Science.gov

Sample records for activities including antiviral

  1. Antiviral activity of human Vδ2 T-cells against WNV includes both cytolytic and non-cytolytic mechanisms.

    PubMed

    Agrati, Chiara; Castilletti, Concetta; Cimini, Eleonora; Romanelli, Antonella; Lapa, Daniele; Quartu, Serena; Martini, Federico; Capobianchi, Maria Rosaria

    2016-04-01

    West Nile virus (WNV) causes a severe central nervous system infection in humans, primarily in the elderly and immunocompromised subjects. Human γδ T-cells play a critical role in the immune response against viruses, and studies of WNV meningoencephalitis in laboratory mice described a role of γδ T-cells in the protective immune response. Aim of this study was to analyze the cytolytic and non-cytolytic antiviral activity of human Vδ2 T-cells against WNV replication. The anti-WNV activity of soluble factor released by zoledronic acid (ZA)-activated Vδ2 T-cell lines and the cytotoxic capability of Vδ2 T-cell lines against WNV-infected cells were tested in vitro. The activation of Vδ2 T-cell lines was able to inhibit WNV replication through the release of soluble factors. IFN-γ is massively released by activated Vδ2 T-cell lines and is involved in the anti-WNV activity. Moreover, the Vδ2 T-cell lines can efficiently kill WNV-infected cells possibly through perforin-mediated mechanism. Altogether, our results provide insight into the effector functions of human Vδ2 T-cells against WNV. The possibility to target these cells by ZA, a commercially available drug used in humans, could potentially offer a new immunotherapeutic strategy for WNV infection. PMID:27196553

  2. Antiviral active peptide from oyster

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  3. Novel antiviral activity of chemokines

    SciTech Connect

    Nakayama, Takashi; Shirane, Jumi; Hieshima, Kunio; Shibano, Michiko; Watanabe, Masayasu; Jin, Zhe; Nagakubo, Daisuke; Saito, Takuya; Shimomura, Yoshikazu; Yoshie, Osamu . E-mail: o.yoshie@med.kindai.ac.jp

    2006-07-05

    Antimicrobial peptides are a diverse family of small, mostly cationic polypeptides that kill bacteria, fungi and even some enveloped viruses, while chemokines are a group of mostly cationic small proteins that induce directed migration of leukocytes through interactions with a group of seven transmembrane G protein-coupled receptors. Recent studies have shown that antimicrobial peptides and chemokines have substantially overlapping functions. Thus, while some antimicrobial peptides are chemotactic for leukocytes, some chemokines can kill a wide range of bacteria and fungi. Here, we examined a possible direct antiviral activity of chemokines against an enveloped virus HSV-1. Among 22 human chemokines examined, chemokines such as MIP-1{alpha}/CCL3, MIP-1{beta}/CCL4 and RANTES/CCL5 showed a significant direct antiviral activity against HSV-1. It is intriguing that these chemokines are mostly known to be highly expressed by effector CD8{sup +} T cells. The chemokines with a significant anti-HSV-1 activity commonly bound to HSV-1 virions via envelope glycoprotein gB. Electron microscopy revealed that the chemokines with a significant anti-HSV-1 activity were commonly capable of generating pores in the envelope of HSV-1. Thus, some chemokines have a significant direct antiviral activity against HSV-1 in vitro and may have a potential role in host defense against HSV-1 as a direct antiviral agent.

  4. Synthesis and antiviral activity of 5'-deoxypyrazofurin.

    PubMed

    Chen, X; Schneller, S W; Ikeda, S; Snoeck, R; Andrei, G; Balzarini, J; De Clercq, E

    1993-11-12

    In searching for derivatives of pyrazofurin that could display antiviral properties by means that do not require C-5' phosphorylation, 5'-deoxypyrazofurin (3) has been synthesized in six steps from methyl5-deoxy-2,3-O-isopropylidene-beta-D-ribofuranoside (4). Compound 3 was evaluated for antiviral activity against a large number of viruses including herpes-, pox-, myxo-, toga-, arena-, rhabdo-, picorna-,reo-, and retroviruses. Compound 3 proved active against respiratory syncytial virus (in HeLa cells), vaccinia virus (in embryonic skin-muscle fibroblast cells), vesicular stomatitis virus (in HeLa cells), and influenza A virus (in Madin-Darby canine kidney cells) at concentrations (ranging from 4 to 20 micrograms/mL) that were nontoxic to the confluent host cell cultures. PMID:8246242

  5. The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview

    PubMed Central

    Wang, Wei; Wang, Shi-Xin; Guan, Hua-Shi

    2012-01-01

    Recently, the studies on the antiviral activities of marine natural products, especially marine polysaccharides, are attracting more and more attention all over the world. Marine-derived polysaccharides and their lower molecular weight oligosaccharide derivatives have been shown to possess a variety of antiviral activities. This paper will review the recent progress in research on the antiviral activities and the mechanisms of these polysaccharides obtained from marine organisms. In particular, it will provide an update on the antiviral actions of the sulfated polysaccharides derived from marine algae including carrageenans, alginates, and fucans, relating to their structure features and the structure–activity relationships. In addition, the recent findings on the different mechanisms of antiviral actions of marine polysaccharides and their potential for therapeutic application will also be summarized in detail. PMID:23235364

  6. Interferons lambda, new cytokines with antiviral activity.

    PubMed

    Lopušná, K; Režuchová, I; Betáková, T; Skovranová, L; Tomašková, J; Lukáčiková, L; Kabát, P

    2013-01-01

    Interferons (IFNs) are key cytokines in the establishment of a multifaceted antiviral response. Three distinct types of IFNs are now recognized (type I, type II, and type III) based on their receptor usage, structural features and biological activities. Although all IFNs are important mediators of antiviral protection, their roles in antiviral defence vary. Interferon lambda (IFN-λ) is a recently discovered group of small helical cytokines capable of inducing an antiviral response both in vitro as well as in vivo. They were discovered independently in 2003 by the groups of Sheppard and Kotenko. This family consists of three structurally related IFN-λ subtypes called IFN-λ1 (IL-29), IFN-λ2 (IL-28A), and IFN-λ3 (IL-28B). In this study we investigate the antiviral activities of IFN-λ1, λ2, and λ3 on some medically important viruses, influenza viruses, herpes viruses and lymphocytic choriomeningitis virus. PMID:23600875

  7. Antiviral activity of silymarin against chikungunya virus.

    PubMed

    Lani, Rafidah; Hassandarvish, Pouya; Chiam, Chun Wei; Moghaddam, Ehsan; Chu, Justin Jang Hann; Rausalu, Kai; Merits, Andres; Higgs, Stephen; Vanlandingham, Dana; Abu Bakar, Sazaly; Zandi, Keivan

    2015-06-16

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection.

  8. Antiviral Drug Research Proposal Activity

    PubMed Central

    Injaian, Lisa; Smith, Ann C.; Shipley, Jennifer German; Marbach-Ad, Gili; Fredericksen, Brenda

    2011-01-01

    The development of antiviral drugs provides an excellent example of how basic and clinical research must be used together in order to achieve the final goal of treating disease. A Research Oriented Learning Activity was designed to help students to better understand how basic and clinical research can be combined toward a common goal. Through this project students gained a better understanding of the process of scientific research and increased their information literacy in the field of virology. The students worked as teams to research the many aspects involved in the antiviral drug design process, with each student becoming an “expert” in one aspect of the project. The Antiviral Drug Research Proposal (ADRP) culminated with students presenting their proposals to their peers and local virologists in a poster session. Assessment data showed increased student awareness and knowledge of the research process and the steps involved in the development of antiviral drugs as a result of this activity. PMID:23653735

  9. Antiviral activities of heated dolomite powder.

    PubMed

    Motoike, Koichi; Hirano, Shozo; Yamana, Hideaki; Onda, Tetsuhiko; Maeda, Takayoshi; Ito, Toshihiro; Hayakawa, Motozo

    2008-12-01

    The effect of the heating conditions of dolomite powder on its antiviral activity was studied against the H5N3 avian influenza virus. Calcium oxide (CaO) and magnesium oxide (MgO), obtained by the thermal decomposition of dolomite above 800 degrees C, were shown to have strong antiviral activity, but the effect was lessened when the heating temperature exceeded 1400 degrees C. Simultaneous measurement of the crystallite size suggested that the weakening of the activity was due to the considerable grain growth of the oxides. It was found that the presence of Mg in dolomite contributed to the deterrence of grain growth of the oxides during the heating process. Although both CaO and MgO exhibited strong antiviral activity, CaO had the stronger activity but quickly hydrated in the presence of water. On the other hand, the hydration of MgO took place gradually under the same conditions. Separate measurements using MgO and Mg(OH)2 revealed that MgO had a higher antiviral effect than Mg(OH)2. From the overall experiments, it was suggested that the strong antiviral activity of dolomite was related to the hydration reaction of CaO. PMID:19127652

  10. Synthesis and antiviral activity of substituted quercetins.

    PubMed

    Thapa, Mahendra; Kim, Yunjeong; Desper, John; Chang, Kyeong-Ok; Hua, Duy H

    2012-01-01

    Influenza viruses are important pathogens that cause respiratory infections in humans and animals. In addition to vaccination, antiviral drugs against influenza virus play a significant role in controlling viral infections by reducing disease progression and virus transmission. Plant derived polyphenols are associated with antioxidant activity, anti-carcinogenic, and cardio- and neuro-protective actions. Some polyphenols, such as resveratrol and epigallocatechin gallate (EGCG), showed significant anti-influenza activity in vitro and/or in vivo. Recently we showed that quercetin and isoquercetin (quercetin-3-β-d-glucoside), a glucoside form of quercetin, significantly reduced the replication of influenza viruses in vitro and in vivo (isoquercetin). The antiviral effects of isoquercetin were greater than that of quercetin with lower IC(50) values and higher in vitro therapeutic index. Thus, we investigated the synthesis and antiviral activities of various quercetin derivatives with substitution of C3, C3', and C5 hydroxyl functions with various phenolic ester, alkoxy, and aminoalkoxy moieties. Among newly synthesized compounds, quercetin-3-gallate which is structurally related to EGCG showed comparable antiviral activity against influenza virus (porcine H1N1 strain) to that of EGCG with improved in vitro therapeutic index.

  11. New hypoxanthine nucleosides with RNA antiviral activity.

    PubMed

    Nair, V; Ussery, M A

    1992-08-01

    A series of novel C-2 functionalized hypoxanthine and purine ribonucleosides have been synthesized and evaluated against exotic RNA viruses of the family or genus alpha, arena, flavi, and rhabdo. Both specific and broad-spectrum antiviral activities were discovered but only with hypoxanthine nucleosides. PMID:1444325

  12. Antiviral activities of atractylon from Atractylodis Rhizoma.

    PubMed

    Cheng, Yang; Mai, Jing-Yin; Hou, Tian-Lu; Ping, Jian; Chen, Jian-Jie

    2016-10-01

    Atractylodis Rhizoma is a traditional medicinal herb, which has antibacterial, antiviral, anti‑inflammatory and anti‑allergic, anticancer, gastroprotective and neuroprotective activities. It is widely used for treating fever, cold, phlegm, edema and arthralgia syndrome in South‑East Asian nations. In this study, 6 chemical compositions of Atractylodis Rhizoma were characterized by spectral analysis and their antiviral activities were evaluated in vitro and in vivo. Among them, atractylon showed most significant antiviral activities. Atractylon treatment at doses of 10‑40 mg/kg for 5 days attenuated influenza A virus (IAV)‑induced pulmonary injury and decreased the serum levels of interleukin (IL)‑6, tumor necrosis factor‑α and IL‑1β, but increased interferon‑β (IFN‑β) levels. Atractylon treatment upregulated the expression of Τoll‑like receptor 7 (TLR7), MyD88, tumor necrosis factor receptor‑associated factor 6 and IFN‑β mRNA but downregulated nuclear factor‑κB p65 protein expression in the lung tissues of IAV‑infected mice. These results demonstrated that atractylon significantly alleviated IAV‑induced lung injury via regulating the TLR7 signaling pathway, and may warrant further evaluation as a possible agent for IAV treatment. PMID:27600871

  13. Antiviral activities of atractylon from Atractylodis Rhizoma

    PubMed Central

    Cheng, Yang; Mai, Jing-Yin; Hou, Tian-Lu; Ping, Jian; Chen, Jian-Jie

    2016-01-01

    Atractylodis Rhizoma is a traditional medicinal herb, which has antibacterial, antiviral, anti-inflammatory and anti-allergic, anticancer, gastroprotective and neuroprotective activities. It is widely used for treating fever, cold, phlegm, edema and arthralgia syndrome in South-East Asian nations. In this study, 6 chemical compositions of Atractylodis Rhizoma were characterized by spectral analysis and their antiviral activities were evaluated in vitro and in vivo. Among them, atractylon showed most significant antiviral activities. Atractylon treatment at doses of 10–40 mg/kg for 5 days attenuated influenza A virus (IAV)-induced pulmonary injury and decreased the serum levels of interleukin (IL)-6, tumor necrosis factor-α and IL-1β, but increased interferon-β (IFN-β) levels. Atractylon treatment upregulated the expression of Toll-like receptor 7 (TLR7), MyD88, tumor necrosis factor receptor-associated factor 6 and IFN-β mRNA but downregulated nuclear factor-κB p65 protein expression in the lung tissues of IAV-infected mice. These results demonstrated that atractylon significantly alleviated IAV-induced lung injury via regulating the TLR7 signaling pathway, and may warrant further evaluation as a possible agent for IAV treatment. PMID:27600871

  14. Ubiquitin in the activation and attenuation of innate antiviral immunity

    PubMed Central

    Heaton, Steven M.

    2016-01-01

    Viral infection activates danger signals that are transmitted via the retinoic acid–inducible gene 1–like receptor (RLR), nucleotide-binding oligomerization domain-like receptor (NLR), and Toll-like receptor (TLR) protein signaling cascades. This places host cells in an antiviral posture by up-regulating antiviral cytokines including type-I interferon (IFN-I). Ubiquitin modifications and cross-talk between proteins within these signaling cascades potentiate IFN-I expression, and inversely, a growing number of viruses are found to weaponize the ubiquitin modification system to suppress IFN-I. Here we review how host- and virus-directed ubiquitin modification of proteins in the RLR, NLR, and TLR antiviral signaling cascades modulate IFN-I expression. PMID:26712804

  15. Hydrogen bonds and antiviral activity of benzaldehyde derivatives

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.

    2012-09-01

    We have obtained the Fourier transform IR spectra of solutions of benzaldehyde derivatives having different antiviral activities against a herpes virus. We observe a correlation between the presence of hydrogen bonds in the benzaldehyde molecules and the appearance of antiviral properties in the compounds. For compounds having antiviral activity, we have obtained spectral data suggesting the existence of hydrogen bonds of the type C=OṡṡṡH-O and O-HṡṡṡO in the molecules. When the hydrogen atom in the hydroxyl groups are replaced by a methyl group, no intramolecular hydrogen bonds are formed and the compounds lose their antiviral activity.

  16. Antiviral activity of alcohol for surface disinfection.

    PubMed

    Moorer, W R

    2003-08-01

    Bacteria and viruses from the patient's mouth travel with dental splatter and spills. A surface disinfectant should possess antiviral activity as well as antibacterial action. Because of frequent and 'open' application in the dental office, such a disinfectant should be non-toxic, non-allergenic and safe for the hygienist. It now appears that high-concentration alcohol mixtures (i.e. 80% ethanol + 5% isopropanol) are not only excellent antibacterials, but quickly inactivate HIV as well as hepatitis B and hepatitis C viruses. Compared to alternative surface disinfectants, use of high-concentration alcohol for the spray-wipe-spray method of surface disinfection in dentistry appears safe and efficient. However, dried matter should be wiped and hydrated first.

  17. Antiviral activity of some South American medicinal plants.

    PubMed

    Abad, M J; Bermejo, P; Sanchez Palomino, S; Chiriboga, X; Carrasco, L

    1999-03-01

    Folk medicinal plants are potential sources of useful therapeutic compounds including some with antiviral activities. Extracts prepared from 10 South American medicinal plants (Baccharis trinervis, Baccharis teindalensis, Eupatorium articulatum, Eupatorium glutinosum, Tagetes pusilla, Neurolaena lobata, Conyza floribunda, Phytolacca bogotensis, Phytolacca rivinoides and Heisteria acuminata) were screened for in vitro antiviral activity against herpes simplex type I (HSV-1), vesicular stomatitis virus (VSV) and poliovirus type 1. The most potent inhibition was observed with an aqueous extract of B. trinervis, which inhibited HSV-1 replication by 100% at 50-200 micrograms/mL, without showing cytotoxic effects. Good activities were also found with the ethanol extract of H. acuminata and the aqueous extract of E. articulatum, which exhibited antiviral effects against both DNA and RNA viruses (HSV-1 and VSV, respectively) at 125-250 micrograms/mL. The aqueous extracts of T. pusilla (100-250 micrograms/mL), B. teindalensis (50-125 micrograms/mL) and E. glutinosum (50-125 micrograms/mL) also inhibited the replication of VSV, but none of the extracts tested had any effect on poliovirus replication. PMID:10190189

  18. The antiviral activities of ISG15

    PubMed Central

    Morales, David J.; Lenschow, Deborah J.

    2014-01-01

    Post-translational protein modification is an important strategy for the regulation of the cell proteome independent of the need for new gene expression. Ubiquitin and ubiquitin-like modifiers mediate the regulation of protein levels, signaling pathways, vesicular trafficking, and many other cellular processes through their covalent conjugation to proteins. Interferon stimulated gene 15 (ISG15) is a type I interferon induced ubiquitin-like modifier. In addition to conjugating to potentially hundreds of target proteins, ISG15 can be found in an unconjugated form both inside of the cell and released from interferon stimulated cells into the extracellular environment. Due to its robust expression after type I interferon stimulation and the broad panel of proteins that it targets, ISG15 has drawn much attention as a potential regulator of the immune response and has been shown to mediate protection in a number of different viral infection models. Here we will review the current state of the field of ISG15, the viruses against which ISG15 mediates protection, and the mechanisms by which ISG15 exerts antiviral activity. PMID:24095857

  19. Polyribonucleotide-anthraquinone interactions: in vitro antiviral activity studies.

    PubMed

    Jamison, J M; Krabill, K; Flowers, D G; Tsai, C C

    1990-03-01

    Twelve anthraquinones (AQ) were evaluated for their ability to potentiate the antiviral activity of poly r(A-U) using a human foreskin fibroblast-vesicular stomatitis virus bioassay in which the AQ was combined with 0.2 mM poly r(A-U) to produce an AQ/ribonucleotide ratio of 1/4. Poly r(A-U) and the AQ alone were not effective antiviral agents. Five of the twelve AQs tested, mitoxantrone, adriamycin, ametantrone, carminic acid and daunomycin, enhanced the antiviral activity of poly r(A-U) 9- to 13-fold. The interferon-inducing activity of the five active AQ/poly r(A-U) combinations was equal to the sum of the interferon-inducing activities of their constituents. These five AQs appear to potentiate the antiviral activity of poly r(A-U) without superinduction of interferon. PMID:1693102

  20. [Chitosan antiviral activity: dependence on structure and depolymerization method].

    PubMed

    Davydova, V N; Nagorskaia, V P; Gorbach, V I; Kalitnik, A A; Reunov, A V; Solov'eva, T F; Ermak, I M

    2011-01-01

    Enzymatic (the action of lysozyme) and chemical (hydrogen peroxide) hydrolysis of chitosans with various degree ofacetylation (DA)--25, 17, and 1.5%--was performed. Purification and fractioning of the hydrolysis products were performed using dialysis, ultrafiltration, and gel-penetrating chromatography Low-molecular (LM) derivatives of the polysaccharide with molecular masses from 17 to 2 kDa were obtained. The study of their antiviral activity against the tobacco mosaic virus (TMV) showed that these samples inhibited the formation of local necroses induced by the virus for 50-90%. The antiviral activity of the LM chitosans significantly increased with the lowering of their polymerization degree. Furthermore, the products of the enzymatic hydrolysis possessed higher activity than the chitosan samples obtained as a result of chemical hydrolysis. It was revealed that the exhibition of the antiviral activity weakly depended on the degree of acetylation of the samples.

  1. Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau)

    NASA Astrophysics Data System (ADS)

    Iberahim, Rashidah; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2015-09-01

    Goose grass also known as Eleusine indica (EI) is a local medicinal plant that displays antioxidant, antimicrobial and anticancer activities. The present study is to determine the phytochemical constituents, cytotoxicity and antiviral activities for both crude extract and fraction obtained from the plant. The crude extract contained more secondary metabolites compared to the hexane fraction as gauged using standard phytochemical tests. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract and hexane fraction were 2.07 and 5.62 mg/ml respectively. The antiviral activity towards Herpes Simplex Virus type 1 (HSV-1) was determined using plaque reduction assay. The selective indices (SI = CC50 / EC50) for both methanol extract and hexane fraction were 12.2 and 6.2 respectively. These results demonstrate that the extract prepared from E. indica possesses phytochemical compound that was non cytotoxic to the cell with potential antiviral activity.

  2. Cherry Valley Ducks Mitochondrial Antiviral-Signaling Protein-Mediated Signaling Pathway and Antiviral Activity Research

    PubMed Central

    Li, Ning; Hong, Tianqi; Li, Rong; Wang, Yao; Guo, Mengjiao; Cao, Zongxi; Cai, Yumei; Liu, Sidang; Chai, Tongjie; Wei, Liangmeng

    2016-01-01

    Mitochondrial antiviral-signaling protein (MAVS), an adaptor protein of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mediated signal pathway, is involved in innate immunity. In this study, Cherry Valley duck MAVS (duMAVS) was cloned from the spleen and analyzed. duMAVS was determined to have a caspase activation and recruitment domain at N-terminal, followed by a proline-rich domain and a transmembrane domain at C-terminal. Quantitative real-time PCR indicated that duMAVS was expressed in all tissues tested across a broad expression spectrum. The expression of duMAVS was significantly upregulated after infection with duck Tembusu virus (DTMUV). Overexpression of duMAVS could drive the activation of interferon (IFN)-β, nuclear factor-κB, interferon regulatory factor 7, and many downstream factors (such as Mx, PKR, OAS, and IL-8) in duck embryo fibroblast cells. What is more, RNA interference further confirmed that duMAVS was an important adaptor for IFN-β activation. The antiviral assay showed that duMAVS could suppress the various viral replications (DTMUV, novel reovirus, and duck plague virus) at early stages of infection. Overall, these results showed that the main signal pathway mediated by duMAVS and it had a broad-spectrum antiviral ability. This research will be helpful to better understanding the innate immune system of ducks. PMID:27708647

  3. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses.

    PubMed

    Zhao, Hanjun; Zhou, Jie; Zhang, Ke; Chu, Hin; Liu, Dabin; Poon, Vincent Kwok-Man; Chan, Chris Chung-Sing; Leung, Ho-Chuen; Fai, Ng; Lin, Yong-Ping; Zhang, Anna Jin-Xia; Jin, Dong-Yan; Yuen, Kwok-Yung; Zheng, Bo-Jian

    2016-01-01

    A safe, potent and broad-spectrum antiviral is urgently needed to combat emerging respiratory viruses. In light of the broad antiviral activity of β-defensins, we tested the antiviral activity of 11 peptides derived from mouse β-defensin-4 and found that a short peptide, P9, exhibited potent and broad-spectrum antiviral effects against multiple respiratory viruses in vitro and in vivo, including influenza A virus H1N1, H3N2, H5N1, H7N7, H7N9, SARS-CoV and MERS-CoV. The antiviral activity of P9 was attributed to its high-affinity binding to viral glycoproteins, as well as the abundance of basic amino acids in its composition. After binding viral particles through viral surface glycoproteins, P9 entered into cells together with the viruses via endocytosis and prevented endosomal acidification, which blocked membrane fusion and subsequent viral RNA release. This study has paved the avenue for developing new prophylactic and therapeutic agents with broad-spectrum antiviral activities. PMID:26911565

  4. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses

    PubMed Central

    Zhao, Hanjun; Zhou, Jie; Zhang, Ke; Chu, Hin; Liu, Dabin; Poon, Vincent Kwok-Man; Chan, Chris Chung-Sing; Leung, Ho-Chuen; Fai, Ng; Lin, Yong-Ping; Zhang, Anna Jin-Xia; Jin, Dong-Yan; Yuen, Kwok-Yung; Zheng, Bo-Jian

    2016-01-01

    A safe, potent and broad-spectrum antiviral is urgently needed to combat emerging respiratory viruses. In light of the broad antiviral activity of β-defensins, we tested the antiviral activity of 11 peptides derived from mouse β-defensin-4 and found that a short peptide, P9, exhibited potent and broad-spectrum antiviral effects against multiple respiratory viruses in vitro and in vivo, including influenza A virus H1N1, H3N2, H5N1, H7N7, H7N9, SARS-CoV and MERS-CoV. The antiviral activity of P9 was attributed to its high-affinity binding to viral glycoproteins, as well as the abundance of basic amino acids in its composition. After binding viral particles through viral surface glycoproteins, P9 entered into cells together with the viruses via endocytosis and prevented endosomal acidification, which blocked membrane fusion and subsequent viral RNA release. This study has paved the avenue for developing new prophylactic and therapeutic agents with broad-spectrum antiviral activities. PMID:26911565

  5. Commensal bacteria calibrate the activation threshold of innate antiviral immunity.

    PubMed

    Abt, Michael C; Osborne, Lisa C; Monticelli, Laurel A; Doering, Travis A; Alenghat, Theresa; Sonnenberg, Gregory F; Paley, Michael A; Antenus, Marcelo; Williams, Katie L; Erikson, Jan; Wherry, E John; Artis, David

    2012-07-27

    Signals from commensal bacteria can influence immune cell development and susceptibility to infectious or inflammatory diseases. However, the mechanisms by which commensal bacteria regulate protective immunity after exposure to systemic pathogens remain poorly understood. Here, we demonstrate that antibiotic-treated (ABX) mice exhibit impaired innate and adaptive antiviral immune responses and substantially delayed viral clearance after exposure to systemic LCMV or mucosal influenza virus. Furthermore, ABX mice exhibited severe bronchiole epithelial degeneration and increased host mortality after influenza virus infection. Genome-wide transcriptional profiling of macrophages isolated from ABX mice revealed decreased expression of genes associated with antiviral immunity. Moreover, macrophages from ABX mice exhibited defective responses to type I and type II IFNs and impaired capacity to limit viral replication. Collectively, these data indicate that commensal-derived signals provide tonic immune stimulation that establishes the activation threshold of the innate immune system required for optimal antiviral immunity.

  6. The antiviral activities of artemisinin and artesunate.

    PubMed

    Efferth, Thomas; Romero, Marta R; Wolf, Dana G; Stamminger, Thomas; Marin, Jose J G; Marschall, Manfred

    2008-09-15

    Traditional Chinese medicine commands a unique position among all traditional medicines because of its 5000 years of history. Our own interest in natural products from traditional Chinese medicine was triggered in the 1990s, by artemisinin-type sesquiterpene lactones from Artemisia annua L. As demonstrated in recent years, this class of compounds has activity against malaria, cancer cells, and schistosomiasis. Interestingly, the bioactivity of artemisinin and its semisynthetic derivative artesunate is even broader and includes the inhibition of certain viruses, such as human cytomegalovirus and other members of the Herpesviridae family (e.g., herpes simplex virus type 1 and Epstein-Barr virus), hepatitis B virus, hepatitis C virus, and bovine viral diarrhea virus. Analysis of the complete profile of the pharmacological activities and molecular modes of action of artemisinin and artesunate and their performance in clinical trials will further elucidate the full antimicrobial potential of these versatile pharmacological tools from nature. PMID:18699744

  7. Evaluation of antiseptic antiviral activity of chemical agents.

    PubMed

    Geller, Chloé; Finance, Chantal; Duval, Raphaël Emmanuel

    2011-06-01

    Antiviral antisepsis and disinfection are crucial for preventing the environmental spread of viral infections. Emerging viruses and associated diseases, as well as nosocomial viral infections, have become a real issue in medical fields, and there are very few efficient and specific treatments available to fight most of these infections. Another issue is the potential environmental resistance and spread of viral particles. Therefore, it is essential to properly evaluate the efficacy of antiseptics-disinfectants (ATS-D) on viruses. ATS-D antiviral activity is evaluated by (1) combining viruses and test product for an appropriately defined and precise contact time, (2) neutralizing product activity, and (3) estimating the loss of viral infectivity. A germicide can be considered to have an efficient ATS-D antiviral activity if it induces a >3 or >4 log(10) reduction (American and European regulatory agency requirements, respectively) in viral titers in a defined contact time. This unit describes a global methodology for evaluating chemical ATS-D antiviral activity.

  8. Antiviral Activities of Several Oral Traditional Chinese Medicines against Influenza Viruses

    PubMed Central

    Ma, Lin-Lin; Ge, Miao; Wang, Hui-Qiang; Yin, Jin-Qiu; Jiang, Jian-Dong; Li, Yu-Huan

    2015-01-01

    Influenza is still a serious threat to human health with significant morbidity and mortality. The emergence of drug-resistant influenza viruses poses a great challenge to existing antiviral drugs. Traditional Chinese medicines (TCMs) may be an alternative to overcome the challenge. Here, 10 oral proprietary Chinese medicines were selected to evaluate their anti-influenza activities. These drugs exhibit potent inhibitory effects against influenza A H1N1, influenza A H3N2, and influenza B virus. Importantly, they demonstrate potent antiviral activities against drug-resistant strains. In the study of mechanisms, we found that Xiaoqinglong mixture could increase antiviral interferon production by activating p38 MAPK, JNK/SAPK pathway, and relative nuclear transcription factors. Lastly, our studies also indicate that some of these medicines show inhibitory activities against EV71 and CVB strains. In conclusion, the 10 traditional Chinese medicines, as kind of compound combination medicines, show broad-spectrum antiviral activities, possibly also including inhibitory activities against strains resistant to available antiviral drugs. PMID:26557857

  9. Novel antiviral activity of baicalein against dengue virus

    PubMed Central

    2012-01-01

    Background Dengue is a serious arboviral disease currently with no effective antiviral therapy or approved vaccine available. Therefore, finding the effective compound against dengue virus (DENV) replication is very important. Among the natural compounds, bioflavonoids derived mainly from plants are of interest because of their biological and medicinal benefits. Methods In the present study, antiviral activity of a bioflavonoid, baicalein, was evaluated against different stages of dengue virus type 2 (DENV-2) replication in Vero cells using focus forming unit reduction assay and quantitative RT-PCR. Results Baicalein inhibited DENV-2 replication in Vero cells with IC50= 6.46 μg/mL and SI= 17.8 when added after adsorption to the cells. The IC50 against DENV-2 was 5.39 μg/mL and SI= 21.3 when cells were treated 5 hours before virus infection and continuously up to 4 days post infection. Baicalein exhibited direct virucidal effect against DENV-2 with IC 50= 1.55 μg/mL and showed anti-adsorption effect with IC50 = 7.14 μg/mL. Conclusions Findings presented here suggest that baicalein exerts potent antiviral activity against DENV. Baicalein possesses direct virucidal activity against DENV besides its effects against dengue virus adsorption and intracellular replication of DENV-2. Baicalein, hence, should be considered for in vivo evaluation in the development of an effective antiviral compound against DENV. PMID:23140177

  10. Cytotoxicity and antiviral activity of methanol extract from Polygonum minus

    NASA Astrophysics Data System (ADS)

    Wahab, Noor Zarina Abd; Bunawan, Hamidun; Ibrahim, Nazlina

    2015-09-01

    A study was carried out to test the cytotoxicity and antiviral effects of methanolic extracts from the leaves and stem of Polygonum minus or kesum. Cytotoxicity tests were performed on Vero cells indicates the LC50 value for leaf extract towards the Vero cells was 875 mg/L and the LC50 value for stem extract was 95 mg/L. The LC50 values indidcate the non-cytotoxic effect of the extracts and worth for further testing. Antiviral test were carried out towards herpes simplex virus infected Vero cells using three concentration of extract which were equivalent to 1.0 LC50, 0.1 LC50 and 0.01 LC50. Three different treatments to detect antiviral activity were used. Mild antiviral activity of the stem extract was detected when cells were treated for 24 hours with plant extract before viral infection. This demonstrates the capability of the test compound to protect the cells from viral attachment and of the possible prophylactic effect of the P. minus stem methanol extract.

  11. Interferon-mediated antiviral activities of Angelica tenuissima Nakai and its active components.

    PubMed

    Weeratunga, Prasanna; Uddin, Md Bashir; Kim, Myun Soo; Lee, Byeong-Hoon; Kim, Tae-Hwan; Yoon, Ji-Eun; Ma, Jin Yeul; Kim, Hongik; Lee, Jong-Soo

    2016-01-01

    Angelica tenuissima Nakai is a widely used commodity in traditional medicine. Nevertheless, no study has been conducted on the antiviral and immune-modulatory properties of an aqueous extract of Angelica tenuissima Nakai. In the present study, we evaluated the antiviral activities and the mechanism of action of an aqueous extract of Angelica tenuissima Nakai both in vitro and in vivo. In vitro, an effective dose of Angelica tenuissima Nakai markedly inhibited the replication of Influenza A virus (PR8), Vesicular stomatitis virus (VSV), Herpes simplex virus (HSV), Coxsackie virus, and Enterovirus (EV-71) on epithelial (HEK293T/HeLa) and immune (RAW264.7) cells. Such inhibition can be described by the induction of the antiviral state in cells by antiviral, IFNrelated gene induction and secretion of IFNs and pro-inflammatory cytokines. In vivo, Angelica tenuissima Nakai treated BALB/c mice displayed higher survivability and lower lung viral titers when challenged with lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3, and H9N2). We also found that Angelica tenuissima Nakai can induce the secretion of IL-6, IFN-λ, and local IgA in bronchoalveolar lavage fluid (BALF) of Angelica tenuissima Nakai treated mice, which correlating with the observed prophylactic effects. In HPLC analysis, we found the presence of several compounds in the aqueous fraction and among them; we evaluated antiviral properties of ferulic acid. Therefore, an extract of Angelica tenuissima Nakai and its components, including ferulic acid, play roles as immunomodulators and may be potential candidates for novel anti-viral/anti-influenza agents.

  12. Antiviral activity of acidic polysaccharides from Coccomyxa gloeobotrydiformi, a green alga, against an in vitro human influenza A virus infection.

    PubMed

    Komatsu, Takayuki; Kido, Nobuo; Sugiyama, Tsuyoshi; Yokochi, Takashi

    2013-02-01

    The extracts prepared from green algae are reported to possess a variety of biological activities including antioxidant, antitumor and antiviral activities. The acidic polysaccharide fraction from a green alga Coccomyxa gloeobotrydiformi (CmAPS) was isolated and the antiviral action on an in vitro infection of influenza A virus was examined. CmAPS inhibited the growth and yield of all influenza A virus strains tested, such as A/H1N1, A/H2N2, A/H3N2 and A/H1N1 pandemic strains. The 50% inhibitory concentration of CmAPS on the infection of human influenza A virus strains ranged from 26 to 70 µg/mL and the antiviral activity of CmAPS against influenza A/USSR90/77 (H1N1) was the strongest. The antiviral activity of CmAPS was not due to the cytotoxicity against host cells. The antiviral activity of CmAPS required its presence in the inoculation of virus onto MDCK cells. Pretreatment and post-treatment with CmAPS was ineffective for the antiviral activity. CmAPS inhibited influenza A virus-induced erythrocyte hemagglutination and hemolysis. Taken together, CmAPS was suggested to exhibit the anti-influenza virus activity through preventing the interaction of virus and host cells. The detailed antiviral activity of CmAPS is discussed.

  13. Immunoenhancing properties and antiviral activity of 7-deazaguanosine in mice.

    PubMed Central

    Smee, D F; Alaghamandan, H A; Gilbert, J; Burger, R A; Jin, A; Sharma, B S; Ramasamy, K; Revankar, G R; Cottam, H B; Jolley, W B

    1991-01-01

    The nucleotide analog 7-deazaguanosine has not previously been reported to possess biological (antiviral or antitumor) properties in cell culture or in vivo. Up to 10(5) U of interferon per ml was detected in mouse sera 1 to 4 h following oral (200-mg/kg of body weight) and intraperitoneal (50-mg/kg) doses of the compound. 7-Deazaguanosine also caused significant activation of natural killer and phagocytic cells but did not augment T- and B-cell blastogenesis. Intraperitoneal treatments of 50, 100, and 200 mg/kg/day administered 24 and 18 h before virus inoculation were highly protective in mice inoculated with lethal doses of Semliki Forest or San Angelo viruses. Less but still significant survivor increases were evident in treated mice infected with banzi or encephalomyocarditis viruses. In most cases, the degree of antiviral activity was similar to that exhibited by the biological response modifier 7-thia-8-oxoguanosine. 7-Thia-8-oxoguanosine was more potent than 7-deazaguanosine against encephalomyocarditis virus in mice, however. Oral efficacy was achieved with 7-deazaguanosine treatments of greater than or equal to 100 mg/kg against all virus infections, whereas 7-thia-8-oxoguanosine is reported to be devoid of oral activity in rodents. Thus, 7-deazaguanosine represents the first reported orally active nucleoside biological response modifier exhibiting broad-spectrum antiviral activity against particular types of RNA viruses. PMID:1707603

  14. Functionalization, cyclization and antiviral activity of A-secotriterpenoids.

    PubMed

    Grishko, Victoria V; Galaiko, Natalia V; Tolmacheva, Irina A; Kucherov, Igor I; Eremin, Vladimir F; Boreko, Eugene I; Savinova, Olga V; Slepukhin, Pavel A

    2014-08-18

    Triterpene derivatives with an α,β-alkenenitrile moiety in the five-membered ring A have been synthesized by nitrile anion cyclizations of 1-cyano-2,3-secotriterpenoids. Oxime-containing precursors, 2,3-secointermediates and five-membered ring A products of cyclizations were screened for in vitro antiviral activity against enveloped viruses - influenza A virus and human immunodeficiency virus type I (HIV-1). Lupane ketoxime and the 2,3-secolupane C-3 aldoxime which possess antiviral activities against both influenza A virus (EC50 12.9-18.2 μM) and HIV-1 (EC50 0.06 μM) were the most promising compounds. PMID:24997292

  15. Cytotoxicity and antiviral activities of Asplenium nidus, Phaleria macrocarpa and Eleusine indica

    NASA Astrophysics Data System (ADS)

    Tahir, Mariya Mohd; Ibrahim, Nazlina; Yaacob, Wan Ahmad

    2014-09-01

    Three local medicinal plants namely Asplenium nidus (langsuyar), Eleusine indica (sambau) and Phaleria macrocarpa (mahkota dewa) were screened for the cytotoxicity and antiviral activities. Six plant extracts were prepared including the aqueous and methanol extracts from A. nidus leaf and root, aqueous extract from dried whole plant of E. indica and methanol extract from P. macrocarpa fruits. Cytotoxicity screening in Vero cell line by MTT assay showed that the CC50 values ranged from 15 to 60 mg/mL thus indicating the safety of the extracts even at high concentrations. Antiviral properties of the plant extracts were determined by plaque reduction assay. The EC50 concentrations were between 3.2 to 47 mg/mL. The selectivity indices (SI = CC50/EC50) of each tested extracts ranged from 4.3 to 63.25 indicating the usefulness of the extracts as potential antiviral agents.

  16. Antiviral activity of lanatoside C against dengue virus infection.

    PubMed

    Cheung, Yan Yi; Chen, Karen Caiyun; Chen, Huixin; Seng, Eng Khuan; Chu, Justin Jang Hann

    2014-11-01

    Dengue infection poses a serious threat globally due to its recent rapid spread and rise in incidence. Currently, there is no approved vaccine or effective antiviral drug for dengue virus infection. In response to the urgent need for the development of an effective antiviral for dengue virus, the US Drug Collection library was screened in this study to identify compounds with anti-dengue activities. Lanatoside C, an FDA approved cardiac glycoside was identified as a candidate anti-dengue compound. Our data revealed that lanatoside C has an IC50 of 0.19μM for dengue virus infection in HuH-7 cells. Dose-dependent reduction in dengue viral RNA and viral proteins synthesis were also observed upon treatment with increasing concentrations of lanatoside C. Time of addition study indicated that lanatoside C inhibits the early processes of the dengue virus replication cycle. Furthermore, lanatoside C can effectively inhibit all four serotypes of dengue virus, flavivirus Kunjin, alphavirus Chikungunya and Sindbis virus as well as the human enterovirus 71. These findings suggest that lanatoside C possesses broad spectrum antiviral activity against several groups of positive-sense RNA viruses.

  17. Influenza antiviral susceptibility monitoring activities in relation to national antiviral stockpiles in Europe during the winter 2006/2007 season.

    PubMed

    Meijer, A; Lackenby, A; Hay, A; Zambon, M

    2007-04-01

    Due to the influenza pandemic threat, many countries are stockpiling antivirals in the hope of limiting the impact of a future pandemic virus. Since resistance to antiviral drugs would probably significantly alter the effectiveness of antivirals, surveillance programmes to monitor the emergence of resistance are of considerable importance. During the 2006/2007 influenza season, an inventory was conducted by the European Surveillance Network for Vigilance against Viral Resistance (VIRGIL) in collaboration with the European Influenza Surveillance Scheme (EISS) to evaluate antiviral susceptibility testing by the National Influenza Reference Laboratories (NIRL) in relation to the national antiviral stockpile in 30 European countries that are members of EISS. All countries except Ukraine had a stockpile of the neuraminidase inhibitor (NAI) oseltamivir. Additionally, four countries had a stockpile of the NAI zanamivir and three of the M2 ion channel inhibitor rimantadine. Of 29 countries with a NAI stockpile, six countries' NIRLs could determine virus susceptibility by 50% inhibitory concentration (IC50) and in 13 countries it could be done by sequencing. Only in one of the three countries with a rimantadine stockpile could the NIRL determine virus susceptibility, by sequencing only. However, including the 18 countries that had plans to introduce or extend antiviral susceptibility testing, the NIRLs of 21 of the 29 countries with a stockpile would be capable of susceptibility testing appropriate to the stockpiled drug by the end of the 2007/2008 influenza season. Although most European countries in this study have stockpiles of influenza antivirals, susceptibility surveillance capability by the NIRLs appropriate to the stockpiled antivirals is limited. PMID:17991386

  18. Synthesis and antiviral activity of PB1 component of the influenza A RNA polymerase peptide fragments.

    PubMed

    Matusevich, O V; Egorov, V V; Gluzdikov, I A; Titov, M I; Zarubaev, V V; Shtro, A A; Slita, A V; Dukov, M I; Shurygina, A-P S; Smirnova, T D; Kudryavtsev, I V; Vasin, A V; Kiselev, O I

    2015-01-01

    This study is devoted to the antiviral activity of peptide fragments from the PB1 protein - a component of the influenza A RNA polymerase. The antiviral activity of the peptides synthesized was studied in MDCK cell cultures against the pandemic influenza strain A/California/07/2009 (H1N1) pdm09. We found that peptide fragments 6-13, 6-14, 26-30, 395-400, and 531-540 of the PB1 protein were capable of suppressing viral replication in cell culture. Terminal modifications i.e. N-acetylation and C-amidation increased the antiviral properties of the peptides significantly. Peptide PB1 (6-14) with both termini modified showed maximum antiviral activity, its inhibitory activity manifesting itself during the early stages of viral replication. It was also shown that the fluorescent-labeled analog of this peptide was able to penetrate into the cell. The broad range of virus-inhibiting activity of PB1 (6-14) peptide was confirmed using a panel of influenza A viruses of H1, H3 and H5 subtypes including those resistant to oseltamivir, the leading drug in anti-influenza therapy. Thus, short peptide fragments of the PB1 protein could serve as leads for future development of influenza prevention and/or treatment agents.

  19. Genome-Wide Analysis of Antiviral Signature Genes in Porcine Macrophages at Different Activation Statuses

    PubMed Central

    Sang, Yongming; Brichalli, Wyatt; Rowland, Raymond R. R.; Blecha, Frank

    2014-01-01

    Macrophages (MФs) can be polarized to various activation statuses, including classical (M1), alternative (M2), and antiviral states. To study the antiviral activation status of porcine MФs during porcine reproductive and respiratory syndrome virus (PRRSV) infection, we used RNA Sequencing (RNA-Seq) for transcriptomic analysis of differentially expressed genes (DEGs). Sequencing assessment and quality evaluation showed that our RNA-Seq data met the criteria for genome-wide transcriptomic analysis. Comparisons of any two activation statuses revealed more than 20,000 DEGs that were normalized to filter out 153–5,303 significant DEGs [false discovery rate (FDR) ≤0.001, fold change ≥2] in each comparison. The highest 5,303 significant DEGs were found between lipopolysaccharide- (LPS) and interferon (IFN)γ-stimulated M1 cells, whereas only 153 significant DEGs were detected between interleukin (IL)-10-polarized M2 cells and control mock-activated cells. To identify signature genes for antiviral regulation pertaining to each activation status, we identified a set of DEGs that showed significant up-regulation in only one activation state. In addition, pathway analyses defined the top 20–50 significantly regulated pathways at each activation status, and we further analyzed DEGs pertinent to pathways mediated by AMP kinase (AMPK) and epigenetic mechanisms. For the first time in porcine macrophages, our transcriptomic analyses not only compared family-wide differential expression of most known immune genes at different activation statuses, but also revealed transcription evidence of multiple gene families. These findings show that using RNA-Seq transcriptomic analyses in virus-infected and status-synchronized macrophages effectively profiled signature genes and gene response pathways for antiviral regulation, which may provide a framework for optimizing antiviral immunity and immune homeostasis. PMID:24505295

  20. John Montgomery's legacy: carbocyclic adenosine analogues as SAH hydrolase inhibitors with broad-spectrum antiviral activity.

    PubMed

    De Clercq, Erik

    2005-01-01

    Ever since the S-adenosylhomocysteine (AdoHcy, SAH) hydrolase was recognized as a pharmacological target for antiviral agents (J. A. Montgomery et al., J. Med. Chem. 25:626-629, 1982), an increasing number of adenosine, acyclic adenosine, and carbocyclic adenosine analogues have been described as potent SAH hydrolase inhibitors endowed with broad-spectrum antiviral activity. The antiviral activity spectrum of the SAH hydrolase inhibitors include pox-, rhabdo-, filo-, arena-, paramyxo-, reo-, and retroviruses. Among the most potent SAH hydrolase inhibitors and antiviral agents rank carbocyclic 3-deazaadenosine (C-c3 Ado), neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of carbocyclic adenosine (C-Ado, aristeromycin), and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A. These compounds are particularly active against poxviruses (i.e., vaccinia virus), and rhabdoviruses (i.e., vesicular stomatitis virus). The in vivo efficacy of C-c3 Ado and 3-deazaneplanocin A has been established in mouse models for vaccinia virus, vesicular stomatitis virus, and Ebola virus. SAH hydrolase inhibitors such as C-c3Ado and 3-deazaneplanocin A should in thefirst place be considered for therapeutic (or prophylactic) use against poxvirus infections, including smallpox, and hemorrhagic fever virus infections such as Ebola. PMID:16438025

  1. Antiviral Activity of Glycyrrhizin against Hepatitis C Virus In Vitro

    PubMed Central

    Matsumoto, Yoshihiro; Matsuura, Tomokazu; Aoyagi, Haruyo; Matsuda, Mami; Hmwe, Su Su; Date, Tomoko; Watanabe, Noriyuki; Watashi, Koichi; Suzuki, Ryosuke; Ichinose, Shizuko; Wake, Kenjiro; Suzuki, Tetsuro; Miyamura, Tatsuo; Wakita, Takaji; Aizaki, Hideki

    2013-01-01

    Glycyrrhizin (GL) has been used in Japan to treat patients with chronic viral hepatitis, as an anti-inflammatory drug to reduce serum alanine aminotransferase levels. GL is also known to exhibit various biological activities, including anti-viral effects, but the anti-hepatitis C virus (HCV) effect of GL remains to be clarified. In this study, we demonstrated that GL treatment of HCV-infected Huh7 cells caused a reduction of infectious HCV production using cell culture-produced HCV (HCVcc). To determine the target step in the HCV lifecycle of GL, we used HCV pseudoparticles (HCVpp), replicon, and HCVcc systems. Significant suppressions of viral entry and replication steps were not observed. Interestingly, extracellular infectivity was decreased, and intracellular infectivity was increased. By immunofluorescence and electron microscopic analysis of GL treated cells, HCV core antigens and electron-dense particles had accumulated on endoplasmic reticulum attached to lipid droplet (LD), respectively, which is thought to act as platforms for HCV assembly. Furthermore, the amount of HCV core antigen in LD fraction increased. Taken together, these results suggest that GL inhibits release of infectious HCV particles. GL is known to have an inhibitory effect on phospholipase A2 (PLA2). We found that group 1B PLA2 (PLA2G1B) inhibitor also decreased HCV release, suggesting that suppression of virus release by GL treatment may be due to its inhibitory effect on PLA2G1B. Finally, we demonstrated that combination treatment with GL augmented IFN-induced reduction of virus in the HCVcc system. GL is identified as a novel anti-HCV agent that targets infectious virus particle release. PMID:23874843

  2. Battle between influenza A virus and a newly identified antiviral activity of the PARP-containing ZAPL protein

    PubMed Central

    Liu, Chien-Hung; Zhou, Ligang; Chen, Guifang; Krug, Robert M.

    2015-01-01

    Previous studies showed that ZAPL (PARP-13.1) exerts its antiviral activity via its N-terminal zinc fingers that bind the mRNAs of some viruses, leading to mRNA degradation. Here we identify a different antiviral activity of ZAPL that is directed against influenza A virus. This ZAPL antiviral activity involves its C-terminal PARP domain, which binds the viral PB2 and PA polymerase proteins, leading to their proteasomal degradation. After the PB2 and PA proteins are poly(ADP-ribosylated), they are associated with the region of ZAPL that includes both the PARP domain and the adjacent WWE domain that is known to bind poly(ADP-ribose) chains. These ZAPL-associated PB2 and PA proteins are then ubiquitinated, followed by proteasomal degradation. This antiviral activity is counteracted by the viral PB1 polymerase protein, which binds close to the PARP domain and causes PB2 and PA to dissociate from ZAPL and escape degradation, explaining why ZAPL only moderately inhibits influenza A virus replication. Hence influenza A virus has partially won the battle against this newly identified ZAPL antiviral activity. Eliminating PB1 binding to ZAPL would be expected to substantially increase the inhibition of influenza A virus replication, so that the PB1 interface with ZAPL is a potential target for antiviral development. PMID:26504237

  3. Evaluation of antiviral activity of plant extracts against foot and mouth disease virus in vitro.

    PubMed

    Younus, Ishrat; Siddiq, Afshan; Ishaq, Humera; Anwer, Laila; Badar, Sehrish; Ashraf, Muhammad

    2016-07-01

    The aim of this study was to evaluate antiviral activity of chloroformic leaves extracts of three plants: Azadirachta indica, Moringa oleifera and Morus alba against Foot and Mouth disease virus using MTT assay (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide). Antiviral and cytotoxic activity of each extract was evaluated as cell survival percentage and results were expressed as Means ± S.D. The concentrations which resulted in cell survival percentages of greater than 50% are considered to be effective antiviral concentrations. From the tested plant extracts, Moringa oleifera showed potent antiviral activity (p<0.05) while Azadirachta indica showed significant antiviral activity in the range of 1-50μ/ml & 12-100μ/ml respectively. In contrast no antiviral activity was observed by Morus alba as all the tested concentration resulted in significant reduction (p<0.05) in cell survival percentage. PMID:27393440

  4. Engineering a Therapeutic Lectin by Uncoupling Mitogenicity from Antiviral Activity

    PubMed Central

    Swanson, Michael D.; Boudreaux, Daniel M.; Salmon, Loïc; Chugh, Jeetender; Winter, Harry C.; Meagher, Jennifer L.; André, Sabine; Murphy, Paul V.; Oscarson, Stefan; Roy, René; King, Steven; Kaplan, Mark H.; Goldstein, Irwin J.; Tarbet, E. Bart; Hurst, Brett L.; Smee, Donald F.; de la Fuente, Cynthia; Hoffmann, Hans-Heinrich; Xue, Yi; Rice, Charles M.; Schols, Dominique; Garcia, J. Victor; Stuckey, Jeanne A.; Gabius, Hans-Joachim; Al-Hashimi, Hashim M.; Markovitz, David M.

    2015-01-01

    Summary A key effector route of the Sugar Code involves lectins that exert crucial regulatory controls by targeting distinct cellular glycans. We demonstrate that a single amino acid substitution in a banana lectin, replacing histidine 84 with a threonine, significantly reduces its mitogenicity while preserving its broad-spectrum antiviral potency. X-ray crystallography, NMR spectroscopy, and glycocluster assays reveal that loss of mitogenicity is strongly correlated with loss of pi-pi stacking between aromatic amino acids H84 and Y83, which removes a wall separating two carbohydrate binding sites, thus diminishing multivalent interactions. On the other hand, monovalent interactions and antiviral activity are preserved by retaining other wild-type conformational features and possibly through unique contacts involving the T84 side chain. Through such fine-tuning, target selection and downstream effects of a lectin can be modulated so as to knock down one activity while preserving another, thus providing tools for therapeutics and for understanding the Sugar Code. PMID:26496612

  5. Antiviral activity of squalamine: Role of electrostatic membrane binding

    NASA Astrophysics Data System (ADS)

    Beckerman, Bernard; Qu, Wei; Mishra, Abhijit; Zasloff, Michael; Wong, Gerard; Luijten, Erik

    2012-02-01

    Recent workootnotetextM. Zasloff et al., Proc. Nat. Acad. Sci. (USA) 108, 15978 (2011). has demonstrated that squalamine, a molecule found in the liver of sharks, exhibits broad-spectrum antiviral properties. It has been proposed that this activity results from the charge-density matching of squalamine and phospholipid membranes, causing squalamine to bind to membranes and displace proteins such as Rac1 that are crucial for the viral replication cycle. Here we investigate this hypothesis by numerical simulation of a coarse-grained model for the competition between Rac1 and squalamine in binding affinity to a flat lipid bilayer. We perform free-energy calculations to test the ability of squalamine to condense stacked bilayer systems and thereby displace bulkier Rac1 molecules. We directly compare our findings to small-angle x-ray scattering results for the same setup.

  6. Broad Spectrum Antiviral Activity of Favipiravir (T-705): Protection from Highly Lethal Inhalational Rift Valley Fever

    PubMed Central

    Caroline, Amy L.; Powell, Diana S.; Bethel, Laura M.; Oury, Tim D.; Reed, Douglas S.; Hartman, Amy L.

    2014-01-01

    Background Development of antiviral drugs that have broad-spectrum activity against a number of viral infections would be of significant benefit. Due to the evolution of resistance to currently licensed antiviral drugs, development of novel anti-influenza drugs is in progress, including Favipiravir (T-705), which is currently in human clinical trials. T-705 displays broad-spectrum in vitro activity against a number of viruses, including Rift Valley Fever virus (RVFV). RVF is an important neglected tropical disease that causes human, agricultural, and economic losses in endemic regions. RVF has the capacity to emerge in new locations and also presents a potential bioterrorism threat. In the current study, the in vivo efficacy of T-705 was evaluated in Wistar-Furth rats infected with the virulent ZH501 strain of RVFV by the aerosol route. Methodology/Principal Findings Wistar-Furth rats are highly susceptible to a rapidly lethal disease after parenteral or inhalational exposure to the pathogenic ZH501 strain of RVFV. In the current study, two experiments were performed: a dose-determination study and a delayed-treatment study. In both experiments, all untreated control rats succumbed to disease. Out of 72 total rats infected with RVFV and treated with T-705, only 6 succumbed to disease. The remaining 66 rats (92%) survived lethal infection with no significant weight loss or fever. The 6 treated rats that succumbed survived significantly longer before succumbing to encephalitic disease. Conclusions/Significance Currently, there are no licensed antiviral drugs for treating RVF. Here, T-705 showed remarkable efficacy in a highly lethal rat model of Rift Valley Fever, even when given up to 48 hours post-infection. This is the first study to show protection of rats infected with the pathogenic ZH501 strain of RVFV. Our data suggest that T-705 has potential to be a broad-spectrum antiviral drug. PMID:24722586

  7. Pyruvate Carboxylase Activates the RIG-I-like Receptor-Mediated Antiviral Immune Response by Targeting the MAVS signalosome

    PubMed Central

    Cao, Zhongying; Zhou, Yaqin; Zhu, Shengli; Feng, Jian; Chen, Xueyuan; Liu, Shi; Peng, Nanfang; Yang, Xiaodan; Xu, Gang; Zhu, Ying

    2016-01-01

    When retinoic acid-inducible gene 1 protein (RIG-I)-like receptors sense viral dsRNA in the cytosol, RIG-I and melanoma differentiation-associated gene 5 (MDA5) are recruited to the mitochondria to interact with mitochondrial antiviral signaling protein (MAVS) and initiate antiviral immune responses. In this study, we demonstrate that the biotin-containing enzyme pyruvate carboxylase (PC) plays an essential role in the virus-triggered activation of nuclear factor kappa B (NF-κB) signaling mediated by MAVS. PC contributes to the enhanced production of type I interferons (IFNs) and pro-inflammatory cytokines, and PC knockdown inhibits the virus-triggered innate immune response. In addition, PC shows extensive antiviral activity against RNA viruses, including influenza A virus (IAV), human enterovirus 71 (EV71), and vesicular stomatitis virus (VSV). Furthermore, PC mediates antiviral action by targeting the MAVS signalosome and induces IFNs and pro-inflammatory cytokines by promoting phosphorylation of NF-κB inhibitor-α (IκBα) and the IκB kinase (IKK) complex, as well as NF-κB nuclear translocation, which leads to activation of interferon-stimulated genes (ISGs), including double-stranded RNA-dependent protein kinase (PKR) and myxovirus resistance protein 1 (Mx1). Our findings suggest that PC is an important player in host antiviral signaling. PMID:26906558

  8. In Vitro Antiviral Activity and Resistance Profile Characterization of the Hepatitis C Virus NS5A Inhibitor Ledipasvir

    PubMed Central

    Tian, Yang; Doehle, Brian; Peng, Betty; Corsa, Amoreena; Lee, Yu-Jen; Gong, Ruoyu; Yu, Mei; Han, Bin; Xu, Simin; Dvory-Sobol, Hadas; Perron, Michel; Xu, Yili; Mo, Hongmei; Pagratis, Nikos; Link, John O.; Delaney, William

    2016-01-01

    Ledipasvir (LDV; GS-5885), a component of Harvoni (a fixed-dose combination of LDV with sofosbuvir [SOF]), is approved to treat chronic hepatitis C virus (HCV) infection. Here, we report key preclinical antiviral properties of LDV, including in vitro potency, in vitro resistance profile, and activity in combination with other anti-HCV agents. LDV has picomolar antiviral activity against genotype 1a and genotype 1b replicons with 50% effective concentration (EC50) values of 0.031 nM and 0.004 nM, respectively. LDV is also active against HCV genotypes 4a, 4d, 5a, and 6a with EC50 values of 0.11 to 1.1 nM. LDV has relatively less in vitro antiviral activity against genotypes 2a, 2b, 3a, and 6e, with EC50 values of 16 to 530 nM. In vitro resistance selection with LDV identified the single Y93H and Q30E resistance-associated variants (RAVs) in the NS5A gene; these RAVs were also observed in patients after a 3-day monotherapy treatment. In vitro antiviral combination studies indicate that LDV has additive to moderately synergistic antiviral activity when combined with other classes of HCV direct-acting antiviral (DAA) agents, including NS3/4A protease inhibitors and the nucleotide NS5B polymerase inhibitor SOF. Furthermore, LDV is active against known NS3 protease and NS5B polymerase inhibitor RAVs with EC50 values equivalent to those for the wild type. PMID:26824950

  9. In Vitro Antiviral Activity and Resistance Profile Characterization of the Hepatitis C Virus NS5A Inhibitor Ledipasvir.

    PubMed

    Cheng, Guofeng; Tian, Yang; Doehle, Brian; Peng, Betty; Corsa, Amoreena; Lee, Yu-Jen; Gong, Ruoyu; Yu, Mei; Han, Bin; Xu, Simin; Dvory-Sobol, Hadas; Perron, Michel; Xu, Yili; Mo, Hongmei; Pagratis, Nikos; Link, John O; Delaney, William

    2016-01-11

    Ledipasvir (LDV; GS-5885), a component of Harvoni (a fixed-dose combination of LDV with sofosbuvir [SOF]), is approved to treat chronic hepatitis C virus (HCV) infection. Here, we report key preclinical antiviral properties of LDV, including in vitro potency, in vitro resistance profile, and activity in combination with other anti-HCV agents. LDV has picomolar antiviral activity against genotype 1a and genotype 1b replicons with 50% effective concentration (EC50) values of 0.031 nM and 0.004 nM, respectively. LDV is also active against HCV genotypes 4a, 4d, 5a, and 6a with EC50 values of 0.11 to 1.1 nM. LDV has relatively less in vitro antiviral activity against genotypes 2a, 2b, 3a, and 6e, with EC50 values of 16 to 530 nM. In vitro resistance selection with LDV identified the single Y93H and Q30E resistance-associated variants (RAVs) in the NS5A gene; these RAVs were also observed in patients after a 3-day monotherapy treatment. In vitro antiviral combination studies indicate that LDV has additive to moderately synergistic antiviral activity when combined with other classes of HCV direct-acting antiviral (DAA) agents, including NS3/4A protease inhibitors and the nucleotide NS5B polymerase inhibitor SOF. Furthermore, LDV is active against known NS3 protease and NS5B polymerase inhibitor RAVs with EC50 values equivalent to those for the wild type.

  10. Novel antiviral activity of bromocriptine against dengue virus replication.

    PubMed

    Kato, Fumihiro; Ishida, Yuki; Oishi, Shinya; Fujii, Nobutaka; Watanabe, Satoru; Vasudevan, Subhash G; Tajima, Shigeru; Takasaki, Tomohiko; Suzuki, Youichi; Ichiyama, Koji; Yamamoto, Naoki; Yoshii, Kentaro; Takashima, Ikuo; Kobayashi, Takeshi; Miura, Tomoyuki; Igarashi, Tatsuhiko; Hishiki, Takayuki

    2016-07-01

    Dengue virus (DENV) infectious disease is a major public health problem worldwide; however, licensed vaccines or specific antiviral drugs against this infection are not available. To identify novel anti-DENV compounds, we screened 1280 pharmacologically active compounds using focus reduction assay. Bromocriptine (BRC) was found to have potent anti-DENV activity and low cytotoxicity (half maximal effective concentration [EC50], 0.8-1.6 μM; and half maximal cytotoxicity concentration [CC50], 53.6 μM). Time-of-drug-addition and time-of-drug-elimination assays suggested that BRC inhibits translation and/or replication steps in the DENV life cycle. A subgenomic replicon system was used to verify that BRC restricts RNA replication step. Furthermore, a single amino acid substitution (N374H) was detected in the NS3 protein that conferred resistance to BRC. In summary, BRC was found to be a novel DENV inhibitor and a potential candidate for the treatment of DENV infectious disease.

  11. Antiviral activity of glycoprotein GP-1 isolated from Streptomyces kanasensis ZX01.

    PubMed

    Zhang, Guoqiang; Feng, Juntao; Han, Lirong; Zhang, Xing

    2016-07-01

    Plant virus diseases have seriously damaged global food security. However, current antiviral agents are not efficient enough for the requirement of agriculture production. So, developing new efficient and nontoxic antiviral agents is imperative. GP-1, from Streptomyces kanasensis ZX01, is a new antiviral glycoprotein, of which the antiviral activity and the mode of action against Tobacco mosaic virus (TMV) were investigated in this study. The results showed that GP-1 could fracture TMV particles, and the infection and accumulation of TMV in host plants were inhibited. Moreover, GP-1 could induce systematic resistance against TMV in the host, according to the results of activities of defensive enzymes increasing, MDA decreasing and overexpression of pathogenesis-related proteins. Furthermore, GP-1 could promote growth of the host plant. In conclusion, GP-1 showed the ability to be developed as an efficient antiviral agent and a fertilizer for agriculture. PMID:27091231

  12. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus

    NASA Astrophysics Data System (ADS)

    Mori, Yasutaka; Ono, Takeshi; Miyahira, Yasushi; Nguyen, Vinh Quang; Matsui, Takemi; Ishihara, Masayuki

    2013-02-01

    Silver nanoparticle (Ag NP)/chitosan (Ch) composites with antiviral activity against H1N1 influenza A virus were prepared. The Ag NP/Ch composites were obtained as yellow or brown floc-like powders following reaction at room temperature in aqueous medium. Ag NPs (3.5, 6.5, and 12.9 nm average diameters) were embedded into the chitosan matrix without aggregation or size alternation. The antiviral activity of the Ag NP/Ch composites was evaluated by comparing the TCID50 ratio of viral suspensions treated with the composites to untreated suspensions. For all sizes of Ag NPs tested, antiviral activity against H1N1 influenza A virus increased as the concentration of Ag NPs increased; chitosan alone exhibited no antiviral activity. Size dependence of the Ag NPs on antiviral activity was also observed: antiviral activity was generally stronger with smaller Ag NPs in the composites. These results indicate that Ag NP/Ch composites interacting with viruses exhibit antiviral activity.

  13. Identification of Three Antiviral Inhibitors against Japanese Encephalitis Virus from Library of Pharmacologically Active Compounds 1280

    PubMed Central

    Peng, Guiqing; Xu, Jia; Zhou, Rui; Cao, Shengbo; Chen, Huanchun; Song, Yunfeng

    2013-01-01

    Japanese encephalitis virus (JEV) can cause severe central nervous disease with a high mortality rate. There is no antiviral drug available for JEV-specific treatment. In this study, a cytopathic-effect-based, high-throughput screening assay was developed and applied to screen JEV inhibitors from Library of Pharmacologically Active Compounds 1280. The antiviral effects of three hit compounds including FGIN-1-27, cilnidipine, and niclosamide were evaluated in cells by western blotting, indirect immunofluorescence assay, and plaque reduction assay. A time-of-addition assay proved that all three compounds inhibited JEV at the stage of replication. The EC50s of FGIN-1-27, cilnidipine, and niclosamide were 3.21, 6.52, and 5.80 µM, respectively, while the selectivity indexes were 38.79, 30.67, and 7.49. FGIN-1-27 and cilnidipine have high efficiency and selectivity against JEV. This study provided two JEV antiviral inhibitors as candidates for treatment of JEV infection. PMID:24348901

  14. Antiviral activity of ginsenosides against coxsackievirus B3, enterovirus 71, and human rhinovirus 3

    PubMed Central

    Song, Jae-Hyoung; Choi, Hwa-Jung; Song, Hyuk-Hwan; Hong, Eun-Hye; Lee, Bo-Ra; Oh, Sei-Ryang; Choi, Kwangman; Yeo, Sang-Gu; Lee, Yong-Pyo; Cho, Sungchan; Ko, Hyun-Jeong

    2014-01-01

    Background Ginsenosides are the major components responsible for the biochemical and pharmacological actions of ginseng, and have been shown to have various biological activities. In this study, we investigated the antiviral activities of seven ginsenosides [protopanaxatriol (PT) type: Re, Rf, and Rg2; protopanaxadiol (PD) type: Rb1, Rb2, Rc, and Rd)] against coxsackievirus B3 (CVB3), enterovirus 71 (EV71), and human rhinovirus 3 (HRV3). Methods Assays of antiviral activity and cytotoxicity were evaluated by the sulforhodamine B method using the cytopathic effect (CPE) reduction assay. Results The antiviral assays demonstrated that, of the seven ginsenosides, the PT-type ginsenosides (Re, Rf, and Rg2) possess significant antiviral activities against CVB3 and HRV3 at a concentration of 100 μg/mL. Among the PT-type ginsenosides, only ginsenoside Rg2 showed significant anti-EV71 activity with no cytotoxicity to cells at 100 μg/mL. The PD-type ginsenosides (Rb1, Rb2, Rc, and Rd), by contrast, did not show any significant antiviral activity against CVB3, EV71, and HRV3, and exhibited cytotoxic effects to virus-infected cells. Notably, the antiviral efficacies of PT-type ginsenosides were comparable to those of ribavirin, a commonly used antiviral drug. Conclusion Collectively, our findings suggest that the ginsenosides Re, Rf, and Rg2 have the potential to be effective in the treatment of CVB3, EV71, and HRV3 infection. PMID:25378991

  15. Puromycin-Sensitive Aminopeptidase: An Antiviral Prodrug Activating Enzyme

    PubMed Central

    Tehler, Ulrika; Nelson, Cara H.; Peterson, Larryn W.; Provoda, Chester J.; Hilfinger, John M.; Lee, Kyung-Dall; McKenna, Charles E.; Amidon, Gordon L.

    2010-01-01

    Cidofovir (HPMPC) is a broad-spectrum antiviral agent, currently used to treat AIDS-related human cytomegalovirus retinitis. Cidofovir has recognized therapeutic potential for orthopox virus infections, although its use is hampered by its inherent low oral bioavailability. Val-Ser-cyclic HPMPC (Val-Ser-cHPMPC) is a promising peptide prodrug which has previously been shown by us to improve the permeability and bioavailability of the parent compound in rodent models (Eriksson et al. Molecular Pharmaceutics, 2008 vol 5 598-609). Puromycin-sensitive aminopeptidase was partially purified from Caco-2 cell homogenates and identified as a prodrug activating enzyme for Val-Ser-cHPMPC. The prodrug activation process initially involves an enzymatic step where the l-Valine residue is removed by puromycin-sensitive aminopeptidase, a step that is bestatin-sensitive. Subsequent chemical hydrolysis results in the generation of cHPMPC. A recombinant puromycin-sensitive aminopeptidase was generated and its substrate specificity investigated. The kcat for Val-pNA was significantly lower than that for Ala-pNA, suggesting that some amino acids are preferred over others. Furthermore, the three-fold higher kcat for Val-Ser-cHPMPC as compared to Val-pNA suggests that the leaving group may play an important role in determining hydrolytic activity. In addition to its ability to hydrolyze a variety of substrates, these observations strongly suggest that puromycin-sensitive aminopeptidase is an important enzyme for activating Val-Ser-cHPMPC in vivo. Taken together, our data suggest that puromycin-sensitive aminopeptidase makes an attractive target for future prodrug design. PMID:19969024

  16. Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set.

    PubMed

    Klimenko, Kyrylo; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2016-08-22

    Curation, standardization and data fusion of the antiviral information present in the ChEMBL public database led to the definition of a robust data set, providing an association of antiviral compounds to seven broadly defined antiviral activity classes. Generative topographic mapping (GTM) subjected to evolutionary tuning was then used to produce maps of the antiviral chemical space, providing an optimal separation of compound families associated with the different antiviral classes. The ability to pinpoint the specific spots occupied (responsibility patterns) on a map by various classes of antiviral compounds opened the way for a GTM-supported search for privileged structural motifs, typical for each antiviral class. The privileged locations of antiviral classes were analyzed in order to highlight underlying privileged common structural motifs. Unlike in classical medicinal chemistry, where privileged structures are, almost always, predefined scaffolds, privileged structural motif detection based on GTM responsibility patterns has the decisive advantage of being able to automatically capture the nature ("resolution detail"-scaffold, detailed substructure, pharmacophore pattern, etc.) of the relevant structural motifs. Responsibility patterns were found to represent underlying structural motifs of various natures-from very fuzzy (groups of various "interchangeable" similar scaffolds), to the classical scenario in medicinal chemistry (underlying motif actually being the scaffold), to very precisely defined motifs (specifically substituted scaffolds). PMID:27410486

  17. A Designed “Nested” Dimer of Cyanovirin-N Increases Antiviral Activity

    PubMed Central

    Woodrum, Brian W.; Maxwell, Jason; Allen, Denysia M.; Wilson, Jennifer; Krumpe, Lauren R.H.; Bobkov, Andrey A.; Hill, R. Blake; Kibler, Karen V.; O’Keefe, Barry R.; Ghirlanda, Giovanna

    2016-01-01

    Cyanovirin-N (CV-N) is an antiviral lectin with potent activity against enveloped viruses, including HIV. The mechanism of action involves high affinity binding to mannose-rich glycans that decorate the surface of enveloped viruses. In the case of HIV, antiviral activity of CV-N is postulated to require multivalent interactions with envelope protein gp120, achieved through a pseudo-repeat of sequence that adopts two near-identical glycan-binding sites, and possibly involves a 3D-domain-swapped dimeric form of CV-N. Here, we present a covalent dimer of CV-N that increases the number of active glycan-binding sites, and we characterize its ability to recognize four glycans in solution. A CV-N variant was designed in which two native repeats were separated by the “nested” covalent insertion of two additional repeats of CV-N, resulting in four possible glycan-binding sites. The resulting Nested CV-N folds into a wild-type-like structure as assessed by circular dichroism and NMR spectroscopy, and displays high thermal stability with a Tm of 59 °C, identical to WT. All four glycan-binding domains encompassed by the sequence are functional as demonstrated by isothermal titration calorimetry, which revealed two sets of binding events to dimannose with dissociation constants Kd of 25 μM and 900 μM, assigned to domains B and B’ and domains A and A’ respectively. Nested CV-N displays a slight increase in activity when compared to WT CV-N in both an anti-HIV cellular assay and a fusion assay. This construct conserves the original binding specifityies of domain A and B, thus indicating correct fold of the two CV-N repeats. Thus, rational design can be used to increase multivalency in antiviral lectins in a controlled manner. PMID:27275831

  18. Antiviral activity of ancient system of ayurvedic medicinal plant Cissus quadrangularis L. (Vitaceae).

    PubMed

    Balasubramanian, P; Jayalakshmi, K; Vidhya, N; Prasad, R; Sheriff, A Khaleefathullah; Kathiravan, G; Rajagopal, K; Sureban, Sripathi M

    2009-12-01

    Partially purified methanolic extract of Cissus quadrangularis (belonging to Vitaceae member, South Indian medicinal plant) have been explored for antiviral activity and their phytochemical characterisation. In vitro antiviral activity against HSV type1 and 2, and Vero cells at non-cytotoxic concentration were determined. HSV1 and HSV2 showed more sensitivity against the partially purified compound. Phytochemical analysis showed the presence of the Steroids and Terpenoids. PMID:25206252

  19. Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses.

    PubMed

    Kang, Hyunju; Kim, Chonsaeng; Kim, Dong-eun; Song, Jae-Hyoung; Choi, Miri; Choi, Kwangman; Kang, Mingu; Lee, Kyungjin; Kim, Hae Soo; Shin, Jin Soo; Kim, Janghwan; Han, Sang-Bae; Lee, Mi-Young; Lee, Su Ui; Lee, Chong-Kyo; Kim, Meehyein; Ko, Hyun-Jeong; van Kuppeveld, Frank J M; Cho, Sungchan

    2015-12-01

    Enteroviruses are major causative agents of various human diseases, and some of them are currently considered to be an enormous threat to public health. However, no effective therapy is currently available for the treatment of these infections. We identified gemcitabine, a nucleoside-analog drug used for cancer treatment, from a screen of bioactive chemicals as a novel inhibitor of coxsackievirus B3 (CVB3) and enterovirus 71 (EV71). Gemcitabine potently inhibited the proliferation of CVB3 and EV71, as well as the replication of CVB3 and EV71 replicons, in cells with a low micromolar IC50 (1-5 μM). Its strong inhibitory effect was also observed in cells infected with human rhinoviruses, demonstrating broad-spectrum antiviral effects on enteroviruses. Mechanistically, an extensive analysis excluded the involvement of 2C, 3A, IRES-dependent translation, and also that of polyprotein processing in the antiviral effects of gemcitabine. Importantly, gemcitabine in combination with ribavirin, an antiviral drug currently being used against a few RNA viruses, exhibited a synergistic antiviral effect on the replication of CVB3 and EV71 replicons. Consequently, our results clearly demonstrate a new indication for gemcitabine as an effective broad-spectrum inhibitor of enteroviruses and strongly suggest a new therapeutic strategy using gemcitabine alone or in combination with ribavirin for the treatment of various diseases associated with enterovirus infection.

  20. Surfactant-Modified Nanoclay Exhibits an Antiviral Activity with High Potency and Broad Spectrum

    PubMed Central

    Liang, Jian-Jong; Wei, Jiun-Chiou; Lee, Yi-Ling; Lin, Jiang-Jen

    2014-01-01

    ABSTRACT Nanomaterials have the characteristics associated with high surface-to-volume ratios and have been explored for their antiviral activity. Despite some success, cytotoxicity has been an issue in nanomaterial-based antiviral strategies. We previously developed a novel method to fully exfoliate montmorillonite clay to generate the most fundamental units of nanoscale silicate platelet (NSP). We further modified NSP by capping with various surfactants and found that the surfactant-modified NSP (NSQ) was less cytotoxic. In this study, we tested the antiviral potentials of a series of natural-clay-derived nanomaterials. Among the derivatives, NSP modified with anionic sodium dodecyl sulfate (NSQc), but not the pristine clay, unmodified NSP, a silver nanoparticle-NSP hybrid, NSP modified with cationic n-octadecanylamine hydrochloride salt, or NSP modified with nonionic Triton X-100, significantly suppressed the plaque-forming ability of Japanese encephalitis virus (JEV) at noncytotoxic concentrations. NSQc also blocked infection with dengue virus (DEN) and influenza A virus. Regarding the antiviral mechanism, NSQc interfered with viral binding through electrostatic interaction, since its antiviral activity can be neutralized by Polybrene, a cationic polymer. Furthermore, NSQc reduced the lethality of JEV and DEN infection in mouse challenge models. Thus, the surfactant-modified exfoliated nanoclay NSQc may be a novel nanomaterial with broad and potent antiviral activity. IMPORTANCE Nanomaterials have being investigated as antimicrobial agents, yet their antiviral potential is overshadowed by their cytotoxicity. By using a novel method, we fully exfoliated montmorillonite clay to generate the most fundamental units of nanoscale silicate platelet (NSP). Here, we show that the surfactant-modified NSP (NSQ) is less cytotoxic and that NSQc (NSP modified with sodium dodecyl sulfate) could potently block infection by dengue virus (DEN), Japanese encephalitis virus (JEV

  1. Isoflavone Agonists of IRF-3 Dependent Signaling Have Antiviral Activity against RNA Viruses

    PubMed Central

    Wang, Myra L.; Proll, Sean C.; Loo, Yueh-Ming; Katze, Michael G.; Gale, Michael; Iadonato, Shawn P.

    2012-01-01

    There is a growing need for novel antiviral therapies that are broad spectrum, effective, and not subject to resistance due to viral mutations. Using high-throughput screening methods, including computational docking studies and an interferon-stimulated gene 54 (ISG54)-luciferase reporter assay, we identified a class of isoflavone compounds that act as specific agonists of innate immune signaling pathways and cause activation of the interferon regulatory factor (IRF-3) transcription factor. The isoflavone compounds activated the ISG54 promoter, mediated nuclear translocation of IRF-3, and displayed highly potent activity against hepatitis C virus (HCV) and influenza virus. Additionally, these agonists efficiently activated IRF-3 in the presence of the HCV protease NS3-4A, which is known to blunt the host immune response. Furthermore, genomic studies showed that discrete innate immune pathways centered on IRF signaling were regulated following agonist treatment without causing global changes in host gene expression. Following treatment, the expression of only 64 cellular genes was significantly induced. This report provides the first evidence that innate immune pathways dependent on IRF-3 can be successfully targeted by small-molecule drugs for the development of novel broad-spectrum antiviral compounds. PMID:22532686

  2. Broad and potent antiviral activity of the NAE inhibitor MLN4924

    PubMed Central

    Le-Trilling, Vu Thuy Khanh; Megger, Dominik A.; Katschinski, Benjamin; Landsberg, Christine D.; Rückborn, Meike U.; Tao, Sha; Krawczyk, Adalbert; Bayer, Wibke; Drexler, Ingo; Tenbusch, Matthias; Sitek, Barbara; Trilling, Mirko

    2016-01-01

    In terms of infected human individuals, herpesviruses range among the most successful virus families. Subclinical herpesviral infections in healthy individuals contrast with life-threatening syndromes under immunocompromising and immunoimmature conditions. Based on our finding that cytomegaloviruses interact with Cullin Roc ubiquitin ligases (CRLs) in the context of interferon antagonism, we systematically assessed viral dependency on CRLs by utilizing the drug MLN4924. CRL activity is regulated through the conjugation of Cullins with the ubiquitin-like molecule Nedd8. By inhibiting the Nedd8-activating Enzyme (NAE), MLN4924 interferes with Nedd8 conjugation and CRL activity. MLN4924 exhibited pronounced antiviral activity against mouse and human cytomegalovirus, herpes simplex virus (HSV)- 1 (including multi-drug resistant clinical isolates), HSV-2, adeno and influenza viruses. Human cytomegalovirus genome amplification was blocked at nanomolar MLN4924 concentrations. Global proteome analyses revealed that MLN4924 blocks cytomegaloviral replication despite increased IE1 amounts. Expression of dominant negative Cullins assigned this IE regulation to defined Cullin molecules and phenocopied the antiviral effect of MLN4924. PMID:26829401

  3. Antiviral Activity of Graphene–Silver Nanocomposites against Non-Enveloped and Enveloped Viruses

    PubMed Central

    Chen, Yi-Ning; Hsueh, Yi-Huang; Hsieh, Chien-Te; Tzou, Dong-Ying; Chang, Pai-Ling

    2016-01-01

    The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO) sheets and GO sheets with silver particles (GO-Ag) against enveloped and non-enveloped viruses, feline coronavirus (FCoV) with an envelope and infectious bursal disease virus (IBDV) without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses. PMID:27104546

  4. Antiviral Activity of Graphene-Silver Nanocomposites against Non-Enveloped and Enveloped Viruses.

    PubMed

    Chen, Yi-Ning; Hsueh, Yi-Huang; Hsieh, Chien-Te; Tzou, Dong-Ying; Chang, Pai-Ling

    2016-04-01

    The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO) sheets and GO sheets with silver particles (GO-Ag) against enveloped and non-enveloped viruses, feline coronavirus (FCoV) with an envelope and infectious bursal disease virus (IBDV) without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses. PMID:27104546

  5. [ANTIVIRAL ACTIVITY OF THE DIHYDROQUERCETIN DURING THE COXSACKIEVIRUS B4 REPLICATION IN VITRO].

