by quantitative structure-activity relationship (QSAR). The antibacterial activity increased with lipophilicity, with the presence of halogens and with increasing value of Hammet substituent constant σ. PMID:20941574

  9. Tunable, antibacterial activity of silicone polyether surfactants.

    PubMed

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. PMID:26057244

  10. Light-activated polymethylmethacrylate nanofibers with antibacterial activity.

    PubMed

    Elashnikov, Roman; Lyutakov, Oleksiy; Ulbrich, Pavel; Svorcik, Vaclav

    2016-07-01

    The creation of an antibacterial material with triggerable properties enables us to avoid the overuse or misuse of antibacterial substances and, thus, prevent the emergence of resistant bacterial strains. As a potential light-activated antibacterial material, polymethylmethacrylate (PMMA) nanofibers doped with silver nanoparticles (AgNPs) and meso-tetraphenylporphyrin (TPP) were prepared by electrospinning. TPP was chosen as an effectively reactive oxygen species (ROS) producer. Antibacterial tests on Staphylococcus epidermidis (S. epidermidis) and Enterococcus faecalis (E. faecalis) showed the excellent light-triggerable antibacterial activity of the doped materials. Upon light irradiation at the wavelength corresponding to the TPP absorption peak (405nm), antibacterial activity dramatically increased, mostly due to the release of AgNPs from the polymer matrix. Furthermore, under prolonged light irradiation, the AgNPs/TPP/PMMA nanofibers, displayed enhanced longevity and photothermal stability. Thus, our results suggest that the proposed material is a promising option for the photodynamic inactivation of bacteria. PMID:27127048

  11. Antibacterial activities of extracts from Nigerian chewing sticks.

    PubMed

    Taiwo, O; Xu, H X; Lee, S F

    1999-12-01

    Ten aqueous extracts from wooden chewing sticks widely used in Nigeria for teeth cleaning were studied for antibacterial activities against 25 different bacteria using an agar diffusion assay. The extracts from five sticks, namely Garcinia kola, Anogeissus leiocarpus, Terminalia glaucescens, Sorindeia warneckei and Vitex doniana, exhibited strong activities against a wide spectrum of bacteria including medically and dentally relevant bacteria. Notably, these five chewing stick extracts showed potent activities against methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and multidrug-resistant Burkholderia cepacia and Pseudomonas aeruginosa. Extracts from Vernonia amygdalina, Fagara zanthoxyloides and Massularia acuminata also showed activities against bacteria significant to periodontal disease. Methanol extracts prepared from G. kola, A. leiocarpus and V. doniana were further fractionated by solvent extraction. Results showed that the antibacterial activities were distributed into different fractions suggesting that the sticks contain different active antibacterial principles. In conclusion, the results showed that most of the Nigerian chewing sticks do contain antibacterial activities which may contribute to the reported anticaries effect of chewing sticks. These sticks may be sources for new lead antibacterial agents for therapeutic or preventive applications. PMID:10594937

  12. Synthesis and antibacterial activity of littorachalcone and related diphenyl ethers.

    PubMed

    Kraus, George A; Kumar, Ganesh; Phillips, Gregory; Michalson, Kris; Mangano, Maria

    2008-04-01

    Littorachalcone (1) and diacid 10 were synthesized by direct routes. The antibacterial activity of 1, 10 and synthetic precursors were evaluated. Dialdehyde 3a showed potent antibacterial activity. PMID:18343663

  13. Antibacterial activity of selected Malaysian honey

    PubMed Central

    2013-01-01

    Background Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa. Methods Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were performed for semi-quantitative evaluation. Agar well diffusion assay was used to investigate peroxide and non-peroxide activities of honey. Results The results showed that gelam honey possessed lowest MIC value against S. aureus with 5% (w/v) MIC and MBC of 6.25% (w/v). Highest MIC values were shown by pineapple honey against E. coli and P. aeruginosa as well as acacia honey against E. coli with 25% (w/v) MIC and 50% (w/v) MBC values. Agar inhibition assay showed kelulut honey to possess highest total antibacterial activity against S. aureus with 26.49 equivalent phenol concentrations (EPC) and non-peroxide activity of 25.74 EPC. Lowest antibacterial activity was observed in acacia honey against E. coli with total activity of 7.85 EPC and non-peroxide activity of 7.59 EPC. There were no significant differences (p > 0.05) between the total antibacterial activities and non-peroxide activities of Malaysian honey. The intraspecific correlation between MIC and EPC of E. coli (r = -0.8559) was high while that between MIC and EPC of P. aeruginosa was observed to be moderate (r = -0.6469). S. aureus recorded a smaller correlation towards the opposite direction (r = 0.5045). In contrast, B.cereus showed a very low intraspecific correlation between MIC and EPC (r = -0.1482). Conclusions Malaysian honey, namely gelam, kelulut and tualang, have high antibacterial potency derived from total and non-peroxide activities, which implies that both peroxide and other

  14. Antibacterial activity of aquatic gliding bacteria.

    PubMed

    Sangnoi, Yutthapong; Anantapong, Theerasak; Kanjana-Opas, Akkharawit

    2016-01-01

    The study aimed to screen and isolate strains of freshwater aquatic gliding bacteria, and to investigate their antibacterial activity against seven common pathogenic bacteria. Submerged specimens were collected and isolated for aquatic gliding bacteria using four different isolation media (DW, MA, SAP2, and Vy/2). Gliding bacteria identification was performed by 16S rRNA gene sequencing and phylogenetic analysis. Crude extracts were obtained by methanol extraction. Antibacterial activity against seven pathogenic bacteria was examined by agar-well diffusion assay. Five strains of aquatic gliding bacteria including RPD001, RPD008, RPD018, RPD027 and RPD049 were isolated. Each submerged biofilm and plastic specimen provided two isolates of gliding bacteria, whereas plant debris gave only one isolate. Two strains of gliding bacteria were obtained from each DW and Vy/2 isolation medium, while one strain was obtained from the SAP2 medium. Gliding bacteria strains RPD001, RPD008 and RPD018 were identified as Flavobacterium anhuiense with 96, 82 and 96 % similarity, respectively. Strains RPD049 and RPD027 were identified as F. johnsoniae and Lysobacter brunescens, respectively, with similarity equal to 96 %. Only crude extract obtained from RPD001 inhibited growth of Listeria monocytogenes (MIC 150 µg/ml), Staphylococcus aureus (MIC 75 µg/ml) and Vibrio cholerae (MIC 300 µg/ml), but showed weak inhibitory effect on Salmonella typhimurium (MIC > 300 µg/ml). Gliding bacterium strain RPD008 should be considered to a novel genus separate from Flavobacterium due to its low similarity value. Crude extract produced by RPD001 showed potential for development as a broad antibiotic agent. PMID:26885469

  15. Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract

    PubMed Central

    Pervin, Mehnaz; Hasnat, Md Abul; Lim, Beong Ou

    2013-01-01

    Objective To investigate antibacterial and antioxidant activity of the leaf extract of tropical medicinal herb and food plant Vaccinium corymbosum L. (V. corymbosum). Methods Free radical scavenging activity on DPPH, ABTS, and nitrites were used to analyse phenoic and flavonoid contents of leaf extract. Other focuses included the determination of antioxidant enzymatic activity (SOD, CAT and GPx), metal chelating activity, reduction power, lipid peroxidation inhibition and the prevention of oxidative DNA damage. Antibacterial activity was determined by using disc diffusion for seven strains of bacteria. Results Results found that V. corymbosum leaf extract had significant antibacterial activity. The tested extract displayed the highest activity (about 23.18 mm inhibition zone) against Salmonella typhymurium and the lowest antibacterial activity was observed against Enterococcus faecalis (about 14.08 mm inhibition zone) at 10 mg/ disc. The IC50 values for DPPH, ABTS and radical scavenging activity were 0.120, 0.049 and 1.160 mg/mL, respectively. V. corymbosum leaf extract also showed dose dependent reduction power, lipid peroxidation, DNA damage prevention and significant antioxidant enzymatic activity. Conclusions These findings demonstrate that leaf extract of V. corymbosum could be used as an alternative therapy for antibiotic-resistant bacteria and help prevent various free radical related diseases.

  16. Antibacterial activity of Ailanthus excelsa (Roxb).

    PubMed

    Shrimali, M; Jain, D C; Darokar, M P; Sharma, R P

    2001-03-01

    The antibacterial activity of different fractions of a methanol extract obtained from the dried stem bark of Ailanthus excelsa (Roxb) was studied using different bacterial strains. The ethyl acetate fraction inhibited the growth of all test bacteria. The MIC of the EA fraction was found to be 6 mg/disc. PMID:11268120

  17. Antibacterial Activity of Honey on Cariogenic Bacteria

    PubMed Central

    Ahmadi – Motamayel, Fatemeh; Hendi, Seyedeh Sare; Alikhani, Mohammad Yusof; Khamverdi, Zahra

    2013-01-01

    Objective: Honey has antibacterial activity. The aim of this study was to evaluate the antibacterial activity of honey on Streptococcus mutans and Lactobacillus. Materials and Methods: In this in vitro study, solutions containing 0%, 5%, 10%, 20%, 50% and 100%(w/v) of natural Hamadan honey were prepared. Each blood (nutrient) agar plate was then filled with dilutions of the honey. The strains of bacteria were inoculated in blood agar for 24 hours at 37°C and were adjusted according to the McFarland scale (10×10 cfumcl−1). All assays were repeated 10 times for each of the honey concentrations. Data were analyzed by non parametric Chi-Square test. Statistical significance was set at α=0.05. Results: Significant antibacterial activity was detected for honey on Streptococcus mutans in concentrations more than 20% and on Lactobacillus in 100% concentration (P<0.05). Conclusion: It seems that antibacterial activity of honey could be used for prevention and reduction of dental caries. PMID:23724198

  18. Antibacterial activity of Persea cordata stem barks.

    PubMed

    Schlemper, S R; Schlemper, V; da Silva, D; Cordeiro, F; Cruz, A B; Oliveira, A E; Cechinel-Filho, V

    2001-01-01

    The antibacterial effects of extracts obtained from Persea cordata stem bark, employed in Brazil to treat infectious diseases, were studied. The ethyl acetate fraction of the hydroalcoholic extract showed activity against pathogenic bacteria which may justify the popular use of the plant. PMID:11163947

  19. Antibacterial activity of graphene supported FeAg bimetallic nanocomposites.

    PubMed

    Ahmad, Ayyaz; Qureshi, Abdul Sattar; Li, Li; Bao, Jie; Jia, Xin; Xu, Yisheng; Guo, Xuhong

    2016-07-01

    We report the simple one pot synthesis of iron-silver (FeAg) bimetallic nanoparticles with different compositions on graphene support. The nanoparticles are well dispersed on the graphene sheet as revealed by the TEM, XRD, and Raman spectra. The antibacterial activity of graphene-FeAg nanocomposite (NC) towards Bacillus subtilis, Escherichia coli, and Staphylococcus aureus was investigated by colony counting method. Graphene-FeAg NC demonstrates excellent antibacterial activity as compared to FeAg bimetallic without graphene. To understand the antibacterial mechanism of the NC, oxidative stress caused by reactive oxygen species (ROS) and the glutathione (GSH) oxidation were investigated in the system. It has been observed that ROS production and GSH oxidation are concentration dependent while the increase in silver content up to 50% generally enhances the ROS production while ROS decreases on further increase in silver content. Graphene loaded FeAg NC demonstrates higher GSH oxidation capacity than bare FeAg bimetallic nanocomposite. The mechanism study suggests that the antibacterial activity is probably due to membrane and oxidative stress produced by the nanocomposites. The possible antibacterial pathway mainly includes the non-ROS oxidative stress (GSH oxidation) while ROS play minor role. PMID:27038914

  20. Antibacterial activity of essential oil components.

    PubMed

    Moleyar, V; Narasimham, P

    1992-08-01

    Antibacterial activity of fifteen essential oil components towards food borne Staphylococcus sp., Micrococcus sp., Bacillus sp. and Enterobacter sp. was studied by an agar plate technique. Cinnamic aldehyde was the most active compound followed by citral, geraniol, eugenol and menthol. At 500 micrograms/ml, cinnamic aldehyde completely inhibited the bacterial growth for more than 30 days at 30 degrees C that was comparable to 200 micrograms/ml of butylated hydroxy anisole (BHA). At lower temperatures, 25 and 20 degrees C, antibacterial activity of the five essential oil components increased. Addition of sodium chloride at 4% level (w/v) in the medium had no effect on the inhibitory activity of cinnamic aldehyde. In mixtures of cinnamic aldehyde and eugenol or BHA an additive effect was observed. PMID:1457292

  1. Antibacterial activity of resin rich plant extracts

    PubMed Central

    Shuaib, Mohd; Ali, Abuzer; Ali, Mohd; Panda, Bibhu Prasad; Ahmad, Mohd Imtiyaz

    2013-01-01

    Background: The in vitro antibacterial activity of resin rich methanolic extracts (RRMEs) of Commiphora myrrha, Operculina turpethum, and Pinus roxburghii. Materials and Methods: Different concentration were studied by agar-well diffusion method against Gram-positive (Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Enterococcus faecalis) and Gram-negative bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae). Results: Among all the bacterial strains tested, E. faecalis was most sensitive and S. typhi was resistant to C. myrrha and P. roxburghii. The extracts of O. turpethum were active against all tested strains in which B. subtilis and S. aureus were the most sensitive. Conclusion: This suggested that the antibacterial activity of RRMEs of O. turpethum was more than C. myrrha and P. roxburghii. This probably explains the potential of these plants against a number of infections caused by bacterial strains tested. PMID:24302834

  2. Fabrication of SWCNT-Ag Nanoparticle Hybrid Included Self-Assemblies for Antibacterial Applications

    PubMed Central

    Brahmachari, Sayanti; Mandal, Subhra Kanti; Das, Prasanta Kumar

    2014-01-01

    The present article reports the development of soft nanohybrids comprising of single walled carbon nanotube (SWCNT) included silver nanoparticles (AgNPs) having superior antibacterial property. In this regard aqueous dispersing agent of carbon nanotube (CNT) containing a silver ion reducing unit was synthesised by the inclusion of tryptophan and tyrosine within the backbone of the amphiphile. The dispersions were characterized spectroscopically and microscopically using TEM, AFM and Raman spectroscopy. The nanotube-nanoparticle conjugates were prepared by the in situ photoreduction of AgNO3. The phenolate residue and the indole moieties of tyrosine and tryptophan, respectively reduces the sliver ion as well as acts as stabilizing agents for the synthesized AgNPs. The nanohybrids were characterized using TEM and AFM. The antibacterial activity of the nanohybrids was studied against Gram-positive (Bacillus subtilis and Micrococcus luteus) and Gram-negative bacteria (Escherichia coli and Klebsiella aerogenes). The SWCNT dispersions showed moderate killing ability (40–60%) against Gram-positive bacteria however no antibacterial activity was observed against the Gram negative ones. Interestingly, the developed SWCNT-amphiphile-AgNP nanohybrids exhibited significant killing ability (∼90%) against all bacteria. Importantly, the cell viability of these newly developed self-assemblies was checked towards chinese hamster ovarian cells and high cell viability was observed after 24 h of incubation. This specific killing of bacterial cells may have been achieved due to the presence of higher –SH containing proteins in the cell walls of the bacteria. The developed nanohybrids were subsequently infused into tissue engineering scaffold agar-gelatin films and the films similarly showed bactericidal activity towards both kinds of bacterial strains while allowing normal growth of eukaryotic cells on the surface of the films. PMID:25191756

  3. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis.

    PubMed

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2',4'-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4'-dihydroxy-3'-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1-5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6-9.9 μM) and a lower effect against CML cells (IC50 = 27.5-30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound. PMID:26819623

  4. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    PubMed Central

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4′-dihydroxy-3′-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM) and a lower effect against CML cells (IC50 = 27.5–30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound. PMID:26819623

  5. Evaluation of Parmotrema reticulatum Taylor for Antibacterial and Antiinflammatory Activities.

    PubMed

    Jain, A P; Bhandarkar, S; Rai, G; Yadav, A K; Lodhi, S

    2016-01-01

    Lichens produce variety of secondary metabolites including depsides, depsidones and dibenzofurans having multifunctional activity in response to external environmental condition. Present study provides evidence for in vitro antibacterial and in vivo antiinflammatory activity of acetone and ethanol extracts of Parmotrema reticulatum. In vitro antibacterial activity was investigated against gram positive and gram negative bacteria. Cotton pellet-induced granuloma, xylene-induced ear swelling, carragennan-induced edema, histamine-induced and carboxymethylcellulose sodium-induced leukocyte emigration in mice models were used to quantify the antiinflammatory activity. Acetone and ethanol extracts were showed antibacterial activity against Bacillus subtilis (minimal inhibitory concentration: 100 and 150 μg/ml) and Staphylococcus aureus (minimal inhibitory concentration: 100 and 200 μg/ml), Escherichia coli (minimal inhibitory concentration: 200 and 250 μg/ml), and Pseudomonasa eruginosa (minimal inhibitory concentration: 200 and 300 μg/ml). Acetone extract was inhibited edema significantly at 200 mg/kg with xylene, cotton pellet, carragennan and histamine induced edema in vivo models. Ethanol extract was found effective at dose of 300 mg/kg with all in vivo antiinflammatory models. The results showed significant (P<0.01) antiinflammatory effects at 200 and 300 mg/kg dose of acetone and ethanol extracts, respectively, which can be concluded that significant activity may be due to presence of flavanoids in ethanol extract and usnic acid in acetone extract. PMID:27168687

  6. Evaluation of Parmotrema reticulatum Taylor for Antibacterial and Antiinflammatory Activities

    PubMed Central

    Jain, A. P.; Bhandarkar, S.; Rai, G.; Yadav, A. K.; Lodhi, S.

    2016-01-01

    Lichens produce variety of secondary metabolites including depsides, depsidones and dibenzofurans having multifunctional activity in response to external environmental condition. Present study provides evidence for in vitro antibacterial and in vivo antiinflammatory activity of acetone and ethanol extracts of Parmotrema reticulatum. In vitro antibacterial activity was investigated against gram positive and gram negative bacteria. Cotton pellet-induced granuloma, xylene-induced ear swelling, carragennan-induced edema, histamine-induced and carboxymethylcellulose sodium-induced leukocyte emigration in mice models were used to quantify the antiinflammatory activity. Acetone and ethanol extracts were showed antibacterial activity against Bacillus subtilis (minimal inhibitory concentration: 100 and 150 μg/ml) and Staphylococcus aureus (minimal inhibitory concentration: 100 and 200 μg/ml), Escherichia coli (minimal inhibitory concentration: 200 and 250 μg/ml), and Pseudomonasa eruginosa (minimal inhibitory concentration: 200 and 300 μg/ml). Acetone extract was inhibited edema significantly at 200 mg/kg with xylene, cotton pellet, carragennan and histamine induced edema in vivo models. Ethanol extract was found effective at dose of 300 mg/kg with all in vivo antiinflammatory models. The results showed significant (P<0.01) antiinflammatory effects at 200 and 300 mg/kg dose of acetone and ethanol extracts, respectively, which can be concluded that significant activity may be due to presence of flavanoids in ethanol extract and usnic acid in acetone extract. PMID:27168687

  7. Phenolic content, antibacterial and antioxidant activities of Erica herbacea L.

    PubMed

    Vucić, Dragana M; Petković, Miroslav R; Rodić-Grabovac, Branka B; Stefanović, Olgica D; Vasić, Sava M; Comić, Ljiljana R

    2013-01-01

    Antibacterial and antioxidant activity, total phenolic and flavonoid concentrations of aqueous, ethanol and ethyl acetate extracts from the leaves and flowers of Erica herbacea L. were studied. In vitro antibacterial activity of the extracts was determined by macrodilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) have been determined. Testing was performed on 30 clinical isolates, including different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris. The values for MIC were in the range from 2.5 mg/mL to 40 mg/mL. The most sensitive bacterial strains were Proteus vulgaris strains. The aqueous extract from E. herbacea was found the most active. The total phenolic content was determined using Folin-Ciocalteu reagent and ranged between 14.98 and 119.88 mg GA/g. The concentration of flavonoids in extracts was determined using spectrophotometric method with aluminium chloride and obtained results varied from 16.19 to 26.90 mg RU/g. Antioxidant activity was monitored spectrophotometrically using DPPH reagent. The highest capacity to neutralize DPPH radicals was found in the aqueous extract from E. herbacea. The results of the total phenolic content determination of the examined extracts indicate that E. herbacea extracts are a rich source of phenolic compounds and also possess a significant antioxidant activity and moderate antibacterial activity. PMID:24383325

  8. Antibacterial activity of Lawsonia inermis Linn (Henna) against Pseudomonas aeruginosa

    PubMed Central

    Habbal, O; Hasson, SS; El-Hag, AH; Al-Mahrooqi, Z; Al-Hashmi, N; Al-Bimani, Z; Al-Balushi, MS; Al-Jabri, AA

    2011-01-01

    Objective To investigate the antibacterial activity of henna (Lawsonia inermis Linn) obtained from different regions of Oman against a wide array of micro-organisms. Methods Fresh henna samples were obtained from different regions of Oman as leaves and seeds. 100 g fresh and dry leaves and 50 g of fresh and dry seeds were separately soaked in 500 mL of ethanol for three days, respectively, with frequent agitation. The mixture was filtered, and the crude extract was collected. The crude extract was then heated, at 48 °C in a water bath to evaporate its liquid content. The dry crude henna extract was then tested for its antibacterial activity using well-diffusion antibiotic susceptibility technique. Henna extracts were investigated for their antibacterial activity at different concentrations against a wide array of different micro-organisms including a laboratory standard bacterial strain of Pseudomonas aeruginosa (NCTC 10662) (P. aeruginosa) and eleven fresh clinical isolates of P. aeruginosa obtained from patients attending the Sultan Qaboos University Hospital (SQUH). 2-Hydroxy-p-Nathoqinone-Tech (2-HPNT, MW=174.16, C10H6O3) was included as control (at 50% concentration) along with the henna samples tested. Results Henna samples demonstrated antibacterial activity against all isolates but the highest susceptibility was against P. aeruginosa with henna samples obtained from Al-sharqyia region. Conclusions Omani henna from Al-sharqyia region demonstrates high in vitro anti-P. aeruginosa activity compared with many henna samples from different regions of Oman. PMID:23569753

  9. The mechanism of antibacterial activity of tetrandrine against Staphylococcus aureus.

    PubMed

    Lee, Young-Seob; Han, Sin-Hee; Lee, Su-Hwan; Kim, Young-Guk; Park, Chung-Berm; Kang, Ok-Hwa; Keum, Joon-Ho; Kim, Sung-Bae; Mun, Su-Hyun; Seo, Yun-Soo; Myung, Noh-Yil; Kwon, Dong-Yeul

    2012-08-01

    Tetrandrine (TET) is a bis-benzylisoquinoline alkaloid derived from the radix of Stephania tetrandra S. Moore. TET performs a wide spectrum of biological activities. The radix of S. tetrandrae has been used traditionally in Asia, including Korea, to treat congestive circulatory disorders and inflammatory diseases. The aim of this study was to examine the mechanism of antibacterial activity of tetrandrine against Staphylococcus aureus. The mechanism was investigated by studying the effects of TET in combination with detergent or membrane potential un-couplers. In addition, the direct involvement of peptidoglycan (PGN) was assessed in titration assays. TET activity against S. aureus was 125-250 μg/mL, and the minimum inhibitory concentration (MIC) of the two reference strains was 250 μg/mL. The OD(600) of each suspension treated with a combination of ethylenediaminetetraacetic acid (EDTA), tris(hydroxymethyl) aminomethane (TRIS), and Triton X-100 (TX) with TET (0.25×MIC) had been reduced from 43% to 96%. Additional structure-function studies on the antibacterial activity of TET in combination with other agents may lead to the discovery of more effective antibacterial agents. PMID:22845553

  10. In Vitro Antibacterial Activity of Essential Oils against Streptococcus pyogenes.

    PubMed

    Sfeir, Julien; Lefrançois, Corinne; Baudoux, Dominique; Derbré, Séverine; Licznar, Patricia

    2013-01-01

    Streptococcus pyogenes plays an important role in the pathogenesis of tonsillitis. The present study was conducted to evaluate the in vitro antibacterial activities of 18 essential oils chemotypes from aromatic medicinal plants against S. pyogenes. Antibacterial activity of essential oils was investigated using disc diffusion method. Minimum Inhibitory Concentration of essential oils showing an important antibacterial activity was measured using broth dilution method. Out of 18 essential oils tested, 14 showed antibacterial activity against S. pyogenes. Among them Cinnamomum verum, Cymbopogon citratus, Thymus vulgaris CT thymol, Origanum compactum, and Satureja montana essential oils exhibited significant antibacterial activity. The in vitro results reported here suggest that, for patients suffering from bacterial throat infections, if aromatherapy is used, these essential oils, considered as potential antimicrobial agents, should be preferred. PMID:23662123

  11. In Vitro Antibacterial Activity of Essential Oils against Streptococcus pyogenes

    PubMed Central

    Sfeir, Julien; Lefrançois, Corinne; Baudoux, Dominique; Derbré, Séverine; Licznar, Patricia

    2013-01-01

    Streptococcus pyogenes plays an important role in the pathogenesis of tonsillitis. The present study was conducted to evaluate the in vitro antibacterial activities of 18 essential oils chemotypes from aromatic medicinal plants against S. pyogenes. Antibacterial activity of essential oils was investigated using disc diffusion method. Minimum Inhibitory Concentration of essential oils showing an important antibacterial activity was measured using broth dilution method. Out of 18 essential oils tested, 14 showed antibacterial activity against S. pyogenes. Among them Cinnamomum verum, Cymbopogon citratus, Thymus vulgaris CT thymol, Origanum compactum, and Satureja montana essential oils exhibited significant antibacterial activity. The in vitro results reported here suggest that, for patients suffering from bacterial throat infections, if aromatherapy is used, these essential oils, considered as potential antimicrobial agents, should be preferred. PMID:23662123

  12. The Antibacterial Activity of Honey Derived from Australian Flora

    PubMed Central

    Irish, Julie; Blair, Shona; Carter, Dee A.

    2011-01-01

    Chronic wound infections and antibiotic resistance are driving interest in antimicrobial treatments that have generally been considered complementary, including antimicrobially active honey. Australia has unique native flora and produces honey with a wide range of different physicochemical properties. In this study we surveyed 477 honey samples, derived from native and exotic plants from various regions of Australia, for their antibacterial activity using an established screening protocol. A level of activity considered potentially therapeutically useful was found in 274 (57%) of the honey samples, with exceptional activity seen in samples derived from marri (Corymbia calophylla), jarrah (Eucalyptus marginata) and jellybush (Leptospermum polygalifolium). In most cases the antibacterial activity was attributable to hydrogen peroxide produced by the bee-derived enzyme glucose oxidase. Non-hydrogen peroxide activity was detected in 80 (16.8%) samples, and was most consistently seen in honey produced from Leptospermum spp. Testing over time found the hydrogen peroxide-dependent activity in honey decreased, in some cases by 100%, and this activity was more stable at 4°C than at 25°C. In contrast, the non-hydrogen peroxide activity of Leptospermum honey samples increased, and this was greatest in samples stored at 25°C. The stability of non-peroxide activity from other honeys was more variable, suggesting this activity may have a different cause. We conclude that many Australian honeys have clinical potential, and that further studies into the composition and stability of their active constituents are warranted. PMID:21464891

  13. The antibacterial activity of honey derived from Australian flora.

    PubMed

    Irish, Julie; Blair, Shona; Carter, Dee A

    2011-01-01

    Chronic wound infections and antibiotic resistance are driving interest in antimicrobial treatments that have generally been considered complementary, including antimicrobially active honey. Australia has unique native flora and produces honey with a wide range of different physicochemical properties. In this study we surveyed 477 honey samples, derived from native and exotic plants from various regions of Australia, for their antibacterial activity using an established screening protocol. A level of activity considered potentially therapeutically useful was found in 274 (57%) of the honey samples, with exceptional activity seen in samples derived from marri (Corymbia calophylla), jarrah (Eucalyptus marginata) and jellybush (Leptospermum polygalifolium). In most cases the antibacterial activity was attributable to hydrogen peroxide produced by the bee-derived enzyme glucose oxidase. Non-hydrogen peroxide activity was detected in 80 (16.8%) samples, and was most consistently seen in honey produced from Leptospermum spp. Testing over time found the hydrogen peroxide-dependent activity in honey decreased, in some cases by 100%, and this activity was more stable at 4 °C than at 25 °C. In contrast, the non-hydrogen peroxide activity of Leptospermum honey samples increased, and this was greatest in samples stored at 25 °C. The stability of non-peroxide activity from other honeys was more variable, suggesting this activity may have a different cause. We conclude that many Australian honeys have clinical potential, and that further studies into the composition and stability of their active constituents are warranted. PMID:21464891

  14. Synthesis and antibacterial activity of novel lincomycin derivatives. I. Enhancement of antibacterial activities by introduction of substituted azetidines.

    PubMed

    Kumura, Ko; Wakiyama, Yoshinari; Ueda, Kazutaka; Umemura, Eijiro; Watanabe, Takashi; Shitara, Eiki; Fushimi, Hideki; Yoshida, Takuji; Ajito, Keiichi

    2016-06-01

    The synthesis and antibacterial activity of (7S)-7-sulfur-azetidin-3-yl lincomycin derivatives are described. Modification was achieved by a simple reaction of (7R)-7-O-methanesulfonyllincomycin and the corresponding substituted azetidine-2-thiol. Several compounds first showed moderate antibacterial activity against Streptococcus pneumoniae and Streptococcus pyogenes with erm gene as lincomycin derivatives. PMID:26758495

  15. Antibacterial Activity of Hawaiian Corals: Possible Protection from Disease?

    NASA Astrophysics Data System (ADS)

    Gochfeld, D. J.; Aeby, G. S.; Miller, J. D.

    2006-12-01

    Reports of coral diseases in the Caribbean have appeared with increasing frequency over the past two decades; however, records of coral diseases in the Pacific have lagged far behind. Recent surveys of coral disease in the Hawaiian Islands indicate relatively low, but consistent, levels of disease throughout the inhabited Main and uninhabited Northwestern Hawaiian Islands, and demonstrate variation in levels of disease among the major genera of Hawaiian corals. Although little is known about immune defense to disease in corals, one potential mechanism of defense is the production of antimicrobial compounds that protect corals from pathogens. A preliminary survey of antibacterial chemical defenses among three dominant species of Hawaiian corals was undertaken. Crude aqueous extracts of Porites lobata, Pocillopora meandrina and Montipora capitata were tested against nine strains of bacteria in a growth inhibition assay. Inhibitory extracts were further tested to determine whether their effects were cytostatic or cytotoxic. The bacteria selected included known coral pathogens, potential marine pathogens found in human waste and strains previously identified from the surfaces of Hawaiian corals. Extracts from all three species of coral exhibited a high degree of antibacterial activity, but also a high degree of selectivity against different bacterial strains. In addition, some extracts were stimulatory to some bacteria. In addition to interspecific variability, extracts also exhibited intraspecific variability, both within and between sites. Hawaiian corals have significant antibacterial activity, which may explain the relatively low prevalence of disease in these corals; however, further characterization of pathogens specifically responsible for disease in Hawaiian corals is necessary before we can conclude that antibacterial activity protects Hawaiian corals from disease.

  16. Antibacterial and Antibiofilm Activities of Makaluvamine Analogs

    PubMed Central

    Nijampatnam, Bhavitavya; Nadkarni, Dwayaja H.; Wu, Hui; Velu, Sadanandan E.

    2015-01-01

    Streptococcus mutans is a key etiological agent in the formation of dental caries. The major virulence factor is its ability to form biofilms. Inhibition of S. mutans biofilms offers therapeutic prospects for the treatment and the prevention of dental caries. In this study, 14 analogs of makaluvamine, a marine alkaloid, were evaluated for their antibacterial activity against S. mutans and for their ability to inhibit S. mutans biofilm formation. All analogs contained the tricyclic pyrroloiminoquinone core of makaluvamines. The structural variations of the analogs are on the amino substituents at the 7-position of the ring and the inclusion of a tosyl group on the pyrrole ring N of the makaluvamine core. The makaluvamine analogs displayed biofilm inhibition with IC50 values ranging from 0.4 μM to 88 μM. Further, the observed bactericidal activity of the majority of the analogs was found to be consistent with the anti-biofilm activity, leading to the conclusion that the anti-biofilm activity of these analogs stems from their ability to kill S. mutans. However, three of the most potent N-tosyl analogs showed biofilm IC50 values at least an order of magnitude lower than that of bactericidal activity, indicating that the biofilm activity of these analogs is more selective and perhaps independent of bactericidal activity. PMID:25767719

  17. Cationic amphiphilic non-hemolytic polyacrylates with superior antibacterial activity.

    PubMed

    Punia, Ashish; He, Edward; Lee, Kevin; Banerjee, Probal; Yang, Nan-Loh

    2014-07-01

    Acrylic copolymers with appropriate compositions of counits having cationic charge with 2-carbon and 6-carbon spacer arms can show superior antibacterial activities with concomitant very low hemolytic effect. These amphiphilic copolymers represent one of the most promising synthetic polymer antibacterial systems reported. PMID:24854366

  18. Antibacterial and antifungal activity of aromatic constituents of essential oils.

    PubMed

    Pattnaik, S; Subramanyam, V R; Bapaji, M; Kole, C R

    1997-01-01

    Five aromatic constituents of essential oils (cineole, citral, geraniol, linalool and menthol) were tested for antimicrobial activity against eighteen bacteria (including Gram-positive cocci and rods, and Gram-negative rods) and twelve fungi (three yeast-like and nine filamentous). In terms of antibacterial activity linalool was the most effective and inhibited seventeen bacteria, followed by cineole, geraniol (each of which inhibited sixteen bacteria), menthol and citral aromatic compounds, which inhibited fifteen and fourteen bacteria, respectively. Against fungi the citral and geraniol oils were the most effective (inhibiting all twelve fungi), followed by linalool (inhibiting ten fungi), cineole and menthol (each of which inhibited seven fungi) compounds. PMID:9218354

  19. Phytochemical constituents and antibacterial activity of some green leafy vegetables

    PubMed Central

    Bhat, Ramesa Shafi; Al-Daihan, Sooad

    2014-01-01

    Objective To investigate the antibacterial activity and photochemicals of five green leafy vegetables against a panel of five bacteria strains. Methods Disc diffusion method was used to determine the antibacterial activity, while kanamycin was used as a reference antibiotic. The phytochemical screening of the extracts was performed using standard methods. Results All methanol extracts were found active against all the test bacterial strains. Overall maximum extracts shows antibacterial activity which range from 6 to 15 mm. Proteins and carbohydrates was found in all the green leaves, whereas alkaloid, steroids, saponins, flavonoids, tannins were found in most of the test samples. Conclusions The obtain result suggests that green leafy vegetables have moderate antibacterial activity and contain various pharmacologically active compounds and thus provide the scientific basis for the traditional uses of the studied vegetables in the treatment of bacterial infections. PMID:25182436

  20. Activation of antibacterial autophagy by NADPH oxidases

    PubMed Central

    Huang, Ju; Canadien, Veronica; Lam, Grace Y.; Steinberg, Benjamin E.; Dinauer, Mary C.; Magalhaes, Marco A. O.; Glogauer, Michael; Grinstein, Sergio; Brumell, John H.

    2009-01-01

    Autophagy plays an important role in immunity to microbial pathogens. The autophagy system can target bacteria in phagosomes, promoting phagosome maturation and preventing pathogen escape into the cytosol. Recently, Toll-like receptor (TLR) signaling from phagosomes was found to initiate their targeting by the autophagy system, but the mechanism by which TLR signaling activates autophagy is unclear. Here we show that autophagy targeting of phagosomes is not exclusive to those containing TLR ligands. Engagement of either TLRs or the Fcγ receptors (FcγRs) during phagocytosis induced recruitment of the autophagy protein LC3 to phagosomes with similar kinetics. Both receptors are known to activate the NOX2 NADPH oxidase, which plays a central role in microbial killing by phagocytes through the generation of reactive oxygen species (ROS). We found that NOX2-generated ROS are necessary for LC3 recruitment to phagosomes. Antibacterial autophagy in human epithelial cells, which do not express NOX2, was also dependent on ROS generation. These data reveal a coupling of oxidative and nonoxidative killing activities of the NOX2 NADPH oxidase in phagocytes through autophagy. Furthermore, our results suggest a general role for members of the NOX family in regulating autophagy. PMID:19339495

  1. ANTIBACTERIAL ACTIVITY OF LEAF EXTRACT OF Abutilon indicum

    PubMed Central

    Poonkothai, M.

    2006-01-01

    Chloroform, ethanol and aqueous extracts of the leaves of Abutilon indicum were investigated for antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi. Among the various extracts, maximum antibacterial activity was exhibited by ethanol extract (14, 25, 14, 25, 17, 18 mm) followed by chloroform extract (13, 17, 8, 15, 15, 20 mm) while aqueous extract, showed no activity. PMID:22557222

  2. ANTIBACTERIAL ACTIVITY OF LEAF EXTRACT OF Abutilon indicum.

    PubMed

    Poonkothai, M

    2006-07-01

    Chloroform, ethanol and aqueous extracts of the leaves of Abutilon indicum were investigated for antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi. Among the various extracts, maximum antibacterial activity was exhibited by ethanol extract (14, 25, 14, 25, 17, 18 mm) followed by chloroform extract (13, 17, 8, 15, 15, 20 mm) while aqueous extract, showed no activity. PMID:22557222

  3. Evaluation of antibacterial activity of synthetic aliphatic and aromatic monoacylglycerols.

    PubMed

    Batovska, Daniela; Todorova, Iva; Parushev, Stoyan; Tsvetkova, Iva; Najdenski, Hristo; Ubukata, Makoto

    2008-01-01

    The antibacterial activity of synthetic aliphatic and aromatic monoacylglycerols (MAGs) was studied against two human pathogens: Staphylococcus aureus and Escherichia coli. The active compounds inhibited selectively S. aureus. The most active compounds amongst them were those with medium size aliphatic chain and aromatic MAGs with electron withdrawing substituents at the aryl ring. The introduction of one or two-carbon spacer between the aryl ring and the carboxylic function did not influence antibacterial effectiveness. PMID:19004249

  4. In vitro antibacterial activity of glass-ionomer cements.

    PubMed

    Herrera, M; Carrión, P; Baca, P; Liébana, J; Castillo, A

    2001-01-01

    The in vitro antibacterial activity of the glass-ionomer restorative cements Ketac-Cem, Ketac-Bond, Ketac-Silver and Vitrebond was studied in conjunction with 32 strains of five bacteria involved in the development of caries: Streptococcus spp., Lactobacillus spp., Actinomyces spp., Porphyromonas spp. and Clostridium spp. The agar plate diffusion method was used for the cultures, which included a chlorhexidine positive control. All the glass-ionomer cements tested inhibited bacterial growth, but with considerable differences in the scope of their action. Of the four cements, Vitrebond, a resin-modified glass-ionomer cement, was determined to be the most effective bacterial inhibitor. PMID:11327108

  5. Polybrominated Diphenyl Ethers: Structure Determination and Trends in Antibacterial Activity.

    PubMed

    Liu, Hongbing; Lohith, Katheryn; Rosario, Margaret; Pulliam, Thomas H; O'Connor, Robert D; Bell, Lori J; Bewley, Carole A

    2016-07-22

    Antibacterial-guided fractionation of the Dictyoceratid sponges Lamellodysidea sp. and two samples of Dysidea granulosa yielded 14 polybrominated, diphenyl ethers including one new methoxy-containing compound (8). Their structures were elucidated by interpretation of spectroscopic data of the natural product and their methoxy derivatives. Most of the compounds showed strong antimicrobial activity with low- to sub-microgram mL(-1) minimum inhibitory concentrations against drug-susceptible and drug-resistant strains of Staphylococcus aureus and Enterococcus faecium, and two compounds inhibited Escherichia coli in a structure-dependent manner. PMID:27399938

  6. Ciprofloxacin-Induced Antibacterial Activity Is Attenuated by Phosphodiesterase Inhibitors

    PubMed Central

    Masadeh, Majed M.; Alzoubi, Karem H.; Khabour, Omar F.; Al-Azzam, Sayer I.

    2014-01-01

    Background Ciprofloxacin is a commonly used antibiotic for urinary tract infection that interacts with bacterial topoisomerases leading to oxidative radicals generation and bacterial cell death. Phosphodiesterase inhibitors (PDEis), on the other hand, are commonly used drugs for the management of erectile dysfunction. The group includes agents such as sildenafil, vardenafil, and tadalafil. Objectives We investigated whether PDEi could interfere with the antibacterial activity of ciprofloxacin. Methods PDEis were tested in several reference bacteria, including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, Acinetobacter baumannii, Proteus mirabilis, and Klebsiella pneumoniae utilizing a standard disc diffusion method and measuring both zones of inhibition and MIC. Results Results from both assays indicated that ciprofloxacin demonstrates potent activity against the tested reference bacteria. Additionally, when bacteria were treated with a combination of ciprofloxacin and sildenafil, tadalafil, or vardenafil, the zones of the combination inhibition were significantly reduced, whereas the MIC values were significantly greater than those of ciprofloxacin alone for all tested bacterial strains. In an attempt to examine the mechanism by which PDEis interfere with the action of ciprofloxacin, we utilized the in vitro E coli DNA gyrase cleavage assay. The results showed that PDEi drugs had no effect on ciprofloxacin’s inhibition of E coli gyrase activity. Conclusions Pretreatment of various reference bacterial cells with PDEis largely inhibited the antibacterial activity of ciprofloxacin. PMID:26649077

  7. Cyclohexane triones, novel membrane-active antibacterial agents.

    PubMed Central

    Lloyd, W J; Broadhurst, A V; Hall, M J; Andrews, K J; Barber, W E; Wong-Kai-In, P

    1988-01-01

    The cyclohexane triones are a novel group of synthetic antibacterial agents that are active against gram-positive bacteria, Haemophilus influenzae, and Mycobacterium smegmatis. In general, these compounds behaved in a manner similar to that of hexachlorophene, inhibiting the transport of low-molecular-weight hydrophilic substances into bacteria. Unlike cationic detergents, such as chlorhexidine, they did not cause disruption of the bacterial cytoplasmic membrane over a short time period. The most potent antibacterial cyclohexane trione studied had a reduced ability to inhibit solute transport in comparison with certain less active analogs. Cyclohexane triones may express more than a single type of antibacterial effect. PMID:3137860

  8. Antibacterial activity of two plant extracts on eight burn pathogens.

    PubMed

    Gnanamani, A; Priya, K Shanmuga; Radhakrishnan, N; Babu, Mary

    2003-05-01

    Antibacterial activity of crude alcoholic extract of Datura alba and Celosia argentea leaves were studied against pathogens isolated from infected burn patients. The disc-diffusion method showed significant zone of lysis against all the pathogens studied and the results are comparable to the conventional antibiotic cream namely Silver Sulphadiazine (SSD). On comparing the efficiency of the two extracts, extract of D. alba exhibited more than 50% increase in antibacterial activity compared to C. argentea. PMID:12686442

  9. Induced Dwarf Mutant in Catharanthus roseus with Enhanced Antibacterial Activity

    PubMed Central

    Verma, A. K.; Singh, R. R.

    2010-01-01

    Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L.) G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis. PMID:21695004

  10. [Influence of Polycations on Antibacterial Activity of Lysostaphin].

    PubMed

    Kulikov, S N; Khairullin, R Z; Varlamov, V P

    2015-01-01

    The synergistic antibacterial activity of lysostaphin and polycations of different chemical structures against Staphylococcus aureus has been shown. Polycations improved the lytic activity of lysostaphin against the peptidoglycan of staphylococci. It is proposed that this resulted in decreased binding of positively charged lysostaphin with S. aureus cell-wall teichoic acids. These data provide an opportunity to search for polycations that would amplify the synergistic effect of lysostaphin or other antibacterial proteins against staphylococci. PMID:26859963

  11. Zn or O? An Atomic Level Comparison on Antibacterial Activities of Zinc Oxides.

    PubMed

    Yu, Fen; Fang, Xuan; Jia, Huimin; Liu, Miaoxing; Shi, Xiaotong; Xue, Chaowen; Chen, Tingtao; Wei, Zhipeng; Fang, Fang; Zhu, Hui; Xin, Hongbo; Feng, Jing; Wang, Xiaolei

    2016-06-01

    For the first time, the influence of different types of atoms (Zn and O) on the antibacterial activities of nanosized ZnO was quantitatively evaluated with the aid of a 3D-printing-manufactured evaluation system. Two different outermost atomic layers were manufactured separately by using an ALD (atomic layer deposition) method. Interestingly, we found that each outermost atomic layer exhibited certain differences against gram-positive or gram-negative bacterial species. Zinc atoms as outermost layer (ZnO-Zn) showed a more pronounced antibacterial effect towards gram-negative E. coli (Escherichia coli), whereas oxygen atoms (ZnO-O) showed a stronger antibacterial activity against gram-positive S. aureus (Staphylococcus aureus). A possible antibacterial mechanism has been comprehensively discussed from different perspectives, including Zn(2+) concentrations, oxygen vacancies, photocatalytic activities and the DNA structural characteristics of different bacterial species. PMID:27124263

  12. Distribution and significance of heterotrophic marine bacteria with antibacterial activity.

    PubMed Central

    Nair, S; Simidu, U

    1987-01-01

    Bacteria with antibacterial activity were isolated from seawater, sediments, phytoplankton, and zooplankton of Suruga, Sagami, and Tokyo Bays and from soft corals and sponges collected from the Taiwan coast. Of the 726 strains isolated, 37 showed antibacterial activity against either Vibrio parahaemolyticus (ATCC 17802) or Staphylococcus aureus (P209). Sediment harbored the lowest number of these forms of bacteria, and those from Tokyo Bay did not show any activity. Attached isolates showed greater activity compared with free-living forms. Relatively high numbers of strains with antibacterial activity were associated with phytoplankton. Among the zooplankton isolates, cladocerans harbored the maximum number of antibacterial strains. Isolates were more inhibitory to gram-positive test cultures. Autoinhibition was observed only among 8% of the isolates. Marine nonproducers were more susceptible. Pseudomonas/Alteromonas species made up 81.0% of isolates, of which 30% were pigmented strains. The absence or reduction in number of bacteria with antibacterial activity in Tokyo Bay is attributed to its eutrophic nature, which may tend to moderate the production of antibacterial compounds. PMID:3435149

  13. Antibacterial and antifungal activity of Indonesian ethnomedical plants.

    PubMed

    Goun, E; Cunningham, G; Chu, D; Nguyen, C; Miles, D

    2003-09-01

    Methylene chloride and methanol extracts of 20 Indonesian plants with ethnomedical uses have been assessed for in vitro antibacterial and antifungal properties by disk diffusion method. Extracts of the six plants: Terminalia catappa, Swietenia mahagoni Jacq., Phyllanthus acuminatus, Ipomoea spp., Tylophora asthmatica and Hyptis brevipes demonstrated high activity in this bioassay system. These findings should stimulate the search for novel, natural product such as new antibacterial and antifungal agents. PMID:12946723

  14. Antibacterial activity of nanocomposites of copper and cellulose.

    PubMed

    Pinto, Ricardo J B; Daina, Sara; Sadocco, Patrizia; Pascoal Neto, Carlos; Trindade, Tito

    2013-01-01

    The design of cheap and safe antibacterial materials for widespread use has been a challenge in materials science. The use of copper nanostructures combined with abundant biopolymers such as cellulose offers a potential approach to achieve such materials though this has been less investigated as compared to other composites. Here, nanocomposites comprising copper nanofillers in cellulose matrices have been prepared by in situ and ex situ methods. Two cellulose matrices (vegetable and bacterial) were investigated together with morphological distinct copper particulates (nanoparticles and nanowires). A study on the antibacterial activity of these nanocomposites was carried out for Staphylococcus aureus and Klebsiella pneumoniae, as pathogen microorganisms. The results showed that the chemical nature and morphology of the nanofillers have great effect on the antibacterial activity, with an increase in the antibacterial activity with increasing copper content in the composites. The cellulosic matrices also show an effect on the antibacterial efficiency of the nanocomposites, with vegetal cellulose fibers acting as the most effective substrate. Regarding the results obtained, we anticipate the development of new approaches to prepare cellulose/copper based nanocomposites thereby producing a wide range of interesting antibacterial materials with potential use in diverse applications such as packaging or paper coatings. PMID:24455681

  15. Antibacterial Activity of Nanocomposites of Copper and Cellulose

    PubMed Central

    Pinto, Ricardo J. B.; Daina, Sara; Neto, Carlos Pascoal; Trindade, Tito

    2013-01-01

    The design of cheap and safe antibacterial materials for widespread use has been a challenge in materials science. The use of copper nanostructures combined with abundant biopolymers such as cellulose offers a potential approach to achieve such materials though this has been less investigated as compared to other composites. Here, nanocomposites comprising copper nanofillers in cellulose matrices have been prepared by in situ and ex situ methods. Two cellulose matrices (vegetable and bacterial) were investigated together with morphological distinct copper particulates (nanoparticles and nanowires). A study on the antibacterial activity of these nanocomposites was carried out for Staphylococcus aureus and Klebsiella pneumoniae, as pathogen microorganisms. The results showed that the chemical nature and morphology of the nanofillers have great effect on the antibacterial activity, with an increase in the antibacterial activity with increasing copper content in the composites. The cellulosic matrices also show an effect on the antibacterial efficiency of the nanocomposites, with vegetal cellulose fibers acting as the most effective substrate. Regarding the results obtained, we anticipate the development of new approaches to prepare cellulose/copper based nanocomposites thereby producing a wide range of interesting antibacterial materials with potential use in diverse applications such as packaging or paper coatings. PMID:24455681

  16. Antioxidative, antibrowning and antibacterial activities of sixteen floral honeys.

    PubMed

    Chang, Xin; Wang, Jiehua; Yang, Shaohui; Chen, Shan; Song, Yingjin

    2011-09-01

    Commonly consumed honeys from sixteen different single floral sources were analyzed for their in vitro antioxidant capacities by several methods including DPPH, ABTS, FRAP, SASR and MDA assays. The total polyphenol contents varied among the tested honeys and were highly correlated to their antioxidant capacity values. The antioxidant capacity of Chinese milk vetch flower honeys was significantly higher than those of other flower honeys. All honeys tested were active in inhibiting the browning of apple homogenate and linden honey displayed the highest inhibition rate as 85%. When the antimicrobial activity of the investigated honeys was screened using Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), clover honey exhibited the strongest antibacterial activity as 2.2 mg mL(-1) kanamycin equivalent inhibition. PMID:21860856

  17. Antibacterial activity in the hemolymph of myriapods (Arthropoda).

    PubMed

    Xylander, W E; Nevermann, L

    1990-09-01

    The hemolymphs of two diplopod (Chicobolus sp. and Rhapidostreptus virgator) and two chilopod species (Lithobius forficatus and Scolopendra cingulata) were tested for the presence of antibacterial substances using Petri dish tests. The native hemolymph of all species had substances acting on living Micrococcus luteus, whereas only Rhapidostreptus, Scolopendra, and Lithobius were effective against lyophilized Micrococcus. The antibacterial activity against living Micrococcus increased after inoculation with bacteria (Enterobacter cloacae beta-12) in Chicobolus and Rhapidostreptus and also against lyophilized Micrococcus in the latter. Thus, these effects appear to be inducible. None of the myriapods tested had any bacteriostatic effect on Escherichia coli D-31 whereas the growth of gram-negative E. cloacae was inhibited. The antibacterial substances in the diplopod species were unstable when heated but were resistant to freezing. At least two antibacterial substances (a lysozyme-like one and another substance) are considered to occur in Myriapoda. PMID:2273286

  18. Antibacterial activity of Rosa damascena essential oil.

    PubMed

    Basim, E; Basim, H

    2003-06-01

    The essential oil of Rosa damascena petals was evaluated for its antibacterial effects against three strains of Xanthomonas axonopodis spp. vesicatoria. The essential oil may be a potential control agent in the management of the disease caused by X.a. vesicatoria in tomato and pepper plants. PMID:12781814

  19. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area.

    PubMed

    Sotiriou, Georgios A; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E

    2011-06-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution. PMID:23730198

  20. Acylated flavonol glycosides from Tagetes minuta with antibacterial activity.

    PubMed

    Shahzadi, Irum; Shah, Mohammad M

    2015-01-01

    Wild marigold (Tagetes minuta), a flowering plant of the family Asteraceae contains compounds of pharmaceutical and nutritional importance especially essential oils and flavonols. Identification, characterization of flavonols and determination of their antibacterial activity were major objectives of the current study. The isolation and purification of flavonols was accomplished using chromatographic techniques while structural elucidation was completed by LC-MS and NMR spectroscopy. The extracts and purified compounds were tested against various bacterial strains for antibacterial activity. A total of 19 flavonols were isolated from this species. Of these, 17 were of butanol and two of ethyl acetate extracts. Based on the concentration and purity, eight potential flavonols were selected and structurally elucidated. Four flavonols, 6-hydroxyquercetin 7-O-β-(6''-galloylglucopyranoside; 2), 6-hydroxykaempferol 7-O-β-glucopyranoside (5), 6-hydroxykaempferol 7-O-β-(6''-galloylglucopyranoside; 7), 6-hydroxyquercetin 7-O-β-(6''-caffeoylglucopyranoside; 9), were identified for the first time from T. minuta. Butanol and ethyl acetate extracts of flowers and seeds showed significant antibacterial activity against Micrococcus leteus, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas pikettii. Among the isolated flavonols only 1, 2, and 18 were found to possess significant antibacterial activity against M. luteus. The extracts and purified flavonols from T. minuta can be potential candidates for antibacterial drug discovery and support to ethnopharmacological use. PMID:26441652

  1. Acylated flavonol glycosides from Tagetes minuta with antibacterial activity

    PubMed Central

    Shahzadi, Irum; Shah, Mohammad M.

    2015-01-01

    Wild marigold (Tagetes minuta), a flowering plant of the family Asteraceae contains compounds of pharmaceutical and nutritional importance especially essential oils and flavonols. Identification, characterization of flavonols and determination of their antibacterial activity were major objectives of the current study. The isolation and purification of flavonols was accomplished using chromatographic techniques while structural elucidation was completed by LC–MS and NMR spectroscopy. The extracts and purified compounds were tested against various bacterial strains for antibacterial activity. A total of 19 flavonols were isolated from this species. Of these, 17 were of butanol and two of ethyl acetate extracts. Based on the concentration and purity, eight potential flavonols were selected and structurally elucidated. Four flavonols, 6-hydroxyquercetin 7-O-β-(6′′-galloylglucopyranoside; 2), 6-hydroxykaempferol 7-O-β-glucopyranoside (5), 6-hydroxykaempferol 7-O-β-(6′′-galloylglucopyranoside; 7), 6-hydroxyquercetin 7-O-β-(6′′-caffeoylglucopyranoside; 9), were identified for the first time from T. minuta. Butanol and ethyl acetate extracts of flowers and seeds showed significant antibacterial activity against Micrococcus leteus, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas pikettii. Among the isolated flavonols only 1, 2, and 18 were found to possess significant antibacterial activity against M. luteus. The extracts and purified flavonols from T. minuta can be potential candidates for antibacterial drug discovery and support to ethnopharmacological use. PMID:26441652

  2. Is the use o f Gunnera perpensa extracts in endometritis related to antibacterial activity?

    PubMed

    McGaw, L J; Gehring, R; Katsoulis, L; Eloff, J N

    2005-06-01

    Rhizome extracts of Gunnera perpensa are used in traditional remedies in South Africa to treat endometritis both in humans and animals. An investigation was undertaken to determine whether this plant possesses antibacterial activity, which may explain its efficacy. Gunnera perpensa rhizome extracts were prepared serially with solvents of increasing polarity and tested for antibacterial activity. Test bacteria included the Gram-positive Enterococcus faecalis and Staphylococcus aureus and the Gram-negative Escherichia coli and Pseudomonas aeruginosa. A moderate to weak level of antibacterial activity in most of the extracts resulted, with the best minimal inhibitory concentration (MIC) value of 2.61 mg ml(-1) shown by the acetone extract against S. aureus. The extracts were also submitted to the brine shrimp assay to detect possible toxic or pharmacological effects. All the extracts were lethal to the brine shrimp larvae at a concentration of 5 mg ml(-1). The acetone extract was extremely toxic at 1 mg ml(-1), with some toxicity evident at 0.1 mg ml(-1). The remainder of the extracts generally displayed little activity at concentrations lower than 5 mg ml(-1). In summary, the results indicate that although the extracts demonstrated a level of pharmacological activity, the relatively weak antibacterial activity is unlikely to justify the use of G. perpensa rhizomes in the traditional treatment of endometritis. Rather, the slightly antibacterial nature of the rhizomes may contribute to an additive effect, along with their known uterotonic activity, to the overall efficacy of the preparation. PMID:16137130

  3. Synthesis and Antibacterial Activity of Novel Quaternary Ammonium Pyridoxine Derivatives.

    PubMed

    Shtyrlin, Nikita V; Sapozhnikov, Sergey V; Koshkin, Sergey A; Iksanova, Alfiya G; Sabirov, Arthur H; Kayumov, Airat R; Nureeva, Aliya A; Zeldi, Marina I; Shtyrlin, Yurii G

    2015-01-01

    A series of 26 quaternary ammonium pyridoxine derivatives were synthesized and their cytotoxicity and antibacterial activities against clinically relevant bacterial strains were tested in vitro. The antibacterial activity of mono-ammonium salts increased with the rise of the lipophilicity and compound 3,3,5-trimethyl-8,8-dioctyl-1,7,8,9-tetrahydro-[1,3]dioxino[5,4-d]pyrrolo[3,4-b]pyridin-8-ium chloride (2d) reaches a maximum among them. Bis-ammonium salt of pyridoxine 4 with two dimethyloctylamine groups also demonstrated high antibacterial activity despite lower lipophilicity. The results of MTT assay indicated that HEK 293 cells were more sensitive than HSF to quaternary ammonium pyridoxine derivatives. Compounds 2d and 4 did not induce the damage of the DNA and might be of interest in the development of new antimicrobials. PMID:25938426

  4. Antibacterial and Antitumor Activities of Biscoumarin and Dihydropyran Derivatives.

    PubMed

    Sui, Yun-Peng; Huo, Hai-Ru; Xin, Jia-Jia; Li, Jing; Li, Xiao-Jun; Du, Xin-Liang; Ma, Hai; Zhou, Hai-Yu; Zhan, Hong-Dan; Wang, Zhu-Ju; Li, Chun; Sui, Feng; Li, Ming-Kai

    2015-01-01

    A novel series of biscoumarin (1-4) and dihydropyran (5-13) derivatives were synthesized via a one-pot multicomponent condensation reaction and evaluated for antibacterial and antitumor activity in vitro. The X-ray crystal structure analysis of four representative compounds, 3, 7, 9 and 11, confirmed the structures of these compounds. Compounds 1-4 showed the most potent antitumor activity among the total 13 derivatives; especially for compounds 1 and 2, they also emerged as promising antibacterial members with better antibacterial activity. In addition, the results of density functional theory (DFT) showed that compared with compounds 3 and 4, biscoumarins 1 and 2 had lower intramolecular hydrogen bonds (HB) energy in their structures. PMID:26404230

  5. Cytotoxic and antibacterial activities of the analogues of pogostone.

    PubMed

    Tang, Zheng-Wei; Peng, Cheng; Dai, Min; Han, Bo

    2015-10-01

    Six new (A5-A6, A8-A11) and six known (A1-A4, A7, PO) α-pyrone compounds were synthesized with dehydroacetate and aldehydes in tetrahydrofuran at room temperature. And their structures were determined by (1)H-NMR, (13)C-NMR and mass spectroscopy. In the bioscreening experiments, ten compounds (A1-A5, PO, A7-A10) exhibited antibacterial activities against Staphylococcus aureus ATCC 25923 with minimum inhibitory concentration (MIC) values of 4-512 mg/L, and nine compounds (A1-A5, PO, A7-A8, A10) exhibited antibacterial activities against Methicillin-resistant S. aureus (MRSA) ATCC 43300 with MIC values of 4-256 mg/L. Moreover, compound A10 showed the highest antibacterial activity against S. aureus ATCC 25923 and MRSA with MIC values of 4 mg/L, while the MIC values of Amoxicillin were 8 mg/L and >256 mg/L, respectively. Two compounds (A8 and PO) exhibited antibacterial activities against Escherichia coli ATCC 25922 with MIC values of 32-512 mg/L. However, only one compound (A8) exhibited significant antibacterial activity against Pseudomonas aeruginosa CVCC 3360 with MIC value of 256 mg/L. Moreover, A10 exhibited significant inhibition of proliferation in the four cell lines MCF-10, A549, A2780 and MFC, and showed stronger inhibitive activity of these four selected cell lines than cisplatin in the cytotoxic assay. Thus, this study suggests that pogostone analogues, especially A10, represented a kind of promising antibacterial and antineoplastic agents. PMID:26272659

  6. Sensing and antibacterial activity of imidazolium-based conjugated polydiacetylenes.

    PubMed

    Lee, Songyi; Cheng, Hua; Chi, Meiying; Xu, Qingling; Chen, Xiaoqiang; Eom, Chi-Yong; James, Tony D; Park, Sungsu; Yoon, Juyoung

    2016-03-15

    In the current study, we report the first example of polydiacetylenes (PDAs), where our PDA-based system acts as both a sensing probe and killer for bacteria. The contact of imidazolium and imidazole-derived PDA with various bacterial strains including MRSA (methicillin-resistant Staphylococcus aureus) and ESBL-EC (extended-spectrum β-lactamase-producing Escherichia coli) results in a distinct blue-to-red colorimetric change of the solution as well as a rapid disruption of the bacterial membrane, which is demonstrated by transmission electron microscopy and confocal microscopy. Zeta potential analysis supports that antibacterial activity of the PDA solution originates from an electrostatic interaction between the negatively charged bacterial cell surface and the positively charged polymers. These results suggest that the PDA has a great potential to carry out the dual roles of a probe and killer for bacteria. PMID:26547428

  7. On the antibacterial activity of roots of Capparis spinosa L.

    PubMed

    Boga, Carla; Forlani, Luciano; Calienni, Rocco; Hindley, Teresa; Hochkoeppler, Alejandro; Tozzi, Silvia; Zanna, Nicola

    2011-02-01

    A decoction of Capparis spinosa L. roots, widely used in the traditional folk medicine of southern Italy, was prepared and submitted to antibacterial activity tests, which showed an interesting bacteriostatic activity on the growth of Deinococcus radiophilus. Heterocyclic compounds were also recovered from the chloroformic extract of the roots. PMID:21328135

  8. Synthesis, characterization and antibacterial activities of some new ferrocene-containing penems.

    PubMed

    Long, Bohua; He, Chunlian; Yang, Yingbin; Xiang, Jiannan

    2010-03-01

    The synthesis and structure-activity relationships of a series of new penems bearing ferrocenyl group attached to the C-2 position of the penem nucleus were described. The beta-lactanic derivatives obtained had been characterized as sodium salts, through (1)H NMR and IR, as well as through element analysis. Their in vitro antibacterial activities against both Gram-positive including meticillin-resistant Staphylococcus aureus (MRSA) and Gram-negative bacteria were tested. Most of the penems exhibited superior or equivalent efficacy of antibacterial activity as well as high stability to renal dehydropeptidase-I (DHP-I) compared with faropenem. In particular, the compound 14h having a heterocyclic group showed the most potent antibacterial activity. PMID:20053481

  9. Antibacterial activity of carbon-coated zinc oxide particles.

    PubMed

    Sawai, Jun; Yamamoto, Osamu; Ozkal, Burak; Nakagawa, Zenbe-E

    2007-03-01

    Particles of ZnO coated with carbon (ZnOCC) were prepared and evaluated for their antibacterial activity. ZnO powder and poly(vinyl alcohol) (PVA) (polymerization degree: 2,000-95,000) were mixed at a mass ratio (ZnO/PVA) of 1, and then heated at 500-650 degree C for 3 h under argon gas with a flow rate of 50ml/min. Carbon deposited on the ZnOCC surface was amorphous as revealed by X-ray diffraction studies. The ZnOCC particles maintained their shape in water, even under agitation. The antibacterial activity of ZnOCC powder against Staphylococcus aureus was evaluated quantitatively by measuring the change in the electrical conductivity of the growth medium caused by bacterial metabolism (conductimetric assay). The conductivity curves obtained were analyzed using the growth inhibition kinetic model proposed by Takahashi for calorimetric evaluation, allowing the estimation of the antibacterial efficacy and kinetic parameters of ZnOCC. In a previous study, when ZnO was immobilized on materials, such as activated carbon, the amount of ZnO immobilized was approximately 10-50%, and the antibacterial activity markedly decreased compared to that of the original ZnO. On the other hand, the ZnOCC particles prepared in this study contained approximately 95% ZnO and possessed antibacterial activity similar to that of pure ZnO. The carbon-coating treatment could maintain the antibacterial efficacy of the ZnO and may be useful in the develop-ment of multifunctional antimicrobial materials. PMID:17408004

  10. Antibacterial activity of silver bionanocomposites synthesized by chemical reduction route

    PubMed Central

    2012-01-01

    Background The aim of this study is to investigate the functions of polymers and size of nanoparticles on the antibacterial activity of silver bionanocomposites (Ag BNCs). In this research, silver nanoparticles (Ag NPs) were incorporated into biodegradable polymers that are chitosan, gelatin and both polymers via chemical reduction method in solvent in order to produce Ag BNCs. Silver nitrate and sodium borohydride were employed as a metal precursor and reducing agent respectively. On the other hand, chitosan and gelatin were added as a polymeric matrix and stabilizer. The antibacterial activity of different sizes of silver nanoparticles was investigated against Gram-positive and Gram-negative bacteria by the disk diffusion method using Mueller-Hinton Agar. Results The properties of Ag BNCs were studied as a function of the polymer weight ratio in relation to the use of chitosan and gelatin. The morphology of the Ag BNCs films and the distribution of the Ag NPs were also characterized. The diameters of the Ag NPs were measured and their size is less than 20 nm. The antibacterial trait of silver/chitosan/gelatin bionanocomposites was investigated. The silver ions released from the Ag BNCs and their antibacterial activities were scrutinized. The antibacterial activities of the Ag BNC films were examined against Gram-negative bacteria (E. coli and P. aeruginosa) and Gram-positive (S. aureus and M. luteus) by diffusion method using Muller-Hinton agar. Conclusions The antibacterial activity of Ag NPs with size less than 20 nm was demonstrated and showed positive results against Gram-negative and Gram-positive bacteria. The Ag NPs stabilized well in the polymers matrix. PMID:22967920

  11. Preparation and antibacterial activity of oligosaccharides derived from dandelion.

    PubMed

    Qian, Li; Zhou, Yan; Teng, Zhaolin; Du, Chun-Ling; Tian, Changrong

    2014-03-01

    In this study, we prepared oligosaccharides from dandelion (Taraxacum officinale) by hydrolysis with hydrogen peroxide (H2O2) and investigated their antibacterial activity. The optimum hydrolysis conditions, as determined using the response surface methodology, were as follows: reaction time, 5.12h; reaction temperature, 65.53 °C and H2O2 concentration, 3.16%. Under these conditions, the maximum yield of the oligosaccharides reached 25.43%. The sugar content in the sample was 96.8%, and the average degree of polymerisation was approximately 9. The oligosaccharides showed high antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus, indicating that dandelion-derived oligosaccharides have the potential to be used as antibacterial agents. PMID:24368113

  12. Developing of a novel antibacterial agent by functionalization of graphene oxide with guanidine polymer with enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Li, Ping; Sun, Shiyu; Dong, Alideertu; Hao, Yanping; Shi, Shuangqiang; Sun, Zijia; Gao, Ge; Chen, Yuxin

    2015-11-01

    New materials with excellent antibacterial activity attract numerous research interests. Herein, a facile synthetic method of polyethylene glycol (PEG) and polyhexamethylene guanidine hydrochloride (PHGC) dual-polymer-functionalized graphene oxide (GO) (GO-PEG-PHGC), a novel antibacterial material, was reported. The as-prepared products were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), X-ray pattern (XRD) and elemental analysis. The antibacterial effect on the bacterial strain was investigated by incubating both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). The results show that GO-PEG-PHGC has enhanced antibacterial activity when compared to GO, GO-PEG or GO-PHGC alone. The improved antibacterial activity was described to be related to a better dispersion of GO-PEG-PHGC in the presence of PEG. This better dispersion leads to a greater contact between the bacteria membrane and nanomaterials, therefore leading to greater cell damage. Not only Gram-negative bacteria but also Gram-positive bacteria are greatly inhibited by this antibacterial agent. With the powerful antibacterial activity as well as its low cost and facile preparation, the GO-PEG-PHGC as a novel antibacterial agent can find potential application in the areas of healthcare and environmental engineering.

  13. In vitro antibacterial activity of some plant essential oils

    PubMed Central

    Prabuseenivasan, Seenivasan; Jayakumar, Manickkam; Ignacimuthu, Savarimuthu

    2006-01-01

    Background: To evaluate the antibacterial activity of 21 plant essential oils against six bacterial species. Methods: The selected essential oils were screened against four gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris) and two gram-positive bacteria Bacillus subtilis and Staphylococcus aureus at four different concentrations (1:1, 1:5, 1:10 and 1:20) using disc diffusion method. The MIC of the active essential oils were tested using two fold agar dilution method at concentrations ranging from 0.2 to 25.6 mg/ml. Results: Out of 21 essential oils tested, 19 oils showed antibacterial activity against one or more strains. Cinnamon, clove, geranium, lemon, lime, orange and rosemary oils exhibited significant inhibitory effect. Cinnamon oil showed promising inhibitory activity even at low concentration, whereas aniseed, eucalyptus and camphor oils were least active against the tested bacteria. In general, B. subtilis was the most susceptible. On the other hand, K. pneumoniae exhibited low degree of sensitivity. Conclusion: Majority of the oils showed antibacterial activity against the tested strains. However Cinnamon, clove and lime oils were found to be inhibiting both gram-positive and gram-negative bacteria. Cinnamon oil can be a good source of antibacterial agents. PMID:17134518

  14. In vitro antibacterial activity of cefpiramide.

    PubMed Central

    Pfaller, M A; Niles, A C; Murray, P R

    1984-01-01

    A microbroth dilution method was used to measure the MICs of cefpiramide (SM 1652), cefotaxime, moxalactam, ceftazidime, cefoperazone, ceftriaxone, piperacillin, and mezlocillin against 921 isolates of gram-negative (701) and gram-positive (220) bacteria. The activity of cefpiramide was equivalent to those of piperacillin and mezlocillin against members of the family Enterobacteriaceae and gram-positive isolates, including enterococci. Cefpiramide had equivalent or slightly greater activity against Pseudomonas aeruginosa than the other beta-lactam antibiotics tested. PMID:6426381

  15. Antibacterial activity of some triclosan-containing toothpastes and their ingredients.

    PubMed

    Wade, W G; Addy, M

    1992-04-01

    The antibacterial activity of 4 triclosan-containing toothpastes was compared to a conventional fluoride dentifrice and triclosan and sodium lauryl sulphate (SLS), both singly and in combination. A panel of 17 bacteria was tested by an agar dilution method. At concentrations typical of those found in toothpastes, triclosan and SLS displayed approximately equal antibacterial activity. A paste containing triclosan and zinc citrate appeared more active than the other triclosan pastes which, in general, showed marginal superiority over the conventional paste. SLS, although included in dentifrice formulations for its detergent properties, may significantly contribute to the antibacterial profile of a product. The need for appropriate controls when evaluating experimental toothpastes is emphasized. PMID:1345321

  16. Highly selective antibacterial activities of silver nanoparticles against Bacillus subtilis.

    PubMed

    Li, Ju; Rong, Kaifeng; Zhao, Huiping; Li, Fei; Lu, Zhong; Chen, Rong

    2013-10-01

    Silver nanoparticles (AgNPs) with different sizes (5, 15 and 55 nm) were synthesized via simple method, and characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray microanalysis (EDX) and ultraviolet-visible absorption spectroscopy (UV-Vis). The antibacterial activities of the prepared AgNPs against Gram-negative Escherichia coli (E. coli), Gram-positive Staphylococcus aureus (S. aureus) and Bacillus subtilis (B. subtilis) were evaluated by inhibition zone, inhibition curve, and colony counting methods. The results showed that the AgNPs exhibited obvious bacterium-selective and size-dependent antibacterial activities. The Gram-positive bacteria S. aureus and B. subtilis were more sensitive to AgNPs than Gram-negative bacterium E. coli. Interestingly, AgNPs displayed remarkably antibacterial activities against B. subtilis among Gram-positive bacteria, regardless of whether in separately or cocultured bacteria. It also showed that AgNPs with 5 nm in size presented the highest antibacterial activity against both Gram-negative and Gram-positive bacteria. The effects of AgNPs on the membrane leakage of the reducing sugars from three bacteria were also measured by 3,5-dinitrosalicylic acid method. The leakage amount of reducing sugars from B. subtilis was the highest among the tested bacteria, indicating that AgNPs could damage the structure of bacteria cell membrane and resulted in the leakage of reducing sugars, leading to the death of bacteria. PMID:24245147

  17. Antibacterial and antifungal activity of liriodenine and related oxoaporphine alkaloids.

    PubMed

    Hufford, C D; Sharma, A S; Oguntimein, B O

    1980-10-01

    Liriodenine was evaluated for its antibacterial and antifungal activity against several microorganisms. Other related oxoaporphine alkaloids also were evaluated. Attempts to prepare oxoaporphine alkaloids from N-acetylnoraporphines were unsuccessful, but an unexpected phenanthrene alkaloid was obtained. A novel N-demethylation reaction was noted when oxogaucine methiodide and liriodenine methiodide were treated with alumina. PMID:7420287

  18. Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles

    PubMed Central

    Shah, Vishal; Shah, Shreya; Shah, Hirsh; Rispoli, Fred J.; McDonnell, Kevin T.; Workeneh, Selam; Karakoti, Ajay; Kumar, Amit; Seal, Sudipta

    2012-01-01

    Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts. PMID:23110109

  19. Antibacterial Activity of Silver Doped Titanate Nanowires on Ti Implants.

    PubMed

    Xu, Ziqiang; Li, Man; Li, Xia; Liu, Xiangmei; Ma, Fei; Wu, Shuilin; Yeung, K W K; Han, Yong; Chu, Paul K

    2016-07-01

    A nanostructured film composed of one-dimensional titanate nanowires (TNWs) was employed as a carrier of Ag nanoparticles and chitosan (CS) to improve the surface antibacterial activity and biocompatibility of titanium implants. A TNWs film was produced on a Ti substrate by an alkali hydrothermal reaction and subsequently doped by Ag nanoparticles through an ultraviolet light chemical reduction. The CS nanofilm was deposited on the Ag nanoparticles through a spin-assisted layer by layer assembly method. The results disclosed that Ag nanoparticles were successfully carried by TNWs and homogeneously distributed on the entire surface. Moreover, a CS nanofilm was also successfully deposited on the Ag nanoparticles. Antibacterial tests showed that the samples modified with a higher initial concentration of AgNO3 solution exhibited better antibacterial activity, and that a CS nanofilm could further improve the antibacterial activity of the TNWs. Cell viability and ALP tests revealed that the release of Ag(+) was detrimental for the growth, proliferation, and differentiation of MC3T3, and that CS could lower the negative effects of Ag gradually as the incubation time increased. PMID:27336202

  20. Antibacterial activity of essential oils from Australian native plants.

    PubMed

    Wilkinson, Jenny M; Cavanagh, Heather M A

    2005-07-01

    To date, of the Australian essential oils, only tea tree (Melaleuca alternifolia) and Eucalyptus spp. have undergone extensive investigation. In this study a range of Australian essential oils, including those from Anethole anisata, Callistris glaucophyllia, Melaleuca spp. and Thyptomine calycina, were assayed for in vitro antibacterial activity. M. alternifolia was also included for comparison purposes. Activity was determined using standard disc diffusion assays with each oil assayed at 100%, 10% and 1% against five bacteria (Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa and Alcaligenes faecalis) and the yeast, Candida albicans. All bacteria, with the exception of Ps. aeruginosa, were susceptible to one or more of the essential oils at 100%, with only Eremophilia mitchelli inhibiting the growth of any bacteria at 1% (inhibition of Sal. typhimurium). Where multiple samples of a single oil variety were tested variability in activity profiles were noted. This suggests that different methods of preparation of essential oils, together with variability in plant chemical profiles has an impact on whether or not the essential oil is of use as an antimicrobial agent. These results show that essential oils from Australian plants may be valuable antimicrobial agents for use alone or incorporated into cosmetics, cleaning agents and pharmaceutical products. PMID:16161028

  1. Antibacterial Activities of Naturally occurring Compounds against Mycobacterium avium subspecies paratuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibacterial activities of 19 naturally-occurring compounds (including essential oils and some of their isolated constituents, apple and green tea polyphenols and other plant extracts) against three strains of Mycobacterium avium subspecies paratuberculosis (Map), a bovine isolate NCTC 8578, a raw ...

