Science.gov

Sample records for activities including inhibition

  1. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer.

    PubMed

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-08-14

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway.

  2. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-01-01

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991

  3. Activation of CpxRA in Haemophilus ducreyi primarily inhibits the expression of its targets, including major virulence determinants.

    PubMed

    Gangaiah, Dharanesh; Zhang, Xinjun; Fortney, Kate R; Baker, Beth; Liu, Yunlong; Munson, Robert S; Spinola, Stanley M

    2013-08-01

    Haemophilus ducreyi causes chancroid, a genital ulcer disease that facilitates the transmission of human immunodeficiency virus type 1. In humans, H. ducreyi is surrounded by phagocytes and must adapt to a hostile environment to survive. To sense and respond to environmental cues, bacteria frequently use two-component signal transduction (2CST) systems. The only obvious 2CST system in H. ducreyi is CpxRA; CpxR is a response regulator, and CpxA is a sensor kinase. Previous studies by Hansen and coworkers showed that CpxR directly represses the expression of dsrA, the lspB-lspA2 operon, and the flp operon, which are required for virulence in humans. They further showed that CpxA functions predominantly as a phosphatase in vitro to maintain the expression of virulence determinants. Since a cpxA mutant is avirulent while a cpxR mutant is fully virulent in humans, CpxA also likely functions predominantly as a phosphatase in vivo. To better understand the role of H. ducreyi CpxRA in controlling virulence determinants, here we defined genes potentially regulated by CpxRA by using RNA-Seq. Activation of CpxR by deletion of cpxA repressed nearly 70% of its targets, including seven established virulence determinants. Inactivation of CpxR by deletion of cpxR differentially regulated few genes and increased the expression of one virulence determinant. We identified a CpxR binding motif that was enriched in downregulated but not upregulated targets. These data reinforce the hypothesis that CpxA phosphatase activity plays a critical role in controlling H. ducreyi virulence in vivo. Characterization of the downregulated genes may offer new insights into pathogenesis.

  4. Gadd45a and Gadd45b protect hematopoietic cells from UV-induced apoptosis via distinct signaling pathways, including p38 activation and JNK inhibition.

    PubMed

    Gupta, Mamta; Gupta, Shiv Kumar; Hoffman, Barbara; Liebermann, Dan A

    2006-06-30

    Gadd45a, Gadd45b, and Gadd45g (Gadd45/MyD118/CR6) are genes that are rapidly induced by genotoxic stress and have been implicated in genotoxic stress-induced responses, notably in apoptosis. Recently, using myeloid-enriched bone marrow (BM) cells obtained from wild-type (WT), Gadd45a-deficient, and Gadd45b-deficient mice, we have shown that in hematopoietic cells Gadd45a and Gadd45b play a survival function to protect hematopoietic cells from DNA-damaging agents, including ultra violet (UV)-induced apoptosis. The present study was undertaken to decipher the molecular paths that mediate the survival functions of Gadd45a and Gadd45b against genotoxic stress induced by UV radiation. It is shown that in hematopoietic cells exposed to UV radiation Gaddd45a and Gadd45b cooperate to promote cell survival via two distinct signaling pathways involving activation of the GADD45a-p38-NF-kappaB-mediated survival pathway and GADD45b-mediated inhibition of the stress response MKK4-JNK pathway.

  5. Inhibition of Hageman factor activation

    PubMed Central

    Nossel, H. L.; Rubin, H.; Drillings, M.; Hsieh, R.

    1968-01-01

    A method for studying inhibitors of the contact stages of blood coagulation is described. A number of positively charged substances were shown to inhibit the contact stages. The inhibitory substances include spermine, cytochrome c, ribonuclease, and lysozyme. The inhibitory effect of these substances was neutralized by the addition of an activated plasma thromboplastin antecedent, factor XI, (PTA) fraction. Other positively charged substances including protamine, hexadimethrine, polylysine, polyornithine, methylene blue, and ortho-toluidine blue also inhibited the contact stages of coagulation, but the inhibitory effect on coagulation was not neutralized by the activated PTA fraction. Negatively charged substances such as heparin and insulin did not inhibit the contact stages of coagulation. Cytochrome c inhibited Celite adsorption of a partially purified Hageman factor fraction, and cytochrome, ribonuclease, spermine, and lysozome inhibited the adsorption of Hageman factor from PTA-deficient plasma. Very much smaller quantities of Celite completely adsorbed Hageman factor from the fraction rather than from whole plasma, which suggested the possibility that plasma contains an inhibitor or inhibitors of Hageman factor adsorption. Furthermore cytochrome c, spermine, ribonuclease, and lysozyme inhibited the coagulant activity of the following activators of the Hageman and PTA factors: Celite, kaolin, sodium stearate, ellagic acid, and skin. It is suggested that negatively charged sites on these activators are critical for adsorption and activation and that inhibition results from neutralization of the negatively charged sites by the adsorbed inhibtor. Tests with polylysine polymers indicate that inhibitory activity is directly related to molecular size over the molecular weight range of 4000 to 100,000. PMID:5645860

  6. Mechanisms of Hop Inhibition Include the Transmembrane Redox Reaction▿

    PubMed Central

    Behr, Jürgen; Vogel, Rudi F.

    2010-01-01

    In this work, a novel mechanistic model of hop inhibition beyond the proton ionophore action toward (beer spoiling) bacteria was developed. Investigations were performed with model systems using cyclic voltammetry for the determination of redox processes/conditions in connection with growth challenges with hop-sensitive and -resistant Lactobacillus brevis strains in the presence of oxidants. Cyclic voltammetry identified a transmembrane redox reaction of hop compounds at low pH (common in beer) and in the presence of manganese (present in millimolar levels in lactic acid bacteria). The antibacterial action of hop compounds could be extended from the described proton ionophore activity, lowering the intracellular pH, to pronounced redox reactivity, causing cellular oxidative damage. Accordingly, a correlation between the resistance of L. brevis strains to a sole oxidant to their resistance to hop could not be expected and was not detected. However, in connection with our recent study concerning hop ionophore properties and the resistance of hop-sensitive and -tolerant L. brevis strains toward proton ionophores (J. Behr and R. F. Vogel, J. Agric. Food Chem. 57:6074-6081, 2009), we suggest that both ionophore and oxidant resistance are required for survival under hop stress conditions and confirmed this correlation according to the novel mechanistic model. In consequence, the expression of several published hop resistance mechanisms involved in manganese binding/transport and intracellular redox balance, as well as that of proteins involved in oxidative stress under “highly reducing” conditions (cf. anaerobic cultivation and “antioxidative” hop compounds in the growth medium), is now comprehensible. Accordingly, hop resistance as a multifactorial dynamic property at least implies distinct resistance levels against two different mechanisms of hop inhibition, namely, proton ionophore-induced and oxidative stress-induced mechanisms. Beyond this specific model of

  7. A highly acid-resistant novel strain of Lactobacillus johnsonii No. 1088 has antibacterial activity, including that against Helicobacter pylori, and inhibits gastrin-mediated acid production in mice

    PubMed Central

    Aiba, Yuji; Nakano, Yasuhiro; Koga, Yasuhiro; Takahashi, Kenji; Komatsu, Yasuhiko

    2015-01-01

    A novel strain of Lactobacillus johnsonii No. 1088 was isolated from the gastric juice of a healthy Japanese male volunteer, and characterized for its effectiveness in the stomach environment. Lactobacillus johnsonii No. 1088 was found to have the strongest acid resistance among several lactobacilli examined (>10% of cells survived at pH 1.0 after 2 h), and such a high acid resistance property was a specific characteristic of this strain of L. johnsonii. When cultured with various virulent bacteria, L. johnsonii No. 1088 inhibited the growth of Helicobacter pylori,Escherichia coli O-157, Salmonella Typhimurium, and Clostridium difficile, in which case its effectiveness was more potent than that of a type strain of L. johnsonii,JCM2012. In addition to its effect in vitro, L. johnsonii No. 1088 inhibited the growth of H. pylori in human intestinal microbiota-associated mice in both its live and lyophilized forms. Moreover, L. johnsonii No. 1088 suppressed gastric acid secretion in mice via decreasing the number of gastrin-positive cells in the stomach. These results taken together suggest that L. johnsonii No. 1088 is a unique lactobacillus having properties beneficial for supporting H. pylori eradication by triple therapy including the use of a proton pump inhibitor (PPI) and also for prophylaxis of gastroesophageal reflux disease possibly caused after H. pylori eradication as a side effect of PPI. PMID:25771812

  8. Thiomers: Inhibition of cytochrome P450 activity.

    PubMed

    Iqbal, Javed; Sakloetsakun, Duangkamon; Bernkop-Schnürch, Andreas

    2011-08-01

    The aim of the present study was to investigate the potential of different thiolated polymers (thiomers) on the catalytic activity of CYP450s on one hand and to explore new inhibitors for CYP activity on the other hand. Several thiolated polymers including poly(acrylic acid)-cysteine (PAA-cysteine), chitosan-thioglycolic acid (chitosan-TGA), and thiolated PEG-g-PEI copolymer along with brij 35, myrj 52 and the well-established CYPP450 inhibitor verapamil were screened for their CYP3A4 and CYP2A6 inhibitory activity, and their IC(50) values were determined. Both enzyme inhibition assays were performed in 96-well microtiter plates. 7-Benzyloxy-4-(trifluoromethyl)-coumarin (BFC) and 7-hydroxycoumarin (7-HC) were used as fluorescent substrates in order to determine CYP3A4 and CYP2A6 catalytic activity, respectively. All investigated compounds inhibited CYP3A4 as well as CYP2A6 activity. All tested (thiolated) polymers were found to be more potent inhibitors of CYP3A4 than of CYP2A6 catalytic activity. Apart from verapamil that is a known CYP3A4 inhibitor, brij 35 and myrj 52 were explored as potent inhibitors of CYP3A4 and CYP2A6 catalytic activity. Among the tested polymers, the rank order for CYP3A4 inhibition was PAA-cysteine (100 kDa)>brij 35>thiolated PEG-g-PEI copolymer (16 kDa)>myrj 52>PAA (100 kDa)>PAA-cysteine (450 kDa)>verapamil>PAA (450 kDa)>chitosan-TGA (150 kDa)>chitosan (150 kDa). On the other hand, the rank order of CYP2A6 inhibition was brij 35>PAA-cysteine (100kDa)>chitosan-TGA (150 kDa)>PAA (100 kDa)>thiolated PEG-g-PEI copolymer (16 kDa)>PAA-cysteine (450 kDa)>chitosan (150 kDa)>verapamil>PAA (450 kDa)>myrj 52. Thus, this study suggests that (thiolated) polymers display a promising potential to inhibit cytochrome P450s activity and might turn out to be potentially valuable tools for improving the oral bioavailability of actively secreted compounds by avoiding intestinal metabolism.

  9. Kaempferol inhibits thrombosis and platelet activation.

    PubMed

    Choi, Jun-Hui; Park, Se-Eun; Kim, Sung-Jun; Kim, Seung

    2015-08-01

    The objectives of the present study were to investigate whether kaempferol affects pro-coagulant proteinase activity, fibrin clot formation, blood clot and thrombin (or collagen/epinephrine)-stimulated platelet activation, thrombosis, and coagulation in ICR (Imprinting Control Region) mice and SD (Sprague-Dawley) rats. Kaempferol significantly inhibited the enzymatic activities of thrombin and FXa by 68 ± 1.6% and 52 ± 2.4%, respectively. Kaempferol also inhibited fibrin polymer formation in turbidity. Microscopic analysis was performed using a fluorescent conjugate. Kaempferol completely attenuated phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) 1/2, and phosphoinositide 3-kinase (PI3K)/PKB (AKT) in thrombin-stimulated platelets and delayed aggregation time (clotting) by 34.6% in an assay of collagen/epinephrine-stimulated platelet activation. Moreover, kaempferol protected against thrombosis development in 3 animal models, including collagen/epinephrine- and thrombin-induced acute thromboembolism models and an FeCl3-induced carotid arterial thrombus model. The ex vivo anticoagulant effect of kaempferol was further confirmed in ICR mice. This study demonstrated that kaempferol may be clinically useful due to its ability to reduce or prevent thrombotic challenge.

  10. Caspase activation inhibits proteasome function during apoptosis.

    PubMed

    Sun, Xiao-Ming; Butterworth, Michael; MacFarlane, Marion; Dubiel, Wolfgang; Ciechanover, Aaron; Cohen, Gerald M

    2004-04-09

    The ubiquitin/proteasome system regulates protein turnover by degrading polyubiquitinated proteins. To date, all studies on the relationship of apoptosis and the proteasome have emphasized the key role of the proteasome in the regulation of apoptosis, by virtue of its ability to degrade regulatory molecules involved in apoptosis. We now demonstrate how induction of apoptosis may regulate the activity of the proteasome. During apoptosis, caspase activation results in the cleavage of three specific subunits of the 19S regulatory complex of the proteasome: S6' (Rpt5) and S5a (Rpn10), whose role is to recognize polyubiquitinated substrates of the proteasome, and S1 (Rpn2), which with S5a and S2 (Rpn1) holds together the lid and base of the 19S regulatory complex. This caspase-mediated cleavage inhibits the proteasomal degradation of ubiquitin-dependent and -independent cellular substrates, including proapoptotic molecules such as Smac, so facilitating the execution of the apoptotic program by providing a feed-forward amplification loop.

  11. Minocycline ameliorates LPS-induced inflammation in human monocytes by novel mechanisms including LOX-1, Nur77 and LITAF inhibition

    PubMed Central

    Pang, Tao; Wang, Juan; Benicky, Julius; Saavedra, Juan M.

    2012-01-01

    Background Minocycline exhibits anti-inflammatory properties independent of its antibiotic activity, ameliorating inflammatory responses in monocytes and macrophages. However, the mechanisms of minocycline anti-inflammatory effects are only partially understood. Methods Human circulating monocytes were cultured in the presence of lipopolysaccharide (LPS), 50 ng/ml, and minocycline (10–40 µM). Gene expression was determined by RT-PCR, cytokine and prostaglandin E2 (PGE2) release by ELISA, protein expression, phosphorylation and nuclear translocation by Western blotting. Results Minocycline significantly reduced the inflammatory response in LPS-challenged monocytes, decreasing LPS-induced transcription of pro-inflammatory tumor-necrosis factor alpha (TNF-α), interleukin-1 beta, interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2), and the LPS-stimulated TNF-α, IL-6 and PGE2 release. Minocycline inhibited LPS-induced activation of the lectin-like oxidized low density lipoprotein receptor-1 (LOX-1), NF-κB, LPS-induced TNF-α factor (LITAF) and the Nur77 nuclear receptor. Mechanisms involved in the anti-inflammatory effects of minocycline include a reduction of LPS-stimulated p38 mitogen-activated protein kinase (p38 MAPK) activation and stimulation of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Conclusions We provide novel evidence demonstrating that the anti-inflammatory effects of minocycline in human monocytes include, in addition to decreased NF-κB activation, abrogation of the LPS-stimulated LOX-1, LITAF, Nur77 pathways, p38 MAPK inhibition and PI3K/Akt activation. Our results reveal that minocycline inhibits points of convergence of distinct and interacting signaling pathways mediating multiple inflammatory signals which may influence monocyte activation, traffic and recruitment into the brain. General significance Our results in primary human monocytes contribute to explain the profound anti-inflammatory and protective effects of minocycline in

  12. Hydrogen Sulfide Inhibits Plasma Renin Activity

    PubMed Central

    Lu, Ming; Liu, Yi-Hong; Goh, Hong Swen; Wang, Josh Jia Xing; Yong, Qian-Chen; Wang, Rui

    2010-01-01

    The development of renovascular hypertension depends on the release of renin from the juxtaglomerular (JG) cells, a process regulated by intracellular cAMP. Hydrogen sulfide (H2S) downregulates cAMP production in some cell types by inhibiting adenylyl cyclase, suggesting the possibility that it may modulate renin release. Here, we investigated the effect of H2S on plasma renin activity and BP in rat models of renovascular hypertension. In the two-kidney-one-clip (2K1C) model of renovascular hypertension, the H2S donor NaHS prevented and treated hypertension. Compared with vehicle, NaHS significantly attenuated the elevation in plasma renin activity and angiotensin II levels but did not affect plasma angiotensin-converting enzyme activity. Furthermore, NaHS inhibited the upregulation of renin mRNA and protein levels in the clipped kidneys of 2K1C rats. In primary cultures of renin-rich kidney cells, NaHS markedly suppressed forskolin-stimulated renin activity in the medium and the intracellular increase in cAMP. In contrast, NaHS did not affect BP or plasma renin activity in normal or one-kidney-one-clip (1K1C) rats, both of which had normal plasma renin activity. In conclusion, these results demonstrate that H2S may inhibit renin activity by decreasing the synthesis and release of renin, suggesting its potential therapeutic value for renovascular hypertension. PMID:20360313

  13. Chemical inhibition of nitrification in activated sludge.

    PubMed

    Kelly, R T; Henriques, I D S; Love, N G

    2004-03-20

    Conventional aerobic nitrification was adversely affected by single pulse inputs of six different classes of industrially relevant chemical toxins: an electrophilic solvent (1-chloro-2,4-dinitrobenzene, CDNB), a heavy metal (cadmium), a hydrophobic chemical (1-octanol), an uncoupling agent (2,4-dinitrophenol, DNP), alkaline pH, and cyanide in its weak metal complexed form. The concentrations of each chemical source that caused 1 5, 25, and 50% respiratory inhibition of a nitrifying mixed liquor during a short-term assay were used to shock sequencing batch reactors containing nitrifying conventional activated sludge. The reactors were monitored for recovery over a period of 30 days or less. All shock conditions inhibited nitrification, but to different degrees. The nitrate generation rate (NGR) of the shocked reactors recovered overtime to control reactor levels and showed that it was a more sensitive indicator of nitrification inhibition than both initial respirometric tests conducted on unexposed biomass and effluent nitrogen species analyses. CDNB had the most severe impact on nitrification, followed by alkaline pH 11, cadmium, cyanide, octanol, and DNP. Based on effluent data, cadmium and octanol primarily inhibited ammonia-oxidizing bacteria (AOB) while CDNB, pH 11,and cyanide inhibited both AOB and nitrite-oxidizing bacteria (NOB). DNP initially inhibited nitrification but quickly increased the NGR relative to the control and stimulated nitrification after several days in a manner reflective of oxidative uncoupling. The shocked mixed liquor showed trends toward recovery from inhibition for all chemicals tested, but in some cases this reversion was slow. These results contribute to our broader effort to identify relationships between chemical sources and the process effects they induce in activated sludge treatment systems.

  14. Inhibition of aromatase activity by flavonoids.

    PubMed

    Jeong, H J; Shin, Y G; Kim, I H; Pezzuto, J M

    1999-06-01

    In searching for potent cancer chemopreventive agents from synthetic or natural products, 28 randomly selected flavonoids were screened for inhibitory effects against partially purified aromatase prepared from human placenta. Over 50% of the flavonoids significantly inhibited aromatase activity, with greatest activity being demonstrated with apigenin (IC50: 0.9 microg/mL), chrysin (IC50: 1.1 microg/mL), and hesperetin (IC50: 1.0 microg/mL).

  15. Resveratrol inhibits polyphosphoinositide metabolism in activated platelets.

    PubMed

    Olas, Beata; Wachowicz, Barbara; Holmsen, Holm; Fukami, Miriam H

    2005-08-15

    The effects of resveratrol (trans-3,4',5-trihydroxystilbene) on activation responses and the polyphosphoinositide metabolism in human blood platelets have been studied. Resveratrol partially inhibited secretory responses (liberation of dense granule nucleotides and lysosomal acid hydrolases), microparticle formation and protein phosphorylations induced by thrombin. The effects of resveratrol on phosphoinositide metabolites, phosphatidate (PtdOH), phosphatidylinositol (PtdIns), phosphatidylinositol-4-phosphate (PtdIns-4(5)-P), phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2), phosphatidylinositol-3,4-bisphosphate (PtdIns-3,4-P2) and phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3) were monitored in blood platelets prelabelled with [32P]Pi. Resveratrol not only inhibited the marked increase in levels of PtdOH in platelets activated by thrombin (0.1 U/ml) but it decreased the steady state levels of the other polyphosphoinositide metabolites. The distribution of 32P in phosphoinositides in activated platelets was consistent with inhibition of CDP-DAG inositol transferase and a weak inhibition of PtdIns-4(5)-P kinase. These observations show that resveratrol has a profound effect on phospholipids, particularly on polyphosphoinositide metabolism, and may decrease the amount of PtdIns-4,5-P2 available for signalling in these cells.

  16. Aminopeptidase from Brevibacterium linens: activation and inhibition.

    PubMed

    Foissy, H

    1978-04-18

    Activation and inhibition of a purified aminopeptidase from Brevibacterium linens was investigated using L-alpha-leucyl-4-nitroanilide and L-leucyl-L-leucine as substrates. The enzyme was activated by cobalt, provided that the enzyme was preincubated with the metal. Strong inhibitory effects were derived from heavy metals, metal-complexing compounds, reducing agents, the modification of aromatic amino acids, and the presence of hydrophobic substances or certain amino acids in the test mixtures. Supposing that this B. linens aminopeptidase plays a part during surface-ripening of cheeses, possible consequences of specific technological conditions for its activity are discussed.

  17. Everglades National Park Including Biscayne National Park. Activity Book.

    ERIC Educational Resources Information Center

    Ruehrwein, Dick

    Intended to help elementary school children learn about the resources of the Everglades and Biscayne National Parks, this activity book includes information, puzzles, games, and quizzes. The booklet deals with concepts related to: (1) the seasons; (2) fire ecology; (3) water; (4) fish; (5) mammals; (6) mosquitos; (7) birds; (8) venomous snakes;…

  18. Dimethyl sulfoxide inhibits NLRP3 inflammasome activation.

    PubMed

    Ahn, Huijeong; Kim, Jeeyoung; Jeung, Eui-Bae; Lee, Geun-Shik

    2014-04-01

    Dimethyl sulfoxide (DMSO) is an amphipathic molecule that is commonly/widely used as a solvent for biological compounds. In addition, DMSO has been studied as a medication for the treatment of inflammation, cystitis, and arthritis. Based on the anti-inflammatory characteristics of DMSO, we elucidated the effects of DMSO on activation of inflammasomes, which are cytoplasmic multi-protein complexes that mediate the maturation of interleukin (IL)-1β by activating caspase-1 (Casp1). In the present study, we prove that DMSO attenuated IL-1β maturation, Casp1 activity, and ASC pyroptosome formation via NLRP3 inflammasome activators. Further, NLRC4 and AIM2 inflammasome activity were not affected, suggesting that DMSO is a selective inhibitor of the NLRP3 inflammasomes. The anti-inflammatory effect of DMSO was further confirmed in animal, LPS-endotoxin sepsis and inflammatory bowel disease models. In addition, DMSO inhibited LPS-mediating IL-1s transcription. Taken together, DMSO shows anti-inflammatory characteristics, attenuates NLRP3 inflammasome activation, and mediates inhibition of IL-1s transcription.

  19. An Activation Threshold Model for Response Inhibition

    PubMed Central

    MacDonald, Hayley J.; McMorland, Angus J. C.; Stinear, Cathy M.; Coxon, James P.; Byblow, Winston D.

    2017-01-01

    Reactive response inhibition (RI) is the cancellation of a prepared response when it is no longer appropriate. Selectivity of RI can be examined by cueing the cancellation of one component of a prepared multi-component response. This substantially delays execution of other components. There is debate regarding whether this response delay is due to a selective neural mechanism. Here we propose a computational activation threshold model (ATM) and test it against a classical “horse-race” model using behavioural and neurophysiological data from partial RI experiments. The models comprise both facilitatory and inhibitory processes that compete upstream of motor output regions. Summary statistics (means and standard deviations) of predicted muscular and neurophysiological data were fit in both models to equivalent experimental measures by minimizing a Pearson Chi-square statistic. The ATM best captured behavioural and neurophysiological dynamics of partial RI. The ATM demonstrated that the observed modulation of corticomotor excitability during partial RI can be explained by nonselective inhibition of the prepared response. The inhibition raised the activation threshold to a level that could not be reached by the original response. This was necessarily followed by an additional phase of facilitation representing a secondary activation process in order to reach the new inhibition threshold and initiate the executed component of the response. The ATM offers a mechanistic description of the neural events underlying RI, in which partial movement cancellation results from a nonselective inhibitory event followed by subsequent initiation of a new response. The ATM provides a framework for considering and exploring the neuroanatomical constraints that underlie RI. PMID:28085907

  20. Hili inhibits HIV replication in activated T cells.

    PubMed

    Peterlin, B Matija; Liu, Pingyang; Wang, Xiaoyun; Cary, Daniele; Shao, Wei; Leoz, Marie; Hong, Tian; Pan, Tao; Fujinaga, Koh

    2017-03-22

    Piwil proteins restrict the replication of mobile genetic elements in the germline. They are also expressed in many transformed cell lines. In this report, we discovered that the human piwil 2 (hili) can also inhibit HIV replication, especially in activated CD4+ T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express hili, it was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of hili increased levels of viral proteins and new viral particles. Further studies revealed that hili binds to tRNA. Some of them represent rare tRNA species, whose codons are over-represented in the viral genome. Targeting tRNA(Arg)(UCU) with an antisense oligonucleotide replicated effects of hili and also inhibited HIV replication. Finally, hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements.IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germline. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small piRNAs. However, in some species and in human somatic cells, piwil proteins bind primarily to tRNA. In this report, we demonstrate that human piwil proteins, especially hili, not only bind to select tRNA species that include rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of hili in CD4+ T cells. Since hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements.