    PubMed

    Galochkina, A V; Zarubaev, V V; Kiselev, O I; Babkin, V A; Ostroukhova, L A

    2016-01-01

    A study of the antiviral activity of antioxidants against viral infections is believed to be essential for creating complex antiviral agents. Dihydroquercetin is considered as the most active antioxidant extracted from Larix gmelinii. In this work, we present results of experiments of the antiviral properties of dihydroquercetin against a member of the family Picarnaviridae--Coxsackievirus B4 in vitro. We have estimated that dihydroquercetin reduces viral titers at 100 µg/ml concentration as compared with control of virus. We have shown using the plaque assay that CPE of virusis reduced in the presence of dihydroquercetin at 100 µg/ml. Study of the phase of viral lifecycle, in which dihydroquercetin acted, demonstrated that the highest efficacy of the antiviral therapy was reached at early stages of virus reproduction (1-3 hours post infection). These results show that dihydroquercetin has antiviralproperty against Coxsackievirus B4. This drug and other antioxidants can be tested as inhibitors of viral replication.

  6. Antiviral Activity of Diterpene Esters on Chikungunya Virus and HIV Replication.

    PubMed

    Nothias-Scaglia, Louis-Félix; Pannecouque, Christophe; Renucci, Franck; Delang, Leen; Neyts, Johan; Roussi, Fanny; Costa, Jean; Leyssen, Pieter; Litaudon, Marc; Paolini, Julien

    2015-06-26

    Recently, new daphnane, tigliane, and jatrophane diterpenoids have been isolated from various Euphorbiaceae species, of which some have been shown to be potent inhibitors of chikungunya virus (CHIKV) replication. To further explore this type of compound, the antiviral activity of a series of 29 commercially available natural diterpenoids was evaluated. Phorbol-12,13-didecanoate (11) proved to be the most potent inhibitor, with an EC50 value of 6.0 ± 0.9 nM and a selectivity index (SI) of 686, which is in line with the previously reported anti-CHIKV potency for the structurally related 12-O-tetradecanoylphorbol-13-acetate (13). Most of the other compounds exhibited low to moderate activity, including an ingenane-type diterpene ester, compound 28, with an EC50 value of 1.2 ± 0.1 μM and SI = 6.4. Diterpene compounds are known also to inhibit HIV replication, so the antiviral activities of compounds 1-29 were evaluated also against HIV-1 and HIV-2. Tigliane- (4β-hydroxyphorbol analogues 10, 11, 13, 15, 16, and 18) and ingenane-type (27 and 28) diterpene esters were shown to inhibit HIV replication in vitro at the nanomolar level. A Pearson analysis performed with the anti-CHIKV and anti-HIV data sets demonstrated a linear relationship, which supported the hypothesis made that PKC may be an important target in CHIKV replication.

  7. Gene Expression and Antiviral Activity of Interleukin-35 in Response to Influenza A Virus Infection.

    PubMed

    Wang, Li; Zhu, Shengli; Xu, Gang; Feng, Jian; Han, Tao; Zhao, Fanpeng; She, Ying-Long; Liu, Shi; Ye, Linbai; Zhu, Ying

    2016-08-01

    Interleukin-35 (IL-35) is a newly described member of the IL-12 family. It has been reported to inhibit inflammation and autoimmune inflammatory disease and can increase apoptotic sensitivity. Little is known about the role of IL-35 during viral infection. Herein, high levels of IL-35 were found in peripheral blood mononuclear cells and throat swabs from patients with seasonal influenza A virus (IAV) relative to healthy individuals. IAV infection of human lung epithelial and primary cells increased levels of IL-35 mRNA and protein. Further studies demonstrated that IAV-induced IL-35 transcription is regulated by NF-κB. IL-35 expression was significantly suppressed by selective inhibitors of cyclooxygenase-2 (COX-2) and inducible nitric-oxide synthase, indicating their involvement in IL-35 expression. Interestingly, IL-35 production may have suppressed IAV RNA replication and viral protein synthesis via induction of type I and III interferons (IFN), leading to activation of downstream IFN effectors, including double-stranded RNA-dependent protein kinase, 2',5'-oligoadenylate synthetase, and myxovirus resistance protein. IL-35 exhibited extensive antiviral activity against the hepatitis B virus, enterovirus 71, and vesicular stomatitis virus. Our results demonstrate that IL-35 is a novel IAV-inducible cytokine, and its production elicits antiviral activity. PMID:27307042

  8. In vitro antiviral activity of plant extracts from Asteraceae medicinal plants

    PubMed Central

    2013-01-01

    Background Due to the high prevalence of viral infections having no specific treatment and the constant appearance of resistant viral strains, the development of novel antiviral agents is essential. The aim of this study was to evaluate the antiviral activity against bovine viral diarrhea virus, herpes simplex virus type 1 (HSV-1), poliovirus type 2 (PV-2) and vesicular stomatitis virus of organic (OE) and aqueous extracts (AE) from: Baccharis gaudichaudiana, B. spicata, Bidens subalternans, Pluchea sagittalis, Tagetes minuta and Tessaria absinthioides. A characterization of the antiviral activity of B. gaudichaudiana OE and AE and the bioassay-guided fractionation of the former and isolation of one active compound is also reported. Methods The antiviral activity of the OE and AE of the selected plants was evaluated by reduction of the viral cytopathic effect. Active extracts were then assessed by plaque reduction assays. The antiviral activity of the most active extracts was characterized by evaluating their effect on the pretreatment, the virucidal activity and the effect on the adsorption or post-adsorption period of the viral cycle. The bioassay-guided fractionation of B. gaudichaudiana OE was carried out by column chromatography followed by semipreparative high performance liquid chromatography fractionation of the most active fraction and isolation of an active compound. The antiviral activity of this compound was also evaluated by plaque assay. Results B. gaudichaudiana and B. spicata OE were active against PV-2 and VSV. T. absinthioides OE was only active against PV-2. The corresponding three AE were active against HSV-1. B. gaudichaudiana extracts (OE and AE) were the most selective ones with selectivity index (SI) values of 10.9 (PV-2) and >117 (HSV-1). For this reason, both extracts of B. gaudichaudiana were selected to characterize their antiviral effects. Further bioassay-guided fractionation of B. gaudichaudiana OE led to an active fraction, FC (EC50

  9. Antiviral Activity of Resveratrol against Human and Animal Viruses

    PubMed Central

    Abba, Yusuf; Hassim, Hasliza; Hamzah, Hazilawati; Noordin, Mohamed Mustapha

    2015-01-01

    Resveratrol is a potent polyphenolic compound that is being extensively studied in the amelioration of viral infections both in vitro and in vivo. Its antioxidant effect is mainly elicited through inhibition of important gene pathways like the NF-κβ pathway, while its antiviral effects are associated with inhibitions of viral replication, protein synthesis, gene expression, and nucleic acid synthesis. Although the beneficial roles of resveratrol in several viral diseases have been well documented, a few adverse effects have been reported as well. This review highlights the antiviral mechanisms of resveratrol in human and animal viral infections and how some of these effects are associated with the antioxidant properties of the compound. PMID:26693226

  10. New imidazolidineiminothione derivatives: Synthesis, spectral characterization and evaluation of antitumor, antiviral, antibacterial and antifungal activities.

    PubMed

    Moussa, Ziad; El-Sharief, Marwa A M Sh; Abbas, Samir Y

    2016-10-21

    A series of new imidazolidineiminothione derivatives with various halogenated and alkylated aromatic substituents at N-(1) and at N-(3) was synthesized through the reaction of N-arylcyanothioformamides with arylisocyanate derivatives. Structure of imidazolidineiminothione derivatives were established based on spectroscopic IR, (1)H NMR, (13)C NMR, (1)H,(1)H-COSY, HSQC, (19)F NMR, MS and elemental analyses data. Evaluation of antitumor, antiviral, antibacterial and antifungal activities for the synthesized compounds were carried out to probe their activities. Most of the synthesized compounds displayed antitumor activity. The presence of 3,5-dichlorophenyl moiety at N-(1) and trichlorophenyl moiety on N-(3) (2f) resulted the highest cytotoxic activity. The presence of 9H-fluorenyl moiety on N-(3) resulted in the lowest cytotoxic activity. The antiviral screening displayed that 2d and 2f were markedly active against one or two viral strains. Compound 2d (3,5-dichlorophenyl moiety at N-(1) and 4-chlorophenyl moiety on N-(3)) showed 100% antiviral effect toward HAV. Compound 2f showed 96.7% antiviral effect toward HSV1 and 80.3% antiviral effect toward HAV. The antimicrobial activity suggested that all of the imidazolidineiminothione derivatives possess significant antimicrobial activity against most of the test organisms. Some imidazolidineiminothione derivatives showed MIC values of antibacterial and antifungal activities ranged from 0.78 to 6.25 μg/ml.

  11. Isohelical DNA-Binding Oligomers: Antiviral Activity and Application for the Design of Nanostructured Devices

    NASA Astrophysics Data System (ADS)

    Gursky, Georgy; Nikitin, Alexei; Surovaya, Anna; Grokhovsky, Sergey; Andronova, Valeria; Galegov, Georgy

    We performed a systematic search for new structural motifs isohelical to double-stranded DNA and found five motifs that can be used for the design and synthesis of new DNA-binding oligomers. Some of the DNA-binding oligomers can be equipped with fluorescence chromophores and metal-chelating groups and may serve as conductive wires in nano-scaled electric circuits. A series of new DNA-binding ligands were synthesized by a modular assembly of pyrrole carboxamides and novel pseudopeptides of the form (XY)n. Here, Y is a glycine residue; n is the degree of polymerization. X is an unusual amino acid residue containing a five-membered aromatic ring. Antiviral activity of bis-linked netropsin derivatives is studied. Bis-netropsins containing 15 and 31 lysine residues at the N-termini inhibit most effectively reproduction of the herpes virus type 1 in the Vero cell culture, including virus variants resistant to acyclovir and its analogues. Antiviral activity of bis-linked netropsin derivatives is correlated with their ability to interact with long clusters of AT-base pairs in the origin of replication of the viral DNA.

  12. In vitro evaluation of marine-microorganism extracts for anti-viral activity

    PubMed Central

    2010-01-01

    Viral-induced infectious diseases represent a major health threat and their control remains an unachieved goal, due in part to the limited availability of effective anti-viral drugs and measures. The use of natural products in drug manufacturing is an ancient and well-established practice. Marine organisms are known producers of pharmacological and anti-viral agents. In this study, a total of 20 extracts from marine microorganisms were evaluated for their antiviral activity. These extracts were tested against two mammalian viruses, herpes simplex virus (HSV-1) and vesicular stomatitis virus (VSV), using Vero cells as the cell culture system, and two marine virus counterparts, channel catfish virus (CCV) and snakehead rhabdovirus (SHRV), in their respective cell cultures (CCO and EPC). Evaluation of these extracts demonstrated that some possess antiviral potential. In sum, extracts 162M(4), 258M(1), 298M(4), 313(2), 331M(2), 367M(1) and 397(1) appear to be effective broad-spectrum antivirals with potential uses as prophylactic agents to prevent infection, as evident by their highly inhibitive effects against both virus types. Extract 313(2) shows the most potential in that it showed significantly high inhibition across all tested viruses. The samples tested in this study were crude extracts; therefore the development of antiviral application of the few potential extracts is dependent on future studies focused on the isolation of the active elements contained in these extracts. PMID:20691099

  13. Neuraminidase Activity and Resistance of 2009 Pandemic H1N1 Influenza Virus to Antiviral Activity in Bronchoalveolar Fluid

    PubMed Central

    Ruangrung, Kanyarat; Suptawiwat, Ornpreya; Maneechotesuwan, Kittipong; Boonarkart, Chompunuch; Chakritbudsabong, Warunya; Assawabhumi, Jirawatna; Bhattarakosol, Parvapan; Uiprasertkul, Mongkol; Puthavathana, Pilaipan; Wiriyarat, Witthawat; Jongkaewwattana, Anan

    2016-01-01

    ABSTRACT Human bronchoalveolar fluid is known to have anti-influenza activity. It is believed to be a frontline innate defense against the virus. Several antiviral factors, including surfactant protein D, are believed to contribute to the activity. The 2009 pandemic H1N1 influenza virus was previously shown to be less sensitive to surfactant protein D. Nevertheless, whether different influenza virus strains have different sensitivities to the overall anti-influenza activity of human bronchoalveolar fluid was not known. We compared the sensitivities of 2009 pandemic H1N1, seasonal H1N1, and seasonal H3N2 influenza virus strains to inhibition by human bronchoalveolar lavage (BAL) fluid. The pandemic and seasonal H1N1 strains showed lower sensitivity to human BAL fluid than the H3N2 strains. The BAL fluid anti-influenza activity could be enhanced by oseltamivir, indicating that the viral neuraminidase (NA) activity could provide resistance to the antiviral defense. In accordance with this finding, the BAL fluid anti-influenza activity was found to be sensitive to sialidase. The oseltamivir resistance mutation H275Y rendered the pandemic H1N1 virus but not the seasonal H1N1 virus more sensitive to BAL fluid. Since only the seasonal H1N1 but not the pandemic H1N1 had compensatory mutations that allowed oseltamivir-resistant strains to maintain NA enzymatic activity and transmission fitness, the resistance to BAL fluid of the drug-resistant seasonal H1N1 virus might play a role in viral fitness. IMPORTANCE Human airway secretion contains anti-influenza activity. Different influenza strains may vary in their susceptibilities to this antiviral activity. Here we show that the 2009 pandemic and seasonal H1N1 influenza viruses were less sensitive to human bronchoalveolar lavage (BAL) fluid than H3N2 seasonal influenza virus. The resistance to the pulmonary innate antiviral activity of the pandemic virus was determined by its neuraminidase (NA) gene, and it was shown that the

  14. New in vitro method for evaluating antiviral activity of acyclic nucleoside phosphonates against plant viruses.

    PubMed

    Spak, J; Holý, A; Pavingerová, D; Votruba, I; Spaková, V; Petrzik, K

    2010-12-01

    A new method was developed for testing antiviral compounds against plant viruses based on rapidly growing brassicas in vitro on liquid medium. This method enables exchange of media containing tested chemicals in various concentrations and simultaneous evaluation of their phytotoxicity and antiviral activity. While using ribavirin as a standard for comparison, phytotoxicity and ability of the acyclic nucleotide analogues (R)-PMPA, PMEA, PMEDAP, and (S)-HPMPC to eliminate ssRNA Turnip yellow mosaic virus (TYMV) were evaluated by this method. Double antibody sandwich ELISA and real-time PCR were used for relative quantification of viral protein and nucleic acid in plants. Ribavirin had the most powerful antiviral effect against TYMV. On the other hand, (R)-PMPA and PMEA had no antiviral effect and almost no phytotoxicity compared to the control. (S)-HPMPC and PMEDAP showed moderate antiviral effect, accompanied by higher phytotoxicity. The tested compounds can be screened within 6-9 weeks in contrast to the 6 months for traditionally used explants on solid medium. The method enables large-scale screening of potential antivirals for in vitro elimination of viruses from vegetatively propagated crops and ornamentals.

  15. Antioxidant, antifungal and antiviral activities of chitosan from the larvae of housefly, Musca domestica L.

    PubMed

    Ai, Hui; Wang, Furong; Xia, Yuqian; Chen, Xiaomin; Lei, Chaoliang

    2012-05-01

    Antioxidant activity of the chitosan from the larvae of Musca domestica L. was evaluated in two different reactive oxygen species assays, and inhibitory effects against seven fungi were also tested. The results showed that the chitosan had scavenging activity for hydroxyl and superoxide radicals which were similar to that of ascorbic acid. Also the chitosan exhibited excellent antifungal activity, especially in the low concentration, it could significantly inhibit the growth of Rhizopus stolonifer. Besides, antiviral results demonstrated that the chitosan could effectively inhibit the infection of AcMNPV and BmNPV. These results suggested that the chitosan from the larvae of housefly could be effectively used as a natural antioxidant to protect the human body from free radicals and retard the progress of many chronic diseases. Furthermore, the chitosan with antiviral and antifungal activity might provide useful information for antiviral breeding technology of economic insect and development of plant pathological control.

  16. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro.

    PubMed

    Zhou, Wei; Zeng, Cheng; Liu, RenHua; Chen, Jie; Li, Ru; Wang, XinYan; Bai, WenWen; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Prodigiosin, the tripyrrole red pigment, is a bacterial secondary metabolite with multiple bioactivities; however, the antiviral activity has not been reported yet. In the present study, we found the antiviral activity of bacterial prodigiosin on Bombyx mori nucleopolyhedrovirus (BmNPV)-infected cells in vitro, with specific modes of action. Prodigiosin at nontoxic concentrations selectively killed virus-infected cells, inhibited viral gene transcription, especially viral early gene ie-1, and prevented virus-mediated membrane fusion. Under prodigiosin treatment, both progeny virus production and viral DNA replication were significantly inhibited. Fluorescent assays showed that prodigiosin predominantly located in cytoplasm which suggested it might interact with cytoplasm factors to inhibit virus replication. In conclusion, the present study clearly indicates that prodigiosin possesses significant antiviral activity against BmNPV.

  17. Antiviral Activity of Porcine Interferon Regulatory Factor 1 against Swine Viruses in Cell Culture.

    PubMed

    Li, Yongtao; Chang, Hongtao; Yang, Xia; Zhao, Yongxiang; Chen, Lu; Wang, Xinwei; Liu, Hongying; Wang, Chuanqing; Zhao, Jun

    2015-11-17

    Interferon regulatory factor 1 (IRF1), as an important transcription factor, is abundantly induced upon virus infections and participates in host antiviral immune responses. However, the roles of porcine IRF1 (poIRF1) in host antiviral defense remain poorly understood. In this study, we determined that poIRF1 was upregulated upon infection with viruses and distributed in nucleus in porcine PK-15 cells. Subsequently, we tested the antiviral activities of poIRF1 against several swine viruses in cells. Overexpression of poIRF1 can efficiently suppress the replication of viruses, and knockdown of poIRF1 promotes moderately viral replication. Interestingly, overexpression of poIRF1 enhances dsRNA-induced IFN-β and IFN-stimulated response element (ISRE) promoter activation, whereas knockdown of poIRF1 cannot significantly affect the activation of IFN-β promoter induced by RNA viruses. This study suggests that poIRF1 plays a significant role in cellular antiviral response against swine viruses, but might be dispensable for IFN-β induction triggered by RNA viruses in PK-15 cells. Given these results, poIRF1 plays potential roles in cellular antiviral responses against swine viruses.

  18. Alkylated Porphyrins Have Broad Antiviral Activity against Hepadnaviruses, Flaviviruses, Filoviruses, and Arenaviruses▿

    PubMed Central

    Guo, Haitao; Pan, Xiaoben; Mao, Richeng; Zhang, Xianchao; Wang, Lijuan; Lu, Xuanyong; Chang, Jinhong; Guo, Ju-Tao; Passic, Shendra; Krebs, Fred C.; Wigdahl, Brian; Warren, Travis K.; Retterer, Cary J.; Bavari, Sina; Xu, Xiaodong; Cuconati, Andrea; Block, Timothy M.

    2011-01-01

    We screened ∼2,200 compounds known to be safe in people for the ability to reduce the amount of virion-associated hepatitis B virus (HBV) DNA in the culture medium of producer cells. These efforts led to the discovery of an alkylated porphyrin, chlorophyllide, as the compound that achieved the greatest reduction in signal. Here we report that chlorophyllide directly and quantitatively disrupted HBV virions at micromolar concentrations, resulting in the loss of all detectable virion DNA, without detectably affecting cell viability or intracellular viral gene products. Chemophores of chlorophyllide were also tested. Chlorin e6, a metal-free chlorophyllide-like molecule, showed the strongest antiviral activity against HBV as well as profound antiviral effects on other enveloped viruses, such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), dengue virus (DENV), Marburg virus (MARV), Tacaribe virus (TCRV), and Junin viruses (JUNV). Remarkably, chlorin e6 inactivated DENV at subnanomolar-level concentrations. However, the compound had no antiviral effect against encephalomyocarditis virus and adenovirus, suggesting that chlorin e6 may be less active or inactive against nonenveloped viruses. Although other porphyrin derivatives have been previously reported to possess antiviral activity, this is the first analysis of the biochemical impact of chlorophyllide and chlorin e6 against HBV and of the dramatic anti-infectivity impact upon DENV. The possible application of this family of compounds as antiviral agents, as microbicides and systemic virus neutralizing agents, is discussed. PMID:21135183

  19. Cytotoxic, Virucidal, and Antiviral Activity of South American Plant and Algae Extracts

    PubMed Central

    Faral-Tello, Paula; Mirazo, Santiago; Dutra, Carmelo; Pérez, Andrés; Geis-Asteggiante, Lucía; Frabasile, Sandra; Koncke, Elina; Davyt, Danilo; Cavallaro, Lucía; Heinzen, Horacio; Arbiza, Juan

    2012-01-01

    Herpes simplex virus type 1 (HSV-1) infection has a prevalence of 70% in the human population. Treatment is based on acyclovir, valacyclovir, and foscarnet, three drugs that share the same mechanism of action and of which resistant strains have been isolated from patients. In this aspect, innovative drug therapies are required. Natural products offer unlimited opportunities for the discovery of antiviral compounds. In this study, 28 extracts corresponding to 24 plant species and 4 alga species were assayed in vitro to detect antiviral activity against HSV-1. Six of the methanolic extracts inactivated viral particles by direct interaction and 14 presented antiviral activity when incubated with cells already infected. Most interesting antiviral activity values obtained are those of Limonium brasiliense, Psidium guajava, and Phyllanthus niruri, which inhibit HSV-1 replication in vitro with 50% effective concentration (EC50) values of 185, 118, and 60 μg/mL, respectively. For these extracts toxicity values were calculated and therefore selectivity indexes (SI) obtained. Further characterization of the bioactive components of antiviral plants will pave the way for the discovery of new compounds against HSV-1. PMID:22619617

  20. Enhancing of anti-viral activity against HIV-1 by stimulation of CD8+ T cells with thymic peptides

    PubMed Central

    MÜLLER, H; MAYER, G; BEHNKE, B; HEIMÜLLER, E; HAMSCHER, G; IMMLER, D; SIETHOFF, C; MEYER, HE; SCHREIBER, M

    1999-01-01

    HIV-1 can be neutralized by soluble factors produced and secreted by activated CD8+ T cells. Production of such anti-viral CD8 factors (including chemokines) can be induced with IL-2 or phytohaemagglutinin (PHA). In addition to PHA or IL-2, we have co-stimulated CD8+ T cells with PHA/IL-2 and a mixture of thymic peptides (TP) of molecular weights below 10 kD. For the activation, CD8+ T cells were purified from peripheral blood mononuclear cells of HIV-1− individuals and any resultant anti-viral activity was monitored using an HIV-1 neutralization assay. Using HIV-1 isolates highly resistant to chemokine inhibition we detected significantly higher levels of HIV-1 neutralizing activity in CD8+ T cell culture supernatants which had been co-activated with TP. When the TP-induced anti-viral activity was monitored, neutralization of both non-syncytia-inducing (NSI) and syncytia-inducing (SI) patient isolates was enhanced by 38% (NSI, PHA +/− TP), 66% (SI, PHA +/− TP), 28% (NSI, IL-2 +/− TP), and 57% (SI, IL-2 +/− TP) compared with the anti-viral activity present in supernatants from CD8+ T cell cultures stimulated only with PHA or IL-2. Peptide sequence analysis of purified TP showed that the TP mixture predominantly contains peptides with homology to human histone and collagen sequences. Our data demonstrate that CD8+ T cells are additionally activated by a mixture of TP. In this way, the production of HIV-1 neutralizing CD8 factors can be enhanced. PMID:10403919

  1. Effect of Antiviral Therapy on Serum Activity of Angiotensin Converting Enzyme in Patients with Chronic Hepatitis C

    PubMed Central

    Husic-Selimovic, Azra; Sofic, Amela; Huskic, Jasminko; Bulja, Deniz

    2016-01-01

    Introduction: Renin-angiotenzin system (RAS) is frequently activated in patients with chronic liver disease. Angiotenzin - II (AT-II), produced by angiotenzin converting enzyme (ACE), has many physiological effects, including an important role in liver fibrogenesis. Combined antiviral therapy with PEG-IFN and ribavirin besides its antiviral effect also leads to a reduction in liver parenchyma fibrosis. Aim of the study: Determining the value of ACE in serum of patients with chronic hepatitis C before and after combined antiviral therapy, as well as the value of ACE activities in sera of the control group. Materials and methods: We studied 50 patients treated at Gastroenterohepatology Department, in the time-period of four years. Value of ACE in serum was determined by Olympus AU 400 device, with application of kit “Infinity TN ACE Liquid Stable Reagent”. HCV RNA levels in sera were measured by real time PCR. HCV RNA test was performed with modular analysis of AMPLICOR and COBAS AMPLICOR HCV MONITOR test v2.0, which has proved infection and was used for quantification of the viruses and monitoring of the patients’ response to therapy. Liver histology was evaluated in accordance with the level of necroinflammation activity and stage of fibrosis. Results: Serum activities of ACE in chronic hepatitis C patients is statistically higher than the values in the control group (p=0.02). Antiviral therapy in chronic hepatitis C patients statistically decreases serum activities of ACE (p= 0.02) and indirectly affects fibrogenesis of the liver parenchyma. Correlation between ACE and ALT activity after the therapy was proved (0.3934). Conclusion: Our findings suggest that the activity of ACE in serum is a good indirect parameter of the liver damage, and could be used as an indirect prognostic factor of the level of liver parenchyma damage. Serum activity of ACE can be used as a parameter for non-invasive assessment of intensity of liver damage. PMID:27147779

  2. Expression of pokeweed antiviral protein in mammalian cells activates c-Jun NH2-terminal kinase without causing apoptosis.

    PubMed

    Chan Tung, Kelvin W; Mansouri, Sheila; Hudak, Katalin A

    2008-01-01

    Pokeweed antiviral protein (PAP) is a ribosome inactivating protein isolated from the pokeweed plant (Phytolacca americana L.) that exhibits broad range antiviral activity against several human viruses including HIV and influenza. This characteristic suggests that PAP may have therapeutic applications; however, it is not known whether the protein elicits a ribotoxic stress response that would result in cell death. Therefore, we expressed PAP in 293T cells and showed that the enzyme did not inhibit protein translation even though approximately 15% of the ribosomal RNA (rRNA) was depurinated. PAP expression induced the activation of c-Jun NH2-terminal kinase (JNK), which was specific to rRNA depurination, as the enzymatically inactive mutant PAPx did not affect kinase activity. Moreover, incubation of PAP-expressing cells with translation inhibitors diminished JNK activation, indicating that the signal for induction of the kinase pathway originated from ribosomes. JNK activation did not result in apoptosis as demonstrated by the absence of caspase-3 and poly(ADP-ribose) polymerase cleavage and by the lack of cell staining for morphological changes in membrane permeability. Unlike all ribosome inactivating proteins tested thus far, the stress response triggered by PAP expression did not result in cell death, which supports further investigation of the enzyme in the design of novel antiviral agents.

  3. Egyptian propolis: 2. Chemical composition, antiviral and antimicrobial activities of East Nile Delta propolis.

    PubMed

    Abd El Hady, Faten K; Hegazi, Ahmed G

    2002-01-01

    Three propolis samples from East Nile Delta, Egypt were collected. Propolis samples were investigated by GC/MS,103 compounds were identified, 20 being new for propolis. Dakahlia propolis was a typical poplar propolis but it contained two new caffeate esters and two new triterpenoids. Ismailia propolis was characterized by the presence of new triterpenic acid methyl esters and it did not contain any aromatic acids, esters and flavonoids. Sharkia propolis was characterized by the presence of caffeate esters only, some di- and triterpenoids. The antiviral (Infectious Bursal Disease Virus and Reo-Virus) and antimicrobial (Staphylococcus aureus; Escherichia coli and Candida albicans) activities of propolis samples were investigated. Dakahlia propolis showed the highest antiviral activity against Infectious Bursal Disease Virus (IBDV) and the highest antibacterial activity against Escherichia coli and the highest antifungal activity against Candida albicans. While Ismailia propolis had the highest antiviral activity against Reo-virus. Sharkia propolis showed the highest antibacterial activity against Staphylococcus aureus and moderate antiviral activity against infectious bursal disease virus and reovirus.

  4. Tetrameric assembly of hGBP1 is crucial for both stimulated GMP formation and antiviral activity.

    PubMed

    Pandita, Esha; Rajan, Sudeepa; Rahman, Safikur; Mullick, Ranajoy; Das, Saumitra; Sau, Apurba Kumar

    2016-06-15

    Interferon-γ inducible human guanylate binding protein-1 (hGBP1) shows a unique characteristic that hydrolyses GTP to a mixture of GDP and GMP through successive cleavages, with GMP being the major product. Like other large GTPases, hGBP1 undergoes oligomerization upon substrate hydrolysis, which is essential for the stimulation of activity. It also exhibits antiviral activity against many viruses including hepatitis C. However, which oligomeric form is responsible for the stimulated activity leading to enhanced GMP formation and its influence on antiviral activity, are not properly understood. Using mutant and truncated proteins, our data indicate that transition-state-induced tetramerization is associated with higher rate of GMP formation. This is supported by chimaeras that are defective in both tetramerization and enhanced GMP formation. Unlike wild-type protein, chimaeras did not show allosteric interactions, indicating that tetramerization and enhanced GMP formation are allosterically coupled. Hence, we propose that after the cleavage of the first phosphoanhydride bond GDP·Pi-bound protein dimers transiently associate to form a tetramer that acts as an allosteric switch for higher rate of GMP formation. Biochemical and biophysical studies reveal that sequential conformational changes and interdomain communications regulate tetramer formation via dimer. Our studies also show that overexpression of the mutants, defective in tetramer formation in Rep2a cells do not inhibit proliferation of hepatitis C virus, indicating critical role of a tetramer in the antiviral activity. Thus, the present study not only highlights the importance of hGBP1 tetramer in stimulated GMP formation, but also demonstrates its role in the antiviral activity against hepatitis C virus.

  5. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Abdul Kadir, Habsah; Hassandarvish, Pouya; Tajik, Hassan; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent. PMID:24877064

  6. Phytochemical screening, cytotoxicity and antiviral activity of hexane fraction of Phaleria macrocarpa fruits

    NASA Astrophysics Data System (ADS)

    Ismaeel, Mahmud Yusef Yusef; Yaacob, Wan Ahmad; Tahir, Mariya Mohd.; Ibrahim, Nazlina

    2015-09-01

    Phaleria macrocarpa fruits have been widely used in the traditional medicine for the treatment of several infections. The current study was done to determine the phytochemical content, cytotoxicity and antiviral activity of the hexane fraction (HF) of P. macrocarpa fruits. In the hexane fraction of P. macarocarpa fruits, phytochemical screening showed the presence of terpenoids whereas saponins, alkaloids, tannins and anthraquinones were not present. Evaluation on Vero cell lines by using MTT assay showed that the 50% cytotoxic concentration (CC50) value was 0.48 mg/mL indicating that the fraction is not cytotoxic. Antiviral properties of the plant extracts were determined by plaque reduction assay. The effective concentration (EC50) was 0.18 mg/mL. Whereas the selective index (SI = CC50/EC50) of hexane fraction is 2.6 indicating low to moderate potential as antiviral agent.

  7. A systemic resistance inducing antiviral protein with N-glycosidase activity from Bougainvillea xbuttiana leaves.

    PubMed

    Narwal, S; Balasubrahmanyam, A; Sadhna, P; Kapoor, H; Lodha, M L

    2001-06-01

    An antiviral protein from Bougainvillea xbuttiana leaves induced systemic resistance in host plants N. glutinosa and Cyamopsis tetragonoloba against TMV and SRV, respectively which was reversed by actinomycin D, when applied immediately or shortly after antiviral protein treatment. When the inhibitor was applied to the host plant leaves post inoculation, it was effective if applied upto 4 h after virus infection. It also delayed the expression of symptoms in systemic hosts of TMV. The inhibitor showed characteristic N-glycosidase activity on 25S rRNA of tobacco ribosomes, suggesting that it could also be interfering with virus multiplication through ribosome-inactivation process. PMID:12562026

  8. Antiviral Activities of Different Interferon Types and Subtypes against Hepatitis E Virus Replication

    PubMed Central

    Todt, Daniel; François, Catherine; Anggakusuma; Behrendt, Patrick; Engelmann, Michael; Knegendorf, Leonard; Vieyres, Gabrielle; Wedemeyer, Heiner; Hartmann, Rune; Pietschmann, Thomas; Duverlie, Gilles

    2016-01-01

    Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and a member of the genus Orthohepevirus in the family Hepeviridae. HEV infections are the common cause of acute hepatitis but can also take chronic courses. Ribavirin is the treatment of choice for most patients, and type I interferon (IFN) has been evaluated in a few infected transplant patients in vivo. In this study, the antiviral effects of different exogenously administered interferons were investigated by using state-of-the-art subgenomic replicon and full-length HEV genome cell culture models. Hepatitis C virus (HCV) subgenomic replicons based on the genotype 2a JFH1 isolate served as the reference. The experiments revealed that HEV RNA replication was inhibited by the application of all types of IFN, including IFN-α (type I), IFN-γ (type II), and IFN-λ3 (type III), but to a far lesser extent than HCV replication. Simultaneous determination of interferon-stimulated gene (ISG) expression levels for all IFN types demonstrated efficient downregulation by HEV. Furthermore, different IFN-α subtypes were also able to block viral replication in combination with ribavirin. The IFN-α subtypes 2a and 2b exerted the strongest antiviral activity against HEV. In conclusion, these data demonstrate for the first time moderate anti-HEV activities of types II and III IFNs and different IFN-α subtypes. As HEV employed a potent anti-interferon mechanism by restricting ISG expression, exogenous application of IFNs as immunotherapy should be carefully assessed. PMID:26787701

  9. Antiviral Activities of Different Interferon Types and Subtypes against Hepatitis E Virus Replication.

    PubMed

    Todt, Daniel; François, Catherine; Anggakusuma; Behrendt, Patrick; Engelmann, Michael; Knegendorf, Leonard; Vieyres, Gabrielle; Wedemeyer, Heiner; Hartmann, Rune; Pietschmann, Thomas; Duverlie, Gilles; Steinmann, Eike

    2016-04-01

    Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and a member of the genusOrthohepevirusin the familyHepeviridae HEV infections are the common cause of acute hepatitis but can also take chronic courses. Ribavirin is the treatment of choice for most patients, and type I interferon (IFN) has been evaluated in a few infected transplant patientsin vivo In this study, the antiviral effects of different exogenously administered interferons were investigated by using state-of-the-art subgenomic replicon and full-length HEV genome cell culture models. Hepatitis C virus (HCV) subgenomic replicons based on the genotype 2a JFH1 isolate served as the reference. The experiments revealed that HEV RNA replication was inhibited by the application of all types of IFN, including IFN-α (type I), IFN-γ (type II), and IFN-λ3 (type III), but to a far lesser extent than HCV replication. Simultaneous determination of interferon-stimulated gene (ISG) expression levels for all IFN types demonstrated efficient downregulation by HEV. Furthermore, different IFN-α subtypes were also able to block viral replication in combination with ribavirin. The IFN-α subtypes 2a and 2b exerted the strongest antiviral activity against HEV. In conclusion, these data demonstrate for the first time moderate anti-HEV activities of types II and III IFNs and different IFN-α subtypes. As HEV employed a potent anti-interferon mechanism by restricting ISG expression, exogenous application of IFNs as immunotherapy should be carefully assessed. PMID:26787701

  10. Role of human hypoxanthine guanine phosphoribosyltransferase in activation of the antiviral agent T-705 (favipiravir).

    PubMed

    Naesens, Lieve; Guddat, Luke W; Keough, Dianne T; van Kuilenburg, André B P; Meijer, Judith; Vande Voorde, Johan; Balzarini, Jan

    2013-10-01

    6-Fluoro-3-hydroxy-2-pyrazinecarboxamide (T-705) is a novel antiviral compound with broad activity against influenza virus and diverse RNA viruses. Its active metabolite, T-705-ribose-5'-triphosphate (T-705-RTP), is recognized by influenza virus RNA polymerase as a substrate competing with GTP, giving inhibition of viral RNA synthesis and lethal virus mutagenesis. Which enzymes perform the activation of T-705 is unknown. We here demonstrate that human hypoxanthine guanine phosphoribosyltransferase (HGPRT) converts T-705 into its ribose-5'-monophosphate (RMP) prior to formation of T-705-RTP. The anti-influenza virus activity of T-705 and T-1105 (3-hydroxy-2-pyrazinecarboxamide; the analog lacking the 6-fluoro atom) was lost in HGPRT-deficient Madin-Darby canine kidney cells. This HGPRT dependency was confirmed in human embryonic kidney 293T cells undergoing HGPRT-specific gene knockdown followed by influenza virus ribonucleoprotein reconstitution. Knockdown for adenine phosphoribosyltransferase (APRT) or nicotinamide phosphoribosyltransferase did not change the antiviral activity of T-705 and T-1105. Enzymatic assays showed that T-705 and T-1105 are poor substrates for human HGPRT having Km(app) values of 6.4 and 4.1 mM, respectively. Formation of the RMP metabolites by APRT was negligible, and so was the formation of the ribosylated metabolites by human purine nucleoside phosphorylase. Phosphoribosylation and antiviral activity of the 2-pyrazinecarboxamide derivatives was shown to require the presence of the 3-hydroxyl but not the 6-fluoro substituent. The crystal structure of T-705-RMP in complex with human HGPRT showed how this compound binds in the active site. Since conversion of T-705 by HGPRT appears to be inefficient, T-705-RMP prodrugs may be designed to increase the antiviral potency of this new antiviral agent.

  11. Antiviral Activity of Oroxylin A against Coxsackievirus B3 Alleviates Virus-Induced Acute Pancreatic Damage in Mice

    PubMed Central

    Kang, Ju Won; Hwang, Sam Noh; Rhee, Ki-Jong; Shim, Aeri; Hong, Eun-Hye; Kim, Yeon-Jeong; Jeon, Sang-Min; Chang, Sun-Young; Kim, Dong-Eun; Cho, Sungchan; Ko, Hyun-Jeong

    2016-01-01

    The flavonoids mosloflavone, oroxylin A, and norwogonin, which were purified from Scutellaria baicalensis Georgi, significantly protected Vero cells against Coxsackievirus B3 (CVB3)-induced cell death. To investigate the in vivo antiviral activity of oroxylin A, we intraperitoneally inoculated CVB3 into 4-week-old BALB/c mice. Body weights and blood glucose levels of the mice were decreased after CVB3 infection, and these changes were attenuated by the administration of oroxylin A. Importantly, treatment of mice with oroxylin A reduced viral titers in the pancreas and decreased the serum levels of the inflammatory cytokines including interleukin-6 (IL-6) and tumor necrosis factor (TNF)-α. Additionally, the administration of oroxylin A mitigated the histological pancreatic lesions and apoptotic cell death induced by CVB3 infection and increased the levels of phospho-eIF2α in infected pancreata. The results suggest that oroxylin A may represent a potent antiviral agent against CVB3 infection. PMID:27195463

  12. Evaluation of antiviral activity of aqueous extracts from Achyrocline satureioides against Western equine encephalitis virus.

    PubMed

    Sabini, María Carola; Escobar, Franco Matías; Tonn, Carlos Eugenio; Zanon, Silvia Matilde; Contigiani, Marta Silvia; Sabini, Liliana Inés

    2012-01-01

    Achyrocline satureioides (Asteraceae) is a medicinal plant traditionally used in Argentina for the treatment of intestinal infections and various digestive disorders. Its infusion is widely utilised for respiratory problems and viral infections. The objective of this study was to investigate cytotoxicity, virucidal and antiviral properties of the cold aqueous extract (CAE) and hot aqueous extract (HAE) of this plant against Western equine encephalitis virus (WEEV). Cytotoxicity in Vero cells was evaluated by maximum non-cytotoxic concentration (MNCC), neutral red (NR) uptake and MTT reduction methods. To study the antiviral activity of aqueous extracts, plaque reduction assay was performed after pre-treatment of host cells, adsorption, penetration and post-penetration of the virus. Extracellular virus inactivation was also analysed by the same method. Extracts showed strong inhibitory activity after virus penetration with selective index values of 32 (NR) and 63.3 (MTT) for the CAE, and 16.2 (NR) and 24.3 (MTT) for the HAE. Both extracts exhibited virucidal action with lower efficacy than their antiviral properties. The present results demonstrate that aqueous extracts of A. satureioides are active against WEEV. Further studies are needed in order to identify which compounds could be responsible for this effect, and how they exert antiviral action.

  13. Broad-spectrum antiviral and cytocidal activity of cyclopentenylcytosine, a carbocyclic nucleoside targeted at CTP synthetase.

    PubMed

    De Clercq, E; Murase, J; Marquez, V E

    1991-06-15

    Cyclopentenylcytosine (Ce-Cyd) is a broad-spectrum antiviral agent active against DNA viruses [herpes (cytomegalo), pox (vaccinia)], (+)RNA viruses [picorna (polio, Coxsackie, rhino), toga (Sindbis, Semliki forest), corona], (-)RNA viruses [orthomyxo (influenza), paramyxo (parainfluenza, measles), arena (Junin, Tacaribe), rhabdo (vesicular stomatitis)] and (+/-)RNA viruses (reo). Ce-Cyd is a more potent antiviral agent than its saturated counterpart, cyclopentylcytosine (carbodine, C-Cyd). Ce-Cyd also has potent cytocidal activity against a number of tumor cell lines. The putative target enzyme for both the antiviral and antitumor action of Ce-Cyd is assumed to be the CTP synthetase that converts UTP to CTP. In keeping with this hypothesis was the finding that the antiviral and cytocidal effects of Ce-Cyd are readily reversed by Cyd and, to a lesser extent, Urd, but not by other nucleosides such as dThd or dCyd. In contrast, pyrazofurin and 6-azauridine, two nucleoside analogues that are assumed to interfere with OMP decarboxylase, another enzyme involved in the biosynthesis of pyrimidine ribonucleotides, potentiate the cytocidal activity of Ce-Cyd. Ce-Cyd should be further pursued, as such and in combination with OMP decarboxylase inhibitors, for its therapeutic potential in the treatment of both viral and neoplastic diseases. PMID:1710119

  14. Oleanolic acid and ursolic acid: novel hepatitis C virus antivirals that inhibit NS5B activity.

    PubMed

    Kong, Lingbao; Li, Shanshan; Liao, Qingjiao; Zhang, Yanni; Sun, Ruina; Zhu, Xiangdong; Zhang, Qinghua; Wang, Jun; Wu, Xiaoyu; Fang, Xiaonan; Zhu, Ying

    2013-04-01

    Hepatitis C virus (HCV) infects up to 170 million people worldwide and causes significant morbidity and mortality. Unfortunately, current therapy is only curative in approximately 50% of HCV patients and has adverse side effects, which warrants the need to develop novel and effective antivirals against HCV. We have previously reported that the Chinese herb Fructus Ligustri Lucidi (FLL) directly inhibited HCV NS5B RNA-dependent RNA polymerase (RdRp) activity (Kong et al., 2007). In this study, we found that the FLL aqueous extract strongly suppressed HCV replication. Further high-performance liquid chromatography (HPLC) analysis combined with inhibitory assays indicates that oleanolic acid and ursolic acid are two antiviral components within FLL aqueous extract that significantly suppressed the replication of HCV genotype 1b replicon and HCV genotype 2a JFH1 virus. Moreover, oleanolic acid and ursolic acid exhibited anti-HCV activity at least partly through suppressing HCV NS5B RdRp activity as noncompetitive inhibitors. Therefore, our results for the first time demonstrated that natural products oleanolic acid and ursolic acid could be used as potential HCV antivirals that can be applied to clinic trials either as monotherapy or in combination with other HCV antivirals. PMID:23422646

  15. Ester prodrugs of acyclic nucleoside thiophosphonates compared to phosphonates: synthesis, antiviral activity and decomposition study.

    PubMed

    Roux, Loïc; Priet, Stéphane; Payrot, Nadine; Weck, Clément; Fournier, Maëlenn; Zoulim, Fabien; Balzarini, Jan; Canard, Bruno; Alvarez, Karine

    2013-05-01

    9-[2-(Thiophosphonomethoxy)ethyl]adenine [S-PMEA, 8] and (R)-9-[2-(Thiophosphonomethoxy)propyl]adenine [S-PMPA, 9] are acyclic nucleoside thiophosphonates we described recently that display the same antiviral spectrum (DNA viruses) as approved and potent phosphonates PMEA and (R)-PMPA. Here, we describe the synthesis, antiviral activities in infected cell cultures and decomposition study of bis(pivaloyloxymethoxy)-S-PMEA [Bis-POM-S-PMEA, 13] and bis(isopropyloxymethylcarbonyl)-S-PMPA [Bis-POC-S-PMPA, 14] as orally bioavailable prodrugs of the S-PMEA 8 and S-PMPA 9, in comparison to the equivalent "non-thio" derivatives [Bis-POM-PMEA, 11] and [Bis-POC-PMPA, 12]. Compounds 11, 12, 13 and 14 were evaluated for their in vitro antiviral activity against HIV-1-, HIV-2-, HBV- and a broad panel of DNA viruses, and found to exhibit moderate to potent antiviral activity. In order to determine the decomposition pathway of the prodrugs 11, 12, 13 and 14 into parent compounds PMEA, PMPA, 8 and 9, kinetic data and decomposition pathways in several media are presented. As expected, bis-POM-S-PMEA 13 and bis-POC-S-PMPA 14 behaved as prodrugs of S-PMEA 8 and S-PMPA 9. However, thiophosphonates 8 and 9 were released very smoothly in cell extracts, in contrast to the release of PMEA and PMPA from "non-thio" prodrugs 11 and 12. PMID:23603046

  16. Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus.

    PubMed

    Johari, Jefree; Kianmehr, Aynaz; Mustafa, Mohd Rais; Abubakar, Sazaly; Zandi, Keivan

    2012-12-07

    Japanese encephalitis (JE), a mosquito-borne viral disease, is endemic to the entire east and southeast Asia, and some other parts of the world. Currently, there is no effective therapeutic available for JE; therefore, finding the effective antiviral agent against JEV replication is crucial. In the present study, the in vitro antiviral activity of baicalein and quercetin, two purportedly antiviral bioflavonoids, was evaluated against Japanese encephalitis virus (JEV) replication in Vero cells. Anti-JEV activities of these compounds were examined on different stages of JEV replication cycle. The effects of the compounds on virus replication were determined by foci forming unit reduction assay (FFURA) and quantitative RT-PCR. Baicalein showed potent antiviral activity with IC(50) = 14.28 µg/mL when it was introduced to the Vero cells after adsorption of JEV. Quercetin exhibited weak anti-JEV effects with IC(50) = 212.1 µg/mL when the JEV infected cells were treated with the compound after virus adsorption. However, baicalein exhibited significant effect against JEV adsorption with IC(50) = 7.27 µg/mL while quercetin did not show any anti-adsorption activity. Baicalein also exhibited direct extracellular virucidal activity on JEV with IC(50) = 3.44 µg/mL. However, results of quantitative RT-PCR experiments confirmed the findings from FFURA. This study demonstrated that baicalein should be considered as an appropriate candidate for further investigations, such as the study of molecular and cellular mechanism(s) of action and in vivo evaluation for the development of an effective antiviral compound against Japanese encephalitis virus.

  17. Antiviral Activity of Baicalein and Quercetin against the Japanese Encephalitis Virus

    PubMed Central

    Johari, Jefree; Kianmehr, Aynaz; Mustafa, Mohd Rais; Abubakar, Sazaly; Zandi, Keivan

    2012-01-01

    Japanese encephalitis (JE), a mosquito-borne viral disease, is endemic to the entire east and southeast Asia, and some other parts of the world. Currently, there is no effective therapeutic available for JE; therefore, finding the effective antiviral agent against JEV replication is crucial. In the present study, the in vitro antiviral activity of baicalein and quercetin, two purportedly antiviral bioflavonoids, was evaluated against Japanese encephalitis virus (JEV) replication in Vero cells. Anti-JEV activities of these compounds were examined on different stages of JEV replication cycle. The effects of the compounds on virus replication were determined by foci forming unit reduction assay (FFURA) and quantitative RT-PCR. Baicalein showed potent antiviral activity with IC50 = 14.28 μg/mL when it was introduced to the Vero cells after adsorption of JEV. Quercetin exhibited weak anti-JEV effects with IC50 = 212.1 μg/mL when the JEV infected cells were treated with the compound after virus adsorption. However, baicalein exhibited significant effect against JEV adsorption with IC50 = 7.27 μg/mL while quercetin did not show any anti-adsorption activity. Baicalein also exhibited direct extracellular virucidal activity on JEV with IC50 = 3.44 μg/mL. However, results of quantitative RT-PCR experiments confirmed the findings from FFURA. This study demonstrated that baicalein should be considered as an appropriate candidate for further investigations, such as the study of molecular and cellular mechanism(s) of action and in vivo evaluation for the development of an effective antiviral compound against Japanese encephalitis virus. PMID:23222683

  18. Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models.

    PubMed

    Barton, Christopher; Kouokam, J Calvin; Lasnik, Amanda B; Foreman, Oded; Cambon, Alexander; Brock, Guy; Montefiori, David C; Vojdani, Fakhrieh; McCormick, Alison A; O'Keefe, Barry R; Palmer, Kenneth E

    2014-01-01

    Griffithsin (GRFT) is a red-alga-derived lectin that binds the terminal mannose residues of N-linked glycans found on the surface of human immunodeficiency virus type 1 (HIV-1), HIV-2, and other enveloped viruses, including hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus (SARS-CoV), and Ebola virus. GRFT displays no human T-cell mitogenic activity and does not induce production of proinflammatory cytokines in treated human cell lines. However, despite the growing evidence showing the broad-spectrum nanomolar or better antiviral activity of GRFT, no study has reported a comprehensive assessment of GRFT safety as a potential systemic antiviral treatment. The results presented in this work show that minimal toxicity was induced by a range of single and repeated daily subcutaneous doses of GRFT in two rodent species, although we noted treatment-associated increases in spleen and liver mass suggestive of an antidrug immune response. The drug is systemically distributed, accumulating to high levels in the serum and plasma after subcutaneous delivery. Further, we showed that serum from GRFT-treated animals retained antiviral activity against HIV-1-enveloped pseudoviruses in a cell-based neutralization assay. Overall, our data presented here show that GRFT accumulates to relevant therapeutic concentrations which are tolerated with minimal toxicity. These studies support further development of GRFT as a systemic antiviral therapeutic agent against enveloped viruses, although deimmunizing the molecule may be necessary if it is to be used in long-term treatment of chronic viral infections. PMID:24145548

  19. RNA interference screening of interferon-stimulated genes with antiviral activities against classical swine fever virus using a reporter virus.

    PubMed

    Wang, Xiao; Li, Yongfeng; Li, Lian-Feng; Shen, Liang; Zhang, Lingkai; Yu, Jiahui; Luo, Yuzi; Sun, Yuan; Li, Su; Qiu, Hua-Ji

    2016-04-01

    Classical swine fever (CSF) caused by classical swine fever virus (CSFV) is a highly contagious and often fatal disease of pigs, which leads to significant economic losses in many countries. Viral infection can induce the production of interferons (IFNs), giving rise to the transcription of hundreds of IFN-stimulated genes (ISGs) to exert antiviral effects. Although numerous ISGs have been identified to possess antiviral activities against different viruses, rare anti-CSFV ISGs have been reported to date. In this study, to screen anti-CSFV ISGs, twenty-one ISGs reported previously were individually knocked down using small interfering RNAs (siRNAs) followed by infection with a reporter CSFV expressing Renilla luciferase (Rluc). As a result, four novel anti-CSFV ISGs were identified, including natural-resistance-associated macrophage protein 1 (NRAMP1), cytosolic 5'-nucleotidase III A (NT5C3A), chemokine C-X-C motif ligand 10 (CXCL10), and 2'-5'-oligoadenylate synthetase 1 (OAS1), which were further verified to exhibit antiviral activities against wild-type CSFV. We conclude that the reporter virus is a useful tool for efficient screening anti-CSFV ISGs.

  20. RNA interference screening of interferon-stimulated genes with antiviral activities against classical swine fever virus using a reporter virus.

    PubMed

    Wang, Xiao; Li, Yongfeng; Li, Lian-Feng; Shen, Liang; Zhang, Lingkai; Yu, Jiahui; Luo, Yuzi; Sun, Yuan; Li, Su; Qiu, Hua-Ji

    2016-04-01

    Classical swine fever (CSF) caused by classical swine fever virus (CSFV) is a highly contagious and often fatal disease of pigs, which leads to significant economic losses in many countries. Viral infection can induce the production of interferons (IFNs), giving rise to the transcription of hundreds of IFN-stimulated genes (ISGs) to exert antiviral effects. Although numerous ISGs have been identified to possess antiviral activities against different viruses, rare anti-CSFV ISGs have been reported to date. In this study, to screen anti-CSFV ISGs, twenty-one ISGs reported previously were individually knocked down using small interfering RNAs (siRNAs) followed by infection with a reporter CSFV expressing Renilla luciferase (Rluc). As a result, four novel anti-CSFV ISGs were identified, including natural-resistance-associated macrophage protein 1 (NRAMP1), cytosolic 5'-nucleotidase III A (NT5C3A), chemokine C-X-C motif ligand 10 (CXCL10), and 2'-5'-oligoadenylate synthetase 1 (OAS1), which were further verified to exhibit antiviral activities against wild-type CSFV. We conclude that the reporter virus is a useful tool for efficient screening anti-CSFV ISGs. PMID:26868874

  1. A 2,5-Dihydroxybenzoic Acid-Gelatin Conjugate: The Synthesis, Antiviral Activity and Mechanism of Antiviral Action Against Two Alphaherpesviruses.

    PubMed

    Lisov, Alexander; Vrublevskaya, Veronika; Lisova, Zoy; Leontievsky, Alexey; Morenkov, Oleg

    2015-10-15

    Various natural and synthetic polyanionic polymers with different chemical structures are known to exhibit potent antiviral activity in vitro toward a variety of enveloped viruses and may be considered as promising therapeutic agents. A water-soluble conjugate of 2,5-dihydroxybezoic acid (2,5-DHBA) with gelatin was synthesized by laccase-catalyzed oxidation of 2,5-DHBA in the presence of gelatin, and its antiviral activity against pseudorabies virus (PRV) and bovine herpesvirus type 1 (BoHV-1), two members of the Alphaherpesvirinae subfamily, was studied. The conjugate produced no direct cytotoxic effect on cells, and did not inhibit cell growth at concentrations up to 1000 µg/mL. It exhibited potent antiviral activity against PRV (IC50, 1.5-15 µg/mL for different virus strains) and BoHV-1 (IC50, 0.5-0.7 µg/mL). When present during virus adsorption, the conjugate strongly inhibited the attachment of PRV and BoHV-1 to cells. The 2,5-DHBA-gelatin conjugate had no direct virucidal effect on the viruses and did not influence their penetration into cells, cell-to-cell spread, production of infectious virus particles in cells, and expression of PRV glycoproteins E and B. The results indicated that the 2,5-DHBA-gelatin conjugate strongly inhibits the adsorption of alphaherpesviruses to cells and can be a promising synthetic polymer for the development of antiviral formulations against alphaherpesvirus infections.

  2. Efficient influenza B virus propagation due to deficient interferon-induced antiviral activity in MDCK cells.

    PubMed

    Frensing, Timo; Seitz, Claudius; Heynisch, Bjoern; Patzina, Corinna; Kochs, Georg; Reichl, Udo

    2011-09-22

    Influenza B virus infections are mainly restricted to humans, which is partially caused by the inability of influenza B virus NS1 protein to counteract the innate immune response of other species. However, for cell culture-based influenza vaccine production non-human cells, such as Madin-Darby canine kidney (MDCK) cells, are commonly used. Therefore, the impact of cellular pathogen defence mechanisms on influenza B virus propagation in MDCK cells was analysed in this study. Activation of the cellular antiviral defence by interferon stimulation slowed down influenza B virus replication at early time points but after 48h the same virus titres were reached in stimulated and control cells. Furthermore, suppression of the antiviral host defence by transient expression of a viral antagonist, the rabies virus phosphoprotein, could not increase influenza B virus replication. Finally, canine Myxovirus resistance (Mx) proteins showed no antiviral activity in an influenza B virus-specific minireplicon assay in contrast to the murine Mx1 protein. Taken together, these results indicate that an insufficient antiviral defence in MDCK cells promotes efficient influenza B virus replication favouring the use of MDCK cells in influenza vaccine production.

  3. Epimedium koreanum Nakai displays broad spectrum of antiviral activity in vitro and in vivo by inducing cellular antiviral state.

    PubMed

    Cho, Won-Kyung; Weeratunga, Prasanna; Lee, Byeong-Hoon; Park, Jun-Seol; Kim, Chul-Joong; Ma, Jin Yeul; Lee, Jong-Soo

    2015-01-20

    Epimedium koreanum Nakai has been extensively used in traditional Korean and Chinese medicine to treat a variety of diseases. Despite the plant's known immune modulatory potential and chemical make-up, scientific information on its antiviral properties and mode of action have not been completely investigated. In this study, the broad antiviral spectrum and mode of action of an aqueous extract from Epimedium koreanum Nakai was evaluated in vitro, and moreover, the protective effect against divergent influenza A subtypes was determined in BALB/c mice. An effective dose of Epimedium koreanum Nakai markedly reduced the replication of Influenza A Virus (PR8), Vesicular Stomatitis Virus (VSV), Herpes Simplex Virus (HSV) and Newcastle Disease Virus (NDV) in RAW264.7 and HEK293T cells. Mechanically, we found that an aqueous extract from Epimedium koreanum Nakai induced the secretion of type I IFN and pro-inflammatory cytokines and the subsequent stimulation of the antiviral state in cells. Among various components present in the extract, quercetin was confirmed to have striking antiviral properties. The oral administration of Epimedium koreanum Nakai exhibited preventive effects on BALB/c mice against lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3 and H9N2). Therefore, an extract of Epimedium koreanum Nakai and its components play roles as immunomodulators in the innate immune response, and may be potential candidates for prophylactic or therapeutic treatments against diverse viruses in animal and humans.

  4. Epimedium koreanum Nakai Displays Broad Spectrum of Antiviral Activity in Vitro and in Vivo by Inducing Cellular Antiviral State

    PubMed Central

    Cho, Won-Kyung; Weeratunga, Prasanna; Lee, Byeong-Hoon; Park, Jun-Seol; Kim, Chul-Joong; Ma, Jin Yeul; Lee, Jong-Soo

    2015-01-01

    Epimedium koreanum Nakai has been extensively used in traditional Korean and Chinese medicine to treat a variety of diseases. Despite the plant’s known immune modulatory potential and chemical make-up, scientific information on its antiviral properties and mode of action have not been completely investigated. In this study, the broad antiviral spectrum and mode of action of an aqueous extract from Epimedium koreanum Nakai was evaluated in vitro, and moreover, the protective effect against divergent influenza A subtypes was determined in BALB/c mice. An effective dose of Epimedium koreanum Nakaimarkedly reduced the replication of Influenza A Virus (PR8), Vesicular Stomatitis Virus (VSV), Herpes Simplex Virus (HSV) and Newcastle Disease Virus (NDV) in RAW264.7 and HEK293T cells. Mechanically, we found that an aqueous extract from Epimedium koreanum Nakai induced the secretion of type I IFN and pro-inflammatory cytokines and the subsequent stimulation of the antiviral state in cells. Among various components present in the extract, quercetin was confirmed to have striking antiviral properties. The oral administration of Epimedium koreanum Nakai exhibited preventive effects on BALB/c mice against lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3 and H9N2). Therefore, an extract of Epimedium koreanum Nakai and its components play roles as immunomodulators in the innate immune response, and may be potential candidates for prophylactic or therapeutic treatments against diverse viruses in animal and humans. PMID:25609307

  5. Antimicrobial, antiviral and antioxidant activities of "água-mel" from Portugal.

    PubMed

    Miguel, Maria G; Faleiro, Leonor; Antunes, Maria D; Aazza, Smail; Duarte, Joana; Silvério, Ana R

    2013-06-01

    "Água-mel" is a honey-based product produced in Portugal for ancient times. Several attributes have been reported to "água-mel" particularly in the alleviation of simple symptoms of upper respiratory tract. Samples of "água-mel" from diverse beekeepers from different regions of Portugal were studied in what concerns antimicrobial, antioxidant and antiviral properties. The amounts of phenol and brown pigment were also evaluated and correlated with the antioxidant activities. A great variability on the levels of these compounds was found among samples which were responsible for the variability detected also on the antioxidant activities, independent on the method used. Generally, antioxidant activity correlated better with brown pigments' amount than with phenols' content. The antimicrobial activity found for "água-mel" samples confirm the virtues reported by popular findings. In addition, this work also reveals the antiviral properties of "água-mel" evidenced by a decrease on the infectivity of the Qβ bacteriophage.

  6. Infection of goats with goatpox virus triggers host antiviral defense through activation of innate immune signaling.

    PubMed

    Zeng, Xiancheng; Wang, Song; Chi, Xiaojuan; Chen, Shi-long; Huang, Shile; Lin, Qunqun; Xie, Baogui; Chen, Ji-Long

    2016-02-01

    Goatpox, caused by goatpox virus (GTPV), is one of the most serious infectious diseases associated with high morbidity and mortality in goats. However, little is known about involvement of host innate immunity during the GTPV infection. For this, goats were experimentally infected with GTPV. The results showed that GTPV infection significantly induced mRNA expression of type I interferon (IFN)-α and IFN-β in peripheral blood lymphocytes, spleen and lung. In addition, GTPV infection enhanced expression of several inflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-18; and tumor necrosis factor-α (TNF-α). Strikingly, infection with GTPV activated signal transducers and activators of transcription 3 (STAT3), a critical cytokine signaling molecule. Interestingly, the virus infection induced expression of suppressor of cytokine signaling (SOCS)-1. Importantly, the infection resulted in an increased expression of some critical interferon-stimulated genes, such as interferon-induced transmembrane protein (IFITM) 1, IFITM3, interferon stimulated gene (ISG) 15 and ISG20. Furthermore, we found that infection with GTPV up-regulated expression of Toll-like receptor (TLR) 2 and TLR9. These results revealed that GTPV infection activated host innate immune signaling and thereby triggered antiviral innate immunity. The findings provide novel insights into complex mechanisms underlying GTPV-host interaction and pathogenesis of GTPV. PMID:26850535

  7. Antiviral activity of Plantago major extracts and related compounds in vitro.

    PubMed

    Chiang, L C; Chiang, W; Chang, M Y; Ng, L T; Lin, C C

    2002-07-01

    Plantago major L., a popular traditional Chinese medicine, has long been used for treating various diseases varying from cold to viral hepatitis. The aim of present study was to examine the antiviral activity of aqueous extract and pure compounds of P. major. Studies were conducted on a series of viruses, namely herpesviruses (HSV-1, HSV-2) and adenoviruses (ADV-3, ADV-8, ADV-11). The antiviral activity of EC50 was defined as the concentration achieved 50% cyto-protection against virus infection and the selectivity index (SI) was determined by the ratio of CC50 (concentration of 50% cellular cytotoxicity) to EC50. Results showed that aqueous extract of P. major possessed only a slight anti-herpes virus activity. In contrast, certain pure compounds belonging to the five different classes of chemicals found in extracts of this plant exhibited potent antiviral activity. Among them, caffeic acid exhibited the strongest activity against HSV-1 (EC50=15.3 microg/ml, SI=671), HSV-2 (EC50=87.3 microg/ml, SI=118) and ADV-3 (EC50=14.2 microg/ml, SI=727), whereas chlorogenic acid possessed the strongest anti-ADV-11 (EC50=13.3 microg/ml, SI=301) activity. The present study concludes that pure compounds of P. major, which possess antiviral activities are mainly derived from the phenolic compounds, especially caffeic acid. Its mode of action against HSV-2 and ADV-3 was found to be at multiplication stages (postinfection of HSV-1: 0-12 h; ADV-3: 0-2 h), and with SI values greater than 400, suggesting the potential use of this compound for treatment of the infection by these two viruses. PMID:12076751

  8. Antiviral activity of Plantago major extracts and related compounds in vitro.

    PubMed

    Chiang, L C; Chiang, W; Chang, M Y; Ng, L T; Lin, C C

    2002-07-01

    Plantago major L., a popular traditional Chinese medicine, has long been used for treating various diseases varying from cold to viral hepatitis. The aim of present study was to examine the antiviral activity of aqueous extract and pure compounds of P. major. Studies were conducted on a series of viruses, namely herpesviruses (HSV-1, HSV-2) and adenoviruses (ADV-3, ADV-8, ADV-11). The antiviral activity of EC50 was defined as the concentration achieved 50% cyto-protection against virus infection and the selectivity index (SI) was determined by the ratio of CC50 (concentration of 50% cellular cytotoxicity) to EC50. Results showed that aqueous extract of P. major possessed only a slight anti-herpes virus activity. In contrast, certain pure compounds belonging to the five different classes of chemicals found in extracts of this plant exhibited potent antiviral activity. Among them, caffeic acid exhibited the strongest activity against HSV-1 (EC50=15.3 microg/ml, SI=671), HSV-2 (EC50=87.3 microg/ml, SI=118) and ADV-3 (EC50=14.2 microg/ml, SI=727), whereas chlorogenic acid possessed the strongest anti-ADV-11 (EC50=13.3 microg/ml, SI=301) activity. The present study concludes that pure compounds of P. major, which possess antiviral activities are mainly derived from the phenolic compounds, especially caffeic acid. Its mode of action against HSV-2 and ADV-3 was found to be at multiplication stages (postinfection of HSV-1: 0-12 h; ADV-3: 0-2 h), and with SI values greater than 400, suggesting the potential use of this compound for treatment of the infection by these two viruses.

  9. Phenolic Compounds from the Flowers of Bombax malabaricum and Their Antioxidant and Antiviral Activities.

    PubMed

    Zhang, Yu-Bo; Wu, Peng; Zhang, Xiao-Li; Xia, Chao; Li, Guo-Qiang; Ye, Wen-Cai; Wang, Guo-Cai; Li, Yao-Lan

    2015-11-05

    Three new phenolic compounds 1-3 and twenty known ones 4-23 were isolated from the flowers of Bombax malabaricum. Their chemical structures were elucidated by spectroscopic analyses (IR, ESI-MS, HR-ESI-MS, 1D- and 2D-NMR) and chemical reactions. The antioxidant capacities of the isolated compounds were tested using FRAP and DPPH radical-scavenging assays, and compounds 4, 6, 8, 12, as well as the new compound 2, exhibited stronger antioxidant activities than ascorbic acid. Furthermore, all of compounds were tested for their antiviral activities against RSV by the CPE reduction assay and plaque reduction assay. Compounds 4, 10, 12 possess in vitro antiviral activities, and compound 10 exhibits potent anti-RSV effects, comparable to the positive control ribavirin.

  10. Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture.

    PubMed

    van der Meer, F J U M; de Haan, C A M; Schuurman, N M P; Haijema, B J; Peumans, W J; Van Damme, E J M; Delputte, P L; Balzarini, J; Egberink, H F

    2007-10-01

    Coronaviruses are important human and animal pathogens, the relevance of which increased due to the emergence of new human coronaviruses like SARS-CoV, HKU1 and NL63. Together with toroviruses, arteriviruses, and roniviruses the coronaviruses belong to the order Nidovirales. So far antivirals are hardly available to combat infections with viruses of this order. Therefore, various antiviral strategies to counter nidoviral infections are under evaluation. Lectins, which bind to N-linked oligosaccharide elements of enveloped viruses, can be considered as a conceptionally new class of virus inhibitors. These agents were recently evaluated for their antiviral activity towards a variety of enveloped viruses and were shown in most cases to inhibit virus infection at low concentrations. However, limited knowledge is available for their efficacy towards nidoviruses. In this article the application of the plant lectins Hippeastrum hybrid agglutinin (HHA), Galanthus nivalis agglutinin (GNA), Cymbidium sp. agglutinin (CA) and Urtica dioica agglutinin (UDA) as well as non-plant derived pradimicin-A (PRM-A) and cyanovirin-N (CV-N) as potential antiviral agents was evaluated. Three antiviral tests were compared based on different evaluation principles: cell viability (MTT-based colorimetric assay), number of infected cells (immunoperoxidase assay) and amount of viral protein expression (luciferase-based assay). The presence of carbohydrate-binding agents strongly inhibited coronaviruses (transmissible gastroenteritis virus, infectious bronchitis virus, feline coronaviruses serotypes I and II, mouse hepatitis virus), arteriviruses (equine arteritis virus and porcine respiratory and reproductive syndrome virus) and torovirus (equine Berne virus). Remarkably, serotype II feline coronaviruses and arteriviruses were not inhibited by PRM-A, in contrast to the other viruses tested.

  11. Activation of the Antiviral Kinase PKR and Viral Countermeasures

    PubMed Central

    Dauber, Bianca; Wolff, Thorsten

    2009-01-01

    The interferon-induced double-stranded (ds)RNA-dependent protein kinase (PKR) limits viral replication by an eIF2α-mediated block of translation. Although many negative-strand RNA viruses activate PKR, the responsible RNAs have long remained elusive, as dsRNA, the canonical activator of PKR, has not been detected in cells infected with such viruses. In this review we focus on the activating RNA molecules of different virus families, in particular the negative-strand RNA viruses. We discuss the recently identified non-canonical activators 5′-triphosphate RNA and the vRNP of influenza virus and give an update on strategies of selected RNA and DNA viruses to prevent activation of PKR. PMID:21994559

  12. In vitro antiviral activity of mycophenolic acid and its reversal by guanine-type compounds.

    PubMed

    Cline, J C; Nelson, J D; Gerzon, K; Williams, R H; Delong, D C

    1969-07-01

    With the agar diffusion test and BS-C-1 cells, mycophenolic acid was found to give a straight-line dose-response activity in inhibiting the cytopathic effects of vaccinia, herpes simplex, and measles viruses. Plaque tests have shown 100% reduction of virus plaques by mycophenolic acid over drug ranges of 10 to 50 mug/ml and virus input as high as 6,000 plaque-forming units (PFU) per flask. Back titration studies with measles virus inhibited by mycophenolic acid have indicated that extracellular virus titers were reduced by approximately 3 logs(10) and total virus was reduced by 1 log(10). The agar diffusion test system lends itself readily to drug reversal studies. Mycophenolic acid incorporated into agar at 10 mug/ml gave 100% protection to virus-infected cells. Filter paper discs impregnated with selected chemical agents at concentrations of 1,000 mug/ml (20 mug per filter paper disc) were placed on the agar surface. Reversal of the antiviral activity of mycophenolic acid was indicated by virus breakthrough in those cells in close proximity to the filter paper disc. Chemicals showing the best reversal of the antiviral activity of mycophenolic acid were guanine, guanosine, guanylic acid, deoxyguanylic acid, and 2,6-diaminopurine. The reversal of antiviral activity was confirmed by titrations of virus produced with various amounts of both mycophenolic acid and guanine present and by isotope tracer methods with uptakes of labeled uridine, guanine, leucine, and thymidine in treated and nontreated, infected and noninfected cells as parameters. All antiviral effects of mycophenolic acid at 10 mug/ml could be reversed to the range shown by untreated controls by the addition of 10 mug/ml of those chemicals exhibiting reversal activity.

  13. Antiviral Activity of Hatay Propolis Against Replication of Herpes Simplex Virus Type 1 and Type 2

    PubMed Central

    Yildirim, Ayse; Duran, Gulay Gulbol; Duran, Nizami; Jenedi, Kemal; Bolgul, Behiye Sezgin; Miraloglu, Meral; Muz, Mustafa

    2016-01-01

    Background Propolis is a bee product widely used in folk medicine and possessing many pharmacological properties. In this study we aimed to investigate: i) the antiviral activities of Hatay propolis samples against HSV-1 and HSV-2 in HEp-2 cell line, and ii) the presence of the synergistic effects of propolis with acyclovir against these viruses. Material/Methods All experiments were carried out in HEp-2 cell cultures. Proliferation assays were performed in 24-well flat bottom microplates. We inoculated 1×105 cells per ml and RPMI 1640 medium with 10% fetal calf serum into each well. Studies to determine cytotoxic effect were performed. To investigate the presence of antiviral activity of propolis samples, different concentrations of propolis (3200, 1600, 800, 400, 200, 100, 75, 50, and 25 μg/mL) were added into the culture medium. The amplifications of HSV-1 and HSV-2 DNA were performed by real-time PCR method. Acyclovir (Sigma, USA) was chosen as a positive control. Cell morphology was evaluated by scanning electron microscopy (SEM). Results The replication of HSV-1 and HSV-2 was significantly suppressed in the presence of 25, 50, and 100 μg/mL of Hatay propolis. We found that propolis began to inhibit HSV-1 replication after 24 h of incubation and propolis activity against HSV-2 was found to start at 48 h following incubation. The activity of propolis against both HSV-1 and HSV-2 was confirmed by a significant decrease in the number of viral copies. Conclusions We determined that Hatay propolis samples have important antiviral effects compared with acyclovir. In particular, the synergy produced by antiviral activity of propolis and acyclovir combined had a stronger effect against HSV-1 and HSV-2 than acyclovir alone. PMID:26856414

  14. Preventing severe respiratory syncytial virus disease: passive, active immunisation and new antivirals.

    PubMed

    Murray, Joanna; Saxena, Sonia; Sharland, Mike

    2014-05-01

    In most high-income countries palivizumab prophylaxis is considered safe, efficacious and cost-effective for preventing respiratory syncytial virus (RSV) hospital admissions among specific subgroups of infants born preterm, with chronic lung disease or with congenital heart disease. Virtually all babies acquire RSV during infancy and previously healthy babies are not eligible to receive palivizumab. Emerging evidence suggests some benefit of palivizumab use in reducing recurrent wheeze among infants born preterm. Better longitudinal studies are needed to examine its clinical and cost-effectiveness on recurrent and chronic respiratory illness and associated healthcare burden on resources in the community and hospitals. Since 99% of child deaths attributed to RSV occur in resource poor countries where expensive prophylaxis is not available or affordable, palivizumab has limited potential to impact on the current global burden of RSV lower respiratory tract infection (LRTI). A range of candidate vaccines for active immunisation against RSV are now in clinical trials. Two promising new antivirals are also currently in phase I/II trials to test their effectiveness in preventing severe RSV LRTI. These agents may be effective in preventing severe disease and phase III studies are in development. In the absence of effective active immunisation against RSV infection, population level approaches to prevent severe RSV LRTI should continue to focus on reducing prenatal and environmental risk factors including prematurity, smoking and improving hygiene practices. PMID:24464977

  15. Antiviral activity of a Bacillus sp. P34 peptide against pathogenic viruses of domestic animals

    PubMed Central

    Silva, Débora Scopel e; de Castro, Clarissa Caetano; Silva, Fábio da Silva e; Sant’anna, Voltaire; Vargas, Gilberto D’Avila; de Lima, Marcelo; Fischer, Geferson; Brandelli, Adriano; da Motta, Amanda de Souza; Hübner, Silvia de Oliveira

    2014-01-01

    P34 is an antimicrobial peptide produced by a Bacillus sp. strain isolated from the intestinal contents of a fish in the Brazilian Amazon basin with reported antibacterial activity. The aim of this work was to evaluate the peptide P34 for its in vitro antiviral properties against canine adenovirus type 2 (CAV-2), canine coronavirus (CCoV), canine distemper virus (CDV), canine parvovirus type 2 (CPV-2), equine arteritis virus (EAV), equine influenza virus (EIV), feline calicivirus (FCV) and feline herpesvirus type 1 (FHV-1). The results showed that the peptide P34 exhibited antiviral activity against EAV and FHV-1. The peptide P34 inhibited the replication of EAV by 99.9% and FHV-1 by 94.4%. Virucidal activity was detected only against EAV. When P34 and EAV were incubated for 6 h at 37 °C the viral titer reduced from 104.5 TCID50 to 102.75 TCID50, showing a percent of inhibition of 98.6%. In conclusion, our results demonstrated that P34 inhibited EAV and FHV-1 replication in infected cell cultures and it showed virucidal activity against EAV. Since there is documented resistance to the current drugs used against herpesviruses and there is no treatment for equine viral arteritis, it is advisable to search for new antiviral compounds to overcome these infections. PMID:25477947

  16. Galactan sulfate of Grateloupia indica: Isolation, structural features and antiviral activity.

    PubMed

    Chattopadhyay, Kausik; Mateu, Cecilia G; Mandal, Pinaki; Pujol, Carlos A; Damonte, Elsa B; Ray, Bimalendu

    2007-05-01

    Natural compounds offer interesting pharmacological perspectives for antiviral drug development with regard to broad-spectrum antiviral properties and novel modes of action. In this study, we have analyzed polysaccharide fractions isolated from Grateloupia indica. The crude water extract (GiWE) as well as one fraction (F3) obtained by anion exchange chromatography had potent anti-HSV activity. Their inhibitory concentration 50% (IC50) values (0.12-1.06 microg/ml) were much lower than cytotoxic concentration 50% values (>850 microg/ml). These fractions, which were effective antiviral inhibitors if added only during the adsorption period, had very low anticoagulant activity. Furthermore, they had no direct inactivating effect on virions in a virucidal assay. Chemical, chromatographic and spectroscopic methods showed that the active polysaccharide, which has an apparent molecular mass of 60 kDa and negative specific rotation [alpha]D(32) -16 degrees (c 0.2, H2O), contains alpha-(1-->4)- and alpha-(1-->3)-linked galactopyranose residues. Sulfate groups, if present, are located mostly at C-2/6 of (1-->4)- and C-4/6 of (1-->3)-linked galactopyranosyl units, and are essential for the anti herpetic activity of this polymer. PMID:17451760

  17. Subcellular localization and antiviral activity of carminic acid/poly r(A-U) combinations.

    PubMed

    Krabill, K; Jamison, J M; Gilloteaux, J; Summers, J L

    1993-10-01

    Carminic acid (CAR) enhances the antiviral activity of poly r(A-U) twelve-fold without increasing interferon induction, inactivating the vesicular stomatitis virus or inducing host cell cytotoxicity. Phase contrast photomicrographs of human foreskin fibroblasts (HSF) incubated with CAR alone, poly r(A-U) alone or with a CAR/poly r(A-U) combination illustrate that the CAR/poly r(A-U) combinations display altered subcellular distribution with the CAR being localized in the nucleoli and chromatin. Phase contrast and fluorescence photomicrographs of adriamycin (ADR)-treated and ADR/poly r(A-U)-treated HSF cells corroborate these findings. These results suggest that modulation of one or more nucleolar processes may be responsible for the enhanced antiviral activity. PMID:8287022

  18. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3

    PubMed Central

    Gaikwad, Swapnil; Ingle, Avinash; Gade, Aniket; Rai, Mahendra; Falanga, Annarita; Incoronato, Novella; Russo, Luigi; Galdiero, Stefania; Galdiero, Massimilano

    2013-01-01

    The interaction between silver nanoparticles and viruses is attracting great interest due to the potential antiviral activity of these particles, and is the subject of much research effort in the treatment of infectious diseases. In this work, we demonstrate that silver nanoparticles undergo a size-dependent interaction with herpes simplex virus types 1 and 2 and with human parainfluenza virus type 3. We show that production of silver nanoparticles from different fungi is feasible, and their antiviral activity is dependent on the production system used. Silver nanoparticles are capable of reducing viral infectivity, probably by blocking interaction of the virus with the cell, which might depend on the size and zeta potential of the silver nanoparticles. Smaller-sized nanoparticles were able to inhibit the infectivity of the viruses analyzed. PMID:24235828

  19. Discovery of Structurally Diverse Small-Molecule Compounds with Broad Antiviral Activity against Enteroviruses

    PubMed Central

    Zuo, Jun; Kye, Steve; Quinn, Kevin K.; Cooper, Paige; Damoiseaux, Robert

    2015-01-01

    Antiviral drugs do not currently exist for the treatment of enterovirus infections, which are often severe and potentially life-threatening. We conducted high-throughput molecular screening and identified a structurally diverse set of compounds that inhibit the replication of coxsackievirus B3, a commonly encountered enterovirus. These compounds did not interfere with the function of the viral internal ribosome entry site or with the activity of the viral proteases, but they did drastically reduce the synthesis of viral RNA and viral proteins in infected cells. Sequence analysis of compound-resistant mutants suggests that the viral 2C protein is targeted by most of these compounds. These compounds demonstrated antiviral activity against a panel of the most commonly encountered enteroviruses and thus represent potential leads for the development of broad-spectrum anti-enteroviral drugs. PMID:26711750

  20. Search for antiviral activity of certain medicinal plants from Córdoba, Argentina.

    PubMed

    Zanon, S M; Ceriatti, F S; Rovera, M; Sabini, L J; Ramos, B A

    1999-01-01

    The antiviral activity of alcoholic extracts of several species belonging to the Asteraceae, Labiatae, Plantaginaceae, Schizaceae, Umbelliferae, Usneaceae and Verbenaceae families has been studied. The tests were carried out in Vero celís-pseudorabies virus strain RC/79 (herpes suis virus) system. Eight plant extracts (Achyrocline satureioides, Ambrossia tenuifolia, Baccharis articulata, Eupatorium buniifolium, Mynthostachys verticillata, Plantago brasiliensis, Plantago mayor L and Verbascum thapsus) were able to inhibit at least 2 log, the viral infectivity.