  2. Antibacterial Activity of Ti3C2Tx MXene.

    PubMed

    Rasool, Kashif; Helal, Mohamed; Ali, Adnan; Ren, Chang E; Gogotsi, Yury; Mahmoud, Khaled A

    2016-03-22

    MXenes are a family of atomically thin, two-dimensional (2D) transition metal carbides and carbonitrides with many attractive properties. Two-dimensional Ti3C2Tx (MXene) has been recently explored for applications in water desalination/purification membranes. A major success indicator for any water treatment membrane is the resistance to biofouling. To validate this and to understand better the health and environmental impacts of the new 2D carbides, we investigated the antibacterial properties of single- and few-layer Ti3C2Tx MXene flakes in colloidal solution. The antibacterial properties of Ti3C2Tx were tested against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) by using bacterial growth curves based on optical densities (OD) and colonies growth on agar nutritive plates. Ti3C2Tx shows a higher antibacterial efficiency toward both Gram-negative E. coli and Gram-positive B. subtilis compared with graphene oxide (GO), which has been widely reported as an antibacterial agent. Concentration dependent antibacterial activity was observed and more than 98% bacterial cell viability loss was found at 200 μg/mL Ti3C2Tx for both bacterial cells within 4 h of exposure, as confirmed by colony forming unit (CFU) and regrowth curve. Antibacterial mechanism investigation by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) coupled with lactate dehydrogenase (LDH) release assay indicated the damage to the cell membrane, which resulted in release of cytoplasmic materials from the bacterial cells. Reactive oxygen species (ROS) dependent and independent stress induction by Ti3C2Tx was investigated in two separate abiotic assays. MXenes are expected to be resistant to biofouling and offer bactericidal properties. PMID:26909865

  3. Antibacterial activity and probiotic potential of Lactobacillus plantarum HKN01: a new insight into the morphological changes of antibacterial compound-treated Escherichia coli by electron microscopy.

    PubMed

    Sharafi, Hakimeh; Maleki, Hadi; Ahmadian, Gholamreza; Shahbani Zahiri, Hossein; Sajedinejad, Neda; Houshmand, Behzad; Vali, Hojatollah; Akbari Noghabi, Kambiz

    2013-02-01

    Among several bacteria examined, an antibacterial-producing Lactobacillus strain with probiotic characteristics was selected and identified based on 16S rRNA gene sequencing. Subsequent purification and mode of action of the antibacterial compounds on target cells including E. coli were investigated. Maximum production of the antibacterial compound was recorded at 18 h incubation at 30 degrees C. Interestingly, antibacterial activity remained unchanged after heating at 121 degrees C for 45 min, 24 h storage in temperature range of 70 degrees C to room temperature, and 15 min exposure to UV light, and it was stable in the pH of range 2-10. The active compounds were inactivated by proteolytic enzymes, indicating their proteinaceous nature, and, therefore, referred to as bacteriocin-like inhibitory substances. Isolation and partial purification of the effective agent was done by performing ammonium sulfate precipitation and gel filtration chromatography. The molecular mass of the GFC-purified active compound (~3 kDa) was determined by Tris-Tricine SDS-PAGE. To predict the mechanisms of action, transmission electron microscopy (TEM) analysis of ultrathin sections of E. coli before and after antibacterial treatment was carried out. TEM analysis of antibacterial compounds-treated E. coli demonstrated that the completely altered bacteria appear much darker compared with the less altered bacteria, suggesting a change in the cytoplasmic composition. There were also some membrane-bound convoluted structures visible within the completely altered bacteria, which could be attributed to the response of the E. coli to the treatment with the antibacterial compound. According to the in vivo experiments oral administration of L. plantarum HKN01 resulted in recovery of infected BALB/c mice with Salmonella enterica ser. Typhimurium. PMID:23412066

  4. Antibacterial activity of Nymphaea nouchali (Burm. f) flower

    PubMed Central

    2013-01-01

    Background The present work aimed to find out the antibacterial activity of Nymphaea nouchali flower on human and plant pathogenic bacteria. Methods Antibacterial potency of methanol, acetone, ethyl acetate and petroleum spirit extracts of Nymphaea nouchali flower has been tested against four human pathogenic bacteria Bacillus subtilis (FO 3026) Escherichia coli (IFO 3007), Klebsiella pneumonia (ATTC 10031) and Sarcina lutea (IFO 3232) and one plant pathogenic bacterium Xanthomonas campestris (IAM 1671) by disc diffusion assay. Zone of inhibition produced by different extracts against the test bacteria was measured and compared with standard antibiotic disc. Results Methanol extract possessed better antibacterial activity against two pathogenic bacteria, B. subtilis (FO 3026) and S. lutea (IFO 3232) than commercial antibiotic nalidixic acid. Acetone extract showed moderate sensitivity whereas B. subtilis (FO 3026), S. lutea (IFO 3232) and X. campestris (IAM 1671) showed resistance to ethyl acetate and petroleum spirit extracts. The minimum inhibitory concentrations of various extracts were ranged between 128–2048 μgml-1. Conclusions Nymphaea nouchali flower could be a potential candidate for future development of novel broad spectrum antibacterial herbal formulation. PMID:24099586

  5. Evaluation of the Antibacterial Activity of Patchouli Oil

    PubMed Central

    Yang, Xian; Zhang, Xue; Yang, Shui-Ping; Liu, Wei-Qi

    2013-01-01

    In the present study, the antimicrobial tests of patchouli oil were studied by using molecular docking technology and antimicrobial test in vitro. Five biological macromolecule enzymes, required by the bacteria in the process of biosynthesis were selected as target molecules. Five antibiotics benzylpenicillin, sulfadiazine, trimethoprim, rifampicin and ciprofloxacin, which are generally acknowledged as antibacterial drugs, were selected as reference compounds. The 3 three-dimensional (3D) structures of the 5 reference compounds and 26 compounds from patchouli oil were established by using surflex-dock software (8.1). And the 3D structures of five biological macromolecule enzymes derived from Protein Data Bank (PDB). Molecular docking was carried out between the 31 chemical compounds (ligands) and the 5 enzymes (receptors) by using surflex-dock function. Furthermore, the antibacterial effects of 31 chemical compounds were investigated by the scoring function after molecular docking was completed. By comparing the scoring result of 26 compounds in patchouli oil with 5 compared components, we inferred antibacterial activity in about 26 compounds in patchouli oil. On the other hand, six frequently-used pathogenic bacteria were selected for antimicrobial test in vitro, patchouli oil and its two major compounds: (-)-patchouli alcohol and pogostone, which their contents exceeded 60% in patchouli oil samples, were selected antibacterial agents. Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) were also determined. Molecular docking technology and antimicrobial test in vitro proved that patchouli oil had strong antimicrobial effects. Particularly, pogostone and (-)-patchouli alcohol have potent antimicrobial activity. PMID:24250637

  6. Evaluation of the antibacterial activity of patchouli oil.

    PubMed

    Yang, Xian; Zhang, Xue; Yang, Shui-Ping; Liu, Wei-Qi

    2013-01-01

    In the present study, the antimicrobial tests of patchouli oil were studied by using molecular docking technology and antimicrobial test in vitro. Five biological macromolecule enzymes, required by the bacteria in the process of biosynthesis were selected as target molecules. Five antibiotics benzylpenicillin, sulfadiazine, trimethoprim, rifampicin and ciprofloxacin, which are generally acknowledged as antibacterial drugs, were selected as reference compounds. The 3 three-dimensional (3D) structures of the 5 reference compounds and 26 compounds from patchouli oil were established by using surflex-dock software (8.1). And the 3D structures of five biological macromolecule enzymes derived from Protein Data Bank (PDB). Molecular docking was carried out between the 31 chemical compounds (ligands) and the 5 enzymes (receptors) by using surflex-dock function. Furthermore, the antibacterial effects of 31 chemical compounds were investigated by the scoring function after molecular docking was completed. By comparing the scoring result of 26 compounds in patchouli oil with 5 compared components, we inferred antibacterial activity in about 26 compounds in patchouli oil. On the other hand, six frequently-used pathogenic bacteria were selected for antimicrobial test in vitro, patchouli oil and its two major compounds: (-)-patchouli alcohol and pogostone, which their contents exceeded 60% in patchouli oil samples, were selected antibacterial agents. Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) were also determined. Molecular docking technology and antimicrobial test in vitro proved that patchouli oil had strong antimicrobial effects. Particularly, pogostone and (-)-patchouli alcohol have potent antimicrobial activity. PMID:24250637

  7. Mechanism of antibacterial activity of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arijit Kumar; Chakraborty, Ruchira; Basu, Tarakdas

    2014-04-01

    In a previous communication, we reported a new method of synthesis of stable metallic copper nanoparticles (Cu-NPs), which had high potency for bacterial cell filamentation and cell killing. The present study deals with the mechanism of filament formation and antibacterial roles of Cu-NPs in E. coli cells. Our results demonstrate that NP-mediated dissipation of cell membrane potential was the probable reason for the formation of cell filaments. On the other hand, Cu-NPs were found to cause multiple toxic effects such as generation of reactive oxygen species, lipid peroxidation, protein oxidation and DNA degradation in E. coli cells. In vitro interaction between plasmid pUC19 DNA and Cu-NPs showed that the degradation of DNA was highly inhibited in the presence of the divalent metal ion chelator EDTA, which indicated a positive role of Cu2+ ions in the degradation process. Moreover, the fast destabilization, i.e. the reduction in size, of NPs in the presence of EDTA led us to propose that the nascent Cu ions liberated from the NP surface were responsible for higher reactivity of the Cu-NPs than the equivalent amount of its precursor CuCl2; the nascent ions were generated from the oxidation of metallic NPs when they were in the vicinity of agents, namely cells, biomolecules or medium components, to be reduced simultaneously.

  8. TOTAL PHENOLIC CONTENT, ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES OF THE EXTRACT OF EPHEDRA PROCERA FISCH. ET MEY.

    PubMed

    Dehkordi, Naser Vahed; Kachouie, Mehrdad Ataie; Pirbalouti, Abdollah Ghasemi; Malekpoor, Fatemeh; Rabei, Mohammad

    2015-01-01

    Ephedra prcera belonging to the family Ephedraceae is a poison and medicinal plant. The main aim of present study was to determine total phenolic content and antioxidant and antibacterial activities of ethanolic extract from the aerial parts of E. procera collected from a natural habitat in Chaharmahal va Bakhtiari province, Southwestern Iran. The total phenolic content of the extract by Folin-Ciocalteu method and the antioxidant activity using DPPH assay were determined. The antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of the extract were evaluated against five bacteria, including Proteus vulgaris, Pseudomonas aeruginosa, Enteobacter aeogenes, Bacillus ceirus and Staphylococcus aureus. Total phenolic content in the extract of E. procera was 0.718 mg tannic acid/g dry weight extract. The results indicated that the ethanolic extract of E. piocera exhibited radical scavenging activity. In addition, the results of this study confirmed that the ethanolic extract of E. procera exhibited antibacterial activity. In conclusion, the extract of E. piocera could be an important source of phenolic components with antioxidant capacity and antibacterial activity. PMID:26642685

  9. Antibacterial and antitumour activities of some plants grown in Turkey

    PubMed Central

    Usta, Canan; Yildirim, Arzu Birinci; Turker, Arzu Ucar

    2014-01-01

    Screening of antibacterial and antitumour activities of 33 different extracts prepared with three types of solvents (water, ethanol and methanol) was conducted. The extracts were obtained from 11 different plant species grown in Turkey: Eryngium campestre L., Alchemilla mollis (Buser) Rothm., Dorycnium pentaphyllum Scop., Coronilla varia L., Onobrychis oxyodonta Boiss., Fritillaria pontica Wahlenb., Asarum europaeum L., Rhinanthus angustifolius C. C. Gmelin, Doronicum orientale Hoffm., Campanula glomerata L. and Campanula olympica Boiss. Antibacterial activity against six bacteria was evaluated: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pyogenes, Staphylococcus aureus and Staphylococcus epidermidis by using disc diffusion and well diffusion methods. S. aureus and S. epidermidis were most sensitive to the methanolic extract from A. europaeum. S. pyogenes was vulnerable to all used extracts of D. orientale. In addition, ethanolic or methanolic extracts of E. campestre, A. mollis, D. pentaphyllum, C. varia, R. angustifolius, C. glomerata and C. olympica displayed strong antibacterial activity against at least one of the tested gram-negative bacteria. The methanolic extract from R. angustifolius showed a broad-spectrum activity against both gram-positive and gram-negative bacteria. Antitumour activity was evaluated with Agrobacterium-tumefaciens-induced potato disc tumour assay. Best antitumour activity was obtained with the aqueous extract from A. europaeum and methanolic extract from E. campestre (100% and 86% tumour inhibition, respectively). PMID:26740759

  10. Synthesis and antibacterial activity of sulfonamides. SAR and DFT studies

    NASA Astrophysics Data System (ADS)

    Boufas, Wahida; Dupont, Nathalie; Berredjem, Malika; Berrezag, Kamel; Becheker, Imène; Berredjem, Hajira; Aouf, Nour-Eddine

    2014-09-01

    A series of substituted sulfonamide derivatives were synthesized from chlorosulfonyl isocyanate (CSI) in tree steps (carbamoylation, sulfamoylation and deprotection). Antibacterial activity in vitro of some newly formed compounds investigated against clinical strains Gram-positive and Gram-negative: Escherichia coli and Staphylococcus aureus applying the method of dilution and minimal inhibition concentration (MIC) methods. These compounds have significant bacteriostatic activity with totalities of bacterial strains used. DFT calculations with B3LYP/6-31G(d) level have been used to analyze the electronic and geometric characteristics deduced for the stable structure of three compounds presenting conjugation between a nitrogen atom N through its lone pair and an aromatic ring next to it. The principal quantum chemical descriptors have been correlated with the antibacterial activity.

  11. Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles

    PubMed Central

    Seo, Youngmin; Hwang, Jangsun; Kim, Jieun; Jeong, Yoon; Hwang, Mintai P; Choi, Jonghoon

    2014-01-01

    Recently, various nanoscale materials, including silver (Ag) nanoparticles, have been actively studied for their capacity to effectively prevent bacterial growth. A critical challenge is to enhance the antibacterial properties of nanomaterials while maintaining their biocompatibility. The conjugation of multiple nanomaterials with different dimensions, such as spherical nanoparticles and high-aspect-ratio nanotubes, may increase the target-specific antibacterial capacity of the consequent nanostructure while retaining an optimal biocompatibility. In this study, multi-walled carbon nanotubes (MWCNTs) were treated with a mixture of acids and decorated with Ag nanoparticles via a chemical reduction of Ag cations by ethanol solution. The synthesized Ag-MWCNT complexes were characterized by transmission electron microscopy, X-ray diffractometry, and energy-dispersive X-ray spectroscopy. The antibacterial function of Ag-MWCNTs was evaluated against Methylobacterium spp. and Sphingomonas spp. In addition, the biocompatibility of Ag-MWCNTs was evaluated using both mouse liver hepatocytes (AML 12) and human peripheral blood mononuclear cells. Finally, we determined the minimum amount of Ag-MWCNTs required for a biocompatible yet effective antibacterial treatment modality. We report that 30 μg/mL of Ag-MWCNTs confers antibacterial functionality while maintaining minimal cytotoxicity toward both human and animal cells. The results reported herein would be beneficial for researchers interested in the efficient preparation of hybrid nanostructures and in determining the minimum amount of Ag-MWCNTs necessary to effectively hinder the growth of bacteria. PMID:25336943

  12. In vitro antibacterial activity of different pulp capping materials

    PubMed Central

    Beltrami, Riccardo; Colombo, Marco; Ceci, Matteo; Dagna, Alberto; Chiesa, Marco

    2015-01-01

    Background Direct pulp capping involves the application of a dental material to seal communications between the exposed pulp and the oral cavity (mechanical and carious pulp exposures) in an attempt to act as a barrier, protect the dental pulp complex and preserve its vitality. The aim of this study was to evaluate and compare, by the agar disc diffusion test, the antimicrobial activity of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), Biodentine (Septodont). Material and Methods Streptococcus salivarius, Streptococcus sanguis and Streptococcus mutans strains were selected to evaluate the antimicrobial activity by the agar disc diffusion test of different pulp capping materials. Paper disks were impregnated whit each pulp capping materials and placed onto culture agar-plates pre-adsorbed with bacterial cells and further incubated for 24 h at 37°C. The growth inhibition zones around each pulp capping materials were recorded and compared for each bacterial strain. Results For the investigation of the antibacterial properties the ANOVA showed the presence of significant differences among the various materials. Tukey test showed that MTA-based materials induced lower growth inhibition zones. Conclusions MTA-based products show a discrete antibacterial activity varying from calcium hydroxide-based materials which present an higher antibacterial activity. Key words:Agar disc diffusion test, antimicrobial activity, calcium hydroxide, MTA, pulp capping materials. PMID:26644833

  13. Antibacterial Activity of a Cardanol from Thai Apis mellifera Propolis

    PubMed Central

    Boonsai, Pattaraporn; Phuwapraisirisan, Preecha; Chanchao, Chanpen

    2014-01-01

    Background: Propolis is a sticky, dark brown resinous residue made by bees that is derived from plant resins. It is used to construct and repair the nest, and in addition possesses several diverse bioactivities. Here, propolis from Apis mellifera from Nan province, Thailand, was tested for antibacterial activity against Gram+ve (Staphylococcus aureus and Paenibacillus larvae) and Gram-ve (Escherichia coli) bacteria. Materials and methods: The three bacterial isolates were confirmed for species designation by Gram staining and analysis of the partial sequence of 16S rDNA. Propolis was sequentially extracted by methanol, dichloromethane and hexane. The antibacterial activity was determined by agar well diffusion and microbroth dilution assays using streptomycin as a positive control. The most active crude extract was further purified by quick column and adsorption chromatography. The apparent purity of each bioactive fraction was tested by thin layer chromatography. The chemical structure of the isolated bioactive compound was analyzed by nuclear magnetic resonance (NMR). Results: Crude methanol extract of propolis showed the best antibacterial activity with a minimum inhibition concentration (MIC) value of 5 mg/mL for S. aureus and E. coli and 6.25 mg/mL for P. larvae. After quick column chromatography, only three active fractions were inhibitory to the growth of S. aureus and E. coli with MIC values of 6.25 and 31.3 µg/mL, respectively. Further adsorption chromatography yielded one pure bioactive fraction (A1A) with an IC50 value of 0.175 µg/mL for E. coli and 0.683 µg/mL for P. larvae, and was determined to be cardanol by NMR analysis. Scanning and transmission electron microscopy analysis revealed unusual shaped (especially in dividing cells), damaged and dead cells in cardanol-treated E. coli. Conclusion: Thai propolis contains a promising antibacterial agent. PMID:24578609

  14. Antibacterial activity of different natural honeys from Transylvania, Romania.

    PubMed

    Vica, Mihaela Laura; Glevitzky, Mirel; Dumitrel, Gabriela-Alina; Junie, Lia Monica; Popa, Maria

    2014-01-01

    Honey is used in food industry and medicine due to its nutritive, therapeutic and dietetic qualities. The microbiological characteristics of 10 unpasteurized honey samples of known origin, collected from Transylvania beekeepers (Romania) were determined. The antibacterial activity of these types of honey against Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella enteritidis, Salmonella anatum, Salmonella choleraesuis, Bacillus cereus, Bacillus subtilis subsp. spizizenii and Listeria monocytogenes strains was studied. The most sensitive to the antibacterial activity were the two staphylococus strains (the largest diameter of inhibition zone was 18 mm) and B. subtilis strains (13.5 mm). The strains of B. cereus, E. coli, L. monocytogenes and Salmonella spp. were found to present resistance to some of the honey samples. Manna, sunflower and polyfloral honeys presented high antibacterial activity while acacia and linden honeys had a lower activity in terms of the number of sensible strains. Statistical analysis shows that the type of strains and the type of honey have influence on the diameter of inhibition. PMID:24380618

  15. Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts.

    PubMed

    Zampini, Iris C; Vattuone, Marta A; Isla, Maria I

    2005-12-01

    The present study was conducted to investigate antibacterial activity of Zuccagnia punctata ethanolic extract against 47 strains of antibiotic-resistant Gram-negative bacteria and to identify bioactive compounds. Inhibition of bacterial growth was investigated using agar diffusion, agar macrodilution, broth microdilution and bioautographic methods. Zuccagnia punctata extract was active against all assayed bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia) with minimal inhibitory concentration (MIC) values ranging from 25 to 200 microg/mL. Minimal bactericidal concentration (MBC) values were identical or two-fold higher than the corresponding MIC values. Contact bioautography, indicated that Zuccagnia punctata extracts possess one major antibacterial component against Pseudomonas aeruginosa and at least three components against. Klebsiella pneumoniae and Escherichia coli. Activity-guided fractionation of 1he ethanol extract on a silica gel column yielded a compound (2',4'-dihydroxychalcone), which exhibited strong antibacterial activity with MIC values between 0.10 and 1.00 microg/mL for Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia. These values are lower than imipenem (0.25-16 microg/mL). Zuccagnia punctata might provide promising therapeutic agents against infections with multi-resistant Gram-negative bacteria. PMID:16137849

  16. Prediction of Antibacterial Activity from Physicochemical Properties of Antimicrobial Peptides

    PubMed Central

    Melo, Manuel N.; Ferre, Rafael; Feliu, Lídia; Bardají, Eduard; Planas, Marta; Castanho, Miguel A. R. B.

    2011-01-01

    Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations. PMID:22194847

  17. Antibacterial activity of Citrus limonum fruit juice extract.

    PubMed

    Okeke, Malachy Ifeanyi; Okoli, Arinze Stanley; Eze, Edith Nneka; Ekwume, Grace Chinwe; Okosa, Evangelin Uchena; Iroegbu, Christian Ukwuoma

    2015-09-01

    The fruit juice extract of Citrus limonum was investigated for antibacterial activity. The antibacterial activity of the extract on ten strains of bacteria was determined by both agar well diffusion and macro-broth dilution methods. The extract was variously bacteriostatic and bactericidal against Bacillussubtilis ATCC 6051, Staphylococcus aureus ATCC 12600, Escherichia coli ATCC 11775, Pseudomonas aeruginosa ATCC 10145 as well as locally isolated clinical strains of the above bacteria and Salmonella kintambo (Human: 13, 23: mt:-), Salmonella typhi and Proteus sp. The MICs ranged from 0.78 mg/ml to 50mg/ml; MBCs, 25.0mg/ml to >100mg/ml and MBC/MIC ratios 2.0 to >16.0. These results provide scientific justification for the medicinal use of Citrus limonum fruit juice by Nigerian herbalists in the treatment of diseases in which strains of the test organisms have been implicated as etiologic agents. PMID:26408878

  18. Synergistic effect of starch on the antibacterial activity of honey.

    PubMed

    Boukraâ, Laïd; Amara, Karim

    2008-03-01

    The role of amylase present in honey in enhancing its antibacterial activity was evaluated in the presence and absence of starch. Two strains of pathogenic bacteria have been used: Staphylococcus aureus and Escherichia coli. For S. aureus, the minimum inhibitory concentration (MIC) for the three varieties of honey tested without starch was 11%, 24%, and 29% (vol/vol), respectively. When starch was added with honey to the media the MIC obtained was 5%, 19%, and 25% (vol/vol), respectively. For E. coli, the MIC for the three varieties without starch was 23%, 28%, and 25% (vol/vol), respectively. When starch was added with honey to media, the MIC was 19%, 26%, and 23% (vol/vol), respectively. It is speculated that the amylase present in honey hydrolyzed the starch chains to randomly produce dextrin and maltose and that this increased the osmotic effect of the media, which consequently increased the antibacterial activity. PMID:18361758

  19. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens

    PubMed Central

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP–GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core–shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP–GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP–GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP–GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP–GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP–GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP–GA has potential for further application in biomedical sciences. PMID:27555764

  20. In Vitro Study to Evaluate Antibacterial and Non-haemolytic Activities of Four Iranian Medicinal Plants

    PubMed Central

    Sepahi, S; Ghorani-Azam, A; Sepahi, S; Asoodeh, A; Rostami, S

    2014-01-01

    Objective: Aqueous extracts of four medicinal plants including Ferula gummosa, Echinophora orientalis, Nasturtium microphyllum and Verbascum thapsus were used to determine their antibacterial activities and minimum inhibitory concentration (MIC). The aim of this study was to assess antibacterial activity of extracts of four medicinal plants against a Gram-positive and a Gram-negative bacteria (Staphylococcus aureus PTCC1431, and Escherichia coli HP101BA 7601c). Methods: Radial diffusion assay was used to assess the antibacterial activity of extracted samples. Haemolysis assay was also used to examine their nontoxic effects on human red blood cells. Results: This study showed that all the mentioned plants have satisfactory antibacterial effects against both Gram-positive and Gram-negative bacteria. Minimum inhibitory concentration values of these samples were less than 750 μg/mL. In addition, no significant haemolytic activity was observed at their MIC values. Conclusion: The results of this study showed that all these studied plants have good potential for further studies for drug discovery. PMID:25429470

  1. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens.

    PubMed

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP-GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core-shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP-GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP-GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP-GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP-GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP-GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP-GA has potential for further application in biomedical sciences. PMID:27555764

  2. Screening for fractions of Oxytropis falcata Bunge with antibacterial activity.

    PubMed

    Jiang, H; Hu, J R; Zhan, W Q; Liu, X

    2009-01-01

    Preliminary studies with the four extracts of Oxytropis falcate Bunge exhibited that the chloroform and ethyl acetate extracts showed stronger antibacterial activities against the nine tested Gram-positive and Gram-negative bacteria. The HPLC-scanned and bioassay-guided fractionation led to the isolation and identification of the main flavonoid compounds, i.e. rhamnocitrin, kaempferol, rhamnetin, 2',4'-dihydroxychalcone and 2',4',beta-trihydroxy-dihydrochalcon. Except 2',4',beta-trihydroxy-dihydrochalcon, four other compounds had good antibacterial activities. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of the four compounds ranged between 125 and 515 microg mL(-1). Staphylococcus aureus was the most susceptible to these compounds, with MIC and MBC values from 125 to 130 microg mL(-1). This is the first report of antibacterial activity in O. falcate Bunge. In this study, evidence to evaluate the biological functions of O. falcate Bunge is provided, which promote the rational use of this herb. PMID:19521909

  3. Osteogenic activity and antibacterial effect of zinc ion implanted titanium.

    PubMed

    Jin, Guodong; Cao, Huiliang; Qiao, Yuqin; Meng, Fanhao; Zhu, Hongqin; Liu, Xuanyong

    2014-05-01

    Titanium (Ti) and its alloys are widely used as orthopedic and dental implants. In this work, zinc (Zn) was implanted into oxalic acid etched titanium using plasma immersion ion implantation technology. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to investigate the surface morphology and composition of Zn-implanted titanium. The results indicate that the depth profile of zinc in Zn-implanted titanium resembles a Gaussian distribution, and zinc exists in the form of ZnO at the surface whereas in the form of metallic Zn in the interior. The Zn-implanted titanium can significantly stimulate proliferation of osteoblastic MC3T3-E1 cells as well as initial adhesion, spreading activity, ALP activity, collagen secretion and extracellular matrix mineralization of the rat mesenchymal stem cells. The Zn-implanted titanium presents partly antibacterial effect on both Escherichia coli and Staphylococcus aureus. The ability of the Zn-implanted titanium to stimulate cell adhesion, proliferation and differentiation as well as the antibacterial effect on E. coli can be improved by increasing implantation time even to 2 h in this work, indicating that the content of zinc implanted in titanium can easily be controlled within the safe concentration using plasma immersion ion implantation technology. The Zn-implanted titanium with excellent osteogenic activity and partly antibacterial effect can serve as useful candidates for orthopedic and dental implants. PMID:24632388

  4. Antibacterial Activity of Copaiba Oil Gel on Dental Biofilm

    PubMed Central

    Simões, Cláudia A.C.G.; Conde, Nikeila C. de Oliveira; Venâncio, Gisely N.; Milério, Patrícia S.L.L.; Bandeira, Maria F.C.L.; da Veiga Júnior, Valdir F.

    2016-01-01

    Amazonian biodiversity products that have been used for years in folk medicine, have emerged as feasible and promising alternatives for the inhibition of microorganisms in dental biofilm. Copaiba oil, a phytotherapic agent widely used by the Amazonian populations, is known for its antibacterial, anti-inflammatory, anesthetic, healing and antitumor medicinal properties. Objective: The aim of this study was to evaluate the in vitro antibacterial activity of copaiba oil (Copaifera multijuga) gel against strains of Streptococcus sp present in dental biofilm. Materials and Methods: The copaiba oil was obtained and the chemical components were identified. The oil emulsions were formulated and used with the Brain Heart Infusion agar diffusion method with strains of Streptococcus mitis, Streptococcus constellatus and Streptococcus salivarius isolated from patients as well as standard strains of S. mitis (ATCC903), S. mutans (ATCC10449), S. sanguinis (ATCC15300) and S. oralis (ATCC10557). The study groups were as follows: experimental copaiba oil gel, 1% chlorhexidine gel (positive control) and base gel (negative control). The seeded plates were incubated at 37ºC for 12, 24 and 48 hours, respectively. The results obtained were analyzed by Shapiro-Wilk and Friedman Tests (p<0.05) for non parametric data and the Tukey test was used for pH values with 5% level of significance. Results: The experimental copaiba oil gel and 1% chlorhexidine gel showed antibacterial activity against the tested microorganisms. Conclusion: The copaiba oil gel demonstrated antibacterial activity against all the strains of Streptococcus sp tested, suggesting that it can be used for dental biofilm control. PMID:27386004

  5. A highly acid-resistant novel strain of Lactobacillus johnsonii No. 1088 has antibacterial activity, including that against Helicobacter pylori, and inhibits gastrin-mediated acid production in mice

    PubMed Central

    Aiba, Yuji; Nakano, Yasuhiro; Koga, Yasuhiro; Takahashi, Kenji; Komatsu, Yasuhiko

    2015-01-01

    A novel strain of Lactobacillus johnsonii No. 1088 was isolated from the gastric juice of a healthy Japanese male volunteer, and characterized for its effectiveness in the stomach environment. Lactobacillus johnsonii No. 1088 was found to have the strongest acid resistance among several lactobacilli examined (>10% of cells survived at pH 1.0 after 2 h), and such a high acid resistance property was a specific characteristic of this strain of L. johnsonii. When cultured with various virulent bacteria, L. johnsonii No. 1088 inhibited the growth of Helicobacter pylori,Escherichia coli O-157, Salmonella Typhimurium, and Clostridium difficile, in which case its effectiveness was more potent than that of a type strain of L. johnsonii,JCM2012. In addition to its effect in vitro, L. johnsonii No. 1088 inhibited the growth of H. pylori in human intestinal microbiota-associated mice in both its live and lyophilized forms. Moreover, L. johnsonii No. 1088 suppressed gastric acid secretion in mice via decreasing the number of gastrin-positive cells in the stomach. These results taken together suggest that L. johnsonii No. 1088 is a unique lactobacillus having properties beneficial for supporting H. pylori eradication by triple therapy including the use of a proton pump inhibitor (PPI) and also for prophylaxis of gastroesophageal reflux disease possibly caused after H. pylori eradication as a side effect of PPI. PMID:25771812

  6. Contact-active antibacterial aerogels from cellulose nanofibrils.

    PubMed

    Henschen, Jonatan; Illergård, Josefin; Larsson, Per A; Ek, Monica; Wågberg, Lars

    2016-10-01

    The use of cellulose aerogels as antibacterial materials has been investigated by applying a contact-active layer-by-layer modification to the aerogel surface. Studying the adsorption of multilayers of polyvinylamine (PVAm) and polyacrylic acid to aerogels comprising crosslinked cellulose nanofibrils and monitoring the subsequent bacterial adhesion revealed that up to 26mgPVAmgaerogel(-1) was adsorbed without noticeably affecting the aerogel structure. The antibacterial effect was tested by measuring the reduction of viable bacteria in solution when the aerogels were present. The results show that >99.9% of the bacteria adhered to the surface of the aerogels. Microscopy further showed adherence of bacteria to the surfaces of the modified aerogels. These results indicate that it is possible to create materials with three-dimensional cellulose structures that adsorb bacteria with very high efficiency utilizing the high specific surface area of the aerogels in combination with their open structure. PMID:27391038

  7. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    NASA Astrophysics Data System (ADS)

    Kvitek, L.; Panacek, A.; Prucek, R.; Soukupova, J.; Vanickova, M.; Kolar, M.; Zboril, R.

    2011-07-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  8. Antibacterial activity of papain and bromelain on Alicyclobacillus spp.

    PubMed

    dos Anjos, Márcia Maria; da Silva, Angela Aparecida; de Pascoli, Isabela Carolini; Mikcha, Jane Martha Graton; Machinski, Miguel; Peralta, Rosane Marina; de Abreu Filho, Benício Alves

    2016-01-01

    Alicyclobacillus spp. are spore forming bacteria that are often related to the deterioration of acidic products such as beverages and citrus juices. After the process of industrial pasteurization, the spore produced by the bacteria can germinate and the microorganism can grow, causing sensory abnormalities in the product. Alternative biopreservatives, such as the antimicrobial compounds, are of considerable importance to the food industry. Papain and bromelain are proteolytic enzymes derived frompapaya and pineapple, respectively. These enzymes are widely used in medicine and in the pharmaceutical and food industries, but while some studies have described their antibacterial action, no studies of the Alicyclobacillus spp. exist. The aimof this studywas to analyze the antibacterial effect of papain and bromelain on Alicyclobacillus spp. through 1) determining minimum inhibitory and bactericidal concentration (MIC and MBC); 2) determining the death time curve of the micro-organism in the presence and absence of enzymes; and 3) investigating the enzymatic mechanism on the microorganism. The antibacterial activity of enzymes in combination with nisin was also evaluated. The results showed that for the Alicyclobacillus acidoterrestris strain, the MIC of papain was 0.98 μg/mL and the MBC was 3.91 μg/mL, while theMIC of bromelain was 62.5 μg/mL and the MBCwas 250 μg/mL. The concentration of 4 ×MIC for both the enzymes was sufficient to eliminate 4 logs of the micro-organism after 24 h of incubation. Through the use of enzyme inhibitors specific for cysteine proteases, it was found that the antibacterial activity of papain and bromelain is not related to its proteolytic activity, butmay be related to other activities, such as amidse and esterase. The synergistic activity of the enzymes revealed a fractional inhibitory concentration (FIC) level of 0.16. Combination with nisin revealed an FIC of 0.25 for papain and 0.19 for bromelain, indicating synergism between both

  9. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. PMID:24433897

  10. Influence of surface modifications to titanium on antibacterial activity in vitro.

    PubMed

    Yoshinari, M; Oda, Y; Kato, T; Okuda, K

    2001-07-01

    The antibacterial effect of surface modifications to titanium on Porphyromonas gingivalis ATCC 33277 and Actinobacillus actinomycetemcomitans ATCC 43718 was evaluated. Surface modifications were performed with dry processes including ion implantation (Ca+, N+, F+), oxidation (anode oxidation, titania spraying), ion plating (TiN, alumina), and ion beam mixing (Ag, Sn, Zn, Pt) with Ar+ on polished pure titanium plates. F+-implanted specimens significantly inhibited the growth of both P. gingivalis and A. actinomycetemcomitans than the polished titanium. The other surface-modified specimens did not exhibit effective antibacterial activity against both bacteria. No release of the fluorine ion was detected from F-implanted specimens under dissolution testing. This result and the characterization of the F+-implanted surfaces suggested that the possible antibacterial mechanism of the F+-implanted specimen was caused by the formation of a metal fluoride complex on the surfaces. In addition, F+-implanted surfaces did not inhibit the proliferation of fibroblast L929-cells. These findings indicate that surface modification by means of a dry process is useful in providing antibacterial activity of oral bacteria to titanium implants exposed to the oral cavity. PMID:11426884

  11. Antibacterial activity of some Artemisia species extract.

    PubMed

    Poiată, Antonia; Tuchiluş, Cristina; Ivănescu, Bianca; Ionescu, A; Lazăr, M I

    2009-01-01

    The antimicrobial activities of ethanol, methanol and hexane extracts from Artemisia absinthium, Artemisia annua and Artemisia vulgaris were studied. Plant extracts were tested against five Gram-positive bacteria, two Gram-negative bacteria and one fungal strain. The results indicated that Artemisia annua alcoholic extracts are more effective against tested microorganisms. However, all plants extracts have moderate or no activity against Gram-negative bacteria. The obtained results confirm the justification of extracts of Artemisia species use in traditional medicine as treatment for microbial infections. PMID:20191854

  12. The characterization of the antibacterial efficacy of an electrically activated silver ion-based surface system

    NASA Astrophysics Data System (ADS)

    Shirwaiker, Rohan A.

    There have been growing concerns in the global healthcare system about the eradication of pathogens in hospitals and other health-critical environments. The problem has been aggravated by the overuse of antibiotics and antimicrobial agents leading to the emergence of antibiotic-resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) which are difficult to kill. Lower immunity of sick patients coupled with the escalating concurrent problem of antibiotic-resistant pathogens has resulted in increasing incidences of hospital acquired (nosocomial) infections. There is an immediate need to control the transmission of such infections, primarily in healthcare environments, by creating touch-contact and work surfaces (e.g., door knobs, push plates, countertops) that utilize alternative antibacterial materials like the heavy metal, silver. Recent research has shown that it is silver in its ionic (Ag+ ) and not elemental form that is antibacterial. Thus, silver-based antibacterial surfaces have to release silver ions directly into the pathogenic environment (generally, an aqueous media) in order to be effective. This dissertation presents the study and analysis of a new silver-based surface system that utilizes low intensity direct electric current (LIDC) for generation of silver ions to primarily inhibit indirect contact transmission of infections. The broader objective of this research is to understand the design, and characterization of the electrically activated silver ion-based antibacterial surface system. The specific objectives of this dissertation include: (1) Developing a comprehensive system design, and identifying and studying its critical design parameters and functional mechanisms. (2) Evaluating effects of the critical design parameters on the antibacterial efficacy of the proposed surface system. (3) Developing a response surface model for the surface system performance. These objectives are

  13. [Antibacterial activity and beta-lactamase stability of eleven oral cephalosporins].

    PubMed

    Bauernfeind, A; Jungwirth, R; Schweighart, S; Theopold, M

    1990-01-01

    Oral cephalosporins (cefixime, cefdinir, cefetamet, ceftibuten, cefpodoxime, loracarbef, cefprozil, cefuroxime, cefaclor, cefadroxil and BAY 3522) were compared by their antibacterial profile including stability against new beta-lactamases. Both activity and antibacterial spectrum of compounds structurally related to third generation parenteral cephalosporins (of the oximino class) were superior to established compounds. Activity against staphylococci was found to be highest for cefdinir, cefprozil and BAY 3522. Cefetamet, ceftibuten and cefixime demonstrate no clinically meaningful antistaphylococcal activity while the other compounds investigated demonstrate intermediate activity. The antibacterial spectrum was broadest for cefdinir and cefpodoxime. New oral cephalosporins are equally inactive as established compounds against Enterobacter spp., Morganella, Listeria, Pseudomonas and Acinetobacter spp., methicillin-resistant staphylococci, Enterococcus spp., penicillin-resistant pneumococci and anaerobes. New extended broad-spectrum betalactamases (TEM-3, TEM-5, TEM-6, TEM-7, SHV-2, SHV-3, SHV-4, SHV-5, CMY-1, CMY-2, and CTX-M) are active against the majority of oral cephalosporins. Ceftibuten, cefetamet, cefixime and cefdinir were stable against some of these enzymes even to a higher extent than parenteral cephalosporins. New oral cephalosporins should improve the therapeutic perspectives of oral cephalosporins due to their higher activity against pathogens marginally susceptible to established compounds (higher multiplicity of maximum plasma concentrations over MICs of the pathogens) and furthermore by including in their spectrum organisms resistant to established absorbable cephalosporins (e.g. Proteus spp., Providencia spp., Citrobacter spp., and Serratia spp.). PMID:2079378

  14. Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains

    PubMed Central

    2013-01-01

    Background The emergence of multidrug-resistant bacteria is a world health problem. Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) strains, is one of the most important human pathogens associated with hospital and community-acquired infections. The aim of this work was to evaluate the antibacterial activity of a Pseudomonas aeruginosa-derived compound against MRSA strains. Methods Thirty clinical MRSA strains were isolated, and three standard MRSA strains were evaluated. The extracellular compounds were purified by vacuum liquid chromatography. Evaluation of antibacterial activity was performed by agar diffusion technique, determination of the minimal inhibitory concentration, curve of growth and viability and scanning electron microscopy. Interaction of an extracellular compound with silver nanoparticle was studied to evaluate antibacterial effect. Results The F3 (ethyl acetate) and F3d (dichloromethane- ethyl acetate) fractions demonstrated antibacterial activity against the MRSA strains. Phenazine-1-carboxamide was identified and purified from the F3d fraction and demonstrated slight antibacterial activity against MRSA, and synergic effect when combined with silver nanoparticles produced by Fusarium oxysporum. Organohalogen compound was purified from this fraction showing high antibacterial effect. Using scanning electron microscopy, we show that the F3d fraction caused morphological changes to the cell wall of the MRSA strains. Conclusions These results suggest that P. aeruginosa-produced compounds such as phenazines have inhibitory effects against MRSA and may be a good alternative treatment to control infections caused by MRSA. PMID:23773484

  15. Surfaces of Fluorinated Pyridinium Block Copolymers with Enhanced Antibacterial Activity

    SciTech Connect

    Krishnan,S.; Ward, R.; Hexemer, A.; Sohn, K.; Lee, K.; Angert, E.; Fischer, D.; Kramer, E.; Ober, C.

    2006-01-01

    Polystyrene-b-poly(4-vinylpyridine) copolymers were quaternized with 1-bromohexane and 6-perfluorooctyl-1-bromohexane. Surfaces prepared from these polymers were characterized by contact angle measurements, near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy. The fluorinated pyridinium surfaces showed enhanced antibacterial activity compared to their nonfluorinated counterparts. Even a polymer with a relatively low molecular weight pyridinium block showed high antimicrobial activity. The bactericidal effect was found to be related to the molecular composition and organization in the top 2-3 nm of the surface and increased with increasing hydrophilicity and pyridinium concentration of the surface.

  16. [Antibacterial activity of pure cultures of cyanobacteria and algae].

    PubMed

    Gol'din, E B

    2003-01-01

    Pure cultures of Microcystis aeruginosa, Platymonas viridis and Nephrochloris salina have been grown on the media with different nitrogen and phosphorus content. Their supernatants and pellets, as well as lipid complex, terpene fraction and some its components from M. aeruginosa had selective antibacterial characteristics. The increase of nitrogen content in the medium correlated with the intensification (M. aeruginosa, N. salina) or conservation (P. viridis) of bactericidal activity. The pellet fraction was more active than supernatant (P. viridis) one. The specific cyanobacterial and microalgal inhibitory effect is supposed with respect to the organisms of different evolutionary level. PMID:14618789

  17. Antibacterial Activity of Barringtonia acutangula against Selected Urinary Tract Pathogens.

    PubMed

    Sahoo, S; Panda, P K; Mishra, S R; Parida, R K; Ellaiah, P; Dash, S K

    2008-09-01

    Barringtonia acutangula (L.) Gaertn belonging to family Barringtoniaceae was investigated to evaluate In vitro antibacterial activity of aqueous, ethanolic, petroleum ether and chloroform extracts against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterococcus faecalis and Escherichia coli the major urinary tract infection causing pathogens were tested by disc diffusion assay method and the minimum inhibitory concentration was evaluated. Ethanol (95%) extract exhibited broader spectrum of inhibition followed by chloroform, petroleum ether and aqueous extracts against the urinary tract pathogens under test. An attempt has been made to compare the activity of extracts with standard antibiotics against selected urinary tract infection causing pathogens. PMID:21394275

  18. Antibacterial Activity of Barringtonia acutangula against Selected Urinary Tract Pathogens

    PubMed Central

    Sahoo, S.; Panda, P. K.; Mishra, S. R.; Parida, R. K.; Ellaiah, P.; Dash, S. K.

    2008-01-01

    Barringtonia acutangula (L.) Gaertn belonging to family Barringtoniaceae was investigated to evaluate In vitro antibacterial activity of aqueous, ethanolic, petroleum ether and chloroform extracts against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterococcus faecalis and Escherichia coli the major urinary tract infection causing pathogens were tested by disc diffusion assay method and the minimum inhibitory concentration was evaluated. Ethanol (95%) extract exhibited broader spectrum of inhibition followed by chloroform, petroleum ether and aqueous extracts against the urinary tract pathogens under test. An attempt has been made to compare the activity of extracts with standard antibiotics against selected urinary tract infection causing pathogens. PMID:21394275

  19. Synthesis and antibacterial activity of pyridinium-tailored aromatic amphiphiles.

    PubMed

    Wang, Peiyi; Gao, Manni; Zhou, Lei; Wu, Zhibing; Hu, Deyu; Hu, Jun; Yang, Song

    2016-02-15

    In this Letter, the antibacterial activities of pyridinium-tailored aromatic amphiphiles were evaluated by turbidimeter tests in vitro. The bioassays revealed that most of the target compounds exhibit appreciable inhibition activities against the plant pathogenic bacteria Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Xanthomonas axonopodis pv. citri. The half-maximal effective concentrations (EC50) of 2-NP-10, 9-AP-10, and 9-AP-7 against these three bacteria were relatively high, which may be ascribed to the favourable hydrophobicity/hydrophilicity balance in these compounds. Our results suggest that pyridinium-tailored aromatic amphiphiles are promising bactericide candidates against plant bacterial diseases. PMID:26832217

  20. Effect of various capping agents on photocatalytic, antibacterial and antibiofilm activities of ZnO nanoparticles.

    PubMed

    Akhil, K; Jayakumar, J; Gayathri, G; Khan, S Sudheer

    2016-07-01

    Zinc oxide nanoparticles (ZnO NPs) are extensively used in a wide variety of commercial products including sunscreens, textiles and paints It is a known fact that ZnO NPs are not stable when dispersed in water, therefore manufacturers use several surface modifying agents to increase the stability of ZnO NPs. In the present study, ZnO NPs were synthesized via chemical co-precipitation with and without the use of surface modifying agents including ethylene glycol (EG), gelatin, polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). Preliminary characterization was done by UV-Visible spectroscopy. Electron microscopic analysis showed that the particles were hexagonal in shape. The hydrodynamic size distribution was analyzed by using dynamic light scattering method and crystalline nature was determined by X-ray diffraction method. The study evaluated the photocatalytic, antibacterial and antibiofilm activities of the particles with and without the addition of surface modifying agents. The capping of the particle was confirmed by FT-IR spectroscopy. The photocatalytic activity was checked against methylene blue. Capping of the particles reduced the photocatalytic activity of the particles. The antibacterial and antibiofilm activities were checked against Staphylococcus aureus (MTCC 3160) and Pseudomonas aeruginosa (MTCC 1688). Antibacterial activity was analyzed by simple plate count method both under dark as well as light condition. Antibiofilm activity was checked in both pre- and post-biofilm formation period under both dark as well as light condition. The activity was evaluated via crystal violet staining method. All the particles showed good antibacterial and antibiofilm activities. PMID:27088507

  1. Mycosynthesis of silver nanoparticles bearing antibacterial activity.

    PubMed

    Azmath, Pasha; Baker, Syed; Rakshith, Devaraju; Satish, Sreedharamurthy

    2016-03-01

    Mycosynthesis of silver nanoparticles was achieved by endophytic Colletotrichum sp. ALF2-6 inhabiting Andrographis paniculata. Well dispersed nanoparticles were characterized using UV-Visible spectrometry with maximum absorption conferring at 420 nm. FTIR analysis revealed possible biomolecules reducing the metal salt and stabilization of nanoparticles. XRD analysis depicted the diffraction intensities exhibiting between 20 and 80 °C at 2theta angle thus conferring the crystalline nature of nanoparticles. Morphological characteristic using TEM revealed the polydispersity of nanoparticles with size ranging from 20 to 50 nm. Synthesized nanoparticles exhibited bactericidal activity against selected human pathogens. Nanoparticles mode of action was carried out to reveal DNA damage activity. Thus the present investigation reports facile fabrication of silver nanoparticles from endophytic fungi. PMID:27013906

  2. Mycosynthesis of silver nanoparticles bearing antibacterial activity

    PubMed Central

    Azmath, Pasha; Baker, Syed; Rakshith, Devaraju; Satish, Sreedharamurthy

    2015-01-01

    Mycosynthesis of silver nanoparticles was achieved by endophytic Colletotrichum sp. ALF2-6 inhabiting Andrographis paniculata. Well dispersed nanoparticles were characterized using UV–Visible spectrometry with maximum absorption conferring at 420 nm. FTIR analysis revealed possible biomolecules reducing the metal salt and stabilization of nanoparticles. XRD analysis depicted the diffraction intensities exhibiting between 20 and 80 °C at 2theta angle thus conferring the crystalline nature of nanoparticles. Morphological characteristic using TEM revealed the polydispersity of nanoparticles with size ranging from 20 to 50 nm. Synthesized nanoparticles exhibited bactericidal activity against selected human pathogens. Nanoparticles mode of action was carried out to reveal DNA damage activity. Thus the present investigation reports facile fabrication of silver nanoparticles from endophytic fungi. PMID:27013906

  3. Antibacterial, Antifungal and antioxidant activities of some medicinal plants.

    PubMed

    Wazir, Asma; Mehjabeen, -; Jahan, Noor; Sherwani, Sikander Khan; Ahmad, Mansoor

    2014-11-01

    The purpose of this study was to evaluate the antibacterial, antifungal and antioxidant activities of medicinal plants. The antibacterial activity of methanolic extracts of three medicinal plants (Swertia chirata, Terminalia bellerica and Zanthoxylum armatum) were tested against Gentamicin (standard drug) on eleven gram positive and seventeen gram negative bacteria by agar well method. It was revealed that seven-gram negative and six gram positive bacterial species were inhibited by these plant extracts. Minimum inhibitory concentrations (MIC) of the extracts were determined by broth micro-dilution method. The significant MIC value of Swertia chirata was 20mg/ml against Serratia marcesens, Zanthoxylum armatum was 10 mg/ml against Aeromonas hydrophila and Terminali bellerica was 20mg/ml against Acinetobacter baumanii as well as Serratia marcesens. Antifungal screening was done for methanolic extracts of these plants by agar well method with the 6 saprophytic, 5 dermatophytic and 6 yeasts. In this case Griseofulvin was used as a standard. All saprophytes and dermatophytes were showed resistance by these plants extracts except Microsporum canis, which was inhibited by Z. armatum and S. chirata extracts. The significant MIC value of Zanthoxylum armatum was 10mg/ml against Microsporum canis and Swertia chirata was 10mg/ml against Candida tropicalis. The anti-oxidant study was performed by DPPH free radical scavenging assay using ascorbic acid as a reference standard. Significant antioxidant activities were observed by Swertia chirata and Zanthoxylum armatum at concentration 200μg/ml was 70% DPPH scavenging activity (EC50=937.5μg/ml) while Terminalia bellerica showed 55.6% DPPH scavenging activity (EC50=100μg/ml). This study has shown that these plants could provide potent antibacterial compounds and may possible preventive agents in ROS related ailments. PMID:26045377

  4. Synthesis and antibacterial activity of nisin-containing block copolymers.

    PubMed

    Joshi, Pranav R; McGuire, Joseph; Neff, Jennifer A

    2009-10-01

    Nisin, an antibacterial peptide proven to be an effective inhibitor of Gram-positive bacteria, was incorporated into novel block copolymer constructs and tested for retained antibacterial activity. Covalent coupling was achieved by chemical modification of the N-terminal isoleucine to introduce a thiol group. Thiolated-nisin derivatives were then linked to poly[ethylene oxide]-poly[propylene oxide]-poly[ethylene oxide] (PEO-PPO-PEO) triblocks that had been end-activated such that terminal hydroxyl groups of the PEO chains were replaced with pyridyl disulfide moieties. The nisin-containing block copolymers were separated from free nisin by dialysis and showed antimicrobial activity against the Gram-positive indicator strain Pediococcus pentosaceus. The contribution to antimicrobial activity from nisin that was covalently linked was not distinguished from the contribution of nisin that had associated with the PEO-PPO-PEO triblocks through noncovalent interactions. However, nisin that was covalently linked showed activity upon reduction of the disulfide bond and release from the end-activated PEO. PMID:19358262

  5. Antibacterial activity of soil-bound antibiotics.

    PubMed

    Chander, Yogesh; Kumar, Kuldip; Goyal, Sagar M; Gupta, Satish C

    2005-01-01

    There is some concern that antibiotic residues in land-applied manure may promote the emergence of antibiotic resistant bacteria in the environment. The goal of this study was to determine whether or not soil bound antibiotics are still active against bacteria. The procedure involved sorbing various amounts of tetracycline or tylosin on two different textured soils (Webster clay loam [fine-loamy, mixed, superactive, mesic Typic Endoaquolls] and Hubbard loamy sand [sandy, mixed, frigid Entic Hapludolls]), incubating these soils with three different bacterial cultures (an antibiotic resistant strain of Salmonella sp. [Salmonella(R)], an antibiotic sensitive strain of Salmonella sp. [Salmonella(S)], and Escherichia coli ATCC 25922), and then enumerating the number of colony forming units relative to the control. Incubation was done under both static and dynamic conditions. Soil-adsorbed antibiotics were found to retain their antimicrobial properties since both antibiotics inhibited the growth of all three bacterial species. Averaged over all other factors, soil adsorbed antimicrobial activity was higher for Hubbard loamy sand than Webster clay loam, most likely due to higher affinity (higher clay content) of the Webster soil for antibiotics. Similarly, there was a greater decline in bacterial growth with tetracycline than tylsoin, likely due to greater amounts of soil-adsorbed tetracycline and also due to lower minimum inhibitory concentration of most bacteria for tetracycline than tylosin. The antimicrobial effect of tetracycline was also greater under dynamic than static growth conditions, possibly because agitation under dynamic growth conditions helped increase tetracycline desorption and/or increase contact between soil adsorbed tetracycline and bacteria. We conclude that even though antibiotics are tightly adsorbed by clay particles, they are still biologically active and may influence the selection of antibiotic resistant bacteria in the terrestrial environment

  6. Antibacterial activity of ordered gold nanorod arrays.

    PubMed

    Zhu, Yuejing; Ramasamy, Mohankandhasamy; Yi, Dong Kee

    2014-09-10

    Well-packed two- and three-dimensional (2D and 3D) gold nanorod (AuNR) arrays were fabricated using confined convective arraying techniques. The array density could be controlled by changing the concentration of the gold nanorods solution, the velocity of the moving substrate, and the environment air-temperature. The hydrophilic behavior of glass substrates before and after surface modification was studied through contact angle measurements. The affinity and alignment of the AuNR arrays with varying nanorod concentrations and the resulting different array densities were studied using field emission scanning electron microscopy (FE-SEM). Under stable laser intensity irradiation, the photothermal response of the prepared arrays was measured using a thermocouple and the results were analyzed quantitatively. Synthesized AuNR arrays were added to Escherichia coli (E. coli) suspensions and evaluated for photothermal bactericidal activity before and after laser irradiation. The results showed promising bactericidal effect. The severity of pathogen destruction was measured and quantified using fluorescence microscopy, bioatomic force microscopy (Bio-AFM) and flow cytometry techniques. These results indicated that the fabricated AuNR arrays at higher concentrations were highly capable of complete bacterial destruction by photothermal effect compared to the low concentration AuNR arrays. Subsequent laser irradiation of the AuNR arrays resulted in rapid photoheating with remarkable bactericidal activity, which could be used for water treatment to produce microbe-free water. PMID:25148531

  7. Antibacterial and Anti-inflammatory Activities of Ppc-1, Active Principle of the Cellular Slime Mold Polysphondylium pseudo-candidum.

    PubMed

    Azelmat, Jabrane; Fiorito, Serena; Genovese, Salvatore; Epifano, Francesco; Grenier, Daniel

    2015-01-01

    The diisopentenyloxy quinolobactin derivative 3-methylbut-2-enyl-4-methoxy-8-[(3-methylbut-2-enyl)oxy] quinoline-2-carboxylate, also named as Ppc-1, has been initially isolated from the fruiting bodies of the cellular slime mold Polysphondylium pseudo-candidum. Given that few data are available in the literature concerning the biological properties of this compound, this study was undertaken to evaluate its antibacterial and anti-inflammatory properties. Ppc-1 exerted antibacterial activity on the Gram negative periodontopathogen Porphyromonas gingivalis, while it had no such effect on the other bacterial species tested. The antibacterial activity of Ppc-1 appeared to result from its ability to permeate the cell membrane. Using the U937-3xκB-LUC human monocytic cell line, Ppc-1 was found to dose-dependently inhibit the lipopolysaccharide-induced NF-κB activation, a signaling pathway that has been associated with inflammatory mediator secretion. In conclusion, Ppc-1, by exhibiting a dual mode of action including antibacterial and anti-inflammatory activities, may represent a promising targeted therapeutic agent for periodontal diseases. PMID:25925558

  8. [Investigation of the antibacterial activity of faropenem against Streptococcus pneumoniae].

    PubMed

    Hanaki, H; Inaba, Y; Hiramatsu, K

    1999-09-01

    We evaluated the antibacterial activity of faropenem against penicillin-susceptible Streptococcus pneumoniae (PSSP) and penicillin-resistant S. pneumoniae (PRSP). It was shown that the minimum inhibitory concentrations against 90% of the clinically isolated strains (MIC90) of faropenem, penicillin G, cefaclor, cefcapene, and cefditoren against PSSP were 0.032, 0.063, 2, 0.25, and 0.125 micrograms/ml, respectively. While those against PRSP were 0.5, 2, > 128, 1, and 1 micrograms/ml, respectively. Furthermore, we evaluated the bactericidal activity, at the level of 1/4, 1, and 4 MIC, of faropenem and the above four reference antibacterial agents against PSSP and PRSP. Against PSSP No. 127, a sensitive strain to both penicillin G and cefcapene, faropenem showed almost the same bactericidal activity as those of reference agents. Against PSSP No. 108, a penicillin-susceptible and cephem-resistant strain, and PRSP No. 57, a resistant strain to both of penicillin and cephem, faropenem of 1 MIC showed bactericidal activity, but reference agents needed 4 MIC to show bactericidal activity. PMID:10746191

  9. Antibacterial activity of LCB01-0062, a novel oxazolidinone.

    PubMed

    Jung, Sung-Ji; Yun, I-Na-Rae; Park, Hee Soo; Lee, Hyun-Hee; Jeong, Ji-Woong; Kim, Yong-Zu; Cho, Young-Lak; Kwak, Jin-Hwan

    2012-12-01

    LCB01-0062, a novel oxazolidinone, has potent antibacterial activity against clinical isolates of Gram-positive bacteria. The in vitro activity of LCB01-0062 was compared with that of linezolid, oxacillin, erythromycin, ciprofloxacin, vancomycin and quinupristin/dalfopristin. Among the tested agents, LCB01-0062 showed the most potent antibacterial activity against meticillin-resistant Staphylococcus aureus, meticillin-resistant coagulase-negative staphylococci and vancomycin-resistant enterococci. LCB01-0062 was 4-8-fold more active than linezolid, the first oxazolidinone drug, against Gram-positive bacteria. The time-kill curves of LCB01-0062 were analysed at concentrations of 0.5×, 1×, 2×, 4× and 8× the minimum inhibitory concentration against S. aureus strains. LCB01-0062 showed bacteriostatic activity during 24 h. LCB01-0062 was also more effective than linezolid against S. aureus in a systemic mouse model of infection. PMID:23058227

  10. Binuclear Rhodium(II) Complexes With Selective Antibacterial Activity.

    PubMed

    Bień, M; Lachowicz, T M; Rybka, A; Pruchnik, F P; Trynda, L

    1997-01-01

    Binuclear rhodium(II) complexes [Rh(2)Cl(2)(mu-OOCR)(2)(N-N)(2)] {R = H, Me; N-N = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen)} and [Rh(2)(mu-OOCR)(2)(N-N)(2)(H(2)O)(2)](RCOO)(2) (R = Me, Et;) have been synthesized and their structure and properties have been studied by electronic, IR and (1)H NMR spectroscopy. Antibacterial activity of these complexes against Escherichia coli and Staphylococcus aureus has been investigated. The most active antibacterial agents against E. coli were [Rh(2)Cl(2)(mu-OOCR)(2)(N-N)(2)] and [Rh(2)(mu-OOCR)(2)(N-N)(2)(H(2)O)(2)](RCOO)(2) {R = H and Me} which were considerably more active than the appropriate nitrogen ligands. The complexes show low activity against S. aureus. The activity of the complexes [Rh(2)(OOCR)(2)(N-N)(2)(H(2)O)(2)](OOCR)(2) against E. coli decreases in the series: R=H congruent withCH(3)>C(2)H(5)>C(3)H(7) congruent withC(4)H(9). The reverse order was found in the case of S. aureus. PMID:18475773

  11. Molecular cloning, recombinant expression and antibacterial activity analysis of hepcidin from Simensis crocodile (Crocodylus siamensis).

    PubMed

    Hao, Juan; Li, Yan-Wei; Xie, Ming-Quan; Li, An-Xing

    2012-01-01

    Hepcidin, a cysteine-rich cationic antibacterial peptide, plays an important role in human defense against pathogen infection. However, its role in reptile immune response and whether it is involved in antibacterial immune have not yet been proven. In order to study the antibacterial activity of Crocodylus siamensis hepcidin (Cshepc), a common reptile which lives in topic region of Southeast Asia, a cDNA sequence of Cshepc was cloned, which included an open reading frame (ORF) of 300 bp encoding a 99 amino acid preprohepcidin. Cshepc has eight cysteines formed four conserved disulfide bridges, similarly to that of human's. Sequence analysis showed that Cshepc mature peptide was more conserved than that of preprohepcidin. Tissue expression analysis indicated that Cshepc transcripts were highly expressed in the liver, muscle and heart of C. siamensis. Recombinant expressed hepcidin could significantly inhibit the growth of the Gram-negative bacteria Escherichia coli and Aeromonas sobria as well as the Gram-positive bacterium Staphylococcus aureus, and Bacillus subtilis in vitro, suggesting that Cshepc, like human hepcidin could play a role in the antibacterial function in hosts innate immune response. PMID:22967859

  12. Antibacterial Activity of Myristica fragrans against Oral Pathogens

    PubMed Central

    Shafiei, Zaleha; Shuhairi, Nadia Najwa; Md Fazly Shah Yap, Nordiyana; Harry Sibungkil, Carrie-Anne; Latip, Jalifah

    2012-01-01

    Myristica fragrans Houtt is mostly cultivated for spices in Penang Island, Malaysia. The ethyl acetate and ethanol extracts of flesh, mace and seed of Myristica fragrans was evaluated the bactericidal potential against three Gram-positive cariogenic bacteria (Streptococcus mutans ATCC 25175, Streptococcus mitis ATCC 6249, and Streptococcus salivarius ATCC 13419) and three Gram-negative periodontopathic bacteria (Aggregatibacter actinomycetemcomitans ATCC 29522, Porphyromonas gingivalis ATCC 33277, and Fusobacterium nucleatum ATCC 25586). Antibacterial activities of the extracts was determined by twofold serial microdilution, with minimum inhibitory concentrations (MIC) ranging from 1.25 to 640 mg/mL and 0.075 to 40 mg/mL. The minimum bactericidal concentration (MBC) was obtained by subculturing method. Among all extracts tested, ethyl acetate extract of flesh has the highest significant inhibitory effects against Gram-positive and Gram-negative bacteria with mean MIC value ranging from 0.625 to 1.25 ± 0.00 (SD) mg/mL; P = 0.017) and highest bactericidal effects at mean MBC value ranging from 0.625 mg/mL to 20 ± 0.00 (SD) mg/mL. While for seed and mace of Myristica fragrans, their ethanol extracts exhibited good antibacterial activity against both groups of test pathogens compared to its ethyl acetate extracts. All of the extracts of Myristica fragrans did not show any antibacterial activities against Fusobacterium nucleatum ATCC 25586. Thus, our study showed the potential effect of ethyl acetate and ethanol extracts from flesh, seed and mace of Myristica fragrans to be new natural agent that can be incorporated in oral care products. PMID:23049613

  13. In Vitro antibacterial and in Vivo cytotoxic activities of Grewia paniculata

    PubMed Central

    Nasrin, Mahmuda; Dash, Pritesh Ranjan; Ali, Mohammad Shawkat

    2015-01-01

    Objectives: Grewia paniculata (Family: Malvaceae) has been used to treat inflammation, respiratory disorders and fever. It is additionally employed for other health conditions including colds, diarrhea and as an insecticide in Bangladesh. The aim of the present study was to investigate the antibacterial and cytotoxic activities of different extracts of Grewia paniculata. Materials and Methods: The antibacterial activity was evaluated against both gram negative and gram positive bacteria using disc diffusion method by determination of the diameter of zone of inhibition. Cytotoxic activity was performed by brine shrimp (Artemia salina) lethality bioassay. Results: In disc diffusion method, all the natural products (400 μg/disc) showed moderate to potent activity against all the tested bacteria. The ethanol extract of bark (EEB) and ethanol fraction of bark (EFB) (400 μg/disc) exhibited highest activity against Shigella dysenteriae with a zone of inhibition of 23±1.63 mm and 23±1.77 mm respectively. In the brine shrimp lethality bioassay all the extracts showed moderate cytotoxic activity when compared with the standard drug vincristin sulphate. For example, LC50 value of the ethanol fraction of bark (EFB) was 3.01 μg/ml while the LC50 of vincristine sulphate was 0.52 μg/ml. Conclusions: The results suggest that all the natural products possess potent antibacterial and moderate cytotoxic. PMID:25949950

  14. A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity

    SciTech Connect

    Ashtari, Khadijeh; Fasihi, Javad; Mollania, Nasrin; Khajeh, Khosro

    2014-02-01

    Highlights: • Nickel nanostructure-encapsulated bacteria were prepared using electroless deposition. • Bacterium surface was activated by red-ox reaction of its surface amino acids. • Interfacial changes at cell surfaces were investigated using fluorescence spectroscopy. • TEM and AFM depicted morphological changes. • Antibacterial activity of nanostructure was examined against different bacteria strains. - Abstract: Nickel nanostructure-encapsulated bacteria were prepared using the electroless deposition procedure and activation of bacterium cell surface by red-ox reaction of surface amino acids. The electroless deposition step occurred in the presence of Ni(II) and dimethyl amine boran (DMAB). Interfacial changes at bacteria cell surfaces during the coating process were investigated using fluorescence spectroscopy. Fluorescence of tryptophan residues was completely quenched after the deposition of nickel onto bacteria surfaces. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) depicted morphological changes on the surface of the bacterium. It was found that the Ni coated nanostructure was mechanically stable after ultrasonication for 20 min. Significant increase in surface roughness of bacteria was also observed after deposition of Ni clusters. The amount of coated Ni on the bacteria surface was calculated as 36% w/w. The antibacterial activity of fabricated nanostructure in culture media was examined against three different bacteria strains; Escherichia coli, Bacillus subtilis and Xantomonas campestris. The minimum inhibitory concentrations (MIC) were determined as 500 mg/L, 350 mg/L and 200 mg/L against bacteria, respectively.

  15. Antibacterial activity of Pseudoalteromonas in the coral holobiont.

    PubMed

    Shnit-Orland, Maya; Sivan, Alex; Kushmaro, Ariel

    2012-11-01

    Corals harbor diverse and abundant prokaryotic populations. Bacterial communities residing in the coral mucus layer may be either pathogenic or symbiotic. Some species may produce antibiotics as a method of controlling populations of competing microbial species. The present study characterizes cultivable Pseudoalteromonas sp. isolated from the mucus layer of different coral species from the northern Gulf of Eilat, Red Sea, Israel. Six mucus-associated Pseudoalteromonas spp. obtained from different coral species were screened for antibacterial activity against 23 tester strains. Five of the six Pseudoalteromonas strains demonstrated extracellular antibacterial activity against Gram-positive-but not Gram-negative-tester strains. Active substances secreted into the cell-free supernatant are heat-tolerant and inhibit growth of Bacillus cereus, Staphylococcus aureus, and of ten endogenous Gram-positive marine bacteria isolated from corals. The Pseudoalteromonas spp. isolated from Red sea corals aligned in a phylogenetic tree with previously isolated Pseudoalteromonas spp. of marine origin that demonstrated antimicrobial activity. These results suggest that coral mucus-associated Pseudoalteromonas may play a protective role in the coral holobiont's defense against potential Gram-positive coral pathogens. PMID:22767125

  16. Cinobufagin Modulates Human Innate Immune Responses and Triggers Antibacterial Activity

    PubMed Central

    Xie, Shanshan; Spelmink, Laura; Codemo, Mario; Subramanian, Karthik; Pütsep, Katrin

    2016-01-01

    The traditional Chinese medicine Chan-Su is widely used for treatment of cancer and cardiovascular diseases, but also as a remedy for infections such as furunculosis, tonsillitis and acute pharyngitis. The clinical use of Chan-Su suggests that it has anti-infective effects, however, the mechanism of action is incompletely understood. In particular, the effect on the human immune system is poorly defined. Here, we describe previously unrecognized immunomodulatory activities of cinobufagin (CBG), a major bioactive component of Chan-Su. Using human monocyte-derived dendritic cells (DCs), we show that LPS-induced maturation and production of a number of cytokines was potently inhibited by CBG, which also had a pro-apoptotic effect, associated with activation of caspase-3. Interestingly, CBG triggered caspase-1 activation and significantly enhanced IL-1β production in LPS-stimulated cells. Finally, we demonstrate that CBG upregulates gene expression of the antimicrobial peptides (AMPs) hBD-2 and hBD-3 in DCs, and induces secretion of HNP1-3 and hCAP-18/LL-37 from neutrophils, potentiating neutrophil antibacterial activity. Taken together, our data indicate that CBG modulates the inflammatory phenotype of DCs in response to LPS, and triggers an antibacterial innate immune response, thus proposing possible mechanisms for the clinical effects of Chan-Su in anti-infective therapy. PMID:27529866

  17. Antibacterial activities and phytochemical analysis of Cassia fistula (Linn.) leaf

    PubMed Central

    Panda, Sujogya K.; Padhi, L. P.; Mohanty, G.