  1. Allosteric inhibition of HIV-1 integrase activity

    PubMed Central

    Engelman, Alan; Kessl, Jacques J.; Kvaratskhelia, Mamuka

    2013-01-01

    HIV-1 integrase is an important therapeutic target in the fight against HIV/AIDS. Integrase strand transfer inhibitors (INSTIs), which target the enzyme active site, have witnessed clinical success over the past 5 years, but the generation of drug resistance poses challenges to INSTI-based therapies moving forward. Integrase is a dynamic protein, and its ordered multimerization is critical to enzyme activity. The integrase tetramer, bound to viral DNA, interacts with host LEDGF/p75 protein to tether integration to active genes. Allosteric integrase inhibitors (ALLINIs) that compete with LEDGF/p75 for binding to integrase disrupt integrase assembly with viral DNA and allosterically inhibit enzyme function. ALLINIs display steep dose response curves and synergize with INSTIs ex vivo, highlighting this novel inhibitor class for clinical development. PMID:23647983

  2. Trace element inhibition of phytase activity.

    PubMed

    Santos, T; Connolly, C; Murphy, R

    2015-02-01

    Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p < 0.001 was verified. The proteinate sources of OTMs were consistently and significantly less inhibitory than the majority of the other sources, p < 0.05. This was verified for Escherichia coli and Peniophora lycii phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.

  3. Milk inhibits the biological activity of ricin.

    PubMed

    Rasooly, Reuven; He, Xiaohua; Friedman, Mendel

    2012-08-10

    Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that a component of reconstituted powdered milk has a high binding affinity to ricin. We discovered that milk can competitively bind to and reduce the amount of toxin available to asialofetuin type II, which is used as a model to study the binding of ricin to galactose cell-surface receptors. Milk also removes ricin bound to the microtiter plate. In parallel experiments, we demonstrated by activity assay and by immuno-PCR that milk can bind competitively to 1 ng/ml ricin, reducing the amount of toxin uptake by the cells, and thus inhibit the biological activity of ricin. The inhibitory effect of milk on ricin activity in Vero cells was at the same level as by anti-ricin antibodies. We also found that (a) milk did not inhibit ricin at concentrations of 10 or 100 ng/ml; (b) autoclaving 10 and 100 ng/ml ricin in DMEM at 121 °C for 30 min completely abolished activity; and (c) milk did not affect the activity of another ribosome inactivating protein, Shiga toxin type 2 (Stx2), produced by pathogenic Escherichia coli O157:H7. Unlike ricin, which is internalized into the cells via a galactose-binding site, Stx2 is internalized through the cell surface receptor glycolipid globotriasylceramides Gb3 and Gb4. These observations suggest that ricin toxicity may possibly be reduced at room temperature by a widely consumed natural liquid food.

  4. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus.

    PubMed

    Lundin, Anna; Dijkman, Ronald; Bergström, Tomas; Kann, Nina; Adamiak, Beata; Hannoun, Charles; Kindler, Eveline; Jónsdóttir, Hulda R; Muth, Doreen; Kint, Joeri; Forlenza, Maria; Müller, Marcel A; Drosten, Christian; Thiel, Volker; Trybala, Edward

    2014-05-01

    Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.

  5. Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity

    PubMed Central

    Sung, Nak Yoon

    2015-01-01

    Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-κB-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-β (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-κ B nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-κB activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-κB activation. PMID:26330757

  6. Curcumin directly inhibits the transport activity of GLUT1.

    PubMed

    Gunnink, Leesha K; Alabi, Ola D; Kuiper, Benjamin D; Gunnink, Stephen M; Schuiteman, Sam J; Strohbehn, Lauren E; Hamilton, Kathryn E; Wrobel, Kathryn E; Louters, Larry L

    2016-06-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin's inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin.

  7. Curcumin directly inhibits the transport activity of GLUT1

    PubMed Central

    Gunnink, Leesha K.; Alabi, Ola D.; Kuiper, Benjamin D.; Gunnink, Stephen M.; Schuiteman, Sam J.; Strohbehn, Lauren E.; Hamilton, Kathryn E.; Wrobel, Kathryn E.; Louters, Larry L.

    2016-01-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin’s inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin. PMID:27039889

  8. Inhibition of expression of the circadian clock gene Period causes metabolic abnormalities including repression of glycometabolism in Bombyx mori cells

    PubMed Central

    Tao, Hui; Li, Xue; Qiu, Jian-Feng; Cui, Wen-Zhao; Sima, Yang-Hu; Xu, Shi-Qing

    2017-01-01

    Abnormalities in the circadian clock system are known to affect the body’s metabolic functions, though the molecular mechanisms responsible remain uncertain. In this study, we achieved continuous knockdown of B. mori Period (BmPer) gene expression in the B. mori ovary cell line (BmN), and generated a Per-KD B. mori model with developmental disorders including small individual cells and slow growth. We conducted cell metabolomics assays by gas chromatography/liquid chromatography-mass spectrometry and showed that knockdown of BmPer gene expression resulted in significant inhibition of glycometabolism. Amino acids that used glucose metabolites as a source were also down-regulated, while lipid metabolism and nucleotide metabolism were significantly up-regulated. Metabolite correlation analysis showed that pyruvate and lactate were closely related to glycometabolism, as well as to metabolites such as aspartate, alanine, and xanthine in other pathways. Further validation experiments showed that the activities of the key enzymes of glucose metabolism, hexokinase, phosphofructokinase, and citrate synthase, were significantly decreased and transcription of their encoding genes, as well as that of pyruvate kinase, were also significantly down-regulated. We concluded that inhibition of the circadian clock gene BmPer repressed glycometabolism, and may be associated with changes in cellular amino acid metabolism, and in cell growth and development. PMID:28393918

  9. Sesquiterpenes inhibiting the microglial activation from Laurus nobilis.

    PubMed

    Chen, Hongqiang; Xie, Chunfeng; Wang, Hao; Jin, Da-Qing; Li, Shen; Wang, Meicheng; Ren, Quanhui; Xu, Jing; Ohizumi, Yasushi; Guo, Yuanqiang

    2014-05-21

    The inhibitory reagents to inhibit the activation of microglial cells may be potentially useful for the treatment of neurodegenerative diseases. The leaves of the plant Laurus nobilis belonging to the family Lauraceae, namely, bay leaves, have been used as a popular spice, and their extract showed moderate inhibition on microglial activation. A further phytochemical investigation of the leaves led to the isolation of two new (1, 2) and eight known (3-10) sesquiterpenes. Their structures were elucidated on the basis of extensive 1D and 2D NMR (HMQC, HMBC, (1)H-(1)H COSY, and NOESY) spectroscopic data analyses and Chem3D modeling. The following biological studies disclosed that these isolated compounds showed inhibitory activities on LPS-induced microglial activation. The results of our phytochemical investigation, including two new sesquiterpenes (1 and 2) and the first report of two compounds (3 and 4) from this species, further revealed the chemical composition of bay leaves as a popular spice, and the biological studies implied that bay leaves, containing bioactive substances with the inhibition of microglial activation, were potentially beneficial to human health.

  10. Some heterocyclic thione derivatives exhibit anticoccidial activity by inhibiting glycosidases.

    PubMed

    Balbaa, Mahmoud; Abd El-Hady, Neama; Taha, Nabil; El Ashry, El Sayed H

    2012-01-01

    Coccidiosis is one of the most common parasitic diseases affecting many species of domestic animals. This disease has a major economic significance and the search for new compounds having anticoccidial activity is of great importance. In this article, different levels of protection from coccidian infection by Eimeria stiedae were developed in rabbits by treatment with compounds incorporating the skeleton of thiourea. These compounds include 4,5-diphenylimidazole-2-thione (1), 4,5-Diphenyl-1,2,4-triazole-3-thiol (2) and 5-(2-Hydroxyphenyl)-4-phenyl-1,2,4-triazole-3-thiol (3) compared to the anticoccidial drug toltrazuril as a reference compound. Compounds 1-3 inhibit coccidiosis-induced activity of α-glucosidase. The protection from coccidial infection by compound 1 was higher than that shown for compounds 2 and 3. These data suggest that diazole and triazole thione derivatives have a mimetic effect for anticoccidial drugs through their inhibition of glycosidases.

  11. Stathmin Potentiates Vinflunine and Inhibits Paclitaxel Activity

    PubMed Central

    Malesinski, Soazig; Tsvetkov, Philipp O.; Kruczynski, Anna; Peyrot, Vincent; Devred, François

    2015-01-01

    Cell biology and crystallographic studies have suggested a functional link between stathmin and microtubule targeting agents (MTAs). In a previous study we showed that stathmin increases vinblastine (VLB) binding to tubulin, and that conversely VLB increases stathmin binding to tubulin. This constituted the first biochemical evidence of the direct relationship between stathmin and an antimitotic drug, and revealed a new mechanism of action for VLB. The question remained if the observed interaction was specific for this drug or represented a general phenomenon for all MTAs. In the present study we investigated the binding of recombinant stathmin to purified tubulin in the presence of paclitaxel or another Vinca alkaloid, vinflunine, using Isothermal Titration Calorimetry (ITC). These experiments revealed that stathmin binding to tubulin is increased in the presence of vinflunine, whereas no signal is observed in the presence of paclitaxel. Further investigation using turbidity and co-sedimentation showed that stathmin inhibited paclitaxel microtubule-stabilizing activity. Taken together with the previous study using vinblastine, our results suggest that stathmin can be seen as a modulator of MTA activity and binding to tubulin, providing molecular explanation for multiple previous cellular and in vivo studies showing that stathmin expression level affects MTAs efficiency. PMID:26030092

  12. Luteolin, a flavonoid, inhibits AP-1 activation by basophils

    SciTech Connect

    Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Matsuda, Hisashi; Yoshikawa, Masayuki; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Kawase, Ichiro; Tanaka, Toshio . E-mail: ttanak@imed3.med.osaka-u.ac.jp

    2006-02-03

    Flavonoids including luteolin, apigenin, and fisetin are inhibitors of IL-4 synthesis and CD40 ligand expression by basophils. This study was done to search for compounds with greater inhibitory activity of IL-4 expression and to clarify the molecular mechanisms through which flavonoids inhibit their expression. Of the 37 flavonoids and related compounds examined, ayanin, luteolin, and apigenin were the strongest inhibitors of IL-4 production by purified basophils in response to anti-IgE antibody plus IL-3. Luteolin did not suppress Syk or Lyn phosphorylation in basophils, nor did suppress p54/46 SAPK/JNK, p38 MAPK, and p44/42 MAPK activation by a basophilic cell line, KU812 cells, stimulated with A23187 and PMA. However, luteolin did inhibit phosphorylation of c-Jun and DNA binding activity of AP-1 in nuclear lysates from stimulated KU812 cells. These results provide a fundamental structure of flavonoids for IL-4 inhibition and demonstrate a novel action of flavonoids that suppresses the activation of AP-1.

  13. Complement activity and pharmacological inhibition in cardiovascular disease

    PubMed Central

    Théroux, Pierre; Martel, Catherine

    2006-01-01

    While complement is the most important component of humoral autoimmunity, and inflammation plays a key role in atherosclerosis, relatively few studies have looked at complement implications in atherosclerosis and its complications. C-reactive protein is a marker of inflammation and is also involved in atherosclerosis; it activates complement and colocalizes with activated complement proteins within the infarcting myocardium and the active atherosclerotic plaques. As new agents capable of modulating complement activity are being developed, new targets for the management of atherosclerosis are emerging that are related to autoimmunity and inflammation. The present paper reviews the putative roles of the various complement activation pathways in the development of atherosclerosis, in ST segment elevation and non-ST segment elevation acute coronary syndromes, and in coronary artery bypass graft surgery. It also provides a perspective on new therapeutic interventions being developed to modulate complement activity. These interventions include the C1 esterase inhibitor, which may be consumed in some inflammatory states resulting in the loss of one of the mechanisms inhibiting activation of the classical and lectin pathways; TP10, a recombinant protein of the soluble complement receptor type 1 (sCR1) which inhibits the C3 and C5 convertases of the common pathway by binding C3b and C4b; a truncated version of the soluble complement receptor type 1 CRI lacking the C4b binding site which selectively inhibits the alternative pathway; and pexelizumab, a monoclonal antibody selectively blocking C5 to prevent the activation of the terminal pathway that is involved in excessive inflammation and autoimmune responses. PMID:16498508

  14. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation

    PubMed Central

    Senarathna, S M D K Ganga; Page-Sharp, Madhu; Crowe, Andrew

    2016-01-01

    The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10−6 cm/sec, followed by amodiaquine around 20 x 10−6 cm/sec; both mefloquine and artesunate were around 10 x 10−6 cm/sec. Methylene blue was between 2 and 6 x 10−6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine. PMID:27045516

  15. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits MAP kinases and AP-1 activation via potent MKK inhibition: the role in TNF-alpha inhibition.

    PubMed

    Cho, Min Kyung; Jang, Young Pyo; Kim, Young Choong; Kim, Sang Geon

    2004-10-01

    Arctigenin, naturally occurring in Bardanae fructus, Saussurea medusa, Arctium lappa L., Torreya nucifera and Ipomea cairica, is a phenylpropanoid dibenzylbutyrolactone lignan with antioxidant and anti-inflammatory activities. Previously, we showed that arctigenin potently inhibited the induction of nitric oxide synthase (iNOS) by lipopolysaccharide (LPS), which involved suppression of NF-kappaB activation. In the present study, we examined the effects of arctigenin on mitogen-activated protein (MAP) kinase activation in Raw264.7 cells and MAP kinase kinase (MKK) activity. The effect of arctigenin on activator protein-1 (AP-1) activation was also studied in association with tumor necrosis factor-alpha (TNF-alpha) expression. Immunoblot analysis showed that arctigenin inhibited phosphorylation of MAP kinases ERK1/2, p38 kinase and JNK and their activities in Raw264.7 cells treated with LPS. Arctigenin potently inhibited the activity of MKK1 in vitro with the IC(50) value of 1 nM. Gel shift and reporter gene analyses revealed that arctigenin inhibited LPS-inducible AP-1 binding to the AP-1 consensus oligonucleotide and AP-1-mediated reporter gene expression. In view of the potential role of AP-1 in the induction of TNF-alpha, we next examined the inhibitory effects of arctigenin on the expression of TNF-alpha. Arctigenin blocked TNF-alpha production and decreased the level of TNF-alpha mRNA in the cells exposed to LPS. These results showed that arctigenin inhibited activation of MAP kinases including ERK1/2, p38 kinase and JNK through the inhibition of MKK activities, leading to AP-1 inactivation, which might, at least in part, contribute to the inhibition of TNF-alpha production.

  16. Information for Teachers (Including Classroom Activities), Skylab Student Project.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This program is intended to directly involve the educational community in space experiments, many of which can be related to existing curricula. Included in this first packet are: 1) a brief description of the Skylab Program and the National Science Teachers Association-National Aeronautics and Space Administration (NSTA-NASA) Skylab Student…

  17. Hyperoxia Inhibits T Cell Activation in Mice

    NASA Astrophysics Data System (ADS)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    , spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.

  18. Activating Cell Death Ligand Signaling Through Proteasome Inhibition

    DTIC Science & Technology

    2009-05-01

    Activating Cell Death Ligand Signaling Through Proteasome Inhibition PRINCIPAL INVESTIGATOR: Steven R Schwarze...SUBTITLE Activating Cell Death Ligand Signaling Through 5a. CONTRACT NUMBER Proteasome Inhibition 5b. GRANT NUMBER W81XWH-08-1-0392 5c...proteasome inhibition can act as an anti-neoplastic agent in vivo by sensitizing cancer cells to cell death ligands in the tumor microenvironment

  19. Obesity and lipid stress inhibit carnitine acetyltransferase activity[S

    PubMed Central

    Seiler, Sarah E.; Martin, Ola J.; Noland, Robert C.; Slentz, Dorothy H.; DeBalsi, Karen L.; Ilkayeva, Olga R.; An, Jie; Newgard, Christopher B.; Koves, Timothy R.; Muoio, Deborah M.

    2014-01-01

    Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes. PMID:24395925

  20. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses

    PubMed Central

    Chiappinelli, Katherine B.; Strissel, Pamela L.; Desrichard, Alexis; Li, Huili; Henke, Christine; Akman, Benjamin; Hein, Alexander; Rote, Neal S.; Cope, Leslie M.; Snyder, Alexandra; Makarov, Vladimir; Buhu, Sadna; Slamon, Dennis J.; Wolchok, Jedd D.; Pardoll, Drew M.; Beckmann, Matthias W.; Zahnow, Cynthia A.; Mergoub, Taha; Chan, Timothy A.; Baylin, Stephen B.; Strick, Reiner

    2015-01-01

    Summary We show that DNA methyltransferase inhibitors (DNMTis) upregulate immune signaling in cancer through the viral defense pathway. In ovarian cancer (OC), DNMTis trigger cytosolic sensing of double-stranded RNA (dsRNA) causing a Type I Interferon response and apoptosis. Knocking down dsRNA sensors TLR3 and MAVS reduces this response twofold, and blocking interferon beta or its receptor abrogates it. Upregulation of hypermethylated endogenous retrovirus (ERV) genes accompanies the response and ERV overexpression activates the response. Basal levels of ERV and viral defense gene expression significantly correlate in primary OC and the latter signature separates primary samples for multiple tumor types from The Cancer Genome Atlas into low versus high expression groups. In melanoma patients treated with an immune checkpoint therapy, high viral defense signature expression in tumors significantly associates with durable clinical response and DNMTi treatment sensitizes to anti-CTLA4 therapy in a pre-clinical melanoma model. PMID:26317466

  1. Conformational control inhibition of the BCR-ABL1 tyrosine kinase, including the gatekeeper T315I mutant, by the switch-control inhibitor DCC-2036

    PubMed Central

    Chan, Wayne W.; Wise, Scott C.; Kaufman, Michael D.; Ahn, Yu Mi; Ensinger, Carol L.; Haack, Torsten; Hood, Molly M.; Jones, Jennifer; Lord, John W.; Lu, Wei Ping; Miller, David; Patt, William C.; Smith, Bryan D.; Petillo, Peter A.; Rutkoski, Thomas J.; Telikepalli, Hanumaiah; Vogeti, Lakshminarayana; Yao, Tony; Chun, Lawrence; Clark, Robin; Evangelista, Peter; Gavrilescu, L. Cristina; Lazarides, Katherine; Zaleskas, Virginia M.; Stewart, Lance J.; Van Etten, Richard A.; Flynn, Daniel L.

    2011-01-01

    Summary Acquired resistance to ABL1 tyrosine kinase inhibitors (TKIs) through ABL1 kinase domain mutations, particularly the gatekeeper mutant T315I, is a significant problem for chronic myeloid leukemia (CML) patients. Using structure-based drug design, we developed compounds that bind to residues (Arg386/Glu282) ABL1 uses to switch between inactive and active conformations. The lead “switch-control” inhibitor, DCC-2036, potently inhibits both unphosphorylated and phosphorylated ABL1 by inducing a type II inactive conformation, and retains efficacy against the majority of clinically relevant CML resistance mutants, including T315I. DCC-2036 inhibits BCR-ABL1T315I-expressing cell lines, prolongs survival in mouse models of T315I-mutant CML and B-lymphoblastic leukemia, and inhibits primary patient leukemia cells expressing T315I in vitro and in vivo, supporting its clinical development in TKI-resistant Ph+ leukemia. PMID:21481795

  2. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo.

    PubMed

    Healy, Laura D; Puy, Cristina; Fernández, José A; Mitrugno, Annachiara; Keshari, Ravi S; Taku, Nyiawung A; Chu, Tiffany T; Xu, Xiao; Gruber, András; Lupu, Florea; Griffin, John H; McCarty, Owen J T

    2017-04-13

    Activated protein C (APC) is a multi-functional serine protease with anticoagulant, cytoprotective, and anti-inflammatory activities. In addition to the cytoprotective effects of APC on endothelial cells, podocytes, and neurons, APC cleaves and detoxifies extracellular histones, a major component of neutrophil extracellular traps (NETs). NETs promote pathogen clearance but also can lead to thrombosis; the pathways that negatively regulate NETosis are largely unknown. Thus, we studied whether APC is capable of directly inhibiting NETosis via receptor-mediated cell signaling mechanisms. Here, by quantifying extracellular DNA or myeloperoxidase, we demonstrate that APC binds human leukocytes and prevents activated platelet supernatant or phorbol 12-myristate 13-acetate (PMA) from inducing NETosis. Of note, APC proteolytic activity was required for inhibiting NETosis. Moreover, antibodies against the neutrophil receptors endothelial protein C receptor (EPCR), protease activated receptor 3 (PAR3), and macrophage-1 antigen (Mac-1) blocked APC inhibition of NETosis. Select mutations in the Gla and protease domains of recombinant APC caused a loss of NETosis. Interestingly, pretreatment of neutrophils with APC prior to induction of NETosis inhibited platelet adhesion to NETs. Lastly, in a non-human primate model of E. coli-induced sepsis, pre-treatment of animals with APC abrogated release of myeloperoxidase from neutrophils, a marker of neutrophil activation. These findings suggest that the anti-inflammatory function of APC at therapeutic concentrations may include the inhibition of NETosis in an EPCR-, PAR3-, and Mac-1-dependent manner, providing additional mechanistic insight into the diverse functions of neutrophils and APC in disease states including sepsis.

  3. Antipneumococcal activity of neuraminidase inhibiting artocarpin.

    PubMed

    Walther, E; Richter, M; Xu, Z; Kramer, C; von Grafenstein, S; Kirchmair, J; Grienke, U; Rollinger, J M; Liedl, K R; Slevogt, H; Sauerbrei, A; Saluz, H P; Pfister, W; Schmidtke, M

    2015-05-01

    Streptococcus (S.) pneumoniae is a major cause of secondary bacterial pneumonia during influenza epidemics. Neuraminidase (NA) is a virulence factor of both pneumococci and influenza viruses. Bacterial neuraminidases (NAs) are structurally related to viral NA and susceptible to oseltamivir, an inhibitor designed to target viral NA. This prompted us to evaluate the antipneumococcal potential of two NA inhibiting natural compounds, the diarylheptanoid katsumadain A and the isoprenylated flavone artocarpin. Chemiluminescence, fluorescence-, and hemagglutination-based enzyme assays were applied to determine the inhibitory efficiency (IC(50) value) of the tested compounds towards pneumococcal NAs. The mechanism of inhibition was studied via enzyme kinetics with recombinant NanA NA. Unlike oseltamivir, which competes with the natural substrate of NA, artocarpin exhibits a mixed-type inhibition with a Ki value of 9.70 μM. Remarkably, artocarpin was the only NA inhibitor (NAI) for which an inhibitory effect on pneumococcal growth (MIC: 0.99-5.75 μM) and biofilm formation (MBIC: 1.15-2.97 μM) was observable. In addition, we discovered that the bactericidal effect of artocarpin can reduce the viability of pneumococci by a factor of >1000, without obvious harm to lung epithelial cells. This renders artocarpin a promising natural product for further investigations.

  4. Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas.

