Science.gov

Sample records for activities including antimicrobial

  1. Development of an oregano-based ointment with anti-microbial activity including activity against methicillin-resistant Staphlococcus aureus.

    PubMed

    Eng, William; Norman, Robert

    2010-04-01

    Increasing antibiotic resistance has prompted a search for new compounds with anti-microbial activity. In the authors' previous study, oregano extract was identified as one of the most potent anti-microbial compounds. The disk diffusion method was employed to assess the degree of inhibition against various microorganisms, and the bacteriostatic or bactericidal mechanism of action. Disk diffusion studies showed that oregano was found to be bacteriostatic for Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus, (MRSA) but bacteriocidal for seven other microorganisms. Pseudomonas aeruginosa could not be inhibited by oregano. An ointment consisting of 1-10% oregano could inhibit most organisms except for Proteus mirabilis and Proteus vulgaris, which required 20% and Pseudomonas which could not be inhibited even at the highest concentration of 80%. Oregano extracts can be formulated into an ointment that shows broad antimicrobial activity. Additional testing to assess tissue toxicity and other adverse reactions would be needed prior to human testing.

  2. In Vitro Antimicrobial Activity of a Siderophore Cephalosporin, S-649266, against Enterobacteriaceae Clinical Isolates, Including Carbapenem-Resistant Strains.

    PubMed

    Kohira, Naoki; West, Joshua; Ito, Akinobu; Ito-Horiyama, Tsukasa; Nakamura, Rio; Sato, Takafumi; Rittenhouse, Stephen; Tsuji, Masakatsu; Yamano, Yoshinori

    2015-11-16

    S-649266 is a novel siderophore cephalosporin antibiotic with a catechol moiety on the 3-position side chain. Two sets of clinical isolate collections were used to evaluate the antimicrobial activity of S-649266 against Enterobacteriaceae. These sets included 617 global isolates collected between 2009 and 2011 and 233 β-lactamase-identified isolates, including 47 KPC-, 49 NDM-, 12 VIM-, and 8 IMP-producers. The MIC90 values of S-649266 against the first set of Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, Citrobacter freundii, Enterobacter aerogenes, and Enterobacter cloacae isolates were all ≤1 μg/ml, and there were only 8 isolates (1.3%) among these 617 clinical isolates with MIC values of ≥8 μg/ml. In the second set, the MIC values of S-649266 were ≤4 μg/ml against 109 strains among 116 KPC-producing and class B (metallo) carbapenemase-producing strains. In addition, S-649266 showed MIC values of ≤2 μg/ml against each of the 13 strains that produced other types of carbapenemases such as SME, NMC, and OXA-48. The mechanisms of the decreased susceptibility of 7 class B carbapenemase-producing strains with MIC values of ≥16 μg/ml are uncertain. This is the first report to demonstrate that S-649266, a novel siderophore cephalosporin, has significant antimicrobial activity against Enterobacteriaceae, including strains that produce carbapenemases such as KPC and NDM-1.

  3. Antimicrobial activities of squalamine mimics.

    PubMed

    Kikuchi, K; Bernard, E M; Sadownik, A; Regen, S L; Armstrong, D

    1997-07-01

    We investigated the antimicrobial properties of compounds with structural features that were designed to mimic those of squalamine, an antibiotic isolated from the stomach of the dogfish shark. The mimics, like squalamine, are sterol-polyamine conjugates. Unlike squalamine, the mimics were simple to prepare, at high yield, from readily available starting materials. Several squalamine mimics showed activity against gram-negative rods, gram-positive cocci including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and fungi. Some had little or no hemolytic activity. The hydrophobicity of the sterol backbone and the length and the cationic charge of the side chains appeared to be critical determinants of activity. One of the squalamine mimics, SM-7, was bactericidal against Escherichia coli, Pseudomonas aeruginosa, and S. aureus; its activity was decreased by divalent or monovalent cations and by bovine serum albumin. Subinhibitory concentrations of SM-7 markedly enhanced the antimicrobial activity of rifampin against gram-negative rods. These results suggest that the compounds may disrupt an outer membrane of gram-negative rods. Squalamine mimics are a new class of broad-spectrum antimicrobial agents. The antagonism of their activity by serum and albumin and their hemolytic properties may limit their use as systemic agents. The squalamine mimics, because of their potencies, broad spectra of antimicrobial activity, and potential for systemic toxicity, appear to be good candidates for development as topical antimicrobial agents. PMID:9210661

  4. Antimicrobial activity of resveratrol analogues.

    PubMed

    Chalal, Malik; Klinguer, Agnès; Echairi, Abdelwahad; Meunier, Philippe; Vervandier-Fasseur, Dominique; Adrian, Marielle

    2014-01-01

    Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups) and antimicrobial activity. PMID:24918540

  5. Antimicrobial activity of resveratrol analogues.

    PubMed

    Chalal, Malik; Klinguer, Agnès; Echairi, Abdelwahad; Meunier, Philippe; Vervandier-Fasseur, Dominique; Adrian, Marielle

    2014-06-10

    Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups) and antimicrobial activity.

  6. Antimicrobial activity of Gentiana lutea L. extracts.

    PubMed

    Savikin, Katarina; Menković, Nebojsa; Zdunić, Gordana; Stević, Tatjana; Radanović, Dragoja; Janković, Teodora

    2009-01-01

    Methanolic extracts of flowers and leaves of Gentiana lutea L., together with the isolated compounds mangiferin, isogentisin and gentiopicrin, were used to investigate the antimicrobial activity of the plant. A variety of Gram-positive and Gram-negative bacteria as well as the yeast Candida albicans has been included in this study. Both extracts and isolated compounds showed antimicrobial activity with MIC values ranging from 0.12-0.31 mg/ml. Our study indicated that the synergistic activity of the pure compounds may be responsible for the good antimicrobial effect of the extracts. Quantification of the secondary metabolites was performed using HPLC.

  7. Antimicrobial activity of Pseudognaphalium moritzianum.

    PubMed

    Rangel, D; Garcia, I; Velasco, J; Buitrago, D; Velazco, E

    2002-12-01

    The antimicrobial activity of ethanol, acetone and aqueous extracts of the aerial parts of Pseudognaphalium moritzianum was evaluated. Ethanol and acetone extracts showed activity against Staphlococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa. The aqueous extract was active against S. aureus and P. aeruginosa.

  8. Antimicrobial activity of quaternized heteroxylans.

    PubMed

    Ebringerová, A; Belicová, A; Ebringer, L

    1994-11-01

    A series of quaternized D-xylan polysaccharides, differing in the structural features of their macromolecular backbone, were tested for antimicrobial activity against Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens and Saccharomyces cerevisiae. Activity was comparable with that of the cationic surfactant, cetyltrimethylammonium bromide, and depended on the degree of quaternization and the structural backbone of the derivatives.

  9. Antimicrobial activity of Securidaca longipedunculata.

    PubMed

    Ajali, U; Chukwurah, B K C

    2004-11-01

    The folk herbal uses of Securidaca longipedunculata in the treatment of diarrhea, boils, gonorrhea, and cough prompted phytochemical analyses and antimicrobial activity screening of extracts of the root. Some flavonoids isolated showed activity against many micro-organisms. These flavonoids were isolated using chromatographic methods. PMID:15636189

  10. Protease Inhibitors from Plants with Antimicrobial Activity

    PubMed Central

    Kim, Jin-Young; Park, Seong-Cheol; Hwang, Indeok; Cheong, Hyeonsook; Nah, Jae-Woon; Hahm, Kyung-Soo; Park, Yoonkyung

    2009-01-01

    Antimicrobial proteins (peptides) are known to play important roles in the innate host defense mechanisms of most living organisms, including plants, insects, amphibians and mammals. They are also known to possess potent antibiotic activity against bacteria, fungi, and even certain viruses. Recently, the rapid emergence of microbial pathogens that are resistant to currently available antibiotics has triggered considerable interest in the isolation and investigation of the mode of action of antimicrobial proteins (peptides). Plants produce a variety of proteins (peptides) that are involved in the defense against pathogens and invading organisms, including ribosome-inactivating proteins, lectins, protease inhibitors and antifungal peptides (proteins). Specially, the protease inhibitors can inhibit aspartic, serine and cysteine proteinases. Increased levels of trypsin and chymotrypsin inhibitors correlated with the plants resistance to the pathogen. Usually, the purification of antimicrobial proteins (peptides) with protease inhibitor activity was accomplished by salt-extraction, ultrafiltration and C18 reverse phase chromatography, successfully. We discuss the relation between antimicrobial and anti-protease activity in this review. Protease inhibitors from plants potently inhibited the growth of a variety of pathogenic bacterial and fungal strains and are therefore excellent candidates for use as the lead compounds for the development of novel antimicrobial agents. PMID:19582234

  11. In vitro activity of the new fluoroketolide solithromycin (CEM-101) against a large collection of clinical Neisseria gonorrhoeae isolates and international reference strains, including those with high-level antimicrobial resistance: potential treatment option for gonorrhea?

    PubMed

    Golparian, Daniel; Fernandes, Prabhavathi; Ohnishi, Makoto; Jensen, Jörgen S; Unemo, Magnus

    2012-05-01

    Gonorrhea may become untreatable, and new treatment options are essential. We investigated the in vitro activity of the first fluoroketolide, solithromycin. Clinical Neisseria gonorrhoeae isolates and reference strains (n = 246), including the two extensively drug-resistant strains H041 and F89 and additional isolates with clinical cephalosporin resistance and multidrug resistance, were examined. The activity of solithromycin was mainly superior to that of other antimicrobials (n = 10) currently or previously recommended for gonorrhea treatment. Solithromycin might be an effective treatment option for gonorrhea.

  12. Antimicrobial activity of trout hepcidin.

    PubMed

    Alvarez, Claudio A; Guzmán, Fanny; Cárdenas, Constanza; Marshall, Sergio H; Mercado, Luis

    2014-11-01

    Hepcidin is an antimicrobial peptide and a hormone produced mostly the liver. It is a cysteine-rich peptide with a highly conserved β-sheet structure. Recently, we described the hepcidin expression in liver of rainbow trout and its inducibility by iron overloading and lipopolysaccharide (LPS). Thus, in this work, we focused in analyzing the importance of the peptide conformation associated to its oxidative state in the antimicrobial activity. This peptide showed a α-helix conformation in reduced state and the characteristic β-sheet conformation in the oxidized state. Antimicrobial activity assays showed that the oxidized peptide is more effective than the reduced peptide against Escherichia coli and the important salmon fish pathogen Piscirickettsia salmonis. In addition, confocal analysis of P. salmonis culture exposed to trout hepcidin coupled with rhodamine revealed the intracellular location of this peptide and Sytox permeation assay showed that membrane disruption is not the mechanism of its antimicrobial action. Moreover, a conserved ATCUN motif was detected in the N-terminus of this peptide. This sequence has been described as a small metal-binding site that has been implicated in DNA cleavage. In this work we proved that this peptide is able to induce DNA hydrolysis in the presence of ascorbate and CuCl2. When the same experiments were carried out using a variant with truncated N-terminus no DNA hydrolysis was observed. Our results suggest that correct folding of hepcidin is required for its antimicrobial activity and most likely the metal-binding site (ATCUN motif) present in its N-terminus is involved in the oxidative damage to macromolecules. PMID:24794583

  13. IN-VITRO ANTIMICROBIAL ACTIVITY OF BRONCHOSOL.

    PubMed

    Witkowska-Banaszczak, Ewa; Michalak, Anna; Kędzia, Anna

    2015-01-01

    Bronchosol is a traditional medicinal product in the form of syrup used in cough and impeded expectoration. The active ingredients that it contains include extracts from the herb of thyme, the root of primrose and thymol. It is recommended in disorders of the respiratory tract when expectoration is impeded and secretion of liquid mucus in bronchi is insufficient. Antimicrobial activity of the components of Bronchosol, especially thyme and thymol, has frequently been reported in the literature. To date, there have not been any studies to confirm such activity of Bronchosol, though. The results of our research are the first one to point to the great activity of Bronchosol against microorganisms causing infections of the respiratory tract. It has been demonstrated that this product displayed antimicrobial activity against reference strains as well as strains of anaerobic and aerobic bacteria and fungi isolated from patients. The confirmation of the antimicrobial activity of Bronchosol provides an explanation of its effectiveness in the therapy of the respiratory tract infections. PMID:26642688

  14. IN-VITRO ANTIMICROBIAL ACTIVITY OF BRONCHOSOL.

    PubMed

    Witkowska-Banaszczak, Ewa; Michalak, Anna; Kędzia, Anna

    2015-01-01

    Bronchosol is a traditional medicinal product in the form of syrup used in cough and impeded expectoration. The active ingredients that it contains include extracts from the herb of thyme, the root of primrose and thymol. It is recommended in disorders of the respiratory tract when expectoration is impeded and secretion of liquid mucus in bronchi is insufficient. Antimicrobial activity of the components of Bronchosol, especially thyme and thymol, has frequently been reported in the literature. To date, there have not been any studies to confirm such activity of Bronchosol, though. The results of our research are the first one to point to the great activity of Bronchosol against microorganisms causing infections of the respiratory tract. It has been demonstrated that this product displayed antimicrobial activity against reference strains as well as strains of anaerobic and aerobic bacteria and fungi isolated from patients. The confirmation of the antimicrobial activity of Bronchosol provides an explanation of its effectiveness in the therapy of the respiratory tract infections.

  15. Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics

    PubMed Central

    Tan, Honglue; Ma, Rui; Lin, Chucheng; Liu, Ziwei; Tang, Tingting

    2013-01-01

    Chitosan (CS) is a linear polysaccharide with good biodegradability, biocompatibility and antimicrobial activity, which makes it potentially useful for biomedical applications, including an antimicrobial agent either alone or blended with other polymers. However, the poor solubility of CS in most solvents at neutral or high pH substantially limits its use. Quaternary ammonium CS, which was prepared by introducing a quaternary ammonium group on a dissociative hydroxyl group or amino group of the CS, exhibited improved water solubility and stronger antibacterial activity relative to CS over an entire range of pH values; thus, this quaternary modification increases the potential biomedical applications of CS in the field of anti-infection. This review discusses the current findings on the antimicrobial properties of quaternized CS synthesized using different methods and the mechanisms of its antimicrobial actions. The potential antimicrobial applications in the orthopedic field and perspectives regarding future studies in this field are also considered. PMID:23325051

  16. Antimicrobial activities of Barringtonia acutangula.

    PubMed

    Rahman, M Mukhlesur; Polfreman, David; MacGeachan, Jodie; Gray, Alexander I

    2005-06-01

    Crude extracts and VLC fractions from the stem bark of Barringtonia acutangula (L.) Gaertn (Fam. Lecythidaceae) were screened for their antimicrobial activities against two Gram-positive bacteria, two Gram-negative bacteria and two fungi using a microdilution titre assay. Among the crude extracts, petroleum ether extract showed good activity against all test organisms. The VLC fraction PE 16 was found to be very effective against Bacillus subtilis (MIC=25 microg/ml) and Aspergillus niger (MIC=12.5 microg/ml). The activities were compared to standard antibiotics-kanamycin and fluconazole. The major compound from PE16 was identified as 12, 20(29)-lupadien-3-ol by NMR spectroscopy. PMID:16114086

  17. Synthesis and antimicrobial activity of squalamine analogue.

    PubMed

    Kim, H S; Choi, B S; Kwon, K C; Lee, S O; Kwak, H J; Lee, C H

    2000-08-01

    Synthesis and antimicrobial activity of squalamine analogue 2 are reported. The synthesis of 2 was accomplished from bisnoralcohol 3. The spermidine moiety was introduced via reductive amination of an appropriately functionalized 3beta-aminosterol with spermidinyl aldehyde 17 utilizing sodium triacetoxyborohydride as the reducing agent. Compound 2 shows weaker antimicrobial activity than squalamine. PMID:11003150

  18. Proteinase-activated receptors induce nonoxidative, antimicrobial peptides and increased antimicrobial activity in human mononuclear phagocytes.

    PubMed

    Lippuner, Nadine; Morell, Bernhard; Schaffner, Andreas; Schaer, Dominik J

    2007-02-01

    As thrombin and SFLLRNPNDKYEPF (SFLLRN-14), a synthetic ligand, mainly of the proteinase-activated receptor-1 (PAR-1), induce in monocytes the synthesis and secretion of chemokines, the PAR pathway can be viewed as a mononuclear phagocyte-activating principle. Classically, antimicrobial activity of mononuclear phagocytes is the measure for activation. Here, we investigated whether thrombin or SFLLRN-14 increases the antimicrobial activity of human monocytes and compared these effects to those of IFN-gamma. Furthermore, we measured the effects of these agents on the secretion of reactive oxygen intermediates and the antimicrobial activity of acid peptide extracts from monocytes. Human monocytes were exposed to maximally active concentrations of thrombin, SFLLRN-14, and IFN-gamma. Human monocytes treated with thrombin or SFLLRN-14 and then challenged with Salmonella enterica serovar typhimurium, including its attenuated mutant phoP, or Listeria monocytogenes killed, within 3 h, significantly more bacteria than control cells, an effect comparable with or surpassing the effect of IFN-gamma. This finding establishes the proteinase-PAR pathway as a potent, alternate activation pathway of mononuclear phagocytes. Thrombin and SFLLRN-14 had no significant effects on the amount of H(2)O(2) secreted by monocytes. This was in contrast to IFN-gamma, which as expected, increased the secretion of H(2)O(2) by approximately fourfold. Thrombin and SFLLRN-14, but not IFN-gamma, however, significantly increased the antimicrobial activity of acid peptide extracts of monocytes in a radial diffusion assay. Taken together, these findings suggest that IFN-gamma and thrombin differentially regulate oxidative and nonoxidative killing systems of human monocytes. PMID:17095611

  19. Antimicrobial activity of borate-buffered solutions.

    PubMed Central

    Houlsby, R D; Ghajar, M; Chavez, G O

    1986-01-01

    A minimal salts medium adjusted to physiological pH and osmolality was buffered with either 0.3% phosphate or 1.2% borate and evaluated for antimicrobial activity. The borate-buffered medium, either with or without a carbon source, exhibited significant antimicrobial activity against 15 Pseudomonas strains, 12 strains of enteric bacteria, and 7 strains of staphylococci. The borate-buffered system appears suitable for use as a generic vehicle for ophthalmic pharmaceutical agents. PMID:3729341

  20. Cefuroxime: antimicrobial activity, Pharmacology, and clinical efficacy.

    PubMed

    Smith, B R; LeFrock, J L

    1983-06-01

    The antimicrobial activity, pharmacology, toxicity, and clinical efficacy of cefuroxime are reviewed. Cefuroxime has a second-generation cephalosporin spectrum of activity similar to cefamandole. Addition of a methoxyimino side chain has enhanced its beta-lactamase stability. Cefuroxime is active against certain cephalothin-, cefamandole-, and gentamicin-resistant bacteria. Cefuroxime has an extended half-life which allows dosing every 8 h. If penetrates into bodily tissues and fluids, including the cerebrospinal fluid, in therapeutic concentrations. Cefuroxime has been used successfully in the treatment of meningitis; sepsis; urinary tract, bone and joint, pulmonary, skin, and soft tissue infections; and gonorrhea. Competitive pricing of cefuroxime should provide a cost-effective substitute for cefamandole and, in certain situations, third-generation cephalosporins.

  1. Antimicrobial activity of Cassia alata from Malaysia.

    PubMed

    Ibrahim, D; Osman, H

    1995-03-01

    Ethanolic extract of Cassia alata leaves was investigated for its antimicrobial activities on several microorganisms including bacteria, yeast, dermatophytic fungi and non-dermatophytic fungi. In vitro, the extract exhibited high activity against various species of dermatophytic fungi but low activity against non-dermatophytic fungi. However, bacterial and yeast species showed resistance against in vitro treatment with the extract. The minimum inhibitory concentration (MIC) values of the extract revealed that Trichophyton mentagorphytes var. interdigitale, Trichophyton mentagrophytes var. mentagorophytes, Trichophyton rubrum and Microsporum gypseum had the MIC of 125 mg/ml, whereas Microsporum canis had the MIC of 62.5 mg/ml. The inhibition can be observed on the macroconidia of Microsporum gypseum which resulted in structural degeneration beyond repair. The mechanism of inhibition can be related to the cell leakage as observed by irregular, wrinkle shape and loss in rigidity of the macroconidia.

  2. Report: Antimicrobial activity of Kalanchoe laciniata.

    PubMed

    Manan, Maria; Hussain, Liaqat; Ijaz, Hira; Qadir, Muhammad Imran

    2016-07-01

    This study was conducted to identify antimicrobial potential of Kalanchoe laciniata. The plants were extracted with 30-70% aqueous-methanol and n-hexane. The antimicrobial activities were examined using agar well diffusion method against bacteria (Staphylococcus aureus, Escherichia coli) and fungi (Candidaalbicans). Results showed that E. coli were more sensitive than Staphylococcus aureus and Candida albicans. The largest zone of inhibition (52 mm) was recorded against E. coli with the n-hexane extract of Kalanchoe laciniata.

  3. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.

    PubMed

    Guzman, Juan David

    2014-11-25

    Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  4. Antimicrobial Activity of Protamine against Oral Microorganisms.

    PubMed

    Kim, Yeon-Hee; Kim, Sang Moo; Lee, Si Young

    2015-01-01

    Protamine is an arginine-rich polycationic protein extracted from sperm cells of vertebrates including fishes such as salmon. The purpose of this study was to investigate the suppressive effects of protamine on the growth of oral pathogens for possible usage in dental materials. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the microdilution method. Twelve strains of oral viridans streptococci, Actinomyces naeslundii, Actinomyces odontolyticus, Enterococcus faecalis, Lactobacillus acidophilus, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis and Candida albicans were suppressed by protamine. MIC and MBC values were between 0.009 ~ 20 mg/mL and 0.019 ~ 80 mg/mL, respectively. The bactericidal activities of protamine against susceptible bacterial species were dependent on the concentration of protamine and incubation time. Based on the results of this study, protamine would be a useful compound for the development of antimicrobial agents against oral pathogens in dental materials.

  5. The Antimicrobial Activity of Porphyrin Attached Polymers

    NASA Astrophysics Data System (ADS)

    Thompson, Lesley

    2008-03-01

    We are interested in testing the antimicrobial activity of a porphyrin that is attached to a polymer. The porphyrin (5-(4-carboxyphenyl)-10,15,20-tris-(4-pryridyl)) was synthesized from methyl 4-formyl benzoate, 4-pyridinecarboxaldehyde, and pyrrole and attached to a copolymer of polystyrene/poly(vinyl benzyl chloride), which was synthesized by free radical polymerization. The antimicrobial activity of the polymer-attached porphyrin was then determined for gram-negative E. Coli grown to 0.80 OD. In this procedure, glass slides were coated with polymer-attached porphyrin via dip-coating, and the E. Coli bacteria were plated in Luria Broth media. The plates were subsequently exposed to light overnight before they were incubated as porphyrins act as photo-sensitizers when irradiated with light. The polymer-attached porphyrin did exhibit antimicrobial activity and parameters that affect its efficiency will be discussed.

  6. Analysis of the antimicrobial activities of a chemokine-derived peptide (CDAP-4) on Pseudomonas aeruginosa

    SciTech Connect

    Martinez-Becerra, Francisco; Dominguez-Ramirez, Lenin; Mendoza-Hernandez, Guillermo; Lopez-Vidal, Yolanda; Soldevila, Gloria . E-mail: garciaze@servidor.unam.mx

    2007-04-06

    Chemokines are key molecules involved in the control of leukocyte trafficking. Recently, a novel function as antimicrobial proteins has been described. CCL13 is the only member of the MCP chemokine subfamily displaying antimicrobial activity. To determine Key residues involved in its antimicrobial activity, CCL13 derived peptides were synthesized and tested against several bacterial strains, including Pseudomonas aeruginosa. One of these peptides, corresponding to the C-terminal region of CCL13 (CDAP-4) displayed good antimicrobial activity. Electron microscopy studies revealed remarkable morphological changes after CDAP-4 treatment. By computer modeling, CDAP-4 in {alpha} helical configuration generated a positive electrostatic potential that extended beyond the surface of the molecule. This feature is similar to other antimicrobial peptides. Altogether, these findings indicate that the antimicrobial activity was displayed by CCL13 resides to some extent at the C-terminal region. Furthermore, CDAP-4 could be considered a good antimicrobial candidate with a potential use against pathogens including P. aeruginosa.

  7. Antimicrobial Activity of Carbon-Based Nanoparticles

    PubMed Central

    Maleki Dizaj, Solmaz; Mennati, Afsaneh; Jafari, Samira; Khezri, Khadejeh; Adibkia, Khosro

    2015-01-01

    Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs) (especially single-walled carbon nanotubes (SWCNTs)) and graphene oxide (GO) nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery. PMID:25789215

  8. [Antimicrobial activity exerted by sodium dichloroisocyanurate].

    PubMed

    D'Auria, F D; Simonetti, G; Strippoli, V

    1989-01-01

    Sodium dichloroisocyanurate is a chlorinated cleaner. It was used for swimming pool sanitation and for the sterilisation of linen. Not recently ago sodium dichloroisocyanurate has substituted hypochlorite for the sterilisation of infant feeding bottles and teats. Sodium dichloroisocyanurate is soluble in water; this condition causes the hydrolysis of sodium dichloroisocyanurate in hypochlorous acid, that is the active agent, isocyanurate and isocyanurate chlorine. These compounds form a chlorine protein that carry out microbicidal activity. In a toxicology study has been shown that no severe changes in the normal metabolic function occurred, furthermore sodium dichloroisocyanurate has not shown teratogenic effects at the concentration of 200 mg/kg. The antimicrobial activity of sodium dichloroisocyanurate was evaluated against Gram negative bacteria such as E. coli or Salmonella typhimurium and against some fungi. This study illustrates a rapid antimicrobial activity using concentrations. Our study concentrated on the antimicrobial activity of sodium dichloroisocyanurate in some experimental conditions. We tested 66 strains of fungi, 28 Gram positive bacteria and 29 Gram negative bacteria. We also evaluated the antimicrobial activity of sodium dichloroisocyanurate against protozoa such as Trichomonas vaginalis. The antimicrobial activity was evaluated in cultural conditions and non cultural conditions; in these experiments we observed similar action in both the commercial product and pure substance. In cultural conditions sodium dichloroisocyanurate shows a good activity against fungi and bacteria, moreover it can be observed that the serum didn't interfere with its activity. In a non cultural condition the Candida was killed rapidly by the sodium dichloroisocyanurate but this activity is influenced by the growth phase of the yeast. Against mycelial form such as Penicillium and Aspergillus the sodium dichloroisocyanurate needs a longer contact time than yeast form

  9. The antimicrobial efficiency of silver activated sorbents

    NASA Astrophysics Data System (ADS)

    Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana B.; Rakočević, Zlatko Lj.; Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V.

    2015-12-01

    This study is focused on the surface modifications of the materials that are used for antimicrobial water treatment. Sorbents of different origin were activated by Ag+-ions. The selection of the most appropriate materials and the most effective activation agents was done according to the results of the sorption and desorption kinetic studies. Sorption capacities of selected sorbents: granulated activated carbon (GAC), zeolite (Z), and titanium dioxide (T), activated by Ag+-ions were following: 42.06, 13.51 and 17.53 mg/g, respectively. The antimicrobial activity of Ag/Z, Ag/GAC and Ag/T sorbents were tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. After 15 min of exposure period, the highest cell removal was obtained using Ag/Z against S. aureus and E. coli, 98.8 and 93.5%, respectively. Yeast cell inactivation was unsatisfactory for all three activated sorbents. The antimicrobial pathway of the activated sorbents has been examined by two separate tests - Ag+-ions desorbed from the activated surface to the aqueous phase and microbial cell removal caused by the Ag+-ions from the solid phase (activated surface sites). The results indicated that disinfection process significantly depended on the microbial-activated sites interactions on the modified surface. The chemical state of the activating agent had crucial impact to the inhibition rate. The characterization of the native and modified sorbents was performed by X-ray diffraction technique, X-ray photoelectron spectroscopy and scanning electron microscope. The concentration of adsorbed and released ions was determined by inductively coupled plasma optical emission spectroscopy and mass spectrometry. The antimicrobial efficiency of activated sorbents was related not only to the concentration of the activating agent, but moreover on the surface characteristics of the material, which affects the distribution and the accessibility of the activating agent.

  10. The antimicrobial activity of phenoxyethanol in vaccines.

    PubMed

    Lowe, I; Southern, J

    1994-02-01

    The activity of the antimicrobial preservatives, phenoxyethanol and thiomersal, were compared in diphtheria, tetanus and pertussis (adsorbed) vaccine. Both chemicals were equally effective in inactivating challenge doses of Gram-negative and Gram-positive micro-organisms, as well as a yeast.

  11. Superbugs: should antimicrobial resistance be included as a cost in economic evaluation?

    PubMed

    Coast, J; Smith, R D; Millar, M R

    1996-01-01

    This paper argues that increasing resistance to antimicrobials is an important social externality that has not been captured at the level of economic appraisal. The paper explicitly considers reasons why the externality of antimicrobial resistance has not generally been included as a cost in economic evaluations comparing management strategies for infectious diseases. Four reasons are considered: first, that the absolute cost of antimicrobial resistance is too small to be worth including; second, that there is an implicit discounting of the costs of antimicrobial resistance on the basis of time preference which makes the cost too small to be worth including; third, that there is an implicit discounting of the costs of antimicrobial resistance on the basis of uncertainty which makes the cost too small to be worth including; and fourth, that the costs are too difficult to measure. Although there does not appear to be methodological justification for excluding the costs of antimicrobial resistance, it seems likely that, because of the practical difficulties associated with measuring these costs, they will continue to be ignored. The paper concludes with a discussion of the applicability of standard policy responses used to deal with externalities in other areas of welfare economics.

  12. Antimicrobial activity of Aspilia latissima (Asteraceae).

    PubMed

    Souza, Jeana M E; Chang, Marilene R; Brito, Daniela Z; Farias, Katyuce S; Damasceno-Junior, Geraldo A; Turatti, Izabel C C; Lopes, Norberto P; Santos, Edson A; Carollo, Carlos A

    2015-01-01

    We evaluated the antimicrobial activity of Aspilia latissima - an abundant plant from the Brazilian Pantanal region - against Candida albicans, Candida parapsilosis, Candida krusei, Candida tropicalis, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli and Staphylococcus aureus. The crude extracts and fractions showed activity in all tested microorganisms. The chloroform fraction of the leaves and roots showed the most antimicrobial activity against S. aureus, with an MIC of 500 μg/mL. This fraction was submitted to bioautographic assays to characterize the activity of the compounds. Two bands from the leaves (L-A and L-B) and three bands from the roots (R-C, R-D and R-E) were bioactive. Within the root-derived bands, the terpene derivatives stigmasterol, kaurenoic acid and kaura-9(11), 16-dien-18-oic acid were identified. Antibiotic activity of A. latissima is reported for the first time.

  13. Antimicrobial activity of Aspilia latissima (Asteraceae)

    PubMed Central

    Souza, Jeana M.E.; Chang, Marilene R.; Brito, Daniela Z.; Farias, Katyuce S.; Damasceno-Junior, Geraldo A.; Turatti, Izabel C.C.; Lopes, Norberto P.; Santos, Edson A.; Carollo, Carlos A.

    2015-01-01

    Abstract We evaluated the antimicrobial activity of Aspilia latissima - an abundant plant from the Brazilian Pantanal region - against Candida albicans, Candida parapsilosis, Candida krusei, Candida tropicalis, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli and Staphylococcus aureus. The crude extracts and fractions showed activity in all tested microorganisms. The chloroform fraction of the leaves and roots showed the most antimicrobial activity against S. aureus, with an MIC of 500 μg/mL. This fraction was submitted to bioautographic assays to characterize the activity of the compounds. Two bands from the leaves (L-A and L-B) and three bands from the roots (R-C, R-D and R-E) were bioactive. Within the root-derived bands, the terpene derivatives stigmasterol, kaurenoic acid and kaura-9(11), 16-dien-18-oic acid were identified. Antibiotic activity of A. latissima is reported for the first time. PMID:26691468

  14. Multifactorial aspects of antimicrobial activity of propolis.

    PubMed

    Scazzocchio, F; D'Auria, F D; Alessandrini, D; Pantanella, F

    2006-01-01

    We investigated the antibacterial activity of sub-inhibitory concentrations of ethanolic extract of propolis (EEP), and its effect on the antibacterial activity of some antibiotics. Some clinically isolated Gram-positive strains were used. Moreover, sub-inhibitory concentrations of EEP were used to value its action on some important virulence factors like lipase and coagulase enzymes, and on biofilm formation in Staphylococcus aureus. Our results indicated that EEP had a significant antimicrobial activity towards all tested clinical strains. Adding EEP to antibacterial tested drugs, it drastically increased the antimicrobial effect of ampicillin, gentamycin and streptomycin, moderately the one of chloramphenicol, ceftriaxon and vancomycin, while there was no effect with erithromycin. Moreover, our results pointed out an inhibitory action of EEP on lipase activity of 18 Staphylococcus spp. strains and an inhibitory effect on coagulase of 11 S. aureus tested strains. The same EEP concentrations showed a negative interaction with adhesion and consequent biofilm formation in S. aureus ATCC 6538P.

  15. Antioxidant and antimicrobial activities of Withania frutescens.

    PubMed

    El Bouzidi, Laila; Larhsini, Mustapha; Markouk, Mohamed; Abbad, Abdelaziz; Hassani, Lahcen; Bekkouche, Khalid

    2011-10-01

    In the present study, we report for the first time the antioxidant and antimicrobial activities of Withania frutescens (L.) Pauquy roots and leaves. Total phenolic content was determined using the Folin-Ciocalteu method and antioxidant activity was evaluated by the DPPH free radical scavenging and reducing power methods. Antimicrobial activity tests were carried out against ten bacterial species involved in nosocomial infections and two opportunistic clinical yeast isolates. The ethyl acetate and n-butanol leaf fractions exhibited the highest DPPH radical scavenging activity with IC50 = 4.53 +/- 0.12 and 8.49 +/- 0.46 microg/mL, respectively. The n-butanol root fraction showed the greatest reducing power comparable with that of quercetin at 0.4 mg/mL. The dichloromethane leaf fraction exhibited the highest antibacterial activity against both Gram-positive and Gram-negative bacteria with MIC values ranging between 50 and 400 microg/mL, depending on the tested bacteria. However, none of the examined extracts exhibited anticandidal activity. The polyphenol and glycowithanolide constituents appeared to be responsible for the antioxidant capacity of W. frutescens, whereas the observed antimicrobial activity may be due to the presence of withanolides.

  16. ANTIMICROBIAL ACTIVITY OF EXTRACTS FROM ECUADORIAN LICHENS.

    PubMed

    Matvieieva, N A; Pasichnyk, L A; Zhytkevych, N V; Jacinto, Pabón Garcés Galo; Pidgorskyi, V S

    2015-01-01

    Antimicrobial activity of the ethanolic, isopropanolic, acetone, DMSO and aqueous extracts of the two lichen species from Ecuadorian highland, Usnea sp. and Stereocaulon sp. were explored in vitro against bacteria Bacillus subtilis, Escherichia coli and Staphylococcus aureus by the disc-diffusion method. Also the minimal inhibitory concentration (MIC) was determined. The strongest antimicrobial activity was found in DMSO extract of Usnea sp. compared to antibacterial activity of ciprfloxacin and cefazolin antibiotics. The inhibition zone was 28 mm, 30 mm, 31mm (DMSO extract, ciprfloxacin and cefazolin respectively) in case of B. subtilis usage as the test bacteria. MIC value for Usnea sp. and Stereocaulon sp. DMSO extracts was 0.4 mg/ml. E. coli was resistant to all kinds of extracts. The S. aureus sensitivity to lichen DMSO extracts was comparable to sensitivity of these microorganisms to tetracycline and vancomycin. Thereby, most kinds of extracts (ethanol, isopropanol, hexane, DMSO and acetone solvents) from Ecuadorian lichens Usnea sp. and Stereocaulon sp. with the exception of aqueous Stereocaulon sp. extracts possessed antibacterial activity against B. subtilis. DMSO lichen extracts had also antimicrobial activity against S. aureus. At the same time the extracts studied didn't demonstrate antibacterial activity against the representatives of the most common and harmful phytopathogenic bacteria tested. Further investigations of Ecuadorian lichens especially study of plants collected from extremal highland biotops can be very important in study of possibility of treatment of numerous diseases caused by pathogenic microorganisms. PMID:26214895

  17. ANTIMICROBIAL ACTIVITY OF EXTRACTS FROM ECUADORIAN LICHENS.

    PubMed

    Matvieieva, N A; Pasichnyk, L A; Zhytkevych, N V; Jacinto, Pabón Garcés Galo; Pidgorskyi, V S

    2015-01-01

    Antimicrobial activity of the ethanolic, isopropanolic, acetone, DMSO and aqueous extracts of the two lichen species from Ecuadorian highland, Usnea sp. and Stereocaulon sp. were explored in vitro against bacteria Bacillus subtilis, Escherichia coli and Staphylococcus aureus by the disc-diffusion method. Also the minimal inhibitory concentration (MIC) was determined. The strongest antimicrobial activity was found in DMSO extract of Usnea sp. compared to antibacterial activity of ciprfloxacin and cefazolin antibiotics. The inhibition zone was 28 mm, 30 mm, 31mm (DMSO extract, ciprfloxacin and cefazolin respectively) in case of B. subtilis usage as the test bacteria. MIC value for Usnea sp. and Stereocaulon sp. DMSO extracts was 0.4 mg/ml. E. coli was resistant to all kinds of extracts. The S. aureus sensitivity to lichen DMSO extracts was comparable to sensitivity of these microorganisms to tetracycline and vancomycin. Thereby, most kinds of extracts (ethanol, isopropanol, hexane, DMSO and acetone solvents) from Ecuadorian lichens Usnea sp. and Stereocaulon sp. with the exception of aqueous Stereocaulon sp. extracts possessed antibacterial activity against B. subtilis. DMSO lichen extracts had also antimicrobial activity against S. aureus. At the same time the extracts studied didn't demonstrate antibacterial activity against the representatives of the most common and harmful phytopathogenic bacteria tested. Further investigations of Ecuadorian lichens especially study of plants collected from extremal highland biotops can be very important in study of possibility of treatment of numerous diseases caused by pathogenic microorganisms.

  18. Magnesium Based Materials and their Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Robinson, Duane Allan

    The overall goals of this body of work were to characterize the antimicrobial properties of magnesium (Mg) metal and nano-magnesium oxide (nMgO) in vitro, to evaluate the in vitro cytotoxicity of Mg metal, and to incorporate MgO nanoparticles into a polymeric implant coating and evaluate its in vitro antimicrobial properties. In the course of this work it was found that Mg metal, Mg-mesh, and nMgO have in vitro antimicrobial properties that are similar to a bactericidal antibiotic. For Mg metal, the mechanism of this activity appears to be related to an increase in pH (i.e. a more alkaline environment) and not an increase in Mg2+. Given that Mg-mesh is a Mg metal powder, the assumption is that it has the same mechanism of activity as Mg metal. The mechanism of activity for nMgO remains to be elucidated and may be related to a combination of interaction of the nanoparticles with the bacteria and the alkaline pH. It was further demonstrated that supernatants from suspensions of Mg-mesh and nMgO had the same antimicrobial effect as was noted when the particles were used. The supernatant from Mg-mesh and nMgO was also noted to prevent biofilm formation for two Staphylococcus strains. Finally, poly-epsilon-caprolactone (PCL) composites of Mg-mesh (PCL+Mg-mesh) and nMgO (PCL+nMgO) were produced. Coatings applied to screws inhibited growth of Escherichia coli and Pseudomonas aeruginosa and in thin disc format inhibited the growth of Staphylococcus aureus in addition to the E. coli and P. aeruginosa. Pure Mg metal was noted to have some cytotoxic effect on murine fibroblast and osteoblast cell lines, although this effect needs to be characterized further. To address the need for an in vivo model for evaluating implant associated infections, a new closed fracture osteomyelitis model in the femur of the rat was developed. Magnesium, a readily available and inexpensive metal was shown to have antimicrobial properties that appear to be related to its corrosion products and

  19. Antimicrobial activity of polycationic peptides.

    PubMed

    Giacometti, A; Cirioni, O; Barchiesi, F; Del Prete, M S; Scalise, G

    1999-11-01

    The in vitro activity of six polycationic peptides, buforin II, cecropin P1, indolicidin, magainin II, nisin, and ranalexin, were evaluated against several clinical isolates of gram-positive and gram-negative aerobic bacteria, yeasts, Pneumocystis carinii and Cryptosporidium parvum, by using microbroth dilution methods. The peptides exhibited different antibacterial activities and rapid time-dependent killing. The gram-negative organisms were more susceptible to buforin II and cecropin P1, whereas buforin II and ranalexin were the most active compounds against the gram-positive strains. Similarly, ranalexin showed the highest activity against Candida spp., whereas magainin II exerted the highest anticryptococcal activity. Finally, the peptides showed high anti-Pneumocystis activity, whereas no compound had strong inhibitory effect on C. parvum. PMID:10612440

  20. Terpenes with antimicrobial activity from Cretan propolis.

    PubMed

    Popova, Milena P; Chinou, Ioanna B; Marekov, Ilko N; Bankova, Vassya S

    2009-07-01

    Five terpenes, the diterpenes: 14,15-dinor-13-oxo-8(17)-labden-19-oic acid and a mixture of labda-8(17),13E-dien-19-carboxy-15-yl oleate and palmitate as well as the triterpenes, 3,4-seco-cycloart-12-hydroxy-4(28),24-dien-3-oic acid and cycloart-3,7-dihydroxy-24-en-28-oic acid were isolated from Cretan propolis. Moreover, 18 known compounds were also isolated, seven of them for the first time as propolis components. All structures were established on the basis of spectroscopic analysis and chemical evidence. All isolated compounds were tested for antimicrobial activity against some Gram-positive and Gram-negative bacteria as well as against some human pathogenic fungi showing a broad spectrum of antimicrobial activity.

  1. Antimicrobial activities of selected Cyathus species.

    PubMed

    Liu, Ya-Jun; Zhang, Ke-Qin

    2004-02-01

    Twelve selected Cyathus species were tested for their abilities to produce antimicrobial metabolites. Most of them were found to produce secondary exo-metabolites that could induce morphological abnormalities of rice pathogenic fungi Pyricularia oryzae. Some extracts from the cultivated liquid obviously inhibited human pathogenic fungi Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans. Activities against six human pathogenic bacteria were also obtained from some of these extracts. PMID:15119855

  2. Antioxidant, antimicrobial and antiproliferative activities of five lichen species.

    PubMed

    Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Comić, Ljiljana; Dačić, Dragana; Curčić, Milena; Marković, Snežana

    2011-01-01

    The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells.

  3. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species

    PubMed Central

    Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Čomić, Ljiljana; Đačić, Dragana; Ćurčić, Milena; Marković, Snežana

    2011-01-01

    The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells. PMID:21954369

  4. Antimicrobial Activity of Indigofera suffruticosa.

    PubMed

    Leite, Sônia Pereira; Vieira, Jeymesson Raphael Cardoso; de Medeiros, Paloma Lys; Leite, Roberta Maria Pereira; de Menezes Lima, Vera Lúcia; Xavier, Haroudo Satiro; de Oliveira Lima, Edeltrudes

    2006-06-01

    Various organic and aqueous extracts of leaves of Indigofera suffruticosa Mill (Fabaceae) obtained by infusion and maceration were screened for their antibacterial and antifungal activities. The extracts were tested against 5 different species of human pathogenic bacteria and 17 fungal strains by the agar-solid diffusion method. Most of the extracts were devoid of antifungal and antibacterial activities, except the aqueous extract of leaves of I. suffruticosa obtained by infusion, which showed strong inhibitory activity against the Gram-positive bacteria Staphylococcus aureus with a minimal inhibitory concentration (MIC) of 5000 microg ml(-1). The MIC values to dermatophyte strains were 2500 microg ml(-1) against Trichophyton rubrum (LM-09, LM-13) and Microsporum canis. This study suggests that aqueous extracts of leaves of I. suffruticosa obtained by infusion can be used in the treatment of skin diseases caused by dermatophytes. PMID:16786057

  5. Antimicrobial Activity of Indigofera suffruticosa

    PubMed Central

    Leite, Sônia Pereira; Vieira, Jeymesson Raphael Cardoso; de Medeiros, Paloma Lys; Leite, Roberta Maria Pereira; de Menezes Lima, Vera Lúcia; Xavier, Haroudo Satiro; de Oliveira Lima, Edeltrudes

    2006-01-01

    Various organic and aqueous extracts of leaves of Indigofera suffruticosa Mill (Fabaceae) obtained by infusion and maceration were screened for their antibacterial and antifungal activities. The extracts were tested against 5 different species of human pathogenic bacteria and 17 fungal strains by the agar-solid diffusion method. Most of the extracts were devoid of antifungal and antibacterial activities, except the aqueous extract of leaves of I. suffruticosa obtained by infusion, which showed strong inhibitory activity against the Gram-positive bacteria Staphylococcus aureus with a minimal inhibitory concentration (MIC) of 5000 µg ml−1. The MIC values to dermatophyte strains were 2500 µg ml−1 against Trichophyton rubrum (LM-09, LM-13) and Microsporum canis. This study suggests that aqueous extracts of leaves of I. suffruticosa obtained by infusion can be used in the treatment of skin diseases caused by dermatophytes. PMID:16786057

  6. Antimicrobial activity of Antarctic bryozoans: an ecological perspective with potential for clinical applications.

    PubMed

    Figuerola, Blanca; Sala-Comorera, Laura; Angulo-Preckler, Carlos; Vázquez, Jennifer; Jesús Montes, M; García-Aljaro, Cristina; Mercadé, Elena; Blanch, Anicet R; Avila, Conxita

    2014-10-01

    The antimicrobial activity of Antarctic bryozoans and the ecological functions of the chemical compounds involved remain largely unknown. To determine the significant ecological and applied antimicrobial effects, 16 ether and 16 butanol extracts obtained from 13 different bryozoan species were tested against six Antarctic (including Psychrobacter luti, Shewanella livingstonensis and 4 new isolated strains) and two bacterial strains from culture collections (Escherichia coli and Bacillus cereus). Results from the bioassays reveal that all ether extracts exhibited antimicrobial activity against some bacteria. Only one butanol extract produced inhibition, indicating that antimicrobial compounds are mainly lipophilic. Ether extracts of the genus Camptoplites inhibited the majority of bacterial strains, thus indicating a broad-spectrum of antimicrobial activity. Moreover, most ether extracts presented activities against bacterial strains from culture collections, suggesting the potential use of these extracts as antimicrobial drugs against pathogenic bacteria.

  7. Antimicrobial activity of Antarctic bryozoans: an ecological perspective with potential for clinical applications.

    PubMed

    Figuerola, Blanca; Sala-Comorera, Laura; Angulo-Preckler, Carlos; Vázquez, Jennifer; Jesús Montes, M; García-Aljaro, Cristina; Mercadé, Elena; Blanch, Anicet R; Avila, Conxita

    2014-10-01

    The antimicrobial activity of Antarctic bryozoans and the ecological functions of the chemical compounds involved remain largely unknown. To determine the significant ecological and applied antimicrobial effects, 16 ether and 16 butanol extracts obtained from 13 different bryozoan species were tested against six Antarctic (including Psychrobacter luti, Shewanella livingstonensis and 4 new isolated strains) and two bacterial strains from culture collections (Escherichia coli and Bacillus cereus). Results from the bioassays reveal that all ether extracts exhibited antimicrobial activity against some bacteria. Only one butanol extract produced inhibition, indicating that antimicrobial compounds are mainly lipophilic. Ether extracts of the genus Camptoplites inhibited the majority of bacterial strains, thus indicating a broad-spectrum of antimicrobial activity. Moreover, most ether extracts presented activities against bacterial strains from culture collections, suggesting the potential use of these extracts as antimicrobial drugs against pathogenic bacteria. PMID:25232675

  8. Kombucha fermentation and its antimicrobial activity.

    PubMed

    Sreeramulu, G; Zhu, Y; Knol, W

    2000-06-01

    Kombucha was prepared in a tea broth (0.5% w/v) supplemented with sucrose (10% w/v) by using a commercially available starter culture. The pH decreased steadily from 5 to 2.5 during the fermentation while the weight of the "tea fungus" and the OD of the tea broth increased through 4 days of the fermentation and remained fairly constant thereafter. The counts of acetic acid-producing bacteria and yeasts in the broth increased up to 4 days of fermentation and decreased afterward. The antimicrobial activity of Kombucha was investigated against a number of pathogenic microorganisms. Staphylococcus aureus, Shigella sonnei, Escherichia coli, Aeromonas hydrophila, Yersinia enterolitica, Pseudomonas aeruginosa, Enterobacter cloacae, Staphylococcus epidermis, Campylobacter jejuni, Salmonella enteritidis, Salmonella typhimurium, Bacillus cereus, Helicobacterpylori, and Listeria monocytogenes were found to be sensitive to Kombucha. According to the literature on Kombucha, acetic acid is considered to be responsible for the inhibitory effect toward a number of microbes tested, and this is also valid in the present study. However, in this study, Kombucha proved to exert antimicrobial activities against E. coli, Sh. sonnei, Sal. typhimurium, Sal. enteritidis, and Cm. jejuni, even at neutral pH and after thermal denaturation. This finding suggests the presence of antimicrobial compounds other than acetic acid and large proteins in Kombucha. PMID:10888589

  9. Assessing the antimicrobial activities of Ocins.

    PubMed

    Choyam, Shilja; Lokesh, Dhanashree; Kempaiah, Bettadaiah Bheemakere; Kammara, Rajagopal

    2015-01-01

    The generation of a zone of inhibition on a solid substrate indicates the bioactivity of antimicrobial peptides such as bacteriocin and enterocin. The indicator strain plays a significant role in bacteriocin assays. Other characteristics of bacteriocins, such as their dispersal ability and the different zymogram components, also affect bacteriocin assays. However, universal well diffusion assays for antimicrobials, irrespective of their ability to diffuse (bacteriocin and enterocin), do not exist. The ability of different zymography components to generate non-specific activities have rarely been explored in the literature. The purpose of the present work was to evaluate the impact of major factors (diffusion and rate of diffusion) in a solid substrate bioassay, and to document the adverse effects of sodium dodecyl sulfate in zymograms used to estimate the approximate molecular weight of bacteriocins. PMID:26441952

  10. Assessing the antimicrobial activities of Ocins

    PubMed Central

    Choyam, Shilja; Lokesh, Dhanashree; Kempaiah, Bettadaiah Bheemakere; Kammara, Rajagopal

    2015-01-01

    The generation of a zone of inhibition on a solid substrate indicates the bioactivity of antimicrobial peptides such as bacteriocin and enterocin. The indicator strain plays a significant role in bacteriocin assays. Other characteristics of bacteriocins, such as their dispersal ability and the different zymogram components, also affect bacteriocin assays. However, universal well diffusion assays for antimicrobials, irrespective of their ability to diffuse (bacteriocin and enterocin), do not exist. The ability of different zymography components to generate non-specific activities have rarely been explored in the literature. The purpose of the present work was to evaluate the impact of major factors (diffusion and rate of diffusion) in a solid substrate bioassay, and to document the adverse effects of sodium dodecyl sulfate in zymograms used to estimate the approximate molecular weight of bacteriocins. PMID:26441952

  11. Study of the nanomaterials and their antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Ramadi, Muntaha

    In the last decade, the world faced huge problems associated with the spread of antimicrobial resistant infections that are essentially untreatable such as methicillin resistant Staphylococcus aureus (MRSA) infection. These infections have begun to occur in both hospital and community environments. Developing new antimicrobial surface coatings can hold a great promise to minimize and control various problems that associated with the spreading of infections and biofilms formation, these coatings can be used in medicine where medical devices associated with severe infections, in construction industry and the in food packaging industry. It has been established that single-walled CNTs exhibit a strong antimicrobial activity and can pierce bacterial cell walls. Recently, nanomaterial structures that made from pure carbon such as CNTs have been seen as promising candidates for many potential applications in Biotechnology and bioscience due to the combination of their extraordinary properties that arise from surface area, light weight, strength, flexibility, unique electrical conductivity and many more novel physical and chemical properties at nanoscale level. CNTs have been used widely in biomedical field including drug delivery, gene therapy and creating new biomedical devices with novel properties. Researchers have now made a first step to add carbon nanotubes to antimicrobial agents list. There are two types of CNTs have been used in biomedical research. The first one is a single-walled carbon nanotube (SWNT) and the second is a multi-walled carbon nanotube (MWNT). Recent in vitro studies suggest that carbon nanotubes have antimicrobial activity and coating CNTs with nickel nanoparticle could enhance the antimicrobial activity of cabon nanotubes. In order to test this hypothesis, nickel nanoparticles were deposited on carbon nanotubes (CNTs) by electrochemical deposition. The carbon nanotubes used in this study were XD-CNTs, SWNTs and Ni-coated CNTs. The structure and

  12. Repurposing the Antihistamine Terfenadine for Antimicrobial Activity against Staphylococcus aureus

    PubMed Central

    2015-01-01

    Staphylococcus aureus is a rapidly growing health threat in the U.S., with resistance to several commonly prescribed treatments. A high-throughput screen identified the antihistamine terfenadine to possess, previously unreported, antimicrobial activity against S. aureus and other Gram-positive bacteria. In an effort to repurpose this drug, structure–activity relationship studies yielded 84 terfenadine-based analogues with several modifications providing increased activity versus S. aureus and other bacterial pathogens, including Mycobacterium tuberculosis. Mechanism of action studies revealed these compounds to exert their antibacterial effects, at least in part, through inhibition of the bacterial type II topoisomerases. This scaffold suffers from hERG liabilities which were not remedied through this round of optimization; however, given the overall improvement in activity of the set, terfenadine-based analogues provide a novel structural class of antimicrobial compounds with potential for further characterization as part of the continuing process to meet the current need for new antibiotics. PMID:25238555

  13. Antimicrobial activity of different tea varieties available in Pakistan.

    PubMed

    Zakir, Muhammad; Sultan, Khush Bakht; Khan, Haroon; Ihsaanullah; Khan, Murad Ali; Fazal, Hina; Rauf, Abdur

    2015-11-01

    In this antimicrobial study, various extracts of Green and Black tea (Camellia sinensis) and Lemon grass (Cymbopogon citrates) were evaluated for antimicrobial activities against six bacterial strains including both human pathogenic bacteria (Escherichia coli, Pseudomonas aeuroginosa, Staphylococcus aureus and Salmonella typhi) and plant pathogenic bacteria (Erwinia carotovora, Agro bacterium tumifaciens) and one fungal strain Candida albicans by disc diffusion susceptibility method. Of human pathogens, P. aeruginosa was most susceptible to all three different tea varieties; though rest of the strains also demonstrated prominent sensitivity. In comparison, black tea extracts were less activities than green tea and lemon grass. However, all the three tea varieties illustrated profound activity against plant pathogenic bacteria. Similarly, when extracts of tea were tested against C. albicans, green tea and lemon grass exhibited significant activity while black tea was mostly inactive.

  14. Antimicrobial activity of different tea varieties available in Pakistan.

    PubMed

    Zakir, Muhammad; Sultan, Khush Bakht; Khan, Haroon; Ihsaanullah; Khan, Murad Ali; Fazal, Hina; Rauf, Abdur

    2015-11-01

    In this antimicrobial study, various extracts of Green and Black tea (Camellia sinensis) and Lemon grass (Cymbopogon citrates) were evaluated for antimicrobial activities against six bacterial strains including both human pathogenic bacteria (Escherichia coli, Pseudomonas aeuroginosa, Staphylococcus aureus and Salmonella typhi) and plant pathogenic bacteria (Erwinia carotovora, Agro bacterium tumifaciens) and one fungal strain Candida albicans by disc diffusion susceptibility method. Of human pathogens, P. aeruginosa was most susceptible to all three different tea varieties; though rest of the strains also demonstrated prominent sensitivity. In comparison, black tea extracts were less activities than green tea and lemon grass. However, all the three tea varieties illustrated profound activity against plant pathogenic bacteria. Similarly, when extracts of tea were tested against C. albicans, green tea and lemon grass exhibited significant activity while black tea was mostly inactive. PMID:26639502

  15. Review of antimicrobial and antioxidative activities of chitosans in food.

    PubMed

    Friedman, Mendel; Juneja, Vijay K

    2010-09-01

    Interest in chitosan, a biodegradable, nontoxic, non-antigenic, and biocompatible biopolymer isolated from shellfish, arises from the fact that chitosans are reported to exhibit numerous health-related beneficial effects, including strong antimicrobial and antioxidative activities in foods. The extraordinary interest in the chemistry and application in agriculture, horticulture, environmental science, industry, microbiology, and medicine is attested by about 17,000 citations on this subject in the Scopus database. A special need exists to develop a better understanding of the role of chitosans in ameliorating foodborne illness. To contribute to this effort, this overview surveys and interprets our present knowledge of the chemistry and antimicrobial activities of chitosan in solution, as powders, and in edible films and coating against foodborne pathogens, spoilage bacteria, and pathogenic viruses and fungi in several food categories. These include produce, fruit juices, eggs and dairy, cereal, meat, and seafood products. Also covered are antimicrobial activities of chemically modified and nanochitosans, therapeutic properties, and possible mechanisms of the antimicrobial, antioxidative, and metal chelating effects. Further research is suggested in each of these categories. The widely scattered data on the multifaceted aspects of chitosan microbiology, summarized in the text and in 10 tables and 8 representative figures, suggest that low-molecular-weight chitosans at a pH below 6.0 presents optimal conditions for achieving desirable antimicrobial and antioxidative-preservative effects in liquid and solid foods. We are very hopeful that the described findings will be a valuable record and resource for further progress to improve microbial food safety and food quality. PMID:20828484

  16. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency.

  17. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency. PMID:26168032

  18. Antimicrobial activities of single aroma compounds.

    PubMed

    Schmidt, Erich; Bail, Stefanie; Friedl, Susanne Mirjam; Jirovetz, Leopold; Buchbauer, Gerhard; Wanner, Jürgen; Denkova, Zapryana; Slavchev, Alexander; Stoyanova, Albena; Geissler, Margit

    2010-09-01

    Commercially available aroma samples were evaluated for their olfactory quality by professional perfumers and tested for their antimicrobial activity. Agar diffusion and agar-dilution were used as test methods and a set of two Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and four Gram-negative bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris G, Klebsiella pneumoniae and Salmonella abony) and a yeast, Candida albicans, were the test microorganisms. All the investigated compounds were active against Gram-positive bacteria, especially beta-caryophyllene against Enterococcus faecalis (MIC 6 ppm), but only few substances showed activity towards Gram-negative bacteria, except for cinnamic acid, which was active against all (MIC 60 ppm) and Candida albicans, against which cinnamic acid and caryophyllene oxide showed high activity (MIC < 60 ppm).

  19. Antioxidant, Antimicrobial Activity and Toxicity Test of Pilea microphylla

    PubMed Central

    Modarresi Chahardehi, Amir; Ibrahim, Darah; Fariza Sulaiman, Shaida

    2010-01-01

    A total of 9 plant extracts were tested, using two different kinds of extracting methods to evaluate the antioxidant and antimicrobial activities from Pilea microphylla (Urticaceae family) and including toxicity test. Antioxidant activity were tested by using DPPH free radical scavenging, also total phenolic contents and total flavonoid contents were determined. Toxicity assay carried out by using brine shrimps. Methanol extract of method I (ME I) showed the highest antioxidant activity at 69.51 ± 1.03. Chloroform extract of method I (CE I) showed the highest total phenolic contents at 72.10 ± 0.71 and chloroform extract of method II (CE II) showed the highest total flavonoid contents at 60.14 ± 0.33. The antimicrobial activity of Pilea microphylla extract was tested in vitro by using disc diffusion method and minimum inhibitory concentration (MIC). The Pilea microphylla extract showed antibacterial activity against some Gram negative and positive bacteria. The extracts did not exhibit antifungal and antiyeast activity. The hexane extract of method I (HE I) was not toxic against brine shrimp (LC50 value was 3880 μg/ml). Therefore, the extracts could be suitable as antimicrobial and antioxidative agents in food industry. PMID:20652052

  20. Antimicrobial activity of bone cements embedded with organic nanoparticles.

    PubMed

    Perni, Stefano; Thenault, Victorien; Abdo, Pauline; Margulis, Katrin; Magdassi, Shlomo; Prokopovich, Polina

    2015-01-01

    Infections after orthopedic surgery are a very unwelcome outcome; despite the widespread use of antibiotics, their incidence can be as high as 10%. This risk is likely to increase as antibiotics are gradually losing efficacy as a result of bacterial resistance; therefore, novel antimicrobial approaches are required. Parabens are a class of compounds whose antimicrobial activity is employed in many cosmetic and pharmaceutical products. We developed propylparaben nanoparticles that are hydrophilic, thus expanding the applicability of parabens to aqueous systems. In this paper we assess the possibility of employing paraben nanoparticles as antimicrobial compound in bone cements. The nanoparticles were embedded in various types of bone cement (poly(methyl methacrylate) [PMMA], hydroxyapatite, and brushite) and the antimicrobial activity was determined against common causes of postorthopedic surgery infections such as: Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, and Acinetobacter baumannii. Nanoparticles at concentrations as low as 1% w/w in brushite bone cement were capable of preventing pathogens growth, 5% w/w was needed for hydroxyapatite bone cement, while 7% w/w was required for PMMA bone cement. No detrimental effect was determined by the addition of paraben nanoparticles on bone cement compression strength and cytocompatibility. Our results demonstrate that paraben nanoparticles can be encapsulated in bone cement, providing concentration-dependent antimicrobial activity; furthermore, lower concentrations are needed in calcium phosphate (brushite and hydroxyapatite) than in acrylic (PMMA) bone cements. These nanoparticles are effective against a wide spectrum of bacteria, including those already resistant to the antibiotics routinely employed in orthopedic applications, such as gentamicin.

  1. Antimicrobial activity of bone cements embedded with organic nanoparticles

    PubMed Central

    Perni, Stefano; Thenault, Victorien; Abdo, Pauline; Margulis, Katrin; Magdassi, Shlomo; Prokopovich, Polina

    2015-01-01

    Infections after orthopedic surgery are a very unwelcome outcome; despite the widespread use of antibiotics, their incidence can be as high as 10%. This risk is likely to increase as antibiotics are gradually losing efficacy as a result of bacterial resistance; therefore, novel antimicrobial approaches are required. Parabens are a class of compounds whose antimicrobial activity is employed in many cosmetic and pharmaceutical products. We developed propylparaben nanoparticles that are hydrophilic, thus expanding the applicability of parabens to aqueous systems. In this paper we assess the possibility of employing paraben nanoparticles as antimicrobial compound in bone cements. The nanoparticles were embedded in various types of bone cement (poly(methyl methacrylate) [PMMA], hydroxyapatite, and brushite) and the antimicrobial activity was determined against common causes of postorthopedic surgery infections such as: Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, and Acinetobacter baumannii. Nanoparticles at concentrations as low as 1% w/w in brushite bone cement were capable of preventing pathogens growth, 5% w/w was needed for hydroxyapatite bone cement, while 7% w/w was required for PMMA bone cement. No detrimental effect was determined by the addition of paraben nanoparticles on bone cement compression strength and cytocompatibility. Our results demonstrate that paraben nanoparticles can be encapsulated in bone cement, providing concentration-dependent antimicrobial activity; furthermore, lower concentrations are needed in calcium phosphate (brushite and hydroxyapatite) than in acrylic (PMMA) bone cements. These nanoparticles are effective against a wide spectrum of bacteria, including those already resistant to the antibiotics routinely employed in orthopedic applications, such as gentamicin. PMID:26487803

  2. Antimicrobial activity of Visnea mocanera leaf extracts.

    PubMed

    Hernández-Pérez, M; López-García, R E; Rabanal, R M; Darias, V; Arias, A

    1994-01-01

    A chemical study of Visnea mocanera leaves was carried out giving lupeol and beta-sitosterol fatty esters, as well as beta-sitosterol and the triterpenic betulinic, ursolic, platanic and 2 alpha,3 beta-dihydroxy-ursan-12-en-28-oic and 2 alpha,3 beta-dihydroxy-olean-12-en-28-oic acids. Studies of the antimicrobial activity of acetone and methanol extracts as well as an aqueous infusion were also performed and the good experimental results obtained justify the folk use of this species as a cicatrizant and vulnerary agent.

  3. Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of β-Hairpin Peptides

    PubMed Central

    2016-01-01

    Bacteria have acquired extensive resistance mechanisms to protect themselves against antibiotic action. Today the bacterial membrane has become one of the “final frontiers” in the search for new compounds acting on novel targets to address the threat of multi-drug resistant (MDR) and XDR bacterial pathogens. β-Hairpin antimicrobial peptides are amphipathic, membrane-binding antibiotics that exhibit a broad range of activities against Gram-positive, Gram-negative, and fungal pathogens. However, most members of the class also possess adverse cytotoxicity and hemolytic activity that preclude their development as candidate antimicrobials. We examined peptide hydrophobicity, amphipathicity, and structure to better dissect and understand the correlation between antimicrobial activity and toxicity, membrane binding, and membrane permeability. The hydrophobicity, pI, net charge at physiological pH, and amphipathic moment for the β-hairpin antimicrobial peptides tachyplesin-1, polyphemusin-1, protegrin-1, gomesin, arenicin-3, and thanatin were determined and correlated with key antimicrobial activity and toxicity data. These included antimicrobial activity against five key bacterial pathogens and two fungi, cytotoxicity against human cell lines, and hemolytic activity in human erythrocytes. Observed antimicrobial activity trends correlated with compound amphipathicity and, to a lesser extent, with overall hydrophobicity. Antimicrobial activity increased with amphipathicity, but unfortunately so did toxicity. Of note, tachyplesin-1 was found to be 8-fold more amphipathic than gomesin. These analyses identify tachyplesin-1 as a promising scaffold for rational design and synthetic optimization toward an antibiotic candidate. PMID:27331141

  4. Antimicrobial activity of de novo designed cationic peptides against multi-resistant clinical isolates.

    PubMed

    Faccone, Diego; Veliz, Omar; Corso, Alejandra; Noguera, Martin; Martínez, Melina; Payes, Cristian; Semorile, Liliana; Maffía, Paulo Cesar

    2014-01-01

    Antibiotic resistance is one of the main problems concerning public health or clinical practice. Antimicrobial peptides appear as good candidates for the development of new therapeutic drugs. In this study we de novo designed a group of cationic antimicrobial peptides, analyzed its physicochemical properties, including its structure by circular dichroism and studied its antimicrobial properties against a panel of clinical isolates expressing different mechanisms of resistance. Three cationic alpha helical peptides exhibited antimicrobial activity comparable to, or even better than the comparator omiganan (MBI-226).

  5. Antiendotoxin activity of cationic peptide antimicrobial agents.

    PubMed Central

    Gough, M; Hancock, R E; Kelly, N M

    1996-01-01

    The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF stimulus. Furthermore, MBI-28 offered significant protection in a galactosamine-sensitized mouse model of lethal endotoxic shock. This protection correlated with the ability of MBI-28 to reduce LPS-induced circulating TNF by nearly 90% in this mouse model. Both MBI-27 and MBI-28 demonstrated antibacterial activity against gram-negative bacteria in vitro and in vivo against Pseudomonas aeruginosa infections in neutropenic mice. PMID:8945527

  6. Antimicrobial activity of endophytic fungi isolated from Swietenia macrophylla leaves.

    PubMed

    Ibrahim, Darah; Lee, Chong Chai; Sheh-Hong, Lim

    2014-02-01

    The endophytic fungi isolated from leaves of Swietenia macrophylla of different ages were examined for antimicrobial activity. The agar plug diffusion assay was used for primary screening, followed by the disc diffusion method. A total of 461 filamentous endophytic fungi were isolated and cultured to examine their antimicrobial properties. In the primary screen, 315 isolates (68.3%) exhibited activity against at least one of the test pathogenic microorganisms. The percentage of isolates exhibiting antimicrobial activity increased with leaf age. Endophytic fungal assemblages, as well as those isolates exhibiting antimicrobial properties appeared to increase with leaf age. The main antimicrobial compounds were produced extracellularly by the endophytic fungi. The results suggest that healthy leaves at older stages of growth can be a potential source for the isolation of endophytic fungi with antimicrobial properties.

  7. Peptides and proteins with antimicrobial activity.

    PubMed

    Coutinho, Henrique Douglas Melo; Lôbo, Katiuscia Menezes; Bezerra, Denise Aline Casimiro; Lôbo, Inalzuir

    2008-01-01

    The increase of microbial resistance to antibiotics has led to a continuing search for newer and more effective drugs. Antimicrobial peptides are generally found in animals, plants, and microorganisms and are of great interest to medicine, pharmacology, and the food industry. These peptides are capable of inhibiting pathogenic microorganisms. They can attack parasites, while causing little or no harm to the host cells. The defensins are peptides found in granules in the polymorphonuclear neutrophils (PMNs) and are responsible for the defense of the organism. Several animal defensins, like dermaseptin, antileukoprotease, protegrin, and others, have had their activities and efficacy tested and been shown to be effective against bacteria, fungi, and protists; there are also specific defensins from invertebrates, e.g., drosomycin and heliomicin; from plants, e.g., the types A and B; and the bacteriocins, e.g., acrocin, marcescin, etc. The aim of the present work was to compile a comprehensive bibliographic review of the diverse potentially antimicrobial peptides in an effort to systematize the current knowledge on these substances as a contribution for further researches. The currently available bibliography does not give a holistic approach on this subject. The present work intends to show that the mechanism of defense represented by defensins is promising from the perspective of its application in the treatment of infectious diseases in human, animals and plants.

  8. Screening antimicrobial activity of various extracts of Urtica dioica.

    PubMed

    Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila

    2012-12-01

    Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I), which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II) with a five solvent system (butanol). The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30 microg/mL) as positive control for fungi and yeast, and pure methanol (v/v) as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC). The ethyl acetate and hexane extract from extraction method I (EA I and HE I) exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC). MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA) using butanol extract of extraction method II (BE II) were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II) for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17), and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11); besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342) which in this among 21.71% belongs to

  9. Screening antimicrobial activity of various extracts of Urtica dioica.

    PubMed

    Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila

    2012-12-01

    Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I), which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II) with a five solvent system (butanol). The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30 microg/mL) as positive control for fungi and yeast, and pure methanol (v/v) as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC). The ethyl acetate and hexane extract from extraction method I (EA I and HE I) exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC). MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA) using butanol extract of extraction method II (BE II) were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II) for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17), and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11); besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342) which in this among 21.71% belongs to

  10. Antimicrobial activities of natural antimicrobial compounds against susceptible and antibiotic-resistant pathogens in the absence and presence of food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to improve microbial food safety, we are studying the antimicrobial activities of different classes of natural compounds including plant essential oils, apple, grape, olive, and tea extracts, bioactive components, and seashell-derived chitosans against multiple foodborne pathogens in cu...