  1. Dufulin Activates HrBP1 to Produce Antiviral Responses in Tobacco

    PubMed Central

    Chen, Zhuo; Zeng, Mengjiao; Song, Baoan; Hou, Chengrui; Hu, Deyu; Li, Xiangyang; Wang, Zhenchao; Fan, Huitao; Bi, Liang; Liu, Jiaju; Yu, Dandan; Jin, Linhong; Yang, Song

    2012-01-01

    Background Dufulin is a new antiviral agent that is highly effective against plant viruses and acts by activating systemic acquired resistance (SAR) in plants. In recent years, it has been used widely to prevent and control tobacco and rice viral diseases in China. However, its targets and mechanism of action are still poorly understood. Methodology/Principal Findings Here, differential in-gel electrophoresis (DIGE) and classical two-dimensional electrophoresis (2-DE) techniques were combined with mass spectrometry (MS) to identify the target of Dufulin. More than 40 proteins were found to be differentially expressed (≥1.5 fold or ≤1.5 fold) upon Dufulin treatment in Nicotiana tabacum K326. Based on annotations in the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, these proteins were found to be related to disease resistance. Directed acyclic graph (DAG) analysis of the various pathways demonstrated harpin binding protein-1 (HrBP1) as the target of action of Dufulin. Additionally, western blotting, semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), and real time PCR analyses were also conducted to identify the specific mechanism of action of Dufulin. Our results show that activation of HrBP1 triggers the salicylic acid (SA) signaling pathway and thereby produces antiviral responses in the plant host. A protective assay based on lesion counting further confirmed the antiviral activity of Dufulin. Conclusion This study identified HrBP1 as a target protein of Dufulin and that Dufulin can activate the SA signaling pathway to induce host plants to generate antiviral responses. PMID:22662252

  2. Actinobacillus pleuropneumoniae Possesses an Antiviral Activity against Porcine Reproductive and Respiratory Syndrome Virus

    PubMed Central

    Labrie, Josée; Hernandez Reyes, Yenney; Burciaga Nava, Jorge A.; Gagnon, Carl A.; Jacques, Mario

    2014-01-01

    Pigs are often colonized by more than one bacterial and/or viral species during respiratory tract infections. This phenomenon is known as the porcine respiratory disease complex (PRDC). Actinobacillus pleuropneumoniae (App) and porcine reproductive and respiratory syndrome virus (PRRSV) are pathogens that are frequently involved in PRDC. The main objective of this project was to study the in vitro interactions between these two pathogens and the host cells in the context of mixed infections. To fulfill this objective, PRRSV permissive cell lines such as MARC-145, SJPL, and porcine alveolar macrophages (PAM) were used. A pre-infection with PRRSV was performed at 0.5 multiplicity of infection (MOI) followed by an infection with App at 10 MOI. Bacterial adherence and cell death were compared. Results showed that PRRSV pre-infection did not affect bacterial adherence to the cells. PRRSV and App co-infection produced an additive cytotoxicity effect. Interestingly, a pre-infection of SJPL and PAM cells with App blocked completely PRRSV infection. Incubation of SJPL and PAM cells with an App cell-free culture supernatant is also sufficient to significantly block PRRSV infection. This antiviral activity is not due to LPS but rather by small molecular weight, heat-resistant App metabolites (<1 kDa). The antiviral activity was also observed in SJPL cells infected with swine influenza virus but to a much lower extent compared to PRRSV. More importantly, the PRRSV antiviral activity of App was also seen with PAM, the cells targeted by the virus in vivo during infection in pigs. The antiviral activity might be due, at least in part, to the production of interferon γ. The use of in vitro experimental models to study viral and bacterial co-infections will lead to a better understanding of the interactions between pathogens and their host cells, and could allow the development of novel prophylactic and therapeutic tools. PMID:24878741

  3. L-696,229 specifically inhibits human immunodeficiency virus type 1 reverse transcriptase and possesses antiviral activity in vitro.

    PubMed Central

    Goldman, M E; O'Brien, J A; Ruffing, T L; Nunberg, J H; Schleif, W A; Quintero, J C; Siegl, P K; Hoffman, J M; Smith, A M; Emini, E A

    1992-01-01

    L-696,229 (3-[2-(benzoxazol-2-yl)ethyl]-5-ethyl-6-methyl-pyridin-2 (1H)-one) is a specific inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) activity that possesses antiviral activity in cell culture (W.S. Saari, J.M. Hoffman, J.S. Wai, T.E. Fisher, C.S. Rooney, A.M. Smith, C.M. Thomas, M. E. Goldman, J. A. O'Brien, J. H. Nunberg, J. C. Quintero, W. A. Schleif, E. A. Emini, and P. S. Anderson, J. Med. Chem. 34:2922-2925, 1991). In the present study, the RT-inhibitory activity and antiviral properties were characterized in detail. The inhibition of RT activity was template-primer dependent with 50% inhibitory concentrations of 0.018 to 0.50 microM and was noncompetitive with respect to deoxynucleoside triphosphates. L-696,229 inhibited RT activity in a mutually exclusive manner with respect to either phosphonoformate or azidothymidine triphosphate and was a weak partial inhibitor of the RNase H activity associated with HIV-1 RT. The compound did not significantly inhibit other retroviral or cellular polymerases at 300 microM.L-696,229 inhibited the spread of HIV-1 infection in cell cultures with all cell types and viral isolates tested, including human peripheral blood mononuclear cells and a virus isolate resistant to azidothymidine. PMID:1380788

  4. Antiviral activity of quercetin 7-rhamnoside against porcine epidemic diarrhea virus.

    PubMed

    Choi, Hwa-Jung; Kim, Jin-Hee; Lee, Choong-Hwan; Ahn, Young-Joon; Song, Jae-Hyoung; Baek, Seung-Hwa; Kwon, Dur-Han

    2009-01-01

    Porcine epidemic diarrhea virus (PEDV) is the predominant cause of severe entero-pathogenic diarrhea in swine. The lack of effective therapeutical treatment underlines the importance of research for new antivirals. In this study, we identified Q7R, which actively inhibited PEDV replication with a 50% inhibitory concentration (IC(50)) of 0.014 microg/mL. The 50% cytotoxicity concentration (CC(50)) of Q7R was over 100 microg/mL and the derived therapeutic index was 7142. Several structural analogues of Q7R, quercetin, apigenin, luteolin and catechin, also showed moderate anti-PEDV activity. Antiviral drugs and natural compounds revealed ribavirin, interferon-alpha, coumarin and tannic acid have relative weaker efficacy compared to Q7R. Q7R did not directly interact with or inactivate PEDV particles and affect the initial stage of PEDV infection by interfering of PEDV replication. Also, the effectiveness of Q7R against the other two viruses (TGEV, PRCV) was lower compared to PEDV. Q7R could be considered as a lead compound for development of anti-PEDV drugs to may be used to during the early stage of PEDV replication and the structure-activity data of Q7R may usefully guideline to design other related antiviral agents.

  5. Antiviral and Antioxidant Activities of Sulfated Galactomannans from Plants of Caatinga Biome

    PubMed Central

    Marques, Márcia Maria Mendes; de Morais, Selene Maia; da Silva, Ana Raquel Araújo; Barroso, Naiara Dutra; Pontes Filho, Tadeu Rocha; Araújo, Fernanda Montenegro de Carvalho; Vieira, Ícaro Gusmão Pinto; Lima, Danielle Malta; Guedes, Maria Izabel Florindo

    2015-01-01

    Dengue represents a serious social and economic public health problem; then trying to contribute to improve its control, the objective of this research was to develop phytoterapics for dengue treatment using natural resources from Caatinga biome. Galactomannans isolated from Adenanthera pavonina L., Caesalpinia ferrea Mart., and Dimorphandra gardneriana Tull were chemically sulfated in order to evaluate the antioxidant, and antiviral activities and the role in the inhibition of virus DENV-2 in Vero cells. A positive correlation between the degree of sulfation, antioxidant and antiviral activities was observed. The sulfated galactomannans showed binding to the virus surface, indicating that they interact with DENV-2. The sulfated galactomannans from C. ferrea showed 96% inhibition of replication of DENV-2 followed by D. gardneriana (94%) and A. pavonina (77%) at 25 µg/mL and all sulfated galactomannans also showed antioxidant activity. This work is the first report of the antioxidant and antiviral effects of sulfated galactomannans against DENV-2. The results are very promising and suggest that these sulfated galactomannans from plants of Caatinga biome act in the early step of viral infection. Thus, sulfated galactomannans may act as an entry inhibitor of DENV-2. PMID:26257815

  6. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus

    PubMed Central

    Moghaddam, Ehsan; Teoh, Boon-Teong; Sam, Sing-Sin; Lani, Rafidah; Hassandarvish, Pouya; Chik, Zamri; Yueh, Andrew; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Baicalin, a flavonoid derived from Scutellaria baicalensis, is the main metabolite of baicalein released following administration in different animal models and human. We previously reported the antiviral activity of baicalein against dengue virus (DENV). Here, we examined the anti-DENV properties of baicalin in vitro, and described the inhibitory potentials of baicalin at different steps of DENV-2 (NGC strain) replication. Our in vitro antiviral experiments showed that baicalin inhibited virus replication at IC50 = 13.5 ± 0.08 μg/ml with SI = 21.5 following virus internalization by Vero cells. Baicalin exhibited virucidal activity against DENV-2 extracellular particles at IC50 = 8.74 ± 0.08 μg/ml and showed anti-adsorption effect with IC50 = 18.07 ± 0.2 μg/ml. Our findings showed that baicalin as the main metabolite of baicalein exerting in vitro anti-DENV activity. Further investigations on baicalein and baicalin to deduce its antiviral therapeutic effects are warranted. PMID:24965553

  7. Antiviral Activity of Trichilia catigua Bark Extracts for Herpesvirus and Poliovirus.

    PubMed

    Espada, Samantha F; Faccin-Galhardi, Ligia C; Rincao, Vinicius P; Bernardi, Ana L S; Lopes, Nayara; Longhini, Renata; de Mello, Joao C P; Linhares, Rosa E C; Nozawa, Carlos

    2015-01-01

    Herpesvirus and poliovirus are responsible for important diseases in human and animal. Trichilia catigua a Brazilian native plant known as catiguá has several medicinal properties among them antimicrobial for bacteria and protozoa, however, no antiviral activity has been reported yet. This study evaluated the antiviral activity of the crude extract (CE) and aqueous and ethyl acetate fractions (AF, EAF) obtained from T. catigua in the replication of the Herpes simplex virus (HSV-1), bovine herpesvirus (BoHV-1) and poliovirus (PV-1). The cytotoxicity was analyzed by MTT assay and the antiviral effect was determined by the addition of extracts (0.25 to 100.0 μg/ml), before (-2h and -1h), during (Oh) and after (1h and 2h) the viral infection, by plaque reduction assay, in HEp-2 cell culture. The virucidal activity and inhibition of viral adsorption were also evaluated. In addition, the combination index (CI) with Acyclovir (ACV - reference drug) was determined for HSV-1. CE, AF and EAF showed a low toxicity (CC(50) >400 µg/ml) and low inhibitory concentration (IC50), ranging from 2.44-34.25 µg/ml for herpesvirus and 0.67 to 1.8 µg/ml for PV-1, associated with high selectivity index. The tested compounds showed high virucidal effect and high ability to inhibit viral adsorption, for all virus. The CI demonstrated a synergic effect (CI<1) for AF and EAF comparatively to acyclovir (ACV). Our study demonstrated that the extract and fractions of T. catigua is promising for future antiviral drug design with economically feasible production. PMID:25941883

  8. The lipid moiety of brincidofovir is required for in vitro antiviral activity against Ebola virus.

    PubMed

    McMullan, Laura K; Flint, Mike; Dyall, Julie; Albariño, César; Olinger, Gene G; Foster, Scott; Sethna, Phiroze; Hensley, Lisa E; Nichol, Stuart T; Lanier, E Randall; Spiropoulou, Christina F

    2016-01-01

    Brincidofovir (BCV) is the 3-hexadecyloxy-1-propanol (HDP) lipid conjugate of the acyclic nucleoside phosphonate cidofovir (CDV). BCV has established broad-spectrum activity against double-stranded DNA (dsDNA) viruses; however, its activity against RNA viruses has been less thoroughly evaluated. Here, we report that BCV inhibited infection of Ebola virus in multiple human cell lines. Unlike the mechanism of action for BCV against cytomegalovirus and other dsDNA viruses, phosphorylation of CDV to the diphosphate form appeared unnecessary. Instead, antiviral activity required the lipid moiety and in vitro activity against EBOV was observed for several HDP-nucleotide conjugates.

  9. Phenolics with antiviral activity from Millettia erythrocalyx and Artocarpus lakoocha.

    PubMed

    Likhitwitayawuid, Kittisak; Sritularak, Boonchoo; Benchanak, Kanokwan; Lipipun, Vimolmas; Mathew, Judy; Schinazi, Raymond F

    2005-02-01

    From the leaves of Millettia erythrocalyx, a new flavone named 3',5'-dimethoxy-[2",3": 7,8]-furanoflavone and three known compounds were isolated. Assays for anti-herpes simplex virus activity (HSV-1 and HSV-2) were performed on 24 phenolic compounds obtained from M. erythrocalyx and Artocarpus lakoocha. It was found that the flavones ovalifolin, pongol methyl ether and millettocalyxin A, and the stilbene oxyresveratrol possessed moderate activity against both types of HSV. In addition, oxyresveratrol was evaluated for potential anti-HIV activity against a wild-type human immunodeficiency virus type 1 (HIV-1/LAI) isolate and was found to be a modest inhibitor of HIV (EC50 28.2 microM), showing no toxicity in PBM, CEM and Vero cells at 100 microM. The heartwood of A. lakoocha, which contains a large amount of oxyresveratrol, could be considered as a source of starting material for the development of new natural product-based anti-HSV and anti-HIV agents.

  10. Antiviral activity of purified human breast milk mucin.

    PubMed

    Habte, Habtom H; Kotwal, Girish J; Lotz, Zoë E; Tyler, Marilyn G; Abrahams, Melissa; Rodriques, Jerry; Kahn, Delawir; Mall, Anwar S

    2007-01-01

    Human breast milk is known to contain numerous biologically active components which protect breast fed infants against microbes, viruses, and toxins. The purpose of this study was to purify and characterize the breast milk mucin and determine its anti-poxvirus activity. In this study human milk mucin, free of contaminant protein and of sufficient quantity for further analysis, was isolated and purified by Sepharose CL-4B gel filtration and cesiumchloride density-gradient centrifugation. Based on the criteria of size and appearance of the bands and their electrophoretic mobility on sodium dodecyl sulfate polyacrylamide-gel electrophoresis, Western blotting together with the amino acid analysis, it is very likely that the human breast milk mucin is MUC1. It was shown that this breast milk mucin inhibits poxvirus activity by 100% using an inhibition assay with a viral concentration of 2.4 million plaque-forming units/ml. As the milk mucin seems to aggregate poxviruses prior to their entry into host cells, it is possible that this mucin may also inhibit other enveloped viruses such as HIV from entry into host cells. PMID:17361093

  11. Antiviral Activity of Hederasaponin B from Hedera helix against Enterovirus 71 Subgenotypes C3 and C4a

    PubMed Central

    Song, JaeHyoung; Yeo, Sang-Gu; Hong, Eun-Hye; Lee, Bo-Ra; Kim, Jin-Won; Kim, JeongHoon; Jeong, HyeonGun; Kwon, YongSoo; Kim, HyunPyo; Lee, SangWon; Park, Jae-Hak; Ko, Hyun-Jeong

    2014-01-01

    Enterovirus 71 (EV71) is the predominant cause of hand, foot and mouth disease (HFMD). The antiviral activity of hederasaponin B from Hedera helix against EV71 subgenotypes C3 and C4a was evaluated in vero cells. In the current study, the antiviral activity of hederasaponin B against EV71 C3 and C4a was determined by cytopathic effect (CPE) reduction method and western blot assay. Our results demonstrated that hederasaponin B and 30% ethanol extract of Hedera helix containing hederasaponin B showed significant antiviral activity against EV71 subgenotypes C3 and C4a by reducing the formation of a visible CPE. Hederasaponin B also inhibited the viral VP2 protein expression, suggesting the inhibition of viral capsid protein synthesis.These results suggest that hederasaponin B and Hedera helix extract containing hederasaponin B can be novel drug candidates with broad-spectrum antiviral activity against various subgenotypes of EV71. PMID:24596620

  12. Pokeweed Antiviral Protein, a Ribosome Inactivating Protein: Activity, Inhibition and Prospects

    PubMed Central

    Domashevskiy, Artem V.; Goss, Dixie J.

    2015-01-01

    Viruses employ an array of elaborate strategies to overcome plant defense mechanisms and must adapt to the requirements of the host translational systems. Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome inactivating protein (RIP) and is an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin (S/R) loop of large rRNA, arresting protein synthesis at the translocation step. PAP is thought to play an important role in the plant’s defense mechanism against foreign pathogens. This review focuses on the structure, function, and the relationship of PAP to other RIPs, discusses molecular aspects of PAP antiviral activity, the novel inhibition of this plant toxin by a virus counteraction—a peptide linked to the viral genome (VPg), and possible applications of RIP-conjugated immunotoxins in cancer therapeutics. PMID:25635465

  13. Synergistic antiviral activity of ribavirin and interferon-α against parrot bornaviruses in avian cells.

    PubMed

    Reuter, Antje; Horie, Masayuki; Höper, Dirk; Ohnemus, Annette; Narr, Andreas; Rinder, Monika; Beer, Martin; Staeheli, Peter; Rubbenstroth, Dennis

    2016-09-01

    Avian bornaviruses are the causative agents of proventricular dilatation disease (PDD), a widely distributed and often fatal disease in captive psittacines. Because neither specific prevention measures nor therapies against PDD and bornavirus infections are currently available, new antiviral strategies are required to improve animal health. We show here that the nucleoside analogue ribavirin inhibited bornavirus activity in a polymerase reconstitution assay and reduced viral load in avian cell lines infected with two different parrot bornaviruses. Furthermore, we observed that ribavirin enhanced type I IFN signalling in avian cells. Combined treatment of avian bornavirus-infected cells with ribavirin and recombinant IFN-α strongly enhanced the antiviral efficiency compared to either drug alone. The combined use of ribavirin and type I IFN might represent a promising new strategy for therapeutic treatment of captive parrots persistently infected with avian bornaviruses.

  14. Pokeweed antiviral protein, a ribosome inactivating protein: activity, inhibition and prospects.

    PubMed

    Domashevskiy, Artem V; Goss, Dixie J

    2015-01-28

    Viruses employ an array of elaborate strategies to overcome plant defense mechanisms and must adapt to the requirements of the host translational systems. Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome inactivating protein (RIP) and is an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin (S/R) loop of large rRNA, arresting protein synthesis at the translocation step. PAP is thought to play an important role in the plant's defense mechanism against foreign pathogens. This review focuses on the structure, function, and the relationship of PAP to other RIPs, discusses molecular aspects of PAP antiviral activity, the novel inhibition of this plant toxin by a virus counteraction-a peptide linked to the viral genome (VPg), and possible applications of RIP-conjugated immunotoxins in cancer therapeutics.

  15. Synergistic antiviral activity of ribavirin and interferon-α against parrot bornaviruses in avian cells.

    PubMed

    Reuter, Antje; Horie, Masayuki; Höper, Dirk; Ohnemus, Annette; Narr, Andreas; Rinder, Monika; Beer, Martin; Staeheli, Peter; Rubbenstroth, Dennis

    2016-09-01

    Avian bornaviruses are the causative agents of proventricular dilatation disease (PDD), a widely distributed and often fatal disease in captive psittacines. Because neither specific prevention measures nor therapies against PDD and bornavirus infections are currently available, new antiviral strategies are required to improve animal health. We show here that the nucleoside analogue ribavirin inhibited bornavirus activity in a polymerase reconstitution assay and reduced viral load in avian cell lines infected with two different parrot bornaviruses. Furthermore, we observed that ribavirin enhanced type I IFN signalling in avian cells. Combined treatment of avian bornavirus-infected cells with ribavirin and recombinant IFN-α strongly enhanced the antiviral efficiency compared to either drug alone. The combined use of ribavirin and type I IFN might represent a promising new strategy for therapeutic treatment of captive parrots persistently infected with avian bornaviruses. PMID:27439314

  16. Chemical constituents of Anacolosa pervilleana and their antiviral activities.

    PubMed

    Bourjot, Mélanie; Leyssen, Pieter; Eydoux, Cécilia; Guillemot, Jean-Claude; Canard, Bruno; Rasoanaivo, Philippe; Guéritte, Françoise; Litaudon, Marc

    2012-09-01

    In an effort to identify novel inhibitors of Chikungunya (CHIKV) and Dengue (DENV) virus replication, a systematic study with 820 ethyl acetate extracts of Madagascan plants was performed in a virus-cell-based assay for CHIKV and a DENV NS5 RNA-dependant RNA polymerase (RdRp) assay. The extract obtained from the leaves of Anacolosa pervilleana was selected for its significant activity in both assays. One new (E)-tridec-2-en-4-ynedioic acid named anacolosine (1), together with three known acetylenic acids, the octadeca-9,11,13-triynoic acid (2), (13E)-octadec-13-en-9,11-diynoic acid (3), (13E)-octadec-13-en-11-ynoic acid (4), two terpenoids, lupenone (5) and β-amyrone (6), and one cyanogenic glycoside, (S)-sambunigrin (7) were isolated. Their structures were elucidated by comprehensive analyses of NMR spectroscopy and mass spectrometry data. The inhibitory potency of these compounds was evaluated on CHIKV, DENV RdRp and West-Nile polymerase virus (WNV RdRp). Both terpenoids showed a moderate activity against CHIKV (EC(50) 77 and 86 μM, respectively) and the acetylenic acids produced IC(50) values around 3 μM in the DENV RdRp assay. PMID:22613073

  17. HIV enhancing activity of semen impairs the antiviral efficacy of microbicides

    PubMed Central

    Zirafi, Onofrio; Kim, Kyeong-Ae; Roan, Nadia R.; Kluge, Silvia F.; Müller, Janis A.; Jiang, Shibo; Mayer, Benjamin; Greene, Warner C.; Kirchhoff, Frank; Münch, Jan

    2015-01-01

    Topically applied microbicides potently inhibit HIV in vitro but have largely failed to exert protective effects in clinical trials. One possible reason for this discrepancy is that the preclinical testing of microbicides does not faithfully reflect the conditions of HIV sexual transmission. Here, we report that candidate microbicides that target HIV components show greatly reduced antiviral efficacy in the presence of semen, the main vector for HIV transmission. This diminished antiviral activity was dependent on the ability of amyloid fibrils in semen to enhance the infectivity of HIV. Thus, the anti-HIV efficacy of microbicides determined in the absence of semen greatly underestimated the drug concentrations needed to block semen-exposed virus. One notable exception was Maraviroc. This HIV entry inhibitor targets the host cell CCR5 coreceptor and was highly active against both untreated and semen-exposed HIV. These data help explain why microbicides have failed to protect against HIV in clinical trials and suggest that antiviral compounds targeting host factors hold promise for further development. These findings also suggest that the in vitro efficacy of candidate microbicides should be determined in the presence of semen to identify the best candidates for the prevention of HIV sexual transmission. PMID:25391483

  18. Nutritional and Chemical Composition and Antiviral Activity of Cultivated Seaweed Sargassum naozhouense Tseng et Lu

    PubMed Central

    Peng, Yan; Xie, Enyi; Zheng, Kai; Fredimoses, Mangaladoss; Yang, Xianwen; Zhou, Xuefeng; Wang, Yifei; Yang, Bin; Lin, Xiuping; Liu, Juan; Liu, Yonghong

    2012-01-01

    Sargassum naozhouense is a brown seaweed used in folk medicine and applied for thousands of years in Zhanjiang, Guangdong province, China. This study is the first time to investigate its chemical composition and antiviral activity. On the dry weight basis, this seaweed was constituted of ca. 35.18% ash, 11.20% protein, 1.06% lipid and 47.73% total carbohydrate, and the main carbohydrate was water-soluble polysaccharide. The protein analysis indicated the presence of essential amino acids, which accounted for 36.35% of the protein. The most abundant fatty acids were C14:0, C16:0, C18:1 and C20:4. The ash fraction analysis indicated that essential minerals and trace elements, such as Fe, Zn and Cu, were present in the seaweed. IR analysis revealed that polysaccharides from cultivated S. naozhouense may be alginates and fucoidan. The polysaccharides possessed strong antiviral activity against HSV-1 in vitro with EC50 of 8.92 μg/mL. These results demonstrated cultivated S. naozhouense has a potential for its use in functional foods and antiviral new drugs. PMID:23271422

  19. Nutritional and chemical composition and antiviral activity of cultivated seaweed Sargassum naozhouense Tseng et Lu.

    PubMed

    Peng, Yan; Xie, Enyi; Zheng, Kai; Fredimoses, Mangaladoss; Yang, Xianwen; Zhou, Xuefeng; Wang, Yifei; Yang, Bin; Lin, Xiuping; Liu, Juan; Liu, Yonghong

    2013-01-01

    Sargassum naozhouense is a brown seaweed used in folk medicine and applied for thousands of years in Zhanjiang, Guangdong province, China. This study is the first time to investigate its chemical composition and antiviral activity. On the dry weight basis, this seaweed was constituted of ca. 35.18% ash, 11.20% protein, 1.06% lipid and 47.73% total carbohydrate, and the main carbohydrate was water-soluble polysaccharide. The protein analysis indicated the presence of essential amino acids, which accounted for 36.35% of the protein. The most abundant fatty acids were C14:0, C16:0, C18:1 and C20:4. The ash fraction analysis indicated that essential minerals and trace elements, such as Fe, Zn and Cu, were present in the seaweed. IR analysis revealed that polysaccharides from cultivated S. naozhouense may be alginates and fucoidan. The polysaccharides possessed strong antiviral activity against HSV-1 in vitro with EC(50) of 8.92 μg/mL. These results demonstrated cultivated S. naozhouense has a potential for its use in functional foods and antiviral new drugs.

  20. A 2,5-Dihydroxybenzoic Acid–Gelatin Conjugate: The Synthesis, Antiviral Activity and Mechanism of Antiviral Action Against Two Alphaherpesviruses

    PubMed Central

    Lisov, Alexander; Vrublevskaya, Veronika; Lisova, Zoy; Leontievsky, Alexey; Morenkov, Oleg

    2015-01-01

    Various natural and synthetic polyanionic polymers with different chemical structures are known to exhibit potent antiviral activity in vitro toward a variety of enveloped viruses and may be considered as promising therapeutic agents. A water-soluble conjugate of 2,5-dihydroxybezoic acid (2,5-DHBA) with gelatin was synthesized by laccase-catalyzed oxidation of 2,5-DHBA in the presence of gelatin, and its antiviral activity against pseudorabies virus (PRV) and bovine herpesvirus type 1 (BoHV-1), two members of the Alphaherpesvirinae subfamily, was studied. The conjugate produced no direct cytotoxic effect on cells, and did not inhibit cell growth at concentrations up to 1000 µg/mL. It exhibited potent antiviral activity against PRV (IC50, 1.5–15 µg/mL for different virus strains) and BoHV-1 (IC50, 0.5–0.7 µg/mL). When present during virus adsorption, the conjugate strongly inhibited the attachment of PRV and BoHV-1 to cells. The 2,5-DHBA–gelatin conjugate had no direct virucidal effect on the viruses and did not influence their penetration into cells, cell-to-cell spread, production of infectious virus particles in cells, and expression of PRV glycoproteins E and B. The results indicated that the 2,5-DHBA–gelatin conjugate strongly inhibits the adsorption of alphaherpesviruses to cells and can be a promising synthetic polymer for the development of antiviral formulations against alphaherpesvirus infections. PMID:26501311

  1. Synthesis and Antiviral Activity of Quercetin Brominated Derivatives.

    PubMed

    Karimova, Elza; Baltina, Lidia; Spirikhin, Leonid; Gabbasov, Tagir; Orshanskaya, Yana; Zarubaev, Vladimir

    2015-09-01

    Reaction of quercetin (QR) (1) with bromine under various conditions was studied. Interaction of QR with 2-3 equiv. of bromine in glacial acetic acid at 35-40°C for 2-4 h and 20-22°C for 24 h led to the formation of QR 6,8-dibromide (2) (52-54% yields, 96-98% purity by HPLC). Interaction of QR with 2-5 equiv. bromine in absolute ethanol at 0-5°C and 20-22°C for 24 h led to the formation of 3-O-ethyl-QR-2,3,6,8,5'-pentabromide (3) (95-97% purity by HPLC) the output of which depends on the quantity of bromine. It was shown in MDCK cell culture that compound 2 exhibits a moderate inhibitory activity against pandemic influenza virus A/H1N1/pdm09 (EC50 6.0 µg/mL, CTD50 97.7 µg/mL, SI 16). Compound 3 was inactive.

  2. Deubiquitinase USP2a Sustains Interferons Antiviral Activity by Restricting Ubiquitination of Activated STAT1 in the Nucleus

    PubMed Central

    Liu, Jin; Yuan, Yukang; Cheng, Qiao; Zuo, Yibo; Qian, Liping; Guo, Tingting; Qian, Guanghui; Li, Lemin; Ge, Jun; Dai, Jianfeng; Xiong, Sidong; Zheng, Hui

    2016-01-01

    STAT1 is a critical transcription factor for regulating host antiviral defenses. STAT1 activation is largely dependent on phosphorylation at tyrosine 701 site of STAT1 (pY701-STAT1). Understanding how pY701-STAT1 is regulated by intracellular signaling remains a major challenge. Here we find that pY701-STAT1 is the major form of ubiquitinated-STAT1 induced by interferons (IFNs). While total STAT1 remains relatively stable during the early stages of IFNs signaling, pY701-STAT1 can be rapidly downregulated by the ubiquitin-proteasome system. Moreover, ubiquitinated pY701-STAT1 is located predominantly in the nucleus, and inhibiting nuclear import of pY701-STAT1 significantly blocks ubiquitination and downregulation of pY701-STAT1. Furthermore, we reveal that the deubiquitinase USP2a translocates into the nucleus and binds to pY701-STAT1, and inhibits K48-linked ubiquitination and degradation of pY701-STAT1. Importantly, USP2a sustains IFNs-induced pY701-STAT1 levels, and enhances all three classes of IFNs- mediated signaling and antiviral activity. To our knowledge, this is the first identified deubiquitinase that targets activated pY701-STAT1. These findings uncover a positive mechanism by which IFNs execute efficient antiviral signaling and function, and may provide potential targets for improving IFNs-based antiviral therapy. PMID:27434509

  3. Perhydrolase-nanotube paint composites with sporicidal and antiviral activity.

    PubMed

    Grover, Navdeep; Douaisi, Marc P; Borkar, Indrakant V; Lee, Lillian; Dinu, Cerasela Zoica; Kane, Ravi S; Dordick, Jonathan S

    2013-10-01

    AcT (perhydrolase) containing paint composites were prepared leading to broad-spectrum decontamination. AcT was immobilized onto multi-walled carbon nanotubes (MWNTs) and then incorporated into latex-based paints to form catalytic coatings. These AcT-based paint composites showed a 6-log reduction in the viability of spores of Bacillus cereus and Bacillus anthracis (Sterne) within 60 min. The paint composites also showed >4-log reduction in the titer of influenza virus (X-31) within 10 min (initially challenged with 10(7) PFU/mL). AcT-based paint composites were also tested using various perhydrolase acyl donor substrates, including propylene glycol diacetate (PGD), glyceryl triacetate, and ethyl acetate, with PGD observed to be the best among the substrates tested for generation of peracetic acid and killing of bacillus spores. The operational stability of paint composites was also studied at different relative humidities and temperatures to simulate real-life operation.

  4. Antiviral agents: characteristic activity spectrum depending on the molecular target with which they interact.

    PubMed

    De Clercq, E

    1993-01-01

    The target protein (enzyme) with which antiviral agents interact determines their antiviral activity spectrum. Based on their activity spectrum, antiviral compounds could be divided into the following classes: (1) sulfated polysaccharides (i.e., dextran sulfate), which interact with the viral envelope glycoproteins and are inhibitory to a broad variety of enveloped viruses (i.e., retro-, herpes-, rhabdo-, and arenaviruses): (2) SAH hydrolase inhibitors (i.e., neplanocin A derivatives), which are particularly effective against poxvirus, (-)RNA viruses (paramyxovirus, rhabdovirus), and (+/-)RNA virus (reovirus); (3) OMP decarboxylase inhibitors (i.e., pyrazofurin) and CTP synthetase inhibitors (i.e., cyclopentenylcytosine), which are active against a broad range of DNA, (+)RNA, (-)RNA, and (+/-)RNA viruses; (4) IMP dehydrogenase inhibitors (i.e., ribavirin), which are also active against various (+)RNA and (-)RNA viruses and, in particular, ortho- and paramyxoviruses; (5) acyclic guanosine analogs (i.e., ganciclovir) and carbocyclic guanosine analogs (i.e., cyclobut-G), which are particularly active against herpesviruses (i.e., HSV-1, HSV-2, VZV, CMV); (6) thymidine analogs (i.e., BVDU, BVaraU), which are specifically active against HSV-1 and VZV because of their preferential phosphorylation by the virus-encoded thymidine kinase; (7) acyclic nucleoside phosphonates (i.e., HPMPA, HPMPC, PMEA, FPMPA), which, depending on the structure of the acyclic side chain, span an activity spectrum from DNA viruses (papova-, adeno-, herpes-, hepadna-, and poxvirus) to retroviruses (HIV); (8) dideoxynucleoside analogs (i.e., AZT, DDC), which act as chain terminators in the reverse transcriptase reaction and thus block the replication of retroviruses as well as hepadnaviruses; and (9) the TIBO, HEPT, and other TIBO-like compounds, which interact specifically with the reverse transcriptase of HIV-1 and thus block the replication of HIV-1, but not of HIV-2 or any other retrovirus

  5. Isolation and characterization of ZH14 with antiviral activity against Tobacco mosaic virus.

    PubMed

    Zhou, Wen-Wen; Zhang, Li-Xiang; Zhang, Bin; Wang, Fei; Liang, Zhi-Hong; Niu, Tian-Gui

    2008-06-01

    A large number of bacteria were isolated from plant samples and screened for antiviral activity against the Tobacco mosaic virus (TMV). The bacterium ZH14, which was isolated from Chinese Anxi oolong tea, secreted the antiviral substances, having 94.2% virus inhibition when the bacterial culture filtrate and TMV extract were mixed at a ratio of 1:1. The ZH14 strain is a gram-positive, spore-forming rod and has the ability to degrade ribonucleic acid. Based on its effectiveness on virus inhibition, ZH14 was selected for characterization and was identified as a strain of the Bacillus cereus group based on phenotypic tests and comparative analysis of its 16S rDNA sequence. At the same time, we determined the antiviral product of ZH14 as an extracellular protein with high molecular mass, having an optimum temperature of 15-60 degrees C and an optimum pH of 6-10. Hence, the ZH14 strain and its culture filtrate have potential application in controlling plant diseases caused by TMV.

  6. The antiviral activity of arctigenin in traditional Chinese medicine on porcine circovirus type 2.

    PubMed

    Chen, Jie; Li, Wentao; Jin, Erguang; He, Qigai; Yan, Weidong; Yang, Hanchun; Gong, Shiyu; Guo, Yi; Fu, Shulin; Chen, Xiabing; Ye, Shengqiang; Qian, Yunguo

    2016-06-01

    Arctigenin (ACT) is a phenylpropanoid dibenzylbutyrolactone lignan extracted from the traditional herb Arctium lappa L. (Compositae) with anti-viral and anti-inflammatory effects. Here, we investigated the antiviral activity of ACT found in traditional Chinese medicine on porcine circovirus type 2 (PCV2) in vitro and in vivo. Results showed that dosing of 15.6-62.5μg/mL ACT could significantly inhibit the PCV2 proliferation in PK-15 cells (P<0.01). Dosing of 62.5μg/mL ACT 0, 4 or 8h after challenge inoculation significantly inhibited the proliferation of 1MOI and 10MOI in PK-15 cells (P<0.01), and the inhibitory effect of ACT dosing 4h or 8h post-inoculation was greater than 0h after dosing (P<0.01). In vivo test with mice challenge against PCV2 infection demonstrated that intraperitoneal injection of 200μg/kg ACT significantly inhibited PCV2 proliferation in the lungs, spleens and inguinal lymph nodes, with an effect similar to ribavirin, demonstrating the effectiveness of ACT as an antiviral agent against PCV2 in vitro and in vivo. This compound, therefore, may have the potential to serve as a drug for protection of pigs against the infection of PCV2.

  7. The antiviral activity of arctigenin in traditional Chinese medicine on porcine circovirus type 2.

    PubMed

    Chen, Jie; Li, Wentao; Jin, Erguang; He, Qigai; Yan, Weidong; Yang, Hanchun; Gong, Shiyu; Guo, Yi; Fu, Shulin; Chen, Xiabing; Ye, Shengqiang; Qian, Yunguo

    2016-06-01

    Arctigenin (ACT) is a phenylpropanoid dibenzylbutyrolactone lignan extracted from the traditional herb Arctium lappa L. (Compositae) with anti-viral and anti-inflammatory effects. Here, we investigated the antiviral activity of ACT found in traditional Chinese medicine on porcine circovirus type 2 (PCV2) in vitro and in vivo. Results showed that dosing of 15.6-62.5μg/mL ACT could significantly inhibit the PCV2 proliferation in PK-15 cells (P<0.01). Dosing of 62.5μg/mL ACT 0, 4 or 8h after challenge inoculation significantly inhibited the proliferation of 1MOI and 10MOI in PK-15 cells (P<0.01), and the inhibitory effect of ACT dosing 4h or 8h post-inoculation was greater than 0h after dosing (P<0.01). In vivo test with mice challenge against PCV2 infection demonstrated that intraperitoneal injection of 200μg/kg ACT significantly inhibited PCV2 proliferation in the lungs, spleens and inguinal lymph nodes, with an effect similar to ribavirin, demonstrating the effectiveness of ACT as an antiviral agent against PCV2 in vitro and in vivo. This compound, therefore, may have the potential to serve as a drug for protection of pigs against the infection of PCV2. PMID:27234554

  8. The anti-obesity drug orlistat reveals anti-viral activity.

    PubMed

    Ammer, Elisabeth; Nietzsche, Sandor; Rien, Christian; Kühnl, Alexander; Mader, Theresa; Heller, Regine; Sauerbrei, Andreas; Henke, Andreas

    2015-12-01

    The administration of drugs to inhibit metabolic pathways not only reduces the risk of obesity-induced diseases in humans but may also hamper the replication of different viral pathogens. In order to investigate the value of the US Food and Drug Administration-approved anti-obesity drug orlistat in view of its anti-viral activity against different human-pathogenic viruses, several anti-viral studies, electron microscopy analyses as well as fatty acid uptake experiments were performed. The results indicate that administrations of non-cytotoxic concentrations of orlistat reduced the replication of coxsackievirus B3 (CVB3) in different cell types significantly. Moreover, orlistat revealed cell protective effects and modified the formation of multi-layered structures in CVB3-infected cells, which are necessary for viral replication. Lowering fatty acid uptake from the extracellular environment by phloretin administrations had only marginal impact on CVB3 replication. Finally, orlistat reduced also the replication of varicella-zoster virus moderately but had no significant influence on the replication of influenza A viruses. The data support further experiments into the value of orlistat as an inhibitor of the fatty acid synthase to develop new anti-viral compounds, which are based on the modulation of cellular metabolic pathways.

  9. In-vitro antiviral activity of Solanum nigrum against Hepatitis C Virus

    PubMed Central

    2011-01-01

    Background Hepatitis C is a major health problem causes liver cirrhosis, hepatocellular carcinoma and death. The current treatment of standard interferon in combination with ribavirin, has limited benefits due to emergence of resistant mutations during long-term treatment, adverse side effects and high cost. Hence, there is a need for the development of more effective, less toxic antiviral agents. Results The present study was designed to search anti-HCV plants from different areas of Pakistan. Ten medicinal plants were collected and tested for anti-HCV activity by infecting the liver cells with HCV 3a innoculum. Methanol and chloroform extracts of Solanum nigrum (SN) seeds exhibited 37% and more than 50% inhibition of HCV respectively at non toxic concentration. Moreover, antiviral effect of SN seeds extract was also analyzed against HCV NS3 protease by transfecting HCV NS3 protease plasmid into liver cells. The results demonstrated that chloroform extract of SN decreased the expression or function of HCV NS3 protease in a dose- dependent manner and GAPDH remained constant. Conclusion These results suggest that SN extract contains potential antiviral agents against HCV and combination of SN extract with interferon will be better option to treat chronic HCV. PMID:21247464

  10. Role of Nucleotide Binding and GTPase Domain Dimerization in Dynamin-like Myxovirus Resistance Protein A for GTPase Activation and Antiviral Activity*

    PubMed Central

    Dick, Alexej; Graf, Laura; Olal, Daniel; von der Malsburg, Alexander; Gao, Song; Kochs, Georg; Daumke, Oliver

    2015-01-01

    Myxovirus resistance (Mx) GTPases are induced by interferon and inhibit multiple viruses, including influenza and human immunodeficiency viruses. They have the characteristic domain architecture of dynamin-related proteins with an N-terminal GTPase (G) domain, a bundle signaling element, and a C-terminal stalk responsible for self-assembly and effector functions. Human MxA (also called MX1) is expressed in the cytoplasm and is partly associated with membranes of the smooth endoplasmic reticulum. It shows a protein concentration-dependent increase in GTPase activity, indicating regulation of GTP hydrolysis via G domain dimerization. Here, we characterized a panel of G domain mutants in MxA to clarify the role of GTP binding and the importance of the G domain interface for the catalytic and antiviral function of MxA. Residues in the catalytic center of MxA and the nucleotide itself were essential for G domain dimerization and catalytic activation. In pulldown experiments, MxA recognized Thogoto virus nucleocapsid proteins independently of nucleotide binding. However, both nucleotide binding and hydrolysis were required for the antiviral activity against Thogoto, influenza, and La Crosse viruses. We further demonstrate that GTP binding facilitates formation of stable MxA assemblies associated with endoplasmic reticulum membranes, whereas nucleotide hydrolysis promotes dynamic redistribution of MxA from cellular membranes to viral targets. Our study highlights the role of nucleotide binding and hydrolysis for the intracellular dynamics of MxA during its antiviral action. PMID:25829498

  11. Aronia melanocarpa and its components demonstrate antiviral activity against influenza viruses.

    PubMed

    Park, Sehee; Kim, Jin Il; Lee, Ilseob; Lee, Sangmoo; Hwang, Min-Woong; Bae, Joon-Yong; Heo, Jun; Kim, Donghwan; Han, Sang-Zin; Park, Man-Seong

    2013-10-11

    The influenza virus is highly contagious in human populations around the world and results in approximately 250,000-500,000 deaths annually. Vaccines and antiviral drugs are commonly used to protect susceptible individuals. However, the antigenic mismatch of vaccines and the emergence of resistant strains against the currently available antiviral drugs have generated an urgent necessity to develop a novel broad-spectrum anti-influenza agent. Here we report that Aronia melanocarpa (black chokeberry, Aronia), the fruit of a perennial shrub species that contains several polyphenolic constituents, possesses in vitro and in vivo efficacy against different subtypes of influenza viruses including an oseltamivir-resistant strain. These anti-influenza properties of Aronia were attributed to two constituents, ellagic acid and myricetin. In an in vivo therapeutic mouse model, Aronia, ellagic acid, and myricetin protected mice against lethal challenge. Based on these results, we suggest that Aronia is a valuable source for antiviral agents and that ellagic acid and myricetin have potential as influenza therapeutics.

  12. [Monocyte functional activity and nonspecific antiviral cellular resistance in adaptation to the conditions of eastern Siberia].

    PubMed

    Zhiburt, E B; Filev, L V; Boĭchak, M P; Volchek, I V; Iakovlev, G P

    1993-01-01

    Monocyte functional activity and antiviral cellular resistance were studied in the newcomers to the Baikal region from the European Russia. A total of 105 patients with acute respiratory diseases and 30 normal subjects were examined. 46 healthy residents of St. Petersburg made up the reference group. The process of adaptation was found to be associated with changes in the functional activity of the immunocompetent cells. The authors came to a conclusion on the principal role of viral injury of the monocytes in the development of acute bronchitis or pneumonia.

  13. Antiviral activity of Paulownia tomentosa against enterovirus 71 of hand, foot, and mouth disease.

    PubMed

    Ji, Ping; Chen, Changmai; Hu, Yanan; Zhan, Zixuan; Pan, Wei; Li, Rongrong; Li, Erguang; Ge, Hui-Ming; Yang, Guang

    2015-01-01

    The bark, leaves, and flowers of Paulownia trees have been used in traditional Chinese medicine to treat infectious and inflammatory diseases. We investigated the antiviral effects of Paulownia tomentosa flowers, an herbal medicine used in some provinces of P. R. China for the treatment of skin rashes and blisters. Dried flowers of P. tomentosa were extracted with methanol and tested for antiviral activity against enterovirus 71 (EV71) and coxsackievirus A16 (CAV16), the predominant etiologic agents of hand, foot, and mouth disease in P. R. China. The extract inhibited EV71 infection, although no effect was detected against CAV16 infection. Bioactivity-guided fractionation was performed to identify apigenin as an active component of the flowers. The EC50 value for apigenin to block EV71 infection was 11.0 µM, with a selectivity index of approximately 9.3. Although it is a common dietary flavonoid, only apigenin, and not similar compounds like naringenin and quercetin, were active against EV71 infection. As an RNA virus, the genome of EV71 has an internal ribosome entry site that interacts with heterogeneous nuclear ribonucleoproteins (hnRNPs) and regulates viral translation. Cross-linking followed by immunoprecipitation and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that EV71 RNA was associated with hnRNPs A1 and A2. Apigenin treatment disrupted this association, indicating that apigenin suppressed EV71 replication through a novel mechanism by targeting the trans-acting factors. This study therefore validates the effects of Paulownia against EV71 infection. It also yielded mechanistic insights on apigenin as an active compound for the antiviral activity of P. tomentosa against EV71 infection. PMID:25744451

  14. Immunomodulating and antiviral activities of Uncaria tomentosa on human monocytes infected with Dengue Virus-2.

    PubMed

    Reis, Sonia Regina I N; Valente, Ligia M M; Sampaio, André L; Siani, Antonio C; Gandini, Mariana; Azeredo, Elzinandes L; D'Avila, Luiz A; Mazzei, José L; Henriques, Maria das Graças M; Kubelka, Claire F

    2008-03-01

    Uncaria tomentosa (Willd.) DC., a large woody vine native to the Amazon and Central American rainforests has been used medicinally by indigenous peoples since ancient times and has scientifically proven immunomodulating, anti-inflammatory, cytotoxic and antioxidant activities. Several inflammatory mediators that are implicated in vascular permeability and shock are produced after Dengue Virus (DENV) infection by monocytes, the primary targets for virus replication. Here we assessed the immunoregulatory and antiviral activities from U. tomentosa-derived samples, which were tested in an in vitro DENV infection model. DENV-2 infected human monocytes were incubated with U. tomentosa hydro-alcoholic extract or either its pentacyclic oxindole alkaloid-enriched or non-alkaloid fractions. The antiviral activity was determined by viral antigen (DENV-Ag) detection in monocytes by flow cytometry. Our results demonstrated an in vitro inhibitory activity by both extract and alkaloidal fraction, reducing DENV-Ag+ cell rates in treated monocytes. A multiple microbead immunoassay was applied for cytokine determination (TNF-alpha, IFN-alpha, IL-6 and IL-10) in infected monocyte culture supernatants. The alkaloidal fraction induced a strong immunomodulation: TNF-alpha and IFN-alpha levels were significantly decreased and there was a tendency towards IL-10 modulation. We conclude that the alkaloidal fraction was the most effective in reducing monocyte infection rates and cytokine levels. The antiviral and immunomodulating in vitro effects from U. tomentosa pentacyclic oxindole alkaloids displayed novel properties regarding therapeutic procedures in Dengue Fever and might be further investigated as a promising candidate for clinical application.

  15. An autoinhibitory mechanism modulates MAVS activity in antiviral innate immune response

    PubMed Central

    Shi, Yuheng; Yuan, Bofeng; Qi, Nan; Zhu, Wenting; Su, Jingru; Li, Xiaoyan; Qi, Peipei; Zhang, Dan; Hou, Fajian

    2015-01-01

    In response to virus infection, RIG-I senses viral RNA and activates the adaptor protein MAVS, which then forms prion-like filaments and stimulates a specific signalling pathway leading to type I interferon production to restrict virus proliferation. However, the mechanisms by which MAVS activity is regulated remain elusive. Here we identify distinct regions of MAVS responsible for activation of transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). These IRF3- and NF-κB-stimulating regions recruit preferential TNF receptor-associated factors (TRAFs) for downstream signalling. Strikingly, these regions' activities are inhibited by their respective adjacent regions in quiescent MAVS. Our data thus show that an autoinhibitory mechanism modulates MAVS activity in unstimulated cells and, on viral infection, individual regions of MAVS are released following MAVS filament formation to activate antiviral signalling cascades. PMID:26183716

  16. A Novel Iminosugar UV-12 with Activity against the Diverse Viruses Influenza and Dengue (Novel Iminosugar Antiviral for Influenza and Dengue)

    PubMed Central

    Warfield, Kelly L.; Plummer, Emily; Alonzi, Dominic S.; Wolfe, Gary W.; Sampath, Aruna; Nguyen, Tam; Butters, Terry D.; Enterlein, Sven G.; Stavale, Eric J.; Shresta, Sujan; Ramstedt, Urban

    2015-01-01

    Iminosugars are capable of targeting the life cycles of multiple viruses by blocking host endoplasmic reticulum α-glucosidase enzymes that are required for competent replication of a variety of enveloped, glycosylated viruses. Iminosugars as a class are approved for use in humans with diseases such as diabetes and Gaucher’s disease, providing evidence for safety of this class of compounds. The in vitro antiviral activity of iminosugars has been described in several publications with a subset of these demonstrating in vivo activity against flaviviruses, herpesviruses, retroviruses and filoviruses. Although there is compelling non-clinical in vivo evidence of antiviral efficacy, the efficacy of iminosugars as antivirals has yet to be demonstrated in humans. In the current study, we report a novel iminosugar, UV-12, which has efficacy against dengue and influenza in mouse models. UV-12 exhibits drug-like properties including oral bioavailability and good safety profile in mice and guinea pigs. UV-12 is an example of an iminosugar with activity against multiple virus families that should be investigated in further safety and efficacy studies and demonstrates potential value of this drug class as antiviral therapeutics. PMID:25984714

  17. Arginine-rich histones have strong antiviral activity for influenza A viruses.

    PubMed

    Hoeksema, Marloes; Tripathi, Shweta; White, Mitchell; Qi, Li; Taubenberger, Jeffery; van Eijk, Martin; Haagsman, Henk; Hartshorn, Kevan L

    2015-10-01

    While histones are best known for DNA binding and transcription-regulating properties, they also have antimicrobial activity against a broad range of potentially pathogenic organisms. Histones are abundant in neutrophil extracellular traps, where they play an important role in NET-mediated antimicrobial killing. Here, we show anti-influenza activity of histones against both seasonal H3N2 and H1N1, but not pandemic H1N1. The arginine rich histones, H3 and H4, had greater neutralizing and viral aggregating activity than the lysine rich histones, H2A and H2B. Of all core histones, histone H4 is most potent in neutralizing IAV, and incubation with IAV with histone H4 results in a decrease in uptake and viral replication by epithelial cells when measured by qRT-PCR. The antiviral activity of histone H4 is mediated principally by direct effects on viral particles. Histone H4 binds to IAV as assessed by ELISA and co-sedimentation of H4 with IAV. H4 also induces aggregation, as assessed by confocal microscopy and light transmission assays. Despite strong antiviral activity against the seasonal IAV strains, H4 was inactive against pandemic H1N1. These findings indicate a possible role for histones in the innate immune response against IAV.

  18. Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity

    PubMed Central

    Li, Lian-Feng; Yu, Jiahui; Li, Yongfeng; Wang, Jinghan; Li, Su; Zhang, Lingkai; Xia, Shui-Li; Yang, Qian; Wang, Xiao; Yu, Shaoxiong; Luo, Yuzi; Sun, Yuan; Zhu, Yan; Munir, Muhammad

    2016-01-01

    , including interferon-stimulated genes (ISGs), have been characterized. Using a minilibrary of porcine ISGs, we identify porcine guanylate-binding protein 1 (GBP1) as a potent antiviral ISG against CSFV. We further show that the anti-CSFV action of GBP1 depends on its GTPase activity. The K51 of GBP1, critical for its GTPase activity, is essential for the antiviral action of GBP1 against CSFV replication, and the binding of the NS5A protein to GBP1 antagonizes the GTPase activity and thus the antiviral effect. This study will facilitate the development of anti-CSFV therapeutic agents by targeting host factors and may provide a new strategy for the control of CSF. PMID:26889038

  19. Functional diversity of anti-lipopolysaccharide factor isoforms in shrimp and their characters related to antiviral activity.

    PubMed

    Li, Shihao; Guo, Shuyue; Li, Fuhua; Xiang, Jianhai

    2015-05-01

    Anti-lipopolysaccharide factor (ALF) is a small protein with broad-spectrum antimicrobial activity, which has potential application in the disease control. Previously, we isolated seven ALF isoforms from the Chinese shrimp Fenneropenaeus chinensis. In the present study, their distributions in tissues of shrimp were analyzed and the data showed that different isoforms had different expression profiles, which suggested that they might have different functions. Then, the functions of different isoforms were studied by analyzing the antibacterial and antiviral activities of the functional domain of ALFs, the LPS-binding domain (LBD), which were synthesized by chemical methods. Different ALFs showed distinct antibacterial and antiviral activities, which were consistent with their diverse tissue distribution patterns. Sequence analysis on the LBD domain of different isoforms revealed that an identical lysine residue site was specifically conserved in peptides with anti-WSSV activity. In order to confirm whether this lysine residue is critical to the antiviral activity of the peptide, new peptides were synthesized by changing residues at this site. Changing the lysine residue at the specific site to other amino acid residue, the antiviral activity of the peptide apparently decreased. While replacing other residue with a lysine residue at this site in LBD peptide without anti-WSSV activity, the peptide will obtain the antiviral activity to WSSV. These results not only showed us a comprehensive understanding on the function of ALFs from F. chinensis, but also provided clues for the development of ALFs as potential therapeutic drugs to WSSV. PMID:25923317

  20. Functional Diversity of Anti-Lipopolysaccharide Factor Isoforms in Shrimp and Their Characters Related to Antiviral Activity

    PubMed Central

    Li, Shihao; Guo, Shuyue; Li, Fuhua; Xiang, Jianhai

    2015-01-01

    Anti-lipopolysaccharide factor (ALF) is a small protein with broad-spectrum antimicrobial activity, which has potential application in the disease control. Previously, we isolated seven ALF isoforms from the Chinese shrimp Fenneropenaeus chinensis. In the present study, their distributions in tissues of shrimp were analyzed and the data showed that different isoforms had different expression profiles, which suggested that they might have different functions. Then, the functions of different isoforms were studied by analyzing the antibacterial and antiviral activities of the functional domain of ALFs, the LPS-binding domain (LBD), which were synthesized by chemical methods. Different ALFs showed distinct antibacterial and antiviral activities, which were consistent with their diverse tissue distribution patterns. Sequence analysis on the LBD domain of different isoforms revealed that an identical lysine residue site was specifically conserved in peptides with anti-WSSV activity. In order to confirm whether this lysine residue is critical to the antiviral activity of the peptide, new peptides were synthesized by changing residues at this site. Changing the lysine residue at the specific site to other amino acid residue, the antiviral activity of the peptide apparently decreased. While replacing other residue with a lysine residue at this site in LBD peptide without anti-WSSV activity, the peptide will obtain the antiviral activity to WSSV. These results not only showed us a comprehensive understanding on the function of ALFs from F. chinensis, but also provided clues for the development of ALFs as potential therapeutic drugs to WSSV. PMID:25923317

  1. Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.

    PubMed

    Painter, Meghan M; Morrison, James H; Zoecklein, Laurie J; Rinkoski, Tommy A; Watzlawik, Jens O; Papke, Louisa M; Warrington, Arthur E; Bieber, Allan J; Matchett, William E; Turkowski, Kari L; Poeschla, Eric M; Rodriguez, Moses

    2015-12-01

    For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP), in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs) and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3) established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection. PMID:26633895

  2. Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.

    PubMed

    Painter, Meghan M; Morrison, James H; Zoecklein, Laurie J; Rinkoski, Tommy A; Watzlawik, Jens O; Papke, Louisa M; Warrington, Arthur E; Bieber, Allan J; Matchett, William E; Turkowski, Kari L; Poeschla, Eric M; Rodriguez, Moses

    2015-12-01

    For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP), in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs) and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3) established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection.

  3. Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity

    PubMed Central

    Painter, Meghan M.; Morrison, James H.; Zoecklein, Laurie J.; Rinkoski, Tommy A.; Watzlawik, Jens O.; Papke, Louisa M.; Warrington, Arthur E.; Bieber, Allan J.; Matchett, William E.; Turkowski, Kari L.; Poeschla, Eric M.; Rodriguez, Moses

    2015-01-01

    For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP), in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs) and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3) established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection. PMID:26633895

  4. In vivo and in vitro studies on the antiviral activities of viperin against influenza H1N1 virus infection.

    PubMed

    Tan, Kai Sen; Olfat, Farzad; Phoon, Meng Chee; Hsu, Jung Pu; Howe, Josephine L C; Seet, Ju Ee; Chin, Keh Chuang; Chow, Vincent T K

    2012-06-01

    Influenza A virus has caused a number of pandemics in past decades, including the recent H1N1-2009 pandemic. Viperin is an interferon (IFN)-inducible protein of innate immunity, and acts as a broad-spectrum antiviral protein. We explored the antiviral activities and mechanisms of viperin during influenza virus (IFV) infection in vitro and in vivo. Wild-type (WT) HeLa and viperin-expressing HeLa cells were infected with influenza A/WSN/33/H1N1 (WSN33) virus, and subjected to virological, light and electron microscopic analyses. Viperin expression reduced virus replication and titres, and restricted viral budding. Young and old viperin-knockout (KO) mice and WT control animals were challenged with influenza WSN33 at lethal doses of 10(3) and 10(4) p.f.u. via the intratracheal route. Lungs were subjected to histopathological, virological and molecular studies. Upon lethal IFV challenge, both WT and KO mice revealed similar trends of infection and recovery with similar mortality rates. Viral quantification assay and histopathological evaluation of lungs from different time points showed no significant difference in viral loads and lung damage scores between the two groups of mice. Although the in vitro studies demonstrated the ability of viperin to restrict influenza H1N1 virus replication, the viperin-deficient mouse model indicated that absence of viperin enhanced neither the viral load nor pulmonary damage in the lungs of infected mice. This may be due to the compensation of IFN-stimulated genes in the lungs and/or the influenza non-structural protein 1-mediated IFN antagonism dampening the IFN response, thereby rendering the loss of viperin insignificant. Nevertheless, further investigations that exploit the antiviral mechanisms of viperin as prophylaxis are still warranted.

  5. Synthesis, antiviral activity, and bioavailability studies of gamma-lactam derived HIV protease inhibitors.

    PubMed

    Hungate, R W; Chen, J L; Starbuck, K E; Vacca, J P; McDaniel, S L; Levin, R B; Dorsey, B D; Guare, J P; Holloway, M K; Whitter, W

    1994-09-01

    Incorporation of a gamma-lactam in hydroxyethylene isosteres results in modest inhibitors of HIV-1 protease. Additional structural activity studies have produced significantly more potent inhibitors with the introduction of the trisubstituted cyclopentane (see compound 20) as the optimum substituent for the C-terminus. This new amino acid amide surrogate can be readily prepared in large scale from (R)-pulegone. Optimized compounds (36) and (60) are potent antiviral agents and are well absorbed (15-20%) in a dog model after oral administration. PMID:7712123

  6. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    SciTech Connect

    Pei, Ying; Chen, Zhen-Ping; Ju, Huai-Qiang; Komatsu, Masaaki; Ji, Yu-hua; Liu, Ge; Guo, Chao-wan; Zhang, Ying-Jun; Yang, Chong-Ren; Wang, Yi-Fei; Kitazato, Kaio

    2011-02-11

    Research highlights: {yields} We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. {yields} Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. {yields} Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impaired significantly in MEF-atg7{sup -/-} cells (autophagy-defective cells) derived from an atg7{sup -/-} knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.

  7. Evidence that the major hemolymph protein of the Pacific oyster, Crassostrea gigas, has antiviral activity against herpesviruses.

    PubMed

    Green, Timothy J; Robinson, Nick; Chataway, Tim; Benkendorff, Kirsten; O'Connor, Wayne; Speck, Peter

    2014-10-01

    Viruses belonging to the family Malacoherpesviridae currently pose a serious threat to global production of the Pacific oyster, Crassostrea gigas. Hemolymph extracts from C. gigas are known to have potent antiviral activity. The compound(s) responsible for this broad-spectrum antiviral activity in oyster hemolymph have not been identified. The objective of this study was to identify these antiviral compound(s) and establish whether hemolymph antiviral activity is under genetic control in the Australian C. gigas population. Hemolymph antiviral activity of 18 family lines of C. gigas were assayed using a herpes simplex virus type 1 (HSV-1) and Vero cell plaque reduction assay. Differences in anti-HSV-1 activity between the family lines were observed (p<0.001) with heritability estimated to be low (h(2)=0.21). A glycoprotein that inhibits HSV-1 replication was identified by resolving oyster hemolymph by native-polyacrylamide gel electrophoresis (PAGE) and assaying extracted protein fractions using the HSV-1 and Vero cell plaque assay. Highest anti-HSV-1 activity corresponded with an N-linked glycoprotein with an estimated molecular mass of 21kDa under non-reducing SDS-PAGE conditions. Amino acid sequencing by tandem mass spectrometry revealed this protein matched the major hemolymph protein, termed cavortin. Our results provide further evidence that cavortin is a multifunctional protein involved in immunity and that assays associated with its activity might be useful for marker-assisted selection of disease resistant oysters. PMID:25169112

  8. Novel analogs of alloferon: Synthesis, conformational studies, pro-apoptotic and antiviral activity.

    PubMed

    Kuczer, Mariola; Czarniewska, Elżbieta; Majewska, Anna; Różanowska, Maria; Rosiński, Grzegorz; Lisowski, Marek

    2016-06-01

    In this study, we report the structure-activity relationships of novel derivatives of the insect peptide alloferon (H-His-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly-OH). The peptide structure was modified by exchanging His at position 9 or 12 for natural or non-natural amino acids. Biological properties of these peptides were determined in antiviral in vitro test against Human Herpes Virus 1 McIntrie strain (HHV-1MC) using a Vero cell line. The peptides were also evaluated for the pro-apoptotic action in vivo on hemocytes of the Tenebrio molitor beetle. Additionally, the structural properties of alloferon analogs were examined by the circular dichroism in water and methanol. It was found that most of the evaluated peptides can reduce the HHV-1 titer in Vero cells. [Ala(9)]-alloferon exhibits the strongest antiviral activity among the analyzed compounds. However, no cytotoxic activity against Vero cell line was observed for all the studied peptides. In vivo assays with hemocytes of T. molitor showed that [Lys(9)]-, [Phg(9)]-, [Lys(12)]-, and [Phe(12)]-alloferon exhibit a twofold increase in caspases activity in comparison with the native peptide. The CD conformational studies indicate that the investigated peptides seem to prefer the unordered conformation. PMID:26986636

  9. Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica.

    PubMed

    Mandal, Pinaki; Mateu, Cecilia Gabriela; Chattopadhyay, Kausik; Pujol, Carlos Alberto; Damonte, Elsa Beatriz; Ray, Bimalendu

    2007-01-01

    Natural compounds offer interesting pharmacological perspectives for antiviral drug development. In this study, we have analysed sulphated-fucan-containing fractions isolated from the brown seaweed Cystoseira indica. The crude water extract (CiWE) and the main fraction (CiF3) obtained by anion exchange chromatography had potent antiviral activity against herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) without cytotoxicity for Vero cell cultures. Furthermore, they had no direct inactivating effect on virions in a virucidal assay, and lacked anticoagulant activity. The mode of action of these compounds could be mainly ascribed to an inhibitory effect on virus adsorption. Chemical, chromatographic and spectroscopic methods showed that the major polysaccharide had an apparent molecular mass of 35 kDa and contained a backbone of alpha-(1 --> 3)-linked fucopyranosyl residues substituted at C-2 with fucopyranosyl and xylopyranosyl residues. This sulphated fucan, considered the active principle of the C. indica water extract, also contained variously linked xylose and galactose units and glucuronic acid residues. Sulphate groups, if present, are located mostly at C-4 of (1 --> 3)-linked fucopyranosyl units, and appeared to be very important for the anti-herpetic activity of this polymer. PMID:17626599

  10. Antiviral Effect of Agaricomycetes Mushrooms (Review).

    PubMed

    Teplyakova, Tamara V; Kosogova, Tatiana A

    2016-01-01

    This review presents data on the studied antiviral activities of Agaricomycetes mushrooms against the herpes, West Nile, influenza, human immunodeficiency, and hepatitis viruses, as well as orthopoxviruses, including the variola virus. Polysaccharides and other compounds (e.g., proteins, glycoproteins, terpenoids, melanins, nucleosides) exhibit antiviral activity against many viruses that are pathogenic in humans. Effective strains isolated from wild mushrooms in culture represent promising objects for the development of biotechnological drugs, including ones possessing antiviral activity. The data on antitumor and antiviral activities of compounds from the same mushroom species indicate the correlation of these properties. With regard to this connection, preparations of Basidiomycetes may have prophylactic value in preventing cancers with a viral etiology. PMID:27649599

  11. The antiviral drug ganciclovir does not inhibit microglial proliferation and activation

    PubMed Central

    Skripuletz, Thomas; Salinas Tejedor, Laura; Prajeeth, Chittappen K.; Hansmann, Florian; Chhatbar, Chintan; Kucman, Valeria; Zhang, Ning; Raddatz, Barbara B.; Detje, Claudia N.; Sühs, Kurt-Wolfram; Pul, Refik; Gudi, Viktoria; Kalinke, Ulrich; Baumgärtner, Wolfgang; Stangel, Martin

    2015-01-01

    Ganciclovir is effective in the treatment of human infections with viruses of the Herpesviridae family. Beside antiviral properties, recently ganciclovir was described to inhibit microglial proliferation and disease severity of experimental autoimmune encephalomyelitis, an inflammatory model of multiple sclerosis. Microglial activation and proliferation are main characteristics of neuroinflammatory CNS diseases and inhibition of microglial functions might be beneficial in autoimmune diseases, or detrimental in infectious diseases. The objective of this study was to determine potential inhibitory effects of ganciclovir in three different murine animal models of CNS neuroinflammation in which microglia play an important role: Theiler´s murine encephalomyelitis, the cuprizone model of de- and remyelination, and the vesicular stomatitis virus encephalitis model. In addition, in vitro experiments with microglial cultures were performed to test the hypothesis that ganciclovir inhibits microglial proliferation. In all three animal models, neither microglial proliferation or recruitment nor disease activity was changed by ganciclovir. In vitro experiments confirmed that microglial proliferation was not affected by ganciclovir. In conclusion, our results show that the antiviral drug ganciclovir does not inhibit microglial activation and proliferation in the murine CNS. PMID:26447351

  12. Identification of natural compounds with antiviral activities against SARS-associated coronavirus.

    PubMed

    Li, Shi-You; Chen, Cong; Zhang, Hai-Qing; Guo, Hai-Yan; Wang, Hui; Wang, Lin; Zhang, Xiang; Hua, Shi-Neng; Yu, Jun; Xiao, Pei-Gen; Li, Rong-Song; Tan, Xuehai

    2005-07-01

    More than 200 Chinese medicinal herb extracts were screened for antiviral activities against Severe Acute Respiratory Syndrome-associated coronavirus (SARS-CoV) using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) assay for virus-induced cytopathic effect (CPE). Four of these extracts showed moderate to potent antiviral activities against SARS-CoV with 50% effective concentration (EC50) ranging from 2.4 +/- 0.2 to 88.2 +/- 7.7 microg/ml. Out of the four, Lycoris radiata was most potent. To identify the active component, L. radiata extract was subjected to further fractionation, purification, and CPE/MTS assays. This process led to the identification of a single substance lycorine as an anti-SARS-CoV component with an EC50 value of 15.7 +/- 1.2 nM. This compound has a CC50 value of 14980.0 +/- 912.0 nM in cytotoxicity assay and a selective index (SI) greater than 900. The results suggested that four herbal extracts and the compound lycorine are candidates for the development of new anti-SARS-CoV drugs in the treatment of SARS. PMID:15885816

  13. [Synthesis, conformation, and spectroscopy of nucleoside analogues concerning their antiviral activity].

    PubMed

    Kuśmierek, Jarosław T; Stolarski, Ryszard

    2015-01-01

    Chemically modified analogues of nucleosides and nucleotides, have been thoroughly investigated since the discovery of DNA double helix by Watson and Crick in 1953 (Nature 171: 737). Chemical structures, first of all tautomerism, of the nucleic acid bases, as well as the conformations of the nucleic acids constituents, determine the secondary and tertiary structures of DNA and RNA polymers. Similarly, structural and dynamic parameters of nucleoside derivatives determine their biological activity in mutagenesis, neoplastic transformation, as well as antiviral or anticancer properties. In this review, a multidisciplinary approach of Prof. David Shugar's group is presented in the studies on nucleosides and nucleotides. It consists in chemical syntheses of suitable analogues, measurements of physicochemical and spectral parameters, conformational analysis by means of nuclear magnetic resonance (NMR) and X-ray diffraction, as well as characteristics of the nucleoside analogues as inhibitors of some selected, target enzymes, crucial in respect to antiviral activity of the analogues. These long-lasting studies follows upon the line of the main paradigm of molecular biophysics, i. e. structure-activity relationship. PMID:26677575

  14. The antiviral drug ganciclovir does not inhibit microglial proliferation and activation.

    PubMed

    Skripuletz, Thomas; Salinas Tejedor, Laura; Prajeeth, Chittappen K; Hansmann, Florian; Chhatbar, Chintan; Kucman, Valeria; Zhang, Ning; Raddatz, Barbara B; Detje, Claudia N; Sühs, Kurt-Wolfram; Pul, Refik; Gudi, Viktoria; Kalinke, Ulrich; Baumgärtner, Wolfgang; Stangel, Martin

    2015-01-01

    Ganciclovir is effective in the treatment of human infections with viruses of the Herpesviridae family. Beside antiviral properties, recently ganciclovir was described to inhibit microglial proliferation and disease severity of experimental autoimmune encephalomyelitis, an inflammatory model of multiple sclerosis. Microglial activation and proliferation are main characteristics of neuroinflammatory CNS diseases and inhibition of microglial functions might be beneficial in autoimmune diseases, or detrimental in infectious diseases. The objective of this study was to determine potential inhibitory effects of ganciclovir in three different murine animal models of CNS neuroinflammation in which microglia play an important role: Theiler´s murine encephalomyelitis, the cuprizone model of de- and remyelination, and the vesicular stomatitis virus encephalitis model. In addition, in vitro experiments with microglial cultures were performed to test the hypothesis that ganciclovir inhibits microglial proliferation. In all three animal models, neither microglial proliferation or recruitment nor disease activity was changed by ganciclovir. In vitro experiments confirmed that microglial proliferation was not affected by ganciclovir. In conclusion, our results show that the antiviral drug ganciclovir does not inhibit microglial activation and proliferation in the murine CNS. PMID:26447351

  15. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins

    PubMed Central

    Rebensburg, Stephanie; Helfer, Markus; Schneider, Martha; Koppensteiner, Herwig; Eberle, Josef; Schindler, Michael; Gürtler, Lutz; Brack-Werner, Ruth

    2016-01-01

    Novel therapeutic options are urgently needed to improve global treatment of virus infections. Herbal products with confirmed clinical safety features are attractive starting material for the identification of new antiviral activities. Here we demonstrate that Cistus incanus (Ci) herbal products inhibit human immunodeficiency virus (HIV) infections in vitro. Ci extract inhibited clinical HIV-1 and HIV-2 isolates, and, importantly, a virus isolate with multiple drug resistances, confirming broad anti-HIV activity. Antiviral activity was highly selective for virus particles, preventing primary attachment of the virus to the cell surface and viral envelope proteins from binding to heparin. Bioassay-guided fractionation indicated that Ci extract contains numerous antiviral compounds and therefore has favorably low propensity to induce virus resistance. Indeed, no resistant viruses emerged during 24 weeks of continuous propagation of the virus in the presence of Ci extracts. Finally, Ci extracts also inhibited infection by virus particles pseudotyped with Ebola and Marburg virus envelope proteins, indicating that antiviral activity of Ci extract extends to emerging viral pathogens. These results demonstrate that Ci extracts show potent and broad in vitro antiviral activity against viruses that cause life-threatening diseases in humans and are promising sources of agents that target virus particles. PMID:26833261

  16. Potent Antiviral Activities of the Direct-Acting Antivirals ABT-493 and ABT-530 with Three-Day Monotherapy for Hepatitis C Virus Genotype 1 Infection

    PubMed Central

    O'Riordan, William D.; Asatryan, Armen; Freilich, Bradley L.; Box, Terry D.; Overcash, J. Scott; Lovell, Sandra; Ng, Teresa I.; Liu, Wei; Campbell, Andrew; Lin, Chih-Wei; Yao, Betty; Kort, Jens

    2015-01-01

    ABT-493 is a hepatitis C virus (HCV) nonstructural (NS) protein 3/4A protease inhibitor, and ABT-530 is an HCV NS5A inhibitor. These direct-acting antivirals (DAAs) demonstrated potent antiviral activity against major HCV genotypes and high barriers to resistance in vitro. In this open-label dose-ranging trial, antiviral activity and safety were assessed during 3 days of monotherapy with ABT-493 or ABT-530 in treatment-naive adults with HCV genotype 1 infection, with or without compensated cirrhosis. The presence of baseline resistance-associated variants (RAVs) was also evaluated. The mean maximal decreases in HCV RNA levels from baseline were approximately 4 log10 IU/ml for all ABT-493 doses ranging from 100 mg to 700 mg and for ABT-530 doses of ≥40 mg. There were no meaningful differences in viral load declines for patients with versus without compensated cirrhosis. Twenty-four (50%) of the baseline samples from patients treated with ABT-493 had RAVs to NS3/4A protease inhibitors. Among 40 patients treated with ABT-530, 6 (15%) carried baseline RAVs to NS5A inhibitors. Viral load declines in patients with single baseline NS5A RAVs were similar to those in patients without RAVs. One patient harbored baseline RAVs at 3 NS5A positions and appeared to have a slightly less robust viral load decline on day 3 of monotherapy. No serious or grade 3 (severe) or higher adverse events and no clinically relevant laboratory abnormalities were observed with either compound. ABT-493 and ABT-530 demonstrated potent antiviral activity and acceptable safety during 3-day monotherapy in patients with HCV genotype 1 infection, with or without compensated cirrhosis. Based on these results, phase II studies assessing the combination of these DAAs for the treatment of chronic HCV infection in patients with or without compensated cirrhosis have been initiated. (This study has been registered at ClinicalTrials.gov under registration no. NCT01995071.) PMID:26711747

  17. Bovine and water buffalo Mx2 genes: polymorphism and antiviral activity.

    PubMed

    Babiker, H A E; Nakatsu, Y; Yamada, K; Yoneda, A; Takada, A; Ueda, J; Hata, H; Watanabe, T

    2007-01-01

    Millennia-long selective pressure of single-strand RNA viruses on the bovine Mx locus has increased the advantages of using the bovine Mx protein to evaluate the ultimate significance of the antiviral role of Mx proteins. The conclusions of research based only on the bovine Mx1 protein showed the need for comprehensive studies that demonstrate the role of all isoforms, individually or together, especially in the presence of a second isoform, the bovine Mx2 gene. This study provides information about bovine and water buffalo Mx2 genes, as well as their allelic polymorphism and basic antiviral potential. Observation of an Mx2 cDNA sequence (2,381 bp) obtained from 15 animals from 11 breeds using primers based on a previous sequence (NCBI accession no. AF335147) revealed several nucleotide substitutions, with eight different alleles and two amino acid exchanges: Gly to Ser at position 302 and Ile to Val at position 354, though the latter was found only in the NCBI database. A water buffalo Mx2 cDNA sequence was identified for the first time, revealing 46 nucleotide substitutions with 12 amino acid variations, in addition to a 9-bp insertion in the 5' untranslated region UTR, compared with the bovine Mx2 cDNA. Transfected 3T3 cells expressing bovine Mx2 mRNAs coding Gly or Ser at position 302, water buffalo Mx2 mRNA, positive control bovine Mx1 mRNA-expressing cells, and negative control parental 3T3 were subjected to infection with recombinant vesicular stomatitis virus (VSVDeltaG*-G), as were empty pCI-neo vector-transfected cells. The positive control and all cells expressing Mx2 mRNAs displayed significantly higher levels of antiviral activity against VSVDeltaG*-G (P < 0.01) than did the negative controls.

  18. Spliceosome SNRNP200 Promotes Viral RNA Sensing and IRF3 Activation of Antiviral Response

    PubMed Central

    Tremblay, Nicolas; Baril, Martin; Chatel-Chaix, Laurent; Es-Saad, Salwa; Park, Alex Young; Koenekoop, Robert K.; Lamarre, Daniel

    2016-01-01

    Spliceosomal SNRNP200 is a Ski2-like RNA helicase that is associated with retinitis pigmentosa 33 (RP33). Here we found that SNRNP200 promotes viral RNA sensing and IRF3 activation through the ability of its amino-terminal Sec63 domain (Sec63-1) to bind RNA and to interact with TBK1. We show that SNRNP200 relocalizes into TBK1-containing cytoplasmic structures upon infection, in contrast to the RP33-associated S1087L mutant, which is also unable to rescue antiviral response of SNRNP200 knockdown cells. This functional rescue correlates with the Sec63-1-mediated binding of viral RNA. The hindered IFN-β production of knockdown cells was further confirmed in peripheral blood cells of RP33 patients bearing missense mutation in SNRNP200 upon infection with Sendai virus (SeV). This work identifies a novel immunoregulatory role of the spliceosomal SNRNP200 helicase as an RNA sensor and TBK1 adaptor for the activation of IRF3-mediated antiviral innate response. PMID:27454487

  19. Antiviral Activity of Sulfated Polysaccharide of Adenanthera pavonina against Poliovirus in HEp-2 Cells

    PubMed Central

    de Godoi, Ananda Marques; Faccin-Galhardi, Lígia Carla; Lopes, Nayara; de Almeida, Raimundo Rafael; Ricardo, Nágila Maria Pontes Silva; Nozawa, Carlos; Linhares, Rosa Elisa Carvalho

    2014-01-01

    Adenanthera pavonina, popularly known as red-bead tree, carolina, pigeon's eye, and dragon's eye, is a plant traditionally used in Brazil for the treatment of several diseases. The present study aimed at evaluating the activity of sulfated polysaccharide from the Adenanthera pavonina (SPLSAp) seeds against poliovirus type 1 (PV-1) in HEp-2 cell cultures. The SPLSAp presented a cytotoxic concentration (CC50) of 500 μg/mL in HEp-2 cell cultures, evaluated by the dimethylthiazolyl-diphenyltetrazolium bromide method (MTT). The SPLSAp exhibited a significant antiviral activity, with a 50% inhibitory concentration (IC50) of 1.18 µg/mL, determined by plaque reduction assay and a high selectivity index (SI) of 423. The maximum inhibition (100%) of PV replication was found when the SPLSAp treatment was concomitant with viral infection (time 0 h), at all tested concentrations. The maximal inhibition was also found when the SPLSAp was used 1 h and 2 h postinfection, albeit at 50 μg/mL and 100 μg/mL. Therefore, we demonstrated that the SPLSAp inhibited PV growth. We also suggested that SPLSAp inhibited PV in more than one step of the replication, as the mechanism of antiviral action. We, therefore, selected the compound as a potential candidate for further development towards the control of the infection. PMID:25221609

  20. Essential Oil Composition, Antioxidant, Cytotoxic and Antiviral Activities of Teucrium pseudochamaepitys Growing Spontaneously in Tunisia.