    PubMed

    Efsen, Eva; Saermark, Torben; Hansen, Alastair; Bruun, Eywin; Brynskov, Jørn

    2011-09-01

    Increased expression of matrix metalloproteinase (MMP)-2, -3 and -9 has been demonstrated in Crohn's disease fistulas, but it is unknown whether these enzymes are biologically active and represent a therapeutic target. Therefore, we investigated the proteolytic activity of MMPs in fistula tissue and examined the effect of inhibitors, including clinically available drugs that beside their main action also suppress MMPs. Fistula specimens were obtained by surgical excision from 22 patients with Crohn's disease and from 10 patients with fistulas resulting from other causes. Colonic endoscopic biopsies from six controls were also included. Total functional MMP activity was measured by a high-pressure liquid chromatography (HPLC)-based, fluorogenic MMP-substrate cleavage assay, and the specific activity of MMP-2, -3 and -9 by the MMP Biotrak Activity Assay. The MMP inhibitors comprised ethylene-diamine-tetraacetic acid (EDTA), the synthetic broad-spectrum inhibitor, GM6001, the angiotensin-converting enzyme (ACE) inhibitor, ramiprilate, and the tetracycline, doxycycline. In Crohn's disease fistulas, about 50% of the total protease activity was attributable to MMP activity. The average total MMP activity was significantly higher (about 3.5-times) in Crohn's fistulas (471 FU/μg protein, range 49-2661) compared with non-Crohn's fistulas [134 FU/μg protein, range 0-495, (p < 0.05)] and normal colon [153 FU/μg protein, range 77-243, (p < 0.01)]. MMP-3 activity was increased in Crohn's fistulas (1.4 ng/ml, range 0-9.83) compared with non-Crohn's fistulas, [0.32 ng/ml, range 0-2.66, (p < 0.02)]. The same applied to MMP-9 activity [0.64 ng/ml, range 0-5.66 and 0.17 ng/ml, range 0-1.1, respectively (p < 0.04)]. Ramiprilate significantly decreased the average total MMP activity level by 42% and suppressed the specific MMP-3 activity by 72%, which is comparable to the effect of GM6001 (87%). Moreover, MMP-9 activity was completely blunted by ramiprilate. Doxycycline had no

  5. Heparan sulfate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation.

    PubMed

    Fisher, Melanie C; Li, Yingcui; Seghatoleslami, M Reza; Dealy, Caroline N; Kosher, Robert A

    2006-01-01

    Bone morphogenetic proteins (BMPs) are involved in multiple aspects of limb development including regulation of cartilage differentiation. Several BMPs bind strongly to heparin, and heparan sulfate proteoglycans (HSPGs) at the cell surface or in the extracellular matrix have recently been implicated as modulators of BMP signaling in some developing systems. Here we have explored the role of HSPGs in regulating BMP activity during limb chondrogenesis by evaluating the effects of exogenous heparan sulfate (HS), heparitinase treatment, and overexpression of the HSPG syndecan-3 on the ability of BMP2 to modulate the chondrogenic differentiation of limb mesenchymal cells in micromass culture. Exogenous HS dramatically enhances the ability of BMP2 to stimulate chondrogenesis and cartilage specific gene expression, and reduces the concentration of BMP2 needed to stimulate chondrogenesis. Furthermore, HS stimulates BMP2-mediated phosphorylation of Smad1, Smad5, and Smad8, transcriptional mediators of BMP2 signaling, indicating that HS enhances the interaction of BMP2 with its receptors. Pretreatment of micromass cultures with heparitinase to degrade endogenous HSPGs also enhances the chondrogenic activity of BMP2, and reduces the concentration of BMP2 needed to promote chondrogenesis. Taken together these results indicate that exogenous HS or heparitinase enhance the chondrogenic activity of BMP2 by interfering with its interaction with endogenous HSPGs that would normally restrict its interaction with its receptors. Consistent with the possibility that HSPGs are negative modulators of BMP signaling during chondrogenesis, we have found that overexpression of syndecan-3, which is one of the major HSPGs normally expressed during chondrogenesis, greatly impairs the ability of BMP2 to promote cartilage differentiation. Furthermore, retroviral overexpression of syndecan-3 inhibits BMP2-mediated Smad phosphorylation in the regions of the cultures in which chondrogenesis is

  6. Complement Activation and Inhibition in Wound Healing

    PubMed Central

    Cazander, Gwendolyn; Jukema, Gerrolt N.; Nibbering, Peter H.

    2012-01-01

    Complement activation is needed to restore tissue injury; however, inappropriate activation of complement, as seen in chronic wounds can cause cell death and enhance inflammation, thus contributing to further injury and impaired wound healing. Therefore, attenuation of complement activation by specific inhibitors is considered as an innovative wound care strategy. Currently, the effects of several complement inhibitors, for example, the C3 inhibitor compstatin and several C1 and C5 inhibitors, are under investigation in patients with complement-mediated diseases. Although (pre)clinical research into the effects of these complement inhibitors on wound healing is limited, available data indicate that reduction of complement activation can improve wound healing. Moreover, medicine may take advantage of safe and effective agents that are produced by various microorganisms, symbionts, for example, medicinal maggots, and plants to attenuate complement activation. To conclude, for the development of new wound care strategies, (pre)clinical studies into the roles of complement and the effects of application of complement inhibitors in wound healing are required. PMID:23346185

  7. Berberine inhibits PTP1B activity and mimics insulin action.

    PubMed

    Chen, Chunhua; Zhang, Yuebo; Huang, Cheng

    2010-07-02

    Type 2 diabetes patients show defects in insulin signal transduction that include lack of insulin receptor, decrease in insulin stimulated receptor tyrosine kinase activity and receptor-mediated phosphorylation of insulin receptor substrates (IRSs). A small molecule that could target insulin signaling would be of significant advantage in the treatment of diabetes. Berberine (BBR) has recently been shown to lower blood glucose levels and to improve insulin resistance in db/db mice partly through the activation of AMP-activated protein kinase (AMPK) signaling and induction of phosphorylation of insulin receptor (IR). However, the underlying mechanism remains largely unknown. Here we report that BBR mimics insulin action by increasing glucose uptake ability by 3T3-L1 adipocytes and L6 myocytes in an insulin-independent manner, inhibiting phosphatase activity of protein tyrosine phosphatase 1B (PTP1B), and increasing phosphorylation of IR, IRS1 and Akt in 3T3-L1 adipocytes. In diabetic mice, BBR lowers hyperglycemia and improves impaired glucose tolerance, but does not increase insulin release and synthesis. The results suggest that BBR represents a different class of anti-hyperglycemic agents.

  8. Quorum Sensing Inhibiting Activity of Streptomyces coelicoflavus Isolated from Soil

    PubMed Central

    Hassan, Ramadan; Shaaban, Mona I.; Abdel Bar, Fatma M.; El-Mahdy, Areej M.; Shokralla, Shadi

    2016-01-01

    Quorum sensing (QS) systems communicate bacterial population and stimulate microbial pathogenesis through signaling molecules. Inhibition of QS signals potentially suppresses microbial infections. Antimicrobial properties of Streptomyces have been extensively studied, however, less is known about quorum sensing inhibitory (QSI) activities of Streptomyces. This study explored the QSI potential of Streptomyces isolated from soil. Sixty-five bacterial isolates were purified from soil samples with morphological characteristics of Streptomyces. The three isolates: S6, S12, and S17, exhibited QSI effect by screening with the reporter, Chromobacterium violaceum. Isolate S17 was identified as Streptomyces coelicoflavus by sequencing of the hypervariable regions (V1–V6) of 16S rRNA and was assigned gene bank number KJ855087. The QSI effect of the cell-free supernatant of isolate S17 was not abolished by proteinase K indicating the non-enzymatic activity of QSI components of S17. Three major compounds were isolated and identified, using spectroscopic techniques (1D, 2D NMR, and Mass spectrometry), as behenic acid (docosanoic acid), borrelidin, and 1H-pyrrole-2-carboxylic acid. 1H-pyrrole-2-carboxylic acid inhibited QS and related virulence factors of Pseudomonas aeruginosa PAO1 including; elastase, protease, and pyocyanin without affecting Pseudomonas viability. At the molecular level, 1H-pyrrole-2-carboxylic acid suppressed the expression of QS genes (lasI, lasR, lasA, lasB, rhlI, rhlR, pqsA, and pqsR). Moreover, QSI activity of S17 was assessed under different growth conditions and ISP2 medium supplemented with glucose 0.4% w/v and adjusted at pH 7, showed the highest QSI action. In conclusion, 1H-pyrrole-2-carboxylic acid, one of the major metabolites of Streptomyces isolate S17, inhibited QS and virulence determinants of P. aeruginosa PAO1. The findings of the study open the scope to exploit the in vivo efficacy of this active molecule as anti-pathogenic and anti

  9. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation

    PubMed Central

    Chen, Jen-Yung; Chauvette, Sylvain; Skorheim, Steven; Timofeev, Igor; Bazhenov, Maxim

    2012-01-01

    The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. PMID:22641778

  10. Reward anticipation enhances brain activation during response inhibition.

    PubMed

    Rosell-Negre, Patricia; Bustamante, Juan Carlos; Fuentes-Claramonte, Paola; Costumero, Víctor; Benabarre, Sergio; Barros-Loscertales, Alfonso

    2014-06-01

    The chance to achieve a reward starts up the required neurobehavioral mechanisms to adapt our thoughts and actions in order to accomplish our objective. However, reward does not equally reinforce everybody but depends on interindividual motivational dispositions. Thus, immediate reward contingencies can modulate the cognitive process required for goal achievement, while individual differences in personality can affect this modulation. We aimed to test the interaction between inhibition-related brain response and motivational processing in a stop signal task by reward anticipation and whether individual differences in sensitivity to reward (SR) modulate such interaction. We analyzed the cognitive-motivational interaction between the brain pattern activation of the regions involved in correct and incorrect response inhibition and the association between such brain activations and SR scores. We also analyzed the behavioral effects of reward on both reaction times for the "go" trials before and after correct and incorrect inhibition in order to test error prediction performance and postinhibition adjustment. Our results show enhanced activation during response inhibition under reward contingencies in frontal, parietal, and subcortical areas. Moreover, activation of the right insula and the left putamen positively correlates with the SR scores. Finally, the possibility of reward outcome affects not only response inhibition performance (e.g., reducing stop signal reaction time), but also error prediction performance and postinhibition adjustment. Therefore, reward contingencies improve behavioral performance and enhance brain activation during response inhibition, and SR is related to brain activation. Our results suggest the conditions and factors that subserve cognitive control strategies in cognitive motivational interactions during response inhibition.

  11. Tetramethylpyrazine inhibits neutrophil activation following permanent cerebral ischemia in rats.

    PubMed

    Chang, Cheng-Yi; Kao, Tsung-Kuei; Chen, Wen-Ying; Ou, Yen-Chuan; Li, Jian-Ri; Liao, Su-Lan; Raung, Shue-Ling; Chen, Chun-Jung

    2015-07-31

    Experimental studies have demonstrated the beneficial effects of tetramethylpyrazine (TMP) against ischemic stroke and highlighted its crucial role in anti-inflammatory activity. This study provides evidence of an alternative target for TMP and sheds light on the mechanism of its anti-inflammatory action against ischemic brain injury. We report a global inhibitory effect of TMP on inflammatory cell intracerebral activation and infiltration in a rat model of permanent cerebral ischemia. The results of immunohistochemistry, enzymatic assay, flow cytometric analysis, and cytological analysis revealed that intraperitoneal TMP administration reduced neuronal loss, macrophage/microglia activation, brain parenchyma infiltrative neutrophils, and circulating neutrophils after cerebral ischemia. Biochemical studies of cultured neutrophils further demonstrated that TMP attenuated neutrophil migration, endothelium adhesion, spontaneous nitric oxide (NO) production, and stimuli-activated NO production after cerebral ischemia. In parallel with these anti-neutrophil phenomena, TMP also attenuated the activities of ischemia-induced inflammation-associated signaling molecules, including plasma high-mobility group box-1 protein (HMGB1) and neutrophil toll-like receptor-4 (TLR4), Akt, extracellular signal-regulated kinase (ERK), and inducible nitric oxide synthase. Another finding in this study was that the anti-neutrophil effect of TMP was accompanied by a further elevated expression of NF-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in neutrophils after cerebral ischemia. Taken together, our results suggest that both the promotion of endogenous anti-inflammatory defense capacity and the attenuation of pro-inflammatory responses via targeting of circulating neutrophils by elevating Nrf2/HO-1 expression and inhibiting HMGB1/TLR4, Akt, and ERK signaling might actively contribute to TMP-mediated neuroprotection against cerebral ischemia.

  12. Inhibition of LRRK2 kinase activity stimulates macroautophagy☆

    PubMed Central

    Manzoni, Claudia; Mamais, Adamantios; Dihanich, Sybille; Abeti, Rosella; Soutar, Marc P.M.; Plun-Favreau, Helene; Giunti, Paola; Tooze, Sharon A.; Bandopadhyay, Rina; Lewis, Patrick A.

    2013-01-01

    Leucine Rich Repeat Kinase 2 (LRRK2) is one of the most important genetic contributors to Parkinson's disease. LRRK2 has been implicated in a number of cellular processes, including macroautophagy. To test whether LRRK2 has a role in regulating autophagy, a specific inhibitor of the kinase activity of LRRK2 was applied to human neuroglioma cells and downstream readouts of autophagy examined. The resulting data demonstrate that inhibition of LRRK2 kinase activity stimulates macroautophagy in the absence of any alteration in the translational targets of mTORC1, suggesting that LRRK2 regulates autophagic vesicle formation independent of canonical mTORC1 signaling. This study represents the first pharmacological dissection of the role LRRK2 plays in the autophagy/lysosomal pathway, emphasizing the importance of this pathway as a marker for LRRK2 physiological function. Moreover it highlights the need to dissect autophagy and lysosomal activities in the context of LRRK2 related pathologies with the final aim of understanding their aetiology and identifying specific targets for disease modifying therapies in patients. PMID:23916833

  13. Thyroid peroxidase activity is inhibited by amino acids.

    PubMed

    Carvalho, D P; Ferreira, A C; Coelho, S M; Moraes, J M; Camacho, M A; Rosenthal, D

    2000-03-01

    Normal in vitro thyroid peroxidase (TPO) iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml) or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml). A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml) and some amino acids (cysteine, tryptophan and methionine, 50 microM each) also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml), and tyrosine, phenylalanine and histidine (50 microM each) inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml) or any other amino acid (50 microM) tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine) or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine). Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 microM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2) concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  14. Acquired Mitochondrial Abnormalities, Including Epigenetic Inhibition of Superoxide Dismutase 2, in Pulmonary Hypertension and Cancer: Therapeutic Implications.

    PubMed

    Archer, Stephen L

    2016-01-01

    There is no cure for non-small-cell lung cancer (NSCLC) or pulmonary arterial hypertension (PAH). Therapies lack efficacy and/or are toxic, reflecting a failure to target disease abnormalities that are distinct from processes vital to normal cells. NSCLC and PAH share reversible mitochondrial-metabolic abnormalities which may offer selective therapeutic targets. The following mutually reinforcing, mitochondrial abnormalities favor proliferation, impair apoptosis, and are relatively restricted to PAH and cancer cells: (1) Epigenetic silencing of superoxide dismutase-2 (SOD2) by methylation of CpG islands creates a pseudohypoxic redox environment that causes normoxic activation of hypoxia inducible factor (HIF-1α). (2) HIF-1α increases expression of pyruvate dehydrogenase kinase (PDK), which impairs oxidative metabolism and promotes a glycolytic metabolic state. (3) Mitochondrial fragmentation, partially due to mitofusin-2 downregulation, promotes proliferation. This review focuses on the recent discovery that decreased expression of SOD2, a putative tumor-suppressor gene and the major source of H2O2, results from hypermethylation of CpG islands. In cancer and PAH hypermethylation of a site in the enhancer region of intron 2 inhibits SOD2 transcription. In normal PASMC, SOD2 siRNA decreases H2O2 and activates HIF-1α. In PAH, reduced SOD2 expression decreases H2O2, reduces the cytosol and thereby activates HIF-1α. This causes a glycolytic shift in metabolism and increases the proliferation/apoptosis ratio by downregulating Kv1.5 channels, increasing cytosolic calcium, and inhibiting caspases. The DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine, which restores SOD2 expression, corrects the proliferation/apoptosis imbalance in PAH and cancer cells. The specificity of PAH for lung vessels may relate to the selective upregulation of DNA methyltransferases that mediate CpG methylation in PASMC (DNA MT-1A and -3B). SOD2 augmentation inactivates HIF-1α in PAH

  15. Inhibition of existing denitrification enzyme activity by chloramphenicol

    USGS Publications Warehouse

    Brooks, M.H.; Smith, R.L.; Macalady, D.L.

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chloramphenicol also decreased (>50%) the activity of existing denitrification enzymes in pure cultures of Pseudomonas denitrificans that were harvested during log- phase growth and maintained for 2 weeks in a starvation medium lacking electron donor. Short-term time courses of nitrate consumption and nitrous oxide production in the presence of acetylene with P. denitrificans undergoing carbon starvation were performed under optimal conditions designed to mimic denitrification enzyme activity assays used with soils. Time courses were linear for both chloramphenicol and control flasks, and rate estimates for the two treatments were significantly different at the 95% confidence level. Complete or partial inhibition of existing enzyme activity is not consistent with the current understanding of the mode of action of chloramphenicol or current practice, in which the compound is frequently employed to inhibit de novo protein synthesis during the course of microbial activity assays. The results of this study demonstrate that chloramphenicol amendment can inhibit the activity of existing denitrification enzymes and suggest that caution is needed in the design and interpretation of denitrification activity assays in which chloramphenicol is used to prevent new protein synthesis.

  16. Fluoxetine Inhibits NLRP3 Inflammasome Activation: Implication in Depression

    PubMed Central

    Du, Ren-Hong; Tan, Jun; Sun, Xi-Yang; Lu, Ming; Ding, Jian-Hua

    2016-01-01

    Background: Emerging evidence indicates that NLRP3 inflammasome-induced inflammation plays a crucial role in the pathogenesis of depression. Thus, inhibition of NLRP3 inflammasome activation may offer a therapeutic benefit in the treatment of depression. Fluoxetine, a widely used antidepressant, has been shown to have potential antiinflammatory activity, but the underlying mechanisms remain obscure. Methods: We used a chronic mild stress model and cultured primary macrophage/microglia to investigate the effects of fluoxetine on NLRP3 inflammasome and its underlying mechanisms. Results: We demonstrated that fluoxetine significantly suppressed NLRP3 inflammasome activation, subsequent caspase-1 cleavage, and interleukin-1β secretion in both peripheral macrophages and central microglia. We further found that fluoxetine reduced reactive oxygen species production, attenuated the phosphorylation of double-stranded RNA-dependent protein kinase, and inhibited the association of protein kinase with NLRP3. These data indicate that fluoxetine inhibits the activation of NLRP3 inflammasome via downregulating reactive oxygen species-protein kinase-NLRP3 signaling pathway. Correspondingly, in vivo data showed that fluoxetine also suppressed NLRP3 inflammasome activation in hippocampus and macrophages of chronic mild stress mice and alleviated chronic mild stress-induced depression-like behavior. Conclusions: Our findings reveal that fluoxetine confers an antidepressant effect partly through inhibition of peripheral and central NLRP3 inflammasome activation and suggest the potential clinical use of fluoxetine in NLRP3 inflammasome-driven inflammatory diseases such as depression. PMID:27207922

  17. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    PubMed

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.

  18. Inhibition of neutrophil activation by alpha1-acid glycoprotein.

    PubMed Central

    Costello, M J; Gewurz, H; Siegel, J N

    1984-01-01

    We report that alpha1-acid glycoprotein (AAG), a naturally occurring human plasma protein and acute phase reactant of uncertain biological function, inhibits human neutrophil aggregation and superoxide anion generation induced by a variety of stimuli including zymosan treated serum, formyl-methionyl-leucyl-phenylalanine and phorbol myristate acetate. Inhibition was transient, directly proportional to the glycoprotein concentration and inversely proportional to the concentration of the stimulus added. Desialyzation, resulting in the removal of a substantial portion of the molecule's negative charge, did not alter the effectiveness of AAG. Removal of the penultimate galactose residues from desialyzed AAG resulted in a slight but significant reversal of inhibition, suggesting that the heteropolysaccharide units of AAG may be important for inhibition of cellular function. We therefore suggest that the acute phase glycoprotein AAG may be a significant modulator of neutrophil as well as platelet and lymphocyte function during inflammation. PMID:6321072

  19. Selective IRAK4 Inhibition Attenuates Disease in Murine Lupus Models and Demonstrates Steroid Sparing Activity

    PubMed Central

    Dudhgaonkar, Shailesh; Ranade, Sourabh; Nagar, Jignesh; Subramani, Siva; Prasad, Durga Shiv; Karunanithi, Preethi; Srivastava, Ratika; Venkatesh, Kamala; Selvam, Sabariya; Krishnamurthy, Prasad; Mariappan, T. Thanga; Saxena, Ajay; Fan, Li; Stetsko, Dawn K.; Holloway, Deborah A.; Li, Xin; Zhu, Jun; Yang, Wen-Pin; Ruepp, Stefan; Nair, Satheesh; Santella, Joseph; Duncia, John; Hynes, John; McIntyre, Kim W.

    2017-01-01

    The serine/threonine kinase IL-1R–associated kinase (IRAK)4 is a critical regulator of innate immunity. We have identified BMS-986126, a potent, highly selective inhibitor of IRAK4 kinase activity that demonstrates equipotent activity against multiple MyD88-dependent responses both in vitro and in vivo. BMS-986126 failed to inhibit assays downstream of MyD88-independent receptors, including the TNF receptor and TLR3. Very little activity was seen downstream of TLR4, which can also activate an MyD88-independent pathway. In mice, the compound inhibited cytokine production induced by injection of several different TLR agonists, including those for TLR2, TLR7, and TLR9. The compound also significantly suppressed skin inflammation induced by topical administration of the TLR7 agonist imiquimod. BMS-986126 demonstrated robust activity in the MRL/lpr and NZB/NZW models of lupus, inhibiting multiple pathogenic responses. In the MRL/lpr model, robust activity was observed with the combination of suboptimal doses of BMS-986126 and prednisolone, suggesting the potential for steroid sparing activity. BMS-986126 also demonstrated synergy with prednisolone in assays of TLR7- and TLR9-induced IFN target gene expression using human PBMCs. Lastly, BMS-986126 inhibited TLR7- and TLR9-dependent responses using cells derived from lupus patients, suggesting that inhibition of IRAK4 has the potential for therapeutic benefit in treating lupus. PMID:28003376

  20. Protein kinase C activators inhibit capillary endothelial cell growth

    SciTech Connect

    Doctrow, S.R.

    1986-05-01

    Phorbol 12,13-dibutyrate (PDBu) binds specifically to bovine capillary endothelial (BCE) cells (K/sub d/ = 8nM) and inhibits the proliferation (K/sub 50/ = 6 +/- 4 nM). Under similar conditions, PDBu does not inhibit the growth of bovine aortic endothelial or smooth muscle cells. PDBu markedly attenuates the response of BCE cells to purified human hepatoma-derived growth factor which, in the absence of PDBu, stimulates BCE cell growth by about 3-fold. Several observations suggest that the inhibition of BCE cell growth by PDBu is mediated by protein kinase C: (1) different phorbol compounds inhibit BCE cell growth according to the relative potencies as protein kinase C activators (12-tetradecanoylphorbol 13-acetate > PDBu >> phorbol 12,13-diacetate >>>..beta..-phorbol; ..cap alpha..-phorbol 12,13-didecanoate). (2) Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol (diC/sub 8/), a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. (3) A cytosolic extract from BCE cells contains a Ca/sup 2 +//phosphatidylserine-dependent kinase that is activated by diC/sub 8/ and PDBu, but not by ..beta..-phorbol. These results support a role for protein kinase C in suppressing capillary endothelial cell growth and may therefore have implications in the intracellular regulation of angiogenesis.

  1. Thrombomodulin inhibits the activation of eosinophils and mast cells.

    PubMed

    Roeen, Ziaurahman; Toda, Masaaki; D'Alessandro-Gabazza, Corina N; Onishi, Masahiro; Kobayashi, Tetsu; Yasuma, Taro; Urawa, Masahito; Taguchi, Osamu; Gabazza, Esteban C

    2015-01-01

    Eosinophils and mast cells play critical roles in the pathogenesis of bronchial asthma. Activation of both cells leads to the release of pro-inflammatory mediators in the airway of asthmatic patients. Recently, we have shown that inhaled thrombomodulin inhibits allergic bronchial asthma in a mouse model. In the present study, we hypothesize that thrombomodulin can inhibit the activation of eosinophils and mast cells. The effect of thrombomodulin on the activation and release of inflammatory mediators from eosinophils and mast cells was evaluated. Thrombomodulin inhibited the eotaxin-induced chemotaxis, upregulation of CD11b and degranulation of eosinophils. Treatment with thrombomodulin also significantly suppressed the degranulation and synthesis of inflammatory cytokines and chemokines in eosinophils and mast cells. Mice treated with a low-dose of inhaled thrombomodulin have decreased number of eosinophils and activated mast cells and Th2 cytokines in the lungs compared to untreated mice. The results of this study suggest that thrombomodulin may modulate allergic responses by inhibiting the activation of both eosinophils and mast cells.

  2. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes

    PubMed Central

    Kheradpezhouh, E.; Barritt, G.J.; Rychkov, G.Y.

    2015-01-01

    Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca2+ homeostasis, resulting in a sustained elevation of the free cytosolic Ca2+ concentration ([Ca2+]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca2+ entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5 µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca2+]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50 nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels. PMID:26609559

  3. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes.