  11. A theoretical approach to spot active regions in antimicrobial proteins

    PubMed Central

    2009-01-01

    Background Much effort goes into identifying new antimicrobial compounds able to evade the increasing resistance of microorganisms to antibiotics. One strategy relies on antimicrobial peptides, either derived from fragments released by proteolytic cleavage of proteins or designed from known antimicrobial protein regions. Results To identify these antimicrobial determinants, we developed a theoretical approach that predicts antimicrobial proteins from their amino acid sequence in addition to determining their antimicrobial regions. A bactericidal propensity index has been calculated for each amino acid, using the experimental data reported from a high-throughput screening assay as reference. Scanning profiles were performed for protein sequences and potentially active stretches were identified by the best selected threshold parameters. The method was corroborated against positive and negative datasets. This successful approach means that we can spot active sequences previously reported in the literature from experimental data for most of the antimicrobial proteins examined. Conclusion The method presented can correctly identify antimicrobial proteins with an accuracy of 85% and a sensitivity of 90%. The method can also predict their key active regions, making this a tool for the design of new antimicrobial drugs. PMID:19906288

  12. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  13. Biologically active and antimicrobial peptides from plants.

    PubMed

    Salas, Carlos E; Badillo-Corona, Jesus A; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  14. In vitro antimicrobial activity of propolis and synergism between propolis and antimicrobial drugs.

    PubMed

    Stepanović, Srdjan; Antić, Natasa; Dakić, Ivana; Svabić-Vlahović, Milena

    2003-01-01

    The aim of this study was to investigate antimicrobial properties of ethanolic extract of 13 propolis (EEP) samples from different regions of Serbia against 39 microorganisms (14 resistant or multiresistant to antibiotics), and to determine synergistic activity between antimicrobials and propolis. Antimicrobial activity of propolis samples was evaluated by agar diffusion and agar dilution method. The synergistic action of propolis with antimicrobial drugs was assayed by the disc diffusion method on agar containing subinhibitory concentrations of propolis. Obtained results indicate that EEP, irrespectively of microbial resistance to antibiotics, showed significant antimicrobial activities against Gram-positive bacteria (MIC 0.078%-1.25% of EEP) and yeasts (0.16%-1.25%), while Gram-negative bacteria were less susceptible (1.25%-->5%). Enterococcus faecalis was the most resistant Gram-positive bacterium, Salmonella spp. the most resistant Gram-negative bacteria, and Candida albicans the most resistant yeast. EEP showed synergism with selected antibiotics, and displayed ability to enhance the activities of antifungals. The shown antimicrobial potential of propolis alone or in combination with certain antibiotics and antifungals is of potential medical interest.

  15. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    PubMed

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  16. Food Antimicrobials Nanocarriers

    PubMed Central

    Blanco-Padilla, Adriana; Soto, Karen M.; Hernández Iturriaga, Montserrat

    2014-01-01

    Natural food antimicrobials are bioactive compounds that inhibit the growth of microorganisms involved in food spoilage or food-borne illness. However, stability issues result in degradation and loss of antimicrobial activity. Nanoencapsulation allows protection of antimicrobial food agents from unfavorable environmental conditions and incompatibilities. Encapsulation of food antimicrobials control delivery increasing the concentration of the antimicrobials in specific areas and the improvement of passive cellular absorption mechanisms resulted in higher antimicrobial activity. This paper reviews the present state of the art of the nanostructures used as food antimicrobial carriers including nanoemulsions, nanoliposomes, nanoparticles, and nanofibers. PMID:24995363

  17. Antimicrobial activity of some Pacific Northwest woods against anaerobic bacteria and yeast.

    PubMed

    Johnston, W H; Karchesy, J J; Constantine, G H; Craig, A M

    2001-11-01

    Extracts of woods commonly used for animal bedding were tested for antimicrobial activity. Essential oils from Alaska cedar (Chamaecyparis nootkatensis), western juniper (Juniperus occidentalis) and old growth Douglas fir (Pseudotsuga menziesii) as well as methanol extracts of wood from these trees plus western red cedar (Thuja plicata) and ponderosa pine (Pinus ponderosa) were tested for antimicrobial activity against anaerobic bacteria and yeast. The test microbes included Fusobacterium necrophorum, Clostridium perfringens, Actinomyces bovis and Candida albicans which are common to foot diseases and other infections in animals. The essential oils and methanol extracts were tested using a standardized broth assay. Only extracts of Alaska cedar and western juniper showed significant antimicrobial activity against each of the microbes tested. The essential oil of Douglas fir did show antimicrobial activity against A. bovis at the concentrations tested. The methanol extracts of the heartwood of Douglas fir and the sapwood of ponderosa pine showed no antimicrobial activity. The major chemical components of western juniper (cedrol and alpha- and beta-cedrene) and Alaska cedar (nootkatin) were also tested. In western juniper, alpha- and beta-cedrene were found to be active components. Nootkatin showed activity only against C. albicans. The inhibitory activity in Alaska cedar oil was high enough to justify further efforts to define the other chemical components responsible for the antimicrobial activity. PMID:11746838

  18. Antimicrobial Activity of 8-Quinolinols, Salicylic Acids, Hydroxynaphthoic Acids, and Salts of Selected Quinolinols with Selected Hydroxy-Acids

    PubMed Central

    Gershon, Herman; Parmegiani, Raulo

    1962-01-01

    Seventy-seven compounds were screened by the disc-plate method against strains of five bacteria and five fungi. A new constant was proposed to describe the antimicrobial activity of a compound in a defined system of organisms. This constant includes not only the inhibitory level of activity of the material but also the number of organisms inhibited. This constant, the antimicrobial spectrum index, was compared with the antimicrobial index of Albert. PMID:13898066

  19. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    PubMed Central

    Astuti, Puji; Sudarsono, Sudarsono; Nisak, Khoirun; Nugroho, Giri Wisnu

    2014-01-01

    Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC) - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Results: Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. Conclusion: These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents. PMID:25671195

  20. Evidence for antimicrobial activity associated with common house spider silk

    PubMed Central

    2012-01-01

    Background Spider silk is one of the most versatile materials in nature with great strength and flexibility. Native and synthetically produced silk has been used in a wide range of applications including the construction of artificial tendons and as substrates for human cell growth. In the literature there are anecdotal reports that suggest that native spider silk may also have antimicrobial properties. Findings In this study we compared the growth of a Gram positive and a Gram negative bacterium in the presence and absence of silk produced by the common house spider Tegenaria domestica. We demonstrate that native web silk of Tegenaria domestica can inhibit the growth of the Gram positive bacterium, Bacillus subtilis. No significant inhibition of growth was detected against the Gram negative bacterium, Escherichia coli. The antimicrobial effect against B. subtilis appears to be short lived thus the active agent potentially acts in a bacteriostatic rather than bactericidal manner. Treatment of the silk with Proteinase K appears to reduce the ability to inhibit bacterial growth. This is consistent with the active agent including a protein element that is denatured or cleaved by treatment. Tegenaria silk does not appear to inhibit the growth of mammalian cells in vitro thus there is the potential for therapeutic applications. PMID:22731829

  1. In vitro antimicrobial activity against 10 North American and European Lawsonia intracellularis isolates.

    PubMed

    Wattanaphansak, Suphot; Singer, Randall S; Gebhart, Connie J

    2009-03-01

    The objective of this study was to determine the in vitro minimum inhibitory concentration (MIC) of antimicrobials against 10 isolates of Lawsonia intracellularis, the etiological agent of proliferative enteropathy (PE). Antimicrobials tested included carbadox, chlortetracycline, lincomycin, tiamulin, tylosin and valnemulin. The MIC of each antimicrobial against L. intracellularis was determined using a tissue culture system and was identified as the lowest concentration that inhibited 99% of L. intracellularis growth, as compared to the antimicrobial-free control. Each antimicrobial concentration was evaluated for both intracellular and extracellular activity against L. intracellularis, an obligately intracellular bacterium. When tested for intracellular activity, carbadox, tiamulin, and valnemulin were the most active antimicrobials with MICs of < or =0.5microg/ml. Tylosin (MICs ranging from 0.25 to 32microg/ml) and chlortetracycline (MICs ranging from 0.125 to 64microg/ml) showed intermediate activities and lincomycin (MICs ranging from 8 to >128mIcog/ml) showed the least activity. When tested for extracellular activity, valnemulin (MICs ranging from 0.125 to 4microg/ml) was the most active against most L. intracellularis isolates. Chlortetracycline (MICs ranging from 16 to 64microg/ml), tylosin (MICs ranging from 1 to >128microg/ml), and tiamulin (MICs ranging from 1 to 32microg/ml) showed intermediate activities. Lincomycin (MICs ranging from 32 to >128microg/ml) showed the least activity. Our in vitro results showed that each L. intracellularis isolate had a different antimicrobial sensitivity pattern and these data can be utilized as an in vitro guideline for the further antimicrobial evaluation of field L. intracellularis isolates. PMID:18823723

  2. Oxidized amylose with high carboxyl content: A promising solubilizer and carrier of linalool for antimicrobial activity.

    PubMed

    Zhou, Ying; Ye, Youxin; Zhang, Wenwen; Li, Songling; Chen, Jing; Wang, Shiting; Li, Defu; Mu, Changdao

    2016-12-10

    The oxidized amyloses with different carboxyl content were prepared to include linalool for antimicrobial activity in aqueous environment. The results show that linalool can be effectively reserved from volatilization through encapsulation into amylose and oxidized amyloses. The inclusion ability of oxidized amyloses towards linalool is decreasing with the increase of oxidation level due to the depolymerization of amylose. However, the solubilization effect of oxidized amyloses to linalool is enhanced efficiently owning to the high water solubility of oxidized amyloses. It is interesting that the inclusion complexes have good antimicrobial activity in aqueous environment. Linalool solubilized by oxidized amyloses presents better antimicrobial performance than that solubilized by amylose, mainly resulting from that amylose-linalool inclusion complex would aggregate and retrograde fast in aqueous solution, which is disadvantageous for the release of linalool. The study suggests that oxidized amylose is a promising solubilizer and carrier of linalool for antimicrobial activity in aqueous environment. PMID:27577891

  3. Oxidized amylose with high carboxyl content: A promising solubilizer and carrier of linalool for antimicrobial activity.

    PubMed

    Zhou, Ying; Ye, Youxin; Zhang, Wenwen; Li, Songling; Chen, Jing; Wang, Shiting; Li, Defu; Mu, Changdao

    2016-12-10

    The oxidized amyloses with different carboxyl content were prepared to include linalool for antimicrobial activity in aqueous environment. The results show that linalool can be effectively reserved from volatilization through encapsulation into amylose and oxidized amyloses. The inclusion ability of oxidized amyloses towards linalool is decreasing with the increase of oxidation level due to the depolymerization of amylose. However, the solubilization effect of oxidized amyloses to linalool is enhanced efficiently owning to the high water solubility of oxidized amyloses. It is interesting that the inclusion complexes have good antimicrobial activity in aqueous environment. Linalool solubilized by oxidized amyloses presents better antimicrobial performance than that solubilized by amylose, mainly resulting from that amylose-linalool inclusion complex would aggregate and retrograde fast in aqueous solution, which is disadvantageous for the release of linalool. The study suggests that oxidized amylose is a promising solubilizer and carrier of linalool for antimicrobial activity in aqueous environment.

  4. The diversity and antimicrobial activity of Preussia sp. endophytes isolated from Australian dry rainforests.

    PubMed

    Mapperson, Rachel R; Kotiw, Michael; Davis, Rohan A; Dearnaley, John D W

    2014-01-01

    Limited knowledge currently exists regarding species diversity and antimicrobial activity of endophytic isolates of Preussia within Australia. This report describes endophytic Preussia species that were identified through molecular analysis of the internal transcribed spacer region. Screening for antimicrobial secondary metabolites was determined by testing crude ethyl acetate (EtOAc) extracts derived from fungal mycelia against a panel of ATCC type strains which included Bacillus cereus, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Serratia marcescens, methicillin-resistant Staphylococcus aureus (MRSA) and the opportunist yeast pathogen Candida albicans. Subsequently, high-performance liquid chromatography generated fractions of bioactive EtOAc extracts which were subject to confirmatory testing using the Clinical and Laboratory Standards Institute reference microdilution antimicrobial activity assay. A total of 18 Preussia were isolated from nine host plants with 6/18 having a <97 % sequence similarity to other known species in Genbank, suggesting that they are new species. In preliminary screening, 13/18 Preussia isolates revealed antimicrobial activity against at least one of the microbes tested, whilst 6/18 isolates, including 4/6 putative new species showed specific antimicrobial activity against MRSA and C. albicans. These results highlight the antimicrobial potential of Australian Preussia spp. and also the importance of Australian dry rainforests as an untapped repository of potentially significant bioactive compounds.

  5. Antimicrobial activity of fresh garlic juice: An in vitro study

    PubMed Central

    Yadav, Seema; Trivedi, Niyati A.; Bhatt, Jagat D.

    2015-01-01

    Introduction: Antimicrobial resistance has been a global concern. Currently, interest has been focused on exploring antimicrobial properties of plants and herbs. One such botanical is Allium sativum (garlic). Aim: To evaluate the antimicrobial activity of fresh juice of garlic. Materials and Methods: Varying concentrations of fresh garlic juice (FGJ) were tested for their antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara, using well diffusion method. Moreover, minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of FGJ were tested using broth dilution method. Sensitivity pattern of the conventional antimicrobials against common pathogenic bacteria was tested using disc diffusion method. Results: FGJ produced dose-dependent increase in the zone of inhibition at a concentration of 10% and higher. MIC of FGJ against the pathogens ranged from 4% to 16% v/v whereas MLC value ranged from 4% to 32% v/v with Escherichia coli and Staphylococcus aureus spp. showed highest sensitivity. Conclusion: FGJ has definite antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara. Further studies are needed to find out the efficacy, safety, and kinetic data of its active ingredients. PMID:27011724

  6. Comparative study of surface-active properties and antimicrobial activities of disaccharide monoesters.

    PubMed

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air-water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect.

  7. Comparative Study of Surface-Active Properties and Antimicrobial Activities of Disaccharide Monoesters

    PubMed Central

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air–water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect. PMID:25531369

  8. Peptides from the scorpion Vaejovis punctatus with broad antimicrobial activity.

    PubMed

    Ramírez-Carreto, Santos; Jiménez-Vargas, Juana María; Rivas-Santiago, Bruno; Corzo, Gerardo; Possani, Lourival D; Becerril, Baltazar; Ortiz, Ernesto

    2015-11-01

    The antimicrobial potential of two new non-disulfide bound peptides, named VpAmp1.0 (LPFFLLSLIPSAISAIKKI, amidated) and VpAmp2.0 (FWGFLGKLAMKAVPSLIGGNKSSSK) is here reported. These are 19- and 25-aminoacid-long peptides with +2 and +4 net charges, respectively. Their sequences correspond to the predicted mature regions from longer precursors, putatively encoded by cDNAs derived from the venom glands of the Mexican scorpion Vaejovis punctatus. Both peptides were chemically synthesized and assayed against a variety of microorganisms, including pathogenic strains from clinical isolates and strains resistant to conventional antibiotics. Two shorter variants, named VpAmp1.1 (FFLLSLIPSAISAIKKI, amidated) and VpAmp2.1 (FWGFLGKLAMKAVPSLIGGNKK), were also synthesized and tested. The antimicrobial assays revealed that the four synthetic peptides effectively inhibit the growth of both Gram-positive (Staphylococcus aureus and Streptococcus agalactiaea) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria, with MICs in the range of 2.5-24.0 μM; yeasts (Candida albicans and Candida glabrata) with MICs of 3.1-50.0 μM; and two clinically isolated strains of Mycobacterium tuberculosis-including a multi-drug resistant one- with MICs in the range of 4.8-30.5 μM. A comparison between the activities of the original peptides and their derivatives gives insight into the structural/functional role of their distinctive residues.

  9. Nanoliposomes containing Eucalyptus citriodora as antibiotic with specific antimicrobial activity.

    PubMed

    Lin, Lin; Cui, Haiying; Zhou, Hui; Zhang, Xuejing; Bortolini, Christian; Chen, Menglin; Liu, Lei; Dong, Mingdong

    2015-02-14

    Bacterial infections are a serious issue for public health and represent one of the major challenges of modern medicine. In this work, a selective antimicrobial strategy based on triggering of pore-forming toxin, which is secreted by infective bacteria, was designed to fight Staphylococcus aureus. The antimicrobial activity is realized by employing Eucalyptus citriodora oil as antibiotic which in this study is encapsulated in nanoliposomes.

  10. Nanoliposomes containing Eucalyptus citriodora as antibiotic with specific antimicrobial activity.

    PubMed

    Lin, Lin; Cui, Haiying; Zhou, Hui; Zhang, Xuejing; Bortolini, Christian; Chen, Menglin; Liu, Lei; Dong, Mingdong

    2015-02-14

    Bacterial infections are a serious issue for public health and represent one of the major challenges of modern medicine. In this work, a selective antimicrobial strategy based on triggering of pore-forming toxin, which is secreted by infective bacteria, was designed to fight Staphylococcus aureus. The antimicrobial activity is realized by employing Eucalyptus citriodora oil as antibiotic which in this study is encapsulated in nanoliposomes. PMID:25573466

  11. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria

    PubMed Central

    Ebbensgaard, Anna; Mordhorst, Hanne; Overgaard, Michael Toft; Nielsen, Claus Gyrup; Aarestrup, Frank Møller; Hansen, Egon Bech

    2015-01-01

    Analysis of a Selected Set of Antimicrobial Peptides The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram-negative bacteria. We compared the potency of Cap18, Cap11, Cap11-1-18m2, Cecropin P1, Cecropin B, Bac2A, Bac2A-NH2, Sub5-NH2, Indolicidin, Melittin, Myxinidin, Myxinidin-NH2, Pyrrhocoricin, Apidaecin and Metalnikowin I towards Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Listeria monocytogenes, Campylobacter jejuni, Flavobacterium psychrophilum, Salmonella typhimurium and Yersinia ruckeri by minimal inhibitory concentration (MIC) determinations. Additional characteristics such as cytotoxicity, thermo and protease stability were measured and compared among the different peptides. Further, the antimicrobial activity of a selection of cationic AMPs was investigated in various E. coli LPS mutants. Cap18 Shows a High Broad Spectrum Antimicrobial Activity Of all the tested AMPs, Cap18 showed the most efficient antimicrobial activity, in particular against Gram-negative bacteria. In addition, Cap18 is highly thermostable and showed no cytotoxic effect in a hemolytic assay, measured at the concentration used. However, Cap18 is, as most of the tested AMPs, sensitive to proteolytic digestion in vitro. Thus, Cap18 is an excellent candidate for further development into practical use; however, modifications that should reduce the protease sensitivity would be needed. In addition, our

  12. Insights into animal and plant lectins with antimicrobial activities.

    PubMed

    Dias, Renata de Oliveira; Machado, Leandro Dos Santos; Migliolo, Ludovico; Franco, Octavio Luiz

    2015-01-05

    Lectins are multivalent proteins with the ability to recognize and bind diverse carbohydrate structures. The glyco -binding and diverse molecular structures observed in these protein classes make them a large and heterogeneous group with a wide range of biological activities in microorganisms, animals and plants. Lectins from plants and animals are commonly used in direct defense against pathogens and in immune regulation. This review focuses on sources of animal and plant lectins, describing their functional classification and tridimensional structures, relating these properties with biotechnological purposes, including antimicrobial activities. In summary, this work focuses on structural-functional elucidation of diverse lectin groups, shedding some light on host-pathogen interactions; it also examines their emergence as biotechnological tools through gene manipulation and development of new drugs.

  13. Antimicrobial activity in the common seawhip, Leptogorgia virgulata (Cnidaria: Gorgonaceae).

    PubMed

    Shapo, Jacqueline L; Moeller, Peter D; Galloway, Sylvia B

    2007-09-01

    Antimicrobial activity was examined in the gorgonian Leptogorgia virgulata (common seawhip) from South Carolina waters. Extraction and assay protocols were developed to identify antimicrobial activity in crude extracts of L. virgulata. Detection was determined by liquid growth inhibition assays using Escherichia coli BL21, Vibrio harveyii, Micrococcus luteus, and a Bacillus sp. isolate. This represents the first report of antimicrobial activity in L. virgulata, a temperate/sub-tropical coral of the western Atlantic Ocean. Results from growth inhibition assays guided a fractionation scheme to identify active compounds. Reverse-phase HPLC, HPLC-mass spectrometry, and 1H and 13C NMR spectroscopy were used to isolate, purify, and characterize metabolites in antimicrobial fractions of L. virgulata. Corroborative HPLC-MS/NMR evidence validated the presence of homarine and a homarine analog, well-known emetic metabolites previously isolated from L. virgulata, in coral extracts. In subsequent assays, partially-purified L. virgulata fractions collected from HPLC-MS fractionation were shown to contain antimicrobial activity using M. luteus and V. harveyii. This study provides evidence that homarine is an active constituent of the innate immune system in L. virgulata. We speculate it may act synergistically with cofactors and/or congeners in this octocoral to mount a response to microbial invasion and disease.

  14. Synergistic antimicrobial activities of natural essential oils with chitosan films.

    PubMed

    Wang, Lina; Liu, Fei; Jiang, Yanfeng; Chai, Zhi; Li, Pinglan; Cheng, Yongqiang; Jing, Hao; Leng, Xiaojing

    2011-12-14

    The synergistic antimicrobial activities of three natural essential oils (i.e., clove bud oil, cinnamon oil, and star anise oil) with chitosan films were investigated. Cinnamon oil had the best antimicrobial activity among three oils against Escherichia coli , Staphylococcus aureus , Aspergillus oryzae , and Penicillium digitatum . The chitosan solution exhibited good inhibitory effects on the above bacteria except the fungi, whereas chitosan film had no remarkable antimicrobial activity. The cinnamon oil-chitosan film exhibited a synergetic effect by enhancing the antimicrobial activities of the oil, which might be related to the constant release of the oil. The cinnamon oil-chitosan film had also better antimicrobial activity than the clove bud oil-chitosan film. The results also showed that the compatibility of cinnamon oil with chitosan in film formation was better than that of the clove bud oil with chitosan. However, the incorporated oils modified the mechanical strengths, water vapor transmission rate, moisture content, and solubility of the chitosan film. Furthermore, chemical reaction took place between cinnamon oil and chitosan, whereas phase separation occurred between clove bud oil and chitosan.

  15. Antimicrobial activity of tannins from Terminalia citrina.

    PubMed

    Burapadaja, S; Bunchoo, A

    1995-08-01

    Isolation of the fruit CH3OH extract of Terminalia citrina yielded five known tannins identified as corilagin (1) (3), punicalagin (2) (4), 1,3,6-tri-O-galloyl-beta-D-glucopyranose (3) (5), chebulagic acid (4) (6), and 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose (5) (7) by comparison of their physical and spectral data with those of authentic samples. These tannins were tested for antimicrobial action. PMID:7480186

  16. Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Soares, Jason W.; Mello, Charlene M.

    2004-03-01

    Antimicrobial peptides (AMPs) have been discovered in insects, mammals, reptiles, and plants to protect against microbial infection. Many of these peptides have been isolated and studied exhaustively to decipher the molecular mechanisms that impart protection against infectious bacteria, fungi, and viruses. Unfortunately, the molecular mechanisms are still being debated within the scientific community but valuable clues have been obtained through structure/function relationship studies1. Biophysical studies have revealed that cecropins, isolated from insects and pigs, exhibit random structure in solution but undergo a conformational change to an amphipathic α-helix upon interaction with a membrane surface2. The lack of secondary structure in solution results in an extremely durable peptide able to survive exposure to high temperatures, organic solvents and incorporation into fibers and films without compromising antibacterial activity. Studies to better understand the antimicrobial action of cecropins and other AMPs have provided insight into the importance of peptide sequence and structure in antimicrobial activities. Therefore, enhancing our knowledge of how peptide structure imparts function may result in customized peptide sequences tailored for specific applications such as targeted cell delivery systems, novel antibiotics and food preservation additives. This review will summarize the current state of knowledge with respect to cell binding and antimicrobial activity of AMPs focusing primarily upon cecropins.

  17. Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity.

    PubMed

    Sharma, Himanshu; Nagaraj, Ramakrishnan

    2015-01-01

    Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency.

  18. Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles.

    PubMed

    Sim, Kyoung Mi; Kim, Kyung Hwan; Hwang, Gi Byoung; Seo, SungChul; Bae, Gwi-Nam; Jung, Jae Hee

    2014-09-15

    Activated carbon fiber (ACF) filters have a wide range of applications, including air purification, dehumidification, and water purification, due to their large specific surface area, high adsorption capacity and rate, and specific surface reactivity. However, when airborne microorganisms such as bacteria and fungi adhere to the carbon substrate, ACF filters can become a source of microbial contamination, and their filter efficacy declines. Antimicrobial treatments are a promising means of preventing ACF bio-contamination. In this study, we demonstrate the use of Sophora flavescens in antimicrobial nanoparticles coated onto ACF filters. The particles were prepared using an aerosol process consisting of nebulization-thermal drying and particle deposition. The extract from S. flavescens is an effective, natural antimicrobial agent that exhibits antibacterial activity against various pathogens. The efficiency of Staphylococcus epidermidis inactivation increased with the concentration of S. flavescens nanoparticles in the ACF filter coating. The gas adsorption efficiency of the coated antimicrobial ACF filters was also evaluated using toluene. The toluene-removal capacity of the ACF filters remained unchanged while the antimicrobial activity was over 90% for some nanoparticle concentrations. Our results provide a scientific basis for controlling both bioaerosol and gaseous pollutants using antimicrobial ACF filters coated with S. flavescens nanoparticles.

  19. Human β-Defensin 4 with Non-Native Disulfide Bridges Exhibit Antimicrobial Activity

    PubMed Central

    Sharma, Himanshu; Nagaraj, Ramakrishnan

    2015-01-01

    Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency. PMID:25785690

  20. New Milk Protein-Derived Peptides with Potential Antimicrobial Activity: An Approach Based on Bioinformatic Studies

    PubMed Central

    Dziuba, Bartłomiej; Dziuba, Marta

    2014-01-01

    New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs) from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM), random forest (RF), artificial neural networks (ANN) and discriminant analysis (DA) available in the Collection of Anti-Microbial Peptides (CAMP database). Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins. PMID:25141106

  1. Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities.

    PubMed

    Urdaci, Maria C; Bressollier, Philippe; Pinchuk, Irina

    2004-07-01

    The clinical benefits observed with probiotic use are mainly attributed to the antimicrobial substances produced by probiotic strains and to their immunomodulatory effects. Currently, the best-documented probiotic bacteria used in human therapy are lactic acid bacteria. In contrast, studies aiming to characterize the mechanisms responsible for the probiotic beneficial effects of Bacillus are rare. The current work seeks to contribute to such characterization by evaluating the antimicrobial and immunomodulatory activities of probiotic B. clausii strains. B. clausii strains release antimicrobial substances in the medium. Moreover, the release of these antimicrobial substances was observed during stationary growth phase and coincided with sporulation. These substances were active against Gram-positive bacteria, in particular against Staphylococcus aureus, Enterococcus faecium, and Clostridium difficile. The antimicrobial activity was resistant to subtilisin, proteinase K, and chymotrypsin treatment, whereas it was sensitive to pronase treatment. The evaluation of the immunomodulatory properties of probiotic B. clausii strains was performed in vitro on Swiss and C57 Bl/6j murine cells. The authors demonstrate that these strains, in their vegetative forms, are able to induce NOS II synthetase activity, IFN-gamma production, and CD4 T-cell proliferation. PMID:15220667

  2. Phytochemical screening and antimicrobial activity of Coccinia cordifolia L. plant.

    PubMed

    Khatun, Shahanaz; Pervin, Farzana; Karim, Mohammad Rezaul; Ashraduzzaman, Mohammad; Rosma, Ahmad

    2012-10-01

    The medicinal plant, Coccinia cordifolia L. was analyzed for its chemical composition. The antimicrobial activities of the methanol, water, ethanol and ethyl acetate extracts of Coccinia cordifolia L. plant were evaluated against some Gram positive bacteria (Sarcina lutea, Bacillus subtilis and Staphylococcus aureus), Gram negative bacteria (Salmonella typhi, Shigella dysenteriae and Escherichia coli) and fungi (Candida albicans, Aspergillus niger and Penicillium notatum). Chemical analysis showed that the plant is rich in nutrients, especially antioxidant compounds such as total phenol, vitamin C and β-carotene. Phytochemical screening showed that the methanolic extract contains the bioactive constituents such as tannins, saponins, phenols, flavonoids and terpenoids. In the methanolic extract of the plant, promising antimicrobial potential was observed against the tested microorganism. Methanolic extract showed highest activity against Shigella dysenteriae, Escherichia coli, Staphylococcus aureus, and Candida albicans compared to the other extracts. Water extract showed less antimicrobial activity as compared to other extractants.

  3. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes

    PubMed Central

    Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2016-01-01

    8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents. PMID:27103894

  4. Antimicrobial activity of submerged cultures of Chilean basidiomycetes.

    PubMed

    Aqueveque, Pedro; Anke, Timm; Saéz, Katia; Silva, Mario; Becerra, José

    2010-10-01

    This study is part of a screening program aimed at searching for bioactive metabolites from Chilean basidiomycetes. Submerged cultivation of fungal mycelia in liquid media was evaluated for antimicrobial activity. A total of 148 strains were obtained in vitro. The extracts produced from submerged cultures were evaluated against bacteria and fungi. In the primary antimicrobial assay, approximately 60% of the extracts presented positive biological activity. The highest frequencies of active strains were from the orders Agaricales (31.0%), Polyporales (20.6%), Sterales (18.3%), Boletales (11.4%), and Cortinariales (9.1%). Antifungal activity was more pronounced than antibacterial activity. Twelve extracts that exhibited strong antimicrobial activity showed minimum inhibitory concentration (MIC) values of 50 µL/mL against Bacillus brevis and 25∼50 µL/mL against Penicillium notatum and Paecilomyces variotii. The biological activity of some strains did not vary considerably, regardless of the substrate or collection site whereas, for others, it showed marked variations. Differences in antimicrobial activities observed in the different fungal genera suggested that the ability to produce bioactive compounds is not homogenously distributed among basidiomycetes. The information obtained from this study reveals that Chilean basidiomycetes are able to generate small and/or large variations in the normal pathway of compounds production. Thus, it is necessary to evaluate this biological and chemical wealth, which could be an unsuspected reservoir of new and potentially useful molecules.

  5. A screening for antimicrobial activities of Caribbean herbal remedies

    PubMed Central

    2013-01-01

    Background The TRAMIL program aims to understand, validate and expand health practices based on the use of medicinal plants in the Caribbean, which is a “biodiversity hotspot” due to high species endemism, intense development pressure and habitat loss. The antibacterial activity was examined for thirteen plant species from several genera that were identified as a result of TRAMIL ethnopharmacological surveys or were reported in ethnobotanical accounts from Puerto Rico. The aim of this study was to validate the traditional use of these plant species for the treatment of bacterial infections, such as conjunctivitis, fever, otitis media and furuncles. Methods An agar disc diffusion assay was used to examine five bacterial strains that are associated with the reported infections, including Staphylococcus saprophyticus (ATCC 15305), S. aureus (ATCC 6341), Escherichia coli (ATCC 4157), Haemophilus influenzae (ATCC 8142), Pseudomonas aeruginosa (ATCC 7700) and Proteus vulgaris (ATCC 6896), as well as the fungus Candida albicans (ATCC 752). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined for each of the extracts that showed inhibitory activity. Results The decoctions of Pityrogramma calomelanos, Tapeinochilus ananassae, and Syzygium jambos, as well as the juice of Gossypium barbadense, showed > 20% growth inhibition against several bacteria relative to the positive control, which was the antibiotic Streptomycin. Extracts with the best antimicrobial activities were S. jambos that showed MIC = 31 μg/mL and MBC = 1.0 mg/mL against P. vulgaris and T. ananassae that showed MIC = 15 μg/mL against S. aureus. Conclusion This report confirms the traditional use of P. calomelanos for the treatment of kidney infections that are associated with stones, as well as the antimicrobial and bactericidal effects of T. ananassae against P. vulgaris and S. saprophyticus and the effects of S. jambos against S

  6. Antimicrobial, antibiofilm and cytotoxic activities of Hakea sericea Schrader extracts

    PubMed Central

    Luís, Ângelo; Breitenfeld, Luiza; Ferreira, Susana; Duarte, Ana Paula; Domingues, Fernanda

    2014-01-01

    Background: Hakea sericea Schrader is an invasive shrub in Portuguese forests. Objective: The goal of this work was to evaluate the antimicrobial activity of H. sericea extracts against several strains of microorganisms, including the ability to inhibit the formation of biofilms. Additionally the cytotoxic properties of these extracts, against human cells, were assessed. Materials and Methods: The antimicrobial activity of the methanolic extracts of H. sericea was assessed by disk diffusion assay and Minimum Inhibitory Concentration (MIC) value determination. The antibiofilm activity was determined by quantification of total biofilm biomass with crystal violet. Cytotoxicity was evaluated by hemolysis assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. Results: For Gram-positive bacteria, MIC values of H. sericea methanolic extracts ranged between 0.040 and 0.625 mg/mL, whereas the fruits extract yielded the lowest MIC for several strains of microorganisms, namely, S. aureus, B. cereus, L. monocytogenes and clinical methicillin-resistant S. aureus (MRSA). Stems and fruits extract at 2.5 mg/mL effectively eradicated the biofilm of S. aureus ATCC 25923, SA 01/10 and MRSA 12/10. Regarding leaves extract, hemolysis was not observed, and in the case of stems and fruits, hemolysis was verified only for higher concentrations, suggesting its low toxicity. Fruits extract presented no toxic effect to normal human dermal fibroblasts (NHDF) cells however for concentrations of 0.017 and 0.008 mg/mL this extract was able to decrease human breast adenocarcinoma cells (MCF-7) viability in about 60%, as MTT test results had confirmed. This is a clearly demonstrator of the cytotoxicity of this extract against MCF-7 cells. PMID:24914310

  7. The Synthesis and Antimicrobial Activity of Heterocyclic Derivatives of Totarol

    PubMed Central

    2012-01-01

    The synthesis and antimicrobial activity of heterocyclic analogues of the diterpenoid totarol are described. An advanced synthetic intermediate with a ketone on the A-ring is used to attach fused heterocycles, and a carbon-to-nitrogen atom replacement is made on the B-ring by de novo synthesis. A-ring analogues with an indole attached exhibit, for the first time, enhanced antimicrobial activity relative to the parent natural product. Preliminary experiments demonstrate that the indole analogues do not target the bacterial cell division protein FtsZ as had been hypothesized for totarol. PMID:23119123

  8. Phytochemical investigation and antimicrobial activity of Psidium guajava L. leaves

    PubMed Central

    Metwally, A. M.; Omar, A. A.; Harraz, F. M.; El Sohafy, S. M.

    2010-01-01

    Psidium guajava L. leaves were subjected to extraction, fractionation and isolation of the flavonoidal compounds. Five flavonoidal compounds were isolated which are quercetin, quercetin-3-O-α-L-arabinofuranoside, quercetin-3-O-β-D-arabinopyranoside, quercetin-3-O-β-D-glucoside and quercetin-3-O-β-D-galactoside. Quercetin-3-O-β-D-arabinopyranoside was isolated for the first time from the leaves. Fractions together with the isolates were tested for their antimicrobial activity. The antimicrobial studies showed good activities for the extracts and the isolated compounds. PMID:20931082

  9. Antimicrobial Activity of Seven Essential Oils From Iranian Aromatic Plants Against Common Causes of Oral Infections

    PubMed Central

    Zomorodian, Kamiar; Ghadiri, Pooria; Saharkhiz, Mohammad Jamal; Moein, Mohammad Reza; Mehriar, Peiman; Bahrani, Farideh; Golzar, Tahereh; Pakshir, Keyvan; Fani, Mohammad Mehdi

    2015-01-01

    Background: Over the past two decades, there has been a growing trend in using oral hygienic products originating from natural resources such as essential oils (EOs) and plant extracts. Seven aromatic plants used in this study are among popular traditional Iranian medicinal plants with potential application in modern medicine as anti-oral infectious diseases. Objectives: This study was conducted to determine the chemical composition and antimicrobial activities of essential oils from seven medicinal plants against pathogens causing oral infections. Materials and Methods: The chemical compositions of EOs distilled from seven plants were analyzed by gas chromatography/mass spectrometry (GC/MS). These plants included Satureja khuzestanica, S. bachtiarica, Ocimum sanctum, Artemisia sieberi, Zataria multiflora, Carum copticum and Oliveria decumbens. The antimicrobial activity of the essential oils was evaluated by broth micro-dilution in 96 well plates as recommended by the Clinical and Laboratory Standards Institute (CLSI) methods. Results: The tested EOs inhibited the growth of examined oral pathogens at concentrations of 0.015-16 µL/mL. Among the examined oral pathogens, Enterococcus faecalis had the highest Minimum Inhibitory Concentrations (MICs) and Minimum Microbicidal Concentrations (MMCs). Of the examined EOs, S. khuzestanica, Z. multiflora and S. bachtiarica, showed the highest antimicrobial activities, respectively, while Artemisia sieberi exhibited the lowest antimicrobial activity. Conclusions: The excellent antimicrobial activities of the tested EOs might be due to their major phenolic or alcoholic monoterpenes with known antimicrobial activities. Hence, these EOs can be possibly used as an antimicrobial agent in treatment and control of oral pathogens. PMID:25793100

  10. Macin Family of Antimicrobial Proteins Combines Antimicrobial and Nerve Repair Activities*

    PubMed Central

    Jung, Sascha; Sönnichsen, Frank D.; Hung, Chien-Wen; Tholey, Andreas; Boidin-Wichlacz, Céline; Haeusgen, Wiebke; Gelhaus, Christoph; Desel, Christine; Podschun, Rainer; Waetzig, Vicki; Tasiemski, Aurélie; Leippe, Matthias; Grötzinger, Joachim

    2012-01-01

    The tertiary structures of theromacin and neuromacin confirmed the macin protein family as a self-contained family of antimicrobial proteins within the superfamily of scorpion toxin-like proteins. The macins, which also comprise hydramacin-1, are antimicrobially active against Gram-positive and Gram-negative bacteria. Despite high sequence identity, the three proteins showed distinct differences with respect to their biological activity. Neuromacin exhibited a significantly stronger capacity to permeabilize the cytoplasmic membrane of Bacillus megaterium than theromacin and hydramacin-1. Accordingly, it is the only macin that displays pore-forming activity and that was potently active against Staphylococcus aureus. Moreover, neuromacin and hydramacin-1 led to an aggregation of bacterial cells that was not observed with theromacin. Analysis of the molecular surface properties of macins allowed confirmation of the barnacle model as the mechanistic model for the aggregation effect. Besides being antimicrobially active, neuromacin and theromacin, in contrast to hydramacin-1, were able to enhance the repair of leech nerves ex vivo. Notably, all three macins enhanced the viability of murine neuroblastoma cells, extending their functional characteristics. As neuromacin appears to be both a functional and structural chimera of hydramacin-1 and theromacin, the putative structural correlate responsible for the nerve repair capacity in leech was located to a cluster of six amino acid residues using the sequence similarity of surface-exposed regions. PMID:22396551

  11. In vitro antimicrobial activity of Achyranthes coynei Sant.

    PubMed Central

    Ankad, Gireesh; Upadhya, Vinayak; Pai, Sandeep R.; Hegde, Harsha V.; Roy, Subarna

    2013-01-01

    Objective To validate the traditional use of Achyranthes coynei (A. coynei) Sant. as an antimicrobial in treatment of various infectious diseases. Methods Leaf extracts of A. coynei obtained through successive solvent extraction using petroleum ether, dichrloromethane, chloroform and methanol were used to screen the antimicrobial activity on five Gram positive, five Gram negative bacteria and two fungi. Minimum inhibitory concentration (MIC) was determined by two fold tube-dilution method. Results Methanolic leaf extract was more effective than other three extracts on the tested bacteria. Methanolic extract was efficient on Staphylococcus epidermis, Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeruginosa with MIC values (0.62±0.00) mg/mL. The fungal organisms were less susceptible against extracts tested. Conclusions These results support the traditional use of leaf extracts of A. coynei as they have antimicrobial potential. Further studies are needed for establishing safety, toxicity and pharmacological activity with phytochemical investigation.

  12. Influence of abiotic factors on the antimicrobial activity of chitosan.

    PubMed

    Tavaria, Freni K; Costa, Eduardo M; Gens, Eduardo J; Malcata, Francisco Xavier; Pintado, Manuela E

    2013-12-01

    In an effort to bypass the adverse secondary effects attributed to the traditional therapeutic approaches used to treat skin disorders (such as atopic dermatitis), alternative antimicrobials have recently been suggested. One such antimicrobial is chitosan, owing to the already proved biological properties associated with its use. However, the influence of abiotic factors on such activities warrants evaluation. This research effort assessed the antimicrobial activity of chitosan upon skin microorganisms (Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli) in vitro when subject to a combination of different abiotic factors such as pH, ionic strength, organic acids and free fatty acids. Free fatty acids, ionic strength and pH significantly affected chitosan's capability of reducing the viable numbers of S. aureus. This antimicrobial action was potentiated in the presence of palmitic acid and a lower ionic strength (0.2% NaCl), while a higher ionic strength (0.4% NaCl) favored chitosan's action upon the reduction of viable numbers of S. epidermidis and E. coli. Although further studies are needed, these preliminary results advocate that chitosan can in the future be potentially considered as an antimicrobial of choice when handling symptoms associated with atopic dermatitis.

  13. Influence of abiotic factors on the antimicrobial activity of chitosan.

    PubMed

    Tavaria, Freni K; Costa, Eduardo M; Gens, Eduardo J; Malcata, Francisco Xavier; Pintado, Manuela E

    2013-12-01

    In an effort to bypass the adverse secondary effects attributed to the traditional therapeutic approaches used to treat skin disorders (such as atopic dermatitis), alternative antimicrobials have recently been suggested. One such antimicrobial is chitosan, owing to the already proved biological properties associated with its use. However, the influence of abiotic factors on such activities warrants evaluation. This research effort assessed the antimicrobial activity of chitosan upon skin microorganisms (Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli) in vitro when subject to a combination of different abiotic factors such as pH, ionic strength, organic acids and free fatty acids. Free fatty acids, ionic strength and pH significantly affected chitosan's capability of reducing the viable numbers of S. aureus. This antimicrobial action was potentiated in the presence of palmitic acid and a lower ionic strength (0.2% NaCl), while a higher ionic strength (0.4% NaCl) favored chitosan's action upon the reduction of viable numbers of S. epidermidis and E. coli. Although further studies are needed, these preliminary results advocate that chitosan can in the future be potentially considered as an antimicrobial of choice when handling symptoms associated with atopic dermatitis. PMID:24330167

  14. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    PubMed

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control. PMID:26137678

  15. The antimicrobial activities of the cinnamaldehyde adducts with amino acids.

    PubMed

    Wei, Qing-Yi; Xiong, Jia-Jun; Jiang, Hong; Zhang, Chao; Wen Ye

    2011-11-01

    Cinnamaldehyde is a well-established natural antimicrobial compound. It is probable for cinnamaldehyde to react with amino acid forming Schiff base adduct in real food system. In this paper, 9 such kind of adducts were prepared by the direct reaction of amino acids with cinnamaldehyde at room temperature. Their antimicrobial activities against Bacillus subtilis, Escherichia coli and Saccharomyces cerevisiae were evaluated with benzoic acid as a reference. The adducts showed a dose-dependent activities against the three microbial strains. Both cinnamaldehyde and their adducts were more active against B. subtilis than on E. coli, and their antimicrobial activities were higher at lower pH. Both cinnamaldehyde and its adducts were more active than benzoic acid at the same conditions. The adduct compound A was non-toxic by primary oral acute toxicity study in mice. However, in situ effect of the adduct compound A against E. coli was a little lower than cinnamaldehyde in fish meat. This paper for the first time showed that the cinnamaldehyde adducts with amino acids had similar strong antimicrobial activities as cinnamaldehyde, which may provide alternatives to cinnamaldehyde in food to avoid the strong unacceptable odor of cinnamaldehyde. PMID:21856030

  16. Antimicrobial and antioxidant activities of Turkish extra virgin olive oils.

    PubMed

    Karaosmanoglu, Hande; Soyer, Ferda; Ozen, Banu; Tokatli, Figen

    2010-07-28

    Turkish extra virgin olive oils (EVOO) from different varieties/geographical origins and their phenolic compounds were investigated in terms of their antimicrobial and antioxidant properties in comparison to refined olive, hazelnut, and canola oils. Antimicrobial activity was tested against three foodborne pathogenic bacteria, Escherichia coli O157:H7, Listeria monocytogenes , and Salmonella Enteritidis. Although all EVOOs showed a bactericidal effect, the individual phenolic compounds demonstrated only slight antimicrobial activity. Moreover, refined oil samples did not show any antimicrobial activity. Among the phenolic compounds, cinnamic acid (2 mg/kg of oil) had the highest percent inhibition value with 0.25 log reduction against L. monocytogenes. The synergistic interactions of tyrosol, vanillin, vanillic, and cinnamic acids were also observed against Salmonella Enteritidis. The antioxidant activities of oils were tested by beta-carotene-linoleate model system and ABTS method. In both methods, EVOOs showed higher antioxidant activities, whereas refined oils had lower activity. The ABTS method provided a higher correlation (0.89) with total phenol content.

  17. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    PubMed

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control.

  18. Antimicrobial and free radical scavenging activities of five Palestinian medicinal plants.

    PubMed

    Qabaha, Khaled Ibraheem

    2013-01-01

    Extracts from five indigenous Palestinian medicinal plants including Rosmarinus officinalis, Pisidium guajava, Punica granatum peel, grape seeds and Teucrium polium were investigated for antimicrobial and free radical scavenging activities against eight microorganisms, using well diffusion method. The microorganisms included six bacterial isolates (i.e. Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginos, Klebsiella pneumonia, Bacillus subtilis and Micrococcus luteus) and two fungal isolates (i.e. Candida albicans and Aspergillus niger). A standard antioxidant assay was performed on the plant extracts to assess their capability in scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH). Of the five tested plant extract, only Rosmarinus offcinalis extract contained significant antimicrobial activity against all eight microbial isolates including Pseudomonas aeruginosa. Extracts from other four plants exhibited a variable antimicrobial activity against all microorganisms, except Pseudomonas aeruginosa. Significant antioxidant activity was detected in all plant extracts. However, extracts from Pisidium guajava leaves contained significantly higher antioxidant activity compared to the other extracts tested. The antimicrobial and scavenging activities detected in this in vitro study in extracts from the five Palestinian medicinal plants suggest that further study is needed to identify active compounds to target diseases caused by a wide-spectrum pathogens. PMID:24146509

  19. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems.

    PubMed

    Niyonsaba, François; Nagaoka, Isao; Ogawa, Hideoki; Okumura, Ko

    2009-01-01

    In addition to the physical barrier of the stratum corneum, cutaneous innate immunity also includes the release of various humoral mediators, such as cytokines and chemokines, recruitment and activation of phagocytes, and the production of antimicrobial proteins/peptides (AMPs). AMPs form an innate epithelial chemical shield, which provides a front-line component in innate immunity to inhibit microbial invasion; however, this might be an oversimplification of the diverse functions of these molecules. In fact, apart from exhibiting a broad spectrum of microbicidal properties, it is increasingly evident that AMPs display additional activities that are related to the stimulation and modulation of the cutaneous immune system. These diverse functions include chemoattraction and activation of immune and/or inflammatory cells, the production and release of cytokines and chemokines, acceleration of angiogenesis, promotion of wound healing, neutralization of harmful microbial products, and bridging of both innate and adaptive immunity. Thus, better understanding of the functions of AMPs in skin and identification of their signaling mechanisms may offer new strategies for the development of potential therapeutics for the treatment of infection- and/or inflammation-related skin diseases. Here, we briefly outline the structure, regulation of expression, and multifunctional roles of principal skin-derived AMPs.

  20. A novel approach to the antimicrobial activity of maggot debridement therapy

    PubMed Central

    Andersen, Anders S.; Sandvang, Dorthe; Schnorr, Kirk M.; Kruse, Thomas; Neve, Søren; Joergensen, Bo; Karlsmark, Tonny; Krogfelt, Karen A.

    2010-01-01

    Objectives Commercially produced sterile green bottle fly Lucilia sericata maggots are successfully employed by practitioners worldwide to clean a multitude of chronic necrotic wounds and reduce wound bacterial burdens during maggot debridement therapy (MDT). Secretions from the maggots exhibit antimicrobial activity along with other activities beneficial for wound healing. With the rise of multidrug-resistant bacteria, new approaches to identifying the active compounds responsible for the antimicrobial activity within this treatment are imperative. Therefore, the aim of this study was to use a novel approach to investigate the output of secreted proteins from the maggots under conditions mimicking clinical treatments. Methods cDNA libraries constructed from microdissected salivary glands and whole maggots, respectively, were treated with transposon-assisted signal trapping (TAST), a technique selecting for the identification of secreted proteins. Several putative secreted components of insect immunity were identified, including a defensin named lucifensin, which was produced recombinantly as a Trx-fusion protein in Escherichia coli, purified using immobilized metal affinity chromatography and reverse-phase HPLC, and tested in vitro against Gram-positive and Gram-negative bacterial strains. Results Lucifensin was active against Staphylococcus carnosus, Streptococcus pyogenes and Streptococcus pneumoniae (MIC 2 mg/L), as well as Staphylococcus aureus (MIC 16 mg/L). The peptide did not show antimicrobial activity towards Gram-negative bacteria. The MIC of lucifensin for the methicillin-resistant S. aureus and glycopeptide-intermediate S. aureus isolates tested ranged from 8 to >128 mg/L. Conclusions The TAST results did not reveal any highly secreted compounds with putative antimicrobial activity, implying an alternative antimicrobial activity of MDT. Lucifensin showed antimicrobial activities comparable to other defensins and could have potential as a future drug

  1. Chemical composition and antimicrobial activity of the essential oils of Onychopetalum amazonicum R.E.Fr.

    PubMed

    de Lima, Bruna R; da Silva, Felipe M A; Soares, Elzalina R; de Almeida, Richardson A; da Silva Filho, Francinaldo A; Pereira Junior, Raimundo C; Hernandez Tasco, Álvaro J; Salvador, Marcos J; Koolen, Hector H F; de Souza, Afonso D L; Pinheiro, Maria L B

    2016-10-01

    The essential oils from leaves, twigs and trunk bark of Onychopetalum amazonicum R.E. Fr. (Annonaceae), obtained by hydrodistillation, were analysed by GC and GC-MS, and also were evaluated for in vitro antimicrobial activity. Forty-one compounds, which correspond to 75.0-92.2% of the oil components, were identified. Major compounds were sesquiterpenes, including (E)-caryophyllene, caryophyllene oxide, spathulenol, α-gurjunene, allo-aromadendrene and α-epi-cadinol. The oils were evaluated for antimicrobial activities against four bacteria strains and five pathogenic fungi. The oil of the trunk bark exhibited good activity against Staphylococcus epidermidis ATCC 12228, Escherichia coli ATCC 10538 and Kocuria rhizophila ATCC 9341, with a minimal inhibitory concentration of 62.5 μg/mL. The essential oil composition and the antimicrobial evaluation are reported for the first time for the genus Onychopetalum.

  2. Chemical composition and antimicrobial activity of the essential oils of Onychopetalum amazonicum R.E.Fr.

    PubMed

    de Lima, Bruna R; da Silva, Felipe M A; Soares, Elzalina R; de Almeida, Richardson A; da Silva Filho, Francinaldo A; Pereira Junior, Raimundo C; Hernandez Tasco, Álvaro J; Salvador, Marcos J; Koolen, Hector H F; de Souza, Afonso D L; Pinheiro, Maria L B

    2016-10-01

    The essential oils from leaves, twigs and trunk bark of Onychopetalum amazonicum R.E. Fr. (Annonaceae), obtained by hydrodistillation, were analysed by GC and GC-MS, and also were evaluated for in vitro antimicrobial activity. Forty-one compounds, which correspond to 75.0-92.2% of the oil components, were identified. Major compounds were sesquiterpenes, including (E)-caryophyllene, caryophyllene oxide, spathulenol, α-gurjunene, allo-aromadendrene and α-epi-cadinol. The oils were evaluated for antimicrobial activities against four bacteria strains and five pathogenic fungi. The oil of the trunk bark exhibited good activity against Staphylococcus epidermidis ATCC 12228, Escherichia coli ATCC 10538 and Kocuria rhizophila ATCC 9341, with a minimal inhibitory concentration of 62.5 μg/mL. The essential oil composition and the antimicrobial evaluation are reported for the first time for the genus Onychopetalum. PMID:27033169

  3. Screening of antimicrobial activity of Cistus ladanifer and Arbutus unedo extracts.

    PubMed

    Ferreira, S; Santos, J; Duarte, A; Duarte, A P; Queiroz, J A; Domingues, F C

    2012-01-01

    In this work, the in vitro antimicrobial activity of different crude extracts obtained from Cistus ladanifer L. and Arbutus unedo L. was investigated. The ethanol, methanol and acetone/water extracts of Cistus ladanifer and Arbutus unedo were prepared using different extraction methods and their antimicrobial activities against reference strains, including three Gram-positive, five Gram-negative and three yeasts, and against clinical isolates of Helicobacter pylori and methicillin-resistant Staphylococcus aureus, were investigated. All the extracts inhibited more than one microorganism; moreover all of them presented antimicrobial activity against the Gram-positive bacteria, Klebsiella pneumonia, Candida tropicalis and Helicobacter pylori. It is noteworthy that the most considerable in vitro effect was observed against Helicobacter pylori. These inhibitory effects can be considered relevant to the development of new agents for inclusion in the treatment or prevention of infections by the tested strains. PMID:22077559

  4. Phytochemical, antimicrobial, and antioxidant activities of different citrus juice concentrates.

    PubMed

    Oikeh, Ehigbai I; Omoregie, Ehimwenma S; Oviasogie, Faith E; Oriakhi, Kelly

    2016-01-01

    The search for new antimicrobial compounds is ongoing. Its importance cannot be overemphasized in an era of emerging resistant pathogenic organisms. This study therefore investigated the phytochemical composition and antioxidant and antimicrobial activities of different citrus juice concentrates. Fruit juices of Citrus tangerine (tangerine), Citrus paradisi (grape), Citrus limon (lemon), and Citrus aurantifolia (lime) were evaluated. Antimicrobial activities against five bacterial and three fungal strains were evaluated. The results revealed the presence of alkaloids, flavonoids, steroids, terpenoids, saponins, cardiac glycosides, and reducing sugars in all the juice concentrates. DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging capacities varied with tangerine and grape juices having better scavenging capacities than lemon and lime juices. Grape juice was observed to have a significantly higher (P < 0.05) ferric-reducing antioxidant potential (FRAP) value (364.2 ± 10.25 μmol/L Fe(II)/g of the extract) than the reference antioxidant, ascorbic acid (312.88 ± 5.61 μmol/L). Antimicrobial studies revealed differential antimicrobial activities against different microbial strains. Zones of inhibition ranging from 4 to 26 mm were observed for the antibacterial tests with 0-24 mm for antifungal test. Minimum inhibitory concentrations (MIC) and minimum bacteriostatic concentrations (MBC) for concentrates against bacterial strains ranged from 12.5 to 200 μg/mL. Lemon and lime juice concentrates had lower MIC and MBC values with orange and tangerine having the highest values. Minimum fungicidal concentrations ranged from 50 to 200 μg/mL. The results of this study suggest that these juice concentrates may have beneficial antimicrobial roles that can be exploited in controlling unwanted microbial growth.

  5. Antimicrobial Activity of Bacteriocins and Their Applications

    NASA Astrophysics Data System (ADS)

    Drosinos, Eleftherios H.; Mataragas, Marios; Paramithiotis, Spiros

    Bacteriocins are peptides or proteins that exert an antimicrobial action against a range of microorganisms. Their production can be related to the antagonism within a certain ecological niche, as the producer strain, being itself immune to its action, generally gains a competitive advantage. Many Gram-positive and Gram-negative microorganisms have been found to produce bacteriocins. The former, and especially the ones produced by lactic acid bacteria, has been the field of intensive research during the last decades mainly due to their properties that account for their suitability in food preservation and the benefits arising from that, and secondarily due to the broader inhibitory spectrum compared to the ones produced by Gramnegative microorganisms.

  6. Heat stable antimicrobial activity of Burkholderia gladioli OR1 against clinical drug resistant isolates

    PubMed Central

    Bharti, Pratibha; Anand, Vivek; Chander, Jagdish; Singh, Inder Pal; Singh, Tej Vir; Tewari, Rupinder

    2012-01-01

    Background & objectives: Drug resistant microbes are a serious challenge to human health. During the search for novel antibiotics/inhibitors from the agricultural soil, a bacterial colony was found to inhibit the growth of clinical isolates including Staphylococcus (resistant to amikacin, ciprofloxacin, clindamycin, clinafloxacin, erythromycin, gentamicin and methicillin) and Candida (resistant to fluconazole and itraconazole). The culture was identified as Burkholderia gladioli and produced at least five different antimicrobial compounds which were highly stable at high temperature (121°C) and in the broad pH range (3.0-11.0). We report here the antimicrobial activity of B. gladioli against drug resistant bacterial pathogens. Methods: The bacterial culture was identified using morphological, biochemical and 16S rRNA gene sequencing techniques. The antimicrobial activity of the identified organism against a range of microbial pathogens was checked by Kirby-Bauer's disc diffusion method. The antimicrobial compounds in the cell free supernatant were chloroform-extracted and separated by thin layer chromatography (TLC). Results: B. gladioli OR1 exhibited broad spectrum antimicrobial activity against drug resistant clinical isolates belonging to various genera of bacteria (Staphylococcus, Enterobacter, Enterococcus, Acinetobacter and Citrobacter) and a fungus (Candida). Based on TLC profile and bioautography studies, the chloroform extract of B. gladioli OR1 consisted of at least three anti-staphylococcal and two anti-Candida metabolites. The antimicrobial activity was heat stable (121°C/20 min) as well as pH stable (3.0-11.0). Interpretation & conclusions: The bacterial soil isolate, B. gladioli OR1 possessed the ability to kill various drug resistant bacteria and a fungus. This organism produced many antimicrobial metabolites which might have the potential to be used as antibiotics in future. PMID:22771597

  7. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes.

    PubMed

    Yang, Darren; Pornpattananangkul, Dissaya; Nakatsuji, Teruaki; Chan, Michael; Carson, Dennis; Huang, Chun-Ming; Zhang, Liangfang

    2009-10-01

    This study evaluated the antimicrobial activity of lauric acid (LA) and its liposomal derivatives against Propionibacterium acnes (P. acnes), the bacterium that promotes inflammatory acne. First, the antimicrobial study of three free fatty acids (lauric acid, palmitic acid and oleic acid) demonstrated that LA gives the strongest bactericidal activity against P. acnes. However, a setback of using LA as a potential treatment for inflammatory acne is its poor water solubility. Then the LA was incorporated into a liposome formulation to aid its delivery to P. acnes. It was demonstrated that the antimicrobial activity of LA was not only well maintained in its liposomal derivatives but also enhanced at low LA concentration. In addition, the antimicrobial activity of LA-loaded liposomes (LipoLA) mainly depended on the LA loading concentration per single liposomes. Further study found that the LipoLA could fuse with the membranes of P. acnes and release the carried LA directly into the bacterial membranes, thereby killing the bacteria effectively. Since LA is a natural compound that is the main acid in coconut oil and also resides in human breast milk and liposomes have been successfully and widely applied as a drug delivery vehicle in the clinic, the LipoLA developed in this work holds great potential of becoming an innate, safe and effective therapeutic medication for acne vulgaris and other P. acnes associated diseases. PMID:19665786

  8. Antimicrobial Activity of Root Bark of Salacia reticulata

    PubMed Central

    Choudhary, G. P.; Vijay Kanth, M. S.

    2005-01-01

    Antimicrobial activity of chloroform and methanolic extracts of Salacia reticulata were tested against gram positive, gram negative and fungus strains using zone of inhibition and minimum inhibitory concentrations. It was observed that both extracts have inhibitory effect towards all microorganisms used in the test. Chloroform extract was more effective than methanolic extract. PMID:22557181

  9. Thymus vulgaris essential oil: chemical composition and antimicrobial activity.

    PubMed

    Borugă, O; Jianu, C; Mişcă, C; Goleţ, I; Gruia, A T; Horhat, F G

    2014-01-01

    The study was designed to determine the chemical composition and antimicrobial properties of the essential oil of Thymus vulgaris cultivated in Romania. The essential oil was isolated in a yield of 1.25% by steam distillation from the aerial part of the plant and subsequently analyzed by GC-MS. The major components were p-cymene (8.41%), γ-terpinene (30.90%) and thymol (47.59%). Its antimicrobial activity was evaluated on 7 common food-related bacteria and fungus by using the disk diffusion method. The results demonstrate that the Thymus vulgaris essential oil tested possesses strong antimicrobial properties, and may in the future represent a new source of natural antiseptics with applications in the pharmaceutical and food industry. PMID:25870697

  10. Antioxidant, antimicrobial and neutrophil-modulating activities of herb extracts.

    PubMed

    Denev, Petko; Kratchanova, Maria; Ciz, Milan; Lojek, Antonin; Vasicek, Ondrej; Blazheva, Denitsa; Nedelcheva, Plamena; Vojtek, Libor; Hyrsl, Pavel

    2014-01-01

    The present study provides a comprehensive data on the antioxidant, antimicrobial and neutrophil-modulating activities of extracts from six medicinal plants--blackberry (Rubus fruticosus) leaves, chokeberry (Aronia melanocarpa) leaves, hawthorn (Crataegus monogyna) leaves, lady's mantle (Alchemilla glabra) aerial parts, meadowsweet (Filipendula ulmaria) aerial parts and raspberry (Rubus idaeus) leaves. In order to analyze the antioxidant activity of the herbs, several methods (ORAC, TRAP, HORAC and inhibition of lipid peroxidation) were used. Blackberry leaves and meadowsweet extracts revealed the highest antioxidant activities via all methods. All extracts studied blocked almost completely the opsonized zymosan particle-activated ROS production by neutrophils from human whole blood. On the other hand, the effect of extracts on phorbol myristate acetate-activated ROS production was much milder and even nonsignificant in the case of chokeberry leaves. This latter result suggests that extracts (apart from their antioxidative activity) interfere with the signaling cascade of phagocyte activation upstream of the protein kinase C activation. The antimicrobial activity of the investigated extracts against 11 human pathogens was investigated using three different methods. Meadowsweet and blackberry leaves extracts had the highest antimicrobial effect and the lowest minimal inhibiting concentrations (MICs) against the microorganisms tested.

  11. Antimicrobial Activity and Phytochemical Analysis of Organic Extracts from Cleome spinosa Jaqc.

    PubMed Central

    da Silva, Ana P. Sant'Anna; Nascimento da Silva, Luís C.; Martins da Fonseca, Caíque S.; de Araújo, Janete M.; Correia, Maria T. dos Santos; Cavalcanti, Marilene da Silva; Lima, Vera L. de Menezes

    2016-01-01

    Due to the use of Cleome spinosa Jacq. (Cleomaceae) in traditional medicine against inflammatory and infectious processes, this study evaluated the in vitro antimicrobial potential and phytochemical composition of extracts from its roots and leaves. From leaves (L) and roots (R) of C. spinosa different extracts were obtained (cyclohexane: ChL and ChR; chloroform: CL and CR; ethyl acetate: EAL and EAR, methanol: ML and MR). The antimicrobial activity was evaluated by the broth microdilution method to obtain the minimum inhibitory (MIC) and microbicidal (MMC) concentrations against 17 species, including bacteria and yeasts. Additionally, antimicrobial and combinatory effects with oxacillin were assessed against eight clinical isolates of Staphylococcus aureus. All C. spinosa extracts showed a broad spectrum of antimicrobial activity, as they have inhibited all tested bacteria and yeasts. This activity seems to be related to the phytochemicals (flavonoid, terpenoids and saponins) detected into the extracts of C. spinosa. ChL and CL extracts were the most actives, with MIC less than 1 mg/mL against S. aureus, Bacillus subtilis, and Micrococcus luteus. It is important to note that these concentrations are much lower than their 50% hemolysis concentration (HC50) values. Strong correlations were found between the average MIC against S. aureus and their phenolic (r = −0.89) and flavonoid content (r = −0.87), reinforcing the possible role of these metabolite classes on the antimicrobial activity of C. spinosa derived extracts. Moreover, CL and CR showed the best inhibitory activity against S. aureus clinical isolates, they also showed synergistic action with oxacillin against all these strains (at least at one combined proportion). These results encourage the identification of active substances which could be used as lead(s) molecules in the development of new antimicrobial drugs. PMID:27446005

  12. Antimicrobial Activity and Phytochemical Analysis of Organic Extracts from Cleome spinosa Jaqc.

    PubMed

    da Silva, Ana P Sant'Anna; Nascimento da Silva, Luís C; Martins da Fonseca, Caíque S; de Araújo, Janete M; Correia, Maria T Dos Santos; Cavalcanti, Marilene da Silva; Lima, Vera L de Menezes

    2016-01-01

    Due to the use of Cleome spinosa Jacq. (Cleomaceae) in traditional medicine against inflammatory and infectious processes, this study evaluated the in vitro antimicrobial potential and phytochemical composition of extracts from its roots and leaves. From leaves (L) and roots (R) of C. spinosa different extracts were obtained (cyclohexane: ChL and ChR; chloroform: CL and CR; ethyl acetate: EAL and EAR, methanol: ML and MR). The antimicrobial activity was evaluated by the broth microdilution method to obtain the minimum inhibitory (MIC) and microbicidal (MMC) concentrations against 17 species, including bacteria and yeasts. Additionally, antimicrobial and combinatory effects with oxacillin were assessed against eight clinical isolates of Staphylococcus aureus. All C. spinosa extracts showed a broad spectrum of antimicrobial activity, as they have inhibited all tested bacteria and yeasts. This activity seems to be related to the phytochemicals (flavonoid, terpenoids and saponins) detected into the extracts of C. spinosa. ChL and CL extracts were the most actives, with MIC less than 1 mg/mL against S. aureus, Bacillus subtilis, and Micrococcus luteus. It is important to note that these concentrations are much lower than their 50% hemolysis concentration (HC50) values. Strong correlations were found between the average MIC against S. aureus and their phenolic (r = -0.89) and flavonoid content (r = -0.87), reinforcing the possible role of these metabolite classes on the antimicrobial activity of C. spinosa derived extracts. Moreover, CL and CR showed the best inhibitory activity against S. aureus clinical isolates, they also showed synergistic action with oxacillin against all these strains (at least at one combined proportion). These results encourage the identification of active substances which could be used as lead(s) molecules in the development of new antimicrobial drugs.

  13. Antimicrobial Activity and Phytochemical Analysis of Organic Extracts from Cleome spinosa Jaqc.

    PubMed

    da Silva, Ana P Sant'Anna; Nascimento da Silva, Luís C; Martins da Fonseca, Caíque S; de Araújo, Janete M; Correia, Maria T Dos Santos; Cavalcanti, Marilene da Silva; Lima, Vera L de Menezes

    2016-01-01

    Due to the use of Cleome spinosa Jacq. (Cleomaceae) in traditional medicine against inflammatory and infectious processes, this study evaluated the in vitro antimicrobial potential and phytochemical composition of extracts from its roots and leaves. From leaves (L) and roots (R) of C. spinosa different extracts were obtained (cyclohexane: ChL and ChR; chloroform: CL and CR; ethyl acetate: EAL and EAR, methanol: ML and MR). The antimicrobial activity was evaluated by the broth microdilution method to obtain the minimum inhibitory (MIC) and microbicidal (MMC) concentrations against 17 species, including bacteria and yeasts. Additionally, antimicrobial and combinatory effects with oxacillin were assessed against eight clinical isolates of Staphylococcus aureus. All C. spinosa extracts showed a broad spectrum of antimicrobial activity, as they have inhibited all tested bacteria and yeasts. This activity seems to be related to the phytochemicals (flavonoid, terpenoids and saponins) detected into the extracts of C. spinosa. ChL and CL extracts were the most actives, with MIC less than 1 mg/mL against S. aureus, Bacillus subtilis, and Micrococcus luteus. It is important to note that these concentrations are much lower than their 50% hemolysis concentration (HC50) values. Strong correlations were found between the average MIC against S. aureus and their phenolic (r = -0.89) and flavonoid content (r = -0.87), reinforcing the possible role of these metabolite classes on the antimicrobial activity of C. spinosa derived extracts. Moreover, CL and CR showed the best inhibitory activity against S. aureus clinical isolates, they also showed synergistic action with oxacillin against all these strains (at least at one combined proportion). These results encourage the identification of active substances which could be used as lead(s) molecules in the development of new antimicrobial drugs. PMID:27446005

  14. Antimicrobial activity in the cuticle of the American lobster, Homarus americanus.

    PubMed

    Mars Brisbin, Margaret; McElroy, Anne E; Pales Espinosa, Emmanuelle; Allam, Bassem

    2015-06-01

    American lobster, Homarus americanus, continues to be an ecologically and socioeconomically important species despite a severe decline in catches from Southern New England and Long Island Sound (USA) and a high prevalence of epizootic shell disease in these populations. A better understanding of lobster immune defenses remains necessary. Cuticle material collected from Long Island Sound lobsters was found to be active against a broad spectrum of bacteria, including Gram-negative and -positive species. The antimicrobial activity was characterized by boiling, muffling, and size fractioning. Boiling did not significantly reduce activity, while muffling did have a significant effect, suggesting that the active component is organic and heat stable. Size fractioning with 3 and 10 kDa filters did not significantly affect activity. Fast protein liquid chromatography fractions were also tested for antimicrobial activity, and fractions exhibiting protein peaks remained active. MALDI mass spectrometry revealed peptide peaks at 1.6, 2.8, 4.6, and 5.6 kDa. The data presented suggest that one or several antimicrobial peptides contribute to antimicrobial activity present in the American lobster cuticle.