    PubMed

    Hammami, Saoussen; Jmii, Habib; El Mokni, Ridha; Khmiri, Abdelbaki; Faidi, Khaled; Dhaouadi, Hatem; El Aouni, Mohamed Hédi; Aouni, Mahjoub; Joshi, Rajesh K

    2015-01-01

    The chemical composition, antioxidant, cytotoxic and antiviral activities of the essential oil obtained by hydrodistillation from the aerial parts of Teucrium pseudochamaepitys (Lamiaceae) collected from Zaghouan province of Tunisia are reported. The essential oil was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS). Thirty-one compounds were identified representing 88.6% of the total essential oil. Hexadecanoic acid was found to be the most abundant component (26.1%) followed by caryophyllene oxide (6.3%), myristicin (4.9%) and α-cubebene (3.9%). The antioxidant capacity of the oil was measured on the basis of the scavenging activity to the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH). The IC50 value of the oil was evaluated as 0.77 mg·mL(-1). In addition, the essential oil was found to possess moderate cytotoxic effects on the HEp-2 cell line (50% cytotoxic concentration (CC50)=653.6 µg·mL(-1)). The potential antiviral effect was tested against Coxsackievirus B (CV-B), a significant human and mouse pathogen that causes pediatric central nervous system disease, commonly with acute syndromes. The reduction of viral infectivity by the essential oil was measured using a cytopathic (CPE) reduction assay. PMID:26580590

  1. Anti-tumor and anti-viral activities of Galanthus nivalis agglutinin (GNA)-related lectins.

    PubMed

    Wu, Lei; Bao, Jin-Ku

    2013-04-01

    Galanthus nivalis agglutinin (GNA)-related lectin family, a superfamily of strictly mannose-binding specific lectins widespread among monocotyledonous plants, is well-known to possess a broad range of biological functions such as anti-tumor, anti-viral and anti-fungal activities. Herein, we mainly focused on exploring the precise molecular mechanisms by which GNA-related lectins induce cancer cell apoptotic and autophagic death targeting mitochondria-mediated ROS-p38-p53 apoptotic or autophagic pathway, Ras-Raf and PI3K-Akt anti-apoptotic or anti-autophagic pathways. In addition, we further discussed the molecular mechanisms of GNA-related lectins exerting anti-viral activities by blocking the entry of the virus into its target cells, preventing transmission of the virus as well as forcing virus to delete glycan in its envelope protein and triggering neutralizing antibody. In conclusion, these findings may provide a new perspective of GNA-related lectins as potential drugs for cancer and virus therapeutics in the future.

  2. Broad-spectrum antiviral activity of carbodine, the carbocyclic analogue of cytidine.

    PubMed

    De Clercq, E; Bernaerts, R; Shealy, Y F; Montgomery, J A

    1990-01-15

    Carbocyclic cytidine (C-Cyd) is a broad-spectrum antiviral agent active against DNA viruses [pox (vaccinia)], (+)RNA viruses [toga (Sindbis, Semliki forest), corona], (-)RNA viruses [orthomyxo (influenza), paramyxo (parainfluenza, measles), rhabdo (vesicular stomatitis)] and (+/-)RNA viruses (reo). The target enzyme of C-Cyd is supposed to be CTP synthetase that converts UTP to CTP. In keeping with this assumption are the observations that (i) C-Cyd effects a dose-dependent inhibition of RNA synthesis in both virus-infected and uninfected cells, and (ii) exogenous addition of either Urd or Cyd reverses both the antiviral and cytocidal activity of C-Cyd, whereas addition of dThd or dCyd fails to do so. The selectivity of C-Cyd against Sindbis, vesicular stomatitis and reo virus is markedly increased when C-Cyd is combined with Cyd (10 micrograms/mL). This combination may therefore be worth pursuing as a chemotherapeutic modality for the treatment of virus infections. PMID:1689159

  3. Essential Oil Composition, Antioxidant, Cytotoxic and Antiviral Activities of Teucrium pseudochamaepitys Growing Spontaneously in Tunisia.

    PubMed

    Hammami, Saoussen; Jmii, Habib; El Mokni, Ridha; Khmiri, Abdelbaki; Faidi, Khaled; Dhaouadi, Hatem; El Aouni, Mohamed Hédi; Aouni, Mahjoub; Joshi, Rajesh K

    2015-11-16

    The chemical composition, antioxidant, cytotoxic and antiviral activities of the essential oil obtained by hydrodistillation from the aerial parts of Teucrium pseudochamaepitys (Lamiaceae) collected from Zaghouan province of Tunisia are reported. The essential oil was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS). Thirty-one compounds were identified representing 88.6% of the total essential oil. Hexadecanoic acid was found to be the most abundant component (26.1%) followed by caryophyllene oxide (6.3%), myristicin (4.9%) and α-cubebene (3.9%). The antioxidant capacity of the oil was measured on the basis of the scavenging activity to the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH). The IC50 value of the oil was evaluated as 0.77 mg·mL(-1). In addition, the essential oil was found to possess moderate cytotoxic effects on the HEp-2 cell line (50% cytotoxic concentration (CC50)=653.6 µg·mL(-1)). The potential antiviral effect was tested against Coxsackievirus B (CV-B), a significant human and mouse pathogen that causes pediatric central nervous system disease, commonly with acute syndromes. The reduction of viral infectivity by the essential oil was measured using a cytopathic (CPE) reduction assay.

  4. New quaternary ammonium camphor derivatives and their antiviral activity, genotoxic effects and cytotoxicity.

    PubMed

    Sokolova, Anastasiya S; Yarovaya, Capital O Cyrilliclga I; Shernyukov, Capital A Cyrillicndrey V; Pokrovsky, Capital Em Cyrillicichail A; Pokrovsky, Capital A Cyrillicndrey G; Lavrinenko, Valentina A; Zarubaev, Vladimir V; Tretiak, Tatiana S; Anfimov, Pavel M; Kiselev, Oleg I; Beklemishev, Anatoly B; Salakhutdinov, Nariman F

    2013-11-01

    The synthesis and biological evaluation of a novel series of dimeric camphor derivatives are described. The resulting compounds were studied for their antiviral activity, cyto- and genotoxicity. Compounds 3a and 3d in which the quaternary nitrogen atoms are separated by the C5H10 and С9H18 aliphatic chain, exhibited the highest efficiency as an agent inhibiting the reproduction of the influenza virus A(H1N1)pdm09. The cytotoxicity data of compounds 3 and 4 revealed their moderate activity against malignant cell lines; compound 3f had the highest activity for the CEM-13 cells. These results show close agreement with the data of independent studies on toxicity of these compounds, in particular that the toxicity of compounds strongly depends on spacer length. PMID:23993669

  5. Total synthesis and antiviral activity of indolosesquiterpenoids from the xiamycin and oridamycin families

    PubMed Central

    Meng, Zhanchao; Yu, Haixin; Li, Li; Tao, Wanyin; Chen, Hao; Wan, Ming; Yang, Peng; Edmonds, David J.; Zhong, Jin; Li, Ang

    2015-01-01

    Indolosesquiterpenoids are a growing class of natural products that exhibit a wide range of biological activities. Here, we report the total syntheses of xiamycin A and oridamycins A and B, indolosesquiterpenoids isolated from Streptomyces. Two parallel strategies were exploited to forge the carbazole core: 6π-electrocyclization/aromatization and indole C2–H bond activation/Heck annulation. The construction of their trans-decalin motifs relied on two diastereochemically complementary radical cyclization reactions mediated by Ti(III) and Mn(III), respectively. The C23 hydroxyl of oridamycin B was introduced by an sp3 C–H bond oxidation at a late stage. On the basis of the chemistry developed, the dimeric congener dixiamycin C has been synthesized for the first time. Evaluation of the antiviral activity of these compounds revealed that xiamycin A is a potent agent against herpes simplex virus–1 (HSV-1) in vitro. PMID:25648883

  6. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    SciTech Connect

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn; Tajima, Shigeru; Hikono, Hirokazu; Saito, Takehiko; Aida, Yoko

    2014-07-18

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.

  7. Antiviral activity of Bifidobacterium adolescentis SPM1605 against Coxsackievirus B3

    PubMed Central

    Kim, Min Ji; Lee, Do Kyung; Park, Jae Eun; Park, Il Ho; Seo, Jae Gu; Ha, Nam Joo

    2014-01-01

    Bifidobacteria are considered one of the most beneficial probiotics and have been widely studied for their effects against specific pathogens. The present study investigated the antiviral activity of probiotics isolated from Koreans against Coxsackievirus B3 (CVB3). The effect of probiotic isolates against CVB3 was measured by the plaque assay and cellular toxicity of bifidobacteria in HeLa cells was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Among 13 probiotic isolates, 3 Bifidobacterium adolescentis, 2 Bifidobacterium longum and 1 Bifidobacterium pseudocatenulatum had an antiviral effect against CVB3, while the others did not show such effect. B. adolescentis SPM1605 showed the greatest inhibitory properties against CVB3. When the threshold cycle (CT) values for the treated B. adolescentis SPM1605 samples were compared to the results for the non-treated samples, it was shown that the amplified viral sequences from the CVB3 had their copy number lowered by B. adolescentis SPM1605. Moreover, the gene expression in infected HeLa cells was also inhibited by 50%. The results suggest that B. adolescentis SPM1605 suppresses CVB3 and could be used as an alternative therapy against infectious diseases caused by coxsackieviruses. PMID:26019554

  8. Antiviral activities of peptide-based covalent inhibitors of the Enterovirus 71 3C protease

    PubMed Central

    Tan, Yong Wah; Ang, Melgious Jin Yan; Lau, Qiu Ying; Poulsen, Anders; Ng, Fui Mee; Then, Siew Wen; Peng, Jianhe; Hill, Jeffrey; Hong, Wan Jin; Chia, Cheng San Brian; Chu, Justin Jang Hann

    2016-01-01

    Hand, Foot and Mouth Disease is a highly contagious disease caused by a range of human enteroviruses. Outbreaks occur regularly, especially in the Asia-Pacific region, putting a burden on public healthcare systems. Currently, there is no antiviral for treating this infectious disease and the only vaccines are limited to circulation in China, presenting an unmet medical need that needs to be filled urgently. The human enterovirus 3 C protease has been deemed a plausible drug target due to its essential roles in viral replication. In this study, we designed and synthesized 10 analogues of the Rhinovirus 3 C protease inhibitor, Rupintrivir, and tested their 3 C protease inhibitory activities followed by a cellular assay using human enterovirus 71 (EV71)-infected human RD cells. Our results revealed that a peptide-based compound containing a trifluoromethyl moiety to be the most potent analogue, with an EC50 of 65 nM, suggesting its potential as a lead for antiviral drug discovery. PMID:27645381

  9. Prolonged activation of innate antiviral gene signature after childbirth is determined by IFNL3 genotype.

    PubMed

    Price, Aryn A; Tedesco, Dana; Prasad, Mona R; Workowski, Kimberly A; Walker, Christopher M; Suthar, Mehul S; Honegger, Jonathan R; Grakoui, Arash

    2016-09-20

    Maternal innate and adaptive immune responses are modulated during pregnancy to concurrently defend against infection and tolerate the semiallogeneic fetus. The restoration of these systems after childbirth is poorly understood. We reasoned that enhanced innate immune activation may extend beyond gestation while adaptive immunity recovers. To test this hypothesis, the transcriptional profiles of total peripheral blood mononuclear cells following delivery in healthy women were compared with those of nonpregnant control subjects. Interestingly, interferon-stimulated genes (ISGs) encoding proteins such as IFIT1, IFIT2, and IFIT3, as well as signaling proteins such as STAT1, STAT2, and MAVS, were enriched postpartum. Antiviral genes were primarily expressed in CD14(+) cells and could be stratified according to genetic variation at the interferon-λ3 gene (IFNL3, also named IL28B) SNP rs12979860. Antiviral gene expression was sustained beyond 6 mo following delivery in mothers with a CT or TT genotype, but resembled baseline nonpregnant control levels following delivery in mothers with a CC genotype. CT and TT IFNL3 genotypes have been associated with persistent elevated ISG expression in individuals chronically infected with hepatitis C virus. Together, these data suggest that postpartum, the normalization of the physiological rheostat controlling IFN signaling depends on IFNL3 genotype. PMID:27601663

  10. Antiviral activities of peptide-based covalent inhibitors of the Enterovirus 71 3C protease.

    PubMed

    Tan, Yong Wah; Ang, Melgious Jin Yan; Lau, Qiu Ying; Poulsen, Anders; Ng, Fui Mee; Then, Siew Wen; Peng, Jianhe; Hill, Jeffrey; Hong, Wan Jin; Chia, Cheng San Brian; Chu, Justin Jang Hann

    2016-01-01

    Hand, Foot and Mouth Disease is a highly contagious disease caused by a range of human enteroviruses. Outbreaks occur regularly, especially in the Asia-Pacific region, putting a burden on public healthcare systems. Currently, there is no antiviral for treating this infectious disease and the only vaccines are limited to circulation in China, presenting an unmet medical need that needs to be filled urgently. The human enterovirus 3 C protease has been deemed a plausible drug target due to its essential roles in viral replication. In this study, we designed and synthesized 10 analogues of the Rhinovirus 3 C protease inhibitor, Rupintrivir, and tested their 3 C protease inhibitory activities followed by a cellular assay using human enterovirus 71 (EV71)-infected human RD cells. Our results revealed that a peptide-based compound containing a trifluoromethyl moiety to be the most potent analogue, with an EC50 of 65 nM, suggesting its potential as a lead for antiviral drug discovery. PMID:27645381

  11. microRNA control of interferons and interferon induced anti-viral activity.

    PubMed

    Sedger, Lisa M

    2013-12-01

    Interferons (IFNs) are cytokines that are spontaneously produced in response to virus infection. They act by binding to IFN-receptors (IFN-R), which trigger JAK/STAT cell signalling and the subsequent induction of hundreds of IFN-inducible genes, including both protein-coding and microRNA genes. IFN-induced genes then act synergistically to prevent virus replication and create an anti-viral state. miRNA are therefore integral to the innate response to virus infection and are important components of IFN-mediated biology. On the other hand viruses also encode miRNAs that in some cases interfere directly with the IFN response to infection. This review summarizes the important roles of miRNAs in virus infection acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes. It also highlights how recent knowledge in RNA editing influence miRNA control of virus infection.

  12. Activation and evasion of antiviral innate immunity by hepatitis C virus.

    PubMed

    Horner, Stacy M

    2014-03-20

    Hepatitis C virus (HCV) chronically infects 130-170 million people worldwide and is a major public health burden. HCV is an RNA virus that infects hepatocytes within liver, and this infection is sensed as non-self by the intracellular innate immune response to program antiviral immunity to HCV. HCV encodes several strategies to evade this antiviral response, and this evasion of innate immunity plays a key role in determining viral persistence. This review discusses the molecular mechanisms of how the intracellular innate immune system detects HCV infection, including how HCV pathogen-associated molecular patterns are generated during infection and where they are recognized as foreign by the innate immune system. Further, this review highlights the key innate immune evasion strategies used by HCV to establish persistent infection within the liver, as well as how host genotype influences the outcome of HCV infection. Understanding these HCV-host interactions is key in understanding how to target HCV during infection and for the design of more effective HCV therapies at the immunological level.

  13. Activation and evasion of antiviral innate immunity by hepatitis C virus

    PubMed Central

    Horner, Stacy M.

    2015-01-01

    Hepatitis C virus (HCV) chronically infects 130-170 million people worldwide and is a major public health burden. HCV is an RNA virus that infects hepatocytes within liver, and this infection is sensed as non-self by the intracellular innate immune response to program antiviral immunity to HCV. HCV encodes several strategies to evade this antiviral response, and this evasion of innate immunity plays a key role in determining viral persistence. This review discusses the molecular mechanisms of how the intracellular innate immune system detects HCV infection, including how HCV pathogen-associated molecular patterns are generated during infection and where they are recognized as foreign by the innate immune system. Further, this review highlights the key innate immune evasion strategies used by HCV to establish persistent infection within the liver, as well as how host genotype influences the outcome of HCV infection. Understanding these HCV-host interactions is key to understanding how to target HCV during infection and for the design of more effective HCV therapies at the immunological level. PMID:24184198

  14. The Sambucus nigra type-2 ribosome-inactivating protein SNA-I' exhibits in planta antiviral activity in transgenic tobacco.

    PubMed

    Chen, Ying; Peumans, Willy J; Van Damme, Els J M

    2002-04-10

    Transgenic tobacco (Samsun NN) plants transformed with a cDNA clone encoding SNA-I' from Sambucus nigra synthesize, and correctly process and assemble, a fully active type-2 ribosome-inactivating protein. Expression of SNA-I' under the control of the 35S cauliflower mosaic virus promoter enhances the plant's resistance against infection with tobacco mosaic virus. In contrast to type-1 ribosome-inactivating proteins, the expression of SNA-I' does not affect the growth and fertility of the transgenic plants and is not accompanied by an increased expression of pathogenesis-related proteins indicating that its antiviral activity most probably differs from that of pokeweed antiviral protein.

  15. Antiviral activity of polymethoxylated flavones from "Guangchenpi", the edible and medicinal pericarps of citrus reticulata 'Chachi'.

    PubMed

    Xu, Jiao-Jiao; Wu, Xia; Li, Man-Mei; Li, Guo-Qiang; Yang, Yi-Ting; Luo, Hu-Jie; Huang, Wei-Huang; Chung, Hau Yin; Ye, Wen-Cai; Wang, Guo-Cai; Li, Yao-Lan

    2014-03-12

    The present study found that the supercritical fluid extract of "Guangchenpi" possessed in vitro antiviral activity against respiratory syncytial virus (RSV). Bioassay-guided isolation and identification of this extract led to obtain five active polymethoxylated flavones (1-5). Cytopathic effect (CPE) reduction assay exhibited that tangeretin (2) and nobiletin (3), two major polymethoxylated flavones in the extract, possessed better anti-RSV effect comparable to the positive control ribavirin. Plaque reduction assay revealed that tangeretin dose-dependently inhibited RSV-induced plaque formation on the HEp-2 cells. This polymethoxylated flavone mainly affected the intracellular replication of RSV, and it also could inhibit RSV entry into the HEp-2 cells. Further investigations with quantitative real-time PCR and confocal and Western blot assays indicated that tangeretin downregulated the expression of RSV phosphoprotein (P protein). Results suggest the potential application of the supercritical fluid extract of "Guangchenpi" and tangeretin in the treatment and the prevention of RSV infection. PMID:24377463

  16. The antiviral activity of leaves of Eucalyptus camaldulensis (Dehn) and Eucalyptus torelliana (R. Muell).

    PubMed

    Adeniyi, Bolanle Alake; Ayepola, Olayemi Oluseun; Adu, Festus Doyin

    2015-09-01

    Human enteroviruses are the major cause of aseptic meningitis and are resistant to all known antibiotics and chemotherapeutic agents. Methanolic extracts of Eucalyptus camaldulensis and Eucalyptus torelliana were tested on human enteroviruses: Poliovirus type I, Coxsackievirus B and Echovirus 6. The virucidal tests showed that the crude extracts were active on the test viruses: poliovirus type 1, coxsackievirus B and echovirus 6 giving a neutralization index of one log and above. The cytotoxicity assay of the crude extracts to L20B (a genetically engineered mouse cell line) and human rhabdomyo sarcoma (RD) cells showed that the extract of E. torelliana was more toxic than the extract of E. camaldulensis. The antiviral study showed that the extract of E. torelliana was more active than that of E. camaldulensis. PMID:26408896

  17. Antiviral activities of purified compounds from Youngia japonica (L.) DC (Asteraceae, Compositae).

    PubMed

    Ooi, Linda S M; Wang, Hua; He, Zhendan; Ooi, Vincent E C

    2006-06-30

    The ethanol extract of a biannual medicinal herb, Youngia japonica (commonly known as Oriental hawk's beard) was reported previously to have potent antiviral activity against respiratory syncytial virus (RSV) cultured in HEp-2 cells. Three anti-microbial agents, namely 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and luteolin-7-O-glucoside were subsequently purified and chemically characterized from the ethanol extract of Youngia japonica. The two dicaffeoylquinic acids exhibited prominent anti-RSV with 50% inhibitory concentration (IC50) of 0.5 microg/ml in vitro. Luteolin-7-O-glucoside together with the two dicaffeoylquinic acids were also manifested to have some antibacterial activity towards the causal agents of food-borne disease, namely Vibrio cholerae and Vibrio parahaemolyticus at the concentration of 2mg/ml. Bacillus cereus was sensitive to 3,4-dicaffeoylquinic acid and 3,5-dicaffeoylquinic acid only, but not to luteolin-7-O-glucoside. PMID:16469463

  18. Antimicrobial, antiviral and cytotoxic activity of extracts and constituents from Polygonum spectabile Mart.

    PubMed

    Brandão, Geraldo Célio; Kroon, Erna Gessien; Duarte, Maria Gorette R; Braga, Fernão Castro; de Souza Filho, José Dias; de Oliveira, Alaíde Braga

    2010-10-01

    Polygonum spectabile is used in Brazil for treatment of several infection diseases. Extracts and constituents isolated from this species were evaluated for cytotoxicity and effects on 15 bacterias and yeasts as well on 4 viruses strains (HHV-1, VACV-WR, EMCV, DEN-2). Less polar extracts were effective against Staphylococcus aureus, Bacillus subtillis, Micrococcus luteus, M. canis and Tricophyton mentagrophytes and T. rubrum. Two known chalcones and 3-O-β-D-glucosyl-β-sitosterol were isolated. The ethanol extract was the only one to show antiviral activity (CE50 < 30 μg/ml). One chalcone has inhibited the growth of several bacteria and was significantly active against dermathophytes. The 3 compounds isolated have shown moderate cytotoxicity against Vero and LLCMK(2) cells (CC(50) < 50 μg/ml). These results support the use of P. spectabile as antimicrobial agent. PMID:20382006

  19. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis

    PubMed Central

    Wang, Wei; Wang, Wei-Hua; Azadzoi, Kazem M.; Su, Ning; Dai, Peng; Sun, Jianbin; Wang, Qin; Liang, Ping; Zhang, Wentao; Lei, Xiaoying; Yan, Zhen; Yang, Jing-Hua

    2016-01-01

    Viruses induce double-stranded RNA (dsRNA) in the host cells. The mammalian system has developed dsRNA-dependent recognition receptors such as RLRs that recognize the long stretches of dsRNA as PAMPs to activate interferon-mediated antiviral pathways and apoptosis in severe infection. Here we report an efficient antiviral immune response through dsRNA-dependent RLR receptor-mediated necroptosis against infections from different classes of viruses. We demonstrated that virus-infected A549 cells were efficiently killed in the presence of a chimeric RLR receptor, dsCARE. It measurably suppressed the interferon antiviral pathway but promoted IL-1β production. Canonical cell death analysis by morphologic assessment, phosphatidylserine exposure, caspase cleavage and chemical inhibition excluded the involvement of apoptosis and consistently suggested RLR receptor-mediated necroptosis as the underlying mechanism of infected cell death. The necroptotic pathway was augmented by the formation of RIP1-RIP3 necrosome, recruitment of MLKL protein and the activation of cathepsin D. Contributing roles of RIP1 and RIP3 were confirmed by gene knockdown. Furthermore, the necroptosis inhibitor necrostatin-1 but not the pan-caspase inhibitor zVAD impeded dsCARE-dependent infected cell death. Our data provides compelling evidence that the chimeric RLR receptor shifts the common interferon antiviral responses of infected cells to necroptosis and leads to rapid death of the virus-infected cells. This mechanism could be targeted as an efficient antiviral strategy. PMID:26935990

  20. In vivo antimicrobial and antiviral activity of components in bovine milk and colostrum involved in non-specific defence.

    PubMed

    van Hooijdonk, A C; Kussendrager, K D; Steijns, J M

    2000-11-01

    The in vivo evidence of the antimicrobial and antiviral activity of bovine milk and colostrum derived components are reviewed with special emphasis on lactoferrin and lactoperoxidase. Their mode of action and the rationale for their application in efficacy trials with rodents, farm animals, fish and humans, to give protection against infectious agents, are described. A distinction is made between efficacy obtained by oral and non-oral administration of these non-specific defence factors which can be commercially applied in large quantities due to major achievements in dairy technology. From the in vivo studies one can infer that lactoferrin and lactoperoxidase are very promising, naturally occurring antimicrobials for use in fish farming, husbandry, oral hygiene and functional foods. Other promising milk-derived compounds include lipids, from which anti-infective degradation products are generated during digestion, and antimicrobial peptides hidden in the casein molecules.

  1. Antiviral Activity of the Human Cathelicidin, LL-37, and Derived Peptides on Seasonal and Pandemic Influenza A Viruses.

    PubMed

    Tripathi, Shweta; Wang, Guangshun; White, Mitchell; Qi, Li; Taubenberger, Jeffery; Hartshorn, Kevan L

    2015-01-01

    Human LL-37, a cationic antimicrobial peptide, was recently shown to have antiviral activity against influenza A virus (IAV) strains in vitro and in vivo. In this study we compared the anti-influenza activity of LL-37 with that of several fragments derived from LL-37. We first tested the peptides against a seasonal H3N2 strain and the mouse adapted H1N1 strain, PR-8. The N-terminal fragment, LL-23, had slight neutralizing activity against these strains. In LL-23V9 serine 9 is substituted by valine creating a continuous hydrophobic surface. LL-23V9 has been shown to have increased anti-bacterial activity compared to LL-23 and we now show slightly increased antiviral activity compared to LL-23 as well. The short central fragments, FK-13 and KR-12, which have anti-bacterial activity did not inhibit IAV. In contrast, a longer 20 amino acid central fragment of LL-37 (GI-20) had neutralizing activity similar to LL-37. None of the peptides inhibited viral hemagglutination or neuraminidase activity. We next tested activity of the peptides against a strain of pandemic H1N1 of 2009 (A/California/04/09/H1N1 or "Cal09"). Unexpectedly, LL-37 had markedly reduced activity against Cal09 using several cell types and assays of antiviral activity. A mutant viral strain containing just the hemagglutinin (HA) of 2009 pandemic H1N1 was inhibited by LL-37, suggested that genes other than the HA are involved in the resistance of pH1N1. In contrast, GI-20 did inhibit Cal09. In conclusion, the central helix of LL-37 incorporated in GI-20 appears to be required for optimal antiviral activity. The finding that GI-20 inhibits Cal09 suggests that it may be possible to engineer derivatives of LL-37 with improved antiviral properties.

  2. Fragment-based discovery of a new family of non-peptidic small-molecule cyclophilin inhibitors with potent antiviral activities

    PubMed Central

    Ahmed-Belkacem, Abdelhakim; Colliandre, Lionel; Ahnou, Nazim; Nevers, Quentin; Gelin, Muriel; Bessin, Yannick; Brillet, Rozenn; Cala, Olivier; Douguet, Dominique; Bourguet, William; Krimm, Isabelle; Pawlotsky, Jean-Michel; Guichou, Jean- François

    2016-01-01

    Cyclophilins are peptidyl-prolyl cis/trans isomerases (PPIase) that catalyse the interconversion of the peptide bond at proline residues. Several cyclophilins play a pivotal role in the life cycle of a number of viruses. The existing cyclophilin inhibitors, all derived from cyclosporine A or sanglifehrin A, have disadvantages, including their size, potential for side effects unrelated to cyclophilin inhibition and drug–drug interactions, unclear antiviral spectrum and manufacturing issues. Here we use a fragment-based drug discovery approach using nucleic magnetic resonance, X-ray crystallography and structure-based compound optimization to generate a new family of non-peptidic, small-molecule cyclophilin inhibitors with potent in vitro PPIase inhibitory activity and antiviral activity against hepatitis C virus, human immunodeficiency virus and coronaviruses. This family of compounds has the potential for broad-spectrum, high-barrier-to-resistance treatment of viral infections. PMID:27652979

  3. Design and evaluation of novel interferon lambda analogs with enhanced antiviral activity and improved drug attributes

    PubMed Central

    Yu, Debin; Zhao, Mingzhi; Dong, Liwei; Zhao, Lu; Zou, Mingwei; Sun, Hetong; Zhang, Mengying; Liu, Hongyu; Zou, Zhihua

    2016-01-01

    Type III interferons (IFNs) (also called IFN-λ: IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4) are critical players in the defense against viral infection of mucosal epithelial cells, where the activity of type I IFNs is weak, and unlike type I IFNs that are associated with severe and diverse side effects, type III IFNs cause minimal side effects due to the highly restricted expression of their receptors, and thus appear to be promising agents for the treatment and prevention of respiratory and gastrointestinal viral infection. However, the antiviral potency of natural type III IFNs is weak compared to type I and, although IFN-λ3 possesses the highest bioactivity among the type III IFNs, IFN-λ1, instead of IFN-λ3, is being developed as a therapeutic drug due to the difficulty to express IFN-λ3 in the prokaryotic expression system. Here, to develop optimal IFN-λ molecules with improved drug attributes, we designed a series of IFN-λ analogs by replacing critical amino acids of IFN-λ1 with the IFN-λ3 counterparts, and vice versa. Four of the designed analogs were successfully expressed in Escherichia coli with high yield and were easily purified from inclusion bodies. Interestingly, all four analogs showed potent activity in inducing the expression of the antiviral genes MxA and OAS and two of them, analog-6 and -7, displayed an unexpected high potency that is higher than that of type I IFN (IFN-α2a) in activating the IFN-stimulated response element (ISRE)-luciferase reporter. Importantly, both analog-6 and -7 effectively inhibited replication of hepatitis C virus in Huh-7.5.1 cells, with an IC50 that is comparable to that of IFN-α2a; and consistent with the roles of IFN-λ in mucosal epithelia, both analogs potently inhibited replication of H3N2 influenza A virus in A549 cells. Together, these studies identified two IFN-λ analogs as candidates to be developed as novel antiviral biologics. PMID:26792983

  4. Design and evaluation of novel interferon lambda analogs with enhanced antiviral activity and improved drug attributes.

    PubMed

    Yu, Debin; Zhao, Mingzhi; Dong, Liwei; Zhao, Lu; Zou, Mingwei; Sun, Hetong; Zhang, Mengying; Liu, Hongyu; Zou, Zhihua

    2016-01-01

    Type III interferons (IFNs) (also called IFN-λ: IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4) are critical players in the defense against viral infection of mucosal epithelial cells, where the activity of type I IFNs is weak, and unlike type I IFNs that are associated with severe and diverse side effects, type III IFNs cause minimal side effects due to the highly restricted expression of their receptors, and thus appear to be promising agents for the treatment and prevention of respiratory and gastrointestinal viral infection. However, the antiviral potency of natural type III IFNs is weak compared to type I and, although IFN-λ3 possesses the highest bioactivity among the type III IFNs, IFN-λ1, instead of IFN-λ3, is being developed as a therapeutic drug due to the difficulty to express IFN-λ3 in the prokaryotic expression system. Here, to develop optimal IFN-λ molecules with improved drug attributes, we designed a series of IFN-λ analogs by replacing critical amino acids of IFN-λ1 with the IFN-λ3 counterparts, and vice versa. Four of the designed analogs were successfully expressed in Escherichia coli with high yield and were easily purified from inclusion bodies. Interestingly, all four analogs showed potent activity in inducing the expression of the antiviral genes MxA and OAS and two of them, analog-6 and -7, displayed an unexpected high potency that is higher than that of type I IFN (IFN-α2a) in activating the IFN-stimulated response element (ISRE)-luciferase reporter. Importantly, both analog-6 and -7 effectively inhibited replication of hepatitis C virus in Huh-7.5.1 cells, with an IC50 that is comparable to that of IFN-α2a; and consistent with the roles of IFN-λ in mucosal epithelia, both analogs potently inhibited replication of H3N2 influenza A virus in A549 cells. Together, these studies identified two IFN-λ analogs as candidates to be developed as novel antiviral biologics.

  5. Persistent Hepatitis C Virus Infection Impairs Ribavirin Antiviral Activity through Clathrin-Mediated Trafficking of Equilibrative Nucleoside Transporter 1

    PubMed Central

    Panigrahi, Rajesh; Chandra, Partha K.; Ferraris, Pauline; Kurt, Ramazan; Song, Kyoungsub; Garry, Robert F.; Reiss, Krzysztof; Coe, Imogen R.; Furihata, Tomomi; Balart, Luis A.; Wu, Tong

    2014-01-01

    ABSTRACT Ribavirin (RBV) continues to be an important component of interferon-free hepatitis C treatment regimens, as RBV alone does not inhibit hepatitis C virus (HCV) replication effectively; the reason for this ineffectiveness has not been established. In this study, we investigated the RBV resistance mechanism using a persistently HCV-infected cell culture system. The antiviral activity of RBV against HCV was progressively impaired in the persistently infected culture, whereas interferon lambda 1 (IFN-λ1), a type III IFN, showed a strong antiviral response and induced viral clearance. We found that HCV replication in persistently infected cultures induces an autophagy response that impairs RBV uptake by preventing the expression of equilibrative nucleoside transporter 1 (ENT1). The Huh-7.5 cell line treated with an autophagy inducer, Torin 1, downregulated membrane expression of ENT1 and terminated RBV uptake. In contrast, the autophagy inhibitors hydroxychloroquine (HCQ), 3-methyladenine (3-MA), and bafilomycin A1 (BafA1) prevented ENT1 degradation and enhanced RBV antiviral activity. The HCV-induced autophagy response, as well as treatment with Torin 1, degrades clathrin heavy chain expression in a hepatoma cell line. Reduced expression of the clathrin heavy chain by HCV prevents ENT1 recycling to the plasma membrane and forces ENT1 to the lysosome for degradation. This study provides a potential mechanism for the impairment of RBV antiviral activity in persistently HCV-infected cell cultures and suggests that inhibition of the HCV-induced autophagy response could be used as a strategy for improving RBV antiviral activity against HCV infection. IMPORTANCE The results from this work will allow a review of the competing theories of antiviral therapy development in the field of HCV virology. Ribavirin (RBV) remains an important component of interferon-free hepatitis C treatment regimens. The reason why RBV alone does not inhibit HCV replication effectively has

  6. Strain-specific antiviral activity of iminosugars against human influenza A viruses

    PubMed Central

    Hussain, S.; Miller, J. L.; Harvey, D. J.; Gu, Y.; Rosenthal, P. B.; Zitzmann, N.; McCauley, J. W.

    2015-01-01

    Objectives Drugs that target host cell processes can be employed to complement drugs that specifically target viruses, and iminosugar compounds that inhibit host α-glucosidases have been reported to show antiviral activity against multiple viruses. Here the effect and mechanism of two iminosugar α-glucosidase inhibitors, N-butyl-deoxynojirimycin (NB-DNJ) and N-nonyl-deoxynojirimycin (NN-DNJ), on human influenza A viruses was examined. Methods The viruses examined were a recently circulating seasonal influenza A(H3N2) virus strain A/Brisbane/10/2007, an older H3N2 strain A/Udorn/307/72, and A/Lviv/N6/2009, a strain representative of the currently circulating pandemic influenza A(H1N1)pdm09 virus. Results The inhibitors had the strongest effect on Brisbane/10 and NN-DNJ was more potent than NB-DNJ. Both compounds showed antiviral activity in cell culture against three human influenza A viruses in a strain-specific manner. Consistent with its action as an α-glucosidase inhibitor, NN-DNJ treatment resulted in an altered glycan processing of influenza haemagglutinin (HA) and neuraminidase (NA), confirmed by MS. NN-DNJ treatment was found to reduce the cell surface expression of the H3 subtype HA. The level of sialidase activity of NA was reduced in infected cells, but the addition of exogenous sialidase to the cells did not complement the NN-DNJ-mediated inhibition of virus replication. Using reassortant viruses, the drug susceptibility profile was determined to correlate with the origin of the HA. Conclusions NN-DNJ inhibits influenza A virus replication in a strain-specific manner that is dependent on the HA. PMID:25223974

  7. [Antiviral activity of murine interferons produced by bacterial and animal cell translation of messenger RNA].

    PubMed

    Mamontova, T V; Mentkevich, L M; Orlova, T G

    1980-01-01

    Interferon was produced by E. Coli bacteria and animal cell messenger-RNA--interferon translation (mRNA--IF). The activity of the interferon produced by simultaneous mRNA--IF translation in these two cellular systems was, approximately, similar. The interferons translated by bacteria and animal cells inhibited the cytopathic effect, reproduction and plaque-formation of vesicular stomatitis virus, and, to a greater extent, of mouse encephalomyocarditis virus. The virus titration was carried out by the dye-uptake method. The bacteria-translated interferon (BTIF) was more susceptible to the indicator-virus dose variation and had antiviral effect of shorter duration than the virus-induced and animal cell-translated interferon. The BTIF, probably, due to the action of bacterial proteolytic enzymes proved nonstable on storage.

  8. Structures and antiviral activities of butyrolactone derivatives isolated from Aspergillus terreus MXH-23

    NASA Astrophysics Data System (ADS)

    Ma, Xinhua; Zhu, Tianjiao; Gu, Qianqun; Xi, Rui; Wang, Wei; Li, Dehai

    2014-12-01

    A new butyrolactone derivative, namely butyrolactone VIII ( 1), and six known butyrolactones ( 2-7) were separated from the ethyl acetate (EtOAc) extract of the fermentation broth of a fungus, Aspergillus terreus MXH-23. The chemical structures of these metabolites were identified by analyzing their nuclear magnetic resonance (NMR) and mass spectrometry (MS). Known butyrolactone derivatives contain an α, β-unsaturated γ-lactone ring with α-hydroxyl and γ-benzyl, and butyrolactone VIII ( 1) was the first butyrolactones contains α-benzyl and γ-hydroxyl on α, β-unsaturated lactone ring. All of the butyrolactone derivatives were tested for their anti-influenza (H1N1) effects. Derivatives 4 and 7 showed moderate antiviral activities while the newly-identified, derivative 1, did not.

  9. Highlights in antiviral drug research: antivirals at the horizon.

    PubMed

    De Clercq, Erik

    2013-11-01

    This review highlights ten "hot topics" in current antiviral research: (i) new nucleoside derivatives (i.e., PSI-352938) showing high potential as a direct antiviral against hepatitis C virus (HCV); (ii) cyclopropavir, which should be further pursued for treatment of human cytomegalovirus (HCMV) infections; (iii) North-methanocarbathymidine (N-MCT), with a N-locked conformation, showing promising activity against both α- and γ-herpesviruses; (iv) CMX001, an orally bioavailable prodrug of cidofovir with broad-spectrum activity against DNA viruses, including polyoma, adeno, herpes, and pox; (v) favipiravir, which is primarily pursued for the treatment of influenza virus infections, but also inhibits the replication of other RNA viruses, particularly (-)RNA viruses such as arena, bunya, and hanta; (vi) newly emerging antiarenaviral compounds which should be more effective (and less toxic) than the ubiquitously used ribavirin; (vii) antipicornavirus agents in clinical development (pleconaril, BTA-798, and V-073); (viii) natural products receiving increased attention as potential antiviral drugs; (ix) antivirals such as U0126 targeted at specific cellular kinase pathways [i.e., mitogen extracellular kinase (MEK)], showing activity against influenza and other viruses; and (x) two structurally unrelated compounds (i.e., LJ-001 and dUY11) with broad-spectrum activity against virtually all enveloped RNA and DNA viruses.

  10. Antiviral activity of sulfated Chuanmingshen violaceum polysaccharide against Newcastle disease virus.

    PubMed

    Song, Xu; Yin, Zhongqiong; Zhao, Xinghong; Cheng, Anchun; Jia, Renyong; Yuan, Guiping; Xu, Jiao; Fan, Qiaojia; Dai, Shujun; Lu, Hongke; Lv, Cheng; Liang, Xiaoxia; He, Changliang; Su, Gang; Zhao, Ling; Ye, Gang; Shi, Fei

    2013-10-01

    Newcastle disease virus (NDV) is a member of Paramyxovirinae subfamily and can infect most species of birds causing severe economic losses. The current control measure is vaccination, but infections cannot be completely prevented. It remains a constant threat to the poultry industry and new control measures are urgently needed. This study demonstrates that sulfated Chuanmingshen violaceum polysaccharides (sCVPSs) were potent inhibitors of NDV, with 50 % inhibitory concentrations (IC50) ranging from 62.55 to 76.31 µg ml(-1) in Baby hamster kidney fibroblasts clone 21 (BHK-21) and from 101.57 to 125.90 µg ml(-1) in chicken embryo fibroblasts (CEF). sCVPS is more effective than heparan sulfate (HS; as a positive control) with IC50 values of 99.28 µg ml(-1) in BHK-21 and 118.79 µg ml(-1) in CEF. sCVPSs and HS exhibit anti-NDV activity by prevention of the early stages of viral life. The mechanism of action study indicated that virus adsorption in BHK-21, and both virus adsorption and penetration in CEF were inhibited by sCVPSs. When the number of viruses was increased to an m.o.i. of 0.1 in the immunofluorescence study and to an m.o.i. of 1 in the fluorescent quantitative PCR study, viral infection was also significantly suppressed; the antiviral activity of sCVPSs was independent of the m.o.i. sCVPSs also prevented the cell-to-cell spread of NDV. In vivo tests carried out on specific pathogen-free (SPF) chickens showed that sCVPSs also inhibited virus multiplication in heart, liver, spleen, lung and kidney. These results indicated that sCVPSs perform more effectively than HS as antiviral agents against NDV, and can be further examined for their potential as an alternative control measure for NDV infection.

  11. Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein.

    PubMed

    Karlberg, Tobias; Klepsch, Mirjam; Thorsell, Ann-Gerd; Andersson, C David; Linusson, Anna; Schüler, Herwig

    2015-03-20

    The mammalian poly(ADP-ribose) polymerase (PARP) family includes ADP-ribosyltransferases with diphtheria toxin homology (ARTD). Most members have mono-ADP-ribosyltransferase activity. PARP13/ARTD13, also called zinc finger antiviral protein, has roles in viral immunity and microRNA-mediated stress responses. PARP13 features a divergent PARP homology domain missing a PARP consensus sequence motif; the domain has enigmatic functions and apparently lacks catalytic activity. We used x-ray crystallography, molecular dynamics simulations, and biochemical analyses to investigate the structural requirements for ADP-ribosyltransferase activity in human PARP13 and two of its functional partners in stress granules: PARP12/ARTD12, and PARP15/BAL3/ARTD7. The crystal structure of the PARP homology domain of PARP13 shows obstruction of the canonical active site, precluding NAD(+) binding. Molecular dynamics simulations indicate that this closed cleft conformation is maintained in solution. Introducing consensus side chains in PARP13 did not result in 3-aminobenzamide binding, but in further closure of the site. Three-dimensional alignment of the PARP homology domains of PARP13, PARP12, and PARP15 illustrates placement of PARP13 residues that deviate from the PARP family consensus. Introducing either one of two of these side chains into the corresponding positions in PARP15 abolished PARP15 ADP-ribosyltransferase activity. Taken together, our results show that PARP13 lacks the structural requirements for ADP-ribosyltransferase activity.

  12. Herpes simplex type 1 defective interfering particles do not affect the antiviral activity of acyclovir, foscarnet and adenine arabinoside.

    PubMed

    Harmenberg, J G; Svensson, L T

    1988-03-01

    The concentration of defective interfering particles (DI-particles) of herpes simplex type 1 virus was analysed by electron microscopy and plaque titration. Fifteen consecutive passages of undiluted virus in green monkey kidney cells were followed. No relationship was found between the concentration of DI-particles and the activity of antiviral substances such as acyclovir, foscarnet and adenine arabinoside.

  13. Actinobacteria from Termite Mounds Show Antiviral Activity against Bovine Viral Diarrhea Virus, a Surrogate Model for Hepatitis C Virus.

    PubMed

    Padilla, Marina Aiello; Rodrigues, Rodney Alexandre Ferreira; Bastos, Juliana Cristina Santiago; Martini, Matheus Cavalheiro; Barnabé, Ana Caroline de Souza; Kohn, Luciana Konecny; Uetanabaro, Ana Paula Trovatti; Bomfim, Getúlio Freitas; Afonso, Rafael Sanches; Fantinatti-Garboggini, Fabiana; Arns, Clarice Weis

    2015-01-01

    Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV). Two bacterial strains were identified as active, with percentages of inhibition (IP) equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s) responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s) that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection.

  14. Actinobacteria from Termite Mounds Show Antiviral Activity against Bovine Viral Diarrhea Virus, a Surrogate Model for Hepatitis C Virus

    PubMed Central

    Padilla, Marina Aiello; Rodrigues, Rodney Alexandre Ferreira; Bastos, Juliana Cristina Santiago; Martini, Matheus Cavalheiro; Barnabé, Ana Caroline de Souza; Kohn, Luciana Konecny; Uetanabaro, Ana Paula Trovatti; Bomfim, Getúlio Freitas; Afonso, Rafael Sanches; Fantinatti-Garboggini, Fabiana; Arns, Clarice Weis

    2015-01-01

    Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV). Two bacterial strains were identified as active, with percentages of inhibition (IP) equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s) responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s) that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection. PMID:26579205

  15. Actinobacteria from Termite Mounds Show Antiviral Activity against Bovine Viral Diarrhea Virus, a Surrogate Model for Hepatitis C Virus.

    PubMed

    Padilla, Marina Aiello; Rodrigues, Rodney Alexandre Ferreira; Bastos, Juliana Cristina Santiago; Martini, Matheus Cavalheiro; Barnabé, Ana Caroline de Souza; Kohn, Luciana Konecny; Uetanabaro, Ana Paula Trovatti; Bomfim, Getúlio Freitas; Afonso, Rafael Sanches; Fantinatti-Garboggini, Fabiana; Arns, Clarice Weis

    2015-01-01

    Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV). Two bacterial strains were identified as active, with percentages of inhibition (IP) equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s) responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s) that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection. PMID:26579205

  16. [A comparative study of the antiviral activity of chemical compounds concerning the orthopoxviruses experiments in vivo].

    PubMed

    Kabanov, A S; Sergeev, Al A; Shishkina, L N; Bulychev, L E; Skarnovich, M O; Sergeev, Ar A; Bormotov, N I; P'iankov, O V; Serova, O A; Bodnev, S A; Selivanov, B A; Tikhonov, A Ia; Agafonov, A P; Sergeev, A N

    2013-01-01

    In the experiments using intranasal (i/n) infection of mice with the ectromelia virus (EV) in a dose 10 LD50/head (10 x 50% lethal doselhead) or with the monkaypox virus (MPXV) in a dose 10 ID50/head (10 x 50% infective dose/ head) it was demonstrated that the antiviral efficiency of chemical compounds - the condensed derivatives of pyrrolidin-2,5-dion, as well as their predecessors and the nearest analogues, synthesized in Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences (NIOCH SB RAS) was observed. As a positive control we used the antipoxvirus chemical preparation ST-246 available from SIGA Technologies Inc. (USA), synthesized in NIOCH SB RAS by the technique suggested by the authors. It was demonstrated that the compound NIOCH-14 (7-[N'-(4-Trifluoromethylbenzoil)-hydrazidecarbonil]-tricyclo[3.2.2.02,4]non-8-en-6-carbonic acid) possessed comparable with ST-246 antiviral activity concerning EV and MPXV on all indicators used. Therefore, at infection of mice with EV (strain K-1) and peroral administration of NIOCH-14 and ST-246 in a dose 50 mkg/g of mouse weight (12-14 g) within 10 days the survival rate and average life expectancy of mice authentically exceeded the control levels. EV titers in lungs through 6 days after infection in the same groups were lower than in the control. In addition to that, after 7 days of infection of mice with MPXV (strain V79-1-005) and daily peroral administration of NIOCH-14 and ST-246 in a dose 60 mkg/g of mouse weight (9-11 g) authentic decrease in a part of infected animals and MPXV titers in lungs was observed.

  17. Cytotoxic and antiviral activities of Colombian medicinal plant extracts of the Euphorbia genus.

    PubMed

    Betancur-Galvis, L A; Morales, G E; Forero, J E; Roldan, J

    2002-06-01

    Forty-seven plant extracts of 10 species of the genus Euphorbia (Euphorbiaceae) used by Colombian traditional healers for the treatment of ulcers, cancers, tumors, warts, and other diseases, were tested in vitro for their potential antitumour (antiproliferative and cytotoxic) and antiherpetic activity. To evaluate the capacity of the extracts to inhibit the lytic activity of herpes simplex virus type 2 (HSV-2) and the reduction of viability of infected or uninfected cell cultures, the end-point titration technique (EPTT) and the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric assay were used, respectively. The therapeutic index of the positive extracts for the antiviral activity was determined by calculating the ratio CC50 (50% cytotoxic concentration) over IC50 (50% inhibitory concentration of the viral effect). Five of the 47 extracts (11%) representing 3 out of 10 Euphorbia species (30%) exhibited antiherpetic action; the highest activity was found in the leaf/stem water-methanol extracts from E. cotinifolia and E. tirucalli. The therapeutic indexes of these two plant species were > 7.1; these extracts exhibited no cytotoxicity. Six extracts (13%) representing 4 plant species (40%) showed cytotoxic activity. The highest cytotoxicity was found in the dichloromethane extract obtained from E. cotinifolia leaves and the CC50 values for the most susceptible cell lines, HEp-2 and CHO, were 35.1 and 18.1 microgram/ml, respectively.

  18. Enhancement of the antiviral and interferon-inducing activities of poly r(A-U) by carminic acid.

    PubMed

    Jamison, J M; Flowers, D G; Jamison, E; Kitareewan, S; Krabill, K; Rosenthal, K S; Tsai, C

    1988-01-01

    Experiments have been designed to systematically examine the effects of carminic acid (CAR) on the antiviral/interferon-inducing activity of poly r(A-U), using the human foreskin fibroblast-vesicular stomatitis virus bioassay system. Modulation of the antiviral/interferon-inducing activity of poly r(A-U) by carminic acid was examined at fixed poly r(A-U) concentrations of 0.05 mM or 0.2 mM while varying the carminic acid concentrations to produce variable CAR/ribonucleotide ratios ranging from 1:16 to 2:1. Carminic acid and poly r(A-U) were tested individually at the concentrations employed in the CAR/poly r(A-U) combinations. Neither the carminic acid alone nor poly r(A-U) alone were effective antiviral agents/interferon inducers. The antiviral/interferon-inducing activity of poly r(A-U) was potentiated twelve-fold at CAR/ribonucleotide ratios in the region of 1/6 to 1/4. These results suggest a synergism between the poly r(A-U) and the carminic acid at the concentrations employed in this study. PMID:2451107

  19. Chemical composition of 8 eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities

    PubMed Central

    2012-01-01

    Background In 1957, Tunisia introduced 117 species of Eucalyptus; they have been used as fire wood, for the production of mine wood and to fight erosion. Actually, Eucalyptus essential oil is traditionally used to treat respiratory tract disorders such as pharyngitis, bronchitis, and sinusitis. A few investigations were reported on the biological activities of Eucalyptus oils worldwide. In Tunisia, our previous works conducted in 2010 and 2011 had been the first reports to study the antibacterial activities against reference strains. At that time it was not possible to evaluate their antimicrobial activities against clinical bacterial strains and other pathogens such as virus and fungi. Methods The essential oils of eight Eucalyptus species harvested from the Jbel Abderrahman, Korbous (North East Tunisia) and Souinet arboreta (North of Tunisia) were evaluated for their antimicrobial activities by disc diffusion and microbroth dilution methods against seven bacterial isolates: Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pneumoniae and Streptococcus pyogenes. In addition, the bactericidal, fungicidal and the antiviral activities of the tested oils were carried out. Results Twenty five components were identified by GC/FID and GC/MS. These components were used to correlate with the biological activities of the tested oils. The chemical principal component analysis identified three groups, each of them constituted a chemotype. According to the values of zone diameter and percentage of the inhibition (zdi, % I, respectively), four groups and subgroups of bacterial strains and three groups of fungal strains were characterized by their sensitivity levels to Eucalyptus oils. The cytotoxic effect and the antiviral activity varied significantly within Eucalyptus species oils. Conclusions E. odorata showed the strongest activity against S. aureus, H. influenzae, S. agalactiae, S. pyogenes

  20. Antibody Complementarity-Determining Regions (CDRs) Can Display Differential Antimicrobial, Antiviral and Antitumor Activities

    PubMed Central

    Polonelli, Luciano; Pontón, José; Elguezabal, Natalia; Moragues, María Dolores; Casoli, Claudio; Pilotti, Elisabetta; Ronzi, Paola; Dobroff, Andrey S.; Rodrigues, Elaine G.; Juliano, Maria A.; Maffei, Domenico Leonardo; Magliani, Walter; Conti, Stefania; Travassos, Luiz R.

    2008-01-01

    Background Complementarity-determining regions (CDRs) are immunoglobulin (Ig) hypervariable domains that determine specific antibody (Ab) binding. We have shown that synthetic CDR-related peptides and many decapeptides spanning the variable region of a recombinant yeast killer toxin-like antiidiotypic Ab are candidacidal in vitro. An alanine-substituted decapeptide from the variable region of this Ab displayed increased cytotoxicity in vitro and/or therapeutic effects in vivo against various bacteria, fungi, protozoa and viruses. The possibility that isolated CDRs, represented by short synthetic peptides, may display antimicrobial, antiviral and antitumor activities irrespective of Ab specificity for a given antigen is addressed here. Methodology/Principal Findings CDR-based synthetic peptides of murine and human monoclonal Abs directed to: a) a protein epitope of Candida albicans cell wall stress mannoprotein; b) a synthetic peptide containing well-characterized B-cell and T-cell epitopes; c) a carbohydrate blood group A substance, showed differential inhibitory activities in vitro, ex vivo and/or in vivo against C. albicans, HIV-1 and B16F10-Nex2 melanoma cells, conceivably involving different mechanisms of action. Antitumor activities involved peptide-induced caspase-dependent apoptosis. Engineered peptides, obtained by alanine substitution of Ig CDR sequences, and used as surrogates of natural point mutations, showed further differential increased/unaltered/decreased antimicrobial, antiviral and/or antitumor activities. The inhibitory effects observed were largely independent of the specificity of the native Ab and involved chiefly germline encoded CDR1 and CDR2 of light and heavy chains. Conclusions/Significance The high frequency of bioactive peptides based on CDRs suggests that Ig molecules are sources of an unlimited number of sequences potentially active against infectious agents and tumor cells. The easy production and low cost of small sized synthetic

  1. Identification of Alpha Interferon-Induced Genes Associated with Antiviral Activity in Daudi Cells and Characterization of IFIT3 as a Novel Antiviral Gene ▿

    PubMed Central

    Schmeisser, H.; Mejido, J.; Balinsky, C. A.; Morrow, A. N.; Clark, C. R.; Zhao, T.; Zoon, K. C.

    2010-01-01

    A novel assay was developed for Daudi cells in which the antiviral (AV) and antiproliferative (AP) activities of interferon (IFN) can be measured simultaneously. Using this novel assay, conditions allowing IFN AV protection but no growth inhibition were identified and selected. Daudi cells were treated under these conditions, and gene expression microarray analyses were performed. The results of the analysis identified 25 genes associated with IFN-α AV activity. Upregulation of 23 IFN-induced genes was confirmed by using reverse transcription-PCR. Of 25 gene products, 17 were detected by Western blotting at 24 h. Of the 25 genes, 10 have not been previously linked to AV activity of IFN-α. The most upregulated gene was IFIT3 (for IFN-induced protein with tetratricopeptide repeats 3). The results from antibody neutralizing experiments suggested an association of the identified genes with IFN-α AV activity. This association was strengthened by results from IFIT3-small interfering RNA transfection experiments showing decreased expression of IFIT3 and a reduction in the AV activity induced by IFN-α. Overexpression of IFIT3 resulted in a decrease of virus titer. Transcription of AV genes after the treatment of cells with higher concentrations of IFN having an AP effect on Daudi cells suggested pleiotropic functions of identified gene products. PMID:20686046

  2. Synthesis and structure-activity relationships of the halovirs, antiviral natural products from a marine-derived fungus.

    PubMed

    Rowley, David C; Kelly, Sara; Jensen, Paul; Fenical, William

    2004-09-15

    The halovirs are linear, lipophilic peptides produced by a marine-derived fungus of the genus Scytalidium. We recently reported that these molecules possess potent in vitro activity against the herpes simplex viruses 1 and 2. Here we present structure-activity relationships defining key structural elements for optimal viral inhibition. Results demonstrate that an N(alpha)-acyl chain of at least 14 carbons and an Aib-Pro dipeptide are critical for maintaining the antiviral activity.

  3. Gas chromatography-mass spectroscopy analysis of bioactive petalostigma extracts: Toxicity, antibacterial and antiviral activities

    PubMed Central

    Kalt, F. R.; Cock, I. E.

    2014-01-01

    Background: Petalostigma pubescens and Petalostigma triloculare were common components of pharmacopeia's of multiple Australian Aboriginal tribal groupings which traditionally inhabited the areas in which they grow. Among these groups, they had a myriad of medicinal uses in treating a wide variety of bacterial, fungal and viral infections. This study was undertaken to test P. pubescens and P. triloculare leaf and fruit extracts for the ability to inhibit bacterial and viral growth and thus validate Australian Aboriginal usage of these plants in treating bacterial and fungal diseases. Materials and Methods: P. pubescens, and P. triloculare leaves and fruit were extracted and tested for antimicrobial, antiviral activity and toxicity. The bioactive extracts were further examined by RP-HPLC and GC-MS to identify the component compounds. Results: The methanol, water and ethyl acetate leaf and fruit extracts of displayed potent antibacterial activity. The methanol and ethyl acetate extracts displayed the broadest specificity, inhibiting the growth of 10 of the 14 bacteria tested (71%) for the leaf extract and 9 of the 14 bacteria tested (64%) for the fruit extracts. The water extracts also had broad spectrum antibacterial activity, inhibiting the growth of 8 (57%) and 7 (50%) of the 14 bacteria tested, respectively. All antibacterial extracts were approximately equally effective against Gram-positive and Gram-negative bacteria, inhibiting the growth of 50-75% of the bacteria tested. The methanol, water and ethyl acetate extracts also displayed antiviral activity in the MS2 plaque reduction assay. The methanol and water extracts inhibited 26.6-49.0% and 85.4-97.2% of MS2 plaque formation, respectively, with the fruit extracts being more potent inhibitors. All ethyl acetate extracts inhibited 100% of MS2 plaque formation. All extracts were also non-toxic or of low toxicity. Analysis of these extracts by RP-HPLC showed that the P. triloculare ethyl acetate fruit extract was

  4. Antiviral Activity of Synthetic Aminopyrrolic Carbohydrate Binding Agents: Targeting the Glycans of Viral gp120 to Inhibit HIV Entry.

    PubMed

    Francesconi, Oscar; Nativi, Cristina; Gabrielli, Gabriele; De Simone, Irene; Noppen, Sam; Balzarini, Jan; Liekens, Sandra; Roelens, Stefano

    2015-07-01

    The binding abilities of a set of structurally related aminopyrrolic synthetic receptors for mannosides, endowed with antimycotic activity against yeast and yeast-like pathogens bearing mannoproteins on their cell surface, have been investigated towards the highly mannosylated gp120 and gp41 glycoproteins of the HIV envelope. A pronounced binding interaction with both glycoproteins was observed by SPR for most of the investigated compounds. Comparison of their binding properties towards the glycoproteins with their binding affinities toward mannosides revealed a direct correlation, supporting their role as carbohydrate binding agents (CBAs). Cytostatic activity studies revealed antiproliferative activity dependent on the nature and the structure of compounds. Antiviral activity studies against a broad panel of DNA and RNA viruses showed inhibitory effect against HIV infection of the T-lymphocyte CEM cell line for two compounds, suggesting antiviral activity similar to other CBAs, such as the nonpeptidic pradimicin antibiotics.

  5. Short communication: antiviral activity of subcritical water extract of Brassica juncea against influenza virus A/H1N1 in nonfat milk.

    PubMed

    Lee, N-K; Lee, J-H; Lim, S-M; Lee, K A; Kim, Y B; Chang, P-S; Paik, H-D

    2014-09-01

    Subcritical water extract (SWE) of Brassica juncea was studied for antiviral effects against influenza virus A/H1N1 and for the possibility of application as a nonfat milk supplement for use as an "antiviral food." At maximum nontoxic concentrations, SWE had higher antiviral activity against influenza virus A/H1N1 than n-hexane, ethanol, or hot water (80°C) extracts. Addition of 0.5mg/mL of B. juncea SWE to culture medium led to 50.35% cell viability (% antiviral activity) for Madin-Darby canine kidney cells infected with influenza virus A/H1N1. Nonfat milk supplemented with 0.28mg/mL of B. juncea SWE showed 39.62% antiviral activity against influenza virus A/H1N1. Thus, the use of B. juncea SWE as a food supplement might aid in protection from influenza viral infection.

  6. Short communication: antiviral activity of subcritical water extract of Brassica juncea against influenza virus A/H1N1 in nonfat milk.

    PubMed

    Lee, N-K; Lee, J-H; Lim, S-M; Lee, K A; Kim, Y B; Chang, P-S; Paik, H-D

    2014-09-01

    Subcritical water extract (SWE) of Brassica juncea was studied for antiviral effects against influenza virus A/H1N1 and for the possibility of application as a nonfat milk supplement for use as an "antiviral food." At maximum nontoxic concentrations, SWE had higher antiviral activity against influenza virus A/H1N1 than n-hexane, ethanol, or hot water (80°C) extracts. Addition of 0.5mg/mL of B. juncea SWE to culture medium led to 50.35% cell viability (% antiviral activity) for Madin-Darby canine kidney cells infected with influenza virus A/H1N1. Nonfat milk supplemented with 0.28mg/mL of B. juncea SWE showed 39.62% antiviral activity against influenza virus A/H1N1. Thus, the use of B. juncea SWE as a food supplement might aid in protection from influenza viral infection. PMID:25022686

  7. Viruses and Antiviral Immunity in Drosophila

    PubMed Central

    Xu, Jie; Cherry, Sara

    2013-01-01

    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools available in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. PMID:23680639

  8. Broad-spectrum in vivo antiviral activity of 7-thia-8-oxoguanosine, a novel immunopotentiating agent.

    PubMed Central

    Smee, D F; Alaghamandan, H A; Cottam, H B; Sharma, B S; Jolley, W B; Robins, R K

    1989-01-01

    A novel immunopotentiating agent, 5-amino-3-beta-D-ribofuranosylthiazolo [4,5-d]pyrimidine-2,7(3H,6H)-dione (7-thia-8-oxoguanosine), lacks virus-inhibitory properties in vitro but induces interferon and potentiates immune functions, such as natural killer cell activity. It was evaluated in rodent models to determine the spectrum of antiviral activity and effective treatment regimens. At 50 to 200 mg/kg given as single or divided intraperitoneal (i.p.) doses 1 day before virus inoculation, significant protection was afforded to mice infected i.p. with Semliki Forest, San Angelo, banzi, and encephalomyocarditis viruses. Similarly, suckling rats were protected from an intranasal challenge with rat coronavirus. Against San Angelo virus, treatments could be delayed to 1 day post-virus inoculation and still show a beneficial effect. The compound was moderately effective in mice infected i.p. with herpes simplex virus type 2 or intranasally with vesicular stomatitis virus. No activity was seen against influenza B virus in mice when the analog was administered one time pre-virus inoculation or in multiple doses given before and after the virus inoculation. Nor was there a prophylactic effect against herpetic skin lesions on mice. This immune modulator may have promise for the treatment of a variety of virus infections. PMID:2817849

  9. Characterization of antiviral activity of entecavir in transgenic mice expressing hepatitis B virus.

    PubMed

    Julander, Justin G; Colonno, Richard J; Sidwell, Robert W; Morrey, John D

    2003-08-01

    Entecavir (ETV), a cyclopentyl guanosine nucleoside analog, was evaluated in transgenic mice expressing hepatitis B virus (HBV). ETV administered orally once daily for 10 days at a dosage of 3.2mg/kg significantly (Pactivities in other animal models, the efficacy of serial one-half log dilutions of ETV were evaluated in both male and female mice to determine the minimal effective dose. End-point titration experiments resulted in a statistically significant HBV DNA reduction in the liver at concentrations of 0.032 and 0.1mg/kg per day in female and male mice, respectively. Viral liver RNA, and serum e (HBeAg), serum surface (HBsAg), and liver core antigens (HBcAg) were not affected by ETV treatment presumably because the antiviral target was viral polymerase activity and the HBV produced from the transgene was not capable of secondary rounds of infection in the mouse. ETV was well tolerated and no morbidity or mortality was observed during the 10-day study. Similar to other animal models, ETV displayed potent anti-HBV activity in this transgenic mouse model.

  10. Structural characterization and antiviral activity of a novel heteropolysaccharide isolated from Grifola frondosa against enterovirus 71.

    PubMed

    Zhao, Chao; Gao, Luying; Wang, Chunyang; Liu, Bin; Jin, Yu; Xing, Zheng

    2016-06-25

    A novel heteropolysaccharide from Grifola frondosa mycelia was extracted and purified using DEAE Sephadex A-50 and Sephadex G-200 chromatography. Fourier transform infrared (FT-IR) spectroscopy and nuclear magnetic resonance ((1)H NMR and (13)C NMR) spectroscopy were used to decipher the structure of the purified G. frondosa polysaccharide (GFP1). Chemical and spectral analysis revealed that GFP1, with an average molecular weight of 40.5kDa, possessed a 1,6-β-d-glucan backbone with a single 1,3-α-d-fucopyranosyl side-branching unit. Enterovirus 71 (EV71) is the causative pathogen of hand-foot-and-mouth disease. GFP1 was tested for its anti-EV71 activity in cultured cells, which showed that EV71 viral replication was blocked and viral VP1 protein expression and genomic RNA synthesis were suppressed. Moreover, GFP1 exhibited apoptotic and other activities by suppressing the EV71-induced caspase-3 cleavage and IκBα down regulation. Our results demonstrate that the novel G. frondosa polysaccharide has antiviral activity, which could be valuable as a potentially new anti-EV71 therapeutic compound. PMID:27083830

  11. Antiviral activity of Ecasol against feline calicivirus, a surrogate of human norovirus.

    PubMed

    Chander, Yogesh; Johnson, Thomas; Goyal, Sagar M; Russell, R J

    2012-12-01

    Human norovirus (NoV) is a major cause of acute gastroenteritis in closed settings such as hospitals, hotels and cruise ships. The virus survives on inanimate surfaces for extended periods of time, and environmental contamination has been implicated in its transmission. The disinfection of contaminated areas is important in controlling the spread of NoV infections. Neutral solutions of electrochemically activated (ECA)-anolyte have been shown to be powerful disinfectants against a broad range of bacterial pathogens. The active chemical ingredient is hypochlorous acid (HOCl), which is registered as an approved food contact surface sanitizer in the United States by the Environmental Protection Agency, pursuant to 40 CFR 180.940. We evaluated the antiviral activity of Ecasol (an ECA-anolyte) against feline calicivirus (FCV), a surrogate of NoV. FCV dried on plastic surfaces was exposed to Ecasol for 1, 2, or 5min. After exposure to Ecasol, the virus titers were compared with untreated controls to determine the virus inactivation efficacy after different contact times. Ecasol was found to decrease the FCV titer by >5log(10) within 1min of contact, indicating its suitability for inactivation of NoV on surfaces.

  12. Human Macrophage SCN5A Activates an Innate Immune Signaling Pathway for Antiviral Host Defense*

    PubMed Central

    Jones, Alexis; Kainz, Danielle; Khan, Faatima; Lee, Cara; Carrithers, Michael D.

    2014-01-01

    Pattern recognition receptors contain a binding domain for pathogen-associated molecular patterns coupled to a signaling domain that regulates transcription of host immune response genes. Here, a novel mechanism that links pathogen recognition to channel activation and downstream signaling is proposed. We demonstrate that an intracellular sodium channel variant, human macrophage SCN5A, initiates signaling and transcription through a calcium-dependent isoform of adenylate cyclase, ADCY8, and the transcription factor, ATF2. Pharmacological stimulation with a channel agonist or treatment with cytoplasmic poly(I:C), a mimic of viral dsRNA, activates this pathway to regulate expression of SP100-related genes and interferon β. Electrophysiological analysis reveals that the SCN5A variant mediates nonselective outward currents and a small, but detectable, inward current. Intracellular poly(I:C) markedly augments an inward voltage-sensitive sodium current and inhibits the outward nonselective current. These results suggest human macrophage SCN5A initiates signaling in an innate immune pathway relevant to antiviral host defense. It is postulated that SCN5A is a novel pathogen sensor and that this pathway represents a channel activation-dependent mechanism of transcriptional regulation. PMID:25368329

  13. Novel Indole-2-Carboxamide Compounds Are Potent Broad-Spectrum Antivirals Active against Western Equine Encephalitis Virus In Vivo

    PubMed Central

    Delekta, Phillip C.; Dobry, Craig J.; Sindac, Janice A.; Barraza, Scott J.; Blakely, Pennelope K.; Xiang, Jianming; Kirchhoff, Paul D.; Keep, Richard F.; Irani, David N.; Larsen, Scott D.

    2014-01-01

    ABSTRACT Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950–957, 2009, doi:http://dx.doi.org/10.1086/597275), and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535–3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; J. A. Sindac et al., J. Med. Chem. 56:9222–9241, 2013, http://dx.doi.org/10.1021/jm401330r). In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These compounds have half-maximal inhibitory concentrations of ∼1 μM and selectivity indices of >100 in cell-based assays using western equine encephalitis virus replicons. Furthermore, CCG205432 retains similar potency against fully infectious virus in cultured human neuronal cells. These compounds show broad inhibitory activity against a range of RNA viruses in culture, including members of the Togaviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Although their exact molecular target remains unknown, mechanism-of-action studies reveal that these novel indole-based compounds target a host factor that modulates cap-dependent translation. Finally, we demonstrate that both CCG205432 and CCG209023 dampen clinical disease severity and enhance survival of mice given a lethal western equine encephalitis virus challenge. These studies demonstrate that indole-2-carboxamide compounds are viable candidates for continued preclinical development as inhibitors of

  14. Novel indole-2-carboxamide compounds are potent broad-spectrum antivirals active against western equine encephalitis virus in vivo.

    PubMed

    Delekta, Phillip C; Dobry, Craig J; Sindac, Janice A; Barraza, Scott J; Blakely, Pennelope K; Xiang, Jianming; Kirchhoff, Paul D; Keep, Richard F; Irani, David N; Larsen, Scott D; Miller, David J

    2014-10-01

    Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950-957, 2009, doi:http://dx.doi.org/10.1086/597275), and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535-3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; J. A. Sindac et al., J. Med. Chem. 56:9222-9241, 2013, http://dx.doi.org/10.1021/jm401330r). In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These compounds have half-maximal inhibitory concentrations of ∼1 μM and selectivity indices of >100 in cell-based assays using western equine encephalitis virus replicons. Furthermore, CCG205432 retains similar potency against fully infectious virus in cultured human neuronal cells. These compounds show broad inhibitory activity against a range of RNA viruses in culture, including members of the Togaviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Although their exact molecular target remains unknown, mechanism-of-action studies reveal that these novel indole-based compounds target a host factor that modulates cap-dependent translation. Finally, we demonstrate that both CCG205432 and CCG209023 dampen clinical disease severity and enhance survival of mice given a lethal western equine encephalitis virus challenge. These studies demonstrate that indole-2-carboxamide compounds are viable candidates for continued preclinical development as inhibitors of neurotropic

  15. Biotransformation of the antiviral drugs acyclovir and penciclovir in activated sludge treatment.

    PubMed

    Prasse, Carsten; Wagner, Manfred; Schulz, Ralf; Ternes, Thomas A

    2011-04-01

    The biotransformation of the two antiviral drugs, acyclovir (ACV) and penciclovir (PCV), was investigated in contact with activated sludge. Biodegradation kinetics were determined, and transformation products (TPs) were identified using Hybrid Linear Ion Trap- FT Mass Spectrometry (LTQ Orbitrap Velos) and 1D (1H NMR, 13C NMR) and 2D (1H,1H-COSY, 1H-(13)C-HSQC) NMR Spectroscopy. ACV and PCV rapidly dissipated in the activated sludge batch systems with half-lives of 5.3 and 3.4 h and first-order rate constants in relation to the amount of suspended solids (SS) of 4.9±0.1 L gss(-1) d(-1) and 7.6±0.3 L gss(-1) d(-1), respectively. For ACV only a single TP was found, whereas eight TPs were identified for PCV. Structural elucidation of TPs exhibited that transformation only took place at the side chain leaving the guanine moiety unaltered. The oxidation of the primary hydroxyl group in ACV resulted in the formation of carboxy-acyclovir (Carboxy-ACV). For PCV, transformation was more diverse with several enzymatic reactions taking place such as the oxidation of terminal hydroxyl groups and β-oxidation followed by acetate cleavage. Analysis of different environmental samples revealed the presence of Carboxy-ACV in surface and drinking water with concentrations up to 3200 ng L(-1) and 40 ng L(-1), respectively.

  16. In vitro antiviral activities of extracts derived from Daucus maritimus seeds.

    PubMed

    Miladi, S; Abid, N; Debarnôt, C; Damak, M; Canard, B; Aouni, M; Selmi, B

    2012-01-01

    The antiviral activities of extracts from Daucus maritimus seeds were investigated against the reverse transcriptase of human immunodeficiency virus (HIV) type 1 and a panel of RNA-dependent RNA polymerases of dengue virus, West Nile virus (WNV) and hepatitis C virus (HCV). The extracts showed moderate to potent inhibition rates against the four viral polymerases. The ethyl acetate extract exhibited a potent inhibitory effect against WNV's RdRp, with an IC₅₀ value of 8 µg mL⁻¹. The F₂ fraction exhibited potent inhibitory activity against WNV and HCV's RdRps, with IC₅₀ values 1 and 5 µg mL⁻¹, respectively. The P₂ fraction also showed potent inhibitory effects on WNV and HCV's RdRps, with IC₅₀ values 2.7 and 4 µg mL⁻¹, respectively. The results suggest that these extracts are candidates for the development of new anti-WNV RpDp and anti-HCV RpDp agents. PMID:21895456

  17. In Vitro Antiviral Activity of Clove and Ginger Aqueous Extracts against Feline Calicivirus, a Surrogate for Human Norovirus.

    PubMed

    Aboubakr, Hamada A; Nauertz, Andrew; Luong, Nhungoc T; Agrawal, Shivani; El-Sohaimy, Sobhy A A; Youssef, Mohammed M; Goyal, Sagar M

    2016-06-01

    Foodborne viruses, particularly human norovirus, are a concern for public health, especially in fresh vegetables and other minimally processed foods that may not undergo sufficient decontamination. It is necessary to explore novel nonthermal techniques for preventing foodborne viral contamination. In this study, aqueous extracts of six raw food materials (flower buds of clove, fenugreek seeds, garlic and onion bulbs, ginger rhizomes, and jalapeño peppers) were tested for antiviral activity against feline calicivirus (FCV) as a surrogate for human norovirus. The antiviral assay was performed using dilutions of the extracts below the maximum nontoxic concentrations of the extracts to the host cells of FCV, Crandell-Reese feline kidney (CRFK) cells. No antiviral effect was seen when the host cells were pretreated with any of the extracts. However, pretreatment of FCV with nondiluted clove and ginger extracts inactivated 6.0 and 2.7 log of the initial titer of the virus, respectively. Also, significant dosedependent inactivation of FCV was seen when host cells were treated with clove and ginger extracts at the time of infection or postinfection at concentrations equal to or lower than the maximum nontoxic concentrations. By comprehensive two-dimensional gas chromatography-mass spectrometry analysis, eugenol (29.5%) and R-(-)-1,2-propanediol (10.7%) were identified as the major components of clove and ginger extracts, respectively. The antiviral effect of the pure eugenol itself was tested; it showed antiviral activity similar to that of clove extract, albeit at a lower level, which indicates that some other clove extract constituents, along with eugenol, are responsible for inactivation of FCV. These results showed that the aqueous extracts of clove and ginger hold promise for prevention of foodborne viral contamination.

  18. In Vitro Antiviral Activity of Clove and Ginger Aqueous Extracts against Feline Calicivirus, a Surrogate for Human Norovirus.