    2011-01-01

    Cassia fistula Linn. which belongs to family Leguminosae is a medium-sized tree and its different parts are used in ayurvedic medicine as well as home remedies for common ailments. Sequential extraction was carried out using solvents viz. petroleum ether, chloroform, ethanol, methanol and water from leaf of the plant were investigated for preliminary phytochemical and antibacterial property. Results of the study showed that all the extracts had good inhibitory activity against Gram-positive test organism. Although all five extracts showed promising antibacterial activity against test bacterial species, yet maximum activity was observed in ethanol extract. The minimum inhibitory concentration ranged in between 94 to 1 500 μg/ml. Evaluation of phytochemicals such as alkaloids, flavonoids, carbohydrates, glycosides, protein and amino acids, saponins, and triterpenoids revealed the presence of most of constituents in polar extracts (ethanol, methanol, and aqueous) compared with nonpolar extracts (petroleum ether and chloroform). Furthermore, the ethanol extract was subjected to TLC bioautography and time-kill study against Staphylococcus epidermidis. All the findings exhibit that the leaf extracts have broad-spectrum activity and suggest its possible use in treatment of infectious diseases. PMID:22171295

  18. Composition and antibacterial activity of Abies balsamea essential oil.

    PubMed

    Pichette, André; Larouche, Pierre-Luc; Lebrun, Maxime; Legault, Jean

    2006-05-01

    The antibacterial activity of the essential oil of Abies balsamea (balsam fir) was evaluated against Escherichia coli and Staphylococcus aureus. The essential oil of A. balsamea was found to be inactive against E. coli (>100 microg/mL) and active against S. aureus, with an MIC of 56 microg/mL. The oil composition was analysed by GC-MS and the antibacterial activity of each oil constituent was determined. The essential oil of A. balsamea is essentially constituted of monoterpenes (>96%) and some sesquiterpenes. beta-pinene (29.9%), delta-3-carene (19.6%) and alpha-pinene (14.6%) were the major components. beta-pinene and delta-3-carene were found inactive against both bacteria strains. However, three constituents of the essential oil were active against S. aureus: alpha-pinene, beta-caryophyllene (0.4%) and alpha-humulene (0.2%) with MIC values of 13.6 microg/mL, 5.1 microg/mL and 2.6 microg/mL, respectively. PMID:16619365

  19. Cinobufagin Modulates Human Innate Immune Responses and Triggers Antibacterial Activity.

    PubMed

    Xie, Shanshan; Spelmink, Laura; Codemo, Mario; Subramanian, Karthik; Pütsep, Katrin; Henriques-Normark, Birgitta; Olliver, Marie

    2016-01-01

    The traditional Chinese medicine Chan-Su is widely used for treatment of cancer and cardiovascular diseases, but also as a remedy for infections such as furunculosis, tonsillitis and acute pharyngitis. The clinical use of Chan-Su suggests that it has anti-infective effects, however, the mechanism of action is incompletely understood. In particular, the effect on the human immune system is poorly defined. Here, we describe previously unrecognized immunomodulatory activities of cinobufagin (CBG), a major bioactive component of Chan-Su. Using human monocyte-derived dendritic cells (DCs), we show that LPS-induced maturation and production of a number of cytokines was potently inhibited by CBG, which also had a pro-apoptotic effect, associated with activation of caspase-3. Interestingly, CBG triggered caspase-1 activation and significantly enhanced IL-1β production in LPS-stimulated cells. Finally, we demonstrate that CBG upregulates gene expression of the antimicrobial peptides (AMPs) hBD-2 and hBD-3 in DCs, and induces secretion of HNP1-3 and hCAP-18/LL-37 from neutrophils, potentiating neutrophil antibacterial activity. Taken together, our data indicate that CBG modulates the inflammatory phenotype of DCs in response to LPS, and triggers an antibacterial innate immune response, thus proposing possible mechanisms for the clinical effects of Chan-Su in anti-infective therapy. PMID:27529866

  20. Fluoride release and antibacterial activity of selected dental materials.

    PubMed

    Marczuk-Kolada, Grazyna; Jakoniuk, Piotr; Mystkowska, Joanna; Łuczaj-Cepowicz, Elzbieta; Waszkiel, Danuta; Dabrowski, Jan Ryszard; Leszczyńska, Katarzyna

    2006-01-01

    The aim of the study was to assess the fluoride ion release and antibacterial activities of the glassionomer cement Fuji IX and the compomer (composite modified polyacid) Dyract AP. Fluoride ion release was measured using direct potentiometry with an Orion fluoride ion selective electrode. The measurement was carried out after 1, 4, 7, 14, 30, and 60 days of storage in phosphate buffer at pH 6.8. The antibacterial activity of the materials was evaluated against the bacteria Streptococcus mutans ATCC 35668, Streptococcus salivarius ATCC 13419, Streptococcus sanguis ATCC 10556, and Lactobacillus casei subsp. casei ATCC 393. The agar diffusion test was applied. The material specimens were assessed twice: after setting and seven days later. Zones of bacterial growth inhibition were measured in millimeters after 24 hours. The results of the study showed that both materials released ion fluoride, with a higher emission of Fuji IX than Dyract AP. The highest level of emission was observed on the seventh day of the study in both materials. After 24 hours of bonding there was inhibition of bacterial growth by Fuji IX, whereas Dyract AP did not show similar activity. On the eighth day after polymerization, Dyract AP was significantly more active towards Streptococcus sanguis and salivarius. PMID:18493226

  1. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    NASA Astrophysics Data System (ADS)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  2. Interconverting flavonostilbenes with antibacterial activity from Sophora alopecuroides.

    PubMed

    Wan, Chuan-Xing; Luo, Jian-Guang; Ren, Xiao-Pu; Kong, Ling-Yi

    2015-08-01

    Five flavonostilbenes (alopecurones H, I, J, K and L) and five known ones were isolated from roots of Sophora alopecuroides, in addition to ten other phenolic compounds. A non-enzymatic interconversion of the lavandulyl-substituted flavonostilbenes was observed among alopecurones A, H, I, and K through a Wessely-Moser rearrangement reaction; this was proven by 1D and 2D NMR, HPLC-CD-PDA and HRMS analyses. Bioassay results suggested that flavonostilbenes exhibit significant antibacterial and anti-biofilm formation activities against Staphylococcus epidermidis with MIC values ranging from 3.1 to 12.5μg/mL. PMID:25813880

  3. Kisameet Clay Exhibits Potent Antibacterial Activity against the ESKAPE Pathogens

    PubMed Central

    Behroozian, Shekooh; Svensson, Sarah L.

    2016-01-01

    ABSTRACT The ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens cause an increasing number of nosocomial infections worldwide since they escape the inhibitory effect of the available antibiotics and the immune response. Here, we report the broad-spectrum and potent antibacterial activity of Kisameet clay, a natural clay mineral from British Columbia, Canada, against a group of multidrug-resistant ESKAPE strains. The results suggest that this natural clay might be developed as a therapeutic option for the treatment of serious infections caused by these important pathogens. PMID:26814180

  4. Antibacterial Activity of THAM Trisphenylguanide against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Weaver, Alan J.; Shepard, Joyce B.; Wilkinson, Royce A.; Watkins, Robert L.; Walton, Sarah K.; Radke, Amanda R.; Wright, Thomas J.; Awel, Milat B.; Cooper, Catherine; Erikson, Elizabeth; Labib, Mohamed E.; Voyich, Jovanka M.; Teintze, Martin

    2014-01-01

    This study investigated the potential antibacterial activity of three series of compounds synthesized from 12 linear and branched polyamines with 2–8 amino groups, which were substituted to produce the corresponding guanides, biguanides, or phenylguanides, against Acinetobacter baumannii, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Antibacterial activity was measured for each compound by determining the minimum inhibitory concentration against the bacteria, and the toxicity towards mammalian cells was determined. The most effective compound, THAM trisphenylguanide, was studied in time-to-kill and cytoplasmic leakage assays against methicillin-resistant Staphylococcus aureus (MRSA, USA300) in comparison to chlorhexidine. Preliminary toxicity and MRSA challenge studies in mice were also conducted on this compound. THAM trisphenylguanide showed significant antibacterial activity (MIC ∼1 mg/L) and selectivity against MRSA relative to all the other bacteria examined. In time-to-kill assays it showed increased antimicrobial activity against MRSA versus chlorhexidine. It induced leakage of cytoplasmic content at concentrations that did not reduce cell viability, suggesting the mechanism of action may involve membrane disruption. Using an intraperitoneal mouse model of invasive MRSA disease, THAM trisphenylguanide reduced bacterial burden locally and in deeper tissues. This study has identified a novel guanide compound with selective microbicidal activity against Staphylococcus aureus, including a methicillin-resistant (MRSA) strain. PMID:24840307

  5. Rational design of berberine-based FtsZ inhibitors with broad-spectrum antibacterial activity.

    PubMed

    Sun, Ning; Chan, Fung-Yi; Lu, Yu-Jing; Neves, Marco A C; Lui, Hok-Kiu; Wang, Yong; Chow, Ka-Yan; Chan, Kin-Fai; Yan, Siu-Cheong; Leung, Yun-Chung; Abagyan, Ruben; Chan, Tak-Hang; Wong, Kwok-Yin

    2014-01-01

    Inhibition of the functional activity of Filamenting temperature-sensitive mutant Z (FtsZ) protein, an essential and highly conserved bacterial cytokinesis protein, is a promising approach for the development of a new class of antibacterial agents. Berberine, a benzylisoquinoline alkaloid widely used in traditional Chinese and native American medicines for its antimicrobial properties, has been recently reported to inhibit FtsZ. Using a combination of in silico structure-based design and in vitro biological assays, 9-phenoxyalkyl berberine derivatives were identified as potent FtsZ inhibitors. Compared to the parent compound berberine, the derivatives showed a significant enhancement of antibacterial activity against clinically relevant bacteria, and an improved potency against the GTPase activity and polymerization of FtsZ. The most potent compound 2 strongly inhibited the proliferation of Gram-positive bacteria, including methicillin-resistant S. aureus and vancomycin-resistant E. faecium, with MIC values between 2 and 4 µg/mL, and was active against the Gram-negative E. coli and K. pneumoniae, with MIC values of 32 and 64 µg/mL respectively. The compound perturbed the formation of cytokinetic Z-ring in E. coli. Also, the compound interfered with in vitro polymerization of S. aureus FtsZ. Taken together, the chemical modification of berberine with 9-phenoxyalkyl substituent groups greatly improved the antibacterial activity via targeting FtsZ. PMID:24824618

  6. Rational Design of Berberine-Based FtsZ Inhibitors with Broad-Spectrum Antibacterial Activity

    PubMed Central

    Sun, Ning; Chan, Fung-Yi; Lu, Yu-Jing; Neves, Marco A. C.; Lui, Hok-Kiu; Wang, Yong; Chow, Ka-Yan; Chan, Kin-Fai; Yan, Siu-Cheong; Leung, Yun-Chung; Abagyan, Ruben; Chan, Tak-Hang; Wong, Kwok-Yin

    2014-01-01

    Inhibition of the functional activity of Filamenting temperature-sensitive mutant Z (FtsZ) protein, an essential and highly conserved bacterial cytokinesis protein, is a promising approach for the development of a new class of antibacterial agents. Berberine, a benzylisoquinoline alkaloid widely used in traditional Chinese and native American medicines for its antimicrobial properties, has been recently reported to inhibit FtsZ. Using a combination of in silico structure-based design and in vitro biological assays, 9-phenoxyalkyl berberine derivatives were identified as potent FtsZ inhibitors. Compared to the parent compound berberine, the derivatives showed a significant enhancement of antibacterial activity against clinically relevant bacteria, and an improved potency against the GTPase activity and polymerization of FtsZ. The most potent compound 2 strongly inhibited the proliferation of Gram-positive bacteria, including methicillin-resistant S. aureus and vancomycin-resistant E. faecium, with MIC values between 2 and 4 µg/mL, and was active against the Gram-negative E. coli and K. pneumoniae, with MIC values of 32 and 64 µg/mL respectively. The compound perturbed the formation of cytokinetic Z-ring in E. coli. Also, the compound interfered with in vitro polymerization of S. aureus FtsZ. Taken together, the chemical modification of berberine with 9-phenoxyalkyl substituent groups greatly improved the antibacterial activity via targeting FtsZ. PMID:24824618

  7. Evaluation of the antibacterial activity of Ag/Fe3O4 nanocomposites synthesized using starch.

    PubMed

    Ghaseminezhad, Seyedeh Masumeh; Shojaosadati, Seyed Abbas

    2016-06-25

    Ag/Fe3O4 nanocomposites were successfully synthesized by a facile and cost-effective method using starch. Starch acts as both a biocompatible capping agent for Fe3O4 nanoparticles and a reducing agent for the reduction of silver ions in an alkaline medium. Samples were characterized using several analytical techniques including field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), and Fourier-transform infrared (FT-IR) spectroscopy. The vibrating sample magnetometer revealed that the nanocomposites were superparamagnetic. The Ag/Fe3O4 nanocomposites demonstrated a high-antibacterial activity against Escherichia coli as evaluated by means of minimum inhibitory concentration. The characteristics and antibacterial activity of the nanocomposites were significantly influenced by the concentration of silver nitrate and pH. PMID:27083838

  8. Dissociation of antibacterial activity and aminoglycoside ototoxicity in the 4-monosubstituted 2-deoxystreptamine apramycin

    PubMed Central

    Matt, Tanja; Ng, Chyan Leong; Lang, Kathrin; Sha, Su-Hua; Akbergenov, Rashid; Shcherbakov, Dmitri; Meyer, Martin; Duscha, Stefan; Xie, Jing; Dubbaka, Srinivas R.; Perez-Fernandez, Déborah; Vasella, Andrea; Ramakrishnan, V.; Schacht, Jochen; Böttger, Erik C.

    2012-01-01

    Aminoglycosides are potent antibacterials, but therapy is compromised by substantial toxicity causing, in particular, irreversible hearing loss. Aminoglycoside ototoxicity occurs both in a sporadic dose-dependent and in a genetically predisposed fashion. We recently have developed a mechanistic concept that postulates a key role for the mitochondrial ribosome (mitoribosome) in aminoglycoside ototoxicity. We now report on the surprising finding that apramycin, a structurally unique aminoglycoside licensed for veterinary use, shows little activity toward eukaryotic ribosomes, including hybrid ribosomes which were genetically engineered to carry the mitoribosomal aminoglycoside-susceptibility A1555G allele. In ex vivo cultures of cochlear explants and in the in vivo guinea pig model of chronic ototoxicity, apramycin causes only little hair cell damage and hearing loss but it is a potent antibacterial with good activity against a range of clinical pathogens, including multidrug-resistant Mycobacterium tuberculosis. These data provide proof of concept that antibacterial activity can be dissected from aminoglycoside ototoxicity. Together with 3D structures of apramycin-ribosome complexes at 3.5-Å resolution, our results provide a conceptual framework for further development of less toxic aminoglycosides by hypothesis-driven chemical synthesis. PMID:22699498

  9. Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens.

    PubMed

    Thangamani, Shankar; Mohammad, Haroon; Abushahba, Mostafa F N; Sobreira, Tiago J P; Hedrick, Victoria E; Paul, Lake N; Seleem, Mohamed N

    2016-01-01

    Traditional methods employed to discover new antibiotics are both a time-consuming and financially-taxing venture. This has led researchers to mine existing libraries of clinical molecules in order to repurpose old drugs for new applications (as antimicrobials). Such an effort led to the discovery of auranofin, a drug initially approved as an anti-rheumatic agent, which also possesses potent antibacterial activity in a clinically achievable range. The present study demonstrates auranofin's antibacterial activity is a complex process that involves inhibition of multiple biosynthetic pathways including cell wall, DNA, and bacterial protein synthesis. We also confirmed that the lack of activity of auranofin observed against Gram-negative bacteria is due to the permeability barrier conferred by the outer membrane. Auranofin's ability to suppress bacterial protein synthesis leads to significant reduction in the production of key methicillin-resistant Staphylococcus aureus (MRSA) toxins. Additionally, auranofin is capable of eradicating intracellular MRSA present inside infected macrophage cells. Furthermore, auranofin is efficacious in a mouse model of MRSA systemic infection and significantly reduces the bacterial load in murine organs including the spleen and liver. Collectively, this study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antibacterial for treatment of invasive bacterial infections. PMID:26936660

  10. Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens

    PubMed Central

    Thangamani, Shankar; Mohammad, Haroon; Abushahba, Mostafa F. N.; Sobreira, Tiago J. P.; Hedrick, Victoria E.; Paul, Lake N.; Seleem, Mohamed N.

    2016-01-01

    Traditional methods employed to discover new antibiotics are both a time-consuming and financially-taxing venture. This has led researchers to mine existing libraries of clinical molecules in order to repurpose old drugs for new applications (as antimicrobials). Such an effort led to the discovery of auranofin, a drug initially approved as an anti-rheumatic agent, which also possesses potent antibacterial activity in a clinically achievable range. The present study demonstrates auranofin’s antibacterial activity is a complex process that involves inhibition of multiple biosynthetic pathways including cell wall, DNA, and bacterial protein synthesis. We also confirmed that the lack of activity of auranofin observed against Gram-negative bacteria is due to the permeability barrier conferred by the outer membrane. Auranofin’s ability to suppress bacterial protein synthesis leads to significant reduction in the production of key methicillin-resistant Staphylococcus aureus (MRSA) toxins. Additionally, auranofin is capable of eradicating intracellular MRSA present inside infected macrophage cells. Furthermore, auranofin is efficacious in a mouse model of MRSA systemic infection and significantly reduces the bacterial load in murine organs including the spleen and liver. Collectively, this study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antibacterial for treatment of invasive bacterial infections. PMID:26936660

  11. [In vitro antibacterial activities of cefteram and other beta-lactam agents against recent clinical isolates].

    PubMed

    Yamaguchi, K; Ohno, A; Takahashi, S; Hayashi, M; Yamanaka, K; Hirakata, Y; Mitsuyama, J

    1998-01-01

    In vitro antibacterial activity of the third-generation oral cephem cefteram (CFTM)--ten years after its first use in the clinical setting--against recent clinical isolates was evaluated and compared with those of other oral cephems. A total of 851 clinical isolates belonging to 13 species used in this study were collected from five medical institutions across Japan during 1996. CFTM showed excellent antibacterial activity against methicillin-susceptible S. aureus and S. pyogenes, equivalent to those of other third-generation oral cephems, except cefixime. Of the S. pneumoniae strains, a high proportion, 34.1%, were penicillin-resistant strains (PRSP), with MIC values of 2.0 micrograms/ml or above, but the MIC50 of CFTM against PRSP was 1.0 microgram/ml. CFTM and the other third-generation oral cephems showed potent antibacterial activity against E. coli, K. pneumoniae, and P. mirabilis. A few strains of E. coli, however, were highly resistant to third-generation oral cephems; that might include extended-spectrum beta-lactamase producing strains. MIC values against P. vulgaris varied significantly, depending on whether they were determined by the broth micro-dilution method or the agar dilution method; growth was observed at high concentrations in the broth micro-dilution method, in which the skip phenomenon was demonstrated, but not in the agar dilution method. The reason for this discrepancy is unknown. Most strains of S. marcescens, C. freundii, and E. cloacae demonstrated resistance to CFTM and the other third-generation oral cephems. CFTM and the other third-generation oral cephems showed excellent antibacterial activities against M. (B.) catarrhalis, N. gonorrhoeae, and H. influenzae, including ampicillin-resistant strains. PMID:9557273

  12. ANTIBACTERIAL AND ANTIOXIDANT ACTIVITY OF METHANOLIC EXTRACT OF ZALEYA PENTANDRA.

    PubMed

    Samina, Afzal; Bashir Ahmad, Chaudhry; Javaria, Saeed; Khurram, Afzal; Bilal, Ahmed; Muhammad Imran, Qadiri

    2016-01-01

    The objective of this study was to evaluate the antibacterial and antioxidant activity of methanolic extract of Zaleya pentandra. It inhibited the growth of S. typhi, with zone of inhibition 13 mm at concentration 3 mg/100 µL and 11 mm at concentration 1.5 mg/100 µL. It also showed zone of inhibition against S. aureus with 17.5 mm and 12.5 mm at concentration 3 mg/100 µL in comparison to erythromycin with 15.6 mm. It showed 73% radical scavenging at concentration 161 µL/mL. The extract was fractioned by column chromatography using eluents (chloroform:methanol:H₂O). The isolation and purification afforded amorphous solid which was subjected to physical, chemical and spectral techniques UV, IR, ¹H-NMR, ¹³C-NMR and HREI-MS for the structure elucidation of the isolated compound. The compound was named pentandraol. From the present study, it was concluded that the methanolic extract of Zaleya pentandra has antibacterial and antioxidant activity and contains a novel compound named as pentandraol. PMID:27008809

  13. Study of the antibacterial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Surti, Arjuman; Radha, S.; Garje, S. S.

    2013-02-01

    This study focuses on the antibacterial activity of the ZnO nanoparticles against organisms causing skin and wound infections. The nanoparticles were synthesized by a wet chemical route. The method was quick and nanoparticles were obtained in 3 days of incubation in dark. Characterization of the nanoparticles was done by X-Ray Diffraction and UV-Visible Spectrophotometry. It was observed that the UV-Visible spectrum peak was obtained at 357 nm corresponding to the Plasmon absorbance of Zinc oxide. X-Ray diffraction exhibited the 2θ values corresponding to Zinc oxide and the particle size was estimated to be 20 nm. The antibacterial effect of nanoparticles was observed against Staphylococcus spp and Bacillus spp. The significance of the bactericidal activity of the nanoparticles lies in the reduction of using antibiotics against nosocomial infections, especially in prolonged treatments. The bandage material used in wound dressing was coated with ZnO nanoparticles by adsorption method. The textile was found to be efficient in inhibiting the growth of these organisms. The effect of adverse storage conditions on the coated bandage material was also studied. On comparing the results obtained at extreme pH and temperature and those obtained at optimum conditions, it was seen that the nanoparticles were less effective at these extreme conditions.

  14. Sexual ornamentation reflects antibacterial activity of ejaculates in mallards.

    PubMed

    Rowe, Melissah; Czirják, Gábor Árpád; McGraw, Kevin J; Giraudeau, Mathieu

    2011-10-23

    Bacteria present in ejaculates can impair sperm function and reduce male reproductive success. Thus, selection should favour the evolution of antimicrobial defences to limit the detrimental effects of sperm-associated bacteria. Additionally, current hypotheses suggest that ornamental traits may signal information about the infection status of an individual or the ability of an individual to resist bacterial-induced sperm damage. However, despite the evolutionary implications of ejaculate antimicrobials, and the putative importance of pathogens for the evolution of male ornamentation, tests of these hypotheses are lacking. We examined the antibacterial activity of semen from mallard ducks (Anas platyrhynchos) and tested whether the bactericidal capacity of semen was associated with bill coloration, a sexually selected trait. We show that mallard semen exhibits significant antibacterial activity, as measured by the in vitro capacity to kill Escherichia coli and Staphylococcus aureus. Furthermore, we demonstrate that males with more colourful bills have semen with superior bacterial-killing ability. These results suggest that females could use male phenotypic traits to avoid sexually transmitted pathogens and acquire partners whose sperm suffer less bacteria-induced damage. PMID:21490006

  15. Sexual ornamentation reflects antibacterial activity of ejaculates in mallards

    PubMed Central

    Rowe, Melissah; Czirják, Gábor Árpád; McGraw, Kevin J.; Giraudeau, Mathieu

    2011-01-01

    Bacteria present in ejaculates can impair sperm function and reduce male reproductive success. Thus, selection should favour the evolution of antimicrobial defences to limit the detrimental effects of sperm-associated bacteria. Additionally, current hypotheses suggest that ornamental traits may signal information about the infection status of an individual or the ability of an individual to resist bacterial-induced sperm damage. However, despite the evolutionary implications of ejaculate antimicrobials, and the putative importance of pathogens for the evolution of male ornamentation, tests of these hypotheses are lacking. We examined the antibacterial activity of semen from mallard ducks (Anas platyrhynchos) and tested whether the bactericidal capacity of semen was associated with bill coloration, a sexually selected trait. We show that mallard semen exhibits significant antibacterial activity, as measured by the in vitro capacity to kill Escherichia coli and Staphylococcus aureus. Furthermore, we demonstrate that males with more colourful bills have semen with superior bacterial-killing ability. These results suggest that females could use male phenotypic traits to avoid sexually transmitted pathogens and acquire partners whose sperm suffer less bacteria-induced damage. PMID:21490006

  16. Synthesis and in vitro antibacterial activity of oxazolidine LBM-415 analogs as peptide deformylase inhibitors.

    PubMed

    Yu, Linliang; Zhou, Weicheng; Wang, Zhenyu

    2011-03-01

    The drug resistant bacteria pose a severe threat to human health. The increasing resistance of those pathogens to traditional antibacterial therapy renders the identification of new antibacterial agents with novel antibacterial mechanisms an urgent need. In this study, a series of (2S)-N-substituted-1-[(formyhydroxyamino)methyl]-1-oxohexyl]-2-oxazolidinecarboxamides were designed, synthesized and evaluated for in vitro antibacterial activity. Most of these compounds displayed good activities against Gram-positive organisms comparable to reference agent LBM-415. PMID:21288715

  17. The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability

    PubMed Central

    Huang, Ying; Zha, Guangyu; Luo, Qiaojie; Zhang, Jianxiang; Zhang, Feng; Li, Xiaohui; Zhao, Shifang; Zhu, Weipu; Li, Xiaodong

    2014-01-01

    The deficient osseointegration and implant-associated infections are pivotal issues for the long-term clinical success of endosteal Ti implants, while development of functional surfaces that can simultaneously overcome these problems remains highly challenging. This study aimed to fabricate sophisticated Ti implant surface with both osteogenic inducing activity and inherent antibacterial ability simply via tailoring surface topographical features. Micro/submciro/nano-scale structure was constructed on Ti by three cumulative subtractive methods, including sequentially conducted sandblasting as well as primary and secondary acid etching treatment. Topographical features of this hierarchical structure can be well tuned by the time of the secondary acid treatment. Ti substrate with mere micro/submicro-scale structure (MS0-Ti) served as a control to examine the influence of hierarchical structures on surface properties and biological activities. Surface analysis indicated that all hierarchically structured surfaces possessed exactly the same surface chemistry as that of MS0-Ti, and all of them showed super-amphiphilicity, high surface free energy, and high protein adsorption capability. Biological evaluations revealed surprisingly antibacterial ability and excellent osteogenic activity for samples with optimized hierarchical structure (MS30-Ti) when compared with MS0-Ti. Consequently, for the first time, a hierarchically structured Ti surface with topography-induced inherent antibacterial capability and excellent osteogenic activity was constructed. PMID:25146099

  18. The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Zha, Guangyu; Luo, Qiaojie; Zhang, Jianxiang; Zhang, Feng; Li, Xiaohui; Zhao, Shifang; Zhu, Weipu; Li, Xiaodong

    2014-08-01

    The deficient osseointegration and implant-associated infections are pivotal issues for the long-term clinical success of endosteal Ti implants, while development of functional surfaces that can simultaneously overcome these problems remains highly challenging. This study aimed to fabricate sophisticated Ti implant surface with both osteogenic inducing activity and inherent antibacterial ability simply via tailoring surface topographical features. Micro/submciro/nano-scale structure was constructed on Ti by three cumulative subtractive methods, including sequentially conducted sandblasting as well as primary and secondary acid etching treatment. Topographical features of this hierarchical structure can be well tuned by the time of the secondary acid treatment. Ti substrate with mere micro/submicro-scale structure (MS0-Ti) served as a control to examine the influence of hierarchical structures on surface properties and biological activities. Surface analysis indicated that all hierarchically structured surfaces possessed exactly the same surface chemistry as that of MS0-Ti, and all of them showed super-amphiphilicity, high surface free energy, and high protein adsorption capability. Biological evaluations revealed surprisingly antibacterial ability and excellent osteogenic activity for samples with optimized hierarchical structure (MS30-Ti) when compared with MS0-Ti. Consequently, for the first time, a hierarchically structured Ti surface with topography-induced inherent antibacterial capability and excellent osteogenic activity was constructed.

  19. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities.

    PubMed

    Cushnie, T P Tim; Cushnie, Benjamart; Lamb, Andrew J

    2014-11-01

    With reports of pandrug-resistant bacteria causing untreatable infections, the need for new antibacterial therapies is more pressing than ever. Alkaloids are a large and structurally diverse group of compounds that have served as scaffolds for important antibacterial drugs such as metronidazole and the quinolones. In this review, we highlight other alkaloids with development potential. Natural, semisynthetic and synthetic alkaloids of all classes are considered, looking first at those with direct antibacterial activity and those with antibiotic-enhancing activity. Potent examples include CJ-13,136, a novel actinomycete-derived quinolone alkaloid with a minimum inhibitory concentration of 0.1 ng/mL against Helicobacter pylori, and squalamine, a polyamine alkaloid from the dogfish shark that renders Gram-negative pathogens 16- to >32-fold more susceptible to ciprofloxacin. Where available, information on toxicity, structure-activity relationships, mechanisms of action and in vivo activity is presented. The effects of alkaloids on virulence gene regulatory systems such as quorum sensing and virulence factors such as sortases, adhesins and secretion systems are also described. The synthetic isoquinoline alkaloid virstatin, for example, inhibits the transcriptional regulator ToxT in Vibrio cholerae, preventing expression of cholera toxin and fimbriae and conferring in vivo protection against intestinal colonisation. The review concludes with implications and limitations of the described research and directions for future research. PMID:25130096

  20. Facile synthesis and antibacterial activity of naturally occurring 5-methoxyfuroflavone.

    PubMed

    Alam, Mohammad Sayed; Lee, Dong-Ung

    2010-12-01

    A convenient synthesis of 5-methoxyfuroflavone (6, pongaglabol methyl ether), a constituent of some Pongamia or Millettia genus, was achieved by starting from 2,4-dihydroxy-6-methoxyacetophenone via a chalcone precursor, followed by treatment with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). This five-step reaction (total yield: 21.6%) is more facile with that of previously utilized procedures using each different starting material. Antibacterial activities of the above compound and its precursor chalcones, which also belongs to the class of furoflavonoids, were tested by the disc diffusion method against Shigella dysenteriae, Salmonella typhi, Streptococcus-β-haemolyticus, and Staphylococcus aureus. 5-Methoxyfuroflavone showed moderate bactericidal activity against all tested bacterial strains, whereas its corresponding chalcone compound revealed a selective activity. PMID:21139271

  1. Antibacterial Activity of Mangrove Leaf Extracts against Human Pathogens

    PubMed Central

    Sahoo, G.; Mulla, N. S. S.; Ansari, Z. A.; Mohandass, C.

    2012-01-01

    The antibacterial activity of leaf extract of mangroves, namely, Rhizophora mucronata, Sonneratia alba and Exoecaria agallocha from Chorao island, Goa was investigated against human bacterial pathogens Staphylococcus aureus, Streptococcus sp., Salmonella typhi, Proteus vulgaris and Proteus mirabilis. As compared to aqueous, ethanol extract showed broad-spectrum activity. The multidrug-resistant (MDR) bacteria Salmonella typhi was inhibited by the ethanol extract of S. alba leaf whereas the other two resistant bacteria Staphylococcus aureus and Streptococcus sp. were inhibited by the ethanol extract of leaves of all the species. The aqueous extract of S. alba and E. agallocha showed their activity against P. vulgaris and P. mirabilis, respectively. Phytochemical analysis revealed the presence of saponins, glycosides, tannins, flavonoids, phenol and volatile oils in the leaves of mangroves. Further studies using different solvents for extraction are necessary to confirm that mangroves are a better source for the development of novel antibiotics. PMID:23626390

  2. Synthesis and antibacterial activity of alaremycin derivatives for the porphobilinogen synthase.

    PubMed

    Iwai, Noritaka; Nakayama, Kyosuke; Oku, Jumpei; Kitazume, Tomoya

    2011-05-15

    The preparation and the antibacterial activity of alaremycin derivatives such as their CF(3)-derivatives and (R)- and (S)-4-oxo-5-acetylaminohexanoic acid for the porphobilinogen synthase (PBGS), were described. The IC(50) values of the antibacterial activity of the prepared materials for the inhibitor of PBGS, were determined using PBGS assay. PMID:21514151

  3. Acylprolinamides: a new class of peptide deformylase inhibitors with in vivo antibacterial activity.

    PubMed

    Axten, Jeffrey M; Medina, Jesús R; Blackledge, Charles W; Duquenne, Céline; Grant, Seth W; Bobko, Mark A; Peng, Tony; Miller, William H; Pinckney, Theresa; Gallagher, Timothy F; Kulkarni, Swarupa; Lewandowski, Thomas; Van Aller, Glenn S; Zonis, Rimma; Ward, Paris; Campobasso, Nino

    2012-06-15

    A new class of PDF inhibitor with potent, broad spectrum antibacterial activity is described. Optimization of blood stability and potency provided compounds with improved pharmacokinetics that were suitable for in vivo experiments. Compound 5c, which has robust antibacterial activity, demonstrated efficacy in two respiratory tract infection models. PMID:22579486

  4. Chemical constituents and antibacterial activity of Melastoma malabathricum L.

    PubMed

    Wong, Keng-Chong; Hag Ali, Dafaalla Mohamed; Boey, Peng-Lim

    2012-01-01

    The aqueous methanolic extracts of Melastoma malabathricum L. exhibited antibacterial activity when assayed against seven microorganisms by the agar diffusion method. Solvent fractionation afforded active chloroform and ethyl acetate fractions from the leaves and the flowers, respectively. A phytochemical study resulted in the identification of ursolic acid (1), 2α-hydroxyursolic acid (2), asiatic acid (3), β-sitosterol 3-O-β-D-glucopyranoside (4) and the glycolipid glycerol 1,2-dilinolenyl-3-O-β-D-galactopyanoside (5) from the chloroform fraction. Kaempferol (6), kaempferol 3-O-α-L-rhamnopyranoside (7), kaempferol 3-O-β-D-glucopyranoside (8), kaempferol 3-O-β-D-galactopyranoside (9), kaempferol 3-O-(2″,6″-di-O-E-p-coumaryl)-β-D-galactopyranoside (10), quercetin (11) and ellagic acid (12) were found in the ethyl acetate fraction. The structures of these compounds were determined by chemical and spectral analyses. Compounds 1-4, the flavonols (6 and 11) and ellagic acid (12) were found to be active against some of the tested microorganisms, while the kaempferol 3-O-glycosides (7-9) did not show any activity, indicating the role of the free 3-OH for antibacterial activity. Addition of p-coumaryl groups results in mild activity for 10 against Staphylococcus aureus and Bacillus cereus. Compounds 2-5, 7 and 9-12 are reported for the first time from M. malabathricum. Compound 10 is rare, being reported only once before from a plant, without assignment of the double bond geometry in the p-coumaryl moiety. PMID:21834640

  5. Characterization of Antibacterial Activities of Eastern Subterranean Termite, Reticulitermes flavipes, against Human Pathogens.

    PubMed

    Zeng, Yuan; Hu, Xing Ping; Suh, Sang-Jin

    2016-01-01

    The emergence and dissemination of multidrug resistant bacterial pathogens necessitate research to find new antimicrobials against these organisms. We investigated antimicrobial production by eastern subterranean termites, Reticulitermes flavipes, against a panel of bacteria including three multidrug resistant (MDR) and four non-MDR human pathogens. We determined that the crude extract of naïve termites had a broad-spectrum activity against the non-MDR bacteria but it was ineffective against the three MDR pathogens Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA), and Acinetobacter baumannii. Heat or trypsin treatment resulted in a complete loss of activity suggesting that antibacterial activity was proteinaceous in nature. The antimicrobial activity changed dramatically when the termites were fed with either heat-killed P. aeruginosa or MRSA. Heat-killed P. aeruginosa induced activity against P. aeruginosa and MRSA while maintaining or slightly increasing activity against non-MDR bacteria. Heat-killed MRSA induced activity specifically against MRSA, altered the activity against two other Gram-positive bacteria, and inhibited activity against three Gram-negative bacteria. Neither the naïve termites nor the termites challenged with heat-killed pathogens produced antibacterial activity against A. baumannii. Further investigation demonstrated that hemolymph, not the hindgut, was the primary source of antibiotic activity. This suggests that the termite produces these antibacterial activities and not the hindgut microbiota. Two-dimensional gel electrophoretic analyses of 493 hemolymph protein spots indicated that a total of 38 and 65 proteins were differentially expressed at least 2.5-fold upon being fed with P. aeruginosa and MRSA, respectively. Our results provide the first evidence of constitutive and inducible activities produced by R. flavipes against human bacterial pathogens. PMID:27611223

  6. Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria.

    PubMed

    Chen, Hanqing; Wang, Bing; Gao, Di; Guan, Ming; Zheng, Lingna; Ouyang, Hong; Chai, Zhifang; Zhao, Yuliang; Feng, Weiyue

    2013-08-26

    Carbon nanotubes (CNTs) hold promise in manufacturing, environmental, and biomedical applications, as well as food and agricultural industries. Previous observations have shown that CNTs have antimicrobial activity; however, the impact of CNTs to human gut microbes has not been investigated. Here, the antibacterial activity of CNTs against the microbes commonly encountered in the human digestion system--L. acidophilus, B. adolescentis, E. coli, E. faecalis, and S. aureus--are evaluated. The bacteria studied include pathogenic and non-pathogenic, gram-positive and negative, and both sphere and rod strains. In this study, CNTs, including single-walled CNTs (SWCNTs, 1-3 μm), short and long multi-walled CNTs (s-MWCNTs: 0.5-2 μm; l-MWCNTs: >50 μm), and functionalized multi-walled CNTs (hydroxyl- and carboxyl-modification, 0.5-2 μm), all have broad-spectrum antibacterial effects. Notably, CNTs may selectively lyse the walls and membranes of human gut microbes, depending on not only the length and surface functional groups of CNTs, but also the shapes of the bacteria. The mechanism of antibacterial activity is associated with their diameter-dependent piercing and length-dependent wrapping on the lysis of microbial walls and membranes, inducing release of intracellular components DNA and RNA and allowing a loss of bacterial membrane potential, demonstrating complete destruction of bacteria. Thin and rigid SWCNT show more effective wall/membrane piercing on spherical bacteria than MWCNTs. Long MWCNT may wrap around gut bacteria, increasing the area making contact with the bacterial wall. This work suggests that CNTs may be broad-spectrum and efficient antibacterial agents in the gut, and selective application of CNTs could reduce the potential hazard to probiotic bacteria. PMID:23463684

  7. Antibacterial and antitubercular activity of fosmidomycin, FR900098, and their lipophilic analogs.

    PubMed

    Uh, Eugene; Jackson, Emily R; San Jose, Géraldine; Maddox, Marcus; Lee, Robin E; Lee, Richard E; Boshoff, Helena I; Dowd, Cynthia S

    2011-12-01

    The nonmevalonate pathway (NMP) of isoprene biosynthesis is an exciting new route toward novel antibiotic development. Inhibitors against several enzymes in this pathway are currently under examination. A significant liability of many of these agents is poor cell penetration. To overcome and improve our understanding of this problem, we have synthesized a series of lipophilic, prodrug analogs of fosmidomycin and FR900098, inhibitors of the NMP enzyme Dxr. Several of these compounds show improved antibacterial activity against a panel of organisms relative to the parent compound, including activity against Mycobacterium tuberculosis (Mtb). Our results show that this strategy can be an effective way for improving whole cell activity of NMP inhibitors. PMID:22024034

  8. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae

    PubMed Central

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually. PMID:26191220

  9. Antibacterial activity of caffeine against plant pathogenic bacteria.

    PubMed

    Sledz, Wojciech; Los, Emilia; Paczek, Agnieszka; Rischka, Jacek; Motyka, Agata; Zoledowska, Sabina; Piosik, Jacek; Lojkowska, Ewa

    2015-01-01

    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [(3)H]thymidine, [(3)H]uridine or (14)C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions. PMID:26307771

  10. Antibacterial activity of two-dimensional MoS2 sheets

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Li, Jie; Liang, Tao; Ma, Chunyan; Zhang, Yingying; Chen, Hongzheng; Hanagata, Nobutaka; Su, Huanxing; Xu, Mingsheng

    2014-08-01

    Graphene-like two-dimensional materials (2DMats) show application potential in optoelectronics and biomedicine due to their unique properties. However, environmental and biological influences of these 2DMats remain to be unveiled. Here we reported the antibacterial activity of two-dimensional (2D) chemically exfoliated MoS2 (ce-MoS2) sheets. We found that the antibacterial activity of ce-MoS2 sheets was much more potent than that of the raw MoS2 powders used for the synthesis of ce-MoS2 sheets possibly due to the 2D planar structure (high specific surface area) and higher conductivity of the ce-MoS2. We investigated the antibacterial mechanisms of the ce-MoS2 sheets and proposed their antibacterial pathways. We found that the ce-MoS2 sheets could produce reactive oxygen species (ROS), different from a previous report on graphene-based materials. Particularly, the oxidation capacity of the ce-MoS2 sheets toward glutathione oxidation showed a time and concentration dependent trend, which is fully consistent with the antibacterial behaviour of the ce-MoS2 sheets. The results suggest that antimicrobial behaviors were attributable to both membrane and oxidation stress. The antibacterial pathways include MoS2-bacteria contact induced membrane stress, superoxide anion (O2&z.rad;-) induced ROS production by the ce-MoS2, and the ensuing superoxide anion-independent oxidation. Our study thus indicates that the tailoring of the dimension of nanomaterials and their electronic properties would manipulate antibacterial activity.Graphene-like two-dimensional materials (2DMats) show application potential in optoelectronics and biomedicine due to their unique properties. However, environmental and biological influences of these 2DMats remain to be unveiled. Here we reported the antibacterial activity of two-dimensional (2D) chemically exfoliated MoS2 (ce-MoS2) sheets. We found that the antibacterial activity of ce-MoS2 sheets was much more potent than that of the raw MoS2 powders

  11. Antibacterial Activity of Medicinal Plants Against Pathogens causing Complicated Urinary Tract Infections.

    PubMed

    Sharma, Anjana; Chandraker, S; Patel, V K; Ramteke, Padmini

    2009-03-01

    Seventeen Indian folklore medicinal plants were investigated to evaluate antibacterial activity of aqueous, ethanol and acetone extracts against 66 multidrug resistant isolates of major urinary tract pathogens (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis) by disc diffusion method. Ethanol extract of Zingiber officinale and Punica granatum showed strong antibacterial activity against Escherichia coli. Ethanol extracts of Terminalia chebula and Ocimum sanctum exhibited antibacterial activity against Klebsiella pneumoniae. Ethanol extract of Cinnamomum cassia showed maximum antibacterial activity against Pseudomonas aeruginosa while ethanol extract of Azadirachta indica and Ocimum sanctum exhibited antibacterial activity against Enterococcus faecalis. The results support the folkloric use of these plants in the treatment of urinary tract infections by the tribals of Mahakoshal region of central India. PMID:20336211

  12. Larvicidal activity of synthetic disinfectants and antibacterial soaps against mosquito, Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Xue, Rui-De; Qualls, Whitney A

    2013-01-01

    Seven commercial synthetic disinfectant and antibacterial soap products were evaluated as mosquito larvicides against Culex quinquefasciatus Say in the laboratory. Three aerosol disinfectant products, at 0.01% concentration resulted in 58-76% mortality of laboratory-reared fourth instar mosquito larvae at 24 h posttreatment. Four antibacterial soap products at 0.0001% concentration resulted in 88-100% larval mortality at 24 h posttreatment. The active ingredient of the antibacterial soap products, triclosan (0.1%) resulted in 74% larval mortality. One of the antibacterial soap products, Equate caused the highest mosquito larval mortality in the laboratory. Equate antibacterial soap at the application rate of 0.000053 ppm resulted in 90% mortality of the introduced fourth instar larvae of Cx. quinquesfasicatus in the outdoor pools. In laboratory and field bioassays, the antibacterial soap resulted in significant larval mosquito mortality. PMID:23427662

  13. In Vivo Release Kinetics and Antibacterial Activity of Novel Polyphenols-Enriched Chewing Gums.

    PubMed

    Ferrazzano, Gianmaria Fabrizio; Cantile, Tiziana; Coda, Marco; Alcidi, Brunella; Sangianantoni, Giancarla; Ingenito, Aniello; Di Stasio, Michele; Volpe, Maria Grazia

    2016-01-01

    Chewing gums may be particularly effective means for delivering and maintaining bioactive molecules, included in the gum formulation, able to have an anti-cariogenic effect. The purposes of this study were: to develop novel chewing gums containing quercetin (Qt); to evaluate their release using in vivo trial; finally, to test their in vivo antibacterial effect against oral Streptococcus mutans strains. A preliminary study was performed to produce new gums, enriched with the polyphenol quercetin. Then, a first in vivo experimental study was assessed to test the percentages of Qt released in the saliva of young volunteers. Moreover, a second clinical trial was performed to analyze the antibacterial capability of these enriched chewing gums against S. mutans strains after 14 days of daily consumption. The release analysis showed that a more effective release of Qt occurs in the first minutes of chewing, and it does not change saliva pH values. Moreover, Qt included in gums demonstrates an effective antibacterial activity, showing a reduction of the concentration of S. mutans strains in saliva samples, especially after 7 days. Qt included in experimental chewing gums could be efficiently released into the oral cavity and could promote an effective anti-caries concentration in volunteer's saliva, without changing salivary pH values. PMID:27490529

  14. Influence of glucosamine on oligochitosan solubility and antibacterial activity.

    PubMed

    Blagodatskikh, Inesa V; Kulikov, Sergey N; Vyshivannaya, Oxana V; Bezrodnykh, Evgeniya A; Yamskov, Igor A; Tikhonov, Vladimir E

    2013-11-15

    Light scattering studies indicate that oligochitosan (short-chain chitosan) solutions contain aggregates at pH values below the critical pH of phase separation, while at or above this point the gel phase coexists with the aggregate solution. This work demonstrates for the first time that the presence of D-glucosamine in an oligochitosan solution shifts the critical pH to a higher value and improves the oligochitosan antibacterial activity against Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermis in neutral and slightly alkaline aqueous media. By comparing the results of light scattering studies and antimicrobial assays one can conclude that the antimicrobial activity of oligochitosan is dependent on its unimolecular form, not its supramolecular structures. The widening of the homogeneity region of an oligochitosan solution could lead to promising biomedical applications. PMID:24056011

  15. Synthesis and antibacterial activity of of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Maliszewska, I.; Sadowski, Z.

    2009-01-01

    Silver nanoparticles have been known to have inhibitory and bactericidal effects but the antimicrobial mechanism have not been clearly revealed. Here, we report on the synthesis of metallic nanoparticles of silver using wild strains of Penicillium isolated from environment. Kinetics of the formation of nanosilver was monitored using the UV-Vis. TEM micrographs showed the formation of silver nanoparticles in the range 10-100 nm. Obtained Ag nanoparticles were evaluated for their antimicrobial activity against the gram-positive and gram-negative bacteria. As results, Bacillus cereus, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were effectively inhibited. Nanosilver is a promising candidate for development of future antibacterial therapies because of its wide spectrum of activity.

  16. In vitro antibacterial and chemical properties of essential oils including native plants from Brazil against pathogenic and resistant bacteria.

    PubMed

    Barbosa, Lidiane Nunes; Probst, Isabella da Silva; Andrade, Bruna Fernanda Murbach Teles; Alves, Fernanda Cristina Bérgamo; Albano, Mariana; da Cunha, Maria de Lourdes Ribeiro de Souza; Doyama, Julio Toshimi; Rall, Vera Lúcia Mores; Fernandes Júnior, Ary

    2015-01-01

    The antimicrobials products from plants have increased in importance due to the therapeutic potential in the treatment of infectious diseases. Therefore, we aimed to examine the chemical characterisation (GC-MS) of essential oils (EO) from seven plants and measure antibacterial activities against bacterial strains isolated from clinical human specimens (methicillin-resistant Staphylococcus aureus (MRSA) and sensitive (MSSA), Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium) and foods (Salmonella Enteritidis). Assays were performed using the minimal inhibitory concentration (MIC and MIC90%) (mg/mL) by agar dilution and time kill curve methods (log CFU/mL) to aiming synergism between EO. EO chemical analysis showed a predominance of terpenes and its derivatives. The highest antibacterial activities were with Cinnamomun zeylanicum (0.25 mg/mL on almost bacteria tested) and Caryophyllus aromaticus EO (2.40 mg/mL on Salmonella Enteritidis), and the lowest activity was with Eugenia uniflora (from 50.80 mg/mL against MSSA to 92.40 mg/mL against both Salmonella sources and P. aeruginosa) EO. The time kill curve assays revealed the occurrence of bactericide synergism in combinations of C. aromaticus and C. zeylanicum with Rosmarinus. officinalis. Thus, the antibacterial activities of the EO were large and this can also be explained by complex chemical composition of the oils tested in this study and the synergistic effect of these EO, yet requires further investigation because these interactions between the various chemical compounds can increase or reduce (antagonism effect) the inhibitory effect of essential oils against bacterial strains. PMID:25757433

  17. Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections.

    PubMed

    Sampath Kumar, T S; Madhumathi, K; Rubaiya, Y; Doble, Mukesh

    2015-01-01

    Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP) bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria. In the present work, a dual mode antibiotic delivery system with antibacterial ion substituted calcium deficient hydroxyapatite (CDHA) nanoparticles has been developed. Antibacterial ions such as zinc, silver, and strontium have been incorporated into CDHA at concentrations of 6, 0.25-0.75, and 2.5-7.5 at. %, respectively. The samples were found to be phase pure, acicular nanoparticles of length 40-50 nm and width 5-6 nm approximately. The loading and release profile of doxycycline, a commonly used antibiotic, was studied from the nanocarriers. The drug release was studied for 5 days and the release profile was influenced by the ion concentrations. The release of antibacterial ions was studied over a period of 21 days. The ion substituted CDHA samples were tested for antibacterial efficacy on Staphylococcus aureus and Escherichia coli by MIC/MBC studies and time-kill assay. AgCDHA and ZnCDHA showed high antibacterial activity against both bacteria, while SrCDHA was weakly active against S. aureus. Present study shows that the antibiotic release can provide the initial high antibacterial activity, and the sustained ion release can provide a long-term antibacterial activity. Such dual mode antibiotic and antibacterial ion release offers an efficient and potent way to treat an incumbent drug

  18. Influence of metallocene substitution on the antibacterial activity of multivalent peptide conjugates.

    PubMed

    Hoffknecht, Barbara C; Prochnow, Pascal; Bandow, Julia E; Metzler-Nolte, Nils

    2016-07-01

    Peptide dendrimers and derivatisation of peptides with metallocenes showed promising results in the search for new antibacterial agents. The two concepts are combined in this work leading to multivalent, metallocene-containing peptide derivates. These new peptides were synthesised utilising microwave assisted, copper(I) catalyzed alkyne-azide cycloaddition (CuAAC, "click" chemistry). Twelve new peptide conjugates, containing either a ferrocenoyl group or a ruthenocenoyl group on so-called ultrashort (i.e. < 5 amino acids) peptides, and ranging from monovalent to trivalent conjugates, were synthesised and their antibacterial activity was investigated by minimal inhibitory concentration (MIC) assays on five different bacterial strains. The antibacterial activity was compared to the same peptide conjugates without metallocenes. The resulting MIC values showed a significant enhancement of the antibacterial activity of these peptide conjugates against Gram-positive bacteria by the metallocenoyl groups. Additionally, the compounds with two metallocenoyl groups presented the best antibacterial activities overall. PMID:26988572

  19. Short communication: an in vitro assessment of the antibacterial activity of plant-derived oils.

    PubMed

    Mullen, K A E; Lee, A R; Lyman, R L; Mason, S E; Washburn, S P; Anderson, K L

    2014-09-01

    Nonantibiotic treatments for mastitis are needed in organic dairy herds. Plant-derived oils may be useful but efficacy and potential mechanisms of action of such oils in mastitis therapy have not been well documented. The objective of the current study was to evaluate the antibacterial activity of the plant-derived oil components of Phyto-Mast (Bovinity Health LLC, Narvon, PA), an herbal intramammary product, against 3 mastitis-causing pathogens: Staphylococcus aureus, Staphylococcus chromogenes, and Streptococcus uberis. Plant-derived oils evaluated were Thymus vulgaris (thyme), Gaultheria procumbens (wintergreen), Glycyrrhiza uralensis (Chinese licorice), Angelica sinensis, and Angelica dahurica. Broth dilution testing according to standard protocol was performed using ultrapasteurized whole milk instead of broth. Controls included milk only (negative control), milk + bacteria (positive control), and milk + bacteria + penicillin-streptomycin (antibiotic control, at 1 and 5% concentrations). Essential oil of thyme was tested by itself and not in combination with other oils because of its known antibacterial activity. The other plant-derived oils were tested alone and in combination for a total of 15 treatments, each replicated 3 times and tested at 0.5, 1, 2, and 4% to simulate concentrations potentially achievable in the milk within the pre-dry-off udder quarter. Thyme oil at concentrations ≥2% completely inhibited bacterial growth in all replications. Other plant-derived oils tested alone or in various combinations were not consistently antibacterial and did not show typical dose-response effects. Only thyme essential oil had consistent antibacterial activity against the 3 mastitis-causing organisms tested in vitro. Further evaluation of physiological effects of thyme oil in various preparations on mammary tissue is recommended to determine potential suitability for mastitis therapy. PMID:25022682

  20. Development and Characterization of Polyphenon 60 and Caffeine Microemulsion for Enhanced Antibacterial Activity

    PubMed Central

    Gupta, Sonal; Bansal, Rakhi; Ali, Javed; Gabrani, Reema; Dang, Shweta

    2014-01-01

    Green tea catechins and caffeine have exhibited antibacterial activity; however, their use is limited by lack of stability and effective delivery systems. Polyphenon 60 (P60) and caffeine were encapsulated in a single microemulsion (ME) formulation with an objective to lower the minimum inhibitory concentrations (MICs) of the individual agents against selected pathogens (S. epidermidis and E. coli). Combination of two natural compounds would advocate two different mechanisms on the bacterial growth thereby providing for better antibacterial activity. Thermodynamically stable ME was developed and characterized with an average particle size of 17.58 nm, further confirmed by TEM analysis. Antibacterial studies included chequerboard microdilution assay to determine the MIC and fractional inhibitory concentration (FIC) of both the natural compounds individually and in combination. MIC and FIC results indicated that the combination of the above two natural compounds was proficient in lowering the MICs of individual agents. Results of DPPH assay indicated that ME system preserved the long term antioxidative potential of P60 and caffeine. The cytotoxicity of the optimized formulation on Vero cell line by MTT assay was found to be nontoxic to mammalian cells. PMID:25050379

  1. Development and characterization of polyphenon 60 and caffeine microemulsion for enhanced antibacterial activity.

    PubMed

    Gupta, Sonal; Bansal, Rakhi; Ali, Javed; Gabrani, Reema; Dang, Shweta

    2014-01-01

    Green tea catechins and caffeine have exhibited antibacterial activity; however, their use is limited by lack of stability and effective delivery systems. Polyphenon 60 (P60) and caffeine were encapsulated in a single microemulsion (ME) formulation with an objective to lower the minimum inhibitory concentrations (MICs) of the individual agents against selected pathogens (S. epidermidis and E. coli). Combination of two natural compounds would advocate two different mechanisms on the bacterial growth thereby providing for better antibacterial activity. Thermodynamically stable ME was developed and characterized with an average particle size of 17.58 nm, further confirmed by TEM analysis. Antibacterial studies included chequerboard microdilution assay to determine the MIC and fractional inhibitory concentration (FIC) of both the natural compounds individually and in combination. MIC and FIC results indicated that the combination of the above two natural compounds was proficient in lowering the MICs of individual agents. Results of DPPH assay indicated that ME system preserved the long term antioxidative potential of P60 and caffeine. The cytotoxicity of the optimized formulation on Vero cell line by MTT assay was found to be nontoxic to mammalian cells. PMID:25050379

  2. Ciprofloxacin-Induced Antibacterial Activity Is Atteneuated by Pretreatment with Antioxidant Agents

    PubMed Central

    Masadeh, Majed M.; Alzoubi, Karem H.; Al-azzam, Sayer I.; Khabour, Omar F.; Al-buhairan, Ahlam M.

    2016-01-01

    Ciprofloxacin works through interfering with replication and transcription of bacterial DNA, which leads to increased oxidative stress, and death of bacterial cells. Drugs with strong antioxidant such as tempol, melatonin and pentoxifylline might interfere with the antibacterial activity of ciprofloxacin. In the current study, the effect of these drugs on the cytotoxicity of ciprofloxacin was investigated against several reference bacteria. Standard bacterial strains included Escherichia coli ATCC 35218, Staphylococcus aureus ATCC29213, Pseudomonas aeruginosa ATCC 9027, Staphylococcus epidermidis ATCC 12228, Acinetobacter baumannii ATCC 17978, Proteus mirabilis ATCC 12459, Klebsiella pneumoniae ATCC 13883, methicillin-resistant Staphylococcus aureus (MRSA) (ATCC 43300), and Streptococcus pneumoniae (ATCC 25923). The antibacterial activity of ciprofloxacin with or without treatment of bacterial cells by tempol, melatonin or pentoxifylline was assessed using the disc diffusion method and by measuring the minimum inhibitory concentration (MIC) and zones of inhibition of bacterial growth. All of the tested bacterial strains were sensitive to ciprofloxacin. When treated with tempol, melatonin or pentoxifylline, all bacterial strains showed significantly smaller zones of inhibition and larger MIC values compared ciprofloxacin alone. In correlation, reactive oxygen species (ROS) generation induced by ciprofloxacin antibacterial action was diminished by treatment of bacterial cells with tempol, melatonin or pentoxifylline. In conclusion, results indicate the possible antagonistic properties for agents with antioxidant properties such as tempol, melatonin and pentoxifylline when they are used concurrently with flouroquinolones. This could be related to the ability of these agents to inhibit oxidative stress in bacterial cells. PMID:27005666

  3. Ciprofloxacin-Induced Antibacterial Activity Is Atteneuated by Pretreatment with Antioxidant Agents.

    PubMed

    Masadeh, Majed M; Alzoubi, Karem H; Al-Azzam, Sayer I; Khabour, Omar F; Al-Buhairan, Ahlam M

    2016-01-01

    Ciprofloxacin works through interfering with replication and transcription of bacterial DNA, which leads to increased oxidative stress, and death of bacterial cells. Drugs with strong antioxidant such as tempol, melatonin and pentoxifylline might interfere with the antibacterial activity of ciprofloxacin. In the current study, the effect of these drugs on the cytotoxicity of ciprofloxacin was investigated against several reference bacteria. Standard bacterial strains included Escherichia coli ATCC 35218, Staphylococcus aureus ATCC29213, Pseudomonas aeruginosa ATCC 9027, Staphylococcus epidermidis ATCC 12228, Acinetobacter baumannii ATCC 17978, Proteus mirabilis ATCC 12459, Klebsiella pneumoniae ATCC 13883, methicillin-resistant Staphylococcus aureus (MRSA) (ATCC 43300), and Streptococcus pneumoniae (ATCC 25923). The antibacterial activity of ciprofloxacin with or without treatment of bacterial cells by tempol, melatonin or pentoxifylline was assessed using the disc diffusion method and by measuring the minimum inhibitory concentration (MIC) and zones of inhibition of bacterial growth. All of the tested bacterial strains were sensitive to ciprofloxacin. When treated with tempol, melatonin or pentoxifylline, all bacterial strains showed significantly smaller zones of inhibition and larger MIC values compared ciprofloxacin alone. In correlation, reactive oxygen species (ROS) generation induced by ciprofloxacin antibacterial action was diminished by treatment of bacterial cells with tempol, melatonin or pentoxifylline. In conclusion, results indicate the possible antagonistic properties for agents with antioxidant properties such as tempol, melatonin and pentoxifylline when they are used concurrently with flouroquinolones. This could be related to the ability of these agents to inhibit oxidative stress in bacterial cells. PMID:27005666

  4. Antibacterial activity of silver-killed bacteria: the "zombies" effect.

    PubMed

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-01-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism. PMID:25906433

  5. Synthesis of Silver Polymer Nanocomposites and Their Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Gavade, Chaitali; Shah, Sunil; Singh, N. L.

    2011-07-01

    PVA (Polyvinyl Alcohol) silver nanocomposites of different sizes were prepared by chemical reduction method. Silver nitrate was taken as the metal precursor and amine hydrazine as a reducing agent. The formation of the silver nanoparticles was noticed using UV- visible absorption spectroscopy. The UV-visible spectroscopy revealed the formation of silver nanoparticles by exhibiting the surface plasmon resonance. The bactericidal activity due to silver release from the surface was determined by the modification of conventional diffusion method. Salmonella typhimurium, Serratia sps and Shigella sps were used as test bacteria which are gram-negative type bacteria. Effect of the different sizes of silver nano particles on antibacterial efficiency was discussed. Zones of inhibition were measured after 24 hours of incubation at 37 °C which gave 20 mm radius for high concentration of silver nanoparticles.

  6. Antibacterial activity of a lectin-like Burkholderia cenocepacia protein.

    PubMed

    Ghequire, Maarten G K; De Canck, Evelien; Wattiau, Pierre; Van Winge, Iris; Loris, Remy; Coenye, Tom; De Mot, René

    2013-08-01

    Bacteriocins of the LlpA family have previously been characterized in the γ-proteobacteria Pseudomonas and Xanthomonas. These proteins are composed of two MMBL (monocot mannose-binding lectin) domains, a module predominantly and abundantly found in lectins from monocot plants. Genes encoding four different types of LlpA-like proteins were identified in genomes from strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. A selected recombinant LlpA-like protein from the human isolate Burkholderia cenocepacia AU1054 displayed narrow-spectrum genus-specific antibacterial activity, thus representing the first functionally characterized bacteriocin within this β-proteobacterial genus. Strain-specific killing was confined to other members of the Bcc, with mostly Burkholderia ambifaria strains being susceptible. In addition to killing planktonic cells, this bacteriocin also acted as an antibiofilm agent. PMID:23737242

  7. Antibacterial mechanism and activities of black pepper chloroform extract.

    PubMed

    Zou, Lan; Hu, Yue-Ying; Chen, Wen-Xue

    2015-12-01

    Black pepper extracts reportedly inhibit food spoilage and food pathogenic bacteria. This study explored the antimicrobial activity of black pepper chloroform extract (BPCE) against Escherichia coli and Staphylococcus aureus. The antibacterial mechanism of BPCE was elucidated by analyzing the cell morphology, respiratory metabolism, pyruvic acid content, and ATP levels of the target bacteria. Scanning electron micrographs showed that the bacterial cells were destroyed and that plasmolysis was induced. BPCE inhibited the tricarboxylic acid pathway of the bacteria. The extract significantly increased pyruvic acid concentration in bacterial solutions and reduced ATP level in bacterial cells. BPCE destroyed the permeability of the cell membrane, which consequently caused metabolic dysfunction, inhibited energy synthesis, and triggered cell death. PMID:26604394

  8. Antibacterial and allelopathic activity of methanolic extract from Iris pseudopumila rhizomes.

    PubMed

    Rigano, Daniela; Grassia, Armando; Formisano, Carmen; Basile, Adriana; Sorbo, Sergio; Senatore, Felice

    2006-09-01

    The methanolic extract of rhizomes of Iris pseudopumila was tested for its antibacterial and allelopathic activity. The extract was shown to have antibacterial effects. The allelopathic effect was tested against Raphanus sativus seed germination. The extract caused a decrease in the percentage of seed germination and root and epicotyl growth. PMID:16814956

  9. Antibacterial Activity of Pseudonocardia sp. JB05, a Rare Salty Soil Actinomycete against Staphylococcus aureus

    PubMed Central

    Jafari, Nesa; Behroozi, Reza; Farajzadeh, Davoud; Farsi, Mohammad; Akbari-Noghabi, Kambiz

    2014-01-01

    Staphylococcus aureus is a Gram-positive bacterium that causes many harmful and life-threatening diseases. Some strains of this bacterium are resistant to available antibiotics. This study was designed to evaluate the ability of indigenous actinomycetes to produce antibacterial compounds against S. aureus and characterize the structure of the resultant antibacterial compounds. Therefore, a slightly modified agar well diffusion method was used to determine the antibacterial activity of actinomycete isolates against the test microorganisms. The bacterial extracts with antibacterial activity were fractionated by silica gel and G-25 sephadex column chromatography. Also, the active fractions were analyzed by thin layer chromatography. Finally, the partial structure of the resultant antibacterial compound was characterized by Fourier transform infrared spectroscopy. One of the isolates, which had a broad spectrum and high antibacterial activity, was designated as Pseudonocardia sp. JB05, based on the results of biochemical and 16S rDNA gene sequence analysis. Minimum inhibitory concentration for this bacterium was 40 AU mL−1 against S. aureus. The antibacterial activity of this bacterium was stable after autoclaving, 10% SDS, boiling, and proteinase K. Thin layer chromatography, using anthrone reagent, showed the presence of carbohydrates in the purified antibacterial compound. Finally, FT-IR spectrum of the active compound illustrated hydroxyl groups, hydrocarbon skeleton, and double bond of polygenic compounds in its structure. To the best of our knowledge, this is the first report describing the efficient antibacterial activity by a local strain of Pseudonocardia. The results presented in this work, although at the initial stage in bioactive product characterization, will possibly contribute toward the Pseudonocardia scale-up for the production and identification of the antibacterial compounds. PMID:25202705

  10. Synthesis and antibacterial activities of acylide derivatives bearing an aryl-tetrazolyl chain

    PubMed Central

    Shan, Ling-Xing; Sun, Ping-Hua; Guo, Bao-Qin; Xu, Xing-Jun; Li, Zhi-Qiang; Sun, Jia-Zhi; Zhou, Shu-Feng; Chen, Wei-Min

    2014-01-01

    Seventeen acylides bearing an aryl-tetrazolyl alkyl-substituted side chain were synthesized, starting from clarithromycin, via several reactions including hydrolysis, acetylating, esterification, carbamylation, and Michael addition. The structures of all new compounds were confirmed by 1H nuclear magnetic resonance spectroscopy, 13C nuclear magnetic resonance spectroscopy, and mass spectrometry. All these synthesized acylides were evaluated for in vitro antimicrobial activities against gram-positive pathogens (Staphylococcus aureus, Staphylococcus epidermidis) and gram-negative pathogens (Pseudomonas aeruginosa, Escherichia coli), using the broth microdilution method. Results showed that compounds 10e, 10f, 10g, 10 h, 10o have good antibacterial activities. PMID:25284984

  11. Phenolic contents, antioxidant and antibacterial activities of Hymenocardia acida.

    PubMed

    Sofidiya, Margaret O; Odukoya, Olukemi A; Afolayan, Anthony J; Familoni, Oluwole B

    2009-01-01

    This study investigates the antioxidant and antibacterial activities of aqueous and methanolic extracts from Hymenocardia acida Tul. (Hymenocardiaceae). The inhibition values of the extracts and quercetin were found to be very close, with no significant differences at a concentration of 0.05 mg mL(-1) in their ability to inhibit 1,1-diphenyl-2-picrylhydrazyl (DPPH). Total proanthocyanidins for both water and methanol extracts were 20.2 +/- 0.01 and 30.6 +/- 0.51 mg g(-1) (catechin equivalent) while the total phenol contents were 20.0 +/- 0.52 and 35.6 +/- 1.42 mg mL(-1) (tannic acid equivalent), respectively. Positive correlations R(2) = 0.85, R(2) = 0.94, R(2) = 0.97 for DPPH, reducing power and 2'-azino-bis(3-ethylbenzo thiazoline)6-sulphonic acid (ABTS). Linear regression analysis also produced a high correlation coefficient with total proanthocyanidins (DPPH, R(2) = 0.69; ABTS, R(2) = 0.94). H. acida extracts showed low antibacterial activity (minimum inhibitory concentration (MIC) value >or=5.0 mg mL(-1)) against gram negative bacteria but significantly (MIC value

  12. Antifungal and antibacterial activities of Petroselinum crispum essential oil.

    PubMed

    Linde, G A; Gazim, Z C; Cardoso, B K; Jorge, L F; Tešević, V; Glamoćlija, J; Soković, M; Colauto, N B

    2016-01-01

    Parsley [Petroselinum crispum (Mill.) Fuss] is regarded as an aromatic, culinary, and medicinal plant and is used in the cosmetic, food, and pharmaceutical industries. However, few studies with conflicting results have been conducted on the antimicrobial activity of parsley essential oil. In addition, there have been no reports of essential oil obtained from parsley aerial parts, except seeds, as an alternative natural antimicrobial agent. Also, microorganism resistance is still a challenge for health and food production. Based on the demand for natural products to control microorganisms, and the re-evaluation of potential medicinal plants for controlling diseases, the objective of this study was to determine the chemical composition and antibacterial and antifungal activities of parsley essential oil against foodborne diseases and opportunistic pathogens. Seven bacteria and eight fungi were tested. The essential oil major compounds were apiol, myristicin, and b-phellandrene. Parsley essential oil had bacteriostatic activity against all tested bacteria, mainly Staphylococcus aureus, Listeria monocytogenes, and Salmonella enterica, at similar or lower concentrations than at least one of the controls, and bactericidal activity against all tested bacteria, mainly S. aureus, at similar or lower concentrations than at least one of the controls. This essential oil also had fungistatic activity against all tested fungi, mainly, Penicillium ochrochloron and Trichoderma viride, at lower concentrations than the ketoconazole control and fungicidal activity against all tested fungi at higher concentrations than the controls. Parsley is used in cooking and medicine, and its essential oil is an effective antimicrobial agent. PMID:27525894

  13. Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys.

    PubMed

    Liu, Jie; Li, Fangbing; Liu, Cong; Wang, Hongying; Ren, Baorui; Yang, Ke; Zhang, Erlin

    2014-02-01

    The phase constitution and the microstructure Ti-x Cu (x=2, 5, 10 and 25 wt.%) sintered alloys were investigated by XRD and SEM and the antibacterial activity was assessed in order to investigate the effect of the Cu content on the antibacterial activity. The results have shown that Ti2Cu was synthesized as a main secondary phase in all Ti-Cu alloys while Cu-rich phase was formed in the alloys with 5 wt.% or more copper. Antibacterial tests have showed that the Cu content influences the antibacterial rate seriously and only the alloys with 5 wt.% or high Cu have a strong and stable antibacterial rate, which indicates that the Cu content in Ti-Cu alloys must be at least 5 wt.% to obtain strong and stable antibacterial property. The Cu content also influenced the Cu ion release behavior. High Cu ion release concentration and high Cu ion release rate were observed for Ti-Cu alloys with high Cu content. It was concluded that the Cu content affects the Cu existence and the Cu ion release behavior, which in turn influences the antibacterial property. It was thought that the Cu-rich phase should play an important role in the strong antibacterial activity. PMID:24411393

  14. Antioxidant and antibacterial activity of different parts of Leucas aspera

    PubMed Central

    Chew, Ai Lan; Jessica, Jeyanthi James Antony; Sasidharan, Sreenivasan

    2012-01-01

    Objective To evaluate antioxidant, antimicrobial and cytotoxic activity of different parts (root, flower, leaf and stem) of Leucas aspera (L. aspera) (Labiatae). Methods Different parts of L. aspera were extracted with 80% (v/v) methanol. The methanol extracts were subjected to antioxidant, antimicrobial and brine shrimp lethality assay. Results All the extracts showed moderate to potent antioxidant activity, among which the root extract demonstrated the strongest antioxidant activity with the IC50 value of 6.552 µg/mL. Methanol extract of root possessed antioxidant activity near the range of vitamin E and thus could be a potential rich source of natural antioxidant. In case of antimicrobial screening, crude extracts of root, flower, leaf and stem showed notable antibacterial activity against tested microorganisms. The root extract showed the highest mean zone of inhibition ranging from 9.0–11.0 mm against tested microorganisms, at a concentration of 100 mg/mL. In the brine shrimp lethality bioassay, it was evident that the methanol root extract did not show significant toxicity. The LC50 value for 12 h and 24 h observation was 2.890 mg/mL and 1.417 mg/mL, respectively. Conclusions The present finding suggests that the methanol root extract of L. aspera could be developed as pharmaceutical products. PMID:23569893

  15. Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components

    NASA Astrophysics Data System (ADS)

    Xin, Zhirong; Du, Shanshan; Zhao, Chunyu; Chen, Hao; Sun, Miao; Yan, Shunjie; Luan, Shifang; Yin, Jinghua

    2016-03-01

    A growing number of wound dressing-related nosocomial infections necessitate the development of novel antibacterial strategies. Herein, polypropylene non-woven fabric (PPNWF) was facilely modified with passive and active antibacterial components, namely photografting polymerization both N-Vinyl-2-pyrrolidone (NVP) and glycidyl methacrylate (GMA) monomers, and the introduction of guanidine polymer through the reaction between active amino groups and epoxy groups. The modified samples were confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), respectively. Water contact angle measurement, antibacterial test, platelet and red blood cell adhesion were used to evaluate the hydrophilicity, antibacterial properties and hemocompatibility of the samples. It was found that the antibacterial properties were obviously enhanced, meanwhile significantly suppressing platelet and red blood cell adhesion after the above modification. This PPNWF samples that possess antifouling and antimicrobial properties, have great potential in wound dressing applications.

  16. The Antibacterial Activity of Cassia fistula Organic Extracts

    PubMed Central

    Seyyednejad, Seyyed Mansour; Motamedi, Hossein; Vafei, Mouzhan; Bakhtiari, Ameneh

    2014-01-01

    Background: Cassia fistula, is a flowering plant and a member of Fabaceae family. Its leaves are compound of 4 - 8 pairs of opposite leaflets. There are many Cassia species around the world which are used in herbal medicine. Objectives: This study was designed to examine in vitro anti-bacterial activity of methanolic and ethanolic extracts of C. fistula native to Khuzestan, Iran. Materials and Methods: The microbial inhibitory effect of methanolic and ethanolic extracts of C. fistula was tested on 3 Gram positive: Bacillus cereus, Staphylococcus aureus and S. epidermidis and 5 Gram negative: Salmonella Typhi, Kelebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis bacterial species using disc diffusion method at various concentrations. The minimum inhibitory and bactericidal concentrations (MIC and MBC) were measured by the tube dilution assay. Results: The extract of C. fistula was effective against B. cereus, S. aureus, S. epidermidis, E. coli and K. pneumoniae. The most susceptible microorganisms to ethanolic and methanolic extracts were E. coli and K. pneumoniae, respectively. Also B. cereus and S. aureus showed the least sensitivity to ethanolic and methanolic extracts, respectively. The MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) of ethanolic extracts against S. aureus, E. coli, S. epidermidis and K. pneumoniae were also determined. Conclusions: With respect to the obtained results and regarding to the daily increase of the resistant microbial strains to the commercial antibiotics, it can be concluded that these extracts can be proper candidates of antibacterial substance against pathogenic bacterial species especially S. aureus, E. coli, K. pneumoniae and S. epidermidis. PMID:25147664

  17. Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review.