    PubMed

    Kheradpezhouh, E; Barritt, G J; Rychkov, G Y

    2016-04-01

    Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca(2+) homeostasis, resulting in a sustained elevation of the free cytosolic Ca(2+) concentration ([Ca(2+)]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca(2+) entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca(2+)]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels.

  4. Thyrsiferol Inhibits Mitochondrial Respiration and HIF-1 Activation

    PubMed Central

    Mahdi, Fakhri; Falkenberg, Miriam; Ioannou, Efstathia; Roussis, Vassilios; Zhou, Yu-Dong; Nagle, Dale G.

    2010-01-01

    The cytotoxic marine red algal metabolite thyrsiferol (1) was found to inhibit hypoxia-induced hypoxia-inducible factor-1 (HIF-1) activation in T47D human breast tumor cells (66% inhibition at 3 μM). Compound 1 also suppressed hypoxic induction of HIF-1 target genes (VEGF, GLUT-1) at the mRNA level, and displayed tumor cell line-selective time-dependent inhibition of cell viability/proliferation. Mechanistic studies revealed that 1 selectively suppressed mitochondrial respiration at Complex I (IC50 3 μM). Thyrsiferol represents a prototypical, structurally unique electron transport chain inhibitor. The apparent rotenone-like activity may contribute to the observed cytotoxicity of 1 and play an important role in Laurencia chemical defense. PMID:21785662

  5. Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer.

    PubMed

    Sutendra, G; Dromparis, P; Kinnaird, A; Stenson, T H; Haromy, A; Parker, J M R; McMurtry, M S; Michelakis, E D

    2013-03-28

    Most solid tumors are characterized by a metabolic shift from glucose oxidation to glycolysis, in part due to actively suppressed mitochondrial function, a state that favors resistance to apoptosis. Suppressed mitochondrial function may also contribute to the activation of hypoxia-inducible factor 1α (HIF1α) and angiogenesis. We have previously shown that the inhibitor of pyruvate dehydrogenase kinase (PDK) dichloroacetate (DCA) activates glucose oxidation and induces apoptosis in cancer cells in vitro and in vivo. We hypothesized that DCA will also reverse the 'pseudohypoxic' mitochondrial signals that lead to HIF1α activation in cancer, even in the absence of hypoxia and inhibit cancer angiogenesis. We show that inhibition of PDKII inhibits HIF1α in cancer cells using several techniques, including HIF1α luciferase reporter assays. Using pharmacologic and molecular approaches that suppress the prolyl-hydroxylase (PHD)-mediated inhibition of HIF1α, we show that DCA inhibits HIF1α by both a PHD-dependent mechanism (that involves a DCA-induced increase in the production of mitochondria-derived α-ketoglutarate) and a PHD-independent mechanism, involving activation of p53 via mitochondrial-derived H(2)O(2), as well as activation of GSK3β. Effective inhibition of HIF1α is shown by a decrease in the expression of several HIF1α regulated gene products as well as inhibition of angiogenesis in vitro in matrigel assays. More importantly, in rat xenotransplant models of non-small cell lung cancer and breast cancer, we show effective inhibition of angiogenesis and tumor perfusion in vivo, assessed by contrast-enhanced ultrasonography, nuclear imaging techniques and histology. This work suggests that mitochondria-targeting metabolic modulators that increase pyruvate dehydrogenase activity, in addition to the recently described pro-apoptotic and anti-proliferative effects, suppress angiogenesis as well, normalizing the pseudo-hypoxic signals that lead to normoxic HIF1

  6. Inhibition of catalase activity in vitro by diesel exhaust particles

    SciTech Connect

    Mori, Yoki; Murakami, Sumika; Sagae, Toshiyuki

    1996-02-09

    The effect of diesel exhaust particles (DEP) on the activity of catalase, an intracellular anti-oxidant, was investigated because H{sub 2}O{sub 2} is a cytotoxic oxidant, and catalase released from alveolar cells is an important antioxidant in the epithelial lining fluid in the lung. DEP inhibited the activity of bovine liver catalase dose-dependently, to 25-30% of its original value. The inhibition of catalase by DEP was observed only in the presence of anions such as Cl{sup {minus}}, Br{sup {minus}}, or thiocyanate. Other anions, such as CH{sub 3}COO{sup {minus}} or SO{sub 4}{sup {minus}}, and cations such as K{sup +}, Na{sup +}, Mg{sup 2+}, or Fe{sup 2+}, did not affect the activity of catalase, even in the presence of DEP extract. Catalase from guinea pig alveolar cells and catalase from red blood cells were also inhibited by DEP extracts, as was catalase from bovine liver. These results suggest that DEP taken up in the lung and located on alveolar spaces might cause cell injury by inhibiting the activity of catalase in epithelial lining fluid, enhancing the toxicity of H{sub 2}O{sub 2} generated from cells in addition to that of O{sub 2}{sup {minus}} generated by the chemical reaction of DEP with oxygen. 10 refs., 6 figs.

  7. Cyanate-mediated inhibition of neutrophil myeloperoxidase activity.

    PubMed Central

    Qian, M; Eaton, J W; Wolff, S P

    1997-01-01

    Cyanate (CNO-) forms spontaneously in solutions containing urea, and is present in urine and the body fluids of uraemic patients. We have explored the possibility that CNO- might be one of the unknown substances responsible for the reported impairment, by urine and uraemic plasma, of neutrophil oxidative metabolism (especially as measured by luminol-enhanced chemiluminescence). Luminol-enhanced chemiluminescence generated by human neutrophils derives predominantly from the activity of myeloperoxidase (MPO) which produces hypochlorous acid from H2O2 and Cl-. We hypothesized that CNO- (which resembles the 'pseudohalide' thiocyanate, an alternative substrate for MPO) might somehow interfere with the activity of MPO. In support of this, we find: (i) CNO- inhibits both peroxidative and halogenating activities of MPO and also inhibits the enzyme within intact human neutrophils; (ii) the inhibition is H2O2-dependent, irreversible, accompanied by covalent addition of [14C]CNO- (or a carbon-containing fragment thereof) to the enzyme; (iii) CNO- also inhibits Cl-/H2O2/MPO-mediated bacterial killing. Impairment of this arm of neutrophil bactericidal activity by CNO- formed from urea may be one factor in the risk of urinary-tract infection associated with urinary stasis and perhaps in the generalized increase in susceptibility to infection in uraemic patients. PMID:9337863

  8. Inhibition of catalase activity in vitro by diesel exhaust particles.

    PubMed

    Mori, Y; Murakami, S; Sagae, T; Hayashi, H; Sakata, M; Sagai, M; Kumagai, Y

    1996-02-09

    The effect of diesel exhaust particles (DEP) on the activity of catalase, an intracellular antioxidant, was investigated because H2O2 is a cytotoxic oxidant, and catalase released from alveolar cells is an important antioxidant in the epithelial lining fluid in the lung. DEP inhibited the activity of bovine liver catalase dose-dependently, to 25-30% of its original value. The inhibition of catalase by DEP was observed only in the presence of anions such as Cl-,Br-, or thiocyanate. Other anions, such as CH3COO- or SO4-, and cations such as K+, Na+, Mg2+, or Fe2+, did not affect the activity of catalase, even in the presence of DEP extract. Catalase from guinea pig alveolar cells and catalase from red blood cells were also inhibited by DEP extracts, as was catalase from bovine liver. These results suggest that DEP taken up in the lung and located on alveolar spaces might cause cell injury by inhibiting the activity of catalase in epithelial lining fluid, enhancing the toxicity of H2O2 generated from cells in addition to that of O2- generated by the chemical reaction of DEP with oxygen.

  9. Tac-beta1 inhibits FAK activation and Src signaling.

    PubMed

    Berrier, Allison L; Jones, Christopher W; LaFlamme, Susan E

    2008-03-28

    The binding of integrins to extracellular matrix triggers signals that promote cell spreading. We previously demonstrated that expression of the integrin beta1 cytoplasmic domain in the context of a chimeric transmembrane receptor with the Tac subunit of the interleukin-2 receptor (Tac-beta1) inhibits cell spreading. To study the mechanism whereby Tac-beta1 inhibits cell spreading, we examined the effect of Tac-beta1 on early signaling events following integrin engagement namely FAK and Src signaling. We infected primary fibroblasts with adenoviruses expressing Tac or Tac-beta1 and found that Tac-beta1 prevented FAK activation by inhibiting the phosphorylation of FAK at Tyr-397. In contrast, Src activation was maintained, as phosphorylation of Src at Tyr-419 and Tyr-530 were not responsive to expression of Tac-beta1. Importantly, adhesion-induced tyrosine phosphorylation of the Src substrates p130Cas and paxillin was inhibited, indicating that Src signaling was blocked by Tac-beta1. These Src-dependent signaling events were found to require FAK signaling. Our results suggest that Tac-beta1 inhibits cell spreading, at least in part, by preventing the phosphorylation of FAK at Tyr-397 and the assembly of signaling complexes necessary for phosphorylation of p130Cas and other downstream effectors.

  10. Irregular activity arises as a natural consequence of synaptic inhibition

    SciTech Connect

    Terman, D.; Rubin, J. E.; Diekman, C. O.

    2013-12-15

    Irregular neuronal activity is observed in a variety of brain regions and states. This work illustrates a novel mechanism by which irregular activity naturally emerges in two-cell neuronal networks featuring coupling by synaptic inhibition. We introduce a one-dimensional map that captures the irregular activity occurring in our simulations of conductance-based differential equations and mathematically analyze the instability of fixed points corresponding to synchronous and antiphase spiking for this map. We find that the irregular solutions that arise exhibit expansion, contraction, and folding in phase space, as expected in chaotic dynamics. Our analysis shows that these features are produced from the interplay of synaptic inhibition with sodium, potassium, and leak currents in a conductance-based framework and provides precise conditions on parameters that ensure that irregular activity will occur. In particular, the temporal details of spiking dynamics must be present for a model to exhibit this irregularity mechanism and must be considered analytically to capture these effects.

  11. Cutting edge: inhibition of T cell activation by TIM-2.

    PubMed

    Knickelbein, Jared E; de Souza, Anjali J; Tosti, Richard; Narayan, Preeti; Kane, Lawrence P

    2006-10-15

    T cell Ig and mucin domain protein 2 (TIM-2) has been shown to regulate T cell activation in vitro and T cell-mediated disease in vivo. However, it is still not clear whether TIM-2 acts mainly to augment T cell function or to inhibit it. We have directly examined the function of TIM-2 in murine and human T cell lines. Our results indicate that expression of TIM-2 significantly impairs the induction of NFAT and AP-1 transcriptional reporters by not only TCR ligation but also by the pharmacological stimuli PMA and ionomycin. This does not appear to be due to a general effect on cell viability, and the block in NFAT activation can be bypassed by expression of activated alleles of Ras or calcineurin, or MEK kinase, in the case of AP-1. Thus, our data are consistent with a model whereby TIM-2 inhibits T cell activation.

  12. Synthesis and SAR study of modulators inhibiting tRXRα-dependent AKT activation

    PubMed Central

    Wang, Zhi-Gang; Chen, Liqun; Chen, Jiebo; Zheng, Jian-Feng; Gao, Weiwei; Zeng, Zhiping; Zhou, Hu; Zhang, Xiao-kun; Huang, Pei-Qiang; Su, Ying

    2013-01-01

    RXRα represents an intriguing and unique target for pharmacologic interventions. We recently showed that Sulindac and a designed analog could bind to RXRα and modulate its biological activity, including inhibition of the interaction of an N-terminally truncated RXRα (tRXRα) with the p85α regulatory subunit of phosphatidylinositol-3-OH kinase (PI3K). Here we report the synthesis, testing and SAR of a series of novel analogs of Sulindac as potential modulators for inhibiting tRXRα-dependent AKT activation. A new compound 30 was identified to have improved biological activity. PMID:23434637

  13. Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro.

    PubMed

    Hinz, John M; Laughery, Marian F; Wyrick, John J

    2015-12-08

    During Cas9 genome editing in eukaryotic cells, the bacterial Cas9 enzyme cleaves DNA targets within chromatin. To understand how chromatin affects Cas9 targeting, we characterized Cas9 activity on nucleosome substrates in vitro. We find that Cas9 endonuclease activity is strongly inhibited when its target site is located within the nucleosome core. In contrast, the nucleosome structure does not affect Cas9 activity at a target site within the adjacent linker DNA. Analysis of target sites that partially overlap with the nucleosome edge indicates that the accessibility of the protospacer-adjacent motif (PAM) is the critical determinant of Cas9 activity on a nucleosome.

  14. Inhibition of thyroid type 1 deiodinase activity by flavonoids.

    PubMed

    Ferreira, A C F; Lisboa, P C; Oliveira, K J; Lima, L P; Barros, I A; Carvalho, D P

    2002-07-01

    Some dietary flavonoids inhibit thyroperoxidase and hepatic deiodinase activity, indicating that these compounds could be classified as anti-thyroid agents. In this study, we evaluated the in vitro effect of various flavonoids on thyroid type 1 iodothyronine deiodinase activity (D1). D1 activity was measured in murine thyroid microsome fractions by the release of 125I from 125I-reverse T3. D1 activity was significantly inhibited by all the flavonoids tested; however, the inhibitory potencies on thyroid D1 activity differed greatly among them. A 50% inhibition of D1 activity (IC(50)) was obtained at 11 microM baicalein, 13 microM quercetin, 17 microM catechin, 55 microM morin, 68 microM rutin, 70 microM fisetin, 72 microM kaempferol and 77 microM biochanin A. Our data reinforce the concept that dietary flavonoids might behave as antithyroid agents, and possibly their chronic consumption could alter thyroid function.

  15. Pyrithione, a zinc ionophore, inhibits NF-kappaB activation.

    PubMed

    Kim, C H; Kim, J H; Moon, S J; Chung, K C; Hsu, C Y; Seo, J T; Ahn, Y S

    1999-06-16

    Pyrrolidine dithiocarbamate (PDTC) suppresses NF-kappaB activity and exhibits cytotoxic effects in bovine cerebral endothelial cells (BCECs), and we have previously reported that these PDTC effects were accompanied by an increase in intracellular zinc levels. To further explore the role of zinc in the modulation of NF-kappaB activation, we studied the effect of pyrithione, a zinc ionophore, on NF-kappaB activation in BCECs. Pyrithione inhibited NF-kappaB activity in a time- and dose-dependent manner. Ca-EDTA, but not Zn-EDTA, prevented pyrithione inhibition of NF-kappaB activity. Pyrithione increased the intracellular zinc level within 15 min. This effect was also abolished by Ca-EDTA, but not by Zn-EDTA. The potency of pyrithione on NF-kappaB inhibition and zinc influx was approximately one order of magnitude more potent than PDTC. These findings establish the regulatory role of intracellular zinc levels on NF-kappaB activity in BCECs.

  16. Strenuous physical exercise inhibits granulocyte activation induced by high altitude.

    PubMed

    Choukèr, Alexander; Demetz, Florian; Martignoni, André; Smith, Leslie; Setzer, Florian; Bauer, Andreas; Hölzl, Joseph; Peter, Klaus; Christ, Frank; Thiel, Manfred

    2005-02-01

    To test the hypothesis of whether strenuous physical exercise inhibits neutrophils that can get activated by hypobaric hypoxia, we analyzed the effects of both high altitude and strenuous exercise alone and in combination on potentially cytotoxic functions of granulocytes in healthy volunteers (n = 12 men; average age 27.6 yr; range 24-38 yr). To this end, a field study was prospectively performed with an open-labeled within-subject design comprising three protocols. Protocol I (high altitude) involved a helicopter ascent, overnight stay at 3,196 m, and descent on the following day. Protocol II (physical exercise) involved hiking below an altitude of 2,100 m with repetitive ascents amounting to a total ascent to that of protocol III. Protocol III (combination of physical exercise and high altitude) involved climbing from 1,416 to 3,196 m, stay overnight, and descent on the following day. In protocol I, number of granulocytes did not change, but potentially cytotoxic functions of cells (CD18 expression and superoxide production) were early and significantly upregulated. In protocol II, subjects developed granulocytosis, but functions of cells were inhibited. In protocol III, granulocytosis occurred at higher values than those observed under protocol II. Potentially cytotoxic functions of cells, however, were strongly inhibited again. In conclusion, high altitude alone, even moderate in extent, can activate potentially cytotoxic functions of circulating granulocytes. Strenuous physical exercise strongly inhibits this activation, which may give protection from an otherwise inflammatory injury.

  17. Efficient inhibition of germination of coat-deficient bacterial spores by multivalent metal cations, including terbium (Tb³+).

    PubMed

    Yi, Xuan; Bond, Colton; Sarker, Mahfuzur R; Setlow, Peter

    2011-08-01

    Release of dipicolinic acid (DPA) and its fluorescence with terbium (Tb(3+)) allow rapid measurement of the germination and viability of spores of Bacillus and Clostridium species. However, germination of coat-deficient Bacillus spores was strongly inhibited by Tb(3+) and some other multivalent cations. Tb(3+) also inhibited germination of coat-deficient Clostridium perfringens spores.

  18. Synthesis and characterization of some abundant nanoparticles, their antimicrobial and enzyme inhibition activity.

    PubMed

    Khan, Shams T; Malik, Ajmaluddin; Wahab, Rizwan; Abd-Elkader, Omar H; Ahamed, Maqusood; Ahmad, Javed; Musarrat, Javed; Siddiqui, Maqsood A; Al-Khedhairy, Abdulaziz A

    2017-02-20

    Although the antimicrobial activity of the engineered nanoparticles (NPs) is well known, the biochemical mechanisms underlying this activity are not clearly understood. Therefore, four NPs with the highest global production, namely SiO2, TiO2, ZnO, and Ag, were synthesized and characterized. The synthesized SiO2, TiO2, ZnO, and Ag NPs exhibit an average size of 11.12, 13.4, 35, and 50 nm, respectively. The antimicrobial activity of the synthesized NPs against bacteria and fungi were also determined. NPs-mediated inhibition of two very important enzymes, namely urease and DNA polymerase, is also reported. The synthesized NPs especially Ag and ZnO show significant antimicrobial activity against bacteria and fungi including methicillin-resistant Staphylococcus aureus even at low concentration. The DNA polymerase activity was inhibited at a very low concentration range of 2-4 µg/ml, whereas the urease activity was inhibited at a high concentration range of 50-100 µg/ml. Based on their ability to inhibit the urease and DNA polymerase, NPs can be arranged in the following order: Ag > ZnO > SiO2 > TiO2 and Ag > SiO2 > ZnO > TiO2, respectively. As the synthesized NPs inhibit bacterial growth and suppress the activity of urease and DNA polymerase, the use of these NPs to control pathogens is proposed.

  19. 7 CFR 981.441 - Credit for market promotion activities, including paid advertising.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Credit for market promotion activities, including paid... promotion activities, including paid advertising. (a) In order for a handler to receive credit for his/her...) Other market promotion activities. Credit-Back shall be granted for market promotion other than...

  20. Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation.

    PubMed

    Ma, Jianqun; Xu, Hai; Wu, Jun; Qu, Changfa; Sun, Fenglin; Xu, Shidong

    2015-12-01

    Linalool, a natural compound that exists in the essential oils of several aromatic plants species, has been reported to have anti-inflammatory effects. However, the effects of linalool on cigarette smoke (CS)-induced acute lung inflammation have not been reported. In the present study, we investigated the protective effects of linalool on CS-induced acute lung inflammation in mice. Linalool was given i.p. to mice 2h before CS exposure daily for five consecutive days. The numbers of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF) were measured. The production of TNF-α, IL-6, IL-1β, IL-8 and MCP-1 were detected by ELISA. The expression of NF-κB was detected by Western blotting. Our results showed that treatment of linalool significantly attenuated CS-induced lung inflammation, coupled with inhibited the infiltration of inflammatory cells and TNF-α, IL-6, IL-1β, IL-8 and MCP-1 production. Meanwhile, treatment of linalool inhibited CS-induced lung MPO activity and pathological changes. Furthermore, linalool suppressed CS-induced NF-κB activation in a dose-dependent manner. In conclusion, our results demonstrated that linalool protected against CS-induced lung inflammation through inhibiting CS-induced NF-κB activation.

  1. Microglia-inhibiting activity of Parkinson's disease drug amantadine.

    PubMed

    Kim, Jong-Heon; Lee, Ho-Won; Hwang, Jaegyu; Kim, Jaehong; Lee, Min-Jeong; Han, Hyung-Soo; Lee, Won-Ha; Suk, Kyoungho

    2012-09-01

    Amantadine is currently used as an antiviral and an antiparkinsonian drug. Although the drug is known to bind a viral proton channel protein, the mechanism of action in Parkinson's disease (PD) remains to be determined. This study investigated whether the drug has an inhibitory effect on microglial activation and neuroinflammation, which have been implicated in the progression of neurodegenerative processes. Using cultured microglial cells, it was demonstrated that the drug inhibited inflammatory activation of microglia and a signaling pathway that governs the microglial activation. The drug reduced the expression and production of proinflammatory mediators in bacterial lipopolysaccharide-stimulated microglia cells. The microglia-inhibiting activity of amantadine was also demonstrated in a microglia/neuron coculture and animal models of neuroinflammation and Parkinson's disease. Collectively, our results suggest that amantadine may act on microglia in the central nervous system to inhibit their inflammatory activation, thereby attenuating neuroinflammation. These results provide a molecular basis of the glia-targeted mechanism of action for amantadine.

  2. The antileishmanial activity of xanthohumol is mediated by mitochondrial inhibition.

    PubMed

    Monzote, Lianet; Lackova, Alexandra; Staniek, Katrin; Steinbauer, Silvia; Pichler, Gerald; Jäger, Walter; Gille, Lars

    2016-12-12

    Xanthohumol (Xan) is a natural constituent of human nutrition. Little is known about its actions on leishmanial parasites and their mitochondria as putative target. Therefore, we determined the antileishmanial activity of Xan and resveratrol (Res, as alternative compound with antileishmanial activity) with respect to mitochondria in Leishmania amazonensis promastigotes/amastigotes (LaP/LaA) in comparison with their activity in peritoneal macrophages from mouse (PMM) and macrophage cell line J774A.1 (J774). Mechanistic studies were conducted in Leishmania tarentolae promastigotes (LtP) and mitochondrial fractions isolated from LtP. Xan and Res demonstrated antileishmanial activity in LaA [half inhibitory concentration (IC50): Xan 7 µ m, Res 14 µ m]; while they had less influence on the viability of PMM (IC50: Xan 70 µ m, Res >438 µ m). In contrast to Res, Xan strongly inhibited oxygen consumption in Leishmania (LtP) but not in J774 cells. This was based on the inhibition of the mitochondrial electron transfer complex II/III by Xan, which was less pronounced with Res. Neither Xan nor Res increased mitochondrial superoxide release in LtP, while both decreased the mitochondrial membrane potential in LtP. Bioenergetic studies showed that LtP mitochondria have no spare respiratory capacity in contrast to mitochondria in J774 cells and can therefore much less adapt to stress by mitochondrial inhibitors, such as Xan. These data show that Xan may have antileishmanial activity, which is mediated by mitochondrial inhibition.

  3. Chlorhexidine inhibits the activity of dental cysteine cathepsins.

    PubMed

    Scaffa, P M C; Vidal, C M P; Barros, N; Gesteira, T F; Carmona, A K; Breschi, L; Pashley, D H; Tjäderhane, L; Tersariol, I L S; Nascimento, F D; Carrilho, M R

    2012-04-01

    The co-expression of MMPs and cysteine cathepsins in the human dentin-pulp complex indicates that both classes of enzymes can contribute to the endogenous proteolytic activity of dentin. Chlorhexidine (CHX) is an efficient inhibitor of MMP activity. This study investigated whether CHX could also inhibit cysteine cathepsins present in dentin. The inhibitory profile of CHX on the activity of dentin-extracted and recombinant cysteine cathepsins (B, K, and L) was monitored in fluorogenic substrates. The rate of substrate hydrolysis was spectrofluorimetrically measured, and inhibitory constants were calculated. Molecular docking was performed to predict the binding affinity between CHX and cysteine cathepsins. The results showed that CHX inhibited the proteolytic activity of dentin-extracted cysteine cathepsins in a dose-dependent manner. The proteolytic activity of human recombinant cathepsins was also inhibited by CHX. Molecular docking analysis suggested that CHX strongly interacts with the subsites S2 to S2' of cysteine cathepsins B, K, and L in a very similar manner. Taken together, these results clearly showed that CHX is a potent inhibitor of the cysteine cathepsins-proteolytic enzymes present in the dentin-pulp complex.

  4. On the role of phosphatidylethanolamine in the inhibition of activated protein C activity by antiphospholipid antibodies.