    PubMed

    Aboubakr, Hamada A; Nauertz, Andrew; Luong, Nhungoc T; Agrawal, Shivani; El-Sohaimy, Sobhy A A; Youssef, Mohammed M; Goyal, Sagar M

    2016-06-01

    Foodborne viruses, particularly human norovirus, are a concern for public health, especially in fresh vegetables and other minimally processed foods that may not undergo sufficient decontamination. It is necessary to explore novel nonthermal techniques for preventing foodborne viral contamination. In this study, aqueous extracts of six raw food materials (flower buds of clove, fenugreek seeds, garlic and onion bulbs, ginger rhizomes, and jalapeño peppers) were tested for antiviral activity against feline calicivirus (FCV) as a surrogate for human norovirus. The antiviral assay was performed using dilutions of the extracts below the maximum nontoxic concentrations of the extracts to the host cells of FCV, Crandell-Reese feline kidney (CRFK) cells. No antiviral effect was seen when the host cells were pretreated with any of the extracts. However, pretreatment of FCV with nondiluted clove and ginger extracts inactivated 6.0 and 2.7 log of the initial titer of the virus, respectively. Also, significant dosedependent inactivation of FCV was seen when host cells were treated with clove and ginger extracts at the time of infection or postinfection at concentrations equal to or lower than the maximum nontoxic concentrations. By comprehensive two-dimensional gas chromatography-mass spectrometry analysis, eugenol (29.5%) and R-(-)-1,2-propanediol (10.7%) were identified as the major components of clove and ginger extracts, respectively. The antiviral effect of the pure eugenol itself was tested; it showed antiviral activity similar to that of clove extract, albeit at a lower level, which indicates that some other clove extract constituents, along with eugenol, are responsible for inactivation of FCV. These results showed that the aqueous extracts of clove and ginger hold promise for prevention of foodborne viral contamination. PMID:27296605

  19. Evaluation of In vitro Antiviral Activity of Datura metel Linn. Against Rabies Virus

    PubMed Central

    Roy, Soumen; Mukherjee, Sandeepan; Pawar, Sandip; Chowdhary, Abhay

    2016-01-01

    Objective: The soxhlet and cold extracts of Datura metel Linn. were evaluated for in vitro antirabies activity. Materials and Methods: Soxhlet and cold extraction method were used to extract Datura (fruit and seed) extracts. In vitro cytotoxicity assay was performed by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay. Based on the CC50 range, the in vitro antirabies activity of the extracts was screened by rapid fluorescent focus inhibition test and molecular method. Results: The Datura (fruit and seed) extracts were not cytotoxic below 5 mg/ml (CC50). Titer of 10−4 rabies virus challenge virus standard (RV CVS) (1 50% tissue culture infective dose [1 TCID50]) was obtained by RFFT method and the challenge dose of 10 TCID50 was used for antirabies assay. Datura fruit and seed (soxhlet and cold) extracts showed 50% inhibition of RV CVS at 2.5 mg/ml and 1.25 mg/ml (inhibitory concentration 50% [IC50]), respectively. The tested extracts showed selectivity index (CC50/IC50) ranging from 2 to 4. The viral RNA was extracted and real-time reverse transcription-polymerase chain reaction was performed which also revealed a 2-fold reduction of viral load at 1.25 mg/ml of the Datura seed (soxhlet methanolic and cold aqueous) extracts. Conclusion: To the best of our knowledge, this is the first study of in vitro antiviral activity of D. metel Linn. against rabies virus. Datura seed extracts have a potential in vitro antirabies activity and, in future, can be further screened for in vivo activity against rabies virus in murine model. SUMMARY In the present study, Datura metel. Linn showed and in-vitro anti rabies activity in Vero cell line which was determined by RFFIT method and PCR method

  20. Evaluation of In vitro Antiviral Activity of Datura metel Linn. Against Rabies Virus

    PubMed Central

    Roy, Soumen; Mukherjee, Sandeepan; Pawar, Sandip; Chowdhary, Abhay

    2016-01-01

    Objective: The soxhlet and cold extracts of Datura metel Linn. were evaluated for in vitro antirabies activity. Materials and Methods: Soxhlet and cold extraction method were used to extract Datura (fruit and seed) extracts. In vitro cytotoxicity assay was performed by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay. Based on the CC50 range, the in vitro antirabies activity of the extracts was screened by rapid fluorescent focus inhibition test and molecular method. Results: The Datura (fruit and seed) extracts were not cytotoxic below 5 mg/ml (CC50). Titer of 10−4 rabies virus challenge virus standard (RV CVS) (1 50% tissue culture infective dose [1 TCID50]) was obtained by RFFT method and the challenge dose of 10 TCID50 was used for antirabies assay. Datura fruit and seed (soxhlet and cold) extracts showed 50% inhibition of RV CVS at 2.5 mg/ml and 1.25 mg/ml (inhibitory concentration 50% [IC50]), respectively. The tested extracts showed selectivity index (CC50/IC50) ranging from 2 to 4. The viral RNA was extracted and real-time reverse transcription-polymerase chain reaction was performed which also revealed a 2-fold reduction of viral load at 1.25 mg/ml of the Datura seed (soxhlet methanolic and cold aqueous) extracts. Conclusion: To the best of our knowledge, this is the first study of in vitro antiviral activity of D. metel Linn. against rabies virus. Datura seed extracts have a potential in vitro antirabies activity and, in future, can be further screened for in vivo activity against rabies virus in murine model. SUMMARY In the present study, Datura metel. Linn showed and in-vitro anti rabies activity in Vero cell line which was determined by RFFIT method and PCR method PMID:27695266

  1. RING domain is essential for the antiviral activity of TRIM25 from orange spotted grouper.

    PubMed

    Yang, Ying; Huang, Youhua; Yu, Yepin; Yang, Min; Zhou, Sheng; Qin, Qiwei; Huang, Xiaohong

    2016-08-01

    Tripartite motif-containing 25 (TRIM25) has been demonstrated to exert crucial roles in the regulation of innate immune signaling. However, the roles of fish TRIM25 in antiviral immune response still remained uncertain. Here, a novel fish TRIM25 gene from orange spotted grouper (EcTRIM25) was cloned and its roles in grouper virus infection were elucidated. EcTRIM25 encoded a 734-aa protein which shared 68% identity to large yellow croaker (Larimichthys crocea). Amino acid alignment showed that EcTRIM25 contained three conserved domains, including a RING-finger domain, a B box/coiled-coil domain and a SPRY domain. In healthy grouper, the transcript of EcTRIM25 was predominantly detected in skin, spleen and intestine. After stimulation with Singapore grouper iridovirus (SGIV) or poly I:C, the relative expression of EcTRIM25 in grouper spleen was significantly increased at the early stage of injection. Subcellular localization analysis showed that EcTRIM25 distributed throughout the cytoplasm in grouper cells. Notably, the deletion RING domain affected its accurate localization and displayed microtubule like structures or bright aggregates in GS cells. After incubation with SGIV or red spotted grouper nervous necrosis virus (RGNNV), overexpression of full length of EcTRIM25 in vitro significantly decreased the viral gene transcription of SGIV and RGNNV. Consistently, the deletion of RING domain obviously affected the inhibitory effect of EcTRIM25. Furthermore, overexpression of EcTRIM25 significantly increased the expression level of interferon related signaling molecules, including interferon regulatory factor (IRF) 3, interferon-induced 35-kDa protein (IFP35), MXI, IRF7 and myeloid differentiation factor 88 (MyD88), suggesting that the positive regulation of interferon immune response by EcTRIM25 might affected RGNNV replication directly. Meanwhile, the expression levels of pro-inflammation cytokines were differently regulated by the ectopic expression of EcTRIM25

  2. RING domain is essential for the antiviral activity of TRIM25 from orange spotted grouper.

    PubMed

    Yang, Ying; Huang, Youhua; Yu, Yepin; Yang, Min; Zhou, Sheng; Qin, Qiwei; Huang, Xiaohong

    2016-08-01

    Tripartite motif-containing 25 (TRIM25) has been demonstrated to exert crucial roles in the regulation of innate immune signaling. However, the roles of fish TRIM25 in antiviral immune response still remained uncertain. Here, a novel fish TRIM25 gene from orange spotted grouper (EcTRIM25) was cloned and its roles in grouper virus infection were elucidated. EcTRIM25 encoded a 734-aa protein which shared 68% identity to large yellow croaker (Larimichthys crocea). Amino acid alignment showed that EcTRIM25 contained three conserved domains, including a RING-finger domain, a B box/coiled-coil domain and a SPRY domain. In healthy grouper, the transcript of EcTRIM25 was predominantly detected in skin, spleen and intestine. After stimulation with Singapore grouper iridovirus (SGIV) or poly I:C, the relative expression of EcTRIM25 in grouper spleen was significantly increased at the early stage of injection. Subcellular localization analysis showed that EcTRIM25 distributed throughout the cytoplasm in grouper cells. Notably, the deletion RING domain affected its accurate localization and displayed microtubule like structures or bright aggregates in GS cells. After incubation with SGIV or red spotted grouper nervous necrosis virus (RGNNV), overexpression of full length of EcTRIM25 in vitro significantly decreased the viral gene transcription of SGIV and RGNNV. Consistently, the deletion of RING domain obviously affected the inhibitory effect of EcTRIM25. Furthermore, overexpression of EcTRIM25 significantly increased the expression level of interferon related signaling molecules, including interferon regulatory factor (IRF) 3, interferon-induced 35-kDa protein (IFP35), MXI, IRF7 and myeloid differentiation factor 88 (MyD88), suggesting that the positive regulation of interferon immune response by EcTRIM25 might affected RGNNV replication directly. Meanwhile, the expression levels of pro-inflammation cytokines were differently regulated by the ectopic expression of EcTRIM25

  3. Interferon lambda induces antiviral response to herpes simplex virus 1 infection.

    PubMed

    Lopušná, K; Režuchová, I; Kabát, P; Kúdelová, M

    2014-01-01

    Lambda interferons (IFN-λ) are known to induce potent antiviral response in a wide variety of target cells. They activate the same intracellular signalling pathways and have similar biological activities as IFN-α/β, including antiviral activity, but signal via distinct receptor complex, which is expressed in a cell- and species-specific manner. IFN-λ was reported to induce in vitro marked antiviral activity against various RNA viruses, but corresponding data on DNA viruses are sparse. Therefore we examined the IFN-λ1 induced antiviral activity against two strains of herpes simplex virus 1, a highly pathogenic ANGpath and moderately pathogenic KOS. The antiviral response was determined in vitro in Vero cells, known as deficient in production of type I IFNs and in Vero E6 cells, responding to viral infection with abundant IFN-λ production, although deficient in production of type I IFNs. The results showed that IFN-λ1 induced in Vero cells higher antiviral activity against ANGpath strain than against KOS strain. In Vero E6 cells endogenous IFN-λ induced higher antiviral activity against ANGpath strain than against KOS strain, but because of the virus induction of IFN-λ expression the antiviral activity was detected later. The observed differences between the IFN-λ1-induced antiviral activities against viral strains of various pathogenicity suggest that virus attributes may play role in the antiviral state of cells induced by IFN-λ. PMID:25518713

  4. Antiviral Activity of Favipiravir (T-705) against a Broad Range of Paramyxoviruses In Vitro and against Human Metapneumovirus in Hamsters.

    PubMed

    Jochmans, D; van Nieuwkoop, S; Smits, S L; Neyts, J; Fouchier, R A M; van den Hoogen, B G

    2016-08-01

    The clinical impact of infections with respiratory viruses belonging to the family Paramyxoviridae argues for the development of antiviral therapies with broad-spectrum activity. Favipiravir (T-705) has demonstrated potent antiviral activity against multiple RNA virus families and is presently in clinical evaluation for the treatment of influenza. Here we demonstrate in vitro activity of T-705 against the paramyxoviruses human metapneumovirus (HMPV), respiratory syncytial virus, human parainfluenza virus, measles virus, Newcastle disease virus, and avian metapneumovirus. In addition, we demonstrate activity against HMPV in hamsters. T-705 treatment inhibited replication of all paramyxoviruses tested in vitro, with 90% effective concentration (EC90) values of 8 to 40 μM. Treatment of HMPV-challenged hamsters with T-705 at 200 mg/kg of body weight/day resulted in 100% protection from infection of the lungs. In all treated and challenged animals, viral RNA remained detectable in the respiratory tract. The observation that T-705 treatment had a significant effect on infectious viral titers, with a limited effect on viral genome titers, is in agreement with its proposed mode of action of viral mutagenesis. However, next-generation sequencing of viral genomes isolated from treated and challenged hamsters did not reveal (hyper)mutation. Polymerase activity assays revealed a specific effect of T-705 on the activity of the HMPV polymerase. With the reported antiviral activity of T-705 against a broad range of RNA virus families, this small molecule is a promising broad-range antiviral drug candidate for limiting the viral burden of paramyxoviruses and for evaluation for treatment of infections with (re)emerging viruses, such as the henipaviruses.

  5. Antiviral Activity of Favipiravir (T-705) against a Broad Range of Paramyxoviruses In Vitro and against Human Metapneumovirus in Hamsters.

    PubMed

    Jochmans, D; van Nieuwkoop, S; Smits, S L; Neyts, J; Fouchier, R A M; van den Hoogen, B G

    2016-08-01

    The clinical impact of infections with respiratory viruses belonging to the family Paramyxoviridae argues for the development of antiviral therapies with broad-spectrum activity. Favipiravir (T-705) has demonstrated potent antiviral activity against multiple RNA virus families and is presently in clinical evaluation for the treatment of influenza. Here we demonstrate in vitro activity of T-705 against the paramyxoviruses human metapneumovirus (HMPV), respiratory syncytial virus, human parainfluenza virus, measles virus, Newcastle disease virus, and avian metapneumovirus. In addition, we demonstrate activity against HMPV in hamsters. T-705 treatment inhibited replication of all paramyxoviruses tested in vitro, with 90% effective concentration (EC90) values of 8 to 40 μM. Treatment of HMPV-challenged hamsters with T-705 at 200 mg/kg of body weight/day resulted in 100% protection from infection of the lungs. In all treated and challenged animals, viral RNA remained detectable in the respiratory tract. The observation that T-705 treatment had a significant effect on infectious viral titers, with a limited effect on viral genome titers, is in agreement with its proposed mode of action of viral mutagenesis. However, next-generation sequencing of viral genomes isolated from treated and challenged hamsters did not reveal (hyper)mutation. Polymerase activity assays revealed a specific effect of T-705 on the activity of the HMPV polymerase. With the reported antiviral activity of T-705 against a broad range of RNA virus families, this small molecule is a promising broad-range antiviral drug candidate for limiting the viral burden of paramyxoviruses and for evaluation for treatment of infections with (re)emerging viruses, such as the henipaviruses. PMID:27185803

  6. [Ribonucleases as antiviral agents].

    PubMed

    Il'inskaia, O N; Shakh Makhmud, R

    2014-01-01

    Many ribonucleases (RNases) are able to inhibit the reproduction of viruses in infected cell cultures and laboratory animals, but molecular mechanisms of their antiviral activity remain unclear. The review observes the most known RNases which possess established antiviral effects, actually intracellular RNases (RNase L, MCPIPI protein, eosinophylic RNases) as well as exogenously applied ones (RNase A, BS-RNase, onconase, binase, synthetic RNases). Attention is given on two important but not always obligatory aspects in molecule of RNases, which have antiviral properties: catalytic activity and ability to the dimerization. The hypothetic scheme of virus elimination by exogenous RNases, that reflects possible types of interaction of viruses and RNases with a cell, is proposed. The evidence for RNases as classical components of immune defense which are perspective agents for development of new antiviral therapeutics is produced.

  7. Synthesis and antiviral activity of the carbocyclic analogue of the highly potent and selective anti-VZV bicyclo furano pyrimidines.

    PubMed

    Migliore, Marco D; Zonta, Nicola; McGuigan, Christopher; Henson, Geoffrey; Andrei, Graciela; Snoeck, Robert; Balzarini, Jan

    2007-12-27

    Carbocyclic nucleoside analogues are catabolically stable since they are resistant to phosphorolytic cleavage by pyrimidine nucleoside phosphorylase enzymes. The carbocyclic analogue (C-BCNA) of the highly potent and selective anti-VZV bicyclic nucleoside analogue (BCNA) 6-pentylphenylfuro[2,3-d]pyrimidine-2'-deoxyribose was synthesized using carbocyclic 2'-deoxyuridine as starting material. C-BCNA was found to be chemically more stable than the furano lead, but it was shown to be significantly less antivirally active than its parent nucleoside analogue. It was noted to have a 10-fold lower inhibitory activity against the VZV-encoded thymidine kinase. This reduction of activity may be attributed to the different conformation of the sugar and base, as predicted by computational studies and supported by NMR studies. However, other factors besides affinity for VZV-TK must account for the greatly reduced antiviral potency. PMID:18052321

  8. TRIM11 negatively regulates IFNβ production and antiviral activity by targeting TBK1.

    PubMed

    Lee, Younglang; Song, Byeongwoon; Park, Chankyu; Kwon, Ki-Sun

    2013-01-01

    The innate immune response is a host defense mechanism against infection by viruses and bacteria. Type I interferons (IFNα/β) play a crucial role in innate immunity. If not tightly regulated under normal conditions and during immune responses, IFN production can become aberrant, leading to inflammatory and autoimmune diseases. In this study, we identified TRIM11 (tripartite motif containing 11) as a novel negative regulator of IFNβ production. Ectopic expression of TRIM11 decreased IFNβ promoter activity induced by poly (I:C) stimulation or overexpression of RIG-I (retinoic acid-inducible gene-I) signaling cascade components RIG-IN (constitutively active form of RIG-I), MAVS (mitochondrial antiviral signaling protein), or TBK1 (TANK-binding kinase-1). Conversely, TRIM11 knockdown enhanced IFNβ promoter activity induced by these stimuli. Moreover, TRIM11 overexpression inhibited the phosphorylation and dimerization of IRF3 and expression of IFNβ mRNA. By contrast, TRIM11 knockdown increased the IRF3 phosphorylation and IFNβ mRNA expression. We also found that TRIM11 and TBK1, a key kinase that phosphorylates IRF3 in the RIG-I pathway, interacted with each other through CC and CC2 domain, respectively. This interaction was enhanced in the presence of the TBK1 adaptor proteins, NAP1 (NF-κB activating kinase-associated protein-1), SINTBAD (similar to NAP1 TBK1 adaptor) or TANK (TRAF family member-associated NF-κB activator). Consistent with its inhibitory role in RIG-I-mediated IFNβ signaling, TRIM11 overexpression enhanced viral infectivity, whereas TRIM11 knockdown produced the opposite effect. Collectively, our results suggest that TRIM11 inhibits RIG-I-mediated IFNβ production by targeting the TBK1 signaling complex. PMID:23675467

  9. Antiviral immunity in marine molluscs.

    PubMed

    Green, Timothy J; Raftos, David; Speck, Peter; Montagnani, Caroline

    2015-09-01

    Marine molluscs, like all living organisms, are constantly exposed to viruses and have evolved efficient antiviral defences. We review here recent developments in molluscan antiviral immunity against viruses belonging to the order Herpesvirales. Emerging results suggest an interferon-like response and autophagy are involved in the antiviral defence of bivalves to viral infection. Multi-functional plasma proteins from gastropods and bivalves have been identified to have broad-spectrum antiviral activity against mammalian viruses. The antiviral defences present in molluscs can be enhanced by genetic selection, as shown by the presence of oyster strains specifically resistant to ostreid herpesvirus type 1. Whether varying amounts or different isoforms of these antiviral plasma proteins contributes to genetic resistance is worthy of further research. Other evolutionarily conserved antiviral mechanisms, such as RNA interference and apoptosis, still need further characterization.

  10. Antiviral immunity in marine molluscs.

    PubMed

    Green, Timothy J; Raftos, David; Speck, Peter; Montagnani, Caroline

    2015-09-01

    Marine molluscs, like all living organisms, are constantly exposed to viruses and have evolved efficient antiviral defences. We review here recent developments in molluscan antiviral immunity against viruses belonging to the order Herpesvirales. Emerging results suggest an interferon-like response and autophagy are involved in the antiviral defence of bivalves to viral infection. Multi-functional plasma proteins from gastropods and bivalves have been identified to have broad-spectrum antiviral activity against mammalian viruses. The antiviral defences present in molluscs can be enhanced by genetic selection, as shown by the presence of oyster strains specifically resistant to ostreid herpesvirus type 1. Whether varying amounts or different isoforms of these antiviral plasma proteins contributes to genetic resistance is worthy of further research. Other evolutionarily conserved antiviral mechanisms, such as RNA interference and apoptosis, still need further characterization. PMID:26297577

  11. Efficacy and Safety of a Preemptive Antiviral Therapy Strategy Based on Combined Virological and Immunological Monitoring for Active Cytomegalovirus Infection in Allogeneic Stem Cell Transplant Recipients

    PubMed Central

    Navarro, David; Amat, Paula; de la Cámara, Rafael; López, Javier; Vázquez, Lourdes; Serrano, David; Nieto, José; Rovira, Monserrat; Piñana, José Luis; Giménez, Estela; Solano, Carlos

    2016-01-01

    Background. Preemptive antiviral therapy for active cytomegalovirus (CMV) infection in allogeneic stem cell transplant recipients (Allo-SCT) results in overtreatment and a high rate of recurrences. Monitoring of CMV-specific T-cell immunity may help to individualize treatments and minimize these problems. Methods. We conducted a prospective, multicenter, matched comparison-group study to evaluate the efficacy and safety of a novel strategy that consisted of interrupting anti-CMV therapy upon CMV DNAemia clearance and concurrent detection of phosphoprotein 65/immediate-early-1-specific interferon-γ-producing CD8+ T cells at levels of >1 cell/µL (within 30 days after the initiation of therapy). Immunological monitoring was performed on days +7, +14, +21, and +28 after treatment initiation. The primary endpoint was the cumulative incidence of recurrent DNAemia within 2 months after treatment cessation. Secondary endpoints were the length of antiviral treatment courses and the incidence of hematological toxicity. Results. Sixty-one patients were enrolled in the study group. Fifty-six patients were included in the matched-control group. Eleven patients (18%) fulfilled the criteria for antiviral treatment interruption. The cumulative incidence of recurrent CMV DNAemia was significantly lower (P = .02) in these patients than in patients in the comparative groups. Likewise, the length of antiviral treatment courses was significantly shorter in these patients than that in patients in the matched-control group (P = .003). No significant differences in the incidence of hematological toxicity was observed between the comparative groups. Conclusions. Our data support the clinical utility of combining immunological and virological monitoring for the management of CMV infection in a subset of Allo-SCT recipients. PMID:27419179

  12. Activation of Vago by interferon regulatory factor (IRF) suggests an interferon system-like antiviral mechanism in shrimp.

    PubMed

    Li, Chaozheng; Li, Haoyang; Chen, Yixiao; Chen, Yonggui; Wang, Sheng; Weng, Shao-Ping; Xu, Xiaopeng; He, Jianguo

    2015-01-01

    There is a debate on whether invertebrates possess an antiviral immunity similar to the interferon (IFN) system of vertebrates. The Vago gene from arthropods encodes a viral-activated secreted peptide that restricts virus infection through activating the JAK-STAT pathway and is considered to be a cytokine functionally similar to IFN. In this study, the first crustacean IFN regulatory factor (IRF)-like gene was identified in Pacific white shrimp, Litopenaeus vannamei. The L. vannamei IRF showed similar protein nature to mammalian IRFs and could be activated during virus infection. As a transcriptional regulatory factor, L. vannamei IRF could activate the IFN-stimulated response element (ISRE)-containing promoter to regulate the expression of mammalian type I IFNs and initiate an antiviral state in mammalian cells. More importantly, IRF could bind the 5'-untranslated region of L. vannamei Vago4 gene and activate its transcription, suggesting that shrimp Vago may be induced in a similar manner to that of IFNs and supporting the opinion that Vago might function as an IFN-like molecule in invertebrates. These suggested that shrimp might possess an IRF-Vago-JAK/STAT regulatory axis, which is similar to the IRF-IFN-JAK/STAT axis of vertebrates, indicating that invertebrates might possess an IFN system-like antiviral mechanism.

  13. Activation of Vago by interferon regulatory factor (IRF) suggests an interferon system-like antiviral mechanism in shrimp

    PubMed Central

    Li, Chaozheng; Li, Haoyang; Chen, Yixiao; Chen, Yonggui; Wang, Sheng; Weng, Shao-Ping; Xu, Xiaopeng; He, Jianguo

    2015-01-01

    There is a debate on whether invertebrates possess an antiviral immunity similar to the interferon (IFN) system of vertebrates. The Vago gene from arthropods encodes a viral-activated secreted peptide that restricts virus infection through activating the JAK-STAT pathway and is considered to be a cytokine functionally similar to IFN. In this study, the first crustacean IFN regulatory factor (IRF)-like gene was identified in Pacific white shrimp, Litopenaeus vannamei. The L. vannamei IRF showed similar protein nature to mammalian IRFs and could be activated during virus infection. As a transcriptional regulatory factor, L. vannamei IRF could activate the IFN-stimulated response element (ISRE)-containing promoter to regulate the expression of mammalian type I IFNs and initiate an antiviral state in mammalian cells. More importantly, IRF could bind the 5′-untranslated region of L. vannamei Vago4 gene and activate its transcription, suggesting that shrimp Vago may be induced in a similar manner to that of IFNs and supporting the opinion that Vago might function as an IFN-like molecule in invertebrates. These suggested that shrimp might possess an IRF-Vago-JAK/STAT regulatory axis, which is similar to the IRF-IFN-JAK/STAT axis of vertebrates, indicating that invertebrates might possess an IFN system-like antiviral mechanism. PMID:26459861

  14. In vitro Antiviral Activity of Rubia cordifolia Aerial Part Extract against Rotavirus

    PubMed Central

    Sun, Yuanyuan; Gong, Xuepeng; Tan, Jia Y.; Kang, Lifeng; Li, Dongyan; Vikash; Yang, Jihong; Du, Guang

    2016-01-01

    The root of Rubia cordifolia has been used traditionally as a hemostatic agent, while the aerial part of the plant consisting of leaf and stem is known to exhibit anti-diarrheal properties and has been widely used as a remedy in many parts of China. As rotavirus is one of the most commonly associated diarrhea-causing pathogen, this study aims to investigate the anti-rotaviral effect of R. cordifolia aerial part (RCAP). The cytotoxicity of RCAP toward MA-104 cells was evaluated using the WST-8 assay. Colloidal gold method and real time polymerase chain reaction (qPCR) assay were used to confirm the findings of the antiviral assay. Then, 4′,6-diamidino-2-phenylindole (DAPI) staining method was subsequently used to investigate the mode of death among the cells. And the representative components of aqueous extract were isolated and identified. It was shown that both the viability of MA-104 cells and the viral load were reduced with increasing concentration of the extract. DAPI staining showed that virus-induced apoptosis was the cause of the low cell viability and viral load, an effect which was accelerated with incubation in the aqueous herbal extract. The major compounds postulated to exhibit this activity were isolated from the aqueous herbal extract and identified to be compounds Xanthopurpurin and Vanillic Acid. This study showed that RCAP extract effectively inhibited rotavirus multiplication by promoting virus-induced apoptosis in MA-104 cells. PMID:27679574

  15. Interferon-Gamma Enhances TLR3 Expression and Anti-Viral Activity in Keratinocytes.

    PubMed

    Kajita, Ai; Morizane, Shin; Takiguchi, Tetsuya; Yamamoto, Takenobu; Yamada, Masao; Iwatsuki, Keiji

    2015-08-01

    Toll-like receptors (TLRs) recognize specific microbial products in the innate immune response. TLR3, a double-stranded RNA sensor, is thought to have an important role in viral infections, but the regulation of TLR3 expression and its function in keratinocytes are not fully understood. Here we show the Th1 cytokine IFN-γ increased the TLR3 expression via STAT1 in cultured normal human epidermal keratinocytes (NHEKs). Co-stimulation with IFN-γ and the TLR3 ligand poly (I:C) synergistically increased the expression of IFN-β, IL-6, IL-8, and human β-defensin-2 in NHEKs compared with poly (I:C) or IFN-γ alone. These synergistic inductions were significantly inhibited by an endosomal acidification inhibitor, chloroquine, and by TLR3 siRNA. Co-stimulation with IFN-γ and poly (I:C) also significantly enhanced the anti-viral activity against herpes simplex virus type-1 in NHEKs compared with poly (I:C) or IFN-γ alone. In addition to the in vitro findings, an immunohistochemical analysis revealed IFN-γ-positive cells surrounding herpetic vesicles. These findings indicate that IFN-γ might contribute to the innate immune response to cutaneous viral infections by enhancing TLR3 expression and function in keratinocytes. PMID:25822580

  16. In vitro Antiviral Activity of Rubia cordifolia Aerial Part Extract against Rotavirus.

    PubMed

    Sun, Yuanyuan; Gong, Xuepeng; Tan, Jia Y; Kang, Lifeng; Li, Dongyan; Vikash; Yang, Jihong; Du, Guang

    2016-01-01

    The root of Rubia cordifolia has been used traditionally as a hemostatic agent, while the aerial part of the plant consisting of leaf and stem is known to exhibit anti-diarrheal properties and has been widely used as a remedy in many parts of China. As rotavirus is one of the most commonly associated diarrhea-causing pathogen, this study aims to investigate the anti-rotaviral effect of R. cordifolia aerial part (RCAP). The cytotoxicity of RCAP toward MA-104 cells was evaluated using the WST-8 assay. Colloidal gold method and real time polymerase chain reaction (qPCR) assay were used to confirm the findings of the antiviral assay. Then, 4',6-diamidino-2-phenylindole (DAPI) staining method was subsequently used to investigate the mode of death among the cells. And the representative components of aqueous extract were isolated and identified. It was shown that both the viability of MA-104 cells and the viral load were reduced with increasing concentration of the extract. DAPI staining showed that virus-induced apoptosis was the cause of the low cell viability and viral load, an effect which was accelerated with incubation in the aqueous herbal extract. The major compounds postulated to exhibit this activity were isolated from the aqueous herbal extract and identified to be compounds Xanthopurpurin and Vanillic Acid. This study showed that RCAP extract effectively inhibited rotavirus multiplication by promoting virus-induced apoptosis in MA-104 cells. PMID:27679574

  17. Antiviral activity of tenofovir against Cauliflower mosaic virus and its metabolism in Brassica pekinensis plants.

    PubMed

    Spak, Josef; Votruba, Ivan; Pavingerová, Daniela; Holý, Antonín; Spaková, Vlastimila; Petrzik, Karel

    2011-11-01

    The antiviral effect of the acyclic nucleoside phosphonate tenofovir (R)-PMPA on double-stranded DNA Cauliflower mosaic virus (CaMV) in Brassica pekinensis plants grown in vitro on liquid medium was evaluated. Double antibody sandwich ELISA and PCR were used for relative quantification of viral protein and detecting nucleic acid in plants. (R)-PMPA at concentrations of 25 and 50 mg/l significantly reduced CaMV titers in plants within 6-9 weeks to levels detectable neither by ELISA nor by PCR. Virus-free plants were obtained after 3-month cultivation of meristem tips on semisolid medium containing 50 mg/l (R)-PMPA and their regeneration to whole plants in the greenhouse. Studying the metabolism of (R)-PMPA in B. pekinensis revealed that mono- and diphosphate, structural analogs of NDP and/or NTP, are the only metabolites formed. The data indicate very low substrate activity of the enzymes toward (R)-PMPA as substrate. The extent of phosphorylation in the plant's leaves represents only 4.5% of applied labeled (R)-PMPA. In roots, we detected no radioactive peaks of phosphorylated metabolites of (R)-PMPAp or (R)-PMPApp. PMID:21889541

  18. In vitro Antiviral Activity of Rubia cordifolia Aerial Part Extract against Rotavirus

    PubMed Central

    Sun, Yuanyuan; Gong, Xuepeng; Tan, Jia Y.; Kang, Lifeng; Li, Dongyan; Vikash; Yang, Jihong; Du, Guang

    2016-01-01

    The root of Rubia cordifolia has been used traditionally as a hemostatic agent, while the aerial part of the plant consisting of leaf and stem is known to exhibit anti-diarrheal properties and has been widely used as a remedy in many parts of China. As rotavirus is one of the most commonly associated diarrhea-causing pathogen, this study aims to investigate the anti-rotaviral effect of R. cordifolia aerial part (RCAP). The cytotoxicity of RCAP toward MA-104 cells was evaluated using the WST-8 assay. Colloidal gold method and real time polymerase chain reaction (qPCR) assay were used to confirm the findings of the antiviral assay. Then, 4′,6-diamidino-2-phenylindole (DAPI) staining method was subsequently used to investigate the mode of death among the cells. And the representative components of aqueous extract were isolated and identified. It was shown that both the viability of MA-104 cells and the viral load were reduced with increasing concentration of the extract. DAPI staining showed that virus-induced apoptosis was the cause of the low cell viability and viral load, an effect which was accelerated with incubation in the aqueous herbal extract. The major compounds postulated to exhibit this activity were isolated from the aqueous herbal extract and identified to be compounds Xanthopurpurin and Vanillic Acid. This study showed that RCAP extract effectively inhibited rotavirus multiplication by promoting virus-induced apoptosis in MA-104 cells.

  19. Specific antiviral activity demonstrated by TGTP, a member of a new family of interferon-induced GTPases.

    PubMed

    Carlow, D A; Teh, S J; Teh, H S

    1998-09-01

    The GTPase superfamily includes a diversity of molecules whose functions are regulated through the binding and hydrolysis of GTP. This superfamily can be segregated into families of functionally related molecules that typically share amino acid sequence similarity within and around the nucleotide-binding domains. A new family of putative GTPases, including IRG-47, LRG-47, IGTP, and TGTP/Mg21, has recently emerged that share significant sequence identity (25-40%). Expression of these molecules has been shown to be selectively induced by IFN-gamma and in some cases by IFN-alpha beta or bacterial LPS. This induction pattern implicates these putative GTPases as part of the innate defense of cells to infection, but their role in such defense has not yet been defined. We have previously described the cloning of TGTP and now confirm its intrinsic activity as a GTPase. We found that TGTP is strongly induced by endogenous IFN-alpha beta produced in response to standard lipofection of plasmid DNA or polyinosinic polycytidylic acid. The ability of endogenously produced IFN-alpha beta to efficiently induce expression of TGTP under these conditions suggested that TGTP might participate in defense against viral infection. This proposal was borne out when TGTP-transfected L cells displayed relative resistance to plaque formation by vesicular stomatitis virus but not herpes simplex virus. This observation places TGTP among a small family of innate antiviral agents and has implications for the functions of other members of this family of GTPases.

  20. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection.

    PubMed

    Melvin, Jeffrey A; Lashua, Lauren P; Kiedrowski, Megan R; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C; Bomberger, Jennifer M

    2016-01-01

    ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen Pseudomonas aeruginosa during coinfection with respiratory syncytial virus. We also observed antiviral activity, indicating the ability of engineered antimicrobial peptides to act as cross-kingdom single-molecule combination therapies. PMID:27303744

  1. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection

    PubMed Central

    Melvin, Jeffrey A.; Lashua, Lauren P.; Kiedrowski, Megan R.; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C.

    2016-01-01

    formed by the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen Pseudomonas aeruginosa during coinfection with respiratory syncytial virus. We also observed antiviral activity, indicating the ability of engineered antimicrobial peptides to act as cross-kingdom single-molecule combination therapies. PMID:27303744

  2. Sequence-Specific Modifications Enhance the Broad-Spectrum Antiviral Response Activated by RIG-I Agonists

    PubMed Central

    Chiang, Cindy; Beljanski, Vladimir; Yin, Kevin; Olagnier, David; Ben Yebdri, Fethia; Steel, Courtney; Goulet, Marie-Line; DeFilippis, Victor R.; Streblow, Daniel N.; Haddad, Elias K.; Trautmann, Lydie; Ross, Ted; Lin, Rongtuan

    2015-01-01

    ABSTRACT The cytosolic RIG-I (retinoic acid-inducible gene I) receptor plays a pivotal role in the initiation of the immune response against RNA virus infection by recognizing short 5′-triphosphate (5′ppp)-containing viral RNA and activating the host antiviral innate response. In the present study, we generated novel 5′ppp RIG-I agonists of varieous lengths, structures, and sequences and evaluated the generation of the antiviral and inflammatory responses in human epithelial A549 cells, human innate immune primary cells, and murine models of influenza and chikungunya viral pathogenesis. A 99-nucleotide, uridine-rich hairpin 5′pppRNA termed M8 stimulated an extensive and robust interferon response compared to other modified 5′pppRNA structures, RIG-I aptamers, or poly(I·C). Interestingly, manipulation of the primary RNA sequence alone was sufficient to modulate antiviral activity and inflammatory response, in a manner dependent exclusively on RIG-I and independent of MDA5 and TLR3. Both prophylactic and therapeutic administration of M8 effectively inhibited influenza virus and dengue virus replication in vitro. Furthermore, multiple strains of influenza virus that were resistant to oseltamivir, an FDA-approved therapeutic treatment for influenza, were highly sensitive to inhibition by M8. Finally, prophylactic M8 treatment in vivo prolonged survival and reduced lung viral titers of mice challenged with influenza virus, as well as reducing chikungunya virus-associated foot swelling and viral load. Altogether, these results demonstrate that 5′pppRNA can be rationally designed to achieve a maximal RIG-I-mediated protective antiviral response against human-pathogenic RNA viruses. IMPORTANCE The development of novel therapeutics to treat human-pathogenic RNA viral infections is an important goal to reduce spread of infection and to improve human health and safety. This study investigated the design of an RNA agonist with enhanced antiviral and inflammatory

  3. Antiviral activity of sodium 5-aminosulfonyl-2,4-dichlorobenzoate (M12325).

    PubMed Central

    Ohnishi, H; Yamaguchi, K; Shimada, S; Himuro, S; Suzuki, Y

    1982-01-01

    Sodium 5-aminosulfonyl-2,4-dichlorobenzoate (M12325) was evaluated for antiviral activity in tissue culture and infected mice. At concentrations ranging from 2.5 to 75.8 micrograms/ml, M12325 inhibited the cytopathic effects of 10 mean tissue culture infective doses of influenza virus A/WSN, A/FM, A/Kumamoto, and B/Great Lakes; parainfluenza virus; rhinovirus; echovirus; respiratory syncytial virus; and vesicular stomatitis virus. Concentrations up to 150 micrograms/ml did not inhibit the cytopathic effects of herpes simplex virus, vaccinia virus, or adenovirus. Concentrations up to 3,160 micrograms/ml did not inhibit the growth of MDCK, Vero, or HEL cells in culture. Single oral doses of M12325, ranging from 10 to 300 mg/kg, administered 1 h before and 1 h after challenge, reduced mortality in mice inoculated intranasally with influenza A/WSN virus. Twice daily oral doses for 14 days effected significant reductions in the mortality of mice infected intranasally with influenza A/WSN, A/FM, A/Kumamoto, and B/Great Lakes, and parainfluenza virus, but they were not effective in mice infected with herpes simplex virus. Multiple doses of 10 and 30 mg/kg, administered intraperitoneally, reduced lung consolidation and virus titer. M12325 was well tolerated in multiple doses up to 1 g/kg orally. These observations support the conclusions that M12325 has a broad spectrum of activity against RNA viruses in vitro and in vivo, selective toxicity, and a large margin of safety. PMID:6927286

  4. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles

    PubMed Central

    Broglie, Jessica Jenkins; Alston, Brittny; Yang, Chang; Ma, Lun; Adcock, Audrey F.; Chen, Wei; Yang, Liju

    2015-01-01

    Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs) is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk) virus-like particles (VLPs) as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs) against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1) by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus. PMID:26474396

  5. Partial antiviral activities of the Asn631 chicken Mx against newcastle disease virus and vesicular stomatitis virus.

    PubMed

    Li, Bichun; Fu, Dezhi; Zhang, Yani; Xu, Qi; Ni, Ligang; Chang, Guobin; Zheng, Mengmeng; Gao, Bo; Sun, Huaichang; Chen, Guohong

    2012-08-01

    Conflicting data existed for the antiviral potential of the chicken Mx protein and the importance of the Asn631 polymorphism in determination of the antiviral activity. In this study we modified the chicken Mx cDNA from the Ser631 to Asn631 genotype and transfected them into COS-I cells, chicken embryonic fibroblast (CEF) or NIH 3T3 cells. The Mx protein was mainly located at the cytoplasm. The transfected cell cultures were challenged with newcastle disease virus (NDV) or vesicular stomatitis virus (VSV), cytopathic affect (CPE) inhibition assay showed that the times for development of visible and full CPE were significantly postponed by the Asn631 cDNA transfection at 48 h transfection, but not by the Ser631 cDNA transfection. Viral titration assay showed that the virus titers were significantly reduced before 72 h postinfection. CEF cells was incubated by the cell lysates extracted from the COS-I cells transfected with pcDNA-Mx/Asn631, could resist and delayed NDV infection. These data suggested the importance of the Asn631 polymorphism of the chicken Mx in determination of the antiviral activities against NDV and VSV at early stage of viral infection, which were relatively weak and not sufficient to inhibit the viral replication at late stage of viral infection.

  6. Synthesis, Antiviral and Cytotoxic Activities of 2-(2-Phenyl carboxylic acid)-3-Phenylquinazolin -4(3H)-one Derivatives

    PubMed Central

    Selvam, P.; Murugesh, N.; Chandramohan, M.; Pannecouque, C.; DE Clercq, E.

    2010-01-01

    A series of novel 2,3-disubstitutedquinazolin-4(3H)-ones have been synthesized by condensation of 2-substituted benzo[1,3]oxazine-4-ones and anthranilic acid. Synthesized compounds were evaluated for in vitro antiviral activity against HIV, HSV and vaccinia viruses. 5-Bromo-2-(6-bromo-4-oxo-2-phenyl-4H-quinazolin-3-yl)-benzoic acid (MBR2) exhibited distinct antiviral activity against Herpes simplex and vaccinia viruses. PMID:21969760

  7. Synthesis, Antiviral and Cytotoxic Activities of 2-(2-Phenyl carboxylic acid)-3-Phenylquinazolin -4(3H)-one Derivatives.

    PubMed

    Selvam, P; Murugesh, N; Chandramohan, M; Pannecouque, C; DE Clercq, E

    2010-11-01

    A series of novel 2,3-disubstitutedquinazolin-4(3H)-ones have been synthesized by condensation of 2-substituted benzo[1,3]oxazine-4-ones and anthranilic acid. Synthesized compounds were evaluated for in vitro antiviral activity against HIV, HSV and vaccinia viruses. 5-Bromo-2-(6-bromo-4-oxo-2-phenyl-4H-quinazolin-3-yl)-benzoic acid (MBR2) exhibited distinct antiviral activity against Herpes simplex and vaccinia viruses.

  8. #Nitrosocarbonyls 1: Antiviral Activity of N-(4-Hydroxycyclohex-2-en-1-yl)quinoline-2-carboxamide against the Influenza A Virus H1N1

    PubMed Central

    Al-Saad, Dalya; Memeo, Misal Giuseppe; Quadrelli, Paolo

    2014-01-01

    Influenza virus flu A H1N1 still remains a target for its inhibition with small molecules. Fleeting nitrosocarbonyl intermediates are at work in a short-cut synthesis of carbocyclic nucleoside analogues. The strategy of the synthetic approaches is presented along with the in vitro antiviral tests. The nucleoside derivatives were tested for their inhibitory activity against a variety of viruses. Promising antiviral activities were found for specific compounds in the case of flu A H1N1. PMID:25610906

  9. Antiviral activity of crude extracts from Commiphora swynnertonii against Newcastle disease virus in ovo.

    PubMed

    Bakari, Gaymary George; Max, Robert A; Mdegela, Robinson H; Phiri, Elliot C J; Mtambo, Mkumbukwa M A

    2012-10-01

    Studies were carried out to investigate the effect of crude extracts from resin, leaves, stem barks and root barks of Commiphora swynnertonii against Newcastle disease virus (NDV) using an in ovo assay. Nine-day-old embryonated chicken eggs were divided into seven groups (n = 6) and received various treatments. Six groups were inoculated with velogenic NDV strain; five groups out of these were treated with different concentrations of the four extracts or a diluent, dimethylsulphoxide. The uninoculated and inoculated groups were left as negative and positive controls, respectively. Embryo survival was observed daily and embryo weights were measured day 5 post-inoculation; a few eggs from selected groups were left to hatch. Allantoic fluid from treated eggs and serum from hatched chicks were collected for hemagglutination and hemagglutination inhibition (HI) tests to detect NDV in the eggs and antibodies against NDV in the hatched chicks respectively. Results showed that embryo survival and mean embryo weight were significantly higher (p < 0.001) in those groups which were treated with the crude extracts from C. swynnertonii than the positive control group. Also the extracts significantly (p < 0.001) reduced virus titres, whereas no viruses were detected in the allantoic fluids of the resin-treated group at the highest concentration of 500 μg/mL. Furthermore, the HI test results showed very low levels of antibodies against NDV in chicks hatched from resin and root bark extract-treated eggs suggesting that these plant materials were capable of destroying the NDV before stimulating the developing chick's immunity. The current findings have clearly demonstrated that crude extracts especially that of resin from C. swynnertonii have strong antiviral activity against NDV in ovo. In vivo trials are needed to validate the use of resin from the tree in controlling Newcastle disease in chickens. PMID:22302704

  10. Antiviral activity of Quercus persica L.: High efficacy and low toxicity

    PubMed Central

    Karimi, Ali; Moradi, Mohammad-Taghi; Saeedi, Mojtaba; Asgari, Sedigheh; Rafieian-kopaei, Mahmoud

    2013-01-01

    Background: Drug-resistant strain of Herpes simplex virus type 1 (HSV-I) has increased the interest in the use of natural substances. Aims: This study was aimed to determine minimum inhibitory concentration of hydroalchoholic extract of a traditionally used herbal plant, Quercus persica L., on HSV-1 replication on baby hamster kidney (BHK) cells. Setting: The study was conducted in Shahrekord University of Medical Sciences, Iran. Design: This was an experimental study. Materials and Methods: BHK cells were grown in monolayer culture with Dulbecco's modified Eagle's medium (DMEM) supplemented with 5% fetal calf serum and plated onto 48-well culture plates. Fifty percent cytotoxic concentration (CC50%) of Q. persica L. on BHK cells was determined. Subsequently, 50% inhibitory concentration (IC50%) of the extract on replication of HSV-1 both in interacellular and exteracellular cases was assessed. Statistical Analysis: Statistic Probit model was used for statistical analysis. The dose-dependent effect of antiviral activity of the extracts was determined by linear regression. Results: Q. persica L. had no cytotoxic effect on this cell line. There was significant relationship between the concentration of the extract and cell death (P<0.01). IC50s of Q. persica L. on HSV-1, before and after attachment to BHK cells were 1.02 and 0.257 μg/mL, respectively. There was significant relationship between the concentration of this extract and inhibition of cytopathic effect (CPE) (P<0.05). Antioxidant capacity of the extract was 67.5%. Conclusions: The hydroalchoholic extract of Q. persica L. is potentially an appropriate and promising anti herpetic herbal medicine. PMID:24516836

  11. A Novel CDK7 Inhibitor of the Pyrazolotriazine Class Exerts Broad-Spectrum Antiviral Activity at Nanomolar Concentrations

    PubMed Central

    Hutterer, Corina; Eickhoff, Jan; Milbradt, Jens; Korn, Klaus; Zeitträger, Isabel; Bahsi, Hanife; Wagner, Sabrina; Zischinsky, Gunther; Wolf, Alexander; Degenhart, Carsten; Unger, Anke; Baumann, Matthias; Klebl, Bert

    2015-01-01

    Protein kinases represent central and multifunctional regulators of a balanced virus-host interaction. Cyclin-dependent protein kinase 7 (CDK7) plays crucial regulatory roles in cell cycle and transcription, both connected with the replication of many viruses. Previously, we developed a CDK7 inhibitor, LDC4297, that inhibits CDK7 in vitro in the nano-picomolar range. Novel data from a kinome-wide evaluation (>330 kinases profiled in vitro) demonstrate a kinase selectivity. Importantly, we provide first evidence for the antiviral potential of the CDK7 inhibitor LDC4297, i.e., in exerting a block of the replication of human cytomegalovirus (HCMV) in primary human fibroblasts at nanomolar concentrations (50% effective concentration, 24.5 ± 1.3 nM). As a unique feature compared to approved antiherpesviral drugs, inhibition occurred already at the immediate-early level of HCMV gene expression. The mode of antiviral action was considered multifaceted since CDK7-regulated cellular factors that are supportive of HCMV replication were substantially affected by the inhibitors. An effect of LDC4297 was identified in the interference with HCMV-driven inactivation of retinoblastoma protein (Rb), a regulatory step generally considered a hallmark of herpesviral replication. In line with this finding, a broad inhibitory activity of the drug could be demonstrated against a selection of human and animal herpesviruses and adenoviruses, whereas other viruses only showed intermediate drug sensitivity. Summarized, the CDK7 inhibitor LDC4297 is a promising candidate for further antiviral drug development, possibly offering new options for a comprehensive approach to antiviral therapy. PMID:25624324

  12. Phosphoramidate derivatives of acyclovir: synthesis and antiviral activity in HIV-1 and HSV-1 models in vitro.

    PubMed

    Zakirova, Natalia F; Shipitsyn, Alexander V; Jasko, Maxim V; Prokofjeva, Maria M; Andronova, Valeria L; Galegov, Georgiy A; Prassolov, Vladimir S; Kochetkov, Sergey N

    2012-10-01

    The antiviral activity against HIV and HSV and the chemical stability of ACV phosphoramidate derivatives were studied. The phosphoramidates of ACV demonstrated moderate activity. The best compound appeared to be 9-(2-hydroxymethyl)guanine phosphoromonomorpholidate (7), which inhibited virus replication in pseudo-HIV-1 particles by 50% at 50 μM. It also inhibited replication of wild-type HSV-1 (9.7 μM) as well as an acyclovir-resistant strain (25 μM). None of the synthesised compounds showed any cytotoxicity.

  13. An antiviral protein having deoxyribonuclease and ribonuclease activity from leaves of the post-flowering stage of Celosia cristata.

    PubMed

    Begam, M; Narwal, S; Roy, S; Kumar, S; Lodha, M L; Kapoor, H C

    2006-01-01

    An antiviral protein named CCP-27 was purified from the leaves of Celosia cristata at the post-flowering stage by anion-exchange, cation-exchange, and gel-filtration chromatography. It exhibited resistance against sunnhemp rosette virus in its test host Cyamopsis tetragonoloba. It also exhibited deoxyribonuclease activity against supercoiled pBlueScript SK+ plasmid DNA. It was found to nick supercoiled DNA into nicked circular form at lower protein concentration followed by nicked to linear form conversion at higher protein concentration. CCP-27 also possesses strong ribonuclease activity against Torula yeast rRNA. PMID:16487067

  14. What You Should Know about Flu Antiviral Drugs

    MedlinePlus

    ... to prevent seasonal influenza . Antiviral drugs are a second line of defense to treat the flu (including seasonal flu and variant flu viruses ) if you get sick. What are the benefits of antiviral drugs? When used for treatment, antiviral ...

  15. Antiviral activity of Basidiomycete mycelia against influenza type A (serotype H1N1) and herpes simplex virus type 2 in cell culture.

    PubMed

    Krupodorova, Tetiana; Rybalko, Svetlana; Barshteyn, Victor

    2014-10-01

    In this study, we investigated the in vitro antiviral activity of the mycelia of higher mushrooms against influenza virus type A (serotype H1N1) and herpes simplex virus type 2 (HSV-2), strain BH. All 10 investigated mushroom species inhibited the reproduction of influenza virus strain A/FM/1/47 (H1N1) in MDCK cells reducing the infectious titer by 2.0-6.0 lg ID50. Four species, Pleurotus ostreatus, Fomes fomentarius, Auriporia aurea, and Trametes versicolor, were also determined to be effective against HSV-2 strain BH in RK-13 cells, with similar levels of inhibition as for influenza. For some of the investigated mushroom species-Pleurotus eryngii, Lyophyllum shimeji, and Flammulina velutipes-this is the first report of an anti-influenza effect. This study also reports the first data on the medicinal properties of A. aurea, including anti-influenza and antiherpetic activities. T. versicolor 353 mycelium was found to have a high therapeutic index (324.67), and may be a promising material for the pharmaceutical industry as an anti-influenza and antiherpetic agent with low toxicity. Mycelia with antiviral activity were obtained in our investigation by bioconversion of agricultural wastes (amaranth flour after CO2 extraction), which would reduce the cost of the final product and solve some ecological problems.

  16. Potential Antiviral Agents from Marine Fungi: An Overview.

    PubMed

    Moghadamtousi, Soheil Zorofchian; Nikzad, Sonia; Kadir, Habsah Abdul; Abubakar, Sazaly; Zandi, Keivan

    2015-07-22

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity.

  17. Potential Antiviral Agents from Marine Fungi: An Overview

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Nikzad, Sonia; Abdul Kadir, Habsah; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947

  18. Potential Antiviral Agents from Marine Fungi: An Overview.

    PubMed

    Moghadamtousi, Soheil Zorofchian; Nikzad, Sonia; Kadir, Habsah Abdul; Abubakar, Sazaly; Zandi, Keivan

    2015-07-01

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947

  19. Antiviral RNA silencing suppression activity of Tomato spotted wilt virus NSs protein.

    PubMed

    Ocampo Ocampo, T; Gabriel Peralta, S M; Bacheller, N; Uiterwaal, S; Knapp, A; Hennen, A; Ochoa-Martinez, D L; Garcia-Ruiz, H

    2016-01-01

    In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressors that interfere with this process, such as the Tomato spotted wilt virus (TSWV) NSs protein. The mechanism by which NSs suppresses RNA silencing and its role in viral infection and movement remain to be determined. We cloned NSs from the Hawaii isolate of TSWV and using two independent assays show for the first time that this protein restored pathogenicity and supported the formation of local infection foci by suppressor-deficient Turnip mosaic virus and Turnip crinkle virus. Demonstrating the suppression of RNA silencing directed against heterologous viruses establishes the foundation to determine the means used by NSs to block this antiviral process. PMID:27323202

  20. Antiviral RNA silencing suppression activity of Tomato spotted wilt virus NSs protein.

    PubMed

    Ocampo Ocampo, T; Gabriel Peralta, S M; Bacheller, N; Uiterwaal, S; Knapp, A; Hennen, A; Ochoa-Martinez, D L; Garcia-Ruiz, H

    2016-06-17

    In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressors that interfere with this process, such as the Tomato spotted wilt virus (TSWV) NSs protein. The mechanism by which NSs suppresses RNA silencing and its role in viral infection and movement remain to be determined. We cloned NSs from the Hawaii isolate of TSWV and using two independent assays show for the first time that this protein restored pathogenicity and supported the formation of local infection foci by suppressor-deficient Turnip mosaic virus and Turnip crinkle virus. Demonstrating the suppression of RNA silencing directed against heterologous viruses establishes the foundation to determine the means used by NSs to block this antiviral process.

  1. Convergent Transcription of Interferon-stimulated Genes by TNF-α and IFN-α Augments Antiviral Activity against HCV and HEV.

    PubMed

    Wang, Wenshi; Xu, Lei; Brandsma, Johannes H; Wang, Yijin; Hakim, Mohamad S; Zhou, Xinying; Yin, Yuebang; Fuhler, Gwenny M; van der Laan, Luc J W; van der Woude, C Janneke; Sprengers, Dave; Metselaar, Herold J; Smits, Ron; Poot, Raymond A; Peppelenbosch, Maikel P; Pan, Qiuwei

    2016-01-01

    IFN-α has been used for decades to treat chronic hepatitis B and C, and as an off-label treatment for some cases of hepatitis E virus (HEV) infection. TNF-α is another important cytokine involved in inflammatory disease, which can interact with interferon signaling. Because interferon-stimulated genes (ISGs) are the ultimate antiviral effectors of the interferon signaling, this study aimed to understand the regulation of ISG transcription and the antiviral activity by IFN-α and TNF-α. In this study, treatment of TNF-α inhibited replication of HCV by 71 ± 2.4% and HEV by 41 ± 4.9%. Interestingly, TNF-α induced the expression of a panel of antiviral ISGs (2-11 fold). Blocking the TNF-α signaling by Humira abrogated ISG induction and its antiviral activity. Chip-seq data analysis and mutagenesis assay further revealed that the NF-κB protein complex, a key downstream element of TNF-α signaling, directly binds to the ISRE motif in the ISG promoters and thereby drives their transcription. This process is independent of interferons and JAK-STAT cascade. Importantly, when combined with IFN-α, TNF-α works cooperatively on ISG induction, explaining their additive antiviral effects. Thus, our study reveals a novel mechanism of convergent transcription of ISGs by TNF-α and IFN-α, which augments their antiviral activity against HCV and HEV. PMID:27150018

  2. Convergent Transcription of Interferon-stimulated Genes by TNF-α and IFN-α Augments Antiviral Activity against HCV and HEV

    PubMed Central

    Wang, Wenshi; Xu, Lei; Brandsma, Johannes H.; Wang, Yijin; Hakim, Mohamad S.; Zhou, Xinying; Yin, Yuebang; Fuhler, Gwenny M.; van der Laan, Luc J. W.; van der Woude, C. Janneke; Sprengers, Dave; Metselaar, Herold J.; Smits, Ron; Poot, Raymond A.; Peppelenbosch, Maikel P.; Pan, Qiuwei

    2016-01-01

    IFN-α has been used for decades to treat chronic hepatitis B and C, and as an off-label treatment for some cases of hepatitis E virus (HEV) infection. TNF-α is another important cytokine involved in inflammatory disease, which can interact with interferon signaling. Because interferon-stimulated genes (ISGs) are the ultimate antiviral effectors of the interferon signaling, this study aimed to understand the regulation of ISG transcription and the antiviral activity by IFN-α and TNF-α. In this study, treatment of TNF-α inhibited replication of HCV by 71 ± 2.4% and HEV by 41 ± 4.9%. Interestingly, TNF-α induced the expression of a panel of antiviral ISGs (2-11 fold). Blocking the TNF-α signaling by Humira abrogated ISG induction and its antiviral activity. Chip-seq data analysis and mutagenesis assay further revealed that the NF-κB protein complex, a key downstream element of TNF-α signaling, directly binds to the ISRE motif in the ISG promoters and thereby drives their transcription. This process is independent of interferons and JAK-STAT cascade. Importantly, when combined with IFN-α, TNF-α works cooperatively on ISG induction, explaining their additive antiviral effects. Thus, our study reveals a novel mechanism of convergent transcription of ISGs by TNF-α and IFN-α, which augments their antiviral activity against HCV and HEV. PMID:27150018

  3. Synthesis and antiviral activity of a novel glycosyl sulfoxide against classical swine fever virus.

    PubMed

    Krol, Ewelina; Pastuch-Gawolek, Gabriela; Nidzworski, Dawid; Rychlowski, Michal; Szeja, Wieslaw; Grynkiewicz, Grzegorz; Szewczyk, Boguslaw

    2014-05-01

    A novel compound-2″,3″,4″,6″-tetra-O-acetyl-β-d-galactopyranosyl-(1→4)-2',3',6'-tri-O-acetyl-1-thio-β-d-glucopyranosyl-(5-nitro-2-pyridyl) sulfoxide-designated GP6 was synthesized and assayed for cytotoxicity and in vitro antiviral properties against classical swine fever virus (CSFV) in this study. We showed that the examined compound effectively arrested CSFV growth in swine kidney cells (SK6) at a 50% inhibitory concentration (IC50) of 5 ± 0.12 μg/ml without significant toxicity for mammalian cells. Moreover, GP6 reduced the viral E2 and E(rns) glycoproteins expression in a dose-dependent manner. We have excluded the possibility that the inhibitor acts at the replication step of virus life cycle as assessed by monitoring of RNA level in cells and culture medium of SK6 cells after single round of infection as a function of GP6 treatment. Using recombinant E(rns) and E2 proteins of classical swine fever virus produced in baculovirus expression system we have demonstrated that GP6 did not influence glycoprotein production and maturation in insect cells. In contrast to mammalian glycosylation pathway, insect cells support only the ER-dependent early steps of this process. Therefore, we concluded that the late steps of glycosylation process are probably the main targets of GP6. Due to the observed antiviral effect accompanied by low cytotoxicity, this inhibitor represents potential candidate for the development of antiviral agents for anti-flavivirus therapy. Further experiments are needed for investigating whether this compound can be used as a safe antiviral agent against other viruses from unrelated groups.

  4. Leader-Containing Uncapped Viral Transcript Activates RIG-I in Antiviral Stress Granules

    PubMed Central

    Oh, Seong-Wook; Onomoto, Koji; Wakimoto, Mai; Onoguchi, Kazuhide; Ishidate, Fumiyoshi; Fujiwara, Takahiro; Yoneyama, Mitsutoshi; Kato, Hiroki; Fujita, Takashi

    2016-01-01

    RIG-I triggers antiviral responses by recognizing viral RNA (vRNA) in the cytoplasm. However, the spatio-temporal dynamics of vRNA sensing and signal transduction remain elusive. We investigated the time course of events in cells infected with Newcastle disease virus (NDV), a non-segmented negative-strand RNA virus. RIG-I was recruited to viral replication complexes (vRC) and triggered minimal primary type I interferon (IFN) production. RIG-I subsequently localized to antiviral stress granules (avSG) induced after vRC formation. The inhibition of avSG attenuated secondary IFN production, suggesting avSG as a platform for efficient vRNA detection. avSG selectively captured positive-strand vRNA, and poly(A)+ RNA induced IFN production. Further investigations suggested that uncapped vRNA derived from read-through transcription was sensed by RIG-I in avSG. These results highlight how viral infections stimulate host stress responses, thereby selectively recruiting uncapped vRNA to avSG, in which RIG-I and other components cooperate in an efficient antiviral program. PMID:26862753

  5. Antiviral and immune stimulant activities of glycyrrhizin against duck hepatitis virus.

    PubMed

    Soufy, Hamdy; Yassein, Safaa; Ahmed, Alaa R; Khodier, Mohamed H; Kutkat, Mohamed A; Nasr, Soad M; Okda, Faten A

    2012-01-01

    This study was conducted to investigate the effect of glycyrrhizin as an immune stimulant against duck hepatitis virus (DHV). In vitro study was carried out to determine cytotoxic and antiviral effects of glycyrrhizin in VERO cells. In vivo study was performed on 40 one-day-old White Pekin ducklings. -and the birds weres divided into 4 groups: control, glycyrrhizin treated, vaccinated with live attenuated DHV vaccine and glycyrrhizin treated and vaccinated; to investigate the changes in immunity and challenge test. Blood samples were collected from each duckling for evaluation of cellular and humeral immunity. The in vitro results revealed that glycyrrhizin had antiviral and no toxic effects till 10⁶ dilutions. Higher antibody titer was observed from the 5th week till the end of experiment in glycyrrhizin and vaccinated group. Treatment with glycyrrhizin alone or with DHV vaccine demonstrated a pronounced lymphocytic proliferation response after 4 days post-inoculation till the end of experiment, while vaccinated group revealed a pronounced proliferation response after 24 days post-inoculation. Treatment with glycyrrhizin alone or combination with DHV vaccine revealed good immune stimulant and antiviral effect against DHV. PMID:23983372

  6. Nonpeptidic HIV protease inhibitors possessing excellent antiviral activities and therapeutic indices. PD 178390: a lead HIV protease inhibitor.

    PubMed

    Prasad, J V; Boyer, F E; Domagala, J M; Ellsworth, E L; Gajda, C; Hamilton, H W; Hagen, S E; Markoski, L J; Steinbaugh, B A; Tait, B D; Humblet, C; Lunney, E A; Pavlovsky, A; Rubin, J R; Ferguson, D; Graham, N; Holler, T; Hupe, D; Nouhan, C; Tummino, P J; Urumov, A; Zeikus, E; Zeikus, G; Gracheck, S J; Erickson, J W

    1999-12-01

    With the insight generated by the availability of X-ray crystal structures of various 5,6-dihydropyran-2-ones bound to HIV PR, inhibitors possessing various alkyl groups at the 6-position of 5,6-dihydropyran-2-one ring were synthesized. The inhibitors possessing a 6-alkyl group exhibited superior antiviral activities when compared to 6-phenyl analogues. Antiviral efficacies were further improved upon introduction of a polar group (hydroxyl or amino) on the 4-position of the phenethyl moiety as well as the polar group (hydroxymethyl) on the 3-(tert-butyl-5-methyl-phenylthio) moiety. The polar substitution is also advantageous for decreasing toxicity, providing inhibitors with higher therapeutic indices. The best inhibitor among this series, (S)-6-[2-(4-aminophenyl)-ethyl]-(3-(2-tert-butyl-5-methyl-phenylsulfa nyl)-4-hydroxy-6-isopropyl-5,6-dihydro-pyran-2-one (34S), exhibited an EC50 of 200 nM with a therapeutic index of > 1000. More importantly, these non-peptidic inhibitors, 16S and 34S, appear to offer little cross-resistance to the currently marketed peptidomimetic PR inhibitors. The selected inhibitors tested in vitro against mutant HIV PR showed a very small increase in binding affinities relative to wild-type HIV PR. Cmax and absolute bioavailability of 34S were higher and half-life and time above EC95 were longer compared to 16S. Thus 34S, also known as PD 178390, which displays good antiviral efficacy, promising pharmacokinetic characteristics and favorable activity against mutant enzymes and CYP3A4, has been chosen for further preclinical evaluation.

  7. Antiviral Activity of TMC353121, a Respiratory Syncytial Virus (RSV) Fusion Inhibitor, in a Non-Human Primate Model

    PubMed Central

    Ispas, Gabriela; Koul, Anil; Verbeeck, Johan; Sheehan, Jennifer; Sanders-Beer, Brigitte; Roymans, Dirk; Andries, Koen; Rouan, Marie-Claude; De Jonghe, Sandra; Bonfanti, Jean-François; Vanstockem, Marc; Simmen, Kenneth; Verloes, Rene

    2015-01-01

    Background The study assessed the antiviral activity of TMC353121, a respiratory syncytial virus (RSV) fusion inhibitor, in a preclinical non-human primate challenge model with a viral shedding pattern similar to that seen in humans, following continuous infusion (CI). Methods African green monkeys were administered TMC353121 through CI, in 2 studies. Study 1 evaluated the prophylactic and therapeutic efficacy of TMC353121 at a target plasma level of 50 ng/mL (n=15; Group 1: prophylactic arm [Px50], 0.033 mg/mL TMC353121, flow rate 2.5 mL/kg/h from 24 hours pre-infection to 10 days; Group 2: therapeutic arm [Tx50], 0.033mg/mL TMC353121 from 24 hours postinfection to 8 days; Group 3: control [Vh1] vehicle, 24 hours post-infection to 8 days). Study 2 evaluated the prophylactic efficacy of TMC353121 at target plasma levels of 5 and 500 ng/mL (n=12; Group 1: prophylactic 5 arm [Px5], 0.0033 mg/mL TMC353121, flow rate 2.5 mL/kg/h from 72 hours pre-infection to 14 days; Group 2: prophylactic 500 arm [Px500], 0.33 mg/mL TMC353121; Group 3:control [Vh2] vehicle, 14 days). Bronchoalveolar lavage fluid and plasma were collected every 2 days from day 1 postinfection for pharmacokinetics and safety analysis. Findings TMC353121 showed a dose-dependent antiviral activity, varying from 1log10 reduction of peak viral load to complete inhibition of the RSV replication. Complete inhibition of RSV shedding was observed for a relatively low plasma exposure (0.39 μg/mL) and was associated with a dose-dependent reduction in INFγ, IL6 and MIP1α. TMC353121 administered as CI for 16 days was generally well-tolerated. Conclusion TMC353121 exerted dose-dependent antiviral effect ranging from full inhibition to absence of antiviral activity, in a preclinical model highly permissive for RSV replication. No new safety findings emerged from the study. PMID:26010881

  8. SLN as a topical delivery system for Artemisia arborescens essential oil: In vitro antiviral activity and skin permeation study

    PubMed Central

    Lai, Francesco; Sinico, Chiara; De Logu, Alessandro; Zaru, Marco; Müller, Rainer H; Fadda, Anna M

    2007-01-01

    The effect of SLN incorporation on transdermal delivery and in vitro antiherpetic activity of Artemisia arborescens essential oil was investigated. Two different SLN formulations were prepared using the hot – pressure homogenization technique, Compritol 888 ATO as lipid, and Poloxamer 188 and Miranol Ultra C32 as surfactants. Formulations were examined for their stability for two years by monitoring average size distribution and zeta potential values. The antiviral activity of free and SLN incorporated essential oil was tested in vitro against Herpes Simplex Virus-1 (HSV-1) by a quantitative tetrazolium-based colorimetric method (MTT), while the effects of essential oil incorporation into SLN on both the permeation through and the accumulation into the skin strata was investigated by using in vitro diffusion experiments through newborn pig skin and an almond oil Artemisia essential oil solution as a control. Results showed that both SLN formulations were able to entrap the essential oil in high yields and that the mean particle size increased only slightly after two years of storage, indicating a high physical stability. In vitro antiviral assays showed that SLN incorporation did not affect the essential oil antiherpetic activity. The in vitro skin permeation experiments demonstrated the capability of SLN of greatly improving the oil accumulation into the skin, while oil permeation occurred only when the oil was delivered from the control solution. PMID:18019840

  9. [Antiviral activity of plant components. 1st communication: Flavonoids (author's transl)].

    PubMed

    Wacker, A; Eilmes, H G

    1978-01-01

    Some drugs effective against influenza contain flavonoids. We therefore examined the antiviral effect of hesperidin, hesperidinmethylchalcon, trihydroxyethylrutin, catechol, quercitrin, rutin and aurantiin against vesicular stromatitis virus (VSV) action on mouse fibroblasts and that of hesperidin against influenza virus in HeLa cells system by means of dye uptake measurements (Finter) and by plaque reduction test, respectively. Preincubation of the cells with the flavonoids 6--8 h before virus addition was inevitable. Protection of cells against virus action persisted for about 24 h and it abruptly disappeared after an addition of hyaluronidase. Maximal inhibition of virus action was achieved with a concentration of 200 microgram/ml flavonoid.

  10. Identification of 2'-5'-Oligoadenylate Synthetase-Like Gene in Goose: Gene Structure, Expression Patterns, and Antiviral Activity Against Newcastle Disease Virus.

    PubMed

    Yang, Chao; Liu, Fei; Chen, Shun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2016-09-01

    2'-5'-oligoadenylate synthetase-like (OASL) is a kind of antiviral protein induced by interferons (IFNs), which plays an important role in the IFNs-mediated antiviral signaling pathway. In this study, we cloned and identified OASL in the Chinese goose for the first time. Goose 2'-5'-oligoadenylate synthetase-like (goOASL), including an ORF of 1527bp, encoding a protein of 508 amino acids. GoOASL protein contains 3 conserved motifs: nucleotidyltransferase (NTase) domain, 2'-5'-oligoadenylate synthetase (OAS) domain, and 2 ubiquitin-like (UBL) repeats. The tissue distribution profile of goOASL in 2-week-old gosling and adult goose were identified by Real-Time quantitative PCR, which revealed that the highest level of goOASL mRNA transcription was detected in the blood of adult goose and gosling. The mRNA transcription level of goOASL was upregulated in all tested tissues of duck Tembusu virus (DTMUV)-infected 3-day-old goslings, compared with control groups. Furthermore, using the stimulus Poly(I: C), ODN2006, R848, and lipopolysaccharide (LPS) as well as the viral pathogens DTMUV, H9N2 avian influenza virus (AIV), and gosling plague virus (GPV) to treat goose peripheral blood mononuclear cells (PBMCs) for 6 h, goOASL transcripts level was significantly upregulated in all treated groups. To further investigate the antiviral activity of goOASL, pcDNA3.1(+)-goOASL-His plasmid was constructed, and goOASL was expressed by the goose embryo fibroblast cells (GEFs) transfected with pcDNA3.1(+)-goOASL-His. Our research data suggested that Newcastle disease virus (NDV) replication (viral copies and viral titer) in GEFs was significantly reduced by the overexpression of goOASL protein. These data were meaningful for the antiviral immunity research of goose and shed light on the future prevention of NDV in fowl. PMID:27576097

  11. Regulation of MDA5-MAVS Antiviral Signaling Axis by TRIM25 through TRAF6-Mediated NF-κB Activation

    PubMed Central

    Lee, Na-Rae; Kim, Hye-In; Choi, Myung-Soo; Yi, Chae-Min; Inn, Kyung-Soo

    2015-01-01

    Tripartite motif protein 25 (TRIM25), mediates K63-linked polyubiquitination of Retinoic acid inducible gene I (RIG-I) that is crucial for downstream antiviral interferon signaling. Here, we demonstrate that TRIM25 is required for melanoma differentiation-associated gene 5 (MDA5) and MAVS mediated activation of NF-κB and interferon production. TRIM25 is required for the full activation of NF-κB at the downstream of MAVS, while it is not involved in IRF3 nuclear translocation. Mechanical studies showed that TRIM25 is involved in TRAF6-mediated NF-κB activation. These collectively indicate that TRIM25 plays an additional role in RIG-I/MDA5 signaling other than RIG-I ubiquitination via activation of NF-κB. PMID:26299329

  12. Effect of the complexation with cyclodextrins on the in vitro antiviral activity of ganciclovir against human cytomegalovirus.

    PubMed

    Nicolazzi, C; Abdou, S; Collomb, J; Marsura, A; Finance, C

    2001-02-01

    The toxicity of the molecules currently used in the treatment of human cytomegalovirus (HCMV) in immunocompromised hosts often causes interruption of the therapy. Cyclodextrins (Cds), oligosaccharides possessing a hydrophobic cavity, have the property of forming inclusion complexes with a great number of molecules, improving their bioavailability and their biological properties. In this study, we have tested the ability of three native Cds to improve the antiviral effect of ganciclovir (GCV) on two HCMV strains: AD169, a reference susceptible strain, and RC11, a GCV resistant strain. The efficacy of the GCV, expressed in IC50 values, showed no improvement in the presence of alpha-Cd, while the use of beta- and gamma-Cd improved by 6- and 4-fold, respectively, its antiviral activity tested on AD169 strain. The influence of beta- or gamma-Cd on GCV efficiency evaluated on RC11 strain showed a decrease of the IC50. Parallel NMR studies were undertaken in order to characterize formation of [GCV:Cd] complexes. The results showed that complexation between alpha- or gamma-Cd and GCV did not occur. In contrast, spectra proved that beta-Cd formed an inclusion complex with GCV. This complex was characterized in UV-Visible spectrophotometry and the influence of the beta-Cd on the GCV penetration in cells was measured. The use of Cds as carriers of antiviral drugs would be a good alternative to traditional treatment, because it may allow the administration of lower doses and so continuous treatment by reducing the toxic effects of drugs. PMID:11249120

  13. Antioxidative and antiviral properties of flowering cherry fruits (Prunus serrulata L. var. spontanea).

    PubMed

    Yook, Hong-Sun; Kim, Kyoung-Hee; Park, Jung-Eun; Shin, Hyun-Jin

    2010-01-01

    The phenolic compounds of many fruits have been known to be efficient cellular protective antioxidants. In this study, antioxidative and antiviral properties of flowering cherry cultivars (Prunus yedoensis, Prunus sargentii, Prunus lannesiana, and Prunus cerasus) in Korea were investigated. The antioxidant property was assayed for specific activities including 2,2-diphenyl-1-picrylhydrazyl (DPPH) hydroxy radical scavenging activity, reducing power capacity, and superoxide dismutase (SOD) like activity. In addition, antiviral activity was determined by inhibition studies on the infection cycle of porcine epidemic diarrhea virus (PEDV), measured as minimum concentration of cherry extracts that inhibited 50% of cytopathic effect (CPE) on PEDV. Our results show that the four varieties of cherries contain substantially high antioxidants and antiviral activities. In particular, P. cerasus contains higher antioxidants and antiviral activities as well as polyphenolic content than other varieties. Our data indicate that Korean native cherry cultivars could be beneficial supplements of dietary antioxidants and natural antiviral agents. PMID:20821824

  14. Dimeric structure of pseudokinase RNase L bound to 2-5A reveals a basis for interferon induced antiviral activity

    PubMed Central

    Huang, Hao; Zeqiraj, Elton; Dong, Beihua; Jha, Babal Kant; Duffy, Nicole; Orlicky, Stephen; Thevakumaran, Neroshan; Talukdar, Manisha; Pillon, Monica C.; Ceccarelli, Derek F.; Wan, Leo; Juang, Yu-Chi; Mao, Daniel Y.L.; Gaughan, Christina; Brinton, Margo A.; Perelygin, Andrey A.; Kourinov, Igor; Guarné, Alba; Silverman, Robert H.; Sicheri, Frank

    2014-01-01

    Summary RNase L is an ankyrin repeat domain containing dual endoribonuclease-pseudokinase that is activated by unusual 2′,5′-oligoadenylate (2-5A) second messengers and which impedes viral infections in higher vertebrates. Despite its importance in interferon regulated antiviral innate immunity, relatively little is known about its precise mechanism of action. Here, we present a functional characterization of 2.5 Å and 3.25 Å X-ray crystal and small angle x-ray scattering structures of RNase L bound to a natural 2-5A activator with and without ADP or the non-hydrolysable ATP mimetic AMP-PNP. These studies reveal how recognition of 2-5A through interactions with the ankyrin repeat domain and the pseudokinase domain together with nucleotide binding, impose a rigid intertwined dimer configuration that is essential for RNase catalytic and anti-viral functions. The involvement of the pseudokinase domain of RNase L in 2-5A sensing, nucleotide binding, dimerization, and ribonuclease functions highlights the evolutionary adaptability of the eukaryotic protein kinase fold. PMID:24462203

  15. Novel Biotinylated Lipid Prodrugs of Acyclovir for the Treatment of Herpetic Keratitis (HK): Transporter Recognition, Tissue Stability and Antiviral Activity

    PubMed Central

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Earla, Ravinder; Sirimulla, Suman; Bailey, Jake Brain; Pal, Dhananjay; Mitra, Ashim K.

    2013-01-01

    Purpose Biotinylated lipid prodrugs of acyclovir (ACV) were designed to target the sodium dependent multivitamin transporter (SMVT) on the cornea to facilitate enhanced cellular absorption of ACV. Methods All the prodrugs were screened for in vitro cellular uptake, interaction with SMVT, docking analysis, cytotoxicity, enzymatic stability and antiviral activity. Results Uptake of biotinylated lipid prodrugs of ACV (B-R-ACV and B-12HS-ACV) was significantly higher than biotinylated prodrug (B-ACV), lipid prodrugs (R-ACV and 12HS-ACV) and ACV in corneal cells. Transepithelial transport across rabbit corneas indicated the recognition of the prodrugs by SMVT. Average Vina scores obtained from docking studies further confirmed that biotinylated lipid prodrugs possess enhanced affinity towards SMVT. All the prodrugs studied did not cause any cytotoxicity and were found to be safe and non-toxic. B-R-ACV and B-12HS-ACV were found to be relatively more stable in ocular tissue homogenates and exhibited excellent antiviral activity. Conclusions Biotinylated lipid prodrugs demonstrated synergistic improvement in cellular uptake due to recognition of the prodrugs by SMVT on the cornea and lipid mediated transcellular diffusion. These biotinylated lipid prodrugs appear to be promising drug candidates for the treatment of herpetic keratitis (HK) and may lower ACV resistance in patients with poor clinical response. PMID:23657675

  16. Antiviral Activity of a Novel Compound CW-33 against Japanese Encephalitis Virus through Inhibiting Intracellular Calcium Overload.

    PubMed

    Huang, Su-Hua; Lien, Jin-Cherng; Chen, Chao-Jung; Liu, Yu-Ching; Wang, Ching-Ying; Ping, Chia-Fong; Lin, Yu-Fong; Huang, An-Cheng; Lin, Cheng-Wen

    2016-01-01

    Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, has five genotypes (I, II, III, IV, and V). JEV genotype I circulates widely in some Asian countries. However, current JEV vaccines based on genotype III strains show low neutralizing capacities against genotype I variants. In addition, JE has no specific treatment, except a few supportive treatments. Compound CW-33, an intermediate synthesized derivative of furoquinolines, was investigated for its antiviral activities against JEV in this study. CW-33 exhibited the less cytotoxicity to Syrian baby hamster kidney (BHK-21) and human medulloblastoma (TE761) cells. CW-33 dose-dependently reduced the cytopathic effect and apoptosis of JEV-infected cells. Supernatant virus yield assay pinpointed CW-33 as having potential anti-JEV activity with IC50 values ranging from 12.7 to 38.5 μM. Time-of-addition assay with CW-33 indicated that simultaneous and post-treatment had no plaque reduction activity, but continuous and simultaneous treatments proved to have highly effective antiviral activity, with IC50 values of 32.7 and 48.5 μM, respectively. CW-33 significantly moderated JEV-triggered Ca(2+) overload, which correlated with the recovery of mitochondria membrane potential as well as the activation of Akt/mTOR and Jak/STAT1 signals in treated infected cells. Phosphopeptide profiling by LC-MS/MS revealed that CW-33 upregulated proteins from the enzyme modulator category, such as protein phosphatase inhibitor 2 (I-2), Rho GTPase-activating protein 35, ARF GTPase-activating protein GIT2, and putative 3-phosphoinositide-dependent protein kinase 2. These enzyme modulators identified were associated with the activation of Akt/mTOR and Jak/STAT1 signals. Meanwhile, I-2 treatment substantially inhibited the apoptosis of JEV-infected cells. The results demonstrated that CW-33 exhibited a significant potential in the development of anti-JEV agents. PMID:27563890

  17. Dynasore enhances the formation of mitochondrial antiviral signalling aggregates and endocytosis-independent NF-ĸB activation

    PubMed Central

    Ailenberg, M; Di Ciano-Oliveira, C; Szaszi, K; Dan, Q; Rozycki, M; Kapus, A; Rotstein, O D

    2015-01-01

    Background and Purpose Dynasore has been used extensively as an inhibitor of clathrin-mediated endocytosis. While studying the role of endocytosis in LPS-induced signalling events, we discovered that dynasore itself induced activation of NF-κB, independently of its effects on endocytosis and without involving the Toll-like receptor 4 signalling pathways. The purpose of this study was to characterize this novel effect and to explore the underlying mechanism of action. Experimental Approach We utilized gel electrophoresis, microscopy, gene knockdown and luciferase-based promoter activity to evaluate the effect of dynasore on cell signalling pathways and to delineate the mechanisms involved in its effects, Key Results Dynasore activated the NF-κB and IFN-β pathways by activating mitochondrial antiviral signalling protein (MAVS). We showed that MAVS is activated by NOX/Rac and forms high molecular weight aggregates, similar to that observed in response to viral infection. We also demonstrated that dynasore-induced activation of JNK occurs downstream of MAVS and is required for activation of NF-κB and IFN-β. Conclusion and Implications These findings demonstrate a novel effect of dynasore on cell signalling. We describe a novel Rac1-, ROS- and MAVS-mediated signalling cascade through which dynasore dramatically activates NF-κB, mimicking the viral induction of this key inflammatory signalling pathway. Our results call attention to the need for a broader interpretation of results when dynasore is used in its traditional fashion as an inhibitor of clathrin-mediated endocytosis. These results suggest the intriguing possibility that dynasore or one of its analogues might be of value as an antiviral therapeutic strategy or vaccine adjuvant. PMID:25850711

  18. Antiviral Activity of a Novel Compound CW-33 against Japanese Encephalitis Virus through Inhibiting Intracellular Calcium Overload

    PubMed Central

    Huang, Su-Hua; Lien, Jin-Cherng; Chen, Chao-Jung; Liu, Yu-Ching; Wang, Ching-Ying; Ping, Chia-Fong; Lin, Yu-Fong; Huang, An-Cheng; Lin, Cheng-Wen

    2016-01-01

    Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, has five genotypes (I, II, III, IV, and V). JEV genotype I circulates widely in some Asian countries. However, current JEV vaccines based on genotype III strains show low neutralizing capacities against genotype I variants. In addition, JE has no specific treatment, except a few supportive treatments. Compound CW-33, an intermediate synthesized derivative of furoquinolines, was investigated for its antiviral activities against JEV in this study. CW-33 exhibited the less cytotoxicity to Syrian baby hamster kidney (BHK-21) and human medulloblastoma (TE761) cells. CW-33 dose-dependently reduced the cytopathic effect and apoptosis of JEV-infected cells. Supernatant virus yield assay pinpointed CW-33 as having potential anti-JEV activity with IC50 values ranging from 12.7 to 38.5 μM. Time-of-addition assay with CW-33 indicated that simultaneous and post-treatment had no plaque reduction activity, but continuous and simultaneous treatments proved to have highly effective antiviral activity, with IC50 values of 32.7 and 48.5 μM, respectively. CW-33 significantly moderated JEV-triggered Ca2+ overload, which correlated with the recovery of mitochondria membrane potential as well as the activation of Akt/mTOR and Jak/STAT1 signals in treated infected cells. Phosphopeptide profiling by LC-MS/MS revealed that CW-33 upregulated proteins from the enzyme modulator category, such as protein phosphatase inhibitor 2 (I-2), Rho GTPase-activating protein 35, ARF GTPase-activating protein GIT2, and putative 3-phosphoinositide-dependent protein kinase 2. These enzyme modulators identified were associated with the activation of Akt/mTOR and Jak/STAT1 signals. Meanwhile, I-2 treatment substantially inhibited the apoptosis of JEV-infected cells. The results demonstrated that CW-33 exhibited a significant potential in the development of anti-JEV agents. PMID:27563890

  19. Asteltoxins with Antiviral Activities from the Marine Sponge-Derived Fungus Aspergillus sp. SCSIO XWS02F40.

    PubMed

    Tian, Yong-Qi; Lin, Xiu-Ping; Wang, Zhen; Zhou, Xue-Feng; Qin, Xiao-Chu; Kaliyaperumal, Kumaravel; Zhang, Tian-Yu; Tu, Zheng-Chao; Liu, Yonghong

    2015-12-26

    Two new asteltoxins named asteltoxin E (2) and F (3), and a new chromone (4), together with four known compounds were isolated from a marine sponge-derived fungus, Aspergillus sp. SCSIO XWS02F40. The structures of the compounds (1-7) were determined by the extensive 1D- and 2D-NMR spectra, and HRESIMS spectrometry. All the compounds were tested for their antiviral (H1N1 and H3N2) activity. Compounds 2 and 3 showed significant activity against H3N2 with the prominent IC50 values of 6.2 ± 0.08 and 8.9 ± 0.3 μM, respectively. In addition, compound 2 also exhibited inhibitory activity against H1N1 with an IC50 value of 3.5 ± 1.3 μM.