    PubMed

    Freires, Irlan Almeida; Denny, Carina; Benso, Bruna; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2015-01-01

    Dental caries remains the most prevalent and costly oral infectious disease worldwide. Several methods have been employed to prevent this biofilm-dependent disease, including the use of essential oils (EOs). In this systematic review, we discuss the antibacterial activity of EOs and their isolated constituents in view of a potential applicability in novel dental formulations. Seven databases were systematically searched for clinical trials, in situ, in vivo and in vitro studies addressing the topic published up to date. Most of the knowledge in the literature is based on in vitro studies assessing the effects of EOs on caries-related streptococci (mainly Streptococcus mutans) and lactobacilli, and on a limited number of clinical trials. The most promising species with antibacterial potential against cariogenic bacteria are: Achillea ligustica, Baccharis dracunculifolia, Croton cajucara, Cryptomeria japonica, Coriandrum sativum, Eugenia caryophyllata, Lippia sidoides, Ocimum americanum, and Rosmarinus officinalis. In some cases, the major phytochemical compounds determine the biological properties of EOs. Menthol and eugenol were considered outstanding compounds demonstrating an antibacterial potential. Only L. sidoides mouthwash (1%) has shown clinical antimicrobial effects against oral pathogens thus far. This review suggests avenues for further non-clinical and clinical studies with the most promising EOs and their isolated constituents bioprospected worldwide. PMID:25911964

  18. Novel Synthesis of Kanamycin Conjugated Gold Nanoparticles with Potent Antibacterial Activity

    PubMed Central

    Payne, Jason N.; Waghwani, Hitesh K.; Connor, Michael G.; Hamilton, William; Tockstein, Sarah; Moolani, Harsh; Chavda, Fenil; Badwaik, Vivek; Lawrenz, Matthew B.; Dakshinamurthy, Rajalingam

    2016-01-01

    With a sharp increase in the cases of multi-drug resistant (MDR) bacteria all over the world, there is a huge demand to develop a new generation of antibiotic agents to fight them. As an alternative to the traditional drug discovery route, we have designed an effective antibacterial agent by modifying an existing commercial antibiotic, kanamycin, conjugated on the surface of gold nanoparticles (AuNPs). In this study, we report a single-step synthesis of kanamycin-capped AuNPs (Kan-AuNPs) utilizing the combined reducing and capping properties of kanamycin. While Kan-AuNPs have increased toxicity to a primate cell line (Vero 76), antibacterial assays showed dose-dependent broad spectrum activity of Kan-AuNPs against both Gram-positive and Gram-negative bacteria, including Kanamycin resistant bacteria. Further, a significant reduction in the minimum inhibitory concentration (MIC) of Kan-AuNPs was observed when compared to free kanamycin against all the bacterial strains tested. Mechanistic studies using transmission electron microscopy and fluorescence microscopy indicated that at least part of Kan-AuNPs increased efficacy may be through disrupting the bacterial envelope, resulting in the leakage of cytoplasmic content and the death of bacterial cells. Results of this study provide critical information about a novel method for the development of antibiotic capped AuNPs as potent next-generation antibacterial agents. PMID:27330535

  19. Novel Synthesis of Kanamycin Conjugated Gold Nanoparticles with Potent Antibacterial Activity.

    PubMed

    Payne, Jason N; Waghwani, Hitesh K; Connor, Michael G; Hamilton, William; Tockstein, Sarah; Moolani, Harsh; Chavda, Fenil; Badwaik, Vivek; Lawrenz, Matthew B; Dakshinamurthy, Rajalingam

    2016-01-01

    With a sharp increase in the cases of multi-drug resistant (MDR) bacteria all over the world, there is a huge demand to develop a new generation of antibiotic agents to fight them. As an alternative to the traditional drug discovery route, we have designed an effective antibacterial agent by modifying an existing commercial antibiotic, kanamycin, conjugated on the surface of gold nanoparticles (AuNPs). In this study, we report a single-step synthesis of kanamycin-capped AuNPs (Kan-AuNPs) utilizing the combined reducing and capping properties of kanamycin. While Kan-AuNPs have increased toxicity to a primate cell line (Vero 76), antibacterial assays showed dose-dependent broad spectrum activity of Kan-AuNPs against both Gram-positive and Gram-negative bacteria, including Kanamycin resistant bacteria. Further, a significant reduction in the minimum inhibitory concentration (MIC) of Kan-AuNPs was observed when compared to free kanamycin against all the bacterial strains tested. Mechanistic studies using transmission electron microscopy and fluorescence microscopy indicated that at least part of Kan-AuNPs increased efficacy may be through disrupting the bacterial envelope, resulting in the leakage of cytoplasmic content and the death of bacterial cells. Results of this study provide critical information about a novel method for the development of antibiotic capped AuNPs as potent next-generation antibacterial agents. PMID:27330535

  20. Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea).

    PubMed

    Haug, Tor; Kjuul, Anita K; Styrvold, Olaf B; Sandsdalen, Erling; Olsen, Ørjan M; Stensvåg, Klara

    2002-10-01

    A search for antibacterial activity in different body parts of the green sea urchin Strongylocentrotus droebachiensis, the common starfish Asterias rubens, and the sea cucumber Cucumaria frondosa was conducted. Antibacterial activity was detected in extracts from several tissues in all species tested, but mainly in the coelomocyte and body wall extracts. Relatively high antibacterial activity could also be detected in gastrointestinal organs and eggs from A. rubens and in eggs from C. frondosa. Differences between active extracts regarding hydrophobicity and sensitivity to heat and proteinase K treatment indicated that several different compounds were responsible for the antibacterial activities detected. Lysozyme-like activity could be detected in several tissues from A. rubens. Haemolytic activity could be detected in all species tested, especially in the body wall extracts. Results from the current study suggest that marine echinoderms are a potential source for the discovery of novel antibiotics. PMID:12445793

  1. ZnO/graphite composites and its antibacterial activity at different conditions.

    PubMed

    Dědková, Kateřina; Janíková, Barbora; Matějová, Kateřina; Čabanová, Kristina; Váňa, Rostislav; Kalup, Aleš; Hundáková, Marianna; Kukutschová, Jana

    2015-10-01

    The paper reports laboratory preparation, characterization and in vitro evaluation of antibacterial activity of ZnO/graphite nanocomposites. Zinc chloride and sodium carbonate served as precursors for synthesis of zinc oxide, while micromilled and natural graphite were used as the matrix for ZnO nanoparticles anchoring. During the reaction of ZnCl2 with saturated aqueous solution of Na2CO3a new compound is created. During the calcination at the temperature of 500 °C this new precursors decomposes and ZnO nanoparticles are formed. Composites ZnO/graphite with 50 wt.% of ZnO particles were prepared. X-ray powder diffraction and Raman microspectroscopy served as phase-analytical methods. Scanning electron microscopy technique was used for morphology characterization of the prepared samples and EDS mapping for visualization of elemental distribution. A developed modification of the standard microdilution test was used for in vitro evaluation of daylight induced antibacterial activity and antibacterial activity at dark conditions. Common human pathogens served as microorganism for antibacterial assay. Antibacterial activity of ZnO/graphite composites could be based on photocatalytic reaction; however there is a role of Zn(2+) ions on the resulting antibacterial activity which proved the experiments in dark condition. There is synergistic effect between Zn(2+) caused and reactive oxygen species caused antibacterial activity. PMID:26318283

  2. Antibacterial activity of the body wall extracts of sea cucumber (Invertebrata; Echinodermata) on infectious oral streptococci.

    PubMed

    Kiani, Negin; Heidari, Behrooz; Rassa, Mehdi; Kadkhodazadeh, Mahdi; Heidari, Bijan

    2014-01-27

    Abstract Background: The present study was carried out to test the antibacterial effect of the body wall of the sea cucumber Holothuria leucospilota Brandt on Streptococcus mutans and Streptococcus salivarius. Methods: After sampling sea cucumbers from the Persian Gulf, different extractions were prepared. Then, aqueous, phosphate-buffered saline (PBS, pH 7.8), chloroform, hexane and methanolic extracts from sea cucumber body wall were screened for antibacterial activity against pathogenic bacteria S. mutans and S. salivarius using the disk diffusion method. Results: The PBS extract did not show any antibacterial or inhibitory activity; the chloroform extract, however, demonstrated high levels of antibacterial activity against S. salivarius while exhibiting low levels of activity against S. mutans. The hexane and methanolic extracts were found to show no antibacterial activity against S. mutans, but exhibited antibacterial activity against S. salivarius. Conclusions: In conclusion, the results demonstrated the possibility of utilizing sea cucumbers as a cheap source of potential antibacterial agents and for treating odontogenic diseases. PMID:24468613

  3. Assessment of Tamarindus indica extracts for antibacterial activity.

    PubMed

    Nwodo, Uchechukwu U; Obiiyeke, Grace E; Chigor, Vincent N; Okoh, Anthony I

    2011-01-01

    Ethanolic and aqueous (hot and cold) extracts of the fruit pulp, stem bark and leaves of Tamarindus indica were evaluated for antibacterial activity, in vitro, against 13 Gram negative and 5 Gram positive bacterial strains using agar well diffusion and macro broth dilution techniques, simultaneously. The fruit pulp extracts exhibited a wide spectrum of activity; the cold water extract against 95.5% of the test bacterial strains; and the hot water and ethanolic extracts against 90.9% and 86.4%, respectively. In contrast the cold water extract of the leaves and stem bark, each was active against 16.7%; while the ethanolic extract of each was active against 75% of the test strains. The minimum inhibitory concentrations (MIC) ranged from 7.81 mg/mL against Bacillus subtilis ATCC 6051 to 31.25 mg/mL against Escherichia coli ATCC 11775; and the minimum bactericidal concentration (MBC) ranged from 125 mg/mL against Pseudomonas aeruginosa ATCC 10145 to 250 mg/mL against Bacillus subtilis ATCC 6051. PMID:22072893

  4. Antibacterial activities of plant essential oils against Legionella pneumophila.

    PubMed

    Chang, Ching-Wen; Chang, Wei-Lung; Chang, Shang-Tzen; Cheng, Sen-Sung

    2008-01-01

    The objective of this study was to determine the antimicrobial activity of essential oils (EOs) extracted from Cinnamomum osmophloeum leaves and different tissues of Cryptomeria japonica against pathogenic Legionella pneumophila at 42 degrees C. Ten kinds of EOs were extracted by water distillation and their chemical constituents were quantified by gas chromatography-mass spectroscopy (GC-MS). The results showed that cinnamon leaf EO possessed stronger anti-L. pneumophila activity than C. japonica EO. In particular, the highest bactericidal effect was noted in contact with C. osmophloeum leaf EO of cinnamaldehyde type (characterized by its major constituent of cinnamaldehyde accounting for 91.3% of EO), regardless of contacted cell concentration (2 and 4 log CFU ml(-1)) or exposure time (10 and 60 min). Cinnamaldehyde is responsible for anti-L. pneumophila activity based on the results of antimicrobial testing and statistical analysis. Stepwise regression analyses show that EO concentration is the most significant factor affecting the bioactivity of EO. It is concluded that C. osmophloeum leaf oil of cinnamaldehyde type and its major constituent, cinnamaldehyde, possess strong anti-L. pneumophila activities, and have the great potential to be used as an antibacterial agent to control legionellosis associated with hot tubs and spa facilities widely used in homes and resorts. PMID:17659763

  5. Assessment of Tamarindus indica Extracts for Antibacterial Activity

    PubMed Central

    Nwodo, Uchechukwu U.; Obiiyeke, Grace E.; Chigor, Vincent N.; Okoh, Anthony I.

    2011-01-01

    Ethanolic and aqueous (hot and cold) extracts of the fruit pulp, stem bark and leaves of Tamarindus indica were evaluated for antibacterial activity, in vitro, against 13 Gram negative and 5 Gram positive bacterial strains using agar well diffusion and macro broth dilution techniques, simultaneously. The fruit pulp extracts exhibited a wide spectrum of activity; the cold water extract against 95.5% of the test bacterial strains; and the hot water and ethanolic extracts against 90.9% and 86.4%, respectively. In contrast the cold water extract of the leaves and stem bark, each was active against 16.7%; while the ethanolic extract of each was active against 75% of the test strains. The minimum inhibitory concentrations (MIC) ranged from 7.81 mg/mL against Bacillus subtilis ATCC 6051 to 31.25 mg/mL against Escherichia coli ATCC 11775; and the minimum bactericidal concentration (MBC) ranged from 125 mg/mL against Pseudomonas aeruginosa ATCC 10145 to 250 mg/mL against Bacillus subtilis ATCC 6051. PMID:22072893

  6. Methanolic extracts of Withania somnifera leaves, fruits and roots possess antioxidant properties and antibacterial activities

    PubMed Central

    2012-01-01

    Background Withania somnifera, also known as ashwagandha, is an important herb in ayurvedic and indigenous medical systems. The present study was designed to evaluate the antioxidant and antibacterial activities of an 80% aqueous methanolic extract of W. somnifera roots (WSREt), fruits (WSFEt) and leaves (WSLEt). Methods Several assays were performed to determine the antioxidant properties of this herb including 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity, ferric reducing antioxidant power (FRAP), ferrous chelation and inhibition of β-carotene bleaching. Results The values for DPPH, FRAP, ferrous chelation and inhibition of β carotene bleaching for the three types of extracts ranged from 101.73-801.93 μg/ml, 2.26-3.29 mM Fe/kg, 0.22-0.65 mg/ml and 69.87-79.67%, respectively, indicating that W. somnifera, particularly the leaves, possesses significant antioxidant properties. The mean ascorbic acid content was 20.60-62.60 mg/100 g, and the mean anthocyanin content was 2.86-12.50 mg/100 g. Antibacterial activities were measured using the agar well diffusion method and five pathogenic Gram-negative bacteria: Escherichia coli, Salmonella typhi, Citrobacter freundii, Pseudomonas aeruginosa and Klebsiella pneumoniae. The leaf extracts displayed the highest activity against S. typhi (32.00 ± 0.75 mm zone of inhibition), whereas the lowest activity was against K. pneumoniae (19.00 ± 1.48 mm zone of inhibition). The lowest minimum inhibitory concentration value was 6.25 mg/ml, which was against S. typhi, followed by 12.5 mg/ml against E. coli. Conclusion In addition to its antioxidant properties, W. somnifera exhibited significant antibacterial activities against Gram-negative bacteria, particularly S. typhi. PMID:23039061

  7. Isolation of the Entomopathogenic Fungal Strain Cod-MK1201 from a Cicada Nymph and Assessment of Its Antibacterial Activities.

    PubMed

    Sangdee, Kusavadee; Nakbanpote, Woranan; Sangdee, Aphidech

    2015-01-01

    The entomopathogenic fungus Cod-MK1201 was isolated from a dead cicada nymph. Three regions of ribosomal nuclear DNA, the internal transcribed spacers of nuclear ribosomal DNA repeats (ITS), the partial small subunit of rDNA (nrSSU) , and the partial large subunit of rDNA (nrLSU), and two protein-coding regions, the elongation factor 1α (EF-1α), and the largest subunit of the RNA polymerase II (rpb1) gene, were sequenced and used for fungal identification. The phylogenetic analysis of the ITS and the combined data set of the five genes indicated that the fungal isolate Cod-MK1201 is a new strain of Cordyceps sp. that is closely related to Cordyceps nipponica and C. kanzashiana. Crude extracts of mycelium-cultured Cod-MK1201 were obtained using distilled water and 50% (v/v) ethanol, and the antibacterial activity of each was determined. Both extracts had activity against Gram-positive and Gram-negative bacteria, but the ethanol extract was the more potent of the two. The antibacterial activity of the protein fractions of these extracts was also determined. The protein fraction from the ethanol extract was more antibacterial than the protein fraction from the aqueous extract. Three antibacterial constituents including adenosine, the total phenolic content (TPC), and the total flavonoid content (TFC) was also determined. The results showed that the adenosine content, the TPC, and the TFC of the ethanol extract were more active than those of the aqueous extract. Moreover, synergism was detected between these antibacterial constituents. In conclusion, the entomopathogenic fungal isolate Cod-MK1201 represents a natural source of antibacterial agents. PMID:25746406

  8. In vitro antibacterial activity of panduratin A against enterococci clinical isolates.

    PubMed

    Rukayadi, Yaya; Han, Sunghwa; Yong, Dongeun; Hwang, Jae-Kwan

    2010-01-01

    Panduratin A, a natural chalcone compound isolated from the rhizome of fingerroot (Boesenbergia rotunda (L.) MANSF. A). The antibacterial activity of panduratin A against clinical enterococci isolates was compared in terms of minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) to those of commonly used antimicrobials, according to the CLSI guidelines. Time-kill curves were constructed to assess the concentration between MIC and bactericidal activity of panduratin A at concentrations ranging from 0x MIC to 4x MIC. The activity of panduratin A against biofilm-producing enterococcal strains was also evaluated. The growth of all clinical enterococci isolates (n=23) were inhibited by panduratin A at a concentration of 2 microg/ml. Panduratin A was able to kill all clinical enterococci isolates with a MBC of 8 microg/ml. The time-kill curves demonstrated that the bactericidal endpoint for clinical enterococci was reached after 30 min of incubation at a panduratin A concentration of 4x MIC. The growth of biofilm-producing enterococcal strains can be inhibited and eradicated by panduratin A at concentrations of antibacterial activity of panduratin A against all clinical enterococci isolates was generally more potent than commonly used antimicrobials. Panduratin A has stronger activity against biofilm-producing enterococcal strains than daptomycin and linezolid. Panduratin A is an antimicrobial agent with high in vitro activity against clinical enterococci, including organisms resistant to other antimicrobials. PMID:20823562

  9. Antibiotic susceptibility, antibacterial activity and characterisation of Enterococcus faecium strains isolated from breast milk

    PubMed Central

    Kıvanç, Sertaç Argun; Kıvanç, Merih; Yiğit, Tülay

    2016-01-01

    Enterococci, which have useful biotechnological applications, produce bacteriocins, including those that exert anti-Listerial activity. The present study aimed to determine the antibiotic susceptibility patterns and antimicrobial activity of Enterococcus faecium strains isolated from human breast milk. The strains were identified using carbohydrate fermentation tests and ribotyping. Subsequently, the antibacterial activity of the isolates was investigated, and the quantities of lactic acid and hydrogen peroxide produced, and the proteolytic activity of E. faecium, were determined. In addition, biofilm formation by E. faecium strains was assessed. E. faecium strains exhibited antimicrobial activity against food-borne and clinical bacterial isolates. Furthermore, following 24 h incubation, the tested strains exhibited resistance to a pH range of 2.0–9.5 and tolerance of bile acid, lysozyme activity and phenol. Supernatants of the E. faecium TM13, TM15, TM17 and TM18 strains were shown to be effective against Listeria monocytogenes, and were also resistant to heat. Further studies are required in order to determine whether certain strains of E. faecium may be used for the development of novel antibacterial agents. PMID:27602088

  10. [Post-marketing surveillance of antibacterial activities of cefozopran against various clinical isolates--II. Gram-negative bacteria].

    PubMed

    Igari, Jun; Oguri, Toyoko; Hiramatsu, Nobuyoshi; Akiyama, Kazumitsu; Koyama, Tsuneo

    2003-10-01

    activity to CPR against C. freundii and C. koseri (MIC90: 8 and 0.125 micrograms/mL). The MIC90 of CZOP against P. mirabilis, P. vulgaris, and M. morganii was 0.25, 16, and 2 micrograms/mL, respectively. The antibacterial activity of CZOP against Providencia spp. was moderate (MIC90: 64 micrograms/mL). The antibacterial activity of CZOP against P. aeruginosa was the most potent (MIC90: 16 micrograms/mL) among the test agents and comparable to those CFPM, IPM, and MEPM. CZOP had low activity against P. fluorescens and P. putida (MIC90: 128 micrograms/mL). The antibacterial activity of CZOP against A. baumannii was comparable to those of ceftazidime (CAZ), CPR and CFPM (MIC90: 32 micrograms/mL) and against A. lwoffii was moderate (MIC90: 64 micrograms/mL). Most of the test agents including CZOP had low antibacterial activity against B. cepacia, S. maltophilia, and B. fragilis group. The MIC90 of CZOP against Prevotella/Porphyromonas was 64 micrograms/mL. Bacterial cross-resistance ratio between CZOP and other agents was low in most of the species, ranging from 0.0 to 15.1%. In non-glucose fermentative bacteria, however, the bacterial cross-resistance ratio between CZOP and CFPM, CAZ, CPR, or IPM was high, being 36.8%, 28.0%, 38.7%, or 31.1%, respectively. In conclusion, the 6-year duration study suggested that the antibacterial activity of CZOP against E. cloacae possible decreased, but against other Gram-negative bacteria was consistent with the study results obtained until the new drug application approval. PMID:14692381

  11. Elucidation of the Mode of Action of a New Antibacterial Compound Active against Staphylococcus aureus and Pseudomonas aeruginosa.

    PubMed

    Gerits, Evelien; Blommaert, Eline; Lippell, Anna; O'Neill, Alex J; Weytjens, Bram; De Maeyer, Dries; Fierro, Ana Carolina; Marchal, Kathleen; Marchand, Arnaud; Chaltin, Patrick; Spincemaille, Pieter; De Brucker, Katrijn; Thevissen, Karin; Cammue, Bruno P A; Swings, Toon; Liebens, Veerle; Fauvart, Maarten; Verstraeten, Natalie; Michiels, Jan

    2016-01-01

    Nosocomial and community-acquired infections caused by multidrug resistant bacteria represent a major human health problem. Thus, there is an urgent need for the development of antibiotics with new modes of action. In this study, we investigated the antibacterial characteristics and mode of action of a new antimicrobial compound, SPI031 (N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol), which was previously identified in our group. This compound exhibits broad-spectrum antibacterial activity, including activity against the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. We found that SPI031 has rapid bactericidal activity (7-log reduction within 30 min at 4x MIC) and that the frequency of resistance development against SPI031 is low. To elucidate the mode of action of SPI031, we performed a macromolecular synthesis assay, which showed that SPI031 causes non-specific inhibition of macromolecular biosynthesis pathways. Liposome leakage and membrane permeability studies revealed that SPI031 rapidly exerts membrane damage, which is likely the primary cause of its antibacterial activity. These findings were supported by a mutational analysis of SPI031-resistant mutants, a transcriptome analysis and the identification of transposon mutants with altered sensitivity to the compound. In conclusion, our results show that SPI031 exerts its antimicrobial activity by causing membrane damage, making it an interesting starting point for the development of new antibacterial therapies. PMID:27167126

  12. Elucidation of the Mode of Action of a New Antibacterial Compound Active against Staphylococcus aureus and Pseudomonas aeruginosa

    PubMed Central

    Gerits, Evelien; Blommaert, Eline; Lippell, Anna; O’Neill, Alex J.; Weytjens, Bram; De Maeyer, Dries; Fierro, Ana Carolina; Marchal, Kathleen; Marchand, Arnaud; Chaltin, Patrick; Spincemaille, Pieter; De Brucker, Katrijn; Thevissen, Karin; Cammue, Bruno P. A.; Swings, Toon; Liebens, Veerle; Fauvart, Maarten; Verstraeten, Natalie; Michiels, Jan

    2016-01-01

    Nosocomial and community-acquired infections caused by multidrug resistant bacteria represent a major human health problem. Thus, there is an urgent need for the development of antibiotics with new modes of action. In this study, we investigated the antibacterial characteristics and mode of action of a new antimicrobial compound, SPI031 (N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol), which was previously identified in our group. This compound exhibits broad-spectrum antibacterial activity, including activity against the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. We found that SPI031 has rapid bactericidal activity (7-log reduction within 30 min at 4x MIC) and that the frequency of resistance development against SPI031 is low. To elucidate the mode of action of SPI031, we performed a macromolecular synthesis assay, which showed that SPI031 causes non-specific inhibition of macromolecular biosynthesis pathways. Liposome leakage and membrane permeability studies revealed that SPI031 rapidly exerts membrane damage, which is likely the primary cause of its antibacterial activity. These findings were supported by a mutational analysis of SPI031-resistant mutants, a transcriptome analysis and the identification of transposon mutants with altered sensitivity to the compound. In conclusion, our results show that SPI031 exerts its antimicrobial activity by causing membrane damage, making it an interesting starting point for the development of new antibacterial therapies. PMID:27167126

  13. Synergistic antibacterial activity of the essential oil of aguaribay (Schinus molle L.).

    PubMed

    de Mendonça Rocha, Pedro M; Rodilla, Jesus M; Díez, David; Elder, Heriberto; Guala, Maria Silvia; Silva, Lúcia A; Pombo, Eunice Baltazar

    2012-01-01

    Schinus molle L. (aguaribay, aroeira-falsa, "molle", family Anacardiaceae), a native of South America, produces an active antibacterial essential oil extracted from the leaves and fruits. This work reports a complete study of its chemical composition and determines the antibacterial activity of Schinus molle L. essential oil and its main components. The results showed that the crude extract essential oil has a potent antibacterial effect on Staphylococcus aureus ATCC 25923, a strong/moderate effect on Escherichia coli ATCC 25922 and moderate/weak one on Pseudomonas aeruginosa ATCC 27853. PMID:23085653

  14. Antibacterial activity of Eisenia fetida andrei coelomic fluid: III--Relationship within the polymorphic hemolysins.

    PubMed

    Roch, P; Lassegues, M; Valembois, P

    1991-01-01

    The antibacterial activity exhibited by 10 different hemolytic, genetic families was established by measuring the inhibition of spontaneous in vitro growth by cell-free coelomic fluid toward 2 bacteria which are pathogenic for the earthworm: Bacillus megaterium (Gram +) and Aeromonas hydrophila (Gram -). Only two families (B and K) displayed potent inhibitory activities. This finding is consistent with the fact that the B family occurs most frequently in both natural as well as in industrial breedings. Nevertheless, evidence of a poor antibacterial defense in some frequent families suggests the existence of alternative antibacterial mechanisms. PMID:2050244

  15. pH-Dependent Metal Ion Toxicity Influences the Antibacterial Activity of Two Natural Mineral Mixtures

    PubMed Central

    Cunningham, Tanya M.; Koehl, Jennifer L.; Summers, Jack S.; Haydel, Shelley E.

    2010-01-01

    Background Recent studies have demonstrated that several mineral products sold for medicinal purposes demonstrate antimicrobial activity, but little is known about the physicochemical properties involved in antibacterial activity. Methodology/Principal Findings Using in vitro mineral suspension testing, we have identified two natural mineral mixtures, arbitrarily designated BY07 and CB07, with antibacterial activity against a broad-spectrum of bacterial pathogens. Mineral-derived aqueous leachates also exhibited antibacterial activity, revealing that chemical, not physical, mineral characteristics were responsible for the observed activity. The chemical properties essential for bactericidal activity against Escherichia coli were probed by testing antibacterial activity in the presence of metal chelators, the hydroxyl radical scavenger, thiourea, and varying pH levels. Chelation of the BY07 minerals with EDTA or desferrioxamine eliminated or reduced BY07 toxicity, respectively, suggesting a role of an acid-soluble metal species, particularly Fe3+ or other sequestered metal cations, in mineral toxicity. This conclusion was supported by NMR relaxation data, which indicated that BY07 and CB07 leachates contained higher concentrations of chemically accessible metal ions than leachates from non-bactericidal mineral samples. Conclusions/Significance We conclude that the acidic environment of the hydrated minerals significantly contributes to antibacterial activity by increasing the availability and toxicity of metal ions. These findings provide impetus for further investigation of the physiological effects of mineral products and their applications in complementary antibacterial therapies. PMID:20209160

  16. Nanostructured composite material graphite/TiO2 and its antibacterial activity under visible light irradiation.

    PubMed

    Dědková, Kateřina; Lang, Jaroslav; Matějová, Kateřina; Peikertová, Pavlína; Holešinský, Jan; Vodárek, Vlastimil; Kukutschová, Jana

    2015-08-01

    The paper addresses laboratory preparation, characterization and in vitro evaluation of antibacterial activity of graphite/TiO2 nanocomposites. Composites graphite/TiO2 with various ratio of TiO2 nanoparticles (30wt.%, and 50wt.%) to graphite were prepared using a thermal hydrolysis of titanylsulfate in the presence of graphite particles, and subsequently dried at 80°C. X-ray powder diffraction, transmission electron microscopy and Raman microspectroscopy served as phase-analytical methods distinguishing anatase and rutile phases in the prepared composites. Scanning and transmission electron microscopy techniques were used for characterization of morphology of the prepared samples. A developed modification of the standard microdilution test was used for in vitro evaluation of daylight induced antibacterial activity, using four common human pathogenic bacterial strains (Staphylococcus aureus, Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa). Antibacterial activity of the graphite/TiO2 nanocomposites could be based mainly on photocatalytic reaction with subsequent potential interaction of reactive oxygen species with bacterial cells. During the antibacterial activity experiments, the graphite/TiO2 nanocomposites exhibited antibacterial activity, where differences in the onset of activity and activity against bacterial strains were observed. The highest antibacterial activity evaluated as minimum inhibitory concentration was observed against P. aeruginosa after 180min of irradiation. PMID:26114221

  17. Antibacterial activity of lichen Usnea rubrotincta, Ramalina dumeticola, and Cladonia verticillata

    NASA Astrophysics Data System (ADS)

    Gunasekaran, Saranyapiriya; Rajan, Vinoshene Pillai; Samsudin, Mohd. Wahid; Din, Laily; Ramanathan, Surash; Murugaiyah, Vikneswaran

    2015-09-01

    The present study was carried out to evaluate the antibacterial activity of extract and chemical constituents of Usnea rubrotincta, Ramalina dumeticola and Cladonia verticillata. Extracts of U. rubrotincta and R. dumeticola showed promising antibacterial activity against gram positive bacteria Staphylococcus aureus and Bacillus subtilis. The lowest value of MIC (15.63 μg/mL) was observed for the acetone extract of U. rubrotincta against B. subtilis. While extract of C. verticillata was neither active against gram positive nor gram negative bacteria at the highest tested concentration of 500 μg/m. This is the first evaluation of antibacterial activity of lichens found in Malaysia and to our knowledge, this is the first report of antibacterial

  18. Antibacterial activity of Syzygium cumini and Syzygium travancoricum leaf essential oils.

    PubMed

    Shafi, P M; Rosamma, M K; Jamil, Kaiser; Reddy, P S

    2002-08-01

    The leaf essential oils of Syzygium cumini and Syzygium travancoricum were tested for their antibacterial property. The activity of S. cumini essential oil was found to be good, while that of S. travancoricum was moderate. PMID:12165339

  19. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  20. Antibacterial properties of nanoparticles.

    PubMed

    Hajipour, Mohammad J; Fromm, Katharina M; Ashkarran, Ali Akbar; Jimenez de Aberasturi, Dorleta; de Larramendi, Idoia Ruiz; Rojo, Teofilo; Serpooshan, Vahid; Parak, Wolfgang J; Mahmoudi, Morteza

    2012-10-01

    Antibacterial agents are very important in the textile industry, water disinfection, medicine, and food packaging. Organic compounds used for disinfection have some disadvantages, including toxicity to the human body, therefore, the interest in inorganic disinfectants such as metal oxide nanoparticles (NPs) is increasing. This review focuses on the properties and applications of inorganic nanostructured materials and their surface modifications, with good antimicrobial activity. Such improved antibacterial agents locally destroy bacteria, without being toxic to the surrounding tissue. We also provide an overview of opportunities and risks of using NPs as antibacterial agents. In particular, we discuss the role of different NP materials. PMID:22884769

  1. Antioxidant Content, Antioxidant Activity, and Antibacterial Activity of Five Plants from the Commelinaceae Family.

    PubMed

    Tan, Joash Ban Lee; Yap, Wei Jin; Tan, Shen Yeng; Lim, Yau Yan; Lee, Sui Mae

    2014-01-01

    Commelinaceae is a family of herbaceous flowering plants with many species used in ethnobotany, particularly in South America. However, thus far reports of their bioactivity are few and far between. The primary aim of this study was to quantify the antioxidant and antibacterial activity of five Commelinaceae methanolic leaf extracts. The antioxidant content was evaluated by the total phenolic content (TPC), total tannin content (TTC), and total flavonoid content (TFC) assays. The antioxidant activities measured were DPPH free radical scavenging (FRS), ferric reducing power (FRP), and ferrous ion chelating (FIC); of the five plants, the methanolic leaf extract of Tradescantia zebrina showed the highest antioxidant content and activity, and exhibited antibacterial activity against six species of Gram-positive and two species of Gram-negative bacteria in a range of 5-10 mg/mL based on the broth microdilution method. PMID:26785239

  2. Antioxidant Content, Antioxidant Activity, and Antibacterial Activity of Five Plants from the Commelinaceae Family

    PubMed Central

    Tan, Joash Ban Lee; Yap, Wei Jin; Tan, Shen Yeng; Lim, Yau Yan; Lee, Sui Mae

    2014-01-01

    Commelinaceae is a family of herbaceous flowering plants with many species used in ethnobotany, particularly in South America. However, thus far reports of their bioactivity are few and far between. The primary aim of this study was to quantify the antioxidant and antibacterial activity of five Commelinaceae methanolic leaf extracts. The antioxidant content was evaluated by the total phenolic content (TPC), total tannin content (TTC), and total flavonoid content (TFC) assays. The antioxidant activities measured were DPPH free radical scavenging (FRS), ferric reducing power (FRP), and ferrous ion chelating (FIC); of the five plants, the methanolic leaf extract of Tradescantia zebrina showed the highest antioxidant content and activity, and exhibited antibacterial activity against six species of Gram-positive and two species of Gram-negative bacteria in a range of 5–10 mg/mL based on the broth microdilution method. PMID:26785239

  3. Propolis induced antibacterial activity and other technical properties of cotton textiles.

    PubMed

    Sharaf, S; Higazy, A; Hebeish, A

    2013-08-01

    Propolis is a gum gathered by honey bees from various plants; the honey bees use propolis to seal holes in their honey combs, smooth out the internal wall and protect the entrance against intruders. It is composed of 50% resin (flavonoids and related phenolic acid), 30% wax, 10% essential oils, 5% pollen and 5% various organic components. As a natural mixture, propolis is widely used in medicine, cosmetics and food. So far no attempts have been yet made to make use of propolis in the realm of textile finishing. Current work presents the first systemic study targeted to build up a scientific basis for production of cotton textiles having antibacterial activity and other useful properties by making use of propolis as eco-friendly finish within the scope of green strategy. Propolis extract solution (70/30 ethanol/water) of 10% concentration was prepared as the stock. Different amounts of the latter were used along with a crosslinking agent and catalyst for treatment of cotton fabrics as per pad-dry-cure technique. Antibacterial activity of the so treated fabrics was obtained through monitoring the efficiency of the interaction of propolis with cotton cellulose. This interaction was expressed as inhibition zone diameter after the treated fabrics were exposed to (G+ve) and (G-ve) bacteria. Other properties include crease recovery, tensile strength and elongation at break. Factors affecting these properties such as type, nature and concentration of the crosslinking agent, concentration of propolis, and conditions of curing were investigated. In addition characterization of the propolis containing modified cotton fabrics including demonstration of the antibacterial activity, SEM, FTIR, durability to washing, UV protection and water repellency were performed. Based on results obtained, it is concluded that application of propolis along with glyoxal and Al2(SO4)3catalyst using pad-dry (3min/80°C), cure (5/140°C) bring about cotton textile with superior antibacterial

  4. [Antibacterial activity of enoxacin in vitro and in urine].

    PubMed

    Soussy, C J; Deforges, L; Duval, J

    1987-05-01

    Minimal inhibitory concentrations (MIC) of enoxacin (ENO) were evaluated by agar dilution, in comparison with MIC of nalidixic acid (NAL), pipemidic acid (PIP), oxolinic acid (OXO), pefloxacin (PEF), norfloxacin (NOR), ofloxacin (OFL) and ciprofloxacin (CIP), for eleven Enterobacteriaceae reference strains chosen as a function of sensitivity and level of resistance to NAL. In the four strains susceptible to NAL, MIC of ENO (0.06 to 0.25 micrograms/ml) were similar to those for PEF and NOR, 2 to 4 times inferior to those for OXO, 16 to those for PIP and 32 to those for NAL; this ratio of activity was also seen in the majority of strains resistant to NAL. Measurement of MIC of ENO for 397 recent clinical isolates confirmed efficacy of this substance against Enterobacteriaceae and showed its activity against Pseudomonas aeruginosa (mode MIC: 0.5-1 micrograms/ml), and Gram positive cocci, essentially Staphylococcus aureus (mode MIC: 0.5-1). Antibacterial activity in the urine was measured by the Heilman test in 5 male adults after two doses of 200 mg of ENO administered at 12 hours intervals, two doses of 400 mg of ENO and, in comparison two of 400 mg of PIP administered under the same conditions. Maximal inhibitory dilutions obtained with ENO reached (mean for 5 subjects): 1/64 to 1/128 after 200 mg and 1/128 to 1/512 after 400 mg for a sensitive Providencia strain (MIC ENO: 0.25); 1/32 to 1/128 and 1/64 to 1/256 for an E. coli strain of low level of resistance to NAL (MIC ENO: 2); activity was very low on a Serratia strain highly resistant to NAL (MIC ENO: 16).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3302849

  5. Antibacterial activity of silver nanoparticles grafted on stone surface.

    PubMed

    Bellissima, F; Bonini, M; Giorgi, R; Baglioni, P; Barresi, G; Mastromei, G; Perito, B

    2014-12-01

    Microbial colonization has a relevant impact on the deterioration of stone materials with consequences ranging from esthetic to physical and chemical changes. Avoiding microbial growth on cultural stones therefore represents a crucial aspect for their long-term conservation. The antimicrobial properties of silver nanoparticles (AgNPs) have been extensively investigated in recent years, showing that they could be successfully applied as bactericidal coatings on surfaces of different materials. In this work, we investigated the ability of AgNPs grafted to Serena stone surfaces to inhibit bacterial viability. A silane derivative, which is commonly used for stone consolidation, and Bacillus subtilis were chosen as the grafting agent and the target bacterium, respectively. Results show that functionalized AgNPs bind to stone surface exhibiting a cluster disposition that is not affected by washing treatments. The antibacterial tests on stone samples revealed a 50 to 80 % reduction in cell viability, with the most effective AgNP concentration of 6.7 μg/cm(2). To our knowledge, this is the first report on antimicrobial activity of AgNPs applied to a stone surface. The results suggest that AgNPs could be successfully used in the inhibition of microbial colonization of stone artworks. PMID:24151026

  6. Silver nanoparticles synthesised using plant extracts show strong antibacterial activity.

    PubMed

    Kumari, Avnesh; Guliani, Anika; Singla, Rubbel; Yadav, Ramdhan; Yadav, Sudesh Kumar

    2015-06-01

    In this study, three plants Populus alba, Hibiscus arboreus and Lantana camara were explored for the synthesis of silver nanoparticles (SNPs). The effect of reaction temperature and leaf extract (LE) concentration of P. alba, H. arboreus and L. camara was evaluated on the synthesis and size of SNPs. The SNPs were characterised by ultra-violet-visible spectroscopy, scanning electron microscopy and atomic force microscopy. The synthesis rate of SNPs was highest with LE of L. camara followed by H. arboreus and P. alba under similar conditions. L. camara LE showed maximum potential of smaller size SNPs synthesis, whereas bigger particles were formed by H. arboreous LE. The size and shape of L. camara LE synthesised SNPs were analysed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). TEM analysis revealed the formation of SNPs of average size 17±9.5 nm with 5% LE of L. camara. The SNPs synthesised by LE of L. camara showed strong antibacterial activity against Escherichia coli. The results document that desired size SNPs can be synthesised using these plant LEs at a particular temperature for applications in the biomedical field. PMID:26023158

  7. Antibacterial Activity of Various Plants Extracts Against Antibiotic-resistant Aeromonas hydrophila

    PubMed Central

    Al Laham, Shaza Anwar; Al Fadel, Frdoos Mohammad

    2014-01-01

    Background: Aeromonas hydrophila cause one of the most important diseases in fishes and lead to economic losses, and may be contaminated human beings. Objectives: The current research aimed to investigate the anti-bacterial activity shown by the extracts prepared from different parts of Olea europea, Myrtus communis, Thymus vulgaris, Rosmarinuis officinalis, and Achillea falcata that grow in Syria against A. hydrophila that causes the most dangerous bacterial diseases in fish. Materials and Methods: The study was performed in four stages: First of all, the presence of A. hydrophila was investigated in 450 Samples of Cyprinus Carpio fish using blood agar, Trypticase soya agar, and Analytical Profile Index (API20E). Secondly, the plants extract was obtained using water, absolute alcohol, then ether using Soxhlet extraction apparatus and rotary vacuum evaporator. Thirdly, the antibacterial activity of some antibiotics on these bacteria was evaluated by disk diffusion method. Finally, the antibacterial effect of the extracts was determined by disk diffusion method. Results: The studied antibiotics showed no antibacterial activity against these bacteria, except amikacin which had an acceptable effectiveness. However, the ethanol extracts of the studied plants revealed different antibacterial effects against A. hydrophila which showed antibiotic resistant. T. vulgaris extract had the strongest effect, whereas O. europea extract had the weakest activity. The water and ether petroleum extracts had no antibacterial activities. Conclusions: Ethanol extracts of the studied plants had different antibacterial effects against antibiotic-resistant A. hydrophila. T. vulgaris had the highest activity, R. officinalis had the second, and M. communis and A. falcate were in the third place, while the O. europea had the weakest antibacterial activity. PMID:25368797

  8. Report: Studies on antibacterial activity of some traditional medicinal plants used in folk medicine.

    PubMed

    Israr, Fozia; Hassan, Fouzia; Naqvi, Baqir Shyum; Azhar, Iqbal; Jabeen, Sabahat; Hasan, S M Farid

    2012-07-01

    Ethanolic extracts of eight medicinal plants commonly used in folk medicine were tested for their antibacterial activity against four Gram positive strains (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis and, Streptococcus pneumoniae) and six Gram negative strains (Escherichia coli, Proteus vulgaris, Proteus mirabilis. Salmonella typhi para A, Salmonella typhi para B and Shigella dysenteriae) that were obtained from different pathological laboratories located in Karachi, Pakistan. Disc diffusion method was used to analyze antibacterial activity. Out of eight, five medicinal plants showed antibacterial activity against two or more than two microbial species. The most effective antimicrobial plant found to be Punica granatum followed by Curcuma zedoaria Rosc, Grewia asiatica L and Carissa carandas L, Curcuma caesia Roxb respectively. From these results, it is evident that medicinal plants could be used as a potential source of new antibacterial agents. PMID:22713958

  9. Chemical composition and in vitro antioxidant and antibacterial activity of Heracleum transcaucasicum and Heracleum anisactis roots essential oil

    PubMed Central

    Torbati, Mohammadali; Nazemiyeh, Hossein; Lotfipour, Farzaneh; Nemati, Mahboob; Asnaashari, Solmaz; Fathiazad, Fatemeh

    2014-01-01

    Introduction: In vitro antioxidant and antibacterial activity and volatile compositions of two Heracleum species (Apiaceae) including Heracleum transcaucasicum and Heracleum anisactis roots Essential Oil (EO) were investigated. Methods: The volatile compositions of EOs were analyzed by GC/Mass spectroscopy. To detect the antioxidant activity of essential oils TLC-bioautography and DPPH radical scavenging assay by spectrophotometry was performed. Additionally, the antibacterial activity of two essential oils were studied and compared against four pathogenic bacteria by agar disc diffusion method and MIC values of the EOs were determined using the broth dilution method. Results: Myristicin was the dominant component in both EOs. It was identified as 96.87% and 95.15% of the essential oil composition of H. transcaucasicum and H. anisactis roots, respectively. The TLC-bioautography showed antioxidant spots in both EOs and IC50 of H. anisactis and H. transcaucasicum EO was found to be 54 μg × ml (-1) and 77 μg × ml (-1), respectively. Regarding the antimicrobial assay, H. anisactis EO exhibited weak to moderate antibacterial activity against gram-positive bacteria and also Escherichia coli, whereas the essential oil from H. transcaucasicum was inactive. Conclusion: Based on the results from this study, both tested EOs mainly consist of myristicin. Despite the presence of myristicin with known antibacterial property, the EO from H. transcacausicum showed no antibacterial activity. Thus it is supposed that the biological activity of plants is remarkably linked to the extracts’ chemical profile and intercomponents’ synergistic or antagonistic effect could play a crucial role in bioactivity of EOs and other plant extracts. PMID:25035849

  10. Investigation of the chemical composition-antibacterial activity relationship of essential oils by chemometric methods.

    PubMed

    Miladinović, Dragoljub L; Ilić, Budimir S; Mihajilov-Krstev, Tatjana M; Nikolić, Nikola D; Miladinović, Ljiljana C; Cvetković, Olga G

    2012-05-01

    The antibacterial effects of Thymus vulgaris (Lamiaceae), Lavandula angustifolia (Lamiaceae), and Calamintha nepeta (Lamiaceae) Savi subsp. nepeta var. subisodonda (Borb.) Hayek essential oils on five different bacteria were estimated. Laboratory control strain and clinical isolates from different pathogenic media were researched by broth microdilution method, with an emphasis on a chemical composition-antibacterial activity relationship. The main constituents of thyme oil were thymol (59.95%) and p-cymene (18.34%). Linalool acetate (38.23%) and β-linalool (35.01%) were main compounds in lavender oil. C. nepeta essential oil was characterized by a high percentage of piperitone oxide (59.07%) and limonene (9.05%). Essential oils have been found to have antimicrobial activity against all tested microorganisms. Classification and comparison of essential oils on the basis of their chemical composition and antibacterial activity were made by utilization of appropriate chemometric methods. The chemical principal component analysis (PCA) and hierachical cluster analysis (HCA) separated essential oils into two groups and two sub-groups. Thyme essential oil forms separate chemical HCA group and exhibits highest antibacterial activity, similar to tetracycline. Essential oils of lavender and C. nepeta in the same chemical HCA group were classified in different groups, within antibacterial PCA and HCA analyses. Lavender oil exhibits higher antibacterial ability in comparison with C. nepeta essential oil, probably based on the concept of synergistic activity of essential oil components. PMID:22389175

  11. Antibacterial activity of kaolinite/nanoTiO2 composites in relation to irradiation time.

    PubMed

    Dědková, Kateřina; Matějová, Kateřina; Lang, Jaroslav; Peikertová, Pavlína; Kutláková, Kateřina Mamulová; Neuwirthová, Lucie; Frydrýšek, Karel; Kukutschová, Jana

    2014-06-01

    The paper addresses laboratory preparation and antibacterial activity testing of kaolinite/nanoTiO2 composite in respect of the daylight irradiation time. Kaolinite/nanoTiO2 composites with 20 and 40 wt% of TiO2 were laboratory prepared, dried at 105 °C and calcined at 600 °C. The calcination caused transformation of kaolinite to metakaolinite and origination of the metakaolinite/nanoTiO2 composite. X-ray powder diffraction, Raman and FTIR spectroscopic methods revealed titanium dioxide only in the form of anatase in all evaluated samples (non-calcined and calcined) and also transformation of kaolinite to metakaolinite after the calcination treatment. Scanning electron microscopy was used as a method for characterization of morphology and elemental composition of the studied samples. A standard microdilution test was used to determine the antibacterial activity using four human pathogenic bacterial strains (Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa). A lamp with a wide spectrum bulb simulating daylight was used for induction of photocatalysis. The antibacterial assays found all the KATI samples to have antibacterial potency with different onset of the activity when calcined samples exhibited antibacterial activity earlier than the non-calcined. Significant difference in antibacterial activity of KATI samples for different bacterial strains was not observed. PMID:24792569

  12. Antibacterial activities of Groebke-Blackburn-Bienaymé derived imidazo[1,2-a]pyridin-3-amines

    PubMed Central

    Shukla, Nikunj M.; Salunke, Deepak B.; Yoo, Euna; Mutz, Cole A.; Balakrishna, Rajalakshmi; David, Sunil A.

    2012-01-01

    We sought to explore the imidazo[1,2-a]pyridin-3-amines for TLR7 (or 8)-modulatory activities. This chemotype, readily accessed via the Groebke-Blackburn-Bienaymé multi-component reaction, resulted in compounds that were TLR7/8-inactive, but exhibited bacteriostatic activity against Gram-positive bacteria, including methicillin-resistant S. aureus (MRSA). To investigate the mechanism of antibacterial activity of this new chemotype, a resistant strain of S. aureus was generated by serially passaging the organism in escalating doses of the most active analogue. A comparison of minimum inhibitory concentrations (MICs) of known bacteriostatic agents in wild-type and resistant strains indicates a novel mechanism of action. Structure-activity relationship studies have led to the identification of positions on the scaffold for additional structural modifications that should allow for the introduction of probes designed to examine cognate binding partners and molecular targets, while not significantly compromising antibacterial potency. PMID:22925449

  13. Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential anti-bacterial activity.

    PubMed

    Chen, Zhen-Hua; Zheng, Chang-Ji; Sun, Liang-Peng; Piao, Hu-Ri

    2010-12-01

    With an intention to synergize the anti-bacterial activity of chalcones and rhodanine-3-acetic acid, several hybrid compounds possessing chalcone and rhodanine-3-acetic acid moieties were synthesized and tested for their anti-bacterial activity. Some compounds presented great anti-microbial activities against Gram-positive bacteria (including the multidrug-resistant clinical isolates). This class of compounds presented high potency against Staphylococcus aureus, among which the derivatives 5k with a MIC of 2 μg/mL was as active as the standard drug (norfloxacin) and less active than oxacillin. Compounds 5a-s did not inhibit the growth of Gram-negative bacteria Escherichia coli CCARM 1924 or E. coli CCARM 1356 at 64 μg/mL. PMID:20889240

  14. Screening for antibacterial activity of some Turkish plants against fish pathogens: a possible alternative in the treatment of bacterial infections

    PubMed Central

    Turker, Hakan; Yıldırım, Arzu Birinci

    2015-01-01

    The antibacterial activity of ethanolic and aqueous crude extracts from 36 plants in Turkey, including seven endemic species, against fish pathogens was studied using the disc diffusion assay. The extract that was most active against all microbial strains, except Aeromonas salmonicida, was that of Dorycnium pentaphyllum. Some of the extracts also showed a very broad spectrum of potent antimicrobial activity. The extract of Anemone nemorosa showed the highest antimicrobial activity against Vibrio anguillarum. V. anguillarum, a Gram-negative bacterium, appeared to be the most susceptible to the plant extracts used in this experiment. To the best of our knowledge, this is the first report on the antimicrobial activity of 11 of the studied plants. The preliminary screening assay indicated that some of the Turkish plants with antibacterial properties may offer alternative therapeutic agents against bacterial infections in aquaculture industry. PMID:26019642

  15. Antibacterial activities and structure-activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes.

    PubMed

    Omosa, Leonidah K; Midiwo, Jacob O; Mbaveng, Armelle T; Tankeo, Simplice B; Seukep, Jackson A; Voukeng, Igor K; Dzotam, Joachim K; Isemeki, John; Derese, Solomon; Omolle, Ruth A; Efferth, Thomas; Kuete, Victor

    2016-01-01

    In the current study forty eight compounds belonging to anthraquinones, naphthoquinones, benzoquinones, flavonoids (chalcones and polymethoxylated flavones) and diterpenoids (clerodanes and kauranes) were explored for their antimicrobial potential against a panel of sensitive and multi-drug resistant Gram-negative and Gram-positive bacteria. The minimal inhibitory concentration (MIC) determinations on the tested bacteria were conducted using modified rapid INT colorimetric assay. To evaluate the role of efflux pumps in the susceptibility of Gram-negative bacteria to the most active compounds, they were tested in the presence of phenylalanine arginine β-naphthylamide (PAβN) (at 30 µg/mL) against selected multidrug resistance (MDR) bacteria. The anthraquinone, emodin, naphthaquinone, plumbagin and the benzoquinone, rapanone were active against methicillin resistant Staphylococcus aureus (MRSA) strains of bacteria with MIC values ranging from 2 to 128 μg/mL. The structure activity relationships of benzoquinones against the MDR Gram-negative phenotype showed antibacterial activities increasing with increase in side chain length. In the chalcone series the presence of a hydroxyl group at C3' together with a methoxy group and a second hydroxyl group in meta orientation in ring B of the chalcone skeleton appeared to be necessary for minimal activities against MRSA. In most cases, the optimal potential of the active compounds were not attained as they were extruded by bacterial efflux pumps. However, the presence of the PAβN significantly increased the antibacterial activities of emodin against Gram-negative MDR E. coli AG102, 100ATet; K. pneumoniae KP55 and KP63 by >4-64 g/mL. The antibacterial activities were substantially enhanced and were higher than those of the standard drug, chloramphenicol. These data clearly demonstrate that the active compounds, having the necessary pharmacophores for antibacterial activities, including some quinones and chalcones are

  16. The drosomycin multigene family: three-disulfide variants from Drosophila takahashii possess antibacterial activity

    PubMed Central

    Gao, Bin; Zhu, Shunyi

    2016-01-01

    Drosomycin (DRS) is a strictly antifungal peptide in Drosophila melanogaster, which contains four disulfide bridges (DBs) with three buried in molecular interior and one exposed on molecular surface to tie the amino- and carboxyl-termini of the molecule together (called wrapper disulfide bridge, WDB). Based on computational analysis of genomes of Drosophila species belonging to the Oriental lineage, we identified a new multigene family of DRS in Drosphila takahashii that includes a total of 11 DRS-encoding genes (termed DtDRS-1 to DtDRS-11) and a pseudogene. Phylogenetic tree and synteny analyses reveal orthologous relationship between DtDRSs and DRSs, indicating that orthologous genes of DRS-1, DRS-2, DRS-3 and DRS-6 have undergone duplication in D. takahashii and three amplifications (DtDRS-9 to DtDRS-11) of DRS-3 have lost WDB. Among the 11 genes, five are transcriptionally active in adult fruitflies. The ortholog of DRS (DtDRS-1) shows high structural and functional similarity to DRS while two WDB-deficient members display antibacterial activity accompanying complete loss or remarkable reduction of antifungal activity. To the best of our knowledge, this is the first report on the presence of three-disulfide antibacterial DRSs in a specific Drosophila species, suggesting a potential role of DB loss in neofunctionalization of a protein via structural adjustment. PMID:27562645

  17. The drosomycin multigene family: three-disulfide variants from Drosophila takahashii possess antibacterial activity.

    PubMed

    Gao, Bin; Zhu, Shunyi

    2016-01-01

    Drosomycin (DRS) is a strictly antifungal peptide in Drosophila melanogaster, which contains four disulfide bridges (DBs) with three buried in molecular interior and one exposed on molecular surface to tie the amino- and carboxyl-termini of the molecule together (called wrapper disulfide bridge, WDB). Based on computational analysis of genomes of Drosophila species belonging to the Oriental lineage, we identified a new multigene family of DRS in Drosphila takahashii that includes a total of 11 DRS-encoding genes (termed DtDRS-1 to DtDRS-11) and a pseudogene. Phylogenetic tree and synteny analyses reveal orthologous relationship between DtDRSs and DRSs, indicating that orthologous genes of DRS-1, DRS-2, DRS-3 and DRS-6 have undergone duplication in D. takahashii and three amplifications (DtDRS-9 to DtDRS-11) of DRS-3 have lost WDB. Among the 11 genes, five are transcriptionally active in adult fruitflies. The ortholog of DRS (DtDRS-1) shows high structural and functional similarity to DRS while two WDB-deficient members display antibacterial activity accompanying complete loss or remarkable reduction of antifungal activity. To the best of our knowledge, this is the first report on the presence of three-disulfide antibacterial DRSs in a specific Drosophila species, suggesting a potential role of DB loss in neofunctionalization of a protein via structural adjustment. PMID:27562645

  18. Determination of Untreated Whole-Milk Effects on In Vitro Antibacterial Activity

    PubMed Central

    Van Natta, J. P.; Lo, P. W.; Chang, T. S.

    1970-01-01

    The effect of fresh whole milk without pasteurization or other pretreatment on in vitro antibacterial activity of selected compounds was determined in broth dilution. The milk was collected by hand directly from dairy goats, or by syringe or cannula from bovine quarters showing low bacterial counts. Antibacterial activity was determined in 50% (v/v) milk-broth medium against sensitive mastitis-etiologic strains of Streptococcus agalactiae and Staphylococcus aureus. The indicator salt 2,3,5-triphenyltetrazolium chloride was incorporated in the milk broth medium to determine inoculum growth. Contaminant interference was circumvented through early as well as late readings and comparisons with uninoculated control tubes, with and without the test compounds. Application of the method with more than 75 compounds, including nitrofurans, antibiotics, and other chemicals uncovered marked degrees of milk interference. The method warrants routine use among preliminary screens to relate in vitro with in vivo observations of antimicrobial activity. Similar procedures may be used with serum, skim milk, or mastitis-milk media for separating effects due to protein, lipid, or other elements in product evaluation. PMID:5461785

  19. Synthesis and structure-activity relationship of amidine derivatives of 3,4-ethylenedioxythiophene as novel antibacterial agents.

    PubMed

    Stolić, Ivana; Čipčić Paljetak, Hana; Perić, Mihaela; Matijašić, Mario; Stepanić, Višnja; Verbanac, Donatella; Bajić, Miroslav

    2015-01-27

    Current antibacterial chemotherapeutics are facing an alarming increase in bacterial resistance pressuring the search for novel agents that would expand the available therapeutic arsenal against resistant bacterial pathogens. In line with these efforts, a series of 9 amidine derivatives of 3,4-ethylenedioxythiophene were synthesized and, together with 18 previously synthesized analogs, evaluated for their relative DNA binding affinity, in vitro antibacterial activities and preliminary in vitro safety profile. Encouraging antibacterial activity of several subclasses of tested amidine derivatives against Gram-positive (including resistant MRSA, MRSE, VRE strains) and Gram-negative bacterial strains was observed. The bis-phenyl derivatives were the most antibacterially active, while compound 19 from bis-benzimidazole class exhibited the widest spectrum of activity (with MIC of 4, 2, 0.5 and ≤0.25 μg/ml against laboratory strains of Staphyloccocus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Moraxella catarrhalis, respectively and 4-32 μg/ml against clinical isolates of sensitive and resistant S. aureus, Staphylococcus epidermidis and Enterococcus faecium) and also demonstrated the strongest DNA binding affinity (ΔTm of 15.4 °C). Asymmetrically designed compounds and carboxamide-amidines were, in general, less active. Molecular docking indicated that the shape of the 3,4-ethylenedioxythiophene derivatives and their ability to form multiple electrostatic and hydrogen bonds with DNA, corresponds to the binding modes of other minor-groove binders. Herein reported results encourage further investigation of this class of compounds as novel antibacterial DNA binding agents. PMID:25461312

  20. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract

    PubMed Central

    2012-01-01

    Background This study evaluated, using in vitro assays, the antibacterial, antioxidant, and tyrosinase-inhibition activities of methanolic extracts from peels of seven commercially grown pomegranate cultivars. Methods Antibacterial activity was tested on Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia) using a microdilution method. Several potential antioxidant activities, including radical-scavenging ability (RSA), ferrous ion chelating (FIC) and ferric ion reducing antioxidant power (FRAP), were evaluated. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin and kojic acid as positive controls. Furthermore, phenolic contents including total flavonoid content (TFC), gallotannin content (GTC) and total anthocyanin content (TAC) were determined using colourimetric methods. HPLC-ESI/MSn analysis of phenolic composition of methanolic extracts was also performed. Results Methanolic peel extracts showed strong broad-spectrum activity against Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentrations (MIC) ranging from 0.2 to 0.78 mg/ml. At the highest concentration tested (1000 μg/ml), radical scavenging activities were significantly higher in Arakta (83.54%), Ganesh (83.56%), and Ruby (83.34%) cultivars (P< 0.05). Dose dependent FIC and FRAP activities were exhibited by all the peel extracts. All extracts also exhibited high inhibition (>50%) against monophenolase and diphenolase activities at the highest screening concentration. The most active peel extract was the Bhagwa cultivar against monophenolase and the Arakta cultivar against diphenolase with IC50 values of 3.66 μg/ml and 15.88 μg/ml, respectively. High amounts of phenolic compounds were found in peel extracts with the highest and lowest total phenolic contents of 295.5 (Ganesh) and 179.3 mg/g dry extract (Molla de Elche), respectively

  1. Synthesis and characterization of waterborne polyurethane/Cu(II)-loaded hydroxyapatite nanocomposites with antibacterial activity.

    PubMed

    Zhao, Cai-Xia; Zhang, Wei-De; Mai, Ai-Ping; Huang, Xiao-Mo; Ouyang, You-Sheng

    2011-08-01

    A novel kind of environmentally friendly nanocomposites, waterborne polyurethane (WBPU)/Cu(II)-loaded hydroxyapatite (CuHAp), with improved physical properties and antibacterial activity have been prepared via in-situ polymerization from functionalized CuHAp nanoparticles (CuHAp NPs). The interaction of the CuHAp NPs with isophorone diisocyanate to form the functionalized CuHAp NPs containing isocyanate groups (CuHAp-g-NCO) has been studied. The microstructure and particle distribution of the nanocomposites were observed using scanning electron microscopy. The improvements of mechanical properties, thermal stability and water resistance of the nanocomposites have also been evaluated. Finally, the antibacterial activity was tested against G(-) Escherichia coli and G(+) Staphylococcus aureus by the zone of inhibition test and the direct contact test. The long-lasting antibacterial activity was studied by measuring antibacterial ability of the nanocomposites after being immersed in water. The results indicate that WBPU incorporation with CuHAp NPs shows strong antibacterial activity upon contact, and long-lasting antibacterial property. PMID:22103080

  2. Synthesis and in vitro antibacterial activity of 7-(3-alkoxyimino-4-amino-4-methylpiperidin-1-yl) fluoroquinolone derivatives.

    PubMed

    Wang, Ju-Xian; Zhang, Yi-Bin; Liu, Ming-Liang; Wang, Bo; Chai, Yun; Li, Su-Jie; Guo, Hui-Yuan

    2011-06-01

    A series of novel 7-(3-alkoxyimino-4-amino-4-methylpiperidin-1-yl)fluoroquinolone derivatives were designed, synthesized and evaluated for their in vitro antibacterial activity and cytotoxicity. All of the target compounds have potent antibacterial activity against the tested Gram-positive and Gram-negative strains, and exhibit good potency in inhibiting the growth of Staphylococcus aureus including MRSA, Staphylococcus epidermidis including MRSE and Streptococcus pneumoniae (MICs: 0.125-4 μg/mL). Compound 22, with the best activity against Gram-positive strains, is 4-16 fold more potent than gemifloxacin, gatifloxacin and levofloxacin against Enterococcus faecalis, and 16- and 4-fold more potent than levofloxacin against S. epidermidis 09-6 and S. pneumoniae 08-4, respectively. PMID:21481984

  3. Streptococcal Surface Proteins Activate the Contact System and Control Its Antibacterial Activity*

    PubMed Central

    Wollein Waldetoft, Kristofer; Svensson, Lisbeth; Mörgelin, Matthias; Olin, Anders I.; Nitsche-Schmitz, D. Patric; Björck, Lars; Frick, Inga-Maria

    2012-01-01

    Group G streptococci (GGS) are important bacterial pathogens in humans. Here, we investigated the interactions between GGS and the contact system, a procoagulant and proinflammatory proteolytic cascade that, upon activation, also generates antibacterial peptides. Two surface proteins of GGS, protein FOG and protein G (PG), were found to bind contact system proteins. Experiments utilizing contact protein-deficient human plasma and isogenic GGS mutant strains lacking FOG or PG showed that FOG and PG both activate the procoagulant branch of the contact system. In contrast, only FOG induced cleavage of high molecular weight kininogen, generating the proinflammatory bradykinin peptide and additional high molecular weight kininogen fragments containing the antimicrobial peptide NAT-26. On the other hand, PG protected the bacteria against the antibacterial effect of NAT-26. These findings underline the significance of the contact system in innate immunity and demonstrate that GGS have evolved surface proteins to exploit and modulate its effects. PMID:22648411

  4. Dual Mode Antibacterial Activity of Ion Substituted Calcium Phosphate Nanocarriers for Bone Infections

    PubMed Central

    Sampath Kumar, T. S.; Madhumathi, K.; Rubaiya, Y.; Doble, Mukesh

    2015-01-01

    Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP) bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria. In the present work, a dual mode antibiotic delivery system with antibacterial ion substituted calcium deficient hydroxyapatite (CDHA) nanoparticles has been developed. Antibacterial ions such as zinc, silver, and strontium have been incorporated into CDHA at concentrations of 6, 0.25–0.75, and 2.5–7.5 at. %, respectively. The samples were found to be phase pure, acicular nanoparticles of length 40–50 nm and width 5–6 nm approximately. The loading and release profile of doxycycline, a commonly used antibiotic, was studied from the nanocarriers. The drug release was studied for 5 days and the release profile was influenced by the ion concentrations. The release of antibacterial ions was studied over a period of 21 days. The ion substituted CDHA samples were tested for antibacterial efficacy on Staphylococcus aureus and Escherichia coli by MIC/MBC studies and time-kill assay. AgCDHA and ZnCDHA showed high antibacterial activity against both bacteria, while SrCDHA was weakly active against S. aureus. Present study shows that the antibiotic release can provide the initial high antibacterial activity, and the sustained ion release can provide a long-term antibacterial activity. Such dual mode antibiotic and antibacterial ion release offers an efficient and potent way to treat an incumbent

  5. Semisynthetic Lipopeptides Derived from Nisin Display Antibacterial Activity and Lipid II Binding on Par with That of the Parent Compound.

    PubMed

    Koopmans, Timo; Wood, Thomas M; 't Hart, Peter; Kleijn, Laurens H J; Hendrickx, Antoni P A; Willems, Rob J L; Breukink, Eefjan; Martin, Nathaniel I

    2015-07-29

    The lipid II-binding N-terminus of nisin, comprising the so-called A/B ring system, was synthetically modified to provide antibacterially active and proteolytically stable derivatives. A variety of lipids were coupled to the C-terminus of the nisin A/B ring system to generate semisynthetic constructs that display potent inhibition of bacterial growth, with activities approaching that of nisin itself. Most notable was the activity observed against clinically relevant bacterial strains including MRSA and VRE. Experiments with membrane models indicate that these constructs operate via a lipid II-mediated mode of action without causing pore formation. A lipid II-dependent mechanism of action is further supported by antagonization assays wherein the addition of lipid II was found to effectively block the antibacterial activity of the nisin-derived lipopeptides. PMID:26122963

  6. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida).

    PubMed

    Céspedes, Carlos L; Avila, J Guillermo; Martínez, Andrés; Serrato, Blanca; Calderón-Mugica, José C; Salgado-Garciglia, Rafael

    2006-05-17

    Mexican tarragon (Tagetes lucida Cv. Asteraceae: Campanulatae) is an important, nutritious plant and an effective herbal medicine. Seven coumarins, 7,8-dihydroxycoumarin (4), umbelliferone (7-hydroxycoumarin) (5), scoparone (6,7-dimethoxycoumarin) (7), esculetin (6,7-dihydroxycoumarin) (11), 6-hydroxy-7-methoxycoumarin (12), herniarin (7-methoxycoumarin) (13), and scopoletin (6-methoxy-7-hydroxycoumarin) (14), and three flavonoids, patuletin (18), quercetin (19), and quercetagetin (20), were isolated from CH2Cl2 and MeOH extracts from aerial parts of T. lucida. In addition, 6,7-diacetoxy coumarin (15), 6-methoxy-7-acetylcoumarin (16), and 6-acetoxy-7-methoxycoumarin (17) derivatives were synthesized. 8-Methoxypsoralen (1), 8-acetyl-7-hydroxycoumarin (2), 7,8-dihydroxy-6-meth-oxycoumarin (3), 6,7-dimethoxy-4-methylcoumarin (6), 5,7-dihydroxy-4-methylcoumarin (8), 4-hydroxycoumarin (9), 4-hydroxy-6,7-dimethylcoumarin (10), naringenin (21), glycoside-7-rhamnonaringin (22), and rutin (23) were commercially obtained (Sigma-Aldrich). All of these compounds and extracts (M1 and M2) were assayed against bacteria and fungi. The antibacterial activity was determined on Bacillus subtilis, Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Salmonella typhi, Salmonella sp., Shigella boydii, Shigella sp., Enterobacter aerogenes, Enterobacter agglomerans, Sarcina lutea, Staphylococcus epidermidis, Staphylococcus aureus, Yersinia enterolitica, Vibrio cholerae (three El Tor strains, CDC-V12, clinic case, and INDRE-206, were obtained from contaminated water), and V. cholerae (NO-O1). The evaluated fungi were Aspergillus niger, Penicillium notatum, Fusarium moniliforme, Fusarium sporotrichum, Rhizoctonia solani, and Trichophyton mentagrophytes. The most active compounds against Gram-positive and -negative bacteria were the dihydroxylated coumarins 3 and 4. In addition, 2-4, 6, 7, and 11 showed an interesting activity against V. cholerae, a key bacterium in the contaminated

  7. Antibacterial activity of Phyllantus emblica, Coriandrum sativum, Culinaris medic, Lawsonia alba and Cucumis sativus.

    PubMed

    Khan, Dawood Ali; Hassan, Fouzia; Ullah, Hanif; Karim, Sabiha; Baseer, Abdul; Abid, Mobasher Ali; Ubaidi, Muhammad; Khan, Shujaat Ali; Murtaza, Ghulam

    2013-01-01

    Present study deals with the demonstration of the antibacterial activity of very common medicinal plants of Pakistani origin i.e., Phyllantus emblica, Coriandrum sativum, Culinaris medic, Lawsonia alba and Cucumis sativus. The extracts were prepared in crude form by the use of hydro-alcoholic solution and were screened for antibacterial activity against various bacterial species by disk diffusion method. Assay was performed using clinical isolates of B. cereus, S. aureus, P. aeruginosa and E. coli. Crude extract of Phyllantus emblica fruit exhibited strong activity against standard cultures of all studied bacteria. Lawsonia alba showed good activity against standard cultures of all the used microorganisms. Coriandrum sativum was effective only against Bacillus cereus, while Cucumis sativus and Culinaris medic showed poor activity against Pseudomonas aeruginosa only. Hence, Phyllantus emblica exhibited strong antibacterial activity against a wide range of bacteria it means that Phyllantus emblica extract contains some compounds which have broad spectrum of bactericidal activity. PMID:24147363

  8. Antibacterial activity and reusability of CNT-Ag and GO-Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Kim, Ji Dang; Yun, Hyosuk; Kim, Gwui Cheol; Lee, Chul Won; Choi, Hyun Chul

    2013-10-01

    A facile approach to the synthesis of novel CNT-Ag and GO-Ag antibacterial materials, in which thiol groups are utilized as linkers to secure silver (Ag) nanoparticles to the CNT and GO surfaces without agglomeration, is reported. The resulting CNT-Ag and GO-Ag samples were characterized by performing TEM, XRD, Auger, XPS, and Raman measurements, which revealed that in these antibacterial materials size-similar and quasi-spherical Ag nanoparticles are anchored to the CNT and GO surfaces. The Ag nanoparticles in CNT-Ag and GO-Ag have narrow size distributions with average diameters of 2.6 and 3.5 nm respectively. The antibacterial activities of CNT-Ag and GO-Ag against Escherichia coli were assessed with the paper-disk diffusion method and by determining the minimal inhibitory concentrations (MICs). CNT-Ag was found to have higher antibacterial activity than the reference Ag colloid. Moreover, both CNT-Ag and GO-Ag retain more than 50% of their original antibacterial activities after 20 washes with detergent, which indicates their potential as antibacterial materials for laboratory and medical purposes.

  9. Synthesis and antibacterial activity of novel cationic BODIPY photosensitizers.

    PubMed

    Caruso, E; Banfi, S; Barbieri, P; Leva, B; Orlandi, V T

    2012-09-01

    BODIPYs are versatile dyes never tested before in photodynamic application against prokaryotes. We specifically synthesized two cationic BODIPYs (compounds 3 and 4) with structural features suitable for this pourpose. The novel BODIPYs are both characterized by the presence of one pyridinium cationic group on position 8 and two iodine atoms on 2,6-positions of the dipyrrolylmethene structure, thus ensuring solubility in 1/1 water/organic solvent mixture and a good singlet oxygen formation rate. These two photosensitizers differ only in the moiety linked on pyridine nitrogen atom as 3 and 4 bear a methyl and a benzyl group, respectively. BODIPYs 3 and 4 were tested against two bacterial model strains, the Gram positive Staphylococcus xylosus and the Gram negative Escherichia coli. Despite the small structural modification between 3 and 4, a remarkable difference in photocatalyzed efficacy against the model microorganisms was observed. In particular methylated compound 3 was found much more efficient with respect to the benzylated one (4). As consequence, in-depth examination of the antibacterial activity was performed using the more efficient compound 3. A high degree of phototoxicity (>6 log units) was observed with the photosensitizer 0.5 μM against S. xylosus and 5.0 μM against E. coli, following 5 min irradiation with a green LED device (light dose 1.38 J/cm(2)). No dark toxicity was observed up to 40 μM. Further studies indicate that the phototoxic efficacy induced by BODIPY 3 depends both on its concentration and on light dose, which can be specifically modulated to achieve the eradication of the tester strains. PMID:22682365

  10. Antioxidant, Antibacterial, and Cytotoxic Activities of the Ethanolic Origanum vulgare Extract and Its Major Constituents

    PubMed Central

    Coccimiglio, John; Alipour, Misagh; Jiang, Zi-Hua; Gottardo, Christine

    2016-01-01

    Oregano is a perennial shrub that grows in the mountains of the Mediterranean and Euro/Irano-Siberian regions. This study was conducted to identify the major constituents of the ethanolic Origanum vulgare extract and examine the cytotoxic, antioxidant, and antibacterial properties of the extract but more importantly the contribution of its specific major constituent(s) or their combination to the overall extract biological activity. Gas chromatography/mass spectroscopy analysis showed that the extract contained monoterpene hydrocarbons and phenolic compounds, the major ones being carvacrol and thymol and to a lesser extent p-cymene, 1-octacosanol, creosol, and phytol. A549 epithelial cells challenged with the extract showed a concentration-dependent increase in cytotoxicity. A combination of thymol and carvacrol at equimolar concentrations to those present in the extract was less cytotoxic. The A549 cells pretreated with nonlethal extract concentrations protected against hydrogen-peroxide-induced cytotoxicity, an antioxidant effect more effective than the combination of equimolar concentrations of thymol/carvacrol. Inclusion of p-cymene and/or 1-octacosanol did not alter the synergistic antioxidant effects of the carvacrol/thymol mixture. The extract also exhibited antimicrobial properties against Gram-positive and Gram-negative bacterial strains including clinical isolates. In conclusion, the oregano extract has cytotoxic, antioxidant, and antibacterial activities mostly attributed to carvacrol and thymol. PMID:27051475

  11. Antioxidant, Antibacterial, and Cytotoxic Activities of the Ethanolic Origanum vulgare Extract and Its Major Constituents.