    PubMed Central

    Smirnov, M D; Triplett, D T; Comp, P C; Esmon, N L; Esmon, C T

    1995-01-01

    Phosphatidylethanolamine (PE) is an important membrane component for supporting activated protein C anticoagulant activity but has little influence on prothrombin activation. This difference constitutes a potential mechanism for selective inhibition of the protein C anticoagulant pathway by lupus anticoagulants and/or antiphospholipid antibodies. In this study, we demonstrate that the presence of PE augments lupus anticoagulant activity. In the plasma of some patients with lupus anticoagulants, activated protein C anticoagulant activity is more potently inhibited than prothrombin activation. As a result, in the presence of activated protein C and PE, these patient plasmas clot faster than normal plasma. Patients with minimal lupus anticoagulant activity are identified whose plasma potently inhibits activated protein C anticoagulant activity. This process is also PE dependent. In three patient plasmas, these phenomena are shown to be due to immunoglobulins. The PE requirement in the expression of activated protein C anticoagulant activity and the PE dependence of some antiphospholipid antibodies provide a mechanistic basis for the selective inhibition of the protein C pathway. Inhibition of activated protein C function may be a common mechanism contributing to increased thrombotic risk in certain patients with antiphospholipid antibodies. PMID:7814631

  5. Sinomenine inhibits microglial activation by Aβ and confers neuroprotection

    PubMed Central

    2011-01-01

    Background Neuroinflammation is an important contributor to the development of neurodegenerative diseases, including Alzheimer's disease. Thus, there is a keen interest in identifying compounds, especially from herbal sources, that can inhibit neuroinflammation. Amyloid-β (Aβ) is a major component of the amyloid plaques present in the brains of Alzheimer's disease patients. Here, we examined whether sinomenine, present in a Chinese medicinal plant, prevents oligomeric Aβ-induced microglial activation and confers protection against neurotoxicity. Methods Oligomeric amyloid-β was prepared from Aβ(1-42). Intracellular reactive oxygen species production was determined using the dye 2',7'-dichlorodihydrofluorescin diacetate. Nitric oxide level was assessed using the Griess reagent. Flow cytometry was used to examine the levels of inflammatory molecules. BV2-conditioned medium was used to treat hippocampal cell line (HT22) and primary hippocampal cells in indirect toxicity experiments. Toxicity was assessed using MTT reduction and TUNEL assays. Results We found that sinomenine prevents the oligomeric Aβ-induced increase in levels of reactive oxygen species and nitric oxide in BV2 microglial cells. In addition, sinomenine reduces levels of Aβ-induced inflammatory molecules. Furthermore, sinomenine protects hippocampal HT22 cells as well as primary hippocampal cells from indirect toxicity mediated by Aβ-treated microglial cells, but has no effect on Aβ-induced direct toxicity to HT22 cells. Finally, we found that conditioned medium from Aβ-treated BV2 cells contains increased levels of nitric oxide and inflammatory molecules, but the levels of these molecules are reduced by sinomenine. Conclusions Sinomenine prevents oligomeric Aβ-induced microglial activation, and confers protection against indirect neurotoxicity to hippocampal cells. These results raise the possibility that sinomenine may have therapeutic potential for the treatment of Alzheimer's diseases as

  6. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation

    PubMed Central

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-01-01

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson’s disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD. PMID:26499517

  7. Immune complexes inhibit interleukin-1 secretion and inflammasome activation

    PubMed Central

    Janczy, John R.; Ciraci, Ceren; Haasken, Stefanie; Iwakura, Yoichiro; Olivier, Alicia K.; Cassel, Suzanne L.; Sutterwala, Fayyaz S.

    2014-01-01

    Immunoglobulin G (IgG) immune complexes have been shown to modify immune responses driven by antigen presenting cells in either a pro- or anti-inflammatory direction depending upon the context of stimulation. However, the ability of immune complexes to modulate the inflammasome-dependent innate immune response is unknown. Here we show that IgG immune complexes suppress IL-1α and IL-1β secretion through inhibition of inflammasome activation. The mechanism by which this inhibition occurs is via immune complex ligation of activating Fcγ receptors (FcγR), resulting in prevention of both activation and assembly of the inflammasome complex in response to NLRP3, NLRC4, or AIM2 agonists. In vivo, administration of antigen in the form of an immune complex during priming of the immune response inhibited resultant adaptive immune responses in a NLRP3 dependent model of allergic airway disease. Our data reveal an unexpected mechanism regulating CD4+ T cell differentiation, whereby immune complexes suppress inflammasome activation and the generation of IL-1α and IL-1β from antigen presenting cells, which are critical for the antigen-driven differentiation of CD4+ T cells. PMID:25320279

  8. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation.

    PubMed

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-10-26

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson's disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD.

  9. Immune complexes inhibit IL-1 secretion and inflammasome activation.

    PubMed

    Janczy, John R; Ciraci, Ceren; Haasken, Stefanie; Iwakura, Yoichiro; Olivier, Alicia K; Cassel, Suzanne L; Sutterwala, Fayyaz S

    2014-11-15

    IgG immune complexes have been shown to modify immune responses driven by APCs in either a pro- or anti-inflammatory direction depending upon the context of stimulation. However, the ability of immune complexes to modulate the inflammasome-dependent innate immune response is unknown. In this study, we show that IgG immune complexes suppress IL-1α and IL-1β secretion through inhibition of inflammasome activation. The mechanism by which this inhibition occurs is via immune complex ligation of activating FcγRs, resulting in prevention of both activation and assembly of the inflammasome complex in response to nucleotide-binding domain leucine-rich repeat (NLR) P3, NLRC4, or AIM2 agonists. In vivo, administration of Ag in the form of an immune complex during priming of the immune response inhibited resultant adaptive immune responses in an NLRP3-dependent model of allergic airway disease. Our data reveal an unexpected mechanism regulating CD4(+) T cell differentiation, by which immune complexes suppress inflammasome activation and the generation of IL-1α and IL-1β from APCs, which are critical for the Ag-driven differentiation of CD4(+) T cells.

  10. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy.

    PubMed

    Yang, Lili; Rozenfeld, Raphael; Wu, Defeng; Devi, Lakshmi A; Zhang, Zhenfeng; Cederbaum, Arthur

    2014-03-01

    Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy.

  11. Regulation of ERK1/2 activity upon contact inhibition in fibroblasts

    SciTech Connect

    Kueppers, Monika; Faust, Dagmar; Linz, Berenike; Dietrich, Cornelia

    2011-03-18

    Research highlights: {yields} Regulation of ERK1/2 activity upon contact inhibition was investigated. {yields} Upstream activation of ERK is attenuated upon contact inhibition. {yields} ERK phosphatases are probably not involved in ERK1/2 dephosphorylation. {yields} Signaling of the EGFR and PDGFR is differentially inhibited upon contact inhibition. -- Abstract: Contact inhibition is a crucial mechanism regulating proliferation in vitro and in vivo. Despite its generally accepted importance for maintaining tissue homeostasis knowledge about the underlying molecular mechanisms of contact inhibition is still scarce. Since the MAPK ERK1/2 plays a pivotal role in the control of proliferation, we investigated regulation of ERK1/2 phosphorylation which is downregulated in confluent NIH3T3 cultures. We found a decrease in upstream signaling including phosphorylation of the growth factor receptor adaptor protein ShcA and the MAPK kinase MEK1/2 in confluent compared to exponentially growing cultures whereas involvement of ERK1/2 phosphatases in ERK1/2 inactivation is unlikely. Treatment of confluent, serum-deprived cultures with PDGF-B resulted in similar phosphorylation of ERK1/2 and induction of DNA-synthesis as detected in sparse, serum-deprived cultures. In contrast, ERK1/2 phosphorylation and DNA-synthesis could not be stimulated in confluent, serum-deprived cultures exposed to EGF. Our data indicate that PDGFR- and EGFR signaling are differentially inhibited in confluent cultures of NIH3T3 cells.

  12. Multi-species nitrifying biofilm model (MSNBM) including free ammonia and free nitrous acid inhibition and oxygen limitation.

    PubMed

    Park, Seongjun; Bae, Wookeun; Rittmann, Bruce E

    2010-04-15

    A multi-species nitrifying biofilm model (MSNBM) is developed to describe nitrite accumulation by simultaneous free ammonia (FA) and free nitrous acid (FNA) inhibition, direct pH inhibition, and oxygen limitation in a biofilm. The MSNBM addresses the spatial gradient of pH with biofilm depth and how it induces changes of FA and FNA speciation and inhibition. Simulations using the MSNBM in a completely mixed biofilm reactor show that influent total ammonia nitrogen (TAN) concentration, bulk dissolved oxygen (DO) concentration, and buffer concentration exert significant control on the suppression of nitrite-oxidizing bacteria (NOB) and shortcut biological nitrogen removal (SBNR), but the pH in the bulk liquid has a weaker influence. Ammonium oxidation increases the nitrite concentration and decreases the pH, which together can increase FNA inhibition of NOB in the biofilm. Thus, a low buffer concentration can accentuate SBNR. DO and influent TAN concentrations are efficient means to enhance DO limitation, which affects NOB more than ammonia-oxidizing bacteria (AOB) inside the biofilm. With high influent TAN concentration, FA inhibition is dominant at an early phase, but finally DO limitation becomes more important as TAN degradation and biofilm growth proceed. MSNBM results indicate that oxygen depletion and FNA inhibition throughout the biofilm continuously suppress the growth of NOB, which helps achieve SBNR with a lower TAN concentration than in systems without concentration gradients.

  13. Spillover-mediated feedforward-inhibition functionally segregates interneuron activity

    PubMed Central

    Coddington, Luke T.; Rudolph, Stephanie; Lune, Patrick Vande; Overstreet-Wadiche, Linda; Wadiche, Jacques I.

    2013-01-01

    Summary Neurotransmitter spillover represents a form of neural transmission not restricted to morphologically defined synaptic connections. Communication between climbing fibers (CFs) and molecular layer interneurons (MLIs) in the cerebellum is mediated exclusively by glutamate spillover. Here, we show how CF stimulation functionally segregates MLIs based on their location relative to glutamate release. Excitation of MLIs that reside within the domain of spillover diffusion coordinates inhibition of MLIs outside the diffusion limit. CF excitation of MLIs is dependent on extrasynaptic NMDA receptors that enhance the spatial and temporal spread of CF signaling. Activity mediated by functionally segregated MLIs converges onto neighboring Purkinje cells (PCs) to generate a long-lasting biphasic change in inhibition. These data demonstrate how glutamate release from single CFs modulates excitability of neighboring PCs, thus expanding the influence of CFs on cerebellar cortical activity in a manner not predicted by anatomical connectivity. PMID:23707614

  14. Emergent patterns from probabilistic generalizations of lateral activation and inhibition

    PubMed Central

    Kabla, Alexandre

    2016-01-01

    The combination of laterally activating and inhibiting feedbacks is well known to spontaneously generate spatial organization. It was introduced by Gierer and Meinhardt as an extension of Turing's great insight that two reacting and diffusing chemicals can spontaneously drive spatial morphogenesis per se. In this study, we develop an accessible nonlinear and discrete probabilistic model to study simple generalizations of lateral activation and inhibition. By doing so, we identify a range of modes of morphogenesis beyond the familiar Turing-type modes; notably, beyond stripes, hexagonal nets, pores and labyrinths, we identify labyrinthine highways, Kagome lattices, gyrating labyrinths and multi-colour travelling waves and spirals. The results are discussed within the context of Turing's original motivating interest: the mechanisms which underpin the morphogenesis of living organisms. PMID:27170648

  15. Licochalcones extracted from Glycyrrhiza inflata inhibit platelet aggregation accompanied by inhibition of COX-1 activity

    PubMed Central

    Okuda-Tanino, Asa; Sugawara, Daiki; Tashiro, Takumi; Iwashita, Masaya; Obara, Yutaro; Moriya, Takahiro; Tsushima, Chisato; Saigusa, Daisuke; Tomioka, Yoshihisa; Ishii, Kuniaki; Nakahata, Norimichi

    2017-01-01

    Licochalcones extracted from Glycyrrhiza inflata are known to have a variety of biological properties such as anti-inflammatory, anti-bacterial, and anti-tumor activities, but their action on platelet aggregation has not yet been reported. Therefore, in this study we investigated the effects of licochalcones on platelet aggregation. Collagen and U46619, a thromboxane A2 receptor agonist, caused rabbit platelet aggregation, which was reversed by pretreatment with licochalcones A, C and D in concentration-dependent manners. Among these compounds, licochalcone A caused the most potent inhibitory effect on collagen-induced platelet aggregation. However, the licochalcones showed marginal inhibitory effects on thrombin or ADP-induced platelet aggregation. In addition to rabbit platelets, licochalcone A attenuated collagen-induced aggregation in human platelets. Because licochalcone A also inhibited arachidonic acid-induced platelet aggregation and production of thromboxane A2 induced by collagen in intact platelets, we further examined the direct interaction of licochalcone A with cyclooxygenase (COX)-1. As expected, licochalcone A caused an inhibitory effect on both COX-1 and COX-2 in vitro. Regarding the effect of licochalcone A on COX-1 enzyme reaction kinetics, although licochalcone A showed a stronger inhibition of prostaglandin E2 synthesis induced by lower concentrations of arachidonic acid, Vmax values in the presence or absence of licochalcone A were comparable, suggesting that it competes with arachidonic acid at the same binding site on COX-1. These results suggest that licochalcones inhibit collagen-induced platelet aggregation accompanied by inhibition of COX-1 activity. PMID:28282426

  16. Licochalcones extracted from Glycyrrhiza inflata inhibit platelet aggregation accompanied by inhibition of COX-1 activity.

    PubMed

    Okuda-Tanino, Asa; Sugawara, Daiki; Tashiro, Takumi; Iwashita, Masaya; Obara, Yutaro; Moriya, Takahiro; Tsushima, Chisato; Saigusa, Daisuke; Tomioka, Yoshihisa; Ishii, Kuniaki; Nakahata, Norimichi

    2017-01-01

    Licochalcones extracted from Glycyrrhiza inflata are known to have a variety of biological properties such as anti-inflammatory, anti-bacterial, and anti-tumor activities, but their action on platelet aggregation has not yet been reported. Therefore, in this study we investigated the effects of licochalcones on platelet aggregation. Collagen and U46619, a thromboxane A2 receptor agonist, caused rabbit platelet aggregation, which was reversed by pretreatment with licochalcones A, C and D in concentration-dependent manners. Among these compounds, licochalcone A caused the most potent inhibitory effect on collagen-induced platelet aggregation. However, the licochalcones showed marginal inhibitory effects on thrombin or ADP-induced platelet aggregation. In addition to rabbit platelets, licochalcone A attenuated collagen-induced aggregation in human platelets. Because licochalcone A also inhibited arachidonic acid-induced platelet aggregation and production of thromboxane A2 induced by collagen in intact platelets, we further examined the direct interaction of licochalcone A with cyclooxygenase (COX)-1. As expected, licochalcone A caused an inhibitory effect on both COX-1 and COX-2 in vitro. Regarding the effect of licochalcone A on COX-1 enzyme reaction kinetics, although licochalcone A showed a stronger inhibition of prostaglandin E2 synthesis induced by lower concentrations of arachidonic acid, Vmax values in the presence or absence of licochalcone A were comparable, suggesting that it competes with arachidonic acid at the same binding site on COX-1. These results suggest that licochalcones inhibit collagen-induced platelet aggregation accompanied by inhibition of COX-1 activity.

  17. Flavonoid inhibition of aromatase enzyme activity in human preadipocytes.

    PubMed

    Campbell, D R; Kurzer, M S

    1993-09-01

    Eleven flavonoid compounds were compared with aminoglutethimide (AG), a pharmaceutical aromatase inhibitor, for their abilities to inhibit aromatase enzyme activity in a human preadipocyte cell culture system. Flavonoids exerting no effect on aromatase activity were catechin, daidzein, equol, genistein, beta-naphthoflavone (BNF), quercetin and rutin. The synthetic flavonoid, alpha-naphthoflavone (ANF), was the most potent aromatase inhibitor, with an I50 value of 0.5 microM. Three naturally-occurring flavonoids, chrysin, flavone, and genistein 4'-methyl ether (Biochanin A) showed I50 values of 4.6, 68, and 113 microM, respectively, while AG showed an I50 value of 7.4 microM. Kinetic analyses showed that both AG and the flavonoids acted as competitive inhibitors of aromatase. The Ki values, indicating the effectiveness of inhibition, were 0.2, 2.4, 2.4, 22, and 49 microM, for ANF, AG, chrysin, flavone, and Biochanin A, respectively. Chrysin, the most potent of the naturally-occurring flavonoids, was similar in potency and effectiveness to AG, a pharmaceutical aromatase inhibitor used clinically in cases of estrogen-dependent carcinoma. These data suggest that flavonoid inhibition of peripheral aromatase activity may contribute to the observed cancer-preventive hormonal effects of plant-based diets.

  18. Quercetin Inhibits Inflammasome Activation by Interfering with ASC Oligomerization and Prevents Interleukin-1 Mediated Mouse Vasculitis

    PubMed Central

    Domiciano, Talita P.; Wakita, Daiko; Jones, Heather D.; Crother, Timothy R.; Verri, Waldiceu A.; Arditi, Moshe; Shimada, Kenichi

    2017-01-01

    Interleukin-1β (IL-1β) is a highly inflammatory cytokine that significantly contributes to both acute and chronic inflammatory diseases. The secretion of IL-1β requires a unique protease, caspase-1, which is activated by various protein platforms called inflammasomes. Data suggests a key role for mitochondrial reactive oxygen species for inflammasome activation. Flavonoids constitute a group of naturally occurring polyphenolic molecules with many biological activities, including antioxidant effects. In this study, we investigated the effect of three flavonoids, quercetin (QUC), naringenin, and silymarim on inflammasome activation. We found that QUC inhibits IL-1β secretion by both the NLRP3 and AIM2 inflammasome in a dose dependent manner, but not the NLRC4 inflammasome. QUC inhibition of the inflammasome was still observed in Atg16l1 knockout macrophages, indicating that QUC’s effect was autophagy independent. Since QUC inhibited both NLRP3 and AIM2 inflammasomes but not NLRC4, we assessed ASC speck formation. QUC reduced ASC speck formation and ASC oligomerization compared with controls. Additionally, QUC inhibited IL-1β in Cryopyrin-Associated Periodic Syndromes (CAPS) macrophages, where NLRP3 inflammasome is constitutively activated. In conclusion, QUC inhibits both the NLRP3 and AIM2 inflammasome by preventing ASC oligomerization and may be a potential therapeutic candidate for Kawasaki disease vasculitis and other IL-1 mediated inflammatory diseases. PMID:28148962

  19. Quercetin Inhibits Inflammasome Activation by Interfering with ASC Oligomerization and Prevents Interleukin-1 Mediated Mouse Vasculitis.

    PubMed

    Domiciano, Talita P; Wakita, Daiko; Jones, Heather D; Crother, Timothy R; Verri, Waldiceu A; Arditi, Moshe; Shimada, Kenichi

    2017-02-02

    Interleukin-1β (IL-1β) is a highly inflammatory cytokine that significantly contributes to both acute and chronic inflammatory diseases. The secretion of IL-1β requires a unique protease, caspase-1, which is activated by various protein platforms called inflammasomes. Data suggests a key role for mitochondrial reactive oxygen species for inflammasome activation. Flavonoids constitute a group of naturally occurring polyphenolic molecules with many biological activities, including antioxidant effects. In this study, we investigated the effect of three flavonoids, quercetin (QUC), naringenin, and silymarim on inflammasome activation. We found that QUC inhibits IL-1β secretion by both the NLRP3 and AIM2 inflammasome in a dose dependent manner, but not the NLRC4 inflammasome. QUC inhibition of the inflammasome was still observed in Atg16l1 knockout macrophages, indicating that QUC's effect was autophagy independent. Since QUC inhibited both NLRP3 and AIM2 inflammasomes but not NLRC4, we assessed ASC speck formation. QUC reduced ASC speck formation and ASC oligomerization compared with controls. Additionally, QUC inhibited IL-1β in Cryopyrin-Associated Periodic Syndromes (CAPS) macrophages, where NLRP3 inflammasome is constitutively activated. In conclusion, QUC inhibits both the NLRP3 and AIM2 inflammasome by preventing ASC oligomerization and may be a potential therapeutic candidate for Kawasaki disease vasculitis and other IL-1 mediated inflammatory diseases.

  20. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway

    SciTech Connect

    Luan, Xin; Gao, Yun-Ge; Guan, Ying-Yun; Xu, Jian-Rong; Lu, Qin; Zhao, Mei; Liu, Ya-Rong; Liu, Hai-Jun; Fang, Chao; Chen, Hong-Zhuan

    2014-11-15

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvessel density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. - Highlights: • Platycodin D inhibits HUVEC proliferation, motility, migration and tube formation. • Platycodin D inhibits the angiogenesis in chick embryo chorioallantoic membrane. • Platycodin D suppresses the angiogenesis and growth of HCT-15 xenograft in mice. • Platycodin D inhibits the phosphorylation of VEGFR2 and downstream kinases in HUVEC.

  1. Individual strains of Lactobacillus paracasei differentially inhibit human basophil and mouse mast cell activation

    PubMed Central

    Cassard, Lydie; Lalanne, Ana Inés; Garault, Peggy; Cotillard, Aurélie; Chervaux, Christian; Wels, Michiel; Smokvina, Tamara

    2016-01-01

    Abstract Introduction The microbiota controls a variety of biological functions, including immunity, and alterations of the microbiota in early life are associated with a higher risk of developing allergies later in life. Several probiotic bacteria, and particularly lactic acid bacteria, were described to reduce both the induction of allergic responses and allergic manifestations. Although specific probiotic strains were used in these studies, their protective effects on allergic responses also might be common for all lactobacilli. Methods To determine whether allergic effector cells inhibition is a common feature of lactobacilli or whether it varies among lactobacilli strains, we compared the ability of 40 strains of the same Lactobacillus paracasei species to inhibit IgE‐dependent mouse mast cell and human basophil activation. Results We uncovered a marked heterogeneity in the inhibitory properties of the 40 Lactobacillus strains tested. These segregated into three to four clusters depending on the intensity of inhibition. Some strains inhibited both mouse mast cell and human basophil activation, others strains inhibited only one cell type and another group induced no inhibition of activation for either cell type. Conclusions Individual Lactobacillus strains of the same species differentially inhibit IgE‐dependent activation of mouse mast cells and human basophils, two cell types that are critical in the onset of allergic manifestations. Although we failed to identify specific bacterial genes associated with inhibition by gene‐trait matching analysis, our findings demonstrate the complexity of the interactions between the microbiota and the host. These results suggest that some L. paracasei strains might be more beneficial in allergies than others strains and provide the bases for a rational screening of lactic acid bacteria strains as next‐generation probiotics in the field of allergy. PMID:27621812

  2. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, Anopheles gambiae.

    PubMed

    Zhang, Xin; Yan Zhu, Kun

    2013-04-01

    Chitin synthase (CHS) is an important enzyme catalyzing the formation of chitin polymers in all chitin containing organisms and a potential target site for insect pest control. However, our understanding of biochemical properties of insect CHSs has been very limited. We here report enzymatic and inhibitory properties of CHS prepared from the African malaria mosquito, Anopheles gambiae. Our study, which represents the first time to use a nonradioactive method to assay CHS activity in an insect species, determined the optimal conditions for measuring the enzyme activity, including pH, temperature, and concentrations of the substrate uridine diphosphate N-acetyl-d-glucosamine (UDP-GlcNAc) and Mg(++) . The optimal pH was about 6.5-7.0, and the highest activity was detected at temperatures between 37°C and 44°C. Dithithreitol is required to prevent melanization of the enzyme extract. CHS activity was enhanced at low concentration of GlcNAc, but inhibited at high concentrations. Proteolytic activation of the activity is significant both in the 500 ×g supernatant and the 40 000 ×g pellet. Our study revealed only slight in vitro inhibition of A. gambiae CHS activity by diflubenzuron and nikkomycin Z at the highest concentration (2.5 μmol/L) examined. There was no in vitro inhibition by polyoxin D at any concentration examined. Furthermore, we did not observe any in vivo inhibition of CHS activity by any of these chemicals at any concentration examined. Our results suggest that the inhibition of chitin synthesis by these chemicals is not due to direct inhibition of CHS in A. gambiae.