  20. Strategies to improve efficacy and safety of a novel class of antiviral hyper-activation-limiting therapeutic agents: the VS411 model HIV/AIDS

    PubMed Central

    De Forni, D; Stevens, MR; Lori, F

    2010-01-01

    BACKGROUND AND PURPOSE Antiviral hyper-activation-limiting therapeutic agents (AV-HALTs) are a novel experimental drug class designed to both decrease viral replication and down-regulate excessive immune system activation for the treatment of chronic infections, including human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome. VS411, a first-in-class AV-HALT, is a single-dosage form combining didanosine (ddI, 400 mg), an antiviral (AV), and hydroxyurea (HU, 600 mg), a cytostatic agent, designed to provide a slow release of ddI to reduce its maximal plasma concentration (Cmax) to potentially reduce toxicity while maintaining total daily exposure (AUC) and the AV activity. EXPERIMENTAL APPROACH This was a pilot phase I, open-label, randomized, single-dose, four-way crossover trial to investigate the fasted and non-fasted residual variance of AUC, Cmax and the oral bioavailability of ddI and HU, co-formulated as VS411, and administered as two different fixed-dose combination formulations compared to commercially available ddI (Videx EC) and HU (Hydrea) when given simultaneously. KEY RESULTS Formulation VS411-2 had a favourable safety profile, displayed a clear trend for lower ddI Cmax (P = 0.0603) compared to Videx EC, and the 90% confidence intervals around the least square means ratio of Cmax did not include 100%. ddI AUC∞ was not significantly decreased compared to Videx EC. HU pharmacokinetic parameters were essentially identical to Hydrea, although there was a decrease in HU exposure under fed versus fasted conditions. CONCLUSIONS AND IMPLICATIONS A phase IIa trial utilizing VS411-2 formulation has been fielded to identify the optimal doses of HU plus ddI as an AV-HALT for the treatment of HIV disease. PMID:20860662

  1. Safety, formulation, and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1

    PubMed Central

    Torres, Nicolás I.; Noll, Katia Sutyak; Xu, Shiqi; Li, Ji; Huang, Qingrong; Sinko, Patrick J.; Wachsman, Mónica B.; Chikindas, Michael L.

    2013-01-01

    In the present study the antiviral properties of the bacteriocin subtilosin against Herpes simplex virus type 1 (HSV-1) and the safety and efficacy of a subtilosin-based nanofiber formulation were determined. High concentrations of subtilosin, the cyclical antimicrobial peptide produced by Bacillus amyloliquefaciens, were virucidal against HSV-1. Interestingly, at non-virucidal concentrations, subtilosin inhibited wild type HSV-1 and aciclovir-resistant mutants in a dose-dependent manner. Although the exact antiviral mechanism is not fully understood, time of addition experiments and western blot analysis suggest that subtilosin does not affect viral multiplication steps prior to protein synthesis. Poly(vinyl alcohol) (PVOH)-based subtilosin nanofibers with a width of 278 nm were produced by the electrospinning process. The retained antimicrobial activity of the subtilosin-based fibers was determined via an agar well diffusion assay. The loading capacity of the fibers was 2.4 mg subtilosin/g fiber, and loading efficiency was 31.6%. Furthermore, the nanofibers with and without incorporated subtilosin were shown to be nontoxic to human epidermal tissues using an in vitro human tissue model. Taking together these results subtilosin-based nanofibers should be further studied as a novel alternative method for treatment and/or control of HSV-1 infection. PMID:23637711

  2. Mycophenolic acid, an immunomodulator, has potent and broad-spectrum in vitro antiviral activity against pandemic, seasonal and avian influenza viruses affecting humans.

    PubMed

    To, Kelvin K W; Mok, Ka-Yi; Chan, Andy S F; Cheung, Nam N; Wang, Pui; Lui, Yin-Ming; Chan, Jasper F W; Chen, Honglin; Chan, Kwok-Hung; Kao, Richard Y T; Yuen, Kwok-Yung

    2016-08-01

    Immunomodulators have been shown to improve the outcome of severe pneumonia. We have previously shown that mycophenolic acid (MPA), an immunomodulator, has antiviral activity against influenza A/WSN/1933(H1N1) using a high-throughput chemical screening assay. This study further investigated the antiviral activity and mechanism of action of MPA against contemporary clinical isolates of influenza A and B viruses. The 50 % cellular cytotoxicity (CC50) of MPA in Madin Darby canine kidney cell line was over 50 µM. MPA prevented influenza virus-induced cell death in the cell-protection assay, with significantly lower IC50 for influenza B virus B/411 than that of influenza A(H1N1)pdm09 virus H1/415 (0.208 vs 1.510 µM, P=0.0001). For H1/415, MPA interfered with the early stage of viral replication before protein synthesis. For B/411, MPA may also act at a later stage since MPA was active against B/411 even when added 12 h post-infection. Virus-yield reduction assay showed that the replication of B/411 was completely inhibited by MPA at concentrations ≥0.78 µM, while there was a dose-dependent reduction of viral titer for H1/415. The antiviral effect of MPA was completely reverted by guanosine supplementation. Plaque reduction assay showed that MPA had antiviral activity against eight different clinical isolates of A(H1N1), A(H3N2), A(H7N9) and influenza B viruses (IC50 <1 µM). In summary, MPA has broad-spectrum antiviral activity against human and avian-origin influenza viruses, in addition to its immunomodulatory activity. Together with a high chemotherapeutic index, the use of MPA as an antiviral agent should be further investigated in vivo. PMID:27259985

  3. Mycophenolic acid, an immunomodulator, has potent and broad-spectrum in vitro antiviral activity against pandemic, seasonal and avian influenza viruses affecting humans.

    PubMed

    To, Kelvin K W; Mok, Ka-Yi; Chan, Andy S F; Cheung, Nam N; Wang, Pui; Lui, Yin-Ming; Chan, Jasper F W; Chen, Honglin; Chan, Kwok-Hung; Kao, Richard Y T; Yuen, Kwok-Yung

    2016-08-01

    Immunomodulators have been shown to improve the outcome of severe pneumonia. We have previously shown that mycophenolic acid (MPA), an immunomodulator, has antiviral activity against influenza A/WSN/1933(H1N1) using a high-throughput chemical screening assay. This study further investigated the antiviral activity and mechanism of action of MPA against contemporary clinical isolates of influenza A and B viruses. The 50 % cellular cytotoxicity (CC50) of MPA in Madin Darby canine kidney cell line was over 50 µM. MPA prevented influenza virus-induced cell death in the cell-protection assay, with significantly lower IC50 for influenza B virus B/411 than that of influenza A(H1N1)pdm09 virus H1/415 (0.208 vs 1.510 µM, P=0.0001). For H1/415, MPA interfered with the early stage of viral replication before protein synthesis. For B/411, MPA may also act at a later stage since MPA was active against B/411 even when added 12 h post-infection. Virus-yield reduction assay showed that the replication of B/411 was completely inhibited by MPA at concentrations ≥0.78 µM, while there was a dose-dependent reduction of viral titer for H1/415. The antiviral effect of MPA was completely reverted by guanosine supplementation. Plaque reduction assay showed that MPA had antiviral activity against eight different clinical isolates of A(H1N1), A(H3N2), A(H7N9) and influenza B viruses (IC50 <1 µM). In summary, MPA has broad-spectrum antiviral activity against human and avian-origin influenza viruses, in addition to its immunomodulatory activity. Together with a high chemotherapeutic index, the use of MPA as an antiviral agent should be further investigated in vivo.

  4. HCV RNA Activates APCs via TLR7/TLR8 While Virus Selectively Stimulates Macrophages Without Inducing Antiviral Responses

    PubMed Central

    Zhang, Yuwei; El-Far, Mohamed; Dupuy, Franck P.; Abdel-Hakeem, Mohamed S.; He, Zhong; Procopio, Francesco Andrea; Shi, Yu; Haddad, Elias K.; Ancuta, Petronela; Sekaly, Rafick-Pierre; Said, Elias A.

    2016-01-01

    The innate and adaptive immune systems fail to control HCV infection in the majority of infected individuals. HCV is an ssRNA virus, which suggests a role for Toll-like receptors (TLRs) 7 and 8 in initiating the anti-viral response. Here we demonstrate that HCV genomic RNA harbours specific sequences that initiate an anti-HCV immune response through TLR7 and TLR8 in various antigen presenting cells. Conversely, HCV particles are detected by macrophages, but not by monocytes and DCs, through a TLR7/8 dependent mechanism; this leads to chloroquine sensitive production of pro-inflammatory cytokines including IL-1β, while the antiviral type I Interferon response is not triggered in these cells. Antibodies to DC-SIGN, a c-type lectin selectively expressed by macrophages but not pDCs or mDCs, block the production of cytokines. Novel anti-HCV vaccination strategies should target the induction of TLR7/8 stimulation in APCs in order to establish potent immune responses against HCV. PMID:27385120

  5. Improved antiviral activity in vitro of ribavirin against measles virus after complexation with cyclodextrins.

    PubMed

    Grancher, Nicolas; Venard, Véronique; Kedzierewicz, Francine; Ammerlaan, Wim; Finance, Chantal; Muller, Claude P; Le Faou, Alain

    2004-06-01

    Despite vaccination, measles remains a burden in both developed and developing countries and complications may necessitate an efficient therapy. Measles virus (MEV) is susceptible to ribavirin (RBV), but the use of this drug is limited by its toxicity. Cyclodextrins (CDs) can form complexes with numerous molecules, improving their bioavailability and their biological properties. We have evaluated in vitro the antiviral effects of complexes of RBV with alpha-, beta- or gamma-CD against two clade A laboratory strains of MEV (Edmonston and CAM/RB) grown on Vero cells. Complexation of RBV with alpha-CD or beta-CD lead to a five-fold or a two-fold decrease in the 50% inhibitory concentration, respectively, against both MEV strains. In contrast, gamma-CD complexation showed no modification. PMID:15130537

  6. In vitro Evaluation of the Antiviral Activity of an Extract of Date Palm (Phoenix dactylifera L.) Pits on a Pseudomonas Phage

    PubMed Central

    Naji, Mazen A.

    2010-01-01

    A crude acetone extract of the pit of date palm (Phoenix dactylifera L.) was prepared and its antiviral activity evaluated against lytic Pseudomonas phage ATCC 14209-B1, using Pseudomonas aeruginosa ATCC 25668 as the host cell. The antiviral activity of date pits was found to be mediated by binding to the phage, with minimum inhibitory concentration (MIC) of <10 μg ml−1. The decimal reduction time (D-values), the concentration exponent (η) and the phage inactivation kinetics were determined. The date pit extracts show a strong ability to inhibit the infectivity of Pseudomonas phage ATCC 14209-B1 and completely prevented bacterial lysis, which it is hoped will promote research into its potential as a novel antiviral agent against pathogenic human viruses. PMID:18955267

  7. Antiviral Activity of a Cloned Peptide RC28 Isolated from the Higher Basidiomycetes Mushroom Rozites caperata in a Mouse Model of HSV-1 Keratitis.

    PubMed

    Yan, Naihong; He, Fen; Piraino, Frank F; Xiang, Haotian; Chen, Jun; Wang, Yun; Liu, Xuyang

    2015-01-01

    An Escherichia coli-expressed peptide with a molecular weight of 28.26, derived from the complementary DNA of antiviral protein RC28 isolated from the mushroom Rozites caperata (=Cortinarius caperatus), demonstrated potent antiviral activity against herpes simplex virus-1 in Vero cells and in a herpes simplex virus-1 mouse keratitis model. Plaque assays in Vero cells showed that the peptide reduced viral yields by at least 1.2 logs; in the animal model the cloned peptide delayed the occurrence of stromal keratitis and alleviated the severity of the disease. We believe this is the first report of a cloned mushroom peptide with antiviral activity for the prevention and treatment of a viral disease.

  8. Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against hepatitis C virus.

    PubMed

    Ratnoglik, Suratno Lulut; Aoki, Chie; Sudarmono, Pratiwi; Komoto, Mari; Deng, Lin; Shoji, Ikuo; Fuchino, Hiroyuki; Kawahara, Nobuo; Hotta, Hak

    2014-03-01

    The development of complementary and/or alternative drugs for treatment of hepatitis C virus (HCV) infection is still needed. Antiviral compounds in medicinal plants are potentially good targets to study. Morinda citrifolia is a common plant distributed widely in Indo-Pacific region; its fruits and leaves are food sources and are also used as a treatment in traditional medicine. In this study, using a HCV cell culture system, it was demonstrated that a methanol extract, its n-hexane, and ethyl acetate fractions from M. citrifolia leaves possess anti-HCV activities with 50%-inhibitory concentrations (IC(50)) of 20.6, 6.1, and 6.6 μg/mL, respectively. Bioactivity-guided purification and structural analysis led to isolation and identification of pheophorbide a, the major catabolite of chlorophyll a, as an anti-HCV compound present in the extracts (IC(50) = 0.3 μg/mL). It was also found that pyropheophorbide a possesses anti-HCV activity (IC(50) = 0.2 μg/mL). The 50%-cytotoxic concentrations (CC(50)) of pheophorbide a and pyropheophorbide a were 10.0 and 7.2 μg/mL, respectively, their selectivity indexes being 33 and 36, respectively. On the other hand, chlorophyll a, sodium copper chlorophyllin, and pheophytin a barely, or only marginally, exhibited anti-HCV activities. Time-of-addition analysis revealed that pheophorbide a and pyropheophorbide a act at both entry and the post-entry steps. The present results suggest that pheophorbide a and its related compounds would be good candidates for seed compounds for developing antivirals against HCV.

  9. Antiviral effects of Glycyrrhiza species.

    PubMed

    Fiore, Cristina; Eisenhut, Michael; Krausse, Rea; Ragazzi, Eugenio; Pellati, Donatella; Armanini, Decio; Bielenberg, Jens

    2008-02-01

    Historical sources for the use of Glycyrrhiza species include ancient manuscripts from China, India and Greece. They all mention its use for symptoms of viral respiratory tract infections and hepatitis. Randomized controlled trials confirmed that the Glycyrrhiza glabra derived compound glycyrrhizin and its derivatives reduced hepatocellular damage in chronic hepatitis B and C. In hepatitis C virus-induced cirrhosis the risk of hepatocellular carcinoma was reduced. Animal studies demonstrated a reduction of mortality and viral activity in herpes simplex virus encephalitis and influenza A virus pneumonia. In vitro studies revealed antiviral activity against HIV-1, SARS related coronavirus, respiratory syncytial virus, arboviruses, vaccinia virus and vesicular stomatitis virus. Mechanisms for antiviral activity of Glycyrrhiza spp. include reduced transport to the membrane and sialylation of hepatitis B virus surface antigen, reduction of membrane fluidity leading to inhibition of fusion of the viral membrane of HIV-1 with the cell, induction of interferon gamma in T-cells, inhibition of phosphorylating enzymes in vesicular stomatitis virus infection and reduction of viral latency. Future research needs to explore the potency of compounds derived from licorice in prevention and treatment of influenza A virus pneumonia and as an adjuvant treatment in patients infected with HIV resistant to antiretroviral drugs. PMID:17886224

  10. Extracellular expression and antiviral activity of a bovine interferon-alpha through codon optimization in Pichia pastoris.

    PubMed

    Tu, Yabin; Wang, Gang; Wang, Yanqun; Chen, Weiye; Zhang, Lu; Liu, Yonggang; Jiang, Chenggang; Wang, Shujie; Bu, Zhigao; Cai, Xuehui

    2016-10-01

    Interferons (IFNs) are the primary line of defense against infectious agents. In particular, IFN-α is an important antiviral cytokine and has a wide range of immune-modulating functions. Porcine and human IFN-α have been successfully prepared and play important roles in the prevention and therapy of viral diseases. To date, there has been limited applied research on bovine IFN-α. To achieve high-level expression of recombinant bovine IFN-α (bIFN-α) in Pichia pastoris for large-scale application, the bIFN-α gene was optimized and synthesized on the basis of codon bias of P. pastoris. Optimized bIFN-α (opti-bIFN-α) was successfully expressed in P. pastoris and directly secreted into the culture supernatant. The amount of extracellular soluble opti-bIFN-α was observed to be 200μg/mL in a shake flask. Expression efficiency of opti-bIFN-α was found to be about three times that of wild-type bIFN-α when the expression yield was compared at the same copies of the targeted gene. In addition, both the original cultural supernatant and purified opti-bIFN-α showed strong antiviral activity in MDBK cells (2×10(6)AU/mL and 1×10(7)AU/mg, respectively) and IBRS-2 cells (3×10(5)AU/mL and 1.5×10(6)AU/mg, respectively) against a recombinant vesicular stomatitis virus expressing the green fluorescence protein. In this study, we demonstrated high-level extracellular expression of opti-bIFN-α by P. pastoris. To the best of our knowledge, the opti-bIFN-α yield observed in this study is the highest to be reported to date. Our results demonstrated that the extracellular opti-bIFN-α with strong antiviral activity could be easily prepared and purified at a low cost and that it may be a potential biological therapeutic drug against bovine viral infections. PMID:27524649

  11. Low-dose ribavirin potentiates the antiviral activity of favipiravir against hemorrhagic fever viruses.

    PubMed

    Westover, Jonna B; Sefing, Eric J; Bailey, Kevin W; Van Wettere, Arnaud J; Jung, Kie-Hoon; Dagley, Ashley; Wandersee, Luci; Downs, Brittney; Smee, Donald F; Furuta, Yousuke; Bray, Mike; Gowen, Brian B

    2016-02-01

    Favipiravir is approved in Japan to treat novel or re-emerging influenza viruses, and is active against a broad spectrum of RNA viruses, including Ebola. Ribavirin is the only other licensed drug with activity against multiple RNA viruses. Recent studies show that ribavirin and favipiravir act synergistically to inhibit bunyavirus infections in cultured cells and laboratory mice, likely due to their different mechanisms of action. Convalescent immune globulin is the only approved treatment for Argentine hemorrhagic fever caused by the rodent-borne Junin arenavirus. We previously reported that favipiravir is highly effective in a number of small animal models of Argentine hemorrhagic fever. We now report that addition of low dose of ribavirin synergistically potentiates the activity of favipiravir against Junin virus infection of guinea pigs and another arenavirus, Pichinde virus infection of hamsters. This suggests that the efficacy of favipiravir against hemorrhagic fever viruses can be further enhanced through the addition of low-dose ribavirin.

  12. Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response

    PubMed Central

    Jiang, Xiaomo; Kinch, Lisa; Brautigam, Chad A.; Chen, Xiang; Du, Fenghe; Grishin, Nick; Chen, Zhijian J.

    2012-01-01

    SUMMARY RIG-I and MDA5 detect viral RNA in the cytoplasm and activate signaling cascades leading to the production of type-I interferons. RIG-I is activated through sequential binding of viral RNA and unanchored lysine-63 (K63) polyubiquitin chains, but how polyubiquitin activates RIG-I and whether MDA5 is activated through a similar mechanism remain unresolved. Here we showed that the CARD domains of MDA5 bound to K63 polyubiquitin and that this binding was essential for MDA5 to activate the transcription factor IRF3. Mutations of conserved residues in MDA5 and RIG-I that disrupt their ubiquitin binding also abrogated their ability to activate IRF3. Polyubiquitin binding induced the formation of a large complex consisting of four RIG-I and four ubiquitin chains. This hetero-tetrameric complex was highly potent in activating the antiviral signaling cascades. These results suggest a unified mechanism of RIG-I and MDA5 activation and reveal a unique mechanism by which ubiquitin regulates cell signaling and immune response. PMID:22705106

  13. Application of "Hydrogen-Bonding Interaction" in Drug Design. Part 2: Design, Synthesis, and Structure-Activity Relationships of Thiophosphoramide Derivatives as Novel Antiviral and Antifungal Agents.

    PubMed

    Lu, Aidang; Ma, Yuanyuan; Wang, Ziwen; Zhou, Zhenghong; Wang, Qingmin

    2015-11-01

    On the basis of the structure of natural product harmine, lead compound 18, and the structure of compounds in part 1, a series of thiophosphoramide derivatives 1-17 were designed and synthesized from various amines in one step. Their antiviral and antifungal activities were evaluated. Most of the compounds showed significantly higher antiviral activity against tobacco mosaic virus (TMV) than commercial virucide ribavirin. Compound (R,R)-17 showed the best anti-TMV activity in vitro (70%/500 μg/mL and 33%/100 μg/mL) and in vivo (inactivation effect, 68%/500 μg/mL and 30%/100 μg/mL; curative effect, 64%/500 μg/mL and 31%/100 μg/mL; protection effect, 66%/500 μg/mL and 31%/100 μg/mL), which is higher than that of ningnanmycin and lead compound 18. The antiviral activity of (R,R)-17·HCl is about similar to that of (R,R)-17. However, the antifungal activity of (R,R)-17·HCl against Puccinia sorghi is slightly lower than that of (R,R)-17. The systematic study provides compelling evidence that these simple thiophosphoramide compounds could become efficient antiviral and antifungal agents.

  14. Application of "Hydrogen-Bonding Interaction" in Drug Design. Part 2: Design, Synthesis, and Structure-Activity Relationships of Thiophosphoramide Derivatives as Novel Antiviral and Antifungal Agents.

    PubMed

    Lu, Aidang; Ma, Yuanyuan; Wang, Ziwen; Zhou, Zhenghong; Wang, Qingmin

    2015-11-01

    On the basis of the structure of natural product harmine, lead compound 18, and the structure of compounds in part 1, a series of thiophosphoramide derivatives 1-17 were designed and synthesized from various amines in one step. Their antiviral and antifungal activities were evaluated. Most of the compounds showed significantly higher antiviral activity against tobacco mosaic virus (TMV) than commercial virucide ribavirin. Compound (R,R)-17 showed the best anti-TMV activity in vitro (70%/500 μg/mL and 33%/100 μg/mL) and in vivo (inactivation effect, 68%/500 μg/mL and 30%/100 μg/mL; curative effect, 64%/500 μg/mL and 31%/100 μg/mL; protection effect, 66%/500 μg/mL and 31%/100 μg/mL), which is higher than that of ningnanmycin and lead compound 18. The antiviral activity of (R,R)-17·HCl is about similar to that of (R,R)-17. However, the antifungal activity of (R,R)-17·HCl against Puccinia sorghi is slightly lower than that of (R,R)-17. The systematic study provides compelling evidence that these simple thiophosphoramide compounds could become efficient antiviral and antifungal agents. PMID:26485246

  15. Antiviral activity of the oseltamivir and Melissa officinalis L. essential oil against avian influenza A virus (H9N2).

    PubMed

    Pourghanbari, Gholamhosein; Nili, Hasan; Moattari, Afagh; Mohammadi, Ali; Iraji, Aida

    2016-06-01

    Lemon balm derivatives are going to acquire a novelty as natural and potent remedy for treatment of viral infections since the influenza viruses are developing resistance to the current antivirals widely. Oseltamivir, Melissa officinalis essential oil (MOEO) and their synergistic efficacy against avian influenza virus (AIV) subtype H9N2 were evaluated in vitro in MDCK cells at different time exposure by using TCID50, HA, Real Time PCR and HI assay. The results showed that MOEO could inhibit replication of AVI through the different virus replication phase (P ≤ 0.05). Also the highest antiviral activity of MOEO was seen when AIV incubated with MOEO before cell infection. The TCID50/ml was reduced 1.3-2.1, 2.3-2.8, 3.7-4.5 log 10 than control group (5.6 log 10), HAU/50 µl was decreased 85-94, 71.4-94, 71.4-94 % and viral genome copy number/µl was brought down 68-95, 90-100, 89.6-99.9 % at pre-infection, post-infection and simultaneous stage, respectively. Hemagglutination inhibition result showed the MOEO was not able to inhibit agglutination of the chicken red blood cell (cRBC). Replication of the AVI was suppressed by the different concentration of oseltamivir completely or near 100 %. Also oseltamivir showed a synergistic activity with MOEO especially when oseltamivir concentration reduced under 0.005 mg/ml. The chemical composition was examined by GC-MS analysis and Its main constituents were identified as monoterpenaldehydes citral a, citral b. In conclusion, the findings of the study showed that lemon balm essential oil could inhibit influenza virus replication through different replication cycle steps especially throughout the direct interaction with the virus particles. PMID:27366768

  16. Antiviral activity of the oseltamivir and Melissa officinalis L. essential oil against avian influenza A virus (H9N2).

    PubMed

    Pourghanbari, Gholamhosein; Nili, Hasan; Moattari, Afagh; Mohammadi, Ali; Iraji, Aida

    2016-06-01

    Lemon balm derivatives are going to acquire a novelty as natural and potent remedy for treatment of viral infections since the influenza viruses are developing resistance to the current antivirals widely. Oseltamivir, Melissa officinalis essential oil (MOEO) and their synergistic efficacy against avian influenza virus (AIV) subtype H9N2 were evaluated in vitro in MDCK cells at different time exposure by using TCID50, HA, Real Time PCR and HI assay. The results showed that MOEO could inhibit replication of AVI through the different virus replication phase (P ≤ 0.05). Also the highest antiviral activity of MOEO was seen when AIV incubated with MOEO before cell infection. The TCID50/ml was reduced 1.3-2.1, 2.3-2.8, 3.7-4.5 log 10 than control group (5.6 log 10), HAU/50 µl was decreased 85-94, 71.4-94, 71.4-94 % and viral genome copy number/µl was brought down 68-95, 90-100, 89.6-99.9 % at pre-infection, post-infection and simultaneous stage, respectively. Hemagglutination inhibition result showed the MOEO was not able to inhibit agglutination of the chicken red blood cell (cRBC). Replication of the AVI was suppressed by the different concentration of oseltamivir completely or near 100 %. Also oseltamivir showed a synergistic activity with MOEO especially when oseltamivir concentration reduced under 0.005 mg/ml. The chemical composition was examined by GC-MS analysis and Its main constituents were identified as monoterpenaldehydes citral a, citral b. In conclusion, the findings of the study showed that lemon balm essential oil could inhibit influenza virus replication through different replication cycle steps especially throughout the direct interaction with the virus particles.

  17. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis.

    PubMed

    Yang, Zi-Feng; Bai, Li-Ping; Huang, Wen-bo; Li, Xu-Zhao; Zhao, Sui-Shan; Zhong, Nan-Shan; Jiang, Zhi-Hong

    2014-03-01

    Influenza poses a particular risk of severe outcomes in the elderly, the very young and those with underlying diseases. Tea polyphenols are the natural phenolic compounds in teas, and principally consist of catechins, proanthocyanidins, flavonols, and theaflavins, which antiviral activities have been reported recently. This study is to gain a further insight into potential of various tea polyphenols for inhibiting influenza virus infection. Five tea polyphenols exhibited inhibitory activity against influenza A virus in the trend of theaflavin>procyanidin B-2>procyanidin B-2 digallate>(-)-epigallocatechin(EGC)>(-)-epigallocatechingallate(EGCG) with IC50 values in the range of 16.2-56.5 μg/ml. Six of the tested compounds showed anti-influenza B virus activity in the order of kaempferol>EGCG>procyanidin B-2>(-)-EGC~methylated EGC>theaflavin with IC50 values in the range of 9.0-49.7 μg/ml. Based on these results, the structure-activity relationship (SAR) was explained as follows. First, the dimeric molecules, such as theaflavin and procyanidin B-2, generally displayed more potent antiviral activity against both influenza A and B viruses than the catechin monomers. Second, the kaempferol for inhibition of influenza B virus indicated that the more planar flavonol structure with only one C-4' phenolic hydroxyl group in the B ring is necessary for the anti-influenza B virus activity. A similar SAR can be drawn from the assays of another enveloped RNA virus, such as respiratory syncytial virus. These results are expected to provide guides for rational design of antiviral drugs based on polyphenols.

  18. Evaluation of the cytotoxic effect and antibacterial, antifungal, and antiviral activities of Hypericum triquetrifolium Turra essential oils from Tunisia

    PubMed Central

    2013-01-01

    Background A number of bio-active secondary metabolites have been identified and reported for several Hypericum species. Many studies have reported the potential use of the plant extracts against several pathogens. However, Hypericum triquetrifolium is one of the least studied species for its antimicrobial activity. The aim of the present study was to evaluate the cytotoxic effect of the essential oils of Hypericum triquetrifolium as well as their antimicrobial potential against coxsakievirus B3 and a range of bacterial and fungal strains. Methods The essential oils of Hypericum triquetrifolium harvested from five different Tunisian localities (Fondouk DJedid, Bou Arada, Bahra, Fernana and Dhrea Ben Jouder) were evaluated for their antimicrobial activities by micro-broth dilution methods against bacterial and fungal strains. In addition, the cytotoxic effect and the antiviral activity of these oils were carried out using Vero cell lines and coxsakievirus B3. Results The results showed a good antibacterial activities against a wide range of bacterial strains, MIC values ranging between 0.39-12.50 mg/ml and MBC values between 1.56-25.0 mg/ml. In addition, the essential oils showed promising antifungal activity with MIC values ranging between 0.39 μg/mL and 12.50 μg/mL; MFC values ranged between 3.12 μg/mL and 25.00 μg/mL; a significant anticandidal activity was noted (MIC values comprised between 0.39 μg/mL and 12.50 μg/mL). Although their low cytotoxic effect (CC50 ranged between 0.58 mg/mL and 12.00 mg/mL), the essential oils did not show antiviral activity against coxsakievirus B3. Conclusion The essential oils obtained from Hypericum triquetrifolium can be used as antimicrobial agents and could be safe at non cytotoxic doses. As shown for the tested essential oils, comparative analysis need to be undertaken to better characterize also the antimicrobial activities of Hypericum triquetrifolium extracts with different solvents as well as their

  19. Antiviral activity and possible mode of action of ellagic acid identified in Lagerstroemia speciosa leaves toward human rhinoviruses

    PubMed Central

    2014-01-01

    Background Human rhinoviruses (HRVs) are responsible for more than half of all cases of the common cold and cause billions of USD annually in medical visits and school and work absenteeism. An assessment was made of the cytotoxic and antiviral activities and possible mode of action of the tannin ellagic acid from the leaves of Lagerstroemia speciosa toward HeLa cells and three rhinoviruses, HRV-2, -3, and -4. Methods The antiviral property and mechanism of action of ellagic acid were evaluated using a sulforhodamine B assay and real-time reverse transcription-PCR (RT-PCR) with SYBR Green dye. Results were compared with those of the currently used broad-spectrum antiviral agent, ribavirin. Results As judged by 50% inhibitory concentration values, natural ellagic acid was 1.8, 2.3, and 2.2 times more toxic toward HRV-2 (38 μg/mL), HRV-3 (31 μg/mL), and HRV-4 (29 μg/mL) than ribavirin, respectively. The inhibition rate of preincubation with 50 μg/mL ellagic acid was 17%, whereas continuous presence of ellagic acid during infection led to a significant increase in the inhibition (70%). Treatment with 50 μg/mL ellagic acid considerably suppressed HRV-4 infection only when added just after the virus inoculation (0 h) (87% inhibition), but not before -1 h or after 1 h or later (<20% inhibition). These findings suggest that ellagic acid does not interact with the HRV-4 particles and may directly interact with the human cells in the early stage of HRV infections to protect the cells from the virus destruction. Furthermore, RT-PCR analysis revealed that 50 μg/mL ellagic acid strongly inhibited the RNA replication of HRV-4 in HeLa cells, suggesting that ellagic acid inhibits virus replication by targeting on cellular molecules, rather than virus molecules. Conclusions Global efforts to reduce the level of antibiotics justify further studies on L. speciosa leaf-derived materials containing ellagic acid as potential anti-HRV products or a lead molecule for the

  20. In vitro evaluation of the antiviral activity of methylglyoxal against influenza B virus infection.

    PubMed

    Charyasriwong, Siriwan; Haruyama, Takahiro; Kobayashi, Nobuyuki

    2016-01-01

    Influenza A and B virus infections are serious public health concerns globally. However, the concerns regarding influenza B infection have been underestimated. The currently used anti-influenza drugs have not provided equal efficacy for both influenza A and B viruses. Susceptibility to neuraminidase (NA) inhibitors has been observed to be lower for influenza B viruses than for influenza A viruses. Moreover, the emergence of resistance to anti-influenza drugs underscores the need to develop new drugs. Recently, we reported that methylglyoxal (MGO) suppressed influenza A virus replication in a strain-independent manner. Therefore, we hypothesize that MGO exhibits anti-influenza activity against B strains. This study aimed to evaluate the anti-influenza viral activity of MGO against influenza B strains by using Madin-Darby canine kidney (MDCK) cells. Several types of influenza B viruses were used to determine the activity of MGO. The susceptibilities of influenza A and B viruses to NA inhibitors were compared. MGO inhibited influenza B virus replication, with 50% inhibitory concentrations ranging from 23-140 μM, which indicated greater sensitivity of influenza B viruses than influenza A viruses. Our results show that MGO has potent inhibitory activity against influenza B viruses, including NA inhibitor-resistant strains. PMID:27558282

  1. Design, Synthesis, Biochemical, and Antiviral Evaluations of C6 Benzyl and C6 Biarylmethyl Substituted 2-Hydroxylisoquinoline-1,3-diones: Dual Inhibition against HIV Reverse Transcriptase-Associated RNase H and Polymerase with Antiviral Activities

    PubMed Central

    2015-01-01

    Reverse transcriptase (RT) associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function not targeted by current chemotherapy against human immunodeficiency virus (HIV). Although numerous chemotypes have been reported to inhibit HIV RNase H biochemically, few show significant antiviral activity against HIV. We report herein the design, synthesis, and biological evaluations of a novel variant of 2-hydroxyisoquinoline-1,3-dione (HID) scaffold featuring a crucial C-6 benzyl or biarylmethyl moiety. The synthesis involved a recently reported metal-free direct benzylation between tosylhydrazone and boronic acid, which allowed the generation of structural diversity for the hydrophobic aromatic region. Biochemical studies showed that the C-6 benzyl and biarylmethyl HID analogues, previously unknown chemotypes, consistently inhibited HIV RT-associated RNase H and polymerase with IC50s in low to submicromolar range. The observed dual inhibitory activity remained uncompromised against RT mutants resistant to non-nucleoside RT inhibitors (NNRTIs), suggesting the involvement of binding site(s) other than the NNRTI binding pocket. Intriguingly, these same compounds inhibited the polymerase, but not the RNase H function of Moloney Murine Leukemia Virus (MoMLV) RT and also inhibited Escherichia coli RNase H. Additional biochemical testing revealed a substantially reduced level of inhibition against HIV integrase. Molecular docking corroborates favorable binding of these analogues to the active site of HIV RNase H. Finally, a number of these analogues also demonstrated antiviral activity at low micromolar concentrations. PMID:25522204

  2. Assorted Processing of Synthetic Trans-Acting siRNAs and Its Activity in Antiviral Resistance.

    PubMed

    Zhao, Mingmin; San León, David; Mesel, Frida; García, Juan Antonio; Simón-Mateo, Carmen

    2015-01-01

    The use of syn-tasiRNAs has been proposed as an RNA interference technique alternative to those previously described: hairpin based, virus induced gene silencing or artificial miRNAs. In this study we engineered the TAS1c locus to impair Plum pox virus (PPV) infection by replacing the five native siRNAs with two 210-bp fragments from the CP and the 3´NCR regions of the PPV genome. Deep sequencing analysis of the small RNA species produced by both constructs in planta has shown that phased processing of the syn-tasiRNAs is construct-specific. While in syn-tasiR-CP construct the processing was as predicted 21-nt phased in register with miR173-guided cleavage, the processing of syn-tasiR-3NCR is far from what was expected. A 22-nt species from the miR173-guided cleavage was a guide of two series of phased small RNAs, one of them in an exact 21-nt register, and the other one in a mixed of 21-/22-nt frame. In addition, both constructs produced abundant PPV-derived small RNAs in the absence of miR173 as a consequence of a strong sense post-transcriptional gene silencing induction. The antiviral effect of both constructs was also evaluated in the presence or absence of miR173 and showed that the impairment of PPV infection was not significantly higher when miR173 was present. The results show that syn-tasiRNAs processing depends on construct-specific factors that should be further studied before the so-called MIGS (miRNA-induced gene silencing) technology can be used reliably.

  3. Single Amino Acid Substitutions Confer the Antiviral Activity of the TRAF3 Adaptor Protein onto TRAF5

    PubMed Central

    Zhang, Peng; Reichardt, Anna; Liang, Huanhuan; Aliyari, Roghiyh; Cheng, David; Wang, Yaya; Xu, Feng

    2014-01-01

    The TRAF [tumor necrosis factor receptor–associated factor] family of cytoplasmic adaptor proteins link cell-surface receptors to intracellular signaling pathways that regulate innate and adaptive immune responses. In response to activation of RIG-I (retinoic acid–inducible gene I), a component of a pattern recognition receptor that detects viruses, TRAF3 binds to the adaptor protein Cardif [caspase activation and recruitment domain (CARD) adaptor–inducing interferon-b (IFN-b)], leading to induction of type I IFNs. We report the crystal structures of the TRAF domain of TRAF5 and that of TRAF3 bound to a peptide from the TRAF-interacting motif of Cardif. By comparing these structures, we identified two residues located near the Cardif binding pocket in TRAF3 (Tyr440 and Phe473) that potentially contributed to Cardif recognition. In vitro and cellular experiments showed that forms of TRAF5 with mutation of the corresponding residues to those of TRAF3 had TRAF3-like antiviral activity. Our results provide a structural basis for the critical role of TRAF3 in activating RIG-I–mediated IFN production. PMID:23150880

  4. Broad antiviral activity and crystal structure of HIV-1 fusion inhibitor sifuvirtide.

    PubMed

    Yao, Xue; Chong, Huihui; Zhang, Chao; Waltersperger, Sandro; Wang, Meitian; Cui, Sheng; He, Yuxian

    2012-02-24

    Sifuvirtide (SFT) is an electrostatically constrained α-helical peptide fusion inhibitor showing potent anti-HIV activity, good safety, and pharmacokinetic profiles, and it is currently under phase II clinical trials in China. In this study, we demonstrate its potent and broad anti-HIV activity by using diverse HIV-1 subtypes and variants, including subtypes A, B, and C that dominate the AIDS epidemic worldwide, and subtypes B', CRF07_BC, and CRF01_AE recombinants that are currently circulating in China, and those possessing cross-resistance to the first and second generation fusion inhibitors. To elucidate its mechanism of action, we determined the crystal structure of SFT in complex with its target N-terminal heptad repeat region (NHR) peptide (N36), which fully supports our rational inhibitor design and reveals its key motifs and residues responsible for the stability and anti-HIV activity. As anticipated, SFT adopts fully helical conformation stabilized by the multiple engineered salt bridges. The designing of SFT also provide novel inter-helical salt bridges and hydrogen bonds that improve the affinity of SFT to NHR trimer. The extra serine residue and acetyl group stabilize α-helicity of the N-terminal portion of SFT, whereas Thr-119 serves to stabilize the hydrophobic NHR pocket. In addition, our structure demonstrates that the residues critical for drug resistance, located at positions 37, 38, 41, and 43 of NHR, are irreplaceable for maintaining the stable fusogenic six-helix bundle structure. Our data present important information for developing SFT for clinical use and for designing novel HIV fusion inhibitors.

  5. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas.

    PubMed

    Friedman, Mendel

    2007-01-01

    Tea leaves produce organic compounds that may be involved in the defense of the plants against invading pathogens including insects, bacteria, fungi, and viruses. These metabolites include polyphenolic compounds, the six so-called catechins, and the methyl-xanthine alkaloids caffeine, theobromine, and theophylline. Postharvest inactivation of phenol oxidases in green tea leaves prevents oxidation of the catechins, whereas postharvest enzyme-catalyzed oxidation (fermentation) of catechins in tea leaves results in the formation of four theaflavins as well as polymeric thearubigins. These substances impart the black color to black teas. Black and partly fermented oolong teas contain both classes of phenolic compounds. A need exists to develop a better understanding of the roles of polyphenolic tea compounds in food and medical microbiology. This overview surveys and interprets our present knowledge of activities of tea flavonoids and teas against foodborne and other pathogenic bacteria, virulent protein toxins produced by some of the bacteria, virulent bacteriophages, pathogenic viruses and fungi. Also covered are synergistic, mechanistic, and bioavailability aspects of the antimicrobial effects. Further research is suggested for each of these categories. The herein described findings are not only of fundamental interest, but also have practical implications for nutrition, food safety, and animal and human health. PMID:17195249

  6. Design, RNA cleavage and antiviral activity of new artificial ribonucleases derived from mono-, di- and tripeptides connected by linkers of different hydrophobicity.

    PubMed

    Tamkovich, Nikolay; Koroleva, Lyudmila; Kovpak, Mikhail; Goncharova, Elena; Silnikov, Vladimir; Vlassov, Valentin; Zenkova, Marina

    2016-03-15

    A novel series of metal-free artificial ribonucleases (aRNases) was designed, synthesized and assessed in terms of ribonuclease activity and ability to inactivate influenza virus WSN/A33/H1N1 in vitro. The compounds were built of two short peptide fragments, which include Lys, Ser, Arg, Glu and imidazole residues in various combinations, connected by linkers of different hydrophobicity (1,12-diaminododecane or 4,9-dioxa-1,12-diaminododecane). These compounds efficiently cleaved different RNA substrates under physiological conditions at rates three to five times higher than that of artificial ribonucleases described earlier and displayed RNase A-like cleavage specificity. aRNases with the hydrophobic 1,12-diaminododecane linker displayed ribonuclease activity 3-40 times higher than aRNases with the 4,9-dioxa-1,12-diaminododecane linker. The assumed mechanism of RNA cleavage was typical for natural ribonucleases, that is, general acid-base catalysis via the formation of acid/base pairs by functional groups of amino acids present in the aRNases; the pH profile of cleavage confirmed this mechanism. The most active aRNases under study exhibited high antiviral activity and entirely inactivated influenza virus A/WSN/33/(H1N1) after a short incubation period of viral suspension under physiological conditions. PMID:26899594

  7. Nonstructural Protein 1 of Influenza A Virus Interacts with Human Guanylate-Binding Protein 1 to Antagonize Antiviral Activity

    PubMed Central

    Yan, Wenjun; Wei, Jianchao; Shao, Donghua; Deng, Xufang; Wang, Shaohui; Li, Beibei; Tong, Guangzhi; Ma, Zhiyong

    2013-01-01

    Human guanylate-binding protein 1 (hGBP1) is an interferon-inducible protein involved in the host immune response against viral infection. In response to infection by influenza A virus (IAV), hGBP1 transcript and protein were significantly upregulated. Overexpression of hGBP1 inhibited IAV replication in a dose-dependent manner in vitro. The lysine residue at position 51 (K51) of hGBP1 was essential for inhibition of IAV replication. Mutation of K51 resulted in an hGBP1 that was unable to inhibit IAV replication. The viral nonstructural protein 1 (NS1) was found to interact directly with hGBP1. K51 of hGBP1 and a region between residues 123 and 144 in NS1 were demonstrated to be essential for the interaction between NS1 and hGBP1. Binding of NS1 to hGBP1 resulted in a significant reduction in both GTPase activity and the anti-IAV activity of hGBP1. These findings indicated that hGBP1 contributed to the host immune response against IAV replication and that hGBP1-mediated antiviral activity was antagonized by NS1 via binding to hGBP1. PMID:23405236

  8. Nonstructural protein 1 of influenza A virus interacts with human guanylate-binding protein 1 to antagonize antiviral activity.

    PubMed

    Zhu, Zixiang; Shi, Zixue; Yan, Wenjun; Wei, Jianchao; Shao, Donghua; Deng, Xufang; Wang, Shaohui; Li, Beibei; Tong, Guangzhi; Ma, Zhiyong

    2013-01-01

    Human guanylate-binding protein 1 (hGBP1) is an interferon-inducible protein involved in the host immune response against viral infection. In response to infection by influenza A virus (IAV), hGBP1 transcript and protein were significantly upregulated. Overexpression of hGBP1 inhibited IAV replication in a dose-dependent manner in vitro. The lysine residue at position 51 (K51) of hGBP1 was essential for inhibition of IAV replication. Mutation of K51 resulted in an hGBP1 that was unable to inhibit IAV replication. The viral nonstructural protein 1 (NS1) was found to interact directly with hGBP1. K51 of hGBP1 and a region between residues 123 and 144 in NS1 were demonstrated to be essential for the interaction between NS1 and hGBP1. Binding of NS1 to hGBP1 resulted in a significant reduction in both GTPase activity and the anti-IAV activity of hGBP1. These findings indicated that hGBP1 contributed to the host immune response against IAV replication and that hGBP1-mediated antiviral activity was antagonized by NS1 via binding to hGBP1.

  9. Cross-Species Antiviral Activity of Goose Interferons against Duck Plague Virus Is Related to Its Positive Self-Feedback Regulation and Subsequent Interferon Stimulated Genes Induction.

    PubMed

    Zhou, Hao; Chen, Shun; Zhou, Qin; Wei, Yunan; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Cheng, Anchun

    2016-01-01

    Interferons are a group of antiviral cytokines acting as the first line of defense in the antiviral immunity. Here, we describe the antiviral activity of goose type I interferon (IFNα) and type II interferon (IFNγ) against duck plague virus (DPV). Recombinant goose IFNα and IFNγ proteins of approximately 20 kDa and 18 kDa, respectively, were expressed. Following DPV-enhanced green fluorescent protein (EGFP) infection of duck embryo fibroblast cells (DEFs) with IFNα and IFNγ pre-treatment, the number of viral gene copies decreased more than 100-fold, with viral titers dropping approximately 100-fold. Compared to the control, DPV-EGFP cell positivity was decreased by goose IFNα and IFNγ at 36 hpi (3.89%; 0.79%) and 48 hpi (17.05%; 5.58%). In accordance with interferon-stimulated genes being the "workhorse" of IFN activity, the expression of duck myxovirus resistance (Mx) and oligoadenylate synthetases-like (OASL) was significantly upregulated (p < 0.001) by IFN treatment for 24 h. Interestingly, duck cells and goose cells showed a similar trend of increased ISG expression after goose IFNα and IFNγ pretreatment. Another interesting observation is that the positive feedback regulation of type I IFN and type II IFN by goose IFNα and IFNγ was confirmed in waterfowl for the first time. These results suggest that the antiviral activities of goose IFNα and IFNγ can likely be attributed to the potency with which downstream genes are induced by interferon. These findings will contribute to our understanding of the functional significance of the interferon antiviral system in aquatic birds and to the development of interferon-based prophylactic and therapeutic approaches against viral disease.

  10. Cross-Species Antiviral Activity of Goose Interferons against Duck Plague Virus Is Related to Its Positive Self-Feedback Regulation and Subsequent Interferon Stimulated Genes Induction.

    PubMed

    Zhou, Hao; Chen, Shun; Zhou, Qin; Wei, Yunan; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Cheng, Anchun

    2016-01-01

    Interferons are a group of antiviral cytokines acting as the first line of defense in the antiviral immunity. Here, we describe the antiviral activity of goose type I interferon (IFNα) and type II interferon (IFNγ) against duck plague virus (DPV). Recombinant goose IFNα and IFNγ proteins of approximately 20 kDa and 18 kDa, respectively, were expressed. Following DPV-enhanced green fluorescent protein (EGFP) infection of duck embryo fibroblast cells (DEFs) with IFNα and IFNγ pre-treatment, the number of viral gene copies decreased more than 100-fold, with viral titers dropping approximately 100-fold. Compared to the control, DPV-EGFP cell positivity was decreased by goose IFNα and IFNγ at 36 hpi (3.89%; 0.79%) and 48 hpi (17.05%; 5.58%). In accordance with interferon-stimulated genes being the "workhorse" of IFN activity, the expression of duck myxovirus resistance (Mx) and oligoadenylate synthetases-like (OASL) was significantly upregulated (p < 0.001) by IFN treatment for 24 h. Interestingly, duck cells and goose cells showed a similar trend of increased ISG expression after goose IFNα and IFNγ pretreatment. Another interesting observation is that the positive feedback regulation of type I IFN and type II IFN by goose IFNα and IFNγ was confirmed in waterfowl for the first time. These results suggest that the antiviral activities of goose IFNα and IFNγ can likely be attributed to the potency with which downstream genes are induced by interferon. These findings will contribute to our understanding of the functional significance of the interferon antiviral system in aquatic birds and to the development of interferon-based prophylactic and therapeutic approaches against viral disease. PMID:27438848

  11. beta-Cyclodextrin derivatives as carriers to enhance the antiviral activity of an antisense oligonucleotide directed toward a coronavirus intergenic consensus sequence.

    PubMed

    Abdou, S; Collomb, J; Sallas, F; Marsura, A; Finance, C

    1997-01-01

    The ability of cyclodextrins to enhance the antiviral activity of a phosphodiester oligodeoxynucleotide has been investigated. A 18-mer oligodeoxynucleotide complementary to the initiation region of the mRNA coding for the spike protein and containing the intergenic consensus sequence of an enteric coronavirus has been tested for antiviral action against virus growth in human adenocarcinoma cells. The phosphodiester oligodeoxynucleotide only showed a limited effect on virus growth rate (from 12 to 34% viral inhibition in cells treated with 7.5 to 25 microM oligodeoxynucleotide, respectively, at a multiplicity of infection of 0.1 infectious particle per cell). In the same conditions, the phosphorothioate analogue exhibited stronger antiviral activity, the inhibition increased from 56 to 90%. The inhibitory effect of this analogue was antisense and sequence-specific. Northern blot analysis showed that the sequence-dependent mechanism of action appears to be the inhibition of mRNA transcription. We conclude that the coronavirus intergenic consensus sequence is a good target for an antisense oligonucleotide antiviral action. The properties of the phosphodiester oligonucleotide was improved after its complexation with cyclodextrins. The most important increase of the antiviral activity (90% inhibition) was obtained with only 7.5 microM oligonucleotide complexed to a cyclodextrin derivative, 6-deoxy-6-S-beta-D-galactopyranosyl-6-thio-cyclomalto-heptaose+ ++ in a molar ratio of 1:100. These studies suggest that the use of cyclodextrin derivatives as carrier for phosphodiester oligonucleotides delivery may be an effective method for increasing the therapeutic potential of these compounds in viral infections. PMID:9672621

  12. Cross-Species Antiviral Activity of Goose Interferons against Duck Plague Virus Is Related to Its Positive Self-Feedback Regulation and Subsequent Interferon Stimulated Genes Induction

    PubMed Central

    Zhou, Hao; Chen, Shun; Zhou, Qin; Wei, Yunan; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Cheng, Anchun

    2016-01-01

    Interferons are a group of antiviral cytokines acting as the first line of defense in the antiviral immunity. Here, we describe the antiviral activity of goose type I interferon (IFNα) and type II interferon (IFNγ) against duck plague virus (DPV). Recombinant goose IFNα and IFNγ proteins of approximately 20 kDa and 18 kDa, respectively, were expressed. Following DPV-enhanced green fluorescent protein (EGFP) infection of duck embryo fibroblast cells (DEFs) with IFNα and IFNγ pre-treatment, the number of viral gene copies decreased more than 100-fold, with viral titers dropping approximately 100-fold. Compared to the control, DPV-EGFP cell positivity was decreased by goose IFNα and IFNγ at 36 hpi (3.89%; 0.79%) and 48 hpi (17.05%; 5.58%). In accordance with interferon-stimulated genes being the “workhorse” of IFN activity, the expression of duck myxovirus resistance (Mx) and oligoadenylate synthetases-like (OASL) was significantly upregulated (p < 0.001) by IFN treatment for 24 h. Interestingly, duck cells and goose cells showed a similar trend of increased ISG expression after goose IFNα and IFNγ pretreatment. Another interesting observation is that the positive feedback regulation of type I IFN and type II IFN by goose IFNα and IFNγ was confirmed in waterfowl for the first time. These results suggest that the antiviral activities of goose IFNα and IFNγ can likely be attributed to the potency with which downstream genes are induced by interferon. These findings will contribute to our understanding of the functional significance of the interferon antiviral system in aquatic birds and to the development of interferon-based prophylactic and therapeutic approaches against viral disease. PMID:27438848

  13. Functional Comparison of Mx1 from Two Different Mouse Species Reveals the Involvement of Loop L4 in the Antiviral Activity against Influenza A Viruses

    PubMed Central

    Verhelst, Judith; Spitaels, Jan; Nürnberger, Cindy; De Vlieger, Dorien; Ysenbaert, Tine; Staeheli, Peter; Fiers, Walter

    2015-01-01

    ABSTRACT The interferon-induced Mx1 gene is an important part of the mammalian defense against influenza viruses. Mus musculus Mx1 inhibits influenza A virus replication and transcription by suppressing the polymerase activity of viral ribonucleoproteins (vRNPs). Here, we compared the anti-influenza virus activity of Mx1 from Mus musculus A2G with that of its ortholog from Mus spretus. We found that the antiviral activity of M. spretus Mx1 was less potent than that of M. musculus Mx1. Comparison of the M. musculus Mx1 sequence with the M. spretus Mx1 sequence revealed 25 amino acid differences, over half of which were present in the GTPase domain and 2 of which were present in loop L4. However, the in vitro GTPase activity of Mx1 from the two mouse species was similar. Replacement of one of the residues in loop L4 in M. spretus Mx1 by the corresponding residue of A2G Mx1 increased its antiviral activity. We also show that deletion of loop L4 prevented the binding of Mx1 to influenza A virus nucleoprotein and, hence, abolished the antiviral activity of mouse Mx1. These results indicate that loop L4 of mouse Mx1 is a determinant of antiviral activity. Our findings suggest that Mx proteins from different mammals use a common mechanism to inhibit influenza A viruses. IMPORTANCE Mx proteins are evolutionarily conserved in vertebrates and inhibit a wide range of viruses. Still, the exact details of their antiviral mechanisms remain largely unknown. Functional comparison of the Mx genes from two species that diverged relatively recently in evolution can provide novel insights into these mechanisms. We show that both Mus musculus A2G Mx1 and Mus spretus Mx1 target the influenza virus nucleoprotein. We also found that loop L4 in mouse Mx1 is crucial for its antiviral activity, as was recently reported for primate MxA. This indicates that human and mouse Mx proteins, which have diverged by 75 million years of evolution, recognize and inhibit influenza A viruses by a common

  14. Inhibition of rotaviruses by selected antiviral substances: mechanisms of viral inhibition and in vivo activity.

    PubMed Central

    Smee, D F; Sidwell, R W; Clark, S M; Barnett, B B; Spendlove, R S

    1982-01-01

    Several RNA virus inhibitors were evaluated against simian (SA11) rotavirus infections in vitro and murine rotavirus gastroenteritis in vivo. Test compounds included 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (ribavirin), 3-deazaguanine (3-DG), 3-deazauridine, and 9-(S)-(2,3-dihydroxypropyl)adenine [(S)-DHPA]. All drugs inhibited total infectious SA11 virus yields in MA-104 cells. Ribavirin, 3-DG, and (S)-DHPA affected [3H]uridine uptake into uninfected MA-104 cells in both the acid-soluble and -insoluble fractions. All drugs reduced the levels of dense (precursor) and light (complete) SA11 particle yields compared with control but did not alter the relative amounts of dense compared with light particles, suggesting that the agents did not interfere with virus assembly. Ribavirin and 3-DG inhibited SA11 polypeptide synthesis, as determined by polyacrylamide gel electrophoresis studies. None of the agents or mono- and triphosphate derivatives of ribavirin inhibited SA11 RNA polymerase activity. In murine rotavirus studies, oral therapy with ribavirin-2',3',5'-triacetate and (S)-DHPA increased mean survival time, but no increase in survivor rate was observed. 3-DG- and (S)-DHPA-treated mice had a more rapid weight gain than controls, suggesting a probable lessening of the severity of the disease. Images PMID:6282209

  15. Activity of antibacterial, antiviral, anti-inflammatory in compounds andrographolide salt.

    PubMed

    Wen, Li; Xia, Nan; Chen, Xianghong; Li, Yingxiu; Hong, Yi; Liu, YaJie; Wang, ZiZhen; Liu, YaJie

    2014-10-01

    Andrographolide sulfonic acid sodium salt (ASS) was synthesized to increase the the solubility of Andrographolide in aqueous solution. We have studied its pharmacological effect of antibiosis, anti-inflammatory and immunoregulation. Cylinder-plate method was used to study ASS׳s in vitro antibacterial activity, and its protection for mice infected by Staphylococcus aureus and Shigella dysenteriae. Various inflammation models, including the auricular edema induced by xylene in mice, CMC-Na induced air pounch model and the paw edema induced by albumen in rats were used to explore the characteristic of ASS׳s anti-inflammation effect. We built up the immune model by injecting chicken red cells in enter celiac of mice and study the effect of ASS on immunoregulation, taking andrographolide as the positive control. bacteriostasis in vivo and in vitro experiments show that ASS has a weak antibacterial effect and no bactericidal effect, but can reduce the mice mortality of Staphylococcus aureus infected. Anti-inflammatory experiments show that ASS can reduce the mouse ear swelling induced by xylene and rat paw swelling induced by egg albumin, and lessen leukocytes in air bag caused by CMCNa, and lower IL1 not ably in rat serum. Immune tests indicate that ASS can get spleen and thymus gain weight and increase rate of abdominal macrophage phagocytosis of mice. The result of bacteriostasis shows that ASS has weak in vitro antibacterial effect. ASS shows significant effects of anti-inflammation and improving immunity, thus enables the mice against bacteria better.

  16. Antiviral Activity of Total Flavonoid Extracts from Selaginella moellendorffii Hieron against Coxsackie Virus B3 In Vitro and In Vivo

    PubMed Central

    Yin, Dan; Li, Juan; Lei, Xiang; Liu, Yimei; Yang, Zhanqiu; Chen, Keli

    2014-01-01

    The antiviral activity of total flavonoid extracts from Selaginella moellendorffii Hieron and its main constituents amentoflavone were investigated against coxsackie virus B3 (CVB3). When added during or after viral infection, the extracts and amentoflavone prevented the cytopathic effect (CPE) of CVB3, as demonstrated in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay, with a 50% inhibitory concentration (IC50) from 19 ± 1.6 to 41 ± 1.2 μg/mL and 25 ± 1.2 to 52 ± 0.8 μg/mL, respectively. KM mice were used as animal models to test the extracts' activity in vivo. Oral administration of the total flavonoid extracts at 300 mg/kg/day significantly reduced mean viral titers in the heart and kidneys as well as mortality after infection for 15 days. The experimental results demonstrate that in vitro and in vivo the model mice infected with CVB3 can be effectively treated by the total flavonoid extracts from Selaginella moellendorffii Hieron. PMID:24963331

  17. Analysis of active site residues of the antiviral protein from summer leaves from Phytolacca americana by site-directed mutagenesis.

    PubMed

    Poyet, J L; Hoeveler, A; Jongeneel, C V

    1998-12-30

    The summer leaf isoform of the pokeweed (Phytolacca americana) antiviral protein, PAP II, was produced in high yields from inclusion bodies in recombinant E. coli. On the basis of its sequence similarity with the spring leaf isoform (PAP I) and with the A chain of ricin, a three-dimensional model of the protein was constructed as an aid in the design of active site mutants. PAP II variants mutated in residues Asp 88 (D88N), Tyr 117 (Y117S), Glu 172 (E172Q), Arg 175 (R175H) and a combination of Asp 88 and Arg 175 (D88N/R175H) were produced in E. coli and assayed for their ability to inhibit protein synthesis in a rabbit reticulocyte lysate. All of these mutations had effects deleterious to the enzymatic activity of PAP II. The results were interpreted in the light of three reaction mechanisms proposed for ribosome-inactivating proteins (RIPs). We conclude that none of the proposed mechanisms is entirely consistent with the data presented here.

  18. Antiviral activity and mode of action of extracts from neem seed kernel against duck plague virus in vitro1.

    PubMed

    Xu, J; Song, X; Yin, Z Q; Cheng, A C; Jia, R Y; Deng, Y X; Ye, K C; Shi, C F; Lv, C; Zhang, W

    2012-11-01

    Four fractions obtained from alcohol extracts of neem (Azadirachta indica) seed kernel by column chromatography were investigated for antivirus activity against the duck plague virus (DPV) in vitro. Duck embryo fibroblasts (DEF) infected with DPV were treated with the neem seed kernel extracts, and the effect of antivirus was judged by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide colorimetric method assay and direct immunofluorescence assay. The mode of action was tested by the plaque reduction assay. The results showed that fractions 1 to 3 were inactive. The median inhibitory concentration (IC(50)) of fraction 4 was 10.9 μg/mL and inhibited the virus protein expression in the direct immunofluorescence assay. In the plaque reduction assay, fraction 4 could significantly reduce the number of plaques compared with the negative control (P < 0.01) in all modes of action. This study indicated that the fourth fraction obtained from neem seed kernel could improve the viability of infected cells, and reduce the cytopathic effects caused by DPV and the amount of the virus protein expressed in virus-infected cells. The antiviral activity works in the whole process of virus infecting the normal cells. PMID:23091135

  19. In Vitro Virology Profile of Tenofovir Alafenamide, a Novel Oral Prodrug of Tenofovir with Improved Antiviral Activity Compared to That of Tenofovir Disoproxil Fumarate.

    PubMed

    Callebaut, Christian; Stepan, George; Tian, Yang; Miller, Michael D

    2015-10-01

    Tenofovir alafenamide (TAF) is an investigational oral prodrug of the HIV-1 nucleotide reverse transcriptase inhibitor tenofovir (TFV). Tenofovir disoproxil fumarate (TDF) is another TFV prodrug, widely used for the treatment of HIV-1 infection. TAF is converted mostly intracellularly to TFV and, in comparison to TDF, achieves higher tenofovir diphosphate (TFV-DP) levels in peripheral blood mononuclear cells. As a result, TAF has demonstrated potent anti-HIV-1 activity at lower doses than TDF in monotherapy studies. Here, the in vitro virology profile of TAF was evaluated and compared to that of TDF. TAF displayed potent antiviral activity against all HIV-1 groups/subtypes, as well as HIV-2. TAF exhibited minimal changes in the drug concentration needed to inhibit 50% of viral spread (EC50) upon removal of the prodrug, similar to TDF, demonstrating intracellular antiviral persistence. While TAF and TDF exhibited comparable potencies in the absence of serum pretreatment, TAF maintained activity in the presence of human serum, whereas TDF activity was significantly reduced. This result demonstrates TAF's improved plasma stability over TDF, which is driven by the different metabolic pathways of the two prodrugs and is key to TAF's improved in vivo antiviral activity. The activity of TAF is specific for HIV, as TAF lacked activity against a large panel of human viruses, with the exception of herpes simplex virus 2, where weak TAF antiviral activity was observed, as previously observed with TFV. Finally, in vitro combination studies with antiretroviral drugs from different classes showed additive to synergistic interactions with TAF, consistent with ongoing clinical studies with TAF in fixed-dose combinations with multiple other antiretroviral drugs for the treatment of HIV.

  20. Synthesis, cytotoxicity and antiviral activities of new neolignans related to honokiol and magnolol

    PubMed Central

    Amblard, Franck; Govindarajan, Baskaran; Lefkove, Benjamin; Rapp, Kimberly L.; Detorio, Mervi; Arbiser, Jack L.; Schinazi, Raymond F.

    2007-01-01

    A series of new bisphenol derivatives bearing allylic moieties were synthesized as potential analogs of honokiol and/or magnolol. Certain compounds exhibited specific anti-proliferation activity against SVR cells and moderate anti-HIV-1 activity in primary human lymphocytes. Compound 5h was the most potent compound and its anti-tumor activity was evaluated in vivo. PMID:17587572

  1. Enzymatically active 2',5'-oligoadenylate synthetases are widely distributed among Metazoa, including protostome lineage.

    PubMed

    Päri, Mailis; Kuusksalu, Anne; Lopp, Annika; Kjaer, Karina Hansen; Justesen, Just; Kelve, Merike

    2014-02-01

    2',5'-Oligoadenylate synthetases (OASs) belong to the nucleotidyl transferase family together with poly(A) polymerases, CCA-adding enzymes and the recently discovered cyclic-GMP-AMP synthase (cGAS). Mammalian OASs have been thoroughly characterized as components of the interferon-induced antiviral system. The OAS activity and the respective genes were also discovered in marine sponges where the interferon system is absent. In this study the recombinant OASs from several multicellular animals and their closest unicellular relative, a choanoflagellate, were expressed in a bacterial expression system and their enzymatic activities were examined. We demonstrated 2-5A synthesizing activities of OASs from the marine sponge Tedania ignis, a representative of the phylogenetically oldest metazoan phylum (Porifera), from an invertebrate of the protostome lineage, the mollusk Mytilus californianus (Mollusca), and from a vertebrate species, a cartilaginous fish Leucoraja erinacea (Chordata). However, the expressed proteins from an amphibian, the salamander Ambystoma mexicanum (Chordata), and from a protozoan, the marine choanoflagellate Monosiga brevicollis (Choanozoa), did not show 2-5A synthesizing activity. Differently from other studied OASs, OAS from the marine sponge T. ignis was able to catalyze the formation of oligomers having both 2',5'- and 3',5'-phosphodiester linkages. Our data suggest that OASs from sponges and evolutionarily higher animals have similar activation mechanisms which still include different affinities and possibly different structural requirements for the activating RNAs. Considering their 2'- and 3'-specificities, sponge OASs could represent a link between evolutionarily earlier nucleotidyl transferases and 2'-specific OASs from higher animals.

  2. Enzymatically active 2',5'-oligoadenylate synthetases are widely distributed among Metazoa, including protostome lineage.

    PubMed

    Päri, Mailis; Kuusksalu, Anne; Lopp, Annika; Kjaer, Karina Hansen; Justesen, Just; Kelve, Merike

    2014-02-01

    2',5'-Oligoadenylate synthetases (OASs) belong to the nucleotidyl transferase family together with poly(A) polymerases, CCA-adding enzymes and the recently discovered cyclic-GMP-AMP synthase (cGAS). Mammalian OASs have been thoroughly characterized as components of the interferon-induced antiviral system. The OAS activity and the respective genes were also discovered in marine sponges where the interferon system is absent. In this study the recombinant OASs from several multicellular animals and their closest unicellular relative, a choanoflagellate, were expressed in a bacterial expression system and their enzymatic activities were examined. We demonstrated 2-5A synthesizing activities of OASs from the marine sponge Tedania ignis, a representative of the phylogenetically oldest metazoan phylum (Porifera), from an invertebrate of the protostome lineage, the mollusk Mytilus californianus (Mollusca), and from a vertebrate species, a cartilaginous fish Leucoraja erinacea (Chordata). However, the expressed proteins from an amphibian, the salamander Ambystoma mexicanum (Chordata), and from a protozoan, the marine choanoflagellate Monosiga brevicollis (Choanozoa), did not show 2-5A synthesizing activity. Differently from other studied OASs, OAS from the marine sponge T. ignis was able to catalyze the formation of oligomers having both 2',5'- and 3',5'-phosphodiester linkages. Our data suggest that OASs from sponges and evolutionarily higher animals have similar activation mechanisms which still include different affinities and possibly different structural requirements for the activating RNAs. Considering their 2'- and 3'-specificities, sponge OASs could represent a link between evolutionarily earlier nucleotidyl transferases and 2'-specific OASs from higher animals. PMID:24184688

  3. Everglades National Park Including Biscayne National Park. Activity Book.

    ERIC Educational Resources Information Center

    Ruehrwein, Dick

    Intended to help elementary school children learn about the resources of the Everglades and Biscayne National Parks, this activity book includes information, puzzles, games, and quizzes. The booklet deals with concepts related to: (1) the seasons; (2) fire ecology; (3) water; (4) fish; (5) mammals; (6) mosquitos; (7) birds; (8) venomous snakes;…

  4. Metabolic Variations, Antioxidant Potential, and Antiviral Activity of Different Extracts of Eugenia singampattiana (an Endangered Medicinal Plant Used by Kani Tribals, Tamil Nadu, India) Leaf

    PubMed Central

    John, K. M. Maria; Jeeva, Subbiah; Suresh, Murugesan; Enkhtaivan, Gansukh; Kim, Doo Hwan

    2014-01-01

    Eugenia singampattiana is an endangered medicinal plant used by the Kani tribals of South India. The plant had been studied for its antioxidant, antitumor, antihyperlipidemic, and antidiabetic activity. But its primary and secondary metabolites profile and its antiviral properties were unknown, and so this study sought to identify this aspect in Eugenia singampattiana plant through different extraction methods along with their activities against porcine reproductive and respiratory syndrome virus (PRRSV). The GC-MS analysis revealed that 11 primary metabolites showed significant variations among the extracts. Except for fructose all other metabolites were high with water extract. Among 12 secondary metabolites showing variations, the levels of 4-hydroxy benzoic acid, caffeic acid, rutin, ferulic acid, coumaric acid, epigallocatechin gallate, quercetin, myricetin, and kaempferol were high with methanol extract. Since the flavonoid content of methanol extracts was high, the antioxidant potential, such as ABTS, and phosphomolybdenum activity increased. The plants antiviral activity against PRRSV was for the first time confirmed and the results revealed that methanol 25 µg and 75 to 100 µg in case of water extracts revealed antiviral activity. PMID:25133179

  5. Metabolic variations, antioxidant potential, and antiviral activity of different extracts of Eugenia singampattiana (an endangered medicinal plant used by Kani tribals, Tamil Nadu, India) leaf.

    PubMed

    John, K M Maria; Ayyanar, Muniappan; Jeeva, Subbiah; Suresh, Murugesan; Enkhtaivan, Gansukh; Kim, Doo Hwan

    2014-01-01

    Eugenia singampattiana is an endangered medicinal plant used by the Kani tribals of South India. The plant had been studied for its antioxidant, antitumor, antihyperlipidemic, and antidiabetic activity. But its primary and secondary metabolites profile and its antiviral properties were unknown, and so this study sought to identify this aspect in Eugenia singampattiana plant through different extraction methods along with their activities against porcine reproductive and respiratory syndrome virus (PRRSV). The GC-MS analysis revealed that 11 primary metabolites showed significant variations among the extracts. Except for fructose all other metabolites were high with water extract. Among 12 secondary metabolites showing variations, the levels of 4-hydroxy benzoic acid, caffeic acid, rutin, ferulic acid, coumaric acid, epigallocatechin gallate, quercetin, myricetin, and kaempferol were high with methanol extract. Since the flavonoid content of methanol extracts was high, the antioxidant potential, such as ABTS, and phosphomolybdenum activity increased. The plants antiviral activity against PRRSV was for the first time confirmed and the results revealed that methanol 25 µg and 75 to 100 µg in case of water extracts revealed antiviral activity. PMID:25133179

  6. MEK/ERK activation plays a decisive role in yellow fever virus replication: implication as an antiviral therapeutic target.

    PubMed

    Albarnaz, Jonas D; De Oliveira, Leonardo C; Torres, Alice A; Palhares, Rafael M; Casteluber, Marisa C; Rodrigues, Claudiney M; Cardozo, Pablo L; De Souza, Aryádina M R; Pacca, Carolina C; Ferreira, Paulo C P; Kroon, Erna G; Nogueira, Maurício L; Bonjardim, Cláudio A

    2014-11-01

    Exploiting the inhibition of host signaling pathways aiming for discovery of potential antiflaviviral compounds is clearly a beneficial strategy for the control of life-threatening diseases caused by flaviviruses. Here we describe the antiviral activity of the MEK1/2 inhibitor U0126 against Yellow fever virus 17D vaccine strain (YFV-17D). Infection of VERO cells with YFV-17D stimulates ERK1/2 phosphorylation early during infection. Pharmacological inhibition of MEK1/2 through U0126 treatment of VERO cells blockades not only the YFV-stimulated ERK1/2 phosphorylation, but also inhibits YFV replication by ∼99%. U0126 was also effective against dengue virus (DENV-2 and -3) and Saint-Louis encephalitis virus (SLEV). Levels of NS4AB, as detected by immunofluorescence, are diminished upon treatment with the inhibitor, as well as the characteristic endoplasmic reticulum membrane invagination stimulated during the infection. Though not protective, treatment of YFV-infected, adult BALB/c mice with U0126 resulted in significant reduction of virus titers in brains. Collectively, our data suggest the potential targeting of the MEK1/2 kinase as a therapeutic tool against diseases caused by flaviviruses such as yellow fever, adverse events associated with yellow fever vaccination and dengue.

  7. Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins.

    PubMed

    Zhao, Chen; Sridharan, Haripriya; Chen, Ran; Baker, Darren P; Wang, Shanshan; Krug, Robert M

    2016-01-01

    The ubiquitin-like protein ISG15 and its conjugation to proteins (ISGylation) are strongly induced by type I interferon. Influenza B virus encodes non-structural protein 1 (NS1B) that binds human ISG15 and provides an appropriate model for determining how ISGylation affects virus replication in human cells. Here using a recombinant virus encoding a NS1B protein defective in ISG15 binding, we show that NS1B counteracts ISGylation-mediated antiviral activity by binding and sequestering ISGylated viral proteins, primarily ISGylated viral nucleoprotein (NP), in infected cells. ISGylated NP that is not sequestered by mutant NS1B acts as a dominant-negative inhibitor of oligomerization of the more abundant unconjugated NP. Consequently formation of viral ribonucleoproteins that catalyse viral RNA synthesis is inhibited, causing decreased viral protein synthesis and virus replication. We verify that ISGylated NP is largely responsible for inhibition of viral RNA synthesis by generating recombinant viruses that lack known ISGylation sites in NP. PMID:27587337

  8. Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins.

    PubMed

    Zhao, Chen; Sridharan, Haripriya; Chen, Ran; Baker, Darren P; Wang, Shanshan; Krug, Robert M

    2016-01-01

    The ubiquitin-like protein ISG15 and its conjugation to proteins (ISGylation) are strongly induced by type I interferon. Influenza B virus encodes non-structural protein 1 (NS1B) that binds human ISG15 and provides an appropriate model for determining how ISGylation affects virus replication in human cells. Here using a recombinant virus encoding a NS1B protein defective in ISG15 binding, we show that NS1B counteracts ISGylation-mediated antiviral activity by binding and sequestering ISGylated viral proteins, primarily ISGylated viral nucleoprotein (NP), in infected cells. ISGylated NP that is not sequestered by mutant NS1B acts as a dominant-negative inhibitor of oligomerization of the more abundant unconjugated NP. Consequently formation of viral ribonucleoproteins that catalyse viral RNA synthesis is inhibited, causing decreased viral protein synthesis and virus replication. We verify that ISGylated NP is largely responsible for inhibition of viral RNA synthesis by generating recombinant viruses that lack known ISGylation sites in NP.

  9. MEK/ERK activation plays a decisive role in yellow fever virus replication: implication as an antiviral therapeutic target.

    PubMed

    Albarnaz, Jonas D; De Oliveira, Leonardo C; Torres, Alice A; Palhares, Rafael M; Casteluber, Marisa C; Rodrigues, Claudiney M; Cardozo, Pablo L; De Souza, Aryádina M R; Pacca, Carolina C; Ferreira, Paulo C P; Kroon, Erna G; Nogueira, Maurício L; Bonjardim, Cláudio A

    2014-11-01

    Exploiting the inhibition of host signaling pathways aiming for discovery of potential antiflaviviral compounds is clearly a beneficial strategy for the control of life-threatening diseases caused by flaviviruses. Here we describe the antiviral activity of the MEK1/2 inhibitor U0126 against Yellow fever virus 17D vaccine strain (YFV-17D). Infection of VERO cells with YFV-17D stimulates ERK1/2 phosphorylation early during infection. Pharmacological inhibition of MEK1/2 through U0126 treatment of VERO cells blockades not only the YFV-stimulated ERK1/2 phosphorylation, but also inhibits YFV replication by ∼99%. U0126 was also effective against dengue virus (DENV-2 and -3) and Saint-Louis encephalitis virus (SLEV). Levels of NS4AB, as detected by immunofluorescence, are diminished upon treatment with the inhibitor, as well as the characteristic endoplasmic reticulum membrane invagination stimulated during the infection. Though not protective, treatment of YFV-infected, adult BALB/c mice with U0126 resulted in significant reduction of virus titers in brains. Collectively, our data suggest the potential targeting of the MEK1/2 kinase as a therapeutic tool against diseases caused by flaviviruses such as yellow fever, adverse events associated with yellow fever vaccination and dengue. PMID:25241249

  10. Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins

    PubMed Central

    Zhao, Chen; Sridharan, Haripriya; Chen, Ran; Baker, Darren P.; Wang, Shanshan; Krug, Robert M.

    2016-01-01

    The ubiquitin-like protein ISG15 and its conjugation to proteins (ISGylation) are strongly induced by type I interferon. Influenza B virus encodes non-structural protein 1 (NS1B) that binds human ISG15 and provides an appropriate model for determining how ISGylation affects virus replication in human cells. Here using a recombinant virus encoding a NS1B protein defective in ISG15 binding, we show that NS1B counteracts ISGylation-mediated antiviral activity by binding and sequestering ISGylated viral proteins, primarily ISGylated viral nucleoprotein (NP), in infected cells. ISGylated NP that is not sequestered by mutant NS1B acts as a dominant-negative inhibitor of oligomerization of the more abundant unconjugated NP. Consequently formation of viral ribonucleoproteins that catalyse viral RNA synthesis is inhibited, causing decreased viral protein synthesis and virus replication. We verify that ISGylated NP is largely responsible for inhibition of viral RNA synthesis by generating recombinant viruses that lack known ISGylation sites in NP. PMID:27587337

  11. Screening of Dengue Virus Antiviral Activity of Marine Seaweeds by an In Situ Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Koishi, Andrea Cristine; Zanello, Paula Rodrigues; Bianco, Éverson Miguel; Bordignon, Juliano; Nunes Duarte dos Santos, Claudia

    2012-01-01

    Dengue is a significant public health problem worldwide. Despite the important social and clinical impact, there is no vaccine or specific antiviral therapy for prevention and treatment of dengue virus (DENV) infection. Considering the above, drug discovery research for dengue is of utmost importance; in addition natural marine products provide diverse and novel chemical structures with potent biological activities that must be evaluated. In this study we propose a target-free approach for dengue drug discovery based on a novel, rapid, and economic in situ enzyme-linked immunosorbent assay and the screening of a panel of marine seaweed extracts. The in situ ELISA was standardized and validated for Huh7.5 cell line infected with all four serotypes of DENV, among them clinical isolates and a laboratory strain. Statistical analysis showed an average S/B of 7.2 and Z-factor of 0.62, demonstrating assay consistency and reliability. A panel of fifteen seaweed extracts was then screened at the maximum non-toxic dose previously determined by the MTT and Neutral Red cytotoxic assays. Eight seaweed extracts were able to reduce DENV infection of at least one serotype tested. Four extracts (Phaeophyta: Canistrocarpus cervicornis, Padina gymnospora; Rhodophyta: Palisada perforate; Chlorophyta: Caulerpa racemosa) were chosen for further evaluation, and time of addition studies point that they might act at an early stage of the viral infection cycle, such as binding or internalization. PMID:23227238

  12. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation.