    PubMed

    Coccimiglio, John; Alipour, Misagh; Jiang, Zi-Hua; Gottardo, Christine; Suntres, Zacharias

    2016-01-01

    Oregano is a perennial shrub that grows in the mountains of the Mediterranean and Euro/Irano-Siberian regions. This study was conducted to identify the major constituents of the ethanolic Origanum vulgare extract and examine the cytotoxic, antioxidant, and antibacterial properties of the extract but more importantly the contribution of its specific major constituent(s) or their combination to the overall extract biological activity. Gas chromatography/mass spectroscopy analysis showed that the extract contained monoterpene hydrocarbons and phenolic compounds, the major ones being carvacrol and thymol and to a lesser extent p-cymene, 1-octacosanol, creosol, and phytol. A549 epithelial cells challenged with the extract showed a concentration-dependent increase in cytotoxicity. A combination of thymol and carvacrol at equimolar concentrations to those present in the extract was less cytotoxic. The A549 cells pretreated with nonlethal extract concentrations protected against hydrogen-peroxide-induced cytotoxicity, an antioxidant effect more effective than the combination of equimolar concentrations of thymol/carvacrol. Inclusion of p-cymene and/or 1-octacosanol did not alter the synergistic antioxidant effects of the carvacrol/thymol mixture. The extract also exhibited antimicrobial properties against Gram-positive and Gram-negative bacterial strains including clinical isolates. In conclusion, the oregano extract has cytotoxic, antioxidant, and antibacterial activities mostly attributed to carvacrol and thymol. PMID:27051475

  12. The Effect of Ultrafine Process on the Dissolution, Antibacterial Activity, and Cytotoxicity of Coptidis rhizoma

    PubMed Central

    Jiang, Zhen-Yu; Deng, Hai-Ying; Yu, Zhi-Jun; Ni, Jun-Yan; Kang, Si-He

    2016-01-01

    Background: The dosage of herb ultrafine particle (UFP) depended on the increased level of its dissolution, toxicity, and efficacy. Objective: The dissolution, antibacterial activity, and cytotoxicity of Coptidis rhizoma (CR) UFP were compared with those of traditional decoction (TD). Materials and Methods: The dissolution of berberine (BBR) of CR TD and UFP was determined by high-performance liquid chromatography. The antibacterial activity of CR extract was assayed by plate-hole diffusion and broth dilution method; the inhibitory effect of rat serums against bacteria growth was evaluated after orally given CR UFP or TD extract. The cytotoxicity of CR extract was evaluated by 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide assay. Results: The dissolution amount of BBR from CR UFP increased 6–8-folds in comparison to TD at 2 min, the accumulative amount of BBR in both UFP and TD group increased in a time-dependent manner. The minimal inhibitory concentrations and minimal bactericidal concentrations of CR UFP extract decreased to 1/2~1/4 of those of TD extract. The inhibitory effect of rat serums against bacteria growth decreased time-dependently, and no statistical difference was observed between two groups at each time point. The 50% cytotoxic concentrations of UFP extract increased 1.66~1.97 fold than those of TD. Conclusions: The antibacterial activity and cytotoxicity of CR UFP increased in a dissolution-effect manner in vitro, the increased level of cytotoxicity was lower than that of antibacterial activity, and the inhibitory effect of rat serums containing drugs of UFP group did not improve. SUMMARY Ultrafine grinding process caused a rapid increase of BBR dissolution from CR.The antibacterial activity and cytotoxicity of UFP extract in vitro increased in a dissolution-effect manner, but the cytotoxicity increased lower than the antibacterial activity.The antibacterial activity of rat serums of UFP group did not improve in comparison to that

  13. Antibacterial and antifungal activities of neocryptolepine, biscryptolepine and cryptoquindoline, alkaloids isolated from Cryptolepis sanguinolenta.

    PubMed

    Cimanga, K; De Bruyne, T; Pieters, L; Totte, J; Tona, L; Kambu, K; Berghe, D V; Vlietinck, A J

    1998-05-01

    From the 80% EtOH extract of Cryptolepis sanguinolenta (Lindl.) Schlechter (Periplocaeae) root bark, a cryptolepine isomer named neocryptolepine, and two dimeric alkaloids named biscryptolepine and cryptoquindoline were isolated. These compounds were tested for their putative antibacterial and antifungal activities. Results have indicated that neocryptolepine showed an antibacterial activity against Gram-positive bacteria (MIC < 100 μg/ml), but was less acive against Gram-negative bacteria. It also inhibited the growth of the yeast C. albicans. Biscryptolepine exhibited only an activity against some Gram-positive bacteria (MIC = 62.5 or 31 μg/ml) while cryptoquindoline did not shown an activity against all selected microorganisms. The antibacterial activity of neocryptolepine and biscryptolepine is bacteriostatic rather than bactericidal. No antifungal activity could be observed for all alkaloids in our test system at the highest test concentration of 100 μg/ml. PMID:23195843

  14. Antibacterial Activity of a Novel Peptide-Modified Lysin Against Acinetobacter baumannii and Pseudomonas aeruginosa

    PubMed Central

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-01-01

    The global emergence of multidrug-resistant (MDR) bacteria is a growing threat to public health worldwide. Natural bacteriophage lysins are promising alternatives in the treatment of infections caused by Gram-positive pathogens, but not Gram-negative ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial peptide was found able to break the barriers, and to kill Gram-negative pathogens. Herein, a new peptide-modified lysin (PlyA) was constructed by fusing the cecropin A peptide residues 1–8 (KWKLFKKI) with the OBPgp279 lysin and its antibacterial activity was studied. PlyA showed good and broad antibacterial activities against logarithmic phase A. baumannii and P. aeruginosa, but much reduced activities against the cells in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid) could enhance the antibacterial activity of PlyA against stationary phase cells. Finally, no antibacterial activity of PlyA could be observed in some bio-matrices, such as culture media, milk, and sera. In conclusion, we reported here a novel peptide-modified lysin with significant antibacterial activity against both logarithmic (without OMPs) and stationary phase (with OMPs) A. baumannii and P. aeruginosa cells in buffer, but further optimization is needed to achieve broad activity in diverse bio-matrices. PMID:26733995

  15. Antibacterial Activity of MTA Fillapex and AH 26 Root Canal Sealers at Different Time Intervals

    PubMed Central

    Jafari, Farnaz; Samadi Kafil, Hossein; Jafari, Sanaz; Aghazadeh, Mohammad; Momeni, Tahereh

    2016-01-01

    Introduction: The main goal of endodontic treatment is elimination of bacteria and their by-products from infected root canals. This study compared the antibacterial effect of two different sealers, AH 26 and MTA Fillapex, on 4 microorganisms 24, 48 and 72 h and 7 days after mixing. Methods and Materials: The microorganisms used in this study consisted of Lactobacillus acidophilus (ATCC 4356), Lactobacillus casei (ATCC 39392), Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis (ATCC 29212). This test is based on the growth of bacteria and turbidity measurement technique using a spectrophotometer, and direct contact was conducted. Multiple comparisons were carried out using repeated-measures ANOVA followed by Tukey’s test and student’s t-test. The level of significance was set at 0.05. Results: The antibacterial activity in the indirect technique was more than the technique with both sealers. In the direct technique the antibacterial activity on all microorganisms were lower for MTA Fillapex sealer. In the indirect technique, both sealers exhibited similar antibacterial properties. Conclusion: The antibacterial effect of MTA Fillapex sealer was significantly less than that of AH 26 sealer in the direct technique. The antibacterial effects of both sealers were similar in the indirect technique. PMID:27471530

  16. Effects of Lactobacillus plantarum immobilization in alginate coated with chitosan and gelatin on antibacterial activity.

    PubMed

    Trabelsi, Imen; Ayadi, Dorra; Bejar, Wacim; Bejar, Samir; Chouayekh, Hichem; Ben Salah, Riadh

    2014-03-01

    The present study aimed to investigate and evaluate the efficiency of immobilizing the Lactobacillus plantarum TN9 strain in alginate using chitosan and gelatin as coating materials, in terms of viability and antibacterial activity. The results indicate that maximum concentrations of L. plantarum TN9 strain were produced with 2% sodium alginate, 10(8)UFC/ml, and 1M calcium chloride. The viability and antibacterial activity of the L. plantarum TN9 cultures before and after immobilization in alginate, chitosan-coated alginate, and gelatin-coated alginate, were studied. The findings revealed that the viability of encapsulated L. plantarum could be preserved more than 5.8 log CFU/ml after 35 day of incubation at 4 °C, and no effects were observed when gelatin was used. The antibacterial activity of encapsulated L. plantarum TN9 against Gram-positive and Gram-negative pathogenic bacteria was enhanced in the presence of chitosan coating materials, and no activity was observed in the presence of gelatin. The effects of catalase and proteolytic enzymes on the culture supernatant of L. plantarum TN9 were also investigated, and the results suggested that the antibacterial activity observed was due to the production of organic acids. Taken together, the findings indicated that immobilization in chitosan enhanced the antibacterial activity of L. plantarum TN9 against several pathogenic bacteria. This encapsulated strain could be considered as a potential strong candidate for future application as an additive in the food and animal feed industries. PMID:24315948

  17. Design, synthesis and antibacterial activity of isatin derivatives as FtsZ inhibitors

    NASA Astrophysics Data System (ADS)

    Lian, Zhi-Min; Sun, Juan; Zhu, Hai-Liang

    2016-08-01

    Seven isatin derivatives have been designed, and their chemical structures were characterized by single crystal X-ray diffraction studies, 1H NMR, MS, and elemental analysis. Structural stabilization followed by intramolecular as well as intermolecular H-bonds makes these molecules as perfect examples in molecular recognition with self-complementary donor and acceptor units within a single molecule. These compounds were evaluated for antimicrobial activities. Docking simulations have been performed to position compounds into the FtsZ active site to determine their probable binding models. All of the compounds exhibited better antibacterial activities. Interestingly, compound 5c and 5d exhibited better antibacterial activities with IC50 values of 0.03 and 0.05 μmol/mL against Staphylococcus aureus, respectively. Compound 5g displays antibacterial activity with IC50 values of 0.672 and 0.830 μmol/mL against Escherichia coli and Pseudomonas aeruginosa, respectively.

  18. Antibacterial activity of extracts of Parmotrema praesorediosum, Parmotrema rampoddense, Parmotrema tinctorum and Parmotrema reticulatum

    NASA Astrophysics Data System (ADS)

    Rajan, Vinoshene Pillai; Gunasekaran, Saranyapiriya; Ramanathan, Surash; Murugaiyah, Vikneswaran; Samsudin, Mohd. Wahid; Din, Laily B.

    2015-09-01

    The present study was carried out to evaluate the antibacterial potential of acetone and methanol extracts of lichens of Parmotrema praesorediosum, P. rampoddense, P. tinctorum and P. reticulatum. Antibacterial activity was evaluated using broth dilution method. The acetone extracts (except for P. reticulatum) showed good inhibitory activity against Staphylococcus aureus and Bacillus subtilis with MIC values ranging from 125 - 500 μg/mL, whereas, no activity was observed for the methanol extracts. None of the extracts exhibited inhibitory activity against Escherichia coli.

  19. New Insights into the Antibacterial Activity of Hydroxycoumarins against Ralstonia solanacearum.

    PubMed

    Yang, Liang; Ding, Wei; Xu, Yuquan; Wu, Dousheng; Li, Shili; Chen, Juanni; Guo, Bing

    2016-01-01

    Coumarins are important plant-derived natural products with wide-ranging bioactivities and extensive applications. In this study, we evaluated for the first time the antibacterial activity and mechanisms of action of coumarins against the phytopathogen Ralstonia solanacearum, and investigated the effect of functional group substitution. We first tested the antibacterial activity of 18 plant-derived coumarins with different substitution patterns, and found that daphnetin, esculetin, xanthotol, and umbelliferone significantly inhibited the growth of R. solanacearum. Daphnetin showed the strongest antibacterial activity, followed by esculetin and umbelliferone, with MICs of 64, 192, and 256 mg/L, respectively, better than the archetypal coumarin with 384 mg/L. We further demonstrated that the hydroxylation of coumarins at the C-6, C-7 or C-8 position significantly enhanced the antibacterial activity against R. solanacearum. Transmission electron microscope (TEM) and fluorescence microscopy images showed that hydroxycoumarins may interact with the pathogen by mechanically destroying the cell membrane and inhibiting biofilm formation. The antibiofilm effect of hydroxycoumarins may relate to the repression of flagellar genes fliA and flhC. These physiological changes in R. solanacearum caused by hydroxycoumarins can provide information for integral pathogen control. The present findings demonstrated that hydroxycoumarins have superior antibacterial activity against the phytopathogen R. solanacearum, and thus have the potential to be applied for controlling plant bacterial wilt. PMID:27070570

  20. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli.

    PubMed

    Moghimi, Roya; Ghaderi, Lida; Rafati, Hasan; Aliahmadi, Atousa; McClements, David Julian

    2016-03-01

    Natural preservatives are being extensively investigated for their potential industrial applications in foods and other products. In this work, an essential oil (Thymus daenensis) was formulated as a water-dispersible nanoemulsion (diameter=143nm) using high-intensity ultrasound. The antibacterial activity of the essential oil in both pure and nanoemulsion forms was measured against an important food-borne pathogen bacterium, Escherichia coli. Antibacterial activity was determined by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The antibacterial activity of the essential oil against E. coli was enhanced considerably when it was converted into a nanoemulsion, which was attributed to easier access of the essential oils to the bacterial cells. The mechanism of antibacterial activity was investigated by measuring potassium, protein, and nucleic acid leakage from the cells, and electron microscopy. Evaluation of the kinetics of microbial deactivation showed that the nanoemulsion killed all the bacteria in about 5min, whereas only a 1-log reduction was observed for pure essential oil. The nanoemulsion appeared to amplify the antibacterial activity of essential oils against E. coli by increasing their ability to disrupt cell membrane integrity. PMID:26471573

  1. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    PubMed Central

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products. PMID:26417280

  2. Chemical composition and antibacterial and cytotoxic activities of Allium hirtifolium Boiss.

    PubMed

    Ismail, Salmiah; Jalilian, Farid Azizi; Talebpour, Amir Hossein; Zargar, Mohsen; Shameli, Kamyar; Sekawi, Zamberi; Jahanshiri, Fatemeh

    2013-01-01

    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent. PMID:23484141

  3. The antibacterial activity and action mechanism of emodin from Polygonum cuspidatum against Haemophilus parasuis in vitro.

    PubMed

    Li, Li; Song, Xu; Yin, Zhongqiong; Jia, Renyong; Li, Zhengwen; Zhou, Xun; Zou, Yuanfeng; Li, Lixia; Yin, Lizi; Yue, Guizhou; Ye, Gang; Lv, Cheng; Shi, Wenjing; Fu, Yuping

    2016-01-01

    Haemophilus parasuis is the causative agent of Glässer's disease, which leads to serious economic loss to the swine industry. Although antibiotics are widely used to control infections, outbreaks of this disease repeatedly happen. In this study, emodin from Polygonum cuspidatum showed potent inhibitory effect against H. parasuis. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of emodin were 32 and 64μg/mL, respectively. The antibacterial kinetic curves indicated the antibacterial activity of emodin was in a concentration-dependent manner. Cell membrane permeability and flow cytometry assays proved that emodin could destroy cell membrane integrity and increase membrane permeability, and fluorescence spectra assay indicated emodin has influenced conformation of membrane protein. Under transmission electron microscopy, serious lesions of H. parasuis exposed to emodin (64μg/mL) were found, including irregular cell shape, plasmolysis, ruptured cell wall and membrane and cytoplasmic vacuolation. These results suggested that emodin could be used as candidate for treating Glässer's disease. PMID:27242151

  4. Chemical Composition and Antibacterial and Cytotoxic Activities of Allium hirtifolium Boiss

    PubMed Central

    Ismail, Salmiah; Jalilian, Farid Azizi; Talebpour, Amir Hossein; Zargar, Mohsen; Shameli, Kamyar; Sekawi, Zamberi; Jahanshiri, Fatemeh

    2013-01-01

    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent. PMID:23484141

  5. Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria.

    PubMed

    Sudha, S S; Rajamanickam, Karthic; Rengaramanujam, J

    2013-05-01

    Silver nanoparticles is known to have antimicrobial affects. Cyanobacteria isolates from muthupet mangrove includes Aphanothece sp, Oscillatoria sp, Microcoleus sp, Aphanocapsa sp, Phormidium sp, Lyngbya sp, Gleocapsa sp, Synechococcus sp, Spirulina sp with were set in compliance with their cellular mechanism of nano silver creation, and were investigated by UV-VIS spectrophotometer, Energy-dispersive X-ray (EDX) and scanning electron microscopy (SEM). Silver nanoparticles were spherical shaped well distributed without aggregation in solution with an average size of about 40- 80 nm. Synthesised nano silver had antibacterial production on various organisms that provoked various diseases in humans. The cellular metabolites of Microcoleus sp. only created nano silver and it enhanced the antibacterial activity against test pathogenic bacteria from MTCC (Proteus vulgaris, Salmonella typhi, Vibrio cholera, Streptococcus sp., Bacillus subtilis, Staphylococcus aureus, Escherichia coli.) The antimicrobial assay was performed using 0.001 M concentration of nano silver in well diffusion method with positive control of appropriate standard antibiotic discs Cephotaxime, Ampicillin, Tetracyclin, Cephalexin etc. Synthesised silver nanoparticles acted as an effective antimicrobial agent and proved as an alternative for the development of new antimicrobial agents to combat the problem of resistance. PMID:23821828

  6. Chemical composition and antibacterial activity of essential oil and extracts of Citharexylum spinosum flowers from Thailand.

    PubMed

    Mar, Ae; Pripdeevech, Patcharee

    2014-05-01

    The chemical composition and antibacterial and antioxidant activities of the essential oil and various solvent extracts of Citharexylum spinosum flowers are reported. The chemical compositions were determined by GC-MS with 151 volatile constituents identified. Methyl benzoate, piperitone, maltol, and maple furanone were the major constituents. All extracts were tested for their antibacterial activity against eight microorganisms. The flower oil had the greatest antibacterial activity against all bacterial strains (MIC values of 31.2 microg/mL), while the other solvent extracts had MIC values ranging from 31.2 to 1000 microg/mL. The essential oil had the highest antioxidant activity and total phenol content with IC50 values of 62.7 and 107.3 microg/mL, respectively. PMID:25026728

  7. Antibacterial activity of Eisenia fetida andrei coelomic fluid: transcription and translation regulation of lysozyme and proteins evidenced after bacterial infestation.

    PubMed

    Hirigoyenberry, F; Lassalle, F; Lassegues, M

    1990-01-01

    1. After bacterial infestation lysozyme and antibacterial activities are enhanced, peaking at 4 hr and 3 days, respectively. 2. Both humoral defenses require RNA and protein de novo synthesis in response to pathogenic bacteria injection (actinomycin D and cycloheximide experiments). 3. Antibacterial activity exists naturally at some basic level, involving regular translation of stable RNAs. 4. When antibacterial activity reaches its maximum after bacterial injection, proteins responsible for it undergo a turn-over. 5. Lysozyme and antibacterial proteins cannot account for the whole response to bacterial infestation; some cellular defense mechanisms like phagocytosis are involved at the same time. PMID:2331874

  8. In vitro antibacterial activity of SM-1652, a new broad-spectrum cephalosporin with antipseudomonal activity.

    PubMed Central

    Fukasawa, M; Noguchi, H; Okuda, T; Komatsu, T; Yano, K

    1983-01-01

    SM-1652 (sodium 7-[D(-)-alpha-(4-hydroxy-6-methylpyridine-3-carboxamido)-alpha-(4-hydroxyphenyl)acetamido]-3-[(1-methyl-1H-tetrazol-5-yl) thiomethyl]-3-cephem-4-carboxylate) is a new semisynthetic cephalosporin derivative with a broad spectrum of antibacterial activity. Its in vitro activity against gram-positive bacteria was comparable to that of cefazolin. SM-1652 exceeded cefazolin in potency and broadness of antibacterial activity against such Enterobacteriaceae as indole-positive Proteus spp., Enterobacter cloacae, and Serratia marcescens. A remarkable feature of the spectrum of SM-1652 is its high activity against Pseudomonadaceae. Against 200 clinical isolates of Pseudomonas aeruginosa, SM-1652 was significantly more active than cefoperazone, cefotaxime, and sulbenicillin and as active as cefsulodin. The activities of SM-1652 against Pseudomonas maltophilia and Pseudomonas cepacia were superior to those of cefoperazone, cefotaxime, cefsulodin, sulbenicillin, and gentamicin. SM-1652 was relatively stable to hydrolysis with plasmid-mediated penicillinases and cephalosporinases produced by gram-negative bacteria. PMID:6601470

  9. Rapidly Probing Antibacterial Activity of Graphene Oxide by Mass Spectrometry-based Metabolite Fingerprinting

    PubMed Central

    Zhang, Ning; Hou, Jian; Chen, Suming; Xiong, Caiqiao; Liu, Huihui; Jin, Yulong; Wang, Jianing; He, Qing; Zhao, Rui; Nie, Zongxiu

    2016-01-01

    Application of nanomaterials as anti-bacteria agents has aroused great attention. To investigate the antibacterial activity and antibacterial mechanism of nanomaterials from a molecular perspective is important for efficient developing of nanomaterial antibiotics. In the current work, a new mass spectrometry-based method was established to investigate the bacterial cytotoxicity of graphene oxide (GO) by the metabolite fingerprinting of microbes. The mass spectra of extracted metabolites from two strains DH5α and ATCC25922 were obtained before and after the incubation with nanomaterials respectively. Then principal component analysis (PCA) of these spectra was performed to reveal the relationship between the metabolism disorder of microbes and bactericidal activity of GO. A parameter “D” obtained from PCA scores was proposed that is capable to quantitatively evaluate the antibacterial activity of GO in concentration and time-dependent experiments. Further annotation of the fingerprinting spectra shows the variabilities of important metabolites such as phosphatidylethanolamine, phosphatidylglycerol and glutathione. This metabolic perturbation of E. coli indicates cell membrane destruction and oxidative stress mechanisms for anti-bacteria activity of graphene oxide. It is anticipated that this mass spectrometry-based metabolite fingerprinting method will be applicable to other antibacterial nanomaterials and provide more clues as to their antibacterial mechanism at molecular level. PMID:27306507

  10. Antibacterial activity of the essential oils of myrtle leaves against Erysipelothrix rhusiopathiae

    PubMed Central

    Pirbalouti, Abdollah Ghasemi; Mirbagheri, Hamed; Hamedi, Behzad; Rahimi, Ebrahim

    2014-01-01

    Objective To evaluate the antibacterial activity of the essential oil of Myrtus communis (M. communis) L. against Erysipelothrix rhusiopathiae (E. rhusiopathiae) in vitro. Methods Wild populations of M. communis collected from Khuzestan and Lorestan provinces, Southwest Iran, were examined for antibacterial activity and chemical variability in leaves. The in vitro antibacterial activity against E. rhusiopathiae was performed by agar disc diffusion and micro-dilution assays. Results The essential oils of M. communis have strong antibacterial against E. rhusiopathiae in both assays. The results showed that the major components of the oil were α-pinene (22.3%-55.2%), 1,8-cineole (8.7%-43.8%) and linalool (6.4%-14.5%). The inhibition zones and MIC values for bacteria which were sensitive to the essential oils of M. communis were in the range of 14.7-27.0 mm and 0.031-0.25 mg/mL, respectively. Conclusions This study demonstrates that products with valuable antibacterial activity can be produced from leaves of M. communis against E. rhusiopathiae. PMID:25183140

  11. Rapidly Probing Antibacterial Activity of Graphene Oxide by Mass Spectrometry-based Metabolite Fingerprinting.

    PubMed

    Zhang, Ning; Hou, Jian; Chen, Suming; Xiong, Caiqiao; Liu, Huihui; Jin, Yulong; Wang, Jianing; He, Qing; Zhao, Rui; Nie, Zongxiu

    2016-01-01

    Application of nanomaterials as anti-bacteria agents has aroused great attention. To investigate the antibacterial activity and antibacterial mechanism of nanomaterials from a molecular perspective is important for efficient developing of nanomaterial antibiotics. In the current work, a new mass spectrometry-based method was established to investigate the bacterial cytotoxicity of graphene oxide (GO) by the metabolite fingerprinting of microbes. The mass spectra of extracted metabolites from two strains DH5α and ATCC25922 were obtained before and after the incubation with nanomaterials respectively. Then principal component analysis (PCA) of these spectra was performed to reveal the relationship between the metabolism disorder of microbes and bactericidal activity of GO. A parameter "D" obtained from PCA scores was proposed that is capable to quantitatively evaluate the antibacterial activity of GO in concentration and time-dependent experiments. Further annotation of the fingerprinting spectra shows the variabilities of important metabolites such as phosphatidylethanolamine, phosphatidylglycerol and glutathione. This metabolic perturbation of E. coli indicates cell membrane destruction and oxidative stress mechanisms for anti-bacteria activity of graphene oxide. It is anticipated that this mass spectrometry-based metabolite fingerprinting method will be applicable to other antibacterial nanomaterials and provide more clues as to their antibacterial mechanism at molecular level. PMID:27306507

  12. Antibacterial and Antifungal Activity of Holothuria leucospilota Isolated From Persian Gulf and Oman Sea

    PubMed Central

    Adibpour, Neda; Nasr, Farhad; Nematpour, Fatemeh; Shakouri, Arash; Ameri, Abdolghani

    2014-01-01

    Background: Emergence of antimicrobial resistance toward a number of conventional antibiotics has triggered the search for antimicrobial agents from a variety of sources including the marine environment. Objectives: The aim of this study was to evaluate the antimicrobial potential of Holothuria leucospilota from Qeshm and Kharg Islands against some selected bacteria and fungi. Materials and Methods: In this investigation, sea cucumbers from two coastal cities of Persian Gulf were collected in March and May 2011 and identified by the scale method according to the food and agriculture organization of the United Nations. Antibacterial activity of hydroalcoholic extracts of the body wall, cuvierian organs and coelomic fluid, methanol, chloroform, and n-hexane extracts of the body wall were evaluated by the spot test. In addition, their antifungal activity was assessed by the broth dilution method. Results: The displayed effect was microbiostatic at concentrations of 1000 and 2000 µg/mL rather than microbicidal. The highest activity of hydroalcoholic extracts was exhibited by body wall, cuvierian organs and coelomic fluid against Escherichia coli, Salmonella typhi, Staphylococcus aureus and Pseudomonas aeruginosa; Aspergillus niger, A. fumigatus, A. flavus and A. brasilensis. However, none of the methanol, chloroform and n-haxane extracts showed appreciable effects against Shigella dysenteriae, Proteus vulgaris, Bacillus cereus, S. epidermidis and Candida albicans. Moreover, cuvierian organs did not possess any antifungal potential. Conclusions: Our data indicated that water-methanol extracts from the body wall of H. leucospilota possess antibacterial and antifungal activity. However, additional and in-depth studies are required to isolate and identify the active component(s). PMID:25147657

  13. Screening of Endophytic Fungi from Chlorophyta and Phaeophyta for Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Rahaweman, A. C.; Pamungkas, J.; Madduppa, H.; Thoms, C.; Tarman, K.

    2016-01-01

    Chlorophyta and Phaeophyta macroalgae are important sources of secondary metabolites with pharmaceutically relevant antibacterial, antifungal and antiviral bioactivities. Oftentimes, these algae-derived compounds are, in fact, produced by endophytic fungi living inside the macroalgal tissue. Numerous studies have shown that endophytic fungi can produce a broad range of active metabolites such as terpenes, alkaloids, and quinones. The aim of the present study was to screen fungal strains isolated from a variety of Caulerpa spp., Halimeda spp., and Sargassum spp. for antibacterial activity against Staphylococcus aureus and Escherichia coli. Thirteen morphologically different isolates were tested. Two of them showed pronounced activity against S. aureus in agar diffusion assays.

  14. Synthesis and Antibacterial Activity of Pentacyclines: A Novel Class of Tetracycline Analogs

    PubMed Central

    2011-01-01

    Employing a highly efficient total synthesis approach, we synthesized and evaluated for antibacterial activity diverse and novel pentacycline analogs with systematic variations at C7, C8, C9, and C10. Certain substitution groups, as well as substitution patterns at various positions, were found to be preferred for increased antibacterial activity. A number of pentacycline analogs displayed potent activity in vitro and in vivo, especially against Gram-positive organisms. Several analogs have also shown promising oral bioavailability in rats and cynomolgus monkey. PMID:21500832

  15. Antibacterial activity of Hydrastis canadensis extract and its major isolated alkaloids.

    PubMed

    Scazzocchio, F; Cometa, M F; Tomassini, L; Palmery, M

    2001-08-01

    The antibacterial activity of extract and isolated major alkaloids (berberine, beta-hydrastine, canadine and canadaline) of Hydrastis canadensis L. (Ranunculaceae) was evaluated against 6 strains of microorganism: Staphylococcus aureus (ATCC 25 993 and ATCC 6538P), Streptococcus sanguis (ATCC 10 556), Escherichia coli (ATCC 25 922), Pseudomonas aeruginosa (ATCC 27 853). Bactericidal activity was evaluated by contact test by measuring the "killing time" on a low density bacterial inoculum, and bacteriostatic activity in liquid medium by M.I.C. values. The results provide a rational basis for the traditional antibacterial use of Hydrastis canadensis. PMID:11509983

  16. Antibacterial Activities of Selected Cameroonian Plants and Their Synergistic Effects with Antibiotics against Bacteria Expressing MDR Phenotypes

    PubMed Central

    Lacmata, Stephen T.; Kuete, Victor; Dzoyem, Jean P.; Tankeo, Simplice B.; Teke, Gerald Ngo; Kuiate, Jules R.; Pages, Jean-Marie

    2012-01-01

    The present work was designed to assess the antibacterial properties of the methanol extracts of some Cameroonian medicinal plants and the effect of their associations with currently used antibiotics on multidrug resistant (MDR) Gram-negative bacteria overexpressing active efflux pumps. The antibacterial activities of twelve methanol extracts of medicinal plants were evaluated using broth microdilution. The results of this test showed that three extracts Garcinia lucida with the minimal inhibitory concentrations (MIC) varying from 128 to 512 μg/mL, Garcinia kola (MIC of 256 to 1024 μg/mL), and Picralima nitida (MIC of 128 to 1024 μg/mL) were active on all the twenty-nine studied bacteria including MDR phenotypes. The association of phenylalanine arginine β-naphthylamide (PAβN or efflux pumps inhibitor) to different extracts did not modify their activities. At the concentration of MIC/2 and MIC/5, the extracts of P. nitida and G. kola improved the antibacterial activities of some commonly used antibiotics suggesting their synergistic effects with the tested antibiotics. The results of this study suggest that the tested plant extracts and mostly those from P. nitida, G. lucida and G. kola could be used alone or in association with common antibiotics in the fight of bacterial infections involving MDR strains. PMID:22474511

  17. Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi chinensis.

    PubMed

    Yang, Jyh-Ferng; Yang, Cheng-Hong; Liang, Ming-Tsai; Gao, Zi-Jie; Wu, Yuh-Wern; Chuang, Li-Yeh

    2016-01-01

    The antioxidant and antibacterial activities of wood vinegar from Litchi chinensis, and its components have been studied. The chemical compositions of wood vinegar were analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 17 chemical compounds were identified, representing 83.96% of the compositions in the wood vinegar. Three major components, included 2,6-dimethoxyphenol (syringol, 29.54%), 2-methoxyphenol (guaiacol, 12.36%), and 3,5-dimethoxy-4-hydroxytoluene (11.07%), were found in the wood vinegar. Antioxidant activities of the acids were investigated from the aspects of 1,1-Diphyl-2-picrylhydrazyl (DPPH) free radicals scavenging capacity, superoxide anion radical scavenging capacity, and reducing power. The pyroligneous acid exhibited high antioxidant activity which was comparable to the reference standards (vitamin C and butylated hydroxyl toluene) at the same dose with IC50 values of 36.5 ppm calculated by the DPPH radical scavenging assay, 38.38 g Trolox equivalent/100 g DW by the trolox equivalent antioxidant capacity (TEAC) assay, and 67.9 by the reducing power analysis. Antibacterial activity was evaluated using the disc diffusion and microdilution methods against a group of clinically antibiotic resistant isolates. The major components exhibited broad spectrum inhibition against all the bacterial strains with a range of disc inhibition zoon between 15-19 mm. The minimum inhibition concentration and minimum bactericide concentration against the test strains was ranging in 0.95-3.80 μL/100 μL and 1.90-3.80 μL/100 μL, respectively. Most of the antibiotic resistant strains were more susceptible to the wood vinegar than the non-antibiotic resistant strain except the strain of ornithine resistant Staphylococcus aureus. Based on the chemical profile, it was considered that the strongest antioxidant and antibacterial activity of Litchi chinensis wood vinegar was due to its highly phenolic compositions. This study revealed that the Litchi

  18. Synthesis and anti-bacterial activity of some heterocyclic chalcone derivatives bearing thiofuran, furan, and quinoline moieties.

    PubMed

    Zheng, Chang-Ji; Jiang, Sheng-Ming; Chen, Zhen-Hua; Ye, Bai-Jun; Piao, Hu-Ri

    2011-10-01

    36 Novel heterocyclic chalcone derivatives were synthesized and tested for their anti-bacterial activity. Some compounds presented good anti-microbial activities against Gram-positive bacteria (including the multidrug-resistant clinical isolates). This class of compounds presented high potency against Streptococcus mutans, among which the derivatives F2 with an MIC of 2 µg/mL was as active as the standard drug (norfloxacin) and less active than oxacillin. All the compounds did not inhibit the growth of Gram-negative bacteria (Escherichia coli CCARM 1924 or Escherichia coli CCARM 1356) at 64 µg/mL. PMID:21887800

  19. Structure-Activity Relationship for the 4(3H)-Quinazolinone Antibacterials.

    PubMed

    Bouley, Renee; Ding, Derong; Peng, Zhihong; Bastian, Maria; Lastochkin, Elena; Song, Wei; Suckow, Mark A; Schroeder, Valerie A; Wolter, William R; Mobashery, Shahriar; Chang, Mayland

    2016-05-26

    We recently reported on the discovery of a novel antibacterial (2) with a 4(3H)-quinazolinone core. This discovery was made by in silico screening of 1.2 million compounds for binding to a penicillin-binding protein and the subsequent demonstration of antibacterial activity against Staphylococcus aureus. The first structure-activity relationship for this antibacterial scaffold is explored in this report with evaluation of 77 variants of the structural class. Eleven promising compounds were further evaluated for in vitro toxicity, pharmacokinetics, and efficacy in a mouse peritonitis model of infection, which led to the discovery of compound 27. This new quinazolinone has potent activity against methicillin-resistant (MRSA) strains, low clearance, oral bioavailability and shows efficacy in a mouse neutropenic thigh infection model. PMID:27088777

  20. Structure–Activity Relationship for the 4(3H)-Quinazolinone Antibacterials

    PubMed Central

    2016-01-01

    We recently reported on the discovery of a novel antibacterial (2) with a 4(3H)-quinazolinone core. This discovery was made by in silico screening of 1.2 million compounds for binding to a penicillin-binding protein and the subsequent demonstration of antibacterial activity against Staphylococcus aureus. The first structure–activity relationship for this antibacterial scaffold is explored in this report with evaluation of 77 variants of the structural class. Eleven promising compounds were further evaluated for in vitro toxicity, pharmacokinetics, and efficacy in a mouse peritonitis model of infection, which led to the discovery of compound 27. This new quinazolinone has potent activity against methicillin-resistant (MRSA) strains, low clearance, oral bioavailability and shows efficacy in a mouse neutropenic thigh infection model. PMID:27088777

  1. Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity.

    PubMed

    Ayaz Ahmed, Khan Behlol; Subramanian, Swetha; Sivasubramanian, Aravind; Veerappan, Ganapathy; Veerappan, Anbazhagan

    2014-09-15

    The current study deals with the synthesis of gold nanoparticles (AuNPs) using Salicornia brachiata (Sb) and evaluation of their antibacterial and catalytic activity. The SbAuNPs showed purple color with a characteristic surface plasmon resonance peak at 532 nm. Scanning electron microscopy and transmission electron microscopy revealed polydispersed AuNPs with the size range from 22 to 35 nm. Energy dispersive X-ray and thin layer X-ray diffraction analysis clearly shows that SbAuNPs was pure and crystalline in nature. As prepared gold nanoparticles was used as a catalyst for the sodium borohydride reduction of 4-nitro phenol to 4-amino phenol and methylene blue to leucomethylene blue. The green synthesized nanoparticles exhibited potent antibacterial activity against the pathogenic bacteria, as evidenced by their zone of inhibition. In addition, we showed that the SbAuNPs in combination with the regular antibiotic, ofloxacin, exhibit superior antibacterial activity than the individual. PMID:24762573

  2. Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ayaz Ahmed, Khan Behlol; Subramanian, Swetha; Sivasubramanian, Aravind; Veerappan, Ganapathy; Veerappan, Anbazhagan

    2014-09-01

    The current study deals with the synthesis of gold nanoparticles (AuNPs) using Salicornia brachiata (Sb) and evaluation of their antibacterial and catalytic activity. The SbAuNPs showed purple color with a characteristic surface plasmon resonance peak at 532 nm. Scanning electron microscopy and transmission electron microscopy revealed polydispersed AuNPs with the size range from 22 to 35 nm. Energy dispersive X-ray and thin layer X-ray diffraction analysis clearly shows that SbAuNPs was pure and crystalline in nature. As prepared gold nanoparticles was used as a catalyst for the sodium borohydride reduction of 4-nitro phenol to 4-amino phenol and methylene blue to leucomethylene blue. The green synthesized nanoparticles exhibited potent antibacterial activity against the pathogenic bacteria, as evidenced by their zone of inhibition. In addition, we showed that the SbAuNPs in combination with the regular antibiotic, ofloxacin, exhibit superior antibacterial activity than the individual.

  3. Characterization of the antibacterial activity and the chemical components of the volatile oil of the leaves of Rubus parvifolius L.

    PubMed

    Cai, Yongqing; Hu, Xiaogang; Huang, Mingchun; Sun, Fengjun; Yang, Bo; He, Juying; Wang, Xianfeng; Xia, Peiyuan; Chen, Jianhong

    2012-01-01

    Rubus parvifolius L. (Rp) is a medicinal herb that possesses antibacterial activity. In this study, we extracted the volatile oil from the leaves of Rp to assess its antibacterial activity and analyze its chemical composition. A uniform distribution design was used to optimize the extraction procedure, which yielded 0.36% (w/w) of light yellowish oil from the water extract of Rp leaves. We found that the extracted oil effectively inhibited the growth of a wide range of Gram positive and negative bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumanii, Bacillus cloacae, and Klebsiella pneumoniae. We further analyzed the components contained in the hydro-distillated Rp volatile oil by gas chromatography-mass spectroscopy. Twenty nine compounds were identified, including 4-hydroxy-3-methoxystyrene (66%), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (10%) and 4-tert-butylbenzoic acid (2%). Our results suggest that one or multiple constituents contained in Rp volatile oil may account for its antibacterial activity. PMID:22732887

  4. Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Rahman, Russly Abdul; Jokar, Maryam; Darroudi, Majid

    2010-01-01

    In this study, antibacterial characteristic of silver/poly (lactic acid) nanocomposite (Ag/PLA-NC) films was investigated, while silver nanoparticles (Ag-NPs) were synthesized into biodegradable PLA via chemical reduction method in diphase solvent. Silver nitrate and sodium borohydride were respectively used as a silver precursor and reducing agent in the PLA, which acted as a polymeric matrix and stabilizer. Meanwhile, the properties of Ag/PLA-NCs were studied as a function of the Ag-NP weight percentages (8, 16, and 32 wt% respectively), in relation to the use of PLA. The morphology of the Ag/PLA-NC films and the distribution of the Ag-NPs were also characterized. The silver ions released from the Ag/PLA-NC films and their antibacterial activities were scrutinized. The antibacterial activities of the Ag/PLA-NC films were examined against Gram-negative bacteria (Escherichia coli and Vibrio parahaemolyticus) and Gram-positive bacteria (Staphylococcus aureus) by diffusion method using Muller–Hinton agar. The results indicated that Ag/PLA-NC films possessed a strong antibacterial activity with the increase in the percentage of Ag-NPs in the PLA. Thus, Ag/PLA-NC films can be used as an antibacterial scaffold for tissue engineering and medical application. PMID:20856832

  5. Antibacterial, antifungal and cytotoxic activities of amblyone isolated from Amorphophallus campanulatus

    PubMed Central

    Khan, Alam; Rahman, Moizur; Islam, M.S.

    2008-01-01

    Objective: To assess the in vitro antibacterial, antifungal and cytotoxic activities of amblyone, a triterpenoid isolated from Amorphophallus campanulatus (Roxb). Methods: Disc diffusion technique was used for in vitro antibacterial and antifungal screening. Cytotoxicity was determined against brine shrimp nauplii. In addition, minimum inhibitory concentration (MIC) was determined using serial dilution technique to determine the antibacterial potency. Results: Large zones of inhibition were observed in disc diffusion antibacterial screening against four Gram-positive bacteria (Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus and Streptococcus pyogenes) and six Gram-negative bacteria (Escherichia coli, Shigella dysenteriae, Shigella sonnei, Shigella flexneri, Pseudomonas aeruginosa and Salmonella typhi). The MIC values against these bacteria ranged from 8 to 64 μg/ml. In antifungal screening, the compound showed small zones of inhibition against Aspergillus flavus, Aspergillus niger and Rhizopus aryzae. Candida albicans was resistant against the compound. In the cytotoxicity determination, LC50 of the compound against brine shrimp nauplii was 13.25 μg/ml. Conclusions: These results suggest that the compound has good antibacterial activity against the tested bacteria, moderate cytotoxicity against brine shrimp nauplii and insignificant antifungal activity against the tested fungi. PMID:21264161

  6. Bioinspired synthesis of polydopamine/Ag nanocomposite particles with antibacterial activities.

    PubMed

    Wu, Chengjiao; Zhang, Guoxing; Xia, Tian; Li, Zhenni; Zhao, Kai; Deng, Ziwei; Guo, Dingzong; Peng, Bo

    2015-10-01

    Mussel-inspired chemistry (polydopamine) offers great opportunities to develop inexpensive and efficient process for many types of materials with complex shapes and functions in a mild and friendly environment. This paper describes a facile, yet green approach to synthesize polydopamine/silver (PDA/Ag) nanocomposite particles with a combination use of polydopamine chemistry and electroless metallization of Ag. In this approach, monodisperse spherical polydopamine particles are first synthesized by the oxidation and self-polymerization of dopamine (monomer) in an alkaline water-ethanol solution at room temperature, which are served as the active templates for secondary reactions due to the abundant catechol and amine groups on the surface. Subsequently, the silver precursor-[Ag(NH3)2](+) ions introduced are easily absorbed onto the surface of the PDA particles, and are immediately in situ reduced to metallic Ag nanoparticles with the help of these active catechol and amine groups. During the preparation, no additional reductants, toxic reagents and intricate instruments are needed. These as-synthesized PDA/Ag nanocomposite particles are ideal candidates for antibacterial application because they do not show significant cytotoxicity against HEK293T human embryonic kidney cells in the in vitro cytotoxicity assay, whereas demonstrate enhanced antibacterial abilities against Escherichia coli (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacteria) in the antibacterial assays. Owing to their excellent cytocompatibilities and antibacterial activities, these PDA/Ag nanocomposite particles can be considered as the promising antibacterial materials for future biomedical applications. PMID:26117750

  7. Silver doped nanomaterials and their possible use for antibacterial photodynamic activity

    NASA Astrophysics Data System (ADS)

    Wysocka-Król, Katarzyna; Wieliczko, Alina; Podbielska, Halina

    2011-10-01

    Bacteria, viruses and parasites elimination from human environment is one of the most important problem, extensively studied by many groups. The growing resistance to commonly used disinfection and/or sterilization methods and antibiotics, is one of the major problem in the health care sector. Nanomaterials with tailored antimicrobial features may find applications in this field. One of the promising application of nanomaterials is the possibility to enhance the antimicrobial photodynamic therapy (APDT), which combines a nontoxic photoactive dye - photosensitizer and nanomaterials properties. This paper focused on the examination of optical and antibacterial properties of silica- and titania-based nanopowders doped with silver and photosensitizer - Photolon. Various concentration of Photolon and nanomaterials have been prepared in order to examine the fluorescence enhancement and resulting better antibacterial activity. It was proved that the fluorescence intensity of Photolon increased, depending on silver concentration. Antibacterial study showed that silver doped silica and titania nanoparticles revealed antibacterial activity, but in the presence of Photolon, the antibacterial activity of materials is more effective.

  8. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.

    PubMed

    Hong, Xuesen; Wen, Junjie; Xiong, Xuhua; Hu, Yongyou

    2016-03-01

    Silver nanoparticles (AgNPs) are used as sustained-release bactericidal agents for water treatment. Among the physicochemical characteristics of AgNPs, shape is an important parameter relevant to the antibacterial activity. Three typically shaped AgNPs, nanocubes, nanospheres, and nanowires, were prepared via a microwave-assisted method and characterized by TEM, UV-vis, and XRD. The antibacterial activity of AgNPs was determined by OD growth curves tests, MIC tests, and cell viability assay against Escherichia coli. The interaction between AgNPs and bacterial cells was observed by TEM. The results showed that the three differently shaped AgNPs were nanoscale, 55 ± 10 nm in edge length for nanocubes, 60 ± 15 nm in diameter for nanospheres, 60 ± 10 nm in diameter and 2-4 μm in length for nanowires. At the bacterial concentration of 10(4) CFU/mL, the MIC of nanocubes, nanospheres, and nanowires were 37.5, 75, and 100 μg/mL, respectively. Due to the worst contact with bacteria, silver nanowires exhibited the weakest antibacterial activity compared with silver nanocubes and silver nanospheres. Besides, silver nanocubes mainly covered by {100} facets showed stronger antibacterial activity than silver nanospheres covered by {111} facets. It suggests that the shape effect on the antibacterial activity of AgNPs is attributed to the specific surface areas and facets reactivity; AgNPs with larger effective contact areas and higher reactive facets exhibit stronger antibacterial activity. PMID:26511259

  9. Antibacterial activity of graphene-modified anode on Shewanella oneidensis MR-1 biofilm in microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Deng, Feng; Hu, Yongyou; Sun, Jian; Yang, Yonggang

    2015-09-01

    To clearly illustrate the antibacterial activity of graphene on anodic exoelectrogen, the growth of a Shewanella oneidensis MR-1 biofilm on graphene-modified anodes (GMAs) and bare graphite anodes (BGs) were compared. The GMAs with different amounts of graphene were obtained by the cyclic voltammetric electrodeposition of 5, 20 and 40 potential cycles (5-G, 20-G and 40-G). Confocal scanning laser microscopy and cyclic voltammetry results demonstrated that graphene exhibited an obvious antibacterial effect for initial Shewanella MR biofilm growth. After 5 h of inoculation, 40-G, 20-G and 5-G had 6.3, 8.8 and 13.9% lower levels of biofilm viability, respectively, compared to BG, and all three exhibited approximately 70% lower electrochemical activity compared to BG. However, 18 h later, the biofilm on the GMAs exhibited much higher viability than that of the BG, and the electrochemical activity increased to a similar level. This study revealed the dual effect of graphene, including the antibacterial activity on biofilms and the enhancement of bacterial attachment and electron transfer.

  10. Single-point mutation-mediated local amphipathic adjustment dramatically enhances antibacterial activity of a fungal defensin.

    PubMed

    Wu, Jiajia; Gao, Bin; Zhu, Shunyi

    2016-07-01

    The emergence and rapid spread of multiresistant bacteria has lead to an urgent need for novel antimicrobials. Based on single-point substitutions, we generated a series of mutants of micasin, a dermatophytic defensin, with enhanced activities against multiple clinical isolates of Staphylococcus species, including 4 antibiotic-resistant strains. We first mapped the functional surface of micasin by alanine-scanning mutational analysis of its highly exposed residues, through which we found that substitution of site 8 (acidic Glu) dramatically enhanced bacterial killing of this peptide. Structural analysis indicates that this single point mutation could result in a functional local amphipathic architecture. Four different types of side chains (hydrophobic, cationic polar, neutral polar, and acidic polar) were introduced at site 8 to clarify the role of this local architecture in micasin function. The results show that all mutants displayed increased antibacterial activity with the exception of the acidic replacement. These mutants with enhanced activity exhibited low hemolysis and cytotoxicity and showed high serum stability, indicating their therapeutic potential. Our work represents the first example of structural fine-tuning to largely improve the antibacterial potency of a dermatophytic defensin.-Wu, J., Gao, B., Zhu, S. Single-point mutation-mediated local amphipathic adjustment dramatically enhances antibacterial activity of a fungal defensin. PMID:27084888

  11. Calixarene Assisted Rapid Synthesis of Silver-Graphene Nanocomposites with Enhanced Antibacterial Activity.

    PubMed

    Kellici, Suela; Acord, John; Vaughn, Arni; Power, Nicholas P; Morgan, David J; Heil, Tobias; Facq, Sébastien P; Lampronti, Giulio I

    2016-07-27

    Demonstrated herein is a single rapid approach employed for synthesis of Ag-graphene nanocomposites, with excellent antibacterial properties and low cytotoxicity, by utilizing a continuous hydrothermal flow synthesis (CHFS) process in combination with p-hexasulfonic acid calix[6]arene (SCX6) as an effective particle stabilizer. The nanocomposites showed high activity against E. coli (Gram-negative) and S. aureus (Gram-positive) bacteria. The materials were characterized using a range of techniques including transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis spectrophotometry, FT-IR, and X-ray powder diffraction (XRD). This rapid, single step synthetic approach not only provides a facile means of enabling and controlling graphene reduction (under alkaline conditions) but also offers an optimal route for homogeneously producing and depositing highly crystalline Ag nanostructures into reduced graphene oxide substrate. PMID:27378104

  12. New Polyphenols from a Deep Sea Spiromastix sp. Fungus, and Their Antibacterial Activities

    PubMed Central

    Niu, Siwen; Liu, Dong; Proksch, Peter; Shao, Zongze; Lin, Wenhan

    2015-01-01

    Eleven new polyphenols namely spiromastols A–K (1–11) were isolated from the fermentation broth of a deep sea-derived fungus Spiromastix sp. MCCC 3A00308. Their structures were determined by extensive NMR data and mass spectroscopic analysis in association with chemical conversion. The structures are classified as diphenyl ethers, diphenyl esters and isocoumarin derivatives, while the n-propyl group in the analogues is rarely found in natural products. Compounds 1–3 exhibited potent inhibitory effects against a panel of bacterial strains, including Xanthomanes vesicatoria, Pseudomonas lachrymans, Agrobacterium tumefaciens, Ralstonia solanacearum, Bacillus thuringensis, Staphylococcus aureus and Bacillus subtilis, with minimal inhibitory concentration (MIC) values ranging from 0.25 to 4 µg/mL. The structure-activity relationships are discussed, while the polychlorinated analogues 1–3 are assumed to be a promising structural model for further development as antibacterial agents. PMID:25913707

  13. Preparation and characterization of quaternary ammonium chitosan hydrogel with significant antibacterial activity.

    PubMed

    Fan, Lihong; Yang, Jing; Wu, Huan; Hu, Zhihai; Yi, Jiayan; Tong, Jun; Zhu, Xiaoming

    2015-08-01

    Quaternary ammonium chitosan (HACC)/polyvinyl alcohol (PVA)/polyethylene oxide (PEO) hydrogels were prepared using gamma radiation. The chemical structure of the hydrogels was characterized using FT-IR. The results revealed that HACC, PVA and PEO were perfectly compatible and interacted via the hydrogen bonds. As revealed by SEM, scaffolds with a homogeneous interconnected pore structure were obtained after lyophilizing the hydrogels. The influence of different radiation doses and weight ratios on properties including gel content, swelling ability, water evaporation rate and mechanical properties were investigated. It indicated that the hydrogels had the good swelling ability, water evaporation rate and mechanical properties. In vitro antibacterial activity assessment, the hydrogels exhibited a pronounced inhibitory effect against two bacteria (Staphylococcus aureus and Escherichia coli). Therefore, the hydrogels showed a promising potential to be applied as wound dressing. PMID:25895959

  14. Functionalized chalcones with basic functionalities have antibacterial activity against drug sensitive Staphylococcus aureus.

    PubMed

    Liu, X L; Xu, Y J; Go, M L

    2008-08-01

    A library of chalcones with basic functionalities were evaluated for antibacterial activity against drug sensitive strains of Staphylococcus aureus and Escherichia coli. The most active compounds were 2-52 and 2-57 (MIC 6.3 microM S. aureus). These compounds had no activity against E. coli (MIC>100 microM). Both compounds were characterized by a ring A that was substituted with 2-hydroxy-4,6-dimethoxy-3-(1-methylpiperidin-4-yl) groups. The phenolic OH and 1-methylpiperidinyl groups were required for activity but the phenolic OH may play a more critical role. While the compounds were comparable to licochalcone A in terms of antibacterial activity, they caused less hemolysis of sheep erythrocytes at high concentrations (100 microM). It was noted that the structural requirements for limiting hemolytic activity were less stringent than those required for antibacterial activity. The present findings suggest that the chalcone framework is an attractive template for optimization to achieve better potency, lower toxicity and a wider spectrum of antibacterial activity. PMID:18031869

  15. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibacterial activities of magnesium oxide nanoparticles (MgO NP) alone or in combination with other antimicrobials (nisin and ZnO NP) against E. coli O157:H7 and Salmonella Stanley were investigated. The results show that MgO NP have strong bactericidal activity against the pathogens, achievin...

  16. Antibacterial structure-activity relationship studies of several tricyclic sulfur-containing flavonoids.

    PubMed

    Bahrin, Lucian G; Hopf, Henning; Jones, Peter G; Sarbu, Laura G; Babii, Cornelia; Mihai, Alina C; Stefan, Marius; Birsa, Lucian M

    2016-01-01

    A structure-activity relationship study concerning the antibacterial properties of several halogen-substituted tricyclic sulfur-containing flavonoids has been performed. The compounds have been synthesized by cyclocondensation of the corresponding 3-dithiocarbamic flavanones under acidic conditions. The influence of different halogen substituents on the antibacterial properties has been tested against Staphylococcus aureus and Escherichia coli. Amongst the N,N-dialkylamino-substituted flavonoids, those having an N,N-diethylamino moiety exhibited good to excellent antimicrobial properties against both pathogens. Fluorine-substituted flavonoids were found to be less active than those bearing other halogen atoms. PMID:27340492

  17. Antibacterial structure–activity relationship studies of several tricyclic sulfur-containing flavonoids

    PubMed Central

    Bahrin, Lucian G; Hopf, Henning; Jones, Peter G; Sarbu, Laura G; Babii, Cornelia; Mihai, Alina C

    2016-01-01

    Summary A structure–activity relationship study concerning the antibacterial properties of several halogen-substituted tricyclic sulfur-containing flavonoids has been performed. The compounds have been synthesized by cyclocondensation of the corresponding 3-dithiocarbamic flavanones under acidic conditions. The influence of different halogen substituents on the antibacterial properties has been tested against Staphylococcus aureus and Escherichia coli. Amongst the N,N-dialkylamino-substituted flavonoids, those having an N,N-diethylamino moiety exhibited good to excellent antimicrobial properties against both pathogens. Fluorine-substituted flavonoids were found to be less active than those bearing other halogen atoms. PMID:27340492

  18. Synthesis, in vitro antibacterial activities of a series of 3-N-substituted canthin-6-ones.

    PubMed

    Dai, Jiang-Kun; Dan, Wen-Jia; Li, Na; Du, Hong-Tao; Zhang, Ji-Wen; Wang, Jun-Ru

    2016-01-15

    An improved synthetic route of canthin-6-one was accomplished. To further enhance the antibacterial potency and improve water solubility, a series of 3-N-alkylated and 3-N-benzylated canthin-6-ones were designed and synthesized, and their in vitro antibacterial activities were evaluated. A clear structure-activity relationship with peak minimal inhibitory concentration (MIC) values of 0.98 (μg·mL(-)(1)) was investigated. Particularly, compounds 6i-r and 6t were found to be the most potent compounds with minimal inhibitory concentration (MIC) values lower than 1.95 (μg·mL(-)(1)) against Staphylococcus aureus. PMID:26681509

  19. Synthesis, SAR and antibacterial activity of hybrid chloro, dichloro-phenylthiazolyl-s-triazines

    PubMed Central

    Gahtori, Prashant; Ghosh, Surajit Kumar; Singh, Brijesh; Singh, Udaya Pratap; Bhat, Hans Raj; Uppal, Archana

    2011-01-01

    A series of hybrid novel chloro (1a–9a) and dichloro (10b–18b) phenylthiazolyl-s-triazine were synthesized and subsequently subjected to their antibacterial activity against three gram positive viz. Lactobacillus casei (NCIM-2651); Bacillus cereus (NCIM-2458); Staphylococcus aureus (NCIM-2120) and three gram negative viz Salmonella typhimurium (NCIM-2501); Escherichia coli (NCIM-2065); Klebsiella aerogenes (NCIM-2098). The SAR studies around the lead compound revealed that introduction of electron withdrawing groups and amino (–NH–) and mercapto (–S–) linker bridge seemed more promising towards antibacterial activity. Moreover, the virtual Molinspiration screenings are in compliance with Ghose’s rule. PMID:23960775

  20. Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide.

    PubMed

    Abbassi, Feten; Raja, Zahid; Oury, Bruno; Gazanion, Elodie; Piesse, Christophe; Sereno, Denis; Nicolas, Pierre; Foulon, Thierry; Ladram, Ali

    2013-02-01

    Temporins are a family of short antimicrobial peptides (8-17 residues) that mostly show potent activity against Gram-positive bacteria. Herein, we demonstrate that temporin-SHd, a 17-residue peptide with a net charge of +2 (FLPAALAGIGGILGKLF(amide)), expressed a broad spectrum of antimicrobial activity. This peptide displayed potent antibacterial activities against Gram-negative and Gram-positive bacteria, including multi-drug resistant Staphylococcus aureus strains, as well as antiparasitic activity against promastigote and the intracellular stage (amastigote) of Leishmania infantum, at concentration not toxic for the macrophages. Temporin-SHd that is structured in a non-amphipathic α-helix in anionic membrane-mimetic environments, strongly and selectively perturbs anionic bilayer membranes by interacting with the polar head groups and acyl region of the phospholipids, with formation of regions of two coexisting phases: one phase rich in peptide and the other lipid-rich. The disruption of lipid packing within the bilayer may lead to the formation of transient pores and membrane permeation/disruption once a threshold peptide accumulation is reached. To our knowledge, Temporin-SHd represents the first known 17-residue long temporin expressing such broad spectrum of antimicrobial activity including members of the trypanosomatidae family. Additionally, since only a few shorter members (13 residues) of the temporin family are known to display antileishmanial activity (temporins-TA, -TB and -SHa), SHd is an interesting tool to analyze the antiparasitic mechanism of action of temporins. PMID:23116712

  1. In Vitro and In Vivo Antibacterial Activities of S-4661, a New Carbapenem

    PubMed Central

    Tsuji, Masakatsu; Ishii, Yoshikazu; Ohno, Akira; Miyazaki, Shuichi; Yamaguchi, Keizo

    1998-01-01

    The in vitro and in vivo antibacterial activities of S-4661, a new 1β-methylcarbapenem, were compared with those of imipenem, meropenem, biapenem, cefpirome, and ceftazidime. The activity of S-4661 against methicillin-susceptible staphylococci and streptococci was comparable to that of imipenem, with an MIC at which 90% of the strains tested were inhibited (MIC90) equal to 0.5 μg/ml or less. S-4661 was highly active against members of the family Enterobacteriaceae, Haemophilus influenzae, and Moraxella catarrhalis, with MIC90s ranging from 0.032 to 0.5 μg/ml. Against imipenem-resistant Pseudomonas aeruginosa, S-4661 was the most active among test agents (MIC90, 8 μg/ml). Furthermore, S-4661 displayed a high degree of activity against many ceftazidime-, ciprofloxacin-, and gentamicin-resistant isolates of P. aeruginosa. The in vivo efficacy of S-4661 against experimentally induced infections in mice caused by gram-positive and gram-negative bacteria, including penicillin-resistant Streptococcus pneumoniae and drug-resistant P. aeruginosa, reflected its potent in vitro activity and high levels in plasma in mice. We conclude that S-4661 is a promising new carbapenem for the treatment of infections caused by gram-positive and -negative bacteria, including penicillin-resistant S. pneumoniae and drug-resistant P. aeruginosa. PMID:9449267

  2. Combined Antibacterial and Anti-Inflammatory Activity of a Cationic Disubstituted Dexamethasone-Spermine Conjugate▿

    PubMed Central

    Bucki, Robert; Leszczyńska, Katarzyna; Byfield, Fitzroy J.; Fein, David E.; Won, Esther; Cruz, Katrina; Namiot, Andrzej; Kułakowska, Alina; Namiot, Zbigniew; Savage, Paul B.; Diamond, Scott L.; Janmey, Paul A.

    2010-01-01

    The rising number of antibiotic-resistant bacterial strains represents an emerging health problem that has motivated efforts to develop new antibacterial agents. Endogenous cationic antibacterial peptides (CAPs) that are produced in tissues exposed to the external environment are one model for the design of novel antibacterial compounds. Here, we report evidence that disubstituted dexamethasone-spermine (D2S), a cationic corticosteroid derivative initially identified as a by-product of synthesis of dexamethasone-spermine (DS) for the purpose of improving cellular gene delivery, functions as an antibacterial peptide-mimicking molecule. This moiety exhibits bacterial killing activity against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa present in cystic fibrosis (CF) sputa, and Pseudomonas aeruginosa biofilm. Although compromised in the presence of plasma, D2S antibacterial activity resists the proteolytic activity of pepsin and is maintained in ascites, cerebrospinal fluid, saliva, and bronchoalveolar lavage (BAL) fluid. D2S also enhances S. aureus susceptibility to antibiotics, such as amoxicillin (AMC), tetracycline (T), and amikacin (AN). Inhibition of interleukin-6 (IL-6) and IL-8 release from lipopolysaccharide (LPS)- or lipoteichoic acid (LTA)-treated neutrophils in the presence of D2S suggests that this molecule might also prevent systemic inflammation caused by bacterial wall products. D2S-mediated translocation of green fluorescent protein (GFP)-labeled glucocorticoid receptor (GR) in bovine aorta endothelial cells (BAECs) suggests that some of its anti-inflammatory activities involve engagement of glucocorticoid receptors. The combined antibacterial and anti-inflammatory activities of D2S suggest its potential as an alternative to natural CAPs in the prevention and treatment of some bacterial infections. PMID:20308375

  3. Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity.

    PubMed

    Leonard, Cory A; Brown, Stacy D; Hayman, J Russell

    2013-01-01

    Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis of Aspergillus oryzae would result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individual A. oryzae mutants that inhibit the growth of Methicillin-resistant Staphylococcus aureus (MRSA) in vitro. To randomly generate A. oryzae mutant strains, spores were treated with ethyl methanesulfonate (EMS). Over 3000 EMS-treated A. oryzae cultures were tested in the screen, and one isolate, CAL220, exhibited altered morphology and antibacterial activity. Culture supernatant from this isolate showed antibacterial activity against Methicillin-sensitive Staphylococcus aureus, MRSA, and Pseudomonas aeruginosa, but not Klebsiella pneumonia or Proteus vulgaris. The results of this study support our hypothesis and suggest that the screen used is sufficient and appropriate to detect secreted antibacterial fungal compounds resulting from mutagenesis of A. oryzae. Because the genome of A. oryzae has been sequenced and systems are available for genetic transformation of this organism, targeted as well as random mutations may be introduced to facilitate the discovery of novel antibacterial compounds using this system. PMID:23983696

  4. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes.

    PubMed

    Shao, Wei; Liu, Hui; Wang, Shuxia; Wu, Jimin; Huang, Min; Min, Huihua; Liu, Xiufeng

    2016-07-10

    Bacterial cellulose (BC) is widely used in biomedical applications. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded bacterial cellulose (BC) composite membranes, and evaluated the drug release, antibacterial activity and biocompatibility. The structure and morphology of the fabricated BC-TCH composite membranes were characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The TCH release results show that the incorporation of BC matrix to load TCH is able to control the release. In vitro antibacterial assay demonstrate that the developed BC-TCH composites displayed excellent antibacterial activity solely associated with the loaded TCH drug. More importantly, the BC-TCH composite membranes display good biocompatibility. These characteristics of BC-TCH composite membranes indicate that they may successfully serve as wound dressings and other medical biomaterials. PMID:27106158

  5. Chemical composition and antibacterial activity of the essential oil from Agathis dammara (Lamb.) Rich fresh leaves.

    PubMed

    Chen, Zhifen; He, Daohang; Deng, Jingdan; Zhu, Jiaying; Mao, Qiuping

    2015-01-01

    The essential oil of fresh leaves from Agathis dammara (Lamb.) Rich was extracted using hydro-distillation, and GC-FID and GC-MS were used to analyse the essential oil. Nineteen compounds were identified, among which the major components were limonene (36.81%), β-bisabolene (33.43%) and β-myrcene (25.48%). In the antibacterial test, disc diffusion method and micro-well dilution assay proved that the essential oil had significant antibacterial activities. The inhibition zones against Staphylococcus aureus and Pseudomonas aeruginosa were 23.7 and 23 mm, respectively, which demonstrated that the inhibition effects were greater than positive control (10 μg/disc streptomycin). And the lowest MIC value of the essential oil was found against S. aureus (1.25 mg/mL) and Bacillus subtilis (1.25 mg/mL). This is the first report on the antibacterial activities of A. dammara essential oil. PMID:25782597

  6. In vitro evaluation of antibacterial activity of an herbal dentifrice against Streptococcus mutans and Lactobacillus acidophilus.

    PubMed

    Vyas, Yogesh Kumar; Bhatnagar, Maheep; Sharma, Kanika

    2008-01-01

    Antibacterial activity of a herbal dentifrice Arodent against Streptococcus mutans and Lactobacillus acidophilus was evaluated using Colgate as standard. Both bacterial strains were isolated from the oral cavity on selective media and identified by standard methods. The antibacterial activity was assayed by cup-well method. The bacterial lawn of facultative anaerobe S. mutans was established between two layers of agar under microaerophilic conditions. Five and a half millimeters and 10 mm zones of inhibition were produced by Arodent against S. mutans and L. acidophilus , respectively, under microaerophilic conditions. On the other hand, the standard dentifrice Colgate produced 5.83 mm and 10.17 mm zones of inhibition against S. mutans and L. acidophilus , respectively, under microaerophilic condition. The results suggest that Arodent is an effective antibacterial herbal dentifrice. PMID:18245920

  7. Cellular but not humoral antibacterial activity of earthworms is inhibited by Aroclor 1254.

    PubMed

    Roch, P; Cooper, E L

    1991-12-01

    Earthworms, Eisenia fetida andrei and Lumbricus terrestris, exposed to Aroclor 1254, followed by infestation with Aeromonas hydrophila, elicited two types of responses. First, in E. fetida, there was no change in the LD50 nor in the in vitro antibacterial growth capacity of cell-free coelomic fluid. Thus, Aroclor exerts no influence on antibacterial proteins nor on the chloragogue cells responsible for their release. Second, in L. terrestris, both a high LD50 value and no antibacterial activity indicate that A. hydrophila was not pathogenic. The 10(4) times higher sensitivity of exposed L. terrestris suggests that Aroclor inhibits leukocyte activity since E. fetida eliminates nonpathogenic bacteria by a cellular mechanism. PMID:1723380

  8. Chemical Composition and Antibacterial Activity of Essential Oils of Two Species of Lamiaceae against Phytopathogenic Bacteria.

    PubMed

    Gormez, Arzu; Bozari, Sedat; Yanmis, Derya; Gulluce, Medine; Sahin, Fikrettin; Agar, Guleray

    2015-01-01

    In this study, we aimed to determine chemical composition and antibacterial activities of Satureja hortensis and Calamintha nepeta against to 20 phytopathogenic bacteria causing serious crop loss. The essential oils of S. hortensis and C. nepeta were isolated by the hydrodistillation method and the chemical composition of the essential oils were analyzed by GC-MS. The antibacterial properties of the essential oils were evaluated against 20 phytopathogenic bacteria through Disc diffusion assay and micro dilution assay. The results revealed that the essential oils of S. hortensis and C. nepeta have significant antibacterial activity. Furthermore, the findings of the study are valuable for future investigations focusing on the alternative natural compounds to control plant diseases. PMID:26373171

  9. Biocompatibility and antibacterial activity of the Adathoda vasica Linn extract mediated silver nanoparticles.

    PubMed

    Latha, M; Priyanka, M; Rajasekar, P; Manikandan, R; Prabhu, N M

    2016-04-01

    The aim of this study is to investigate the biocompatibility and anti-Vibrio efficacy of green synthesized silver nanoparticles (AgNPs) using an aqueous leaf extract of Adathoda vasica (A. vasica). The green synthesized silver nanoparticles were characterized by UV-vis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). A. vasica AgNPs showed significant antibacterial activity against Vibrio parahaemolyticus in agar bioassay and well diffusion method. Further, nanoparticles interactions with bacteria and its antibacterial activity were confirmed by CLSM analysis. In vivo evaluation results confirmed that synthesized A. vasica AgNPs had good antibacterial efficacy and also nontoxic to the Artemia nauplii. PMID:26802519

  10. I-TiO2/PVC film with highly photocatalytic antibacterial activity under visible light.

    PubMed

    Deng, Weihua; Ning, Shangbo; Lin, Qianying; Zhang, Hualei; Zhou, Tanghua; Lin, Huaxiang; Long, Jinlin; Lin, Qun; Wang, Xuxu

    2016-08-01

    Iodine-modified TiO2(I-TiO2) film were coated on medical-grade PVC material by impregnation-deposition method and subsequently characterized by XRD, SEM, TEM, AFM, DRS and XPS. The photocatalytic anti-bacterial activity of I-TiO2/PVC was investigated both by in vitro anti-bacterial experiments and by clinical study. The results revealed that I-TiO2/PVC exhibit excellent photocatalytic antibacterial activity, which can destroy the propagation of the Escherichia coli and cause the deactivation and death of most E. coli bacteria within 30min visible light illumination. Clinical study on animals showed that I-TiO2 coated on PVC decrease the formation of biofilm on PVC surface in the mechanical ventilation. Furthermore, I-TiO2/PVC can effectively reduce inflammation of tracheal tissue of bam suckling pig and prevents the occurrence of VAP. PMID:27088189

  11. Antibacterial and Anti-Inflammatory Activities of Physalis Alkekengi var. franchetii and Its Main Constituents

    PubMed Central

    Shu, Zunpeng; Xing, Na; Wang, Qiuhong; Li, Xinli; Xu, Bingqing; Li, Zhenyu; Kuang, Haixue

    2016-01-01

    This study was designed to determine whether the 50% EtOH fraction from AB-8 macroporous resin fractionation of a 70% EtOH extract of P. Alkekengi (50-EFP) has antibacterial and/or anti-inflammatory activity both in vivo and in vitro and to investigate the mechanism of 50-EFP anti-inflammatory activity. Additionally, this study sought to define the chemical composition of 50-EFP. Results indicated that 50-EFP showed significant antibacterial activity in vitro and efficacy in vivo. Moreover, 50-EFP significantly reduced nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), and interleukin 6 (IL-6) production in lipopolysaccharide- (LPS-) stimulated THP-1 cells. Nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (examined at the protein level) in THP-1 cells were suppressed by 50-EFP, which inhibited nuclear translocation of p65. Consistent with this anti-inflammatory activity in vitro, 50-EFP reduced inflammation in both animal models. Finally, seventeen compounds (8 physalins and 9 flavones) were isolated as major components of 50-EFP. Our data demonstrate that 50-EFP has antibacterial and anti-inflammatory activities both in vitro and in vivo. The anti-inflammatory effect appears to occur, at least in part, through the inhibition of nuclear translocation of p65. Moreover, physalins and flavones are probably the active components in 50-EFP that exert antibacterial and anti-inflammatory activities. PMID:27057196

  12. Chemical composition and antibacterial activity of the essential oil from green huajiao (Zanthoxylum schinifolium) against selected foodborne pathogens.

    PubMed

    Diao, Wen-Rui; Hu, Qing-Ping; Feng, Sai-Sai; Li, Wei-Qin; Xu, Jian-Guo

    2013-06-26

    Green huajiao, which is the ripe pericarp of the fruit of Zanthoxylum schinifolium Sieb. et Zucc, is widely consumed in Asia as a spice. In this work, the chemical composition of the essential oil from green huajiao was analyzed by gas chromatography (GC) and GC/mass spectrometry (MS), and the majority of components were identified. Linalool (28.2%), limonene (13.2%), and sabinene (12.1%) were found to be the major components. The antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of the essential oil were evaluated against selected bacteria, including food-borne pathogens. The results showed that the sensitivities to the essential oil were different for different bacteria tested, and the susceptibility of Gram-positive bacteria tested was observed to be greater than that of Gram-negative bacteria. The antibacterial activity of the essential oil was particularly strong against Staphylococcus epidermidis , with MIC and MBC values of 2.5 and 5.0 mg/mL, respectively. A postcontact effect assay also confirmed the essential oil had a significant effect on the growth rate of surviving S. epidermidis . The antibacterial activity of the essential oil from green huajiao may be due to the increase in permeability of cell membranes, and the leakage of intracellular constituents, on the basis of the cell constituents' release assay and electron microscopy observations. PMID:23758080

  13. Preparation of ferrous chelate of hairtail (Trichiurus haumela) protein hydrolysate (Fe(II)-HPH) and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Lin, Huimin; Zhang, Bin; Yu, Tian; Deng, Shanggui

    The preparation of a ferrous chelate of hairtail (Trichiurus haumela) protein hydrolysate (Fe(II)-HPH) and its antibacterial activity were studied. The optimal conditions of hydrolysis by papain and ferrous chelation were obtained by single-factor experiments and orthogonal test, with the antibacterial activities as the index. In addition, the antibacterial activity of Fe(II)-HPH was evaluated using the Plackett-Burman design. The orthogonal test results showed that Fe(II)-HPH had an antibacterial activity of 98.3% under a temperature of 40 °C at pH 6.5 for an enzymolysis duration of eight hours in the presence of 20,000 U/g of enzyme. The Plackett-Burman design analysis showed that the three most significant factors (P < 0.05) influencing the antibacterial activity of Fe(II)-HPH were pH, the concentration (mg/mL), and presence of magnesium sulfate.

  14. Selective antibacterial activity of patchouli alcohol against Helicobacter pylori based on inhibition of urease.

    PubMed

    Yu, Xiao-Dan; Xie, Jian-Hui; Wang, Yong-Hong; Li, Yu-Cui; Mo, Zhi-Zhun; Zheng, Yi-Feng; Su, Ji-Yan; Liang, Ye-er; Liang, Jin-Zhi; Su, Zi-Ren; Huang, Ping

    2015-01-01

    The aim of this study is to evaluate the antibacterial activity and urease inhibitory effects of patchouli alcohol (PA), the bioactive ingredient isolated from Pogostemonis Herba, which has been widely used for the treatment of gastrointestinal disorders. The activities of PA against selected bacteria and fungi were determined by agar dilution method. It was demonstrated that PA exhibited selective antibacterial activity against Helicobacter pylori, without influencing the major normal gastrointestinal bacteria. Noticeably, the antibacterial activity of PA was superior to that of amoxicillin, with minimal inhibition concentration value of 78 µg/mL. On the other hand, PA inhibited ureases from H.pylori and jack bean in concentration-dependent fashion with IC50 values of 2.67 ± 0.79 mM and 2.99 ± 0.41 mM, respectively. Lineweaver-Burk plots indicated that the type of inhibition was non-competitive against H.pylori urease whereas uncompetitive against jack bean urease. Reactivation of PA-inactivated urease assay showed DL-dithiothreitol, the thiol reagent, synergistically inactivated urease with PA instead of enzymatic activity recovery. In conclusion, the selective H.pylori antibacterial activity along with urease inhibitory potential of PA could make it a possible drug candidate for the treatment of H.pylori infection. PMID:25243578

  15. A novel short anionic antibacterial peptide isolated from the skin of Xenopus laevis with broad antibacterial activity and inhibitory activity against breast cancer cell.