  3. Emotion potentiates response activation and inhibition in masked priming

    PubMed Central

    Bocanegra, Bruno R.; Zeelenberg, René

    2012-01-01

    Previous studies have shown that emotion can have 2-fold effects on perception. At the object-level, emotional stimuli benefit from a stimulus-specific boost in visual attention at the relative expense of competing stimuli. At the visual feature-level, recent findings indicate that emotion may inhibit the processing of small visual details and facilitate the processing of coarse visual features. In the present study, we investigated whether emotion can boost the activation and inhibition of automatic motor responses that are generated prior to overt perception. To investigate this, we tested whether an emotional cue affects covert motor responses in a masked priming task. We used a masked priming paradigm in which participants responded to target arrows that were preceded by invisible congruent or incongruent prime arrows. In the standard paradigm, participants react faster, and commit fewer errors responding to the directionality of target arrows, when they are preceded by congruent vs. incongruent masked prime arrows (positive congruency effect, PCE). However, as prime-target SOAs increase, this effect reverses (negative congruency effect, NCE). These findings have been explained as evidence for an initial activation and a subsequent inhibition of a partial response elicited by the masked prime arrow. Our results show that the presentation of fearful face cues, compared to neutral face cues, increased the size of both the PCE and NCE, despite the fact that the primes were invisible. This is the first demonstration that emotion prepares an individual's visuomotor system for automatic activation and inhibition of motor responses in the absence of visual awareness. PMID:23162447

  4. Inhibition of Neuroinflammation in LPS-Activated Microglia by Cryptolepine

    PubMed Central

    Olajide, Olumayokun A.; Bhatia, Harsharan S.; de Oliveira, Antonio C. P.; Wright, Colin W.; Fiebich, Bernd L.

    2013-01-01

    Cryptolepine, an indoloquinoline alkaloid in Cryptolepis sanguinolenta, has anti-inflammatory property. In this study, we aimed to evaluate the effects of cryptolepine on lipopolysaccharide (LPS)- induced neuroinflammation in rat microglia and its potential mechanisms. Microglial activation was induced by stimulation with LPS, and the effects of cryptolepine pretreatment on microglial activation and production of proinflammatory mediators, PGE2/COX-2, microsomal prostaglandin E2 synthase and nitric oxide/iNOS were investigated. We further elucidated the role of Nuclear Factor-kappa B (NF-κB) and the mitogen-activated protein kinases in the antiinflammatory actions of cryptolepine in LPS-stimulated microglia. Our results showed that cryptolepine significantly inhibited LPS-induced production of tumour necrosis factor-alpha (TNFα), interleukin-6 (IL-6), interleukin-1beta (IL-1β), nitric oxide, and PGE2. Protein and mRNA levels of COX-2 and iNOS were also attenuated by cryptolepine. Further experiments on intracellular signalling mechanisms show that IκB-independent inhibition of NF-κB nuclear translocation contributes to the anti-neuroinflammatory actions of cryptolepine. Results also show that cryptolepine inhibited LPS-induced p38 and MAPKAPK2 phosphorylation in the microglia. Cell viability experiments revealed that cryptolepine (2.5 and 5 μM) did not produce cytotoxicity in microglia. Taken together, our results suggest that cryptolepine inhibits LPS-induced microglial inflammation by partial targeting of NF-κB signalling and attenuation of p38/MAPKAPK2. PMID:23737832

  5. Inhibition of polyphenol oxidases activity by various dipeptides.

    PubMed

    Girelli, Anna M; Mattei, Enrico; Messina, Antonella; Tarola, Anna M

    2004-05-19

    In an effort to develop natural and nontoxic inhibitors on the activity of mushroom polyphenol oxidase (PPO) the effect of various glycyl-dipeptides (GlyAsp, GlyGly, GlyHis, GlyLeu, GlyLys, GlyPhe, GlyPro, GlyTyr) was investigated. The inhibition study with dihydroxyphenylalanine (DOPA) as substrate is based on separation of the enzymatic reaction components by reversed phase HPLC and the UV detection of the dopachrome formed. The results have evidenced that several of tested dipeptides inhibited PPO activity in the range of 20-40% while GlyPro and GlyLeu had no effect. The study has also permitted the characterization of the following kinetic pattern: a linear-mixed-type mechanism for GlyAsp, GlyGly, GlyLys, and GlyPhe and a hyperbolic-mixed-type for GlyTyr. It was not possible to identify the inhibition mechanism for GlyHis, although it affects PPO activity. In addition the effects of GlyAsp, GlyLys and GlyHis were evaluated for lessening the browning of fresh Golden Delicious apple and Irish White Skinned potato. The effectiveness of such inhibitors was determined by the difference between the colors observed in the dipeptide-treated sample and the controls using the color space CIE-Lab system. The % browning inhibition on potato (20-50%) was greater than of apple (20-30%) by the all tested dipeptides. Only GlyLys presented the significant value of 50%.

  6. Menthol Inhibits Detrusor Contractility Independently of TRPM8 Activation

    PubMed Central

    Ramos-Filho, Antonio Celso Saragossa; Shah, Ajay; Augusto, Taize Machado; Barbosa, Guilherme Oliveira; Leiria, Luiz Osorio; de Carvalho, Hernandes Faustino; Antunes, Edson; Grant, Andrew Douglas

    2014-01-01

    Agonists such as icilin and menthol can activate the cool temperature-sensitive ion channel TRPM8. However, biological responses to menthol may occur independently of TRPM8 activation. In the rodent urinary bladder, menthol facilitates the micturition reflex but inhibits muscarinic contractions of the detrusor smooth muscle. The site(s) of TRPM8 expression in the bladder are controversial. In this study we investigated the regulation of bladder contractility in vitro by menthol. Bladder strips from wild type and TRPM8 knockout male mice (25–30 g) were dissected free and mounted in organ baths. Isometric contractions to carbachol (1 nM–30 µM), CaCl2 (1 µM to 100 mM) and electrical field stimulation (EFS; 8, 16, 32 Hz) were measured. Strips from both groups contracted similarly in response to both carbachol and EFS. Menthol (300 µM) or nifedipine (1 µM) inhibited carbachol and EFS-induced contractions in both wild type and TRPM8 knockout bladder strips. Incubation with the sodium channel blocker tetrodotoxin (1 µM), replacement of extracellular sodium with the impermeant cation N-Methyl-D-Glucamine, incubation with a cocktail of potassium channel inhibitors (100 nM charybdotoxin, 1 µM apamin, 10 µM glibenclamide and 1 µM tetraethylammonium) or removal of the urothelium did not affect the inhibitory actions of menthol. Contraction to CaCl2 was markedly inhibited by either menthol or nifedipine. In cultured bladder smooth muscle cells, menthol or nifedipine abrogated the carbachol or KCl-induced increases in [Ca2+]i. Intravesical administration of menthol increased voiding frequency while decreasing peak voiding pressure. We conclude that menthol inhibits muscarinic bladder contractions through blockade of L-type calcium channels, independently of TRPM8 activation. PMID:25375115

  7. Nuclear actin activates human transcription factor genes including the OCT4 gene.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; Tokunaga, Makio; Sakata-Sogawa, Kumiko; Harata, Masahiko

    2015-01-01

    RNA microarray analyses revealed that nuclear actin activated many human transcription factor genes including OCT4, which is required for gene reprogramming. Oct4 is known to be activated by nuclear actin in Xenopus oocytes. Our findings imply that this process of OCT4 activation is conserved in vertebrates and among cell types and could be used for gene reprogramming of human cells.

  8. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression

    SciTech Connect

    Deng Jianbei; Hua Kunjie; Caveney, Erica J.; Takahashi, Nobuyuki; Harp, Joyce B. . E-mail: jharp@unc.edu

    2006-01-20

    Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in the cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.

  9. Reduced brain activation in violent adolescents during response inhibition.

    PubMed

    Qiao, Yi; Mei, Yi; Du, XiaoXia; Xie, Bin; Shao, Yang

    2016-02-18

    Deficits in inhibitory control have been linked to aggression and violent behaviour. This study aimed to observe whether violent adolescents show different brain activation patterns during response inhibition and to ascertain the roles these brain regions play. A self-report method and modified overt aggression scale (MOAS) were used to evaluate violent behaviour. Functional magnetic resonance imaging was performed in 22 violent adolescents and 17 matched healthy subjects aged 12 to 18 years. While scanning, a go/no-go task was performed. Between-group comparisons revealed that activation in the bilateral middle and superior temporal gyrus, hippocampus, and right orbitofrontal area (BA11) regions were significantly reduced in the violent group compared with the control group. Meanwhile, the violent group had more widespread activation in the prefrontal cortex than that observed in the control group. Activation of the prefrontal cortex in the violent group was widespread but lacking in focus, failing to produce intensive activation in some functionally related regions during response inhibition.

  10. Activity inhibition on municipal activated sludge by single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Parise, Alex; Thakor, Harshrajsinh; Zhang, Xiaoqi

    2014-01-01

    The objective of this study was to evaluate the respiratory activity inhibition of activated sludge used in a typical wastewater treatment plant by single-walled carbon nanotubes (SWCNTs) with different length and functionality. Four types of SWCNTs were evaluated: short, functionalized short, long, and functionalized long. Based on the effective concentration (EC50) values obtained, we determined that functionalized SWCNTs resulted in a higher microbial respiratory inhibition than non-functionalized nanotubes, and long SWCNTs gave a higher microbial respiratory inhibition than their short counterparts. Among the four types of SWCNTs studied, functionalized long exhibited the highest respiration inhibition. Scanning electron microscopy imaging indicates that the long SWCNTs dispersed more favorably after sonication than the short variety. The findings demonstrated that the toxicity of CNTs (exhibited by respiratory inhibition) is related to their physical properties; the length and functionality of SWCNTs affected the toxicity of SWCNTs in a mixed-cultured biologic system.

  11. [Metabolism inhibition stimulates, metabolism activation inhibits cancerogenic activity of ortho-aminoazotoluene in mouse liver].

    PubMed

    Kaledin, V I; Il'nitskaia, S I

    2011-01-01

    Pentachlorophenol, an inhibitor of metabolic activation of aminoazo dyes was administered to suckling mice prior to o-aminoazotoluene (OAT). It was followed by formation of numerous preneoplastic nodules and tumors in the lungs and liver. At the same time, 2,3,7,8-tetrachlorodibenzo-p-dioxine treatment decreased their number in the liver while slightly increasing them in the lung. A possible mechanism of aminoazo dye carcinogenicity is suggested.

  12. Solubilized placental membrane protein inhibits insulin receptor tyrosine kinase activity

    SciTech Connect

    Strout, H.V. Jr.; Slater, E.E.

    1987-05-01

    Regulation of insulin receptor (IR) tyrosine kinase (TK) activity may be important in modulating insulin action. Utilizing an assay which measures IR phosphorylation of angiotensin II (AII), the authors investigated whether fractions of TX-100 solubilized human placental membranes inhibited IR dependent AII phosphorylation. Autophosphorylated IR was incubated with membrane fractions before the addition of AII, and kinase inhibition measured by the loss of TSP incorporated in AII. An inhibitory activity was detected which was dose, time, and temperature dependent. The inhibitor was purified 200-fold by sequential chromatography on wheat germ agglutinin, DEAE, and hydroxyapatite. This inhibitory activity was found to correlate with an 80 KD protein which was electroeluted from preparative slab gels and rabbit antiserum raised. Incubation of membrane fractions with antiserum before the IRTK assay immunoprecipitated the inhibitor. Protein immunoblots of crude or purified fractions revealed only the 80 KD protein. Since IR autophosphorylation is crucial to IRTK activity, the authors investigated the state of IR autophosphorylation after treatment with inhibitor; no change was detected by phosphoamino acid analysis.

  13. Grafting MAP peptide to dental polymer inhibits MMP-8 activity.

    PubMed

    Dixit, Namrata; Settle, Jenifer K; Ye, Qiang; Berrie, Cindy L; Spencer, Paulette; Laurence, Jennifer S

    2015-02-01

    Matrix metalloproteinases (MMPs) are a class of zinc and calcium-dependent endopeptidases responsible for degrading extracellular matrix (ECM) components. Their activity is critical for both normal biological function and pathological processes (Dejonckheere et al., Cytokine Growth Factor Rev 2011;22:73-81). In dental restorations, the release and subsequent acid activation of MMPs contributes to premature failure. In particular, MMP-8 accelerates degradation by cleaving the collagen matrix within the dentin substrate in incompletely infiltrated aged bonded dentin (Buzalaf et al., Adv Dent Res 2012;24:72-76), hastening the need for replacement of restorations. Therefore, development of a dental adhesive that better resists MMP-8 activity is of significant interest. We hypothesize that modification of the polymer surface with an inhibitor would disable MMP-8 activity. Here, we identify the metal abstraction peptide (MAP) as an inhibitor of MMP-8 and demonstrate that tethering MAP to methacrylate polymers effectively inhibits catalysis. Our findings indicate complete inhibition of MMP-8 is achievable using a grafting approach. This strategy has potential to improve longevity of dental adhesives and other polymers and enable rational design of a new generation of biocompatible materials.

  14. Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia

    PubMed Central

    Ye, Qi; Jiang, Jue; Zhan, Guanqun; Yan, Wanyao; Huang, Liang; Hu, Yufeng; Su, Hexiu; Tong, Qingyi; Yue, Ming; Li, Hua; Yao, Guangmin; Zhang, Yonghui; Liu, Hudan

    2016-01-01

    Aberrant activation of the NOTCH signaling pathway is crucial for the onset and progression of T cell leukemia. Yet recent studies also suggest a tumor suppressive role of NOTCH signaling in acute myeloid leukemia (AML) and reactivation of this pathway offers an attractive opportunity for anti-AML therapies. N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid that we previously isolated from Zephyranthes candida, exhibiting inhibitory activities in a variety of cancer cells, particularly those from AML. Here, we report NMHC not only selectively inhibits AML cell proliferation in vitro but also hampers tumor development in a human AML xenograft model. Genome-wide gene expression profiling reveals that NMHC activates the NOTCH signaling. Combination of NMHC and recombinant human NOTCH ligand DLL4 achieves a remarkable synergistic effect on NOTCH activation. Moreover, pre-inhibition of NOTCH by overexpression of dominant negative MAML alleviates NMHC-mediated cytotoxicity in AML. Further mechanistic analysis using structure-based molecular modeling as well as biochemical assays demonstrates that NMHC docks in the hydrophobic cavity within the NOTCH1 negative regulatory region (NRR), thus promoting NOTCH1 proteolytic cleavage. Our findings thus establish NMHC as a potential NOTCH agonist that holds great promises for future development as a novel agent beneficial to patients with AML. PMID:27211848

  15. Inhibition of Human Drug Transporter Activities by the Pyrethroid Pesticides Allethrin and Tetramethrin

    PubMed Central

    Chedik, Lisa; Bruyere, Arnaud; Le Vee, Marc; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Potin, Sophie; Fardel, Olivier

    2017-01-01

    Pyrethroids are widely-used chemical insecticides, to which humans are commonly exposed, and known to alter functional expression of drug metabolizing enzymes. Limited data have additionally suggested that drug transporters, that constitute key-actors of the drug detoxification system, may also be targeted by pyrethroids. The present study was therefore designed to analyze the potential regulatory effects of these pesticides towards activities of main ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, using transporter-overexpressing cells. The pyrethroids allethrin and tetramethrin were found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein (MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2, with IC50 values however ranging from 2.6 μM (OCT1 inhibition by allethrin) to 77.6 μM (OAT3 inhibition by tetramethrin) and thus much higher than pyrethroid concentrations (in the nM range) reached in environmentally pyrethroid-exposed humans. By contrast, allethrin and tetramethrin cis-stimulated OATP2B1 activity and failed to alter activities of OATP1B3, OAT1 and MATE2-K, whereas P-glycoprotein activity was additionally moderately inhibited. Twelve other pyrethoids used at 100 μM did not block activities of the various investigated transporters, or only moderately inhibited some of them (inhibition by less than 50%). In silico analysis of structure-activity relationships next revealed that molecular parameters, including molecular weight and lipophilicity, are associated with transporter inhibition by allethrin/tetramethrin and successfully predicted transporter inhibition by the pyrethroids imiprothrin and prallethrin. Taken together, these data fully demonstrated that two pyrethoids, i.e., allethrin and tetramethrin, can

  16. DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents?

    SciTech Connect

    Asmis, Lars; Tanner, Felix C.; Sudano, Isabella; Luescher, Thomas F.; Camici, Giovanni G.

    2010-01-22

    Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysis showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 {+-} 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% {+-} 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 {+-} 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.

  17. Antioedematogenic activity, acetylcholinesterase inhibition and antimicrobial properties of Jacaranda oxyphylla.

    PubMed

    Pereira, V V; Silva, R R; Dos Santos, M H; Dias, D F; Moreira, M E C; Takahashi, J A

    2016-09-01

    Jacaranda oxyphylla Cham. (Bignoniaceae) is a shrub found in the Brazilian cerrado and used in folk medicine to treat microbial infections. The aim of this study was to carry out a phytochemical screening and evaluate antioedematogenic, antimicrobial and antiacetylcholinesterase properties of J. oxyphylla crude extracts. All extracts analysed showed presence of terpenoids, which are potentially active chemical substances. A high AChE inhibitory activity for hexane extract from leaves and for the extracts from twigs was found. Ethanol extract from leaves of J. oxyphylla showed activity against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Escherichia coli) bacteria. This extract was also effective in inhibiting the stages of inflammation evaluated. Biological investigation and phytochemical screening of J. oxyphylla extracts provided additional evidence of its traditional medicinal value.

  18. Betulin inhibits lung carcinoma proliferation through activation of AMPK signaling.

    PubMed

    Li, Xian-Dong; Zhang, Yi-Jie; Han, Ji-Chang

    2014-11-01

    Betulin (lup-20(29)-ene-3β, 28-diol) is an abundant, naturally occurring triterpene. It is commonly isolated from the bark of birch trees and forms up to 30% of the dry weight of the extractive. In the present study, we revealed its antiproliferative effects and mechanisms using two lung carcinoma cells (A549 and NCI-292). By 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and bromodeoxyuridine (BrdU) incorporation assays, we found that betulin could efficiently inhibit cell growth and proliferation. Besides, several key genes of cell-cycle regulators were also affected by betulin treatment. At the molecular level, our results demonstrated that treatment with betulin was also associated with activation of AMP kinase and inhibition of mTOR/p70S6K/pS6 signaling in these cells. In agreement, inhibition of AMPK signaling largely reversed the antiproliferative roles of betulin. Taken together, these data provide evidence for a mechanism that may contribute to the antineoplastic effects of betulin and justify further work to explore its potential roles in lung cancer prevention and treatment.

  19. TES inhibits colorectal cancer progression through activation of p38

    PubMed Central

    Gao, Lu; Wang, Lixia; Niu, Yanfeng; Liu, Hongli; Wang, Zheng; Wang, Lin; Wang, Guobin; Wang, Jiliang

    2016-01-01

    The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site – a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy. PMID:27323777

  20. Behavioral inspiratory inhibition: inactivated and activated respiratory cells.

    PubMed

    Orem, J

    1989-11-01

    = 0.27 +/- 0.03, mean +/- SE). 4) The latency of their activation in response to the task averaged 58 +/- 2.7 (SE) ms and was significantly shorter than the latency of inactivation of the high eta 2-valued inspiratory cells. 5) This activation was intense and prolonged. 6. It is hypothesized that the activated cells integrate nonrespiratory and respiratory inputs and act to inhibit other respiratory cells during the behavioral inhibition of inspiration.

  1. A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging.

    PubMed

    Lanna, Alessio; Gomes, Daniel C O; Muller-Durovic, Bojana; McDonnell, Thomas; Escors, David; Gilroy, Derek W; Lee, Jun Hee; Karin, Michael; Akbar, Arne N

    2017-03-01

    Mitogen-activated protein kinases (MAPKs) including Erk, Jnk and p38 regulate diverse cellular functions and are thought to be controlled by independent upstream activation cascades. Here we show that the sestrins bind to and coordinate simultaneous Erk, Jnk and p38 MAPK activation in T lymphocytes within a new immune-inhibitory complex (sestrin-MAPK activation complex (sMAC)). Whereas sestrin ablation resulted in broad reconstitution of immune function in stressed T cells, inhibition of individual MAPKs allowed only partial functional recovery. T cells from old humans (>65 years old) or mice (16-20 months old) were more likely to form the sMAC, and disruption of this complex restored antigen-specific functional responses in these cells. Correspondingly, sestrin deficiency or simultaneous inhibition of all three MAPKs enhanced vaccine responsiveness in old mice. Thus, disruption of sMAC provides a foundation for rejuvenating immunity during aging.

  2. Improvements to the FATOLA computer program including added actively controlled landing gear subroutines

    NASA Technical Reports Server (NTRS)

    Mall, G. H.

    1983-01-01

    Modifications to a multi-degree-of-freedom flexible aircraft take-off and landing analysis (FATOLA) computer program, including a provision for actively controlled landing gears to expand the programs simulation capabilities, are presented. Supplemental instructions for preparation of data and for use of the modified program are included.

  3. Glaucocalyxin A Inhibits Platelet Activation and Thrombus Formation Preferentially via GPVI Signaling Pathway

    PubMed Central

    Li, Qiang; Ren, Lijie; Liu, Xiaohui; Chu, Chunjun; Ozaki, Yukio; Zhang, Jian; Zhu, Li

    2013-01-01

    Platelets play a pivotal role in atherothrombosis and the antiplatelet agents have been proved to be useful in preventing onset of acute clinical events including myocardial infarction and stroke. Increasing number of natural compounds has been identified to be potential antiplatelet agents. Here we report the antiplatelet effect of glaucocalyxin A (GLA), an ent-diterpenoid that we isolated and purified from the aerial parts of Rabdosia japonica (Burm. f.) var. glaucocalyx (Maxim.) Hara, and investigate the molecular mechanisms by which GLA inhibits platelet activation and thrombus formation. The effect of GLA on platelet activation was measured using platelets freshly isolated from peripheral blood of healthy donors. Results showed that pretreatment of human platelets with lower concentrations of GLA (0.01μg/ml, 0.1μg/ml) significantly inhibited platelet aggregation induced by collagen (P<0.001) and CRP (P<0.01), a synthetic GPVI ligand, but not by ADP and U46619. Accordingly, GLA inhibited collagen-stimulated tyrosine phosphorylation of Syk, LAT, and phospholipase Cγ2, the signaling events in collagen receptor GPⅥ pathway. GLA also inhibited platelet p-selectin secretion and integrin activation by convulxin, a GPVI selective ligand. Additionally, GLA was found to inhibit low-dose thrombin-induced platelet activation. Using a flow chamber device, GLA was found to attenuate platelet adhesion on collagen surfaces in high shear condition. In vivo studies showed that GLA administration increased the time for complete occlusion upon vascular injury in mice, but did not extend tail-bleeding time when mice were administered with relatively lower doses of GLA. Therefore, the present results provide the molecular basis for the inhibition effect of GLA on platelet activation and its in vivo effect on thrombus formation, suggesting that GLA could potentially be developed as an antiplatelet and antithrombotic agent. PMID:24386454

  4. cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants.

    PubMed

    Olivares-González, Lorena; Martínez-Fernández de la Cámara, Cristina; Hervás, David; Marín, María Pilar; Lahoz, Agustin; Millán, José María; Rodrigo, Regina

    2016-01-01

    Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP) has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE) with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2) for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation) mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities) and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions.

  5. cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants

    PubMed Central

    Olivares-González, Lorena; Martínez-Fernández de la Cámara, Cristina; Hervás, David; Marín, María Pilar; Lahoz, Agustin; Millán, José María

    2016-01-01

    Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP) has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE) with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2) for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation) mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities) and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions. PMID:27861632

  6. Caerulomycin A Suppresses Immunity by Inhibiting T Cell Activity

    PubMed Central

    Chauhan, Arun; Khatri, Neeraj; Vohra, Rakesh M.; Jolly, Ravinder S.; Agrewala, Javed N.

    2014-01-01

    Background Caerulomycin A (CaeA) is a known antifungal and antibiotic agent. Further, CaeA is reported to induce the expansion of regulatory T cell and prolongs the survival of skin allografts in mouse model of transplantation. In the current study, CaeA was purified and characterized from a novel species of actinomycetes, Actinoalloteichus spitiensis. The CaeA was identified for its novel immunosuppressive property by inhibiting in vitro and in vivo function of T cells. Methods Isolation, purification and characterization of CaeA were performed using High Performance Flash Chromatography (HPFC), NMR and mass spectrometry techniques. In vitro and in vivo T cell studies were conducted in mice using flowcytometry, ELISA and thymidine-[methyl-3H] incorporation. Results CaeA significantly suppressed T cell activation and IFN-γ secretion. Further, it inhibited the T cells function at G1 phase of cell cycle. No apoptosis was noticed by CaeA at a concentration responsible for inducing T cell retardation. Furthermore, the change in the function of B cells but not macrophages was observed. The CaeA as well exhibited substantial inhibitory activity in vivo. Conclusion This study describes for the first time novel in vitro and in vivo immunosuppressive function of CaeA on T cells and B cells. CaeA has enough potential to act as a future immunosuppressive drug. PMID:25286329

  7. Mechanisms of cell death pathway activation following drug-induced inhibition of mitochondrial complex I

    PubMed Central

    Imaizumi, Naoki; Kwang Lee, Kang; Zhang, Carmen; Boelsterli, Urs A.