  15. Antimicrobial activity in the cuticle of the American lobster, Homarus americanus.

    PubMed

    Mars Brisbin, Margaret; McElroy, Anne E; Pales Espinosa, Emmanuelle; Allam, Bassem

    2015-06-01

    American lobster, Homarus americanus, continues to be an ecologically and socioeconomically important species despite a severe decline in catches from Southern New England and Long Island Sound (USA) and a high prevalence of epizootic shell disease in these populations. A better understanding of lobster immune defenses remains necessary. Cuticle material collected from Long Island Sound lobsters was found to be active against a broad spectrum of bacteria, including Gram-negative and -positive species. The antimicrobial activity was characterized by boiling, muffling, and size fractioning. Boiling did not significantly reduce activity, while muffling did have a significant effect, suggesting that the active component is organic and heat stable. Size fractioning with 3 and 10 kDa filters did not significantly affect activity. Fast protein liquid chromatography fractions were also tested for antimicrobial activity, and fractions exhibiting protein peaks remained active. MALDI mass spectrometry revealed peptide peaks at 1.6, 2.8, 4.6, and 5.6 kDa. The data presented suggest that one or several antimicrobial peptides contribute to antimicrobial activity present in the American lobster cuticle. PMID:25804485

  16. Comparison of antimicrobial activity in the epidermal mucus extracts of fish.

    PubMed

    Subramanian, Sangeetha; Ross, Neil W; MacKinnon, Shawna L

    2008-05-01

    The mucus layer on the surface of fish consists of several antimicrobial agents that provide a first line of defense against invading pathogens. To date, little is known about the antimicrobial properties of the mucus of Arctic char (Salvelinus alpinus), brook trout (S. fontinalis), koi carp (Cyprinus carpio sub sp. koi), striped bass (Morone saxatilis), haddock (Melanogrammus aeglefinus) and hagfish (Myxine glutinosa). The epidermal mucus samples from these fish were extracted with acidic, organic and aqueous solvents to identify potential antimicrobial agents including basic peptides, secondary metabolites, aqueous and acid soluble compounds. Initial screening of the mucus extracts against a susceptible strain of Salmonella enterica C610, showed a significant variation in antimicrobial activity among the fish species examined. The acidic mucus extracts of brook trout, haddock and hagfish exhibited bactericidal activity. The organic mucus extracts of brook trout, striped bass and koi carp showed bacteriostatic activity. There was no detectable activity in the aqueous mucus extracts. Further investigations of the activity of the acidic mucus extracts of brook trout, haddock and hagfish showed that these fish species had specific activity for fish and human pathogens, demonstrating the role of fish mucus in antimicrobial protection. In comparison to brook trout and haddock, the minimum bactericidal concentrations of hagfish acidic mucus extracts were found to be approximately 1.5 to 3.0 times lower against fish pathogens and approximately 1.6 to 6.6 folds lower for human pathogens. This preliminary information suggests that the mucus from these fish species may be a source of novel antimicrobial agents for fish and human health related applications.

  17. Antimicrobial and cytotoxic activities from Jatropha dioica roots.

    PubMed

    Silva-Belmares, Yesenia; Rivas-Morales, Catalina; Viveros-Valdez, Ezequiel; de la Cruz-Galicia, María Guadalupe; Carranza-Rosales, Pilar

    2014-05-01

    The antimicrobial and cytotoxic activities of organic extracts obtained from roots of the medicinal plant Jatropha dioica (Euphorbiaceae) were investigated. In order to evaluate their antimicrobial activity, the organic extracts were tested against clinical isolates of the human pathogens Bacillus cereus, Escherichia coli, Salmonella typhi, Staphylococcus aureus, Enterobacter aerogenes, Enterobacter cloacae, Salmonella typhimurium, Cryptococcus neoformans, Candida albicans, Candida parapsilosis and Sporothrix schenckii. Results revealed that the hexane extract possess the stronger activity and a broader microbicide spectrum compared to the acetone and ethanol extracts. The activity of hexane extract may be attributed in part to the presence of β-sitosterol, the major compound identified by bioautography. The hexane extract, as well as the bioactive fraction were not cytotoxic when assays were profiled against the normal cell lines Chang, OK and LLCPK-1 (IC50>1000 μg mL(-1)). PMID:26031013

  18. Antimicrobial activity of Lactobacillus against microbial flora of cervicovaginal infections

    PubMed Central

    Dasari, Subramanyam; Shouri, Raju Naidu Devanaboyaina; Wudayagiri, Rajendra; Valluru, Lokanatha

    2014-01-01

    Objective To assess the probiotic nature of Lactobacillus in preventing cervical pathogens by studying the effectiveness of antimicrobial activity against vaginal pathogens. Methods Lactobacilli were isolated from healthy vaginal swabs on selective media and different pathogenic bacteria were isolated by using different selective media. The Lactobacillus strains were tested for the production of hydrogen peroxide and antimicrobial compounds along with probiotic properties. Results Of the 10 isolated Lactobacillus strains, strain 1, 3 and 6 are high hydrogen peroxide producers and the rest were low producers. Results of pH and amines tests indicated that pH increased with fishy odour in the vaginal fluids of cervicovaginal infection patients when compared with vaginal fluids of healthy persons. The isolates were found to be facultative anaerobic, Gram-positive, non-spore-forming, non-capsule forming and catalase-negative bacilli. The results of antimicrobial activity of compounds indicated that 280 and 140 µg/mL was the minimum concentration to inhibit the growth of both pathogens and test organisms respectively. Conclusions The results demonstrated that Lactobacillus producing antimicrobial compounds inhibits the growth of cervical pathogens, revealing that the hypothesis of preventing vaginal infection by administering probiotic organisms has a great appeal to patients, which colonize the vagina to help, restore and maintain healthy vagina.

  19. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications. PMID:25280707

  20. Antimicrobial activity of poly(acrylic acid) block copolymers.

    PubMed

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P; Lackner, Maximilian

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid-base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure.

  1. The Antimicrobial Activity of Different Mouthwashes in Malaysia

    PubMed Central

    Mat Ludin, C.M.; Md Radzi, J.

    2001-01-01

    Seven different brands of mouthwashes were assessed for the inhibition of growth of oral micro-organisms. The results showed wide variations in their effectiveness: Those containing cationic surfactants and complex organic nitrogenous compounds were more active than the older formulations based on phenols. A list was compiled ranking the mouthwashes according to their antimicrobial activity, which did not always agree with the manufacturer’s claims or indication for use. PMID:22893755

  2. In Vitro Antimicrobial and Antiproliferative Activity of Amphipterygium adstringens

    PubMed Central

    Rodriguez-Garcia, A.; Peixoto, I. T. A.; Verde-Star, M. J.; De la Torre-Zavala, S.; Aviles-Arnaut, H.; Ruiz, A. L. T. G.

    2015-01-01

    Amphipterygium adstringens is a plant widely used in Mexican traditional medicine for its known anti-inflammatory and antiulcer properties. In this work, we evaluated the in vitro antimicrobial and antiproliferative activities of the methanolic extract of A. adstringens against oral pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Candida albicans, and Candida dubliniensis, using microdilution (MIC) and agar diffusion methods (MBC), and the antiproliferative activity evaluating total growth inhibition (TGI) by staining the protein content with sulforhodamine B (SRB), using nine human cancer cell lines. Crude extract (CE) of A. adstringens showed some degree of activity against one or more of the strains with a MIC from 0.125 mg/mL to 63 mg/mL and MBC from 1.6 to 6.3 mg/mL and cytotoxic activity, particularly against NCI-ADR/RES, an ovarian cell line expressing multiple resistance drugs phenotype. The CE is a complex mixture of possible multitarget metabolites that could be responsible for both antimicrobial and antiproliferative activities, and further investigation is required to elucidate the identity of active compounds. Nevertheless the CE itself is useful in the development of new antimicrobial treatment based on natural products to prevent oral diseases and as alternative natural source for cancer treatment and prevention. PMID:26451151

  3. Biological activity assessment of a novel contraceptive antimicrobial agent.

    PubMed

    Garg, A; Anderson, R A; Zaneveld, L J D; Garg, S

    2005-01-01

    Microbicides are a new category of compounds being developed as a prophylactic approach for the prevention of transmission of sexually transmitted diseases (STDs), including the human immunodeficiency virus (HIV). These are primarily being developed as women-controlled methods, with the target of designing new compounds or formulations that can be used without the knowledge of a male partner. Microbicide screening can be initially based on their hyaluronidase-inhibiting (HI) activity, as this enzyme plays a major role in the sperm and microbe penetration into the substrate. Derivatives of hesperidin, a citrus flavonoid glycoside, have been reported in the literature for their HI effects. Hesperidin was thereby sulphonated under strictly controlled conditions and the active fraction isolated and characterized, based on its HI activity. This derivative was screened for antimicrobial and enzyme-inhibitory activities, specifically for the reproductive tract. Sulphonated hesperidin (SH) was found to completely inhibit the sperm enzymes hyaluronidase, giving an indication toward its contraceptive effects. It was also been found to inhibit various sexually transmitted pathogens, including Chlamydia trachomatis, Neisseria gonorrhoea, HIV, and Herpes Simplex virus type 2 (HSV-2). Its safety assessment was based on its noninterference in sperm motility and its penetration through the cervical mucus, and no effect on the growth of lactobacilli, the normal vaginal flora. It was also found to be nontoxic to the HIV substrate cells (MT2 cells). The study concludes that sulphonated hesperidin can be developed as a potential microbicide for a dual prophylaxis of contraception and transmission of STDs and AIDS. PMID:15867010

  4. Antimicrobial activity of chicken NK-lysin against Eimeria sporozoites.

    PubMed

    Hong, Yeong H; Lillehoj, Hyun S; Siragusa, Gregory R; Bannerman, Douglas D; Lillehoj, Erik P

    2008-06-01

    NK-lysin is an antimicrobial and antitumor polypeptide that is considered to play an important role in innate immunity. Chicken NK-lysin is a member of the saposin-like protein family and exhibits potent antitumor cell activity. To evaluate the antimicrobial properties of chicken NK-lysin, we examined its ability to reduce the viability of various bacterial strains and two species of Eimeria parasites. Culture supernatants from COS7 cells transfected with a chicken NK-lysin cDNA and His-tagged purified NK-lysin from the transfected cells both showed high cytotoxic activity against Eimeria acervulina and Eimeria maxima sporozoites. In contrast, no bactericidal activity was observed. Further studies using synthetic peptides derived from NK-lysin may be useful for pharmaceutical and agricultural uses in the food animal industry.

  5. Chemical constituents of Solanum coagulans and their antimicrobial activities.

    PubMed

    Qin, Xu-Jie; Lunga, Paul-Keilah; Zhao, Yun-Li; Liu, Ya-Ping; Luo, Xiao-Dong

    2016-04-01

    The present study aimed at determining the chemical constituents of Solanum coagulans and their antimicrobial activities. The compounds were isolated by various chromatographic techniques and their structures were elucidated on the basis of extensive spectroscopic analysis, chemical methods, and comparison with reported spectroscopic data. One new phenolic glycoside, methyl salicylate 2-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranoside (1), together with 12 known compounds (2-13), were isolated from the aerial parts of Solanum coagulans. Compound 1 was a new phenolic glycoside, and 2-6 were isolated from Solanum genus for the first time. The antimicrobial activities of the isolated compounds were also evaluated. Compound 7 showed remarkable antifungal activity against T. mentagrophytes, M. gypseum and E. floccosum with MIC values being 3.13, 1.56 and 3.13 μg·mL(-1), respectively. PMID:27114320

  6. In-vitro Antimicrobial Activities of Some Iranian Conifers

    PubMed Central

    Afsharzadeh, Maryam; Naderinasab, Mahboobe; Tayarani Najaran, Zahra; Barzin, Mohammad; Emami, Seyed Ahmad

    2013-01-01

    Male and female leaves and fruits of eleven different taxons of Iranian conifers (Cupressus sempervirens var. horizontalis, C. sempervirens var. sempervirens, C. sempervirens cv. Cereifeormis, Juniperus communis subsp. hemisphaerica, J. excelsa subsp. excelsa, J. excelsa subsp. polycarpos, J. foetidissima, J. oblonga, J. sabina, Platycladus orientalis and Taxus baccata) were collected from different localities of Iran, dried and extracted with methanol. The extracts were tested for their antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Candida albicans. The extracts were screened qualitatively using four different methods, the disc diffusion, hole plate, cylinder agar diffusion and agar dilution methods, whereas the minimum inhibitory concentrations (MIC) of each extract were determined by the agar dilution method. The best result was obtained by means of hole plate method in qualitative determination of antimicrobial activities of extracts and the greatest activity was found against S. aureus in all tested methods. PMID:24250573

  7. Selected Antimicrobial Activity of Topical Ophthalmic Anesthetics

    PubMed Central

    Reynolds, Margaret M.; Greenwood-Quaintance, Kerryl E.; Patel, Robin; Pulido, Jose S.

    2016-01-01

    Purpose Endophthalmitis is a rare complication of intravitreal injection (IVI). It is recommended that povidone-iodine be the last agent applied before IVI. Patients have reported povidone-iodine application to be the most bothersome part of IVIs. Topical anesthetics have been demonstrated to have antibacterial effects. This study compared the minimum inhibitory concentration (MIC) of topical anesthetic eye drops (proparacaine 0.5%, tetracaine 0.5%, lidocaine 2.0%) and the antiseptic, 5.0% povidone-iodine, against two organisms causing endophthalmitis after IVI. Methods Minimum inhibitory concentration values of topical anesthetics, povidone-iodine, preservative benzalkonium chloride (0.01%), and saline control were determined using five isolates of each Staphylococcus epidermidis and viridans group Streptococcus species (VGS). A broth microdilution technique was used with serial dilutions. Results Lidocaine (8.53 × 10−5mol/mL) had MICs of 4.27 to 8.53 × 10−5 mol/mL, and tetracaine (1.89 × 10−5 mol/mL) had MICs of 9.45 × 10−6 mol/mL for all isolates. Proparacaine (1.7 × 10−5 mol/mL) had MICs of 1.32 to 5.3 × 10−7 and 4.25 × 10−6 mol/mL for S. epidermidis and VGS, respectively). Benzalkonium chloride (3.52 × 10−7 mol/mL) had MICs of 1.86 × 10−9 to 1.1 × 10−8 and 4.40 × 10−8 mol/mL for S. epidermidis and VGS, respectively. Povidone-iodine (1.37 × 10−4 mol/mL) had MICs of 2.14 to 4.28 × 10−6 and 8.56 × 10−6 mol/mL for S. epidermidis and VGS, respectively. Conclusion Proparacaine was the anesthetic with the lowest MICs, lower than that of povidone-iodine. Benzalkonium chloride had lower MICs than proparacaine. All tested anesthetics and povidone-iodine inhibited growth of S. epidermidis and VGS at commercially available concentrations. Translational Relevance For certain patients, it could be possible to use topical anesthetic after povidone-iodine for comfort without inhibiting and perhaps contributing additional antimicrobial

  8. Antimicrobial Activity of Serbian Propolis Evaluated by Means of MIC, HPTLC, Bioautography and Chemometrics

    PubMed Central

    Trifković, Jelena; Berić, Tanja; Vovk, Irena; Milojković-Opsenica, Dušanka; Stanković, Slaviša

    2016-01-01

    compounds, as well as the verification of HPTLC fingerprinting as a reliable method for the identification of compounds that are potentially responsible for antimicrobial activity. This is the first report on the activity of Serbian propolis as determined by several combined methods, including the modelling of antimicrobial activity by HPTLC fingerprinting. PMID:27272728

  9. Modulating Antimicrobial Activity and Mammalian Cell Biocompatibility with Glucosamine-Functionalized Star Polymers.

    PubMed

    Wong, Edgar H H; Khin, Mya Mya; Ravikumar, Vikashini; Si, Zhangyong; Rice, Scott A; Chan-Park, Mary B

    2016-03-14

    The development of novel reagents and antibiotics for combating multidrug resistance bacteria has received significant attention in recent years. In this study, new antimicrobial star polymers (14-26 nm in diameter) that consist of mixtures of polylysine and glycopolymer arms were developed and were shown to possess antimicrobial efficacy toward Gram positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) (with MIC values as low as 16 μg mL(-1)) while being non-hemolytic (HC50 > 10,000 μg mL(-1)) and exhibit excellent mammalian cell biocompatibility. Structure function analysis indicated that the antimicrobial activity and mammalian cell biocompatibility of the star nanoparticles could be optimized by modifying the molar ratio of polylysine to glycopolymers arms. The technology described herein thus represents an innovative approach that could be used to fight deadly infectious diseases.

  10. Screening of Australian plants for antimicrobial activity against Campylobacter jejuni.

    PubMed

    Kurekci, Cemil; Bishop-Hurley, Sharon L; Vercoe, Philip E; Durmic, Zoey; Al Jassim, Rafat A M; McSweeney, Christopher S

    2012-02-01

    Campylobacter jejuni is the most common cause of acute enteritis in humans, with symptoms such as diarrhoea, fever and abdominal cramps. In this study, 115 extracts from 109 Australian plant species were investigated for their antimicrobial activities against two C. jejuni strains using an in vitro broth microdilution assay. Among the plants tested, 107 (93%) extracts showed activity at a concentration between 32 and 1024 µg/mL against at least one C. jejuni strain. Seventeen plant extracts were selected for further testing against another six C. jejuni strains, as well as Campylobacter coli, Escherichia coli, Salmonella typhimurium, Bacillus cereus, Proteus mirabilis and Enterococcus faecalis. The extract from Eucalyptus occidentalis demonstrated the highest antimicrobial activity, with an inhibitory concentration of 32 µg/mL against C. jejuni and B. cereus. This study has shown that extracts of selected Australian plants possess antimicrobial activity against C. jejuni and thus may have application in the control of this organism in live poultry and retail poultry products.

  11. Antityrosinase and antimicrobial activities from Thai medicinal plants.

    PubMed

    Dej-Adisai, Sukanya; Meechai, Imron; Puripattanavong, Jindaporn; Kummee, Sopa

    2014-04-01

    Various dermatological disorders and microbial skin infection can cause hyperpigmentation. Therefore, screenings for whitening and antimicrobial agents from Thai medicinal plants have been of research interest. Seventy-seven ethanol plant extracts were investigated for antityrosinase activity, eleven samples showed the tyrosinase inhibition more than 50 % were further preliminary screening for antimicrobial activity by agar disc diffusion and broth micro-dilution methods. Artocarpus integer (Thunb.) Merr. (Moraceae) root extract, which showed the potential of tyrosinase inhibition with 90.57 ± 2.93 % and antimicrobial activity against Staphylococcus aureus, S. epidermidis, Propionibacterium acnes and Trichophyton mentagophytes with inhibition zone as 9.10 ± 0.00, 10.67 ± 0.09, 15.25 ± 0.05 and 6.60 ± 0.17 mm, respectively was selected for phytochemical investigation. Three pure compounds were isolated as artocarpin, cudraflavone C and artocarpanone. And artocarpanone exhibited anti-tyrosinase effect; artocarpin and cudraflavone C also showed the potential of antibacterial activity against S. aureus, S. epidermidis and P. acnes with MIC at 2, 4 and 2 μg/ml, respectively and MBC at 32 μg/ml for these bacteria. So, these pure compounds are interesting for further study in order to provide possibilities of new whitening and antibacterial development. This will be the first report of phytochemical investigation of A. integer root.

  12. In vitro antimicrobial activity of benzoquinolinediones.

    PubMed

    Clark, A M; Huddleston, D L; Ma, C Y; Ho, C H

    1984-11-01

    The in vitro antibacterial and anti-fungal activity of benz[g]isoquinoline-5,10-dione (1), benzo[g]quinoline-5, 10-dione (2), benzo[g]quinoline-5,6-dione (3), and anthraquinone (4) was determined using the agar well-diffusion assay. The minimum inhibitory concentrations (MIC's) of each of the active compounds (1-3) was determined using the two-fold serial dilution technique. Of the four compounds tested, benz[g]isoquinoline-5,10-dione exhibited the best overall activity against both bacteria and fungi. Particularly noteworthy was its significant antifungal activity which was comparable to the activity of the standard antifungal antibiotic amphotericin B.

  13. Composition of Satureja kitaibelii essential oil and its antimicrobial activity.

    PubMed

    Kundaković, Tatjana; Milenković, Marina; Zlatković, Sasa; Kovacević, Nada; Goran, Nikolić

    2011-09-01

    The composition of the essential oil obtained by hydrodistillation from the aerial parts of Satureja kitaibelii from Rtanj mountain (Serbia), collected during three years, was studied. Thirty-nine components were identified in each sample of S. kitaibelii essential oil, representing about 87% of the oils. p-Cymene was the most dominant compound in all three oils (27.9%, 14.7% and 24.4%, respectively). The simple formulation of a lozenge with 0.2% of S. kitaibelii essential oil was prepared and the antimicrobial activity of the essential oil and the lozenge with essential oil was tested using a broth microdilution assay. Both essential oil and lozenge possessed strong antimicrobial activity with MIC values of 0.10-25 microg/mL, and 0.97-15.6 mg/mL, respectively. PMID:21941914

  14. Synthesis, antimicrobial and molluscicidal activities of new benzimidazole derivatives.

    PubMed

    Nofal, Z M; Fahmy, H H; Mohamed, H S

    2002-02-01

    A series of benzimidazole Schiff's bases, thiosemicarbazides were synthesized, azole ring systems as 1,3,4-triazole, 1,3,4-oxadiazole were prepared. 1-Methylbenzimidazole incorporated to substituted dithio-carbamate, thiophenol, diethylamine via acetamido group were synthesized. A series of pyrimidinobenzimidazoles, triazinobenz-imidazoles, and 2-(acetonylamino)-1-methylbenzimidazole were prepared. The antimicrobial and molluscicidal activities of some newly prepared compounds were carried out. PMID:11885688

  15. Antioxidant and antimicrobial activities of Bauhinia racemosa L. stem bark.

    PubMed

    Kumar, R S; Sivakumar, T; Sunderam, R S; Gupta, M; Mazumdar, U K; Gomathi, P; Rajeshwar, Y; Saravanan, S; Kumar, M S; Murugesh, K; Kumar, K A

    2005-07-01

    The present study was carried out to evaluate the antioxidant and antimicrobial activities of a methanol extract of Bauhinia racemosa (MEBR) (Caesalpiniaceae) stem bark in various systems. 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radical, superoxide anion radical, nitric oxide radical, and hydroxyl radical scavenging assays were carried out to evaluate the antioxidant potential of the extract. The antioxidant activity of the methanol extract increased in a concentration-dependent manner. About 50, 100, 250, and 500 microg MEBR inhibited the peroxidation of a linoleic acid emulsion by 62.43, 67.21, 71.04, and 76.83%, respectively. Similarly, the effect of MEBR on reducing power increased in a concentration-dependent manner. In DPPH radical scavenging assays the IC50 value of the extract was 152.29 microg/ml. MEBR inhibited the nitric oxide radicals generated from sodium nitroprusside with an IC50 of 78.34 microg/ml, as opposed to 20.4 microg/ml for curcumin. Moreover, MEBR scavenged the superoxide generated by the PMS/NADH-NBT system. MEBR also inhibited the hydroxyl radical generated by Fenton's reaction, with an IC50 value of more than 1000 microg/ml, as compared to 5 microg/ml for catechin. The amounts of total phenolic compounds were also determined and 64.7 microg pyrocatechol phenol equivalents were detected in MEBR (1 mg). The antimicrobial activities of MEBR were determined by disc diffusion with five Gram-positive, four Gram-negative and four fungal species. MEBR showed broad-spectrum antimicrobial activity against all tested microorganisms. The results obtained in the present study indicate that MEBR can be a potential source of natural antioxidant and antimicrobial agents.

  16. Extracellular Streptomyces lividans vesicles: composition, biogenesis and antimicrobial activity.

    PubMed

    Schrempf, Hildgund; Merling, Philipp

    2015-07-01

    We selected Streptomyces lividans to elucidate firstly the biogenesis and antimicrobial activities of extracellular vesicles that a filamentous and highly differentiated Gram-positive bacterium produces. Vesicle types range in diameter from 110 to 230 nm and 20 to 60 nm, respectively; they assemble to clusters, and contain lipids and phospholipids allowing their in situ imaging by specific fluorescent dyes. The presence of the identified secondary metabolite undecylprodigiosin provokes red fluorescence of a portion of the heterogeneous vesicle populations facilitating in vivo monitoring. Protuberances containing vesicles generate at tips, and alongside of substrate hyphae, and enumerate during late vegetative growth to droplet-like exudates. Owing to in situ imaging in the presence and absence of a green fluorescent vancomycin derivative, we conclude that protuberances comprising vesicles arise at sites with enhanced levels of peptidoglycan subunits [pentapeptide of lipid II (C55)-linked disaccharides], and reduced levels of polymerized and cross-linked peptidoglycan within hyphae. These sites correlate with enhanced levels of anionic phospholipids and lipids. Vesicles provoke pronounced damages of Aspergillus proliferans, Verticillium dahliae and induced clumping and distortion of Escherichia coli. These harmful effects are likely attributable to the action of the identified vesicular compounds including different enzyme types, components of signal transduction cascades and undecylprodigiosin. Based on our pioneering findings, we highlight novel clues with environmental implications and application potential.

  17. Extracellular Streptomyces lividans vesicles: composition, biogenesis and antimicrobial activity

    PubMed Central

    Schrempf, Hildgund; Merling, Philipp

    2015-01-01

    We selected Streptomyces lividans to elucidate firstly the biogenesis and antimicrobial activities of extracellular vesicles that a filamentous and highly differentiated Gram-positive bacterium produces. Vesicle types range in diameter from 110 to 230 nm and 20 to 60 nm, respectively; they assemble to clusters, and contain lipids and phospholipids allowing their in situ imaging by specific fluorescent dyes. The presence of the identified secondary metabolite undecylprodigiosin provokes red fluorescence of a portion of the heterogeneous vesicle populations facilitating in vivo monitoring. Protuberances containing vesicles generate at tips, and alongside of substrate hyphae, and enumerate during late vegetative growth to droplet-like exudates. Owing to in situ imaging in the presence and absence of a green fluorescent vancomycin derivative, we conclude that protuberances comprising vesicles arise at sites with enhanced levels of peptidoglycan subunits [pentapeptide of lipid II (C55)-linked disaccharides], and reduced levels of polymerized and cross-linked peptidoglycan within hyphae. These sites correlate with enhanced levels of anionic phospholipids and lipids. Vesicles provoke pronounced damages of Aspergillus proliferans, Verticillium dahliae and induced clumping and distortion of Escherichia coli. These harmful effects are likely attributable to the action of the identified vesicular compounds including different enzyme types, components of signal transduction cascades and undecylprodigiosin. Based on our pioneering findings, we highlight novel clues with environmental implications and application potential. PMID:25851532

  18. Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella.

    PubMed

    Amer, Lilian S; Bishop, Barney M; van Hoek, Monique L

    2010-05-28

    Francisella infects the lungs causing pneumonic tularemia. Focusing on the lung's host defense, we have examined antimicrobial peptides as part of the innate immune response to Francisella infection. Interest in antimicrobial peptides, such as the cathelicidins, has grown due their potential therapeutic applications and the increasing problem of bacterial resistance to commonly used antibiotics. Only one human cathelicidin, LL-37, has been characterized. Helical cathelicidins have also been discovered in snakes including the Chinese King Cobra, Naja atra (NA-CATH). Four synthetic 11-residue peptides (ATRA-1, -2, -1A and -1P) containing variations of a repeated motif within NA-CATH were designed. We hypothesized that these smaller synthetic peptides could have excellent antimicrobial effectiveness with shorter length (and less cost), making them strong potential candidates for development into broad-spectrum antimicrobial compounds. We tested the susceptibility of F. novicida to four ATRA peptides, LL-37, and NA-CATH. Two of the ATRA peptides had high antimicrobial activity (microM), while the two proline-containing ATRA peptides had low activity. The ATRA peptides did not show significant hemolytic activity even at high peptide concentration, indicating low cytotoxicity against host cells. NA-CATH killed Francisella bacteria more quickly than LL-37. However, LL-37 was the most effective peptide against F. novicida (EC50=50 nM). LL-37 mRNA was induced in A549 cells by Francisella infection. We recently demonstrated that F. novicida forms in vitro biofilms. LL-37 inhibited F. novicida biofilm formation at sub-antimicrobial concentrations. Understanding the properties of these peptides, and their endogenous expression in the lung could lead to potential future therapeutic interventions for this lung infection. PMID:20399752

  19. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity.

    PubMed

    Peng, Na; Wang, Yanfeng; Ye, Qifa; Liang, Lei; An, Yuxing; Li, Qiwei; Chang, Chunyu

    2016-02-10

    Current superabsorbent hydrogels commercially applied in the disposable diapers have disadvantages such as weak mechanical strength, poor biocompatibility, and lack of antimicrobial activity, which may induce skin allergy of body. To overcome these hassles, we have developed novel cellulose based hydrogels via simple chemical cross-linking of quaternized cellulose (QC) and native cellulose in NaOH/urea aqueous solution. The prepared hydrogel showed superabsorbent property, high mechanical strength, good biocompatibility, and excellent antimicrobial efficacy against Saccharomyces cerevisiae. The presence of QC in the hydrogel networks not only improved their swelling ratio via electrostatic repulsion of quaternary ammonium groups, but also endowed their antimicrobial activity by attraction of sections of anionic microbial membrane into internal pores of poly cationic hydrogel leading to the disruption of microbial membrane. Moreover, the swelling properties, mechanical strength, and antibacterial activity of hydrogels strongly depended on the contents of quaternary ammonium groups in hydrogel networks. The obtained data encouraged the use of these hydrogels for hygienic application such as disposable diapers.

  20. Antimicrobial activity of silver/starch/polyacrylamide nanocomposite.

    PubMed

    Abdel-Halim, E S; Al-Deyab, Salem S

    2014-07-01

    A novel silver/starch/polyacrylamide nanocomposite hydrogel was prepared by grafting acrylamide onto starch in presence of silver nitrate by use of ammonium persulphate as an initiator and N,N-methylene-bisacrylamide as a crosslinking agent, then reducing the silver ions enclosed in the hydrogel structure to silver nanoparticles by treating the hydrogel with sodium hydroxide solution. All factors which affect the grafting/crosslinking reaction were optimized and the concentration of silver ion was changed from 0ppm to 50ppm. The produced nanocomposite hydrogel was characterized for its nanosilver content and the UV-spectra showed similar absorption spectra at wavelength 405nm for all AgNO3 concentrations but the plasmon showed increase in the intensity of the absorption peak as AgNO3 concentration incorporated to the hydrogel structure increases. The nanocomposite hydrogel was also characterized for its antimicrobial activity toward two types of bacteria and two types of fungi. The results showed that the hydrogel with 0ppm silver content has no antimicrobial activity, and that the antimicrobial activity expressed as inhibition zone increases as the silver content increases from 5ppm to 50ppm.

  1. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil

    PubMed Central

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity. PMID:26000025

  2. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil.

    PubMed

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef; Kokoska, Ladislav

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity. PMID:26000025

  3. Antimicrobial Activity of Cefmenoxime (SCE-1365)

    PubMed Central

    Stamm, John M.; Girolami, Roland L.; Shipkowitz, Nathan L.; Bower, Robert R.

    1981-01-01

    The in vitro activity of cefmenoxime (SCE-1365 or A-50912), a new semisynthetic cephalosporin antibiotic, was compared with those of cefazolin, cefoxitin, and cefamandole against a broad spectrum of 486 organisms and with that of cefotaxime against 114 organisms. Cefmenoxime and cefotaxime exhibited nearly equivalent activities against those organisms tested and were the most active of these cephalosporins against all aerobic and facultative organisms except Staphylococcus aureus. The minimum inhibitory concentration (MIC) of cefmenoxime required to inhibit at least 90% of strains tested (MIC90) ranged from 0.06 to 8 μg/ml for the Enterobacteriaceae. The MIC90s for gram-positive cocci were 0.015 and ≤0.008 μg/ml for Streptococcus pneumoniae and Streptococcus pyogenes, respectively, and 2 μg/ml for S. aureus. Group D streptococci were less susceptible. Cefmenoxime was very active against Haemophilus influenzae, Neisseria gonorrhoeae, and Neisseria meningitidis with MIC90s ranging from ≤0.008 to 0.25 μg/ml. Cefmenoxime, at a concentration of 16 μg/ml, inhibited 78% and 73% of Pseudomonas aeruginosa and Acinetobacter spp., respectively. MICs for anaerobes ranged from 0.5 to >128 μg/ml with good activity against the gram-positive organisms. In addition, cefmenoxime activity was bactericidal and only slightly affected by differences in inoculum size. The combination of cefmenoxime and gentamicin was synergistic against 80% of the Enterobacteriaceae and 100% of P. aeruginosa strains tested. Development of resistance to cefmenoxime was slow or absent for organisms with low initial MICs but more rapid for those with higher initial MICs. Cefmenoxime exhibited good protective activity in mice infected with Escherichia coli, Enterobacter cloacae, Proteus mirabilis, Proteus vulgaris, or S. aureus but was less effective against P. aeruginosa. PMID:6264846

  4. Antimicrobial profile of some novel keto esters: Synthesis, crystal structures and structure-activity relationship studies.

    PubMed

    Khan, Imtiaz; Saeed, Aamer; Arshad, Mohammad Ifzan; White, Jonathan Michael

    2016-01-01

    Rapid increase in bacterial resistance has become a major public concern by escalating alongside a lack of development of new anti-infective drugs. Novel remedies in the battle against multidrug-resistant bacterial strains are urgently needed. So, in this context, the present work is towards the investigation of antimicrobial efficacy of some novel keto ester derivatives, which are prepared by the condensation of substituted benzoic acids with various substituted phenacyl bromides in dimethylformamide at room temperature using triethylamine as a catalyst. The structural build-up of the target compounds was accomplished by spectroscopic techniques including FTIR, (1)H and (13)C NMR spectroscopy and mass spectrometry. The purity of the synthesized compounds was ascertained by elemental analysis. The molecular structures of compounds (4b) and (4l) were established by X-ray crystallographic analysis. The prepared analogues were evaluated for their antimicrobial activity against Gram-positive (Staphylococcus aureus, Micrococcus leuteus) and Gram-negative (Pseudomonas picketti, Salmonella setuball) bacteria and two fungal pathogenic strains (Aspergillus niger, Aspergillus flavus), respectively. Among the screened derivatives, several compounds were found to possess significant activity but (4b) and (4l) turned out to be lead molecules with remarkable antimicrobial efficacy. The structure-activity relationship analysis of this study also revealed that structural modifications on the basic skeleton affected the antimicrobial activity of the synthesized compounds. PMID:26826838

  5. Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398.

    PubMed

    Lapenda, J C; Silva, P A; Vicalvi, M C; Sena, K X F R; Nascimento, S C

    2015-02-01

    Prodigiosin is an alkaloid and natural red pigment produced by Serratia marcescens. Prodigiosin has antimicrobial, antimalarial and antitumor properties and induces apoptosis in T and B lymphocytes. These properties have piqued the interest of researchers in the fields of medicine, pharmaceutics and different industries. The aim of the present study was to evaluate the antimicrobial activity of prodigiosin against pathogenic micro-organisms. The red pigments produced by S. marcescens exhibited absorption at 534 nm, Rf of 0.59 and molecular weight of 323 m/z. Antimicrobial activity was tested against oxacillin-resistant Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes, Acinetobacter sp. and oxacillin-resistant S. aureus. The standard antibiotics employed were ampicillin, chloramphenicol, gentamicin and oxacillin. The disc-diffusion tests demonstrated significant inhibition zones for S. aureus (35 ± 0.6), E. faecalis (22 ± 1.0) and S. pyogenes (14 ± 0.6). However, prodigiosin showed resistance to E. coli, P. aeruginosa and acinetobacter, where no significant formation of inhibitory halos were observed. We determined the inhibitory minimum concentrations and bactericidal for 20 strains of oxacillin-resistant S. aureus (ORSA). The pattern was the antibiotic oxacillin. The minimum inhibitory concentrations observed ranged from 1, 2 and 4.0 μg/mL, respectively, while the minimum bactericidal concentrations ranged from 2, 4, 8 and 16 μg/mL. The S. marcescens prodigiosin produced by showed bactericidal and bacteriostatic effect showing promising antimicrobial activity and suggesting future studies regarding its applicability in antibiotics therapies directed ORSA. PMID:25549906

  6. Antimicrobial Activity of Nanoemulsion on Cariogenic Planktonic and Biofilm Organisms

    PubMed Central

    Amaechi, Bennett T.; Rawls, H Ralph; Valerie, A Lee

    2011-01-01

    Introduction Nanoemulsions (NE) are a unique class of disinfectants produced by mixing a water immiscible liquid phase into an aqueous phase under high shear forces. NE have antimicrobial properties and are also effective anti-biofilm agents. Materials and Methods The effectiveness of nanoemulsion and its components was determined against Streptococcus mutans and Lactobacillus casei by live/dead staining. In vitro antimicrobial effectiveness of nanoemulsion against planktonic Streptococcus mutans, Lactobacillus casei, Actinomyces viscosus, Candida albicans and mixed culture was determined by a serial dilution technique to obtain minimum inhibitory concentration and minimum bactericidal concentration (MIC/MBC). In addition, efficacy was investigated by kinetics of killing, adherence and biofilm assays. Results Compared to its components, nanoemulsion showed notable antimicrobial activity against biofilm organisms, up to 83.0% kill within 1 min. NE dilutions ranging from 243 to 19683 were effective against planktonic S. mutans, L. casei, A. viscosus, C. albicans and mixed culture of these four strains as shown through MIC/MBC assays. NE showed antimicrobial activity against planktonic cells at high dilutions, confirmed by time kill studies. The level of adhesion on glass surface was reduced by 94.2 to 99.5 % in nanoemulsion treated groups (p < 0.001). 4-day-old S. mutans, L. casei, A. viscosus, C. albicans and mixed cultures biofilms treated with NE showed reductions of bacterial counts with decreasing dilutions (p < 0.001). Conclusion These results suggest that nanoemulsion has effective anti-cariogenic activity against cariogenic microorganisms and may be a useful medication in the prevention of caries. PMID:21807359

  7. Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398.

    PubMed

    Lapenda, J C; Silva, P A; Vicalvi, M C; Sena, K X F R; Nascimento, S C

    2015-02-01

    Prodigiosin is an alkaloid and natural red pigment produced by Serratia marcescens. Prodigiosin has antimicrobial, antimalarial and antitumor properties and induces apoptosis in T and B lymphocytes. These properties have piqued the interest of researchers in the fields of medicine, pharmaceutics and different industries. The aim of the present study was to evaluate the antimicrobial activity of prodigiosin against pathogenic micro-organisms. The red pigments produced by S. marcescens exhibited absorption at 534 nm, Rf of 0.59 and molecular weight of 323 m/z. Antimicrobial activity was tested against oxacillin-resistant Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes, Acinetobacter sp. and oxacillin-resistant S. aureus. The standard antibiotics employed were ampicillin, chloramphenicol, gentamicin and oxacillin. The disc-diffusion tests demonstrated significant inhibition zones for S. aureus (35 ± 0.6), E. faecalis (22 ± 1.0) and S. pyogenes (14 ± 0.6). However, prodigiosin showed resistance to E. coli, P. aeruginosa and acinetobacter, where no significant formation of inhibitory halos were observed. We determined the inhibitory minimum concentrations and bactericidal for 20 strains of oxacillin-resistant S. aureus (ORSA). The pattern was the antibiotic oxacillin. The minimum inhibitory concentrations observed ranged from 1, 2 and 4.0 μg/mL, respectively, while the minimum bactericidal concentrations ranged from 2, 4, 8 and 16 μg/mL. The S. marcescens prodigiosin produced by showed bactericidal and bacteriostatic effect showing promising antimicrobial activity and suggesting future studies regarding its applicability in antibiotics therapies directed ORSA.

  8. Antimicrobial activity of different Finnish monofloral honeys against human pathogenic bacteria

    PubMed Central

    Huttunen, Sanna; Riihinen, Kaisu; Kauhanen, Jussi; Tikkanen-Kaukanen, Carina

    2013-01-01

    The antimicrobial activity and phenolic compounds of five Finnish honey products against important human pathogens Streptococcus pneumoniae, S. pyogenes, Staphylococcus aureus, and methicillin-resistant S. aureus were analyzed. Microbroth dilution method and HPLC-DAD were used in antimicrobial testing and phenolic compound determination, respectively. Significant antimicrobial activity (p < 0.01) against all the tested pathogens was found from willow herb (Epilobium angustifolium), heather (Calluna vulgaris), and buckwheat (Fagopyrum esculentum) honeys. This is the first report on antimicrobial activity of Finnish monofloral honeys against streptococcal and staphylococcal bacteria. To our knowledge this is also the first report on the antimicrobial effect of honey against S. pneumoniae. PMID:23278378

  9. Antimicrobial activity of nerolidol and its derivatives against airborne microbes and further biological activities.

    PubMed

    Krist, Sabine; Banovac, Daniel; Tabanca, Nurhayat; Wedge, David E; Gochev, Velizar K; Wanner, Jürgen; Schmidt, Erich; Jirovetz, Leopold

    2015-01-01

    Nerolidol and its derivatives, namely cis-nerolidol, O-methyl-nerolidol, O-ethyl-nerolidol, (-)-α-bisabolol, trans,trans-farnesol and its main natural source cabreuva essential oil, were tested for their antimicrobial activity against airborne microbes and antifungal properties against plant pathogens. Among the tested compounds, α-bisabolol was the most effective antimicrobial agent and trans,trans-farnesol showed the best antifungal activity. PMID:25920237

  10. Synthesis and antimicrobial activity of some new diphenylamine derivatives

    PubMed Central

    Kumar, Arvind; Mishra, Arun K.

    2015-01-01

    In search of new leads toward potent antimicrobial agent, an array of novel derivatives of 2-hydrazinyl–N-N, diphenyl acetamide has been synthesized from the chloroacetylation reaction of diphenylamine (DPA). For this, a series of DPA derivatives were prepared by replacing chlorine with hydrazine hydrate in alcoholic medium and 2-hydrazino-N, N-diphenylacetamide was synthesized. The 2-hydrazino-N, N-diphenylacetamide was further subjected to reaction with various aromatic aldehydes in presence of glacial acetic acid in methanol. The synthesized compounds were characterized by their IR, 1HNMR spectral data and elemental analysis. The compounds were screened for antibacterial and antifungal activity by cup plate method. 2-(2-Benzylidenehydrazinyl)-N, N-diphenylacetamide (A1); 2-(2-(3-methylbenzylidene) hydrazinyl)-N, N-diphenyl-acetamide (A5) and 2-(2-(2-nitrobenzylidine) hydrazinyl)-N, N-diphenyl-acetamide compounds (A7) showed significant antimicrobial as well as antifungal activity. Diphenylamine compounds may be explored as potent antimicrobial and antifungal compounds. PMID:25709343

  11. Multilayer hydrogel coatings to combine hemocompatibility and antimicrobial activity.

    PubMed

    Fischer, Marion; Vahdatzadeh, Maryam; Konradi, Rupert; Friedrichs, Jens; Maitz, Manfred F; Freudenberg, Uwe; Werner, Carsten

    2015-07-01

    While silver-loaded catheters are widely used to prevent early-onset catheter-related infections [1], long term antimicrobial protection of indwelling catheters remains to be achieved [2] and antiseptic functionalization of coatings often impairs their hemocompatibility characteristics. Therefore, this work aimed to capitalize on the antimicrobial properties of silver nanoparticles, incorporated in anticoagulant poly(ethylene glycol) (PEG)-heparin hydrogel coatings [3] on thermoplastic polyurethane materials. For prolonged antimicrobial activity, the silver-containing starPEG-heparin hydrogel layers were shielded with silver-free hydrogel layers of otherwise similar composition. The resulting multi-layered gel coatings showed long term antiseptic efficacy against Escherichia coli and Staphylococcus epidermidis strains in vitro, and similarly performed well when incubated with freshly drawn human whole blood with respect to hemolysis, platelet activation and plasmatic coagulation. The introduced hydrogel multilayer system thus offers a promising combination of hemocompatibility and long-term antiseptic capacity to meet an important clinical need.

  12. Chemical properties and antioxidant and antimicrobial activities of Slovenian propolis.

    PubMed

    Mavri, Ana; Abramovič, Helena; Polak, Tomaž; Bertoncelj, Jasna; Jamnik, Polona; Smole Možina, Sonja; Jeršek, Barbara

    2012-08-01

    The chemical composition as well as the antioxidant and antimicrobial activities of two EtOH extracts of propolis (PEEs) from Slovenia were determined. EtOH was used as extracting solvent at 70 and 96%, providing the extracts PEE70 and PEE96, respectively. The extraction with 70% EtOH was more efficient than that with 96% EtOH, as the PEE70 was richer in total phenolic compounds than the PEE96. The Slovenian propolis was characterized by different phenolic acids and flavonoids. The PEE96 was slightly richer in three specific compounds, i.e., caffeic acid, ferulic acid, and luteolin, while all other substances detected showed higher contents in the PEE70. The PEE70 showed a stronger reducing power and ability to scavenge free radicals and metal ions than the PEE96. Both PEEs were in the main more effective against Gram-positive bacteria than against fungi and Gram-negative bacteria like Salmonella and Escherichia coli, with the exception of Campylobacter. The PEE96 decreased the intracellular oxidation in Saccharomyces cerevisiae in a dose-dependent manner. The antimicrobial activities and antioxidant properties were related to the total phenolic contents. The two PEEs have the potential for use as natural antimicrobial and antioxidant additives in foods.

  13. Antimicrobial activity of toothpastes containing natural extracts, chlorhexidine or triclosan.

    PubMed

    De Rossi, Andiara; Ferreira, Danielly Cunha Araújo; da Silva, Raquel Assed Bezerra; de Queiroz, Alexandra Mussolino; da Silva, Léa Assed Bezerra; Nelson-Filho, Paulo

    2014-01-01

    The objective of this in vitro study was to evaluate the antimicrobial effect of toothpastes containing natural extracts, chlorhexidine or triclosan. The effectiveness of toothpastes containing natural extracts (Parodontax®), 0.12% chlorhexidine (Cariax®), 0.3% triclosan (Sanogil®) or fluoride (Sorriso®, control) was evaluated against yeasts, Gram-positive and Gram-negative bacteria using the disk diffusion method. Water was used as a control. Disks impregnated with the toothpastes were placed in Petri dishes containing culture media inoculated with 23 indicative microorganisms by the pour plate method. After incubation, the inhibition growth halos were measured and statistical analyses (α=0.05) were performed. The results indicated that all formulations, except for conventional toothpaste (Sorriso®), showed antimicrobial activity against Gram-positive bacteria and yeasts. The toothpaste containing natural extracts (Parodontax®) was the only product able to inhibit the growth of Pseudomonas aeruginosa. The toothpastes containing chlorhexidine, triclosan or natural extracts presented antimicrobial activity against Gram-positive bacteria and yeasts.

  14. Antimicrobial Activity of Molluscan Hemocyanins from Helix and Rapana Snails.

    PubMed

    Dolashka, Pavlina; Dolashki, Aleksander; Van Beeumen, Jozef; Floetenmeyer, Matthias; Velkova, Lyudmila; Stevanovic, Stefan; Voelter, Wolfgang

    2016-01-01

    For the first time the antimicrobial activities of hemocyanins from the molluscs Rapana venosa (RvH) and Helix aspersa (HaH) have been tested. From the hemolymph of the garden snail H. aspersa one structural subunit (βc-HaH ) and eight functional units (FUs, βc-HaH-a to βc-HaH-h) were isolated, and their N-terminal sequences and molecular weights, ranging between 45 and 65 kDa, determined. The antimicrobial test of the hemocyanins against different bacteria showed that only two FUs from Rapana, RvH1-b and RvH1-e, exhibit a low inhibition effect against Staphylococcus aureus. In contrast and surprisingly, the structural subunit βc-HaH of H. aspersa not only shows strong antimicrobial activities against S. aureus and the likewise Gram-positive Streptococcus epidermidis, but also against the Gram-negative bacterium Escherichia coli. We suggest that this subunit therefore has the potential to become a substitute for the commonly used antibiotics against which bacterial resistance has gradually been developed. PMID:26343131

  15. Novel Antimicrobial Peptides with High Anticancer Activity and Selectivity

    PubMed Central

    Chen, Kuan-Hao; Yu, Hui-Yuan; Chih, Ya-Han; Cheng, Hsi-Tsung; Chou, Yu-Ting; Cheng, Jya-Wei

    2015-01-01

    We describe a strategy to boost anticancer activity and reduce normal cell toxicity of short antimicrobial peptides by adding positive charge amino acids and non-nature bulky amino acid β-naphthylalanine residues to their termini. Among the designed peptides, K4R2-Nal2-S1 displayed better salt resistance and less toxicity to hRBCs and human fibroblast than Nal2-S1 and K6-Nal2-S1. Fluorescence microscopic studies indicated that the FITC-labeled K4R2-Nal2-S1 preferentially binds cancer cells and causes apoptotic cell death. Moreover, a significant inhibition in human lung tumor growth was observed in the xenograft mice treated with K4R2-Nal2-S1. Our strategy provides new opportunities in the development of highly effective and selective antimicrobial and anticancer peptide-based therapeutics. PMID:25970292

  16. Gram-positive antimicrobial activity of amino acid-based hydrogels.

    PubMed

    Irwansyah, I; Li, Yong-Qiang; Shi, Wenxiong; Qi, Dianpeng; Leow, Wan Ru; Tang, Mark B Y; Li, Shuzhou; Chen, Xiaodong

    2015-01-27

    Antimicrobial hydrogels are prepared based on the co-assembly of commercial Fmoc-phenylalanine and Fmoc-leucine, which act as the hydrogelator and antimicrobial building block, respectively. This co-assembled antimicrobial hydrogel is demonstrated to exhibit selective bactericidal activity for gram-positive bacteria while being biocompatible with normal mammalian cells, showing great potential as an antimicrobial coating for clinical anti-infective applications.

  17. Antimicrobial activity of Calotropis procera Ait. (Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents.

    PubMed

    Nenaah, Gomah

    2013-07-01

    Antimicrobial activity of solvent extracts and flavonoids of Calotropis procera growing wild in Saudi Arabia was evaluated using the agar well-diffusion method. A bioassay-guided fractionation of the crude flavonoid fraction (Cf3) of MeOH extract which showed the highest antimicrobial activity led to the isolation of four flavonoid glycosides as the bioactive constituents. Structure of compounds have been elucidated using physical and spectroscopic methods including (UV, IR, (1)H, (13)C-NMR, DEPT, 2D (1)H-(1)H COSY, HSQC, HMBC and NOESY). Compounds were found to be the 3-O-rutinosides of quercetin, kaempferol and isorhamnetin, besides the flavonoid 5-hydroxy-3,7-dimethoxyflavone-4'-O-β-glucopyranoside. Most of the isolated extracts showed antimicrobial activity against the test microorganisms, where the crude flavonoid fraction was the most active, diameter of inhibition zones ranged between 15.5 and 28.5 mm against the tested bacterial strains, while reached 30 mm against the fungal Candida albicans. The minimal inhibitory concentrations varied from 0.04 to 0.32 mg/ml against all of the tested microorganisms in case of the crude flavonoid fraction. Quercetin-3-O-rutinoside showed superior activity over the remainder flavonoids. The Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) were more susceptible than the Gram-negative (Pseudomonas aeruginosa and Salmonella enteritidis) and the yeast species were more susceptible than the filamentous fungi. The study recommend the use of such natural products as antimicrobial biorationals.

  18. Antimicrobial Activity of Chitosan Derivatives Containing N-Quaternized Moieties in Its Backbone: A Review

    PubMed Central

    Martins, Alessandro F.; Facchi, Suelen P.; Follmann, Heveline D. M.; Pereira, Antonio G. B.; Rubira, Adley F.; Muniz, Edvani C.

    2014-01-01

    Chitosan, which is derived from a deacetylation reaction of chitin, has attractive antimicrobial activity. However, chitosan applications as a biocide are only effective in acidic medium due to its low solubility in neutral and basic conditions. Also, the positive charges carried by the protonated amine groups of chitosan (in acidic conditions) that are the driving force for its solubilization are also associated with its antimicrobial activity. Therefore, chemical modifications of chitosan are required to enhance its solubility and broaden the spectrum of its applications, including as biocide. Quaternization on the nitrogen atom of chitosan is the most used route to render water-soluble chitosan-derivatives, especially at physiological pH conditions. Recent reports in the literature demonstrate that such chitosan-derivatives present excellent antimicrobial activity due to permanent positive charge on nitrogen atoms side-bonded to the polymer backbone. This review presents some relevant work regarding the use of quaternized chitosan-derivatives obtained by different synthetic paths in applications as antimicrobial agents. PMID:25402643

  19. Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: a review.

    PubMed

    Martins, Alessandro F; Facchi, Suelen P; Follmann, Heveline D M; Pereira, Antonio G B; Rubira, Adley F; Muniz, Edvani C

    2014-01-01

    Chitosan, which is derived from a deacetylation reaction of chitin, has attractive antimicrobial activity. However, chitosan applications as a biocide are only effective in acidic medium due to its low solubility in neutral and basic conditions. Also, the positive charges carried by the protonated amine groups of chitosan (in acidic conditions) that are the driving force for its solubilization are also associated with its antimicrobial activity. Therefore, chemical modifications of chitosan are required to enhance its solubility and broaden the spectrum of its applications, including as biocide. Quaternization on the nitrogen atom of chitosan is the most used route to render water-soluble chitosan-derivatives, especially at physiological pH conditions. Recent reports in the literature demonstrate that such chitosan-derivatives present excellent antimicrobial activity due to permanent positive charge on nitrogen atoms side-bonded to the polymer backbone. This review presents some relevant work regarding the use of quaternized chitosan-derivatives obtained by different synthetic paths in applications as antimicrobial agents.

  20. Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil.

    PubMed

    Santos, Olinda C S; Pontes, Paula V M L; Santos, Juliana F M; Muricy, Guilherme; Giambiagi-deMarval, Marcia; Laport, Marinella S

    2010-09-01

    Bacteria associated with marine sponges represent a rich source of bioactive metabolites. The aim of this study was to isolate and characterize bacteria with antimicrobial activities from Brazilian sponges. A total of 158 colony-forming units were isolated from nine sponge species. Among these, 12 isolates presented antimicrobial activities against pathogenic bacteria. Based on comparative sequence analysis of their 16S rRNA genes, the sponge-associated bacterial strains could be subdivided into three phylogenetically different clusters. Five strains were affiliated with Firmicutes (genera Bacillus and Virgibacillus), three with alpha-Proteobacteria (Pseudovibrio sp.) and four with gamma-Proteobacteria (genera Pseudomonas and Stenotrophomonas). The sponge-associated bacterial strains Pseudomonas fluorescens H40 and H41 and Pseudomonas aeruginosa H51 exhibited antimicrobial activity against both Gram-negative and Gram-positive bacteria, including strains such as vancomycin-resistant Enterococcus faecium and multiresistant Klebsiella pneumoniae. Bacillus pumilus Pc31 and Pc32, Pseudovibrio ascidiaceicola Pm31 and Ca31 and Pseudovibrio denitrificans Mm37 strains were more effective against Gram-positive bacteria. These findings suggest that the identified strains may contribute to the search for new sources of antimicrobial substances, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria. PMID:20600863

  1. Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract

    PubMed Central

    2013-01-01

    Background In Ethiopia, Calpurnia aurea is used for the treatment of syphilis, malaria, rabies, diabetes, hypertension, diarrhoea, leishmaniasis, trachoma, elephantiasis, fungal diseases and different swellings. However, despite its traditional usage as an antidiarrhoeal and antimicrobial agent, there is limited or no information regarding its effectiveness and mode of action in diarrhoea which may be caused by Shigella flexneri, Staphylococcus aureus, Escherichia coli and Salmonella typhi. Hence, we evaluated the 80% methanol (MeOH) extract of dried and powdered leaves of C. aurea for its antidiarrhoeal and antimicrobial activities. Methods Swiss albino mice of either sex were divided into five groups (five/group): Group I served as control and received vehicle (1% Tween 80) at a dose of 10 ml/kg orally; Group II served as standard and received loperamide at the dose of 3 mg/kg orally; Groups III, IV and V served as test groups and received the 80% MeOH leaf extract of C. aurea at doses of 100, 200 and 400 mg/kg orally, respectively. Diarrhoea was induced by oral administration of 0.5 ml castor oil to each mouse, 1 h after the above treatments. During an observation period of 4 h, time of onset of diarrhea, total number of faecal output (frequency of defecation) and weight of faeces excreted by the animals were recorded. Data were analyzed using one way analysis of variance followed by Tukey post test. Antimicrobial activity test was conducted using agar well diffusion assay. Clinical isolates tested were Salmonella typhi, Salmonella paratyphi, Salmonella typhimurium, Shigella species, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. Results In castor oil induced diarrhea model, the 80% methanol leaf extract of C. aurea at 100, 200 and 400 mg/kg and the standard drug loperamide (3 mg/kg) significantly reduced the time of onset of diarrhea, the frequency of defecation (total number of faecal output) and weight of faeces. C. aurea leaf extract

  2. The Activity of Antimicrobial Surfaces Varies by Testing Protocol Utilized

    PubMed Central

    Campos, Matias D.; Zucchi, Paola C.; Phung, Ann; Leonard, Steven N.; Hirsch, Elizabeth B.

    2016-01-01

    Background Contaminated hospital surfaces are an important source of nosocomial infections. A major obstacle in marketing antimicrobial surfaces is a lack of efficacy data based on standardized testing protocols. Aim We compared the efficacy of multiple testing protocols against several “antimicrobial” film surfaces. Methods Four clinical isolates were used: one Escherichia coli, one Klebsiella pneumoniae, and two Staphylococcus aureus strains. Two industry methods (modified ISO 22196 and ASTM E2149), a “dried droplet”, and a “transfer” method were tested against two commercially available antimicrobial films, one film in development, an untreated control, and a positive (silver) control film. At 2 (only ISO) and 24 hours following inoculation, bacteria were collected from film surfaces and enumerated. Results Compared to untreated films in all protocols, there were no significant differences in recovery on either commercial brand at 2 or 24 hours after inoculation. The silver surface demonstrated significant microbicidal activity (mean loss 4.9 Log10 CFU/ml) in all methods and time points with the exception of 2 hours in the ISO protocol and the transfer method. Using our novel droplet method, no differences between placebo and active surfaces were detected. The surface in development demonstrated variable activity depending on method, organism, and time point. The ISO demonstrated minimal activity at 2 hours but significant activity at 24 hours (mean 4.5 Log10 CFU/ml difference versus placebo). The ASTEM protocol exhibited significant differences in recovery of staphylococci (mean 5 Log10 CFU/ml) but not Gram-negative isolates (10 fold decrease). Minimal activity was observed with this film in the transfer method. Conclusions Varying results between protocols suggested that efficacy of antimicrobial surfaces cannot be easily and reproducibly compared. Clinical use should be considered and further development of representative methods is needed. PMID

  3. Silver nanoparticles: green synthesis and their antimicrobial activities.

    PubMed

    Sharma, Virender K; Yngard, Ria A; Lin, Yekaterina

    2009-01-30

    This review presents an overview of silver nanoparticles (Ag NPs) preparation by green synthesis approaches that have advantages over conventional methods involving chemical agents associated with environmental toxicity. Green synthetic methods include mixed-valence polyoxometallates, polysaccharide, Tollens, irradiation, and biological. The mixed-valence polyoxometallates method was carried out in water, an environmentally-friendly solvent. Solutions of AgNO(3) containing glucose and starch in water gave starch-protected Ag NPs, which could be integrated into medical applications. Tollens process involves the reduction of Ag(NH(3))(2)(+) by saccharides forming Ag NP films with particle sizes from 50-200 nm, Ag hydrosols with particles in the order of 20-50 nm, and Ag colloid particles of different shapes. The reduction of Ag(NH(3))(2)(+) by HTAB (n-hexadecyltrimethylammonium bromide) gave Ag NPs of different morphologies: cubes, triangles, wires, and aligned wires. Ag NPs synthesis by irradiation of Ag(+) ions does not involve a reducing agent and is an appealing procedure. Eco-friendly bio-organisms in plant extracts contain proteins, which act as both reducing and capping agents forming stable and shape-controlled Ag NPs. The synthetic procedures of polymer-Ag and TiO(2)-Ag NPs are also given. Both Ag NPs and Ag NPs modified by surfactants or polymers showed high antimicrobial activity against gram-positive and gram-negative bacteria. The mechanism of the Ag NP bactericidal activity is discussed in terms of Ag NP interaction with the cell membranes of bacteria. Silver-containing filters are shown to have antibacterial properties in water and air purification. Finally, human and environmental implications of Ag NPs to the ecology of aquatic environment are briefly discussed.

  4. Antimicrobial and antioxidant activity of essential oil and different plant extracts of Psidium cattleianum Sabine.

    PubMed

    Scur, M C; Pinto, F G S; Pandini, J A; Costa, W F; Leite, C W; Temponi, L G

    2016-02-01

    The goals of the study were to determinethe antimicrobial and antioxidant activities of essential oil and plant extracts aqueous and ethanolic of Psidium cattleianum Sabine; the chemical composition of the essential oil of P. cattleianum; and the phytochemical screening of aqueous and ethanolic extracts of the same plant. Regarding the antimicrobial activity, the ethanolic extract exhibited moderate antimicrobial activity with respect to bacteria K. pneumoniae and S. epidermidis, whereas, regarding other microorganisms, it showed activity considered weak. The aqueous extract and the essential oil showed activity considered weak, although they inhibited the growth of microorganisms. About the antioxidant potential, the ethanolic and aqueous extracts exhibited a scavenging index exceeding 90%, while the essential oil didn´t show significant antioxidant activity. Regarding the phytochemical composition, the largest class of volatile compounds identified in the essential oil of P. cattleianum included the following terpenic hydrocarbons: α-copaene (22%); eucalyptol (15%), δ-cadinene (9.63%) and α-selinene (6.5%). The phytochemical screening of extracts showed the presence of tannins, flavonoids, and triterpenoids for aqueous and ethanolic extracts. The extracts and essential oils inhibit the growth of microrganisms and plant extracts showed significant antioxidant activity. Also, the phytochemical characterization of the essential oil showed the presence of compounds interest commercial, as well as extracts showed the presence of important classes and compounds with biological activities. PMID:26871744

  5. Antimicrobial and antioxidant activity of essential oil and different plant extracts of Psidium cattleianum Sabine.

    PubMed

    Scur, M C; Pinto, F G S; Pandini, J A; Costa, W F; Leite, C W; Temponi, L G

    2016-02-01

    The goals of the study were to determinethe antimicrobial and antioxidant activities of essential oil and plant extracts aqueous and ethanolic of Psidium cattleianum Sabine; the chemical composition of the essential oil of P. cattleianum; and the phytochemical screening of aqueous and ethanolic extracts of the same plant. Regarding the antimicrobial activity, the ethanolic extract exhibited moderate antimicrobial activity with respect to bacteria K. pneumoniae and S. epidermidis, whereas, regarding other microorganisms, it showed activity considered weak. The aqueous extract and the essential oil showed activity considered weak, although they inhibited the growth of microorganisms. About the antioxidant potential, the ethanolic and aqueous extracts exhibited a scavenging index exceeding 90%, while the essential oil didn´t show significant antioxidant activity. Regarding the phytochemical composition, the largest class of volatile compounds identified in the essential oil of P. cattleianum included the following terpenic hydrocarbons: α-copaene (22%); eucalyptol (15%), δ-cadinene (9.63%) and α-selinene (6.5%). The phytochemical screening of extracts showed the presence of tannins, flavonoids, and triterpenoids for aqueous and ethanolic extracts. The extracts and essential oils inhibit the growth of microrganisms and plant extracts showed significant antioxidant activity. Also, the phytochemical characterization of the essential oil showed the presence of compounds interest commercial, as well as extracts showed the presence of important classes and compounds with biological activities.

  6. Cerecidins, novel lantibiotics from Bacillus cereus with potent antimicrobial activity.

    PubMed

    Wang, Jian; Zhang, Li; Teng, Kunling; Sun, Shutao; Sun, Zhizeng; Zhong, Jin

    2014-04-01

    Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides that are widely produced by Gram-positive bacteria, including many species of the Bacillus group. In the present study, one novel gene cluster coding lantibiotic cerecidins was unveiled in Bacillus cereus strain As 1.1846 through genomic mining and PCR screening. The designated cer locus is different from that of conventional class II lantibiotics in that it included seven tandem precursor cerA genes, one modification gene (cerM), two processing genes (cerT and cerP), one orphan regulator gene (cerR), and two immunity genes (cerF and cerE). In addition, one unprecedented quorum sensing component, comQXPA, was inserted between cerM and cerR. The expression of cerecidins was not detected in this strain of B. cereus, which might be due to repressed transcription of cerM. We constitutively coexpressed cerA genes and cerM in Escherichia coli, and purified precerecidins were proteolytically processed with the endoproteinase GluC and a truncated version of putative serine protease CerP. Thus, two natural variants of cerecidins A1 and A7 were obtained which contained two terminal nonoverlapping thioether rings rarely found in lantibiotics. Both cerecidins A1 and A7 were active against a broad spectrum of Gram-positive bacteria. Cerecidin A7, especially its mutant Dhb13A, showed remarkable efficacy against multidrug-resistant Staphylococcus aureus (MDRSA), vancomycin-resistant Enterococcus faecalis (VRE), and even Streptomyces.

  7. Cerecidins, Novel Lantibiotics from Bacillus cereus with Potent Antimicrobial Activity

    PubMed Central

    Wang, Jian; Zhang, Li; Teng, Kunling; Sun, Shutao; Sun, Zhizeng

    2014-01-01

    Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides that are widely produced by Gram-positive bacteria, including many species of the Bacillus group. In the present study, one novel gene cluster coding lantibiotic cerecidins was unveiled in Bacillus cereus strain As 1.1846 through genomic mining and PCR screening. The designated cer locus is different from that of conventional class II lantibiotics in that it included seven tandem precursor cerA genes, one modification gene (cerM), two processing genes (cerT and cerP), one orphan regulator gene (cerR), and two immunity genes (cerF and cerE). In addition, one unprecedented quorum sensing component, comQXPA, was inserted between cerM and cerR. The expression of cerecidins was not detected in this strain of B. cereus, which might be due to repressed transcription of cerM. We constitutively coexpressed cerA genes and cerM in Escherichia coli, and purified precerecidins were proteolytically processed with the endoproteinase GluC and a truncated version of putative serine protease CerP. Thus, two natural variants of cerecidins A1 and A7 were obtained which contained two terminal nonoverlapping thioether rings rarely found in lantibiotics. Both cerecidins A1 and A7 were active against a broad spectrum of Gram-positive bacteria. Cerecidin A7, especially its mutant Dhb13A, showed remarkable efficacy against multidrug-resistant Staphylococcus aureus (MDRSA), vancomycin-resistant Enterococcus faecalis (VRE), and even Streptomyces. PMID:24532070

  8. Antimicrobial activity and cytotoxic effects of Magnolia dealbata and its active compounds.

    PubMed

    Jacobo-Salcedo, Maria del Rosario; Gonzalez-Espindola, Luis Angel; Alonso-Castro, Angel Josabad; Gonzalez-Martinez, Marisela del Rocio; Domínguez, Fabiola; Garcia-Carranca, Alejandro

    2011-08-01

    Multi-drug resistance is of great concern for public health worldwide and necessitates the search for new antimicrobials from sources such as plants. Several Magnolia (Magnoliaceae) species have been reported to exert antimicrobial effects on sensitive and multidrug-resistant microorganisms. However, the antimicrobial properties of Magnolia dealbata have not been experimentally evaluated. The antimicrobial effects of an ethanol extract of Magnolia dealbata seeds (MDE) and its active compounds honokiol (HK) and magnolol (MG) were tested against the phytopathogen Clavibacter michiganensis subsp. michiganensis and several human multi-drug resistant pathogens using the disk-diffusion assay. The effects of MDE and its active compounds on the viability of human peripheral blood mononuclear cells (PBMC) were evaluated using MTT assay. MDE and its active compounds had antimicrobial activity (inhibition zone > 10 mm) against C. michiganensis, Pseudomonas aeruginosa, Acinetobacter baumannii, Acinetobacter lwoffii, Candida albicans, Candida tropicalis and Trichosporon belgeii. The results suggest that M. dealbata and its active compounds have selective antimicrobial effects against drug-resistant fungal and Gram (-) bacteria and exert minimal toxic effects on human PMBC.

  9. In vitro antimicrobial activity of potash alum.

    PubMed

    Dutta, S; De, S P; Bhattacharya, S K

    1996-07-01

    This study reports the bactericidal activity of potash alum when added to water, against various epidemic causing enteric pathogens like Vibrio cholerae 01, V. cholerae 0139 and Shigella dysenteriae 1 by lowering the pH of water (from 6.0 to 4.0). Growth of the enteric pathogens was monitored in vitro by inoculating broth cultures of the different organisms in distilled water containing increasing concentrations of potash alum and quantitatively determining the concentration of viable organisms over a 48 h period by the standard plate count method. Controls constituted cultures of each organism grown in the absence of potash alum. The pH of alum administered water was measured in each test tube before inoculation of organisms. Potash alum was found to inhibit growth (10(5) viable count per ml) of most of the organisms examined, particularly V. cholerae 01 and V. cholerae 0139 in a dose dependent fashion. Reduction of colony forming units was observed in presence of 0.25 g/dl of alum after 5 h and no growth was noticed after 24 h.

  10. Antimicrobial activity of confertifolin from Polygonum hydropiper.

    PubMed

    Duraipandiyan, Veeramuthu; Indwar, Francis; Ignacimuthu, Savarimuthu

    2010-02-01

    Confertifolin (6,6,9a-trimethyl-4,5,5a,6,7,8,9,9a-octahydronaphtho[1,2-c] furan-3 (1H)-one) was isolated from the essential oil of Polygonum hydropiper L. (Polygonaceae) leaves using column chromatography. Confertifolin showed activity both in bacteria and fungi. The lowest MIC for bacteria was observed against Enterococcus faecalis (31.25 microg/mL). Significant MIC for fungi was observed against Scopulariopsis sp (7.81 microg/mL), Curvularia lunata (7.81 microg/mL), Epidermophyton floccosum (7.81 microg/mL), Trichophyton mentagrophytes (16.62 microg/mL), Trichophyton rubrum (MTCC 296) (16.62 microg/mL), Aspergillus niger (31.25 microg/mL), Botrytis cinerea (31.25 microg/mL) Magnaporthe grisea (62.5 microg/mL), Trichophyton simii (125 microg/mL) and Trichophyton rubrum (clinical isolate) (125 microg/mL).