    PubMed

    Li, Siming; Hao, Linlin; Bao, Wanguo; Zhang, Ping; Su, Dan; Cheng, Yunyun; Nie, Linyan; Wang, Gang; Hou, Feng; Yang, Yang

    2016-07-01

    A vastarray of bioactive peptides from amphibian skin secretions is attracting increasing attention due to the growing problem of bacteria resistant to conventional antibiotics. In this report, a small molecular antibacterial peptide, named Xenopus laevis antibacterial peptide-P1 (XLAsp-P1), was isolated from the skin of Xenopus laevis using reversed-phase high-performance liquid chromatography. The primary structure of XLAsp-P1, which has been proved to be a novel peptide by BLAST search in AMP database, was DEDDD with a molecular weight of 607.7 Da analysed by Edman degradation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). The highlight of XLAsp-P1 is the strong in vitro potency against a variety of Gram-positive and Gram-negative bacteria with minimum inhibitory concentrations (MICs) starting at 10 μg/mL and potent inhibitory activity against breast cancer cell at tested concentrations from 5 to 50 μg/mL. In addition, only 6.2 % of red blood cells was haemolytic when incubated with 64 μg/mL (higher than MICs of all bacterial strain) of XLAsp-P1. The antimicrobial mechanism for this novel peptide was the destruction of the cell membrane investigated by transmission electron microscopy. All these showed that XLAsp-P1 is a novel short anionic antibacterial peptide with broad antibacterial activity and inhibitory activity against breast cancer cell. PMID:26952034

  16. Full Spectrum Visible LED Light Activated Antibacterial System Realized by Optimized Cu2O Crystals.

    PubMed

    Shi, Xiaotong; Xue, Chaowen; Fang, Fang; Song, Xiangwei; Yu, Fen; Liu, Miaoxing; Wei, Zhipeng; Fang, Xuan; Zhao, Dongxu; Xin, Hongbo; Wang, Xiaolei

    2016-04-01

    Assisted by three-dimensional printing technology, we proposed and demonstrated a full spectrum visible light activated antibacterial system by using a combination of 500 nm sized Cu2O crystals and light-emitting diode (LED) lamps. Further improved antibacterial ratios were achieved, for the first time, with pure Cu2O for both Gram-positive bacteria and Gram-negative bacteria among all of the six different color LED lamps. For practical antibacterial applications, we revealed that the nonwoven fabric could act as excellent carrier for Cu2O crystals and provide impressive antibacterial performance. Furthermore, integrated with our self-developed app, the poly(ethylene terephthalate) film loaded with Cu2O crystals also showed significant antibacterial property, thus making it possible to be applied in field of touch screen. The present research not only provided a healthier alternative to traditional ultraviolet-based sterilization but also opened an auto-response manner to decrease the rate of microbial contamination on billions of touch screen devices. PMID:26978589

  17. Characterization of antibacterial polyethersulfone membranes using the Respiration Activity Monitoring System (RAMOS).

    PubMed

    Kochan, Jozef; Scheidle, Marco; van Erkel, Joost; Bikel, Matías; Büchs, Jochen; Wong, John Erik; Melin, Thomas; Wessling, Matthias

    2012-10-15

    Membranes with antibacterial properties were developed using surface modification of polyethersulfone ultrafiltration membranes. Three different modification strategies using polyelectrolyte layer-by-layer (LbL) technique are described. The first strategy relying on the intrinsic antibacterial properties of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(ethylenimine) (PEI) exhibits only little antibacterial effects. The other two strategies contain silver in both ionic (Ag(+)) and metallic (Ag(0)) form. Ag(+) embedded into negatively charged poly(sodium 4-styrene sulfonate) (PSS) layers totally inhibits bacterial growth. Ag(0) nanoparticles were introduced to the membrane surface by LbL deposition of chitosan- and poly(methacrylic acid) - sodium salt (PMA)-capped silver nanoparticles and subsequent UV or heat treatment. Antibacterial properties of the modified membranes were quantified by a new method based on the Respiration Activity Monitoring System (RAMOS), whereby the oxygen transfer rates (OTR) of E. coli K12 cultures on the membranes were monitored online. As opposed to colony forming counting method RAMOS yields more quantitative and reliable data on the antibacterial effect of membrane modification. Ag-imprinted polyelectrolyte film composed of chitosan (Ag(0))/PMA(Ag(0))/chitosan(Ag(0)) was found to be the most promising among the tested membranes. Further investigation revealed that the concentration and equal distribution of silver in the membrane surface plays an important role in bacterial growth inhibition. PMID:22884245

  18. Comparison of antibacterial activities of cadmium oxide nanoparticles against Pseudomonas Aeruginosa and Staphylococcus Aureus bacteria

    PubMed Central

    Salehi, Bahareh; Mortaz, Esmaeil; Tabarsi, Payam

    2015-01-01

    Background: Inorganic antibacterial factors have bacterial resistance and high thermal stability. Inorganic nanomaterials which have new structures with biological, chemical and physical properties have been made since their applications due to their nano size. In this study, the antibacterial effect of cadmium oxide nanoparticles on Staphylococcus aureus and Pseudomonas aeruginosa bacteria was investigated. Materials and Methods: The different concentrations (10 μg/ml, 15 μg/ml and 20 μg/ml) of cadmium oxide nanoparticles were prepared and their effects were studied against considered bacteria in both solid and liquid media. Results: The results showed that there is a direct relationship between inhibitory effect and amount of consumer dose of nanoparticles. Furthermore, it was observed that antibacterial properties of cadmium oxide nanoparticles on activity and growth of Staphylococcus aureus was more effective than Pseudomonas aeruginosa. Conclusion: This study showed that antibacterial effects of cadmium oxide nanoparticles on positive gram bacteria are stronger than negative gram bacteria and antibacterial effects of cdo nanoparticles against both bacteria, but Staphylococcus aureus bacteria were more sensitive to nanoparticles as compared to Pseudomonas aeruginosa. PMID:26261807

  19. Easily separated silver nanoparticle-decorated magnetic graphene oxide: Synthesis and high antibacterial activity.

    PubMed

    Zhang, Huai-Zhi; Zhang, Chang; Zeng, Guang-Ming; Gong, Ji-Lai; Ou, Xiao-Ming; Huan, Shuang-Yan

    2016-06-01

    Silver nanoparticle-decorated magnetic graphene oxide (MGO-Ag) was synthesized by doping silver and Fe3O4 nanoparticles on the surface of GO, which was used as an antibacterial agent. MGO-Ag was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray (EDS), X-ray diffraction (XRD), Raman spectroscopy and magnetic property tests. It can be found that magnetic iron oxide nanoparticles and nano-Ag was well dispersed on graphene oxide; and MGO-Ag exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. Several factors were investigated to study the antibacterial effect of MGO-Ag, such as temperature, time, pH and bacterial concentration. We also found that MGO-Ag maintained high inactivation rates after use six times and can be separated easily after antibacterial process. Moreover, the antibacterial mechanism is discussed and the synergistic effect of GO, Fe3O4 nanoparticles and nano-Ag accounted for high inactivation of MGO-Ag. PMID:26994349

  20. Antibacterial Activity of Some Plant Extracts Against Extended- Spectrum Beta-Lactamase Producing Escherichia coli Isolates

    PubMed Central

    Saeidi, Saeide; Amini Boroujeni, Negar; Ahmadi, Hassan; Hassanshahian, Mehdi

    2015-01-01

    Background: The extended-spectrum beta-lactamase (ESBL) -producing Escherichia coli isolates make many serious infections, especially urinary tract infections. Objectives: The purpose of this study was to determine the antibacterial activities of some natural plant extracts against ESBL-producing E. coli isolates, which harbor the TEM gene in urine samples of the patients who have urinary tract infections. Materials and Methods: Evaluation has to be exactly determined for both methods of disk diffusion test and polymerase chain reaction (PCR), separately. We evaluated 120 strains of E. coli isolates from the urine culture of the patients in Boo-Ali Hospital (Zahedan, south-eastern Iran) who were suffering from urinary tract infections. The ESBL-producing E. coli isolates were evaluated by disk diffusion test and PCR through TEM gene detection. The minimal inhibitory concentration (MIC) of commonly used antibiotics including ceftazidime, ceftriaxon, amikacin, gentamicin and ciprofloxacin along with the MIC of the alcoholic extract of different natural plants including Myrtus communis L (Myrtaceae), Amaranthus retraflexus (Amaranthaceae), Cyminum cuminum L (Apiaceae), Marrubium vulgare (Laminaceae) and Peganum. harmala (Zygrophyllaceae) against the ESBL-producing E. coli isolates, which harbor the TEM genes, were determined using the microdulition method. Results: Results of this study showed that in disk diffusion method, 80 samples of E. coli produced ESBLs. In PCR method, the TEM gene distribution in the isolated ESBL-producing organisms was 50 (41.6%). Amikacin was the most effective anti-bacterial agent and ciprofloxacin was the least effective against E. coli isolates. All the natural plant extracts mentioned above, especially P. harmala, were effective against the selected isolates of ESBL-producing E. coli. The most frequent ESBL rate producing E. coli isolates (32 out of 50) had MIC of 2.5 mg/mL in ethanol extract of P. harmala. Conclusions: The alcoholic

  1. Antibacterial activity and mechanism of chitosan with ultra high molecular weight.

    PubMed

    Li, Jianhui; Wu, Yiguang; Zhao, Liqing

    2016-09-01

    Chitosan with different degree of deacetylation (DD) and ultra high molecular weight (MW >10(6)) was prepared from β-chitin by mild deacetylation. The effects of DD of chitosan and pH value of its solution/suspension on its antibacterial activity were investigated. The results showed that the optimal pH value was 6.0 for the highest bactericidal activity. The antibacterial activity against Escherichia coli and Staphylococcus aureus of chitosan solution at pH 6.0 enhanced as the DD of chitosan increased. Same as chitosan with low MW, the antibacterial activity of chitosan with high MW in acidic solution was also due to the amino protonation and subsequently cationic formation. Its ultra long molecular chain was propitious to coat and bind the E. coli and S. aureus, and highly enhanced its antibacterial activity. E. coli and S. aureus were at first restrained and then killed by chitosan and the cells were ruptured and decomposed gradually. PMID:27185132

  2. Intensity and duration of in-vitro antibacterial activity of different adhesives used in orthodontics.

    PubMed

    Passariello, Claudio; Sannino, Gianpaolo; Petti, Stefano; Gigola, Pierangelo

    2014-04-01

    This work investigated the antibacterial activity of 14 bonding agents to predict their ability to inhibit white-spot development during orthodontic treatment. Standardized, sterilized disks of each material were continuously rinsed (for up to 180 d) in a flow of sterile saline. At predetermined time points, the residual ability of each material to inhibit bacterial growth (determined by measuring the size of inhibition halos around disks placed onto appropriate culture media seeded with Streptococcus gordonii DSM6777, Streptococcus sanguinis DSM20567, Streptococcus mutans DSM20523, or Lactobacillus acidophilus DSM20079) and biofilm formation (determined by measuring the numbers of bacteria adherent to disks following incubation in appropriate broths) was tested in triplicate and compared with the baseline activities of freshly prepared materials. Overall antibacterial and anti-biofilm activities, adjusted for exposure time and strain of bacteria, were assessed. The decrease of antibacterial activity was faster (30-60 d) and complete for fluoride-enriched materials, but slower (90 d) and partial for antimicrobial-containing materials (benzalkonium chloride, zinc oxide, chlorexidine, or MDPB). Materials enriched with benzalkonium chloride, chlorexidine, or MDPB showed the highest antibacterial activities. Anti-biofilm assays yielded similar results. These data could be helpful for clinicians in the choice of the best performing bonding agent also in light of duration of the clinical application. PMID:24621259

  3. The Mechanism Underlying the Antibacterial Activity of Shikonin against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Lee, Young-Seob; Lee, Dae-Young; Kim, Yeon Bok; Lee, Sang-Won; Cha, Seon-Woo; Park, Hong-Woo; Kim, Geum-Soog; Kwon, Dong-Yeul; Lee, Min-Ho; Han, Sin-Hee

    2015-01-01

    Shikonin (SKN), a highly liposoluble naphthoquinone pigment isolated from the roots of Lithospermum erythrorhizon, is known to exert antibacterial, wound-healing, anti-inflammatory, antithrombotic, and antitumor effects. The aim of this study was to examine SKN antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). The SKN was analyzed in combination with membrane-permeabilizing agents Tris and Triton X-100, ATPase inhibitors sodium azide and N,N′-dicyclohexylcarbodiimide, and S. aureus-derived peptidoglycan; the effects on MRSA viability were evaluated by the broth microdilution method, time-kill test, and transmission electron microscopy. Addition of membrane-permeabilizing agents or ATPase inhibitors together with a low dose of SKN potentiated SKN anti-MRSA activity, as evidenced by the reduction of MRSA cell density by 75% compared to that observed when SKN was used alone; in contrast, addition of peptidoglycan blocked the antibacterial activity of SKN. The results indicate that the anti-MRSA effect of SKN is associated with its affinity to peptidoglycan, the permeability of the cytoplasmic membrane, and the activity of ATP-binding cassette (ABC) transporters. This study revealed the potential of SKN as an effective natural antibiotic and of its possible use to substantially reduce the use of existing antibiotic may also be important for understanding the mechanism underlying the antibacterial activity of natural compounds. PMID:26265924

  4. Phenolic content, antioxidant and antibacterial activity of selected natural sweeteners available on the Polish market.

    PubMed

    Grabek-Lejko, Dorota; Tomczyk-Ulanowska, Kinga

    2013-01-01

    Seventeen natural sweeteners available on the Polish market were screened for total phenolic content, by the Folin-Ciocalteu method, and for antioxidant activity, using the ferric reducing antioxidant power (FRAP) assay and the 2,2'-Azinobis (3-ethylbenzthiazoline-6-sulphonic acid) radical cation decolorization assay (ABTS(·+)). In addition, we analyzed antibacterial activities against Staphylococcus aureus strains: both those susceptible and those resistant to methicillin (MRSA). The results of the study showed that total phenolic content, antioxidant activity and antibacterial activity differ widely among different samples of sweeteners. Phenolic content, expressed as a gallic acid equivalent, ranged from 0 mg kg(-1) in white, refined sugar, xylitol and wheat malt syrup to 11.4 g kg(-1) in sugarcane molasses. Antioxidant activity was lowest in refined white sugar, xylitol, brown beet sugar, liquid fructose, and rape honey; it was average in spelt syrup and corn syrup, and highest in sugar cane, beet molasses, date and barley syrups. Despite the great variety of sweeteners, a strong correlation was noted between the concentration of phenolics and antioxidant properties, as determined by the ABTS(·+) method (r = 0.97) and the FRAP assay (r = 0.77). The strongest antibacterial activity was observed in sugarcane molasses, which was lethal to S. aureus strains at 2 and 4% concentrations in medium for susceptible and MRSA strains respectively. Other sweeteners kill bacteria in 6-15% solutions, whereas some did not show any antibacterial activities against S. aureus strains, even at 20% concentrations. Due to their high antioxidant and antibacterial activities, some of the tested sweeteners have potential therapeutic value as supporting agents in antibiotic therapy. PMID:24007486

  5. In vitro and in vivo antibacterial activities of BO-1341, a new antipseudomonal cephalosporin.

    PubMed Central

    Nakagawa, S; Sanada, M; Matsuda, K; Hashizume, T; Asahi, Y; Ushijima, R; Ohtake, N; Tanaka, N

    1989-01-01

    BO-1341, a new antipseudomonal semisynthetic cephalosporin, was evaluated for in vitro and in vivo antibacterial activities in comparison with ceftazidime, cefotaxime, and cefoperazone. The in vitro activity of BO-1341 was generally superior or comparable to the activities of the reference antibiotics against clinical isolates of the family Enterobacteriaceae. BO-1341 was highly active against Pseudomonas aeruginosa (MIC for 90% of the strains tested, 1.56 micrograms/ml), Pseudomonas maltophilia (MIC for 50% of the strains tested, 1.56 micrograms/ml), and Acinetobacter calcoaceticus (MIC for 90% of the strains tested, 3.13 micrograms/ml). Furthermore, BO-1341 was highly active against P. aeruginosa isolates resistant to the other antibiotics. Of 199 P. aeruginosa isolates tested, only 2 were resistant to BO-1341. These two strains were also resistant to ceftazidime, cefotaxime, and cefoperazone. Haemophilus influenzae, Branhamella catarrhalis, and nonenteric streptococci were also susceptible to BO-1341, but Staphylococcus aureus, Streptococcus faecalis, and Bacteroides fragilis were not susceptible to the compound. The protective efficacy against experimental infections in mice caused by nine strains of gram-negative bacteria, including P. aeruginosa, reflected the potent in vitro activity. PMID:2510590

  6. Solophenols B-D and solomonin: new prenylated polyphenols isolated from propolis collected from the Solomon Islands and their antibacterial activity.

    PubMed

    Inui, Saori; Hosoya, Takahiro; Shimamura, Yuko; Masuda, Shuichi; Ogawa, Takeshi; Kobayashi, Hirokazu; Shirafuji, Kenichi; Moli, Reuben Toli; Kozone, Ikuko; Shin-ya, Kazuo; Kumazawa, Shigenori

    2012-11-28

    Three new prenylated flavonoids, namely, solophenols B (1), C (2), and D (3), as well as a new prenylated stilbene, solomonin (4), were isolated from propolis collected from the Solomon Islands. In addition, 17 known compounds were identified. The structures of the new compounds were determined by a combination of methods, including mass spectrometry and NMR. These new compounds and several known compounds were tested for antibacterial activity against Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa. Most of them exhibited potent antibacterial activity. These findings may indicate that propolis from the Solomon Islands has potential applications as an ingredient in food additives or pharmaceuticals. PMID:23067056

  7. Mechanism of Antibacterial Activity of Liposomal Linolenic Acid against Helicobacter pylori

    PubMed Central

    Jung, Sung Woo; Thamphiwatana, Soracha; Zhang, Liangfang; Obonyo, Marygorret

    2015-01-01

    Helicobacter pylori infects approximately half of the world population and is a major cause of gastritis, peptic ulcer, and gastric cancer. Moreover, this bacterium has quickly developed resistance to all major antibiotics. Recently, we developed a novel liposomal linolenic acid (LipoLLA) formulation, which showed potent bactericidal activity against several clinical isolated antibiotic-resistant strains of H. pylori including both the spiral and coccoid form. In addition, LipoLLA had superior in vivo efficacy compared to the standard triple therapy. Our data showed that LipoLLA associated with H. pylori cell membrane. Therefore, in this study, we investigated the possible antibacterial mechanism of LipoLLA against H. pylori. The antibacterial activity of LipoLLA (C18:3) was compared to that of liposomal stearic acid (LipoSA, C18:0) and oleic acid (LipoOA, C18:1). LipoLLA showed the most potent bactericidal effect and completely killed H. pylori within 5 min. The permeability of the outer membrane of H. pylori increased when treated with LipoOA and LipoLLA. Moreover, by detecting released adenosine triphosphate (ATP) from bacteria, we found that bacterial plasma membrane of H. pylori treated with LipoLLA exhibited significantly higher permeability than those treated with LipoOA, resulting in bacteria cell death. Furthermore, LipoLLA caused structural changes in the bacterial membrane within 5 min affecting membrane integrity and leading to leakage of cytoplasmic contents, observed by both transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Our findings showing rapid bactericidal effect of LipoLLA suggest it is a very promising new, effective anti-H. pylori agent. PMID:25793403

  8. Essential Oil Composition and Antibacterial Activity of Origanum vulgare subsp. glandulosum Desf. at Different Phenological Stages

    PubMed Central

    Chaabane, Hédia; Jemli, Maroua; Boulila, Abdennacer; Boussaid, Mohamed

    2013-01-01

    Abstract Variation in the quantity and quality of the essential oil (EO) of wild population of Origanum vulgare at different phenological stages, including vegetative, late vegetative, and flowering set, is reported. The oils of air-dried samples were obtained by hydrodistillation. The yield of oils (w/w%) at different stages were in the order of late vegetative (2.0%), early vegetative (1.7%), and flowering (0.6%) set. The oils were analyzed by gas chromatography (GC) and GC–mass spectrometry (GC-MS). In total, 36, 33, and 16 components were identified and quantified in vegetative, late vegetative, and flowering set, representing 94.47%, 95.91%, and 99.62% of the oil, respectively. Carvacrol was the major compound in all samples. The ranges of major constituents were as follows: carvacrol (61.08–83.37%), p-cymene (3.02–9.87%), and γ-terpinene (4.13–6.34%). Antibacterial activity of the oils was tested against three Gram-positive and two Gram-negative bacteria by the disc diffusion method and determining their diameter of inhibition and the minimum inhibitory concentration (MIC) values. The inhibition zones and MIC values for bacterial strains, which were sensitive to the EO of O. vulgare subsp. glandulosum, were in the range of 9–36 mm and 125–600 μg/mL, respectively. The oils of various phenological stages showed high activity against all tested bacteria, of which Bacillus subtilis was the most sensitive and resistant strain, respectively. Thus, they represent an inexpensive source of natural antibacterial substances that exhibited potential for use in pathogenic systems. PMID:24320986

  9. Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Kooti, M.; Saiahi, S.; Motamedi, H.

    2013-05-01

    A new silver coated cobalt ferrite nanocomposite, Ag@CoFe2O4, was prepared by a two-step procedure. In the first step, cobalt ferrite nanoparticles were synthesized by a combustion method using glycine as a fuel. This ferrite was then coated with nanosilver via chemical reduction of Ag+ solution. The as-synthesized Ag@CoFe2O4 was characterized by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The antibacterial activity of this composite was investigated against some Gram-positive and Gram-negative bacteria and compared with those of silver nanoparticles and some standard antibacterial drugs.

  10. Thiourea derivatives incorporating a hippuric acid moiety: synthesis and evaluation of antibacterial and antifungal activities.

    PubMed

    Abbas, Samir Y; El-Sharief, Marwa A M Sh; Basyouni, Wahid M; Fakhr, Issa M I; El-Gammal, Eman W

    2013-06-01

    New series of thiourea derivatives incorporating a hippuric acid moiety have been synthesized through the reaction of 4-hippuric acid isothiocyanate with various nitrogen nucleophiles such as aliphatic amines, aromatic amines, sulfa drugs, aminopyrazoles, phenylhydrazine and hydrazides. The synthesized compounds were tested against bacterial and fungal strains. Most of compounds, such as 2-(4-(3-(3-bromophenyl)thioureido)benzamido)acetic acid and 2-(4-(3-(4-(N-pyrimidin-2-ylsulfamoyl)phenyl)thioureido)benzamido)acetic acid, showed significant antibacterial and antifungal activities. These compounds comprise a new class of promising broad-spectrum antibacterial and antifungal agents. PMID:23644194

  11. Synthesis and In-vitro Antibacterial Activities of Acetylanthracene and Acetylphenanthrene Derivatives of Some Fluoroquinolones

    PubMed Central

    Shamsa, Fazel; Foroumadi, Alireza; Shamsa, Hashim; Samadi, Nasrin; Faramarzi, Mohammad Ali; Shafiee, Abbas

    2011-01-01

    Novel analogues of N-piperazinyl fluoroquinolones were prepared and evaluated against a panel of Gram-positive and Gram-negative bacteria, to study the effect of introducing bulky anthracene and phenanthrene moieties on the antibacterial effects of norfloxacin, ciprofloxacin and gatifloxacin. Although most of the novel synthesized compounds had lower antibacterial effects, some derivatives showed better activity in comparison with mother drugs based on molar concentration; for example, the 3-acetyl phenanthrene analogue of norfloxacin was more effective than E. coli and K. pneumonia. PMID:24250347

  12. Anti-bacterial activity of Euphorbia fusiformis--a rare medicinal herb.

    PubMed

    Natarajan, D; Britto, S John; Srinivasan, K; Nagamurugan, N; Mohanasundari, C; Perumal, G

    2005-10-31

    Euphorbia fusiformis Buch.-Ham. ex. D.Don (Euphorbiaceae) is a rare medicinal herb. Aqueous and organic solvent extracts of the leaves and rootstocks were investigated for anti-bacterial properties by using disc diffusion and well-in agar methods, against pathogenic strains of Gram positive (Bacillus subtilis and Staphylococcus aureus) and Gram negative bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella typhii A and Salmonella typhii B). The different extracts differed significantly in their anti-bacterial properties with the methanolic extract being very effective followed by acetone and chloroform extracts. Aqueous and ethanolic extract showed very least activity. The result highlights that rootstock extracts had good anti-bacterial properties than leaf extracts. The results of this study support the use of this plant in traditional medicine to treat fever, wound infections and intestinal disorders. PMID:16159702

  13. Enhanced transparency, mechanical durability, and antibacterial activity of zinc nanoparticles on glass substrate

    PubMed Central

    Choi, Hyung-Jin; Choi, Jin-Seok; Park, Byeong-Ju; Eom, Ji-Ho; Heo, So-Young; Jung, Min-Wook; An, Ki-Seok; Yoon, Soon-Gil

    2014-01-01

    Homogeneously distributed zinc nanoparticles (NPs) on the glass substrate were investigated for the transmittance, mechanical durability, and antibacterial effect. The buffered Ti NPs between Zn NPs and glass substrate were studied for an enhancement of the transmittance and mechanical endurance. The Ti NPs buffered Zn NPs showed a high transmittance of approximately 91.5% (at a wavelength of 550 nm) and a strong antibacterial activity for Staphylococcus aureus and Escherichia coli bacteria. The buffered Ti NPs are attractive for an excellent mechanical endurance of the Zn NPs. The Zn NPs did not require the protection layer to prevent the degradation of the performance for both the antibacterial effect and the transmittance. PMID:25183360

  14. Investigation on Antibacterial and Antioxidant Activities, Phenolic and Flavonoid Contents of Some Thai Edible Plants as an Alternative for Antibiotics

    PubMed Central

    Lee, J. H.; Cho, S.; Paik, H. D.; Choi, C. W.; Nam, K. T.; Hwang, S. G.; Kim, S. K.

    2014-01-01

    This study was aimed to examine the antibacterial and antioxidative properties of seven edible plants from Thailand to develop alternative antibiotics as feed additives. The plants include Citrus aurantifolia Swingle (Lime) fruits and its leaves, Sesbania grandiflora L. (Agati sesbania) leaves, Piper sarmentosum Roxb (Wild betal) leaves, Curcuma domestica Valeton (Turmeric) roots, Morinda citrifolia L. (Beach mulberry) leaves, Cassia siamea britt (Siamea cassia) leaves, and Cocos nucifera L. (Coconut) peels. The plants were extracted by methanol, n-hexane, chloroform, ethyl acetate, butanol and water. Antibacterial activities with minimum inhibitory concentration (MIC) were determined by agar diffusion assay against Escherichia coli, Burkholderia sp., Haemopilus somnus, Haemopilus parasuis, and Clostridium perfringens that were considered pathogenic strains in livestock infection. Methanol extracts of C. aurantifolia Swingle fruits and leaves showed the broadest spectrum of antibacterial activities except for C. perfringens. Butanol extract of S. grandiflora L. leaves showed the strongest activity against Burkholderia sp. with MIC, 135 μg/mL. P. sarmentosum Roxb leaves showed antibacterial activities against E. coli, Burkholderia sp. and H. parasuis. Ethyl acetate and water extracts from C. domesitca Valeton roots showed MIC of 306 μg/mL and 183 μg/mL, respectively against only C. perfringens. Antioxidative activity was determined by 2-diphenyl-2-picryl hydrazyl photometric assay. The methanol extracts of C. aurantifolia Swingle fruits and P. sarmentosum Roxb leaves showed the highest antioxidant activity among all the extracts with 3.46 mg/mL and 2.70 mg/mL effective concentration 50% (EC50) values, respectively. Total contents of phenolics and flavonoids were measured from the plant extracts. Methanol extracts of S. grandiflora L. and chloroform extracts of C. domestica Valeton were found to have the highest amount of total phenolics, 41.7 and 47.8

  15. Investigation on antibacterial and antioxidant activities, phenolic and flavonoid contents of some thai edible plants as an alternative for antibiotics.

    PubMed

    Lee, J H; Cho, S; Paik, H D; Choi, C W; Nam, K T; Hwang, S G; Kim, S K

    2014-10-01

    This study was aimed to examine the antibacterial and antioxidative properties of seven edible plants from Thailand to develop alternative antibiotics as feed additives. The plants include Citrus aurantifolia Swingle (Lime) fruits and its leaves, Sesbania grandiflora L. (Agati sesbania) leaves, Piper sarmentosum Roxb (Wild betal) leaves, Curcuma domestica Valeton (Turmeric) roots, Morinda citrifolia L. (Beach mulberry) leaves, Cassia siamea britt (Siamea cassia) leaves, and Cocos nucifera L. (Coconut) peels. The plants were extracted by methanol, n-hexane, chloroform, ethyl acetate, butanol and water. Antibacterial activities with minimum inhibitory concentration (MIC) were determined by agar diffusion assay against Escherichia coli, Burkholderia sp., Haemopilus somnus, Haemopilus parasuis, and Clostridium perfringens that were considered pathogenic strains in livestock infection. Methanol extracts of C. aurantifolia Swingle fruits and leaves showed the broadest spectrum of antibacterial activities except for C. perfringens. Butanol extract of S. grandiflora L. leaves showed the strongest activity against Burkholderia sp. with MIC, 135 μg/mL. P. sarmentosum Roxb leaves showed antibacterial activities against E. coli, Burkholderia sp. and H. parasuis. Ethyl acetate and water extracts from C. domesitca Valeton roots showed MIC of 306 μg/mL and 183 μg/mL, respectively against only C. perfringens. Antioxidative activity was determined by 2-diphenyl-2-picryl hydrazyl photometric assay. The methanol extracts of C. aurantifolia Swingle fruits and P. sarmentosum Roxb leaves showed the highest antioxidant activity among all the extracts with 3.46 mg/mL and 2.70 mg/mL effective concentration 50% (EC50) values, respectively. Total contents of phenolics and flavonoids were measured from the plant extracts. Methanol extracts of S. grandiflora L. and chloroform extracts of C. domestica Valeton were found to have the highest amount of total phenolics, 41.7 and 47.8

  16. Antibacterial activity of selected commercial products for mouth washing and disinfection, assessed in accordance with PN-EN 1040

    PubMed Central

    Tyski, Stefan; Bocian, Ewa; Mikucka, Agnieszka; Grzybowska, Wanda

    2013-01-01

    Background Currently, there is a wide range of products for mouth washing on the Polish market. They have different qualitative and quantitative compositions, and they differ particularly in the concentration of active substances. In antisepsis and disinfection, the significant reduction in number of cells of microorganisms in a particular environment is very crucial. The chemical agents should provide a significant decrease in number of microorganisms in a relatively short time. The purpose of this study was to examine the bactericidal activity of selected herbal products used for treatment of inflammation, and disinfection and washing of the mouth, having antibacterial activity as declared by the manufacturers. Material/Methods The study included 28 products for mouth washing and disinfection available in Poland. Bactericidal activity was studied using a quantitative suspension test according to the standard PN-EN 1040. Results Only 1 of 4 tested herbal products, registered as medicinal products, showed satisfactory antibacterial activity when they were used according to the manufacturer’s recommendations. A total of 13 preparations (48%) complied with the standard requirements against all tested strains. Up to 19% of products showed no bactericidal activity against bacterial strains, and up to 33% were only effective against certain microorganisms. Conclusions The informational literature accompanying most antiseptics should be corrected by the manufacturers, providing information about antimicrobial activity consistent with the requirements of applicable standards. The information on the packaging or in the leaflets for antiseptic products should be corrected by the manufacturers to include accurate information on antimicrobial activity. PMID:23764523

  17. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Anandalakshmi, K.; Venugobal, J.; Ramasamy, V.

    2016-03-01

    In this paper, an aqueous extract of fresh leaves of Pedalium murex was used for the synthesis of silver (Ag) nanoparticles. Different biological methods are gaining recognition for the production of silver nanoparticles (AgNPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost-effective and eco-friendly approach. Characterization of nanoparticles was done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR), powder X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray analysis (EDAX), fluorescence emission spectroscopy, transmission electron microscope (TEM), dynamic light scattering (DLS), zeta potential and antibacterial activity. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 430 nm. Fourier transform infrared spectra had shown that the biomolecule compounds were responsible for the reduction and capping material of silver nanoparticles. XRD study showed the particles to be crystalline in nature, with a face-centered cubic (fcc) structure. The size and stability were detected using DLS and zeta potential analysis. The antibacterial activity of AgNPs against generally found bacteria was assessed to find their potential use in silver-containing antibacterial product.

  18. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite.

    PubMed

    Alswat, Abdullah A; Ahmad, Mansor Bin; Saleh, Tawfik A; Hussein, Mohd Zobir Bin; Ibrahim, Nor Azowa

    2016-11-01

    Nanocomposites of zinc oxide loaded on a zeolite (Zeolite/ZnO NCs) were prepared using co-precipitation method. The ratio effect of ZnO wt.% to the Zeolite on the antibacterial activities was investigated. Various techniques were used for the nanocomposite characterization, including UV-vis, FTIR, XRD, EDX, FESEM and TEM. XRD patterns showed that ZnO peak intensity increased while the intensities of Zeolite peaks decreased. TEM images indicated a good distribution of ZnO-NPs onto the Zeolite framework and the cubic structure of the zeolite was maintained. The average particle size of ZnO-nanoparticles loaded on the surface of the Zeolite was in the range of 1-10nm. Moreover, Zeolite/ZnO NCs showed noticeable antibacterial activities against the tested bacteria; Gram- positive and Gram- negative bacteria, under normal light. The efficiency of the antibacterial increased with increasing the wt.% from 3 to 8 of ZnO NPs, and it reached 87% against Escherichia coli E266. PMID:27524047

  19. The Polyphenolic Composition of Cistus incanus Herbal Tea and Its Antibacterial and Anti-adherent Activity against Streptococcus mutans.

    PubMed

    Wittpahl, Gesche; Kölling-Speer, Isabelle; Basche, Sabine; Herrmann, Eva; Hannig, Matthias; Speer, Karl; Hannig, Christian

    2015-12-01

    The Mediterranean plant Cistus incanus is rich in polyphenols and has shown several pharmacological activities, mainly antibacterial effects. Furthermore, in situ studies revealed that a C. incanus infusion reduces the initial bacterial adhesion in the oral cavity due to the polyphenols, an indication that C. incanus might reduce the risk of caries disease. In the present study, the polyphenols from four different commercial C. incanus herbal teas were extracted by standardized accelerated solvent extraction for in vitro tests and by an infusion for in situ tests. Both extracts were characterized qualitatively and quantitatively by high-performance liquid chromatography and only the polyphenol content differed slightly. By means of diode array detection and mass spectrometry, 29 polyphenols, including ellagitannins, flavanols, and glycosylated flavonols, were identified. Thereby, only quantitative but no qualitative differences between the four samples were detected. Furthermore, the in vitro antibacterial activity of the C. incanus accelerated solvent extracts against Streptococcus mutans, one of the primary cariogenic bacterial species, was examined using a live/dead assay (BacLight®). With this approach, C. incanus yielded antibacterial properties. Additional in situ experiments indicated that rinses with a C. incanus infusion reduced the initial bacterial colonization of enamel samples exposed to oral fluids for over eight hours. Furthermore, it was shown by transmission electron microscopy that the application of a C. incanus infusion modifies the ultrastructure of the acquired enamel pellicle, yielding a more electron-dense morphology. It can be assumed that the polyphenols are responsible for the observed effects. PMID:26291656

  20. Discovery of a Novel Class of Boron-Based Antibacterials with Activity against Gram-Negative Bacteria

    PubMed Central

    Hernandez, Vincent; Crépin, Thibaut; Palencia, Andrés; Cusack, Stephen; Akama, Tsutomu; Baker, Stephen J.; Bu, Wei; Feng, Lisa; Freund, Yvonne R.; Liu, Liang; Meewan, Maliwan; Mohan, Manisha; Mao, Weimin; Rock, Fernando L.; Sexton, Holly; Sheoran, Anita; Zhang, Yanchen; Zhang, Yong-Kang; Zhou, Yasheen; Nieman, James A.; Anugula, Mahipal Reddy; Keramane, El Mehdi; Savariraj, Kingsley; Reddy, D. Shekhar; Sharma, Rashmi; Subedi, Rajendra; Singh, Rajeshwar; O'Leary, Ann; Simon, Nerissa L.; De Marsh, Peter L.; Mushtaq, Shazad; Warner, Marina; Livermore, David M.; Plattner, Jacob J.

    2013-01-01

    Gram-negative bacteria cause approximately 70% of the infections in intensive care units. A growing number of bacterial isolates responsible for these infections are resistant to currently available antibiotics and to many in development. Most agents under development are modifications of existing drug classes, which only partially overcome existing resistance mechanisms. Therefore, new classes of Gram-negative antibacterials with truly novel modes of action are needed to circumvent these existing resistance mechanisms. We have previously identified a new a way to inhibit an aminoacyl-tRNA synthetase, leucyl-tRNA synthetase (LeuRS), in fungi via the oxaborole tRNA trapping (OBORT) mechanism. Herein, we show how we have modified the OBORT mechanism using a structure-guided approach to develop a new boron-based antibiotic class, the aminomethylbenzoxaboroles, which inhibit bacterial leucyl-tRNA synthetase and have activity against Gram-negative bacteria by largely evading the main efflux mechanisms in Escherichia coli and Pseudomonas aeruginosa. The lead analogue, AN3365, is active against Gram-negative bacteria, including Enterobacteriaceae bearing NDM-1 and KPC carbapenemases, as well as P. aeruginosa. This novel boron-based antibacterial, AN3365, has good mouse pharmacokinetics and was efficacious against E. coli and P. aeruginosa in murine thigh infection models, which suggest that this novel class of antibacterials has the potential to address this unmet medical need. PMID:23295920

  1. [Preparation and characterization of activated carbon-silver composite with antibacterial behavior via vacuum impregnation method].

    PubMed

    Wang, Zi-Qiang; Liu, Shou-Xin

    2011-01-01

    Activated carbon-silver composite (Ag/AC) for antibacterial performance by controlling silver release was prepared by silver acetate vacuum impregnation method. The antibacterial activity towards E. coil and resistance of water erosion was investigated through distilled water. Surface area and porosity analyzer, Scanning electron spectroscopy (SEM) and X-ray diffraction (XRD) were used to characterize the surface morphology and pore properties. The results show that Ag0 was deposited on AC symmetrically. The content of silver supported and particle size were increased by the increasing of the concentration of CH3 COOAg, while specific surface area, total pore volume and average pore size were decreased. Ag/AC prepared with silver content of 0.97% which killed 10(7) CFU/mL concentration of E. coil in 120 min exhibited the similar antibacterial activity for E. coil with that prepared by traditional impregnation method. However, the silver loss of the Ag/AC prepared with silver content of 0.97% was 37.6%, showing much higher resistance to water erosion. High antibacterial activity and control silver release can be simultaneously realized by the silver acetate vacuum impregnation method. PMID:21404679

  2. Liamocin oil from Aureobasidium pullulans has antibacterial activity with specificity for species of Streptococcus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liamocin oil from Aureobasidium pullulans NRRL 50380 was tested for antibacterial activity. Liamocins inhibited growth of Streptococcus agalactiae, S. uberis, S. mitis, S. infantarius, and S. mutans, with minimum inhibitory concentrations from 20 'g/ml to 78 'g/ml. Enterococcus faecalis was less sus...

  3. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans.

    PubMed

    Beyth, Nurit; Yudovin-Farber, Ira; Bahir, Ran; Domb, Abraham J; Weiss, Ervin I

    2006-07-01

    The antibacterial activity of quaternary ammonium polyethylenimine (PEI) nanoparticles embedded at 1%w/w with clinically used bonding, flowable and hybrid dental composite resins and cured by light polymerization was studied. The antibacterial activity was tested with Streptoccocus mutans by: (i) the agar diffusion test (ADT); (ii) the direct contact test; (iii) bacterial growth in the materials elute; (iv) and scanning electron microscope (SEM). Using the direct contact test, antibacterial activity (p<0.001) was found in all three types of composite resins incorporated with the synthesized nanoparticles. The effect lasted for at least 1 month. SEM demonstrated bacterial debris and no streptococcal chains at 24h of bacterial contact. The addition of 1%w/w of nanoparticles did not affect the flexural modulus and the flexural strength of the dental composite materials. The results indicate that quaternary ammonium PEI nanoparticles immobilized in resin-based materials have a strong antibacterial activity upon contact without leach-out of the nanoparticles and without compromise in mechanical properties. PMID:16564083

  4. Shape Control of Mesoporous Silica Nanomaterials Templated with Dual Cationic Surfactants and Their Antibacterial Activities

    PubMed Central

    Hao, Nanjing; Chen, Xuan; Jayawardana, Kalana W.; Wu, Bin; Sundhoro, Madanodaya; Yan, Mingdi

    2015-01-01

    Mesoporous silica nanomaterials of different shapes (film, platelet, sphere, rod) were synthesized simply by tuning the mole ratio of dual cationic surfactant templates, cetyltrimethylammonium bromide (CTAB) and tetrabutylammonium iodine (TBAI). The film showed the most potent antibacterial activities against mycobacteria. PMID:26364920

  5. Bismuth coordination networks containing deferiprone: synthesis, characterisation, stability and antibacterial activity.

    PubMed

    Burrows, Andrew D; Jurcic, Monika; Mahon, Mary F; Pierrat, Sandrine; Roffe, Gavin W; Windle, Henry J; Spencer, John

    2015-08-21

    A series of bismuth-dicarboxylate-deferiprone coordination networks have been prepared and structurally characterised. The new compounds have been demonstrated to release the iron overload drug deferiprone on treatment with PBS and have also been shown to have antibacterial activity against H. pylori. PMID:26172618

  6. Comparison of the antibacterial activity of chelating agents using the agar diffusion method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine antibacterial activity of 2 metal chelators. Concentrations of 0 to 40 mM of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-N,N’-disuccinic acid (EDDS) were prepared in 1.0 M potassium hydroxide (KOH). The pH of the solutions was adjusted to 1...

  7. Antibacterial compounds from Rutaceae with activities against Flavobacterium columnare and Streptococcus iniae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassay-guided fractionation of the ethyl acetate extract of Murraya koenegii (Rutaceae) leaves yielded isomahanine (1) and mahanine (2) with antibacterial activity towards bacteria species that cause columnaris disease and streptococcosis, common diseases in pond-raised channel catfish (Ictalurus ...

  8. Phenolic Content, Antioxidant Activity, Antibacterial Activity and Phytochemical Composition of Garcinia lancifolia.

    PubMed

    Policegoudra, R S; Saikia, S; Das, J; Chattopadhyay, P; Singh, L; Veer, V

    2012-05-01

    Garcinia lancifolia (Clusiaceae) is an unexplored medicinal plant used as stomachic, diuretic and its fruit is used to cure dysentery and diarrhoea. The acidic fruits are used to prepare juice, pickle and curries. The phytochemical analysis of different extracts of G. lancifolia leaf, stem and fruit revealed the presence of tannins, saponins, flavonoids, terpenoids, alkaloids and cardiac glycosides. The high phenolic content was observed in the methanol extract of leaf followed by methanol extract of stem and dichloromethane extract of leaf. The G. lancifolia fruit juice exhibited high antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Micrococcus luteus, Streptococcus mutans, Bacillus mycoides and Bacillus subtilis. The methanol extract of fruit pulp was also very effective against Gram-positive bacteria when compared with Gram-negative bacteria. The radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl was highest in fruit juice followed by methanol extract of leaf and stem. All extracts showed concentration-dependent increase in the antioxidant activity. PMID:23439879

  9. The Antibacterial Activity of Date Syrup Polyphenols against S. aureus and E. coli

    PubMed Central

    Taleb, Hajer; Maddocks, Sarah E.; Morris, R. Keith; Kanekanian, Ara D.

    2016-01-01

    Plant-derived products such as date syrup (DS) have demonstrated antibacterial activity and can inhibit bacteria through numerous different mechanisms, which may be attributed to bioactive compounds including plant-derived phenolic molecules. DS is rich in polyphenols and this study hypothesized that DS polyphenols demonstrate inherent antimicrobial activity, which cause oxidative damage. This investigation revealed that DS has a high content of total polyphenols (605 mg/100 g), and is rich in tannins (357 mg/100 g), flavonoids (40.5 mg/100 g), and flavanols (31.7 mg/100 g) that are known potent antioxidants. Furthermore, DS, and polyphenols extracted from DS, the most abundant bioactive constituent of DS are bacteriostatic to both Gram positive and Gram negative Escherichia coli and Staphylococcus aureus, respectively. It has further been shown that the extracted polyphenols independently suppress the growth of bacteria at minimum inhibitory concentration (MIC) of 30 and 20 mg/mL for E. coli and S. aureus, and have observed that DS behaves as a prooxidant by generating hydrogen peroxide that mediates bacterial growth inhibition as a result of oxidative stress. At sub-lethal MIC concentrations DS demonstrated antioxidative activity by reducing hydrogen peroxide, and at lethal concentrations DS demonstrated prooxidant activity that inhibited the growth of E. coli and S. aureus. The high sugar content naturally present in DS did not significantly contribute to this effect. These findings highlight that DS’s antimicrobial activity is mediated through hydrogen peroxide generation in inducing oxidative stress in bacteria. PMID:26952177

  10. In vitro antibacterial activity of SM-7338, a carbapenem antibiotic with stability to dehydropeptidase I.

    PubMed Central

    Edwards, J R; Turner, P J; Wannop, C; Withnell, E S; Grindey, A J; Nairn, K

    1989-01-01

    SM-7338, a new carbapenem antibiotic, was demonstrated to have potent antibacterial activity against a broad spectrum of aerobes, including Staphylococcus aureus, beta-hemolytic streptococci, Streptococcus pneumoniae, Haemophilus influenzae, Neisseria spp., members of the family Enterobacteriaceae, Pseudomonas spp., and gram-positive and gram-negative anaerobes in a collection of 1,102 unselected clinical isolates. At a concentration of 0.5 micrograms/ml, SM-7338 inhibited 90% of these strains. The spectrum of activity of ceftazidime and cefotaxime was more limited, and many of the Enterobacteriaceae and Pseudomonas spp. were resistant to these agents, piperacillin, or gentamicin. A collection of ofloxacin-resistant strains was inhibited by SM-7338 or imipenem at 4 micrograms/ml. SM-7338 was more active than metronidazole and clindamycin against anaerobes. Of the carbapenems, imipenem had greater activity against staphylococci but SM-7338 was much more active against Haemophilus, Branhamella, and Neisseria spp. and all genera of Enterobacteriaceae tested. The MIC of SM-7338 for 90% of these strains ranged from less than or equal to 0.008 to 0.13 micrograms/ml. When tested against 124 strains of Pseudomonas aeruginosa, SM-7338 inhibited 76% at 0.5 microgram/ml but imipenem inhibited only 15% at this concentration. Both carbapenems exhibited similar activities against Bacteroides spp., but SM-7338 was more active than imipenem against Clostridium spp. The MBC of SM-7338 was most commonly the same as or twice the MIC. SM-7338 and imipenem showed excellent activities against bacteria elaborating chromosome- or plasmid-mediated beta-lactamases, including those conferring resistance to broad-spectrum cephalosporins. The activity of SM-7338 was generally unaffected by the culture medium used, pH, 25% human serum, and inoculum size, but the susceptibility of Xanthomonas maltophilia was medium dependent. PMID:2655530

  11. Antibacterial activity of plant extracts on foodborne bacterial pathogens and food spoilage bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial foodborne diseases are caused by consumption of foods contaminated with bacteria and/or their toxins. In this study, we evaluated antibacterial properties of twelve different extracts including turmeric, lemon and different kinds of teas against four major pathogenic foodborne bacteria inc...

  12. Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers

    NASA Astrophysics Data System (ADS)

    Van Phu, Dang; Quoc, Le Anh; Duy, Nguyen Ngoc; Lan, Nguyen Thi Kim; Du, Bui Duy; Luan, Le Quang; Hien, Nguyen Quoc

    2014-04-01

    Colloidal solutions of silver nanoparticles (AgNPs) were synthesized by gamma Co-60 irradiation using different stabilizers, namely polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), alginate, and sericin. The particle size measured from TEM images was 4.3, 6.1, 7.6, and 10.2 nm for AgNPs/PVP, AgNPs/PVA, AgNPs/alginate, and AgNPs/sericin, respectively. The influence of different stabilizers on the antibacterial activity of AgNPs was investigated. Results showed that AgNPs/alginate exhibited the highest antibacterial activity against Escherichia coli ( E. coli) among the as-synthesized AgNPs. Handwash solution has been prepared using Na lauryl sulfate as surfactant, hydroxyethyl cellulose as binder, and 15 mg/L of AgNPs/alginate as antimicrobial agent. The obtained results on the antibacterial test of handwash for the dilution to 3 mg AgNPs/L showed that the antibacterial efficiency against E. coli was of 74.6%, 89.8%, and 99.0% for the contacted time of 1, 3, and 5 min, respectively. Thus, due to the biocompatibility of alginate extracted from seaweed and highly antimicrobial activity of AgNPs synthesized by gamma Co-60 irradiation, AgNPs/alginate is promising to use as an antimicrobial agent in biomedicine, cosmetic, and in other fields.

  13. RV-23, a Melittin-Related Peptide with Cell-Selective Antibacterial Activity and High Hemocompatibility.

    PubMed

    Zhang, Shi-Kun; Ma, Qian; Li, Su-Bo; Gao, Hong-Wei; Tan, Ying-Xia; Gong, Feng; Ji, Shou-Ping

    2016-06-28

    RV-23 is a melittin-related antibacterial peptide (MRP) with lower cytotoxicity than either melittin or AR-23, another MRP. The aim of this study was to explore the mechanism of RV- 23's antibacterial selectivity and its hemocompatibility. The results showed that all the peptides exhibited lytic activity against Staphylococcus aureus and Escherichia coli, with RV-23 showing the highest potency. Moreover, RV-23 had lower cytotoxicity than melittin or AR-23 at their minimal inhibitory concentration. In addition, CD experiments showed that melittin, RV-23, and AR-23 all had a typical α-helical structure, and RV-23 had the lowest α-helix content. The structural information showed that RV-23 has the lowest hydrophobicity and highest hydrophobic moment. Because hydrophobicity and α-helix content are believed to correlate with hemolysis, the results indicate that the selective lytic activity against bacteria of RV-23 may be due to its low hydrophobicity and α-helicity, which lead to low cytotoxicity without affecting antibacterial activity. Furthermore, RV-23 did not affect the structure and function of blood components such as red blood cells, platelets, albumin, and the blood coagulation system. In conclusion, RV-23 is a cell-selective antibacterial peptide with high hemocompatibility due to its unique structure. PMID:26975766

  14. In vitro antibacterial activity of Hibiscus rosa-sinensis flower extract against human pathogens

    PubMed Central

    Ruban, P; Gajalakshmi, K

    2012-01-01

    Objective To access the in vitro antibacterial activity of Hibiscus rosa-sinensis (H. rosa- sinensis) flower extract against human pathogens. Methods Antibacterial activity was evaluated by using disc and agar diffusion methods. The protein was run through poly acrylmide gel electrophoresis to view their protein profile. Results The results showed that the cold extraction illustrates a maximum zone of inhibition against Bacillus subtillis (B. subtillis), Escherichia coli (E. coli) viz., (17.00 ± 2.91), (14.50 ± 1.71) mm, followed by hot extraction against, E. coli, Salmonella sp. as (11.66 ± 3.14), (10.60 ± 3.09) mm. In methanol extraction showed a highest zone of inhibition recorded against B. subtillis, E. coli as (18.86 ± 0.18), (18.00 ± 1.63) mm pursued by ethanol extraction showed utmost zone of inhibition recorded against Salmonella sp. at (20.40 ± 1.54) mm. The crude protein from flower showed a maximum inhibitory zone observed against Salmonella sp., E. coli viz., (16.55 ± 1.16), (14.30 ± 2.86) mm. The flower material can be taken as an alternative source of antibacterial agent against the human pathogens. Conclusions The extracts of the H. rosa-sinensis are proved to have potential antibacterial activity, further studies are highly need for the drug development. PMID:23569938

  15. Antibacterial Activity of Juglone against Staphylococcus aureus: From Apparent to Proteomic

    PubMed Central

    Wang, Jiayi; Cheng, Yuhuan; Wu, Rina; Jiang, Donghua; Bai, Bing; Tan, Dehong; Yan, Tingcai; Sun, Xiyun; Zhang, Qi; Wu, Zhaoxia

    2016-01-01

    The proportion of foodborne disease caused by pathogenic microorganisms is rising worldwide, with staphylococcal food poisoning being one of the main causes of this increase. Juglone is a plant-derived 1,4-naphthoquinone with confirmed antibacterial and antitumor activities. However, the specific mechanism underlying its antibacterial activity against Staphylococcus aureus remains unclear. To elucidate the mechanism underlying its antibacterial activity, isobaric tags for relative and absolute quantitation methods of quantitative proteomics were applied for analysis of the 53 proteins that were differentially expressed after treatment with juglone. Combined with verification experiments, such as detection of changes in DNA and RNA content and quantification of oxidative damage, our results suggested that juglone effectively increased the protein expression of oxidoreductase and created a peroxidative environment within the cell, significantly reducing cell wall formation and increasing membrane permeability. We hypothesize that juglone binds to DNA and reduces DNA transcription and replication directly. This is the first study to adopt a proteomic approach to investigate the antibacterial mechanism of juglone. PMID:27322260

  16. Effect of AOT-assisted multi-walled carbon nanotubes on antibacterial activity.

    PubMed

    Bai, Yu; Park, Il Song; Lee, Sook Jeong; Wen, Pu Shan; Bae, Tae Sung; Lee, Min Ho

    2012-01-01

    The dispersing power of surfactant-modified multiwalled carbon nanotubes (MWCNTs) and their effect on the antibacterial activity were examined. The MWCNTs were modified using a dioctyl sodium sulfosuccinate (AOT) surfactant. UV-vis spectroscopy and transmission electron microscopy (TEM) were used to characterize the dispersion of MWCNTs in the aqueous phase. Fourier transform infrared spectroscopy confirmed the results of UV-vis spectroscopy and TEM, indicating that the AOT molecules had been adsorbed successfully onto the MWCNT surface. The highly dispersed AOT-modified MWCNTs showed strong antibacterial activity to Streptococcus mutans. The fluorescence images showed that the AOT-modified MWCNTs were capable of capturing bacteria and forming cell aggregates as well as killing them. The optical density growth curves and colony-forming units assays confirmed that the antibacterial activity of the AOT-modified MWCNTs was concentration-dependent and treatment time-dependent. This finding might be useful for applications of AOT-modified MWCNTs as an antibacterial agent to eliminate pathogens from a biocontaminated water phase. PMID:21958539

  17. Antibacterial Activities and Antibacterial Mechanism of Polygonum cuspidatum Extracts against Nosocomial Drug-Resistant Pathogens.

    PubMed

    Su, Pai-Wei; Yang, Cheng-Hong; Yang, Jyh-Ferng; Su, Pei-Yu; Chuang, Li-Yeh

    2015-01-01

    Recently, drug resistance due to the extensive abuse and over-use of antibiotics has become an increasingly serious problem, making the development of alternative antibiotics a very urgent issue. In this study, the Chinese herbal medicine, Polygonum cuspidatum, was extracted with 95% ethanol and the crude extracts were further purified by partition based on solvent polarity. The antimicrobial activities of the extracts and fractions were determined by the disk diffusion and minimum inhibitory concentration (MIC) methods. The results showed that the ethyl ether fraction (EE) of the ethanol extracts possesses a broader antimicrobial spectrum and greater antimicrobial activity against all of the tested clinical drug-resistant isolates, with a range of MIC values between 0.1-3.5 mg/mL. The active extract showed complete inhibition of pathogen growth and did not induce resistance to the active components. In addition, according to scanning electron microscope observations, EE resulted in greater cell morphological changes by degrading and disrupting the cell wall and cytoplasmic membrane, whereby ultimately this cell membrane integrity damage led to cell death. In conclusion, the EE extracts from Polygonum cuspidatum may provide a promising antimicrobial agent for therapeutic applications against nosocomial drug-resistant bacteria. PMID:26087259

  18. Antibacterial Activity of Salvadora persica L. (Miswak) Extracts against Multidrug Resistant Bacterial Clinical Isolates

    PubMed Central

    Al-Ayed, Mohamed Saeed Zayed; Asaad, Ahmed Morad; Qureshi, Mohamed Ansar; Attia, Hany Goda; AlMarrani, Abduljabbar Hadi

    2016-01-01

    Much effort has focused on examining the inhibitory effect of Salvadora persica (miswak) on oral microorganisms, but information concerning its antibacterial activity against other human pathogens, particularly multidrug resistant (MDR) isolates, is scarce. Therefore, this study aimed to assess the in vitro antibacterial activities of Salvadora persica L. extracts against 10 MDR bacterial clinical isolates other than oral pathogens. The antibacterial activity of aqueous and methanol miswak extracts was assessed using the agar dilution and minimum inhibitory concentration (MIC) methods. Overall, the 400 mg/mL of miswak extract was the most effective on all strains. The methanol extract exhibited a stronger antibacterial activity against Gram-negative (3.3–13.6 mm) than Gram-positive (1.8–8.3 mm) bacteria. The lowest MIC value was seen for E. coli (0.39, 1.56 µg/mL), followed by Streptococcus pyogenes (1.56 µg/mL). The highest MIC value (6.25, 12.5 µg/mL) was recorded for methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii, and Stenotrophomonas maltophilia. This study demonstrates, for the first time, the moderate to strong antibacterial activity of miswak extracts against all tested MDR-pathogens. Methanol extract appears to be a potent antimicrobial agent that could be considered as complementary and alternative medicine against resistant pathogens. Further studies on a large number of MDR organisms are necessary to investigate and standardize the inhibitory effect of miswak extracts against these emerging pathogens. PMID:26904146

  19. Screening for Antibacterial and Antioxidant Activities and Phytochemical Analysis of Oroxylum indicum Fruit Extracts.

    PubMed

    Sithisarn, Patchima; Nantateerapong, Petcharat; Rojsanga, Piyanuch; Sithisarn, Pongtip

    2016-01-01

    Oroxylum indicum, which is called Pheka in Thai, is a traditional Thai plant in the Bignoniaceae family with various ethnomedical uses such as as an astringent, an anti-inflammatory agent, an anti-bronchitic agent, an anti-helminthic agent and an anti-microbial agent. The young fruits of this plant have also been consumed as vegetables. However, there has been no report concerning its antibacterial activities, especially activities related to clinically isolated pathogenic bacteria and the in vitro antioxidant effects of this plant. Therefore, the extracts from O. indicum fruits and seeds collected from different provinces in Thailand were prepared by decoction and maceration with ethanol and determined for their in vitro antibacterial effects on two clinically isolated bacteria, Streptococcus suis and Staphylococcus intermedius, using disc diffusion assay. Ethanol extracts from O. indicum fruits collected from Nakorn Pathom province at the concentration of 1000 mg/mL exhibited intermediate antibacterial activity against S. intermedius with an inhibition zone of 15.11 mm. Moreover, it promoted moderate inhibitory effects on S. suis with an inhibition zone of 14.39 mm. The extracts prepared by maceration with ethanol promoted higher antibacterial activities than those prepared with water. The ethanol extract from the seeds of this plant, purchased in Bangkok, showed stronger in vitro antioxidant activities than the other extracts, with an EC50 value of 26.33 µg/mL. Phytochemical analysis suggested that the seed ethanol extract contained the highest total phenolic and flavonoid contents (10.66 g% gallic acid equivalent and 7.16 g% quercetin equivalent, respectively) by a significant amount. Thin layer chromatographic analysis of the extracts showed the chromatographic band that could correspond to a flavonoid baicalein. From the results, extracts from O. indicum fruits have an in vitro antioxidant effect, with antibacterial potential, on clinically pathologic

  20. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan.

    PubMed

    Chen, Yuxiang; Li, Jianna; Li, Qingqing; Shen, Yuanyuan; Ge, Zaochuan; Zhang, Wenwen; Chen, Shiguo

    2016-06-01

    Chitosan (CS) has attracted much attention due to its good antibacterial activity and biocompatibility. However, CS is insoluble in neutral and alkaline aqueous solution, limiting its biomedical application to some extent. To circumvent this drawback, we have synthesized a novel N-quaternary ammonium-O-sulfobetaine-chitosan (Q3BCS) by introducing quaternary ammonium compound (QAC) and sulfobetaine, and its water-solubility, antibacterial activity and biocompatibility were evaluated compare to N-quaternary ammonium chitosan and native CS. The results showed that by introducing QAC, antibacterial activities and water-solubilities increase with degrees of substitution. The largest diameter zone of inhibition (DIZ) was improved from 0 (CS) to 15mm (N-Q3CS). And the water solution became completely transparent from pH 6.5 to pH 11; the maximal waters-solubility was improved from almost 0% (CS) to 113% at pH 7 (N-Q3CS). More importantly, by further introducing sulfobetaine, cell survival rate of Q3BCS increased from 30% (N-Q3CS) to 85% at 2000μg/ml, which is even greater than that of native CS. Furthermore, hemolysis of Q3BCS was dropped sharply from 4.07% (N-Q3CS) to 0.06%, while the water-solution and antibacterial activity were further improved significantly. This work proposes an efficient strategy to prepare CS derivatives with enhanced antibacterial activity, biocompatibility and water-solubility. Additionally, these properties can be finely tailored by changing the feed ratio of CS, glycidyl trimethylammonium chloride and NCO-sulfobetaine. PMID:27083366

  1. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Abdul Kadir, Habsah; Hassandarvish, Pouya; Tajik, Hassan; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent. PMID:24877064

  2. Inhibition of matrix metalloproteinase activity in human dentin via novel antibacterial monomer

    PubMed Central

    Li, Fang; Majd, Hessam; Weir, Michael D.; Arola, Dwayne D.; Xu, Hockin H.K.

    2015-01-01

    Objectives Dentin-composite bond failure is caused by factors including hybrid layer degradation, which in turn can be caused by hydrolysis and enzymatic degradation of the exposed collagen in the dentin. The objectives of this study were to investigate a new antibacterial monomer (dimethylaminododecyl methacrylate, DMADDM) as an inhibitor for matrix metalloproteinases (MMPs), and to determine the effects of DMADDM on both soluble recombinant human MMPs (rhMMPs) and dentin matrix-bound endogenous MMPs. Methods Inhibitory effects of DMADDM at six mass% (0.1% to 10%) on soluble rhMMP-8 and rhMMP-9 were measured using a colorimetic assay. Matrix-bound endogenous MMP activity was evaluated in demineralized human dentin. Dentin beams were divided into four groups (n = 10) and incubated in calcium- and zinc-containing media (control medium); or control medium + 0.2% chlorhexidine (CHX); 5% 12-methacryloyloxydodecylpyridinium bromide (MDPB); or 5% DMADDM. Dissolution of dentin collagen peptides was evaluated by mechanical testing in three-point flexure, loss of dentin mass, and a hydroxyproline assay. Results Use of 0.1% to 10% DMADDM exhibited a strong concentration-dependent anti-MMP effect, reaching 90% of inhibition on rhMMP-8 and rhMMP-9 at 5% DMADDM concentration. Dentin beams in medium with 5% DMADDM showed 34% decrease in elastic modulus (vs. 73% decrease for control), 3% loss of dry dentin mass (vs. 28% loss for control), and significantly less solubilized hydroxyproline when compared with control (p < 0.05). Significance The new antibacterial monomer DMADDM was effective in inhibiting both soluble rhMMPs and matrix-bound human dentin MMPs. These results, together with previous studies showing that adhesives containing DMADDM inhibited biofilms without compromising dentin bond strength, suggest that DMADDM is promising for use in adhesives to prevent collagen degradation in hybrid layer and protect the resin-dentin bond. PMID:25595564

  3. A preliminary study on the antibacterial mechanism of Tegillarca granosa hemoglobin by derived peptides and peroxidase activity.

    PubMed

    Bao, Yongbo; Wang, Juanjuan; Li, Chenghua; Li, Peifen; Wang, Sufang; Lin, Zhihua

    2016-04-01

    The blood clam, Tegillarca granosa, is one of the few bivalve molluscs containing hemoglobin (Hb). In the present study, we purified two types of T. granosa hemoglobin, Tg-HbI and Tg-HbII, using size exclusion chromatography and measured their antibacterial and peroxidase activities. We also tested antibacterial activities of peptides prepared by trypsin digestion of purified Tg-Hb and reversed-phase high-performance liquid chromatography purification. Purified Tg-HbI and Tg-HbII showed antibacterial activity against Escherichia coli, Pseudomonas putida, Bacillus subtilis, and Bacillus firmus, with differences in minimal inhibitory concentrations (MICs), but lacked antibacterial activity against Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi and Staphylococcus aureus. In contrast, 7 Tg-Hb derived peptides exhibited varying degrees of antibacterial activity against V. alginolyticus (MICs: 12-200 μg/ml), V. parahaemolyticus (11-100 μg/ml) and V. harveyi (1-200 μg/ml). The antibacterial activity of Hb derived peptides was confirmed by fluorescence microscopy. In addition, peroxidase activity was detected in Tg-HbI and Tg-HbII. The results indicated that in addition to functioning as a respiratory protein T. granosa hemoglobins likely play a role in host antibacterial defense probably via a peroxidase activity of native molecules and some internal peptides released from the proteins. PMID:26876330

  4. Antibacterial activity of Lactobacillus spp. isolated from the feces of healthy infants against enteropathogenic bacteria.

    PubMed

    Davoodabadi, Abolfazl; Soltan Dallal, Mohammad Mehdi; Rahimi Foroushani, Abbas; Douraghi, Masoumeh; Sharifi Yazdi, Mohammad Kazem; Amin Harati, Farzaneh

    2015-08-01

    Lactobacilli are normal microflora of the gastrointestinal (GI) tract and are a heterogeneous group of lactic acid bacteria (LAB). Lactobacillus strains with Probiotic activity may have health Benefits for human. This study investigates the probiotic potential of Lactobacillus strains obtained from the feces of healthy infants and also explores antibacterial activity of Lactobacillus strains with probiotic potential against enteropathogenic bacteria. Fecal samples were collected from 95 healthy infants younger than 18 months. Two hundred and ninety Lactobacillus strains were isolated and assessed for probiotic potential properties including ability to survive in gastrointestinal conditions (pH 2.0, 0.3% oxgall), adherence to HT-29 cells and antibiotic resistance. Six strains including Lactobacillus fermentum (4 strains), Lactobacillus paracasei and Lactobacillus plantarum showed good probiotic potential and inhibited the growth of enteropathogenic bacteria including ETEC H10407, Shigella flexneri ATCC 12022, Shigella sonnei ATCC 9290, Salmonella enteritidis H7 and Yersinia enterocolitica ATCC 23715. These Lactobacillus strains with probiotic potential may be useful for prevention or treatment of diarrhea, but further in vitro and in vivo studies on these strains are still required. PMID:25930687

  5. In vitro Antioxidant and Antibacterial Activities of Methanol Extract of Kyllinga nemoralis

    PubMed Central

    Sindhu, T.; Rajamanikandan, S.; Srinivasan, P.

    2014-01-01

    The present study was designed to evaluate the antioxidant and antibacterial activity of methanol extract of Kyllinga nemoralis. Six different in vitro antioxidant assays including 2,2-diphenyl-1-picrylhydrazyl, hydroxyl radical, superoxide anion radical, hydrogen peroxide radical, ferric reducing antioxidant power assay and reducing power were carried out to ensure the scavenging effect of the plant on free radicals. In addition, total antioxidant capacity assay, total phenolic contents, tannins, flavonoids and flavonol contents of the plant were also analysed by the standard protocols. Kyllinga nemoralis exhibited high antioxidant activity on 2,2-diphenyl-1-picrylhydrazyl assay (IC50= 90 μg/ml), superoxide radical scavenging assay (IC50= 180 μg/ml) and hydrogen peroxide radical scavenging assay (IC50= 200 μg/ml), compared with standards. These observations provide comprehensible supporting evidence for the antioxidant potential of the plant extract. Reducing power (IC50= 213.16 μg/ml) and hydroxyl radical scavenging activity (IC50= 223 μg/ml) of the plant extract was remarkable. The methanol extract of K. nemoralis exhibited significant antimicrobial activity against Gram-positive human pathogenic bacteria. Standard in vitro antioxidant assays assessed the electron donating ability of the plant extract in scavenging free radicals. The inhibitory effect of the plant extract against bacterial pathogens may be due to the presence of phytochemicals. Thus, the results suggest that Kyllinga nemoralis is a potential source of antioxidants and could serve as the base for drug development. PMID:24843192

  6. Antibacterial active compounds from Hypericum ascyron L. induce bacterial cell death through apoptosis pathway.

    PubMed

    Li, Xiu-Mei; Luo, Xue-Gang; Si, Chuan-Ling; Wang, Nan; Zhou, Hao; He, Jun-Fang; Zhang, Tong-Cun

    2015-01-01

    Hypericum ascyron L. has been used as a traditional medicine for the treatment of wounds, swelling, headache, nausea and abscesses in China for thousands of years. However, modern pharmacological studies are still necessary to provide a scientific basis to substantiate their traditional use. In this study, the mechanism underlying the antimicrobial effect of the antibacterial activity compounds from H. ascyron L. was investigated. Bioguided fractionation of the extract from H. ascyron L. afforded antibacterial activity fraction 8. The results of cup plate analysis and MTT assay showed that the MIC and MBC of fraction 8 is 5 mg/mL. Furthermore, using Annexin V-FITC/PI, TUNEL labeling and DNA gel electrophoresis, we found that cell death with apoptosis features similar to those in eucaryon could be induced in bacteria strains after exposure to the antibacterial activity compounds from H. ascyron L. at moderate concentration. In addition, we further found fraction 8 could disrupt the cell membrane potential indicate that fraction 8 exerts pro-apoptotic effects through a membrane-mediated apoptosis pathway. Finally, quercetin and kaempferol 3-O-β-(2″-acetyl)-galactopyranoside, were identified from fraction 8 by means of Mass spectrometry and Nuclear magnetic resonance. To our best knowledge, this study is the first to show that Kaempferol 3-O-β-(2″-acetyl)-galactopyranoside coupled with quercetin had significant antibacterial activity via apoptosis pathway, and it is also the first report that Kaempferol 3-O-β-(2″-acetyl)-galactopyranoside was found in clusiacea. Our data might provide a rational base for the use of H. ascyron L. in clinical, and throw light on the development of novel antibacterial drugs. PMID:25916905

  7. Antibacterial Activity of DNA-Stabilized Silver Nanoclusters Tuned by Oligonucleotide Sequence.

    PubMed

    Javani, Siamak; Lorca, Romina; Latorre, Alfonso; Flors, Cristina; Cortajarena, Aitziber L; Somoza, Álvaro

    2016-04-27

    Silver nanoclusters (AgNCs) stabilized by DNA are promising materials with tunable fluorescent properties, which have been employed in a plethora of sensing systems. In this report, we explore their antimicrobial properties in Gram-positive and Gram-negative bacteria. After testing 9 oligonucleotides with different sequence and length, we found that the antibacterial activity depends on the sequence of the oligonucleotide employed. The sequences tested yielded fluorescent AgNCs, which can be grouped in blue, yellow, and red emitters. Interestingly, blue emitters yielded poor antibacterial activity, whereas yellow and red emitters afforded an activity similar to silver nitrate. Furthermore, structural studies using circular dichroism indicate the formation of complexes with different stability and structure, which might be one of the factors that modulate their activity. Finally, we prepared a trimeric structure containing the sequence that afforded the best antimicrobial activity, which inhibited the growth of Gram-positive and negative bacteria in the submicromolar range. PMID:27058628

  8. Antibacterial activity of silver nanoparticles synthesized In-situ by solution spraying onto cellulose.

    PubMed

    Yan, Jinhua; Abdelgawad, Abdelrahman M; El-Naggar, Mehrez E; Rojas, Orlando J

    2016-08-20

    Spray technique was used for the adsorption of in-situ silver nanoparticles (AgNPs) onto and inside the surface of nano- and micro- fibrillar cellulose (NFC and MFC) as well as filter paper. The abundance of hydroxyl and carboxyl groups located in NFC and MFC are used to stabilize Ag ions (Ag(+)) which were then in-situ reduced to (AgNPs) by chemical or UV reduction. The surface characteristic features, elemental analysis, particle size as well as size distribution of the obtained MFC, NFC and filter paper loaded with AgNPs were characterized via field emission scanning electron microscopy connected to energy dispersive X-ray spectroscopy (FESEM- EDX) and transmission electron microscopy (TEM). The associated chemical changes after growth of AgNPs onto the cellulose substrates were assessed by fourier transform infra-red (FT-IR) while the thermal stability of such systems were investigated by thermogravimetrical analyses (TGA). The antibacterial properties of AgNPs loaded NFC, MFC and filter paper as well was investigated against Escherichia Coli. The resulted data indicate that the particle size was found to be 11 and 26nm for AgNPs nucleated on NFC and MFC-based papers respectively. The antibacterial activity of AgNPs loaded MFC exhibited higher antibacterial activity than that of AgNPs loaded NFC. Overall, the present research demonstrates facile and fast method for in-situ antibacterial AgNPs loading on cellulose substrates. PMID:27178957

  9. Total Phenolic Content and Antibacterial Activity of Five Plants of Labiatae against Four Foodborne and Some Other Bacteria

    PubMed Central

    Mahboubi, Arash; Kamalinejad, Mohammad; Ayatollahi, Abdul Majid; Babaeian, Mohammad

    2014-01-01

    The aim of this study was to evaluate the antibacterial effects of Thymus vulgaris, Thymus caramanicus, Zataria multiflora, Ziziphora clinopodioides and Ziziphora tenuior against four foodborne and four other bacteria including Staphylococcus aureus, Shigella dysenteriae, Salmonella typhimurium, Escherichia coli, Staphylococcus epidermidis, Bacillus subtilis, MRSA and Pseudomona aeruginosa and measuring the amount of total phenolics of the plants. The extracts were prepared by maceration method. Pre-evaluation of the antimicrobial effect was utilized by cup-plate technique and then Minimum Inhibitory Concentration was determined by agar dilution method according to NCCLS. The total phenolics as a possible cause of antibacterial effect, was measured by Folin-Ciocalteucolorimetry. The results showed that T. caramanicus and Z. multiflora were the most effective ones with MIC values between 0.78-3.125 mg/mL against all of the Bactria and Z. tenuior and Z. clinopodioides had the minimum antimicrobial activity. Total phenolic contents of these five plants were different and followed the general pattern of the antimicrobial effect. The antibacterial effects and the total phenolic content of T. caramanicus and Z. multiflora were remarkable and should be investigated more in future studies. PMID:25237351

  10. Modeling and optimization of antibacterial activity of the chitosan-based hydrogel films using central composite design.