    2015-01-01

    Respiratory complex I inhibition by drugs and other chemicals has been implicated as a frequent mode of mitochondria-mediated cell injury. However, the exact mechanisms leading to the activation of cell death pathways are incompletely understood. This study was designed to explore the relative contributions to cell injury of three distinct consequences of complex I inhibition, i.e., impairment of ATP biosynthesis, increased formation of superoxide and, hence, peroxynitrite, and inhibition of the mitochondrial protein deacetylase, Sirt3, due to imbalance of the NADH/NAD+ ratio. We used the antiviral drug efavirenz (EFV) to model drug-induced complex I inhibition. Exposure of cultured mouse hepatocytes to EFV resulted in a rapid onset of cell injury, featuring a no-effect level at 30 µM EFV and submaximal effects at 50 µM EFV. EFV caused a concentration-dependent decrease in cellular ATP levels. Furthermore, EFV resulted in increased formation of peroxynitrite and oxidation of mitochondrial protein thiols, including cyclophilin D (CypD). This was prevented by the superoxide scavenger, Fe-TCP, or the peroxynitrite decomposition catalyst, Fe-TMPyP. Both ferroporphyrins completely protected from EFV-induced cell injury, suggesting that peroxynitrite contributed to the cell injury. Finally, EFV increased the NADH/NAD+ ratio, inhibited Sirt3 activity, and led to hyperacetylated lysine residues, including those in CypD. However, hepatocytes isolated from Sirt3-null mice were protected against 40 µM EFV as compared to their wild-type controls. In conclusion, these data are compatible with the concept that chemical inhibition of complex I activates multiple pathways leading to cell injury; among these, peroxynitrite formation may be the most critical. PMID:25625582

  8. Goniothalamin enhances the ATPase activity of the molecular chaperone Hsp90 but inhibits its chaperone activity.

    PubMed

    Yokoyama, Yuhei; Ohtaki, Aguru; Jantan, Ibrahim; Yohda, Masafumi; Nakamoto, Hitoshi

    2015-03-01

    Hsp90 is an ATP-dependent molecular chaperone that is involved in important cellular pathways such as signal transduction pathways. It is a potential cancer drug target because it plays a critical role for stabilization and activation of oncoproteins. Thus, small molecule compounds that control the Hsp90 function are useful to elucidate potential lead compounds against cancer. We studied effect of a naturally occurring styryl-lactone goniothalamin on the activity of Hsp90. Although many drugs targeting Hsp90 inhibit the ATPase activity of Hsp90, goniothalamin enhanced rather than inhibited the ATPase activity of a cyanobacterial Hsp90 (HtpG) and a yeast Hsp90. It increased both K(m) and k(cat) of the Hsp90s. Domain competition assays and tryptophan fluorescence measurements with various truncated derivatives of HtpG indicated that goniothalamin binds to the N-terminal domain of HtpG. Goniothalamin did not influence on the interaction of HtpG with a non-native protein or the anti-aggregation activity of HtpG significantly. However, it inhibited the activity of HtpG that assists refolding of a non-native protein in cooperation with the Hsp70 chaperone system. This is the first report to show that a small molecule that binds to the N-terminal domain of Hsp90 activates its ATPase activity, while inhibiting the chaperone function of Hsp90.

  9. Suppression of Brain Mast Cells Degranulation Inhibits Microglial Activation and Central Nervous System Inflammation.

    PubMed

    Dong, Hongquan; Zhang, Xiang; Wang, Yiming; Zhou, Xiqiao; Qian, Yanning; Zhang, Shu

    2017-03-01

    Brain inflammation has a critical role in the pathophysiology of brain diseases. Microglia, the resident immune cells in the brain, play an important role in brain inflammation, while brain mast cells are the "first responder" in the injury rather than microglia. Functional aspects of mast cell-microglia interactions remain poorly understood. Our results demonstrated that site-directed injection of the "mast cell degranulator" compound 48/80 (C48/80) in the hypothalamus induced mast cell degranulation, microglial activation, and inflammatory factor production, which initiated the acute brain inflammatory response. "Mast cell stabilizer" disodium cromoglycate (cromolyn) inhibited this effect, including decrease of inflammatory cytokines, reduced microglial activation, inhibition of MAPK and AKT pathways, and repression of protein expression of histamine receptor 1 (H1R), histamine receptor 4 (H4R), protease-activated receptor 2 (PAR2), and toll-like receptor 4 (TLR4) in microglia. We also demonstrated that C48/80 had no effect on microglial activation in mast cell-deficient Kit(W-sh/W-sh) mice. These results implicate that activated brain mast cells trigger microglial activation and stabilization of mast cell inhibits microglial activation-induced central nervous system (CNS) inflammation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS immune inflammation-related diseases.

  10. Inhibition of DNA polymerase λ and associated inflammatory activities of extracts from steamed germinated soybeans.

    PubMed

    Mizushina, Yoshiyuki; Kuriyama, Isoko; Yoshida, Hiromi

    2014-04-01

    During the screening of selective DNA polymerase (pol) inhibitors from more than 50 plant food materials, we found that the extract from steamed germinated soybeans (Glycine max L.) inhibited human pol λ activity. Among the three processed soybean samples tested (boiled soybeans, steamed soybeans, and steamed germinated soybeans), both the hot water extract and organic solvent extract from the steamed germinated soybeans had the strongest pol λ inhibition. We previously isolated two glucosyl compounds, a cerebroside (glucosyl ceramide, AS-1-4, compound ) and a steroidal glycoside (eleutheroside A, compound ), from dried soybean, and these compounds were prevalent in the extracts of the steamed germinated soybeans as pol inhibitors. The hot water and organic solvent extracts of the steamed germinated soybeans and compounds and selectively inhibited the activity of eukaryotic pol λ in vitro but did not influence the activities of other eukaryotic pols, including those from the A-family (pol γ), B-family (pols α, δ, and ε), and Y-family (pols η, ι, and κ), and also showed no effect on the activity of pol β, which is of the same family (X) as pol λ. The tendency for in vitro pol λ inhibition by these extracts and compounds showed a positive correlation with the in vivo suppression of TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation in mouse ear. These results suggest that steamed germinated soybeans, especially the glucosyl compound components, may be useful for their anti-inflammatory properties.

  11. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides.

    PubMed

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-02-10

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor phosphatidylinositol 4-phosphate [PI(4)P] from the plasma membrane through Ca(2+)-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 and PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin.

  12. Do displacement activities help preschool children to inhibit a forbidden action?

    PubMed

    Pecora, Giulia; Addessi, Elsa; Schino, Gabriele; Bellagamba, Francesca

    2014-10-01

    Displacement activities are commonly recognized as behavioral patterns, mostly including self-directed actions (e.g., scratching, self-touching), that often occur in situations involving conflicting motivational tendencies. In ethology, several researchers have suggested that displacement activities could facilitate individuals in dealing with the stress experienced in a frustrating context. In child developmental research, some authors have assessed whether distraction strategies could help children to inhibit a dominant response during delay of gratification tasks. However, little is known about the displacement activities that young children may produce in such situations. This study was aimed at investigating whether displacement activities had an effect on preschool children's ability to postpone an immediate gratification (i.e., interacting with an attractive toy, a musical box), thereby functioning as regulators of their emotional state. To this end, we administered 143 2- to 4-year-olds with a delay maintenance task and related their performance with displacement activities they produced during the task and with actions with an external object. Children's latency to touch the musical box was positively related to their rate of displacement activities. However, the rate of displacement activities increased progressively as long as the children were able to inhibit the interaction with the musical box. In addition, the rate of displacement activities during the first 1 min of test did not predict the ability of children to inhibit the interaction with the box. These results suggest that displacement activities represented a functionless by-product of motivational conflict rather than a strategy that children used to inhibit their response to an attractive stimulus.

  13. Glycycoumarin inhibits hepatocyte lipoapoptosis through activation of autophagy and inhibition of ER stress/GSK-3-mediated mitochondrial pathway

    PubMed Central

    Zhang, Enxiang; Yin, Shutao; Song, Xinhua; Fan, Lihong; Hu, Hongbo

    2016-01-01

    Herbal medicine as an alternative approach in the treatment of disease has drawn growing attention. Identification of the active ingredient is needed for effective utilization of the herbal medicine. Licorice is a popular herbal plant that is widely used to treat various diseases including liver diseases. Glycycoumarin (GCM) is a representative of courmarin compounds isolated from licorice. In the present study, the protective effect of GCM on hepatocyte lipoapoptosis has been evaluated using both cell culture model of palmitate-induced lipoapoptosis and animal model of non-alcoholic steatohepatitis (NASH). The results demonstrated for the first time that GCM was highly effective in suppressing hepatocyte lipoapoptosis in both in vitro and in vivo. Mechanistically, GCM was able to re-activate the impaired autophagy by lipid metabolic disorders. In line with the activation of autophagy, ER stress-mediated JNK and mitochondrial apoptotic pathway activation was inhibited by GCM both in vitro and in vivo. In addition, inactivation of GSK-3 might also contribute to the protective effect of GCM on hepatocyte lipoapoptosis. Our findings supported GCM as a novel active component of licorice against non-alcoholic fatty liver disease (NAFLD). PMID:27901086

  14. Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs.

    PubMed

    Pinto, Cibele; Papa, Dan; Hübner, Melanie; Mou, Tung-Chung; Lushington, Gerald H; Seifert, Roland

    2008-04-01

    Adenylyl cyclase (AC) isoforms 1 to 9 are differentially expressed in tissues and constitute an interesting drug target. ACs 1 to 8 are activated by the diterpene, forskolin (FS). It is unfortunate that there is a paucity of AC isoform-selective activators. To develop such compounds, an understanding of the structure/activity relationships of diterpenes is necessary. Therefore, we examined the effects of FS and nine FS analogs on ACs 1, 2, and 5 expressed in Spodoptera frugiperda insect cells. Diterpenes showed the highest potencies at AC1 and the lowest potencies at AC2. We identified full agonists, partial agonists, antagonists, and inverse agonists, i.e., diterpenes that reduced basal AC activity. Each AC isoform exhibited a distinct pharmacological profile. AC2 showed the highest basal activity of all AC isoforms and highest sensitivity to inverse agonistic effects of 1-deoxy-forskolin, 7-deacetyl-1,9-dideoxy-forskolin, and, particularly, BODIPY-forskolin. In contrast, BODIPY-forskolin acted as partial agonist at the other ACs. 1-Deoxy-forskolin analogs were devoid of agonistic activity at ACs but antagonized the effects of FS in a mixed competitive/noncompetitive manner. At purified catalytic AC subunits, BODIPY-forskolin acted as weak partial agonist/strong partial antagonist. Molecular modeling revealed that the BODIPY group rotates promiscuously outside of the FS-binding site. Collectively, ACs are not uniformly activated and inhibited by FS and FS analogs, demonstrating the feasibility to design isoform-selective FS analogs. The two- and multiple-state models, originally developed to conceptualize ligand effects at G-protein-coupled receptors, can be applied to ACs to explain certain experimental data.

  15. Apigenin Restricts FMDV Infection and Inhibits Viral IRES Driven Translational Activity

    PubMed Central

    Qian, Suhong; Fan, Wenchun; Qian, Ping; Zhang, Dong; Wei, Yurong; Chen, Huanchun; Li, Xiangmin

    2015-01-01

    Foot-and-mouth disease (FMD) is a highly contagious disease of domestic and wild ruminants that is caused by FMD virus (FMDV). FMD outbreaks have occurred in livestock-containing regions worldwide. Apigenin, which is a flavonoid naturally existing in plant, possesses various pharmacological effects, including anti-inflammatory, anticancer, antioxidant and antiviral activities. Results show that apigenin can inhibit FMDV-mediated cytopathogenic effect and FMDV replication in vitro. Further studies demonstrate the following: (i) apigenin inhibits FMDV infection at the viral post-entry stage; (ii) apigenin does not exhibit direct extracellular virucidal activity; and (iii) apigenin interferes with the translational activity of FMDV driven by internal ribosome entry site. Studies on applying apigein in vivo are required for drug development and further identification of potential drug targets against FDMV infection. PMID:25835532

  16. Homocysteine injures vascular endothelial cells by inhibiting mitochondrial activity

    PubMed Central

    Yang, Fengyong; Qi, Xiujing; Gao, Zheng; Yang, Xingju; Zheng, Xingfeng; Duan, Chonghao; Zheng, Jian

    2016-01-01

    The aim of the present study was to investigate the role of homocysteine (Hcy) in the pathogenesis of pulmonary embolism (PE) and the associated molecular mechanisms in human umbilical vein endothelial cells (HUVECs). Hcy contents were detected with high-performance liquid chromatography. Apoptosis was detected by flow cytometry using Annexin-V staining. Cytochrome c oxidase (COX) activity was assessed with an enzyme activity assay, and the expression levels of COX 17 were determined by western blot analysis. Intracellular reactive oxygen species levels were measured using a microplate reader with a fluorescence probe. The results demonstrated that, compared with the control group, the serum Hcy levels were significantly elevated in the PE group, suggesting that Hcy may be an indicator for PE. Following treatment with Hcy, the apoptosis rate was markedly elevated in HUVECs. Moreover, Hcy decreased COX activity and downregulated the expression of COX 17 in HUVECs. Furthermore, Hcy increased the ROS levels in these endothelial cells. However, all the above-mentioned physiopathological changes induced by Hcy in HUVECs could be restored by folic acid. In conclusion, the results of the present study demonstrated that Hcy inhibited COX activity, downregulated COX 17 expression, increased intracellular ROS levels and enhanced apoptosis in endothelial cells. PMID:27698720

  17. Activation of MAPK/ERK signaling by Burkholderia pseudomallei cycle inhibiting factor (Cif)

    PubMed Central

    Ng, Mei Ying; Wang, Mei; Casey, Patrick J.; Gan, Yunn-Hwen; Hagen, Thilo

    2017-01-01

    Cycle inhibiting factors (Cifs) are virulence proteins secreted by the type III secretion system of some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Cif is known to function to deamidate Nedd8, leading to inhibition of Cullin E3 ubiquitin ligases (CRL) and consequently induction of cell cycle arrest. Here we show that Cif can function as a potent activator of MAPK/ERK signaling without significant activation of other signaling pathways downstream of receptor tyrosine kinases. Importantly, we found that the ability of Cif to activate ERK is dependent on its deamidase activity, but independent of Cullin E3 ligase inhibition. This suggests that apart from Nedd8, other cellular targets of Cif-dependent deamidation exist. We provide evidence that the mechanism involved in Cif-mediated ERK activation is dependent on recruitment of the Grb2-SOS1 complex to the plasma membrane. Further investigation revealed that Cif appears to modify the phosphorylation status of SOS1 in a region containing the CDC25-H and proline-rich domains. It is known that prolonged Cullin E3 ligase inhibition leads to cellular apoptosis. Therefore, we hypothesize that ERK activation is an important mechanism to counter the pro-apoptotic effects of Cif. Indeed, we show that Cif dependent ERK activation promotes phosphorylation of the proapoptotic protein Bim, thereby potentially conferring a pro-survival signal. In summary, we identified a novel deamidation-dependent mechanism of action of the B. pseudomallei virulence factor Cif/CHBP to activate MAPK/ERK signaling. Our study demonstrates that bacterial proteins such as Cif can serve as useful molecular tools to uncover novel aspects of mammalian signaling pathways. PMID:28166272

  18. MIF family members cooperatively inhibit p53 expression and activity.

    PubMed

    Brock, Stephanie E; Rendon, Beatriz E; Xin, Dan; Yaddanapudi, Kavitha; Mitchell, Robert A

    2014-01-01

    The tumor suppressor p53 is induced by genotoxic stress in both normal and transformed cells and serves to transcriptionally coordinate cell cycle checkpoint control and programmed cell death responses. Macrophage migration inhibitory factor (MIF) is an autocrine and paracrine acting cytokine/growth factor that promotes lung adenocarcinoma cell motility, anchorage-independence and neo-angiogenic potential. Several recent studies indicate that the only known homolog of MIF, D-dopachrome tautomerase (D-DT - also referred to as MIF-2), has functionally redundant activities with MIF and cooperatively promotes MIF-dependent pro-tumorigenic phenotypes. We now report that MIF and D-DT synergistically inhibit steady state p53 phosphorylation, stabilization and transcriptional activity in human lung adenocarcinoma cell lines. The combined loss of MIF and D-DT by siRNA leads to dramatically reduced cell cycle progression, anchorage independence, focus formation and increased programmed cell death when compared to individual loss of MIF or D-DT. Importantly, p53 mutant and p53 null lung adenocarcinoma cell lines were only nominally rescued from the cell growth effects of MIF/D-DT combined deficiency suggesting only a minor role for p53 in these transformed cell growth phenotypes. Finally, increased p53 activation was found to be independent of aberrantly activated AMP-activated protein kinase (AMPK) that occurs in response to MIF/D-DT-deficiency but is dependent on reactive oxygen species (ROS) that mediate aberrant AMPK activation in these cells. Combined, these findings suggest that both p53 wildtype and mutant human lung adenocarcinoma tumors rely on MIF family members for maximal cell growth and survival.

  19. The anthraquinone derivative Emodin inhibits angiogenesis and metastasis through downregulating Runx2 activity in breast cancer.

    PubMed

    Ma, Junchao; Lu, Hong; Wang, Shan; Chen, Bin; Liu, Zhaojie; Ke, Xiaoqin; Liu, Ting; Fu, Jianjiang

    2015-04-01

    Emodin (EMD) is an anthraquinone derivative extracted from the root and rhizome of Rheum palmatum L. which exhibits a range of activities, including anti-bacterial, antitumor, diuretic and vasorelaxant effects. The ability to inhibit metastasis and angiogenesis was shown in previous pharmacological studies, but clear information to address EMD affecting angiogenesis and metastasis in human breast cancer is still lacking. In the present study, we evaluated a possible role for EMD in angiogenesis and metastasis induced by breast cancer cells. It was revealed here that EMD attenuated tumor cell-induced metastasis and angiogenesis both in vitro and in vivo. Furthermore, it was found that these inhibitory effects were caused by MMPs and VEGFR-2 inhibition in metastatic breast cancer cells and endothelial cells, respectively. Western blot analysis showed reduction of Runx2 activation in the EMD-treated cells. ELISA based Runx2 transcription factor assay showed that the interaction between Runx2 and target sequences was inhibited by EMD. Our findings suggested that the inhibitory effects of EMD on tumor-induced metastasis and angiogenesis were caused by MMPs and VEGFR-2 inhibition, which may be associated with the downregulation of Runx2 transcriptional activity.

  20. Mechanism of inhibition of human neutrophil activation by the allergic mediator release inhibitor, CI-922

    SciTech Connect

    Hoffman, M.D.; Wright, C.D.

    1986-03-05

    The allergic mediator release inhibitor CI-922 (3,7-dimethoxy-4-phenyl-N-1H-tetrazol-5-yl-4H-furo(3,2-b)indole-2-carboxamide) is a potent inhibitor of human neutrophil (PMN) respiratory and secretory responses in vitro. At concentrations from 1 to 100 micromolar, CI-922 inhibits activation of PMNs by agents which stimulate phospholipase C-dependent phosphoinositide hydrolysis to generate the second messengers inositol 1,4,5 trisphosphate and diacylglycerol, including: the plasma membrane receptor-specific ligands fMet-Leu-Phe and C5a; concanavalin A; and the guanine nucleotide regulatory protein-specific stimulus GTPgammaS. In contrast, CI-922 does not inhibit PMN responses to protein kinase C-specific stimuli such as phorbol myristate acetate (PMA) or sn-1,2-dioctanoyl-glycerol. CI-922 is also unable to inhibit the synergistic activation of PMNs by suboptimal concentrations of PMA and calcium ionophore A23187. These results suggest that CI-922 inhibits PMN activation at a site distal to signal transduction through the guanine nucleotide regulatory protein required for second messenger generation but proximal cophosphorylation reactions mediated by protein kinase C and calcium/calmodulin-dependent protein kinases.

  1. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    PubMed

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions.

  2. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    PubMed Central

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  3. Liver protective effect of ursodeoxycholic acid includes regulation of ADAM17 activity

    PubMed Central

    2013-01-01

    ERK1/2. These effects are mediated by the reduction of ADAM17 activity in PMA stimulated cells although the expression ADAM17 is not affected. UDCA reduced the level of the mature form of ADAM17. Moreover, UDCA regulates the expression of TIMP-1 and gelatinases activity in PMA stimulated cells. A BDL-induced acute cholangitis model was characterized by increased relative liver weight, serum levels of ALP, sMet, and loss of intracellular glycogen. UDCA administration significantly decreased ALP and sMet levels, and reduced relative liver weight. Furthermore, hepatocytes of UDCA-treated animals retained their metabolic activity as evidenced by the amount of glycogen storage. Conclusions The beneficial effect of UDCA appears to be mediated in part by the inhibition of ADAM17 activation and, thus, the release of TNFα, a strong pro-inflammatory factor. The release of other ADAM17 substrates, TGFα and sMet, are also regulated this way, pointing to a general impact on the release of ADAM17 substrates, which are pivotal for liver regeneration and function. In parallel, UDCA upregulates TIMP-1 that in turn inhibits matrix metalloproteinases, which destroy the hepatic ECM in diseased liver. This control of extracellular matrix turnover represents an additional beneficial path of UDCA treatment. PMID:24172289

  4. Solar attitude control including active nutation damping in a fixed-momentum wheel satellite

    NASA Astrophysics Data System (ADS)

    Azor, Ruth

    1992-08-01

    In geostationary cruise of a momentum biased satellite, it is necessary to stabilize the roll/yaw attitude due to disturbances, caused mainly by solar pressure. This work presents a roll/yaw control, which is obtained by the use of solar arrays and fixed flaps as actuators, with a horizon sensor for roll measurement. The design also includes an active nutation damping.

  5. Solar sail attitude control including active nutation damping in a fixed-momentum wheel satellite

    NASA Technical Reports Server (NTRS)

    Azor, Ruth

    1992-01-01

    In geostationary cruise of a momentum biased satellite, it is necessary to stabilize the roll/yaw attitude due to disturbances, caused mainly by solar radiation pressure. This work presents a roll/yaw control which is obtained by the use of solar arrays and fixed flaps as actuators, with a horizon sensor for roll measurement. The design also includes an active nutation damping.

  6. Implementation of the Project "Including Disabled Senior Citizens in Creative Activities in 2013-2015"

    ERIC Educational Resources Information Center

    Ploch, Leszek

    2015-01-01

    This paper made an attempt to indicate the findings of the author's research from the experiences of the implementation of the project "Including disabled senior citizens in creative activities in 2013-2015". The issues of disabled senior citizens have been an object of interest over the recent years though it still has not had a proper…

  7. Modifying Physical Activities to Include Individuals with Disabilities: A Systematic Approach

    ERIC Educational Resources Information Center

    Menear, Kristi S.; Davis, Tim

    2007-01-01

    Effectively including individuals with disabilities in a physical activity setting can often be a challenge due to constraints related to equipment, class size, curriculum, and the various ability levels of individuals with and without disabilities. However, there are ways the instructor can control the environment and tasks to meet the needs of…

  8. Cinnamon effectively inhibits the activity of leukemia stem cells.

    PubMed

    Guan, X; Su, M C; Zhao, R B; Ouyang, H M; Dong, X D; Hu, P; Pei, Q; Lu, J; Li, Z F; Zhang, C R; Yang, T-H

    2016-08-19

    Cinnamon is the main component of Sanyangxuedai, which is one of the effective traditional Chinese medicines for treating malignancies. Leukemia is a prevalent malignant disease that Sanyangxuedai has been used to treat. Although successful in several studies, there is a lack of solid evidence as to why Sanyangxuedai has an effect on leukemia, and little is known about the underlying mechanisms. In this study, the active ingredients of cinnamon were isolated, purified, and identified. The transwell transport pool formed with the Caco-2 cell model was used to filter the active ingredients of cinnamon by simulating the gastrointestinal barrier in vitro. Moreover, the cell morphology, cell cycle status, apoptosis status, and antigenic variation of the cell surface antigens were observed and measured in K562 cells after treatment with the active ingredients of cinnamon. Our results showed that 50-75 μM was a safe concentration of cinnamon extract for treatment of K562 cells for 72 h. The cinnamon extract caused growth inhibition of K562 cells. Cinnamon extract seemed to arrest the cells at the G1 stage and increased the apoptosis rate significantly. Interestingly, cinnamon extract treatment upregulated the expression of erythroid and myeloid differentiation antigens and downregulated that of the megakaryocytic differentiation antigens in a dose-dependent manner. Our findings indicate that cinnamon extract from Sanyangxuedai may be effective for treating leukemia.

  9. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  10. Notch Inhibits Yorkie Activity in Drosophila Wing Discs

    PubMed Central

    Djiane, Alexandre; Zaessinger, Sophie; Babaoğlan, A. Burcu; Bray, Sarah J.