  11. Antimicrobial activity of the solvent fractions from Bulbine natalensis Tuber.

    PubMed

    Yakubu, M T; Mostafa, M; Ashafa, A O T; Afolayan, A J

    2012-01-01

    Bulbine natalensis Baker has been acclaimed to be used as an antimicrobial agent in the folklore medicine of South Africa without scientific evidence to substantiate or refute this claim. In view of this, the in vitro antimicrobial activity of solvent fractions (ethanol, ethyl acetate, n-butanol and water) from Bulbine natalensis Tuber against 4 Gram positive and 12 Gram negative bacteria as well as 3 fungal species were investigated using agar dilution. The ethanolic extract, n-butanol and ethyl acetate fractions inhibited 75, 87.5 and 100% respectively of the bacterial species in this study. The ethanolic, n-butanol and ethyl acetate fractions produced growth inhibition at MIC range of 1-10, 3-10 as well as 1 and 5 mg/ml respectively whereas the water fraction did not inhibit the growth of any of the bacterial species. Again, it was only the ethyl acetate fraction that inhibited the growth of Shigelli flexneri, Staphyloccus aureus and Escherichia coli. The ethanolic, ethyl acetate and n-butanolic fractions dose dependently inhibited the growth of Aspergillus niger and A. flavus whereas the water fraction produced 100% growth inhibition of the Aspergillus species at all the doses investigated. In contrast, no growth inhibition was produced on Candida albicans. The growth inhibition produced by the solvent fractions of B. natalensis Tuber in this study thus justifies the acclaimed use of the plant as an antimicrobial agent. The ethyl acetate fraction was the most potent. PMID:23983381

  12. Characteristics and antimicrobial activity of copper-based materials

    NASA Astrophysics Data System (ADS)

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger

  13. Free radical scavenging, antimicrobial and immunomodulatory activities of Orthosiphon stamineus.

    PubMed

    Alshawsh, Mohammed A; Abdulla, Mahmood A; Ismail, Salmah; Amin, Zahra A; Qader, Suhailah W; Hadi, Hamid A; Harmal, Nabil S

    2012-01-01

    Orthosiphon stamineus is considered an important traditional folk medicine. In this study ethanol and aqueous extracts of O. stamineus were evaluated in vitro for their antioxidant, antimicrobial as well as for their immunomodulatory properties on human peripheral blood mononuclear cells (PBMCs). The DPPH radical scavenging method was used for the determination of antioxidant activity, while the antibacterial efficacy was investigated by both disc diffusion method and Minimum Inhibitory Concentration (MIC) against four bacterial strains (Gram-positive and Gram-negative). Furthermore, the immunomodulatory potential of the extracts was investigated through the MTT assay. Aqueous extract of O. stamineus exhibited significant free radical scavenging activity with IC₅₀ 50 9.6 µg/mL, whereas the IC₅₀ for the ethanol extract was 21.4 µg/mL. The best antimicrobial activity was shown by the aqueous extract of O. stamineus against Staphylococcus aureus, with inhibition zone of 10.5 mm and MIC value 1.56 mg/mL. Moreover, the results observed from the MTT assay showed that both plant extracts stimulated the PBMCs proliferation in vitro in a concentration-dependent manner, but the aqueous extract has remarkable activity against PBMCs. These findings indicate that O. stamineus showed high antioxidant activity and may be considered as an immunomodulatory agent.

  14. Antimicrobial activity of fermented Theobroma cacao pod husk extract.

    PubMed

    Santos, R X; Oliveira, D A; Sodré, G A; Gosmann, G; Brendel, M; Pungartnik, C

    2014-09-26

    Theobroma cacao L. contains more than 500 different chemical compounds some of which have been traditionally used for their antioxidant, anti-carcinogenic, immunomodulatory, vasodilatory, analgesic, and antimicrobial activities. Spontaneous aerobic fermentation of cacao husks yields a crude husk extract (CHE) with antimicrobial activity. CHE was fractioned by solvent partition with polar solvent extraction or by silica gel chromatography and a total of 12 sub-fractions were analyzed for chemical composition and bioactivity. CHE was effective against the yeast Saccharomyces cerevisiae and the basidiomycete Moniliophthora perniciosa. Antibacterial activity was determined using 6 strains: Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis (Gram-positive) and Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella choleraesuis (Gram-negative). At doses up to 10 mg/mL, CHE was not effective against the Gram-positive bacteria tested but against medically important P. aeruginosa and S. choleraesuis with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Sub-fractions varied widely in activity and strongest antibacterial activity was seen with CHE8 against S. choleraesuis (MIC of 1.0 mg/mL) and CHE9 against S. epidermidis (MIC of 2.5 mg/mL). All bioactive CHE fractions contained phenols, steroids, or terpenes, but no saponins. Fraction CHE9 contained flavonoids, phenolics, steroids, and terpenes, amino acids, and alkaloids, while CHE12 had the same compounds but lacked flavonoids.

  15. Antimicrobial activity of fermented Theobroma cacao pod husk extract.

    PubMed

    Santos, R X; Oliveira, D A; Sodré, G A; Gosmann, G; Brendel, M; Pungartnik, C

    2014-01-01

    Theobroma cacao L. contains more than 500 different chemical compounds some of which have been traditionally used for their antioxidant, anti-carcinogenic, immunomodulatory, vasodilatory, analgesic, and antimicrobial activities. Spontaneous aerobic fermentation of cacao husks yields a crude husk extract (CHE) with antimicrobial activity. CHE was fractioned by solvent partition with polar solvent extraction or by silica gel chromatography and a total of 12 sub-fractions were analyzed for chemical composition and bioactivity. CHE was effective against the yeast Saccharomyces cerevisiae and the basidiomycete Moniliophthora perniciosa. Antibacterial activity was determined using 6 strains: Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis (Gram-positive) and Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella choleraesuis (Gram-negative). At doses up to 10 mg/mL, CHE was not effective against the Gram-positive bacteria tested but against medically important P. aeruginosa and S. choleraesuis with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Sub-fractions varied widely in activity and strongest antibacterial activity was seen with CHE8 against S. choleraesuis (MIC of 1.0 mg/mL) and CHE9 against S. epidermidis (MIC of 2.5 mg/mL). All bioactive CHE fractions contained phenols, steroids, or terpenes, but no saponins. Fraction CHE9 contained flavonoids, phenolics, steroids, and terpenes, amino acids, and alkaloids, while CHE12 had the same compounds but lacked flavonoids. PMID:25299086

  16. Chemical composition, antimicrobial and insecticidal activities of the essential oils of Conyza linifolia and Chenopodium ambrosioides.

    PubMed

    Harraz, Fathalla M; Hammoda, Hala M; El Ghazouly, Maged G; Farag, Mohamed A; El-Aswad, Ahmed F; Bassam, Samar M

    2015-01-01

    Two essential oil-containing plants growing wildly in Egypt: Conyza linifolia (Willd.) Täckh. (Asteraceae) and Chenopodium ambrosioides L. (Chenopodiaceae) were subjected to essential oil analysis and biological investigation. The essential oils from both plants were prepared by hydrodistillation, and GC/MS was employed for volatiles profiling. This study is the first to perform GC/MS analysis of C. linifolia essential oil growing in Egypt. C. linifolia essential oil contained mainly sesquiterpenes, while that of C. ambrosioides was rich in monoterpenes. Ascaridole, previously identified as the major component of the latter, was found at much lower levels. In addition, the oils were investigated for their antimicrobial activity against two Gram positive and two Gram negative bacteria, and one fungus. The insecticidal activities of both oils, including mosquitocidal and pesticidal potentials, were also evaluated. The results of biological activities encourage further investigation of the two oils as antimicrobial and insecticidal agents of natural origin.

  17. Chemical composition, antimicrobial and insecticidal activities of the essential oils of Conyza linifolia and Chenopodium ambrosioides.

    PubMed

    Harraz, Fathalla M; Hammoda, Hala M; El Ghazouly, Maged G; Farag, Mohamed A; El-Aswad, Ahmed F; Bassam, Samar M

    2015-01-01

    Two essential oil-containing plants growing wildly in Egypt: Conyza linifolia (Willd.) Täckh. (Asteraceae) and Chenopodium ambrosioides L. (Chenopodiaceae) were subjected to essential oil analysis and biological investigation. The essential oils from both plants were prepared by hydrodistillation, and GC/MS was employed for volatiles profiling. This study is the first to perform GC/MS analysis of C. linifolia essential oil growing in Egypt. C. linifolia essential oil contained mainly sesquiterpenes, while that of C. ambrosioides was rich in monoterpenes. Ascaridole, previously identified as the major component of the latter, was found at much lower levels. In addition, the oils were investigated for their antimicrobial activity against two Gram positive and two Gram negative bacteria, and one fungus. The insecticidal activities of both oils, including mosquitocidal and pesticidal potentials, were also evaluated. The results of biological activities encourage further investigation of the two oils as antimicrobial and insecticidal agents of natural origin. PMID:25495783

  18. Antimicrobial activity and stability of weakly acidified chlorous acid water.

    PubMed

    Horiuchi, Isanori; Kawata, Hiroyuki; Nagao, Tamiko; Imaohji, Haruyuki; Murakami, Kazuya; Kino, Yasuhiro; Yamasaki, Hisashi; Koyama, A Hajime; Fujita, Yatsuka; Goda, Hisataka; Kuwahara, Tomomi

    2015-01-01

    The antimicrobial activity of weakly acidified chlorous acid water (WACAW) against Staphylococcus aureus, non-pathogenic Escherichia coli, enterohemorrhagic E. coli (EHEC O157:H7), Candida albicans, and spore-forming Bacillus and Paenibacillus species was evaluated in vitro. The antiviral activity was also examined using feline calicivirus (FCV). Diluted WACAW (>100 ppm) effectively reduced the number of non-spore-forming bacteria (>4 log10 CFU reductions) within 5 min. Treatment with this sanitizer at 400 ppm for 30 min achieved>5 log10 CFU reductions in spore-forming Bacillus and Paenibacillus species while an equivalent concentration of sodium hypochlorite (NaClO) resulted in only a 0.98 and 2.72 log10 CFU reduction, respectively. The effect of this sanitizer against FCV was equivalent to that of NaClO. Immersion in WACAW (400 ppm) achieved >4 and 2.26 log10 CFU reductions in Campylobacter jejuni and EHEC, respectively, on artificially contaminated broiler carcass pieces. Finally, theantimicrobial activity of this sanitizer was shown to be maintained for at least 28 d when in contact with nonwoven fabric (100% cotton). This study showed that pH control of chlorous acid is expected to modify its antimicrobial activity and stability. WACAW is expected to have applications in various settings such as the food processing and healthcare industries. PMID:25817812

  19. Antimicrobial Activity of Xanthohumol and Its Selected Structural Analogues.

    PubMed

    Stompor, Monika; Żarowska, Barbara

    2016-01-01

    The objective of this study was to evaluate the antimicrobial activity of structural analogues of xanthohumol 1, a flavonoid compound found in hops (Humulus lupulus). The agar-diffusion method using filter paper disks was applied. Biological tests performed for selected strains of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, fungi (Alternaria sp.), and yeasts (Rhodotorula rubra, Candida albicans) revealed that compounds with at least one hydroxyl group-all of them have it at the C-4 position-demonstrated good activity. Our research showed that the strain S. aureus was more sensitive to chalcones than to the isomers in which the heterocyclic ring C is closed (flavanones). The strain R. rubra was moderately sensitive to only one compound: 4-hydroxy-4'-methoxychalcone 8. Loss of the hydroxyl group in the B-ring of 4'-methoxychalcones or its replacement by a halogen atom (-Cl, -Br), nitro group (-NO₂), ethoxy group (-OCH₂CH₃), or aliphatic substituent (-CH₃, -CH₂CH₃) resulted in the loss of antimicrobial activity towards both R. rubra yeast and S. aureus bacteria. Xanthohumol 1, naringenin 5, and chalconaringenin 7 inhibited growth of S. aureus, whereas 4-hydroxy-4'-methoxychalcone 8 was active towards two strains: S. aureus and R. rubra. PMID:27187329

  20. Benzofuranyl Esters: Synthesis, Crystal Structure Determination, Antimicrobial and Antioxidant Activities.

    PubMed

    Kumar, C S Chidan; Then, Li Yee; Chia, Tze Shyang; Chandraju, Siddegowda; Win, Yip-Foo; Sulaiman, Shaida Fariza; Hashim, Nurul Shafiqah; Ooi, Kheng Leong; Quah, Ching Kheng; Fun, Hoong-Kun

    2015-09-11

    A series of five new 2-(1-benzofuran-2-yl)-2-oxoethyl 4-(un/substituted)benzoates 4(a-e), with the general formula of C₈H₅O(C=O)CH₂O(C=O)C₆H₄X, X = H, Cl, CH₃, OCH₃ or NO₂, was synthesized in high purity and good yield under mild conditions. The synthesized products 4(a-e) were characterized by FTIR, ¹H-, (13)C- and ¹H-(13)C HMQC NMR spectroscopic analysis and their 3D structures were confirmed by single-crystal X-ray diffraction studies. These compounds were screened for their antimicrobial and antioxidant activities. The tested compounds showed antimicrobial ability in the order of 4b < 4a < 4c < 4d < 4e and the highest potency with minimum inhibition concentration (MIC) value of 125 µg/mL was observed for 4e. The results of antioxidant activities revealed the highest activity for compound 4e (32.62% ± 1.34%) in diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, 4d (31.01% ± 4.35%) in ferric reducing antioxidant power (FRAP) assay and 4a (27.11% ± 1.06%) in metal chelating (MC) activity.

  1. Antimicrobial activity of two propolis samples against human Campylobacter jejuni.

    PubMed

    Campana, Raffaella; Patrone, Vania; Franzini, Ingrid Tarsilla Maria; Diamantini, Giuseppe; Vittoria, Emanuela; Baffone, Wally

    2009-10-01

    The aim of this study was to analyze the antimicrobial activity of two ethanolic extracts of propolis (EEPs) and selected flavonoids against 16 Campylobacter jejuni clinical isolates and several Gram-positive and Gram-negative human pathogens. The antimicrobial activity of EEPs and flavonoids was evaluated by the agar well diffusion method. The EEPs inhibited the growth of C. jejuni, Enterobacter faecalis, and Staphylococcus aureus. The most active flavonoid was galangin, with the highest percentage of sensitivity among C. jejuni strains (68.8%); lower percentages of sensitivity were observed for quercetin (50%). The minimal inhibitory concentrations (MICs) of EEPs and flavonoids for C. jejuni isolates were determined by the agar dilution method. EEPs showed MIC values of 0.3125-0.156 mg/mL for all C. jejuni strains; galangin and quercetin gave MICs ranging from 0.250 to 0.125 mg/mL. Thus propolis preparations could be used as support to traditional therapy for Campylobacter infection, especially when the antibiotic agents show no activity against this microorganism.

  2. Essential oil from Artemisia phaeolepis: chemical composition and antimicrobial activities.

    PubMed

    Ben Hsouna, Anis; Ben Halima, Nihed; Abdelkafi, Slim; Hamdi, Naceur

    2013-01-01

    Artemisia phaeolepis, a perennial herb with a strong volatile odor, grows on the grasslands of Mediterranean region. Essential oil obtained from Artemisia phaeolepis was analyzed by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. A total of 79 components representing 98.19% of the total oil were identified, and the main compounds in the oil were found to be eucalyptol (11.30%), camphor (8.21%), terpine-4-ol (7.32%), germacrene D (6.39), caryophyllene oxide (6.34%), and caryophyllene (5.37%). The essential oil showed definite inhibitory activity against 10 strains of test microorganisms. Eucalyptol, camphor, terpine-4-ol, caryophyllene, germacrene D and caryophyllene oxide were also examined as the major components of the oil. Camphor showed the strongest antimicrobial activity; terpine-4-ol, eucalyptol, caryophyllene and germacrene D were moderately active and caryophyllene oxide was weakly active. The study revealed that the antimicrobial properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components. PMID:24292348

  3. Trichoplaxin - a new membrane-active antimicrobial peptide from placozoan cDNA.

    PubMed

    Simunić, Juraj; Petrov, Dražen; Bouceba, Tahar; Kamech, Nédia; Benincasa, Monica; Juretić, Davor

    2014-05-01

    A method based on the use of signal peptide sequences from antimicrobial peptide (AMP) precursors was used to mine a placozoa expressed sequence tag database and identified a potential antimicrobial peptide from Trichoplax adhaerens. This peptide, with predicted sequence FFGRLKSVWSAVKHGWKAAKSR is the first AMP from a placozoan species, and was named trichoplaxin. It was chemically synthesized and its structural properties, biological activities and membrane selectivity were investigated. It adopts an α-helical structure in contact with membrane-like environments and is active against both Gram-negative and Gram-positive bacterial species (including MRSA), as well as yeasts from the Candida genus. The cytotoxic activity, as assessed by the haemolytic activity against rat erythrocytes, U937 cell permeabilization to propidium iodide and MCF7 cell mitochondrial activity, is significantly lower than the antimicrobial activity. In tests with membrane models, trichoplaxin shows high affinity for anionic prokaryote-like membranes with good fit in kinetic studies. Conversely, there is a low affinity for neutral eukaryote-like membranes and absence of a dose dependent response. With high selectivity for bacterial cells and no homologous sequence in the UniProt, trichoplaxin is a new potential lead compound for development of broad-spectrum antibacterial drugs.

  4. Antimicrobial Activity of Bacteriophage Endolysin Produced in Nicotiana benthamiana Plants.

    PubMed

    Kovalskaya, Natalia; Foster-Frey, Juli; Donovan, David M; Bauchan, Gary; Hammond, Rosemarie W

    2016-01-01

    The increasing spread of antibiotic-resistant pathogens has raised the interest in alternative antimicrobial treatments. In our study, the functionally active gram-negative bacterium bacteriophage CP933 endolysin was produced in Nicotiana benthamiana plants by a combination of transient expression and vacuole targeting strategies, and its antimicrobial activity was investigated. Expression of the cp933 gene in E. coli led to growth inhibition and lysis of the host cells or production of trace amounts of CP933. Cytoplasmic expression of the cp933 gene in plants using Potato virus X-based transient expression vectors (pP2C2S and pGR107) resulted in death of the apical portion of experimental plants. To protect plants against the toxic effects of the CP933 protein, the cp933 coding region was fused at its Nterminus to an N-terminal signal peptide from the potato proteinase inhibitor I to direct CP933 to the delta-type vacuoles. Plants producing the CP933 fusion protein did not exhibit the severe toxic effects seen with the unfused protein and the level of expression was 0.16 mg/g of plant tissue. Antimicrobial assays revealed that, in contrast to gram-negative bacterium E. coli (BL21(DE3)), the gram-positive plant pathogenic bacterium Clavibacter michiganensis was more susceptible to the plant-produced CP933, showing 18% growth inhibition. The results of our experiments demonstrate that the combination of transient expression and protein targeting to the delta vacuoles is a promising approach to produce functionally active proteins that exhibit toxicity when expressed in plant cells. PMID:26403819

  5. Enhancement of the Antifungal Activity of Antimicrobial Drugs by Eugenia uniflora L.

    PubMed Central

    Santos, Karla K.A.; Matias, Edinardo F.F.; Tintino, Saulo R.; Souza, Celestina E.S.; Braga, Maria F.B.M.; Guedes, Gláucia M.M.; Costa, José G.M.; Menezes, Irwin R.A.

    2013-01-01

    Abstract Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity. PMID:23819641

  6. Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues.

    PubMed

    McClean, Stephen; Beggs, Louise B; Welch, Robert W

    2014-03-01

    This study evaluated four food-derived peptides with known antihypertensive activities for antimicrobial activity against pathogenic microorganisms, and assessed structure-function relationships using alanine analogues. The peptides (EVSLNSGYY, barley; PGTAVFK, soybean; TTMPLW, α-casein; VHLPP, α-zein) and the six alanine substitution peptides of PGTAVFK were synthesised, characterised and evaluated for antimicrobial activity using the bacteria, Escherichia coli, Staphylococcus aureus, and Micrococcus luteus and the yeast, Candida albicans. The peptides TTMPLW and PGTAVFK inhibited growth of all four microorganisms tested, with activities of a similar order of magnitude to ampicillin and ethanol controls. EVSLNSGYY inhibited the growth of the bacteria, but VHLPP showed no antimicrobial activity. The alanine analogue, PGAAVFK showed the highest overall antimicrobial activity and PGTAVFA showed no activity; overall, the activities of the analogues were consistent with their structures. Some peptides with antihypertensive activity also show antimicrobial activity, suggesting that food-derived peptides may exert beneficial effects via a number of mechanisms.

  7. Antioxidant and antimicrobial activities of cinnamic acid derivatives.

    PubMed

    Sova, M

    2012-07-01

    Cinnamic acid is an organic acid occurring naturally in plants that has low toxicity and a broad spectrum of biological activities. In the search for novel pharmacologically active compounds, cinnamic acid derivatives are important and promising compounds with high potential for development into drugs. Many cinnamic acid derivatives, especially those with the phenolic hydroxyl group, are well-known antioxidants and are supposed to have several health benefits due to their strong free radical scavenging properties. It is also well known that cinnamic acid has antimicrobial activity. Cinnamic acid derivatives, both isolated from plant material and synthesized, have been reported to have antibacterial, antiviral and antifungal properties. Acids, esters, amides, hydrazides and related derivatives of cinnamic acid with such activities are here reviewed.

  8. Chemical constituents, antimicrobial and antimalarial activities of Zanthoxylum monophyllum.

    PubMed

    Rodríguez-Guzmán, Raquel; Fulks, Laura C Johansmann; Radwan, Mohamed M; Burandt, Charles L; Ross, Samir A

    2011-09-01

    From the leaves and bark of Zanthoxylum monophyllum, a new lignan, 3-methoxy-3',4'-methylenedioxylignan-4,8,9,9'-tetraol (1), has been isolated along with 22 known compounds (2- 23), fifteen of them reported for the first time from Z. monophyllum. Their chemical structures were elucidated using detailed spectroscopic studies and chemical analysis. All compounds were evaluated for antimicrobial and antiprotozoal activities. Alkaloids BIS-[6-(5,6-dihydro-chelerythrinyl)] ether (2) and 6-ethoxy-chelerythrine (4) exhibited strong activity against Aspergillus fumigatus and methicillin-resistant Staphylococcus aureus (MRSA). Compound 4-methoxy-N-methyl-2-quinolone (9) exhibited significant activity against MRSA (IC50 value of 8.0 µM) while compound 5,8,4'-trihydroxy-3,7,3'-trimethoxyflavone (10) showed weak activity against Plasmodium falciparum.

  9. Isolation, identification and antimicrobial activity of propolis-associated fungi.

    PubMed

    de Souza, Giovanni Gontijo; Pfenning, Ludwig Heinrich; de Moura, Fabiana; Salgado, Mírian; Takahashi, Jacqueline Aparecida

    2013-01-01

    Propolis is a natural product widely known for its medicinal properties. In this work, fungi present on propolis samples were isolated, identified and tested for the production of antimicrobial metabolites. Twenty-two fungal isolates were obtained, some of which were identified as Alternaria alternata, Aspergillus flavus, Bipolaris hawaiiensis, Fusarium merismoides, Lasiodiplodia theobromae, Penicillium citrinum, Penicillium crustosum, Penicillium janthinellum, Penicillium purpurogenum, Pestalotiopsis palustris, Tetracoccosporium paxianum and Trichoderma koningii. These fungi were grown in liquid media to obtain crude extracts that were evaluated for their antibiotic activity against pathogenic bacteria, yeast and Cladosporium cladosporioides and A. flavus. The most active extract was obtained from L. theobromae (minimum inhibitory concentration = 64 μg/mL against Listeria monocitogenes). Some extracts showed to be more active than the positive control in the inhibition of Staphylococcus aureus and L. monocitogenes. Therefore, propolis is a promising source of fungi, which produces active agents against relevant food poisoning bacteria and crop-associated fungi.

  10. Biosynthesis and Antimicrobial Activity of Semiconductor Nanoparticles against Oral Pathogens

    PubMed Central

    Malarkodi, C.; Rajeshkumar, S.; Paulkumar, K.; Vanaja, M.; Gnanajobitha, G.; Annadurai, G.

    2014-01-01

    Dental care is an essential phenomenon in human health. Oral pathogens can cause severe break which may show the way to serious issues in human disease like blood circulation and coronary disease. In the current study, we demonstrated the synthesis and antimicrobial activity of cadmium sulphide and zinc sulphide nanoparticles against oral pathogens. The process for the synthesis of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles is fast, novel, and ecofriendly. Formation of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles was confirmed by surface plasmon spectra using UV-Vis spectrophotometer. The morphology of crystalline phase of nanoparticles was determined from transmission electron microscopy (TEM) and X-ray diffraction (XRD) spectra. The average size of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles was in the range of 10 nm to 25 nm and 65 nm, respectively, and the observed morphology was spherical. The results indicated that the proteins, which contain amine groups, played a reducing and controlling responsibility during the formation of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles in the colloidal solution. The antimicrobial activity was assessed against oral pathogens such as Streptococcus sp. Staphylococcus sp. Lactobacillus sp., and Candida albicans and these results confirmed that the sulphide nanoparticles are exhibiting good bactericidal activity. PMID:24860280

  11. In vitro antimicrobial activity of Persian shallot (Allium hirtifolium).

    PubMed

    Soroush, Setareh; Taherikalani, Morovat; Asadollahi, Parisa; Asadollahi, Khairollah; Taran, Mojtaba; Emaneini, Mohammad; Alizadeh, Sajjad

    2012-01-01

    Allium hirtifolium is a Persian native plant grown in cool mountain slopes of Iran. It has been used as a spice in Iran for many years. According to the literature review, there are no considerable reports on the antimicrobial properties of this plant. In this study, the antimicrobial activity of Persian shallot hydroalcoholic extract and F1 fraction of the plant (containing amino acid derivatives and/or other cationic compounds) was investigated on some Gram positive cocci and bacilli, Gram negative bacilli, two protozoa, a yeast and a fungus. Excellent activity against Candida albicans (MIC = 64 microg/ml, MBC = 128 microg/ml), Leishmania infantum (MIC = 0.2 mg/ml on the first day of study) and Trichomonas vaginalis (MIC = 5 microg/ml in PSDE form) and a moderate activity against Bacillus spp and Pseudomonas aeroginosa (MIC = 128 microg/ml) was observed. The results showed that this plant contains some anti-trichomonas and anti-leishmania components.

  12. Antimicrobial activity of selected South African medicinal plants

    PubMed Central

    2012-01-01

    Background Nearly 3,000 plant species are used as medicines in South Africa, with approximately 350 species forming the most commonly traded and used medicinal plants. In the present study, twelve South African medicinal plants were selected and tested for their antimicrobial activities against eight microbial species belonging to fungi, Mycobacteria, Gram-positive and Gram-negative bacteria. Methods The radiometric respiratory technique using the BACTEC 460 system was used for susceptibility testing against Mycobacterium tuberculosis, and the liquid micro-broth dilution was used for other antimicrobial assays. Results The results of the minimal inhibitory concentration (MIC) determinations indicated that the methanol extracts from Acacia karoo, Erythrophleum lasianthum and Salvia africana were able to prevent the growth of all the tested microorganisms. All other samples showed selective activities. MIC values below 100 μg/ml were recorded with A. karoo, C. dentate, E. lasianthum, P. obligun and S. africana on at least one of the nine tested microorganisms. The best activity (MIC value of 39.06 μg/ml) was noted with S. africana against E. coli, S. aureus and M. audouinii, and Knowltonia vesitoria against M. tuberculosis. Conclusion The overall results of the present work provide baseline information for the possible use of the studied South African plant extracts in the treatment of microbial infections. PMID:22704594

  13. Antimicrobial activity of cationic peptides in endodontic procedures

    PubMed Central

    Winfred, Sofi Beaula; Meiyazagan, Gowri; Panda, Jiban J.; Nagendrababu, Venkateshbabu; Deivanayagam, Kandaswamy; Chauhan, Virander S.; Venkatraman, Ganesh

    2014-01-01

    Objectives: The present study aimed to investigate the antimicrobial and biofilm inhibition activity of synthetic antimicrobial peptides (AMPs) against microbes such as Enterococcus faecalis, Staphylococcus aureus, and Candida albicans which are involved in endodontic infections. Materials and Methods: Agar diffusion test was done to determine the activity of peptides. The morphological changes in E. faecalis and reduction in biofilm formation after treatment with peptides were observed using scanning electron microscope. The efficacy of peptides using an ex vivo dentinal model was determined by polymerase chain reaction and confocal laser scanning microscopy. Platelet aggregation was done to determine the biocompatibility of peptides. Results: Among 11 peptides, two of the amphipathic cationic peptides were found to be highly active against E. faecalis, S. aureus, C. albicans. Efficacy results using dentinal tubule model showed significant reduction in microbial load at 400 μm depth. The peptides were also biocompatible. Conclusion: These results suggest that synthetic AMPs have the potential to be developed as antibacterial agents against microorganisms involved in dental infections and thus could prevent the spread and persistence of endodontic infections improving treatment outcomes and teeth preservation. PMID:24966779

  14. Peptidotriazoles with antimicrobial activity against bacterial and fungal plant pathogens.

    PubMed

    Güell, Imma; Micaló, Lluís; Cano, Laura; Badosa, Esther; Ferre, Rafael; Montesinos, Emilio; Bardají, Eduard; Feliu, Lidia; Planas, Marta

    2012-01-01

    We designed and prepared peptidotriazoles based on the antimicrobial peptide BP100 (LysLysLeuPheLysLysIleLeuLysTyrLeu-NH(2)) by introducing a triazole ring in the peptide backbone or onto the side chain of a selected residue. These compounds were screened for their in vitro growth inhibition of bacterial and fungal phytopathogens, and for their cytotoxic effects on eukaryotic cells and tobacco leaves. Their proteolytic susceptibility was also analyzed. The antibacterial activity and the hemolysis were influenced by the amino acid that was modified with the triazole as well as by the absence of presence of a substituent in this heterocyclic ring. We identified sequences active against the bacteria Xanthomonas axonopodis pv. vesicatoria, Erwinia amylovora, Pseudomonas syringae pv. syringae (MIC of 1.6-12.5 μM), and against the fungi Fusarium oxysporum (MIC<6.2-12.5 μM) with low hemolytic activity (0-23% at 50 μM), high stability to protease digestion and no phytotoxicity. These peptidotriazoles constitute good candidates to design new antimicrobial agents. PMID:22198367

  15. In vitro antimicrobial activity of Persian shallot (Allium hirtifolium).

    PubMed

    Soroush, Setareh; Taherikalani, Morovat; Asadollahi, Parisa; Asadollahi, Khairollah; Taran, Mojtaba; Emaneini, Mohammad; Alizadeh, Sajjad

    2012-01-01

    Allium hirtifolium is a Persian native plant grown in cool mountain slopes of Iran. It has been used as a spice in Iran for many years. According to the literature review, there are no considerable reports on the antimicrobial properties of this plant. In this study, the antimicrobial activity of Persian shallot hydroalcoholic extract and F1 fraction of the plant (containing amino acid derivatives and/or other cationic compounds) was investigated on some Gram positive cocci and bacilli, Gram negative bacilli, two protozoa, a yeast and a fungus. Excellent activity against Candida albicans (MIC = 64 microg/ml, MBC = 128 microg/ml), Leishmania infantum (MIC = 0.2 mg/ml on the first day of study) and Trichomonas vaginalis (MIC = 5 microg/ml in PSDE form) and a moderate activity against Bacillus spp and Pseudomonas aeroginosa (MIC = 128 microg/ml) was observed. The results showed that this plant contains some anti-trichomonas and anti-leishmania components. PMID:23210319

  16. Synthesis and antimicrobial activity of a series of caespitin derivatives.

    PubMed Central

    Van der Schyf, C J; Dekker, T G; Fourie, T G; Snyckers, F O

    1986-01-01

    Chemical modification of the naturally occurring phlorophenone antimicrobial agent caespitin is described. These modifications include variations in the phenone side chain, substitution with prenyl, allyl, and benzyl in the 4-position of the phlorophenone nucleus, and ring cyclizations via etherification to give furan and chroman compounds. Several of these derivatives show enhanced in vitro potency over caespitin. Studies on the development of microbial resistance against these compounds show that no or very little resistance developed after several passes of these compounds in representative microbial strains. PMID:3535662

  17. Antimicrobial Activity of Starch Hydrogel Incorporated with Copper Nanoparticles.

    PubMed

    Villanueva, María Emilia; Diez, Ana María Del Rosario; González, Joaquín Antonio; Pérez, Claudio Javier; Orrego, Manuel; Piehl, Lidia; Teves, Sergio; Copello, Guillermo Javier

    2016-06-29

    In order to obtain an antimicrobial gel, a starch-based hydrogel reinforced with silica-coated copper nanoparticles (Cu NPs) was developed. Cu NPs were synthesized by use of a copper salt and hydrazine as a reducing agent. In order to enhance Cu NP stability over time, they were synthesized in a starch medium followed by a silica coating. The starch hydrogel was prepared by use of urea and water as plasticizers and it was treated with different concentrations of silica-coated copper nanoparticles (Si-Cu NPs). The obtained materials were characterized by Fourier transform infrared (FT-IR) spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, scanning electron microscopy (SEM), and rheometry. FT-IR and EPR spectra were used for characterization of Cu NPs and Si-Cu NPs, confirming that a starch cap was formed around the Cu NP and demonstrating the stability of the copper nanoparticle after the silica coating step. SEM images showed Cu NP, Si-Cu NP, and hydrogel morphology. The particle size was polydisperse and the structure of the gels changed along with particle concentration. Increased NP content led to larger pores in starch structure. These results were in accordance with the rheological behavior, where reinforcement by the Si-Cu NP was seen. Antimicrobial activity was evaluated against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial species. The hydrogels were demonstrated to maintain antimicrobial activity for at least four cycles of use. A dermal acute toxicity test showed that the material could be scored as slightly irritant, proving its biocompatibility. With these advantages, it is believed that the designed Si-Cu NP loaded hydrogel may show high potential for applications in various clinical fields, such as wound dressings and fillers. PMID:27295333

  18. Study of in vitro antibacterial activity of 19 antimicrobial agents against Pseudomonas aeruginosa.

    PubMed

    Wang, R; Sun, X D; Cai, Q M

    1989-04-01

    The in vitro antibacterial activity of 19 antimicrobial agents against 40 strains of P aeruginosa was studied. The 19 antimicrobial agents included 7 semisynthetic penicillins, 6 third generation cephalosporins, 5 aminoglycosides and 1 quinolone agent. The minimal inhibition concentrations (MIGs) were measured by the serial dilution on solid agar. Ceftazidime was the most active in 19 antimicrobial agents again P aeruginosa (MIC50: 1 microgram/ml, MIC90: 2 micrograms/ml) Amikacin and ofloxaxin followed it in activity. Acylureido-penicillins, such as azlocillin, furbenicillin and piperacillin were highly active against P aeruginosa, which could inhibit, 92.5%, 90% and 85% of these strains at a concentration of 8 micrograms/ml. Cefsulodine and cefoperazone were also active against the same strains, inhibiting 92.5% and 99% of the strains at a concentration of 8 micrograms/ml. The potency of the agents mentioned above against P. aeruginosa was similar to that of aminoglycosides. The drug susceptibility of 10 strains isolated in our hospital was compared with that of 29 strains of other hospitals in Beijing. The MICS of 5 penicillins and 3 cephalosporins against the isolates of our hospital was higher than that of other hospitals, suggesting that the susceptibility of beta-lactam antibiotics against isolates of our hospital was lower. The effects of combined use of azlocillin with oxacillin and piperacillin with ofloxacin against 4 strains of carbenicillin-resistant P aeruginosa was studied using check-board testing. The synergy and partial synergy were observed in both combinations.

  19. Characteristics and antimicrobial activity of copper-based materials

    NASA Astrophysics Data System (ADS)

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger

  20. A Rapid and Quantitative Flow Cytometry Method for the Analysis of Membrane Disruptive Antimicrobial Activity

    PubMed Central

    O’Brien-Simpson, Neil M.; Pantarat, Namfon; Attard, Troy J.; Walsh, Katrina A.; Reynolds, Eric C.

    2016-01-01

    We describe a microbial flow cytometry method that quantifies within 3 hours antimicrobial peptide (AMP) activity, termed Minimum Membrane Disruptive Concentration (MDC). Increasing peptide concentration positively correlates with the extent of bacterial membrane disruption and the calculated MDC is equivalent to its MBC. The activity of AMPs representing three different membranolytic modes of action could be determined for a range of Gram positive and negative bacteria, including the ESKAPE pathogens, E. coli and MRSA. By using the MDC50 concentration of the parent AMP, the method provides high-throughput, quantitative screening of AMP analogues. A unique feature of the MDC assay is that it directly measures peptide/bacteria interactions and lysed cell numbers rather than bacteria survival as with MIC and MBC assays. With the threat of multi-drug resistant bacteria, this high-throughput MDC assay has the potential to aid in the development of novel antimicrobials that target bacteria with improved efficacy. PMID:26986223

  1. Chemical Constituents from the Fruits of Forsythia suspensa and Their Antimicrobial Activity

    PubMed Central

    Chen, Guo-Feng; Yang, Mei-Lin; Lin, Ya-Hua; Peng, Chi-Chung

    2014-01-01

    Lignans and phenylethanoid glycosides purified from Forsythia suspensa were reported to display various bioactivities in the previous literature, including the antimicrobial activity. Therefore, the present research is aimed to purify and identify the chemical constituents of the methanol extracts of fruits of F. suspensa. The methanol extracts of fruits of F. suspensa were fractionated and further purified with the assistance of column chromatography to afford totally thirty-four compounds. Among these isolates, 3β-acetoxy-20α-hydroxyursan-28-oic acid (1) was reported from the natural sources for the first time. Some of the purified principles were subjected to the antimicrobial activity examinations against Escherichia coli to explore new natural lead compounds. PMID:24745011

  2. A Rapid and Quantitative Flow Cytometry Method for the Analysis of Membrane Disruptive Antimicrobial Activity.

    PubMed

    O'Brien-Simpson, Neil M; Pantarat, Namfon; Attard, Troy J; Walsh, Katrina A; Reynolds, Eric C

    2016-01-01

    We describe a microbial flow cytometry method that quantifies within 3 hours antimicrobial peptide (AMP) activity, termed Minimum Membrane Disruptive Concentration (MDC). Increasing peptide concentration positively correlates with the extent of bacterial membrane disruption and the calculated MDC is equivalent to its MBC. The activity of AMPs representing three different membranolytic modes of action could be determined for a range of Gram positive and negative bacteria, including the ESKAPE pathogens, E. coli and MRSA. By using the MDC50 concentration of the parent AMP, the method provides high-throughput, quantitative screening of AMP analogues. A unique feature of the MDC assay is that it directly measures peptide/bacteria interactions and lysed cell numbers rather than bacteria survival as with MIC and MBC assays. With the threat of multi-drug resistant bacteria, this high-throughput MDC assay has the potential to aid in the development of novel antimicrobials that target bacteria with improved efficacy. PMID:26986223

  3. Phytochemical screening and antimicrobial activities of plant extract of Lantana camara.

    PubMed

    Pradeep, B Vishwanath; Tejaswini, M; Nishal, P; Pardhu, G; Shylaja, S; Kumar, Kranthi Ch

    2013-05-01

    Natural products continue to play an important role in the discovery and development of new pharmaceuticals. Several chemical compounds have been extracted and identified from its species known as Lantana camara (L .camara). The present study was designed for phytochemical analysis of L. camara and extraction of bioactive compound by HPLC. This also included the antimicrobial activity of the bioactive compound obtained by crude extract and the column extract. The study showed the presence of the bioactive component parthenin extracted from the HPLC analysis at a peak height of 10.3807 and it was showing antimicrobial activity against E. coli, P. aeruginosa, B. subtilis and E. fecalis, crude (6.8 to 8.1 mm ) and column (4.0 to 6.2 mm) zone of inhibition. PMID:24617153

  4. Identification and antimicrobial activity of actinobacteria from soils in southern Thailand.

    PubMed

    Sripreechasak, P; Tanasupawat, S; Matsumoto, A; Inahashi, Y; Suwanborirux, K; Takahashi, Y

    2013-03-01

    The aim of this research was to study on the identification and antimicrobial activity of actinobacteria from six soil samples collected around Krung Ching waterfall, Nakhon Si Thammarat province, the southern part of Thailand. Thirty-one isolates of actinobacteria were isolated using the dilution plating method on modified starch casein nitrate agar plates and potato starch-glycerol agar plates. On the primary screening, 9 isolates exhibited the antimicrobial activity against Bacillus subtilis, 8 isolates against Kocuria rhizophila, 6 isolates against Mucor racemosus, 2 isolates against Escherichia coli and Candida albicans and 5 isolates against Xanthomonas campestris pv. oryzae. All the isolates were identified based on their morphological and cultural characteristics including the 16S rRNA gene sequence analysis. Eighteen isolates were identified as Streptomyces, 8 isolates as Nocardia, 2 isolates as Kitasatospora, one of each isolate as Amycolatopsis, Rhodococcus and Gordonia. PMID:23665707

  5. Synthesis and Antimicrobial Activity of 1,2-Benzothiazine Derivatives.

    PubMed

    Patel, Chandani; Bassin, Jatinder P; Scott, Mark; Flye, Jenna; Hunter, Ann P; Martin, Lee; Goyal, Madhu

    2016-01-01

    A number of 1,2-benzothiazines have been synthesized in a three-step process. Nine chalcones 1-9 bearing methyl, fluoro, chloro and bromo substituents were chlorosulfonated with chlorosulfonic acid to generate the chalcone sulfonyl chlorides 10-18. These were converted to the dibromo compounds 19-27 through reaction with bromine in glacial acetic acid. Compounds 19-27 were reacted with ammonia, methylamine, ethylamine, aniline and benzylamine to generate a library of 45 1,2-benzothiazines 28-72. Compounds 28-72 were evaluated for their antimicrobial activity using broth microdilution techniques against two Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram-negative bacteria (Proteus vulgaris and Salmonella typhimurium). The results demonstrated that none of the compounds showed any activity against Gram-negative bacteria P. vulgaris and S. typhimurium; however, compounds 31, 33, 38, 43, 45, 50, 53, 55, 58, 60, 63 and 68 showed activity against Gram-positive bacteria Bacillus subtilis and Staphylococcous aureus. The range of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was 25-600 µg/mL, though some of the MIC and MBC concentrations were high, indicating weak activity. Structure activity relationship studies revealed that the compounds with a hydrogen atom or an ethyl group on the nitrogen of the thiazine ring exerted antibacterial activity against Gram-positive bacteria. The results also showed that the compounds where the benzene ring of the benzoyl moiety contained a methyl group or a chlorine or bromine atom in the para position showed higher antimicrobial activity. Similar influences were identified where either a bromine or chlorine atom was in the meta position. PMID:27376253

  6. In vitro antimicrobial activity of pistachio (Pistacia vera L.) polyphenols.

    PubMed

    Bisignano, Carlo; Filocamo, Angela; Faulks, Richard M; Mandalari, Giuseppina

    2013-04-01

    We investigated the antimicrobial properties of polyphenol-rich fractions derived from raw shelled and roasted salted pistachios. American Type Culture Collection (ATCC), food and clinical isolates, of Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Pseudomonas mirabilis), Gram-positive bacteria (Listeria monocytogenes, Enterococcus hirae, Enterococcus faecium, Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus), the yeasts Candida albicans and Candida parapsilosis and the fungus Aspergillus niger were used. Pistachio extracts were active against Gram-positive bacteria with a bactericidal effect observed against L. monocytogenes (ATCC strains and food isolates), S. aureus and MRSA clinical isolates. Extracts from raw shelled pistachios were more active than those from roasted salted pistachios. The bactericidal activity of pistachio extracts could be used to help control the growth of some microorganisms in foods to improve safety and may find application as a topical treatment for S. aureus.

  7. Antioedematogenic activity, acetylcholinesterase inhibition and antimicrobial properties of Jacaranda oxyphylla.

    PubMed

    Pereira, V V; Silva, R R; Dos Santos, M H; Dias, D F; Moreira, M E C; Takahashi, J A

    2016-09-01

    Jacaranda oxyphylla Cham. (Bignoniaceae) is a shrub found in the Brazilian cerrado and used in folk medicine to treat microbial infections. The aim of this study was to carry out a phytochemical screening and evaluate antioedematogenic, antimicrobial and antiacetylcholinesterase properties of J. oxyphylla crude extracts. All extracts analysed showed presence of terpenoids, which are potentially active chemical substances. A high AChE inhibitory activity for hexane extract from leaves and for the extracts from twigs was found. Ethanol extract from leaves of J. oxyphylla showed activity against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Escherichia coli) bacteria. This extract was also effective in inhibiting the stages of inflammation evaluated. Biological investigation and phytochemical screening of J. oxyphylla extracts provided additional evidence of its traditional medicinal value.

  8. Vibrational spectra and antimicrobial activity of selected bivalent cation benzoates

    NASA Astrophysics Data System (ADS)

    Borawska, M. H.; Koczoń, P.; Piekut, J.; Świsłocka, R.; Lewandowski, W.

    2009-02-01

    Selected bands of FT-IR spectra of Mg(II), Ca(II), Cu(II) and Zn(II) benzoates of both solid state and water solution, were assigned to appropriate molecular vibrations. Next evaluation of electronic charge distribution in both carboxylic anion and aromatic ring of studied compounds was performed. Classical plate tests and turbidimetry measurements, monitoring growth of bacteria Escherichia coli, Bacillus subtilis and yeasts Pichia anomala and Saccharomyces cerevisiae during 24 h of incubation, in optimal growth conditions (control) and in medium with addition of studied benzoate (concentration of 0.01% expressed as the concentration of benzoic acid), proved antimicrobial activity of studied compounds against investigated micro-organisms. PLS (partially least square) and PCR (principal component regression) techniques were applied to build a model, correlating spectral data reflecting molecular structure of studied compounds, with degree of influence of those compounds on growth of studied micro-organisms. Statistically significant correlation within cross validation diagnostic of PLS-1 calibration was found, when log 1/T of selected spectral regions of water solution samples were used as input data. The correlation coefficients between predicted with PLS calibration based on created 1, 2 or 3 factor models, and actual values of antimicrobial activity were: 0.70; 0.76, 0.81 for P. anomala, B. subtilis, and E. coli, respectively. Log(PRESS) values of appropriate models were 2.10, 2,39 and 3.23 for P. anomala, B. subtilis, and E. coli, respectively.

  9. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles.

    PubMed

    Janaki, A Chinnammal; Sailatha, E; Gunasekaran, S

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity. PMID:25748589

  10. Antimicrobial activity of Uncaria tomentosa against oral human pathogens.

    PubMed

    Ccahuana-Vasquez, Renzo Alberto; Santos, Silvana Soléo Ferreira dos; Koga-Ito, Cristiane Yumi; Jorge, Antonio Olavo Cardoso

    2007-01-01

    Uncaria tomentosa is considered a medicinal plant used over centuries by the peruvian population as an alternative treatment for several diseases. Many microorganisms usually inhabit the human oral cavity and under certain conditions can become etiologic agents of diseases. The aim of the present study was to evaluate the antimicrobial activity of different concentrations of Uncaria tomentosa on different strains of microorganisms isolated from the human oral cavity. Micropulverized Uncaria tomentosa was tested in vitro to determine the minimum inhibitory concentration (MIC) on selected microbial strains. The tested strains were oral clinical isolates of Streptococcus mutans, Staphylococcus spp., Candida albicans, Enterobacteriaceae and Pseudomonas aeruginosa. The tested concentrations of Uncaria tomentosa ranged from 0.25-5% in Müeller-Hinton agar. Three percent Uncaria tomentosa inhibited 8% of Enterobacteriaceae isolates, 52% of S. mutans and 96% of Staphylococcus spp. The tested concentrations did not present inhibitory effect on P. aeruginosa and C. albicans. It could be concluded that micropulverized Uncaria tomentosa presented antimicrobial activity on Enterobacteriaceae, S. mutans and Staphylococcus spp. isolates.

  11. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  12. Broad Spectrum Antimicrobial Activity of Forest-Derived Soil Actinomycete, Nocardia sp. PB-52

    PubMed Central

    Sharma, Priyanka; Kalita, Mohan C.; Thakur, Debajit

    2016-01-01

    A mesophilic actinomycete strain designated as PB-52 was isolated from soil samples of Pobitora Wildlife Sanctuary of Assam, India. Based on phenotypic and molecular characteristics, the strain was identified as Nocardia sp. which shares 99.7% sequence similarity with Nocardia niigatensis IFM 0330 (NR_112195). The strain is a Gram-positive filamentous bacterium with rugose spore surface which exhibited a wide range of antimicrobial activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative bacteria, and yeasts. Optimization for the growth and antimicrobial activity of the strain PB-52 was carried out in batch culture under shaking condition. The optimum growth and antimicrobial potential of the strain were recorded in GLM medium at 28°C, initial pH 7.4 of the medium and incubation period of 8 days. Based on polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) gene-targeted PCR amplification, the occurrence of both of these biosynthetic pathways was detected which might be involved in the production of antimicrobial compounds in PB-52. Extract of the fermented broth culture of PB-52 was prepared with organic solvent extraction method using ethyl acetate. The ethyl acetate extract of PB-52 (EA-PB-52) showed lowest minimum inhibitory concentration (MIC) against S. aureus MTCC 96 (0.975 μg/mL) whereas highest was recorded against Klebsiella pneumoniae ATCC 13883 (62.5 μg/mL). Scanning electron microscopy (SEM) revealed that treatment of the test microorganisms with EA-PB-52 destroyed the targeted cells with prominent loss of cell shape and integrity. In order to determine the constituents responsible for its antimicrobial activity, EA-PB-52 was subjected to chemical analysis using gas chromatography-mass spectrometry (GC-MS). GC-MS analysis showed the presence of twelve different chemical constituents in the extract, some of which are reported to possess diverse biological activity. These

  13. Cytotoxic and antimicrobial activity of selected Cameroonian edible plants

    PubMed Central

    2013-01-01

    Background In Cameroon, the use of edible plants is an integral part of dietary behavior. However, evidence of the antimicrobial as well as the cytotoxic effects of many of them has not been investigated. In the present study, aqueous and methanol extracts from barks, seeds, leaves and roots of three Cameroonian edible plants namely Garcina lucida, Fagara heitzii and Hymenocardia lyrata were evaluated for their cytotoxic and antimicrobial activities. Methods Antibacterial and antifungal activities were assessed by the broth micro-dilution method meanwhile the cytotoxicity was performed using sulphorhodamine B assay (SRB) against the human leukemia THP-1, the alveolar epithelial A549, prostate cancer PC-3, breast adenocarcinoma MCF-7 and cervical cancer HeLa cell lines. Results The minimum inhibitory concentration (MIC) values of the seven tested extracts ranged from 62.5 μg/ml to 1000 μg/ml. The methanol (MeOH) extract from the roots of H. lyrata showed the highest antibacterial activity against Gram-positive bacteria S. aureus and S. epidermitis. The best antifungal activity was obtained with the MeOH extract from the leaves of G. lucida against C. tropicalis (MIC value of 62.5 μg/ml). The in vitro antiproliferative activity revealed that, extract from the bark of F. heitzii and extract from H. lyrata roots had significant cytotoxic activity on THP-1 (IC50 8.4 μg/ml) and PC-3 (IC50 9.5 μg/ml) respectively. Conclusion Our findings suggest that Cameroonian spices herein studied could be potentially useful for the development of therapeutic agents against bacterial infections as well as for prostate and leukemia cancer. PMID:23565827

  14. Antimicrobial activity of Anonna mucosa (Jacq.) grown in vivo and obtained by in vitroculture.

    PubMed

    Barboza, Thiago José de Souza; Ferreira, Andréa Fonseca; Ignacio, Ana Claudia de Paula Rosa; Albarello, Norma

    2015-01-01

    Brazilian flora includes numerous species of medicinal importance that can be used to develop new drugs. Plant tissue culture offers strategies for conservation and use of these species allowing continuous production of plants and bioactive substances. Annona mucosa has produced substances such as acetogenins and alkaloids that exhibit antimicrobial activities. The widespread use of antibiotics has led to an increase in multidrug-resistant bacteria, which represents a serious risk of infection. In view of this problem, the aim of this work was to evaluate the antibacterial potential of extracts of A. mucosa obtained by in vitro techniques and also cultured under in vivo conditions. Segments from seedlings were inoculated onto different culture media containing the auxin picloram and the cytokinin kinetin at different concentrations. The calluses obtained were used to produce cell suspension cultures. The materials were subjected to methanol extraction and subsequent fractionation in hexane and dichloromethane. The antimicrobial activity against 20 strains of clinical relevance was evaluated by the macrodilution method at minimum inhibitory and minimum bactericidal concentrations. The extracts showed selective antimicrobial activity, inhibiting the growth of Streptococcus pyogenes and Bacillus thuringiensis at different concentrations. The plant tissue culture methods produced plant materials with antibacterial properties, as well as in vivo grown plants. The antibacterial activity of material obtained through biotechnological procedures of A. mucosa is reported here for the first time. PMID:26413061

  15. Antimicrobial activity of Anonna mucosa (Jacq.) grown in vivo and obtained by in vitroculture.

    PubMed

    Barboza, Thiago José de Souza; Ferreira, Andréa Fonseca; Ignacio, Ana Claudia de Paula Rosa; Albarello, Norma

    2015-01-01

    Brazilian flora includes numerous species of medicinal importance that can be used to develop new drugs. Plant tissue culture offers strategies for conservation and use of these species allowing continuous production of plants and bioactive substances. Annona mucosa has produced substances such as acetogenins and alkaloids that exhibit antimicrobial activities. The widespread use of antibiotics has led to an increase in multidrug-resistant bacteria, which represents a serious risk of infection. In view of this problem, the aim of this work was to evaluate the antibacterial potential of extracts of A. mucosa obtained by in vitro techniques and also cultured under in vivo conditions. Segments from seedlings were inoculated onto different culture media containing the auxin picloram and the cytokinin kinetin at different concentrations. The calluses obtained were used to produce cell suspension cultures. The materials were subjected to methanol extraction and subsequent fractionation in hexane and dichloromethane. The antimicrobial activity against 20 strains of clinical relevance was evaluated by the macrodilution method at minimum inhibitory and minimum bactericidal concentrations. The extracts showed selective antimicrobial activity, inhibiting the growth of Streptococcus pyogenes and Bacillus thuringiensis at different concentrations. The plant tissue culture methods produced plant materials with antibacterial properties, as well as in vivo grown plants. The antibacterial activity of material obtained through biotechnological procedures of A. mucosa is reported here for the first time.

  16. Antimicrobial activity of Anonna mucosa (Jacq.) grown in vivo and obtained by in vitroculture

    PubMed Central

    de Souza Barboza, Thiago José; Ferreira, Andréa Fonseca; de Paula Rosa Ignacio, Ana Claudia; Albarello, Norma

    2015-01-01

    Brazilian flora includes numerous species of medicinal importance that can be used to develop new drugs. Plant tissue culture offers strategies for conservation and use of these species allowing continuous production of plants and bioactive substances. Annona mucosa has produced substances such as acetogenins and alkaloids that exhibit antimicrobial activities. The widespread use of antibiotics has led to an increase in multidrug-resistant bacteria, which represents a serious risk of infection. In view of this problem, the aim of this work was to evaluate the antibacterial potential of extracts of A. mucosa obtained by in vitro techniques and also cultured under in vivo conditions. Segments from seedlings were inoculated onto different culture media containing the auxin picloram and the cytokinin kinetin at different concentrations. The calluses obtained were used to produce cell suspension cultures. The materials were subjected to methanol extraction and subsequent fractionation in hexane and dichloromethane. The antimicrobial activity against 20 strains of clinical relevance was evaluated by the macrodilution method at minimum inhibitory and minimum bactericidal concentrations. The extracts showed selective antimicrobial activity, inhibiting the growth of Streptococcus pyogenes and Bacillus thuringiensis at different concentrations. The plant tissue culture methods produced plant materials with antibacterial properties, as well as in vivo grown plants. The antibacterial activity of material obtained through biotechnological procedures of A. mucosa is reported here for the first time. PMID:26413061

  17. Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture.

    PubMed

    Swain, P; Nayak, S K; Sasmal, A; Behera, T; Barik, S K; Swain, S K; Mishra, S S; Sen, A K; Das, J K; Jayasankar, P

    2014-09-01

    The emergence of diseases and mortalities in aquaculture and development of antibiotics resistance in aquatic microbes, has renewed a great interest towards alternative methods of prevention and control of diseases. Nanoparticles have enormous potential in controlling human and animal pathogens and have scope of application in aquaculture. The present investigation was carried out to find out suitable nanoparticles having antimicrobial effect against aquatic microbes. Different commercial as well as laboratory synthesized metal and metal oxide nanoparticles were screened for their antimicrobial activities against a wide range of bacterial and fungal agents including certain freshwater cyanobacteria. Among different nanoparticles, synthesized copper oxide (CuO), zinc oxide (ZnO), silver (Ag) and silver doped titanium dioxide (Ag-TiO2) showed broad spectrum antibacterial activity. On the contrary, nanoparticles like Zn and ZnO showed antifungal activity against fungi like Penicillium and Mucor species. Since CuO, ZnO and Ag nanoparticles showed higher antimicrobial activity, they may be explored for aquaculture use.

  18. Development of broad-spectrum antimicrobial latex paint surfaces employing active amphiphilic compounds.

    PubMed

    Fulmer, Preston A; Wynne, James H

    2011-08-01

    With the increase in antibiotic-resistant microbes, the production of self-decontaminating surfaces has become an area of research that has seen a surge of interest in recent years. Such surfaces, when incorporated into commercial products such as children's toys, medical devices and hospital surfaces could reduce the number of infections caused by pathogenic microorganisms. A number of active components for self-decontaminating surfaces have been investigated, including common antibiotics, metal ions, quaternary ammonium salts (QAS), and antimicrobial peptides (AMP). A recent research focus has been development of a wide range of amphiphilic antimicrobial additives that when combined with modern low volatile organic compound (VOC), water-based paints leads to a surface concentration of the active compounds as the coating cures. Herein we report the development of antimicrobial coatings containing a variety of additives, both QAS and AMP that are active against a broad-spectrum of potentially pathogenic bacteria (1-7 log kill), as well as enveloped viruses (2-7 log kill) and fungi (1-2 log kill). Additionally, these additives were compatible with water-dispersed acrylate coatings (latex paint) which have a broad range of real world applicability, and remained active for multiple challenges and when exposed to various cleaning scenarios in which they might encounter in real world situations.

  19. Antiradical, antimicrobial and cytotoxic activities of commercial beetroot pomace.

    PubMed

    Vulić, Jelena J; Cebović, Tatjana N; Canadanović, Vladimir M; Cetković, Gordana S; Djilas, Sonja M; Canadanović-Brunet, Jasna M; Velićanski, Aleksandra S; Cvetković, Dragoljub D; Tumbas, Vesna T

    2013-04-30

    The by-product of food processing is often utilized as feed, and for the preparation of dietary fiber and biofuel. However, these products are also promising sources of bioactive antioxidants and color giving compounds, which could be used as additives in the food, pharmaceutical and cosmetic industry. The aim of this study was to investigate the phytochemical profile, and the antiradical, antimicrobial and cytotoxic activities of industrial beetroot pomace extract (BPE). The content of phenolics (45.68 mg gallic acid equivalents g(-1)), flavonoids (25.89 mg rutin equivalents g(-1)) and betalains (4.09 mg betanin g(-1); 7.32 mg vulgaxanthin I g(-1)) were determined spectrophotometrically. The antiradical activity on DPPH (EC(50)(DPPH·) = 0.0797 mg ml(-1)), hydroxyl (EC(50)(·OH) = 0.0655 mg ml(-1)) and superoxide anion (EC(50)(O2·-) = 1.0625 mg ml(-1)) radicals were measured by electron spin resonance (ESR) spectroscopy. The antimicrobial activity was determined using the agar-well diffusion method. Gram(-) bacteria (Salmonella typhimurium, Citrobacter freundii) and Gram(+) bacteria, (Staphylococcus aureus, Staphylococcus sciuri, Bacillus cereus) showed high susceptibility, while yeasts and moulds were resistant. BPE exhibits cytotoxic properties against Ehrlich carcinoma (EAC) cells in vivo due to induction of oxidative stress. The largest decreases in EAC cell numbers were observed in the pre-treated male (approximately 53%) and female (approximately 47%) mice, and also the EAC cell viability was decreased after administration of BPE. The activities of the antioxidant enzymes, xanthine oxidase (XOD) and peroxidase (Px), were significantly different between the untreated EAC control group and all other groups that were treated with BPE. The XOD and Px activities were very low in untreated malignant cells, but increased significantly after administration of BPE. Our results show that BPE holds promise in the food industry as a source of bioactive compounds.

  20. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications.

    PubMed

    Dutta, J; Tripathi, S; Dutta, P K

    2012-02-01

    In recent years, active biomolecules such as chitosan and its derivatives are undergoing a significant and very fast development in food application area. Due to recent outbreaks of contaminations associated with food products, there have been growing concerns regarding the negative environmental impact of packaging materials of antimicrobial biofilms, which have been studied. Chitosan has a great potential for a wide range of applications due to its biodegradability, biocompatibility, antimicrobial activity, nontoxicity and versatile chemical and physical properties. It can be formed into fibers, films, gels, sponges, beads or nanoparticles. Chitosan films have been used as a packaging material for the quality preservation of a variety of foods. Chitosan has high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms, including fungi, and Gram-positive and Gram-negative bacteria. A tremendous effort has been made over the past decade to develop and test films with antimicrobial properties to improve food safety and shelf-life. This review highlights the preparation, mechanism, antimicrobial activity, optimization of biocide properties of chitosan films and applications including biocatalysts for the improvement of quality and shelf-life of foods.

  1. Antimicrobial activity of extracts from Tamarindus indica L. leaves.

    PubMed

    Escalona-Arranz, Julio César; Péres-Roses, Renato; Urdaneta-Laffita, Imilci; Camacho-Pozo, Miladis Isabel; Rodríguez-Amado, Jesús; Licea-Jiménez, Irina

    2010-07-01

    Tamarindus indica L. leaves are reported worldwide as antibacterial and antifungal agents; however, this observation is not completely accurate in the case of Cuba. In this article, decoctions from fresh and sun dried leaves, as well as fluid extracts prepared with 30 and 70% ethanol-water and the pure essential oil from tamarind leaves were microbiologically tested against Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Pseudomona aeruginosa and Candida albicans. Aqueous and fluid extracts were previously characterized by spectrophotometric determination of their total phenols and flavonoids, while the essential oil was chemically evaluated by gas chromatography/mass spectroscopy (GC/MS). Experimental data suggest phenols as active compounds against B. subtilis cultures, but not against other microorganisms. On the other hand, the essential oil exhibited a good antimicrobial spectrum when pure, but its relative low concentrations in common folk preparations do not allow for any good activity in these extracts.

  2. Polyhexamethylene biguanide functionalized cationic silver nanoparticles for enhanced antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ashraf, Sumaira; Akhtar, Nasrin; Ghauri, Muhammad Afzal; Rajoka, Muhammad Ibrahim; Khalid, Zafar M.; Hussain, Irshad

    2012-05-01

    Polyhexamethylene biguanide (PHMB), a broad spectrum disinfectant against many pathogens, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles. The particles formed were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering, electrophoretic mobility, and TEM to measure their morphology and surface chemistry. PHMB-functionalized silver nanoparticles were then evaluated for their antimicrobial activity against a gram-negative bacterial strain, Escherichia coli. These silver nanoparticles were found to have about 100 times higher bacteriostatic and bactericidal activities, compared to the previous reports, due to the combined antibacterial effect of silver nanoparticles and PHMB. In addition to other applications, PHMB-functionalized silver nanoparticles would be extremely useful in textile industry due to the strong interaction of PHMB with cellulose fabrics.

  3. In vitro antimicrobial activity of peroxide-based bleaching agents.

    PubMed

    Napimoga, Marcelo Henrique; de Oliveira, Rogério; Reis, André Figueiredo; Gonçalves, Reginaldo Bruno; Giannini, Marcelo

    2007-06-01

    Antibacterial activity of 4 commercial bleaching agents (Day White, Colgate Platinum, Whiteness 10% and 16%) on 6 oral pathogens (Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis, Candida albicans, Lactobacillus casei, and Lactobacillus acidophilus) and Staphylococcus aureus were evaluated. A chlorhexidine solution was used as a positive control, while distilled water was the negative control. Bleaching agents and control materials were inserted in sterilized stainless-steel cylinders that were positioned under inoculated agar plate (n = 4). After incubation according to the appropriate period of time for each microorganism, the inhibition zones were measured. Data were analyzed by 2-way analysis of variance and Tukey test (a = 0.05). All bleaching agents and the chlorhexidine solution produced antibacterial inhibition zones. Antimicrobial activity was dependent on peroxide-based bleaching agents. For most microorganisms evaluated, bleaching agents produced inhibition zones similar to or larger than that observed for chlorhexidine. C albicans, L casei, and L acidophilus were the most resistant microorganisms. PMID:17625621

  4. Antimicrobial activity of extracts from Tamarindus indica L. leaves

    PubMed Central

    Escalona-Arranz, Julio César; Péres-Roses, Renato; Urdaneta-Laffita, Imilci; Camacho-Pozo, Miladis Isabel; Rodríguez-Amado, Jesús; Licea-Jiménez, Irina

    2010-01-01

    Tamarindus indica L. leaves are reported worldwide as antibacterial and antifungal agents; however, this observation is not completely accurate in the case of Cuba. In this article, decoctions from fresh and sun dried leaves, as well as fluid extracts prepared with 30 and 70% ethanol-water and the pure essential oil from tamarind leaves were microbiologically tested against Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Pseudomona aeruginosa and Candida albicans. Aqueous and fluid extracts were previously characterized by spectrophotometric determination of their total phenols and flavonoids, while the essential oil was chemically evaluated by gas chromatography/mass spectroscopy (GC/MS). Experimental data suggest phenols as active compounds against B. subtilis cultures, but not against other microorganisms. On the other hand, the essential oil exhibited a good antimicrobial spectrum when pure, but its relative low concentrations in common folk preparations do not allow for any good activity in these extracts. PMID:20931087

  5. In vitro antimicrobial activity of peroxide-based bleaching agents.

    PubMed

    Napimoga, Marcelo Henrique; de Oliveira, Rogério; Reis, André Figueiredo; Gonçalves, Reginaldo Bruno; Giannini, Marcelo

    2007-06-01

    Antibacterial activity of 4 commercial bleaching agents (Day White, Colgate Platinum, Whiteness 10% and 16%) on 6 oral pathogens (Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis, Candida albicans, Lactobacillus casei, and Lactobacillus acidophilus) and Staphylococcus aureus were evaluated. A chlorhexidine solution was used as a positive control, while distilled water was the negative control. Bleaching agents and control materials were inserted in sterilized stainless-steel cylinders that were positioned under inoculated agar plate (n = 4). After incubation according to the appropriate period of time for each microorganism, the inhibition zones were measured. Data were analyzed by 2-way analysis of variance and Tukey test (a = 0.05). All bleaching agents and the chlorhexidine solution produced antibacterial inhibition zones. Antimicrobial activity was dependent on peroxide-based bleaching agents. For most microorganisms evaluated, bleaching agents produced inhibition zones similar to or larger than that observed for chlorhexidine. C albicans, L casei, and L acidophilus were the most resistant microorganisms.

  6. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection.

    PubMed

    Melvin, Jeffrey A; Lashua, Lauren P; Kiedrowski, Megan R; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C; Bomberger, Jennifer M

    2016-01-01

    Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms formed by the

  7. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection

    PubMed Central

    Melvin, Jeffrey A.; Lashua, Lauren P.; Kiedrowski, Megan R.; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C.

    2016-01-01

    ABSTRACT Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms

  8. Antioxidant, Antimicrobial Activity and Medicinal Properties of Grewia asiatica L.

    PubMed

    Shukla, Ritu; Sharma, Dinesh C; Baig, Mohammad H; Bano, Shabana; Roy, Sudeep; Provazník, Ivo; Kamal, Mohammad A

    2016-01-01

    Since ancient time, India is a well known subcontinent for medicinal plants where diversity of plants is known for the treatment of many human disorders. Grewia asiatica is a dicot shrub belonging to the Grewioideae family and well known for its medicinally important fruit commonly called Falsa. G. asiatica, a seasonal summer plant is distributed in the forest of central India, south India, also available in northern plains and western Himalaya up to the height of 3000 ft. Fruits of G. asiatica are traditionally used as a cooling agent, refreshing drink, anti-inflammatory agent and for the treatment of some urological disorders. Recent advancement of Falsa researches concluded its antimicrobial and anti-diabetic activity. Since ancient time medicinal plants are traditionally used for the treatment of different diseases G. asiatica fruit is the edible and tasty part of the plant, now considered as a valuable source of unique natural product for the development of medicines which are used in different disease conditions like anti-diabetic, anti-inflammatory, anti-cancerous and antimicrobial. Now a days, G. asiatica is being used in different Ayurvedic formulation for the cure of different types of diseases. Different pharmacological investigations reveal the presence of phenols, saponnins, flavonoids and tannins compound in the fruits. Present review highlights the phytopharmacological and different traditional use of G. asiatica which is mentioned in ancient Ayurvedic texts. This review stimulates the researchers and scientists for further research on G. asiatica. PMID:26516779

  9. Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin

    NASA Astrophysics Data System (ADS)

    Lv, Guocheng; Pearce, Cody W.; Gleason, Andrea; Liao, Libing; MacWilliams, Maria P.; Li, Zhaohui

    2013-11-01

    Antibiotics are used not only to fight infections and inhibit bacterial growth, but also as growth promotants in farm livestock. Farm runoff and other farm-linked waste have led to increased antibiotic levels present in the environment, the impact of which is not completely understood. Soil, more specifically clays, that the antibiotic contacts may alter its effectiveness against bacteria. In this study a swelling clay mineral montmorillonite was preloaded with antibiotics tetracycline and ciprofloxacin at varying concentrations and bioassays were conducted to examine whether the antibiotics still inhibited bacterial growth in the presence of montmorillonite. Escherichia coli was incubated with montmorillonite or antibiotic-adsorbed montmorillonite, and then the number of viable bacteria per mL was determined. The antimicrobial activity of tetracycline was affected in the presence of montmorillonite, as the growth of non-resistant bacteria was still found even when extremely high TC doses were used. Conversely, in the presence of montmorillonite, ciprofloxacin did inhibit E. coli bacterial growth at high concentrations. These results suggest that the effectiveness of antimicrobial agents in clayey soils depends on the amount of antibiotic substance present, and on the interactions between the antibiotic and the clays in the soil, as well.