    PubMed

    Lahooti, Behnaz; Khorram, Mohammad; Karimi, Gholamreza; Mohammadi, Aliakbar; Emami, Amir

    2016-10-01

    In the present study, hydrogel films composed of chitosan-poly(vinyl alcohol)-gelatin-thyme honey were successfully prepared by casting method, and their anti-bacterial properties were modeled and optimized. Antibacterial properties of the prepared films were analyzed by applying agar diffusion method. Staphylococcus aureus and Pseudomonas aeruginosa were tested as Gram-positive and Gram-negative bacteria, respectively. In order to obtain the composition of the film with maximum inhibition zone against both above-mentioned bacterial strains, the experiments were designed using response surface methodology based on five-level central composite design with four parameters, including concentrations of chitosan, poly(vinyl alcohol), gelatin, and honey. The results indicated that the prepared samples had good antibacterial activities against these two studied bacteria strains. Response surface method is conducted to develop mathematical models for process responses. Variance analysis on the experimental data shows that inhibition zone can be predicted effectively with quadratic models. In addition, swelling properties and rate of water vapor transmission of the prepared hydrogel films were studied. Due to the successful results, this hydrogel film has an excellent potential to be explored further as a wound healing material. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2544-2553, 2016. PMID:27241899

  11. Total Phenolic Content and Antibacterial Activity of Five Plants of Labiatae against Four Foodborne and Some Other Bacteria.

    PubMed

    Mahboubi, Arash; Kamalinejad, Mohammad; Ayatollahi, Abdul Majid; Babaeian, Mohammad

    2014-01-01

    The aim of this study was to evaluate the antibacterial effects of Thymus vulgaris, Thymus caramanicus, Zataria multiflora, Ziziphora clinopodioides and Ziziphora tenuior against four foodborne and four other bacteria including Staphylococcus aureus, Shigella dysenteriae, Salmonella typhimurium, Escherichia coli, Staphylococcus epidermidis, Bacillus subtilis, MRSA and Pseudomona aeruginosa and measuring the amount of total phenolics of the plants. The extracts were prepared by maceration method. Pre-evaluation of the antimicrobial effect was utilized by cup-plate technique and then Minimum Inhibitory Concentration was determined by agar dilution method according to NCCLS. The total phenolics as a possible cause of antibacterial effect, was measured by Folin-Ciocalteucolorimetry. The results showed that T. caramanicus and Z. multiflora were the most effective ones with MIC values between 0.78-3.125 mg/mL against all of the Bactria and Z. tenuior and Z. clinopodioides had the minimum antimicrobial activity. Total phenolic contents of these five plants were different and followed the general pattern of the antimicrobial effect. The antibacterial effects and the total phenolic content of T. caramanicus and Z. multiflora were remarkable and should be investigated more in future studies. PMID:25237351

  12. Antibacterial activities of Beilschmiedia obscura and six other Cameroonian medicinal plants against multi-drug resistant Gram-negative phenotypes

    PubMed Central

    2014-01-01

    Background The rapid spread of bacteria expressing multi-drug resistance propels the search for new antibacterial agents. The present study was designed to evaluate the antibacterial activities of the methanol extracts from Beilschmiedia obscura and six other Cameroonian plants against a panel of twenty nine Gram-negative bacteria including Multi-drug resistant (MDR) phenotypes. Methods The phytochemical investigations of the extracts were carried out according to the standard methods and the liquid micro-dilution assay was used for all antibacterial assays. Results Phytochemical analysis showed the presence of alkaloids in all studied extracts. Other chemical classes of secondary metabolites such as anthocyanines, anthraquinones flavonoids, saponins, tannins, sterols and triterpenes were selectively detected in the extracts. The extract from the fruits of Beilschmiedia obscura, Pachypodanthium staudtii leaves and Peperomia fernandopoiana (whole plant) displayed the best spectrum of activity with MIC values ranging from 16 to 1024 μg/mL against at least 65% and above of the tested bacteria. The extract from Beilschmiedia obscura was the most active with MIC values below 100 μg/mL against ten of the tested bacteria. This extract also showed MBC values below 1024 μg/mL against 55.17% of the studied microorganisms. Phenylalanine arginine β-naphthylamide (PAβN) significantly modulated the activities of extracts from the leaves and fruits of Pachypodanthium staudtii and Beilschmiedia obscura respectively, by increasing their inhibitory activity against Klebsiella pneumoniae KP55 strain at least four fold. Conclusion The overall results of the present investigation provide information for the possible use of the methanol extracts of the studied plant species, especially B. obscura to fight infectious diseases caused by Gram-negative bacteria including MDR phenotypes. PMID:25023038

  13. Novel morpholinoquinoline nucleus clubbed with pyrazoline scaffolds: Synthesis, antibacterial, antitubercular and antimalarial activities.

    PubMed

    Karad, Sharad C; Purohit, Vishal B; Thakor, Parth; Thakkar, Vasudev R; Raval, Dipak K

    2016-04-13

    A series of novel morpholinoquinoline based conjugates with pyrazoline moiety were synthesized under microwave irradiation. The newly synthesized compounds were screened for their preliminary in vitro antibacterial activity against a panel of pathogenic strains of bacteria and fungi, antituberculosis activity against Mycobacterium tuberculosis H37Rv and antimalarial activity against Plasmodium falciparum. Most of them exhibited significant antibacterial activity as compared to the first line drugs. Compounds 6a and 9d were found to possess excellent antibacterial activity potency as compared to ampicillin (286 μM), chloramphenicol (154 μM) and ciprofloxacin (150 μM). In antifungal screening, against Candida albicans, compounds 6c, 7c, 8a, 8b, 8c and 9b showed significant activity as compared to griseofulvin (1147 μM). Compounds 8b, 6b, 9d, 6a, 9b, 7b and 8a displayed brilliant activity against P. falciparum strain as compared to chloroquine (IC50 0.062 μM) as well as quinine (IC50 0.826 μM). Compounds 6d, 7b, 8b, 9c and 9d exhibited superior antitubercular activity. Among them 8b was found to be equipotent to rifampicin with 95% inhibition. The cytotoxicity of the synthesized compounds was tested using bioassay of Schizosaccharomyces pombe cells at cellular level. PMID:26900659

  14. Antibacterial and antifungal activity of essential oils of Mentha suaveolens.

    PubMed

    Oumzil, H; Ghoulami, S; Rhajaoui, M; Ilidrissi, A; Fkih-Tetouani, S; Faid, M; Benjouad, A

    2002-12-01

    The essential oils (EO) of Mentha suaveolens, a wild Labiatae, which grows in several regions in Morocco, were characterized and their antimicrobial activity assessed. The main aromatic constituents of this plant, as characterized by IR, NMR and MS studies, were pulegone, piperitenone oxide (PEO) and piperitone oxide (PO) occurring in different amounts depending on the subspecies. These constituents as well as a series of other aromatic products such as carvone, limonene and menthone, were tested for their antimicrobial activity against 19 bacteria including Gram-positive and Gram-negative and against three fungi, using solid phase and microtitration assays. Pulegone-rich essential oil inhibited efficiently all the micro-organisms tested with MICs ranging between 0.69 and 2.77 ppm. Among the components from Mentha suaveolens EO, pulegone was the most effective against the tested microorganisms, followed by PEO and PO. The structure-activity relationship is discussed on the basis of the activity of the other aromatic derivatives tested such as carvone, limonene, menthone and the profile of the essential oils of Mentha suaveolens was compared with other Mentha species. PMID:12458474

  15. Antibacterial activities and release kinetics of a newly developed recoverable controlled agent-release system.

    PubMed

    Ehara, A; Torii, M; Imazato, S; Ebisu, S

    2000-03-01

    We attempted to develop a resin with a recoverable antibacterial activity based on the desorption/adsorption of a cationic bactericide by the ion-exchange mechanism. The aims of this study were to investigate the release kinetics of the agent and the antibacterial activity of this newly designed resin system. An experimental resin was prepared by the addition of methacrylic acid as a cation-exchanger and a cationic antibacterial agent, cetylpyridinium chloride (CPC), to triethyleneglycol dimethacrylate. The amount of CPC desorbed from the experimental resin into buffer solutions at pH 4-8 was measured. The adsorption of CPC to control resin and re-adsorption of CPC to the experimental resin, which had once desorbed the agent, were also determined. The antibacterial activity of experimental resin against Streptococcus mutans was evaluated, and the relationship between bacterial acid production and antibacterial effect was assessed. The experimental resin desorbed CPC at pH < or = 6, and the amount of agent desorbed increased with increasing acidity. The control resin adsorbed CPC when immersed in CPC aqueous solution at a rate determined by the concentration of the agent and immersion time. The experimental resin, once desorbed CPC, could re-adsorb the bactericide by being exposed to a solution of the agent. Less plaque formed on the experimental resin, and the growth and survival of S. mutans was inhibited in the condition in which acid was produced. These results demonstrate that the resin system proposed was able to desorb and re-adsorb the cationic bactericide by an ion-exchange mechanism and could show an inhibitory effect on S. mutans growth and plaque formation. PMID:10765955

  16. Domino Synthesis of Embelin Derivatives with Antibacterial Activity.

    PubMed

    Peña, Rosalyn; Martín, Pedro; Feresin, Gabriela E; Tapia, Alejandro; Machín, Félix; Estévez-Braun, Ana

    2016-04-22

    A series of dihydropyran embelin derivatives was synthesized through a direct and highly efficient approach based on a domino Knoevenagel intramolecular hetero-Diels-Alder reaction from natural embelin (1), using unsaturated aldehydes in the presence of organocatalysts such as ethylendiamine diacetate or l-proline. The aliphatic aldehydes yielded exclusively trans adducts, while mixtures of trans and cis isomers were found in reactions with aromatic aldehydes, with the cis form always predominating. Some of the compounds obtained were active and selective against Gram-positive bacteria, including multiresistant Staphylococcus aureus clinical isolates. PMID:26924672

  17. Chemistry, antioxidant, antibacterial and antifungal activities of volatile oils and their components.

    PubMed

    De Martino, Laura; De Feo, Vincenzo; Fratianni, Florinda; Nazzaro, Filomena

    2009-12-01

    The present paper reports the chemical composition, antioxidant and antibacterial activities of several essential oils and their components. Analysis showed that three oils (Carum carvi L., Verbena officinalis L. and Majorana hortensis L.) contained predominantly oxygenated monoterpenes, while others studied (Pimpinella anisum L., Foeniculum vulgare Mill.) mainly contained anethole. C. carvi, V. officinalis and M. hortensis oils exhibited the most potent antioxidant activity, due their contents of carvacrol, anethole and estragol. Antibacterial action was assessed against a range of pathogenic and useful bacteria and fungi of agro-food interest. V. officinalis and C. carvi oils proved the most effective, in particular against Bacillus cereus and Pseudomonas aeruginosa. Carvacrol proved most active against Escherichia coli, and completely inhibited the growth of Penicillium citrinum. The oils proved inactive towards some Lactobacilli strains, whereas single components showed an appreciable activity. These results may be important for use of the essential oils as natural preservatives for food products. PMID:20120118

  18. Mycosynthesis: antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract.

    PubMed

    Nagajyothi, P C; Sreekanth, T V M; Lee, Jae-il; Lee, Kap Duk

    2014-01-01

    In the present study, silver nanoparticles (AgNPs) were rapidly synthesized from silver nitrate solution at room temperature using Inonotus obliquus extract. The mycogenic synthesized AgNPs were characterized by UV-Visible absorption spectroscopy, Fourier transform infrared (FTIR), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). SEM revealed mostly spherical nanoparticles ranging from 14.7 to 35.2nm in size. All AgNPs concentrations showed good ABT radical scavenging activity. Further, AgNPs showed effective antibacterial activity against both gram negative and gram positive bacteria and antiproliferative activity toward A549 human lung cancer (CCL-185) and MCF-7 human breast cancer (HTB-22) cell lines. The samples demonstrated considerably high antibacterial, and antiproliferative activities against bacterial strains and cell lines. PMID:24380885

  19. Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera.

    PubMed

    Ozçelik, Berrin; Aslan, Mustafa; Orhan, Ilkay; Karaoglu, Taner

    2005-01-01

    In the present study, antibacterial, antifungal, and antiviral properties of 15 lipohylic extracts obtained from different parts (leaf, branch, stem, kernel, shell skins, seeds) of Pistacia vera were screened against both standard and the isolated strains of Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, Candida albicans and C. parapsilosis by microdilution method. Both Herpes simplex (DNA) and Parainfluenza viruses (RNA) were used for the determination of antiviral activity of the P. vera extracts by using Vero cell line. Ampicilline, ofloxocine, ketoconazole, fluconazole, acyclovir and oseltamivir were used as the control agents. The extracts showed little antibacterial activity between the range of 128-256 microg/ml concentrations whereas they had noticeable antifungal activity at the same concentrations. Kernel and seed extracts showed significant antiviral activity compared to the rest of the extracts as well as the controls. PMID:15881833

  20. Antibacterial Activity of Mother Tinctures of Cholistan Desert Plants in Pakistan

    PubMed Central

    Ahmad, M.; Ghafoor, Nazia; Aamir, M. N.

    2012-01-01

    The mother tinctures of desert were screened for antibacterial activity against bacterial strains of Gram-positive and Gram-negative bacteria. Mother tinctures were prepared by maceration process and antibacterial activity of different plants was evaluated and compared by measuring their zones of inhibition. The results indicated that Boerrhavia diffusa mother tincture had excellent activity only against Escherichia coli. Mother tincture of Chorozophora plicata showed highly effective results against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa whereas Echinops echinatus mother tincture showed highly effectiveness only against Salmonella typhi. Heliotropium europaeum mother tincture exhibited highly effective results against Bacillus subtilis in all concentrations. Tamrix aphylla presented maximum activity only against Bacillus subtilis in all three concentrations. Among the selected species Heliotropium europaeum, Chorozophora plicata and Tamrix aphylla were more effective plants against many microorganisms. However, Boerrhavia diffusa and Echinops echinatus were less effective plants against tested pathogenic bacteria. PMID:23716878

  1. Antibacterial activity of mother tinctures of cholistan desert plants in pakistan.

    PubMed

    Ahmad, M; Ghafoor, Nazia; Aamir, M N

    2012-09-01

    The mother tinctures of desert were screened for antibacterial activity against bacterial strains of Gram-positive and Gram-negative bacteria. Mother tinctures were prepared by maceration process and antibacterial activity of different plants was evaluated and compared by measuring their zones of inhibition. The results indicated that Boerrhavia diffusa mother tincture had excellent activity only against Escherichia coli. Mother tincture of Chorozophora plicata showed highly effective results against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa whereas Echinops echinatus mother tincture showed highly effectiveness only against Salmonella typhi. Heliotropium europaeum mother tincture exhibited highly effective results against Bacillus subtilis in all concentrations. Tamrix aphylla presented maximum activity only against Bacillus subtilis in all three concentrations. Among the selected species Heliotropium europaeum, Chorozophora plicata and Tamrix aphylla were more effective plants against many microorganisms. However, Boerrhavia diffusa and Echinops echinatus were less effective plants against tested pathogenic bacteria. PMID:23716878

  2. Antifungal and antibacterial activities of Taxus wallichiana Zucc.

    PubMed

    Nisar, Muhammad; Khan, Inamullah; Ahmad, Bashir; Ali, Ihsan; Ahmad, Waqar; Choudhary, Muhammad Iqbal

    2008-04-01

    Current study was undertaken to evaluate the in vitro antifungal and antibacterial potential of methanol extract and subsequent fractions obtained after partitioning in organic solvents with variable polarity of the aerial parts of the tree Taxus wallichiana Zucc. Traditionally, this plant is often used in folk medicines in Pakistan for treating microbial infections. In order to rationalize the traditional use, methanol extracts of leaf, bark, and heartwood of Taxus wallichiana Zucc. were tested against six bacteria and six fungal strains using the Hole diffusion and macro-dilution methods. All extracts and fractions displayed significant antimicrobial effect. Only three fungal strains, Trichophyton longifusus, Microspoum canis, and Fusarium solani were susceptible to the extracts and fractions with MICs ranging from 0.08 to 200 mg/mL. In case of bacterial strains, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi were susceptible to the extracts and fractions with MICs ranging from 0.08 to 200 mg/mL. Comparison results were carried out using imipinem, miconazole and amphotericin B as standard antibiotics. PMID:18343912

  3. Purity of graphene oxide determines its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Barbolina, I.; Woods, C. R.; Lozano, N.; Kostarelos, K.; Novoselov, K. S.; Roberts, I. S.

    2016-06-01

    Nanomaterials based on two-dimensional (2D) atomic crystals are considered to be very promising for various life-science and medical applications, from drug delivery to tissue modification. One of the most suitable materials for these purposes is graphene oxide (GO), thanks to a well-developed methods of production and water solubility. At the same time, its biological effect is still debated. Here we demonstrate that highly purified and thoroughly washed GO neither inhibited nor stimulated the growth of E.coli, ATCC25922; E.coli NCIMB11943 and S.aureus ATCC25923 at concentrations of up to 1 mg ml‑1. Moreover, transmission electron microscopy (TEM) of GO exposed bacteria did not reveal any differences between GO exposed and not exposed populations. In contrast, a suspension of insufficiently purified GO behaved as an antibacterial material due to the presence of soluble acidic impurities, that could be removed by extended purification or neutralisation by alkaline substrates. A standardised protocol is proposed for the generation of clean GO, so it becomes suitable for biological experiments. Our findings emphasise the importance of GO purification status when dealing with biological systems as the true effect of material can be masked by the impact of impurities.

  4. Synthesis, characterization and antibacterial activity of new Ln(III) complexes with an unsymmetrical schiff base ligand

    NASA Astrophysics Data System (ADS)

    Caifeng, Bi; Liangliang, Yan; Yuhua, Fan; Xia, Zhang; Aidong, Wang

    2006-07-01

    A new unsymmetrical Schiff base ligand (H2LLi) was synthesized using L-lysine, salicyladehyde and 2-hydroxy-1-naphthaldehyde. Three solid metal complexes of this ligand [Ln(H2L)(NO3)] NO3·2H2O (Ln=La, Sm, Ho) have been prepared and characterized by elemental analyses, IR spectra, UV spectra, TG-DTG and molar conductance. The antibacterial activities of the ligand and its complexes are also studied. The antibacterial experiments indicate that the ligand and its complexes possess antibacterial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis and that the complexes have higher activity than those of the ligand.

  5. In vitro antibacterial and antifungal activities of Cassia fistula Linn. fruit pulp extracts

    PubMed Central

    Bhalodia, N. R.; Nariya, P. B.; Acharya, R. N.; Shukla, V. J.

    2012-01-01

    Aim of the study is to assess the antimicrobial activity Cassia fistula fruit pulp extracts on some bacterial and fungal strains. Hydro alcohol and chloroform extracts of Cassia fistula fruit pulp were evaluated for the potential antimicrobial activity. The antimicrobial activity was determined in both the extracts using the agar disc diffusion method. Extracts were effective on tested microorganisms. The antibacterial and antifungal activities of solvent extracts (5, 25, 50, 100, 250 μg/mL) of C. fistula were tested against two gram positive, two gram negative human pathogenic bacteria and three fungi, respectively. Crude extracts of C. fistula exhibited moderate to strong activity against most of the bacteria tested. The tested bacterial strains were Staphylococcus aureus, Streptococcus pyogenes, Escherichia coil, Pseudomonas aeruginosa, and fungal strains were Aspergillus. niger, Aspergillus. clavatus, Candida albicans. The antibacterial potential of the extracts were found to be dose dependent. The antibacterial activities of the C. fistula were due to the presence of various secondary metabolites. Hence, these plants can be used to discover bioactive natural products that may serve as leads in the development of new pharmaceuticals research activities. PMID:23049197

  6. Analysis and antibacterial activity of Nigella sativa essential oil formulated in microemulsion system.

    PubMed

    Shaaban, Hamdy A; Sadek, Zainab; Edris, Amr E; Saad-Hussein, Amal

    2015-01-01

    The Essential oil (EO) of Nigella sativa (black cumin) was extracted from the crude oil and the volatile constituents were characterized using gas chromatographic analysis. The EO was formulated in water-based microemulsion system and its antibacterial activity against six pathogenic bacteria was evaluated using the agar well diffusion method. This activity was compared with two other well known biologically active natural and synthetic antimicrobials namely eugenol and Ceftriaxone(®). Results showed that N. sativa EO microemulsion was highly effective against S. aureus, B. cereus and S. typhimurium even at the lowest tested concentration of that EO in the microemulsion (100.0 μg/well). Interestingly, the EO microemulsion showed higher antibacterial activity than Ceftriaxone solution against S. typhimurium at 400.0 μg/well and almost comparable activity against E. coli at 500.0 μg/well. No activity was detected for the EO microemulsion against L. monocytogenes and P. aeruginosa. Eugenol which was also formulated in microemulsion was less effective than N. sativa EO microemulsion except against P. aeruginosa. The synthetic antibiotic (Ceftriaxone) was effective against most of the six tested bacterial strains. This work is the first report revealing the formulation of N. sativa EO in microemulsion system and investigating its antibacterial activity. The results may offer potential application of that water-based microemulsion in controlling the prevalence of some pathogenic bacteria. PMID:25748382

  7. Goldenseal (Hydrastis canadensis L.) extracts synergistically enhance the antibacterial activity of berberine via efflux pump inhibition.

    PubMed

    Ettefagh, Keivan A; Burns, Johnna T; Junio, Hiyas A; Kaatz, Glenn W; Cech, Nadja B

    2011-05-01

    Goldenseal (Hydrastis canadensis L.) is used to combat inflammation and infection. Its antibacterial activity in vitRO has been attributed to its alkaloids, the most abundant of which is berberine. The goal of these studies was to compare the composition, antibacterial activity, and efflux pump inhibitory activity of ethanolic extracts prepared from roots and aerial portions of H. canadensis. Ethanolic extracts were prepared separately from roots and aerial portions of six H. canadensis plants. Extracts were analyzed for alkaloid concentration using LC-MS and tested for antimicrobial activity against Staphylococcus aureus (NCTC 8325-4) and for inhibition of ethidium bromide efflux. Synergistic antibacterial activity was observed between the aerial extract (FIC 0.375) and to a lesser extent the root extract (FIC 0.750) and berberine. The aerial extract inhibited ethidium bromide efflux from wild-type S. aureus but had no effect on the expulsion of this compound from an isogenic derivative deleted for norA. Our studies indicate that the roots of H. canadensis contain higher levels of alkaloids than the aerial portions, but the aerial portions synergize with berberine more significantly than the roots. Furthermore, extracts from the aerial portions of H. canadensis contain efflux pump inhibitors, while efflux pump inhibitory activity was not observed for the root extract. The three most abundant H. canadensis alkaloids, berberine, hydrastine, and canadine, are not responsible for the efflux pump inhibitory activity of the extracts from H. canadensis aerial portions. PMID:21157683

  8. Helical 1:1 α/Sulfono-γ-AA Heterogeneous Peptides with Antibacterial Activity.

    PubMed

    She, Fengyu; Nimmagadda, Alekhya; Teng, Peng; Su, Ma; Zuo, Xiaobing; Cai, Jianfeng

    2016-05-01

    As one of the greatest threats facing the 21st century, antibiotic resistance is now a major public health concern. Host-defense peptides (HDPs) offer an alternative approach to combat emerging multi-drug-resistant bacteria. It is known that helical HDPs such as magainin 2 and its analogs adopt cationic amphipathic conformations upon interaction with bacterial membranes, leading to membrane disruption and subsequent bacterial cell death. We have previously shown that amphipathic sulfono-γ-AApeptides could mimic magainin 2 and exhibit bactericidal activity. In this article, we demonstrate for the first time that amphipathic helical 1:1 α/sulfono-γ-AA heterogeneous peptides, in which regular amino acids and sulfono-γ-AApeptide building blocks are alternatively present in a 1:1 pattern, display potent antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens. Small angle X-ray scattering (SAXS) suggests that the lead sequences adopt defined helical structures. The subsequent studies including fluorescence microscopy and time-kill experiments indicate that these hybrid peptides exert antimicrobial activity by mimicking the mechanism of HDPs. Our findings may lead to the development of HDP-mimicking antimicrobial peptidomimetics that combat drug-resistant bacterial pathogens. In addition, our results also demonstrate the effective design of a new class of helical foldamer, which could be employed to interrogate other important biological targets such as protein-protein interactions in the future. PMID:27030636

  9. Production of polypeptide antibiotic from Streptomyces parvulus and its antibacterial activity

    PubMed Central

    Shetty, Prakasham Reddy; Buddana, Sudheer Kumar; Tatipamula, Vinay Bharadwaj; Naga, Yaswanth Varanasi Venkata; Ahmad, Jamal

    2014-01-01

    A highly potent secondary metabolite producing actinomycetes strain is isolated from marine soil sediments of Visakhapatnam sea coast, Bay of Bengal. Over all ten strains are isolated from the collected soil sediments. Among the ten actinomycetes strains the broad spectrum strain RSPSN2 was selected for molecular characterization, antibiotic production and its purification. The nucleotide sequence of the 1 rRNA gene (1261 base pairs) of the most potent strain evidenced a 96% similarity with Streptomyces parvulus 1044 strain, Streptomyces parvulus NBRC 13193 and Streptomyces parvulus BY-F. From the taxonomic features, the actinomycetes isolate RSPSN2 matches with Streptomyces parvulus in the morphological, physiological and biochemical characters. Thus, it was given the suggested name Streptomyces parvulus RSPSN2. The active metabolite was extracted using ethyl acetate (1:3, v/v) at pH 7.0. The separation of active ingredient and its purification was performed by using both thin layer chromatography (TLC) and column chromatography (CC) techniques. Spectrometric studies such as UV-visible, FTIR, and NMR and mass were performed. The antibacterial activity of pure compound was performed by cup plate method against some pathogenic bacteria including of streptomycin resistant bacteria like (Pseudomonas mirabilis, Pseudomonas putida and Bacillus cereus). In conclusion, the collected data emphasized the fact that a polypeptide antibiotic (Actinomycin D) was produced by Streptomyces parvulus RSPSN2. PMID:24948949

  10. Isolation and Molecular Identification of Streptomyces spp. with Antibacterial Activity from Northwest of Iran

    PubMed Central

    Maleki, Hadi; Dehnad, Alireza; Hanifian, Shahram; Khani, Sajjad

    2013-01-01

    Introduction: Streptomyces are a group of prokaryotes that are usually found in all types of ecosystems including water and soil. This group of bacteria is noteworthy as antibiotic producers; so the isolation and characterization of new species seemed to be crucial in introduction of markedly favorable antibiotics. Therefore, in this study we aim to isolate and characterize novel strains of Streptomyces with high antibiotic production capability. Methods: To achieve this goal, from 140 isolates collected throughout northwest of Iran, 12 selected Streptomyces isolates which exhibited high antibacterial activity against pathogenic bacteria were subjected to PCR reaction for identification via 16S rDNA gene and random amplified polymorphic DNA (RAPD) pattern analysis. Results: Analysis of morphological and biochemical characteristics and the 16S rDNA gene sequence indicated that all 12 selected isolates belonged to the genus Streptomyces. Moreover, screening of the isolates with regard to their antimicrobial activity against indicator bacteria as well as their classification using RAPD analysis revealed that G614C1 and K36C5 isolates have considerable antimicrobial activity and high similarity to Streptomyces coelicolor and Sreptomyces albogriseolus, respectively. Conclusion: Since many isolates in this study showed inhibitory effects against pathogenic bacteria, soil of northwest of Iran could be used as a rich source to be explored for novel Streptomyces strains with high potency of antibiotic production. PMID:24163805

  11. In vitro antibacterial activity in seed extracts of Manilkara zapota, Anona squamosa, and Tamarindus indica.

    PubMed

    Kothari, Vijay; Seshadri, Sriram

    2010-01-01

    Extracts prepared from seeds of Manilkara zapota, Anona squamosa, and Tamarindus indica were screened for their antibacterial activity by disc diffusion and broth dilution methods. Acetone and methanol extracts of T. indica seeds were found active against both gram-positive and gram-negative organisms. MIC values of potent extracts against susceptible organisms ranged from 53-380 μg/mL. Methanol extract of T. indica and acetone extract of M. zapota seeds were found to be bactericidal. PMID:21031260

  12. In vitro and in vivo antibacterial activities of BO-2727, a new carbapenem.

    PubMed Central

    Asahi, Y; Miyazaki, S; Yamaguchi, K

    1995-01-01

    BO-2727, a new injectable carbapenem, was evaluated for its in vitro and in vivo antibacterial activities in comparison with those of biapenem, meropenem, imipenem, cefpirome, and ceftazidime. BO-2727 had activity comparable to that of imipenem against methicillin-susceptible staphylococci and streptococci, with MICs at which 90% of strains tested (MIC90s) are inhibited being equal to 0.5 microgram/ml or less. Against methicillin-resistant staphylococci, BO-2727 was the most active among the antibiotics tested, with MIC90s ranging from 4 to 8 micrograms/ml. BO-2727 was highly active against members of the family Enterobacteriaceae, Haemophilus influenzae, and Moraxella catarrhalis, with MIC90s ranging from 0.006 to 2 micrograms/ml. BO-2727 was also highly active against Pseudomonas aeruginosa (imipenem-susceptible strains), for which the MIC90 was 2 micrograms/ml, which was lower than those of imipenem, cefpirome, and ceftazidime and comparable to those of biapenem and meropenem. Differences in activity between BO-2727 and the other carbapenems against imipenem-resistant P. aeruginosa were particularly striking (MIC90, 8 micrograms/ml). Furthermore, BO-2727 displayed a high degree of activity against many of the ceftazidime-, ciprofloxacin-, and/or gentamicin-resistant isolates of P. aeruginosa. The in vivo efficacy of BO-2727 against experimental septicemia caused by gram-positive and gram-negative bacteria, including methicillin-resistant Staphylococcus aureus and imipenem-resistant P. aeruginosa, reflected its potent in vitro activity and high levels in plasma. PMID:7625784

  13. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds.

    PubMed

    Makras, Lefteris; Triantafyllou, Vagelis; Fayol-Messaoudi, Domitille; Adriany, Tom; Zoumpopoulou, Georgia; Tsakalidou, Effie; Servin, Alain; De Vuyst, Luc

    2006-04-01

    Six Lactobacillus strains including commercial probiotic ones (L. acidophilus IBB 801, L. amylovorus DCE 471, L. casei Shirota, L. johnsonii La1, L. plantarum ACA-DC 287 and L. rhamnosus GG) were investigated, through batch fermentations under controlled conditions, for their capacity to inhibit Salmonella enterica serovar Typhimurium SL1344. All lactobacilli displayed strong antibacterial activity toward this Gram-negative pathogen and significantly inhibited invasion of the pathogen into cultured human enterocyte-like Caco-2/TC7 cells. By studying the production kinetics of antibacterial activity and applying the appropriate acid and pH control samples during a killing assay, we were able to distinguish between the effect of lactic acid and other inhibitory compounds produced. The antibacterial activity of L. acidophilus IBB 801, L. amylovorus DCE 471, L. casei Shirota and L. rhamnosus GG was solely due to the production of lactic acid. The antibacterial activity of L. johnsonii La1 and L. plantarum ACA-DC 287 was due to the production of lactic acid and (an) unknown inhibitory substance(s). The latter was (were) only active in the presence of lactic acid. In addition, the lactic acid produced was responsible for significant inhibitory activity upon invasion of Salmonella into Caco-2/TC7 cells. PMID:16266797

  14. Copper and Graphene activated ZnO nanopowders for enhanced photocatalytic and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Chidhambaram, N.; Gobalakrishnan, S.

    2016-06-01

    ZnO, ZnO:Cu and ZnO:Cu:Graphene nanopowders were synthesized via a facile wet chemical method. The XRD studies show that the synthesized samples have hexagonal wurtzite structure. It is found that graphene addition induces a decrease in crystallite size. UV-vis absorption spectra of the samples show sharp absorption edges around 380 nm. Photoluminescence studies reveal that the incorporation of copper and graphene in ZnO facilitates the efficient photo generated electron-hole pair separation. It is found that the ZnO:Cu and ZnO:Cu:Graphene nanopowder exhibit improved photocatalytic efficiency for the photodegradation of Methylene Blue (MB) under visible light irradiation. Moreover, improved antibacterial activity of ZnO:Cu:Graphene nanopowder against Escherichia coli and Staphylococcus aureus bacteria is observed.

  15. Antifungal and antibacterial activity of Haliclona sp. from the Persian Gulf, Iran.

    PubMed

    Nazemi, M; Alidoust Salimi, M; Alidoust Salimi, P; Motallebi, A; Tamadoni Jahromi, S; Ahmadzadeh, O

    2014-09-01

    In this study, antifungal and antibacterial activities of diethyl ether, methanol and aqueous extracts of Haliclona sp. were assessed (in vitro). The antibacterial activity of the extracts was determined by broth dilution methods against clinical Gram-negative bacteria: Escherichia coli, Pseudomonas aeruginosa and Gram-positive bacteria: Staphylococcus aureus aureus, Bacillus subtilis spizizenii. The antifungal activity of the extracts was determined by using a broth microdilution test against clinical fungi Candida albicans and Aspergillus fumigatus. Our results showed diethyl ether extract of Haliclona sp. was active on Gram-positive bacteria. In addition, methanol extract in comparison with diethyl ether extract had better activity against C. albicans (MIC: 0.75 mg/mL, MFC: 1.5mg/mL) and A. fumigatus (MIC: 2mg/mL, MFC: 3mg/mL). Aqueous extract had neither antifungal nor antibacterial activities. Based our results, Haliclona sp. can be considered as a source of novel antibiotic and antifungal. PMID:24934592

  16. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.

    PubMed

    Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi

    2014-08-01

    Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive. PMID:24650181

  17. Novel zinc alginate hydrogels prepared by internal setting method with intrinsic antibacterial activity.

    PubMed

    Straccia, Maria Cristina; d'Ayala, Giovanna Gomez; Romano, Ida; Laurienzo, Paola

    2015-07-10

    In this paper, a controlled gelation of alginate was performed for the first time using ZnCO3 and GDL. Uniform and transparent gels were obtained and investigated as potential wound dressings. Homogeneity, water content, swelling capability, water evaporation rate, stability in normal saline solution, mechanical properties and antibacterial activity were assessed as a function of zinc concentration. Gelation rate increased at increasing zinc content, while a decrease in water uptake and an improvement of stability were found. Release of zinc in physiological environments showed that concentration of zinc released in solution lies below the cytotoxicity level. Hydrogels showed antimicrobial activity against Escherichia coli. The hydrogel with highest zinc content was stabilized with calcium by immersion in a calcium chloride solution. The resulting hydrogel preserved homogeneity and antibacterial activity. Furthermore, it showed even an improvement of stability and mechanical properties, which makes it suitable as long-lasting wound dressing. PMID:25857965

  18. Facile Preparation of Ag/NiO Composite Nanosheets and Their Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Shi, Cui-E.; Pan, Lu; Wang, Cheng-Run; He, Yi; Wu, Yong-Feng; Xue, Sai-Sai

    2016-01-01

    Sheet-like precursors of NiO and Ag/NiO with different Ag contents were synthesized by a facile and easily controlled hydrothermal method. The NiO and Ag/NiO composite nanosheets were prepared by calcination of the corresponding precursors at 400°C for 3 h. The as-synthesized samples were characterized by thermogravimetric analysis, x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. The antibacterial activity of NiO and Ag/NiO composites to several gram-positive and gram-negative bacteria was examined. Results showed that NiO nanosheets hardly exhibited antibacterial activity; however, Ag/NiO composites displayed higher activity even with low Ag content.

  19. Phenolic constituents from the aerial parts of Glycyrrhiza inflata and their antibacterial activities.

    PubMed

    Zhou, Biao; Wan, Chuan-Xing

    2015-01-01

    Chemical investigation on 90% ethanol extracts of the aerial parts of Glycyrrhiza inflata afforded two new phenolic constituents, 2-(3-methyl-2-butenyl)-3,5,4'-trihydroxy-bibenzyl (1) and (2S)-6-[(E)-3-hydroxymethyl-2-butenyl]-3',4',5,7-tetrahydroxy-dihydroflavanone (2) along with seven known dihydroflavanones (3-9). Compounds 1-9 were tested for their minimum inhibitory concentration (MIC) values of inhibiting Staphylococcus aureus and Staphylococcus epidermidis. Compound 1 showed moderate antibacterial activities against both S. aureus (MIC of 50.00 μg/ml) and S. epidermidis (MIC of 12.50 μg/ml). The analysis of structure-activity relationships revealed that the antibacterial activity of dihydroflavanones (2-9) was significantly affected by the position of prenyl group. PMID:25315253

  20. Investigations into methods to improve the antibacterial activity of Acticoat.

    PubMed

    Ravensdale, Joshua; Wood, Fiona; O'Brien, Francis; Gregg, Keith

    2016-05-01

    Multiple studies have shown that the antibacterial dressing Acticoat can inhibit growth of bacteria but is unable to completely clear a wound of infection, which could leave patients vulnerable to sepsis. Agar inoculated with four different Staphylococcus aureus strains and overlain with Acticoat showed growth inhibition beneath and within a 1 mm perimeter of the dressing after 24 h. When lifted from inoculated agar and briefly blotted onto fresh agar plates, Acticoat transferred viable bacteria. Scanning electron microscopy of the surface of Acticoat that overlaid meticillin-resistant S. aureus for 24, 48 and 72 h showed dense clusters of apparently undamaged bacteria distributed across the mesh. The number of bacteria growing on inoculated pig skin, underneath and on the surface of Acticoat, was lower than on controls for the first 8 h, but after 24 h the number of bacteria on the skin was 2.3-fold greater than the untreated controls. In contrast, after 24 h the number of bacteria surviving on the surface of the Acticoat was 11.9 % of controls. Acticoat moistened with 10 % glycerol plus antimicrobial peptides (AMPs) mel12-26 or bac8c (50 μg ml- 1) reduced the numbers of bacteria on the dressing and on the skin underneath to below 10 % and 0.01 % of the controls, respectively. When lysozyme (1 mg ml- 1) was added to Acticoat wetted with glycerol and the AMP bac8c, the dressing was able to prevent the survival of bacteria on densely inoculated pig skin and on the surface of Acticoat for up to 24 h. In effect, biocompatible solvents and AMPs significantly enhance the bactericidal efficacy of Acticoat. PMID:26944631

  1. Effects of quaternization on the morphological stability and antibacterial activity of electrospun poly(DMAEMA-co-AMA) nanofibers.

    PubMed

    Xu, Jing-Wei; Wang, Yao; Yang, Yun-Feng; Ye, Xiang-Yu; Yao, Ke; Ji, Jian; Xu, Zhi-Kang

    2015-09-01

    Electrospun nanofibers with antibacterial activity are greatly promising for medical treatment and water purification. Herein we report antibacterial nanofibers electrospun from a series of poly(dimethylamino ethyl methacrylate-co-alkyl methacrylates) (poly(DMAEMA-co-AMA)) and to distinguish the effects of free and cross-linked cations derived from quanternization on the antibacterial activity. Poly(DMAEMA-co-AMA)s are simply synthesized by free radical polymerization from commercial monomers. DSC analysis indicates that they have Tg lower than room temperature and thus the electrospun nanofibers adhere to each other and evenly tend to form films, instead of keeping cylinderic shape. Benzyl chloride (BC) and p-xylylene dichloride (XDC) can quaternize DMAEMA units and to generate cations on the nanofiber surface. XPS analysis and colorimetric assay determine the quaternization degree and the surface accessible quaternary amines (N(+)), respectively. It is very promising that this quaternization endows the electrospun nanofibers with both stable morphology and antibacterial activity. The BC-quaternized fibers show better antibacterial behavior against Escherichia coli and Staphylococcus aureus than those of the XDC-quaternized/cross-linked ones, because cross-linking suppresses the chain mobility of cations. Our results confirm that antibacterial nanofibers can be facilely prepared and chain mobility of the formed cations is the necessary prerequisite for their antibacterial activity. PMID:26094147

  2. Antibacterial activities of fluorescent nano assembled triphenylamine phosphonium ionic liquids.

    PubMed

    Brunel, Frédéric; Lautard, Christelle; Garzino, Frédéric; Giorgio, Suzanne; Raimundo, Jean M; Bolla, Jean M; Camplo, Michel

    2016-08-01

    Staphylococcus aureus, a Gram positive coccal bacterium is a major cause of nosocomial infection. We report the synthesis of new triphenylamine phosphonium ionic liquids which are able to self-assemble into multiwall nanoassemblies and to reveal a strong bactericidal activity (MIC=0.5mg/L) for Gram positive bacteria (including resistant strains) comparable to that of standard antibiotics. Time kill, metabolism and fluorescence confocal microscopy studies show a quasi-instantaneously penetration of the nanoassemblies inside the bacteria resulting of a rapid blocking (30min) of their proliferation. As confirmed by rezasurin reduction monitoring, these compounds strongly affect the bacterial metabolism and a Gram positive versus Gram negative selectivity is clearly observed. These fluorescent phosphonium ionic liquid might constitute a useful tool for both translocation studies and to tackle infectious diseases related to the field of implantology. PMID:27287371

  3. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa

    PubMed Central

    Gurunathan, Sangiliyandi; Han, Jae Woong; Dayem, Ahmed Abdal; Eppakayala, Vasuki; Kim, Jin-Hoi

    2012-01-01

    Background Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO) and reduced graphene oxide (rGO) in Pseudomonas aeruginosa. In this work, we used a novel reducing agent, betamercaptoethanol (BME), for synthesis of graphene to avoid the use of toxic materials. To uncover the impacts of GO and rGO on human health, the antibacterial activity of two types of graphene-based material toward a bacterial model P. aeruginosa was studied and compared. Methods The synthesized GO and rGO was characterized by ultraviolet-visible absorption spectroscopy, particle-size analyzer, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. Further, to explain the antimicrobial activity of graphene oxide and reduced graphene oxide, we employed various assays, such as cell growth, cell viability, reactive oxygen species generation, and DNA fragmentation. Results Ultraviolet-visible spectra of the samples confirmed the transition of GO into graphene. Dynamic light-scattering analyses showed the average size among the two types of graphene materials. X-ray diffraction data validated the structure of graphene sheets, and high-resolution scanning electron microscopy was employed to investigate the morphologies of prepared graphene. Raman spectroscopy data indicated the removal of oxygen-containing functional groups from the surface of GO and the formation of graphene. The exposure of cells to GO and rGO induced the production of superoxide radical anion and loss of cell viability. Results suggest that the antibacterial activities are contributed to by loss of cell viability, induced oxidative stress, and DNA fragmentation. Conclusion The antibacterial activities of GO and rGO against P. aeruginosa were compared. The loss of P

  4. Antibacterial activity of plasma from crocodile (Crocodylus siamensis) against pathogenic bacteria

    PubMed Central

    2012-01-01

    Background The Siamese crocodile (Crocodylus siamensis) is a critically endangered species of freshwater crocodiles. Crocodilians live with opportunistic bacterial infection but normally suffer no adverse effects. They are not totally immune to microbial infection, but their resistance thereto is remarkably effective. In this study, crude and purified plasma extracted from the Siamese crocodile were examined for antibacterial activity against clinically isolated, human pathogenic bacterial strains and the related reference strains. Methods Crude plasma was prepared from whole blood of the Siamese crocodile by differential sedimentation. The crude plasma was examined for antibacterial activity by the liquid growth inhibition assay. The scanning electron microscopy was performed to confirm the effect of crude crocodile plasma on the cells of Salmonella typhi ATCC 11778. Effect of crude crocodile plasma on cell viability was tested by MTT assay. In addition, the plasma was purified by anion exchange column chromatography with DEAE-Toyopearl 650 M and the purified plasma was tested for antibacterial activity. Results Crude plasma was prepared from whole blood of the Siamese crocodile and exhibited substantial antibacterial activities of more than 40% growth inhibition against the six reference strains of Staphylococcus aureus, Salmonella typhi, Escherichia coli, Vibrio cholerae, Pseudomonas aeruginosa, and Staphylococcus epidermidis, and the four clinical isolates of Staphylococcus epidermidis, Pseudomonas aeruginosa, Salmonella typhi, and Vibrio cholerae. Especially, more than 80% growth inhibition was found in the reference strains of Salmonella typhi, Vibrio cholerae, and Staphylococcus epidermidis and in the clinical isolates of Salmonella typhi and Vibrio cholerae. The effect of the crude plasma on bacterial cells of Salmonella typhi, a certain antibacterial material probably penetrates progressively into the cytoplasmic space, perturbing and damaging bacterial

  5. Discovery of an ultra-short linear antibacterial tetrapeptide with anti-MRSA activity from a structure-activity relationship study.

    PubMed

    Lau, Qiu Ying; Ng, Fui Mee; Cheong, Jin Wei Darryl; Yap, Yi Yong Alvin; Tan, Yoke Yan Fion; Jureen, Roland; Hill, Jeffrey; Chia, Cheng San Brian

    2015-11-13

    The overuse and misuse of antibiotics has resulted in the emergence of drug-resistant pathogenic bacteria, including meticillin-resistant Staphylococcus aureus (MRSA), the primary pathogen responsible for human skin and soft-tissue infections. Antibacterial peptides are known to kill bacteria by rapidly disrupting their membranes and are deemed plausible alternatives to conventional antibiotics. One advantage of their membrane-targeting mode of action is that bacteria are unlikely to develop resistance as changing their cell membrane structure and morphology would likely involve extensive genetic mutations. However, major concerns in using peptides as antibacterial drugs include their instability towards plasma proteases, toxicity towards human cells due to their membrane-targeting mode of action and high manufacturing cost. These concerns can be mitigated by developing peptides as topical agents, by the judicial selection of amino acids and developing very short peptides respectively. In this preliminary report, we reveal a linear, non-hemolytic tetrapeptide with rapid bactericidal activity against MRSA developed from a structure-activity relationship study based on the antimicrobial hexapeptide WRWRWR-NH2. Our finding opens promising avenues for the development of ultra-short antibacterials to treat multidrug-resistant MRSA skin and soft tissue infections. PMID:26489599

  6. In vitro antioxidant, antifungal and antibacterial activities of five international Calibrachoa cultivars.

    PubMed

    Elansary, Hosam O; Yessoufou, Kowiyou

    2016-06-01

    The total phenolic, flavonoid and tannin contents in leaf extracts of Calibrachoa x hybrida (C.h.) (Solanaceae) international cultivars, as well as their overall antioxidant activities using DPPH and linoleic acid assays, were investigated. Furthermore, the antifungal and the antibacterial activities were examined against a wide spectrum of micro-organisms. DPPH and linoleic acid assays ranged from 62.1 to 80.1% and of 74.1-93.4%, respectively. C.h. Superbells® Trailing Rose (CHST), C.h. Superbells® Frost Fire, C.h. Superbells® Strawberry Punch, C.h. Superbells® Dreamsicle and C.h. Superbells® Plum (CHSP) varied in their antifungal and the antibacterial activities against a wide spectrum of micro-organisms. CHSP exhibited the highest antioxidant, antifungal and antibacterial activities followed by CHST. These activities might be attributed to the presence of phenolic, flavonoid and tannin compounds, indicating that these cultivars might be potential sources of therapeutic substances. PMID:26653617

  7. Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ashraf, Sumaira; Chatha, Mariyam Asghar; Ejaz, Wardah; Janjua, Hussnain Ahmed; Hussain, Irshad

    2014-10-01

    Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species. The cationic silver nanoparticles were found to be more effective against Pseudomonas aeruginosa 3 compared to other bacterial species/strains investigated. Some of the bacterial strains of the same species showed variable antibacterial activity. The difference in antimicrobial activity of these particles has led to the conclusion that antimicrobial products formed from silver nanoparticles may not be equally effective against all the bacteria. This difference in the antibacterial activity of silver nanoparticles for different bacterial strains from the same species may be due to the genome islands that are acquired through horizontal gene transfer (HGT). These genome islands are expected to possess some genes that may encode enzymes to resist the antimicrobial activity of silver nanoparticles. These silver nanoparticles may thus also be used to differentiate some bacterial strains within the same species due to variable silver resistance of these variants, which may not possible by simple biochemical tests.

  8. Essential Oil Yield Pattern and Antibacterial and Insecticidal Activities of Trachyspermum ammi and Myristica fragrans.

    PubMed

    Soni, Rajgovind; Sharma, Gaurav; Jasuja, Nakuleshwar Dut

    2016-01-01

    Two Indian spices, Trachyspermum ammi and Myristica fragrans, were studied for their essential oil (EO) yielding pattern, insecticidal activity, antibacterial activity, and composition. The essential oils (EOs) of T. ammi (1.94 ± 30 mL/100 gm) and M. fragrans (5.93 ± 90 mL/100 gm) were extracted using hydrodistillation method. In Gas Chromatography analysis, the beta-pinene, alpha-pinene, alpha-p-menth-1-en-4-ol, Limonene, and elemicin were found as major constituents of T. ammi essential oil whereas M. fragrans essential oil mostly contains Gamma-Terpinolene, p-Cymene, Thymol, and beta-pinene. The insecticidal activities of EO were demonstrated using LC50 values against Plodia interpunctella and EO of T. ammi was found comparatively more effective than EO of M. fragrans. Further, individual EO and combination of essential oil were examined for antibacterial activity against three Gram (-) bacterial strains (E. coli-MTCC 443, P. vulgaris-MTCC 1771, and K. pneumoniae-MTCC number 7028) and three Gram (+) bacterial strains (S. aureus-MTCC 3381, B. subtilis-MTCC 10619, and B. megaterium-MTCC 2412) by well agar diffusion method. The essential oil in combination (CEO) exhibited higher antibacterial activity as compared with individual essential oils. PMID:27190677

  9. Essential Oil Yield Pattern and Antibacterial and Insecticidal Activities of Trachyspermum ammi and Myristica fragrans

    PubMed Central

    Sharma, Gaurav

    2016-01-01

    Two Indian spices, Trachyspermum ammi and Myristica fragrans, were studied for their essential oil (EO) yielding pattern, insecticidal activity, antibacterial activity, and composition. The essential oils (EOs) of T. ammi (1.94 ± 30 mL/100 gm) and M. fragrans (5.93 ± 90 mL/100 gm) were extracted using hydrodistillation method. In Gas Chromatography analysis, the beta-pinene, alpha-pinene, alpha-p-menth-1-en-4-ol, Limonene, and elemicin were found as major constituents of T. ammi essential oil whereas M. fragrans essential oil mostly contains Gamma-Terpinolene, p-Cymene, Thymol, and beta-pinene. The insecticidal activities of EO were demonstrated using LC50 values against Plodia interpunctella and EO of T. ammi was found comparatively more effective than EO of M. fragrans. Further, individual EO and combination of essential oil were examined for antibacterial activity against three Gram (−) bacterial strains (E. coli-MTCC 443, P. vulgaris-MTCC 1771, and K. pneumoniae-MTCC number 7028) and three Gram (+) bacterial strains (S. aureus-MTCC 3381, B. subtilis-MTCC 10619, and B. megaterium-MTCC 2412) by well agar diffusion method. The essential oil in combination (CEO) exhibited higher antibacterial activity as compared with individual essential oils. PMID:27190677

  10. Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity

    PubMed Central

    2014-01-01

    Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species. The cationic silver nanoparticles were found to be more effective against Pseudomonas aeruginosa 3 compared to other bacterial species/strains investigated. Some of the bacterial strains of the same species showed variable antibacterial activity. The difference in antimicrobial activity of these particles has led to the conclusion that antimicrobial products formed from silver nanoparticles may not be equally effective against all the bacteria. This difference in the antibacterial activity of silver nanoparticles for different bacterial strains from the same species may be due to the genome islands that are acquired through horizontal gene transfer (HGT). These genome islands are expected to possess some genes that may encode enzymes to resist the antimicrobial activity of silver nanoparticles. These silver nanoparticles may thus also be used to differentiate some bacterial strains within the same species due to variable silver resistance of these variants, which may not possible by simple biochemical tests. PMID:25435831

  11. Phenolic compounds in drumstick peel for the evaluation of antibacterial, hemolytic and photocatalytic activities.

    PubMed

    Surendra, T V; Roopan, Selvaraj Mohana; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Sridharan, Makuteswaran

    2016-08-01

    Most of the wastes emitted from the food processing industries are not utilized for any further purpose. The economic value of the food waste is very less when compared to the collection or reuse or discard. To increase the economic value we have to design the food waste as useful product or applicable in most of the current field. Nothing is waste in this world with this concept we have investigated the phytochemical analysis of drumstick peel (Moringa oleifera). The result supports the presence of phenols, alkaloids, flavanoids, glycosides and tannins. Since various functional groups containing molecules are present in the extract; it has been further subjected to antibacterial and hemolytic activities. To analysis the antibacterial studies we have employed human pathogenic Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterium. The result of antibacterial activity clearly shows that it possesses significant activity on both bacterial cultures. The hemolytic activity was performed on red blood cells (RBCs). From this result we observed that drumstick peel extract has been considered as non-toxic on RBCs. Malachite green was selected to perform photocatalytic activity. The results stated that the drumstick peel extract possessed good behaviour towards photocatalytic investigation. The malachite green was degraded upto 99.7% using drumstick peel extract. PMID:27318603

  12. Tuning the Biological Activity Profile of Antibacterial Polymers via Subunit Substitution Pattern

    PubMed Central

    2015-01-01

    Binary nylon-3 copolymers containing cationic and hydrophobic subunits can mimic the biological properties of host-defense peptides, but relationships between composition and activity are not yet well understood for these materials. Hydrophobic subunits in previously studied examples have been limited mostly to cycloalkane-derived structures, with cyclohexyl proving to be particularly promising. The present study evaluates alternative hydrophobic subunits that are isomeric or nearly isomeric with the cyclohexyl example; each has four sp3 carbons in the side chains. The results show that varying the substitution pattern of the hydrophobic subunit leads to relatively small changes in antibacterial activity but causes significant changes in hemolytic activity. We hypothesize that these differences in biological activity profile arise, at least in part, from variations among the conformational propensities of the hydrophobic subunits. The α,α,β,β-tetramethyl unit is optimal among the subunits we have examined, providing copolymers with potent antibacterial activity and excellent prokaryote vs eukaryote selectivity. Bacteria do not readily develop resistance to the new antibacterial nylon-3 copolymers. These findings suggest that variation in subunit conformational properties could be generally valuable in the development of synthetic polymers for biological applications. PMID:24601599

  13. [Recombinant expression and antibacterial activity of i-type lysozyme from sea cucumber Stichopus japonicus].

    PubMed

    Wang, Xiuxia; Cong, Lina; Wang, Dan; Yang, Xijian; Zhu, Beiwei

    2009-02-01

    The cDNA of an i type lysozyme was cloned from Stichopus japonicus (named as SjLys). The DNA fragment of the mature SjLys was subcloned into expression vector of pET-32a (+) to construct the recombinant plasmid of pET32a (+)-SjLys. The recombinant plasmid was then transformed into Escherichia coli BL21 (DE3) pLysS and induced by isopropylthio-beta-D-galactoside (IPTG). The recombinant protein expressed as inclusion bodies was denatured, partially purified and refolded to be an active form. The bacteriolytic activity of recombinant protein purified by the metal-chelating was 19.2 U/mg. The antibacterial activity of the purified recombinant SjLys (rSjLys) was analyzed. The rSjLys protein displayed inhibitive effect on the growth of the tested Gram-positive and Gram-negative bacteria. In particular, rSjLys had a strong inhibitive activity on Vibrio parahaemolyticus and Pseudomonas aeruginosa, both the most common pathogenic bacteria in the marine animals. The heat-treated rSjLys exhibited more potent activities against all tested bacteria. These results indicated that the S. japonicus lysozyme was the enzyme with combined enzymatic (glycosidase) and non-enzymatic antibacterial action, and it had a wide antibacterial spectrum. Therefore, it is suggested that the S. japonicus lysozyme should be one of the important molecules against pathogens in the innate immunity of sea cucumbers. PMID:19459322

  14. The Wound Healing and Antibacterial Activity of Five Ethnomedical Calophyllum inophyllum Oils: An Alternative Therapeutic Strategy to Treat Infected Wounds

    PubMed Central

    Léguillier, Teddy; Lecsö-Bornet, Marylin; Lémus, Christelle; Rousseau-Ralliard, Delphine; Lebouvier, Nicolas; Hnawia, Edouard; Nour, Mohammed; Aalbersberg, William; Ghazi, Kamelia; Raharivelomanana, Phila; Rat, Patrice

    2015-01-01

    Background Calophyllum inophyllum L. (Calophyllaceae) is an evergreen tree ethno-medically used along the seashores and islands of the Indian and Pacific Oceans, especially in Polynesia. Oil extracted from the seeds is traditionally used topically to treat a wide range of skin injuries from burn, scar and infected wounds to skin diseases such as dermatosis, urticaria and eczema. However, very few scientific studies reported and quantified the therapeutic properties of Calophyllum inophyllum oil (CIO). In this work, five CIO from Indonesia (CIO1), Tahiti (CIO2, 3), Fiji islands (CIO4) and New Caledonia (CIO5) were studied and their cytotoxic, wound healing, and antibacterial properties were presented in order to provide a scientific support to their traditional use and verify their safety. Methods The safety of the five CIO was ascertained using the Alamar blue assay on human keratinocyte cells. CIO wound healing properties were determined using the scratch test assay on human keratinocyte cells. CIO-stimulated antibacterial innate immune response was evaluated using ELISA by measuring β defensin-2 release in human derivative macrophage cells. CIO antibacterial activity was tested using oilogramme against twenty aerobic Gram- bacteria species, twenty aerobic Gram+ bacteria species, including a multi-drug resistant Staphylococcus aureus strain and two anaerobic Gram+ bacteria species e.g. Propionibacterium acnes and Propionibacterium granulosum. To detect polarity profile of the components responsible of the antibacterial activity, we performed bioautography against a Staphylococcus aureus strain. Results Based on Alamar Blue assay, we showed that CIO can be safely used on keratinocyte cells between 2.7% and 11.2% depending on CIO origin. Concerning the healing activity, all the CIO tested accelerated in vitro wound closure, the healing factor being 1.3 to 2.1 higher compared to control when keratinocytes were incubated after scratch with CIO at 0.1%. Furthermore

  15. Evidence of Antibacterial Activities in Peptide Fractions Originating from Snow Crab (Chionoecetes opilio) By-Products.

    PubMed

    Beaulieu, Lucie; Thibodeau, Jacinthe; Desbiens, Michel; Saint-Louis, Richard; Zatylny-Gaudin, Céline; Thibault, Sharon

    2010-10-01

    Antibacterial peptide fractions generated via proteolytic processing of snow crab by-products exhibited activity against Gram-negative and Gram-positive bacteria. Among the bacterial strains tested, peptide fractions demonstrated inhibitory activity against the Gram-negative bacteria such as Aeromonas caviae, Aeromonas hydrophila, Campylobacter jejuni, Listonella anguillarum, Morganella morganii, Shewanella putrefasciens, Vibrio parahaemolyticus and Vibrio vulnificus and against a few Gram-positive bacteria such as Listeria monocytogenes, Staphylococcus epidermidis and Streptococcus agalactiae. The principal bioactive peptide fraction was comprised mainly of proteins and minerals (74.3 and 15.5%, respectively). Lipids were not detected. The amino acid content revealed that arginine (4.6%), glutamic acid (5.3%) and tyrosine (4.8%) residues were represented in the highest composition in the antibacterial peptide fraction. The optimal inhibitory activity was observed at alkaline pH. The V. vulnificus strain, most sensitive to the peptide fraction, was used to develop purification methods. The most promising chromatography resins selected for purification, in order to isolate peptides of interest and to carry out their detailed biochemical characterization, were the SP-Sepharose™ Fast Flow cation exchanger and the Phenyl Sepharose™ High Performance hydrophobic interaction media. The partially purified antibacterial peptide fraction was analyzed for minimum inhibitory concentration (MIC) determination, and the value obtained was 25 μg ml(-1). Following mass spectrometry analysis, the active peptide fraction seems to be a complex of molecules comprised of several amino acids and other organic compounds. In addition, copper was the main metal found in the active peptide fraction. Results indicate the production of antibacterial molecules from crustacean by-products that support further applications for high-value bioproducts in several areas such as food and health

  16. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets.

    PubMed

    de Faria, Andreia Fonseca; Martinez, Diego Stéfani Teodoro; Meira, Stela Maris Meister; de Moraes, Ana Carolina Mazarin; Brandelli, Adriano; Filho, Antonio Gomes Souza; Alves, Oswaldo Luiz

    2014-01-01

    This work reports on the preparation, characterization and antibacterial activity of a nanocomposite formed from graphene oxide (GO) sheets decorated with silver nanoparticles (GO-Ag). The GO-Ag nanocomposite was prepared in the presence of AgNO3 and sodium citrate. The physicochemical characterization was performed by UV-vis spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman spectroscopy and transmission electron microscopy (TEM). The average size of the silver nanoparticles anchored on the GO surface was 7.5 nm. Oxidation debris fragments (a byproduct adsorbed on the GO surface) were found to be crucial for the nucleation and growth of the silver nanoparticles. The antibacterial activity of the GO and GO-Ag nanocomposite against the microorganism Pseudomonas aeruginosa was investigated using the standard counting plate methodology. The GO dispersion showed no antibacterial activity against P. aeruginosa over the concentration range investigated. On the other hand, the GO-Ag nanocomposite displayed high biocidal activity with a minimum inhibitory concentration ranging from 2.5 to 5.0 μg/mL. The anti-biofilm activity toward P. aeruginosa adhered on stainless steel surfaces was also investigated. The results showed a 100% inhibition rate of the adhered cells after exposure to the GO-Ag nanocomposite for one hour. To the best of our knowledge, this work provides the first direct evidence that GO-Ag nanocomposites can inhibit the growth of microbial adhered cells, thus preventing the process of biofilm formation. These promising results support the idea that GO-Ag nanocomposites may be applied as antibacterial coatings material to prevent the development of biofilms in food packaging and medical devices. PMID:24060936

  17. Antibacterial activities of selected Cameroonian spices and their synergistic effects with antibiotics against multidrug-resistant phenotypes

    PubMed Central

    2011-01-01

    Background The emergence of multi-drug resistant (MDR) phenotypes is a major public health problem today in the treatment of bacterial infections. The present study was designed to evaluate the antibacterial activities of the methanol extracts of eleven Cameroonian spices on a panel of twenty nine Gram negative bacteria including MDR strains. Methods The phytochemical analysis of the extracts was carried out by standard tests meanwhile the liquid micro-broth dilution was used for all antimicrobial assays. Results Phytochemical analysis showed the presence of alkaloids, phenols and tannins in all plants extracts. The results of the antibacterial assays indicated that all tested extracts exert antibacterial activities, with the minimum inhibitory concentration (MIC) values varying from 32 to 1024 μg/ml. The extracts from Dichrostachys glomerata, Beilschmiedia cinnamomea, Aframomum citratum, Piper capense, Echinops giganteus, Fagara xanthoxyloïdes and Olax subscorpioïdea were the most active. In the presence of efflux pump inhibitor, PAßN, the activity of the extract from D. glomerata significantly increased on 69.2% of the tested MDR bacteria. At MIC/5, synergistic effects were noted with the extract of D. glomerata on 75% of the tested bacteria for chloramphenicol (CHL), tetracycline (TET) and norfloxacin (NOR). With B. cinnamomea synergy were observed on 62.5% of the studied MDR bacteria with CHL, cefepime (FEP), NOR and ciprofloxacin (CIP) and 75% with erythromycin (ERY). Conclusion The overall results provide information for the possible use of the studied extracts of the spices in the control of bacterial infections involving MDR phenotypes. PMID:22044718

  18. Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain.

    PubMed

    Khochamit, Nalisa; Siripornadulsil, Surasak; Sukon, Peerapol; Siripornadulsil, Wilailak

    2015-01-01

    The antimicrobial activity and probiotic properties of Bacillus subtilis strain KKU213, isolated from local soil, were investigated. The cell-free supernatant (CFS) of a KKU213 culture containing crude bacteriocins exhibited inhibitory effects on Gram-positive bacteria, including Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, and Staphylococcus aureus. The antibacterial activity of the CFS precipitated with 40% ammonium sulfate (AS) remained even after treatment at 60 and 100 °C, at pH 4 and 10 and with proteolytic enzymes, detergents and heavy metals. When analyzed by SDS-PAGE and overlaid with the indicator strains B. cereus and S. aureus, the 40% AS precipitate exhibited inhibitory activity on proteins smaller than 10 kDa. However, proteins larger than 25 kDa and smaller than 10 kDa were still observed on a native protein gel. Purified subtilosin A was prepared by Amberlite XAD-16 bead extraction and HPLC and analyzed by Nano-LC-QTOF-MS. Its molecular mass was found to be 3.4 kDa, and it retained its antibacterial activity. These results are consistent with the detection of the anti-listerial subtilosin A gene of the sbo/alb cluster in the KKU213 strain, which is 100% identical to that of B. subtilis subsp. subtilis 168. In addition to stable and cyclic subtilosin A, a mixture of many extracellular antibacterial peptides was also detected in the KKU213 culture. The KKU213 strain produced extracellular amylase, cellulase, lipase and protease, is highly acid-resistant (pH 2) when cultured in inulin and promotes health and reduces infection of intestinally colonized broiler chickens. Therefore, we propose that bacteriocin-producing B. subtilis KKU213 could be used as a potential probiotic strain or protective culture. PMID:25440998

  19. Antibacterial and antifungal activity of Xylopia aethiopica, Monodora myristica, Zanthoxylum xanthoxyloi;des and Zanthoxylum leprieurii from Cameroon.

    PubMed

    Tatsadjieu, L N; Essia Ngang, J J; Ngassoum, M B; Etoa, F-X

    2003-07-01

    The essential oils of Xylopia aethiopica, Monodora myristica, Zanthoxylum xanthoxyloïdes and Z. leprieurii, four Cameroonian plants used as spices in local food, showed antibacterial and antifungal activity. PMID:12837363

  20. Constructing MnO2/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Yu, Weiwei; Liu, Tiangui; Cao, Shiyi; Wang, Chen; Chen, Chuansheng

    2016-07-01

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO2 nanoparticles (MnO2/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO2 nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO2/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancement for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO2 nanoparticles.

  1. Antibacterial and antifungal activities of the endemic species Glaucium vitellinum Boiss. and Buhse

    PubMed Central

    Mehrara, Mina; Halakoo, Mehri; Hakemi-Vala, Mojdeh; Hashemi, Seyyde Jamal; Asgarpanah, Jinous

    2015-01-01

    Objectives: Belonging to Papaveraceae family, Glaucium vitellinum is one of the Persian endemic plants which has not been investigated biologically. The present paper focused on the assessment of the antibacterial and antifungal activities of the total methanol extract and alkaloid sub-fraction of the flowering aerial parts of G. vitellinum. Materials and Methods: The antibacterial and antifungal activities were investigated using cup plate method and disc diffusion assay, respectively. The MIC values of the active samples were determined using micro plate dilution method. Results: The crude extract and alkaloid sub-fraction of G. vitellinum had significant inhibition activity on the growth of S. aureus and S. typhi. From antifungal assay, it is concluded that only the yeast C. albicans, showed a high sensitivity to the extract and especially to the related alkaloid sub-fraction. Conclusions: Regarding the results, G. vitellinum could be employed as a natural antibacterial and antifungal agent against S. aureus, S. typhi, and C. albicans, respectively. Moreover, based on the results of this study, further in vivo and ex vivo confirmatory tests for total methanol extract and alkaloid sub-fraction are recommended. PMID:25767757

  2. Antioxidant and Antibacterial Activities of Crude Extracts and Essential Oils of Syzygium cumini Leaves

    PubMed Central

    Mohamed, Amal A.; Ali, Sami I.; El-Baz, Farouk K.

    2013-01-01

    This research highlights the chemical composition, antioxidant and antibacterial activities of essential oils and various crude extracts (using methanol and methylene chloride) from Syzygium cumini leaves. Essential oils were analyzed by gas chromatography-mass spectrometry (GC-MS).The abundant constituents of the oils were: α-pinene (32.32%), β-pinene (12.44%), trans-caryophyllene (11.19%), 1, 3, 6-octatriene (8.41%), delta-3-carene (5.55%), α-caryophyllene (4.36%), and α-limonene (3.42%).The antioxidant activities of all extracts were examined using two complementary methods, namely diphenylpicrylhydrazyl (DPPH) and ferric reducing power (FRAP). In both methods, the methanol extract exhibited a higher activity than methylene chloride and essential oil extracts. A higher content of both total phenolics and flavonoids were found in the methanolic extract compared with other extracts. Furthermore, the methanol extract had higher antibacterial activity compared to methylene chloride and the essential oil extracts. Due to their antioxidant and antibacterial properties, the leaf extracts from S. cumini may be used as natural preservative ingredients in food and/or pharmaceutical industries. PMID:23593183

  3. Antioxidant and antibacterial activities of crude extracts and essential oils of Syzygium cumini leaves.

    PubMed

    Mohamed, Amal A; Ali, Sami I; El-Baz, Farouk K

    2013-01-01

    This research highlights the chemical composition, antioxidant and antibacterial activities of essential oils and various crude extracts (using methanol and methylene chloride) from Syzygium cumini leaves. Essential oils were analyzed by gas chromatography-mass spectrometry (GC-MS).The abundant constituents of the oils were: α-pinene (32.32%), β-pinene (12.44%), trans-caryophyllene (11.19%), 1, 3, 6-octatriene (8.41%), delta-3-carene (5.55%), α-caryophyllene (4.36%), and α-limonene (3.42%).The antioxidant activities of all extracts were examined using two complementary methods, namely diphenylpicrylhydrazyl (DPPH) and ferric reducing power (FRAP). In both methods, the methanol extract exhibited a higher activity than methylene chloride and essential oil extracts. A higher content of both total phenolics and flavonoids were found in the methanolic extract compared with other extracts. Furthermore, the methanol extract had higher antibacterial activity compared to methylene chloride and the essential oil extracts. Due to their antioxidant and antibacterial properties, the leaf extracts from S. cumini may be used as natural preservative ingredients in food and/or pharmaceutical industries. PMID:23593183

  4. Triterpene sapogenin-polyarginine conjugates exhibit promising antibacterial activity against Gram-positive strains.

    PubMed

    Na, Heiya; Li, Xiangpeng; Zou, Cunbin; Wang, Chenhong; Wang, Chao; Liu, Keliang

    2016-07-01

    Triterpene sapogenins are a group of biologically active compounds with antibacterial activity. However, the limited solubility and poor bioavailability of triterpene sapogenins restrict their therapeutic application. Polyarginine peptides are small cationic peptides with high affinities for multiple negatively charged cell membranes and possess moderate antibacterial activities. In this study, we designed and synthesized a series of sapogenin-polyarginine conjugates in which the triterpene sapogenin moiety was covalently appended to the positively charged polyarginine via click chemistry. A clear synergistic effect was found, and the conjugates exhibited potent and selective antibacterial activity against Gram-positive strains. Among them, BAc-R3 was the most promising compound, which was also proven to be nontoxic toward mammalian cells as well as stable in plasma. The mechanism of BAc-R3 primarily involves an interaction with the bacterial membrane, similar to that of antimicrobial peptides (AMPs). This scaffold design opens an avenue for the further development of novel antibiotics comprised of the combination of a peptide and a natural product. PMID:27209170

  5. A study of in vitro antibacterial activity of lanthanides complexes with a tetradentate Schiff base ligand

    PubMed Central

    Al Momani, Waleed Mahmoud; Taha, Ziyad Ahmed; Ajlouni, Abdulaziz Mahmoud; Shaqra, Qasem Mohammad Abu; Al Zouby, Muaz

    2013-01-01

    Objective To establish the antibacterial activity of lanthanides complexes with a tetradentate Schiff base ligand L. Methods (N, N′-bis (1-naphthaldimine)-o-phenylenediamine) was prepared from the condensation of 2-hydroxy-1-naphthaldehyde with o-phenylenediamine in a molar ratio of 2:1. The antimicrobial activity of the resultant Ln (III) complexes was investigated using agar well diffusion and micro-broth dilution techniques; the latter was used to establish the minimum inhibitory concentrations for each compound investigated. Results Most of Ln (III) complexes were found to exhibit antibacterial activities against a number of pathogenic bacteria with MICs ranging between 1.95-250.00 µg/mL. Staphylococcus aureus was the most susceptible bacterial species to [LaL(NO3)2(H2O)](NO3) complex while Shigella dysenteriae and Escherichia coli required a relatively higher MIC (250 µg/mL). The complexes La (III) and Pr (III) were effective inhibitors against Staphylococcus aureus, whereas Sm (III) complex was effective against Serratia marcescens. On the other hand, Gd (III), La (III) and Nd (III) were found to be more potent inhibitors against Pseudomonas aeruginosa than two of commonly used antibiotics. The remaining Ln (III) complexes showed no remarkable activity as compared to the two standard drugs used. Conclusions Tetradentate Schiff base ligand L and its complexes could be a potential antibacterial compounds after further investigation. PMID:23646299

  6. Both Enhanced Biocompatibility and Antibacterial Activity in Ag-Decorated TiO2 Nanotubes

    PubMed Central

    Lan, Ming-Ying; Liu, Chia-Pei; Huang, Her-Hsiung; Lee, Sheng-Wei

    2013-01-01

    In this study, Ag is electron-beam evaporated to modify the topography of anodic TiO2 nanotubes of different diameters to obtain an implant with enhanced antibacterial activity and biocompatibility. We found that highly hydrophilic as-grown TiO2 nanotubes became poorly hydrophilic with Ag incorporation; however they could effectively recover their wettability to some extent under ultraviolet light irradiation. The results obtained from antibacterial tests suggested that the Ag-decorated TiO2 nanotubes could greatly inhibit the growth of Staphylococcus aureus. In vitro biocompatibility evaluation indicated that fibroblast cells exhibited an obvious diameter-dependent behavior on both as-grown and Ag-decorated TiO2 nanotubes. Most importantly, of all samples, the smallest diameter (25-nm-diameter) Ag-decorated nanotubes exhibited the most obvious biological activity in promoting adhesion and proliferation of human fibroblasts, and this activity could be attributed to the highly irregular topography on a nanometric scale of the Ag-decorated nanotube surface. These experimental results demonstrate that by properly controlling the structural parameters of Ag-decorated TiO2 nanotubes, an implant surface can be produced that enhances biocompatibility and simultaneously boosts antibacterial activity. PMID:24124484

  7. Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology.