    PubMed

    Loh, Liyen; Wang, Zhongfang; Sant, Sneha; Koutsakos, Marios; Jegaskanda, Sinthujan; Corbett, Alexandra J; Liu, Ligong; Fairlie, David P; Crowe, Jane; Rossjohn, Jamie; Xu, Jianqing; Doherty, Peter C; McCluskey, James; Kedzierska, Katherine

    2016-09-01

    Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes known to elicit potent immunity to a broad range of bacteria, mainly via the rapid production of inflammatory cytokines. Whether MAIT cells contribute to antiviral immunity is less clear. Here we asked whether MAIT cells produce cytokines/chemokines during severe human influenza virus infection. Our analysis in patients hospitalized with avian H7N9 influenza pneumonia showed that individuals who recovered had higher numbers of CD161(+)Vα7.2(+) MAIT cells in peripheral blood compared with those who succumbed, suggesting a possible protective role for this lymphocyte population. To understand the mechanism underlying MAIT cell activation during influenza, we cocultured influenza A virus (IAV)-infected human lung epithelial cells (A549) and human peripheral blood mononuclear cells in vitro, then assayed them by intracellular cytokine staining. Comparison of influenza-induced MAIT cell activation with the profile for natural killer cells (CD56(+)CD3(-)) showed robust up-regulation of IFNγ for both cell populations and granzyme B in MAIT cells, although the individual responses varied among healthy donors. However, in contrast to the requirement for cell-associated factors to promote NK cell activation, the induction of MAIT cell cytokine production was dependent on IL-18 (but not IL-12) production by IAV-exposed CD14(+) monocytes. Overall, this evidence for IAV activation via an indirect, IL-18-dependent mechanism indicates that MAIT cells are protective in influenza, and also possibly in any human disease process in which inflammation and IL-18 production occur.

  13. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18–dependent activation

    PubMed Central

    Loh, Liyen; Wang, Zhongfang; Sant, Sneha; Koutsakos, Marios; Jegaskanda, Sinthujan; Liu, Ligong; Fairlie, David P.; Crowe, Jane; Rossjohn, Jamie; Xu, Jianqing; Doherty, Peter C.; Kedzierska, Katherine

    2016-01-01

    Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes known to elicit potent immunity to a broad range of bacteria, mainly via the rapid production of inflammatory cytokines. Whether MAIT cells contribute to antiviral immunity is less clear. Here we asked whether MAIT cells produce cytokines/chemokines during severe human influenza virus infection. Our analysis in patients hospitalized with avian H7N9 influenza pneumonia showed that individuals who recovered had higher numbers of CD161+Vα7.2+ MAIT cells in peripheral blood compared with those who succumbed, suggesting a possible protective role for this lymphocyte population. To understand the mechanism underlying MAIT cell activation during influenza, we cocultured influenza A virus (IAV)-infected human lung epithelial cells (A549) and human peripheral blood mononuclear cells in vitro, then assayed them by intracellular cytokine staining. Comparison of influenza-induced MAIT cell activation with the profile for natural killer cells (CD56+CD3−) showed robust up-regulation of IFNγ for both cell populations and granzyme B in MAIT cells, although the individual responses varied among healthy donors. However, in contrast to the requirement for cell-associated factors to promote NK cell activation, the induction of MAIT cell cytokine production was dependent on IL-18 (but not IL-12) production by IAV-exposed CD14+ monocytes. Overall, this evidence for IAV activation via an indirect, IL-18–dependent mechanism indicates that MAIT cells are protective in influenza, and also possibly in any human disease process in which inflammation and IL-18 production occur. PMID:27543331

  14. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation.

    PubMed

    Loh, Liyen; Wang, Zhongfang; Sant, Sneha; Koutsakos, Marios; Jegaskanda, Sinthujan; Corbett, Alexandra J; Liu, Ligong; Fairlie, David P; Crowe, Jane; Rossjohn, Jamie; Xu, Jianqing; Doherty, Peter C; McCluskey, James; Kedzierska, Katherine

    2016-09-01

    Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes known to elicit potent immunity to a broad range of bacteria, mainly via the rapid production of inflammatory cytokines. Whether MAIT cells contribute to antiviral immunity is less clear. Here we asked whether MAIT cells produce cytokines/chemokines during severe human influenza virus infection. Our analysis in patients hospitalized with avian H7N9 influenza pneumonia showed that individuals who recovered had higher numbers of CD161(+)Vα7.2(+) MAIT cells in peripheral blood compared with those who succumbed, suggesting a possible protective role for this lymphocyte population. To understand the mechanism underlying MAIT cell activation during influenza, we cocultured influenza A virus (IAV)-infected human lung epithelial cells (A549) and human peripheral blood mononuclear cells in vitro, then assayed them by intracellular cytokine staining. Comparison of influenza-induced MAIT cell activation with the profile for natural killer cells (CD56(+)CD3(-)) showed robust up-regulation of IFNγ for both cell populations and granzyme B in MAIT cells, although the individual responses varied among healthy donors. However, in contrast to the requirement for cell-associated factors to promote NK cell activation, the induction of MAIT cell cytokine production was dependent on IL-18 (but not IL-12) production by IAV-exposed CD14(+) monocytes. Overall, this evidence for IAV activation via an indirect, IL-18-dependent mechanism indicates that MAIT cells are protective in influenza, and also possibly in any human disease process in which inflammation and IL-18 production occur. PMID:27543331

  15. Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections.

    PubMed

    Fechner, Henry; Pinkert, Sandra; Geisler, Anja; Poller, Wolfgang; Kurreck, Jens

    2011-10-11

    Subtype B coxsackieviruses (CVB) represent the most commonly identified infectious agents associated with acute and chronic myocarditis, with CVB3 being the most common variant. Damage to the heart is induced both directly by virally mediated cell destruction and indirectly due to the immune and autoimmune processes reacting to virus infection. This review addresses antiviral therapeutics for cardiac coxsackievirus infections discovered over the last 25 years. One group represents pharmacologically active low molecular weight substances that inhibit virus uptake by binding to the virus capsid (e.g., pleconaril) or inactivate viral proteins (e.g., NO-metoprolol and ribavirin) or inhibit cellular proteins which are essential for viral replication (e.g., ubiquitination inhibitors). A second important group of substances are interferons. They have antiviral but also immunomodulating activities. The third and most recently discovered group includes biological and cellular therapeutics. Soluble receptor analogues (e.g., sCAR-Fc) bind to the virus capsid and block virus uptake. Small interfering RNAs, short hairpin RNAs and antisense oligonucleotides bind to and led to degradation of the viral RNA genome or cellular RNAs, thereby preventing their translation and viral replication. Most recently mesenchymal stem cell transplantation has been shown to possess antiviral activity in CVB3 infections. Taken together, a number of antiviral therapeutics has been developed for the treatment of myocardial CVB infection in recent years. In addition to low molecular weight inhibitors, biological therapeutics have become promising anti-viral agents.

  16. Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections.

    PubMed

    Fechner, Henry; Pinkert, Sandra; Geisler, Anja; Poller, Wolfgang; Kurreck, Jens

    2011-01-01

    Subtype B coxsackieviruses (CVB) represent the most commonly identified infectious agents associated with acute and chronic myocarditis, with CVB3 being the most common variant. Damage to the heart is induced both directly by virally mediated cell destruction and indirectly due to the immune and autoimmune processes reacting to virus infection. This review addresses antiviral therapeutics for cardiac coxsackievirus infections discovered over the last 25 years. One group represents pharmacologically active low molecular weight substances that inhibit virus uptake by binding to the virus capsid (e.g., pleconaril) or inactivate viral proteins (e.g., NO-metoprolol and ribavirin) or inhibit cellular proteins which are essential for viral replication (e.g., ubiquitination inhibitors). A second important group of substances are interferons. They have antiviral but also immunomodulating activities. The third and most recently discovered group includes biological and cellular therapeutics. Soluble receptor analogues (e.g., sCAR-Fc) bind to the virus capsid and block virus uptake. Small interfering RNAs, short hairpin RNAs and antisense oligonucleotides bind to and led to degradation of the viral RNA genome or cellular RNAs, thereby preventing their translation and viral replication. Most recently mesenchymal stem cell transplantation has been shown to possess antiviral activity in CVB3 infections. Taken together, a number of antiviral therapeutics has been developed for the treatment of myocardial CVB infection in recent years. In addition to low molecular weight inhibitors, biological therapeutics have become promising anti-viral agents. PMID:21989310

  17. SUMO modification of TBK1 at the adaptor-binding C-terminal coiled-coil domain contributes to its antiviral activity.

    PubMed

    Saul, Vera V; Niedenthal, Rainer; Pich, Andreas; Weber, Friedemann; Schmitz, M Lienhard

    2015-01-01

    The non-canonical IKK kinase TBK1 serves as an important signal transmitter of the antiviral interferon response, but is also involved in the regulation of further processes such as autophagy. The activity of TBK1 is regulated by posttranslational modifications comprising phosphorylation and ubiquitination. This study identifies SUMOylation as a novel posttranslational TBK1 modification. TBK1 kinase activity is required to allow the attachment of SUMO1 or SUMO2/3 proteins. Since TBK1 does not bind to the E2 enzyme Ubc9, this modification most likely proceeds via trans-SUMOylation. Mass spectrometry allowed identifying K694 as the SUMO acceptor site, a residue located in the C-terminal coiled-coil domain which is exclusively responsible for the association with the adaptor proteins NAP1, Sintbad and TANK. SUMO modification at K694 contributes to the antiviral function of TBK1 and accordingly the viral protein Gam1 antagonizes this posttranslational modification. PMID:25409927

  18. Second generation bisheteroarylpiperazine (BHAP) HIV-1 reverse transcriptasae inhibitors: Enhancement of antiviral activity and aqueous solubility via 5- and 6-substitution of the indole ring

    SciTech Connect

    Poel, T.; Thomas, R.C.; Romero, D.L.; Hosley, M.J.; Morge, R.A.; Biles, C.; Reusser, F.; Althaus, I.W.; Schinzer, W.C.; Platzer, D.J.

    1993-12-31

    U-87201E, a potent HIV-1 reverse transcriptase inhibitor (RTI) discovered at Upjohn, is currently in Phase II clinical trials. Additional structure-activity studies have identified second-generation BHAPs with enhanced antiviral activity and improved pharmaceutical properties, notably increased aqueous solubility. Capitalizing on initial SAR studies which demonstrated a tolerance for substitution in the indole ring, a series of BHAPs bearing 5- and 6-substituted indoles was evaluated. Substituents such as ethers, sulfonamides, ureas, and sulfamides containing water-solubilizing groups such as polyethers or basic amines provided highly potent BHAPs with greatly enhanced solubility, such as U-93923. The synthesis, antiviral evaluation and solubility properties of these potent HIV-1 RTIs will be detailed.

  19. In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens.

    PubMed

    Sökmen, Münevver; Serkedjieva, Julia; Daferera, Dimitra; Gulluce, Medine; Polissiou, Moschos; Tepe, Bektas; Akpulat, H Askin; Sahin, Fikrettin; Sokmen, Atalay

    2004-06-01

    The essential oil and various extracts obtained from Origanum acutidens and methanol extracts (MeOH) from callus cultures have been evaluated for their antioxidative, antimicrobial, and antiviral properties. The essential oil exhibited strong antimicrobial activity with a significant inhibitory effect against 27 (77%) of the 35 bacteria, 12 (67%) of the 18 fungi, and a yeast tested and moderate antioxidative capacity in DPPH and beta-carotene/linoleic acid assays. GC and GC-MS analyses of the oil resulted in the identification of 38 constituents, carvacrol being the main component. The MeOH extracts obtained from herbal parts showed better antioxidative effect than that of butylated hydroxytoluene (BHT), whereas callus cultures also exhibited interesting antioxidative patterns. Concerning antiviral activity, none of the extracts inhibited the reproduction of influenza A/Aichi virus in MDCK cells. The MeOH extracts from herbal parts inhibited the reproduction of HSV-1, and also callus cultures exerted slight antiherpetic effect. PMID:15161188

  20. Study on the antiviral activity of San Huang Yi Gan Capsule against hepatitis B virus with seropharmacological method

    PubMed Central

    2013-01-01

    Background Seropharmacology arising recently is a novel method of in vitro pharmacological study on Chinese herb using drug-containing animal serum. As seropharmacology possesses the advantages of experiments in vitro and in vivo, it is increasingly applied in pharmacological research on Chinese medicine. However, some issues of seropharmacology remain controversial and need to be clearly defined. San Huang Yi Gan Capsule (SHYGC) is a Chinese herbal formula with antiviral property against hepatitis B virus (HBV), but little is known about the mechanism underlying its anti-HBV activity. The aim of the present study was to elucidate the action mechanism of SHYGC using seropharmacological method and systematically address the methodology of preparing drug-containing serum. Methods New Zealand rabbits were orally administrated SHYGC with various regimens, followed by preparation of SHYGC-containing rabbit sera with a variety of methods. After HBV-producing HepG2 2.2.15 cells were treated with SHYGC-containing sera or entecavir for 9 days, the levels of hepatitis B surface antigen (HBsAg) and HBV DNA and the activity of DNA Polymerase were determined in HepG2 2.2.15 cells-conditioned media. Results An optimally standardized method of preparing drug-containing serum was raised for seropharmacology, with which SHYGC was demonstrated to suppress HBsAg expression, HBV DNA replication and DNA Polymerase activity in a dose-dependent fashion. Conclusions This seropharmacological study shows SHYGC is a potentially powerful anti-HBV agent. Additionally, seropharmacology is a promising pharmacological method with a broad range of advantages, and it can be widely used in biomedical research, if combined with pharmacokinetics. PMID:24073917

  1. Identification of an anti-lipopolysacchride factor possessing both antiviral and antibacterial activity from the red claw crayfish Cherax quadricarinatus.

    PubMed

    Lin, Feng-Yu; Gao, Yan; Wang, Hao; Zhang, Qiu-Xia; Zeng, Chang-Lin; Liu, Hai-Peng

    2016-10-01

    It is well-known that anti-lipopolysacchride factors (ALFs) are involved in the recognition and elimination of invading pathogens. In this study, the full-length ALF cDNA sequence of the red claw crayfish Cherax quadricarinatus (termed CqALF) was cloned from a suppression subtractive hybridization library constructed using red claw crayfish hematopoietic tissue cell (Hpt cell) cultures following challenge with white spot syndrome virus (WSSV). The full-length cDNA sequence of CqALF was 863 bp, and the open reading frame encoded 123 amino acids with a signal peptide in the N-terminus and a conserved LPS-binding domain. Unlike most ALFs, which are highly expressed in haemocytes, high expression levels of CqALF were detected in epithelium, the stomach and eyestalks, while lower expression was detected in Hpt, nerves, the heart, muscle tissue, gonads, haemocytes, intestines, gills and the hepatopancreas. To further explore the biological activities of CqALF, mature recombinant CqALF protein (rCqALF) was expressed and purified using a eukaryotic expression system, and an antimicrobial activity test was carried out. rCqALF clearly exerted antiviral activity, as evidenced by the severe disruption of the envelope of intact WSSV virions following co-incubation of virions with rCqALF. Additionally, pre-incubation of WSSV with rCqALF resulted in both a significant reduction in WSSV replication in red claw crayfish Hpt cell cultures and an increased survival rate among animals. Furthermore, rCqALF was effective against both Gram-negative bacteria and Gram-positive bacteria, particularly Shigella flexneri and Staphylococcus aureus. A membrane integrity assay suggested that rCqALF was unlikely to disrupt bacterial membrane integrity compared to cecropin P1. Taken together, these data suggest that CqALF may play an important role in immune defence in the crustacean C. quadricarinatus. PMID:27544268

  2. Antiviral activity of a Rac GEF inhibitor characterized with a sensitive HIV/SIV fusion assay

    SciTech Connect

    Pontow, Suzanne; Harmon, Brooke; Campbell, Nancy; Ratner, Lee

    2007-11-10

    A virus-dependent fusion assay was utilized to examine the activity of a panel of HIV-1, -2, and SIV isolates of distinct coreceptor phenotypes. This assay allowed identification of entry inhibitors, and characterization of an antagonist of a Rac guanine nucleotide exchange factor, as an inhibitor of HIV-mediated fusion.

  3. Novel antiviral characteristics of nanosized copper(I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus.

    PubMed

    Fujimori, Yoshie; Sato, Tetsuya; Hayata, Taishi; Nagao, Tomokazu; Nakayama, Mikio; Nakayama, Tsuruo; Sugamata, Ryuichi; Suzuki, Kazuo

    2012-02-01

    We investigated the antiviral activity of nanosized copper(I) iodide (CuI) particles having an average size of 160 nm. CuI particles showed aqueous stability and generated hydroxyl radicals, which were probably derived from monovalent copper (Cu(+)). We confirmed that CuI particles showed antiviral activity against an influenza A virus of swine origin (pandemic [H1N1] 2009) by plaque titration assay. The virus titer decreased in a dose-dependent manner upon incubation with CuI particles, with the 50% effective concentration being approximately 17 μg/ml after exposure for 60 min. SDS-PAGE analysis confirmed the inactivation of the virus due to the degradation of viral proteins such as hemagglutinin and neuraminidase by CuI. Electron spin resonance (ESR) spectroscopy revealed that CuI generates hydroxyl radicals in aqueous solution, and radical production was found to be blocked by the radical scavenger N-acetylcysteine. Taken together, these findings indicate that CuI particles exert antiviral activity by generating hydroxyl radicals. Thus, CuI may be a useful material for protecting against viral attacks and may be suitable for applications such as filters, face masks, protective clothing, and kitchen cloths.

  4. Novel Antiviral Characteristics of Nanosized Copper(I) Iodide Particles Showing Inactivation Activity against 2009 Pandemic H1N1 Influenza Virus

    PubMed Central

    Sato, Tetsuya; Hayata, Taishi; Nagao, Tomokazu; Nakayama, Mikio; Nakayama, Tsuruo; Sugamata, Ryuichi; Suzuki, Kazuo

    2012-01-01

    We investigated the antiviral activity of nanosized copper(I) iodide (CuI) particles having an average size of 160 nm. CuI particles showed aqueous stability and generated hydroxyl radicals, which were probably derived from monovalent copper (Cu+). We confirmed that CuI particles showed antiviral activity against an influenza A virus of swine origin (pandemic [H1N1] 2009) by plaque titration assay. The virus titer decreased in a dose-dependent manner upon incubation with CuI particles, with the 50% effective concentration being approximately 17 μg/ml after exposure for 60 min. SDS-PAGE analysis confirmed the inactivation of the virus due to the degradation of viral proteins such as hemagglutinin and neuraminidase by CuI. Electron spin resonance (ESR) spectroscopy revealed that CuI generates hydroxyl radicals in aqueous solution, and radical production was found to be blocked by the radical scavenger N-acetylcysteine. Taken together, these findings indicate that CuI particles exert antiviral activity by generating hydroxyl radicals. Thus, CuI may be a useful material for protecting against viral attacks and may be suitable for applications such as filters, face masks, protective clothing, and kitchen cloths. PMID:22156433

  5. Evaluation of direct antiviral activity of the Deva-5 herb formulation and extracts of five Asian plants against influenza A virus H3N8

    PubMed Central

    2014-01-01

    Background The herb formulation Deva-5 is used in traditional medicine to treat acute infectious diseases. Deva-5 is composed of five herbs: Gentiana decumbens L., Momordica cochinchinensis L., Hypecoum erectum L., Polygonum bistorta L., and Terminalia chebula Retz. Deva-5 and its five components were investigated for in vitro antiviral activity against avian influenza A virus subtype H3N8. Methods The water extracts of the herbal parts of G. decumbens, H. erectum and P. bistorta, the seeds of T. chebula and M. cochinchinensis and Deva-5 were prepared by boiling and clarified by low-speed centrifugation and filtration. To assess the antiviral properties, avian influenza virus isolate A/Teal/Tunka/7/2010(H3N8) was incubated at 37°C for 30 min in the presence and absence of the extracts of five plants and DEVA-5 in various concentrations. Subsequently, the concentration of infectious virus in each sample was determined by plaque assays. Neutralisation indexes and 90% plaque reduction concentrations were estimated for each extract, and the significance of the data was evaluated using statistical methods. Results The extracts of G. decumbens, H. erectum, P. bistorta and Deva-5 demonstrated no significant toxicity at concentrations up to 2%, whereas extracts of T. chebula and M. cochinchinensis were well-tolerated by Madin-Darby canine kidney cells at concentrations up to 1%. The extracts of H. erectum, M. cochinchinensis and T. chebula reduced the titre of A/Teal/Tunka/7/2010 (H3N8) by approximately five-fold (p ≤ 0.05). The other three extracts did not significantly reduce the infectivity of the virus. The plaque reduction neutralisation tests revealed that none of the extracts tested were able to inhibit formation of plaques by 90%. However, three extracts, H. erectum, T. chebula and M. cochinchinensis, were able to inhibit formation of plaques by more than 50% at low dilutions from 1:3 to 1:14. The T. chebula extract had a concentration-dependent inhibitory

  6. Semisynthesis, cytotoxicity, antiviral activity, and drug interaction liability of 7-O-methylated analogues of flavonolignans from milk thistle.

    PubMed

    Althagafy, Hanan S; Graf, Tyler N; Sy-Cordero, Arlene A; Gufford, Brandon T; Paine, Mary F; Wagoner, Jessica; Polyak, Stephen J; Croatt, Mitchell P; Oberlies, Nicholas H

    2013-07-01

    Silymarin, an extract of the seeds of milk thistle (Silybum marianum), is used as an herbal remedy, particularly for hepatoprotection. The main chemical constituents in silymarin are seven flavonolignans. Recent studies explored the non-selective methylation of one flavonolignan, silybin B, and then tested those analogues for cytotoxicity and inhibition of both cytochrome P450 (CYP) 2C9 activity in human liver microsomes and hepatitis C virus infection in a human hepatoma (Huh7.5.1) cell line. In general, enhanced bioactivity was observed with the analogues. To further probe the biological consequences of methylation of the seven major flavonolignans, a series of 7-O-methylflavonolignans were generated. Optimization of the reaction conditions permitted selective methylation at the phenol in the 7-position in the presence of each metabolite's 4-5 other phenolic and/or alcoholic positions without the use of protecting groups. These 7-O-methylated analogues, in parallel with the corresponding parent compounds, were evaluated for cytotoxicity against Huh7.5.1 cells; in all cases the monomethylated analogues were more cytotoxic than the parent compounds. Moreover, parent compounds that were relatively non-toxic and inactive or weak inhibitors of hepatitis C virus infection had enhanced cytotoxicity and anti-HCV activity upon 7-O-methylation. Also, the compounds were tested for inhibition of major drug metabolizing enzymes (CYP2C9, CYP3A4/5, UDP-glucuronsyltransferases) in pooled human liver or intestinal microsomes. Methylation of flavonolignans differentially modified inhibitory potency, with compounds demonstrating both increased and decreased potency depending upon the compound tested and the enzyme system investigated. In total, these data indicated that monomethylation modulates the cytotoxic, antiviral, and drug interaction potential of silymarin flavonolignans.

  7. The HERV-K Human Endogenous Retrovirus Envelope Protein Antagonizes Tetherin Antiviral Activity

    PubMed Central

    Lemaître, Cécile; Harper, Francis; Pierron, Gérard

    2014-01-01

    ABSTRACT Endogenous retroviruses are the remnants of past retroviral infections that are scattered within mammalian genomes. In humans, most of these elements are old degenerate sequences that have lost their coding properties. The HERV-K(HML2) family is an exception: it recently amplified in the human genome and corresponds to the most active proviruses, with some intact open reading frames and the potential to encode viral particles. Here, using a reconstructed consensus element, we show that HERV-K(HML2) proviruses are able to inhibit Tetherin, a cellular restriction factor that is active against most enveloped viruses and acts by keeping the viral particles attached to the cell surface. More precisely, we identify the Envelope protein (Env) as the viral effector active against Tetherin. Through immunoprecipitation experiments, we show that the recognition of Tetherin is mediated by the surface subunit of Env. Similar to Ebola glycoprotein, HERV-K(HML2) Env does not mediate Tetherin degradation or cell surface removal; therefore, it uses a yet-undescribed mechanism to inactivate Tetherin. We also assessed all natural complete alleles of endogenous HERV-K(HML2) Env described to date for their ability to inhibit Tetherin and found that two of them (out of six) can block Tetherin restriction. However, due to their recent amplification, HERV-K(HML2) elements are extremely polymorphic in the human population, and it is likely that individuals will not all possess the same anti-Tetherin potential. Because of Tetherin's role as a restriction factor capable of inducing innate immune responses, this could have functional consequences for individual responses to infection. IMPORTANCE Tetherin, a cellular protein initially characterized for its role against HIV-1, has been proven to counteract numerous enveloped viruses. It blocks the release of viral particles from producer cells, keeping them tethered to the cell surface. Several viruses have developed strategies to

  8. Versatile synthesis of oxime-containing acyclic nucleoside phosphonates--synthetic solutions and antiviral activity.

    PubMed

    Solyev, Pavel N; Jasko, Maxim V; Kleymenova, Alla A; Kukhanova, Marina K; Kochetkov, Sergey N

    2015-11-28

    New oxime-containing acyclic nucleoside phosphonates 9-{2-[(phosphonomethyl)oximino]ethyl}adenine (1), -guanine (2) and 9-{2-[(phosphonomethyl)oximino]propyl}adenine (3) with wide spectrum activity against different types of viruses were synthesized. The key intermediate, diethyl aminooxymethylphosphonate, was obtained by the Mitsunobu reaction. Modified conditions for the by-product separation (without chromatography and distillation) allowed us to obtain 85% yield of the aminooxy intermediate. The impact of DBU and Cs2CO3 on the N(9)/N(7) product ratio for adenine and guanine alkylation was studied. A convenient procedure for aminooxy group detection was found. The synthesized phosphonates were tested and they appeared to display moderate activity against different types of viruses (HIV, herpes viruses in cell cultures, and hepatitis C virus in the replicon system) without toxicity up to 1000 μM. PMID:26383895

  9. Design, Synthesis, and Antiviral Activity of Novel Ribonucleosides of 1,2,3-Triazolylbenzyl-aminophosphonates.

    PubMed

    Ouahrouch, Abdelaaziz; Taourirte, Moha; Schols, Dominique; Snoeck, Robert; Andrei, Graciela; Engels, Joachim W; Lazrek, Hassan B

    2016-01-01

    A novel series of ribonucleosides of 1,2,3-triazolylbenzyl-aminophosphonates was synthesized through the Kabachnik-Fields reaction using I2 as catalyst followed by copper-catalyzed cycloaddition of the azide-alkyne reaction (CuAAC). All structures of the newly prepared compounds were characterized by (1) H NMR, (13) C NMR, and HRMS spectra. The structures of 2e, 2f, 3d, and 3g were further confirmed by X-ray diffraction analysis. These compounds were tested against various strains of DNA and RNA viruses; compounds 4b and 4c showed a modest inhibitory activity against respiratory syncytial virus (RSV) and compound 4h displayed modest inhibitory activity against Coxsackie virus B4. PMID:26575425

  10. Imidazole Alkaloids from the South China Sea Sponge Pericharax heteroraphis and Their Cytotoxic and Antiviral Activities.

    PubMed

    Gong, Kai-Kai; Tang, Xu-Li; Liu, Yi-Sheng; Li, Ping-Lin; Li, Guo-Qiang

    2016-01-01

    Marine sponges continue to serve as a rich source of alkaloids possessing interesting biological activities and often exhibiting unique structural frameworks. In the current study, chemical investigation on the marine sponge Pericharax heteroraphis collected from the South China Sea yielded one new imidazole alkaloid named naamidine J (1) along with four known ones (2-5). Their structures were established by extensive spectroscopic methods and comparison of their data with those of the related known compounds. All the isolates possessed a central 2-aminoimidazole ring, substituted by one or two functionalized benzyl groups in some combination of the C4 and C5 positions. The cytotoxicities against selected HL-60, HeLa, A549 and K562 tumor cell lines and anti-H1N1 (Influenza a virus (IAV)) activity for the isolates were evaluated. Compounds 1 and 2 exhibited cytotoxicities against the K562 cell line with IC50 values of 11.3 and 9.4 μM, respectively. Compound 5 exhibited weak anti-H1N1 (influenza a virus, IAV) activity with an inhibition ratio of 33%.

  11. Cytomegalovirus Antivirals and Development of Improved Animal Models

    PubMed Central

    McGregor, Alistair; Choi, K. Yeon

    2015-01-01

    Introduction Cytomegalovirus (CMV) is a ubiquitous pathogen that establishes a life long asymptomatic infection in healthy individuals. Infection of immunesuppressed individuals causes serious illness. Transplant and AIDS patients are highly susceptible to CMV leading to life threatening end organ disease. Another vulnerable population is the developing fetus in utero, where congenital infection can result in surviving newborns with long term developmental problems. There is no vaccine licensed for CMV and current antivirals suffer from complications associated with prolonged treatment. These include drug toxicity and emergence of resistant strains. There is an obvious need for new antivirals. Candidate intervention strategies are tested in controlled pre-clinical animal models but species specificity of HCMV precludes the direct study of the virus in an animal model. Areas covered This review explores the current status of CMV antivirals and development of new drugs. This includes the use of animal models and the development of new improved models such as humanized animal CMV and bioluminescent imaging of virus in animals in real time. Expert Opinion Various new CMV antivirals are in development, some with greater spectrum of activity against other viruses. Although the greatest need is in the setting of transplant patients there remains an unmet need for a safe antiviral strategy against congenital CMV. This is especially important since an effective CMV vaccine remains an elusive goal. In this capacity greater emphasis should be placed on suitable pre-clinical animal models and greater collaboration between industry and academia. PMID:21883024

  12. Pyridinone derivatives: Specific human immunodeficiency virus type 1 reverse transcriptase inhibitors with antiviral activity

    SciTech Connect

    Goldman, M.E.; Nunberg, J.H.; O'Brien, J.A.; Quintero, J.C.; Schleif, W.A.; Freund, K.F.; Gaul, S.L.; Saari, W.S.; Wai, J.S.; Hoffman, J.M.; Anderson, P.S.; Emini, E.A.; Stern, A.M. ); Hupe, D.J. )

    1991-08-01

    Derivatives of pyridinones were found to inhibit human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) activity and prevent the spread of HIV-1 infection in cell culture without an appreciable effect on other retroviral or cellular polymerases. 3-{l brace}((4,7-Dimethyl-1,3-benzoxazol-2-yl)methyl)amino{r brace}-5-ethyl-6-methylpyridin-2(1H)-one(L-679,639) and 3-{l brace}((4,7-dichloro-1,3-benzoxazol-2-yl)methyl)amino{r brace}-5-ethyl-6-methylpyridin-2(1H)-one (L-697,661), two compounds within this series, had HIV-1 RT IC{sub 50} values in the range of 20-800 nM, depending upon the template-primer used. The most potent inhibition was obtained with rC{center dot}dG, reversible slow-binding noncompetitive inhibition was observed. ({sup 3}H)L-697,639 bound preferentially to enzyme-template-primer complexes. This binding was magnesium-dependent and saturable with a stoichiometry of 1 mol of ({sup 3}H)L-697,639 per mol of RT heterodimer. Synergism between 3{prime}-azido-3{prime}-deoxythymidine or dideoxyinosine and either of these compounds was also demonstrated in cell culture. Based upon their specificity for HIV-1 RT activity, template-primer dependence on potency and ability to displace ({sup 3}H)L-697,639; a tetrahydroimidazo(4,5,1-jk)(1,4)-benzodiazepin-2(1H)-thione derivative R82150 and the dipyridodiazepinone BI-RG-587 appear to inhibit RT activity by the same mechanism as the pyridinones.

  13. Balticolid: a new 12-membered macrolide with antiviral activity from an ascomycetous fungus of marine origin.

    PubMed

    Shushni, Muftah A M; Singh, Rajinder; Mentel, Renate; Lindequist, Ulrike

    2011-01-01

    A new 12-membered macrolide, balticolid (1) was isolated from the EtOAc extract of the culture broth of fungal strain 222 belonging to the Ascomycota, which was found on driftwood collected from the coast of the Greifswalder Bodden, Baltic Sea, Germany. The structure of balticolid was determined to be (3R,11R), (4E,8E)-3-hydroxy-11-methyloxacyclododeca-4,8-diene-1,7-dione using extensive spectral data as well as the modified Mosher ester method. Balticolid (1) displayed anti-HSV-1 activity with an IC₅₀ value of 0.45 μM.

  14. In vivo evaluation of the antiviral activity of Cajanus cajan on measles virus.

    PubMed

    Nwodo, U U; Ngene, A A; Iroegbu, C U; Onyedikachi, O A L; Chigor, V N; Okoh, A I

    2011-09-01

    Cajanus cajan, a tropical shrub, serves as source of food and traditional medicines. The evaluation of aqueous and ethanol extracts for activity against measles virus and toxicity to embryonated chicken eggs was carried out in this study. In vivo and in vitro assay techniques using embryonated chicken eggs and tissue culture (Hep-2 cell lines) as media for both virus cultivation and anti-virus assay showed that a hot-water extract yielded higher activity against measles virus. The hot-water extract of the stem yielded a Log(2) titre of 0.1 for the in vivo assay and an inhibition of cytopathic effect (CPE) in Hep-2 cells by 100% for the in vitro assay. At all concentrations of the extracts, there was a lowering of virus concentration (p = 0.05), indicated by hemagglutination (HA) titration, which is the advantage of HA titration over the tissue culture technique using CPE. This study validates embryonated chicken eggs as suitable media for anti-virus assay and the use of C. cajan in the treatment of some diseases of viral origin.

  15. Antiviral activities of 2'-deoxyribofuranosyl and arabinofuranosyl analogs of sangivamycin against retro- and DNA viruses.

    PubMed

    Smee, D F; McKernan, P A; Alaghamandan, H A; Frank, K B; Ramasamy, K; Revankar, G R; Robins, R K

    1988-12-11

    Eight sugar-modified pyrrolopyrimidine nucleoside analogs related to the antibiotic sangivamycin were evaluated in cell culture against herpes simplex types 1 (HSV-1) and 2 (HSV-2), cytomegalovirus (CMV), adenovirus, and visna virus. Five of the compounds were highly active against most of the viruses with 50% inhibition (ED50) values of 1-10 microM. The selectivity of the agents was low, with inhibition of uninfected cell proliferation occurring within 5-fold that of the virus ED50 for most of the viruses. The compounds did not possess RNA virus-inhibitory activity when evaluated against certain myxo-, paramyxo-, picorna-, reo-, rhabdo-, and togaviruses. Two of the nucleosides were tested further in a cell line persistently infected with Friend leukemia virus where they were inhibitory to both virus yield and cell proliferation at 4-5 microM. Several of the sangivamycin analogs were tested in animal models using a twice-a-day treatment regimen. They proved to be inactive against HSV-1, murine CMV and/or Friend leukemia virus infections in mice. PMID:2854957

  16. Pyridinone derivatives: specific human immunodeficiency virus type 1 reverse transcriptase inhibitors with antiviral activity.

    PubMed Central

    Goldman, M E; Nunberg, J H; O'Brien, J A; Quintero, J C; Schleif, W A; Freund, K F; Gaul, S L; Saari, W S; Wai, J S; Hoffman, J M

    1991-01-01

    Derivatives of pyridinones were found to inhibit human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) activity and prevent the spread of HIV-1 infection in cell culture without an appreciable effect on other retroviral or cellular polymerases. 3-[( (4,7-Dimethyl-1,3-benzoxazol-2-yl) methyl]amino ]-5-ethyl-6-methylpyridin-2(1H)-one (L-697,639) and 3-[[ (4,7-dichloro-1,3-benzoxazol-2-yl) methyl]amino]-5-ethyl-6-methylpyridin-2(1H)-one (L-697,661), two compounds within this series, had HIV-1 RT IC50 values in the range of 20-800 nM, depending upon the template-primer used. The most potent inhibition was obtained with rC.dG and dA.dT as template--primers. With rC.dG, reversible slow-binding non-competitive inhibition was observed. [3H]L-697,639 bound preferentially to enzyme-template-primer complexes. This binding was magnesium-dependent and saturable with a stoichiometry of 1 mol of [3H]L-697,639 per mol of RT heterodimer. Displacement of [3H]L-697,639 was seen with phosphonoformate. In human T-lymphoid-cell culture, L-697,639 and L-697,661 inhibited the spread of HIV-1 infection by at least 95% at concentrations of 12-200 nM. Synergism between 3'-azido-3'-deoxythymidine or dideoxyinosine and either of these compounds was also demonstrated in cell culture. Based upon their specificity for HIV-1 RT activity, template-primer dependence on potency and ability to displace [3H]L-697,639; a tetrahydroimidazo [4,5,1-jk] [1,4]-benzodiazepin-2(1H)-thione derivative R82150 and the dipyridodiazepinone BI-RG-587 appear to inhibit RT activity by the same mechanism as the pyridinones. PMID:1713693

  17. Low cost antiviral activity of Plodia interpunctella haemolymph in vivo demonstrated by dose dependent infection.

    PubMed

    Saejeng, A; Siva-Jothy, M T; Boots, M

    2011-02-01

    Given the ubiquity of infectious disease it is important to understand the way in which hosts defend themselves and any costs that they may pay for this defence. Despite this, we know relatively little about insect immune responses to viruses when compared to their well-characterized responses to other pathogens. In particular it is unclear whether there is significant haemocoelic response to viral infection. Here we directly examine this question by examining whether there is a dose-dependency in infection risk when a DNA virus is injected directly into the haemocoel. Infection from direct injection into the haemocoel showed a clear dose dependency that is indicative of an active intrahaemocoelic immune response to DNA viruses in insects. In contrast to the natural oral infection route, we found no measurable sublethal effects in the survivors from direct injection. This suggests that the immune responses in the haemocoel are less costly than those that occur earlier.

  18. Studies of Antiviral Activity and Cytotoxicity of Wrightia tinctoria and Morinda citrifolia.

    PubMed

    Selvam, P; Murugesh, N; Witvrouw, M; Keyaerts, E; Neyts, J

    2009-11-01

    Different extracts of leaf parts of Wrightia tinctoria and fruit powder of Morinda citrifolia have been studied against replication of HIV-1(IIIB) in MT-4 cells and HCV in Huh 5.2 cells. Chloroform extract of Wrightia tinctoria exhibited a maximum protection of 48% against the cytopathic effect of HIV-1(IIIB) in MT-4 cells. Fruit juice of Morinda citrifolia exhibited a displayed marked cytotoxic activity in lymphocyte (MT-4) cells (CC50: 0.19 mg/ml). The 50% effective concentration for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells by Morinda citrifolia was 0.98 mug/ml and by chloroform extract of Wrightia tinctoria was 10 mug/ml. The concentration that reduced the growth of exponentially proliferating Huh 5-2 cells by 50% was greater than 50 mug/ml.

  19. Studies of Antiviral Activity and Cytotoxicity of Wrightia tinctoria and Morinda citrifolia

    PubMed Central

    Selvam, P.; Murugesh, N.; Witvrouw, M.; Keyaerts, E.; Neyts, J.

    2009-01-01

    Different extracts of leaf parts of Wrightia tinctoria and fruit powder of Morinda citrifolia have been studied against replication of HIV-1(IIIB) in MT-4 cells and HCV in Huh 5.2 cells. Chloroform extract of Wrightia tinctoria exhibited a maximum protection of 48% against the cytopathic effect of HIV-1(IIIB) in MT-4 cells. Fruit juice of Morinda citrifolia exhibited a displayed marked cytotoxic activity in lymphocyte (MT-4) cells (CC50: 0.19 mg/ml). The 50% effective concentration for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells by Morinda citrifolia was 0.98 μg/ml and by chloroform extract of Wrightia tinctoria was 10 μg/ml. The concentration that reduced the growth of exponentially proliferating Huh 5-2 cells by 50% was greater than 50 μg/ml. PMID:20376221

  20. SAR-Based Optimization of a 4-Quinoline Carboxylic Acid Analogue with Potent Antiviral Activity

    PubMed Central

    2013-01-01

    It is established that drugs targeting viral proteins are at risk of generating resistant strains. However, drugs targeting host factors can potentially avoid this problem. Herein, we report structure–activity relationship studies leading to the discovery of a very potent lead compound 6-fluoro-2-(5-isopropyl-2-methyl-4-phenoxyphenyl)quinoline-4-carboxylic acid (C44) that inhibits human dihydroorotate dehydrogenase (DHODH) with an IC50 of 1 nM and viral replication of VSV and WSN-Influenza with an EC50 of 2 nM and 41 nM. We also solved the X-ray structure of human DHODH bound to C44, providing structural insight into the potent inhibition of biaryl ether analogues of brequinar. PMID:23930152

  1. Cissampelos pareira Linn: Natural Source of Potent Antiviral Activity against All Four Dengue Virus Serotypes

    PubMed Central

    Sood, Ruchi; Raut, Rajendra; Tyagi, Poornima; Pareek, Pawan Kumar; Barman, Tarani Kanta; Singhal, Smita; Shirumalla, Raj Kumar; Kanoje, Vijay; Subbarayan, Ramesh; Rajerethinam, Ravisankar; Sharma, Navin; Kanaujia, Anil; Shukla, Gyanesh; Gupta, Y. K.; Katiyar, Chandra K.; Bhatnagar, Pradip K.; Upadhyay, Dilip J.; Swaminathan, Sathyamangalam; Khanna, Navin

    2015-01-01

    Background Dengue, a mosquito-borne viral disease, poses a significant global public health risk. In tropical countries such as India where periodic dengue outbreaks can be correlated to the high prevalence of the mosquito vector, circulation of all four dengue viruses (DENVs) and the high population density, a drug for dengue is being increasingly recognized as an unmet public health need. Methodology/Principal findings Using the knowledge of traditional Indian medicine, Ayurveda, we developed a systematic bioassay-guided screening approach to explore the indigenous herbal bio-resource to identify plants with pan-DENV inhibitory activity. Our results show that the alcoholic extract of Cissampelos pariera Linn (Cipa extract) was a potent inhibitor of all four DENVs in cell-based assays, assessed in terms of viral NS1 antigen secretion using ELISA, as well as viral replication, based on plaque assays. Virus yield reduction assays showed that Cipa extract could decrease viral titers by an order of magnitude. The extract conferred statistically significant protection against DENV infection using the AG129 mouse model. A preliminary evaluation of the clinical relevance of Cipa extract showed that it had no adverse effects on platelet counts and RBC viability. In addition to inherent antipyretic activity in Wistar rats, it possessed the ability to down-regulate the production of TNF-α, a cytokine implicated in severe dengue disease. Importantly, it showed no evidence of toxicity in Wistar rats, when administered at doses as high as 2g/Kg body weight for up to 1 week. Conclusions/Significance Our findings above, taken in the context of the human safety of Cipa, based on its use in Indian traditional medicine, warrant further work to explore Cipa as a source for the development of an inexpensive herbal formulation for dengue therapy. This may be of practical relevance to a dengue-endemic resource-poor country such as India. PMID:26709822

  2. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50).

    PubMed

    Qureshi, Abid; Tandon, Himani; Kumar, Manoj

    2015-11-01

    Peptide-based antiviral therapeutics has gradually paved their way into mainstream drug discovery research. Experimental determination of peptides' antiviral activity as expressed by their IC50 values involves a lot of effort. Therefore, we have developed "AVP-IC50 Pred," a regression-based algorithm to predict the antiviral activity in terms of IC50 values (μM). A total of 759 non-redundant peptides from AVPdb and HIPdb were divided into a training/test set having 683 peptides (T(683)) and a validation set with 76 independent peptides (V(76)) for evaluation. We utilized important peptide sequence features like amino-acid compositions, binary profile of N8-C8 residues, physicochemical properties and their hybrids. Four different machine learning techniques (MLTs) namely Support vector machine, Random Forest, Instance-based classifier, and K-Star were employed. During 10-fold cross validation, we achieved maximum Pearson correlation coefficients (PCCs) of 0.66, 0.64, 0.56, 0.55, respectively, for the above MLTs using the best combination of feature sets. All the predictive models also performed well on the independent validation dataset and achieved maximum PCCs of 0.74, 0.68, 0.59, 0.57, respectively, on the best combination of feature sets. The AVP-IC50 Pred web server is anticipated to assist the researchers working on antiviral therapeutics by enabling them to computationally screen many compounds and focus experimental validation on the most promising set of peptides, thus reducing cost and time efforts. The server is available at http://crdd.osdd.net/servers/ic50avp.

  3. Antiviral activity of a carrageenan from Gigartina skottsbergii against intraperitoneal murine herpes simplex virus infection.

    PubMed

    Pujol, C A; Scolaro, L A; Ciancia, M; Matulewicz, M C; Cerezo, A S; Damonte, E B

    2006-02-01

    The partially cyclized mu/nu-carrageenan 1C3, isolated from the red seaweed Gigartina skottsbergii, was previously shown to be a potent inhibitor of the in vitro replication of Herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Here the protective effect of 1C3 in a murine model of intraperitoneal ( i. p.) HSV-1 infection was evaluated. OF1 mice were i. p. infected with 5 x 10 (5) PFU of HSV-1 KOS strain, and the effects of different treatments with 1C3 were studied. When 30 mg/kg of body weight of 1C3 was administered by the i. p. route immediately after HSV-1 infection, 87.5 % survival of the animals was achieved (p < 0.005), associated with a delay in the mean day of death in 1C3-treated non-surviving mice. Animal survival was not improved when multiple doses of 1C3 were also given in the period 1 - 48 h post-infection, and no protection was afforded when treatment was started after 24 h of infection. When virus and compound were injected by different routes, i. p. and intravenous ( i. v.), respectively, a still significant protection was achieved (40 % survival, p < 0.05). No toxicity of 1C3 for the animals was recorded. The pharmacokinetic properties were analyzed after injection of 1C3 into the tail vein by monitoring of [ (3)H]-1C3 in plasma and organs and by a bioassay of the anti-HSV-1 activity remaining in serum after non-radioactive 1C3 inoculation. A very rapid disappearance of the compound from the blood was observed since only 5.9 - 0.9 % of the radioactivity of the initially administered [ (3)H]-1C3 appeared in the plasma between 5-300 minutes after administration. A transient peak of radioactivity was detected in the kidney 15 minutes after inoculation. The bioassay confirms the presence of the compound circulating in a biologically active form up to 1 hour after injection. PMID:16491446

  4. Isolation and antiviral activity of water-soluble Cynomorium songaricum Rupr. polysaccharides.

    PubMed

    Tuvaanjav, Suvdmaa; Shuqin, Han; Komata, Masashi; Ma, Chunjie; Kanamoto, Taisei; Nakashima, Hideki; Yoshida, Takashi

    2016-01-01

    The plant, Cynomorium songaricum Rupr., is used as a traditional medicine in China and Mongolia. In the present study, two new water-soluble polysaccharides isolated from C. songaricum Rupr. were purified by successive Sephadex G-75 and G-50 column chromatographies and then characterized by high resolution NMR and IR spectroscopies. The molecular weights of two polysaccharides were determined by an aqueous GPC to be [Formula: see text] = 3.7 × 10(4) and 1.0 × 10(4), respectively. In addition, it was found that the polysaccharide with the larger molecular weight was an acidic polysaccharide. It was found that the iodine-starch reaction of both isolated polysaccharides was negative and the methylation analysis gave 2, 4, 6-tri-O-methyl alditol acetate as a main product. NMR and IR measurements and sugar analysis revealed that both polysaccharides had a (1 → 3)-α-d-glucopyranosidic main chain with a small number of branches. After sulfation, the sulfated C. songaricum Rupr. polysaccharides were found to have a potent inhibitory effect on HIV infection of MT-4 cells at a 50% effective concentration of 0.3-0.4 μg/ml, a concentration that has almost the same high activity as standard dextran and curdlan sulfates, EC50 = 0.35 and 0.14 μg/ml, respectively. The 50% cytotoxic concentration was low, CC50>1000 μg/ml. In addition, the interaction between the sulfated polysaccharides and poly-l-lysine as a model protein compound was investigated by a surface plasmon resonance to reveal the anti-HIV mechanism. PMID:26838028

  5. Oyster viperin retains direct antiviral activity and its transcription occurs via a signalling pathway involving a heat-stable haemolymph protein.

    PubMed

    Green, Timothy J; Speck, Peter; Geng, Lu; Raftos, David; Beard, Michael R; Helbig, Karla J

    2015-12-01

    Little is known about the response of non-model invertebrates, such as oysters, to virus infection. The vertebrate innate immune system detects virus-derived nucleic acids to trigger the type I IFN pathway, leading to the transcription of hundreds of IFN-stimulated genes (ISGs) that exert antiviral functions. Invertebrates were thought to lack the IFN pathway based on the absence of IFN or ISGs encoded in model invertebrate genomes. However, the oyster genome encodes many ISGs, including the well-described antiviral protein viperin. In this study, we characterized oyster viperin and showed that it localizes to caveolin-1 and inhibits dengue virus replication in a heterologous model. In a second set of experiments, we have provided evidence that the haemolymph from poly(I : C)-injected oysters contains a heat-stable, protease-susceptible factor that induces haemocyte transcription of viperin mRNA in conjunction with upregulation of IFN regulatory factor. Collectively, these results support the concept that oysters have antiviral systems that are homologous to the vertebrate IFN pathway.

  6. Antiviral Activity and Possible Mechanism of Action of Constituents Identified in Paeonia lactiflora Root toward Human Rhinoviruses

    PubMed Central

    Ngan, Luong Thi My; Jang, Myeong Jin; Kwon, Min Jung; Ahn, Young Joon

    2015-01-01

    Human rhinoviruses (HRVs) are responsible for more than half of all cases of the common cold and cost billions of USD annually in medical visits and missed school and work. An assessment was made of the antiviral activities and mechanisms of action of paeonol (PA) and 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG) from Paeonia lactiflora root toward HRV-2 and HRV-4 in MRC5 cells using a tetrazolium method and real-time quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Results were compared with those of a reference control ribavirin. Based on 50% inhibitory concentration values, PGG was 13.4 and 18.0 times more active toward HRV-2 (17.89 μM) and HRV-4 (17.33 μM) in MRC5 cells, respectively, than ribavirin. The constituents had relatively high selective index values (3.3–>8.5). The 100 μg/mL PA and 20 μg/mL PGG did not interact with the HRV-4 particles. These constituents inhibited HRV-4 infection only when they were added during the virus inoculation (0 h), the adsorption period of HRVs, but not after 1 h or later. Moreover, the RNA replication levels of HRVs were remarkably reduced in the MRC5 cultures treated with these constituents. These findings suggest that PGG and PA may block or reduce the entry of the viruses into the cells to protect the cells from the virus destruction and abate virus replication, which may play an important role in interfering with expressions of rhinovirus receptors (intercellular adhesion molecule-1 and low-density lipoprotein receptor), inflammatory cytokines (interleukin (IL)-6, IL-8, tumor necrosis factor, interferon beta, and IL-1β), and Toll-like receptor, which resulted in diminishing symptoms induced by HRV. Global efforts to reduce the level of synthetic drugs justify further studies on P. lactiflora root-derived materials as potential anti-HRV products or lead molecules for the prevention or treatment of HRV. PMID:25860871

  7. Antiviral activity and possible mechanism of action of constituents identified in Paeonia lactiflora root toward human rhinoviruses.

    PubMed

    Ngan, Luong Thi My; Jang, Myeong Jin; Kwon, Min Jung; Ahn, Young Joon

    2015-01-01

    Human rhinoviruses (HRVs) are responsible for more than half of all cases of the common cold and cost billions of USD annually in medical visits and missed school and work. An assessment was made of the antiviral activities and mechanisms of action of paeonol (PA) and 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG) from Paeonia lactiflora root toward HRV-2 and HRV-4 in MRC5 cells using a tetrazolium method and real-time quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Results were compared with those of a reference control ribavirin. Based on 50% inhibitory concentration values, PGG was 13.4 and 18.0 times more active toward HRV-2 (17.89 μM) and HRV-4 (17.33 μM) in MRC5 cells, respectively, than ribavirin. The constituents had relatively high selective index values (3.3->8.5). The 100 μg/mL PA and 20 μg/mL PGG did not interact with the HRV-4 particles. These constituents inhibited HRV-4 infection only when they were added during the virus inoculation (0 h), the adsorption period of HRVs, but not after 1 h or later. Moreover, the RNA replication levels of HRVs were remarkably reduced in the MRC5 cultures treated with these constituents. These findings suggest that PGG and PA may block or reduce the entry of the viruses into the cells to protect the cells from the virus destruction and abate virus replication, which may play an important role in interfering with expressions of rhinovirus receptors (intercellular adhesion molecule-1 and low-density lipoprotein receptor), inflammatory cytokines (interleukin (IL)-6, IL-8, tumor necrosis factor, interferon beta, and IL-1β), and Toll-like receptor, which resulted in diminishing symptoms induced by HRV. Global efforts to reduce the level of synthetic drugs justify further studies on P. lactiflora root-derived materials as potential anti-HRV products or lead molecules for the prevention or treatment of HRV. PMID:25860871

  8. Antiviral strategies: the present and beyond.

    PubMed

    Burke, J D; Fish, E N

    2009-01-01

    Historically, vaccine strategies have proven to be most effective at eradicating the targeted virus infections. With the advent of new or re-emerging altered viruses, some of which jump species to infect humans, the threat of viral pandemics exists. The protracted time to develop a vaccine during a pandemic necessitates using antiviral drugs in the intervening months prior to vaccine availability. Antiviral drugs that are pathogen specific, for example Amantidine, Tamiflu and Relenza, targeted against influenza viruses, are associated with the emergence of virus strains that are drug resistant. The use of ribavirin, a more broad spectrum antiviral, in combination therapies directed against influenza and hepatitis C virus, has proven effective, albeit to a modest extent. Attention is focused on the potential use of interferons (IFN)-alpha/beta as broad spectrum antivirals in acute infections, to invoke both direct antiviral effects against viruses and activation of specific immune effector cells. PMID:20021443

  9. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    PubMed

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  10. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    PubMed Central

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations. PMID:26484353

  11. Discovery of Potent Broad Spectrum Antivirals Derived from Marine Actinobacteria

    PubMed Central

    Raveh, Avi; Delekta, Phillip C.; Dobry, Craig J.; Peng, Weiping; Schultz, Pamela J.; Blakely, Pennelope K.; Tai, Andrew W.; Matainaho, Teatulohi; Irani, David N.; Sherman, David H.; Miller, David J.

    2013-01-01

    Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the

  12. Synthesis and antiviral activity of a series of novel N-phenylbenzamide and N-phenylacetophenone compounds as anti-HCV and anti-EV71 agents

    PubMed Central

    Jiang, Zhi; Wang, Huiqiang; Li, Yanping; Peng, Zonggen; Li, Yuhuan; Li, Zhuorong

    2015-01-01

    A series of novel N-phenylbenzamide and N-phenylacetophenone compounds were synthesized and evaluated for their antiviral activity against HCV and EV71 (strain SZ-98). The biological results showed that three compounds (23, 25 and 41) exhibited considerable anti-HCV activity (IC50=0.57–7.12 μmol/L) and several compounds (23, 28, 29, 30, 31 and 42) displayed potent activity against EV71 with the IC50 values lower than 5.00 μmol/L. The potency of compound 23 (IC50=0.57 μmol/L) was superior to that of reported compounds IMB-1f (IC50=1.90 μmol/L) and IMB-1g (IC50=1.00 μmol/L) as anti-HCV agents, and compound 29 possessed the highest anti-EV71 activity, comparable to the comparator drug pirodavir. The efficacy in vivo and antiviral mechanism of these compounds warrant further investigations. PMID:26579447

  13. Antiviral activity of human oligoadenylate synthetases-like (OASL) is mediated by enhancing retinoic acid-inducible gene I (RIG-I) signaling

    PubMed Central

    Zhu, Jianzhong; Zhang, Yugen; Ghosh, Arundhati; Cuevas, Rolando A.; Forero, Adriana; Dhar, Jayeeta; Ibsen, Mikkel Søes; Schmid-Burgk, Jonathan Leo; Schmidt, Tobias; Ganapathiraju, Madhavi K.; Fujita, Takashi; Hartmann, Rune; Barik, Sailen; Hornung, Veit; Coyne, Carolyn B.; Sarkar, Saumendra N.

    2014-01-01

    SUMMARY Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN), and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein had antiviral activity and mediated RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone marrow derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL; Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation. PMID:24931123

  14. Synthesis and antiviral activity of a series of novel N-phenylbenzamide and N-phenylacetophenone compounds as anti-HCV and anti-EV71 agents.

    PubMed

    Jiang, Zhi; Wang, Huiqiang; Li, Yanping; Peng, Zonggen; Li, Yuhuan; Li, Zhuorong

    2015-05-01

    A series of novel N-phenylbenzamide and N-phenylacetophenone compounds were synthesized and evaluated for their antiviral activity against HCV and EV71 (strain SZ-98). The biological results showed that three compounds (23, 25 and 41) exhibited considerable anti-HCV activity (IC50=0.57-7.12 μmol/L) and several compounds (23, 28, 29, 30, 31 and 42) displayed potent activity against EV71 with the IC50 values lower than 5.00 μmol/L. The potency of compound 23 (IC50=0.57 μmol/L) was superior to that of reported compounds IMB-1f (IC50=1.90 μmol/L) and IMB-1g (IC50=1.00 μmol/L) as anti-HCV agents, and compound 29 possessed the highest anti-EV71 activity, comparable to the comparator drug pirodavir. The efficacy in vivo and antiviral mechanism of these compounds warrant further investigations.

  15. Antiviral, immunomodulatory, and free radical scavenging activities of a protein-enriched fraction from the larvae of the housefly, Musca domestica.

    PubMed

    Ai, Hui; Wang, Furong; Zhang, Na; Zhang, Lingyao; Lei, Chaoliang

    2013-01-01

    In our previous study, protein-enriched fraction (PEF) that was isolated from the larvae of the housefly, Musca domestica L. (Diptera: Muscidae), showed excellent hepatoprotective activity as well as the potential for clinical application in therapy for liver diseases. In this study, antiviral, immunomodulatory, and free radical scavenging activities of PEF were evaluated. The antiviral results demonstrated that PEF inhibited the infection of avian influenza virus H9N2 and had a virucidal effect against the multicapsid nucleopolyhedrovirus of the alfalfa looper, Autographa californica Speyer (Lepidoptera: Noctuidae) in vitro. The mortality of silkworm larve in a PEF treatment group decreased significantly compared with a negative control. PEF showed excellent scavenging activity for 1,1-diphenyl-2-picrylhydrazyl and superoxide anion radicals, which were similar to those of ascorbic acid. The imunomodulatory results suggested that PEF could effectively improve immune function in experimental mice. Our results indicated that PEF could possibly be used for the prophylaxis and treatment of diseases caused by avian influenza virus infection. In addition, PEF with virucidal activity against insect viruses might provide useful for the development of antimicrobial breeding technology for economically important insects. As a natural product from insects, PEF could be a potential source for the discovery of potent antioxidant and immunomodulatory agents.

  16. Expression of porcine Mx1 with FMDV IRES enhances the antiviral activity against foot-and-mouth disease virus in PK-15 cells.

    PubMed

    Yuan, Bing; Fang, Hui; Shen, Chao; Zheng, Congyi

    2015-08-01

    Foot-and-mouth disease virus (FMDV) is the most contagious pathogen in cloven-hoofed (two-toed) animals. Due to the rapid replication and spread of FMDV, novel therapeutic strategies are greatly needed to reduce or block FMDV shedding in cases of disease outbreak. Here, we generated an IRES-Mx1 construct in which the internal ribosome entry site (IRES) of FMDV was inserted between the promoter and open reading frame (ORF) of porcine myxovirus resistance protein 1 (poMx1). This construct provides more powerful protection against FMDV infection than the IRES-IFN construct that was previously generated by our group. The results indicate that this IRES-Mx1 construct was able to express poMx1 12 h after transfection and induce a robust immune response. In contrast to the control, the proliferation of virus in transfected cells was significantly inhibited, as evaluated by morphology monitoring, real-time RT-PCR, virus titration and Western blot. In addition, we also found that the antiviral activity in cells transfected with pc-IRES-Mx1 was abolished when the JAK/STAT pathway was repressed, which indicates that the antiviral mechanism of poMx1 is JAK/STAT pathway dependent. Taken together, our data suggest that the antiviral activity of poMx1 is possibly produced by affecting the host cells themselves, instead of interacting with the virus directly. The new construct reported here could be used as a novel effective therapy against FMDV infection.

  17. Sugar binding effects on the enzymatic reaction and conformation near the active site of pokeweed antiviral protein revealed by fluorescence spectroscopy.

    PubMed

    Nakashima, Hiromichi; Fukunaga, Yukihiro; Ueno, Ryosuke; Nishimoto, Etsuko

    2014-05-01

    In various trials for elucidating the physiological function of pokeweed antiviral protein (PAP), studies on the interaction with sugar are essential. The fluorescence titration curves showed that PAP retained the strong affinity against N-acetylglucosamine (NAG) and two sites in one PAP molecule co-operatively participated in the binding. In the complex of PAP with NAG, Trp208 located at the entrance lid site of substrate came closer to Tyr72 about 0.3 Å. Furthermore, the fluorescence anisotropy decay measurement demonstrated that the segmental rotation of Trp208 was enlarged by the binding of PAP with NAG. Such conformational changes around the active site closely correlate with the enzymatic activity of PAP. The N-glycosidase activity of PAP was enhanced more than two times in the presence of NAG. The obtained results consistently suggested the enzymatic activity of PAP would be regulated through the conformation change near the active site induced by the binding with NAG.

  18. Green tea polyphenol, epigallocatechin-3-gallate, possesses the antiviral activity necessary to fight against the hepatitis B virus replication in vitro.

    PubMed

    Pang, Jing-yao; Zhao, Kui-jun; Wang, Jia-bo; Ma, Zhi-jie; Xiao, Xiao-he

    2014-06-01

    Although several antiviral drugs and vaccines are available for use against hepatitis B virus (HBV), hepatitis caused by HBV remains a major public health problem worldwide, which has not yet been resolved, and new anti-HBV drugs are in great demand. The present study was performed to investigate the anti-HBV activity of epigallocatechin-3-gallate (EGCG), a natural-origin compound, in HepG2 2.2.15 cells. The antiviral activity of EGCG was examined by detecting the levels of HBsAg and HBeAg in the supernatant and extracellular HBV DNA. EGCG effectively suppressed the secretion of HBsAg and HBeAg from HepG2 2.2.15 cells in a dose- and time-dependent manner, and it showed stronger effects at the level of 0.11-0.44 μmol/ml (50-200 μg/ml) than lamivudine (3TC) at 0.87 μmol/ml (200 μg/ml). EGCG also suppressed the amount of extracellular HBV DNA. The data indicated that EGCG possessed anti-HBV activity and suggested the potential of EGCG as an effective anti-HBV agent with low toxicity.

  19. Increased activity of indoleamine 2,3-dioxygenase in serum from acutely infected dengue patients linked to gamma interferon antiviral function

    PubMed Central

    Becerra, Aniuska; Warke, Rajas V.; Xhaja, Kris; Evans, Barbara; Evans, James; Martin, Katherine; de Bosch, Norma; Rothman, Alan L.; Bosch, Irene

    2009-01-01

    The depletion of l-tryptophan (L-Trp) has been associated with the inhibition of growth of micro-organisms and also has profound effects on T cell proliferation and immune tolerance. The enzyme indoleamine 2,3-dioxygenase (IDO) catalyses the rate-limiting step in the catabolic pathway of L-Trp. Gene expression analysis has shown upregulation of genes involved in L-Trp catabolism in in vitro models of dengue virus (DENV) infection. To understand the role of IDO during DENV infection, we measured IDO activity in sera from control and DENV-infected patients. We found increased IDO activity, lower levels of L-Trp and higher levels of l-kynurenine in sera from DENV-infected patients during the febrile days of the disease compared with patients with other febrile illnesses and healthy donors. Furthermore, we confirmed upregulation of IDO mRNA expression in response to DENV infection in vitro, using a dendritic cell (DC) model of DENV infection. We found that the antiviral effect of gamma interferon (IFN-γ) in DENV-infected DCs in vitro was partially dependent on IDO activity. Our results demonstrate that IDO plays an important role in the antiviral effect of IFN-γ against DENV infection in vitro and suggest that it has a role in the immune response to DENV infections in vivo. PMID:19264674

  20. Antiviral activity of dolutegravir in subjects with failure on an integrase inhibitor-based regimen: week 24 phase 3 results from VIKING-3

    PubMed Central

    Nichols, G; Mills, A; Grossberg, R; Lazzarin, A; Maggiolo, F; Molina, J; Pialoux, G; Wright, D; Ait-Khaled, M; Huang, J; Vavro, C; Wynne, B; Yeo, J

    2012-01-01

    Background VIKING-3 aimed to examine efficacy and safety of dolutegravir (DTG) 50 mg twice daily in patients with resistance to multiple ARV classes, including integrase inhibitors (INI). Methods RAL and/or EVG-resistant (current or historical) adult subjects with screening plasma HIV-1 RNA ≥500 c/mL and resistance to ≥2 other ART classes received open-label DTG 50 mg BID while continuing their failing regimen (without RAL/EVG). At Day 8 the background regimen was optimised and DTG continued. Activity of the optimized background regimen (OBR) was determined by Monogram Net Assessment. Primary endpoints were antiviral efficacy at Day 8 and Week 24. Results 183 subjects enrolled, 124 with INI-resistance at screening and 59 with historical (but no screening) resistance. Population was advanced: at BL, median CD4 140, prior ART 13 yrs, 56% CDC Class C; 79% had >2 NRTI, 75% >1 NNRTI, and 70% >2 PI resistance-associated mutations, and 61% had non-R5 HIV detected. Of the 114 subjects who had the opportunity to complete 24 weeks on study before data cutoff, 72 (63%) had <50 c/mL RNA at Week 24 (SNAPSHOT algorithm). Mean HIV RNA declined by 1.4 log10 c/mL (95% CI: 1.3, 1.5; p < 0.001) at Day 8; response differed by genotype pathway (Table). Primary INI mutations at BL N Mean HIV RNA (log 10) Change from BL (SD) at Day 8 %>1 log HIV RNA decline of <50 c/mL at Day 8 TOTAL 183 −1.4 (0.61) 82% T66 1 −1.9 100% Y143 28 −1.7 (0.42) 96% N155 33 −1.4 (0.51) 82% Q148 + ≤1 secondary mutation# 32 −1.1 (0.51) 69% Q148 + ≥2 secondary mutations# 20 −1.0 (0.81) 48% ≥2 primary mutations 8 −1.4 (0.76) 75% No primary mutations 60 −1.6 (0.55) 95% # Key secondary mutations comprised G140_ACS, L741, E138_AKT. In subjects with Q148 pathway mutations, virologic response decreased with increasing number of secondary mutations. Background overall susceptibility score (OSS) was not associated with Wk 24 response: % <50 c/mL were 83%, 63%, 59% and 69% for OSS 0, 1, 2 and >2

  1. Therapeutic Potential of Spirooxindoles as Antiviral Agents.

    PubMed

    Ye, Na; Chen, Haiying; Wold, Eric A; Shi, Pei-Yong; Zhou, Jia

    2016-06-10

    Antiviral therapeutics with profiles of high potency, low resistance, panserotype, and low toxicity remain challenging, and obtaining such agents continues to be an active area of therapeutic development. Due to their unique three-dimensional structural features, spirooxindoles have been identified as privileged chemotypes for antiviral drug development. Among them, spiro-pyrazolopyridone oxindoles have been recently reported as potent inhibitors of dengue virus NS4B, leading to the discovery of an orally bioavailable preclinical candidate (R)-44 with excellent in vivo efficacy in a dengue viremia mouse model. This review highlights recent advances in the development of biologically active spirooxindoles for their antiviral potential, primarily focusing on the structure-activity relationships (SARs) and modes of action, as well as future directions to achieve more potent analogues toward a viable antiviral therapy. PMID:27627626

  2. Molecular Characterization of Lys49 and Asp49 Phospholipases A2 from Snake Venom and Their Antiviral Activities against Dengue virus

    PubMed Central

    Cecilio, Alzira B.; Caldas, Sergio; De Oliveira, Raiana A.; Santos, Arthur S. B.; Richardson, Michael; Naumann, Gustavo B.; Schneider, Francisco S.; Alvarenga, Valeria G.; Estevão-Costa, Maria I.; Fuly, Andre L.; Eble, Johannes A.; Sanchez, Eladio F.

    2013-01-01

    We report the detailed molecular characterization of two PLA2s, Lys49 and Asp49 isolated from Bothrops leucurus venom, and examined their effects against Dengue virus (DENV). The Bl-PLA2s, named BlK-PLA2 and BlD-PLA2, are composed of 121 and 122 amino acids determined by automated sequencing of the native proteins and peptides produced by digestion with trypsin. They contain fourteen cysteines with pIs of 9.05 and 8.18 for BlK- and BlD-PLA2s, and show a high degree of sequence similarity to homologous snake venom PLA2s, but may display different biological effects. Molecular masses of 13,689.220 (Lys49) and 13,978.386 (Asp49) were determined by mass spectrometry. DENV causes a prevalent arboviral disease in humans, and no clinically approved antiviral therapy is currently available to treat DENV infections. The maximum non-toxic concentration of the proteins to LLC-MK2 cells determined by MTT assay was 40 µg/mL for Bl-PLA2s (pool) and 20 µg/mL for each isoform. Antiviral effects of Bl-PLA2s were assessed by quantitative Real-Time PCR. Bl-PLA2s were able to reduce DENV-1, DENV-2, and DENV-3 serotypes in LLC-MK2 cells infection. Our data provide further insight into the structural properties and their antiviral activity against DENV, opening up possibilities for biotechnological applications of these Bl-PLA2s as tools of research. PMID:24131891

  3. Inactivated E. coli transformed with plasmids that produce dsRNA against infectious salmon anemia virus hemagglutinin show antiviral activity when added to infected ASK cells

    PubMed Central

    García, Katherine; Ramírez-Araya, Sebastián; Díaz, Álvaro; Reyes-Cerpa, Sebastián; Espejo, Romilio T.; Higuera, Gastón; Romero, Jaime

    2015-01-01

    Infectious salmon anemia virus (ISAV) has caused great losses to the Chilean salmon industry, and the success of prevention and treatment strategies is uncertain. The use of RNA interference (RNAi) is a promising approach because during the replication cycle, the ISAV genome must be transcribed to mRNA in the cytoplasm. We explored the capacity of E. coli transformed with plasmids that produce double-stranded RNA (dsRNA) to induce antiviral activity when added to infected ASK cells. We transformed the non-pathogenic Escherichia coli HT115 (DE3) with plasmids that expressed highly conserved regions of the ISAV genes encoding the nucleoprotein (NP), fusion (F), hemagglutinin (HE), and matrix (M) proteins as dsRNA, which is the precursor of the RNAi mechanism. The inactivated transformed bacteria carrying dsRNA were tested for their capacity to silence the target ISAV genes, and the dsRNA that were able to inhibit gene expression were subsequently tested for their ability to attenuate the cytopathic effect (CPE) and reduce the viral load. Of the four target genes tested, inactivated E. coli transformed with plasmids producing dsRNA targeting HE showed antiviral activity when added to infected ASK cells. PMID:25932022

  4. Inactivated E. coli transformed with plasmids that produce dsRNA against infectious salmon anemia virus hemagglutinin show antiviral activity when added to infected ASK cells.

    PubMed

    García, Katherine; Ramírez-Araya, Sebastián; Díaz, Álvaro; Reyes-Cerpa, Sebastián; Espejo, Romilio T; Higuera, Gastón; Romero, Jaime

    2015-01-01

    Infectious salmon anemia virus (ISAV) has caused great losses to the Chilean salmon industry, and the success of prevention and treatment strategies is uncertain. The use of RNA interference (RNAi) is a promising approach because during the replication cycle, the ISAV genome must be transcribed to mRNA in the cytoplasm. We explored the capacity of E. coli transformed with plasmids that produce double-stranded RNA (dsRNA) to induce antiviral activity when added to infected ASK cells. We transformed the non-pathogenic Escherichia coli HT115 (DE3) with plasmids that expressed highly conserved regions of the ISAV genes encoding the nucleoprotein (NP), fusion (F), hemagglutinin (HE), and matrix (M) proteins as dsRNA, which is the precursor of the RNAi mechanism. The inactivated transformed bacteria carrying dsRNA were tested for their capacity to silence the target ISAV genes, and the dsRNA that were able to inhibit gene expression were subsequently tested for their ability to attenuate the cytopathic effect (CPE) and reduce the viral load. Of the four target genes tested, inactivated E. coli transformed with plasmids producing dsRNA targeting HE showed antiviral activity when added to infected ASK cells.

  5. In vitro antiviral activity of circular triple helix forming oligonucleotide RNA towards Feline Infectious Peritonitis virus replication.

    PubMed

    Choong, Oi Kuan; Mehrbod, Parvaneh; Tejo, Bimo Ario; Omar, Abdul Rahman

    2014-01-01

    Feline Infectious Peritonitis (FIP) is a severe fatal immune-augmented disease in cat population. It is caused by FIP virus (FIPV), a virulent mutant strain of Feline Enteric Coronavirus (FECV). Current treatments and prophylactics are not effective. The in vitro antiviral properties of five circular Triple-Helix Forming Oligonucleotide (TFO) RNAs (TFO1 to TFO5), which target the different regions of virulent feline coronavirus (FCoV) strain FIPV WSU 79-1146 genome, were tested in FIPV-infected Crandell-Rees Feline Kidney (CRFK) cells. RT-qPCR results showed that the circular TFO RNAs, except TFO2, inhibit FIPV replication, where the viral genome copy numbers decreased significantly by 5-fold log10 from 10(14) in the virus-inoculated cells to 10(9) in the circular TFO RNAs-transfected cells. Furthermore, the binding of the circular TFO RNA with the targeted viral genome segment was also confirmed using electrophoretic mobility shift assay. The strength of binding kinetics between the TFO RNAs and their target regions was demonstrated by NanoITC assay. In conclusion, the circular TFOs have the potential to be further developed as antiviral agents against FIPV infection.

  6. In Vitro Antiviral Activity of Circular Triple Helix Forming Oligonucleotide RNA towards Feline Infectious Peritonitis Virus Replication

    PubMed Central

    Choong, Oi Kuan; Tejo, Bimo Ario; Omar, Abdul Rahman

    2014-01-01

    Feline Infectious Peritonitis (FIP) is a severe fatal immune-augmented disease in cat population. It is caused by FIP virus (FIPV), a virulent mutant strain of Feline Enteric Coronavirus (FECV). Current treatments and prophylactics are not effective. The in vitro antiviral properties of five circular Triple-Helix Forming Oligonucleotide (TFO) RNAs (TFO1 to TFO5), which target the different regions of virulent feline coronavirus (FCoV) strain FIPV WSU 79-1146 genome, were tested in FIPV-infected Crandell-Rees Feline Kidney (CRFK) cells. RT-qPCR results showed that the circular TFO RNAs, except TFO2, inhibit FIPV replication, where the viral genome copy numbers decreased significantly by 5-fold log10 from 1014 in the virus-inoculated cells to 109 in the circular TFO RNAs-transfected cells. Furthermore, the binding of the circular TFO RNA with the targeted viral genome segment was also confirmed using electrophoretic mobility shift assay. The strength of binding kinetics between the TFO RNAs and their target regions was demonstrated by NanoITC assay. In conclusion, the circular TFOs have the potential to be further developed as antiviral agents against FIPV infection. PMID:24707494

  7. Thymosin From Bombyx mori Is Down-Regulated in Expression by BmNPV Exhibiting Antiviral Activity

    PubMed Central

    Zhang, Chen; Wang, Yongdi; Fang, Qiang; Xu, Minlin; Lv, Mengyuan; Liao, Jinxu; Li, Si; Nie, Zuoming; Zhang, Wenping

    2016-01-01

    Thymosins have been highly conserved during evolution. These hormones exist in many animal species and play an essential role in many biological events. However, little is known regarding the physiological function of silkworm Bombyx mori thymosin (BmTHY). In this study, we investigated the expression pattern of BmTHY in a Bombyx mori larval ovarian cell line (BmN) challenged with Bombyx mori nuclear polyhydrosis virus (BmNPV) and the antiviral effect of recombinant BmTHY (rBmTHY) for Bombyx mori against BmNPV. Western-blot assay and qRT-PCR analysis revealed that the level of BmTHY protein expression and transcription decreased over time when BmN cells were infected by BmNPV. Treatment with endotoxin-free rBmTHY led to a significant reduction in viral titer in the supernatant of BmN cells challenged with BmNPV. The results from antiviral tests performed in vitro and in vivo showed that endotoxin-free rBmTHY improved the survival rate of Bombyx mori infected with BmNPV. These findings suggest that BmTHY exerts immunomodulatory effects on Bombyx mori, rendering them resistant to viral infection. PMID:27432352

  8. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry

    PubMed Central

    2013-01-01

    Background We previously identified two hydrolyzable tannins, chebulagic acid (CHLA) and punicalagin (PUG) that blocked herpes simplex virus type 1 (HSV-1) entry and spread. These compounds inhibited viral glycoprotein interactions with cell surface glycosaminoglycans (GAGs). Based on this property, we evaluated their antiviral efficacy against several different viruses known to employ GAGs for host cell entry. Results Extensive analysis of the tannins’ mechanism of action was performed on a panel of viruses during the attachment and entry steps of infection. Virus-specific binding assays and the analysis of viral spread during treatment with these compounds were also conducted. CHLA and PUG were effective in abrogating infection by human cytomegalovirus (HCMV), hepatitis C virus (HCV), dengue virus (DENV), measles virus (MV), and respiratory syncytial virus (RSV), at μM concentrations and in dose-dependent manners without significant cytotoxicity. Moreover, the natural compounds inhibited viral attachment, penetration, and spread, to different degrees for each virus. Specifically, the tannins blocked all these steps of infection for HCMV, HCV, and MV, but had little effect on the post-fusion spread of DENV and RSV, which could suggest intriguing differences in the roles of GAG-interactions for these viruses. Conclusions CHLA and PUG may be of value as broad-spectrum antivirals for limiting emerging/recurring viruses known to engage host cell GAGs for entry. Further studies testing the efficacy of these tannins in vivo against certain viruses are justified. PMID:23924316

  9. Thymosin From Bombyx mori Is Down-Regulated in Expression by BmNPV Exhibiting Antiviral Activity.

    PubMed

    Zhang, Chen; Wang, Yongdi; Fang, Qiang; Xu, Minlin; Lv, Mengyuan; Liao, Jinxu; Li, Si; Nie, Zuoming; Zhang, Wenping

    2016-01-01

    Thymosins have been highly conserved during evolution. These hormones exist in many animal species and play an essential role in many biological events. However, little is known regarding the physiological function of silkworm Bombyx mori thymosin (BmTHY). In this study, we investigated the expression pattern of BmTHY in a Bombyx mori larval ovarian cell line (BmN) challenged with Bombyx mori nuclear polyhydrosis virus (BmNPV) and the antiviral effect of recombinant BmTHY (rBmTHY) for Bombyx mori against BmNPV. Western-blot assay and qRT-PCR analysis revealed that the level of BmTHY protein expression and transcription decreased over time when BmN cells were infected by BmNPV. Treatment with endotoxin-free rBmTHY led to a significant reduction in viral titer in the supernatant of BmN cells challenged with BmNPV. The results from antiviral tests performed in vitro and in vivo showed that endotoxin-free rBmTHY improved the survival rate of Bombyx mori infected with BmNPV. These findings suggest that BmTHY exerts immunomodulatory effects on Bombyx mori, rendering them resistant to viral infection. PMID:27432352

  10. Antiradical activity of gallic acid included in lipid interphases.

    PubMed

    Salcedo, C L; Frías, M A; Cutro, A C; Nazareno, M A; Disalvo, E A

    2014-10-01

    Polyphenols are well known as antioxidant agents and by their effects on the hydration layers of lipid interphases. Among them, gallic acid and its derivatives are able to decrease the dipole potential and to act in water as a strong antioxidant. In this work we have studied both effects on lipid interphases in monolayers and bilayers of dimyristoylphosphatidylcholine. The results show that gallic acid (GA) increases the negative surface charges of large unilamellar vesicles (LUVs) and decreases the dipole potential of the lipid interphase. As a result, positively charged radical species such as ABTS(+) are able to penetrate the membrane forming an association with GA. These results allow discussing the antiradical activity (ARA) of GA at the membrane phase which may be taking place in water spaces between the lipids.

  11. Immunoproteasome Activation During Early Antiviral Response in Mouse Pancreatic β-cells: New Insights into Auto-antigen Generation in Type I Diabetes?