  10. IL-27 suppresses antimicrobial activity in human leprosy

    PubMed Central

    Teles, Rosane M. B.; Kelly-Scumpia, Kindra M.; Sarno, Euzenir N.; Rea, Thomas H.; Ochoa, Maria T.; Cheng, Genhong; Modlin, Robert L.

    2015-01-01

    The mechanisms by which intracellular pathogens trigger immunosuppressive pathways are critical for understanding the pathogenesis of microbial infection. One pathway that inhibits host defense responses involves the induction of type I interferons and subsequently IL-10, yet the mechanism by which type I IFN induces IL-10 remains unclear. Our studies of gene expression profiles derived from leprosy skin lesions suggested a link between IL-27 and the IFN-β induced IL-10 pathway. Here, we demonstrate that the IL-27p28 subunit is upregulated following treatment of monocytes with IFN-β and Mycobacterium leprae, the intracellular bacterium that causes leprosy. The ability of IFN-β and M. leprae to induce IL-10 was diminished by IL-27 knockdown. Additionally, treatment of monocytes with recombinant IL-27 was sufficient to induce the production of IL-10. Functionally, IL-27 inhibited the ability of IFN-γ to trigger antimicrobial activity against M. leprae in infected monocytes. At the site of disease, IL-27 was more strongly expressed in skin lesions of patients with progressive lepromatous leprosy, correlating and colocalizing with IFN-β and IL-10 in macrophages. Together, these data provide evidence that in the human cutaneous immune responses to microbial infection, IL-27 contributes to the suppression of host antimicrobial responses. PMID:26030183

  11. Antimicrobial activity of Ulva reticulata and its endophytes

    NASA Astrophysics Data System (ADS)

    Dhanya, K. I.; Swati, V. I.; Vanka, Kanth Swaroop; Osborne, W. J.

    2016-04-01

    Seaweeds are known to exhibit various antimicrobial properties, since it harbours an enormous range of indigenous bioactive compounds. The emergence of drug resistant strains has directed to the identification of prospective metabolites from seaweed and its endophytes, thereby exploiting the properties in resisting bacterial diseases. The current study was aimed to assess the antimicrobial activity of extracts obtained from Ulva reticulate, for which metabolites of Ulva reticulata and its endophytes were extracted and assessed against human pathogens like Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Bacillus subtilis. It was observed that the hexane extract of isolate VITDSJ2 was effective against all the tested pathogens but a significant inhibition was observed for Staphylococcus aureus and Escherichia coli. Further, Gas chromatography coupled with Mass spectroscopy (GC-MS) revealed the existence of phenol, 3, 5-bis (1, 1-dimethylethyl) in the crude hexane extract which is well-known to possess antibacterial activity. The effective isolate VITDSJ2 was identified to be the closest neighbour of Pseudomonas stutzeri by phenotypic and genotypic methods. The crude extracts of the seaweed Ulva reticulata was also screened for antibacterial activity and the hexane extract was effective in showing inhibition against all the tested pathogens. The compound in the crude extract of Ulva reticulata was identified as hentriacontane using GC-MS. The extracts obtained from dichloromethane did not show significant activity in comparison with the hexane extracts. Hence the metabolites of Ulva reticulata and the bacterial secondary metabolites of the endophytes could be used in the treatment of bacterial infections.

  12. Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in healthcare environments.

    PubMed

    Thorn, R M S; Lee, S W H; Robinson, G M; Greenman, J; Reynolds, D M

    2012-05-01

    Due to the limitations associated with the use of existing biocidal agents, there is a need to explore new methods of disinfection to help maintain effective bioburden control, especially within the healthcare environment. The transformation of low mineral salt solutions into an activated metastable state, by electrochemical unipolar action, produces a solution containing a variety of oxidants, including hypochlorous acid, free chlorine and free radicals, known to possess antimicrobial properties. Electrochemically activated solutions (ECAS) have been shown to have broad-spectrum antimicrobial activity, and have the potential to be widely adopted within the healthcare environment due to low-cost raw material requirements and ease of production (either remotely or in situ). Numerous studies have found ECAS to be highly efficacious, as both a novel environmental decontaminant and a topical treatment agent (with low accompanying toxicity), but they are still not in widespread use, particularly within the healthcare environment. This review provides an overview of the scientific evidence for the mode of action, antimicrobial spectrum and potential healthcare-related applications of ECAS, providing an insight into these novel yet seldom utilised biocides. PMID:21809085

  13. Protocols to test the activity of antimicrobial peptides against the honey bee pathogen Paenibacillus larvae.

    PubMed

    Khilnani, Jasmin C; Wing, Helen J

    2015-10-01

    Paenibacillus larvae is the causal agent of the honey bee disease American Foulbrood. Two enhanced protocols that allow the activity of antimicrobial peptides to be tested against P. larvae are presented. Proof of principle experiments demonstrate that the honey bee antimicrobial peptide defensin 1 is active in both assays. PMID:26210039

  14. In vitro antimicrobial activity of extracts and isolated constituents of Rubus ulmifolius.

    PubMed

    Panizzi, L; Caponi, C; Catalano, S; Cioni, P L; Morelli, I

    2002-02-01

    The antimicrobial activity on bacteria and fungi of increasing polarity extracts of Rubus ulmifolius and that of some isolated constituents, quercetin-3-O-beta-D-glucuronide; kaempferol-3-O-beta-D-glucuronide, gallic acid, ferulic acid and tiliroside was evaluated. The phenolic and tannins fractions showed an high antimicrobial activity.

  15. In vitro evaluation of the antimicrobial activities of selected lozenges.

    PubMed

    Richards, R M; Xing, D K

    1993-12-01

    The in vitro antimicrobial activities of 10 lozenges (Merothol, Merocets, Merocaine, Strepsils (two varieties), Dequacaine, Dequacets, Zensyls, Tyrozets, and Labosept) were determined by use of a microtiter counting method with Streptococcus pyogenes, Staphylococcus aureus, and Candida albicans as the test organisms. Merothol, Merocets, Merocaine, and both Strepsils formulations all reduced the counts of both S. aureus and S. pyogenes suspensions by approximately 6 log cycles within 5 and 20 min, respectively. Merothol, Merocets, and Merocaine also caused a reduction in the counts of the C. albicans suspension approximately 5 log cycles within 40 min, but no other lozenge formulation showed rapid and marked activity against C. albicans. Dequacaine and Dequacets showed marked but much slower activities against this yeast. Zensyls caused an approximately 6-log-cycle reduction in bacterial counts within 40 min, and Dequacaine, Dequacets, and Tyrozets showed marked but slower antibacterial activities. This work confirmed by a statistically sound in vitro method the in vivo antibacterial activities reported for Merothol, Merocets, and Merocaine, demonstrated equivalent antibacterial activities for Strepsils, and indicated that Merothol, Merocets, and Merocaine also showed marked activities against C. albicans. PMID:8308699

  16. Comparative evaluation of the antimicrobial activity of 19 essential oils.

    PubMed

    Chaftar, Naouel; Girardot, Marion; Labanowski, Jérôme; Ghrairi, Tawfik; Hani, Khaled; Frère, Jacques; Imbert, Christine

    2016-01-01

    In our research on natural compounds efficient against human pathogen or opportunist microorganisms contracted by food or water, the antimicrobial activity of 19 essential oils (EOs) was investigated against 11 bacterial species (6 Gram positive, 5 Gram negative) and 7 fungal species (2 dermatophytes, 1 mould, 4 yeasts) using microdilution assays. Five essential oils were obtained from Tunisian plants (EOtun): Artemisia herba-alba Asso, Juniperus phoenicea L., Rosmarinus officinalis L., Ruta graveolens L. and Thymus vulgaris L., whereas others were commercial products (EOcom). Overall, T. vulgaris EOtun was the most efficient EO against both bacteria (Gram negative: MIC ≤ 0.34 mg/mL; Gram positive: MIC ≤ 0.70 mg/mL) and fungi (yeasts: MIC ≤ 0.55 mg/mL; mould: MIC = 0.30 mg/mL; dermatophytes: MIC ≤ 0.07 mg/mL). Two EOcom displayed both acceptable antibacterial and antifungal potency, although weaker than T. vulgaris EOtun activity: Origanum vulgare EOcom (bacteria: MIC ≤ 1.13 mg/mL, fungi: MIC ≤ 1.80 mg/mL), and Cymbopogon martinii var. motia EOcom (bacteria: MIC ≤ 1.00 mg/mL, fungi: MIC ≤ 0.80 mg/mL). Bacillus megaterium, Legionella pneumophila, Listeria monocytogenes and Trichophyton spp. were the most sensitive species to both EOcom and EOtun. This study demonstrated the noteworthy antimicrobial activity of two commercial EOs and points out the remarkable efficiency of T. vulgaris EOtun on all tested bacterial and fungal species, certainly associated with its high content in carvacrol (85 %). These three oils could thus represent promising candidates for applications in water and food protections. PMID:26566647

  17. Silver activation on thin films of Ag-ZrCN coatings for antimicrobial activity.

    PubMed

    Ferreri, I; Calderon V, S; Escobar Galindo, R; Palacio, C; Henriques, M; Piedade, A P; Carvalho, S

    2015-10-01

    Nowadays, with the increase of elderly population and related health problems, knee and hip joint prosthesis are being widely used worldwide. However, failure of these invasive devices occurs in a high percentage thus demanding the revision of the chirurgical procedure. Within the reasons of failure, microbial infections, either hospital or subsequently-acquired, contribute in high number to the statistics. Staphylococcus epidermidis (S. epidermidis) has emerged as one of the major nosocomial pathogens associated with these infections. Silver has a historic performance in medicine due to its potent antimicrobial activity, with a broad-spectrum on the activity of different types of microorganisms. Consequently, the main goal of this work was to produce Ag-ZrCN coatings with antimicrobial activity, for the surface modification of hip prostheses. Thin films of ZrCN with several silver concentrations were deposited onto stainless steel 316 L, by DC reactive magnetron sputtering, using two targets, Zr and Zr with silver pellets (Zr+Ag target), in an atmosphere containing Ar, C2H2 and N2. The antimicrobial activity of the modified surfaces was tested against S. epidermidis and the influence of an activation step of silver was assessed by testing samples after immersion in a 5% (w/v) NaClO solution for 5 min. The activation procedure revealed to be essential for the antimicrobial activity, as observed by the presence of an inhibition halo on the surface with 11 at.% of Ag. The morphology analysis of the surface before and after the activation procedure revealed differences in silver distribution indicating segregation/diffusion of the metallic element to the film's surface. Thus, the results indicate that the silver activation step is responsible for an antimicrobial effect of the coatings, due to silver oxidation and silver ion release.

  18. Silver activation on thin films of Ag-ZrCN coatings for antimicrobial activity.

    PubMed

    Ferreri, I; Calderon V, S; Escobar Galindo, R; Palacio, C; Henriques, M; Piedade, A P; Carvalho, S

    2015-10-01

    Nowadays, with the increase of elderly population and related health problems, knee and hip joint prosthesis are being widely used worldwide. However, failure of these invasive devices occurs in a high percentage thus demanding the revision of the chirurgical procedure. Within the reasons of failure, microbial infections, either hospital or subsequently-acquired, contribute in high number to the statistics. Staphylococcus epidermidis (S. epidermidis) has emerged as one of the major nosocomial pathogens associated with these infections. Silver has a historic performance in medicine due to its potent antimicrobial activity, with a broad-spectrum on the activity of different types of microorganisms. Consequently, the main goal of this work was to produce Ag-ZrCN coatings with antimicrobial activity, for the surface modification of hip prostheses. Thin films of ZrCN with several silver concentrations were deposited onto stainless steel 316 L, by DC reactive magnetron sputtering, using two targets, Zr and Zr with silver pellets (Zr+Ag target), in an atmosphere containing Ar, C2H2 and N2. The antimicrobial activity of the modified surfaces was tested against S. epidermidis and the influence of an activation step of silver was assessed by testing samples after immersion in a 5% (w/v) NaClO solution for 5 min. The activation procedure revealed to be essential for the antimicrobial activity, as observed by the presence of an inhibition halo on the surface with 11 at.% of Ag. The morphology analysis of the surface before and after the activation procedure revealed differences in silver distribution indicating segregation/diffusion of the metallic element to the film's surface. Thus, the results indicate that the silver activation step is responsible for an antimicrobial effect of the coatings, due to silver oxidation and silver ion release. PMID:26117788

  19. Olive Mill Waste Extracts: Polyphenols Content, Antioxidant, and Antimicrobial Activities

    PubMed Central

    Leouifoudi, Inass; Harnafi, Hicham; Zyad, Abdelmajid

    2015-01-01

    Natural polyphenols extracts have been usually associated with great bioactive properties. In this work, we investigated in vitro antioxidant and antimicrobial potential of the phenolic olive mill wastewater extracts (OWWE) and the olive cake extracts (OCE). Using the Folin Ciocalteux method, OWWE contained higher total phenol content compared to OCE (8.90 ± 0.728 g/L versus 0.95 ± 0.017 mg/g). The phenolic compounds identification was carried out with a performance liquid chromatograph coupled to tandem mass spectrometry equipment (HPLC-ESI-MS). With this method, a list of polyphenols from OWWE and OCE was obtained. The antioxidant activity was measured in aqueous (DPPH) and emulsion (BCBT) systems. Using the DPPH assay, the results show that OWWE was more active than OCE and interestingly the extracts originating from mountainous areas were more active than those produced from plain areas (EC50 = 12.1 ± 5.6 μg/mL; EC50 = 157.7 ± 34.9 μg/mL, resp.). However, when the antioxidant activity was reversed in the BCBT, OCE produced from plain area was more potent than mountainous OCE. Testing by the gel diffusion assay, all the tested extracts have showed significant spectrum antibacterial activity against Staphylococcus aureus, whereas the biophenols extracts showed more limited activity against Escherichia coli and Streptococcus faecalis. PMID:26693221

  20. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues.

    PubMed

    Surendra Kumar, R; Arif, Ibrahim A; Ahamed, Anis; Idhayadhulla, Akbar

    2016-09-01

    A new sequence of pyrazole derivatives (1-6) was synthesized from condensation technique under utilizing ultrasound irradiation. Synthesized compounds were characterized from IR, (1)H NMR, (13)C NMR, Mass and elemental analysis. Synthesized compounds (1-6) were screened for antimicrobial activity. Among the compounds 3 (MIC: 0.25 μg/mL) was exceedingly antibacterially active against gram negative bacteria of Escherichia coli and compound 4 (MIC: 0.25 μg/mL) was highly active against gram positive bacteria of Streptococcus epidermidis compared with standard Ciprofloxacin. Compound 2 (MIC: 1 μg/mL) was highly antifungal active against Aspergillus niger proportionate to Clotrimazole. Synthesized compounds (1-6) were screened for anti-inflammatory activity and the compound 2-((5-hydroxy-3-methyl-1H-pyrazol-4-yl)(4-nitrophenyl)methyl)hydrazinecarboxamide (4) was better activity against anti-inflammatory when compared with standard drugs (Diclofenac sodium). Compounds (2, 3 and 4) are the most important molecules and hence the need to develop new drugs of antibacterial, antifungal and anti-inflammatory agents. PMID:27579011

  1. Antimicrobial activity of CS-940, a new trifluorinated quinolone.

    PubMed Central

    Biedenbach, D J; Sutton, L D; Jones, R N

    1995-01-01

    The antimicrobial activity of CS-940, a new trifluorinated quinolone drug, was tested against 761 clinical isolates. CS-940 activity against members of the family Enterobacteriaceae was most similar to that of ciprofloxacin and ofloxacin, with a large range of MICs inhibiting 90% of isolates tested (MIC90S) of 0.015 to 16 micrograms/ml (median MIC90, 0.06 micrograms/ml). CS-940 had greater activity than ciprofloxacin or ofloxacin when they were tested against Acinetobacter spp. (MIC90S, 0.03 micrograms/ml) and Stenotrophomonas (Xanthomonas) maltophilia (MIC90S, 2 micrograms/ml). CS-940 demonstrated a high degree of potency against Haemophilus influenzae, Moraxella catarrhalis, and Neisseria spp. (MIC90S, < or = 0.06 micrograms/ml). CS-940 was two- to eightfold more active than ciprofloxacin or ofloxacin against oxacillin-susceptible Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and coagulase-negative Staphylococcus spp. CS-940 was also very active against Streptococcus spp. and enterococci, for which MIC90S were < or = 2 micrograms/ml; for Enterococcus faecium, however, the MIC90 was 4 micrograms/ml. CS-940 was generally less active than a comparison investigational fluoroquinolone, clinafloxacin. This compound appears promising by in vitro test analysis and warrants further in vivo trials. PMID:8619590

  2. Structure and antimicrobial activity of phloroglucinol derivatives from Achyrocline satureioides.

    PubMed

    Casero, Carina; Machín, Félix; Méndez-Álvarez, Sebastián; Demo, Mirta; Ravelo, Ángel G; Pérez-Hernández, Nury; Joseph-Nathan, Pedro; Estévez-Braun, Ana

    2015-01-23

    The new prenylated phloroglucinol α-pyrones 1-3 and the new dibenzofuran 4, together with the known 23-methyl-6-O-demethylauricepyrone (5), achyrofuran (6), and 5,7-dihydroxy-3,8-dimethoxyflavone (gnaphaliin A), were isolated from the aerial parts of Achyrocline satureioides. Their structures were determined by 1D and 2D NMR spectroscopic studies, while the absolute configuration of the sole stereogenic center of 1 was established by vibrational circular dichroism measurements in comparison to density functional theory calculated data. The same (S) absolute configuration of the α-methylbutyryl chain attached to the phloroglucinol nucleus was assumed for compounds 2-6 based on biogenetic considerations. Derivatives 7-16 were prepared from 1 and 5, and the antimicrobial activities of the isolated metabolites and some of the semisynthetic derivatives against a selected panel of Gram-positive and Gram-negative bacteria, as well as a set of yeast molds, were determined.

  3. Examination of antimicrobial activity of selected non-antibiotic drugs.

    PubMed

    Kruszewska, Hanna; Zareba, Tomasz; Tyski, Stefan

    2004-12-01

    A variety of pharmaceutical preparations, which are applied in the management of non-infectious diseases, have shown in vitro some antimicrobial activity. These drugs are called "non-antibiotics". The aim of this study was to detect and characterize the antimicrobial activity of non-antibiotic drugs, selected from the preparations analysed during state control performed in the National Institute of Public Health in Poland. Over 180 of pharmaceutical preparations were randomly chosen from different groups of drugs. A surveillance study was performed on standard ATCC microbial strains used for drug control: S. aureus, E. coli, P. aeruginosa and C. albicans. It was shown that the drugs listed below inhibited growth of at least one of the examined strains: Actonel 5 mg tabl. (risedronate), Aldan 10 mg tabl. (amlodipine), Aleras 10 mg tabl. (cetirisine), Aspicam 15 mg tabl. (meloxicam), Baikadent 6 mg/g gel (flavons of Scutellariae), Debretin 100 mg tabl. (trimebutine), Ferro-Duo 100 mg tabl. (ferrum), Gastrovent 145 mg caps. (bismuth citrate), Ibum 200 mg caps., Upfen 200 mg tabl. (ibuprofen), Lastet 100 mg caps. (etoposide), Legalon 70 mg tabl. (sylimarin), Madopar 125 tabl. (benserazide, levodopa), Moxenil 100 mg tabl. (nimesulide), Neurotin 800 mg tabl. (gabapentin), Propranolol 40 mg tabl. (propranolol), Rexetin 20 mg tabl. (paroxetine), Salipax 20 mg caps. (fluoxetine), Selofen 10 mg caps. (zaleplon) Stenorol 0.6% powder (halofuginone), Stimuloton 50 mg tabl. (sertraline), Superoptim 0.3 mg tabl. (hipericine), Uversan 50 mg tabl. (arbutine from Arctostaphylos uva ursi). S. aureus strain was susceptible to the most of the drugs listed above. The lowest inhibitory concentration was found for sertraline and hipericine (0.16 and 0.075 mg/mL, respectively).

  4. Examination of antimicrobial activity of selected non-antibiotic drugs.

    PubMed

    Kruszewska, Hanna; Zareba, Tomasz; Tyski, Stefan

    2004-12-01

    A variety of pharmaceutical preparations, which are applied in the management of non-infectious diseases, have shown in vitro some antimicrobial activity. These drugs are called "non-antibiotics". The aim of this study was to detect and characterize the antimicrobial activity of non-antibiotic drugs, selected from the preparations analysed during state control performed in the National Institute of Public Health in Poland. Over 180 of pharmaceutical preparations were randomly chosen from different groups of drugs. A surveillance study was performed on standard ATCC microbial strains used for drug control: S. aureus, E. coli, P. aeruginosa and C. albicans. It was shown that the drugs listed below inhibited growth of at least one of the examined strains: Actonel 5 mg tabl. (risedronate), Aldan 10 mg tabl. (amlodipine), Aleras 10 mg tabl. (cetirisine), Aspicam 15 mg tabl. (meloxicam), Baikadent 6 mg/g gel (flavons of Scutellariae), Debretin 100 mg tabl. (trimebutine), Ferro-Duo 100 mg tabl. (ferrum), Gastrovent 145 mg caps. (bismuth citrate), Ibum 200 mg caps., Upfen 200 mg tabl. (ibuprofen), Lastet 100 mg caps. (etoposide), Legalon 70 mg tabl. (sylimarin), Madopar 125 tabl. (benserazide, levodopa), Moxenil 100 mg tabl. (nimesulide), Neurotin 800 mg tabl. (gabapentin), Propranolol 40 mg tabl. (propranolol), Rexetin 20 mg tabl. (paroxetine), Salipax 20 mg caps. (fluoxetine), Selofen 10 mg caps. (zaleplon) Stenorol 0.6% powder (halofuginone), Stimuloton 50 mg tabl. (sertraline), Superoptim 0.3 mg tabl. (hipericine), Uversan 50 mg tabl. (arbutine from Arctostaphylos uva ursi). S. aureus strain was susceptible to the most of the drugs listed above. The lowest inhibitory concentration was found for sertraline and hipericine (0.16 and 0.075 mg/mL, respectively). PMID:15909927

  5. Guarea kunthiana Bark Extract Enhances the Antimicrobial Activities of Human and Bovine Neutrophils.

    PubMed

    Jerjomiceva, Natalja; Seri, Hisham; Yaseen, Ragheda; de Buhr, Nicole; Setzer, William N; Naim, Hassan Y; von Köckritz-Blickwede, Maren

    2016-06-01

    Guarea kunthiana is used in folk remedies for the treatment of several diseases including microbial infections. The mechanism behind this phenomenon still needs to be elucidated. Here, we investigated the effect of G. kunthiana bark extract on antimicrobial functions of human and bovine neutrophils as the first line of defense against infections. For this aim, neutrophils were isolated from either human or bovine blood and treated with G. kunthiana bark extract. The antimicrobial activity of the neutrophils against Staphylococcus (S.) aureus and Escherichia (E.) coli was tested in a bacterial survival assay and a fluorescence-based phagocytosis assay. Furthermore, the formation of neutrophil extracellular traps (NETs) was visualized by immunofluorescence microscopy. We show that neutrophils treated with G. kunthiana extract distinctly increased phagocytosis of S. aureus or E. coli. Interestingly, we demonstrate that G. kunthiana bark extract induces the formation of NETs in both cell types. This effect was abolished when treating the cells with diphenyleniodonium chloride (DPI) pointing to a direct implication of the NADPH oxidase-dependent formation of reactive oxygen species in this process. In summary, our data strongly suggest that G. kunthiana bark extract boosts the antimicrobial activities of neutrophils as the first line of defense against invading pathogens. PMID:27534112

  6. Antimicrobial activities of silver used as a polymerization catalyst for a wound-healing matrix

    PubMed Central

    Babu, Ranjith; Zhang, Jianying; Beckman, Eric J.; Virji, Mohammed; Pasculle, William A.; Wells, Alan

    2007-01-01

    Wound healing is a complex and orchestrated process that re-establishes the barrier and other functions of the skin. While wound healing proceeds apace in healthy individual, bacterial overgrowth and infection disrupts this process with significant morbidity and mortality. As such, any artificial matrix to promote wound healing must also control infecting microbes. We had earlier developed a two-part space-conforming gel backbone based on polyethyleneglycol (PEG) or lactose, which used ionic silver as the catalyst for gelation. As silver is widely used as an in vitro antimicrobial, use of silver as a catalyst for gelation provided the opportunity to assess its function as an anti-microbial agent in the gels. We found that these gels show bacteriostatic and bactericidal activity for a range of Gram-negative and Gram-positive organisms, including aerobic as well as anaerobic bacteria. This activity lasted for days, as silver leached out of the formed gels over a day in the manner of second-order decay. Importantly the gels did not limit either cell growth or viability, though cell migration was affected. Adding collagen I fragments to the gels corrected this effect on cell migration. We also found that the PEG gel did not interfere with hemostasis. These observations provide the basis for use of the gel backbones for incorporation of anesthetic agents and factors that promote wound repair. In conclusion, silver ions can serve dual functions of catalyzing gelation and providing anti-microbial properties to a biocompatible polymer. PMID:16635526

  7. Assessment of antimicrobial activity of nanosized Ag doped TiO(2) colloids.

    PubMed

    Yaşa, Ihsan; Lkhagvajav, Natsag; Koizhaiganova, Meruyert; Celik, Erdal; Sarı, Ozcan

    2012-07-01

    In the present research, the antimicrobial effects of nanosized silver (Ag) doped TiO(2) colloidal solutions prepared using a sol-gel technique were investigated. In order to determine the solution characteristics, the turbidity, viscosity and pH of the colloidal solutions were measured. Differential thermal analysis-thermogravimetry equipment was used to determine the chemical structures and reaction types of the films formed from these solutions. The morphology of Ag doped TiO(2) nanoparticles was evaluated by atomic force microscopy. The disc diffusion method was employed to explore antimicrobial activity, and the Broth Microdilution method was used to obtain MIC values of nanosized Ag doped TiO(2) colloidal solutions against the test microorganisms Escherichia coli, Staphylococcus aureus, Candida albicans, Bacillus subtilis, and Salmonella typhimurium. It was found that the silver doped TiO(2) nanoparticles inhibited the growth and multiplication of the test microorganisms, including the fungus C. albicans. Antimicrobial activity was observed against all tested microorganisms at a very low concentration of 1.125-2.81 μg/ml of nano silver in 1-25 % Ag-TiO(2) solutions.

  8. Design of host defence peptides for antimicrobial and immunity enhancing activities.

    PubMed

    McPhee, Joseph B; Scott, Monisha G; Hancock, Robert E W

    2005-05-01

    Host defense peptides are a vital component of the innate immune systems of humans, other mammals, amphibians, and arthropods. The related cationic antimicrobial peptides are also produced by many species of bacteria and function as part of the antimicrobial arsenal to help the producing organism reduce competition for resources from sensitive species. The antimicrobial activities of many of these peptides have been extensively characterized and the structural requirements for these activities are also becoming increasingly clear. In addition to their known antimicrobial role, many host defense peptides are also involved in a plethora of immune functions in the host. In this review, we examine the role of structure in determining antimicrobial activity of certain prototypical cationic peptides and ways that bacteria have evolved to usurp these activities. We also review recent literature on what structural components are related to these immunomodulatory effects. It must be stressed however that these studies, and the area of peptide research, are still in their infancy.

  9. Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus *

    PubMed Central

    Zhang, Hui; Zhang, Lu; Peng, Li-juan; Dong, Xiao-wu; Wu, Di; Wu, Vivian Chi-Hua; Feng, Feng-qin

    2012-01-01

    Fatty acids and derivatives (FADs) are resources for natural antimicrobials. In order to screen for additional potent antimicrobial agents, the antimicrobial activities of FADs against Staphylococcus aureus were examined using a microplate assay. Monoglycerides of fatty acids were the most potent class of fatty acids, among which monotridecanoin possessed the most potent antimicrobial activity. The conventional quantitative structure-activity relationship (QSAR) and comparative molecular field analysis (CoMFA) were performed to establish two statistically reliable models (conventional QSAR: R 2=0.942, Q 2 LOO=0.910; CoMFA: R 2=0.979, Q 2=0.588, respectively). Improved forecasting can be achieved by the combination of these two models that provide a good insight into the structure-activity relationships of the FADs and that may be useful to design new FADs as antimicrobial agents. PMID:22302421

  10. The Antimicrobial Activity of Gramicidin A Is Associated with Hydroxyl Radical Formation

    PubMed Central

    Liou, Je-Wen; Hung, Yu-Jiun; Yang, Chin-Hao; Chen, Yi-Cheng

    2015-01-01

    Gramicidin A is an antimicrobial peptide that destroys gram-positive bacteria. The bactericidal mechanism of antimicrobial peptides has been linked to membrane permeation and metabolism disruption as well as interruption of DNA and protein functions. However, the exact bacterial killing mechanism of gramicidin A is not clearly understood. In the present study, we examined the antimicrobial activity of gramicidin A on Staphylococcus aureus using biochemical and biophysical methods, including hydroxyl radical and NAD+/NADH cycling assays, atomic force microscopy, and Fourier transform infrared spectroscopy. Gramicidin A induced membrane permeabilization and changed the composition of the membrane. The morphology of Staphylococcus aureus during gramicidin A destruction was divided into four stages: pore formation, water permeability, bacterial flattening, and lysis. Changes in membrane composition included the destruction of membrane lipids, proteins, and carbohydrates. Most interestingly, we demonstrated that gramicidin A not only caused membrane permeabilization but also induced the formation of hydroxyl radicals, which are a possible end product of the transient depletion of NADH from the tricarboxylic acid cycle. The latter may be the main cause of complete Staphylococcus aureus killing. This new finding may provide insight into the underlying bactericidal mechanism of gA. PMID:25622083

  11. The antimicrobial activity of gramicidin A is associated with hydroxyl radical formation.

    PubMed

    Liou, Je-Wen; Hung, Yu-Jiun; Yang, Chin-Hao; Chen, Yi-Cheng

    2015-01-01

    Gramicidin A is an antimicrobial peptide that destroys gram-positive bacteria. The bactericidal mechanism of antimicrobial peptides has been linked to membrane permeation and metabolism disruption as well as interruption of DNA and protein functions. However, the exact bacterial killing mechanism of gramicidin A is not clearly understood. In the present study, we examined the antimicrobial activity of gramicidin A on Staphylococcus aureus using biochemical and biophysical methods, including hydroxyl radical and NAD+/NADH cycling assays, atomic force microscopy, and Fourier transform infrared spectroscopy. Gramicidin A induced membrane permeabilization and changed the composition of the membrane. The morphology of Staphylococcus aureus during gramicidin A destruction was divided into four stages: pore formation, water permeability, bacterial flattening, and lysis. Changes in membrane composition included the destruction of membrane lipids, proteins, and carbohydrates. Most interestingly, we demonstrated that gramicidin A not only caused membrane permeabilization but also induced the formation of hydroxyl radicals, which are a possible end product of the transient depletion of NADH from the tricarboxylic acid cycle. The latter may be the main cause of complete Staphylococcus aureus killing. This new finding may provide insight into the underlying bactericidal mechanism of gA.

  12. Foeniculum vulgare essential oils: chemical composition, antioxidant and antimicrobial activities.

    PubMed

    Miguel, Maria Graça; Cruz, Cláudia; Faleiro, Leonor; Simões, Mariana T F; Figueiredo, Ana Cristina; Barroso, José G; Pedro, Luis G

    2010-02-01

    The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, 1 h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), alpha-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity > 50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.

  13. Preclinical screening of phyllanthus amarus ethanolic extract for its analgesic and antimicrobial activity

    PubMed Central

    Bhat, S. Sham; Hegde, K. Sundeep; Chandrashekhar, Sharath; Rao, S. N.; Manikkoth, Shyamjith

    2015-01-01

    Background: To discover a new agent which possesses dual property of analgesic and antimicrobial activity, thereby reducing the burden of polypharmacy. Phyllanthus amarus was screened for its analgesic and antimicrobial activities. Objectives: The objective was to evaluate the analgesic and antimicrobial activity, of P. amarus ethanolic extract (PAEE). Materials and Methods: The ethanolic extract of P. amarus was prepared using Soxhlet apparatus. An in vivo study using Swiss albino mice was done to screen the central and peripheral analgesic activity of P. amarus extract. The extract was administered at a dose of 100 mg/kg body weight orally. The peripheral analgesic activity was assessed using acetic acid induced writhing test. The central analgesic activity was assessed using Eddy's hot plate apparatus. An in vitro study was carried out to study the antimicrobial activity of the above extract using selected species of Streptococcus mutans, and S. salivarius. The antimicrobial activities were determined using the agar well method. Results: The ethanolic extract of P. amarus showed significant (P < 0.05) peripheral and central analgesic activity. In vitro antimicrobial screening indicated that the ethanolic extract had shown a zone of inhibition against S. mutans and S. salivarius in the agar wells. Conclusion: This study showed that PAEE exhibited significant analgesic and antimicrobial activities. PMID:26692753

  14. Antimicrobial activity of Nerolidol and its derivatives against airborne microbes and further biological activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nerolidol and its derivatives, namely cis-nerolidol, O-methyl-nerolidol, O-ethyl-nerolidol, (-)-alpha-bisabolol, trans,trans-farnesol and its main natural source Cabreuva essential oil, were tested for their antimicrobial activity against airborne microbes and antifungal properties against plant pat...

  15. Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: determination of optimal extraction parameters.

    PubMed

    Santoyo, S; Cavero, S; Jaime, L; Ibañez, E; Señoráns, F J; Reglero, G

    2006-02-01

    Oregano leaves were extracted using a pilot-scale supercritical fluid extraction plant under a wide range of extraction conditions, with the goal of determining the extraction and fractionation conditions to obtain extracts with optimal antimicrobial activity. In this investigation, the essential oil-rich fractions were selectively precipitated in the second separator, and their chemical composition and antimicrobial activity were investigated. Gas chromatography-mass spectrometry analysis of the various fractions resulted in the identification of 27 compounds of the essential oil. The main components of these fractions were carvacrol, trans-sabinene hydrate, cis-piperitol, borneol, terpinen-4-ol, and linalool. Antimicrobial activity was investigated by the disk diffusion and broth dilution methods against six different microbial species, including two gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), two gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), a yeast (Candida albicans), and a fungus (Aspergillus niger). All of the supercritical fluid extraction fractions obtained showed antimicrobial activity against all of the microorganisms tested, although the most active fraction was the one obtained in experiment 5 (fraction was obtained with 7% ethanol at 150 bar and 40 degrees C). C. albicans was the most sensitive microorganism to the oregano extracts, whereas the least susceptible was A. niger. Carvacrol, sabinene hydrate, borneol, and linalool standards also showed antimicrobial activity against all of the microorganisms tested, with carvacrol being the most effective. Consequently, it was confirmed that essential oil from experiment 5, with the best antimicrobial activity, also presented the highest quantity of carvacrol. PMID:16496578

  16. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.

    PubMed

    Malanovic, Nermina; Lohner, Karl

    2016-05-01

    A number of cationic antimicrobial peptides, effectors of innate immunity, are supposed to act at the cytoplasmic membrane leading to permeabilization and eventually membrane disruption. Thereby, interaction of antimicrobial peptides with anionic membrane phospholipids is considered to be a key factor in killing of bacteria. Recently, evidence was provided that killing takes place only when bacterial cell membranes are completely saturated with peptides. This adds to an ongoing debate, which role cell wall components such as peptidoglycan, lipoteichoic acid and lipopolysaccharide may play in the killing event, i.e. if they rather entrap or facilitate antimicrobial peptides access to the cytoplasmic membrane. Therefore, in this review we focused on the impact of Gram-positive cell wall components for the mode of action and activity of antimicrobial peptides as well as in innate immunity. This led us to conclude that interaction of antimicrobial peptides with peptidoglycan may not contribute to a reduction of their antimicrobial activity, whereas interaction with anionic lipoteichoic acids may reduce the local concentration of antimicrobial peptides on the cytoplasmic membrane necessary for sufficient destabilization of the membranes and bacterial killing. Further affinity studies of antimicrobial peptides toward the different cell wall as well as membrane components will be needed to address this problem on a quantitative level. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.

  17. General principles of antimicrobial therapy.

    PubMed

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community.

  18. General principles of antimicrobial therapy.

    PubMed

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community. PMID:21282489

  19. Antimicrobial activity of essential oils and other plant extracts.

    PubMed

    Hammer, K A; Carson, C F; Riley, T V

    1999-06-01

    The antimicrobial activity of plant oils and extracts has been recognized for many years. However, few investigations have compared large numbers of oils and extracts using methods that are directly comparable. In the present study, 52 plant oils and extracts were investigated for activity against Acinetobacter baumanii, Aeromonas veronii biogroup sobria, Candida albicans, Enterococcus faecalis, Escherichia col, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serotype typhimurium, Serratia marcescens and Staphylococcus aureus, using an agar dilution method. Lemongrass, oregano and bay inhibited all organisms at concentrations of < or = 2.0% (v/v). Six oils did not inhibit any organisms at the highest concentration, which was 2.0% (v/v) oil for apricot kernel, evening primrose, macadamia, pumpkin, sage and sweet almond. Variable activity was recorded for the remaining oils. Twenty of the plant oils and extracts were investigated, using a broth microdilution method, for activity against C. albicans, Staph. aureus and E. coli. The lowest minimum inhibitory concentrations were 0.03% (v/v) thyme oil against C. albicans and E. coli and 0.008% (v/v) vetiver oil against Staph. aureus. These results support the notion that plant essential oils and extracts may have a role as pharmaceuticals and preservatives. PMID:10438227

  20. Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite.

    PubMed

    Hrenovic, Jasna; Milenkovic, Jelena; Daneu, Nina; Kepcija, Renata Matonickin; Rajic, Nevenka

    2012-08-01

    The antimicrobial activity of Cu(2)O, ZnO and NiO nanoparticles supported onto natural clinoptilolite was investigated in the secondary effluent under dark conditions. After 24h of contact the Cu(2)O and ZnO nanoparticles reduced the numbers of viable bacterial cells of Escherichia coli and Staphylococcus aureus in pure culture for four to six orders of magnitude and showed consistent 100% of antibacterial activity against native E. coli after 1h of contact during 48 exposures. The antibacterial activity of NiO nanoparticles was less efficient. The Cu(2)O and NiO nanoparticles showed 100% of antiprotozoan activity against Paramecium caudatum and Euplotes affinis after 1h of contact, while ZnO nanoparticles were less efficient. The morphology and crystallinity of the nanoparticles were not affected by microorganisms. The metal oxide nanoparticles could find a novel application in the disinfection of secondary effluent and removal of pathogenic microorganisms in the tertiary stage of wastewater treatment.

  1. Isolation, identification and antimicrobial activity of propolis-associated fungi.

    PubMed

    de Souza, Giovanni Gontijo; Pfenning, Ludwig Heinrich; de Moura, Fabiana; Salgado, Mírian; Takahashi, Jacqueline Aparecida

    2013-01-01

    Propolis is a natural product widely known for its medicinal properties. In this work, fungi present on propolis samples were isolated, identified and tested for the production of antimicrobial metabolites. Twenty-two fungal isolates were obtained, some of which were identified as Alternaria alternata, Aspergillus flavus, Bipolaris hawaiiensis, Fusarium merismoides, Lasiodiplodia theobromae, Penicillium citrinum, Penicillium crustosum, Penicillium janthinellum, Penicillium purpurogenum, Pestalotiopsis palustris, Tetracoccosporium paxianum and Trichoderma koningii. These fungi were grown in liquid media to obtain crude extracts that were evaluated for their antibiotic activity against pathogenic bacteria, yeast and Cladosporium cladosporioides and A. flavus. The most active extract was obtained from L. theobromae (minimum inhibitory concentration = 64 μg/mL against Listeria monocitogenes). Some extracts showed to be more active than the positive control in the inhibition of Staphylococcus aureus and L. monocitogenes. Therefore, propolis is a promising source of fungi, which produces active agents against relevant food poisoning bacteria and crop-associated fungi. PMID:23439233

  2. Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens

    PubMed Central

    Kwakman, P. H. S.; de Boer, L.; Ruyter-Spira, C. P.; Creemers-Molenaar, T.; Helsper, J. P. F. G.; Vandenbroucke-Grauls, C. M. J. E.; te Velde, A. A.

    2010-01-01

    Honey has potent activity against both antibiotic-sensitive and -resistant bacteria, and is an interesting agent for topical antimicrobial application to wounds. As honey is diluted by wound exudate, rapid bactericidal activity up to high dilution is a prerequisite for its successful application. We investigated the kinetics of the killing of antibiotic-resistant bacteria by RS honey, the source for the production of Revamil® medical-grade honey, and we aimed to enhance the rapid bactericidal activity of RS honey by enrichment with its endogenous compounds or the addition of antimicrobial peptides (AMPs). RS honey killed antibiotic-resistant isolates of Pseudomonas aeruginosa, Staphylococcus epidermidis, Enterococcus faecium, and Burkholderia cepacia within 2 h, but lacked such rapid activity against methicillin-resistant S. aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. It was not feasible to enhance the rapid activity of RS honey by enrichment with endogenous compounds, but RS honey enriched with 75 μM of the synthetic peptide Bactericidal Peptide 2 (BP2) showed rapid bactericidal activity against all species tested, including MRSA and ESBL E. coli, at up to 10–20-fold dilution. RS honey enriched with BP2 rapidly killed all bacteria tested and had a broader spectrum of bactericidal activity than either BP2 or honey alone. PMID:20927564

  3. Prediction of Antimicrobial Activity of Synthetic Peptides by a Decision Tree Model

    PubMed Central

    Lira, Felipe; Perez, Pedro S.; Baranauskas, José A.

    2013-01-01

    Antimicrobial resistance is a persistent problem in the public health sphere. However, recent attempts to find effective substitutes to combat infections have been directed at identifying natural antimicrobial peptides in order to circumvent resistance to commercial antibiotics. This study describes the development of synthetic peptides with antimicrobial activity, created in silico by site-directed mutation modeling using wild-type peptides as scaffolds for these mutations. Fragments of antimicrobial peptides were used for modeling with molecular modeling computational tools. To analyze these peptides, a decision tree model, which indicated the action range of peptides on the types of microorganisms on which they can exercise biological activity, was created. The decision tree model was processed using physicochemistry properties from known antimicrobial peptides available at the Antimicrobial Peptide Database (APD). The two most promising peptides were synthesized, and antimicrobial assays showed inhibitory activity against Gram-positive and Gram-negative bacteria. Colossomin C and colossomin D were the most inhibitory peptides at 5 μg/ml against Staphylococcus aureus and Escherichia coli. The methods described in this work and the results obtained are useful for the identification and development of new compounds with antimicrobial activity through the use of computational tools. PMID:23455341

  4. The promotion of antimicrobial activity on silicon substrates using a "click" immobilized short peptide.

    PubMed

    Wang, Lin; Chen, Junjian; Shi, Lin; Shi, Zhifeng; Ren, Li; Wang, Yingjun

    2014-01-28

    We demonstrated, for the first time, that the short antimicrobial peptide Tet213 could be conjugated onto the silicon surface by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The modified surface exhibited excellent antimicrobial activity against S. aureus and E. coli, and low cytotoxicity to rat bone mesenchymal stem cells (rBMSCs).

  5. Antimicrobial activity of mosquito cecropin peptides against Francisella.

    PubMed

    Kaushal, Akanksha; Gupta, Kajal; Shah, Ruhee; van Hoek, Monique L

    2016-10-01

    Francisella tularensis is the cause of the zoonotic disease tularemia. In Sweden and Scandinavia, epidemiological studies have implicated mosquitoes as a vector. Prior research has demonstrated the presence of Francisella DNA in infected mosquitoes but has not shown definitive transmission of tularemia from a mosquito to a mammalian host. We hypothesized that antimicrobial peptides, an important component of the innate immune system of higher organisms, may play a role in mosquito host-defense to Francisella. We established that Francisella sp. are susceptible to two cecropin antimicrobial peptides derived from the mosquito Aedes albopictus as well as Culex pipiens. We also demonstrated induced expression of Aedes albopictus antimicrobial peptide genes by Francisella infection C6/36 mosquito cell line. We demonstrate that mosquito antimicrobial peptides act against Francisella by disrupting the cellular membrane of the bacteria. Thus, it is possible that antimicrobial peptides may play a role in the inability of mosquitoes to establish an effective natural transmission of tularemia. PMID:27235883

  6. Native Thrombocidin-1 and Unfolded Thrombocidin-1 Exert Antimicrobial Activity via Distinct Structural Elements

    PubMed Central

    Kwakman, Paulus H. S.; Krijgsveld, Jeroen; de Boer, Leonie; Nguyen, Leonard T.; Boszhard, Laura; Vreede, Jocelyne; Dekker, Henk L.; Speijer, Dave; Drijfhout, Jan W.; te Velde, Anje A.; Crielaard, Wim; Vogel, Hans J.; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2011-01-01

    Chemokines (chemotactic cytokines) can have direct antimicrobial activity, which is apparently related to the presence of a distinct positively charged patch on the surface. However, chemokines can retain antimicrobial activity upon linearization despite the loss of their positive patch, thus questioning the importance of this patch for activity. Thrombocidin-1 (TC-1) is a microbicidal protein isolated from human blood platelets. TC-1 only differs from the chemokine NAP-2/CXCL7 by a two-amino acid C-terminal deletion, but this truncation is crucial for antimicrobial activity. We assessed the structure-activity relationship for antimicrobial activity of TC-1. Reduction of the charge of the TC-1-positive patch by replacing lysine 17 with alanine reduced the activity against bacteria and almost abolished activity against the yeast Candida albicans. Conversely, augmentation of the positive patch by increasing charge density or size resulted in a 2–3-fold increased activity against Staphylococcus aureus, Escherichia coli, and Bacillus subtilis but did not substantially affect activity against C. albicans. Reduction of TC-1 resulted in loss of the folded conformation, but this disruption of the positive patch did not affect antimicrobial activity. Using overlapping 15-mer synthetic peptides, we demonstrate peptides corresponding to the N-terminal part of TC-1 to have similar antimicrobial activity as intact TC-1. Although we demonstrate that the positive patch is essential for activity of folded TC-1, unfolded TC-1 retained antimicrobial activity despite the absence of a positive patch. This activity is probably exerted by a linear peptide stretch in the N-terminal part of the molecule. We conclude that intact TC-1 and unfolded TC-1 exert antimicrobial activity via distinct structural elements. PMID:22025617

  7. Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity.

    PubMed

    Verma, Vijay C; Gond, Surendra K; Kumar, Anuj; Mishra, Ashish; Kharwar, Ravindra N; Gange, Alan C

    2009-05-01

    Endophytic actinomycetes from Azadirachta indica A. Juss. were screened and evaluated for their anti-microbial activity against an array of pathogenic fungi and bacteria. A total of 55 separate isolates were obtained from 20 plants, and 60% of these showed inhibitory activity against one or more pathogenic fungi and bacteria. Actinomycetes were most commonly recovered from roots (54.5% of all isolates), followed by stems (23.6%), and leaves (21.8%). The dominant genus was Streptomyces (49.09% of all isolates), while Streptosporangium (14.5%), Microbispora (10.9%), Streptoverticillium (5.5%), Sacchromonospora sp. (5.5%), and Nocardia (3.6%) were also recovered. Streptomyces isolates AzR 006, 011, and 031 (all from roots) had acute activity against Pseudomonas fluorescens, while AzR027, 032, and 051 (also all from roots) showed activity against Escherichia coli. Meanwhile, an isolate of Nocardia sp. from leaves (AzL025) showed antagonism against Bacillus subtilis. Overall, 32 of the 55 were found to have broad spectrum significant antimicrobial activity, while about 4% of them showed strong and acute inhibition to pathogenic fungi and bacteria. Isolates of Streptomyces AzR031, 008, and 047, Nocardia sp. AzL025, and Streptosporangium sp. AzR 021 and 048 are of particular interest because they showed significant antagonistic activity against root pathogens, including Pythium and Phytophthora sp. Thus, many of the isolates recovered from A. indica in this study may be used in developing potential bio-control agents against a range of pathogenic fungi and bacteria and in the production of novel natural antimicrobial compounds. These results not only further our understanding of plant-microbe interactions but also indicate that there is an untapped resource of endophytic microorganisms that could be exploited in the biotechnological, medicinal, and agricultural industries.

  8. Antimicrobial and antioxidant activities of three Mentha species essential oils.

    PubMed

    Mimica-Dukić, Neda; Bozin, Biljana; Soković, Marina; Mihajlović, Biserka; Matavulj, Milan

    2003-05-01

    The present study describes the antimicrobial activity and free radical scavenging capacity (RSC) of essential oils from Mentha aquatica L., Mentha longifolia L., and Mentha piperita L. The chemical profile of each essential oil was determined by GC-MS and TLC. All essential oils exhibited very strong antibacterial activity, in particularly against Esherichia coli strains. The most powerful was M. piperita essential oil, especially towards multiresistant strain of Shigella sonei and Micrococcus flavus ATTC 10,240. All tested oils showed significant fungistatic and fungicidal activity [expressed as minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values, respectively], that were considerably higher than those of the commercial fungicide bifonazole. The essential oils of M. piperita and M. longifolia were found to be more active than the essential oil of M. aquatica. Especially low MIC (4 microL/mL) and MFC (4 microL/mL) were found with M. piperita oil against Trichophyton tonsurans and Candida albicans (both 8 microL/mL). The RSC was evaluated by measuring the scavenging activity of the essential oils on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and OH radicals. All examined essential oils were able to reduce DPPH radicals into the neutral DPPH-H form, and this activity was dose-dependent. However, only the M. piperita oil reduced DPPH to 50 % (IC50 = 2.53 microg/mL). The M. piperita essential oil also exhibited the highest OH radical scavenging activity, reducing OH radical generation in the Fenton reaction by 24 % (pure oil). According to GC-MS and TLC (dot-blot techniques), the most powerful scavenging compounds were monoterpene ketones (menthone and isomenthone) in the essential oils of M. longifolia and M. piperita and 1,8-cineole in the oil of M. aquatica. PMID:12802721

  9. Chemical Composition Analysis, Antimicrobial Activity and Cytotoxicity Screening of Moss Extracts (Moss Phytochemistry).

    PubMed

    Klavina, Laura; Springe, Gunta; Nikolajeva, Vizma; Martsinkevich, Illia; Nakurte, Ilva; Dzabijeva, Diana; Steinberga, Iveta

    2015-09-18

    Mosses have been neglected as a study subject for a long time. Recent research shows that mosses contain remarkable and unique substances with high biological activity. The aim of this study, accordingly, was to analyze the composition of mosses and to screen their antimicrobial and anticancer activity. The total concentration of polyphenols and carbohydrates, the amount of dry residue and the radical scavenging activity were determined for a preliminary evaluation of the chemical composition of moss extracts. In order to analyze and identify the substances present in mosses, two types of extrahents (chloroform, ethanol) and the GC/MS and LC-TOF-MS methods were used. The antimicrobial activity was tested on four bacteria strains, and the anticancer activity on six cancer cell lines. The obtained results show the presence of a high number of primary (fatty acids and amino acids), but mainly secondary metabolites in moss extracts-including, sterols, terpenoids, polyphenols and others-and a high activity with respect to the studied test organisms.

  10. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance.

    PubMed

    Weckesser, S; Engel, K; Simon-Haarhaus, B; Wittmer, A; Pelz, K; Schempp, C M

    2007-08-01

    There is cumulative resistance against antibiotics of many bacteria. Therefore, the development of new antiseptics and antimicrobial agents for the treatment of skin infections is of increasing interest. We have screened six plant extracts and isolated compounds for antimicrobial effects on bacteria and yeasts with dermatological relevance. The following plant extracts have been tested: Gentiana lutea, Harpagophytum procumbens, Boswellia serrata (dry extracts), Usnea barbata, Rosmarinus officinalis and Salvia officinalis (supercritical carbon dioxide [CO2] extracts). Additionally, the following characteristic plant substances were tested: usnic acid, carnosol, carnosic acid, ursolic acid, oleanolic acid, harpagoside, boswellic acid and gentiopicroside. The extracts and compounds were tested against 29 aerobic and anaerobic bacteria and yeasts in the agar dilution test. U. barbata-extract and usnic acid were the most active compounds, especially in anaerobic bacteria. Usnea CO2-extract effectively inhibited the growth of several Gram-positive bacteria like Staphylococcus aureus (including methicillin-resistant strains - MRSA), Propionibacterium acnes and Corynebacterium species. Growth of the dimorphic yeast Malassezia furfur was also inhibited by Usnea-extract. Besides the Usnea-extract, Rosmarinus-, Salvia-, Boswellia- and Harpagophytum-extracts proved to be effective against a panel of bacteria. It is concluded that due to their antimicrobial effects some of the plant extracts may be used for the topical treatment of skin disorders like acne vulgaris and seborrhoic eczema. PMID:17291738

  11. Silver Oxynitrate, an Unexplored Silver Compound with Antimicrobial and Antibiofilm Activity

    PubMed Central

    Lemire, Joe A.; Kalan, Lindsay; Bradu, Alexandru

    2015-01-01

    Historically it has been accepted, and recent research has established, that silver (Ag) is an efficacious antimicrobial agent. A dwindling pipeline of new antibiotics, combined with an increase in the number of antibiotic-resistant infections, is bringing Ag to the fore as a therapeutic compound to treat infectious diseases. Currently, many formulations of Ag are being deployed for commercial and medical purposes, with various degrees of effectiveness at killing microbial cells. Here, we evaluated the antimicrobial and antibiofilm capacity of our lead compound, silver oxynitrate [Ag(Ag3O4)2NO3 or Ag7NO11], against other metal compounds with documented antimicrobial activity, including Ag2SO4, AgNO3, silver sulfadiazine (AgSD), AgO, Ag2O, and CuSO4. Our findings reveal that Ag7NO11 eradicates biofilm and planktonic populations of Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, uropathogenic Escherichia coli (UPEC), fluoroquinolone-resistant Pseudomonas aeruginosa (FQRP), and methicillin-resistant Staphylococcus aureus (MRSA) at lower concentrations than those of the other tested metal salts. Altogether, our results demonstrate that Ag7NO11 has an enhanced efficacy for the treatment of biofilm-forming pathogens. PMID:25918137

  12. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance.

    PubMed

    Weckesser, S; Engel, K; Simon-Haarhaus, B; Wittmer, A; Pelz, K; Schempp, C M

    2007-08-01

    There is cumulative resistance against antibiotics of many bacteria. Therefore, the development of new antiseptics and antimicrobial agents for the treatment of skin infections is of increasing interest. We have screened six plant extracts and isolated compounds for antimicrobial effects on bacteria and yeasts with dermatological relevance. The following plant extracts have been tested: Gentiana lutea, Harpagophytum procumbens, Boswellia serrata (dry extracts), Usnea barbata, Rosmarinus officinalis and Salvia officinalis (supercritical carbon dioxide [CO2] extracts). Additionally, the following characteristic plant substances were tested: usnic acid, carnosol, carnosic acid, ursolic acid, oleanolic acid, harpagoside, boswellic acid and gentiopicroside. The extracts and compounds were tested against 29 aerobic and anaerobic bacteria and yeasts in the agar dilution test. U. barbata-extract and usnic acid were the most active compounds, especially in anaerobic bacteria. Usnea CO2-extract effectively inhibited the growth of several Gram-positive bacteria like Staphylococcus aureus (including methicillin-resistant strains - MRSA), Propionibacterium acnes and Corynebacterium species. Growth of the dimorphic yeast Malassezia furfur was also inhibited by Usnea-extract. Besides the Usnea-extract, Rosmarinus-, Salvia-, Boswellia- and Harpagophytum-extracts proved to be effective against a panel of bacteria. It is concluded that due to their antimicrobial effects some of the plant extracts may be used for the topical treatment of skin disorders like acne vulgaris and seborrhoic eczema.

  13. Chemical composition and antimicrobial activity of the essential oil of Scutellaria barbata.

    PubMed

    Yu, Jianqing; Lei, Jiachuan; Yu, Huaidong; Cai, Xuan; Zou, Guolin

    2004-04-01

    The essential oil of Scutellaria barbata was obtained by hydrodistillation with a 0.3% (v/w) yield and analysed by GC and GC-MS. The main compounds in the oil were hexahydrofarnesylacetone (11.0%), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (7.8%), menthol (7.7%) and 1-octen-3-ol (7.1%). The antimicrobial activity of the oil was evaluated against 17 microorganisms using disc diffusion and broth microdilution methods. The gram-positive bacteria, including methicillin-resistant Staphlococcus aureus, were more sensitive to the oil than gram-negative bacteria and yeasts.

  14. Enantioselective synthesis and antimicrobial activities of tetrahydro-β-carboline diketopiperazines.

    PubMed

    Ma, Yangmin; Wu, Hao; Zhang, Jin; Li, Yanchao

    2013-10-01

    A series of single isomers tetrahydro-β-carboline diketopiperazines were stereoselectively synthesized starting from l-tryptophan methyl ester hydrochloride and six aldehydes through a four-step reaction including Pictet-Spengler reaction, crystallization-induced asymmetric transformations (CIAT), Schotten-Baumann reaction, and intramolecular ester amidation. The chemical structures were characterized by nuclear magnetic resonance (NMR) and elemental analysis, among which two compounds were determined by x-ray single crystal diffraction. Moreover, antimicrobial activities of all the compounds were also tested.

  15. The diversity and antimicrobial activity of endophytic fungi associated with medicinal plant Baccharis trimera (Asteraceae) from the Brazilian savannah.

    PubMed

    Vieira, Mariana L A; Johann, Susana; Hughes, Frederic M; Rosa, Carlos A; Rosa, Luiz H

    2014-12-01

    The fungal endophyte community associated with Baccharis trimera, a Brazilian medicinal plant, was characterized and screened for its ability to present antimicrobial activity. By using molecular methods, we identified and classified the endophytic fungi obtained into 25 different taxa from the phyla Ascomycota and Basidiomycota. The most abundant species were closely related to Diaporthe phaseolorum, Pestalotiopsis sp. 1, and Preussia pseudominima. The differences observed in endophytic assemblages from different B. trimera specimens might be associated with their crude extract activities. Plants that had higher α-biodiversity were also those that contributed more to the regional (γ) diversity. All fungal isolates were cultured and their crude extracts screened to examine the antimicrobial activities. Twenty-three extracts (12.8%) displayed antimicrobial activities against at least one target microorganism. Among these extracts, those obtained from Epicoccum sp., Pestalotiopsis sp. 1, Cochliobolus lunatus, and Nigrospora sp. presented the best minimum inhibitory concentration values. Our results show that the endophytic fungal community associated with the medicinal plant B. trimera included few dominant bioactive taxa, which may represent sources of compounds with antifungal activity. Additionally, the discovery of these bioactive fungi in association with B. trimera suggests that Brazilian plants used as folk medicine may shelter a rich fungal diversity as well as taxa able to produce bioactive metabolites with antimicrobial activities.

  16. Clofazimine Contributes Sustained Antimicrobial Activity after Treatment Cessation in a Mouse Model of Tuberculosis Chemotherapy

    PubMed Central

    Swanson, Rosemary V.; Ammerman, Nicole C.; Ngcobo, Bongani; Adamson, John; Moodley, Chivonne; Dorasamy, Afton; Moodley, Sashen; Mgaga, Zinhle; Bester, Linda A.; Singh, Sanil D.; Almeida, Deepak V.

    2016-01-01

    Experimental and clinical studies have indicated that the antileprosy drug clofazimine may contribute treatment-shortening activity when included in tuberculosis treatment regimens. Clofazimine accumulates to high levels in tissues, has a long half-life, and remains in the body for months after administration is stopped. We hypothesized that in tuberculosis treatment, accumulated clofazimine may contribute sustained antimicrobial activity after treatment cessation, and we used the BALB/c mouse model of chronic tuberculosis chemotherapy to address this hypothesis. Mycobacterium tuberculosis-infected mice were treated for 4 weeks or 8 weeks with either isoniazid alone, clofazimine alone, the first-line regimen rifampin-isoniazid-pyrazinamide-ethambutol, or a first-line regimen where clofazimine was administered in place of ethambutol. To evaluate posttreatment antimicrobial activity, bacterial regrowth in the lungs and spleens was assessed at the day of treatment cessation and 2, 4, 6, and 8 weeks after treatment was stopped. Bacterial regrowth was delayed in all mice receiving clofazimine, either alone or in combination, compared to the mice that did not receive clofazimine. This effect was especially evident in mice receiving multidrug therapy. In mice not receiving clofazimine, bacterial regrowth began almost immediately after treatment was stopped, while in mice receiving clofazimine, bacterial regrowth was delayed for up to 6 weeks, with the duration of sustained antimicrobial activity being positively associated with the time that serum clofazimine levels remained at or above the 0.25-μg/ml MIC for M. tuberculosis. Thus, sustained activity of clofazimine may be important in the treatment-shortening effect associated with this drug. PMID:26926638

  17. In Vitro Activities of Combinations of Rifampin with Other Antimicrobials against Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Bai, Yan; Liu, Bin; Wang, Tianlin; Cai, Yun; Liang, Beibei; Liu, Youning; Wang, Jin

    2014-01-01

    The antimicrobial treatment of multidrug-resistant (MDR) Acinetobacter baumannii infections has become a great challenge for medical staff all over the world. Increasing numbers of MDR A. baumannii infections have been identified and reported, but effective clinical treatments for them are decreasing. The objective of this study was to investigate the in vitro activities of combinations of rifampin (an established antimicrobial) and other antimicrobials, including biapenem, colistin, and tigecycline, against 73 clinical isolates of MDR A. baumannii. In total, 73 clinical isolates of MDR A. baumannii were collected from two A-level general hospitals in Beijing, and the MICs of rifampin, biapenem, colistin, and tigecycline were determined. The checkerboard method was used to determine the fractional inhibitory concentration indices (FICIs), that is, whether the combinations acted synergistically against these isolates. The MIC50, MIC90, and MICrange of rifampin combined with biapenem, colistin, and tigecycline against the isolates were clearly lower than those for four antimicrobials (rifampin, biapenem, colistin, and tigecycline) that were used alone. Combinations of rifampin with biapenem, colistin, and tigecycline individually demonstrated the following interactions: synergistic interactions (FICI ≤ 0.5) for 31.51%, 34.25%, and 31.51% of the isolates, partially synergistic interactions (0.5 < FICI < 1) for 49.31%, 43.83%, and 47.94% of the isolates, and additive interactions (FICI = 1) for 19.18%, 21.92%, and 20.55% of the isolates, respectively. There were no indifferent (1 < FICI < 4) or antagonistic (FICI ≥ 4) interactions. Therefore, combinations of rifampin with biapenem, colistin, or tigecycline may be future therapeutic alternatives for the treatment of MDR A. baumannii infections. PMID:25534730

  18. Surface-engineered core-shell nano-size ferrites and their antimicrobial activity

    SciTech Connect

    Baraliya, Jagdish D. Joshi, Hiren H.

    2014-04-24

    We report the results of biological study on core-shell structured MFe{sub 2}O{sub 4} (where M = Co, Mn, Ni) nanoparticles and influence of silica- DEG dual coating on their antimicrobial activity. Spherical MFe{sub 2}O{sub 4} nanoparticles were prepared via a Co-precipitation method. The microstructures and morphologies of these nanoparticles were studied by x-ray diffraction and FTIR. The antimicrobial activity study carried out in nutrient agar medium with addition of antimicrobial synthesis compound which is tested for its activity against different types of bacteria.

  19. Characterization of antimicrobial peptide activity by electrochemical impedance spectroscopy

    PubMed Central

    Chang, William K.; Wimley, William C.; Searson, Peter C.; Hristova, Kalina; Merzlyakov, Mikhail

    2008-01-01

    Summary Electrochemical impedance spectroscopy performed on surface-supported bilayer membranes allows for the monitoring of changes in membrane properties, such as thickness, ion permeability, and homogeneity, after exposure to antimicrobial peptides (AMPs). We show that two model cationic peptides, very similar in sequence but different in activity, induce dramatically different changes in membrane properties as probed by impedance spectroscopy. Moreover, the impedance results excluded the “barrel-stave” and the “toroidal pore” models of AMP mode of action, and are more consistent with the “carpet” and the “detergent” models. The impedance data provide important new insights about the kinetics and the scale of the peptide action which currently are not addressed by the “carpet” and the “detergent” models. The method presented not only provides additional information about the mode of action of a particular AMP, but offers a means of characterizing AMP activity in reproducible, well-defined quantitative terms. PMID:18657512

  20. Antimicrobial activity of Alstonia macrophylla: a folklore of bay islands.

    PubMed

    Chattopadhyay, D; Maiti, K; Kundu, A P; Chakraborty, M S; Bhadra, R; Mandal, S C; Mandal, A B

    2001-09-01

    The methanolic crude and methanol-aqueous extract of Alstonia macrophylla leaves and n-butanol part of the crude extract showed antimicrobial activity against various strains of Staphylococcus aureus, Staphylococcus saprophyticus, Streptococcus faecalis, Escherichia coli, Proteus mirabilis, Trichophyton rubrum, Trichophyton mentagrophytes var. mentagrophytes and Microsporum gypseum. The minimum inhibitory concentration (MIC) values ranges from 64 to 1000 microg/ml for bacteria and 32-128 mg/ml for dermatophytes. However, the strains of Pseudomonas aeruginosa, Klebsiella sp. and Vibrio cholerae showed resistance against in vitro treatment of the extracts up to 2000 microg/ml concentration, while the two yeast species were resistant even at 128 mg/ml concentration. The stem bark extract prepared similarly was found to be less active compared to the leaves. Phytochemical study indicates that the crude extract contains tannins, flavonoids, saponins, sterols, triterpene and reducing sugars. Further fractionation and purification of n-butanol part of the extract showed the presence of beta-sitosterol, ursolic acid, beta-sitosterol glucoside and a mixture of minor compounds only detected in TLC.

  1. Antimicrobial activity of protease inhibitor from leaves of Coccinia grandis (L.) Voigt.

    PubMed

    Satheesh, L Shilpa; Murugan, K

    2011-05-01

    Antimicrobial activity of protease inhibitor isolated from Coccinia grandis (L.) Voigt. has been reported. A 14.3 kDa protease inhibitor (PI) was isolated and purified to homogeneity by ammonium sulfate precipitation (20-85% saturation), sephadex G-75, DEAE sepharose column and trypsin-sepharose affinity chromatography from the leaves of C. grandis. The purity was checked by reverse phase high performance liquid chromatography. PI exhibited marked growth inhibitory effects on colon cell lines in a dose-dependent manner. PI was thermostable and showed antimicrobial activity without hemolytic activity. PI strongly inhibited pathogenic microbial strains, including Staphylococcus aureus, Klebsiella pneumoniae, Proteus vulgaris, Eschershia coli, Bacillus subtilis and pathogenic fungus Candida albicans, Mucor indicus, Penicillium notatum, Aspergillus flavus and Cryptococcus neoformans. Examination by bright field microscopy showed inhibition of mycelial growth and sporulation. Morphologically, PI treated fungus showed a significant shrinkage of hyphal tips. Reduced PI completely lost its activity indicating that disulfide bridge is essential for its protease inhibitory and antifungal activity. Results reported in this study suggested that PI may be an excellent candidate for development of novel oral or other anti-infective agents. PMID:21615062

  2. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    PubMed

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  3. Synergistic Antimicrobial Activity of Camellia sinensis and Juglans regia against Multidrug-Resistant Bacteria

    PubMed Central

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U.; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates.” We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens PMID:25719410

  4. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    PubMed

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens. PMID:25719410

  5. A Requirement for Metamorphic Interconversion in the Antimicrobial Activity of Chemokine XCL1.

    PubMed

    Nevins, Amanda M; Subramanian, Akshay; Tapia, Jazma L; Delgado, David P; Tyler, Robert C; Jensen, Davin R; Ouellette, André J; Volkman, Brian F

    2016-07-12

    Chemokines make up a superfamily of ∼50 small secreted proteins (8-12 kDa) involved in a host of physiological processes and disease states, with several previously shown to have direct antimicrobial activity comparable to that of defensins in efficacy. XCL1 is a unique metamorphic protein that interconverts between the canonical chemokine fold and a novel all-β-sheet dimer. Phylogenetic analysis suggests that, within the chemokine family, XCL1 is most closely related to CCL20, which exhibits antibacterial activity. The in vitro antimicrobial activity of WT-XCL1 and structural variants was quantified using a radial diffusion assay (RDA) and in solution bactericidal assays against Gram-positive and Gram-negative species of bacteria. Comparisons of WT-XCL1 with variants that limit metamorphic interconversion showed a loss of antimicrobial activity when restricted to the conserved chemokine fold. These results suggest that metamorphic folding of XCL1 is required for potent antimicrobial activity.