    PubMed

    Jana, T K; Maji, S K; Pal, A; Maiti, R P; Dolai, T K; Chatterjee, K

    2016-10-15

    Nanocomposites with multifunctional application prospects have already dragged accelerating interests of materials scientists. Here we present CdS/ZnO nanocomposites with different morphology engineering the precursor molar ratio in a facile wet chemical synthesis route. The materials were structurally and morphologically characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX) and high-resolution transmission electron microscopy (HRTEM). The growth mechanism of the composite structure with varying molar ratio is delineated with oriented attachment self assemble techniques. Photocatalytic activity of CdS/ZnO nanocomposites with varying morphology were explored for the degradation of rhodamine B (RhB) dye in presence of visible light irradiation and the results reveal that the best catalytic performance arises in CdS/ZnO composite with 1: 1 ratio. The antibacterial efficiency of all nanocomposites were investigated on Escherichia coli, Staphylococcus aureus and Klebsiella pneumonia without light irradiation. Antibacterial activity of CdS/ZnO nanocomposites were studied using the bacteriological test-well diffusion agar method and results showed significant antibacterial activity in CdS/ZnO composite with 1:3 ratio. Overall, CdS/ZnO nanocomposites excel in different potential applications, such as visible light photocatalysis and antimicrobial activity with their tuneable structure. PMID:27399614

  8. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria

    PubMed Central

    2013-01-01

    Background In response to the propagation of bacteria resistant to many antibiotics also called multi-drug resistant (MDR) bacteria, the discovery of new and more efficient antibacterial agents is primordial. The present study was aimed at evaluating the antibacterial activities of seven Cameroonian dietary plants (Adansonia digitata, Aframomum alboviolaceum, Aframomum polyanthum, Anonidium. mannii, Hibiscus sabdarifa, Ocimum gratissimum and Tamarindus indica). Methods The phytochemical screening of the studied extracts was performed using described methods whilst the liquid broth micro dilution was used for all antimicrobial assays against 27 Gram-negative bacteria. Results The results of the phytochemical tests indicate that all tested extracts contained phenols and triterpenes, other classes of chemicals being selectively present. The studied extracts displayed various degrees of antibacterial activities. The extracts of A. digitata, H. sabdarifa, A. polyanthum, A. alboviolaceum and O. gratissimum showed the best spectra of activity, their inhibitory effects being recorded against 81.48%, 66.66%, 62.96%, 55.55%, and 55.55% of the 27 tested bacteria respectively. The extract of A. polyanthum was very active against E. aerogenes EA294 with the lowest recorded minimal inhibitory concentration (MIC) of 32 μg/ml. Conclusion The results of the present work provide useful baseline information for the potential use of the studied edible plants in the fight against both sensitive and MDR phenotypes. PMID:23837916

  9. Design, recombinant expression, and antibacterial activity of the cecropins-melittin hybrid antimicrobial peptides.

    PubMed

    Cao, Yu; Yu, Rong Qing; Liu, Yi; Zhou, Huo Xiang; Song, Ling Ling; Cao, Yi; Qiao, Dai Rong

    2010-09-01

    In order to evaluate their antibacterial activities and toxicities, the cecropins-melittin hybrid antimicrobial peptide, CA(1-7)-M(4-11) (CAM) and CB(1-7)-M(4-11) (CBM), were designed by APD2 database. The recombinant hybrid antimicrobial peptides were successfully expressed and purified in Pichia pastoris. Antimicrobial activity assay showed that both of the two hybrid antimicrobial peptides had strong antibacterial abilities against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Bacillus subtilis, Bacillus thuringiensis, and Salmonella derby. The potency of CAM and CBM to E. coli 25922 were 0.862 and 0.849, respectively, slightly lower than Amp's 0.957. The hemolytic assays indicated CAM and CBM had no hemolytic in vivo and in vitro, and so they had a good application prospect. PMID:20111863

  10. Synthesis, photoluminescent, antibacterial activities and theoretical studies of 4-hydroxycoumarin derivatives

    NASA Astrophysics Data System (ADS)

    Li, Jing; Hou, Zheng; Li, Fen; Zhang, Zi-dan; Zhou, Ying; Luo, Xiao-xing; Li, Ming-kai

    2014-10-01

    Two new biscoumarin and epoxydicoumarin derivatives, namely, 3,3‧-(4-di-p-tolyl-amino-benzylidene)-bis-(4-hydroxycoumarin) (DBH) and 9-(4-di-p-tolyl-amino-phenyl)-1,8-dioxo-9H-dibenzo[c,h]-2,7,10-trioxanthene (DDT), were synthesized and characterized via IR, 1H NMR, HRMS, single crystal X-ray crystallography and UV-vis absorption spectra. The fluorescence behaviors of DBH and DDT in dichloromethane solutions were observed. The in vitro antibacterial activity of DBH and DDT against Staphylococcus aureus (S. aureus ATCC 29213), methicillin-resistant S. aureus (MRSA XJ 75302), vancomycin-intermediate S. aureus (Mu50 ATCC 700699), and USA 300 (Los Angeles County clone, LAC) was evaluated by observing the minimum inhibitory concentration. The results showed that compared with compound DDT, DBH exhibited better potent antibacterial activity.

  11. Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora.

    PubMed

    Ododo, Mesfin Medihin; Choudhury, Manash Kumar; Dekebo, Ahmed Hussen

    2016-01-01

    The powder of root bark of Malva parviflora (Malvaceae) was successively extracted with petroleum ether (b.p. 60-80 °C), chloroform and ethanol. The chloroform extract showed antibacterial activity against Staphylococcus aureus and Escherichia coli, whereas the ethanolic extract showed antibacterial activity against only S. aureus. The chloroform extract, after column chromatographic separation on silica gel using petroleum ether:chloroform (3:1) as eluent, furnished 98 mg of white crystalline compound. The yield of the compound is 0.316 % (w/w). The compound has a melting point of 134-136 °C and the Rf value 0.56 in benzene:chloroform:acetone (1:15:1) on silica gel TLC. The compound was characterized as β-sitosterol by physical properties, chemical test, spectral analysis (FTIR, NMR and MS) and comparing the data obtained from the literature. PMID:27516948

  12. Fabrication of pDMAEMA-coated silica nanoparticles and their enhanced antibacterial activity.

    PubMed

    Song, Jooyoung; Jung, Yujung; Lee, Inkyu; Jang, Jyongsik

    2013-10-01

    Thin pDMAEMA shells were formed on the surface of silica nanoparticles via vapor deposition polymerization. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and elemental analysis have been used to characterize the resulting pDMAEMA-coated silica nanoparticles. Electron microscopy studies reveal that the thin polymer shell is formed on the silica surface. In this work, the particle diameter can be controlled (from ~19 to ~69 nm) by varying the size of silica core. The antibacterial performance of the core-shell nanoparticles was investigated against both Gram-positive (Escherichia coli) and Gram-negative (Staphylococcus aureus) bacteria. Importantly, the nano-sized pDMAEMA particles presented antibacterial activity against both bacteria without additional quaternization due to its enlarged surface area. Additionally, the bactericidal efficiency was enhanced by reducing the particle size, because the expanded surface area of the cationic polymer nanoparticles provides more active sites that can kill the bacteria. PMID:23838333

  13. Synthesis of biscoumarin and dihydropyran derivatives with promising antitumor and antibacterial activities.

    PubMed

    Li, Jing; Sui, Yun-Peng; Xin, Jia-Jia; Du, Xin-Liang; Li, Jiang-Tao; Huo, Hai-Ru; Ma, Hai; Wang, Wei-Hao; Zhou, Hai-Yu; Zhan, Hong-Dan; Wang, Zhu-Ju; Li, Chun; Sui, Feng; Li, Xia

    2015-12-01

    Two series of biscoumarin (1-3) and dihydropyran (4-12) derivatives were successfully synthesized as new antitumor and antibacterial agents. The molecular structures of four representative compounds 2, 4, 7 and 10 were confirmed by single crystal X-ray diffraction study. The synthesized compounds (1-12) were evaluated for their antitumor activities against human intestinal epithelial adenocarcinoma cell line (HuTu80), mammary adenocarcinoma cell line (4T1) and pancreatic cancer cell line (PANC1) and antibacterial activities against one drug-sensitive Staphylococcus aureus (S. aureus ATCC 29213) strain and three MRSA strains (MRSA XJ 75302, Mu50, USA 300 LAC). The further mechanism study demonstrated that the most potent compound 1 could obviously inhibit the proliferation of cancer cells via the mechanism to induce apoptosis. PMID:26522947

  14. Cellulase-assisted extraction and antibacterial activity of polysaccharides from the dandelion Taraxacum officinale.

    PubMed

    Wang, Hong-Bin

    2014-03-15

    In the present study, we investigated the cellulase-assisted extraction and antibacterial activity of water-soluble polysaccharides from the dandelion Taraxacum officinale. The extraction conditions, optimized for improving yield, were as follows: time, 46.11 min; temperature, 54.87 °C; pH, 4.51 and cellulase enzyme, 4000 U/g. Under these conditions, the yield of polysaccharides from dandelion (PD) reached 20.67% (w/w). The sugar content of PD was 95.6% (w/w), and it displayed high antibacterial activity at a concentration of 100mg/mL against Escherichia coli, Bacillus subtilis and Staphylococcus aureus. These results indicate that PD may be a viable option for use as a food preservative. PMID:24528711

  15. Increased antibacterial activity against Escherichia coli in bovine serum after the induction of endotoxin tolerance.

    PubMed

    Hill, A W; Shears, A L; Hibbitt, K G

    1976-07-01

    Small amounts of endotoxin injected intramuscularly into cows induced endotoxin pyrogenic tolerance and an increase in the rate at which the serum killed a strain of Escherichia coli. Most of the difference between normal serum and serum from the endotoxin-tolerant animal was shown to be due to a bentonite-adsorbable factor other than lysozyme or beta-lysin. The antibacterial activity was not completely removed from either type of serum after bentonite adsorption. Electron microscope studies and measurement of the rate of release of radioactively labeled cytoplasmic contents showed that the bentonite-adsorbable factor was important in the final breakdown of the cell membrane and release of cellular contents. The antibacterial system was totally dependent on complement, and the importance of antibodies could not be entirely ruled out because adsorption at O C with homologous cells eliminated the killing activity. PMID:780275

  16. Synthesis, characterization, antibacterial, antifungal and immunomodulating activities of gatifloxacin-metal complexes

    NASA Astrophysics Data System (ADS)

    Sultana, Najma; Naz, Asia; Arayne, M. Saeed; Mesaik, M. Ahmed

    2010-04-01

    Gatifloxacin is a potent fluoroquinolone antibacterial agent. It is reported and our previous work has also proved that availability of gatifloxacin is reduced by co-administration of metallic supplements. For better understanding of these interactions, complexes of gatifloxacin were synthesized with Mg(II), Ca(II), Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) (usually present in human body) and their structures were established with the help of spectroscopic studies like IR, UV, and NMR. The IR spectra of the complexes suggest that the gatifloxacin behaves as a monoanionic bidentate ligand. In vitro antibacterial, antifungal, anti-inflammatory and immunosuppressive activities of the gatifloxacin and the complexes were tested. GTX-Ni and GTX-Cu has excellent anti-inflammatory activity.

  17. Decoction, infusion and hydroalcoholic extract of cultivated thyme: antioxidant and antibacterial activities, and phenolic characterisation.

    PubMed

    Martins, Natália; Barros, Lillian; Santos-Buelga, Celestino; Silva, Sónia; Henriques, Mariana; Ferreira, Isabel C F R

    2015-01-15

    Bioactivity of thyme has been described, but mostly related to its essential oils, while studies with aqueous extracts are scarce. Herein, the antioxidant and antibacterial properties of decoction, infusion and hydroalcoholic extract, as also their phenolic compounds, were evaluated and compared. Decoction showed the highest concentration of phenolic compounds (either phenolic acids or flavonoids), followed by infusion and hydroalcoholic extract. In general, the samples were effective against gram-positive (Staphylococcus aureus and Staphylococcus epidermidis) and gram-negative (Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Enterococcus aerogenes, Proteus vulgaris and Enterobacter sakazakii) bacteria, with decoction presenting the most pronounced effect. This sample also displayed the highest radical scavenging activity and reducing power. Data obtained support the idea that compounds with strong antioxidant and antibacterial activities are also water-soluble. Furthermore, the use of thyme infusion and decoction, by both internal and external use, at recommended doses, is safe and no adverse reactions have been described. PMID:25148969

  18. Antibacterial activity of methanol extract of Ruta chalapensis (L), Quercus infectoria (Oliver) and Canthium parviflorum (Lam).

    PubMed

    Priya, P Sathiya; Sasikumar, J M; Gowsigan, G

    2009-10-01

    The present study aimed at evaluating the antibacterial activity of methanol extract of Ruta chalapensis, L., (Rutaceae), Quercus infectoria Oliver., (Fagaceae) and Canthium parviflorum Lam., (Rubiaceae) against Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Klebsiella oxytocoa, Klebsiella pneumoniae and Proteus mirabilis. The experiment was carried out using disc diffusion method. The results revealed that the methanol extract of aerial parts of Ruta chalepensis (L) presented the highest zone of inhibition against tested pathogens. Other plants showed significant zone of inhibition. PMID:22557348

  19. Identification of novel aminopiperidine derivatives for antibacterial activity against Gram-positive bacteria.

    PubMed

    Lee, Hee-Yeol; An, Kyung-Mi; Jung, Juyoung; Koo, Je-Min; Kim, Jeong-Geun; Yoon, Jong-Min; Lee, Myong-Jae; Jang, HyeonSoo; Lee, Hong-Sub; Park, Soobong; Kang, Jae-Hoon

    2016-07-01

    We have previously reported amidopiperidine derivatives as a novel peptide deformylase (PDF) inhibitor and evaluated its antibacterial activity against Gram-positive bacteria, but poor pharmacokinetic profiles have resulted in low efficacy in in vivo mouse models. In order to overcome these weaknesses, we newly synthesized aminopiperidine derivatives with remarkable antimicrobial properties and oral bioavailability, and also identified their in vivo efficacy against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE) and penicillin-resistant Streptococcus pneumoniae (PRSP). PMID:27173797

  20. Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Perelshtein, Ilana; Applerot, Guy; Perkas, Nina; Guibert, Geoffrey; Mikhailov, Serguei; Gedanken, Aharon

    2008-06-01

    Silver nanoparticles were synthesized and deposited on different types of fabrics using ultrasound irradiation. The structure of silver-fabric composites was studied by physico-chemical methods. The mechanism of the strong adhesion of silver nanoparticles to the fibers is discussed. The excellent antibacterial activity of the Ag-fabric composite against Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) cultures was demonstrated.

  1. Electrochemical oxidation of fluoroquinolone antibiotics: Mechanism, residual antibacterial activity and toxicity change.

    PubMed

    Zhu, Linyan; Santiago-Schübel, Beatrix; Xiao, Hongxia; Hollert, Henner; Kueppers, Stephan

    2016-10-01

    In this paper, we studied the electrochemical oxidation mechanisms of three typical fluoroquinolone antibiotics (FQs), and investigated residual antibacterial activity and toxicity changes after oxidation processes. Electrochemistry coupled to mass spectrometry (EC-MS) was used to study the oxidation processes of ciprofloxacin (CIP), norfloxacin (NOR) and ofloxacin (OFL). Eight oxidation products for each parent compound were identified and their chemical structures were elucidated. The transformation trend of each product, with the continuous increase of voltage from 0 to 3000 mV, was recorded by online EC-MS. The oxidation pathways were proposed based on the structural information and transformation trends of oxidation products. We found the oxidation mechanisms of FQs consisted of the hydroxylation and cleavage of piperazinyl ring via reactions with hydroxyl radicals, while the fluoroquinolone core remained intact. The antibacterial activity of the parent compounds and their oxidation mixtures was estimated using zone inhibition tests for gram-negative bacteria Salmonella typhimurium. It was found that the oxidation mixtures of CIP and NOR retained the antibacterial properties with lower activity compared to their parent compounds, while the antibacterial activity of OFL was almost eliminated after oxidation. Furthermore, the toxicity of the three FQs and their oxidation mixtures were evaluated using algal growth inhibition test (Desmodesmus subspicatus). The median effective concentration (EC50) values for the algal inhibition tests were calculated for the end point of growth rate. The toxicity of CIP and NOR to green algae after electrochemical oxidation, remained unchanged, while that of OFL significantly increased. The results presented in this paper contribute to an understanding of the electrochemical oxidation mechanisms of FQs, and highlight the potential environmental risks of FQs after electrochemical oxidation processes. PMID:27318447

  2. Antibacterial activity of methanol extract of Ruta chalapensis (L), Quercus infectoria (Oliver) and Canthium parviflorum (Lam)

    PubMed Central

    Priya, P. Sathiya; Sasikumar, J.M.; Gowsigan, G.

    2009-01-01

    The present study aimed at evaluating the antibacterial activity of methanol extract of Ruta chalapensis, L., (Rutaceae), Quercus infectoria Oliver., (Fagaceae) and Canthium parviflorum Lam., (Rubiaceae) against Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Klebsiella oxytocoa, Klebsiella pneumoniae and Proteus mirabilis. The experiment was carried out using disc diffusion method. The results revealed that the methanol extract of aerial parts of Ruta chalepensis (L) presented the highest zone of inhibition against tested pathogens. Other plants showed significant zone of inhibition. PMID:22557348

  3. Complex secondary metabolites from Ludwigia leptocarpa with potent antibacterial and antioxidant activities.

    PubMed

    Mabou, Florence Déclaire; Tamokou, Jean-de-Dieu; Ngnokam, David; Voutquenne-Nazabadioko, Laurence; Kuiate, Jules-Roger; Bag, Prasanta Kumar

    2016-01-01

    Diarrhea continues to be one of the most common causes of morbidity and mortality among infants and children in developing countries. The aim of the present study was to evaluate the antibacterial and antioxidant activities of extracts and compounds from Ludwigia leptocarpa, a plant traditionally used for its vermifugal, anti-dysenteric, and antimicrobial properties. A methanol extract was prepared by maceration of the dried plant and this was successively extracted with ethyl acetate to obtain an EtOAc extract and with n-butanol to obtain an n-BuOH extract. Column chromatography of the EtOAc and n-BuOH extracts was followed by purification of different fractions, leading to the isolation of 10 known compounds. Structures of isolated compounds were assigned on the basis of spectral analysis and by comparison to structures of compounds described in the literature. Antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and gallic acid equivalent antioxidant capacity (GAEAC) assays. Antibacterial activity was assessed with the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) with respect to strains of a Gram-positive bacterium, Staphylococcus aureus (a major cause of community and hospital-associated infection), and Gram-negative multi-drug-resistant bacteria, Vibrio cholerae (a cause of cholera) and Shigella flexneri (a cause of shigellosis). All of the extracts showed different degrees of antioxidant and antibacterial activities. 2β-hydroxyoleanolic acid, (2R,3S,2''S)-3''',4',4''',5,5'',7,7''-heptahydroxy-3,8"-biflavanone, and luteolin-8-C-glucoside displayed the most potent antibacterial and antioxidant properties, and these properties were in some cases equal to or more potent than those of reference drugs. Overall, the present results show that L. leptocarpa has the potential to be a natural source of anti-diarrheal and antioxidant products, so further investigation is warranted. PMID:27431270

  4. Antibacterial and antioxidant activities in Sideritis italica (Miller) Greuter et Burdet essential oils.

    PubMed

    Basile, Adriana; Senatore, Felice; Gargano, Rosalba; Sorbo, Sergio; Del Pezzo, Marisa; Lavitola, Alfredo; Ritieni, Alberto; Bruno, Maurizio; Spatuzzi, Daniela; Rigano, Daniela; Vuotto, Maria Luisa

    2006-09-19

    Sideritis italica (Miller) Greuter et Burdet is a widespread Lamiacea in the Mediterranean region used in traditional medicine. Essential oils were antibacterial against nine ATCC and as many clinically isolated Gram-positive and Gram-negative bacterial strains. Antibacterial activity was also found against Helicobacter pylori: a dose-dependant inhibition was shown between 5 and 25 microg/ml. The antibacterial activity of the oils was expressed as MICs (minimum inhibitory concentrations) and MBCs (minimum bactericidal concentrations). At a concentration between 3.9 and 250 microg/ml the oils showed a significant antibacterial effect against both Gram-negative and Gram-positive bacteria. In particular the ATCC strains Pseudomonas aeruginosa (MIC=3.9 microg/ml and 7.8 for flowerheads and leaves, respectively), Proteus mirabilis (MIC=15.6 and 7.8 microg/ml), Salmonella typhi (MIC=7.8 microg/ml) and Proteus vulgaris (MIC=15.6 microg/ml) were the most inhibited. Only Pseudomonas aeruginosa showed MBC at a concentration between 62.6 and 125 microg/ml. The antioxidant activity of the essential oils was evaluated by two cell free colorimetric methods: ABTS and DMPD; leaf oil is more active (4.29 +/- 0.02 trolox equivalents and 4.53 +/- 0.67 ascorbic acid equivalents by ABTS and DMPD, respectively). Finally the antioxidant activity of the essential oils was also evaluated by their effects on human whole blood leukocytes (WB) and on isolated polymorphonucleate (PMN) chemiluminescence. Comparing the effects of the oils from leaves and flowerheads on both PMN and WB chemiluminescence emission, we found no significant differences. Essential oils showed a dose-dependent and linear inhibitory activity on isolated PMN as well as on WB CL emission when PMA-stimulated. On the contrary, the inhibitory activity on resting cells was nonlinear. Our data represent an answer to the continual demand for new antibiotics and antioxidants for the continuous emergence of antibiotic

  5. Antibacterial activity against Clostridium genus and antiradical activity of the essential oils from different origin.

    PubMed

    Kačániová, Miroslava; Vukovič, Nenad; Horská, Elena; Salamon, Ivan; Bobková, Alica; Hleba, Lukáš; Fiskelová, Martina; Vatľák, Alexander; Petrová, Jana; Bobko, Marek

    2014-01-01

    In the present study, the antimicrobial and antiradical activities of 15 essential oils were investigated. The antimicrobial activities were determined by using agar disc diffusion and broth microdilution methods against Clostridium genus and antioxidant properties of essential oils by testing their scavenging effect on DPPH radicals activities. We determined the antibacterial activity of Clostridium butyricum, Clostridium hystoliticum, Clostridium intestinale, Clostridium perfringens and Clostridium ramosum. We obtained the original commercial essential oils samples of Lavandula angustifolia, Carum carvi, Pinus montana, Mentha piperita, Foeniculum vulgare Mill., Pinus sylvestris, Satureia montana, Origanum vulgare L. (2 samples), Pimpinella anisum, Rosmarinus officinalis L., Salvia officinalis L., Abies alba Mill., Chamomilla recutita L. Rausch and Thymus vulgaris L. produced in Slovakia (Calendula a.s., Nova Lubovna, Slovakia). The results of the disk diffusion method showed very high essential oils activity against all tested strains of microorganisms. The best antimicrobial activity against C. butyricum was found at Pimpinella anisum, against C. hystoliticum was found at Pinus sylvestris, against C. intestinale was found at Satureia hortensis L., against C. perfringens was found at Origanum vulgare L. and against C. ramosum was found at Pinus sylvestris. The results of broth microdilution assay showed that none of the essential oils was active against C. hystoliticum. The best antimicrobial activity against C. butyricum was found at Abies alba Mill., against C. intestinale was found at Abies alba Mill., against C. perfringens was found at Satureia montana and against C. ramosum was found at Abius alba and Carum carvi. Antioxidant DPPH radical scavenging activity was determined at several solutions of oil samples (50 μL.mL(-1)-0.39 μL.mL(-1)) and the best scavenging effect for the highest concentration (50 μL.mL(-1)) was observed. The antioxidant properties

  6. Analyses of Antibacterial Activity and Cell Compatibility of Titanium Coated with a Zr–C–N Film

    PubMed Central

    Chang, Yin-Yu; Huang, Heng-Li; Lai, Chih-Ho; Hsu, Jui-Ting; Shieh, Tzong-Ming; Wu, Aaron Yu-Jen; Chen, Chao-Ling

    2013-01-01

    Objective The purpose of this study was to verify the antibacterial performance and cell proliferation activity of zirconium (Zr)–carbon (C)–nitride (N) coatings on commercially pure titanium (Ti) with different C contents. Materials and Methods Reactive nitrogen gas (N2) with and without acetylene (C2H2) was activated by Zr plasma in a cathodic-arc evaporation system to deposit either a zirconium nitride (ZrN) or a Zr–C–N coating onto Ti plates. The bacterial activity of the coatings was evaluated against Staphylococcus aureus with the aid of SYTO9 nucleic acid staining and scanning electron microscopy (SEM). Cell compatibility, mRNA expression, and morphology related to human gingival fibroblasts (HGFs) on the coated samples were also determined by using the MTT assay, reverse transcriptase–polymerase chain reaction, and SEM. Results The Zr–C–N coating with the highest C content (21.7 at%) exhibited the lowest bacterial preservation (P<0.001). Biological responses including proliferation, gene expression, and attachment of HGF cells to ZrN and Zr–C–N coatings were comparable to those of the uncoated Ti plate. Conclusions High-C-content Zr–C–N coatings not only provide short-term antibacterial activity against S. aureus but are also biocompatible with HGF cells. PMID:23431391

  7. Ultraviolet light and laser irradiation enhances the antibacterial activity of glucosamine-functionalized gold nanoparticles

    PubMed Central

    Govindaraju, Saravanan; Ramasamy, Mohankandhasamy; Baskaran, Rengarajan; Ahn, Sang Jung; Yun, Kyusik

    2015-01-01

    Here we report a novel method for the synthesis of glucosamine-functionalized gold nanoparticles (GlcN-AuNPs) using biocompatible and biodegradable glucosamine for antibacterial activity. GlcN-AuNPs were prepared using different concentrations of glucosamine. The synthesized AuNPs were characterized for surface plasmon resonance, surface morphology, fluorescence spectroscopy, and antibacterial activity. The minimum inhibitory concentrations (MICs) of the AuNPs, GlcN-AuNPs, and GlcN-AuNPs when irradiated by ultraviolet light and laser were investigated and compared with the MIC of standard kanamycin using Escherichia coli by the microdilution method. Laser-irradiated GlcN-AuNPs exhibited significant bactericidal activity against E. coli. Flow cytometry and fluorescence microscopic analysis supported the cell death mechanism in the presence of GlcN-AuNP-treated bacteria. Further, morphological changes in E. coli after laser treatment were investigated using atomic force microscopy and transmission electron microscopy. The overall results of this study suggest that the prepared nanoparticles have potential as a potent antibacterial agent for the treatment of a wide range of disease-causing bacteria. PMID:26345521

  8. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant

    PubMed Central

    He, Shu; Zhou, Ping; Wang, Linxin; Xiong, Xiaoling; Zhang, Yifei; Deng, Yi; Wei, Shicheng

    2014-01-01

    Implant-associated infections, which are normally induced by microbial adhesion and subsequent biofilm formation, are a major cause of morbidity and mortality. Therefore, practical approaches to prevent implant-associated infections are in great demand. Inspired by adhesive proteins in mussels, here we have developed a novel antibiotic-decorated titanium (Ti) material with enhanced antibacterial activity. In this study, Ti substrate was coated by one-step pH-induced polymerization of dopamine followed by immobilization of the antibiotic cefotaxime sodium (CS) onto the polydopamine-coated Ti through catechol chemistry. Contact angle measurement and X-ray photoelectron spectroscopy confirmed the presence of CS grafted on the Ti surface. Our results demonstrated that the antibiotic-grafted Ti substrate showed good biocompatibility and well-behaved haemocompatibility. In addition, the antibiotic-grafted Ti could effectively prevent adhesion and proliferation of Escherichia coli (Gram-negative) and Streptococcus mutans (Gram-positive). Moreover, the inhibition of biofilm formation on the antibiotic-decorated Ti indicated that the grafted CS could maintain its long-term antibacterial activity. This modified Ti substrate with enhanced antibacterial activity holds great potential as implant material for applications in dental and bone graft substitutes. PMID:24647910

  9. Antibacterial activity of oxyresveratrol against methicillin-resistant Staphylococcus aureus and its mechanism

    PubMed Central

    Joung, Dae-Ki; Mun, Su-Hyun; Choi, Sung-Hoon; Kang, Ok-Hwa; Kim, Sung-Bae; Lee, Young-Seob; Zhou, Tian; Kong, Ryong; Choi, Jang-Gi; Shin, Dong-Won; Kim, Youn-Chul; Lee, Dong-Sung; Kwon, Dong-Yeul

    2016-01-01

    Oxyresveratrol (ORV) is a naturally occurring compound found in mulberries that exhibits a wide spectrum of biological activities. However, the underlying mechanism of the action of ORV against the methicillin-resistant S. aureus (MRSA) pathogen has not yet been reported. MRSA is multidrug-resistant, causing skin and other types of infections. The aim of the present study was to examine the antimicrobial activity of ORV and the underlying mechanism of its action on MRSA. The antibacterial activity of ORV was evaluated using a minimum inhibitory concentration (MIC) assay, and the mechanism of its antibacterial action on S. aureus was investigated using a combination of ORV with detergent, ATPase inhibitors and peptidoglycan (PGN). In addition, the survival characteristics and changes in MRSA morphology were monitored using transmission electron microscopy (TEM). The MIC value of ORV against all S. aureus strains was found to be 125 µg/ml. The optical density at 600 nm of each suspension treated using a combination of ORV with Triton X-100, N,N'-dicyclohexylcarbodiimide or sodium azide was reduced by 68.9–89.8% compared with the value upon treatment with ORV alone. In the ORV and PGN combination assay, direct binding of ORV with PGN from S. aureus was evident. Furthermore, TEM examination of MRSA treated with ORV showed alterations in septa formation. In conclusion, these results showed that ORV has a strong antibacterial effect against S. aureus, mainly by increasing membrane permeability and inhibiting ATPase when combined with other drugs. PMID:27588079

  10. In vitro antibacterial activity of seven Indian spices against high level gentamicin resistant strains of enterococci

    PubMed Central

    Bipin, Chapagain; Chitra, Pai (Bhat); Minakshi, Bhattacharjee

    2015-01-01

    Introduction The aim of the study was to explore the in vitro antibacterial activity of seven ethanolic extracts of spices against high level gentamicin resistant (HLGR) enterococci isolated from human clinical samples. Material and methods Two hundred and fifteen enterococcal strains were isolated from clinical samples. High level gentamicin resistance in ethanolic extracts of cumin (Cuminum cyminum), cinnamon (Cinnamomum zeylanicum), ginger (Zingiber officinale), fenugreek (Trigonella foenum-graecum), cloves (Syzygium aromaticum), cardamom (Elettaria cardamomum Maton) and black pepper (Piper nigrum) were prepared using Soxhlet apparatus. The antibacterial effect of the extracts was studied using the well diffusion method. Statistical analysis was carried out by χ2 test using SPSS 17 software. Results Only cinnamon and ginger were found to have activity against all the isolates, whereas cumin and cloves had a variable effect on the strains. Fenugreek, black pepper and cardamom did not show any effect on the isolates. The zone diameter of inhibition obtained for cinnamon, ginger, cloves and cumin was in the range 31–34 mm, 27–30 mm, 25–26 mm and 19–20 mm respectively. Conclusions Cinnamomum zeylanicum and Z. officinale showed the maximum antibacterial activity against the enterococcal isolates followed by S. aromaticum and C. cyminum. The findings of the study show that spices used in the study can contribute to the development of potential antimicrobial agents for inclusion in the anti-enterococcal treatment regimen. PMID:26322099

  11. The antibacterial activity and toxicity of enrofloxacin are decreased by nanocellulose conjugated with aminobenzyl purin.

    PubMed

    Yasini, Seyed Ali; Zadeh, Mohammad Hossein Balal; Shahdadi, Hossein

    2015-11-01

    The first aim of this study was to synthesize nanocellulose conjugated with aminobenzyl purin (NCABP), and the second aim was to evaluate the effect of NCABP on both toxicity and antibacterial activity of enrofloxacin. Here, the adsorption of enrofloxacin by NCABP was first modeled by molecular dynamic (MD) simulation. In the next step, NCABP was synthesized, and was exposed to enrofloxacin, 1000 μg mL(-1), at various conditions. Then, the quantity of adsorption and release was separately measured. Furthermore, both toxicity and antibacterial activity of NCABP, enrofloxacin, and (NCABP+enrofloxacin) were separately evaluated. In this study, MD simulation clearly showed the adsorption after 50 picoseconds. The adsorption tests revealed that the increase of incubation time and NCABP concentration, at range of 50-200 μg mL(-1), led to increase of adsorption. Moreover, the decrease of pH led to increase of adsorption. Interestingly, NCABP could adsorb enrofloxacin, up to 1000 μg mL(-1), in different types of meat. Moreover, the increase of incubation time and temperature did not release enrofloxacin, but the increase of pH increased release. This study showed that both toxicity and antibacterial activity of enrofloxacin were decreased when exposed together with NCABP. PMID:26295691

  12. Antibacterial activity of starch/acrylamide/allyl triphenyl phosphonium bromide copolymers synthesized by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Song, Weiqiang; Guo, Zhengchao; Zhang, Linqi; Zheng, Hongjuan; Zhao, Zhiwei

    2013-10-01

    Starch/acrylamide/allyl triphenyl phosphonium bromide (St/AM/TP) copolymers were synthesized by simultaneous gamma irradiation and characterized by FTIR and 1H NMR techniques, weight measurement and titration method. Moreover, their antibacterial activities against Staphylococcus aureus were explored by the viable cell counting method in sterile distilled water. At St/AM/TP 6:8.4:5.6 g, copolymers with higher graft ratio (G) and higher (AM+TP) graft efficiency (EAM+TP) were obtained at 3 and 6 kGy, while cationic degree (CD) and TP graft efficiency (ETP) continuously increased with absorbed dose from 1 to 6 kGy. All of the copolymers were capable of killing >99.75% of 107 CFU/ml S. aureus within 30 mins. Moreover, at 3 kGy, G, EAM+TP and ETP increased with AM/TP from 0:14 to 11.2:2.8 g at St/(AM+TP) 6:14 g, while the optimum CD and antibacterial activity were achieved at AM/TP 7:7 and 8.4:5.6 g. In addition, at 3 kGy, G, EAM+TP and CD increased with St/(AM+TP) from 6:3 to 6:18 g at AM/TP 8.4:5.6 g, while the optimum antibacterial activity was achieved at 6:10 to 6:18 g, and the optimum ETP was achieved at 6:14.

  13. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Hanim, Siti Aishah Mohd; Malek, Nik Ahmad Nizam Nik; Ibrahim, Zaharah

    2016-01-01

    Amine-functionalized, silver-exchanged zeolite NaY (ZSA) were prepared with three different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.20 and 0.40 M) and four different concentrations of silver ions (25%, 50%, 100% and 200% from zeolite cation exchange capacity (CEC)). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), surface area analysis, thermogravimetric analysis (TGA) and zeta potential (ZP) analysis. The FTIR results indicated that the zeolite was functionalized by APTES and that the intensity of the peaks corresponding to APTES increased as the concentration of APTES used was increased. The antibacterial activities of the silver-exchanged zeolite NaY (ZS) and ZSA were studied against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538 using the disc diffusion technique (DDT) and minimum inhibitory concentration (MIC). The antibacterial activity of ZSA increased with the increase in APTES on ZS, and E. coli was more susceptible towards the sample compared to S. aureus. The FESEM micrographs of the bacteria after contact with the ZSA suggested different mechanisms of bacterial death for these two bacteria due to exposure to the studied sample. The functionalization of ZS with APTES improved the antibacterial activity of the silver-zeolite, depending on the concentration of silver ions and APTES used during modification.

  14. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant.

    PubMed

    He, Shu; Zhou, Ping; Wang, Linxin; Xiong, Xiaoling; Zhang, Yifei; Deng, Yi; Wei, Shicheng

    2014-06-01

    Implant-associated infections, which are normally induced by microbial adhesion and subsequent biofilm formation, are a major cause of morbidity and mortality. Therefore, practical approaches to prevent implant-associated infections are in great demand. Inspired by adhesive proteins in mussels, here we have developed a novel antibiotic-decorated titanium (Ti) material with enhanced antibacterial activity. In this study, Ti substrate was coated by one-step pH-induced polymerization of dopamine followed by immobilization of the antibiotic cefotaxime sodium (CS) onto the polydopamine-coated Ti through catechol chemistry. Contact angle measurement and X-ray photoelectron spectroscopy confirmed the presence of CS grafted on the Ti surface. Our results demonstrated that the antibiotic-grafted Ti substrate showed good biocompatibility and well-behaved haemocompatibility. In addition, the antibiotic-grafted Ti could effectively prevent adhesion and proliferation of Escherichia coli (Gram-negative) and Streptococcus mutans (Gram-positive). Moreover, the inhibition of biofilm formation on the antibiotic-decorated Ti indicated that the grafted CS could maintain its long-term antibacterial activity. This modified Ti substrate with enhanced antibacterial activity holds great potential as implant material for applications in dental and bone graft substitutes. PMID:24647910

  15. Comparing the antibacterial activity of gaseous ozone and chlorhexidine solution on a tooth cavity model

    PubMed Central

    Öztaş, Nurhan; Sümer, Zeynep

    2013-01-01

    Objective: To evaluate the antibacterial activity of gaseous ozone and chlorhexidine solution on a tooth cavity model. Study Design: Twenty-one human molars were divided into 3 groups. Cavities were then cut into the teeth (4 per tooth, 28 cavities per group). After sterilization, the teeth were left in broth cultures of 106 colony-forming units (CFU) ml-1 of Streptococcus mutans (S. mutans) at 36°C for 48 h. The appropriate treatment followed (group A, control; group B, 2% chlorhexidine solution; and group C, 80s of treatment with ozone, and the cavities were then filled with composite resin. After 72h, the restorations were removed, dentin chips were collected with an excavator, and the total number of microorganisms was determined. Results: Both of the treatments significantly reduced the number of S. mutans present compared with the control group and there was a significant difference between the all groups in terms of the amount of the microorganisms grown (p < 0.05). Group B was beter than group C; and group C was better than group A. Moreover, it was found that the amount of the growth in the group of chlorhexidine was significantly less than that of the ozone group (p < 0.05). Conclusion: Chlorhexidine solution was the antibacterial treatment most efficacious on S. mutans; however, ozone application could be an anlternative cavity disinfection method because of ozone’s cavity disinfection activity. Key words:Antibacterial activity, chlorhexidine, ozone, streptococcus mutans, tooth cavity. PMID:24455068

  16. PEGylated ofloxacin nanoparticles render strong antibacterial activity against many clinically important human pathogens.

    PubMed

    Marslin, Gregory; Revina, Ann Mary; Khandelwal, Vinoth Kumar Megraj; Balakumar, Krishnamoorthy; Sheeba, Caroline J; Franklin, Gregory

    2015-08-01

    The rise of bacterial resistance against important drugs threatens their clinical utility. Fluoroquinones, one of the most important classes of contemporary antibiotics has also reported to suffer bacterial resistance. Since the general mechanism of bacterial resistance against fluoroquinone antibiotics (e.g. ofloxacin) consists of target mutations resulting in reduced membrane permeability and increased efflux by the bacteria, strategies that could increase bacterial uptake and reduce efflux of the drug would provide effective treatment. In the present study, we have compared the efficiencies of ofloxacin delivered in the form of free drug (OFX) and as nanoparticles on bacterial uptake and antibacterial activity. Although both poly(lactic-co-glycolic acid) (OFX-PLGA) and methoxy poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (OFX-mPEG-PLGA) nanoformulations presented improved bacterial uptake and antibacterial activity against all the tested human bacterial pathogens, namely, Escherichia coli, Proteus vulgaris, Salmonella typhimurium, Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus, OFX-mPEG-PLGA showed significantly higher bacterial uptake and antibacterial activity compared to OFX-PLGA. We have also found that mPEG-PLGA nanoencapsulation could significantly inhibit Bacillus subtilis resistance development against OFX. PMID:26005932

  17. Antibacterial activity of biogenic silver nanoparticles synthesized with gum ghatti and gum olibanum: a comparative study.

    PubMed

    Kora, Aruna Jyothi; Sashidhar, Rao Beedu

    2015-02-01

    Presently, silver nanoparticles produced by biological methods have received considerable significance owing to the natural abundance of renewable, cost-effective and biodegradable materials, thus implementing the green chemistry principles. Compared with the nanoparticles synthesized using chemical methods, most biogenic silver nanoparticles are protein capped, which imparts stability and biocompatibility, and enhanced antibacterial activity. In this study, we compared the antibacterial effect of two biogenic silver nanoparticles produced with natural plant gums: gum ghatti and gum olibanum against Gram-negative and Gram-positive bacteria. Bacterial interaction with nanoparticles was probed both in planktonic and biofilm modes of growth; employing solid agar and liquid broth assays for inhibition zone, antibiofilm activity, inhibition of growth kinetics, leakage of intracellular contents, membrane permeabilization and reactive oxygen species production. In addition, cytotoxicity of the biogenic nanoparticles was evaluated in HeLa cells, a human carcinoma cell line. Antibacterial activity and cytotoxicity of the silver nanoparticles synthesized with gum ghatti (Ag NP-GT) was greater than that produced with gum olibanum (Ag NP-OB). This could be attributed to the smaller size (5.7 nm), monodispersity and zeta potential of the Ag NP-GT. The study suggests that Ag NP-GT can be employed as a cytotoxic bactericidal agent, whereas Ag NP-OB (7.5 nm) as a biocompatible bactericidal agent. PMID:25138141

  18. In vitro antibacterial activity of ME1207, a new oral cephalosporin.

    PubMed

    Miyazaki, S; Miyazaki, Y; Tsuji, A; Nishida, M; Goto, S

    1991-08-01

    ME1207 is the prodrug of ME1206. Its in vitro antibacterial activity was compared with that of cefteram, cefpodoxime, cefixime, and cefaclor against various clinical isolates. ME1206 was more active than the other cephems tested against staphylococci, streptococci, Morganella morganii, Pseudomonas cepacia, and Flavobacterium meningosepticum and had the most potent activity against Haemophilus influenzae and Neiserria gonorrhoeae. The drug also showed a wide spectrum of activity against other gram-positive and gram-negative bacteria, except methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Citrobacter freundii, Pseudomonas aeruginosa, Xanthomonas maltophilia, and Alcaligenes xylosoxydans. PMID:1929344

  19. Orally active carbapenem antibiotics I. Antibacterial and pharmacokinetic potential of 2-phenyl and 2-thienylcarbapenems.

    PubMed

    Sunagawa, Makoto; Ueda, Yutaka; Okada, Shin-Ichiro; Watanabe, Shoji; Hashizuka, Takahiko; Hori, Seiji; Sasaki, Akira; Eriguchi, Yoshiro; Kanazawa, Katsunori

    2005-12-01

    In order to design orally active carbapenem antibiotics effective against beta-lactam-resistant pathogens, such as penicillin-resistant Streptococcus pneumoniae (PRSP) and beta-lactamase non-producing ampicillin-resistant Haemophilus influenzae (BLNAR), a series of novel 2-phenylcarbapenems and some 2-thienyl derivatives were synthesized and tested for antibacterial activities. These compounds were highly active against PRSP, BLNAR, and major Gram-positive and Gram-negative bacteria that cause community-acquired infections. Their pivaloyloxymethylester-type prodrug exhibited good oral absorption in mice, suggesting that this series of carbapenems were promising as a prototype of novel orally active beta-lactams. PMID:16506696

  20. Synthesis and antibacterial activity of some heterocyclic chalcone analogues alone and in combination with antibiotics.

    PubMed

    Tran, Thanh-Dao; Nguyen, Thi-Thao-Nhu; Do, Tuong-Ha; Huynh, Thi-Ngoc-Phuong; Tran, Cat-Dong; Thai, Khac-Minh

    2012-01-01

    A series of simple heterocyclic chalcone analogues have been synthesized by Claisen Schmidt condensation reactions between substituted benzaldehydes and heteroaryl methyl ketones and evaluated for their antibacterial activity. The structures of the synthesized chalcones were established by IR and ¹H-NMR analysis. The biological data shows that compounds p₅, f₆ and t₅ had strong activities against both susceptible and resistant Staphylococcus aureus strains, but not activity against a vancomycin and methicillin resistant Staphylococcus aureus isolated from a human sample. The structure and activity relationships confirmed that compounds f₅, f₆ and t₅ are potential candidates for future drug discovery and development. PMID:22728362

  1. Enhancing the antibacterial activity of the gold standard intracanal medicament with incorporation of silver zeolite: An in vitro study

    PubMed Central

    Ghatole, Kiran; Gowdra, Ramesh Halebathi Giriyappa; Azher, Samer; Sabharwal, Sumit; Singh, Veerandar T.; Sundararajan, Bharath Vardhana

    2016-01-01

    Background: Enterococcus faecalis is a persistent organism that plays a major role in the etiology of persistent periradicular lesions after root canal treatment has been associated with different forms of periradicular disease including primary endodontic infections and persistent infections. The present study compares the antibacterial activities of calcium hydroxide, calcium hydroxide mixed with silver zeolite, and calcium hydroxide mixed with 2% chlorhexidine against E. faecalis using direct contact test. Materials and Methods: The test materials of the in vitro experimental study were grouped as group 1—calcium hydroxide mixed with sterile water, group 2—2% silver zeolite added in calcium hydroxide mixed with sterile water, and group 3—calcium hydroxide mixed with 2% chlorhexidine. The bottom of microtiter plate were coated with freshly mixed tested material and a 10 μL of bacterial suspension was placed. After 1 h of incubation at 37°C, brain–heart infusion (BHI) broth (245 μL) was added and mixed for 2 min. These were designated as “subgroup 1” wells. A volume of 15 μL of broth then transferred from subgroup 1 wells to an adjacent set of four wells containing fresh BHI medium (215 μL); these wells were designated as “subgroup 2”’ wells. The optical density was measured by a spectrophotometer after the first day, third day, and seventh day. One-way analysis of variance (ANOVA) and Tukey tests were performed for the analysis. Results: Calcium hydroxide mixed with silver zeolite showed maximum antibacterial activity. Conclusion: Silver zeolite can be added in calcium hydroxide to enhance the latter's antibacterial activity against E. faecalis. PMID:27011937

  2. Water-dispersible silver nanoparticles-decorated carbon nanomaterials: synthesis and enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Dinh, Ngo Xuan; Chi, Do Thi; Lan, Nguyen Thi; Lan, Hoang; Van Tuan, Hoang; Van Quy, Nguyen; Phan, Vu Ngoc; Huy, Tran Quang; Le, Anh-Tuan

    2015-04-01

    In recent years, a growing number of outbreak of infectious diseases have emerged all over the world. The outbreak of re-emerging and emerging infectious diseases is a considerable burden on global economies and public health. Nano-antimicrobials have been studied as an effective solution for the prevention of infectious diseases. In this work, we demonstrated a modified photochemical approach for the preparation of carbon nanotubes-silver nanoparticles (CNTs-Ag) and graphene oxide-silver nanoparticles (GO-Ag) nanocomposites, which can be stably dispersible in aqueous solution. The formation of silver nanoparticles (Ag-NPs) on the functionalized CNTs and GO nanosheets was analyzed by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and UV-Vis measurements. These analyses indicated that the average particle sizes of Ag-NPs deposited on GO/CNTs nanostructures were ~6-7 nm with nearly uniform size distribution. Moreover, these nanocomposites were found to exhibit enhanced antibacterial activity against two strains of infectious bacteria including Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria as compared to bare Ag-NPs. Our obtained studies showed a high potential of GO-Ag and CNTs-Ag nanocomposites as effective and long-term disinfection solution to eliminate infectious bacterial pathogens.

  3. Minor C-geranylated flavanones from Paulownia tomentosa fruits with MRSA antibacterial activity.

    PubMed

    Navrátilová, Alice; Schneiderová, Kristýna; Veselá, Daniela; Hanáková, Zuzana; Fontana, Anna; Dall'Acqua, Stefano; Cvačka, Josef; Innocenti, Gabbriella; Novotná, Jana; Urbanová, Marie; Pelletier, Jerry; Čížek, Alois; Žemličková, Helena; Šmejkal, Karel

    2013-05-01

    Exhaustive chromatographic separation of the chloroform portion of the ethanolic extract obtained from Paulownia tomentosa (Thunb). Steud. (Paulowniaceae) fruits has led to isolation of ten C-6 geranylated flavanones tomentodiplacone C-I and mimulone C-E, featured by 3'-methoxy and 4'-hydroxy or 4'-hydroxy substitution of the B-ring of the flavonoid, respectively. The structures of these compounds were determined by using mass spectrometry (including HRMS) and 1D and 2D NMR spectroscopy. The absolute configurations of the compounds at C-2 were determined using circular dichroism. The obtained compounds showed the presence of a geranyl moiety functionalized by a carbonyl, hydroxyl or methoxyl group, or by formation of tetrahydrofuran or fused-pyrane ring, respectively. All of the flavanones described were isolated for the first time from a natural source. The antibacterial activities of selected compounds isolated along with the previously isolated geranylated flavanones were evaluated against a common panel of microbes and MRSA strains. The selected isolated compounds were tested for their ability to affect eukaryotic translation initiation via dual-luciferase reporter assay (firefly and renilla). PMID:23453910

  4. CHEMICAL COMPOSITION AND ANTIBACTERIAL ACTIVITY OF SOME MEDICINAL PLANTS FROM LAMIACEAE FAMILY.

    PubMed

    Kozłowska, Mariola; Laudy, Agnieszka E; Przybył, Jarosław; Ziarno, Małgorzata; Majewska, Ewa

    2015-01-01

    Chemical composition and antibacterial activity of aqueous (ethanolic and methanolic) extracts from herbs often used in Polish cuisine and traditional herbal medicine including thyme (Thymus vulgaris L.), rosemary (Rosmarinus officinalis L.), oregano (Origanum vulgare L.), peppermint (Mentha piperita L.) and sage (Salvia officinalis L.) were compared. The aqueous ethanolic extracts contained slightly higher levels of phenolics compared to the aqueous methanolic extracts. In turn, GC-MS analysis showed that the aqueous methanolic extracts of thyme, rosemary and sage contained several additional compounds such as eugenol or ledol. The present studies also indicated that the bacterial species applied in the experiment exhibited different sensitivities towards tested extracts. Staphylococcus aureus strains were found to be the most sensitive bacteria to aqueous (ethanolic and methanolic) rosemary and sage extracts and aqueous methanolic thyme extract. Klebsiella pneumoniae ATCC 13883 and Proteus vulgaris NCTC 4635 were more susceptible to the aqueous methanolic thyme extract. However, Listeria monocytogenes 1043S was the most sensitive to the aqueous ethanolic rosemary extract. Gram-positive bacteria were generally more sensitive to the tested extracts than Gram-negative ones. PMID:26647633

  5. Phytochemical Investigation of Cycas circinalis and Cycas revoluta Leaflets: Moderately Active Antibacterial Biflavonoids

    PubMed Central

    Moawad, Abeer; Hetta, Mona; Zjawiony, Jordan K.; Jacob, Melissa R.; Hifnawy, Mohamed; Ferreira, Daneel

    2013-01-01

    Chemical examination of the methanolic extract of the leaflets of Cycas circinalis L. led to the isolation of one new biflavonoid, (2S, 2″S)-2,3,2″,3″-tetrahydro-4′,4‴-di-O-methylamentoflavone (tetrahydroisoginkgetin; 2), and 15 known compounds, 11 of which are reported for the first time from C. circinalis. Chromatographic separation of the chloroform extract of C. revoluta Thunb. leaflets afforded 12 compounds, seven of which are reported for the first time from this species. The isolated compounds from both species include 14 biflavonoids, three lignans, three flavan-3-ols, two flavone-C-glucosides, two nor-isoprenoids, and one flavanone. This is the first report of NMR and CD data of 2,3,2″,3″-tetrahydro-4′-O-methyl- and 2,3-dihydro-4′-O-methyl-amentoflavone (6) and (7). The effect of O-methylation on the chemical shifts of the neighboring carbons in the 13C NMR spectra of the dihydro- and tetrahydro-amentoflavone skeletons provides a tool to identify the location of the methoxy groups. Compounds 2, 6, and 18 displayed moderate antibacterial activity against Staphylococcus aureus (IC50 values of 3.8, 9.6, and 8.2 μM, respectively) and methicillin-resistant S. aureus (MRSA; IC50 values of 5.9, 12.5, and 11.5 μM, respectively). PMID:20072955

  6. Chemical modification of capuramycins to enhance antibacterial activity

    PubMed Central

    Bogatcheva, Elena; Dubuisson, Tia; Protopopova, Marina; Einck, Leo; Nacy, Carol A.; Reddy, Venkata M.

    2011-01-01

    Objectives To extend capuramycin spectrum of activity beyond mycobacteria and improve intracellular drug activity. Methods Three capuramycin analogues (SQ997, SQ922 and SQ641) were conjugated with different natural and unnatural amino acids or decanoic acid (DEC) through an ester bond at one or more available hydroxyl groups. In vitro activity of the modified compounds was determined against Mycobacterium spp. and representative Gram-positive and Gram-negative bacteria. Intracellular activity was evaluated in J774A.1 mouse macrophages infected with Mycobacterium tuberculosis (H37Rv). Results Acylation of SQ997 and SQ641 with amino undecanoic acid (AUA) improved in vitro activity against most of the bacteria tested. Conjugation of SQ922 with DEC, but not AUA, improved its activity against Gram-positive bacteria. In the presence of efflux pump inhibitor phenylalanine arginine β-naphthyl amide, MICs of SQ997-AUA, SQ641-AUA and SQ922-DEC compounds improved even further against drug-susceptible and drug-resistant Staphylococcus aureus. In Gram-negative bacteria, EDTA-mediated permeabilization caused 4- to 16-fold enhancement of the activity of AUA-conjugated SQ997, SQ922 and SQ641. Conjugation of all three capuramycin analogues with AUA improved intracellular killing of H37Rv in murine macrophages. Conclusions Conjugation of capuramycin analogues with AUA or DEC enhanced in vitro activity, extended the spectrum of activity in Gram-positive bacteria and increased intracellular activity against H37Rv. PMID:21186194

  7. Improvement of antibacterial activity of some sulfa drugs through linkage to certain phthalazin-1(2H)-one scaffolds.

    PubMed

    Ibrahim, Hany S; Eldehna, Wagdy M; Abdel-Aziz, Hatem A; Elaasser, Mahmoud M; Abdel-Aziz, Marwa M

    2014-10-01

    RAB1 5 is a lead antibacterial agent in which trimethoprim is linked to phthalazine moiety. Similarly, our strategy in this research depends on the interconnection between some sulfa drugs and certain phthalazin-1(2H)-one scaffolds in an attempt to enhance their antibacterial activity. This approach was achieved through the combination of 4-substituted phthalazin-1(2H)-ones 9a, b or 14a, b with sulfanilamide 1a, sulfathiazole 1b or sulfadiazine 1c through amide linkers 6a, b to produce the target compounds 10a-d and 15a-e, respectively. The antibacterial activity of the newly synthesized compounds showed that all tested compounds have antibacterial activity higher than that of their reference sulfa drugs 1a-c. Compound 10c represented the highest antibacterial activity against Gram-positive bacteria Streptococcus pneumonia and Staphylococcus aureus with MIC = 0.39 μmol/mL. Moreover, compound 10d displayed excellent antibacterial activity against Gram-negative bacteria Escherichia coli and Salmonella typhimurium with MIC = 0.39 and 0.78 μmol/mL, respectively. PMID:25113876

  8. Identification of L-amino acid oxidase (Mb-LAAO) with antibacterial activity in the venom of Montivipera bornmuelleri, a viper from Lebanon.

    PubMed

    Rima, Mohamad; Accary, Claudine; Haddad, Katia; Sadek, Riyad; Hraoui-Bloquet, Souad; Desfontis, Jean C; Fajloun, Ziad

    2013-10-01

    The L-amino acid oxidase (LAAO) is a multifunctional enzyme, able to partake in different activities including antibacterial activity. In this study, a novel LAAO (Mb-LAAO) was isolated from the venom of M. bornmuelleri snake using size exclusion chromatography followed by RP-HPLC and partially characterized. However, the molecular weight of the Mb-LAAO determined by ESI-MS and SDS-PAGE was 59 960.4 Da. Once the enzymatic activity test confirming the enzyme's identity (transformation of L-leucine) was done, the Mb-LAAO was evaluated for its antibacterial activity against Gram-negative bacteria. It showed a remarkable effect against M. morganii and K. pneumoniae. Moreover, no cytotoxic activity was observed for Mb-LAAO against human erythrocytes arguing for an exploration of its pharmaceutical interest. PMID:24712674

  9. Binuclear mercury(II) complexes of sulfonium ylides: Synthesis, structural characterization and anti-bacterial activity

    NASA Astrophysics Data System (ADS)

    Sabounchei, Seyyed Javad; Bagherjeri, Fateme Akhlaghi; Boskovic, Colette; Gable, Robert W.; Karamian, Roya; Asadbegy, Mostafa

    2013-02-01

    Reaction of α-keto stabilized sulfonium ylides (Me)2SCHC(O)C6H4R (R = p-Me (a); p-Cl (b)) with HgX2 (X = Cl, Br and I) in equimolar ratios using methanol as solvent leads to binuclear products of the type [HgX2(ylide)]2 (X = Cl (1), Br (2) and I (3)). Single crystal X-ray diffraction analysis reveals the presence of unexpected asymmetric halide-bridged dinuclear structures for 1a and 2b. Characterization of the compounds by IR, 1H- and 13C NMR spectroscopy confirmed coordination of the ylide to the metal through the carbon atom. In addition, the antibacterial effects of DMSO-solutions of the complexes were investigated by the disc diffusion method against three Gram positive and three negative bacteria. All complexes represent antibacterial activity against these bacteria with high levels of inhibitory potency exhibited against the Gram-positive species.

  10. Antibacterial activity of α-terpineol may induce morphostructural alterations in Escherichia coli

    PubMed Central

    Li, Li; Shi, Chaofeng; Yin, Zhongqiong; Jia, Renyong; Peng, Lianci; Kang, Shuai; Li, Zhengwen

    2014-01-01

    The antibacterial effect of α-terpineol from Cinnamomum longepaniculatum (Gamble) N. Chao leaf essential oils were studied with special reference to the mechanism of inhibiting the standard strain of Escherichia coli (CMCC (B) 44102) growth at ultrastructural level. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) and time-kill curves of α-terpineol were determined; Escherichia coli was treated with α-terpineol and observed under a transmission electron microscope. The MIC and MBC values of α-terpineol were all 0.78 μL/mL, and time-kill curves showed the concentration-dependent. Under the transmission electron microscopy (TEM), Escherichia coli exposed to MIC levels of α-terpineol exhibited decreased cell size and irregular cell shape, cell wall and cell membrane were ruptured, nucleus cytoplasm was reduced and nuclear area gathered aside. Results suggest that α-terpineol has excellent antibacterial activity and could induce morphological changes of Escherichia coli. PMID:25763048

  11. Antibacterial and antifungal activities of thymol: A brief review of the literature.

    PubMed

    Marchese, Anna; Orhan, Ilkay Erdogan; Daglia, Maria; Barbieri, Ramona; Di Lorenzo, Arianna; Nabavi, Seyed Fazel; Gortzi, Olga; Izadi, Morteza; Nabavi, Seyed Mohammad

    2016-11-01

    Thymol (2-isopropyl-5-methylphenol) is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family (Thymus, Ocimum, Origanum, and Monarda genera), and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae, and Apiaceae families. These essential oils are used in the food industry for their flavouring and preservative properties, in commercial mosquito repellent formulations for their natural repellent effect, in aromatherapy, and in traditional medicine for the treatment of headaches, coughs, and diarrhea. Many different activities of thymol such as antioxidant, anti-inflammatory, local anaesthetic, antinociceptive, cicatrizing, antiseptic, and especially antibacterial and antifungal properties have been shown. This review aims to critically evaluate the available literature regarding the antibacterial and antifungal effects of thymol. PMID:27211664

  12. Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm.

    PubMed

    Cui, Haiying; Li, Wei; Li, Changzhu; Vittayapadung, Saritporn; Lin, Lin

    2016-01-01

    The global burden of bacterial disease remains high and is set against a backdrop of increasing antimicrobial resistance. There is a pressing need for highly effective and natural antibacterial agents. In this work, the anti-biofilm effect of cinnamon oil on methicillin-resistant Staphylococcus aureus was evaluated. Then, cinnamon oil was encapsulated in liposomes to enhance its chemical stability. The anti-biofilm activities of the liposome-encapsulated cinnamon oil against MRSA biofilms on stainless steel, gauze, nylon membrane and non-woven fabrics were evaluated by colony forming unit determination. Scanning electron microscopy and laser scanning confocal microscopy analyses were employed to observe the morphological changes in MRSA biofilms treated with the encapsulated cinnamon oil. As a natural and safe spice, the cinnamon oil exhibited a satisfactory antibacterial performance on MRSA and its biofilms. The application of liposomes further improves the stability of antimicrobial agents and extends the action time. PMID:26838161

  13. Antibacterial activity of single crystalline silver-doped anatase TiO2 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyu; Li, Meng; He, Xiaojing; Hang, Ruiqiang; Huang, Xiaobo; Wang, Yueyue; Yao, Xiaohong; Tang, Bin

    2016-05-01

    Well-ordered, one-dimensional silver-doped anatase TiO2 nanowire (AgNW) arrays have been prepared through a hydrothermal growth process on the sputtering-deposited AgTi layers. Electron microscope analyses reveal that the as-synthesized AgNW arrays exhibit a single crystalline phase with highly uniform morphologies, diameters ranging from 85 to 95 nm, and lengths of about 11 μm. Silver is found to be doped into TiO2 nanowire evenly and mainly exists in the zerovalent state. The AgNW arrays show excellent efficient antibacterial activity against Escherichia coli (E. coli), and all of the bacteria can be killed within 1 h. Additionally, the AgNW arrays can still kill E. coli after immersion for 60 days, suggesting the long-term antibacterial property. The technique reported here is environmental friendly for formation of silver-containing nanostructure without using any toxic organic solvents.

  14. In vitro antibacterial activity of a silicone-based endodontic sealer and two conventional sealers.

    PubMed

    Wainstein, Marcela; Morgental, Renata Dornelles; Waltrick, Silvana Beltrami Gonçalves; Oliveira, Sílvia Dias; Vier-Pelisser, Fabiana Vieira; Figueiredo, José Antonio Poli; Steier, Liviu; Tavares, Cauana Oliva; Scarparo, Roberta Kochenborger

    2016-01-01

    The aim of this study was to evaluate whether the modification in the silver component is capable of providing GuttaFlow 2 with antibacterial activity against Enterococcus faecalis compared with epoxy resin-based (AH Plus) and zinc oxide and eugenol-based (Endofill) sealers. The antibacterial activity was evaluated using a reference strain of E. faecalis (ATCC 29212). Freshly mixed sealers were subjected to the agar diffusion test (ADT), while the direct contact test (DCT) was performed after materials setting. ADT results were obtained through measurements, in millimeters, of the inhibition zones promoted by the materials, using a digital caliper. In DCT, values of CFU/mL promoted by the three sealers were compared in three experimental periods (1 min, 1 h, and 24 h). The data were analyzed using Kruskal-Wallis and Dunn post-hoc tests (p < 0.05). In both ADT and DCT, GuttaFlow 2 presented no effect against E. faecalis, while Endofill and AH Plus showed similar inhibition zones. Endofill was the only material capable of reducing bacterial growth in DCT. In conclusion, modifications in the silver particle of GuttaFlow 2 did not result in a sealer with antibacterial effect against E. faecalis. PMID:26910015

  15. Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials

    NASA Astrophysics Data System (ADS)

    Veerapandian, Murugan; Zhang, Linghe; Krishnamoorthy, Karthikeyan; Yun, Kyusik

    2013-10-01

    A comprehensive investigation of anti-bacterial properties of graphene oxide (GO) and ultraviolet (UV) irradiated GO nanosheets was carried out. Microscopic characterization revealed that the GO nanosheet-like structures had wavy features and wrinkles or thin grooves. Fundamental surface chemical states of GO nanosheets (before and after UV irradiation) were investigated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Minimum inhibitory concentration (MIC) results revealed that UV irradiated GO nanosheets have more pronounced anti-bacterial behavior than GO nanosheets and standard antibiotic, kanamycin. The MIC of UV irradiated GO nanosheets was 0.125 μg ml-1 for Escherichia coli and Salmonella typhimurium, 0.25 μg ml-1 for Bacillus subtilis and 0.5 μg ml-1 for Enterococcus faecalis, ensuring its potential as an anti-infective agent for controlling the growth of pathogenic bacteria. The minimum bactericidal concentration of normal GO nanosheets was determined to be two-fold higher than its corresponding MIC value, indicating promising bactericidal activity. The mechanism of anti-bacterial action was evaluated by measuring the enzymatic activity of β-d-galactosidase for the hydrolysis of o-nitrophenol-β-d-galactopyranoside.

  16. Modification of graphene oxide by laser irradiation: a new route to enhance antibacterial activity.

    PubMed

    Buccheri, Maria A; D'Angelo, Daniele; Scalese, Silvia; Spanò, Simon F; Filice, Simona; Fazio, Enza; Compagnini, Giuseppe; Zimbone, Massimo; Brundo, Maria V; Pecoraro, Roberta; Alba, Anna; Sinatra, Fulvia; Rappazzo, Giancarlo; Privitera, Vittorio

    2016-06-17

    The antibacterial activity and possible toxicity of graphene oxide and laser-irradiated graphene oxide (iGO) were investigated. Antibacterial activity was tested on Escherichia coli and shown to be higher for GO irradiated for at least three hours, which seems to be correlated to the resulting morphology of laser-treated GO and independent of the kind and amount of oxygen functionalities. X-ray photoelectron spectroscopy, Raman spectroscopy, dynamic light scattering and scanning electron microscopy (SEM) show a reduction of the GO flakes size after visible laser irradiation, preserving considerable oxygen content and degree of hydrophilicity. SEM images of the bacteria after the exposure to the iGO flakes confirm membrane damage after interaction with the laser-modified morphology of GO. In addition, a fish embryo toxicity test on zebrafish displayed that neither mortality nor sublethal effects were caused by the different iGO solutions, even when the concentration was increased up to four times higher than the one effective in reducing the bacteria survival. The antibacterial properties and the absence of toxicity make the visible laser irradiation of GO a promising option for water purification applications. PMID:27158973

  17. Morphological impact of zinc oxide particles on the antibacterial activity and human epithelia toxicity.

    PubMed

    Čepin, Marjeta; Hribar, Gorazd; Caserman, Simon; Orel, Zorica Crnjak

    2015-01-01

    ZnO nanoparticles are utilized in an ever growing number of products and can, therefore, be readily encountered in our everyday life. Human beings' outermost tissues consist of different epithelia and are, therefore, the most exposed to materials from the environment. In this paper, Caco-2 and Calu-3 cell lines were used, having been previously broadly applied for in vitro modelling of intestinal and respiratory epithelia, respectively. The toxicity of synthesized micro-, submicro- and nanoparticulate ZnO on these epithelia was measured and compared to the efficacy of the same ZnO particles as antibacterial agents. An approximately four-fold excess in antibacterial activity of ZnO nanoparticles over ZnO granulate was observed. The results of this paper reveal a sharp distinction between toxic nanoparticulate ZnO and safe ZnO particles of larger sizes in intestinal and airway in vitro epithelial models. In contrast, ZnO of larger particle sizes had only modestly lower antibacterial activity, which can be compensated for with higher dosing. These results show that nanoparticulate ZnO requires critical in vivo assessment before application. PMID:25953559

  18. Antibacterial activity of aqueous extract of pomegranate peel against Pseudomonas stutzeri isolated from poultry meat.

    PubMed

    Devatkal, Suresh K; Jaiswal, Parnita; Jha, Shyam N; Bharadwaj, Rishi; Viswas, K N

    2013-06-01

    In this study antibacterial activity of pomegranate peel (PPE) was evaluated against bacteria isolated from poultry meat. The bacteria were identified using 16S rRNA gene and DNA sequencing. Results of molecular characterization showed that the bacteria isolated were having 100% homology with the Pseudomonas stutzeri strain CTSP36 and further analysis showed that sample sequence clustered with the P. stutzeri strain CTSP36. Antibacterial activity of PPE was demonstrated by clear zone of inhibition in plates inoculated with extract. The diameter of inhibition zones were significantly (p < 0.05) higher in PPE as compared to standard antibiotic discs used (tetracycline, vancomycin and streptomycin). Results of broth dilution assay also revealed that PPE at 1%, 5% and 10% were effective in inhibiting bacterial growth in test plates. Further, a decrease in the growth of bacterial cells and a gradual decline in protein content of bacterial cells were also observed when bacterial culture was grown with different concentration of PPE along with a control. These results showed the potential application of pomegranate peel extract as antibacterial agent against P. stutzeri. PMID:24425952

  19. The anti-bacterial activity of titanium-copper sintered alloy against Porphyromonas gingivalis in vitro.

    PubMed

    Bai, Bing; Zhang, Erlin; Liu, Junchao; Zhu, Jingtao

    2016-01-01

    This study investigates the anti-bacterial property of Ti-Cu sintered alloys against Porphyromonas gingivalis. The anti-anaerobic property of Ti-Cu sintered alloys against P. gingivalis was investigated by antibacterial activity test, DNA measurement, DAPI staining and morphology observation. The antibacterial rates of the Ti-5Cu against P. gingivalis after 18 and 24 h incubation were 36.04 and 54.39%, and those of Ti-10Cu were 68.69 and 75.39%, which were lower than their anti-aerobic abilities. The concentration of P. gingivalis DNA gradually decreased with the increasing Cu content, which was nearly 50% after 24 h incubation on Ti-10Cu. SEM results showed that the shape of P. gingivalis changed and the bacteria broke apart with the addition of Cu and the extension of the culture time. Ti-Cu sintered alloys could not only kill anaerobic bacteria but also reduce the activity of the survived bacteria. The anti-anaerobic mechanism was thought to be in associated with the Cu ion released from Ti-Cu alloy. PMID:27477233

  20. Superior antibacterial activity of GlcN-AuNP-GO by ultraviolet irradiation.

    PubMed

    Govindaraju, Saravanan; Samal, Monica; Yun, Kyusik

    2016-12-01

    A complete bacterialysis analysis of glucosamine-gold nanoparticle-graphene oxide (GlcN-AuNP-GO) and UV-irradiated GlcN-AuNP-GO was conducted. Analytical characterization of GlcN-AuNPs, GO and GlcN-AuNP-GO revealed UV-Vis absorbance peak at around 230 and 500nm. Microscopic characterization of prepared nanomaterials was performed by scanning electron microscope, atomic force microscopy, and high-resolution transmission microscopy. The results confirmed that the GlcN-AuNPs were uniformly decorated on the surface and edges of graphene sheets. In addition, potent antibacterial activity of GlcN-AuNP-GO that was UV irradiated for 10min and normal GlcN-AuNP-GO was detected, compared to the standard drug kanamycin, against both Gram-negative and positive bacteria. The minimum inhibitory concentration (MIC) and fluorescence intensity spectra results for Escherichia coli and Enterococcus faecalis showed that the UV-irradiated GlcN-AuNP-GO has better antibacterial activity than normal GlcN-AuNP-GO and kanamycin. Morphological changes were detected by AFM after treatment. These results confirmed that GlcN-AuNP-GO is a potent antibacterial agent with good potential for use in manufacturing medical instruments, pharmaceutical industries and in waste water treatment. PMID:27612724

  1. The Antibacterial Activity of Acetic Acid against Biofilm-Producing Pathogens of Relevance to Burns Patients

    PubMed Central

    Halstead, Fenella D.; Rauf, Maryam; Moiemen, Naiem S.; Bamford, Amy; Wearn, Christopher M.; Fraise, Adam P.; Lund, Peter A.; Oppenheim, Beryl A.; Webber, Mark A.

    2015-01-01

    Introduction Localised infections, and burn wound sepsis are key concerns in the treatment of burns patients, and prevention of colonisation largely relies on biocides. Acetic acid has been shown to have good antibacterial activity against various planktonic organisms, however data is limited on efficacy, and few studies have been performed on biofilms. Objectives We sought to investigate the antibacterial activity of acetic acid against important burn wound colonising organisms growing planktonically and as biofilms. Methods Laboratory experiments were performed to test the ability of acetic acid to inhibit growth of pathogens, inhibit the formation of biofilms, and eradicate pre-formed biofilms. Results Twenty-nine isolates of common wound-infecting pathogens were tested. Acetic acid was antibacterial against planktonic growth, with an minimum inhibitory concentration of 0.16–0.31% for all isolates, and was also able to prevent formation of biofilms (at 0.31%). Eradication of mature biofilms was observed for all isolates after three hours of exposure. Conclusions This study provides evidence that acetic acid can inhibit growth of key burn wound pathogens when used at very dilute concentrations. Owing to current concerns of the reducing efficacy of systemic antibiotics, this novel biocide application offers great promise as a cheap and effective measure to treat infections in burns patients. PMID:26352256

  2. Immobilized copper(II) macrocyclic complex on MWCNTs with antibacterial activity

    NASA Astrophysics Data System (ADS)

    Tarlani, Aliakbar; Narimani, Khashayar; Mohammadipanah, Fatemeh; Hamedi, Javad; Tahermansouri, Hasan; Amini, Mostafa M.

    2015-06-01

    In a new approach, a copper(II) tetraaza macrocyclic complex (CuTAM) was covalently bonded on modified multi-walled carbon nanotubes (MWCNTs). To achieve this purpose, MWCNTs were converted to MWCNT-COCl and then reacted to NH groups of TAM ligand. The prepared material was characterized by Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), and FESEM (field emission scanning electron microscopy). FT-IR and TGA demonstrated the presence of the organic moieties, and XRD proved that the structure of MWCNTs remained intact during the three modification steps. An increase in the ID/IG ratio in Raman spectra confirmed the surface modifications. Finally, the samples were subjected to an antibacterial assessment to compare their biological activity. The antibacterial test showed that the grafted complex on the surface of the nanotube (MWCNT-CO-CuTAM) has higher antibacterial activity against Bacillus subtilis ATCC 6633 than the MWCNT-COOH and CuTAM with 1000 and 2000 μg/mL.

  3. Modification of graphene oxide by laser irradiation: a new route to enhance antibacterial activity

    NASA Astrophysics Data System (ADS)

    Buccheri, Maria A.; D’Angelo, Daniele; Scalese, Silvia; Spanò, Simon F.; Filice, Simona; Fazio, Enza; Compagnini, Giuseppe; Zimbone, Massimo; Brundo, Maria V.; Pecoraro, Roberta; Alba, Anna; Sinatra, Fulvia; Rappazzo, Giancarlo; Privitera, Vittorio

    2016-06-01

    The antibacterial