    PubMed

    Freudenburg, Wieke; Gautam, Madhav; Chakraborty, Pradipta; James, Jared; Richards, Jennifer; Salvatori, Alison S; Baldwin, Aaron; Schriewer, Jill; Buller, R Mark L; Corbett, John A; Skowyra, Dorota

    2013-04-23

    Type 1 diabetes results from autoimmune destruction of the insulin producing pancreatic β-cells. The immunoproteasome, a version of the proteasome that collaborates with the 11S/PA28 activator to generate immunogenic peptides for presentation by MHC class I molecules, has long been implicated in the onset of the disease, but little is known about immunoproteasome function and regulation in pancreatic β-cells. Interesting insight into these issues comes from a recent analysis of the immunoproteasome expressed in pancreatic β-cells during early antiviral defenses mediated by interferon β (IFNβ), a type I IFN implicated in the induction of the diabetic state in human and animal models. Using mouse islets and the MIN6 insulinoma cell line, Freudenburg et al. found that IFNβ stimulates expression of the immunoproteasome and the 11S/PA28 activator in a manner fundamentally similar to the classic immuno-inducer IFNγ, with similar timing of mRNA accumulation and decline; similar transcriptional activation mediated primarily by the IRF1 and similar mRNA and protein levels. Furthermore, neither IFNβ nor IFNγ altered the expression of regular proteolytic subunits or prevented their incorporation into proteolytic cores. As a result, immunoproteasomes had stochastic combinations of immune and regular proteolytic sites, an arrangement that would likely increase the probability with which unique immunogenic peptides are produced. However, immunoproteasomes were activated by the 11S/PA28 only under conditions of ATP depletion. A mechanism that prevents the activation of immunoproteasome at high ATP levels has not been reported before and could have a major regulatory significance, as it could suppress the generation of immunogenic peptides as cell accumulate immunoproteasome and 11S/PA28, and activate antigen processing only when ATP levels drop. We discuss implications of these new findings on the link between early antiviral response and the onset of type 1 diabetes.

  12. An inducible heat shock protein 70 small molecule inhibitor demonstrates anti-dengue virus activity, validating Hsp70 as a host antiviral target.

    PubMed

    Howe, Matthew K; Speer, Brittany L; Hughes, Philip F; Loiselle, David R; Vasudevan, Subhash; Haystead, Timothy A J

    2016-06-01

    An estimated three billion people are at risk of Dengue virus (DENV) infection worldwide and there are currently no approved therapeutic interventions for DENV infection. Due to the relatively small size of the DENV genome, DENV is reliant on host factors throughout the viral life cycle. The inducible form of Heat Shock Protein 70 (Hsp70i) has been implicated as a host factor in DENV pathogenesis, however the complete role remains to be elucidated. Here we further illustrate the importance of Hsp70i in dengue virus pathogenesis and describe the antiviral activity of the allosteric small molecule inhibitor that is selective for Hsp70i, called HS-72. In monocytes, Hsp70i is expressed at low levels preceding DENV infection, but Hsp70i expression is induced upon DENV infection. Targeting Hsp70i with HS-72, results in a dose dependent reduction in DENV infected monocytes, while cell viability was maintained. HS-72 works to reduce DENV infection by inhibiting the entry stage of the viral life cycle, through disrupting the association of Hsp70i with the DENV receptor complex. This work highlights Hsp70i as an antiviral target and HS-72 as a potential anti-DENV therapeutic agent.

  13. H11/HSPB8 Restricts HIV-2 Vpx to Restore the Anti-Viral Activity of SAMHD1.

    PubMed

    Kudoh, Ayumi; Miyakawa, Kei; Matsunaga, Satoko; Matsushima, Yuki; Kosugi, Isao; Kimura, Hirokazu; Hayakawa, Satoshi; Sawasaki, Tatsuya; Ryo, Akihide

    2016-01-01

    Virus-host interactions play vital roles in viral replication and virus-induced pathogenesis. Viruses rely entirely upon host cells to reproduce progeny viruses; however, host factors positively or negatively regulate virus replication by interacting with viral proteins. The elucidation of virus-host protein interaction not only provides a better understanding of the molecular mechanisms by which host cells combat viral infections, but also facilitates the development of new anti-viral therapeutics. Identification of relevant host factors requires techniques that enable comprehensive characterization of virus-host protein interactions. In this study, we developed a proteomic approach to systematically identify human protein kinases that interact potently with viral proteins. For this purpose, we synthesized 412 full-length human protein kinases using the wheat germ cell-free protein synthesis system, and screened them for their association with a virus protein using the amplified luminescent proximity homogenous assay (AlphaScreen). Using this system, we attempted to discover a robust anti-viral host restriction mechanism targeting virus protein X (Vpx) of HIV-2. The screen identified H11/HSPB8 as a Vpx-binding protein that negatively regulates the stability and function of Vpx. Indeed, overexpression of H11/HSPB8 promoted the degradation of Vpx via the ubiquitin-proteasome pathway and inhibited its interaction with SAMHD1, a host restriction factor responsible for blocking replication of HIV. Conversely, targeted knockdown of H11/HSPB8 in human trophoblast cells, which ordinarily express high levels of this protein, restored the expression and function of Vpx, making the cells highly susceptible to viral replication. These results demonstrate that our proteomic approach represents a powerful tool for revealing virus-host interaction not yet identified by conventional methods. Furthermore, we showed that H11/HSPB8 could be a potential host regulatory factor that

  14. H11/HSPB8 Restricts HIV-2 Vpx to Restore the Anti-Viral Activity of SAMHD1

    PubMed Central

    Kudoh, Ayumi; Miyakawa, Kei; Matsunaga, Satoko; Matsushima, Yuki; Kosugi, Isao; Kimura, Hirokazu; Hayakawa, Satoshi; Sawasaki, Tatsuya; Ryo, Akihide

    2016-01-01

    Virus–host interactions play vital roles in viral replication and virus-induced pathogenesis. Viruses rely entirely upon host cells to reproduce progeny viruses; however, host factors positively or negatively regulate virus replication by interacting with viral proteins. The elucidation of virus–host protein interaction not only provides a better understanding of the molecular mechanisms by which host cells combat viral infections, but also facilitates the development of new anti-viral therapeutics. Identification of relevant host factors requires techniques that enable comprehensive characterization of virus–host protein interactions. In this study, we developed a proteomic approach to systematically identify human protein kinases that interact potently with viral proteins. For this purpose, we synthesized 412 full-length human protein kinases using the wheat germ cell-free protein synthesis system, and screened them for their association with a virus protein using the amplified luminescent proximity homogenous assay (AlphaScreen). Using this system, we attempted to discover a robust anti-viral host restriction mechanism targeting virus protein X (Vpx) of HIV-2. The screen identified H11/HSPB8 as a Vpx-binding protein that negatively regulates the stability and function of Vpx. Indeed, overexpression of H11/HSPB8 promoted the degradation of Vpx via the ubiquitin–proteasome pathway and inhibited its interaction with SAMHD1, a host restriction factor responsible for blocking replication of HIV. Conversely, targeted knockdown of H11/HSPB8 in human trophoblast cells, which ordinarily express high levels of this protein, restored the expression and function of Vpx, making the cells highly susceptible to viral replication. These results demonstrate that our proteomic approach represents a powerful tool for revealing virus–host interaction not yet identified by conventional methods. Furthermore, we showed that H11/HSPB8 could be a potential host regulatory

  15. Immunobiological activity and antiviral regulation efforts of Chinese goose (Anser cygnoides) CD8α during NGVEV and GPV infection.

    PubMed

    Chen, Shun; Zhao, Qiurong; Qi, Yulin; Liu, Fei; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Chen, Xiaoyue; Cheng, Anchun

    2015-01-01

    The CD8 molecule is a cell membrane glycoprotein expressed on cytotoxic T lymphocytes, which are involved in the clearance of viruses. However, the functional characterization of goose CD8α is still unclear. The immunobiological characterization of goose CD8α in goose spleen mononuclear cells (MNCs) was examined by real-time quantitative PCR (qPCR). It was shown that CD8α mRNA levels were significantly up-regulated by in vitro treatment of MNCs with phytohemagglutinin (PHA), concanavalin A (ConA), and polyinosinic-polycytidylic acid (poly I:C) in a dose-dependent way, but lipopolysaccharides (LPSs) did not have this same effect. Moreover, the time-course effect of CD8α expression in response to mitogens (PHA, ConA, and poly I:C) was evaluated in MNCs. A significant increase in the transcriptional levels of CD8α was detected in new type gosling viral enteritis virus (NGVEV)-infected goose MNCs at 48 h postinfection (PI) and in goose parvovirus (GPV)-infected MNCs at 72 h PI. Also, the number of CD8α+ cells was significantly increased during viral infection from 72 h on. The seminal changes in mRNA profiles of antiviral cytokines (IFN-α, IFN-γ, and IL-18) were observed and were significantly increased during late phases of NGVEV and GPV infection. Accordingly, our data not only contribute to the understanding of the immune characteristics of goose CD8α, but they also provide new insight into the innate antiviral immunity of geese.

  16. Ionic derivatives of betulinic acid exhibit antiviral activity against herpes simplex virus type-2 (HSV-2), but not HIV-1 reverse transcriptase.

    PubMed

    Visalli, Robert J; Ziobrowski, Hannah; Badri, Kameswara R; He, Johnny J; Zhang, Xiugen; Arumugam, Sri Ranjini; Zhao, Hua

    2015-08-15

    Betulinic acid (1) has been modified to ionic derivatives (2-5) to improve its water solubility and biological activities. The binding properties of these derivatives with respect to human serum albumin (HSA) was examined and found to be similar to current anti-HIV drugs. These compounds did not inhibit HIV reverse transcriptase, however, 1, 2 and 5 inhibited herpes simplex type 2 (HSV-2) replication at concentrations similar to those reported for acyclovir (IC50 ∼ 0.1-10 μM) and with minimal cellular cytotoxicity. IC50 values for antiviral activity against HSV-2 186 were 1.6, 0.6, 0.9, 7.2, and 0.9 μM for compounds 1-5, respectively.

  17. Matrine displayed antiviral activity in porcine alveolar macrophages co-infected by porcine reproductive and respiratory syndrome virus and porcine circovirus type 2.

    PubMed

    Sun, Na; Sun, Panpan; Lv, Haipeng; Sun, Yaogui; Guo, Jianhua; Wang, Zhirui; Luo, Tiantian; Wang, Shaoyu; Li, Hongquan

    2016-01-01

    The co-infection of porcine reproductive respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) is quite common in clinical settings and no effective treatment to the co-infection is available. In this study, we established the porcine alveolar macrophages (PAM) cells model co-infected with PRRSV/PCV2 with modification in vitro, and investigated the antiviral activity of Matrine on this cell model and further evaluated the effect of Matrine on virus-induced TLR3,4/NF-κB/TNF-α pathway. The results demonstrated PAM cells inoculated with PRRSV followed by PCV2 2 h later enhanced PRRSV and PCV2 replications. Matrine treatment suppressed both PRRSV and PCV2 infection at 12 h post infection. Furthermore, PRRSV/PCV2 co- infection induced IκBα degradation and phosphorylation as well as the translocation of NF-κB from the cytoplasm to the nucleus indicating that PRRSV/PCV2 co-infection induced NF-κB activation. Matrine treatment significantly down-regulated the expression of TLR3, TLR4 and TNF-α although it, to some extent, suppressed p-IκBα expression, suggesting that TLR3,4/NF-κB/TNF-α pathway play an important role of Matrine in combating PRRSV/PCV2 co-infection. It is concluded that Matrine possesses activity against PRRSV/PCV2 co-infection in vitro and suppression of the TLR3,4/NF-κB/TNF-α pathway as an important underlying molecular mechanism. These findings warrant Matrine to be further explored for its antiviral activity in clinical settings. PMID:27080155

  18. Eupafolin and Ethyl Acetate Fraction of Kalanchoe gracilis Stem Extract Show Potent Antiviral Activities against Enterovirus 71 and Coxsackievirus A16

    PubMed Central

    Wang, Ching-Ying; Huang, Shun-Chueh; Lai, Zhen-Rung; Ho, Yu-Ling; Jou, Yu-Jen; Kung, Szu-Hao; Zhang, Yongjun; Chang, Yuan-Shiun; Lin, Cheng-Wen

    2013-01-01

    Enterovirus 71 (EV71) and coxsackievirus A16 (CoxA16) are main pathogens of hand-foot-and-mouth disease, occasionally causing aseptic meningitis and encephalitis in tropical and subtropical regions. Kalanchoe gracilis, Da-Huan-Hun, is a Chinese folk medicine for treating pain and inflammation, exhibiting antioxidant and anti-inflammatory activities. Our prior report (2012) cited K. gracilis leaf extract as moderately active against EV71 and CoxA16. This study further rates antienteroviral potential of K. gracilis stem (KGS) extract to identify potent antiviral fractions and components. The extract moderately inhibits viral cytopathicity and virus yield, as well as in vitro replication of EV71 (IC50 = 75.18 μg/mL) and CoxA16 (IC50 = 81.41 μg/mL). Ethyl acetate (EA) fraction of KGS extract showed greater antiviral activity than that of n-butanol or aqueous fraction: IC50 values of 4.21 μg/mL against EV71 and 9.08 μg/mL against CoxA16. HPLC analysis, UV-Vis absorption spectroscopy, and plaque reduction assay indicate that eupafolin is a vital component of EA fraction showing potent activity against EV71 (IC50 = 1.39 μM) and CoxA16 (IC50 = 5.24 μM). Eupafolin specifically lessened virus-induced upregulation of IL-6 and RANTES by inhibiting virus-induced ERK1/2, AP-1, and STAT3 signals. Anti-enteroviral potency of KGS EA fraction and eupafolin shows the clinical potential against EV71 and CoxA16 infection. PMID:24078828

  19. Matrine displayed antiviral activity in porcine alveolar macrophages co-infected by porcine reproductive and respiratory syndrome virus and porcine circovirus type 2.

    PubMed

    Sun, Na; Sun, Panpan; Lv, Haipeng; Sun, Yaogui; Guo, Jianhua; Wang, Zhirui; Luo, Tiantian; Wang, Shaoyu; Li, Hongquan

    2016-04-15

    The co-infection of porcine reproductive respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) is quite common in clinical settings and no effective treatment to the co-infection is available. In this study, we established the porcine alveolar macrophages (PAM) cells model co-infected with PRRSV/PCV2 with modification in vitro, and investigated the antiviral activity of Matrine on this cell model and further evaluated the effect of Matrine on virus-induced TLR3,4/NF-κB/TNF-α pathway. The results demonstrated PAM cells inoculated with PRRSV followed by PCV2 2 h later enhanced PRRSV and PCV2 replications. Matrine treatment suppressed both PRRSV and PCV2 infection at 12 h post infection. Furthermore, PRRSV/PCV2 co- infection induced IκBα degradation and phosphorylation as well as the translocation of NF-κB from the cytoplasm to the nucleus indicating that PRRSV/PCV2 co-infection induced NF-κB activation. Matrine treatment significantly down-regulated the expression of TLR3, TLR4 and TNF-α although it, to some extent, suppressed p-IκBα expression, suggesting that TLR3,4/NF-κB/TNF-α pathway play an important role of Matrine in combating PRRSV/PCV2 co-infection. It is concluded that Matrine possesses activity against PRRSV/PCV2 co-infection in vitro and suppression of the TLR3,4/NF-κB/TNF-α pathway as an important underlying molecular mechanism. These findings warrant Matrine to be further explored for its antiviral activity in clinical settings.

  20. Matrine displayed antiviral activity in porcine alveolar macrophages co-infected by porcine reproductive and respiratory syndrome virus and porcine circovirus type 2

    PubMed Central

    Sun, Na; Sun, Panpan; Lv, Haipeng; Sun, Yaogui; Guo, Jianhua; Wang, Zhirui; Luo, Tiantian; Wang, Shaoyu; Li, Hongquan

    2016-01-01

    The co-infection of porcine reproductive respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) is quite common in clinical settings and no effective treatment to the co-infection is available. In this study, we established the porcine alveolar macrophages (PAM) cells model co-infected with PRRSV/PCV2 with modification in vitro, and investigated the antiviral activity of Matrine on this cell model and further evaluated the effect of Matrine on virus-induced TLR3,4/NF-κB/TNF-α pathway. The results demonstrated PAM cells inoculated with PRRSV followed by PCV2 2 h later enhanced PRRSV and PCV2 replications. Matrine treatment suppressed both PRRSV and PCV2 infection at 12 h post infection. Furthermore, PRRSV/PCV2 co- infection induced IκBα degradation and phosphorylation as well as the translocation of NF-κB from the cytoplasm to the nucleus indicating that PRRSV/PCV2 co-infection induced NF-κB activation. Matrine treatment significantly down-regulated the expression of TLR3, TLR4 and TNF-α although it, to some extent, suppressed p-IκBα expression, suggesting that TLR3,4/NF-κB/TNF-α pathway play an important role of Matrine in combating PRRSV/PCV2 co-infection. It is concluded that Matrine possesses activity against PRRSV/PCV2 co-infection in vitro and suppression of the TLR3,4/NF-κB/TNF-α pathway as an important underlying molecular mechanism. These findings warrant Matrine to be further explored for its antiviral activity in clinical settings. PMID:27080155

  1. [Interferon : antiviral mechanisms and viral escape].

    PubMed

    Espert, Lucile; Gongora, Céline; Mechti, Nadir

    2003-02-01

    15 % of human cancers have virus origin, meaning that viruses are the second cause of cancers after tabagism. The knowledge of antiviral mechanisms is essential for treatment and prevention of infection evolution towards cancers. Interferons (IFNs) are a large family of multifunctional cytokines. They are involved in regulation of cell growth and modulation of immune response. But, all these functions seem to converge toward the most important of them : the antiviral activity. IFN secretion is the first event induced by viral infection, and will act on specific receptors on neighbour cells and prevent their infection by inducing numbers of antiviral genes. Although few of them are well known like the PKR, the 2-5OAS/RNase L pathway and the Mx proteins, many others need extensive studies to understand the wide range of IFN effect. Viruses have evolved to circumvent the IFN antiviral activity, and are able not only to divert the cellular machinery but also to lure the antiviral mechanisms of the host cell. The purpose of this review is to describe the many antiviral pathways and proteins induced by IFNs and to summarize the strategies of viral escape. PMID:12660132

  2. Downregulation of inducible nitric oxide synthase (iNOS) expression is implicated in the antiviral activity of acetylsalicylic acid in HCV-expressing cells.

    PubMed

    Ríos-Ibarra, Clara Patricia; Lozano-Sepulveda, Sonia; Muñoz-Espinosa, Linda; Rincón-Sánchez, Ana Rosa; Cordova-Fletes, Carlos; Rivas-Estilla, Ana María G

    2014-12-01

    Previously, we described that acetylsalicylic acid (ASA) decreases HCV expression, but the mechanisms involved have not been clearly established. We evaluated the participation of inducible nitric oxide synthase (iNOS) in the regulation of HCV-RNA induced by ASA. Huh7 cells expressing non-structural HCV proteins were exposed to 4 mM ASA and incubated at the same times we reported HCV downregulation (24-72 h), and iNOS mRNA and protein levels were then measured by real-time PCR and Western blot, respectively. Nitric oxide levels were measured at the same time. Inhibition of iNOS mRNA by small interfering RNAs (siRNA) and activation of the iNOS gene promoter by ASA treatment were evaluated. In Huh7 replicon cells treated with ASA, we found decreased levels of iNOS mRNA, iNOS protein and nitrosylated protein levels at 48-72 h. ASA exposure also reduced the transactivation of the iNOS promoter in HCV replicon cells at 48 h, and this was partly due to the decrease in the affinity of transcription factor C/EBP-β for its binding site in the iNOS promoter. siRNA silencing of iNOS decreased HCV-RNA expression (65 %) and potentiated the antiviral effect (80 %) of ASA compared with control cells. ASA reduces iNOS expression by downregulating promoter activity, mRNA and protein levels at the same time that it decreases HCV expression. These findings suggest that the antiviral activity of ASA is mediated partially through the modulation of iNOS.

  3. A Newly Emerged Swine-Origin Influenza A(H3N2) Variant Dampens Host Antiviral Immunity but Induces Potent Inflammasome Activation.

    PubMed

    Cao, Weiping; Mishina, Margarita; Ranjan, Priya; De La Cruz, Juan A; Kim, Jin Hyang; Garten, Rebecca; Kumar, Amrita; García-Sastre, Adolfo; Katz, Jacqueline M; Gangappa, Shivaprakash; Sambhara, Suryaprakash

    2015-12-15

    We compared the innate immune response to a newly emerged swine-origin influenza A(H3N2) variant containing the M gene from 2009 pandemic influenza A(H1N1), termed "A(H3N2)vpM," to the immune responses to the 2010 swine-origin influenza A(H3N2) variant and seasonal influenza A(H3N2). Our results demonstrated that A(H3N2)vpM-induced myeloid dendritic cells secreted significantly lower levels of type I interferon (IFN) but produced significantly higher levels of proinflammatory cytokines and induced potent inflammasome activation. The reduction in antiviral immunity with increased inflammatory responses upon A(H3N2)vpM infection suggest that these viruses have the potential for increased disease severity in susceptible hosts. PMID:26068782

  4. Novel drugs targeting Toll-like receptors for antiviral therapy

    PubMed Central

    Patel, Mira C; Shirey, Kari Ann; Pletneva, Lioubov M; Boukhvalova, Marina S; Garzino-Demo, Alfredo; Vogel, Stefanie N; Blanco, Jorge CG

    2014-01-01

    Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved ‘pathogen-associated molecular patterns’ of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release ‘danger-associated molecular patterns’ that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy. PMID:25620999

  5. Cyclopiazonic acid, an inhibitor of calcium-dependent ATPases with antiviral activity against human respiratory syncytial virus.

    PubMed

    Cui, Rui; Wang, Yizhuo; Wang, Liu; Li, Guiming; Lan, Ke; Altmeyer, Ralf; Zou, Gang

    2016-08-01

    Human respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections in infants and young children worldwide, yet no vaccine or effective antiviral treatment is available. To search for new anti-RSV agents, we developed a cell-based assay that measures inhibition of RSV-induced cytopathic effect (CPE) and identified cyclopiazonic acid (CPA), an intracellular calcium ATPase inhibitor as a RSV inhibitor (EC50 values 4.13 μM) by screening of natural product library. CPA inhibited the replication of RSV strains belonging to both A and B subgroups and human parainfluenza virus type 3, but not Enterovirus 71. Mechanism of action study by time-of-addition assay and minigenome assay revealed that CPA acts at the step of virus genome replication and/or transcription. Moreover, two other calcium ATPase inhibitors (Thapsigargin and BHQ) and calcium ionophores (A23187 and ionomycin), but not calcium channel blockers (nifedipine, nimodipine, and tetrandrine), also had similar effect. These results indicate that an increase in intracellular calcium concentration is detrimental to RSV replication. Thus, our findings provide a new strategy for anti-RSV therapy via increasing intracellular calcium concentration. PMID:27210812

  6. Antiviral Terpenoid Constituents of Ganoderma pfeifferi.

    PubMed

    Niedermeyer, Timo H J; Lindequist, Ulrike; Mentel, Renate; Gördes, Dirk; Schmidt, Enrico; Thurow, Kerstin; Lalk, Michael

    2005-12-01

    Four sterols and 10 triterpenes were isolated from the fruiting bodies of Ganoderma pfeifferi, including the three new triterpenes 3,7,11-trioxo-5alpha-lanosta-8,24-diene-26-al (lucialdehyde D, 1), 5alpha-lanosta-8,24-diene-26-hydroxy-3,7-dione (ganoderone A, 2), and 5alpha-lanosta-8-ene-24,25-epoxy-26-hydroxy-3,7-dione (ganoderone C, 3). The structures of 1-3 were determined on the basis of spectroscopic evidence. Antibacterial, antifungal, and antiviral activity were studied for some of the isolated compounds. Ganoderone A (2), lucialdehyde B (4), and ergosta-7,22-dien-3beta-ol (7) were found to exhibit potent inhibitory activity against herpes simplex virus.

  7. Optimal design of active and semi-active suspensions including time delays and preview

    NASA Astrophysics Data System (ADS)

    Hac', A.; Youn, I.

    1993-10-01

    Several control laws for active and semi-active suspension based on a linear half car model are derived and investigated. The strategies proposed take full advantage of the fact that the road input to the rear wheels is a delayed version of that to the front wheels, which in turn can be obtained either from the measurements of the front wheels and body motions or by direct preview of road irregularities if preview sensors are available. The suspension systems are optimized with respect to ride comfort, road holding and suspension rattle space as expressed by the mean-square-values of body acceleration (including effects of heave and pitch), tire deflections and front and rear suspension travels. The optimal control laws that minimize the given performance index and include passivity constraints in the semi-active case are derived using calculus of variation. The optimal semi-active suspension becomes piecewise linear, varying between passive and fully active systems and combinations of them. The performances of active and semi-active systems with and without preview were evaluated by numerical simulation in the time and frequency domains. The results show that incorporation of time delay between the front and rear axles in controller design improves the dynamic behavior of the rear axle and control of body pitch motion, while additional preview improves front wheel dynamics and body heave.

  8. Novel halogenated 3-deazapurine, 7-deazapurine and alkylated 9-deazapurine derivatives of L-ascorbic or imino-L-ascorbic acid: Synthesis, antitumour and antiviral activity evaluations.

    PubMed

    Stipković Babić, Maja; Makuc, Damjan; Plavec, Janez; Martinović, Tamara; Kraljević Pavelić, Sandra; Pavelić, Krešimir; Snoeck, Robert; Andrei, Graciela; Schols, Dominique; Wittine, Karlo; Mintas, Mladen

    2015-09-18

    Keeping the potential synergy of biological activity of synthetic anomalous derivatives of deazapurines and l-ascorbic acid (l-AA) in mind, we have synthesized new 3-, 7- and 9-deazapurine derivatives of l-ascorbic (1-4, 8-10, 13-15) and imino-l-ascorbic acid (5-7, 11, 12, 16-19). These novel compounds were evaluated for their cytostatic and antiviral activity in vitro against a panel of human malignant tumour cell lines and normal murine fibroblasts (3T3). Among all evaluated compounds, the 9-deazapurine derivative of l-AA (13) exerted the most potent inhibitory activity on the growth of CEM/0 cells (IC50 = 4.1 ± 1.8 μM) and strong antiproliferative effect against L1210/0 (IC50 = 4.7 ± 0.1 μM) while the 9-deazahypoxanthine derivative of l-AA (15) showed the best effect against HeLa cells (IC50 = 5.6 ± 1.3 μM) and prominent effect on L1210/0 (IC50 = 4.5 ± 0.5 μM). Furthermore, the 9-deazapurine derivative disubstituted with two imino-l-AA moieties (18) showed the best activity against L1210/0 tumour cells (IC50 = 4.4 ± 0.3 μM) and the most pronounced antiproliferative effects against MiaPaCa-2 cells (IC50 = 5.7 ± 0.2 μM). All these compounds showed selective cytostatic effect on tumour cell lines in comparison with embryonal murine fibroblasts (3T3). When evaluating their antiviral activity, the 3-deazapurine derivative of l-AA (3) exhibited the highest activity against both laboratory-adapted strains of human cytomegalovirus (HCMV) (AD-169 and Davis) with EC50 values comparable to those of the well-known anti-HCMV drug ganciclovir and without cytotoxic effects on normal human embryonal lung (HEL) cells.

  9. Isolation and characterization of a new class of DNA aptamers specific binding to Singapore grouper iridovirus (SGIV) with antiviral activities.

    PubMed

    Li, Pengfei; Yan, Yang; Wei, Shina; Wei, Jingguang; Gao, Ren; Huang, Xiaohong; Huang, Youhua; Jiang, Guohua; Qin, Qiwei

    2014-08-01

    The Singapore grouper iridovirus (SGIV), a member of the genus Ranavirus, is a major viral pathogen that has caused heavy economic losses to the grouper aquaculture industry in China and Southeast Asia. No efficient method of controlling SGIV outbreaks is currently available. Systematic evolution of ligands by exponential enrichment (SELEX) is now widely used for the in vitro selection of artificial ssDNA or RNA ligands, known as aptamers, which bind to targets through their stable three-dimensional structures. In our current study, we generated ssDNA aptamers against the SGIV, and evaluated their ability to block SGIV infection in cultured fish cells and cultured fish in vivo. The anti-SGIV DNA aptamers, LMB-761, LMB-764, LMB-748, LMB-439, LMB-755, and LMB-767, were selected from a pool of oligonucleotides randomly generated using a SELEX iterative method. The analysis of the secondary structure of the aptamers revealed that they all formed similar stem-loop structures. Electrophoretic mobility shift assays showed that the aptamers bound SGIV specifically, as evidenced by a lack cross-reactivity with the soft shell turtle iridovirus. The aptamers produced no cytotoxic effects in cultured grouper spleen cells (GS). Assessment of cytopathic effects (CPE) and viral titer assays showed that LMB-761, LMB-764, LMB-748, LMB-755, and LMB-767 significantly inhibited SGIV infection in GS cells. The in vivo experiments showed that LMB-761 and LMB-764 reduced SGIV-related mortality, and no negative effects were observed in orange-spotted grouper, Epinephelus coioides, indicating that these DNA aptamers may be suitable antiviral candidates for controlling SGIV infections in fish reared in marine aquaculture facilities.

  10. Antioxidants: potential antiviral agents for Japanese encephalitis virus infection.

    PubMed

    Zhang, Yu; Wang, Zehua; Chen, Huan; Chen, Zongtao; Tian, Yanping

    2014-07-01

    Japanese encephalitis (JE) is prevalent throughout eastern and southern Asia and the Pacific Rim. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. Despite the importance of JE, little is known about its pathogenesis. The role of oxidative stress in the pathogenesis of viral infections has led to increased interest in its role in JEV infections. This review focuses mainly on the role of oxidative stress in the pathogenesis of JEV infection and the antiviral effect of antioxidant agents in inhibiting JEV production. First, this review summarizes the pathogenesis of JE. The pathological changes include neuronal death, astrocyte activation, and microglial proliferation. Second, the relationship between oxidative stress and JEV infection is explored. JEV infection induces the generation of oxidants and exhausts the supply of antioxidants, which activates specific signaling pathways. Finally, the therapeutic efficacy of a variety of antioxidants as antiviral agents, including minocycline, arctigenin, fenofibrate, and curcumin, was studied. In conclusion, antioxidants are likely to be developed into antiviral agents for the treatment of JE. PMID:24780919

  11. Viruses transfer the antiviral second messenger cGAMP between cells

    PubMed Central

    Bridgeman, A.; Maelfait, J.; Davenne, T.; Partridge, T.; Peng, Y.; Mayer, A.; Dong, T.; Kaever, V.; Borrow, P.; Rehwinkel, J.

    2015-01-01

    Cyclic GMP-AMP synthase (cGAS) detects cytosolic DNA during virus infection and induces an antiviral state. cGAS signals by synthesis of a second messenger, cyclic GMP-AMP (cGAMP), which activates stimulator of interferon genes (STING). We show that cGAMP is incorporated into viral particles, including lentivirus and herpesvirus virions, when these are produced in cGAS-expressing cells. Virions transferred cGAMP to newly infected cells and triggered a STING-dependent antiviral program. These effects were independent of exosomes and viral nucleic acids. Our results reveal a way by which a signal for innate immunity is transferred between cells, potentially accelerating and broadening antiviral responses. Moreover, infection of dendritic cells with cGAMP-loaded lentiviruses enhanced their activation. Loading viral vectors with cGAMP therefore holds promise for vaccine development. PMID:26229117

  12. Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway

    PubMed Central

    Pattabhi, Sowmya; Wilkins, Courtney R.; Dong, Ran; Knoll, Megan L.; Posakony, Jeffrey; Kaiser, Shari; Mire, Chad E.; Wang, Myra L.; Ireton, Renee C.; Geisbert, Thomas W.; Bedard, Kristin M.; Iadonato, Shawn P.

    2015-01-01

    ABSTRACT The cellular response to virus infection is initiated when pathogen recognition receptors (PRR) engage viral pathogen-associated molecular patterns (PAMPs). This process results in induction of downstream signaling pathways that activate the transcription factor interferon regulatory factor 3 (IRF3). IRF3 plays a critical role in antiviral immunity to drive the expression of innate immune response genes, including those encoding antiviral factors, type 1 interferon, and immune modulatory cytokines, that act in concert to restrict virus replication. Thus, small molecule agonists that can promote IRF3 activation and induce innate immune gene expression could serve as antivirals to induce tissue-wide innate immunity for effective control of virus infection. We identified small molecule compounds that activate IRF3 to differentially induce discrete subsets of antiviral genes. We tested a lead compound and derivatives for the ability to suppress infections caused by a broad range of RNA viruses. Compound administration significantly decreased the viral RNA load in cultured cells that were infected with viruses of the family Flaviviridae, including West Nile virus, dengue virus, and hepatitis C virus, as well as viruses of the families Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus), and Paramyxoviridae (respiratory syncytial virus, Nipah virus) to suppress infectious virus production. Knockdown studies mapped this response to the RIG-I-like receptor pathway. This work identifies a novel class of host-directed immune modulatory molecules that activate IRF3 to promote host antiviral responses to broadly suppress infections caused by RNA viruses of distinct genera. IMPORTANCE Incidences of emerging and reemerging RNA viruses highlight a desperate need for broad-spectrum antiviral agents that can effectively control infections caused by viruses of distinct genera. We identified small molecule compounds that can

  13. Litsea Species as Potential Antiviral Plant Sources.

    PubMed

    Guan, Yifu; Wang, Dongying; Tan, Ghee T; Van Hung, Nguyen; Cuong, Nguyen Manh; Pezzuto, John M; Fong, Harry H S; Soejarto, Djaja Doel; Zhang, Hongjie

    2016-01-01

    Litsea verticillata Hance (Lauraceae), a Chinese medicine used to treat swelling caused by injury or by snake bites, was the first plant identified by our National Institutes of Health (NIH)-funded International Cooperative Biodiversity Group (ICBG) project to exhibit anti-HIV activities. From this plant, we discovered a class of 8 novel litseane compounds, prototypic sesquiterpenes, all of which demonstrated anti-HIV activities. In subsequent studies, 26 additional compounds of different structural types were identified. During our continuing investigation of this plant species, we identified two new litseanes, litseaverticillols L and M, and a new sesquiterpene butenolide, litseasesquibutenolide. Litseaverticillols L and M were found to inhibit HIV-1 replication, with an IC[Formula: see text] value of 49.6[Formula: see text][Formula: see text]M. To further determine the antiviral properties of this plant, several relatively abundant isolates, including a litseane compound, two eudesmane sesquiterpenes and three lignans, were evaluated against an additional 21 viral targets. Lignans 8 and 9 were shown to be active against the Epstein-Barr Virus (EBV), with EC[Formula: see text] values of 22.0[Formula: see text][Formula: see text]M ([Formula: see text]) and 16.2[Formula: see text][Formula: see text]M ([Formula: see text]), respectively. Since many antiviral compounds have been discovered in L. verticillata, we further prepared 38 plant extracts made from the different plant parts of 9 additional Litsea species. These extracts were evaluated for their anti-HIV and cytotoxic activities, and four of the extracts, which ranged across three different species, displayed 97-100% inhibitory effects against HIV replication without showing cytotoxicity to a panel of human cell lines at a concentration of 20 μg/mL. PMID:27080941

  14. Innate Antiviral Defenses Independent of Inducible IFNα/β Production.

    PubMed

    Paludan, Søren R

    2016-09-01

    The type I interferons (IFNs) (IFNα and IFNβ) not only have potent antiviral activities, but also have pathological functions if produced at high levels or over a long time. Recent articles have described antiviral immune mechanisms that are activated in response to virus infection at epithelial surfaces independently of IFNα and IFNβ. This may allow the host to exert rapid local antiviral activity and only induce a full-blown, and potentially pathological, type I IFN response in situations where stronger protective immunity is needed. Here, I describe the emerging understanding of early antiviral defenses, which are independent of type I IFN responses, and also discuss how this enables tissues to exert rapid antiviral activities and to limit type I IFN production. PMID:27345728

  15. Synthesis and antiviral activity of beta-carboline derivatives bearing a substituted carbohydrazide at C-3 against poliovirus and herpes simplex virus (HSV-1).

    PubMed

    Nazari Formagio, Anelise S; Santos, Patricia R; Zanoli, Karine; Ueda-Nakamura, Tania; Düsman Tonin, Lilian T; Nakamura, Celso V; Sarragiotto, Maria Helena

    2009-11-01

    Several novel 1,3-disubstituted beta-carboline derivatives bearing a substituted carbohydrazide group at C-3 were synthesized and evaluated for their antiviral activity against vaccinal poliovirus (VP) and herpes simplex virus type 1 (HSV-1). The cytotoxicity and selectivity index of the active compounds were also evaluated. Among the synthesized derivatives, compounds 10 and 11 displayed potent activity against both vaccinal poliovirus and HSV-1 virus. Compound 10 presented the highest selectivity index (SI=2446.8) against HSV-1 virus and low cytotoxicity (CC(50)=1150.0+/-67.3 microM). The virus yield inhibition assay showed that compound 10 was able to inhibit HSV-1 plaque formation before and during the virus adsorption. The characteristic small plaque pattern observed in compound-treated cells suggested that compound 10 inhibited viral dissemination to neighboring cells. A computational study for prediction of ADME properties of the novel synthesized beta-carbolines derivatives was performed by determination of lipophilicity, topological polar surface area (TPSA), absorption (% ABS) and simple molecular descriptors, using Lipinski's rule.

  16. Selective antiviral activity of synthetic soluble L-tyrosine and L-dopa melanins against human immunodeficiency virus in vitro.

    PubMed

    Montefiori, D C; Zhou, J Y

    1991-01-01

    Melanins are pigments found in hair, skin, irides of the eye, and brain. Their functions in mammals include protection from exposure to sunlight, camouflage from predators, sexual recognition within species, and possible electron transfer reactants. Most natural melanins exist in an insoluble form, which is one reason there is little information on the biological properties of soluble melanins. Here, synthetic soluble melanins were obtained by chemical oxidation of L-tyrosine or spontaneous oxidation of L-beta-3,4-dihydroxyphenylalanine (L-dopa). Replication of human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) was inhibited by soluble melanin in two human lymphoblastoid cell lines (MT-2 and H9) and in phytohemagglutinin-stimulated human T cells. Effective concentrations of 0.15-10 micrograms/ml had no cell toxicity. Melanin blocked infection by cell-free virus and interfered with HIV-induced syncytium formation and cytopathic effects when fusion-susceptible, uninfected cells, were mixed with chronically infected cells. Melanin also impeded the HIV-1 envelope surface glycoprotein, and T cell specific monoclonal antibody leu-3a (CD4), but not leu-5b (CD2), from binding to the surface of MT-2 cells. No effect on HIV-1 reverse transcriptase activity in viral lysates was observed. These results identify a unique biological property of melanin, and suggest that soluble melanins may represent a new class of pharmacologically active substances which should be further investigated for potential therapeutic utility in the treatment of Acquired Immune Deficiency Syndrome (AIDS).

  17. Antiviral activity and its mechanism of guanine 7-N-oxide on DNA and RNA viruses derived from salmonid.

    PubMed

    Hasobe, M; Saneyoshi, M; Isono, K

    1985-11-01

    Guanine 7-N-oxide produced by Streptomyces sp. was found to inhibit in vitro the replication of herpes virus (Oncorhynchus masou virus, OMV), rhabdo virus (infectious hematopoietic necrosis virus, IHNV) and a bi-segmented double-strand virus (infectious pancreatic necrosis virus, IPNV) derived from salmonids with IC50 values of about 10 micrograms/ml, 20 micrograms/ml and 32 micrograms/ml, respectively. The agent was not toxic for the host cells (chinook salmon embryo, CHSE-214) at the IC50 concentrations. Labeling of IHNV viral RNA and host cellular DNA and RNA with [3H]uridine and [3H]thymidine during drug treatment showed that guanine 7-N-oxide did not reduce the incorporation of these precusors into RNA and DNA. The anti-IHNV activity of guanine 7-N-oxide was enhanced synergistically by neplanocin A, an inhibitor of RNA methylation. The mechanism of action of guanine 7-N-oxide is discussed, in regard to maturation of viral messenger RNA including capping. PMID:3841124

  18. Antiviral drug discovery against SARS-CoV.

    PubMed

    Wu, Yu-Shan; Lin, Wen-Hsing; Hsu, John T-A; Hsieh, Hsing-Pang

    2006-01-01

    Severe Acute Respiratory Syndrome (SARS) is a life-threatening infectious disease caused by SARS-CoV. In the 2003 outbreak, it infected more than 8,000 people worldwide and claimed the lives of more than 900 victims. The high mortality rate resulted, at least in part, from the absence of definitive treatment protocols or therapeutic agents. Although the virus spreading has been contained, due preparedness and planning, including the successful development of antiviral drugs against SARS-CoV, is necessary for possible reappearance of SARS. In this review, we have discussed currently available strategies for antiviral drug discovery and how these technologies have been utilized to identify potential antiviral agents for the inhibition of SARS-CoV replication. Moreover, progress in the drug development based on different molecular targets is also summarized, including 1) Compounds that block the S protein-ACE2-mediated viral entry; 2) Compounds targeting SARS-CoV M(pro); 3) Compounds targeting papain-like protease 2 (PLP2); 4) Compounds targeting SARS-CoV RdRp; 5) Compounds targeting SARS-CoV helicase; 6) Active compounds with unspecified targets; and 7) Research on siRNA. This review aims to provide a comprehensive account of drug discovery on SARS. The experiences with the SARS outbreak and drug discovery would certainly be an important lesson for the drug development for any new viral outbreaks that may emerge in the future.

  19. [Significance of hepatitis C virus baseline polymorphism during the antiviral therapy].

    PubMed

    Tornai, István

    2015-05-24

    The treatment of chronic hepatitis C has developed significantly during the last 25 years. In patients with genotype 1 infection 40-50% sustained virologic response could be achieved using pegylated interferon and ribavirin dual combination, which could be increased significantly with the introduction of direct acting antivirals. Three major groups of direct acting antivirals are known, which directly inhibit different phases of viral life cycle, by inhibiting the function of several non-structural proteins (NS3/4A protease, NS5A protein and NS5B polymerase). Due to the rapid replication rate of hepatitis C virus and the error-prone NS5B polymerase activity, mutant virions are generated, which might have reduced susceptibility to direct acting antiviral therapy. Since these resistance associated variants might exist before the antiviral therapy, they are still able to replicate during the direct acting antiviral treatment. Due to this selection pressure, the resistant virus will replace the wild type. This was especially detected during monotherapy, therefore, the first generation of direct acting antivirals have been combined with pegylated interferon and ribavirin, while recently interferon-free combinations are being developed including 2 or 3 direct acting antivirals. Using the first generation protease inhibitors boceprevir and telaprevir, it could have been seen, that the rate of resistance associated variants is higher and the therapeutic outcome is worse in patients with hepatitis C virus genotype 1a, than in 1b. Similar phenomenon was seen with the second generation of NS3/4A protease inhibitors as well as with NS5A or NS5B polymerase. This is due to the lower genetic barrier to resistance, ie. usually fewer mutations are enough for the emergence of resistance in genotype 1a. The selection of resistance associated variants is one of the most important challenges during the interferon-free therapy. PMID:26038992

  20. Spectroscopic, quantum chemical studies, Fukui functions, in vitro antiviral activity and molecular docking of 5-chloro-N-(3-nitrophenyl)pyrazine-2-carboxamide

    NASA Astrophysics Data System (ADS)

    Sebastian, S. H. Rosline; Al-Alshaikh, Monirah A.; El-Emam, Ali A.; Panicker, C. Yohannan; Zitko, Jan; Dolezal, Martin; VanAlsenoy, C.

    2016-09-01

    The molecular structural parameters and vibrational frequencies of 5-chloro-N-(3-nitrophenyl)pyrazine-2-carboxamide have been obtained using density functional theory technique in the B3LYP approximation and CC-pVDZ (5D, 7F) basis set. Detailed vibrational assignments of observed FT-IR and FT-Raman bands have been proposed on the basis of potential energy distribution and most of the modes have wavenumbers in the expected range. In the present case, the NH stretching mode is a doublet in the IR spectrum with a difference of 138 cm-1 and is red shifted by 76 cm-1 from the computed value, which indicates the weakening of NH bond resulting in proton transfer to the neighboring oxygen atom. The molecular electrostatic potential has been mapped for predicting sites and relative reactivities towards electrophilic and nucleophilic attack. The hyperpolarizability values are calculated in order to find its role in nonlinear optics. From the molecular docking study, amino acids Asn161, His162 forms H-bond with pyrazine ring and Trp184, Gln19 shows H-bond with Cdbnd O group and the docked ligand, title compound forms a stable complex with cathepsin K and the results suggest that the compound might exhibit inhibitory activity against cathepsin K. Moderate in vitro antiviral activity with EC50 at tens of μM was detected against feline herpes virus, coxsackie virus B4, and influenza A/H1N1 and A/H3N2.

  1. Antiviral activities of 15 dengue NS2B-NS3 protease inhibitors using a human cell-based viral quantification assay.

    PubMed

    Chu, Justin Jang Hann; Lee, Regina Ching Hua; Ang, Melgious Jin Yan; Wang, Wei-Ling; Lim, Huichang Annie; Wee, John Liang Kuan; Joy, Joma; Hill, Jeffrey; Brian Chia, C S

    2015-06-01

    The dengue virus is a mosquito-borne pathogen responsible for an estimated 50-100 million human dengue infections annually. There are currently no approved drugs against this disease, resulting in a major unmet clinical need. The dengue viral NS2B-NS3 protease has been identified as a plausible drug target due to its involvement in viral replication in mammalian host cells. In the past decade, at least 20 dengue NS2B-NS3 protease inhibitors have been reported in the literature with a range of inhibitory activities in protease assays. However, such assays do not shed light on an inhibitor's ability to penetrate human cell membranes where the viral protease resides. In this study, we investigated the antiviral activities of 15 small-molecule and peptide-based NS2B-NS3 inhibitors on dengue serotype 2-infected HuH-7 human hepatocarcinoma cells. Experimental results revealed anthraquinone ARDP0006 (compound 5) to be the most potent inhibitor which reduced dengue viral titer by more than 1 log PFU/mL at 1 μM in our cell-based assays involving HuH-7 and K562 cell lines, suggesting that its scaffold could serve as a lead for further medicinal chemistry studies. Compound 5 was also found to be non-cytotoxic at 1 μM over 3 days incubation on HuH-7 cells using the Alamar Blue cellular toxicity assay.

  2. Antiviral Defense Mechanisms in Honey Bees

    PubMed Central

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  3. Tannins from Hamamelis virginiana Bark Extract: Characterization and Improvement of the Antiviral Efficacy against Influenza A Virus and Human Papillomavirus

    PubMed Central

    Theisen, Linda L.; Erdelmeier, Clemens A. J.; Spoden, Gilles A.; Boukhallouk, Fatima; Sausy, Aurélie; Florin, Luise; Muller, Claude P.

    2014-01-01

    Antiviral activity has been demonstrated for different tannin-rich plant extracts. Since tannins of different classes and molecular weights are often found together in plant extracts and may differ in their antiviral activity, we have compared the effect against influenza A virus (IAV) of Hamamelis virginiana L. bark extract, fractions enriched in tannins of different molecular weights and individual tannins of defined structures, including pseudotannins. We demonstrate antiviral activity of the bark extract against different IAV strains, including the recently emerged H7N9, and show for the first time that a tannin-rich extract inhibits human papillomavirus (HPV) type 16 infection. As the best performing antiviral candidate, we identified a highly potent fraction against both IAV and HPV, enriched in high molecular weight condensed tannins by ultrafiltration, a simple, reproducible and easily upscalable method. This ultrafiltration concentrate and the bark extract inhibited early and, to a minor extent, later steps in the IAV life cycle and tannin-dependently inhibited HPV attachment. We observed interesting mechanistic differences between tannin structures: High molecular weight tannin containing extracts and tannic acid (1702 g/mol) inhibited both IAV receptor binding and neuraminidase activity. In contrast, low molecular weight compounds (<500 g/mol) such as gallic acid, epigallocatechin gallate or hamamelitannin inhibited neuraminidase but not hemagglutination. Average molecular weight of the compounds seemed to positively correlate with receptor binding (but not neuraminidase) inhibition. In general, neuraminidase inhibition seemed to contribute little to the antiviral activity. Importantly, antiviral use of the ultrafiltration fraction enriched in high molecular weight condensed tannins and, to a lesser extent, the unfractionated bark extract was preferable over individual isolated compounds. These results are of interest for developing and improving plant

  4. Tannins from Hamamelis virginiana bark extract: characterization and improvement of the antiviral efficacy against influenza A virus and human papillomavirus.

    PubMed

    Theisen, Linda L; Erdelmeier, Clemens A J; Spoden, Gilles A; Boukhallouk, Fatima; Sausy, Aurélie; Florin, Luise; Muller, Claude P

    2014-01-01

    Antiviral activity has been demonstrated for different tannin-rich plant extracts. Since tannins of different classes and molecular weights are often found together in plant extracts and may differ in their antiviral activity, we have compared the effect against influenza A virus (IAV) of Hamamelis virginiana L. bark extract, fractions enriched in tannins of different molecular weights and individual tannins of defined structures, including pseudotannins. We demonstrate antiviral activity of the bark extract against different IAV strains, including the recently emerged H7N9, and show for the first time that a tannin-rich extract inhibits human papillomavirus (HPV) type 16 infection. As the best performing antiviral candidate, we identified a highly potent fraction against both IAV and HPV, enriched in high molecular weight condensed tannins by ultrafiltration, a simple, reproducible and easily upscalable method. This ultrafiltration concentrate and the bark extract inhibited early and, to a minor extent, later steps in the IAV life cycle and tannin-dependently inhibited HPV attachment. We observed interesting mechanistic differences between tannin structures: High molecular weight tannin containing extracts and tannic acid (1702 g/mol) inhibited both IAV receptor binding and neuraminidase activity. In contrast, low molecular weight compounds (<500 g/mol) such as gallic acid, epigallocatechin gallate or hamamelitannin inhibited neuraminidase but not hemagglutination. Average molecular weight of the compounds seemed to positively correlate with receptor binding (but not neuraminidase) inhibition. In general, neuraminidase inhibition seemed to contribute little to the antiviral activity. Importantly, antiviral use of the ultrafiltration fraction enriched in high molecular weight condensed tannins and, to a lesser extent, the unfractionated bark extract was preferable over individual isolated compounds. These results are of interest for developing and improving plant

  5. Antiviral Roles of Plant ARGONAUTES

    PubMed Central

    Carbonell, Alberto; Carrington, James C.

    2015-01-01

    ARGONAUTES (AGOs) are the effector proteins functioning in eukaryotic RNA silencing pathways. AGOs associate with small RNAs and are programmed to target complementary RNA or DNA. Plant viruses induce a potent and specific antiviral RNA silencing host response in which AGOs play a central role. Antiviral AGOs associate with virus-derived small RNAs to repress complementary viral RNAs or DNAs, or with endogenous small RNAs to regulate host gene expression and promote antiviral defense. Here, we review recent progress towards understanding the roles of plant AGOs in antiviral defense. We also discuss the strategies that viruses have evolved to modulate, attenuate or suppress AGO antiviral functions. PMID:26190744

  6. 18th International Conference on Antiviral Research.

    PubMed

    Mitchell, William M

    2005-08-01

    The 18th International Conference on Antiviral Research (ICAR) was held at the Princess Sofia Hotel in Barcelona, Spain, from 11th-14th April, 2005. This is a yearly international meeting sponsored by the International Society for Antiviral Research (ISAR). The current president of ISAR is John A Secrest 3rd of the Southern Research Institute. The scientific programme committee was chaired by John C Drach from the University of Michigan. ISAR was founded in 1987 to exchange prepublication basic, applied and clinical information on the development of antiviral, chemical and biological agents as well as to promote collaborative research. The ISAR has had a major role in the significant advances of the past decade in the reduction of the societal burdens of viral diseases by the focus of ICAR on the discovery and clinical application of antiviral agents. The 18th ICAR was organised as a series of focus presentations on specific viral groups consisting of oral and poster presentations of original research findings. In addition, the conference included plenary speakers, award presentations, a minisymposium on bioterrorism, and a satellite symposium on clinical antiviral drug developments. The size of the conference (> 50 oral and 250 poster presentations) necessitates limitation to the most noteworthy in the judgment of this reviewer. The current membership of the ISAR is approximately 700 with approximately 50% the membership in attendance. PMID:16086663

  7. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    PubMed

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts.

  8. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities.

    PubMed

    Ramya, Suseenthar; Shanmugasundaram, Thangavel; Balagurunathan, Ramasamy

    2015-10-01

    Currently, there is an ever-increasing need to develop environmentally benign processes in place of synthetic protocols. As a result, researchers in the field of nanoparticle synthesis are focusing their attention on microbes from rare biological ecosystems. One potential actinobacterium, Streptomyces minutiscleroticus M10A62 isolated from a magnesite mine had the ability to synthesize selenium nanoparticles (SeNPs), extracellularly. Actinobacteria mediated SeNP synthesis were characterized by UV-visible, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and high resolution transmission electron microscopy (HR-TEM) analysis. The UV-spectral analysis of SeNPs indicated the maximum absorption at 510nm, FT-IR spectral analysis confirms the presence of capping protein, peptide, amine and amide groups. The selenium signals confirm the presence of SeNPs. All the diffraction peaks in the XRD pattern and HR-TEM confirm the size of SeNPs in the range of 10-250nm. Further, the anti-biofilm and antioxidant activity of the SeNPs increased proportionally with rise in concentration, and the test strains reduced to 75% at concentration of 3.2μg. Selenium showed significant anti-proliferative activity against HeLa and HepG2 cell lines. The wound healing activity of SeNPs reveals that 5% selenium oinment heals the excision wound of Wistar rats up to 85% within 18 days compared to the standard ointment. The biosynthesized SeNPs exhibited good antiviral activity against Dengue virus. The present study concludes that extremophilic actinobacterial strain was a novel source for SeNPs with versatile biomedical applications and larger studies are needed to quantify these observed effects of SeNPs.

  9. Antiviral therapy for human rabies.

    PubMed

    Appolinario, Camila M; Jackson, Alan C

    2015-01-01

    Human rabies is virtually always fatal despite numerous attempts at aggressive therapy. Most survivors received one or more doses of rabies vaccine prior to the onset of the disease. The Milwaukee Protocol has proved to be ineffective for rabies and should no longer be used. New approaches are needed and an improved understanding of basic mechanisms responsible for the clinical disease in rabies may prove to be useful for the development of novel therapeutic approaches. Antiviral therapy is thought to be an important component of combination therapy for the management of human rabies, and immunotherapy and neuroprotective therapy should also be strongly considered. There are many important issues for consideration regarding drug delivery to the central nervous system in rabies, which are in part related to the presence of the blood-brain barrier and also the blood-spinal cord barrier. Ribavirin and interferon-α have proved to be disappointing agents for the therapy of rabies. There is insufficient evidence to support the continued use of ketamine or amantadine for the therapy of rabies. Minocycline or corticosteroids should not be used because of concerns about aggravating the disease. A variety of new antiviral agents are under development and evaluation, including favipiravir, RNA interference (for example, small interfering [si]RNAs) and novel targeted approaches, including interference with viral capsid assembly and viral egress.

  10. Antiviral Drug Resistance: Mechanisms and Clinical Implications

    PubMed Central

    Chou, Sunwen

    2010-01-01

    Summary Antiviral drug resistance is an increasing concern in immunocompromised patient populations, where ongoing viral replication and prolonged drug exposure lead to the selection of resistant strains. Rapid diagnosis of resistance can be made by associating characteristic viral mutations with resistance to various drugs as determined by phenotypic assays. Management of drug resistance includes optimization of host factors and drug delivery, selection of alternative therapies based on knowledge of mechanisms of resistance, and the development of new antivirals. This article discusses drug resistance in herpesviruses and hepatitis B. PMID:20466277

  11. Possible role of tocopherols in the modulation of host microRNA with potential antiviral activity in patients with hepatitis B virus-related persistent infection: a systematic review.

    PubMed

    Fiorino, S; Bacchi-Reggiani, L; Sabbatani, S; Grizzi, F; di Tommaso, L; Masetti, M; Fornelli, A; Bondi, A; de Biase, D; Visani, M; Cuppini, A; Jovine, E; Pession, A

    2014-12-14

    Hepatitis B virus (HBV) infection represents a serious global health problem and persistent HBV infection is associated with an increased risk of cirrhosis, hepatocellular carcinoma and liver failure. Recently, the study of the role of microRNA (miRNA) in the pathogenesis of HBV has gained considerable interest as well as new treatments against this pathogen have been approved. A few studies have investigated the antiviral activity of vitamin E (VE) in chronic HBV carriers. Herein, we review the possible role of tocopherols in the modulation of host miRNA with potential anti-HBV activity. A systematic research of the scientific literature was performed by searching the MEDLINE, Cochrane Library and EMBASE databases. The keywords used were 'HBV therapy', 'HBV treatment', 'VE antiviral effects', 'tocopherol antiviral activity', 'miRNA antiviral activity' and 'VE microRNA'. Reports describing the role of miRNA in the regulation of HBV life cycle, in vitro and in vivo available studies reporting the effects of VE on miRNA expression profiles and epigenetic networks, and clinical trials reporting the use of VE in patients with HBV-related chronic hepatitis were identified and examined. Based on the clinical results obtained in VE-treated chronic HBV carriers, we provide a reliable hypothesis for the possible role of this vitamin in the modulation of host miRNA profiles perturbed by this viral pathogen and in the regulation of some cellular miRNA with a suggested potential anti-HBV activity. This approach may contribute to the improvement of our understanding of pathogenetic mechanisms involved in HBV infection and increase the possibility of its management and treatment.

  12. Existing antiviral vaccines.

    PubMed

    Ravanfar, Parisa; Satyaprakash, Anita; Creed, Rosella; Mendoza, Natalia

    2009-01-01

    The innovation of vaccines has allowed for one of the greatest advancements in the history of public health. The first of the vaccines have been the antiviral vaccines, in particular the smallpox vaccine that was first developed by Edward Jenner in 1796. This article will review vaccination for the following viral diseases: measles, mumps, rubella, polio, hepatitis A, hepatitis B, influenza, rotavirus, rabies, monkeypox, smallpox, Japanese encephalitis, and yellow fever. PMID:19335723

  13. Functional differences between antiviral activities of sulfonated and intact intravenous immunoglobulin preparations toward varicella-zoster virus and cytomegalovirus.

    PubMed

    Yajima, Misako; Shiraki, Atsuko; Daikoku, Tohru; Oyama, Yukari; Yoshida, Yoshihiro; Shiraki, Kimiyasu

    2015-06-01

    Intravenous immunoglobulin (IVIG) is used to treat severe viral infection, especially varicella-zoster virus (VZV) and cytomegalovirus (CMV) infections. The neutralization antibody titers of eleven IVIG preparations from four companies were examined using VZV and CMV with and without complement. The neutralizing antibody titers of intact IgG preparations were three to six times higher after addition of complement. The effectiveness of the sulfonated IgG preparation was not enhanced by complement, but desulfonated IgG regained enhanced neutralization activity with complement. Antibody-dependent cellular cytotoxicity (ADCC) toward VZV-infected cells was observed with both intact and sulfonated IVIG and guinea pig splenocytes, but ADCC toward CMV-infected cells was not, although NK cell activity toward cells infected with VZV or CMV was detected by splenocytes. Sulfonated IVIG had no complement-activated neutralization of VZV and CMV but retained ADCC toward VZV with less activity after dilution than with intact IVIG. Because sulfonated IVIG is converted to the intact form after intravenous administration, it would show complement-enhanced neutralization and ADCC activity similar to that of intact IVIG in vivo. In this study we showed the effects of intact and sulfonated IgG on the functional activity of IgG against VZV and CMV.

  14. Antiviral therapy: a perspective

    PubMed Central

    Shahidi Bonjar, Amir Hashem

    2016-01-01

    This paper discusses extracorporeal removal of viral particles and their antigens from the blood as an auxiliary therapy. This hypothesis has not been reported before. In some chronic blood-borne viral infections, the virus remains systemic and persistent for extended periods of time, with adverse effects that weaken the immune system. Blood titers of virus and its toxins are proportional to the severity of the disease, and their reduction can alleviate symptoms, leading to improved health. Several blood-borne viral infections can be overcome by the young, but are life-threatening in the elderly. It is known that some older people have extreme difficulty tolerating viral infections such as influenza and the common cold. Further, several types of viral infection persist throughout the life of the individual and cannot be eliminated by conventional treatments. Well-known infections of this type include HIV and hepatitis B. In the case of Ebola virus, patients remain infectious as long as their blood contains the virus. According to the present hypothesis, an extracorporeal viral antibody column (EVAC) is proposed for elimination or reduction of the blood viral titer when treating blood-borne viral infection. EVAC would selectively trap viral antigens and toxins in the blood into an extracorporeal circuit, while returning detoxified blood back to the patient’s body. It is anticipated that EVAC would reduce mortality caused by blood-borne viral infections in the elderly since reduction of blood virus titers would improve health, leading to improved overall patient performance. Such enhancement would also make conventional therapies even more effective. EVAC could have a lifesaving role in treatment of viral illness, especially those involving lethal viruses such as Ebola, where the patient’s recovery to a large extent depends on their general health status. EVAC would be for single use and appropriately disposed of after each detoxification procedure. When

  15. Screening and identification of compounds with antiviral activity against hepatitis B virus using a safe compound library and novel real-time immune-absorbance PCR-based high throughput system.

    PubMed

    Lamontagne, Jason; Mills, Courtney; Mao, Richeng; Goddard, Cally; Cai, Dawei; Guo, Haitao; Cuconati, Andy; Block, Timothy; Lu, Xuanyong

    2013-04-01

    There are now seven nucleoside/tide analogues, along with interferon-α, that are approved by the FDA for the management of chronic hepatitis B virus (HBV) infection, a disease affecting hundreds of millions of people worldwide. These medications, however, are limited in usefulness, and significant side effects and the emergence of viral escape mutants make the development of novel and updated therapeutics a pressing need in the treatment of HBV. With this in mind, a library containing 2000 compounds already known to be safe in both humans and mice with known mechanisms of action in mammalian cells were tested for the possibility of either antiviral activity against HBV or selective toxicity in HBV producing cell lines. A modified real-time immune-absorbance-polymerase chain reaction (IA-PCR) assay was developed for this screen, utilizing cells that produce and secrete intact HBV virions. In this procedure, viral particles are first captured by an anti-HBs antibody immobilized on a plate. The viral load is subsequently assessed by real-time PCR directly on captured particles. Using this assay, eight compounds were shown to consistently reduce the amount of secreted HBV viral particles in the culture medium under conditions that had no detectable impact on cell viability. Two compounds, proparacaine and chlorophyllide, were shown to reduce HBV levels 4- to 6-fold with an IC₅₀ of 1 and 1.5 μM, respectively, and were selected for further study. The identification of these compounds as promising antiviral drug candidates against HBV, despite a lack of previous recognition of HBV antiviral activity, supports the validity and utility of testing known compounds for "off-pathogen target" activity against HBV, and also validates this IA-PCR assay as an important tool for the detection of anti-viral activity against enveloped viruses.

  16. Antiviral activity and underlying molecular mechanisms of Matrine against porcine reproductive and respiratory syndrome virus in vitro.

    PubMed

    Sun, Na; Wang, Zhi-Wei; Wu, Cai-Hong; Li, E; He, Jun-Ping; Wang, Shao-Yu; Hu, Yuan-Liang; Lei, Hai-Min; Li, Hong-Quan

    2014-04-01

    Porcine reproductive and respiratory syndrome (PRRS), caused by porcine reproductive and respiratory syndrome virus (PRRSV), is an acute infectious disease. The prevalence of PRRS has made swine industry suffered huge financial losses. Matrine, a natural compound, has been demonstrated to possess anti-PRRSV activity in Marc-145 cells. However, the underlying molecular mechanisms were still unknown. The main objective of our study was to discuss the effect of Matrine on PRRSV N protein expression and PRRSV induced apoptosis. Indirect immunofluorescence assay (IFA) and Western blot were used to assess the effect of Matrine on N protein expression. Apoptosis was analyzed by fluorescence staining. In addition, the effect of Matrine on caspase-3 activation was investigated by Western blot. Indirect immunofluorescence assay and Western blot analysis demonstrated that Matrine could inhibit N protein expression in Marc-145 cells. And Matrine was found to be able to impair PRRSV-induced apoptosis by inhibiting caspase-3 activation.

  17. Isolation of a homodimeric lectin with antifungal and antiviral activities from red kidney bean (Phaseolus vulgaris) seeds.

    PubMed

    Ye, X Y; Ng, T B; Tsang, P W; Wang, J

    2001-07-01

    A homodimeric lectin adsorbed on Affi-gel blue gel and CM-Sepharose and possessing a molecular weight of 67 kDa was isolated from red kidney beans. The hemagglutinating activity of this lectin was inhibited by glycoproteins but not by simple sugars. The lectin manifested inhibitory activity on human immunodeficiency virus-1 reverse transcriptase and alpha-glucosidase. The N-terminal sequence of the lectin exhibited some differences from previously reported lectins from Phaseolus vulgaris but showed some similarity to chitinases. It exerted a suppressive effect on growth of the fungal species Fusarium oxysporum, Coprinus comatus, and Rhizoctonia solani. The lectin had low ribonuclease and negligible translation-inhibitory activities. PMID:11732688

  18. Isolation and anticancer, anthelminthic, and antiviral (HIV) activity of acylphloroglucinols, and regioselective synthesis of empetrifranzinans from Hypericum roeperianum.

    PubMed

    Fobofou, Serge Alain Tanemossu; Franke, Katrin; Sanna, Giuseppina; Porzel, Andrea; Bullita, Enrica; La Colla, Paolo; Wessjohann, Ludger A

    2015-10-01

    From the ethno-medicinally used leaves of Hypericum roeperianum we isolated a new tricyclic acylphloroglucinol (1), a new tetracyclic acylphloroglucinol (2), and a new prenylated bicyclic acylphloroglucinol (3) together with four known prenylated (4-7) and three known tetracyclic acylphloroglucinol derivatives (8-10). Structure elucidation was based on UV, IR, [α]D(25), 1D- and 2D-NMR experiments. Furthermore, empetrifranzinans A (8) and C (9) were synthesized regioselectively in only two steps. The isolated compounds were evaluated for their cytotoxicity against PC-3 and HT-29 cancer cell lines as well as antibacterial and anthelmintic activities. They were also tested in cell-based assays for cytotoxicity against MT-4 cells and for anti-HIV activity in infected MT-4 cells. Significant anthelmintic activity against Caenorhabditis elegans was exhibited by compound 7 (3-geranyl-1-(2'-methylbutanoyl)-phloroglucinol), which might provide a new lead. PMID:26358281

  19. Antiviral targets of human noroviruses.

    PubMed

    Prasad, Bv Venkataram; Shanker, Sreejesh; Muhaxhiri, Zana; Deng, Lisheng; Choi, Jae-Mun; Estes, Mary K; Song, Yongcheng; Palzkill, Timothy; Atmar, Robert L

    2016-06-01

    Human noroviruses are major causative agents of sporadic and epidemic gastroenteritis both in children and adults. Currently there are no licensed therapeutic intervention measures either in terms of vaccines or drugs available for these highly contagious human pathogens. Genetic and antigenic diversity of these viruses, rapid emergence of new strains, and their ability to infect a broad population by using polymorphic histo-blood group antigens for cell attachment, pose significant challenges for the development of effective antiviral agents. Despite these impediments, there is progress in the design and development of therapeutic agents. These include capsid-based candidate vaccines, and potential antivirals either in the form of glycomimetics or designer antibodies that block HBGA binding, as well as those that target essential non-structural proteins such as the viral protease and RNA-dependent RNA polymerase. In addition to these classical approaches, recent studies suggest the possibility of interferons and targeting host cell factors as viable approaches to counter norovirus infection. This review provides a brief overview of this progress. PMID:27318434

  20. Polyhydroxylated steroids from the South China Sea soft coral Sarcophyton sp. and their cytotoxic and antiviral activities.

    PubMed

    Gong, Kai-Kai; Tang, Xu-Li; Zhang, Gang; Cheng, Can-Ling; Zhang, Xing-Wang; Li, Ping-Lin; Li, Guo-Qiang

    2013-12-01

    Chemical investigation on the soft coral Sarcophyton sp. collected from the South China Sea yielded three new polyhydroxylated steroids, compounds (1-3), together with seven known ones (4-10). Their structures were established by extensive spectroscopic methods and comparison of their data with those of the related known compounds. All the isolates possessed the 3β,5α,6β-trihydroxylated steroidal nucleus. The cytotoxicities against selected HL-60, HeLa and K562 tumor cell lines and anti-H1N1 (Influenza A virus (IAV)) activities for the isolates were evaluated. Compounds 2, 3 and 5-8 exhibited potent activities against K562 cell lines with IC₅₀ values ranging from 6.4 to 10.3 μM. Compounds 1, 6-8 potently inhibited the growth of HL-60 tumor cell lines, and 6 also showed cytotoxicity towards HeLa cell lines. In addition, preliminary structure-activity relationships for the isolates are discussed. The OAc group at C-11 is proposed to be an important pharmacophore for their cytotoxicities in the 3β,5α,6β-triol steroids. Compounds 4 and 9 exhibited significant anti-H1N1 IAV activity with IC₅₀ values of 19.6 and 36.7 μg/mL, respectively.

  1. Antiviral activity against the hepatitis C virus (HCV) of 1-indanone thiosemicarbazones and their inclusion complexes with hydroxypropyl-β-cyclodextrin.

    PubMed

    Glisoni, Romina J; Cuestas, María L; Mathet, Verónica L; Oubiña, José R; Moglioni, Albertina G; Sosnik, Alejandro

    2012-10-01

    The hepatitis C virus (HCV) is a major cause of acute and chronic hepatitis in humans. Approximately 5% of the infected people die from cirrhosis or hepatocellular carcinoma. The current standard therapy comprises a combination of pegylated-interferon alpha and ribavirin. Due to the relatively low effectiveness, the prohibitive costs and the extensive side effects of the treatment, an intense research for new direct-acting anti-HCV agents is taking place. Furthermore, NS3 protease inhibitors recently introduced into the market are not effective against all HCV subgenotypes. Thiosemicarbazones (TSCs) have shown antiviral activity against a wide range of DNA and RNA viruses. However, their extremely low aqueous solubility and high self-aggregation tendency often preclude their reliable biological evaluation in vitro. In this work, we investigated and compared for the first time the anti-HCV activity of two 1-indanone TSCs, namely 5,6-dimethoxy-1-indanone TSC and 5,6-dimethoxy-1-indanone N4-allyl TSC, and their inclusion complexes with hydroxypropyl-β-cyclodextrin (HPβ-CD) in Huh-7.5 cells containing the full-length and the subgenomic subgenotype 1b HCV replicon system. Studies of physical stability in culture medium showed that free TSCs precipitated rapidly and formed submicron aggregates. Conversely, TSC complexation with HPβ-CD led to more stable systems with minimal size growth and drug concentration loss. More importantly, both TSCs and their inclusion complexes displayed a potent suppression of the HCV replication in both cell lines with no cytotoxic effects. The mechanism likely involves the inhibition of non-structural proteins of the virus. In addition, findings suggested that the cyclodextrin released the drug to the culture medium over time. This platform could be exploited for the study of the drug toxicity and pharmacokinetics animal models.

  2. Antiviral activity against the hepatitis C virus (HCV) of 1-indanone thiosemicarbazones and their inclusion complexes with hydroxypropyl-β-cyclodextrin.

    PubMed

    Glisoni, Romina J; Cuestas, María L; Mathet, Verónica L; Oubiña, José R; Moglioni, Albertina G; Sosnik, Alejandro

    2012-10-01

    The hepatitis C virus (HCV) is a major cause of acute and chronic hepatitis in humans. Approximately 5% of the infected people die from cirrhosis or hepatocellular carcinoma. The current standard therapy comprises a combination of pegylated-interferon alpha and ribavirin. Due to the relatively low effectiveness, the prohibitive costs and the extensive side effects of the treatment, an intense research for new direct-acting anti-HCV agents is taking place. Furthermore, NS3 protease inhibitors recently introduced into the market are not effective against all HCV subgenotypes. Thiosemicarbazones (TSCs) have shown antiviral activity against a wide range of DNA and RNA viruses. However, their extremely low aqueous solubility and high self-aggregation tendency often preclude their reliable biological evaluation in vitro. In this work, we investigated and compared for the first time the anti-HCV activity of two 1-indanone TSCs, namely 5,6-dimethoxy-1-indanone TSC and 5,6-dimethoxy-1-indanone N4-allyl TSC, and their inclusion complexes with hydroxypropyl-β-cyclodextrin (HPβ-CD) in Huh-7.5 cells containing the full-length and the subgenomic subgenotype 1b HCV replicon system. Studies of physical stability in culture medium showed that free TSCs precipitated rapidly and formed submicron aggregates. Conversely, TSC complexation with HPβ-CD led to more stable systems with minimal size growth and drug concentration loss. More importantly, both TSCs and their inclusion complexes displayed a potent suppression of the HCV replication in both cell lines with no cytotoxic effects. The mechanism likely involves the inhibition of non-structural proteins of the virus. In addition, findings suggested that the cyclodextrin released the drug to the culture medium over time. This platform could be exploited for the study of the drug toxicity and pharmacokinetics animal models. PMID:22885176

  3. Antiviral activity of casein and αs2 casein hydrolysates against the infectious haematopoietic necrosis virus, a rhabdovirus from salmonid fish.

    PubMed

    Rodríguez Saint-Jean, S; De las Heras, A; Carrillo, W; Recio, I; Ortiz-Delgado, J B; Ramos, M; Gomez-Ruiz, J A; Sarasquete, C; Pérez-Prieto, S I

    2013-05-01

    Salmonid fish viruses, such as infectious haematopoietic necrosis virus (IHNV), are responsible for serious losses in the rainbow trout and salmon-farming industries, and they have been the subject of intense research in the field of aquaculture. Thus, the aim of this work is to study the antiviral effect of milk-derived proteins as bovine caseins or casein-derived peptides at different stages during the course of IHNV infection. The results indicate that the 3-h fraction of casein and α(S2) -casein hydrolysates reduced the yield of infectious IHNV in a dose-dependent manner and impaired the production of IHNV-specific antigens. Hydrolysates of total casein and α(S2) -casein target the initial and later stages of viral infection, as demonstrated by the reduction in the infective titre observed throughout multiple stages and cycles. In vivo, more than 50% protection was observed in the casein-treated fish, and the kidney sections exhibited none of the histopathological characteristics of IHNV infection. The active fractions from casein were identified, as well as one of the individual IHNV-inhibiting peptides. Further studies will be required to determine which other peptides possess this activity. These findings provide a basis for future investigations on the efficacy of these compounds in treating other viral diseases in farmed fish and to elucidate the underlying molecular mechanisms of action. However, the present results provide convincing evidence in support of a role for several milk casein fractions as suitable candidates to prevent and treat some fish viral infections.

  4. High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments.

    PubMed

    Wang, Guangshun; Mishra, Biswajit; Epand, Raquel F; Epand, Richard M

    2014-09-01

    Host defense antimicrobial peptides are key components of human innate immunity that plays an indispensible role in human health. While there are multiple copies of cathelicidin genes in horses, cattle, pigs, and sheep, only one cathelicidin gene is found in humans. Interestingly, this single cathelicidin gene can be processed into different forms of antimicrobial peptides. LL-37, the most commonly studied form, is not only antimicrobial but also possesses other functional roles such as chemotaxis, apoptosis, wound healing, immune modulation, and cancer metastasis. This article reviews recent advances made in structural and biophysical studies of human LL-37 and its fragments, which serve as a basis to understand their antibacterial, anti-biofilm and antiviral activities. High-quality structures were made possible by using improved 2D NMR methods for peptide fragments and 3D NMR spectroscopy for intact LL-37. The two hydrophobic domains in the long amphipathic helix (residues 2-31) of LL-37 separated by a hydrophilic residue serine 9 explain its cooperative binding to bacterial lipopolysaccharides (LPS). Both aromatic rings (F5, F6, F17, and F27) and interfacial basic amino acids of LL-37 directly interact with anionic phosphatidylglycerols (PG). Although the peptide sequences reported in the literature vary slightly, there is a consensus that the central helix of LL-37 is essential for disrupting superbugs (e.g., MRSA), bacterial biofilms, and viruses such as human immunodeficiency virus 1 (HIV-1) and respiratory syncytial virus (RSV). In the central helix, the central arginine R23 is of particular importance in binding to bacterial membranes or DNA. Mapping the functional roles of the cationic amino acids of the major antimicrobial region of LL-37 provides a basis for designing antimicrobial peptides with desired properties. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina

  5. Sulfonic acid polymers: Highly potent inhibition of HIV-1 and HIV-2 reverse transcriptase and antiviral activity

    SciTech Connect

    Mohan, P.; Verma, S.; Tan, G.T.; Wickramasinghe, A.; Pezzuto, J.M.; Huges, S.H.; Baba, M.

    1993-12-31

    In an extension of the authors` work in the sulfonic acid polymer area they have evaluated the reverse transcriptase (RT) inhibitory activity of several varying molecular weight aromatic and aliphatic derivatives. All the polymers possess anti-HIV activity at doses that are non-toxic to the host cells and act by inhibiting viral adsorption. In the RT assay, poly(4-styrenesulfonic acid) exhibited highly potent inhibition with IC{sub 50} values of 0.0008 {mu}M and 0.0007 {mu}M for HIV-1 and HIV-2 RT respectively. The discovery of the anti-RT potential of these derivatives provides the impetus to investigate additional intervention strategies that are coupled with the facilitated cellular penetration of these agents.

  6. Design, Synthesis, and Antiviral Activity of Novel Ribonucleosides of 1,2,3‐Triazolylbenzyl‐aminophosphonates

    PubMed Central

    Ouahrouch, Abdelaaziz; Taourirte, Moha; Schols, Dominique; Snoeck, Robert; Andrei, Graciela; Lazrek, Hassan B.

    2015-01-01

    A novel series of ribonucleosides of 1,2,3‐triazolylbenzyl‐aminophosphonates was synthesized through the Kabachnik–Fields reaction using I2 as catalyst followed by copper‐catalyzed cycloaddition of the azide–alkyne reaction (CuAAC). All structures of the newly prepared compounds were characterized by 1H NMR, 13C NMR, and HRMS spectra. The structures of 2e, 2f, 3d, and 3g were further confirmed by X‐ray diffraction analysis. These compounds were tested against various strains of DNA and RNA viruses; compounds 4b and 4c showed a modest inhibitory activity against respiratory syncytial virus (RSV) and compound 4h displayed modest inhibitory activity against Coxsackie virus B4. PMID:26575425

  7. Retinoid X receptor α attenuates host antiviral response by suppressing type I interferon

    PubMed Central

    Ma, Feng; Liu, Su-Yang; Razani, Bahram; Arora, Neda; Li, Bing; Kagechika, Hiroyuki; Tontonoz, Peter; Núñez, Vanessa; Ricote, Mercedes; Cheng, Genhong

    2015-01-01

    The retinoid X receptor α (RXRα), a key nuclear receptor in metabolic processes, is down-regulated during host antiviral response. However, the roles of RXRα in host antiviral response are unknown. Here we show that RXRα overexpression or ligand activation increases host susceptibility to viral infections in vitro and in vivo, while Rxra −/− or antagonist treatment reduces infection by the same viruses. Consistent with these functional studies, ligand activation of RXR inhibits the expression of antiviral genes including type I interferon (IFN) and Rxra −/− macrophages produce more IFNβ than WT macrophages in response to polyI:C stimulation. Further results indicate that ligand activation of RXR suppresses the nuclear translocation of β-catenin, a co-activator of IFNβ enhanceosome. Thus, our studies have uncovered a novel RXR-dependent innate immune regulatory pathway, suggesting that the downregulation of RXR expression or RXR antagonist treatment benefits host antiviral response, whereas RXR agonist treatment may increase the risk of viral infections. PMID:25417649

  8. Binding of multivalent anionic porphyrins to V3 loop fragments of an HIV-1 envelope and their antiviral activity.

    PubMed

    Watanabe, Kenji; Negi, Shigeru; Sugiura, Yukio; Kiriyama, Akiko; Honbo, Akino; Iga, Katsumi; Kodama, Eiichi N; Naitoh, Takeshi; Matsuoka, Masao; Kano, Koji

    2010-04-01

    Interactions of multivalent anionic porphyrins and their iron(III) complexes with cationic peptides, V3(Ba-L) and V3(IIIB), which correspond to those of the V3 loop regions of the gp120 envelope proteins of the HIV-1(Ba-L) and HIV-1(IIIB) strains, respectively, are studied by UV/Vis, circular dichroism, (1)H NMR, and EPR spectroscopy, a microcalorimetric titration method, and anti-HIV assays. Tetrakis(3,5-dicarboxylatophenyl)porphyrin (P1), tetrakis[4-(3,5-dicarboxylatophenylmethoxy)phenyl]porphyrin (P2), and their ferric complexes (Fe(III)P1 and Fe(III)P2) were used as the multivalent anionic porphyrins. P1 and Fe(III)P1 formed stable complexes with both V3 peptides