  6. Total Phenolic, Total Flavonoids, Antioxidant and Antimicrobial Activities of Scrophularia Striata Boiss Extracts

    PubMed Central

    Mahboubi, Mohaddese; Kazempour, Nastaran; Boland Nazar, Ali Reza

    2013-01-01

    Background Scrophularia striata (Scrophulariaceae family) is an herbaceous plant that is traditionally used for treatment of microbial infections. Objectives Antimicrobial and antioxidant activity of different extracts (methanolic, ethanolic, aqueous and ethyl acetate) from S. striata aerial parts was evaluated. Materials and Methods The antimicrobial activity of different extracts from S. striata was evaluated against a large number of bacteria and fungi by micro broth dilution. Total phenolic and flavonoid contents were measured and their antioxidant activities evaluated by DPPH assay and beta carotene linoleic acid test. Results Antimicrobial screening exhibited the positive relation between the total phenolic content and its antimicrobial activity but their antioxidant activity had a negative relation. Conclusions Further studies are recommended against clinical isolate of sensitive bacteria and deep investigation on flavonoid and phenolic compounds of S. striata and detecting the antioxidant portion in aqueous extract. PMID:24624181

  7. Garlic revisited: antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex.

    PubMed

    Wallock-Richards, Daynea; Doherty, Catherine J; Doherty, Lynsey; Clarke, David J; Place, Marc; Govan, John R W; Campopiano, Dominic J

    2014-01-01

    The antimicrobial activities of garlic and other plant alliums are primarily based on allicin, a thiosulphinate present in crushed garlic bulbs. We set out to determine if pure allicin and aqueous garlic extracts (AGE) exhibit antimicrobial properties against the Burkholderia cepacia complex (Bcc), the major bacterial phytopathogen for alliums and an intrinsically multiresistant and life-threatening human pathogen. We prepared an AGE from commercial garlic bulbs and used HPLC to quantify the amount of allicin therein using an aqueous allicin standard (AAS). Initially we determined the minimum inhibitory concentrations (MICs) of the AGE against 38 Bcc isolates; these MICs ranged from 0.5 to 3% (v/v). The antimicrobial activity of pure allicin (AAS) was confirmed by MIC and minimum bactericidal concentration (MBC) assays against a smaller panel of five Bcc isolates; these included three representative strains of the most clinically important species, B. cenocepacia. Time kill assays, in the presence of ten times MIC, showed that the bactericidal activity of AGE and AAS against B. cenocepacia C6433 correlated with the concentration of allicin. We also used protein mass spectrometry analysis to begin to investigate the possible molecular mechanisms of allicin with a recombinant form of a thiol-dependent peroxiredoxin (BCP, Prx) from B. cenocepacia. This revealed that AAS and AGE modifies an essential BCP catalytic cysteine residue and suggests a role for allicin as a general electrophilic reagent that targets protein thiols. To our knowledge, we report the first evidence that allicin and allicin-containing garlic extracts possess inhibitory and bactericidal activities against the Bcc. Present therapeutic options against these life-threatening pathogens are limited; thus, allicin-containing compounds merit investigation as adjuncts to existing antibiotics. PMID:25438250

  8. Garlic Revisited: Antimicrobial Activity of Allicin-Containing Garlic Extracts against Burkholderia cepacia Complex

    PubMed Central

    Doherty, Lynsey; Clarke, David J.; Place, Marc; Govan, John R. W.; Campopiano, Dominic J.

    2014-01-01

    The antimicrobial activities of garlic and other plant alliums are primarily based on allicin, a thiosulphinate present in crushed garlic bulbs. We set out to determine if pure allicin and aqueous garlic extracts (AGE) exhibit antimicrobial properties against the Burkholderia cepacia complex (Bcc), the major bacterial phytopathogen for alliums and an intrinsically multiresistant and life-threatening human pathogen. We prepared an AGE from commercial garlic bulbs and used HPLC to quantify the amount of allicin therein using an aqueous allicin standard (AAS). Initially we determined the minimum inhibitory concentrations (MICs) of the AGE against 38 Bcc isolates; these MICs ranged from 0.5 to 3% (v/v). The antimicrobial activity of pure allicin (AAS) was confirmed by MIC and minimum bactericidal concentration (MBC) assays against a smaller panel of five Bcc isolates; these included three representative strains of the most clinically important species, B. cenocepacia. Time kill assays, in the presence of ten times MIC, showed that the bactericidal activity of AGE and AAS against B. cenocepacia C6433 correlated with the concentration of allicin. We also used protein mass spectrometry analysis to begin to investigate the possible molecular mechanisms of allicin with a recombinant form of a thiol-dependent peroxiredoxin (BCP, Prx) from B. cenocepacia. This revealed that AAS and AGE modifies an essential BCP catalytic cysteine residue and suggests a role for allicin as a general electrophilic reagent that targets protein thiols. To our knowledge, we report the first evidence that allicin and allicin-containing garlic extracts possess inhibitory and bactericidal activities against the Bcc. Present therapeutic options against these life-threatening pathogens are limited; thus, allicin-containing compounds merit investigation as adjuncts to existing antibiotics. PMID:25438250

  9. Cytotoxicity and antimicrobial activity of marine macro algae (Dictyotaceae and Ulvaceae) from the Persian Gulf.

    PubMed

    Mashjoor, Sakineh; Yousefzadi, Morteza; Esmaeili, Mohamad Ali; Rafiee, Roya

    2016-10-01

    Pharmaceutical industry now accept the worlds ocean which contains a vast array of organisms with unique biological properties, as a major frontier for medical investigation. Bioactive compounds with different modes of action, such as, antiproliferative, antioxidant, antimicrotubule, have been isolated from marine sources, specifically macro and micro algae, and cyanobacteria. The aim of this work was to investigate antimicrobial and cytotoxic activities of the extracts of marine macro algae Ulva flexuosa, Padina antillarum and Padina boergeseni from the northern coasts of the Persian Gulf, Qeshm Island, Iran, against three cell lines including MCF7, HeLa and Vero, as well as their inhibitory effects against a wide array (i.e. n = 11) of pathogenic bacteria and fungi. Antimicrobial activity of the marine macro algal extracts was assessed using a disc diffusion method; an MTT cytotoxicity assay was employed to test the effects of the extracts on each cancer cell line. The algal extracts showed considerable antimicrobial activity against the majority of the tested bacteria and fungi. Both ethyl acetate and methanol extracts at the highest concentration (100 µg/ml) caused cell death, with the IC50 values calculated for each cell type and each algal extracts. Results are exhibited a higher decrease in the viability of the cells treated at the highest concentration of marine macro algal ethyl acetate extracts compared to the methanol extracts (78.9 % death in Vero cells by ethyl acetate extracts from U. flexuosa). Despite, the ethyl acetate extracts with lower dose- response of cells, exhibited better cytotoxic activity than methanol extracts (IC50: 55.26 μg/ml in Vero cells by ethyl acetate extracts from U. flexuosa). Based on the findings, it is concluded that the marine macro algal extracts from the Persian Gulf possess antibacterial and cytotoxic potential, which could be considered for future applications in medicine and identifying novel drugs from the

  10. Garlic revisited: antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex.

    PubMed

    Wallock-Richards, Daynea; Doherty, Catherine J; Doherty, Lynsey; Clarke, David J; Place, Marc; Govan, John R W; Campopiano, Dominic J

    2014-01-01

    The antimicrobial activities of garlic and other plant alliums are primarily based on allicin, a thiosulphinate present in crushed garlic bulbs. We set out to determine if pure allicin and aqueous garlic extracts (AGE) exhibit antimicrobial properties against the Burkholderia cepacia complex (Bcc), the major bacterial phytopathogen for alliums and an intrinsically multiresistant and life-threatening human pathogen. We prepared an AGE from commercial garlic bulbs and used HPLC to quantify the amount of allicin therein using an aqueous allicin standard (AAS). Initially we determined the minimum inhibitory concentrations (MICs) of the AGE against 38 Bcc isolates; these MICs ranged from 0.5 to 3% (v/v). The antimicrobial activity of pure allicin (AAS) was confirmed by MIC and minimum bactericidal concentration (MBC) assays against a smaller panel of five Bcc isolates; these included three representative strains of the most clinically important species, B. cenocepacia. Time kill assays, in the presence of ten times MIC, showed that the bactericidal activity of AGE and AAS against B. cenocepacia C6433 correlated with the concentration of allicin. We also used protein mass spectrometry analysis to begin to investigate the possible molecular mechanisms of allicin with a recombinant form of a thiol-dependent peroxiredoxin (BCP, Prx) from B. cenocepacia. This revealed that AAS and AGE modifies an essential BCP catalytic cysteine residue and suggests a role for allicin as a general electrophilic reagent that targets protein thiols. To our knowledge, we report the first evidence that allicin and allicin-containing garlic extracts possess inhibitory and bactericidal activities against the Bcc. Present therapeutic options against these life-threatening pathogens are limited; thus, allicin-containing compounds merit investigation as adjuncts to existing antibiotics.

  11. In vivo antimicrobial and antiviral activity of components in bovine milk and colostrum involved in non-specific defence.

    PubMed

    van Hooijdonk, A C; Kussendrager, K D; Steijns, J M

    2000-11-01

    The in vivo evidence of the antimicrobial and antiviral activity of bovine milk and colostrum derived components are reviewed with special emphasis on lactoferrin and lactoperoxidase. Their mode of action and the rationale for their application in efficacy trials with rodents, farm animals, fish and humans, to give protection against infectious agents, are described. A distinction is made between efficacy obtained by oral and non-oral administration of these non-specific defence factors which can be commercially applied in large quantities due to major achievements in dairy technology. From the in vivo studies one can infer that lactoferrin and lactoperoxidase are very promising, naturally occurring antimicrobials for use in fish farming, husbandry, oral hygiene and functional foods. Other promising milk-derived compounds include lipids, from which anti-infective degradation products are generated during digestion, and antimicrobial peptides hidden in the casein molecules.

  12. Diverse antimicrobial activity from Enterococcus faecium NRRL B-30746 bacteriocin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotic therapy to resolve bacterial disease has been compromised by the increased prevalence and magnitude of bacterial antibiotic resistance. In our efforts to identify new effective antimicrobials, bacteria isolated from poultry intestinal contents were screened for bacteriocin synthesis again...

  13. Development of an experimental apparatus and protocol for determining antimicrobial activities of gaseous plant essential oils.

    PubMed

    Seo, Hyun-Sun; Beuchat, Larry R; Kim, Hoikyung; Ryu, Jee-Hoon

    2015-12-23

    There is a growing interest in the use of naturally-occurring antimicrobial agents such as plant essential oils (EOs) to inhibit the growth of hazardous and spoilage microorganisms in foods. Gaseous EOs (EO gases) have many potential applications in the food industry, including use as antimicrobial agents in food packaging materials and sanitizing agents for foods and food-contact surfaces, and in food processing environments. Despite the potentially beneficial applications of EO gases, there is no standard method to evaluate their antimicrobial activities. Thus, the present study was aimed at developing an experimental apparatus and protocol to determine the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) of EO gases against microorganisms. A sealed experimental apparatus was constructed for simultaneous evaluation of antimicrobial activities of EO gases at different concentrations without creating concentration gradients. A differential medium was then evaluated in which a color change allowed for the determination of growth of glucose-fermenting microorganisms. Lastly, an experimental protocol for the assessment of MIC and MLC values of EO gases was developed, and these values were determined for 31 EO gases against Escherichia coli O157:H7 as a model bacterium. Results showed that cinnamon bark EO gas had the lowest MIC (0.0391 μl/ml), followed by thyme-thymol EO gas (0.0781 μl/ml), oregano EO gas (0.3125 μl/ml), peppermint EO gas (0.6250 μl/ml), and thyme-linalool EO gas (0.6250 μl/ml). The order of the MLC values of the EO gases against the E. coli O157:H7 was thyme-thymol (0.0781 μl/ml)antimicrobial agents. PMID:26350124

  14. Development of an experimental apparatus and protocol for determining antimicrobial activities of gaseous plant essential oils.

    PubMed

    Seo, Hyun-Sun; Beuchat, Larry R; Kim, Hoikyung; Ryu, Jee-Hoon

    2015-12-23

    There is a growing interest in the use of naturally-occurring antimicrobial agents such as plant essential oils (EOs) to inhibit the growth of hazardous and spoilage microorganisms in foods. Gaseous EOs (EO gases) have many potential applications in the food industry, including use as antimicrobial agents in food packaging materials and sanitizing agents for foods and food-contact surfaces, and in food processing environments. Despite the potentially beneficial applications of EO gases, there is no standard method to evaluate their antimicrobial activities. Thus, the present study was aimed at developing an experimental apparatus and protocol to determine the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) of EO gases against microorganisms. A sealed experimental apparatus was constructed for simultaneous evaluation of antimicrobial activities of EO gases at different concentrations without creating concentration gradients. A differential medium was then evaluated in which a color change allowed for the determination of growth of glucose-fermenting microorganisms. Lastly, an experimental protocol for the assessment of MIC and MLC values of EO gases was developed, and these values were determined for 31 EO gases against Escherichia coli O157:H7 as a model bacterium. Results showed that cinnamon bark EO gas had the lowest MIC (0.0391 μl/ml), followed by thyme-thymol EO gas (0.0781 μl/ml), oregano EO gas (0.3125 μl/ml), peppermint EO gas (0.6250 μl/ml), and thyme-linalool EO gas (0.6250 μl/ml). The order of the MLC values of the EO gases against the E. coli O157:H7 was thyme-thymol (0.0781 μl/ml)antimicrobial agents.

  15. Synthesis and antimicrobial activity of gold nanoparticle conjugates with cefotaxime

    NASA Astrophysics Data System (ADS)

    Titanova, Elena O.; Burygin, Gennady L.

    2016-04-01

    Gold nanoparticles (GNPs) have attracted significant interest as a novel platform for various applications to nanobiotechnology and biomedicine. The conjugates of GNPs with antibiotics and antibodies were also used for selective photothermal killing of protozoa and bacteria. Also the conjugates of some antibiotics with GNPs decreased the number of bacterial growing cells. In this work was made the procedure optimization for conjugation of cefotaxime (a third-generation cephalosporin antibiotic) with GNPs (15 nm) and we examined the antimicrobial properties of this conjugate to bacteria culture of E. coli K-12. Addition of cefotaxime solution to colloidal gold does not change their color and extinction spectrum. For physiologically active concentration of cefotaxime (3 μg/mL), it was shown that the optimum pH for the conjugation was more than 9.5. A partial aggregation of the GNPs in saline medium was observed at pH 6.5-7.5. The optimum concentration of K2CO3 for conjugation cefotaxime with GNPs-15 was 5 mM. The optimum concentration of cefotaxime was at 0.36 μg/mL. We found the inhibition of the growth of E. coli K12 upon application cefotaxime-GNP conjugates.

  16. Two new iridoids from selected Penstemon species--antimicrobial activity.

    PubMed

    Zajdel, Sybilla M; Graikou, Konstantia; Sotiroudis, Georgios; Głowniak, Kazimierz; Chinou, Ioanna

    2013-01-01

    Eighteen secondary metabolites, belonging to three different chemical groups, were isolated from the methanolic extracts of the aerial parts of selected penstemon plants [Penstemon fruticosus (Pursh) Greene var. fruticosus, Penstemon palmeri Gray and Penstemon venustus Doug. ex Lindl.], and their structures were elucidated on the basis of spectral evidence. Six iridoid glucosides (1-6), three phenylpropanoid glucosides (13-15) and two acetophenone derivatives (16,17), obtained from P. fruticosus, five iridoids (2, 7-10), one phenylpropanoid glucoside (15) and two acetophenones (16, 18), isolated from P. palmeri while three iridoids (2, 11, 12) and three phenylpropanoids (13-15) were identified in P. venustus. Two of the iridoid glucosides (4, 5) from P. fruticosus are new natural products named accordingly as cis- and trans- forms of 10-O-p-methoxycinnamoylaucubin. All isolated compounds, as well as crude methanolic extracts, were evaluated for their antimicrobial activities against six Gram-positive and Gram-negative bacteria and three human pathogenic fungi.

  17. Assessing the antimicrobial activity of polyisoprene based surfaces.

    PubMed

    Badawy, Hope; Brunellière, Jérôme; Veryaskina, Marina; Brotons, Guillaume; Sablé, Sophie; Lanneluc, Isabelle; Lambert, Kelly; Marmey, Pascal; Milsted, Amy; Cutright, Teresa; Nourry, Arnaud; Mouget, Jean-Luc; Pasetto, Pamela

    2015-01-01

    There has been an intense research effort in the last decades in the field of biofouling prevention as it concerns many aspects of everyday life and causes problems to devices, the environment, and human health. Many different antifouling and antimicrobial materials have been developed to struggle against bacteria and other micro- and macro-organism attachment to different surfaces. However the "miracle solution" has still to be found. The research presented here concerns the synthesis of bio-based polymeric materials and the biological tests that showed their antifouling and, at the same time, antibacterial activity. The raw material used for the coating synthesis was natural rubber. The polyisoprene chains were fragmented to obtain oligomers, which had reactive chemical groups at their chain ends, therefore they could be modified to insert polymerizable and biocidal groups. Films were obtained by radical photopolymerization of the natural rubber derived oligomers and their structure was altered, in order to understand the mechanism of attachment inhibition and to increase the efficiency of the anti-biofouling action. The adhesion of three species of pathogenic bacteria and six strains of marine bacteria was studied. The coatings were able to inhibit bacterial attachment by contact, as it was verified that no detectable leaching of toxic molecules occurred. PMID:25706513

  18. Antimicrobial activity of new porphyrins of synthetic and natural origin

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.; Ghazaryan, Robert K.; Paronyan, Marina H.; Ulikhanyan, Ghukas I.; Gyulkhandanyan, Aram G.; Sahakyan, Lida A.

    2012-03-01

    Antimicrobial photodynamic inactivation has been successfully used against Gram (+) microorganisms, but most of the photosensitizers (PSs) on Gram (-) bacteria acts weakly. PSs are the natural or synthetic origin dyes, mainly porphyrins. We have synthesized more than 100 new cationic porphyrins and metalloporphyrins with different functional groups (hydroxyethyl, butyl, allyl, methallyl) and metals (cobalt, iron, copper, zinc, silver and other); from the nettle have also been purified pheophytin (a+b) and pheophytin (a) and have synthesized their Ag-and Zn-metalloporphyrins. It was found that in the dark (cytotoxic) mode, the most highly efficiency against microorganisms showed Agmetalloporphyrins of both types of porphyrins (synthetic and natural). Metalloporphyrin of natural origin Ag-pheophytin (a + b) is a strong antibacterial agent and causes 100% death as the Gram (+) microorganisms (St. aureus and MRSA) and the Gram (-) microorganisms (E.coli and Salmonella). It is established that for the destruction of Gram (+) and Gram (-) microorganisms in photodynamic mode cationic water-soluble synthetic metalloporphyrins, especially Zn-TBut4PyP, many times more effective than pheophytins. In vivo conditions on mice established that the best therapeutic activity against various strains of the microorganism St. aureus has the synthetic metalloporphyrin Ag-TBut4PyP. It is significantly more efficient than known drug "Chlorophyllipt" (2.5-3 times) and leads the survival rate of animals up to 50-60%.

  19. Novel 2-Thioxanthine and Dipyrimidopyridine Derivatives: Synthesis and Antimicrobial Activity.

    PubMed

    El-kalyoubi, Samar; Agili, Fatmah; Youssif, Shaker

    2015-01-01

    Several fused imidazolopyrimidines were synthesized starting from 6-amino-1-methyl-2-thiouracil (1) followed by nitrosation, reduction and condensation with different aromatic aldehydes to give Schiff's base. The dehydrocyclization of Schiff's bases using iodine/DMF gave Compounds 5a-g. The methylation of 5a-g using a simple alkylating agent as dimethyl sulfate ((CH₃)₂SO₄) gave either monoalkylated imidazolopyrimidine 6a-g at room temperature or dialkylated derivatives 7a-g on heating 6a-g with ((CH₃)₂SO₄). On the other hand, treatment of 1 with different aromatic aldehydes in absolute ethanol in the presence of conc. hydrochloric acid at room temperature and/or reflux with acetic acid afforded bis-5,5́-diuracylmethylene 8a-e, which cyclized on heating with a mixture of acetic acid/HCl (1:1) to give 9a-e. Compounds 9a-e can be obtained directly by refluxing of Compound 1 with a mixture of acetic acid/HCl. The synthesized new compounds were screened for antimicrobial activity, and the MIC was measured. PMID:26506337

  20. Assessing the Antimicrobial Activity of Polyisoprene Based Surfaces

    PubMed Central

    Badawy, Hope; Brunellière, Jérôme; Veryaskina, Marina; Brotons, Guillaume; Sablé, Sophie; Lanneluc, Isabelle; Lambert, Kelly; Marmey, Pascal; Milsted, Amy; Cutright, Teresa; Nourry, Arnaud; Mouget, Jean-Luc; Pasetto, Pamela

    2015-01-01

    There has been an intense research effort in the last decades in the field of biofouling prevention as it concerns many aspects of everyday life and causes problems to devices, the environment, and human health. Many different antifouling and antimicrobial materials have been developed to struggle against bacteria and other micro- and macro-organism attachment to different surfaces. However the “miracle solution” has still to be found. The research presented here concerns the synthesis of bio-based polymeric materials and the biological tests that showed their antifouling and, at the same time, antibacterial activity. The raw material used for the coating synthesis was natural rubber. The polyisoprene chains were fragmented to obtain oligomers, which had reactive chemical groups at their chain ends, therefore they could be modified to insert polymerizable and biocidal groups. Films were obtained by radical photopolymerization of the natural rubber derived oligomers and their structure was altered, in order to understand the mechanism of attachment inhibition and to increase the efficiency of the anti-biofouling action. The adhesion of three species of pathogenic bacteria and six strains of marine bacteria was studied. The coatings were able to inhibit bacterial attachment by contact, as it was verified that no detectable leaching of toxic molecules occurred. PMID:25706513

  1. Essential oils of Alpinia rafflesiana and their antimicrobial activities.

    PubMed

    Jusoh, Shariha; Sirat, Hasnah Mohd; Ahmad, Farediah

    2013-09-01

    The essential oils from the leaves, pseudostems, rhizomes and fruits of Alpinia rafflesiana were isolated by hydrodistillation. The oils were analysed by capillary GC and GC-MS. The most abundant components in the leaf oil were trans-caryophyllene (32.61%), caryophyllene oxide (8.67%), (2E,6Z)-farnesol (4.91%) and alpha-terpineol (4.25%), while 1,8-cineole (32.25%), myrcene (13.63%), alpha-terpineol (9.90%) and trans-caryophyllene (9.80%) were the main constituents in the pseudostem oil. The rhizome constituted of tetracosane (42.61%), tau-cadinol (7.46%), alpha-terpineol (6.71%) were the major components, whereas tetracosane (13.39%), (2E,6E)-farnesol (7.31%), alpha-terpineol (8.51%) and caryophyllene oxide (8.05%) were the main components in the fruit oil. Antimicrobial assay revealed that all the essential oils showed moderate to weak inhibition against the tested microorganisms. The leaf oil was the most active and inhibited both S. aureus and E. coli with MIC values of 7.81 microg/mL and 15.6 microg/mL, respectively.

  2. Functional characterization of alpha-synuclein protein with antimicrobial activity.

    PubMed

    Park, Seong-Cheol; Moon, Jeong Chan; Shin, Su Young; Son, Hyosuk; Jung, Young Jun; Kim, Nam-Hong; Kim, Young-Min; Jang, Mi-Kyeong; Lee, Jung Ro

    2016-09-16

    Alpha-synuclein (α-Syn), a small (14 kDa) protein associated with Parkinson's disease, is abundant in human neural tissues. α-Syn plays an important role in maintaining a supply of synaptic vesicles in presynaptic terminals; however, the mechanism by which it performs this function are not well understood. In addition, there is a correlation between α-Syn over-expression and upregulation of an innate immune response. Given the growing body of literature surrounding antimicrobial peptides (AMPs) in the brain, and the similarities between α-Syn and a previously characterized AMP, Amyloid-β, we set out to investigate if α-Syn shares AMP-like properties. Here we demonstrate that α-Syn exhibits antibacterial activity against Escherichia coli and Staphylococcus aureus. In addition, we demonstrate a role for α-Syn in inhibiting various pathogenic fungal strains such as Aspergillus flavus, Aspergillus fumigatus and Rhizoctonia solani. We also analyzed localizations of recombinant α-Syn protein in E. coli and Candida albicans. These results suggest that in addition to α-Syn's role in neurotransmitter release, it appears to be a natural AMP. PMID:27520375

  3. Antimicrobial activities of the rhizome extract of Zingiber zerumbet Linn

    PubMed Central

    Kader, Golam; Nikkon, Farjana; Rashid, Mohammad Abdur; Yeasmin, Tanzima

    2011-01-01

    Objective To investigate antimicrobial effects of ethanolic extract of Zingiber zerumbet (Z. zerumbet) (L.) Smith and its chloroform and petroleum ether soluble fractions against pathogenic bacteria and fungi. Methods The fresh rhizomes of Zingiber zerumbet were extracted in cold with ethanol (4.0 L) after concentration. The crude ethanol extract was fractionated by petroleum ether and chloroform to form a suspension of ethanol extract (15.0 g), petroleum ether fraction (6.6 g) and chloroform soluble fraction (5.0 g). The crude ethanol extract and its petroleum ether and chloroform fractions were evaluated for antibacterial and antifungal activity against thirteen pathogenic bacteria and three fungi by the disc diffusion method. Commercially available kanamycin (30 µg/disc) was used as standard disc and blank discs impregnated with the respective solvents were used as negative control. Results At a concentration of 400 µg/disc, all the samples showed mild to moderate antibacterial and antifungal activity and produced the zone of inhibition ranging from 6 mm to 10 mm. Among the tested samples, the crude ethanol extract showed the highest activity against Vibrio parahemolyticus (V. parahemolyticus). The minimum inhibitory concentration (MIC) of the crude ethanol extract and its fractions were within the value of 128-256 µg/mL against two Gram positive and four Gram negative bacteria and all the samples showed the lowest MIC value against V. parahemolyticus (128 µg/mL). Conclusions It can be concluded that, potent antibacterial and antifungal phytochemicals are present in ethanol extract of Z. zerumbet (L). PMID:23569803

  4. Antimicrobial activity of Carpolobia lutea extracts and fractions.

    PubMed

    Nwidu, Lucky L; Nwafor, Paul A; Vilegas, Wagner

    2012-01-01

    Carpolobia lutea (G. Don) (Polygalaceae) is a tropical medicinal plant putative in traditional medicines against gonorrhea, gingivitis, infertility, antiulcer and malaria. The present study evaluated the antimicrobial, antifungal and antihelicobacter effects of extracts C. lutea leaf, stem and root. The extracts were examined using the disc-diffusion and Microplates of 96 wells containing Muller-Hinton methods against some bacterial strains: Eschericia coli (ATCC 25922), E. coli (ATCC10418), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (ATCC 25923), Staphyllococus aureus (ATCC 6571), Enterococcus faecalis (ATCC 29212) and Bacillus subtilis (NCTC 8853) and four clinical isolates: one fungi (Candida albican) and three bacteria (Salmonella, Sheigella and staphylococcus aureus). The Gram-positive bacteria: Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Bacillus subtilis (ATCC 19659) and the Gram-negative bacteria: Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Cândida albicans (ATCC 18804) and Helicobacter pylori (ATCC 43504). Some of these extracts were found to be active against some tested strains but activity against H. pylori was >1000mg/ml and good fungistatic activity against C. albican. The MIC against C. albican is in the order n-HF > CHF > ETF= EAF.The order of potency of fraction was the ethanol root > n-HF leaf > ethanol fraction stem > chloroform fraction leaf = ethyl acetate fraction leaf. Polyphenols were demonstrated in ethanol fraction, ethyl acetate fraction, crude ethyl acetate extract and ethanol extract, respectively. These polyphenols isolated may partly explain and support the use of C. lutea for the treatment of infectious diseases in traditional Ibibio medicine of Nigeria. PMID:23983362

  5. Synthesis, characterization, antimicrobial activity and LPS-interaction properties of SB041, a novel dendrimeric peptide with antimicrobial properties.

    PubMed

    Bruschi, Michela; Pirri, Giovanna; Giuliani, Andrea; Nicoletto, Silvia Fabiole; Baster, Izabela; Scorciapino, Mariano Andrea; Casu, Mariano; Rinaldi, Andrea C

    2010-08-01

    Multimeric peptides offer several advantages with respect to their monomeric counterparts, as increased activity and greater stability to peptidases and proteases. SB041 is a novel antimicrobial peptide with dendrimeric structure; it is a tetramer of pyrEKKIRVRLSA linked by a lysine core, with an amino valeric acid chain. Here, we report on its synthesis, NMR characterization, antimicrobial activity, and LPS-interaction properties. The peptide was especially active against Gram-negative strains, with a potency comparable (on molar basis) to that of lipopeptides colistin and polymixin B, but it also displayed some activity against selected Gram-positive strains. Following these indications, we investigated the efficacy of SB041 in binding Escherichia coli and Pseudomonas aeruginosa LPS in vitro and counteracting its biological effects in RAW-Blue cells, derived from RAW 264.7 macrophages. SB041 strongly bound purified LPS, especially that of E. coli, as proved by fluorescent displacement assay, and readily penetrated into LPS monolayers. However, the killing activity of SB041 against E. coli was not inhibited by increasing concentrations of LPS added to the medium. Checking the SB041 effect on LPS-induced activation of pattern recognition receptors (PRRs) in Raw-Blue cells revealed that while the peptide gave a statistically significant decrease in PRRs stimulation when RAW-Blue cells were challenged with P. aeruginosa LPS, the same was not seen when E. coli LPS was used to activate innate immune defense-like responses. Thus, as previously seen for other antimicrobial peptides, also for SB041 binding to LPS did not translate necessarily into LPS-neutralizing activity, suggesting that SB041-LPS interactions must be of complex nature.

  6. LL37:DNA complexes provide antimicrobial activity against intracellular bacteria in human macrophages.

    PubMed

    Stephan, Alexander; Batinica, Marina; Steiger, Julia; Hartmann, Pia; Zaucke, Frank; Bloch, Wilhelm; Fabri, Mario

    2016-08-01

    As part of the innate host response neutrophils release neutrophil extracellular traps (NETs), protein:DNA complexes that contain a number of antimicrobial peptides (AMPs), such as cathelicidin. Human cathelicidin in its active form, LL37, has potent antimicrobial activity against bacteria. However, whether LL37 derived from NETs contributes to antimicrobial activity against intracellular pathogens remains unclear. Here, we report that NETs induced by mycobacteria contain cathelicidin. Human macrophages internalized NET-bound cathelicidin, which is transported to lysosomal compartments. Furthermore, using a model of in vitro-generated LL37:DNA complexes we found that LL37 derived from such complexes attacks mycobacteria in macrophage phagolysosomes resulting in antimicrobial activity. Taken together, our results suggest a mechanism by which LL37 in complex with DNA contributes to host defence against intracellular bacteria in human macrophages.

  7. Antimicrobial Activity of Ultra-fine Fiber Nonwoven Fabrics Produced by Electrospinning

    NASA Astrophysics Data System (ADS)

    Ogushi, Yukiko; Sasaki, Naokazu; Imashiro, Yasuo; Minagawa, Mie; Matsumoto, Hidetoshi; Tanioka, Akihiko

    Electrospinning is based on an electrohydrodynamic process, and it is a straightforward and versatile method for forming continuous thin fibers from several nanometers to several tens of micrometers in diameter. One major advantage of electrospinning is the one-step forming of nonwoven fibrous fabrics. In the present study, we prepared ultra-fine fiber nonwoven fabrics from 13 kinds of commercial polymers (e.g., PLA, PA, PU, Cellulose, PVDC, and PS) by electrospinning and tested their antimicrobial activity. Most of ultra-fine fiber nonwoven fabrics showed excellent antimicrobial activity. Our experimental results showed that there is close correlation between fiber diameter of nonwoven fabrics and their antimicrobial activity: the nonwoven fabrics with average fiber diameter of smaller than 800 nm showed better antimicrobial activity.

  8. The antimicrobial activity of honey against common equine wound bacterial isolates.

    PubMed

    Carnwath, R; Graham, E M; Reynolds, K; Pollock, P J

    2014-01-01

    Delayed healing associated with distal limb wounds is a particular problem in equine clinical practice. Recent studies in human beings and other species have demonstrated the beneficial wound healing properties of honey, and medical grade honey dressings are available commercially in equine practice. Equine clinicians are reported to source other non-medical grade honeys for the same purpose. This study aimed to assess the antimicrobial activity of a number of honey types against common equine wound bacterial pathogens. Twenty-nine honey products were sourced, including gamma-irradiated and non-irradiated commercial medical grade honeys, supermarket honeys, and honeys from local beekeepers. To exclude contaminated honeys from the project, all honeys were cultured aerobically for evidence of bacterial contamination. Aerobic bacteria or fungi were recovered from 18 products. The antimicrobial activity of the remaining 11 products was assessed against 10 wound bacteria, recovered from the wounds of horses, including methicillin resistant Staphylococcus aureus and Pseudomonas aeruginosa. Eight products were effective against all 10 bacterial isolates at concentrations varying from <2% to 16% (v/v). Overall, the Scottish Heather Honey was the best performing product, and inhibited the growth of all 10 bacterial isolates at concentrations ranging from <2% to 6% (v/v). Although Manuka has been the most studied honey to date, other sources may have valuable antimicrobial properties. Since some honeys were found to be contaminated with aerobic bacteria or fungi, non-sterile honeys may not be suitable for wound treatment. Further assessment of gamma-irradiated honeys from the best performing honeys would be useful.

  9. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs.

    PubMed

    Mathew, Basil; Nagaraj, Ramakrishnan

    2015-09-01

    Human α-defensin 5 (HD5) exhibits broad spectrum antimicrobial activity and plays an important role in mucosal immunity of the small intestine. Although there have been several studies, the structural requirements for activity and mechanism of bacterial killing is yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD5 and linear analogs. Cysteine deletions attenuated the antibacterial activity considerably. Candidacidal activity was affected to a lesser extent. Fatty acid conjugated linear analogs showed antimicrobial activity comparable activity to HD5. Effective surface charge neutralization of bacteria was observed for HD5 as compared to the non-fatty acylated linear analogs. Our results show that HD5 and non-fatty acylated linear analogs enter the bacterial cytoplasm without causing damage to the bacterial inner membrane. Although fatty acylated peptides exhibited antimicrobial activity comparable to HD5, their mechanism of action involved permeabilization of the Escherichia coli inner membrane. HD5 and analogs had the ability to bind plasmid DNA. HD5 had greater binding affinity to plasmid DNA as compared to the analogs. The three dimensional structure of HD5 favors greater interaction with the bacterial cell surface and also with DNA. Antibacterial activity of HD5 involves entry into bacterial cytoplasm and binding to DNA which would result in shut down of the bacterial metabolism leading to cell death. We show how a moderately active linear peptide derived from the α-defensin HD5 can be engineered to enhance antimicrobial activity almost comparable to the native peptide. PMID:26206286

  10. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity.

    PubMed

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J; Dong, He

    2015-12-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.

  11. Nanocomposites of polymers with layered inorganic nanofillers: Antimicrobial activity, thermo-mechanical properties, morphology, and dispersion

    NASA Astrophysics Data System (ADS)

    Songtipya, Ponusa

    In the first part of the thesis, polyethylene/layered silicate nanocomposites that exhibit an antimicrobial activity were synthesized and studied. Their antimicrobial activity was designed to originate from non-leaching, novel cationic modifiers---amine-based surfactants---used as the organic-modification of the fillers. Specifically, PE/organically-modified montmorillonite ( mmt) nanocomposites were prepared via melt-processing, and simultaneous dispersion and antimicrobial activity was designed by proper choice of the fillers' organic modification. The antimicrobial activity was measured against three micotoxinogen fungal strains (Penicillium roqueforti and claviforme, and Fusarium graminearum ). Various mmt-based organofillers, which only differ in the type or amount of their organic modification, were used to exemplify how these surfactants can be designed to render antifungal activity to the fillers themselves and the respective nanocomposites. A comparative discussion of the growth of fungi on unfilled PE and nanocomposite PE films is used to demonstrate how the antimicrobial efficacy is dictated by the surfactant chemistry and, further, how the nanocomposites' inhibitory activity compares to that of the organo-fillers and the surfactants. An attempt to improve the thermomechanical reinforcement of PE/mmt nanocomposites while maintaining their antimicrobial activity, was also carried out by combining two different organically modified montmorillonites. However, a uniform microscopic dispersion could not be achieved through this approach. In the second part of this thesis, a number of fundamental studies relating to structure-property relations in nanocomposites were carried out, towards unveiling strategies that can concurrently optimize selected properties of polymers by the addition of nanofillers. Specifically, the dispersion-crystallinity-reinforcement relations in HDPE/mmt nanocomposites was investigated. The influence of a functional HDPE compatibilizer

  12. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum

    PubMed Central

    2012-01-01

    Background Bryophyllum pinnatum (Lank.) Oken (Crassulaceae) is a perennial succulent herb widely used in traditional medicine to treat many ailments. Its wide range of uses in folk medicine justifies its being called "life plant" or "resurrection plant", prompting researchers' interest. We describe here the isolation and structure elucidation of antimicrobial and/or antioxidant components from the EtOAc extract of B. pinnatum. Results The methanol extract displayed both antimicrobial activities with minimum inhibitory concentration (MIC) values ranging from 32 to 512 μg/ml and antioxidant property with an IC50 value of 52.48 μg/ml. Its partition enhanced the antimicrobial activity in EtOAc extract (MIC = 16-128 μg/ml) and reduced it in hexane extract (MIC = 256-1024 μg/ml). In addition, this process reduced the antioxidant activity in EtOAc and hexane extracts with IC50 values of 78.11 and 90.04 μg/ml respectively. Fractionation of EtOAc extract gave seven kaempferol rhamnosides, including; kaempferitrin (1), kaempferol 3-O-α-L-(2-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (2), kaempferol 3-O-α-L-(3-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (3), kaempferol 3-O-α-L-(4-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (4), kaempferol 3-O-α-D- glucopyranoside-7-O-α-L-rhamnopyranoside (5), afzelin (6) and α-rhamnoisorobin (7). All these compounds, except 6 were isolated from this plant for the first time. Compound 7 was the most active, with MIC values ranging from 1 to 2 μg/ml and its antioxidant activity (IC50 = 0.71 μg/ml) was higher than that of the reference drug (IC50 = 0.96 μg/ml). Conclusion These findings demonstrate that Bryophyllum pinnatum and some of its isolated compounds have interesting antimicrobial and antioxidant properties, and therefore confirming the traditional use of B. pinnatum in the treatment of infectious and free radical damages. PMID:22433844

  13. Chemical composition, antimicrobial, insecticidal, phytotoxic and antioxidant activities of Mediterranean Pinus brutia and Pinus pinea resin essential oils.

    PubMed

    Ulukanli, Zeynep; Karabörklü, Salih; Bozok, Fuat; Ates, Burhan; Erdogan, Selim; Cenet, Menderes; Karaaslan, Merve Göksin

    2014-12-01

    Essential oils of the resins of Pinus brutia and Pinus pinea were evaluated for their biological potential. Essential oils were characterized using GC-MS and GC/FID. in vitro antimicrobial, phytotoxic, antioxidant, and insecticidal activities were carried out using the direct contact and the fumigant assays, respectively. The chemical profile of the essential oils of the resins of P. pinea and P. brutia included mainly α-pinene (21.39% and 25.40%), β-pinene (9.68% and 9.69%), and caryophyllene (9.12% and 4.81%). The essential oils of P. pinea and P. brutia exerted notable antimicrobial activities on Micrococcus luteus and Bacillus subtilis, insecticidal activities on Ephestia kuehniella eggs, phytotoxic activities on Lactuca sativa, Lepidium sativum, and Portulaca oleracea, as well as antioxidant potential. Indications of the biological activities of the essential oils suggest their use in the formulation of ecofriendly and biocompatible pharmaceuticals.

  14. Synthesis, antimicrobial, and antiproliferative activities of substituted phenylfuranylnicotinamidines

    PubMed Central

    Youssef, Magdy M; Arafa, Reem K; Ismail, Mohamed A

    2016-01-01

    This research work deals with the design and synthesis of a series of substituted phenylfuranylnicotinamidines 4a–i. Facile preparation of the target compounds was achieved by Suzuki coupling-based synthesis of the nitrile precursors 3a–i, followed by their conversion to the corresponding nicotinamidines 4a–i utilizing LiN(TMS)2. The antimicrobial activities of the newly synthesized nicotinamidine derivatives were evaluated against the Gram-negative bacterial strains Escherichia coli and Pseudomonas aeruginosa as well as the Gram-positive bacterial strains Staphylococcus aureus and Bacillus megaterium. The minimum inhibitory concentration values of nicotinamidines against all tested microorganisms were in the range of 10–20 μM. In specific, compounds 4a and 4b showed excellent minimum inhibitory concentration values of 10 μM against Staphylococcus aureus bacterial strain and were similar to ampicillin as an antibacterial reference. On the other hand, selected nicotinamidine derivatives were biologically screened for their cytotoxic activities against a panel of 60 cell lines representing nine types of human cancer at a single high dose at National Cancer Institute, Bethesda, MD, USA. Nicotinamidines showing promising activities were further assessed in a five-dose screening assay to determine their compound concentration causing 50% growth inhibition of tested cell (GI50), compound concentration causing 100% growth inhibition of tested cell (TGI), and compound concentration causing 50% lethality of tested cell (LC50) values. Structure-activity relationship studies demonstrated that the activity of members of this series can be modulated from cytostatic to cytotoxic based on the substitution pattern/nature on the terminal phenyl ring. The most active compound was found to be 4e displaying a submicromolar GI50 value of 0.83 μM, with TGI and LC50 values of 2.51 and 100 μM, respectively. Finally, the possible underlying mechanism of action of this series of

  15. Antimicrobial Activity of Mast Cells: Role and Relevance of Extracellular DNA Traps

    PubMed Central

    Möllerherm, Helene; von Köckritz-Blickwede, Maren; Branitzki-Heinemann, Katja

    2016-01-01

    Mast cells (MCs) have been shown to release their nuclear DNA and subsequently form mast cell extracellular traps (MCETs) comparable to neutrophil extracellular traps, which are able to entrap and kill various microbes. The formation of extracellular traps is associated with the disruption of the nuclear membrane, which leads to mixing of nuclear compounds with granule components and causes the death of the cell, a process called ETosis. The question arises why do MCs release MCETs although they are very well known as multifunctional long-living sentinel cells? MCs are known to play a role during allergic reactions and certain parasitic infections. Nonetheless, they are also critical components of the early host innate immune response to bacterial and fungal pathogens: MCs contribute to the initiation of the early immune response by recruiting effector cells including neutrophils and macrophages by locally releasing inflammatory mediators, such as TNF-α. Moreover, various studies demonstrate that MCs are able to eliminate microbes through intracellular as well as extracellular antimicrobial mechanisms, including MCET formation similar to that of professional phagocytes. Recent literature leads to the suggestion that MCET formation is not the result of a passive release of DNA and granule proteins during cellular disintegration, but rather an active and controlled process in response to specific stimulation, which contributes to the innate host defense. This review will discuss the different known aspects of the antimicrobial activities of MCs with a special focus on MCETs, and their role and relevance during infection and inflammation. PMID:27486458

  16. Studies on antimicrobial activities of solvent extracts of different spices.

    PubMed

    Keskin, Dilek; Toroglu, Sevil

    2011-03-01

    The antimicrobial activities of the ethyl acetate, acetone and methanol extract of 12 plant species were studied. The extract of Capsicum annuum (red pepper) (fruit) Zingiber officinale (ginger) (root), Cuminum cyminum (cumin), Alpinia ficinarum (galingale), Coriandrum sativum (coriander), Cinnamomun zeylanicum Nees (cinnamomun), Origanum onites L. (thyme), Folium sennae (senna), Eugenia caryophyllata (cloves), Flos tiliae (lime), Folium menthae crispae (peppermint) and Piper nigrum (blackpepper) were tested in vitro against 2 fungi and 8 bacterial species by the disc diffusion method. Klebsiella pneumonia 13883, Bacillus megaterium NRS, Pseudomonas aeroginosa ATCC 27859, Staphylococcus aureus 6538 P, Escherichia coil ATCC 8739, Enterobacter cloaca ATCC 13047, Corynebacterium xerosis UC 9165, Streptococcus faecalis DC 74, Kluyveromyces marxianus, Rhodotorula rubra were used in this investigation. The results indicated that extracts of different spices has shown antibacterial activity in the range of 7-24 mm 30 microl(-1) inhibition zone Eugenia caryophyllata (clove), 7-20 mm 30microl(-1) inhibition zone Capsicum annum (red pepper) and Cinnamomun zeylanicum (cinnamon) bark, 7-18 mm 30microl(-1) inhibition zone Folium sennae (senna) leaves, 7-16 mm 30 microl(-1) inhibition zone Zingiber officinale (ginger) root, 7-15 mm 30microl(-1) inhibition zone Cuminum cyminum (cumin) seed, 7-14 mm 30 microl(-1) inhibition zone Folium menthae crispae (peppermint), Origanum onites (thyme) leaves and Alpinia ficinarum (galingale) root, 7-12 mm 30 microl(-1) inhibiton zone Piper nigrum (blackpepper), 7-11 mm 30microl(-1) inhibition zone Flos tiliae (lime) leaves, 7-8 mm 30microl(-1) inhibition zone Coriandrum sativum (coriander) to the microorganisms tested.

  17. Effects of different heat treatments on lysozyme quantity and antimicrobial activity of jenny milk.

    PubMed

    Cosentino, C; Labella, C; Elshafie, H S; Camele, I; Musto, M; Paolino, R; D'Adamo, C; Freschi, P

    2016-07-01

    Thermal treatments are used to improve milk microbial safety, shelf life, and biological activity of some of its components. However, thermal treatments can reduce the nutritional quality of milk, affecting the molecular structure of milk proteins, such as lysozyme, which is a very important milk component due to its antimicrobial effect against gram-positive bacteria. Jenny milk is characterized by high lysozyme content. For this reason, in the last few years, it has been used as an antimicrobial additive in dairy products as an alternative to hen egg white lysozyme, which can cause allergic reactions. This study aimed to investigate the effect of pasteurization and condensation on the concentration and antimicrobial activity of lysozyme in jenny milk. Furthermore, lysozyme quantity and activity were tested in raw and pasteurized milk after condensation at 40 and 20% of the initial volume. Reversed-phase HPLC was performed under fluorescence detection to monitor lysozyme in milk samples. We evaluated the antimicrobial activity of the tested milk against Bacillus megaterium, Bacillus mojavensis, Clavibacter michiganensis, Clostridium tyrobutyricum, Xanthomonas campestris, and Escherichia coli. Condensation and pasteurization did not affect the concentration or antimicrobial activity of lysozyme in jenny milk, except for B. mojaventis, which showed resistance to lysozyme in milk samples subjected to heat treatments. Moreover, lysozyme in jenny milk showed antimicrobial activity similar to synthetic antibiotics versus some gram-positive strains and also versus the gram-negative strain X. campestris. PMID:27157571

  18. Dittrichia graveolens (L.) Greuter Essential Oil: Chemical Composition, Multivariate Analysis, and Antimicrobial Activity.

    PubMed

    Mitic, Violeta; Stankov Jovanovic, Vesna; Ilic, Marija; Jovanovic, Olga; Djordjevic, Aleksandra; Stojanovic, Gordana

    2016-01-01

    The chemical composition and in vitro antimicrobial activities of Dittrichia graveolens (L.) Greuter essential oil was studied. Moreover, using agglomerative hierarchical cluster (AHC) and principal component analyses (PCA), the interrelationships of the D. graveolens essential-oil profiles characterized so far (including the sample from this study) were investigated. To evaluate the chemical composition of the essential oil, GC-FID and GC/MS analyses were performed. Altogether, 54 compounds were identified, accounting for 92.9% of the total oil composition. The D. graveolens oil belongs to the monoterpenoid chemotype, with monoterpenoids comprising 87.4% of the totally identified compounds. The major components were borneol (43.6%) and bornyl acetate (38.3%). Multivariate analysis showed that the compounds borneol and bornyl acetate exerted the greatest influence on the spatial differences in the composition of the reported oils. The antimicrobial activity against five bacterial and one fungal strain was determined using a disk-diffusion assay. The studied essential oil was active only against Gram-positive bacteria.

  19. Antimicrobial and antioxidative activities in the bark extracts of Sonneratia caseolaris, a mangrove plant

    PubMed Central

    Simlai, Aritra; Rai, Archana; Mishra, Saumya; Mukherjee, Kalishankar; Roy, Amit

    2014-01-01

    The present study deals with the phytochemical contents, antimicrobial and antioxidative activities of bark tissue of Sonneratia caseolaris, a mangrove plant from Sundarban estuary, India. Phytochemical analyses revealed the presence of high amounts of phenolics, flavonoids, tannins, alkaloids and saponins. Antimicrobial efficacies of various extracts of S. caseolaris were assessed by disc diffusion method against two Gram-positive (Bacillus subtilis and Bacillus coagulans), two Gram-negative (Escherichia coli and Proteus vulgaris) bacteria and one fungus (Saccharomyces cerevisiae). The methanolic extract among others showed significant minimum inhibitory concentration (MIC) values. The antioxidant activity as indicated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of the bark tissue extract from the species was found to be quite appreciable. The extracts were found to retain their antimicrobial activities despite pH and thermal treatments, thus indicating the stability of their activity even at extreme conditions. The antioxidant activity was also found to be considerably stable after thermal treatments. The components of the tissue extracts were subjected to separation using thin layer chromatography (TLC). The constituents with antimicrobial and antioxidative properties were identified using TLC-bioautography by agar-overlay and DPPH spraying methods respectively. A number of bioactive constituents with antimicrobial and radical scavenging properties were observed on the developed bioautography plate. The fractions with antimicrobial properties were isolated from the reference TLC plates and subjected to gas chromatography-mass spectrometry (GC-MS) analysis for partial characterization and identification of the metabolites that might be responsible for the activities. The study suggests Sonneratia caseolaris bark as a potential source of bioactive compounds with stable antimicrobial and antioxidative properties and can be used as natural

  20. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera

    PubMed Central

    Marslin, Gregory; Selvakesavan, Rajendran K; Franklin, Gregory; Sarmento, Bruno; Dias, Alberto CP

    2015-01-01

    We report on the antimicrobial activity of a cream formulation of silver nanoparticles (AgNPs), biosynthesized using Withania somnifera extract. Aqueous extracts of leaves promoted efficient green synthesis of AgNPs compared to fruits and root extracts of W. somnifera. Biosynthesized AgNPs were characterized for their size and shape by physical-chemical techniques such as UV-visible spectroscopy, laser Doppler anemometry, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, and X-ray energy dispersive spectroscopy. After confirming the antimicrobial potential of AgNPs, they were incorporated into a cream. Cream formulations of AgNPs and AgNO3 were prepared and compared for their antimicrobial activity against human pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, and Candida albicans) and a plant pathogen (Agrobacterium tumefaciens). Our results show that AgNP creams possess significantly higher antimicrobial activity against the tested organisms. PMID:26445537

  1. Poly(anhydride-esters) Comprised Exclusively of Naturally Occurring Antimicrobials and EDTA: Antioxidant and Antibacterial Activities

    PubMed Central

    2015-01-01

    Carvacrol, thymol, and eugenol are naturally occurring phenolic compounds known to possess antimicrobial activity against a range of bacteria, as well as antioxidant activity. Biodegradable poly(anhydride-esters) composed of an ethylenediaminetetraacetic acid (EDTA) backbone and antimicrobial pendant groups (i.e., carvacrol, thymol, or eugenol) were synthesized via solution polymerization. The resulting polymers were characterized to confirm their chemical composition and understand their thermal properties and molecular weight. In vitro release studies demonstrated that polymer hydrolytic degradation was complete after 16 days, resulting in the release of free antimicrobials and EDTA. Antioxidant and antibacterial assays determined that polymer release media exhibited bioactivity similar to that of free compound, demonstrating that polymer incorporation and subsequent release had no effect on activity. These polymers completely degrade into components that are biologically relevant and have the capability to promote preservation of consumer products in the food and personal care industries via antimicrobial and antioxidant pathways. PMID:24702678

  2. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera.

    PubMed

    Marslin, Gregory; Selvakesavan, Rajendran K; Franklin, Gregory; Sarmento, Bruno; Dias, Alberto C P

    2015-01-01

    We report on the antimicrobial activity of a cream formulation of silver nanoparticles (AgNPs), biosynthesized using Withania somnifera extract. Aqueous extracts of leaves promoted efficient green synthesis of AgNPs compared to fruits and root extracts of W. somnifera. Biosynthesized AgNPs were characterized for their size and shape by physical-chemical techniques such as UV-visible spectroscopy, laser Doppler anemometry, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, and X-ray energy dispersive spectroscopy. After confirming the antimicrobial potential of AgNPs, they were incorporated into a cream. Cream formulations of AgNPs and AgNO3 were prepared and compared for their antimicrobial activity against human pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, and Candida albicans) and a plant pathogen (Agrobacterium tumefaciens). Our results show that AgNP creams possess significantly higher antimicrobial activity against the tested organisms.

  3. Synthesis, lipophilicity and antimicrobial activity evaluation of some new thiazolyl-oxadiazolines

    PubMed Central

    STOICA, CRISTINA IOANA; IONUȚ, IOANA; PÎRNĂU, ADRIAN; POP, CARMEN; ROTAR, ANCUȚA; VLASE, LAURIAN; ONIGA, SMARANDA; ONIGA, OVIDIU

    2015-01-01

    Background and aims Synthesis of new potential antimicrobial agents and evaluation of their lipophilicity. Methods Ten new thiazolyl-oxadiazoline derivatives were synthesized and their structures were validated by 1H-NMR and mass spectrometry. The lipophilicity of the compounds was evaluated using the principal component analysis (PCA) method. The necessary data for applying this method were obtained by reverse-phase thin-layer chromatography (RP-TLC). The antimicrobial activities were tested in vitro against four bacterial strains and one fungal strain. Results The lipophilicity varied with the structure but could not be correlated with the antimicrobial activity, since this was modest. Conclusions We have synthesized ten new heterocyclic compounds. After their physical and chemical characterization, we determined their lipophilicity and screened their antimicrobial activity. PMID:26733751

  4. Inhibition of verocytotoxigenic Escherichia coli by antimicrobial peptides caseicin A and B and the factors affecting their antimicrobial activities.

    PubMed

    McDonnell, Mary J; Rivas, Lucia; Burgess, Catherine M; Fanning, Séamus; Duffy, Geraldine

    2012-02-15

    The antimic robial activities of caseicin A and B antimicrobial peptides (AMPs) were assessed against a selection of verocytotoxigenic Escherichia coli (VTEC) strains (n=11), other bacterial pathogenic and spoilage bacteria (n=7), using a model broth system. The ability of the AMPs to retain their antimicrobial activities against a strain of E. coli O157:H7 380-94 under various test conditions (pH, temperature, water activity, sodium chloride concentrations, inoculum size and the presence of competitive microflora) was assessed and the minimum inhibitory concentrations (MIC) and number of surviving E. coli O157:H7 calculated. The mean number of VTEC surviving after exposure to 2 mg/ml caseicin A and B was reduced by 4.96 and 4.19 log(10) cfu/ml compared to the respective controls. The susceptibility of E. coli O157:H7 to the caseicin AMPs decreased as temperature, pH, water activity and inoculum size were reduced. The presence of sodium chloride (0.5-2.5%) did not affect the activity of caseicin A (p>0.05), however it did inhibit the activity of caseicin B. The presence of a competitive microflora cocktail did not significantly (p>0.05) affect the activities of the AMPs for the majority of the concentrations tested. Using a quantitative PCR assay, the levels of verotoxins (vt1 and vt2) expressed by E. coli O157:H7 following exposure to a sub-inhibitory concentration (0.5 mg/ml) of caseicin A showed that the verotoxin levels did not differ from the levels produced by the control cultures. The antimicrobial activity of caseicin A against E. coli O157:H7 was also tested in a model rumen system, however concentrations of ≥2 mg/ml did not significantly (p>0.05) reduce E. coli O157:H7 numbers in the model system over a 24 h period. The application of caseicin AMPs in food and/or animal production may be valuable in combination with other antimicrobials although further research is required.

  5. Antimicrobial activity of the synthetic peptide scolopendrasin ii from the centipede Scolopendra subspinipes mutilans.

    PubMed

    Kwon, Young-Nam; Lee, Joon Ha; Kim, In-Woo; Kim, Sang-Hee; Yun, Eun-Young; Nam, Sung-Hee; Ahn, Mi-Young; Jeong, Mihye; Kang, Dong-Chul; Lee, In Hee; Hwang, Jae Sam

    2013-10-28

    The centipede Scolopendra subpinipes mutilans is a medicinally important arthropod species. However, its transcriptome is not currently available and transcriptome analysis would be useful in providing insight into a molecular level approach. Hence, we performed de novo RNA sequencing of S. subpinipes mutilans using next-generation sequencing. We generated a novel peptide (scolopendrasin II) based on a SVM algorithm, and biochemically evaluated the in vitro antimicrobial activity of scolopendrasin II against various microbes. Scolopendrasin II showed antibacterial activities against gram-positive and -negative bacterial strains, including the yeast Candida albicans and antibiotic-resistant gram-negative bacteria, as determined by a radial diffusion assay and colony count assay without hemolytic activity. In addition, we confirmed that scolopendrasin II bound to the surface of bacteria through a specific interaction with lipoteichoic acid and a lipopolysaccharide, which was one of the bacterial cell-wall components. In conclusion, our results suggest that scolopendrasin II may be useful for developing peptide antibiotics.

  6. Antimicrobial Activity of Tulsi (Ocimum tenuiflorum) Essential Oil and Their Major Constituents against Three Species of Bacteria.

    PubMed

    Yamani, Hanaa A; Pang, Edwin C; Mantri, Nitin; Deighton, Margaret A

    2016-01-01

    In recent years scientists worldwide have realized that the effective life span of any antimicrobial agent is limited, due to increasing development of resistance by microorganisms. Consequently, numerous studies have been conducted to find new alternative sources of antimicrobial agents, especially from plants. The aims of this project were to examine the antimicrobial properties of essential oils distilled from Australian-grown Ocimum tenuiflorum (Tulsi), to quantify the volatile components present in flower spikes, leaves and the essential oil, and to investigate the compounds responsible for any activity. Broth micro-dilution was used to determine the minimum inhibitory concentration (MIC) of Tulsi essential oil against selected microbial pathogens. The oils, at concentrations of 4.5 and 2.25% completely inhibited the growth of Staphylococcus aureus (including MRSA) and Escherichia coli, while the same concentrations only partly inhibited the growth of Pseudomonas aeruginosa. Of 54 compounds identified in Tulsi leaves, flower spikes, or essential oil, three are proposed to be responsible for this activity; camphor, eucalyptol and eugenol. Since S. aureus (including MRSA), P. aeruginosa and E. coli are major pathogens causing skin and soft tissue infections, Tulsi essential oil could be a valuable topical antimicrobial agent for management of skin infections caused by these organisms.

  7. Antimicrobial Activity of Tulsi (Ocimum tenuiflorum) Essential Oil and Their Major Constituents against Three Species of Bacteria.

    PubMed

    Yamani, Hanaa A; Pang, Edwin C; Mantri, Nitin; Deighton, Margaret A

    2016-01-01

    In recent years scientists worldwide have realized that the effective life span of any antimicrobial agent is limited, due to increasing development of resistance by microorganisms. Consequently, numerous studies have been conducted to find new alternative sources of antimicrobial agents, especially from plants. The aims of this project were to examine the antimicrobial properties of essential oils distilled from Australian-grown Ocimum tenuiflorum (Tulsi), to quantify the volatile components present in flower spikes, leaves and the essential oil, and to investigate the compounds responsible for any activity. Broth micro-dilution was used to determine the minimum inhibitory concentration (MIC) of Tulsi essential oil against selected microbial pathogens. The oils, at concentrations of 4.5 and 2.25% completely inhibited the growth of Staphylococcus aureus (including MRSA) and Escherichia coli, while the same concentrations only partly inhibited the growth of Pseudomonas aeruginosa. Of 54 compounds identified in Tulsi leaves, flower spikes, or essential oil, three are proposed to be responsible for this activity; camphor, eucalyptol and eugenol. Since S. aureus (including MRSA), P. aeruginosa and E. coli are major pathogens causing skin and soft tissue infections, Tulsi essential oil could be a valuable topical antimicrobial agent for management of skin infections caused by these organisms. PMID:27242708

  8. Antimicrobial Activity of Tulsi (Ocimum tenuiflorum) Essential Oil and Their Major Constituents against Three Species of Bacteria

    PubMed Central

    Yamani, Hanaa A.; Pang, Edwin C.; Mantri, Nitin; Deighton, Margaret A.

    2016-01-01

    In recent years scientists worldwide have realized that the effective life span of any antimicrobial agent is limited, due to increasing development of resistance by microorganisms. Consequently, numerous studies have been conducted to find new alternative sources of antimicrobial agents, especially from plants. The aims of this project were to examine the antimicrobial properties of essential oils distilled from Australian-grown Ocimum tenuiflorum (Tulsi), to quantify the volatile components present in flower spikes, leaves and the essential oil, and to investigate the compounds responsible for any activity. Broth micro-dilution was used to determine the minimum inhibitory concentration (MIC) of Tulsi essential oil against selected microbial pathogens. The oils, at concentrations of 4.5 and 2.25% completely inhibited the growth of Staphylococcus aureus (including MRSA) and Escherichia coli, while the same concentrations only partly inhibited the growth of Pseudomonas aeruginosa. Of 54 compounds identified in Tulsi leaves, flower spikes, or essential oil, three are proposed to be responsible for this activity; camphor, eucalyptol and eugenol. Since S. aureus (including MRSA), P. aeruginosa and E. coli are major pathogens causing skin and soft tissue infections, Tulsi essential oil could be a valuable topical antimicrobial agent for management of skin infections caused by these organisms. PMID:27242708

  9. Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

    PubMed Central

    Li, Dongxia; Ni, Kuikui; Pang, Huili; Wang, Yanping; Cai, Yimin; Jin, Qingsheng

    2015-01-01

    A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC 43971T, Micrococcus luteus ATCC 4698T and Escherichia coli ATCC 11775T were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at 100°C), but the antimicrobial activity was eliminated after treatment at 121°C for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory. PMID:25924957

  10. Identification and antimicrobial activity detection of lactic Acid bacteria isolated from corn stover silage.

    PubMed

    Li, Dongxia; Ni, Kuikui; Pang, Huili; Wang, Yanping; Cai, Yimin; Jin, Qingsheng

    2015-05-01

    A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC 43971(T), Micrococcus luteus ATCC 4698(T) and Escherichia coli ATCC 11775(T) were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at 100°C), but the antimicrobial activity was eliminated after treatment at 121°C for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory.

  11. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments.

    PubMed

    Durán, Nelson; Nakazato, Gerson; Seabra, Amedea B

    2016-08-01

    The antimicrobial impact of biogenic-synthesized silver-based nanoparticles has been the focus of increasing interest. As the antimicrobial activity of nanoparticles is highly dependent on their size and surface, the complete and adequate characterization of the nanoparticle is important. This review discusses the characterization and antimicrobial activity of biogenic synthesized silver nanoparticles and silver chloride nanoparticles. By revising the literature, there is confusion in the characterization of these two silver-based nanoparticles, which consequently affects the conclusion regarding to their antimicrobial activities. This review critically analyzes recent publications on the synthesis of biogenic silver nanoparticles and silver chloride nanoparticles by attempting to correlate the characterization of the nanoparticles with their antimicrobial activity. It was difficult to correlate the size of biogenic nanoparticles with their antimicrobial activity, since different techniques are employed for the characterization. Biogenic synthesized silver-based nanoparticles are not completely characterized, particularly the nature of capped proteins covering the nanomaterials. Moreover, the antimicrobial activity of theses nanoparticles is assayed by using different protocols and strains, which difficult the comparison among the published papers. It is important to select some bacteria as standards, by following international foundations (Pharmaceutical Microbiology Manual) and use the minimal inhibitory concentration by broth microdilution assays from Clinical and Laboratory Standards Institute, which is the most common assay used in antibiotic ones. Therefore, we conclude that to have relevant results on antimicrobial effects of biogenic silver-based nanoparticles, it is necessary to have a complete and adequate characterization of these nanostructures, followed by standard methodology in microbiology protocols. PMID:27289481

  12. Immunomodulatory and Antimicrobial Activity of Babassu Mesocarp Improves the Survival in Lethal Sepsis

    PubMed Central

    Prado, Dayanna S.; Barcellos, Priscila S.; Gonçalves, Azizedite G.

    2016-01-01

    Attalea speciosa syn Orbignya phalerata Mart. (babassu) has been used in the treatment of inflammatory and infectious diseases. Aim of the study. To investigate the antimicrobial and immunological activity of babassu mesocarp extract (EE). Material and Methods. The in vitro antimicrobial activity was evaluated by disk diffusion assay and by determination of the minimum inhibitory concentration (MIC) to Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA). The flavonoids and phenolic acids content were determined by chromatography. The in vivo assays were performed in Swiss mice submitted to sepsis by cecal ligation and puncture (CLP). The mice received EE subcutaneously (125 or 250 mg/Kg), 6 hours after the CLP. The number of lymphoid cells was quantified and the cytokines production was determined by ELISA after 12 h. Results. EE was effective as antimicrobial to E. faecalis, S. aureus, and MRSA. EE is rich in phenolic acids, a class of compounds with antimicrobial and immunological activity. An increased survival can be observed in those groups, possibly due to a significant inhibition of TNF-α and IL-6. Conclusions. The EE showed specific antimicrobial activity in vitro and an important antiseptic effect in vivo possibly due to the antimicrobial and immunomodulatory activity.

  13. A novel direct contact method for the assessment of the antimicrobial activity of dental cements.

    PubMed

    Costa, E M; Silva, S; Madureira, A R; Cardelle-Cobas, A; Tavaria, F K; Pintado, M M

    2013-06-01

    Dental cements are a crucial part of the odontological treatment, however, due to the hazardous nature and reduced biological efficiency of some of the used materials, newer and safer alternatives are needed, particularly so those possessing higher antimicrobial activity than their traditional counterparts. The evaluation of the antimicrobial properties of solid and semi-solid antimicrobials, such as dental cements and gels, is challenging, particularly due to the low sensitivity of the current methods. Thus, the main aim of this study was the evaluation of the antimicrobial activity of a novel chitosan containing dental cement while simultaneous assessing/validating a new, more efficient, method for the evaluation of the antimicrobial activity of solid and gel like materials. The results obtained showed that the proposed method exhibited a higher sensitivity than the standard 96 well microtiter assay and allowed the determination of bactericidal activity. Additionally, it is interesting to note that the chitosan containing cement, which presented higher antimicrobial activity than the traditional zinc oxide/eugenol mix, was capable of inducing a viable count reduction above 5 log of CFU for all of the studied microorganisms.

  14. Immunomodulatory and Antimicrobial Activity of Babassu Mesocarp Improves the Survival in Lethal Sepsis

    PubMed Central

    Prado, Dayanna S.; Barcellos, Priscila S.; Gonçalves, Azizedite G.

    2016-01-01

    Attalea speciosa syn Orbignya phalerata Mart. (babassu) has been used in the treatment of inflammatory and infectious diseases. Aim of the study. To investigate the antimicrobial and immunological activity of babassu mesocarp extract (EE). Material and Methods. The in vitro antimicrobial activity was evaluated by disk diffusion assay and by determination of the minimum inhibitory concentration (MIC) to Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA). The flavonoids and phenolic acids content were determined by chromatography. The in vivo assays were performed in Swiss mice submitted to sepsis by cecal ligation and puncture (CLP). The mice received EE subcutaneously (125 or 250 mg/Kg), 6 hours after the CLP. The number of lymphoid cells was quantified and the cytokines production was determined by ELISA after 12 h. Results. EE was effective as antimicrobial to E. faecalis, S. aureus, and MRSA. EE is rich in phenolic acids, a class of compounds with antimicrobial and immunological activity. An increased survival can be observed in those groups, possibly due to a significant inhibition of TNF-α and IL-6. Conclusions. The EE showed specific antimicrobial activity in vitro and an important antiseptic effect in vivo possibly due to the antimicrobial and immunomodulatory activity. PMID:27630733

  15. Application of Artificial Intelligence to the Prediction of the Antimicrobial Activity of Essential Oils.

    PubMed

    Daynac, Mathieu; Cortes-Cabrera, Alvaro; Prieto, Jose M

    2015-01-01

    Essential oils (EOs) are vastly used as natural antibiotics in Complementary and Alternative Medicine (CAM). Their intrinsic chemical variability and synergisms/antagonisms between its components make difficult to ensure consistent effects through different batches. Our aim is to evaluate the use of artificial neural networks (ANNs) for the prediction of their antimicrobial activity. Methods. The chemical composition and antimicrobial activity of 49 EOs, extracts, and/or fractions was extracted from NCCLS compliant works. The fast artificial neural networks (FANN) software was used and the output data reflected the antimicrobial activity of these EOs against four common pathogens: Staphylococcus aureus, Escherichia coli, Candida albicans, and Clostridium perfringens as measured by standardised disk diffusion assays. Results. ANNs were able to predict >70% of the antimicrobial activities within a 10 mm maximum error range. Similarly, ANNs were able to predict 2 or 3 different bioactivities at the same time. The accuracy of the prediction was only limited by the inherent errors of the popular antimicrobial disk susceptibility test and the nature of the pathogens. Conclusions. ANNs can be reliable, fast, and cheap tools for the prediction of the antimicrobial activity of EOs thus improving their use in CAM.

  16. Immunomodulatory and Antimicrobial Activity of Babassu Mesocarp Improves the Survival in Lethal Sepsis.

    PubMed

    Barroqueiro, Elizabeth S B; Prado, Dayanna S; Barcellos, Priscila S; Silva, Tonicley A; Pereira, Wanderson S; Silva, Lucilene A; Maciel, Márcia C G; Barroqueiro, Rodrigo B; Nascimento, Flávia R F; Gonçalves, Azizedite G; Guerra, Rosane N M

    2016-01-01

    Attalea speciosa syn Orbignya phalerata Mart. (babassu) has been used in the treatment of inflammatory and infectious diseases. Aim of the study. To investigate the antimicrobial and immunological activity of babassu mesocarp extract (EE). Material and Methods. The in vitro antimicrobial activity was evaluated by disk diffusion assay and by determination of the minimum inhibitory concentration (MIC) to Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA). The flavonoids and phenolic acids content were determined by chromatography. The in vivo assays were performed in Swiss mice submitted to sepsis by cecal ligation and puncture (CLP). The mice received EE subcutaneously (125 or 250 mg/Kg), 6 hours after the CLP. The number of lymphoid cells was quantified and the cytokines production was determined by ELISA after 12 h. Results. EE was effective as antimicrobial to E. faecalis, S. aureus, and MRSA. EE is rich in phenolic acids, a class of compounds with antimicrobial and immunological activity. An increased survival can be observed in those groups, possibly due to a significant inhibition of TNF-α and IL-6. Conclusions. The EE showed specific antimicrobial activity in vitro and an important antiseptic effect in vivo possibly due to the antimicrobial and immunomodulatory activity. PMID:27630733

  17. Application of Artificial Intelligence to the Prediction of the Antimicrobial Activity of Essential Oils

    PubMed Central

    Daynac, Mathieu; Cortes-Cabrera, Alvaro; Prieto, Jose M.

    2015-01-01

    Essential oils (EOs) are vastly used as natural antibiotics in Complementary and Alternative Medicine (CAM). Their intrinsic chemical variability and synergisms/antagonisms between its components make difficult to ensure consistent effects through different batches. Our aim is to evaluate the use of artificial neural networks (ANNs) for the prediction of their antimicrobial activity. Methods. The chemical composition and antimicrobial activity of 49 EOs, extracts, and/or fractions was extracted from NCCLS compliant works. The fast artificial neural networks (FANN) software was used and the output data reflected the antimicrobial activity of these EOs against four common pathogens: Staphylococcus aureus, Escherichia coli, Candida albicans, and Clostridium perfringens as measured by standardised disk diffusion assays. Results. ANNs were able to predict >70% of the antimicrobial activities within a 10 mm maximum error range. Similarly, ANNs were able to predict 2 or 3 different bioactivities at the same time. The accuracy of the prediction was only limited by the inherent errors of the popular antimicrobial disk susceptibility test and the nature of the pathogens. Conclusions. ANNs can be reliable, fast, and cheap tools for the prediction of the antimicrobial activity of EOs thus improving their use in CAM. PMID:26457111

  18. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils.

    PubMed

    Turner, J; Cho, Y; Dinh, N N; Waring, A J; Lehrer, R I

    1998-09-01

    Human neutrophils contain two structurally distinct types of antimicrobial peptides, beta-sheet defensins (HNP-1 to HNP-4) and the alpha-helical peptide LL-37. We used radial diffusion assays and an improved National Committee for Clinical Laboratory Standards-type broth microdilution assay to compare the antimicrobial properties of LL-37, HNP-1, and protegrin (PG-1). Although generally less potent than PG-1, LL-37 showed considerable activity (MIC, <10 microgram/ml) against Pseudomonas aeruginosa, Salmonella typhimurium, Escherichia coli, Listeria monocytogenes, Staphylococcus epidermidis, Staphylococcus aureus, and vancomycin-resistant enterococci, even in media that contained 100 mM NaCl. Certain organisms (methicillin-resistant S. aureus, Proteus mirabilis, and Candida albicans) were resistant to LL-37 in media that contained 100 mM NaCl but were susceptible in low-salt media. Burkholderia cepacia was resistant to LL-37, PG-1, and HNP-1 in low- or high-salt media. LL-37 caused outer and inner membrane permeabilization of E. coli ML-35p. Chromogenic Limulus assays revealed that LL-37 bound to E. coli O111:B4 lipopolysaccharide (LPS) with a high affinity and that this binding showed positive cooperativity (Hill coefficient = 2.02). Circular dichroism spectrometry disclosed that LL-37 underwent conformational change in the presence of lipid A, transitioning from a random coil to an alpha-helical structure. The broad-spectrum antimicrobial properties of LL-37, its presence in neutrophils, and its inducibility in keratinocytes all suggest that this peptide and its precursor (hCAP-18) may protect skin and other tissues from bacterial intrusions and LPS-induced toxicity. The potent activity of LL-37 against P. aeruginosa, including mucoid and antibiotic-resistant strains, suggests that it or related molecules might have utility as topical bronchopulmonary microbicides in cystic fibrosis.

  19. Antimicrobial Activity of Selected Phytochemicals against Escherichia coli and Staphylococcus aureus and Their Biofilms

    PubMed Central

    Monte, Joana; Abreu, Ana C.; Borges, Anabela; Simões, Lúcia Chaves; Simões, Manuel

    2014-01-01

    Abstract Bacteria can be resistant to multiple antibiotics and we are fast approaching a time when antibiotics will not work on some bacterial infections. New antimicrobial compounds are urgently necessary. Plants are considered the greatest source to obtain new antimicrobials. This study aimed to assess the antimicrobial activity of four phytochemicals—7-hydroxycoumarin (7-HC), indole-3-carbinol (I3C), salicylic acid (SA) and saponin (SP)—against Escherichia coli and Staphylococcus aureus, either as planktonic cells or as biofilms. These bacteria are commonly found in hospital-acquired infections. Some aspects on the phytochemicals mode of action, including surface charge, hydrophobicity, motility and quorum-sensing inhibition (QSI) were investigated. In addition, the phytochemicals were combined with three antibiotics in order to assess any synergistic effect. 7-HC and I3C were the most effective phytochemicals against E. coli and S. aureus. Both phytochemicals affected the motility and quorum-sensing (QS) activity, which means that they can play an important role in the interference of cell-cell interactions and in biofilm formation and control. However, total biofilm removal was not achieved with any of the selected phytochemicals. Dual combinations between tetracycline (TET), erythromycin (ERY) and ciprofloxacin (CIP) and I3C produced synergistic effects against S. aureus resistant strains. The overall results demonstrates the potential of phytochemicals to control the growth of E. coli and S. aureus in both planktonic and biofilm states. In addition, the phytochemicals demonstrated the potential to act synergistically with antibiotics, contributing to the recycling of old antibiotics that were once considered ineffective due to resistance problems. PMID:25437810

  20. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils.

    PubMed

    Turner, J; Cho, Y; Dinh, N N; Waring, A J; Lehrer, R I

    1998-09-01

    Human neutrophils contain two structurally distinct types of antimicrobial peptides, beta-sheet defensins (HNP-1 to HNP-4) and the alpha-helical peptide LL-37. We used radial diffusion assays and an improved National Committee for Clinical Laboratory Standards-type broth microdilution assay to compare the antimicrobial properties of LL-37, HNP-1, and protegrin (PG-1). Although generally less potent than PG-1, LL-37 showed considerable activity (MIC, <10 microgram/ml) against Pseudomonas aeruginosa, Salmonella typhimurium, Escherichia coli, Listeria monocytogenes, Staphylococcus epidermidis, Staphylococcus aureus, and vancomycin-resistant enterococci, even in media that contained 100 mM NaCl. Certain organisms (methicillin-resistant S. aureus, Proteus mirabilis, and Candida albicans) were resistant to LL-37 in media that contained 100 mM NaCl but were susceptible in low-salt media. Burkholderia cepacia was resistant to LL-37, PG-1, and HNP-1 in low- or high-salt media. LL-37 caused outer and inner membrane permeabilization of E. coli ML-35p. Chromogenic Limulus assays revealed that LL-37 bound to E. coli O111:B4 lipopolysaccharide (LPS) with a high affinity and that this binding showed positive cooperativity (Hill coefficient = 2.02). Circular dichroism spectrometry disclosed that LL-37 underwent conformational change in the presence of lipid A, transitioning from a random coil to an alpha-helical structure. The broad-spectrum antimicrobial properties of LL-37, its presence in neutrophils, and its inducibility in keratinocytes all suggest that this peptide and its precursor (hCAP-18) may protect skin and other tissues from bacterial intrusions and LPS-induced toxicity. The potent activity of LL-37 against P. aeruginosa, including mucoid and antibiotic-resistant strains, suggests that it or related molecules might have utility as topical bronchopulmonary microbicides in cystic fibrosis. PMID:9736536

  1. Quantification, antioxidant and antimicrobial activity of phenolics isolated from different extracts of Capsicum frutescens (Pimenta Malagueta).

    PubMed

    Nascimento, Patrícia L A; Nascimento, Talita C E S; Ramos, Natália S M; Silva, Girliane R; Gomes, José Erick Galindo; Falcão, Rosângela E A; Moreira, Keila A; Porto, Ana L F; Silva, Tania M S

    2014-04-24

    This paper presents the quantification, antioxidant and antimicrobial activity of capsaicin, dihydrocapsaicin and the flavonoid chrysoeriol isolated from different extracts (hexane and acetonitrile extracts from whole fruit, peel and seed) of Capsicum frutescens (pimenta malagueta). The acetonitrile extract of the seeds, peel and whole fruits contained capsaicin as a major component, followed in abundance by dihydrocapsaicin and chrysoeriol. The antimicrobial activity of the isolated compounds against seven microorganisms showed chrysoeriol was the most active compound. In the antioxidant test, the acetonitrile extract from the whole fruit showed the highest activity. The antioxidant activity of pimenta malagueta may be correlated with its phenolic content, principally with the most active compound, capsaicin.

  2. Antimicrobial activity of ibuprofen: new perspectives on an "Old" non-antibiotic drug.

    PubMed

    Obad, Jelena; Šušković, Jagoda; Kos, Blaženka

    2015-04-25

    Pharmaceutical industry has been encountering antimicrobial activity of non-antibiotics during suitability tests carried out prior to routine pharmacopoeial microbiological purity analysis of finished dosage forms. These properties are usually ignored or perceived as a nuisance during pharmaceutical analysis. The aim of this study was: (i) to compare the available data to our method suitability test results carried out on products containing ibuprofen, i.e. to demonstrate that method suitability can be a valuable tool in identifying new antimicrobials, (ii) to demonstrate the antimicrobial activity of ibuprofen and ibuprofen lysine. Microbiological purity method suitability testing was carried out according to European Pharmacopoeia (EP), chapters 2.6.12. and 2.6.13. Antimicrobial activity of ibuprofen and ibuprofen lysine was demonstrated by a disk diffusion method, a modification of the European Committee for Antimicrobial Susceptibility Testing method (EUCAST), against test microorganisms recommended in the EP. It was confirmed that ibuprofen may be responsible for the broad spectrum of antimicrobial activity of the tested products, and that method suitability tests according to the EP can indeed be exploited by the scientific community in setting guidelines towards future research of new antimicrobials. In the disk diffusion assay, inhibition zones were obtained with more than 62.5 μg and 250 μg for Staphylococcus aureus, 125 μg and 250 μg for Bacillus subtilis, 31.3 μg and 125 μg for Candidaalbicans, 31.3 μg and 62.5 μg for Aspergillusbrasiliensis, of ibuprofen/disk, and ibuprofen lysine/disk, respectively. For Escherichiacoli, Pseudomonasaeruginosa and Salmonellatyphimurium inhibition zones were not obtained. Antimicrobial activity of ibuprofen is considered merely as a side effect, and it is not mentioned in the patient information leaflets of ibuprofen drugs. As such, for the patient, it could represent an advantage, but, it could also introduce

  3. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii.

    PubMed

    Feng, Xiaorong; Sambanthamoorthy, Karthik; Palys, Thomas; Paranavitana, Chrysanthi

    2013-11-01

    Acinetobacter baumannii infections are difficult to treat due to multidrug resistance. Biofilm formation by A. baumannii is an additional factor in its ability to resist antimicrobial therapy. The antibacterial and antibiofilm activities of the human antimicrobial peptide LL-37 and its fragments KS-30, KR-20 and KR-12 against clinical isolates of multidrug-resistant (MDR) A. baumannii were evaluated. The minimal inhibitory concentration (MIC) of LL-37 against MDR A. baumannii isolates ranged from 16 to 32 μg/mL. The MIC of KS-30 fragment varied from 8.0 to 16 μg/mL and the KR-20 fragment MIC ranged from 16 to 64 μg/mL. LL-37 and KS-30 fragment exhibited 100% bactericidal activity against five A. baumannii strains, including four MDR clinical isolates, within 30 min at concentrations of 0.25-1 μg/mL. By 0.5h, the fragments KR-20 and KR-12 eliminated all tested strains at 8 and 64 μg/mL respectively. LL-37 and its fragments displayed anti-adherence activities between 32-128 μg/mL. A minimum biofilm eradication concentration (MBEC) biofilm assay demonstrated that LL-37 inhibited and dispersed A. baumannii biofilms at 32 μg/mL respectively. Truncated fragments of LL-37 inhibited biofilms at concentrations of 64-128 μg/mL. KS-30, the truncated variant of LL-37, effectively dispersed biofilms at 64 μg/mL. At 24h, no detectable toxicity was observed at the efficacious doses when cytotoxicity assays were performed. Thus, LL-37, KS-30 and KR-20 exhibit significant antimicrobial activity against MDR A. baumannii. The prevention of biofilm formation in vitro by LL-37, KS-30 and KR-20 adds significance to their efficacy. These peptides can be potential therapeutics against MDR A. baumannii infections.

  4. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin

    PubMed Central

    Galdiero, Emilia; Siciliano, Antonietta; Maselli, Valeria; Gesuele, Renato; Guida, Marco; Fulgione, Domenico; Galdiero, Stefania; Lombardi, Lucia; Falanga, Annarita

    2016-01-01

    This study attempts to evaluate the antimicrobial activity and the ecotoxicity of quantum dots (QDs) alone and coated with indolicidin. To meet this objective, we tested the level of antimicrobial activity on Gram-positive and Gram-negative bacteria, and we designed an ecotoxicological battery of test systems and indicators able to detect different effects using a variety of end points. The antibacterial activity was analyzed against Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 1025), Escherichia coli (ATCC 11229), and Klebsiella pneumoniae (ATCC 10031), and the results showed an improved germicidal action of QDs-Ind. Toxicity studies on Daphnia magna indicated a decrease in toxicity for QDs-Ind compared to QDs alone, lack of bioluminescence inhibition on Vibrio fisheri, and no mutations in Salmonella typhimurium TA 100. The comet assay and oxidative stress experiments performed on D. magna showed a genotoxic and an oxidative damage with a dose–response trend. Indolicidin retained its activity when bound to QDs. We observed an enhanced activity for QDs-Ind. The presence of indolicidin on the surface of QDs was able to decrease its QDs toxicity. PMID:27616887

  5. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin

    PubMed Central

    Galdiero, Emilia; Siciliano, Antonietta; Maselli, Valeria; Gesuele, Renato; Guida, Marco; Fulgione, Domenico; Galdiero, Stefania; Lombardi, Lucia; Falanga, Annarita

    2016-01-01

    This study attempts to evaluate the antimicrobial activity and the ecotoxicity of quantum dots (QDs) alone and coated with indolicidin. To meet this objective, we tested the level of antimicrobial activity on Gram-positive and Gram-negative bacteria, and we designed an ecotoxicological battery of test systems and indicators able to detect different effects using a variety of end points. The antibacterial activity was analyzed against Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 1025), Escherichia coli (ATCC 11229), and Klebsiella pneumoniae (ATCC 10031), and the results showed an improved germicidal action of QDs-Ind. Toxicity studies on Daphnia magna indicated a decrease in toxicity for QDs-Ind compared to QDs alone, lack of bioluminescence inhibition on Vibrio fisheri, and no mutations in Salmonella typhimurium TA 100. The comet assay and oxidative stress experiments performed on D. magna showed a genotoxic and an oxidative damage with a dose–response trend. Indolicidin retained its activity when bound to QDs. We observed an enhanced activity for QDs-Ind. The presence of indolicidin on the surface of QDs was able to decrease its QDs toxicity.

  6. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin.

    PubMed

    Galdiero, Emilia; Siciliano, Antonietta; Maselli, Valeria; Gesuele, Renato; Guida, Marco; Fulgione, Domenico; Galdiero, Stefania; Lombardi, Lucia; Falanga, Annarita

    2016-01-01

    This study attempts to evaluate the antimicrobial activity and the ecotoxicity of quantum dots (QDs) alone and coated with indolicidin. To meet this objective, we tested the level of antimicrobial activity on Gram-positive and Gram-negative bacteria, and we designed an ecotoxicological battery of test systems and indicators able to detect different effects using a variety of end points. The antibacterial activity was analyzed against Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 1025), Escherichia coli (ATCC 11229), and Klebsiella pneumoniae (ATCC 10031), and the results showed an improved germicidal action of QDs-Ind. Toxicity studies on Daphnia magna indicated a decrease in toxicity for QDs-Ind compared to QDs alone, lack of bioluminescence inhibition on Vibrio fisheri, and no mutations in Salmonella typhimurium TA 100. The comet assay and oxidative stress experiments performed on D. magna showed a genotoxic and an oxidative damage with a dose-response trend. Indolicidin retained its activity when bound to QDs. We observed an enhanced activity for QDs-Ind. The presence of indolicidin on the surface of QDs was able to decrease its QDs toxicity. PMID:27616887

  7. Review of antimicrobial and antioxidative activities of chitosans in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    shellfish, arises from the fact that they are reported to exhibit numerous health-related beneficial effects, including strong antibiotic and antioxidative activities in foods. The extraordinary interest in the chemistry and application in agriculture, horticulture, environmental science, industry,...

  8. Antioxidant and Antimicrobial activity of Pedicularis sibthorpii Boiss. And Pedicularis wilhelmsiana Fisch ex.

    PubMed Central

    khodaie, Laleh; Delazar, Abbas; Lotfipour, Farzaneh; Nazemiyeh, Hossein

    2012-01-01

    Purpose: This research paper presents antioxidant and antimicrobial activities of Pedicularis sibthorpii and Pedicularis wilhelmsiana which grow in Azerbaijan/Iran with claimed a lot of therapeutic effects. Methods: DPPH assay and agar well diffusion method were carried out to determine antioxidant and antimicrobial activities respectively. Results: Methanolic extract showed better antioxidant activity compared to other crude extracts (n-hexane and dichloromethane). Methanolic extracts of both Pedicularis sibthorpii and Pedicularis wilhelmsiana were found to have antibacterial activity especially against gram positive strains of S. ureus, S.epidermidis. No antifungal activity was observed in the tested extracts. Conclusion: Existence of some phenolic compounds in methanolic extracts, such as phenylethanoids and flavonoids (found in other species of Pedicularis), which cause both antioxidant and antibacterial activities, is probable. Antimicrobial and antioxidant activity of the methanolic extracts supports further studies related to phytochemical investigation and bioassay of different fractions to isolate pure compounds of plants. PMID:24312775

  9. Analysis of essential oils from Voacanga africana seeds at different hydrodistillation extraction stages: chemical composition, antioxidant activity and antimicrobial activity.

    PubMed

    Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na

    2015-01-01

    In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.

  10. Heat stable antimicrobial activity of Allium ascalonicum against bacteria and fungi.

    PubMed

    Amin, M; Kapadnis, B P

    2005-08-01

    To study antimicrobial activity of shallot in comparison with that of garlic and onion against 23 strains of fungi and bacteria, water extracts of garlic, shallot and onion bulbs were prepared. Each extract was studied in different forms for their antimicrobial activity viz., fresh extract, dry extract and autoclaved extract. Minimal inhibitory concentration and minimal lethal concentrations of these extracts were determined against all organisms by broth dilution susceptibility test. Fresh extract of garlic showed greater antimicrobial activity as compared to similar extracts of onion and shallot. However, dried and autoclaved extracts of shallot showed more activity than similar extracts of onion and garlic. Fungi were more sensitive to shallot extract than bacteria. Amongst bacteria, B. cereus was most sensitive (MIC=5 mg ml(-1)). The lowest minimum bactericidal concentration of shallot extract amongst bacteria tested was 5 mg ml(-1) for B. cereus. Amongst fungi, Aureobasidium pullulans and Microsporum gypseum were most sensitive (MIC= 0.15 mg ml(-1)). The lowest minimum lethal concentration was 2.5 mg ml(-1) for Microsporum gypseum and Trichophyton mentagrophytes. It was therefore, expected that the antimicrobial principle of shallot was different than the antimicrobial compounds of onion and garlic. In addition, the antimicrobial component of the shallot extract was stable at 121 degrees C.

  11. Design, recombinant expression, and antibacterial activity of the cecropins-melittin hybrid antimicrobial peptides.

    PubMed

    Cao, Yu; Yu, Rong Qing; Liu, Yi; Zhou, Huo Xiang; Song, Ling Ling; Cao, Yi; Qiao, Dai Rong

    2010-09-01

    In order to evaluate their antibacterial activities and toxicities, the cecropins-melittin hybrid antimicrobial peptide, CA(1-7)-M(4-11) (CAM) and CB(1-7)-M(4-11) (CBM), were designed by APD2 database. The recombinant hybrid antimicrobial peptides were successfully expressed and purified in Pichia pastoris. Antimicrobial activity assay showed that both of the two hybrid antimicrobial peptides had strong antibacterial abilities against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Bacillus subtilis, Bacillus thuringiensis, and Salmonella derby. The potency of CAM and CBM to E. coli 25922 were 0.862 and 0.849, respectively, slightly lower than Amp's 0.957. The hemolytic assays indicated CAM and CBM had no hemolytic in vivo and in vitro, and so they had a good application prospect. PMID:20111863

  12. Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity.

    PubMed

    Wang, Chao; Kim, Yeon Ju; Singh, Priyanka; Mathiyalagan, Ramya; Jin, Yan; Yang, Deok Chun

    2016-06-01

    The synthesis of silver nanoparticles (AgNPs) by microorganisms is an area attracting growing interest in nanobiotechnology, due to the applications of these nanoparticles in various products including cosmetics and biosensors, and in the biomedical, clinical, and bioimaging fields as well. Various microorganisms have been found to be able to synthesize AgNPs when silver salts are supplied in the reaction system. The main objectives of this study were to evaluate the efficiency of synthesis of AgNPs by the strain Bacillus methylotrophicus DC3, isolated from the soil of Korean ginseng, a traditionally known oriental medicinal plant in Korea. The AgNPs showed maximum absorbance at 416 nm, when assayed by ultraviolet-visible spectroscopy (UV-vis). The field emission transmission electron micrograph (FE-TEM) results showed that the particles were spherical and 10-30 nm in size. In addition, the product was also characterized by energy dispersive X-ray spectroscopy (EDX), which displayed a 3 keV peak corresponding to the silver nanocrystal. Elemental mapping results also confirmed the presence of silver elements in the electron micrograph region. Furthermore, the AgNPs demonstrated antimicrobial activity against various pathogenic microorganisms such as Candida albicans, Salmonella enterica, Escherichia coli, and Vibrio parahaemolyticus, with enhanced antimicrobial activity being exhibited against C. albicans. Therefore, the current study describes the simple, efficient, and green method of synthesis of AgNPs by B. methylotrophicus DC3. PMID:25749281

  13. Chemical composition and antimicrobial activities of the essential oils from three ecotypes of Zataria multiflora

    PubMed Central

    Zomorodian, K.; Saharkhiz, M. J.; Rahimi, M. J.; Bandegi, A.; Shekarkhar, G.; Bandegani, A.; Pakshir, K.; Bazargani, A.

    2011-01-01

    Background: Zataria multiflora Boiss. is a traditional and popular spice in Iran. The effects of 3 ecotypes (ECTPs) of Z. multiflora essential oils (EOs) against most common causes of food-borne and nosocomial infections were evaluated. Materials and Methods: The antimicrobial activities of the EOs were examined by broth microdilution method as recommended by the Clinical and Laboratory Standards Institute (CLSI). The chemical compositions of the EOs from 3 ECTPs of Z. multiflora have been analyzed by gas chromatography–mass spectrometry. Results: Analysis of the EOs indicated that 3 chemotypes were present in Z. multiflora, including carvacrol, thymol-carvacrol, and linalool, whereas previous studies have only found carvacrol and thymol. Inhibition studies showed that the tested EOs entirely inhibited the growth of yeasts at concentrations of less than 1 μL/mL. Moreover, the oils exhibited significant bacteriostatic and bactericidal activities against Gram-positive and Gram-negative bacteria at concentrations ranging from 0.12 to 8 μL/mL. Conclusion: These results suggest that the EOs from Z. multiflora should be investigated further for possible use in antimicrobial products and food preservatives. PMID:21472080

  14. [Resistance to antimicrobial agents, hemolytic activity and plasmids in Aeromonas species].

    PubMed

    Morita, K; Watanabe, N; Kanamori, M

    1990-06-01

    A total of 174 Aeromonas isolates consisting of 100 strains from patients with diarrhea being mainly overseas travellers nd healthy subjects, and 74 strains from environmental sources including foods, fish, fresh water, sea water and river soil collected in the area of Tokyo Metropolis and Kanagawa Prefecture was examined for the antimicrobial resistance, presence of plasmids and hemolytic activity. Almost all the isolates (99.4%) were resistant to aminobenzyl penicillin. The isolation frequency of chloramphenicol- or tetracycline-resistant strain was low. Most environmental isolates of A. hydrophila were resistant to multiple antimicrobial agents. Thirty-seven percent of environmental isolates and 39% of human fecal ones carried plasmids. In environmental isolates, seven A. hydrophila and three A. sobria strains carried 63- to 150-kilobase pair (kb) conjugative R plasmids. Two A. hydrophila strains from both the healthy subject and domestic case with diarrhea carried 58- to 90-kb conjugative R plasmids, respectively. None of the isolates from the feces of overseas traveller's diarrhea carried the plasmid. Irrespective of the sources. A. hydrophila showed the highest hemolytic activity among three Aeromonas species. Eighty percent or more of A. hydrophila isolates were of hemolysin positive. The hemolytic titer of A. hydrophila strains from human feces was higher than that of the strains from environmental sources. PMID:2401817

  15. Antimicrobial activity of tigecycline alone or in combination with rifampin against Staphylococcus epidermidis in biofilm.

    PubMed

    Szczuka, Ewa; Kaznowski, Adam

    2014-07-01

    Staphylococcus epidermidis is a commensal inhabitant of the healthy human skin, but in the recent years, it has been recognized as a nosocomial pathogen especially in immunocompromised patients. The pathogenesis of S. epidermidis is thought to be based on its capacity to form biofilms on the surface of medical devices, where bacterial cells may persist, protected from host defence and antimicrobial agents. Rifampin has been shown to be one of the most active antimicrobial agents in the eradication of the staphylococcal biofilm. However, this antibiotic should not be used in monotherapy. Therefore, one of the objectives of our research was to study the efficacy of the tigecycline/rifampin combination against methicillin-resistant S. epidermidis embedded in biofilms. Of the 80 clinically significant S. epidermidis isolates, 75 strains possess the ability to form a biofilm. These bacteria formed the biofilm via ica-dependent mechanisms. However, other biofilm-associated genes, including aap (encoding accumulation-associated protein) and bhp (coding cell wall-associated protein), were present in 85 and 29 % of isolates, respectively. The biofilm structures of S. epidermidis strains were also analyzed in confocal laser scanning microscopy (CLSM) and the obtained image demonstrated differences in their architecture. In vitro studies showed that the MIC value for tigecycline against S. epidermidis growing in the biofilm ranged from 0.125 to 2 μg/mL. Tigecycline in combination with rifampin demonstrated higher activity against bacteria embedded in biofilms than tigecycline alone.

  16. Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera.

    PubMed

    Akinsanya, Mushafau Adewale; Goh, Joo Kheng; Lim, Siew Ping; Ting, Adeline Su Yien

    2015-12-01

    Twenty-nine culturable bacterial endophytes were isolated from surface-sterilized tissues (root, stem and leaf) of Aloe vera and molecularly characterized to 13 genera: Pseudomonas, Bacillus, Enterobacter, Pantoea, Chryseobacterium, Sphingobacterium, Aeromonas, Providencia, Cedecea, Klebsiella, Cronobacter, Macrococcus and Shigella. The dominant genera include Bacillus (20.7%), Pseudomonas (20.7%) and Enterobacter (13.8%). The crude and ethyl acetate fractions of the metabolites of six isolates, species of Pseudomonas, Bacillus, Chryseobacterium and Shigella, have broad spectral antimicrobial activities against pathogenic Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella Typhimurium, Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Streptococcus pyogenes and Candida albicans, with inhibition zones ranging from 6.0 ± 0.57 to 16.6 ± 0.57 mm. In addition, 80% of the bacterial endophytes produced 1,1-diphenyl-2-picrylhydrazyl (DPPH) with scavenging properties of over 75% when their crude metabolites were compared with ascorbic acid (92%). In conclusion, this study revealed for the first time the endophytic bacteria communities from A. vera (Pseudomonas hibiscicola, Macrococcus caseolyticus, Enterobacter ludwigii, Bacillus anthracis) that produce bioactive compounds with high DPPH scavenging properties (75-88%) and (Bacillus tequilensis, Pseudomonas entomophila, Chryseobacterium indologenes, Bacillus aerophilus) that produce bioactive compounds with antimicrobial activities against bacterial pathogens. Hence, we suggest further investigation and characterization of their bioactive compounds. PMID:26454221

  17. [Cloning and antimicrobial activity of pigeon avian beta-defensin 5].

    PubMed

    Xin, Shengnan; Zhang, Kexing; Zhang, Mingyue; Han, Zongxi; Shao, Yuhao; Liu, Xiaoli; Liu, Shengwang; Ma, Deying

    2012-11-01

    The objective of the study was to clone avian beta-defensin (AvBD) 5 gene from pigeon bone marrow tissues and liver tissues, to express the recombinant AvBD5 protein in E. coli, and to determine its antimicrobial activity. The mRNA of duck AvBD5 was cloned from pigeon bone marrow tissues and liver tissues by RT-PCR. In addition, phylogenetic relationships between amino acid sequence of the pigeon AvBD5, AvBDs from other avian species, and some mammalian beta-defensin-5 were analyzed. The cDNA of pigeon AvBD5 was sub-cloned into pGEX-6p-1 vector to construct recombinant plasmid pGEX-pigeon AvBD5. The recombinant protein was expressed into E. coli and purified. Antimicrobial activity and physical-chemical stability of the recombinant fusion protein were measured in vitro. The complete nucleotide sequence of both cDNAs contained 201 bp nucleotides, encoding a polypeptide of 66 amino acids. Both beta-defensins have six conserved cysteines. Phylogenetic relationships were analyzed. Both pigeon AvBDs shared the highest amino acid homology (87.9% and 78.8%) with duck AvBD5. So it was named as pigeon AvBD5alpha (bone marrow) and AvBD5beta (liver). Both recombinant plasmids were transformed into E. coli BL21 and the bacteria were induced with Isopropyl beta-D-1-Thiogalactopyranoside (IPTG). After purification, antibacterial activity of the purified was investigated. In addition, effect of ionic strength on the antibacterial activity, and hemolytic recombinant protein activity of the purified recombinant protein were investigated. A 32 kDa protein was highly expressed. Both purified recombinant pigeon AvBD5alpha and AvBD5beta exhibited extensive antimicrobial activities against 12 bacteria, including Gram-positive and Gram-negative. In high salt ions concentrations, antibacterial activity of both recombinant proteins was decreased. In addition, the hemolysis activity of recombinant protein was extremely low.

  18. Gonorrhoea and gonococcal antimicrobial resistance surveillance networks in the WHO European Region, including the independent countries of the former Soviet Union.

    PubMed

    Unemo, Magnus; Ison, Catherine A; Cole, Michelle; Spiteri, Gianfranco; van de Laar, Marita; Khotenashvili, Lali

    2013-12-01

    Antimicrobial resistance (AMR) in Neisseria gonorrhoeae has emerged for essentially all antimicrobials following their introduction into clinical practice. During the latest decade, susceptibility to the last remaining options for antimicrobial monotherapy, the extended-spectrum cephalosporins (ESC), has markedly decreased internationally and treatment failures with these ESCs have been verified. In response to this developing situation, WHO and the European Centre for Disease Prevention and Control (ECDC) have published global and region-specific response plans, respectively. One main component of these action/response plans is to enhance the surveillance of AMR and treatment failures. This paper describes the perspectives from the diverse WHO European Region (53 countries), including the independent countries of the former Soviet Union, regarding gonococcal AMR surveillance networks. The WHO European Region has a high prevalence of resistance to all previously recommended antimicrobials, and most of the first strictly verified treatment failures with cefixime and ceftriaxone were also reported from Europe. In the European Union/European Economic Area (EU/EEA), the European gonococcal antimicrobial surveillance programme (Euro-GASP) funded by the ECDC is running. In 2011, the Euro-GASP included 21/31 (68%) EU/EEA countries, and the programme is further strengthened annually. However, in the non-EU/EEA countries, internationally reported and quality assured gonococcal AMR data are lacking in 87% of the countries and, worryingly, appropriate support for establishment of a GASP is still lacking. Accordingly, national and international support, including political and financial commitment, for gonococcal AMR surveillance in the non-EU/EEA countries of the WHO European Region is essential.

  19. Gonorrhoea and gonococcal antimicrobial resistance surveillance networks in the WHO European Region, including the independent countries of the former Soviet Union.

    PubMed

    Unemo, Magnus; Ison, Catherine A; Cole, Michelle; Spiteri, Gianfranco; van de Laar, Marita; Khotenashvili, Lali

    2013-12-01

    Antimicrobial resistance (AMR) in Neisseria gonorrhoeae has emerged for essentially all antimicrobials following their introduction into clinical practice. During the latest decade, susceptibility to the last remaining options for antimicrobial monotherapy, the extended-spectrum cephalosporins (ESC), has markedly decreased internationally and treatment failures with these ESCs have been verified. In response to this developing situation, WHO and the European Centre for Disease Prevention and Control (ECDC) have published global and region-specific response plans, respectively. One main component of these action/response plans is to enhance the surveillance of AMR and treatment failures. This paper describes the perspectives from the diverse WHO European Region (53 countries), including the independent countries of the former Soviet Union, regarding gonococcal AMR surveillance networks. The WHO European Region has a high prevalence of resistance to all previously recommended antimicrobials, and most of the first strictly verified treatment failures with cefixime and ceftriaxone were also reported from Europe. In the European Union/European Economic Area (EU/EEA), the European gonococcal antimicrobial surveillance programme (Euro-GASP) funded by the ECDC is running. In 2011, the Euro-GASP included 21/31 (68%) EU/EEA countries, and the programme is further strengthened annually. However, in the non-EU/EEA countries, internationally reported and quality assured gonococcal AMR data are lacking in 87% of the countries and, worryingly, appropriate support for establishment of a GASP is still lacking. Accordingly, national and international support, including political and financial commitment, for gonococcal AMR surveillance in the non-EU/EEA countries of the WHO European Region is essential. PMID:24243879

  20. Carriage and acquisition rates of Clostridium difficile in hospitalized horses, including molecular characterization, multilocus sequence typing and antimicrobial susceptibility of bacterial isolates.

    PubMed

    Rodriguez, C; Taminiau, B; Brévers, B; Avesani, V; Van Broeck, J; Leroux, A A; Amory, H; Delmée, M; Daube, G

    2014-08-01

    Clostridium difficile has been identified as a significant agent of diarrhoea and enterocolitis in both foals and adult horses. Hospitalization, antibiotic therapy or changes in diet may contribute to the development of C. difficile infection. Horses admitted to a care unit are therefore at greater risk of being colonized. The aim of this study was to investigate the carriage of C. difficile in hospitalized horses and the possible influence of some risk factors in colonization. During a seven-month period, faecal samples and data relating the clinical history of horses admitted to a veterinary teaching hospital were collected. C. difficile isolates were characterized through toxin profiles, cytotoxicity activity, PCR-ribotyping, antimicrobial resistance and multilocus sequence typing (MLST). Ten isolates were obtained with a total of seven different PCR-ribotypes, including PCR-ribotype 014. Five of them were identified as toxinogenic. A high resistance to gentamicin, clindamycin and ceftiofur was found. MLST revealed four different sequencing types (ST), which included ST11, ST26, ST2 and ST15, and phylogenetic analysis showed that most of the isolates clustered in the same lineage. Clinical history suggests that horses frequently harbour toxigenic and non-toxigenic C. difficile and that in most cases they are colonized regardless of the reason for hospitalization; the development of diarrhoea is more unusual.

  1. Antimicrobial Susceptibility Pattern of Methicillin-Resistance Staphylococcus aureus from Different Tertiary Care Hospitals Including Mymensingh Medical College Hospital.

    PubMed

    Roy, S; Hossain, M A; Paul, S K; Haque, N; Barman, T K; Ahmed, S; Nasreen, S A; Hossain, M S; Ahmed, F; Biswas, P; Nahar, F; Begum, H; Islam, M S

    2016-07-01

    The aim of this study was to detect antimicrobial susceptibilities and the presence of drug resistance genes of MRSA from tertiary care hospitals. This study was carried out in the Department of Microbiology, Mymensingh Medical College during the period from Jan, 2015 to Dec, 2015. Clinical samples, including wound swab, pus, exudates from diabetic ulcer and burn ulcer, aural swab, blood and urine were collected. Standard microbiological procedure & biochemical tests were carried out to detect S. aureus. Oxacillin disk diffusion test was done by Kirby-Bauer disk diffusion method. Total 69 isolates of S. aureus were selected for the study. The isolates were collected from three different tertiary care hospitals, of which 33, 27 and 9 were from Mymensingh Medical College Hospital (MMCH), BIRDEM hospital and Sir Salimullah Medical College Hospital (SSMCH) respectively. Among the 69 isolates, 17(24.6%) and 52(75.3%) were distinguished as MRSA and MSSA respectively by ODDM (Oxacillin disk diffusion method). In contrast, detection of presence and absence of mecA gene by PCR identified 20 (28.9%) and 49 (71.01%) isolates as MRSA and MSSA respectively. All of the S. aureus (MRSA and MSSA) isolates were sensitive to vancomycin and gentamicin. All MRSA isolates (100%) showed resistance to Penicillin and Oxacillin. Among the MRSA isolates about 88.2% were resistance to Ceftazidime, 64.7% were resistance to Erythromycin and Ciprofloxacin, 11.7% were resistance to Tetracycline. Among the MSSA isolates about 94.2% were resistance to Penicillin and 9.6% resistance to Ciprofloxacin. The MSSA were less resistance for non-beta lactam drugs than MRSA. Regarding drug resistance genes, the blaZ genes were present in 47 out of 49(95.8%) MSSA and in 18 out of 18 (100%) MRSA. The erythromycin resistance gene ermB was found in 8.69% isolates, of which highest 20% in MRSA and 4.08% in MSSA. The ermA was not found in any isolates. Among tetracycline resistance genes, tetK were detected in 10

  2. Two interdependent mechanisms of antimicrobial activity allow for efficient killing in nylon-3-based polymeric mimics of innate immunity peptides.

    PubMed

    Lee, Michelle W; Chakraborty, Saswata; Schmidt, Nathan W; Murgai, Rajan; Gellman, Samuel H; Wong, Gerard C L

    2014-09-01

    Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration-dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.

  3. In vitro evaluation of the antimicrobial activity of HM-242, a novel antiseptic compound.

    PubMed

    Okunishi, Junji; Nishihara, Yutaka; Maeda, Shirou; Ikeda, Masahiro

    2009-09-01

    The antimicrobial activities of N(4)-octyl-6,6-dimethyl-N(2)-(4-methylbenzyl)-1,6-dihydro-1,3,5-triazine-2,4-diamine (HM-242), a novel synthetic compound, were compared with those of chlorhexidine gluconate (CHG). HM-242 was a more potent microbicide than CHG in vitro; however, its minimal inhibitory concentrations were similar. In particular, HM-242 killed various Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis, both efficiently and rapidly. HM-242 also showed potent virucidal activity against enveloped viruses such as influenza virus and herpes simplex virus. These characteristics suggest that HM-242 may well be useful as an antiseptic.

  4. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities.

    PubMed

    Ferreira, Isabel C F R; Heleno, Sandrina A; Reis, Filipa S; Stojkovic, Dejan; Queiroz, Maria João R P; Vasconcelos, M Helena; Sokovic, Marina

    2015-06-01

    Ganoderma genus comprises one of the most commonly studied species worldwide, Ganoderma lucidum. However, other Ganoderma species have been also reported as important sources of bioactive compounds. Polysaccharides are important contributors to the medicinal properties reported for Ganoderma species, as demonstrated by the numerous publications, including reviews, on this matter. Yet, what are the chemical features of Ganoderma polysaccharides that have bioactivity? In the present manuscript, the chemical features of Ganoderma polysaccharides with reported antioxidant, antitumor and antimicrobial activities (the most studied worldwide) are analyzed in detail. The composition of sugars (homo- versus hetero-glucans and other polysaccharides), type of glycosidic linkages, branching patterns, and linkage to proteins are discussed. Methods for extraction, isolation and identification are evaluated and, finally, the bioactivity of polysaccharidic extracts and purified compounds are discussed. The integration of data allows deduction of structure-activity relationships and gives clues to the chemical aspects involved in Ganoderma bioactivity.

  5. Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils.

    PubMed

    Ruberto, G; Baratta, M T; Deans, S G; Dorman, H J

    2000-12-01

    The essential oils obtained from Crithmum maritimum L. (marine fennel) and two samples of Foeniculum vulgare Miller (common fennel) were analysed by GC and GC-MS and assayed for their antioxidant and antibacterial activities. The antioxidant activity of the oils was evaluated by two lipid model systems: a modified thiobarbituric acid reactive species (TBARS) assay and a spectrophotometric detection of hydroperoxydienes from linoleic acid in a micellar system. The oils demonstrated antioxidant capacities, comparable in some cases to that of alpha-tocopherol and butylated hydroxytoluene (BHT), used as reference antioxidants. Concerning the antimicrobial tests the essential oils were assayed against twenty-five genera of bacteria, including animal and plant pathogens, food poisoning and spoilage bacteria. Oils from the two samples of F. vulgare showed a higher and broader degree of inhibition than that of C. maritimum. PMID:11199122

  6. β-Boomerang Antimicrobial and Antiendotoxic Peptides: Lipidation and Disulfide Bond Effects on Activity and Structure

    PubMed Central

    Mohanram, Harini; Bhattacharjya, Surajit

    2014-01-01

    Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS)-mediated inflammations are among some of the most prominent health issues globally. Antimicrobial peptides (AMPs) are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane of Gram-negative bacteria safeguards cell integrity against hydrophobic compounds, including antibiotics and AMPs. Apart from maintaining structural integrity, LPS, when released into the blood stream, also induces inflammatory pathways leading to septic shock. In previous works, we have reported the de novo design of a set of 12-amino acid long cationic/hydrophobic peptides for LPS binding and activity. These peptides adopt β-boomerang like conformations in complex with LPS. Structure-activity studies demonstrated some critical features of the β-boomerang scaffold that may be utilized for the further development of potent analogs. In this work, β-boomerang lipopeptides were designed and structure-activity correlation studies were carried out. These lipopeptides were homo-dimerized through a disulfide bridge to stabilize conformations and for improved activity. The designed peptides exhibited potent antibacterial activity and efficiently neutralized LPS toxicity under in vitro assays. NMR structure of C4YI13C in aqueous solution demonstrated the conserved folding of the lipopeptide with a boomerang aromatic lock stabilized with disulfide bond at the C-terminus and acylation at the N-terminus. These lipo-peptides displaying bacterial sterilization and low hemolytic activity may be useful for future applications as antimicrobial and antiendotoxin molecules. PMID:24756162

  7. [Antimicrobial spectrum of ceftaroline. In vitro activity against methicillin-resistant staphylococci].

    PubMed

    Cercenado, Emilia; Morosini, María Isabel

    2014-03-01

    Because of the increase in bacterial resistance, there is a need for new antimicrobial agents. In particular, Staphylococcus aureus is a frequent cause of severe infections and has an extraordinary capacity to develop antibiotic multiresistance, including resistance to glycopeptides, linezolid, and daptomycin. Although the incidence of methicillin-resistant S. aureus (MRSA) seems to have stabilized in the last few years, its wide dissemination in healthcare settings and in the community is a cause of concern. Ceftaroline is a new broad-spectrum cephalosporin with bactericidal activity against Gram-positive bacteria, including MRSA and multidrug-resistant Streptococcus pneumoniae. In addition, this drug is active against staphylococci showing resistance to glycopeptides, linezolid, and daptomycin. The ceftaroline MIC90 against MRSA ranges from 0.5-2mg/L and that against methicillin-resistant coagulase-negative staphylococci is 0.5mg/L. Ceftaroline has also good activity against respiratory pathogens including Haemophilus influenzae and Moraxella catarrhalis. Although this drug is active against Enterobacteriaceae, it does not retain activity when these isolates produce extended-spectrum beta-lactamases, carbapenemases or hyperproduce AmpC. Ceftaroline is not active against nonfermentative Gram-negative bacilli. Ceftaroline is an interesting addition to the therapeutic armamentarium against MRSA and constitutes an important option for the treatment of polymicrobial infections caused by multidrug-resistant Gram-positive microorganisms.

  8. Synthesis, antimicrobial evaluation, and structure-activity relationship of α-pinene derivatives.

    PubMed

    Dhar, Preeti; Chan, PuiYee; Cohen, Daniel T; Khawam, Fadi; Gibbons, Sarah; Snyder-Leiby, Teresa; Dickstein, Ellen; Rai, Prashant Kumar; Watal, Geeta

    2014-04-23

    Several (+)- and (-)-α-pinene derivatives were synthesized and evaluated for their antimicrobial activity toward Gram-positive bacteria Micrococcus luteus and Staphylococcus aureus, Gram-negative bacterium Escherichia coli, and the unicellular fungus Candida albicans using bioautographic assays. (+)-α-Pinene 1a showed modest activity against the test organisms, whereas (-)-α-pinene 1b showed no activity at the tested concentration. Of all the α-pinene derivatives evaluated, the β-lactam derivatives (10a and 10b) were the most antimicrobial. The increase in the antimicrobial activity of 10a compared to 1a ranged from nearly 3.5-fold (C. albicans) to 43-fold (S. aureus). The mean ± standard deviation for the zone of inhibition (mm) for 10a (C. albicans) was 31.9 ± 4.3 and that for S. aureus was 51.1 ± 2.9. Although (-)-α-pinene 1b was not active toward the test microorganisms, the corresponding β-lactam 10b, amino ester 13b, and amino alcohol 14b showed antimicrobial activity toward the test microorganisms. The increase in the antimicrobial activity of 10b compared to 1b ranged from 32-fold (S. aureus) to 73-fold (M. luteus). The mean ± standard deviation for the zone of inhibition (mm) for 10b (S. aureus) was 32.0 ± 0.60 and that for M. luteus was 73.2 ± 0.30.

  9. Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India

    PubMed Central

    Duraipandiyan, Veeramuthu; Ayyanar, Muniappan; Ignacimuthu, Savarimuthu

    2006-01-01

    Background Antimicrobial activity of 18 ethnomedicinal plant extracts were evaluated against nine bacterial strains (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Ervinia sp, Proteus vulgaris) and one fungal strain (Candida albicans). The collected ethnomedicinal plants were used in folk medicine in the treatment of skin diseases, venereal diseases, respiratory problems and nervous disorders. Methods Plants were collected from Palni hills of Southern Western Ghats and the ethnobotanical data were gathered from traditional healers who inhabit the study area. The hexane and methanol extracts were obtained by cold percolation method and the antimicrobial activity was found using paper disc diffusion method. All microorganisms were obtained from Christian Medical College, Vellore, Tamil Nadu, India. Results The results indicated that out of 18 plants, 10 plants exhibited antimicrobial activity against one or more of the tested microorganisms at three different concentrations of 1.25, 2.5 and 5 mg/disc. Among the plants tested, Acalypha fruticosa, Peltophorum pterocarpum, Toddalia asiatica,Cassia auriculata, Punica granatum and Syzygium lineare were most active. The highest antifungal activity was exhibited by methanol extract of Peltophorum pterocarpum and Punica granatum against Candida albicans. Conclusion This study evaluated the antimicrobial activity of the some ethnomedicinal plants used in folkloric medicine. Compared to hexane extract, methanol extract showed significant activity against tested organisms. This study also showed that Toddalia asiatica, Syzygium lineare, Acalypha fruticosa and Peltophorum pterocarpum could be potential sources of new antimicrobial agents. PMID:17042964

  10. Everglades National Park Including Biscayne National Park. Activity Book.

    ERIC Educational Resources Information Center

    Ruehrwein, Dick

    Intended to help elementary school children learn about the resources of the Everglades and Biscayne National Parks, this activity book includes information, puzzles, games, and quizzes. The booklet deals with concepts related to: (1) the seasons; (2) fire ecology; (3) water; (4) fish; (5) mammals; (6) mosquitos; (7) birds; (8) venomous snakes;…

  11. Synthesis, antidepressant and antimicrobial activities of some novel stearic acid analogues.

    PubMed

    Jubie, Selvaraj; Ramesh, Patil Nilesh; Dhanabal, Palanichamy; Kalirajan, Rajagopal; Muruganantham, Nithyanantham; Antony, Anthoniswamy Shanish

    2012-08-01

    Stearic acid, a saturated fatty acid was isolated from the microalga Spirulina platensis. Some novel stearic acid analogues having 1,3,4-oxadiazole, 1,2,4-triazole and 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole are synthesized and characterized by IR, NMR and mass spectral analysis. All the synthesized compounds were screened for antimicrobial activity by using cup plate method. The synthesized compounds have been further screened for their antidepressant activity in swiss albino mice by forced swim test (FST), midbrain dopamine has been estimated and quantified. All the compounds showed good antimicrobial activity and compound 6 showed significant antidepressant activity.

  12. Antimicrobial activity of crude extracts from plant parts and corresponding calli of Bixa orellana L.

    PubMed

    Castello, Marie-Claire; Phatak, Anita; Chandra, Naresh; Sharon, Madhuri

    2002-12-01

    Ethanol extracts from the different parts of B. orellana showed differential antimicrobial activity. It was found that the extracts of in vitro leaves showed maximum activity against Bacillus pumilus followed by the extracts from the roots and hypocotyls. The callus derived from different explants too showed antimicrobial activity. The leaf callus showed maximum activity. The zone of inhibition for the diluted extracts of in vitro hypocotyls and roots and their corresponding calli showed minimum zone of inhibition at concentration 24 mg/ml, whereas the diluted extract of in vitro leaves and leaf derived callus showed minimum zone of inhibition at 16 mg/ml. PMID:12974400

  13. Antimicrobial Activity of Marine Bacterial Symbionts Retrieved from Shallow Water Hydrothermal Vents.

    PubMed

    Eythorsdottir, Arnheidur; Omarsdottir, Sesselja; Einarsson, Hjorleifur

    2016-06-01

    Marine sponges and other sessile macro-organisms were collected at a shallow water hydrothermal site in Eyjafjörður, Iceland. Bacteria were isolated from the organisms using selective media for actinomycetes, and the isolates were screened for antimicrobial activity. A total of 111 isolates revealed antimicrobial activity displaying different antimicrobial patterns which indicates production of various compounds. Known test strains were grown in the presence of ethyl acetate extracts from one selected isolate, and a clear growth inhibition of Staphylococcus aureus was observed down to 0.1 % extract concentration in the medium. Identification of isolates shows different species of Actinobacteria with Streptomyces sp. playing the largest role, but also members of Bacilli, Alphaproteobacteria and Gammaproteobacteria. Sponges have an excellent record regarding production of bioactive compounds, often involving microbial symbionts. At the hydrothermal vents, however, the majority of active isolates originated from other invertebrates such as sea anemones or algae. The results indicate that antimicrobial assays involving isolates in full growth can detect activity not visible by other methods. The macro-organisms inhabiting the Eyjafjörður hydrothermal vent area host diverse microbial species in the phylum Actinobacteria with antimicrobial activity, and the compounds responsible for the activity will be subject to further research. PMID:27147438

  14. Antimicrobial Activity of Marine Bacterial Symbionts Retrieved from Shallow Water Hydrothermal Vents.

    PubMed

    Eythorsdottir, Arnheidur; Omarsdottir, Sesselja; Einarsson, Hjorleifur

    2016-06-01

    Marine sponges and other sessile macro-organisms were collected at a shallow water hydrothermal site in Eyjafjörður, Iceland. Bacteria were isolated from the organisms using selective media for actinomycetes, and the isolates were screened for antimicrobial activity. A total of 111 isolates revealed antimicrobial activity displaying different antimicrobial patterns which indicates production of various compounds. Known test strains were grown in the presence of ethyl acetate extracts from one selected isolate, and a clear growth inhibition of Staphylococcus aureus was observed down to 0.1 % extract concentration in the medium. Identification of isolates shows different species of Actinobacteria with Streptomyces sp. playing the largest role, but also members of Bacilli, Alphaproteobacteria and Gammaproteobacteria. Sponges have an excellent record regarding production of bioactive compounds, often involving microbial symbionts. At the hydrothermal vents, however, the majority of active isolates originated from other invertebrates such as sea anemones or algae. The results indicate that antimicrobial assays involving isolates in full growth can detect activity not visible by other methods. The macro-organisms inhabiting the Eyjafjörður hydrothermal vent area host diverse microbial species in the phylum Actinobacteria with antimicrobial activity, and the compounds responsible for the activity will be subject to further research.

  15. Antimicrobial activity and cytocompatibility of Ag plasma-modified hierarchical TiO2 film on titanium surface.

    PubMed

    Li, Jinhua; Liu, Xuanyong; Qiao, Yuqin; Zhu, Hongqin; Ding, Chuanxian

    2014-01-01

    To improve the antimicrobial ability and cytocompatibility of biomedical titanium implants, many efforts have been made to modify their surface topography and chemical composition. In this work, Ag plasma-modified hierarchical TiO2 film was fabricated on titanium surface via acid etching to produce micropit, hydrothermal treatment to generate TiO2 nanorod and subsequent plasma immersion ion implantation process to impregnate Ag into TiO2 surface. In view of the potential clinical applications, their antimicrobial activity, bioactivity and cytocompatibility were systematically evaluated. The hierarchical TiO2 film showed enhanced bioactivity and bacteriostatic effect on both microbes due to more negative zeta potential, constructing the first defense line against microbial adhesion by electrostatic repulsion. Addition of embedded Ag remarkably enhanced the antimicrobial efficiency toward both microbes based on Schottky contact without Ag(+) release, establishing the second defense line targeting microbial membrane. Furthermore, the addition of Ag degraded the bioactivity very little and exerted nearly no adverse or even promoted effect on MG63 cell functions, including adhesion, spreading and proliferation. This work illustrates a two-defense-line antimicrobial activity in darkness with both prior electrostatic repulsion to inhibit most microbes adhesion and posterior biocidal action to kill residual ones that luckily infiltrated through the first defense line, and provide proof of concept using both clinically relevant human pathogens. In conclusion, the Ag-embedded hierarchical TiO2 film with excellent antimicrobial activity, bioactivity and cytocompatibility provides a promising candidate for orthopedic and dental implants. PMID:24077111

  16. Antimicrobial and antileishmanial activities of diterpenoids isolated from the roots of Salvia deserta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four diterpenes with biological activity were isolated from Salvia deserta roots. Taxodione was considered leishmanicidal, with IC50 value of 0.46 µg/mL against Leishimania donovani and also exhibited antifungal and antimicrobial activities. Ferruginol displayed the greatest activity (24-h IC50 1.29...

  17. Antimicrobial activity of submicron glass fibres incorporated as a filler to a dental sealer.

    PubMed

    Esteban-Tejeda, L; Cabal, B; Torrecillas, R; Prado, C; Fernandez-Garcia, E; López-Piriz, R; Quintero, F; Pou, J; Penide, J; Moya, J S

    2016-01-01

    Two types of antimicrobial glass fibers containing ZnO and CaO, with diameters ranging from tens of nanometers to 1 µm, were successfully fabricated by a laser spinning technique. The antimicrobial performance was corroborated according to ISO 20743:2013, by using gram-negative (Escherichia coli) and gram-positive (Streptococcus oralis, Streptococcus mutans and Staphylococcus aureus) bacteria, and yeast (Candida krusei) (more than 3 logs of reduction). The metabolic activity and endosomal system of eukaryotic cells were not altered by using eluents of CaO glass submicrometric fibers and ZnO fibers at 1 : 10 dilution as cellular media (viability rates over 70%). A dental material was functionalized by embedding ZnO nanofibers above the percolation threshold (20% wt), creating a three-dimensional (3D) fiber network that added an antimicrobial profile. This new ZnO glass fiber composite is proved non-cytotoxic and preserved the antimicrobial effect after immersion in human saliva. This is the first time that a fiber-reinforced liner with strong antimicrobial-activity has been created to prevent secondary caries. The potential of developing new fiber-reinforced composites (FRCs) with antimicrobial properties opens up an extensive field of dental applications where most important diseases have an infectious origin. PMID:27509353

  18. Black cobra (Naja naja karachiensis) lysates exhibit broad-spectrum antimicrobial activities.

    PubMed

    Sagheer, Mehwish; Siddiqui, Ruqaiyyah; Iqbal, Junaid; Khan, Naveed Ahmed

    2014-04-01

    It is hypothesized that animals living in polluted environments possess antimicrobials to counter pathogenic microbes. The fact that snakes feed on germ-infested rodents suggests that they encounter pathogenic microbes and likely possess antimicrobials. The venom is used only to paralyze the rodent, but the ability of snakes to counter potential infections in the gut due to disease-ridden rodents requires robust action of the immune system against a broad range of pathogens. To test this hypothesis, crude lysates of different organs of Naja naja karachiensis (black cobra) were tested for antimicrobial properties. The antimicrobial activities of extracts were tested against selected bacterial pathogens (neuropathogenic Escherichia coli K1, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Streptococcus pneumonia), protist (Acanthamoeba castellanii), and filamentous fungus (Fusarium solani). The findings revealed that plasma and various organ extracts of N. n. karachiensis exhibited antimicrobial activity against E. coli K1, MRSA, P. aeruginosa, S. pneumoniae, A. castellanii, and F. solani in a concentration-dependent manner. The results of this study are promising for the development of new antimicrobials.

  19. Black cobra (Naja naja karachiensis) lysates exhibit broad-spectrum antimicrobial activities

    PubMed Central

    Sagheer, Mehwish; Siddiqui, Ruqaiyyah; Iqbal, Junaid; Khan, Naveed Ahmed

    2014-01-01

    It is hypothesized that animals living in polluted environments possess antimicrobials to counter pathogenic microbes. The fact that snakes feed on germ-infested rodents suggests that they encounter pathogenic microbes and likely possess antimicrobials. The venom is used only to paralyze the rodent, but the ability of snakes to counter potential infections in the gut due to disease-ridden rodents requires robust action of the immune system against a broad range of pathogens. To test this hypothesis, crude lysates of different organs of Naja naja karachiensis (black cobra) were tested for antimicrobial properties. The antimicrobial activities of extracts were tested against selected bacterial pathogens (neuropathogenic Escherichia coli K1, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Streptococcus pneumonia), protist (Acanthamoeba castellanii), and filamentous fungus (Fusarium solani). The findings revealed that plasma and various organ extracts of N. n. karachiensis exhibited antimicrobial activity against E. coli K1, MRSA, P. aeruginosa, S. pneumoniae, A. castellanii, and F. solani in a concentration-dependent manner. The results of this study are promising for the development of new antimicrobials. PMID:24625321

  20. Antimicrobial Activity of Oleanolic and Ursolic Acids: An Update

    PubMed Central

    Jesus, Jéssica A.; Lago, João Henrique G.; Laurenti, Márcia D.; Yamamoto, Eduardo S.; Passero, Luiz Felipe D.

    2015-01-01

    Triterpenoids are the most representative group of phytochemicals, as they comprise more than 20,000 recognized molecules. These compounds are biosynthesized in plants via squalene cyclization, a C30 hydrocarbon that is considered to be the precursor of all steroids. Due to their low hydrophilicity, triterpenes were considered to be inactive for a long period of time; however, evidence regarding their wide range of pharmacological activities is emerging, and elegant studies have highlighted these activities. Several triterpenic skeletons have been described, including some that have presented with pentacyclic features, such as oleanolic and ursolic acids. These compounds have displayed incontestable biological activity, such as antibacterial, antiviral, and antiprotozoal effects, which were not included in a single review until now. Thus, the present review investigates the potential use of these triterpenes against human pathogens, including their mechanisms of action, via in vivo studies, and the future perspectives about the use of compounds for human or even animal health are also discussed. PMID:25793002

  1. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  2. Antimicrobial activity of acid-hydrolyzed Citrus unshiu peel extract in milk.

    PubMed

    Min, Keun Young; Kim, Hyun Jung; Lee, Kyoung Ah; Kim, Kee-Tae; Paik, Hyun-Dong

    2014-01-01

    Citrus fruit (Citrus unshiu) peels were extracted with hot water and then acid-hydrolyzed using hydrochloric acid. Antimicrobial activities of acid-hydrolyzed Citrus unshiu peel extract were evaluated against pathogenic bacteria, including Bacillus cereus, Staphylococcus aureus, and Listeria monocytogenes. Antilisterial effect was also determined by adding extracts at 1, 2, and 4% to whole, low-fat, and skim milk. The cell numbers of B. cereus, Staph. aureus, and L. monocytogenes cultures treated with acid-hydrolyzed extract for 12h at 35°C were reduced from about 8log cfu/mL to <1log cfu/mL. Bacillus cereus was more sensitive to acid-hydrolyzed Citrus unshiu peel extract than were the other bacteria. The addition of 4% acid-hydrolyzed Citrus unshiu extracts to all types of milk inhibited the growth of L. monocytogenes within 1d of storage at 4°C. The results indicated that Citrus unshiu peel extracts, after acid hydrolysis, effectively inhibited the growth of pathogenic bacteria. These findings indicate that acid hydrolysis of Citrus unshiu peel facilitates its use as a natural antimicrobial agent for food products.

  3. Antimicrobial activity of plant compounds against Salmonella Typhimurium DT104 in ground pork and the influence of heat and storage on the antimicrobial activity.

    PubMed

    Chen, Cynthia H; Ravishankar, Sadhana; Marchello, John; Friedman, Mendel

    2013-07-01

    Salmonella enterica is a predominant foodborne pathogen that causes diarrheal illness worldwide. A potential method of inhibiting pathogenic bacterial growth in meat is through the introduction of plant-derived antimicrobials. The objectives of this study were to investigate the influence of heat (70°C for 5 min) and subsequent cold storage (4°C up to 7 days) on the effectiveness of oregano and cinnamon essential oils and powdered olive and apple extracts against Salmonella enterica serovar Typhimurium DT104 in ground pork and to evaluate the activity of the most effective antimicrobials (cinnamon oil and olive extract) at higher concentrations in heated ground pork. The surviving Salmonella populations in two groups (heated and unheated) of antimicrobial-treated pork were compared. Higher concentrations of the most effective compounds were then tested (cinnamon oil at 0.5 to 1.0% and olive extract at 3, 4, and 5%) against Salmonella Typhimurium in heated ground pork. Samples were stored at 4°C and taken on days 0, 3, 5, and 7 for enumeration of survivors. The heating process did not affect the activity of antimicrobials. Significant 1.3- and 3-log reductions were observed with 1.0% cinnamon oil and 5% olive extract, respectively, on day 7. The minimum concentration required to achieve . 1-log reduction in Salmonella population was 0.8% cinnamon oil or 4% olive extract. The results demonstrate the effectiveness of these antimicrobials against multidrug-resistant Salmonella Typhimurium in ground pork and their stability during heating and cold storage. The most active formulations have the potential to enhance the microbial safety of ground pork. PMID:23834804

  4. Antimicrobial activity of plant compounds against Salmonella Typhimurium DT104 in ground pork and the influence of heat and storage on the antimicrobial activity.

    PubMed

    Chen, Cynthia H; Ravishankar, Sadhana; Marchello, John; Friedman, Mendel

    2013-07-01

    Salmonella enterica is a predominant foodborne pathogen that causes diarrheal illness worldwide. A potential method of inhibiting pathogenic bacterial growth in meat is through the introduction of plant-derived antimicrobials. The objectives of this study were to investigate the influence of heat (70°C for 5 min) and subsequent cold storage (4°C up to 7 days) on the effectiveness of oregano and cinnamon essential oils and powdered olive and apple extracts against Salmonella enterica serovar Typhimurium DT104 in ground pork and to evaluate the activity of the most effective antimicrobials (cinnamon oil and olive extract) at higher concentrations in heated ground pork. The surviving Salmonella populations in two groups (heated and unheated) of antimicrobial-treated pork were compared. Higher concentrations of the most effective compounds were then tested (cinnamon oil at 0.5 to 1.0% and olive extract at 3, 4, and 5%) against Salmonella Typhimurium in heated ground pork. Samples were stored at 4°C and taken on days 0, 3, 5, and 7 for enumeration of survivors. The heating process did not affect the activity of antimicrobials. Significant 1.3- and 3-log reductions were observed with 1.0% cinnamon oil and 5% olive extract, respectively, on day 7. The minimum concentration required to achieve . 1-log reduction in Salmonella population was 0.8% cinnamon oil or 4% olive extract. The results demonstrate the effectiveness of these antimicrobials against multidrug-resistant Salmonella Typhimurium in ground pork and their stability during heating and cold storage. The most active formulations have the potential to enhance the microbial safety of ground pork.

  5. Antimicrobial, Antiparasitic, Anti-Inflammatory, and Cytotoxic Activities of Lopezia racemosa

    PubMed Central

    Cruz Paredes, Carla; Bolívar Balbás, Paulina; Juárez, Zaida Nelly; Sánchez Arreola, Eugenio; Hernández, Luis Ricardo

    2013-01-01

    The present study investigates the potential benefits of the Mexican medicinal plant Lopezia racemosa (Onagraceae). Extracts and fractions from aerial parts of this plant were assessed to determine their antibacterial, antifungal, antiparasitic, anti-inflammatory and cytotoxic activities in vitro. Aerial parts of the plant were extracted with various solvents and fractionated accordingly. Extracts and fractions were tested against a panel of nine bacterial and four fungal species. The antiparasitic activity was tested against Leishmania donovani, whereas the anti-inflammatory activity of the compounds was determined by measuring the secretion of interleukin-6 from human-derived macrophages. The same macrophage cell line was used to investigate the cytotoxicity of the compounds. Various extracts and fractions showed antibacterial, antifungal, antiparasitic, and anti-inflammatory activities. The hexanic fraction HF 11-14b was the most interesting fraction with antimicrobial, and anti-inflammatory activities. The benefit of L. racemosa as a traditional medicinal plant was confirmed as shown by its antibacterial, antifungal and anti-inflammatory activities. To the best of our knowledge, this is the first study reporting the biological activities of L. racemosa, including antiparasitic and anti-inflammatory activities. PMID:23843731

  6. Antimicrobial Activity of Amine Oxides: Mode of Action and Structure-Activity Correlation

    PubMed Central

    Šubík, Július; Takácsová, Gizela; Pšenák, Mikuláš; Devínsky, Ferdinand

    1977-01-01

    The effect of N-alkyl derivatives of saturated heterocyclic amine oxides on the growth and metabolism of microorganisms has been studied. 4-Dodecylmorpholine-N-oxide inhibited the differentiation and growth of Bacillus cereus, of different species of filamentous fungi, and of the yeast Saccharomyces cerevisiae. For vegetative cells, the effect of 4-dodecylmorpholine-N-oxide was lethal. Cells of S. cerevisiae, after interaction with 4-dodecylmorpholine-N-oxide, released intracellular K+ and were unable to oxidize or ferment glucose. The functions of isolated yeast mitochondria were also impaired. 4-Dodecylmorpholine-N-oxide at growth-inhibiting concentrations induced rapid lysis of osmotically stabilized yeast protoplasts, with the rate of lysis a function of temperature and of amine oxide concentration. A study of the relationships between structure, antimicrobial activity, and cytolytic activity was made with a group of structurally different amine oxides involving a series of homologous 4-alkylmorpholine-N-oxides, 1-alkylpiperidine-N-oxides, 1-dodecylpyrrolidine-N-oxide, 1-dodecylperhydroasepine-N-oxide, and N,N-dimethyldodecylamine oxide. Disorganization of the membrane structure after interaction of cells with the tested amine oxides was primarily responsible for the antimicrobial activity of the amine oxides. This activity was found to be dependent on the chain length of the hydrophobic alkyl group and was only moderately influenced by other substituents of the polarized N-oxide group. PMID:409340

  7. Activity of antimicrobial peptide mimetics in the oral cavity: I. Activity against biofilms of Candida albicans.

    PubMed

    Hua, J; Yamarthy, R; Felsenstein, S; Scott, R W; Markowitz, K; Diamond, G

    2010-12-01

    Naturally occurring antimicrobial peptides hold promise as therapeutic agents against oral pathogens such as Candida albicans but numerous difficulties have slowed their development. Synthetic, non-peptidic analogs that mimic the properties of these peptides have many advantages and exhibit potent, selective antimicrobial activity. Several series of mimetics (with molecular weight < 1000) were developed and screened against oral Candida strains as a proof-of-principle for their antifungal properties. One phenylalkyne and several arylamide compounds with reduced mammalian cytotoxicities were found to be active against C. albicans. These compounds demonstrated rapid fungicidal activity in liquid culture even in the presence of saliva, and demonstrated synergy with standard antifungal agents. When assayed against biofilms grown on denture acrylic, the compounds exhibited potent fungicidal activity as measured by metabolic and fluorescent viability assays. Repeated passages in sub-minimum inhibitory concentration levels did not lead to resistant Candida, in contrast to fluconazole. Our results demonstrate the proof-of principle for the use of these compounds as anti-Candida agents, and their further testing is warranted as novel anti-Candida therapies.

  8. Activity of Antimicrobial Peptide Mimetics in the Oral Cavity: I. Activity Against Biofilms of Candida albicans

    PubMed Central

    Hua, Jianyuan; Yamarthy, Radha; Felsenstein, Shaina; Scott, Richard W.; Markowitz, Kenneth; Diamond, Gill

    2010-01-01

    Summary Naturally occurring antimicrobial peptides hold promise as therapeutic agents against oral pathogens such as Candida albicans, however numerous difficulties have slowed their development. Synthetic, non-peptidic analogs that mimic the properties of these peptides have many advantages and exhibit potent, selective antimicrobial activity. Several series of mimetics (MW <1,000) were developed and screened against oral Candida strains as a proof-of-principle for their antifungal properties. One phenylalkyne and several arylamide compounds with reduced mammalian cytotoxicities were found to be active against C. albicans. These compounds demonstrated rapid fungicidal activity in liquid culture even in the presence of saliva, and demonstrated synergy with standard antifungal agents. When assayed against biofilms grown on denture acrylic, the compounds exhibited potent fungicidal activity as measured by metabolic and fluorescent viability assays. Repeated passages in sub-MIC levels did not lead to resistant Candida in contrast to fluconazole. Our results demonstrate the proof-of principle for the use of these compounds as anti-Candida agents, and their further testing is warranted as novel anti-Candida therapies. PMID:21040515

  9. Composition and Antimicrobial Activity of the Essential Oil and Extract of Hypericum elongatum

    NASA Astrophysics Data System (ADS)

    Ghasemi, Younes; Khalaj, Amir; Mohagheghzadeh, Abdolali; Khosravi, Ahmad Reza; Morowvat, Mohammad Hossein

    HOFARIGHUN, RAEE flower, thousand eyes wort are popular names for Hypericum sp in Persian language mostly called H. perforatum. It has been used as antispasmodic, diuretic, antimigraine, antiepileptic and cholagouge. Tisane of these plants in red wine was used as snake bite and burning remedy. The volatile constituents, obtained from air-dried aerial parts of fruiting Hypericum elongatum were analyzed by GC/MS method. Thirty four components of about 96.50% of total oil were identified. Pinene <α> (80.43%), Terpinene <γ> (4.23%) and Pinene <ß>(2.59%) were the principal components (87.16%). The essential oil and hydroalcoholic extract were evaluated for antibacterial, antifungal and anti-yeast activities by using disc diffusion method. Screening of the antimicrobials was investigated on Gram positive bacteria (Staphylococcus aureus PTCC 1112, Staphylococcus epidermidis PTCC 1114, Bacillus subtilis PTCC 1023, Enterococcus faecalis ATCC 8043), Gram negative bacteria (Escherichia coli PTCC 1338, Pseudomonas aeruginosa PTCC 1047, Salmonella typhi PTCC 1609), yeasts (Candida albicans ATCC 14053, Candida kefyr ATCC 3826) and fungi (Aspergillus niger PLM 1140, Aspergillus fumigatus PLM 712). The MIC of essential oil also was identified. Antimicrobial activity of essential oil against all of the microorganisms was observed, except Aspergillus niger and Aspergillus fumigatus. In spite of antimicrobial activity of hydroalcoholic extract against bacteria, there was no antimicrobial activity against fungi and yeasts. A survey of the literature revealed no reports dealing with chemical composition of essential oil and antimicrobial activity of Hypericum elongatum.

  10. Amphiphilic cationic β(3R3)-peptides: membrane active peptidomimetics and their potential as antimicrobial agents.

    PubMed

    Mosca, Simone; Keller, Janos; Azzouz, Nahid; Wagner, Stefanie; Titz, Alexander; Seeberger, Peter H; Brezesinski, Gerald; Hartmann, Laura

    2014-05-12

    We introduce a novel class of membrane active peptidomimetics, the amphiphilic cationic β(3R3)-peptides, and evaluate their potential as antimicrobial agents. The design criteria, the building block and oligomer synthesis as well as a detailed structure-activity relationship (SAR) study are reported. Specifically, infrared reflection absorption spectroscopy (IRRAS) was employed to investigate structural features of amphiphilic cationic β(3R3)-peptide sequences at the hydrophobic/hydrophilic air/liquid interface. Furthermore, Langmuir monolayers of anionic and zwitterionic phospholipids have been used to model the interactions of amphiphilic cationic β(3R3)-peptides with prokaryotic and eukaryotic cellular membranes in order to predict their membrane selectivity and elucidate their mechanism of action. Lastly, antimicrobial activity was tested against Gram-positive M. luteus and S. aureus as well as against Gram-negative E. coli and P. aeruginosa bacteria along with testing hemolytic activity and cytotoxicity. We found that amphiphilic cationic β(3R3)-peptide sequences combine high and selective antimicrobial activity with exceptionally low cytotoxicity in comparison to values reported in the literature. Overall, this study provides further insights into the SAR of antimicrobial peptides and peptidomimetics and indicates that amphiphilic cationic β(3R3)-peptides are strong candidates for further development as antimicrobial agents with high therapeutic index.

  11. Synthesis and antimicrobial activity of new substituted anilinobenzimidazoles.

    PubMed

    Nofal, Z M; Fahmy, H H; Mohamed, H S

    2002-06-01

    A series of benzimidazole derivatives carrying different heterocycles such as 1,2,3-thiadiazole, 1,3,4-thiadiazole, thiazolidine, 2,3-dihydro-thiazole, 1,3,4-oxadiazole, semicarbazone and substituted thiosemi-carbazones were synthesized. Also a series of 1-methylbenzimidazole carrying hydroxy ethyl-amide, substituted sulfonyl hydrazide and benzoyl hydrazide from aminobenzoyl group at position 2 of 1-methylbenzimidazole were synthesized. The antimicrobial evaluation of some of the new compounds was carried out. PMID:12135093

  12. Antimicrobial activity against periodontopathogenic bacteria, antioxidant and cytotoxic effects of various extracts from endemic Thermopsis turcica

    PubMed Central

    Bali, Elif Burcu; Açık, Leyla; Akca, Gülçin; Sarper, Meral; Elçi, Mualla Pınar; Avcu, Ferit; Vural, Mecit

    2014-01-01

    Objective To investigate the in vitro antimicrobial potential of Thermopsis turcica Kit Tan, Vural & Küçüködük against periodontopathogenic bacteria, its antioxidant activity and cytotoxic effect on various cancer cell lines. Methods In vitro antimicrobial activities of ethanol, methanol, ethyl acetate (EtAc), n-hexane and water extracts of Thermopsis turcica herb against periodontopathogenic bacteria, Aggregatibacter actinomycetemcomitans ATCC 29523 and Porphyromonas gingivalis ATCC 33277 were tested by agar well diffusion, minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Antioxidant properties of the extracts were evaluated by 1,1-diphenyl-2-picryl-hydrazyl radical scavenging activity and β-carotene bleaching methods. Amounts of phenolic contents of the extracts were also analysed by using the Folin-Ciocalteu reagent. Additionally, cytotoxic activity of the extracts on androgen-insensitive prostate cancer, androgen-sensitive prostate cancer, chronic myelogenous leukemia and acute promyelocytic leukemia human cancer cell lines were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Human gingival fibroblast cells were used as a control. Results Our data showed that EtAc extract had the highest antimicrobial effect on Aggregatibacter actinomycetemcomitans (MIC: 1.562 mg/mL, MBC: 3.124 mg/mL) and Porphyromonas gingivalis (MIC: 0.781 mg/mL, MBC: 1.562 mg/mL). In antioxidant assays, EtAc extract exhibited also the highest radical scavenging activity [IC50=(30.0±0.3) µg/mL] and the highest inhibition [(74.35±0.30)%] against lineloic acide oxidation. The amount of phenolic content of it was also the highest [(162.5±1.2) µg/mg gallic acid]. In cytotoxic assay, only ethanol [IC50=(80.00±1.21) µg/mL] and EtAc extract [IC50=(70.0±0.9) µg/mL] were toxic on acute promyelocytic leukemia cells at 20-100 µg/mL (P<0.05). However, no toxic effect was observed on human gingival fibroblast cells

  13. Evaluation of three medicinal plants for anti-microbial activity.

    PubMed

    Pratap, Gowd M J S; Manoj, Kumar M G; Sai, Shankar A J; Sujatha, B; Sreedevi, E

    2012-07-01

    Herbal remedies have a long history of use for gum and tooth problems such as dental caries. The present microbiological study was carried out to evaluate the antimicrobial efficacy of three medicinal plants (Terminalia chebula Retz., Clitoria ternatea Linn., and Wedelia chinensis (Osbeck.) Merr.) on three pathogenic microorganisms in the oral cavity (Streptococcus mutans, Lactobacillus casei, and Staphylococcus aureus). Aqueous extract concentrations (5%, 10%, 25%, and 50%) were prepared from the fruits of Terminalia chebula, flowers of Clitoria ternatea, and leaves of Wedelia chinensis. The antimicrobial efficacy of the aqueous extract concentrations of each plant was tested using agar well diffusion method and the size of the inhibition zone was measured in millimeters. The results obtained showed that the diameter of zone of inhibition increased with increase in concentration of extract and the antimicrobial efficacy of the aqueous extracts of the three plants was observed in the increasing order - Wedelia chinensis < Clitoria ternatea < Terminalia chebula. It can be concluded that the tested extracts of all the three plants were effective against dental caries causing bacteria. PMID:23723653

  14. Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars.

    PubMed

    Shahat, Abdelaaty A; Ibrahim, Abeer Y; Hendawy, Saber F; Omer, Elsayed A; Hammouda, Faiza M; Abdel-Rahman, Fawzia H; Saleh, Mahmoud A

    2011-02-01

    Essential oils of the fruits of three organically grown cultivars of Egyptian fennel (Foeniculum vulgare var. azoricum, Foeniculum vulgare var. dulce and Foeniculum vulgare var. vulgare) were examined for their chemical constituents, antimicrobial and antioxidant activities. Gas chromatography/mass spectrometry analysis of the essential oils revealed the presence of 18 major monoterpenoids in all three cultivars but their percentage in each oil were greatly different. trans-Anethole, estragole, fenchone and limonene were highly abundant in all of the examined oils. Antioxidant activities of the essential oils were evaluated using the DPPH radical scavenging, lipid peroxidation and metal chelating assays. Essential oils from the azoricum and dulce cultivars were more effective antioxidants than that from the vulgare cultivar. Antimicrobial activities of each oil were measured against two species of fungi, two species of Gram negative and two species of Gram positive bacteria. All three cultivars showed similar antimicrobial activity.

  15. Synthesis and Antimicrobial Activity of N,N′-Bis(2-hydroxylbenzyl)-1,2-ethanediamine Derivatives

    PubMed Central

    Khan, M. Omar F.; Aspedon, Arden; Cooperwood, John S.

    2010-01-01

    A series of N,N′-Bis(2-hydroxylbenzyl)-1,2-ethanediamine derivatives and its schiff bases were synthesized, characterized and screened for in vitro antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella enterica. Result indicated that the ethylenediamine derivatives, N,N′-Bis(2-hydroxy-5-bromobenzyl)-1,2-ethanediamine (21), and N,N′-Bis(2-hydroxy-5-chlorobenzyl)-1,2-ethanediamine (22) showed the most favorable antimicrobial activity exhibiting LC50 of 11.6 and 8.79 μM against S.enterica, 86 and 138 μM against P. aeruginosa, and 140 and 287 μM against S. aureus, respectively. These compounds displayed highest level of resistance with S. aureus. Thus, the high level of activity seen with the compounds (21, 22) suggests that these compounds could serve as the leads for development of novel synthetic compounds with enhanced antimicrobial activity. PMID:20548968

  16. Antimicrobial activity and chemical composition of the essential oil of Nepeta crispa Willd. from Iran.

    PubMed

    Sonboli, Ali; Salehi, Peyman; Yousefzadi, Morteza

    2004-01-01

    The composition and antimicrobial activity of the essential oil of Nepeta crispa Willd., an endemic species from Iran, was studied. The oil was obtained from the aerial parts of the plant and analyzed by GC and GC/MS. Twenty-three compounds, accounting for 99.8% of the total oil, were identified. The main constituents were 1,8-cineol (47.9%) and 4aalpha,7alpha,7abetanepetalactone (20.3%). The antimicrobial activity of essential oil of N. crispa was tested against seven gram-negative or gram-positive bacteria and four fungi. The results of the bioassays showed the interesting antimicrobial activity, in which the gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, were the most sensitive to the oil. Also, the oil exhibited a remarkable antifungal activity against all the tested fungi.

  17. Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis.

    PubMed

    Salami, Maryam; Moosavi-Movahedi, Ali Akbar; Ehsani, Mohammad Reza; Yousefi, Reza; Haertlé, Thomas; Chobert, Jean-Marc; Razavi, Seyed Hadi; Henrich, Robert; Balalaie, Saeed; Ebadi, Seyed Ahmad; Pourtakdoost, Samineh; Niasari-Naslaji, Amir

    2010-03-24

    The compositions and structures of bovine and camel milk proteins are different, which define their functional and biological properties. The aim of this study was to investigate the effects of enzymatic hydrolysis of camel and bovine whey proteins (WPs) on their antioxidant and antimicrobial properties. After enzymatic treatment, both the antioxidant and the antimicrobial activities of bovine and camel WPs were improved. The significantly higher antioxidant activity of camel WPs and their hydrolysates as compared with that of bovine WPs and their hydrolysates may result from the differences in amounts and/or in accessibilities of antioxidant amino acid residues present in their primary structures and from the prevalence of alpha-lactalbumin and beta-lactoglobulin as proteolytic substrates in camel and bovine whey, respectively. The results of this study reveal differences in antimicrobial and antioxidant activities between WP hydrolysates of bovine and camel milk and the effects of limited proteolysis on these activities.

  18. Antimicrobial activity of extracts of the lichen Parmelia sulcata and its salazinic acid constituent.

    PubMed

    Candan, Mehmet; Yilmaz, Meral; Tay, Turgay; Erdem, Murat; Türk, Ayşen Ozdemir

    2007-01-01

    The antimicrobial activity of the acetone, chloroform, diethyl ether, methanol, and petroleum ether extracts of the lichen Parmelia sulcata and its salazinic acid constituent have been screened against twenty eight food-borne bacteria and fungi. All of the extracts with the exception of the petroleum ether extract showed antimicrobial activity against Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Proteus vulgaris, Yersinia enterocolitica, Staphylococcus aureus, Streptococcus faecalis, Candida albicans, Candida glabrata, Aspergillus niger, Aspergillus fumigatus, and Penicillium notatum. Salazinic acid did not show antimicrobial activity against L. monocytogenes, P. vulgaris, Y. enterocolitica, and S. faecalis but showed activity against Pseudomonas aeruginosa and Salmonella typhimurium as well. The MIC values of the extracts and the acid for the bacteria and fungi have also been determined. PMID:17913083

  19. Investigating the antimicrobial activity of natural honey and its effects on the pathogenic bacterial infections of surgical wounds and conjunctiva.

    PubMed

    Al-Waili, Noori S

    2004-01-01

    Antimicrobial activities of 10-100% (wt/vol) concentrations of new honey, stored honey, heated honey, ultraviolet-exposed honey, and heated stored honey were tested against common human pathogens, including Escherichia coli, Entrobacter cloacae, Pseudomonas aeruginosa, Shigella dysenteriae, Klebsiella sp., Haemophilus influenzae, Proteus sp., Staphylococcus aureus, Streptococcus hemolyticus group B, and Candida albicans. Antimicrobial activity of honey was tested in acidic, neutral, or alkaline media. These were compared with similar concentrations of glucose in nutrient broth. Surgical wounds were made on the dorsum of mice and infected with S. aureus or Klebsiella sp. The wounds were treated with local application of honey four times a day or appropriate antibiotics and compared with control values. Bacterial conjunctivitis due to E. coli, Proteus sp., S. aureus, Klebsiella sp., and P. aeruginosa was induced in rats. Conjunctival application of honey four times a day or appropriate antibiotics was used for treatment and compared with control values. Growth of all the isolates was completely inhibited by 30-100% honey concentrations. The most sensitive microbes were E. coli, P. aeruginosa, and H. influenzae. Glucose showed less antimicrobial activity than honey, and many microbes showed positive culture even in 100% glucose. Heating to 80 degrees C for 1 hour decreased antimicrobial activity of both new and stored honey. Storage of honey for 5 years decreased its antimicrobial activity, while ultraviolet light exposure increased its activity against some of the microorganisms. Antimicrobial activity of honey was stronger in acidic media than in neutral or alkaline media. Single doses of honey used to prepare the 60% concentration in nutrient broth were bacteriocidal for P. aeruginosa and bacteriostatic for S. aureus and Klebsiella sp. during certain periods. Local application of raw honey on infected wounds reduced redness, swelling, time for complete resolution

  20. Effect of mixed antimicrobial agents and flavors in active packaging films.

    PubMed

    Gutiérrez, Laura; Escudero, Ana; Batlle, Ramón; Nerín, Cristina

    2009-09-23

    Active packaging is an emerging food technology to improve the quality and safety of food products. Many works have been developed to study the antimicrobial activity of essential oils. Essential oils have been traditionally used as flavorings in food, so they have an important odor impact but they have as well antimicrobial properties that could be used to protect the food. Recent developments in antimicrobial active packaging showed the efficiency of essential oils versus bread and bakery products among other applications. However, one of the main problems to face is the odor and taste they could provide to the packaged food. Using some aromas to mask the odor could be a good approach. That is why the main objective of this paper is to develop an antimicrobial packaging material based on the combination of the most active compounds of essential oils (hydrocinnamaldehyde, oregano essential oil, cinnamaldehyde, thymol, and carvacrol) together with some aromas commonly used in the food industry. A study of the concentration required to get the antimicrobial properties, the organoleptic compatibility with typical aroma present in many food systems (vanilla, banana, and strawberry), and the right combination of both systems has been carried out. Antimicrobial tests of both the mentioned aromas, the main components of some essential oils, and the combination of both groups were carried out against bacteria (Enterococcus faecalis, Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Salmonella choleraesuis, Yersinia enterocolitica, Escherichia coli), yeasts (Candida albicans, Debaryomyces hansenii, Zygosaccharomyces rouxii), and molds (Botrytis cinerae, Aspergillus flavus, Penicillium roqueforti, Eurotium repens, Penicillium islandicum, Penicillium commune, Penicillium nalgiovensis). The sensory properties of the combinations were evaluated with a triangular test and classification was by an order test; the odor threshold of the aroma compounds was also

  1. Antimicrobial activity of propolis samples from two different regions of Anatolia.

    PubMed

    Kartal, Murat; Yildiz, Sulhiye; Kaya, Serdar; Kurucu, Semra; Topçu, Gülaçti

    2003-05-01

    Antimicrobial activity of two propolis samples from Kazan and Marmaris regions in Turkey were investigated by the disc diffusion method. Antimicrobial activity was tested with four different ethanolic extracts (30, 50, 70, and 96% ethanol) of each sample against seven Gram positive, four Gram negative bacteria and one fungus culture. The activity was found to be mainly due to caffeic acid and its esters. An isomeric mixture containing 3,3-dimethylallyl caffeate, and isopent-3-enyl caffeate was isolated from Kazan propolis samples.

  2. Multifunctional activities of KSLW synthetic antimicrobial decapeptide: Implications for wound healing

    NASA Astrophysics Data System (ADS)

    Williams, Richard Leroy

    Wound healing is a complex process leading to the maintenance of skin integrity. Stress is known to increase susceptibility to bacterial infection, alter proinflammatory cytokine expression, and delay wound closure. Recently, antimicrobial peptides have generated interest due to their prokaryotic selectivity, decreased microbial resistance and multifunctional roles in wound healing, including fibroblast stimulation, keratinocyte migration and leukocyte migration. The objective of this dissertation project was to evaluate the effect of a synthetic antimicrobial decapeptide (KSLW) on bacterial clearance inflammation, and wound closure during stress-impaired healing. SKH-1 mice were randomly assigned to either control or restraint-stressed (RST) groups. Punch biopsy wounds (3.5 mm in diameter) were created bilaterally on the dorsal skin. Wounds were injected with 50 microL of empty carriers or KSLW prepared in Pluronic-F68, phospholipid micelles, or saline. Bacterial assays of harvested wounds were conducted on BHI agar. Wound closure was determined by photoplanimetry. Cytokine and growth factor mRNA expression was assessed with real-time RT-PCR. Human neutrophil migration assays and checkerboard analyses were performed using Transweli plates, and counting on hemacytometer. Oxidative burst activity was measured by spectrophotometric analysis of 2,7-dichlorofluorescein oxidation. KSLW-treatment resulted in significant reductions in bacterial load among RST mice, with no difference from control after 24h. The effect was sustained 5 days post-wounding, in RST mice treated with KSLW-F68. Temporal analysis of gene induction revealed reversals of stress-induced altered expression of growth factors, proinflammatory cytokines, and chemokines essential for favorable wound healing, at various time points. KSLW-treatment in RST mice demonstrated faster wound closure throughout the stress period. KSLW, at micromolar concentrations, demonstrated a significant effect on neutrophil

  3. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  4. Chemical composition and antimicrobial activity of the leaf essential oil of Skimmia laureola growing wild in Jammu and Kashmir, India.

    PubMed

    Shah, Wajaht A; Dar, Mohd Yousuf; Zagar, M Iqbal; Agnihotri, Vijai K; Qurishi, M A; Singh, Bikram

    2013-01-01

    The analysis of Skimmia laureola hydrodistillate by gas chromatography coupled with mass spectrometry revealed the presence of 20 constituents, representing 94.6% of the total oil. The major constituents of oil were linalyl acetate (33.0%), linalool (25.0%), limonene (8.1%), α-terpineol (5.9%) and geranyl acetate (5.9%). The monoterpene (93.4%) rich essential oil was evaluated for its antibacterial and antifungal activities against seven microorganisms by agar diffusion and microdilution methods. The oil showed appreciable antimicrobial effects against all Gram-positive bacteria tested, including methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis with MIC values 32 and 64 µg mL(-1), respectively. The oil also exhibited strong fungicidal activity against Aspergillus niger and Penicillium chrysogenum with MIC value in the range 32-16 µg mL(-1). The oil could be used in the formulation of antimicrobial agents. PMID:22780302

  5. Antimicrobial activities of ozenoxacin against isolates of propionibacteria and staphylococci from Japanese patients with acne vulgaris.

    PubMed

    Nakajima, Akiko; Ikeda, Fumiaki; Kanayama, Shoji; Okamoto, Kazuaki; Matsumoto, Tatsumi; Ishii, Ritsuko; Fujikawa, Akira; Takei, Katsuaki; Kawashima, Makoto

    2016-08-01

    Ozenoxacin, a novel non-fluorinated topical quinolone, was assessed for in vitro antimicrobial activity against clinical isolates of propionibacteria and staphylococci according to the broth microdilution method recommended by the Clinical and Laboratory Standards Institute. The isolates used in this study were collected from Japanese patients with acne vulgaris during a period from 2012 to 2013. The MIC90s of ozenoxacin against Propionibacterium acnes (n=266), Propionibacterium granulosum (n=10), Staphylococcus aureus (n=23), Staphylococcus epidermidis (n=229) and other coagulase-negative staphylococci (n=82) were ≤0.06, ≤0.06, ≤0.06, 0.125 and ≤0.06 µg ml-1, respectively. The antimicrobial activity of ozenoxacin against the clinical isolates of propionibacteria and staphylococci was greater than that of five reference antimicrobial agents which have been used for the treatment of acne vulgaris. The MICs of ozenoxacin were correlated with those of nadifloxacin in P. acnes and S. epidermidis isolates. However, the MICs of ozenoxacin were 0.25-0.5 µg ml-1 and 0.5-8 µg ml-1 against nadifloxacin-resistant P. acnes (MIC: ≥8 µg ml-1; n=8) and S. epidermidis (MIC: ≥64 µg ml-1; n=10), respectively. These results indicated the potent antimicrobial activity against P. acnes and S. epidermidis isolates resistant to nadifloxacin. Topical ozenoxacin could represent an alternative therapeutic drug for acne vulgaris based on its potent antimicrobial activity against the isolates of propionibacteria and staphylococci from acne patients.

  6. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains.

    PubMed

    Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan

    2014-01-01

    The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits.

  7. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates

    PubMed Central

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. Results: The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. PMID:27366345

  8. Analysis of the antimicrobial activity of propolis and lysozyme in semisolid emulsion systems.

    PubMed

    Ramanauskiene, Kristina; Inkeniene, Asta Marija; Savickas, Arūnas; Masteikova, Rūta; Brusokas, Valdemaras

    2009-01-01

    Propolis as an active natural substance is attractive due to its antimicrobial and antimycotic properties. Lysozyme was added to semisolid dermatological preparations as a complementary substance capable of potentiating their antimicrobial and antimycotic effect; this substance has been used for several decades as a preservative in food industry. The aim of this study was to model a semisolid emulsion system (o/w) for cutaneous use with moisturizing and antimicrobial properties, where the active substances would be propolis and/or lysozyme. The microbiological examination was performed under aseptic conditions. The microbiological examination was aimed at determining the antimicrobial efficacy of the studied preparation in the solid growth media using the wells technique. The results of the antimicrobial assay showed that the effectiveness of propolis against the growth of S. aureus was intensified by the lysozyme introduced into the emulsion systems. In addition to that, the results of examinations showed that the active substance propolis in emulsion systems more efficiently inhibited spore bacteria (Bacillus cereus) than lysozyme did, yet lysozyme had a more pronounced antimycotic (against Candida albicans) effect, compared to propolis. All studied cream samples inhibited the growth of Gram-negative microorganisms (Escherichia coli). The results of this study suggest that the application of propolis and lysozyme as the active substances may increase the antimycotic and antibacterial effect of the studied preparations.

  9. Antimicrobial activities of ozenoxacin against isolates of propionibacteria and staphylococci from Japanese patients with acne vulgaris.

    PubMed

    Nakajima, Akiko; Ikeda, Fumiaki; Kanayama, Shoji; Okamoto, Kazuaki; Matsumoto, Tatsumi; Ishii, Ritsuko; Fujikawa, Akira; Takei, Katsuaki; Kawashima, Makoto

    2016-08-01

    Ozenoxacin, a novel non-fluorinated topical quinolone, was assessed for in vitro antimicrobial activity against clinical isolates of propionibacteria and staphylococci according to the broth microdilution method recommended by the Clinical and Laboratory Standards Institute. The isolates used in this study were collected from Japanese patients with acne vulgaris during a period from 2012 to 2013. The MIC90s of ozenoxacin against Propionibacterium acnes (n=266), Propionibacterium granulosum (n=10), Staphylococcus aureus (n=23), Staphylococcus epidermidis (n=229) and other coagulase-negative staphylococci (n=82) were ≤0.06, ≤0.06, ≤0.06, 0.125 and ≤0.06 µg ml-1, respectively. The antimicrobial activity of ozenoxacin against the clinical isolates of propionibacteria and staphylococci was greater than that of five reference antimicrobial agents which have been used for the treatment of acne vulgaris. The MICs of ozenoxacin were correlated with those of nadifloxacin in P. acnes and S. epidermidis isolates. However, the MICs of ozenoxacin were 0.25-0.5 µg ml-1 and 0.5-8 µg ml-1 against nadifloxacin-resistant P. acnes (MIC: ≥8 µg ml-1; n=8) and S. epidermidis (MIC: ≥64 µg ml-1; n=10), respectively. These results indicated the potent antimicrobial activity against P. acnes and S. epidermidis isolates resistant to nadifloxacin. Topical ozenoxacin could represent an alternative therapeutic drug for acne vulgaris based on its potent antimicrobial activity against the isolates of propionibacteria and staphylococci from acne patients. PMID:27305898

  10. Probiotic Potential of Lactobacillus Strains with Antimicrobial Activity against Some Human Pathogenic Strains

    PubMed Central

    Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan

    2014-01-01

    The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147

  11. Antimicrobial Activity of Chemokine CXCL10 for Dermal and Oral Microorganisms.

    PubMed

    Holdren, Grant O; Rosenthal, David J; Yang, Jianyi; Bates, Amber M; Fischer, Carol L; Zhang, Yang; Brogden, Nicole K; Brogden, Kim A

    2014-10-23

    CXCL10 (IP-10) is a small 10 kDa chemokine with antimicrobial activity. It is induced by IFN-γ, chemoattracts mononuclear cells, and promotes adhesion of T cells. Recently, we detected CXCL10 on the surface of the skin and in the oral cavity. In the current study, we used broth microdilution and radial diffusion assays to show that CXCL10 inhibits the growth of Escherichia coli, Staphylococcus aureus, Corynebacterium jeikeium, Corynebacterium striatum, and Candida albicans HMV4C, but not Corynebacterium bovis, Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Poryphromonas gingivalis, or C. albicans ATCC 64124. The reason for the selective antimicrobial activity is not yet known. However, antimicrobial activity of CXCL10 may be related to its composition and structure, as a cationic 98 amino acid residue molecule with 10 lysine residues, 7 arginine residues, a total net charge of +11, and a theoretical pI of 9.93. Modeling studies revealed that CXCL10 contains an α-helix at the N-terminal, three anti-parallel β-strands in the middle, and an α-helix at the C-terminal. Thus, CXCL10, when produced on the surface of the skin or in the oral cavity, likely has antimicrobial activity and may enhance innate antimicrobial and cellular responses to the presence of select commensal or opportunistic microorganisms.

  12. In vitro and in vivo antimicrobial activities of sporaricin A, a new aminoglycoside.

    PubMed Central

    Kobayashi, F; Saino, Y; Koshi, T; Hattori, Y

    1980-01-01

    The in vitro and in vivo antimicrobial activity of sporaricin A, a new aminoglycoside, was compared with that of amikacin, dibekacin, and gentamicin. Sporaricin A showed a broad spectrum of activity against various gram-positive and -negative bacteria, including amikacin-, dibekacin-, or gentamicin-resistant strains. Sporaricin A inhibited more than 90% of clinical isolates of staphylococci, Klebsiella, Enterobacter, Citrobacter, Serratia, and Proteus, except for P. morganii and P. inconstans, at the concentration of 3.13 microgram/ml. This activity, except for that against Serratia, was similar to that of amikacin. Against P. inconstans and S. marcescens, sporaricin A was more effective than amikacin, dibekacin, and gentamicin. However, its activity against Pseudomonas aeruginosa was relatively weak in comparison with three other aminoglycosides. Sporaricin A was highly effective against bacteria that had various aminoglycoside-inactivating enzymes and that were resistant to the other drugs tested, but it was not active against those with aminoglycoside 3-acetyltransferase-I. The activity of sporaricin A tended to be greater with a reduction in inoculum size of bacteria and an increase in medium pH and decreased slightly in the presence of 10 to 50% horse serum. The in vitro activity was confirmed by in vivo tests in experimental infections with various bacteria. Its protective effect seemed to be equal to or greater than that of amikacin or dibekacin. PMID:7425599

  13. Green fabrication of quaternized chitosan/rectorite/Ag NP nanocomposites with antimicrobial activity.

    PubMed

    Luo, Jiwen; Xie, Meijia; Wang, Xiaoying

    2014-02-01

    Silver nanoparticles (Ag NPs) were synthesized rapidly in one pot via the Tollens reaction, in which quaternized chitosan (QCS) and rectorite (REC) acted as the reducing and stabilizing agent, while other chemical reducing and stabilizing agents and the surfactant were not included. X-ray diffraction, scanning electron microscopy and transmission electron microscopy results showed that spherical Ag NPs with uniform sizes were obtained, the layers of clay were peeled and thus exfoliated QCS/REC/Ag NP (QCRAg) nanocomposite was achieved. Moreover, Ag NPs dispersed well in the exfoliated nanocomposite matrix, some Ag NPs even entered into the interlayer of REC. QCRAg nanocomposites showed strong antimicrobial activity; the lowest minimum inhibitory concentration against Staphyloccocus aureus was only 0.0001% (w/v). The study reveals that the obtained QCRAg nanocomposites have great potential for biomedical applications. PMID:24457172

  14. Chemical composition and antimicrobial activity of the essential oils of Anthospermum emirnense and Anthospermum perrieri (Rubiaceae).

    PubMed

    Rasoarivelo, Sylvia Tiana Ralambonirina; Grougnet, Raphaël; Vérité, Philippe; Lecsö, Marylin; Butel, Marie-José; Tillequin, François; Guillou, Christiane Rakotobe; Deguin, Brigitte

    2011-01-01

    The essential oils of Anthospermum emirnense Baker and Anthospermum perrieri Homolle ex Puff, obtained by hydrodistillation in 0.03 and 0.02% yield, respectively, were analyzed by GC/MS. In both cases, the major constituents consisted of sesquiterpene hydrocarbons and oxygenated sesquiterpenes. The two species showed an important qualitative similarity, with 40 compounds common to A. emirnense and A. perrieri, including β-elemene, trans-β-caryophyllene, caryophyllene oxide, and τ-cadinol, which were major components in both cases. When tested for antimicrobial activity, both essential oils showed similar profiles and exhibited interesting minimal-inhibitory-concentration (MIC) values towards Bacillus subtilis, Chryseobacterium indologenes, Flavimonas oryzihabitans, and Yersinia enterocolitica.

  15. [Antimicrobial Activity of Fungi Strains of Trichoderma from Middle Siberia].

    PubMed

    Sadykova, V S; Kurakov, A V; Kuvarina, A E; Rogozhin, E A

    2015-01-01

    The antibiotic activity in 42 strains of 8 species of the Trichoderma genus (T. asperellum, T. viride, T. hamatum, T. koningii, T. atroviride, T. harzianum, T. Citrinoviride, and T. longibrachiatum) isolated from different Siberian ecotops was studied. It was shown that these species differ in the degree of their antibacterial and antifungal activity. The chosen strain, T. citrinoviride TV4-1, exhibited high activity and a wide range of actions against the opportunistic and pathogenic fungi of the Aspergillus and Candida albicans genus; bacteria, including methicillin-resistant Staphylococcus aureus; and cancer cells. According to mass and I R spectrometry data and the spectrum of biological action, peptaibols are probably the most active compounds in the strain culture extracts. PMID:26204779

  16. Expression of human beta defensin 4 in genetically modified keratinocytes enhances antimicrobial activity.

    PubMed

    Smiley, Andrea K; Gardner, Jason; Klingenberg, Jennifer M; Neely, Alice N; Supp, Dorothy M

    2007-01-01

    Defensins are cationic peptides of the innate host defense system with antimicrobial activity against many of the microorganisms commonly found in burn units. Beta defensins are variably expressed in the epithelia of skin and other organs. Human beta defensin 4 reportedly has antimicrobial activity against Pseudomonas aeruginosa and is not normally expressed in intact skin. Genetic modification was used to ectopically express human beta defensin 4 in cultured primary epidermal keratinocytes. Keratinocytes expressing human beta defensin 4 showed significantly elevated antimicrobial activity against clinically-isolated P. aeruginosa compared with controls. These results suggest that genetic modification of keratinocytes can increase their resistance to microbial contamination. Bioengineered skin replacements containing human beta defensin 4-modified keratinocytes may be useful for transplantation to contaminated burn wounds.

  17. Thymus catharinae Camarda essential oil: β-cyclodextrin inclusion complexes, evaluation of antimicrobial activity.

    PubMed

    Delogu, Giovanna; Juliano, Claudia Clelia Assunta; Usai, Marianna

    2016-09-01

    An efficient antimicrobial activity was evidenced in a complex β-cyclodextrin-essential oil of Thymus catharinae Camarda (carvacrol chemotype). The release of carvacrol with respect to the antimicrobial activity was calculated as function of time. The βCD-complex of the bioactive agent was obtained by a simple, efficient and non-expensive method without purification of the carvacrol chemotype essential oil. According to the starting stoichiometry of β-cyclodextrin with respect to carvacrol, two inclusion complexes were produced, 1:1 and 2:1, respectively. The results demonstrate that, although the antimicrobial activity of the essential oil of T. catharinae Camarda is remarkable but acts too quickly in some types of application, its inclusion in a bio-matrix allows a slower release and improves its effectiveness.

  18. Medium chain fatty acid ethyl esters - activation of antimicrobial effects by Malassezia enzymes.

    PubMed

    Mayser, Peter

    2015-04-01

    Free medium and short chain fatty acids are known to have broad antimicrobial activity. However, their practical use in topical therapy is limited by their intensive smell and acidity. Surprisingly, a nearly identical antimicrobial effect was found with the ethyl ester derivatives of these fatty acids, but only against Malassezia (M.) yeast, not against Candida spp. Obviously, these esters are hydrolysed by M. enzymes, thus generating a selective activation of antimicrobial activity especially in areas well populated with these yeast ('targeting'). Octanoic acid ethyl ester (CAS 106-32-1) was found to be most suitable. In an agar dilution test, the minimal inhibitory concentrations against M. globosa, M. pachydermatis and M. sympodialis, respectively, ranged between ~5 and 10 mmol l(-1) after 10 days of incubation. The effect started immediately and was not delayed by other lipid sources applied simultaneously. Based on these data, fatty acid monoesters may represent a new therapeutic concept in M.-associated diseases. PMID:25676074

  19. Synergistic effects of guanidine-grafted CMC on enhancing antimicrobial activity and dry strength of paper.

    PubMed

    Liu, Kai; Xu, Yaoguang; Lin, Xinxing; Chen, Lihui; Huang, Liulian; Cao, Shilin; Li, Jian

    2014-09-22

    In order to improve the strength property and antimicrobial activity of paper simultaneously, we prepared a novel multifunctional agent based on carboxymethyl cellulose (CMC) by a simple two-stage method. The first stage was the oxidation of CMC to obtain the dialdehyde CMC (DCMC), and the second stage was the graft of guanidine hydrochloride (GH) onto DCMC to obtain DCMC-GH polymer. The strength property and antimicrobial activity of DCMC-GH-coated copy paper have been studied by the tensile test and inhibition zone method, respectively. The results showed that the dry strength index could increase about 20% after the paper was coated with DCMC-GH. The coating of DCMC-GH on paper also resulted in excellent antimicrobial activities against Escherichia coli and Staphylococcus aureus, and the inhibition zone became larger as the GH content grafted on DCMC increased. The novel DCMC-GH polymer would be a multifunctional coating agent for food packaging paper.

  20. Correlation between the sorption of dissolved oxygen onto chitosan and its antimicrobial activity against Esherichia coli.

    PubMed

    Gylienė, Ona; Servienė, Elena; Vepštaitė, Iglė; Binkienė, Rima; Baranauskas, Mykolas; Lukša, Juliana

    2015-10-20

    The ability of chitosan to adsorb dissolved oxygen from solution depends on its physical shape and is related to the surface area. Depending on conditions chitosan is capable of adsorbing or releasing oxygen. Chitosan, modificated by the substances possessing antimicrobial activity, such as succinic acid, Pd(II) ions, metallic Pd or Ag, distinctly increases the ability to adsorb the dissolved oxygen. The additional treatment of chitosan with air oxygen or electrochemically produced oxygen also increases the uptake of dissolved oxygen by chitosan. A strong correlation between the amount of oxygen adsorbed onto chitosan and its antimicrobial activity against Esherichia coli has been observed. This finding suggests that one of the sources of antimicrobial activity of chitosan is the ability to sorb dissolved oxygen, along with other well-known factors such as physical state and chemical composition.

  1. Essential oil composition and antimicrobial activity of Angelica archangelica L. (Apiaceae) roots.

    PubMed

    Fraternale, Daniele; Flamini, Guido; Ricci, Donata

    2014-09-01

    In this paper, the chemical composition and the antimicrobial activity of the essential oil of Angelica archangelica L. (Apiaceae) roots from central Italy were analyzed. The major constituents of the oil were α-pinene (21.3%), δ-3-carene (16.5%), limonene (16.4%) and α-phellandrene (8.7%). The oil shows a good antimicrobial activity against Clostridium difficile, Clostridium perfringens, Enterococcus faecalis, Eubacterium limosum, Peptostreptococcus anaerobius, and Candida albicans with minimum inhibitory concentration (MIC) values of 0.25, 0.25, 0.13, 0.25, 2.25, and 0.50% v/v, respectively. A weaker antimicrobial activity against bifidobacteria and lactobacilli-very useful in the intestinal microflora-has also been shown with MIC values >4.0% v/v. PMID:24788027

  2. Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle.

    PubMed

    Pal, Indrani; Brahmkhatri, Varsha P; Bera, Swapna; Bhattacharyya, Dipita; Quirishi, Yasrib; Bhunia, Anirban; Atreya, Hanudatta S

    2016-12-01

    The conjugation of nanoparticles with antimicrobial peptides (AMP) is emerging as a promising route to achieve superior antimicrobial activity. However, the nature of peptide-nanoparticle interactions in these systems remains unclear. This study describes a system consisting of a cysteine containing antimicrobial peptide conjugated with silver nanoparticles, in which the two components exhibit a dynamic interaction resulting in a significantly enhanced stability and biological activity compared to that of the individual components. This was investigated using NMR spectroscopy in conjunction with other biophysical techniques. Using fluorescence assisted cell sorting and membrane mimics we carried out a quantitative comparison of the activity of the AMP-nanoparticle system and the free peptide. Taken together, the study provides new insights into nanoparticle-AMP interactions at a molecular level and brings out the factors that will be useful for consideration while designing new conjugates with enhanced functionality. PMID:27585423

  3. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens.

    PubMed

    Efstratiou, Efstratios; Hussain, Abdullah I; Nigam, Poonam S; Moore, John E; Ayub, Muhammad A; Rao, Juluri R

    2012-08-01

    The aim of the present study was to assess the antimicrobial activity of methanol and ethanol extracts of pot marigold (Calendula officinalis) petals against clinical pathogens. The antimicrobial potential of C. officinalis extracts was evaluated against a panel of microorganisms isolated from patients at the Belfast City Hospital (BCH), including bacteria and fungi, using disc diffusion assay. Methanol extract of C. officinalis exhibited better antibacterial activity against most of the bacteria tested, than ethanol extract. Both methanol and ethanol extracts showed excellent antifungal activity against tested strains of fungi, while comparing with Fluconazole. PMID:22789794

  4. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens.

    PubMed

    Efstratiou, Efstratios; Hussain, Abdullah I; Nigam, Poonam S; Moore, John E; Ayub, Muhammad A; Rao, Juluri R

    2012-08-01

    The aim of the present study was to assess the antimicrobial activity of methanol and ethanol extracts of pot marigold (Calendula officinalis) petals against clinical pathogens. The antimicrobial potential of C. officinalis extracts was evaluated against a panel of microorganisms isolated from patients at the Belfast City Hospital (BCH), including bacteria and fungi, using disc diffusion assay. Methanol extract of C. officinalis exhibited better antibacterial activity against most of the bacteria tested, than ethanol extract. Both methanol and ethanol extracts showed excellent antifungal activity against tested strains of fungi, while comparing with Fluconazole.

  5. Novel engineered cationic antimicrobial peptides display broad-spectrum activity against Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei.

    PubMed

    Abdelbaqi, Suha; Deslouches, Berthony; Steckbeck, Jonathan; Montelaro, Ronald; Reed, Douglas S

    2016-02-01

    Broad-spectrum antimicrobials are needed to effectively treat patients infected in the event of a pandemic or intentional release of a pathogen prior to confirmation of the pathogen's identity. Engineered cationic antimicrobial peptides (eCAPs) display activity against a number of bacterial pathogens including multi-drug-resistant strains. Two lead eCAPs, WLBU2 and WR12, were compared with human cathelicidin (LL-37) against three highly pathogenic bacteria: Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei. Both WLBU2 and WR12 demonstrated bactericidal activity greater than that of LL-37, particularly against F. tularensis and Y. pestis. Only WLBU2 had bactericidal activity against B. pseudomallei. WLBU2, WR12 and LL-37 were all able to inhibit the growth of the three bacteria in vitro. Because these bacteria can be facultative intracellular pathogens, preferentially infecting macrophages and dendritic cells, we evaluated the activity of WLBU2 against F. tularensis in an ex vivo infection model with J774 cells, a mouse macrophage cell line. In that model WLBU2 was able to achieve greater than 50% killing of F. tularensis at a concentration of 12.5 μM. These data show the therapeutic potential of eCAPs, particularly WLBU2, as a broad-spectrum antimicrobial for treating highly pathogenic bacterial infections. PMID:26673248

  6. Synthesis and structure-activity relationships of novel cationic lipids with anti-inflammatory and antimicrobial activities.

    PubMed

    Myint, Melissa; Bucki, Robert; Janmey, Paul A; Diamond, Scott L

    2015-07-15

    Certain membrane-active cationic steroids are known to also possess both anti-inflammatory and antimicrobial properties. This combined functionality is particularly relevant for potential therapies of infections associated with elevated tissue damage, for example, cystic fibrosis airway disease, a condition characterized by chronic bacterial infections and ongoing inflammation. In this study, six novel cationic glucocorticoids were synthesized using beclomethasone, budesonide, and flumethasone. Products were either monosubstituted or disubstituted, containing one or two steroidal groups, respectively. In vitro evaluation of biological activities demonstrated dual anti-inflammatory and antimicrobial properties with limited cytotoxicity for all synthesized compounds. Budesonide-derived compounds showed the highest degree of both glucocorticoid and antimicrobial properties within their respective mono- and disubstituted categories. Structure-activity analyses revealed that activity was generally related to the potency of the parent glucocorticoid. Taken together, these data indicate that these types of dual acting cationic lipids can be synthesized with the appropriate starting steroid to tailor activities as desired.

  7. Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins.

    PubMed

    Brahma, Biswajit; Patra, Mahesh Chandra; Karri, Satyanagalakshmi; Chopra, Meenu; Mishra, Purusottam; De, Bidhan Chandra; Kumar, Sushil; Mahanty, Sourav; Thakur, Kiran; Poluri, Krishna Mohan; Datta, Tirtha Kumar; De, Sachinandan

    2015-01-01

    Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics.

  8. Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins.

    PubMed

    Brahma, Biswajit; Patra, Mahesh Chandra; Karri, Satyanagalakshmi; Chopra, Meenu; Mishra, Purusottam; De, Bidhan Chandra; Kumar, Sushil; Mahanty, Sourav; Thakur, Kiran; Poluri, Krishna Mohan; Datta, Tirtha Kumar; De, Sachinandan

    2015-01-01

    Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics. PMID:26675301

  9. Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins

    PubMed Central

    Brahma, Biswajit; Patra, Mahesh Chandra; Karri, Satyanagalakshmi; Chopra, Meenu; Mishra, Purusottam; De, Bidhan Chandra; Kumar, Sushil; Mahanty, Sourav; Thakur, Kiran; Poluri, Krishna Mohan; Datta, Tirtha Kumar; De, Sachinandan

    2015-01-01

    Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics. PMID:26675301

  10. Functional analysis of Pacific oyster (Crassostrea gigas) β-thymosin: Focus on antimicrobial activity.

    PubMed

    Nam, Bo-Hye; Seo, Jung-Kil; Lee, Min Jeong; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Park, Nam Gyu

    2015-07-01

    An antimicrobial peptide, ∼5 kDa in size, was isolated and purified in its active form from the mantle of the Pacific oyster Crassostrea gigas by C18 reversed-phase high-performance liquid chromatography. Matrix-assisted laser desorption ionisation time-of-flight analysis revealed 4656.4 Da of the purified and unreduced peptide. A comparison of the N-terminal amino acid sequence of oyster antimicrobial peptide with deduced amino acid sequences in our local expressed sequence tag (EST) database of C. gigas (unpublished data) revealed that the oyster antimicrobial peptide sequence entirely matched the deduced amino acid sequence of an EST clone (HM-8_A04), which was highly homologous with the β-thymosin of other species. The cDNA possessed a 126-bp open reading frame that encoded a protein of 41 amino acids. To confirm the antimicrobial activity of C. gigas β-thymosin, we overexpressed a recombinant β-thymosin (rcgTβ) using a pET22 expression plasmid in an Escherichia coli system. The antimicrobial activity of rcgTβ was evaluated and demonstrated using a bacterial growth inhibition test in both liquid and solid cultures. PMID:25842181

  11. Antimicrobial activities of chicken β-defensin (4 and 10) peptides against pathogenic bacteria and fungi

    PubMed Central

    Yacoub, Haitham A.; Elazzazy, Ahmed M.; Abuzinadah, Osama A. H.; Al-Hejin, Ahmed M.; Mahmoud, Maged M.; Harakeh, Steve M.

    2015-01-01

    Host Defense Peptides (HDPs) are small cationic peptides found in several organisms. They play a vital role in innate immunity response and immunomodulatory stimulation. This investigation was designed to study the antimicrobial activities of β-defensin peptide-4 (sAvBD-4) and 10 (sAvBD-4) derived from chickens against pathogenic organisms including bacteria and fungi. Ten bacterial strains and three fungal species were used in investigation. The results showed that the sAvBD-10 displayed a higher bactericidal potency against all the tested bacterial strains than that of sAvBD-4. The exhibited bactericidal activity was significant against almost the different bacterial strains at different peptide concentrations except for that of Pseudomonas aeruginosa (P. aeruginosa) and Streptococcus bovis (Str. bovis) strains where a moderate effect was noted. Both peptides were effective in the inactivation of fungal species tested yielding a killing rate of up to 95%. The results revealed that the synthetic peptides were resistant to salt at a concentration of 50 mM NaCl. However, they lost antimicrobial potency when applied in the presence of high salt concentrations. Based on blood hemolysis studies, a little hemolytic effect was showed in the case of both peptides even when applied at high concentrations. The data obtained from this study indicated that synthetic avian peptides exhibit strong antibacterial and antifungal activity. In conclusion, future work and research should be tailored to a better understanding of the mechanisms of action of those peptides and their potential use in the pharmaceutical industry to help reduce the incidence and impact of infectious agent and be marketed as a naturally occurring antibiotic. PMID:25941665

  12. Antimicrobial activities of chicken β-defensin (4 and 10) peptides against pathogenic bacteria and fungi.

    PubMed

    Yacoub, Haitham A; Elazzazy, Ahmed M; Abuzinadah, Osama A H; Al-Hejin, Ahmed M; Mahmoud, Maged M; Harakeh, Steve M

    2015-01-01

    Host Defense Peptides (HDPs) are small cationic peptides found in several organisms. They play a vital role in innate immunity response and immunomodulatory stimulation. This investigation was designed to study the antimicrobial activities of β-defensin peptide-4 (sAvBD-4) and 10 (sAvBD-4) derived from chickens against pathogenic organisms including bacteria and fungi. Ten bacterial strains and three fungal species were used in investigation. The results showed that the sAvBD-10 displayed a higher bactericidal potency against all the tested bacterial strains than that of sAvBD-4. The exhibited bactericidal activity was significant against almost the different bacterial strains at different peptide concentrations except for that of Pseudomonas aeruginosa (P. aeruginosa) and Streptococcus bovis (Str. bovis) strains where a moderate effect was noted. Both peptides were effective in the inactivation of fungal species tested yielding a killing rate of up to 95%. The results revealed that the synthetic peptides were resistant to salt at a concentration of 50 mM NaCl. However, they lost antimicrobial potency when applied in the presence of high salt concentrations. Based on blood hemolysis studies, a little hemolytic effect was showed in the case of both peptides even when applied at high concentrations. The data obtained from this study indicated that synthetic avian peptides exhibit strong antibacterial and antifungal activity. In conclusion, future work and research should be tailored to a better understanding of the mechanisms of action of those peptides and their potential use in the pharmaceutical industry to help reduce the incidence and impact of infectious agent and be marketed as a naturally occurring antibiotic.

  13. Substandard/Counterfeit Antimicrobial Drugs

    PubMed Central

    Kelesidis, Theodoros

    2015-01-01

    SUMMARY Substandard/counterfeit antimicrobial drugs are a growing global problem. The most common substandard/counterfeit antimicrobials include beta-lactams (among antibiotics) and chloroquine and artemisin derivatives (among antimalarials). The most common type of substandard/counterfeit antimicrobial drugs have a reduced amount of the active drug, and the majority of them are manufactured in Southeast Asia and Africa. Counterfeit antimicrobial drugs may cause increased mortality and morbidity and pose a danger to patients. Here we review the literature with regard to the issue of substandard/counterfeit antimicrobials and describe the prevalence of this problem, the different types of substandard/counterfeit antimicrobial drugs, and the consequences for the individuals and global public health. Local, national, and international initiatives are required to combat this very important public health issue. PMID:25788516

  14. Substandard/counterfeit antimicrobial drugs.

    PubMed

    Kelesidis, Theodoros; Falagas, Matthew E

    2015-04-01

    Substandard/counterfeit antimicrobial drugs are a growing global problem. The most common substandard/counterfeit antimicrobials include beta-lactams (among antibiotics) and chloroquine and artemisin derivatives (among antimalarials). The most common type of substandard/counterfeit antimicrobial drugs have a reduced amount of the active drug, and the majority of them are manufactured in Southeast Asia and Africa. Counterfeit antimicrobial drugs may cause increased mortality and morbidity and pose a danger to patients. Here we review the literature with regard to the issue of substandard/counterfeit antimicrobials and describe the prevalence of this problem, the different types of substandard/counterfeit antimicrobial drugs, and the consequences for the individuals and global public health. Local, national, and international initiatives are required to combat this very important public health issue. PMID:25788516

  15. Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole.

    PubMed

    Seenaiah, D; Reddy, P Ramachandra; Reddy, G Mallikarjuna; Padmaja, A; Padmavathi, V; Krishna, N Siva

    2014-04-22

    A variety of pyrimidinyl benzoxazoles, benzothiazoles and benzimidazoles linked by thio, methylthio and amino moieties were prepared and studied their antimicrobial and cytotoxic activities. The compound pyrimidinyl bis methylthio benzimidazole 22 was a potent antimicrobial agent particularly against Staphylococcus aureus (29 mm, MIC 12.5 μg/mL) and Penicillium chrysogenum (38 mm, MIC 12.5 μg/mL). The amino linked pyrimidinyl bis benzothiazole 24 exhibited cytotoxic activity on A549 cells with IC50 value of 10.5 μM.

  16. Antimicrobial activity of extracts of the lichen Xanthoparmelia pokornyi and its gyrophoric and stenosporic acid constituents.

    PubMed

    Candan, Mehmet; Yilmaz, Meral; Tay, Turgay; Kivanç, Merih; Türk, Hayrettin

    2006-01-01

    The antimicrobial activity of the diethyl ether, acetone, chloroform, petroleum ether, and ethanol extracts of the lichen Xanthoparmelia pokornyi and its gyrophoric acid and stenosporic acid constituents has been screened against some foodborne bacteria and fungi. Both the extracts and the acids showed antimicrobial activity against Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Proteus vulgaris, Staphylococcus aureus, Streptococcus faecalis, Yersinia enterocolitica, Candida albicans and Candida glabrata. The extracts were inactive against the tested filamentous fungi. The MIC values of the extracts and the acids for the bacteria have also been determined.

  17. Antimicrobial peptides

    PubMed Central

    2014-01-01

    With increasing antibiotics resistance, there is an urgent need for novel infection therapeutics. Since antimicrobial peptides provide opportunities for this, identification and optimization of such peptides have attracted much interest during recent years. Here, a brief overview of antimicrobial peptides is provided, with focus placed on how selected hydrophobic modifications of antimicrobial peptides can be employed to combat also more demanding pathogens, including multi-resistant strains, without conferring unacceptable toxicity. PMID:24758244

  18. Investigating the antimicrobial peptide 'window of activity' using cationic lipopeptides with hydrocarbon and fluorinated tails.

    PubMed

    Findlay, Brandon; Zhanel, George G; Schweizer, Frank

    2012-07-01

    To probe the effect of carbon-fluorine bonds on antimicrobial peptide-membrane interactions, 24 cationic lipopeptides were created. The collection of lipopeptides was built from two different peptide sequences, KGK and KKK, with a variety of different lipids selected to probe the effectiveness of both hydrocarbon and fluorinated tails. The antimicrobial activity of each peptide was tested against a mixture of pathogenic and reference bacterial strains, with the cationic disinfectant benzalkonium chloride as a positive control. Non-specific interactions with hydrophobic proteins were assessed by repeating antimicrobial testing in the presence of bovine serum albumin (BSA), and the toxicity of the lipopeptides was assessed by measuring lysis of ovine erythrocytes. Peptide sequence had a moderate effect on activity, with the most active peptide (C16-KGK) inhibiting the growth of two Staphylococcus epidermidis strains at ≤ 0.25 μg/mL. Tail composition was less important than the overall hydrophobicity, with the most active fluorinated tails equivalent to moderately active hydrocarbon tails. The activity of all peptides was significantly reduced by the presence of BSA, and haemolysis was closely correlated with antimicrobial activity.

  19. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    NASA Astrophysics Data System (ADS)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  20. Correlation of the antimicrobial activity of salicylaldehydes with broadening of the NMR signal of the hydroxyl proton. Possible involvement of proton exchange processes in the antimicrobial activity.

    PubMed

    Elo, Hannu; Kuure, Matti; Pelttari, Eila

    2015-03-01

    Certain substituted salicylaldehydes are potent antibacterial and antifungal agents and some of them merit consideration as potential chemotherapeutic agents against Candida infections, but their mechanism of action has remained obscure. We report here a distinct correlation between broadening of the NMR signal of the hydroxyl proton of salicylaldehydes and their activity against several types of bacteria and fungi. When proton NMR spectra of the compounds were determined using hexadeuterodimethylsulfoxide as solvent and the height of the OH proton signal was measured, using the signal of the aldehyde proton as an internal standard, it was discovered that a prerequisite of potent antimicrobial activity is that the proton signal is either unobservable or relatively very low, i.e. that it is extremely broadened. Thus, none of the congeners whose OH proton signal was high were potent antimicrobial agents. Some congeners that gave a very low OH signal were, however, essentially inactive against the microbes, indicating that although drastic broadening of the OH signal appears to be a prerequisite, also other (so far unknown) factors are needed for high antimicrobial activity. Because broadening of the hydroxyl proton signal is related to the speed of the proton exchange process(es) involving that proton, proton exchange may be involved in the mechanism of action of the compounds. Further studies are needed to analyze the relative importance of different factors (such as electronic effects, strength of the internal hydrogen bond, co-planarity of the ring and the formyl group) that determine the rates of those processes. PMID:25621992

  1. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity.

    PubMed

    Takahashi, Daisuke; Shukla, Sanjeev K; Prakash, Om; Zhang, Guolong

    2010-09-01

    Antimicrobial host defense peptides (HDPs) are a critical component of the innate immunity with microbicidal, endotoxin-neutralizing, and immunostimulatory properties. HDPs kill bacteria primarily through non-specific membrane lysis, therefore with a less likelihood of provoking resistance. Extensive structure-activity relationship studies with a number of HDPs have revealed that net charge, amphipathicity, hydrophobicity, and structural propensity are among the most important physicochemical and structural parameters that dictate their ability to interact with and disrupt membranes. A delicate balance among these factors, rather than a mere alteration of a single factor, is critically important for HDPs to ensure the antimicrobial potency and target cell selectivity. With a better understanding of the structural determinants of HDPs for their membrane-lytic activities, it is expected that novel HDP-based antimicrobials with minimum toxicity to eukaryotic cells can be developed for resistant infections, which have become a global public health crisis.

  2. Trachyspermum ammi (L.) sprague: chemical composition of essential oil and antimicrobial activities of respective fractions.

    PubMed

    Moein, Mahmoodreza R; Zomorodian, Kamiar; Pakshir, Keyvan; Yavari, Farnoosh; Motamedi, Marjan; Zarshenas, Mohammad M

    2015-01-01

    Resistance to antibacterial agents has become a serious problem for global health. The current study evaluated the antimicrobial activities of essential oil and respective fractions of Trachyspermum ammi (L.) Sprague. Seeds of the essential oil were extracted and fractionated using column chromatography. All fractions were then analyzed by gas chromatography/mass spectrometry. Antifungal and antibacterial activities of the oil and its fractions were assessed using microdilution method. Compounds γ-terpinene (48.07%), ρ-cymene (33.73%), and thymol (17.41%) were determined as major constituents. The effect of fraction II was better than total essential oil, fraction I, and standard thymol. The greater effect of fraction II compared to standard thymol showed the synergistic effects of the ingredients in this fraction. As this fraction and also total oil were effective on the studied microorganism, the combination of these products with current antimicrobial agents could be considered as new antimicrobial compounds in further investigations. PMID:25305209

  3. Structure and antimicrobial activity of platypus 'intermediate' defensin-like peptide.

    PubMed

    Torres, Allan M; Bansal, Paramjit; Koh, Jennifer M S; Pagès, Guilhem; Wu, Ming J; Kuchel, Philip W

    2014-05-01

    The three-dimensional structure of a chemically synthesized peptide that we have called 'intermediate' defensin-like peptide (Int-DLP), from the platypus genome, was determined by nuclear magnetic resonance (NMR) spectroscopy; and its antimicrobial activity was investigated. The overall structural fold of Int-DLP was similar to that of the DLPs and β-defensins, however the presence of a third antiparallel β-strand makes its structure more similar to the β-defensins than the DLPs. Int-DLP displayed potent antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The four arginine residues at the N-terminus of Int-DLP did not affect the overall fold, but were important for its antimicrobial potency. PMID:24694388

  4. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion.

    PubMed

    Zhang, Zijie; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-05-01

    d-Limonene has been considered to be a safer alternative compared to synthetic antimicrobial food additives. However, its hydrophobic and oxidative nature has limited its application in foods. The purpose of this research was to study effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion and develop a novel antimicrobial delivery system by combining the positive effect of these two antibacterial agents at the same time. By the checkerboard method, both the synergistic and additive effects of d-limonene and nisin were found against four selected food-related microorganisms. Then, d-limonene nanoemulsion with or without nisin was prepared by catastrophic phase inversion method, which has shown good droplet size and stability. The positive effects and outstanding antimicrobial activity of d-limonene nanoemulsion with nisin were confirmed by MICs comparison, scanning electron microscopy and determination of cell constituents released. Overall, the research described in the current article would be helpful in developing a more effective antimicrobial system for the production and preservation of foods.

  5. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion.

    PubMed

    Zhang, Zijie; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-05-01

    d-Limonene has been considered to be a safer alternative compared to synthetic antimicrobial food additives. However, its hydrophobic and oxidative nature has limited its application in foods. The purpose of this research was to study effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion and develop a novel antimicrobial delivery system by combining the positive effect of these two antibacterial agents at the same time. By the checkerboard method, both the synergistic and additive effects of d-limonene and nisin were found against four selected food-related microorganisms. Then, d-limonene nanoemulsion with or without nisin was prepared by catastrophic phase inversion method, which has shown good droplet size and stability. The positive effects and outstanding antimicrobial activity of d-limonene nanoemulsion with nisin were confirmed by MICs comparison, scanning electron microscopy and determination of cell constituents released. Overall, the research described in the current article would be helpful in developing a more effective antimicrobial system for the production and preservation of foods. PMID:24360455

  6. Diverse deep-sea fungi from the South China Sea and their antimicrobial activity.

    PubMed

    Zhang, Xiao-Yong; Zhang, Yun; Xu, Xin-Ya; Qi, Shu-Hua

    2013-11-01

    We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84-92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics' discovery and further increase the pool of fungi available for natural bioactive product screening.

  7. Synthesis and Antimicrobial Activity of 9-O-Substituted Palmatine Derivatives

    PubMed Central

    Li, Z. C.; Kong, X. B.; Mai, W. P.; Sun, G. C.; Zhao, S. Z.

    2015-01-01

    A series of new palmatine derivatives with alkyl or alkyl with N-heterocyclic structures were designed and synthesized at C-9-O according to the principle of association. These compounds were characterised by 1H NMR, 13C NMR, ESI-MS and elemental analysis, and tested for their antimicrobial activity in vitro to evaluate structure-activity relationships. The results indicated that 9-O-substituted palmatine derivatives exhibit varying degrees of antimicrobial activity. Antibacterial activities of compounds (3a-f) against Gram +ve bacteria increased 2- to 64-fold than that of palmatine. The compounds (3a-f) possessed relatively weaker inhibitory effects against Gram −ve bacteria and fungi than that against Gram +ve bacteria. Antimicrobial activities of compounds (5a-e) are lower than that of compounds (3a-f). Compound 3d showed the highest antimicrobial activity of all the compounds. The LD50 values of compounds (3a-f) decreased as the alkyl side chain was elongated. Compound 3f showed least toxicity. PMID:26009653

  8. Bovine CCL28 Mediates Chemotaxis via CCR10 and Demonstrates Direct Antimicrobial Activity against Mastitis Causing Bacteria.

    PubMed

    Pallister, Kyler B; Mason, Sara; Nygaard, Tyler K; Liu, Bin; Griffith, Shannon; Jones, Jennifer; Linderman, Susanne; Hughes, Melissa; Erickson, David; Voyich, Jovanka M; Davis, Mary F; Wilson, Eric

    2015-01-01

    In addition to the well characterized function of chemokines in mediating the homing and accumulation of leukocytes to tissues, some chemokines also exhibit potent antimicrobial activity. Little is known of the potential role of chemokines in bovine mammary gland health and disease. The chemokine CCL28 has previously been shown to play a key role in the homing and accumulation of IgA antibody secreting cells to the lactating murine mammary gland. CCL28 has also been shown to act as an antimicrobial peptide with activity demonstrated against a wide range of pathogens including bacteria, fungi and protozoans. Here we describe the cloning and function of bovine CCL28 and document the concentration of this chemokine in bovine milk. Bovine CCL28 was shown to mediate cellular chemotaxis via the CCR10 chemokine receptor and exhibited antimicrobial activity against a variety of bovine mastitis causing organisms. The concentration of bovine CCL28 in milk was found to be highly correlated with the lactation cycle. Highest concentrations of CCL28 were observed soon after parturition, with levels decreasing over time. These results suggest a potential role for CCL28 in the prevention/resolution of bovine mastitis.

  9. In vitro activities of nontraditional antimicrobials against multiresistant Acinetobacter baumannii strains isolated in an intensive care unit outbreak.

    PubMed

    Appleman, M D; Belzberg, H; Citron, D M; Heseltine, P N; Yellin, A E; Murray, J; Berne, T V

    2000-04-01

    Fifteen multiresistant Acinetobacter baumannii isolates from patients in intensive care units and 14 nonoutbreak strains were tested to determine in vitro activities of nontraditional antimicrobials, including cefepime, meropenem, netilmicin, azithromycin, doxycycline, rifampin, sulbactam, and trovafloxacin. The latter five drugs were further tested against four of the strains for bactericidal or bacteriostatic activity by performing kill-curve studies at 0.5, 1, 2, and 4 times their MICs. In addition, novel combinations of drugs with sulbactam were examined for synergistic interactions by using a checkerboard configuration. MICs at which 90% of the isolates tested were inhibited for antimicrobials showing activity against the multiresistant A. baumannii strains were as follows (in parentheses): doxycycline (1 microg/ml), azithromycin (4 microg/ml), netilmicin (1 microg/ml), rifampin (8 microg/ml), polymyxin (0.8 U/ml), meropenem (4 microg/ml), trovafloxacin (4 microg/ml), and sulbactam (8 microg/ml). In the kill-curve studies, azithromycin and rifampin were rapidly bactericidal while sulbactam was more slowly bactericidal. Trovafloxacin and doxycycline were bacteriostatic. None of the antimicrobials tested were bactericidal against all strains tested. The synergy studies demonstrated that the combinations of sulbactam with azithromycin, rifampin, doxycycline, or trovafloxacin were generally additive or indifferent.

  10. Bovine CCL28 Mediates Chemotaxis via CCR10 and Demonstrates Direct Antimicrobial Activity against Mastitis Causing Bacteria

    PubMed Central

    Pallister, Kyler B.; Mason, Sara; Nygaard, Tyler K.; Liu, Bin; Griffith, Shannon; Jones, Jennifer; Linderman, Susanne; Hughes, Melissa; Erickson, David; Voyich, Jovanka M.; Davis, Mary F.; Wilson, Eric

    2015-01-01

    In addition to the well characterized function of chemokines in mediating the homing and accumulation of leukocytes to tissues, some chemokines also exhibit potent antimicrobial activity. Little is known of the potential role of chemokines in bovine mammary gland health and disease. The chemokine CCL28 has previously been shown to play a key role in the homing and accumulation of IgA antibody secreting cells to the lactating murine mammary gland. CCL28 has also been shown to act as an antimicrobial peptide with activity demonstrated against a wide range of pathogens including bacteria, fungi and protozoans. Here we describe the cloning and function of bovine CCL28 and document the concentration of this chemokine in bovine milk. Bovine CCL28 was shown to mediate cellular chemotaxis via the CCR10 chemokine receptor and exhibited antimicrobial activity against a variety of bovine mastitis causing organisms. The concentration of bovine CCL28 in milk was found to be highly correlated with the lactation cycle. Highest concentrations of CCL28 were observed soon after parturition, with levels decreasing over time. These results suggest a potential role for CCL28 in the prevention/resolution of bovine mastitis. PMID:26359669

  11. Structure-Activity Relationships of Antimicrobial Gallic Acid Derivatives from Pomegranate and Acacia Fruit Extracts against Potato Bacterial Wilt Pathogen.

    PubMed

    Farag, Mohamed A; Al-Mahdy, Dalia A; Salah El Dine, Riham; Fahmy, Sherifa; Yassin, Aymen; Porzel, Andrea; Brandt, Wolfgang

    2015-06-01

    Bacterial wilts of potato, tomato, pepper, and or eggplant caused by Ralstonia solanacearum are among the most serious plant diseases worldwide. In this study, the issue of developing bactericidal agents from natural sources against R. solanacearum derived from plant extracts was addressed. Extracts prepared from 25 plant species with antiseptic relevance in Egyptian folk medicine were screened for their antimicrobial properties against the potato pathogen R. solancearum by using the disc-zone inhibition assay and microtitre plate dilution method. Plants exhibiting notable antimicrobial activities against the tested pathogen include extracts from Acacia arabica and Punica granatum. Bioactivity-guided fractionation of A. arabica and P. granatum resulted in the isolation of bioactive compounds 3,5-dihydroxy-4-methoxybenzoic acid and gallic acid, in addition to epicatechin. All isolates displayed significant antimicrobial activities against R. solanacearum (MIC values 0.5-9 mg/ml), with 3,5-dihydroxy-4-methoxybenzoic acid being the most effective one with a MIC value of 0.47 mg/ml. We further performed a structure-activity relationship (SAR) study for the inhibition of R. solanacearum growth by ten natural, structurally related benzoic acids.

  12. Structure-Activity Relationships of Antimicrobial Gallic Acid Derivatives from Pomegranate and Acacia Fruit Extracts against Potato Bacterial Wilt Pathogen.

    PubMed

    Farag, Mohamed A; Al-Mahdy, Dalia A; Salah El Dine, Riham; Fahmy, Sherifa; Yassin, Aymen; Porzel, Andrea; Brandt, Wolfgang

    2015-06-01

    Bacterial wilts of potato, tomato, pepper, and or eggplant caused by Ralstonia solanacearum are among the most serious plant diseases worldwide. In this study, the issue of developing bactericidal agents from natural sources against R. solanacearum derived from plant extracts was addressed. Extracts prepared from 25 plant species with antiseptic relevance in Egyptian folk medicine were screened for their antimicrobial properties against the potato pathogen R. solancearum by using the disc-zone inhibition assay and microtitre plate dilution method. Plants exhibiting notable antimicrobial activities against the tested pathogen include extracts from Acacia arabica and Punica granatum. Bioactivity-guided fractionation of A. arabica and P. granatum resulted in the isolation of bioactive compounds 3,5-dihydroxy-4-methoxybenzoic acid and gallic acid, in addition to epicatechin. All isolates displayed significant antimicrobial activities against R. solanacearum (MIC values 0.5-9 mg/ml), with 3,5-dihydroxy-4-methoxybenzoic acid being the most effective one with a MIC value of 0.47 mg/ml. We further performed a structure-activity relationship (SAR) study for the inhibition of R. solanacearum growth by ten natural, structurally related benzoic acids. PMID:26080741

  13. Chitosan Microparticles Exert Broad-Spectrum Antimicrobial Activity against Antibiotic-Resistant Micro-organisms without Increasing Resistance.

    PubMed

    Ma, Zhengxin; Kim, Donghyeon; Adesogan, Adegbola T; Ko, Sanghoon; Galvao, Klibs; Jeong, Kwangcheol Casey

    2016-05-01

    Antibiotic resistance is growing exponentially, increasing public health concerns for humans and animals. In the current study, we investigated the antimicrobial features of chitosan microparticles (CM), engineered from chitosan by ion gelation, seeking potential application for treating infectious disease caused by multidrug resistant microorganisms. CM showed excellent antimicrobial activity against a wide range of microorganisms, including clinically important antibiotic-resistant pathogens without raising resistant mutants in serial passage assays over a per