    2014-01-01

    During development, tissues and organs must coordinate growth and patterning so they reach the right size and shape. During larval stages, a dramatic increase in size and cell number of Drosophila wing imaginal discs is controlled by the action of several signaling pathways. Complex cross-talk between these pathways also pattern these discs to specify different regions with different fates and growth potentials. We show that the Notch signaling pathway is both required and sufficient to inhibit the activity of Yorkie (Yki), the Salvador/Warts/Hippo (SWH) pathway terminal transcription activator, but only in the central regions of the wing disc, where the TEAD factor and Yki partner Scalloped (Sd) is expressed. We show that this cross-talk between the Notch and SWH pathways is mediated, at least in part, by the Notch target and Sd partner Vestigial (Vg). We propose that, by altering the ratios between Yki, Sd and Vg, Notch pathway activation restricts the effects of Yki mediated transcription, therefore contributing to define a zone of low proliferation in the central wing discs. PMID:25157415

  11. Alternative mechanisms of inhibiting activity of poly (ADP-ribose) polymerase-1.

    PubMed

    Sriram, Chandra Shaker; Jangra, Ashok; Bezbaruah, Babul Kumar; V, Athira K; Sykam, Shivaji

    2016-01-01

    Poly ADP-ribose polymerase (PARP-1), a DNA nick-sensor enzyme, is an abundant nuclear protein. Upon sensing DNA breaks, PARP-1 gets activated and cleaves NAD into nicotinamide and ADP-ribose and polymerizes the latter onto nuclear acceptor proteins including histones, transcription factors, and PARP-1 itself. Poly(ADP-ribosylation) mainly contributes to DNA repairing mechanism. However, oxidative stress-induced over-activation of PARP-1 consumes excess of NAD and consequently ATP, culminating into cell necrosis. This cellular suicide pathway has been implicated in several conditions such as stroke, myocardial ischemia, diabetes. Thus, it can be a rationale approach to inhibit the activity of PARP-1 for reducing detrimental effects associated with oxidative stress-induced over-activation of PARP-1. Several preclinical as well as clinical studies of PARP-1 inhibitors have been used in conditions such as cancer, stroke and traumatic brain injury. Conventionally, there are many studies which employed the concept of direct inhibition of PARP-1 by competing with NAD. Here, in the present review, we highlight several prospective alternative approaches for the inhibition of PARP-1 activity.

  12. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    PubMed Central

    Robinson, Samuel D.; Lee, Tet Woo; Christie, David L.; Birch, Nigel P.

    2015-01-01

    NMDA receptors (NMDARs) play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA) is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM) but not high (50 μM) concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-aminopyridine (4-AP). Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and receptor-associated protein (RAP), a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs. PMID:26500501

  13. Steady-state analysis of activated sludge processes with a settler model including sludge compression.

    PubMed

    Diehl, S; Zambrano, J; Carlsson, B

    2016-01-01

    A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration.

  14. Phorbol ester stimulates secretory activity while inhibiting receptor-activated aminopyrine uptake by gastric glands

    SciTech Connect

    Brown, M.R.; Chew, C.S.

    1986-03-05

    Both cyclic AMP-dependent and -independent secretagogues stimulate pepsinogen release, respiration and H/sup +/ secretory activity (AP uptake) in rabbit gastric glands. 12-O-tetradecanoylphorbol-13-acetate (T), a diacyglycerol analog, activates protein kinase C (PKC) and stimulates secretion in many systems. T stimulated respiration and pepsinogen release by glands and increased AP uptake by both glands and purified parietal cells. However, T reduced AP uptake by glands stimulated with carbachol (C) or histamine (H) with an apparent IC/sub 50/ of 1 nM. Preincubation with T for 30 min produced maximum inhibition which was not reversed by removal of T. T accelerated the decline of the transient C peak while the late steady state response to H was most inhibited. H-stimulated AP uptake was also inhibited by 50 ..mu..g/ml 1-oleoyl-2-acetyl-glycerol, a reported PKC activator, but not by the inactive phorbol, 4..cap alpha..-phorbol-12,13-didecanoate. In contrast, T potentiated AP uptake by glands stimulated with submaximal doses of dibutyryl cyclic AMP. These results suggest inhibition by T is a specific effect of PKC activators. The differing effects of T on secretion indicators may result from a dual action of T on receptor and post-receptor intracellular events.

  15. Fyn phosphorylates AMPK to inhibit AMPK activity and AMP-dependent activation of autophagy

    PubMed Central

    Yamada, Eijiro; Okada, Shuichi; Bastie, Claire C.; Vatish, Manu; Nakajima, Yasuyo; Shibusawa, Ryo; Ozawa, Atsushi; Pessin, Jeffrey E.; Yamada, Masanobu

    2016-01-01

    We previously demonstrated that proto-oncogene Fyn decreased energy expenditure and increased metabolic phenotypes. Also Fyn decreased autophagy-mediated muscle mass by directly inhibiting LKB1 and stimulating STAT3 activities, respectively. AMPK, a downstream target of LKB1, was recently identified as a key molecule controlling autophagy. Here we identified that Fyn phosphorylates the α subunit of AMPK on Y436 and inhibits AMPK enzymatic activity without altering the assembly state of the AMPK heterotrimeric complex. As pro-inflammatory mediators are reported modulators of the autophagy processes, treatment with the pro-inflammatory cytokine TNFα resulted in 1) increased Fyn activity 2) stimulated Fyn-dependent AMPKα tyrosine phosphorylation and 3) decreased AICAR-dependent AMPK activation. Importantly, TNFα induced inhibition of autophagy was not observed when AMPKα was mutated on Y436. 4) These data demonstrate that Fyn plays an important role in relaying the effects of TNFα on autophagy and apoptosis via phosphorylation and inhibition of AMPK. PMID:27626315

  16. Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity.

    PubMed

    Pietra, Gabriella; Manzini, Claudia; Rivara, Silvia; Vitale, Massimo; Cantoni, Claudia; Petretto, Andrea; Balsamo, Mirna; Conte, Romana; Benelli, Roberto; Minghelli, Simona; Solari, Nicola; Gualco, Marina; Queirolo, Paola; Moretta, Lorenzo; Mingari, Maria Cristina

    2012-03-15

    Natural killer (NK) cells play a key role in tumor immune surveillance. However, adoptive immunotherapy protocols using NK cells have shown limited clinical efficacy to date, possibly due to tumor escape mechanisms that inhibit NK cell function. In this study, we analyzed the effect of coculturing melanoma cells and NK cells on their phenotype and function. We found that melanoma cells inhibited the expression of major NK receptors that trigger their immune function, including NKp30, NKp44, and NKG2D, with consequent impairment of NK cell-mediated cytolytic activity against various melanoma cell lines. This inhibitory effect was primarily mediated by indoleamine 2,3-dioxygenase (IDO) and prostaglandin E2 (PGE2). Together, our findings suggest that immunosuppressive barriers erected by tumors greatly hamper the antitumor activity of human NK cells, thereby favoring tumor outgrowth and progression.

  17. Nitric oxide released from activated platelets inhibits platelet recruitment.

    PubMed Central

    Freedman, J E; Loscalzo, J; Barnard, M R; Alpert, C; Keaney, J F; Michelson, A D

    1997-01-01

    Vessel injury and thrombus formation are the cause of most ischemic coronary syndromes and, in this setting, activated platelets stimulate platelet recruitment to the growing thrombus. Recently, a constitutive nitric oxide synthase (NOS) has been identified in human platelets. To further define the capacity of platelets to produce nitric oxide (NO), as well as to study the role of this NO in platelet recruitment, we adapted a NO-selective microelectrode for use in a standard platelet aggregometer, thereby permitting simultaneous measurement of platelet aggregation and NO production. Treatment of platelets with the NO synthase inhibitor -NG-nitroarginine methyl ester (L-NAME), reduced NO production by 92+/-8% in response to 5 microM ADP compared to control but increased aggregation by only 15+/-2%. In contrast, L-NAME had a more pronounced effect on platelet recruitment as evidenced by a 35+/-5% increase in the extent of aggregation, a 33+/-3% decrease in cyclic GMP content, and a 31+/-5% increase in serotonin release from a second recruitable population of platelets added to stimulated platelets at the peak of NO production. To study platelet recruitment accurately, we developed an assay that monitors two platelet populations simultaneously. Nonbiotinylated platelets were incubated with L-NAME or vehicle and activated with ADP. At peak NO production, biotinylated platelets were added. As measured by three-color flow cytometry, there was a 56+/-11% increase in the number of P selectin- positive platelets in the nonbiotinylated population treated with L-NAME as compared to control. When biotinylated platelets were added to the L-NAME-treated nonbiotinylated population, the number of P selectin positive biotinylated plate-lets increased by 180+/-32% as compared to biotinylated platelets added to the control. In summary, stimulated platelets produce NO that modestly inhibits platelet activation but markedly inhibits additional platelet recruitment. These data suggest

  18. Incomplete inhibition by eculizumab: mechanistic evidence for residual C5 activity during strong complement activation.

    PubMed

    Harder, Markus J; Kuhn, Nadine; Schrezenmeier, Hubert; Höchsmann, Britta; von Zabern, Inge; Weinstock, Christof; Simmet, Thomas; Ricklin, Daniel; Lambris, John D; Skerra, Arne; Anliker, Markus; Schmidt, Christoph Q

    2017-02-23

    Eculizumab inhibits the terminal, lytic pathway of complement by blocking the activation of the complement protein C5 and shows remarkable clinical benefits in certain complement-mediated diseases. However, several reports suggest that activation of C5 is not always completely suppressed in patients even under excess of eculizumab over C5, indicating that residual C5 activity may derogate the drug's therapeutic benefit under certain conditions. By using eculizumab and the tick-derived C5 inhibitor coversin, we determined conditions ex vivo in which C5 inhibition is incomplete. The degree of such residual lytic activity depended on the strength of the complement activator and the resulting surface density of the complement activation product C3b, which autoamplifies via the alternative pathway (AP) amplification loop. We show that at high C3b densities required for binding and activation of C5, both inhibitors reduce but do not abolish this interaction. The decrease of C5 binding to C3b clusters in the presence of C5 inhibitors correlated with the levels of residual hemolysis. However, by employing different C5 inhibitors simultaneously, residual hemolytic activity could be abolished. The importance of AP-produced C3b clusters for C5 activation in the presence of eculizumab was corroborated by the finding that residual hemolysis after forceful activation of the classical pathway could be reduced by blocking the AP. By providing insights into C5 activation and inhibition, our study delivers the rationale for the clinically observed phenomenon of residual terminal pathway activity under eculizumab treatment with important implications for anti-C5 therapy in general.

  19. Anti-Fatigue Effect by Peptide Fraction from Protein Hydrolysate of Croceine Croaker (Pseudosciaena crocea) Swim Bladder through Inhibiting the Oxidative Reactions including DNA Damage

    PubMed Central

    Zhao, Yu-Qin; Zeng, Li; Yang, Zui-Su; Huang, Fang-Fang; Ding, Guo-Fang; Wang, Bin

    2016-01-01

    The swim bladder of the croceine croaker (Pseudosciaena crocea) was believed to have good curative effects in various diseases, including amnesia, insomnia, dizziness, anepithymia, and weakness after giving birth, in traditional Chinese medicine. However, there is no research focusing on the antioxidant and anti-fatigue peptides from croceine croaker swim bladders at present. Therefore, the purpose of this study was to investigate the bioactivities of peptide fractions from the protein hydrolysate of croceine croaker related to antioxidant and anti-fatigue effects. In the study, swim bladder peptide fraction (SBP-III-3) was isolated from the protein hydrolysate of the croceine croaker, and its antioxidant and anti-fatigue activities were measured using in vitro and in vivo methods. The results indicated that SBP-III-3 exhibited good scavenging activities on hydroxyl radicals (HO•) (EC50 (the concentration where a sample caused a 50% decrease of the initial concentration of HO•) = 0.867 mg/mL), 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH•) (EC50 = 0.895 mg/mL), superoxide anion radical (O2−•) (EC50 = 0.871 mg/mL), and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical (ABTS+•) (EC50 = 0.346 mg/mL). SBP-III-3 also showed protective effects on DNA damage in a concentration-effect manner and prolonged the swimming time to exhaustion of Institute of Cancer Research (ICR) mice by 57.9%–107.5% greater than that of the control. SBP-III-3 could increase the levels of muscle glucose (9.4%–115.2% increase) and liver glycogen (35.7%–157.3%), and decrease the levels of blood urea nitrogen (BUN), lactic acid (LA), and malondialdehyde (MDA) by 16.4%–22.4%, 13.9%–20.1%, and 28.0%–53.6%, respectively. SBP-III-3 also enhanced the activity of lactic dehydrogenase to scavenge excessive LA for slowing the development of fatigue. In addition, SBP-III-3 increased the activities superoxide dismutase, catalase, and glutathione peroxidase to reduce the

  20. Activated FXR Inhibits Leptin Signaling and Counteracts Tumor-promoting Activities of Cancer-Associated Fibroblasts in Breast Malignancy

    PubMed Central

    Giordano, Cinzia; Barone, Ines; Vircillo, Valentina; Panza, Salvatore; Malivindi, Rocco; Gelsomino, Luca; Pellegrino, Michele; Rago, Vittoria; Mauro, Loredana; Lanzino, Marilena; Panno, Maria Luisa; Bonofiglio, Daniela; Catalano, Stefania; Andò, Sebastiano

    2016-01-01

    Cancer-associated fibroblasts (CAFs), the principal components of the tumor stroma, play a central role in cancer development and progression. As an important regulator of the crosstalk between breast cancer cells and CAFs, the cytokine leptin has been associated to breast carcinogenesis. The nuclear Farnesoid X Receptor-(FXR) seems to exert an oncosuppressive role in different tumors, including breast cancer. Herein, we demonstrated, for the first time, that the synthetic FXR agonist GW4064, inhibiting leptin signaling, affects the tumor-promoting activities of CAFs in breast malignancy. GW4064 inhibited growth, motility and invasiveness induced by leptin as well as by CAF-conditioned media in different breast cancer cell lines. These effects rely on the ability of activated FXR to increase the expression of the suppressor of the cytokine signaling 3 (SOCS3) leading to inhibition of leptin-activated signaling and downregulation of leptin-target genes. In vivo xenograft studies, using MCF-7 cells alone or co-injected with CAFs, showed that GW4064 administration markedly reduced tumor growth. Interestingly, GW4064-treated tumors exhibited decreased levels of leptin-regulated proteins along with a strong staining intensity for SOCS3. Thus, FXR ligands might represent an emerging potential anti-cancer therapy able to block the tumor supportive role of activated fibroblasts within the breast microenvironment. PMID:26899873

  1. Reduced PAK1 activity sensitizes FA/BRCA-proficient breast cancer cells to PARP inhibition.

    PubMed

    Villamar Cruz, Olga; Prudnikova, Tatiana Y; Araiza-Olivera, Daniela; Perez-Plasencia, Carlos; Johnson, Neil; Bernhardy, Andrea J; Slifker, Michael; Renner, Catherine; Chernoff, Jonathan; Arias-Romero, Luis E

    2016-11-22

    Cells that are deficient in homologous recombination, such as those that have mutations in any of the Fanconi Anemia (FA)/BRCA genes, are hypersensitive to inhibition of poly(ADP-ribose) polymerase (PARP). However, FA/BRCA-deficient tumors represent a small fraction of breast cancers, which might restrict the therapeutic utility of PARP inhibitor monotherapy. The gene encoding the serine-threonine protein kinase p21-activated kinase 1 (PAK1) is amplified and/or overexpressed in several human cancer types including 25-30% of breast tumors. This enzyme controls many cellular processes by phosphorylating both cytoplasmic and nuclear substrates. Here, we show that depletion or pharmacological inhibition of PAK1 down-regulated the expression of genes involved in the FA/BRCA pathway and compromised the ability of cells to repair DNA by Homologous Recombination (HR), promoting apoptosis and reducing colony formation. Combined inhibition of PAK1 and PARP in PAK1 overexpressing breast cancer cells had a synergistic effect, enhancing apoptosis, suppressing colony formation, and delaying tumor growth in a xenograft setting. Because reduced PAK1 activity impaired FA/BRCA function, inhibition of this kinase in PAK1 amplified and/or overexpressing breast cancer cells represents a plausible strategy for expanding the utility of PARP inhibitors to FA/BRCA-proficient cancers.

  2. Diosgenin inhibits melanogenesis through the activation of phosphatidylinositol-3-kinase pathway (PI3K) signaling.

    PubMed

    Lee, Jongsung; Jung, Kwangseon; Kim, Yeong Shik; Park, Deokhoon

    2007-06-27

    An increased level of melanin is characteristic of a large number of skin diseases, including acquired hyperpigmentation conditions such as melasma, post inflammatory melanoderma, and solar lentigo. Thus, there is an increasing need for the development of depigmenting agents. In order to evaluate the depigmenting capacity of diosgenin and elucidate its mechanism of action, several experiments were performed in B16 melanoma cells. Melanin content and Western blots for proteins that are involved in melanogenesis were assessed in this study. The melanin content was significantly inhibited by diosgenin. To clarify the mechanism of the depigmenting property of diosgenin, we examined the involvement of diosgenin in the phosphatidylinositol-3-kinase (PI3K) pathway. In this study, diosgenin inhibited the reduction of Akt and GSK 3beta phosphorylation induced by LY294,002, a PI3K inhibitor. In accordance with this result, production levels of MITF (microphthalmia-associated transcription factor) and tyrosinase were increased by diosgenin. These data suggest that diosgenin inhibits melanogenesis through the activation of the PI3K pathway. This suggestion was further confirmed by the fact that the increased production level of melanin by LY294,002 was reduced by diosgenin in B16 melanoma cells. Our study shows that diosgenin inhibits melanogenesis by activating the PI3K pathway, and also suggests that diosgenin may be an effective inhibitor of hyperpigmentation.

  3. Reduced PAK1 activity sensitizes FA/BRCA-proficient breast cancer cells to PARP inhibition

    PubMed Central

    Araiza-Olivera, Daniela; Perez-Plasencia, Carlos; Johnson, Neil; Bernhardy, Andrea J.; Slifker, Michael; Renner, Catherine; Chernoff, Jonathan; Arias, Luis E.

    2016-01-01

    Cells that are deficient in homologous recombination, such as those that have mutations in any of the Fanconi Anemia (FA)/BRCA genes, are hypersensitive to inhibition of poly(ADP-ribose) polymerase (PARP). However, FA/BRCA-deficient tumors represent a small fraction of breast cancers, which might restrict the therapeutic utility of PARP inhibitor monotherapy. The gene encoding the serine-threonine protein kinase p21-activated kinase 1 (PAK1) is amplified and/or overexpressed in several human cancer types including 25-30% of breast tumors. This enzyme controls many cellular processes by phosphorylating both cytoplasmic and nuclear substrates. Here, we show that depletion or pharmacological inhibition of PAK1 down-regulated the expression of genes involved in the FA/BRCA pathway and compromised the ability of cells to repair DNA by Homologous Recombination (HR), promoting apoptosis and reducing colony formation. Combined inhibition of PAK1 and PARP in PAK1 overexpressing breast cancer cells had a synergistic effect, enhancing apoptosis, suppressing colony formation, and delaying tumor growth in a xenograft setting. Because reduced PAK1 activity impaired FA/BRCA function, inhibition of this kinase in PAK1 amplified and/or overexpressing breast cancer cells represents a plausible strategy for expanding the utility of PARP inhibitors to FA/BRCA-proficient cancers. PMID:27740936

  4. Inhibition of Streptococcus mutans polysaccharide synthesis by molecules targeting glycosyltransferase activity

    PubMed Central

    Ren, Zhi; Chen, Lulu; Li, Jiyao; Li, Yuqing

    2016-01-01

    Glycosyltransferase (Gtf) is one of the crucial virulence factors of Streptococcus mutans, a major etiological pathogen of dental caries. All the available evidence indicates that extracellular polysaccharide, particularly glucans produced by S. mutans Gtfs, contribute to the cariogenicity of dental biofilms. Therefore, inhibition of Gtf activity and the consequential polysaccharide synthesis may impair the virulence of cariogenic biofilms, which could be an alternative strategy to prevent the biofilm-related disease. Up to now, many Gtf inhibitors have been recognized in natural products, which remain the major and largely unexplored source of Gtf inhibitors. These include catechin-based polyphenols, flavonoids, proanthocyanidin oligomers, polymeric polyphenols, and some other plant-derived compounds. Metal ions, oxidizing agents, and some other synthetic compounds represent another source of Gtf inhibitors, with some novel molecules either discovered by structure-based virtual screening or synthesized based on key structures of known inhibitors as templates. Antibodies that inhibit one or more Gtfs have also been developed as topical agents. Although many agents have been shown to possess potent inhibitory activity against glucan synthesis by Gtfs, bacterial cell adherence, and caries development in animal models, much research remains to be performed to find out their mechanism of action, biological safety, cariostatic efficacies, and overall influence on the entire oral community. As a strategy to inhibit the virulence of cariogenic microbes rather than eradicate them from the microbial community, Gtf inhibition represents an approach of great potential to prevent dental caries. PMID:27105419

  5. A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein

    PubMed Central

    Massignan, Tania; Cimini, Sara; Stincardini, Claudia; Cerovic, Milica; Vanni, Ilaria; Elezgarai, Saioa R.; Moreno, Jorge; Stravalaci, Matteo; Negro, Alessandro; Sangiovanni, Valeria; Restelli, Elena; Riccardi, Geraldina; Gobbi, Marco; Castilla, Joaquín; Borsello, Tiziana; Nonno, Romolo; Biasini, Emiliano

    2016-01-01

    Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrPC) into PrPSc, a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrPSc is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrPC may provide an opportunity to overcome these problems. PrPC ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrPC, and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrPC-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrPC-dependent synaptotoxicity of amyloid-β (Aβ) oligomers, which are associated with Alzheimer’s Disease. These results demonstrate that molecules binding to PrPC may produce a dual effect of blocking prion replication and inhibiting PrPC-mediated toxicity. PMID:26976106

  6. DA-9601 inhibits activation of the human mast cell line HMC-1 through inhibition of NF-kappaB.

    PubMed

    Lee, S; Park, H-H; Son, H-Y; Ha, J-H; Lee, M-G; Oh, T-Y; Sohn, D H; Jeong, T C; Lee, S H; Son, J-K; Lee, S G; Jun, C-D; Kim, S-H

    2007-03-01

    Mast cell-mediated allergic inflammation is involved in many diseases such as asthma, sinusitis, and rheumatoid arthritis. Mast cells induce synthesis and production of pro-inflammatory cytokines including tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 with immune regulatory properties. The formulated ethanol extract of Artemisia asiatica Nakai (DA-9601) has been reported to have antioxidative and anti-inflammatory activities. In this report, we investigated the effect of DA-9601 on the expression of pro-inflammatory cytokines by the activated human mast cell line HMC-1 and studied its possible mechanisms of action. DA-9601 dose-dependently decreased the gene expression and production of TNF-alpha, IL-1beta, and IL-6 on phorbol 12-myristate 13-acetate (PMA)- and calcium ionophore A23187-stimulated HMC-1 cells. In addition, DA-9601 attenuated PMA- and A23187-induced activation of NF-kappaB as indicated by inhibition of degradation of IkappaBalpha, nuclear translocation of NF-kappaB, NF-kappaB/DNA binding, and NF-kappaB-dependent gene reporter assay. Our in vitro studies provide evidence that DA-9601 might contribute to the treatment of mast cell-derived allergic inflammatory diseases.

  7. Solar sail attitude control including active nutation damping in a fixed-momentum wheel satellite

    NASA Astrophysics Data System (ADS)

    Azor, Ruth

    1992-02-01

    In the geostationary cruise of a momentum biased satellite, it is necessary to stabilize the roll/yaw attitude due to disturbances caused by solar radiation pressure. This work presents a roll/yaw control system with a horizon sensor for roll measurement. Roll/yaw control is obtained by the use of solar arrays and fixed flaps as actuators. The design also includes an active nutation damping method.

  8. Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors.

    PubMed

    Corton, J Christopher; Apte, Udayan; Anderson, Steven P; Limaye, Pallavi; Yoon, Lawrence; Latendresse, John; Dunn, Corrie; Everitt, Jeffrey I; Voss, Kenneth A; Swanson, Cynthia; Kimbrough, Carie; Wong, Jean S; Gill, Sarjeet S; Chandraratna, Roshantha A S; Kwak, Mi-Kyoung; Kensler, Thomas W; Stulnig, Thomas M; Steffensen, Knut R; Gustafsson, Jan-Ake; Mehendale, Harihara M

    2004-10-29

    The obesity epidemic in industrialized countries is associated with increases in cardiovascular disease (CVD) and certain types of cancer. In animal models, caloric restriction (CR) suppresses these diseases as well as chemical-induced tissue damage. These beneficial effects of CR overlap with those altered by agonists of nuclear receptors (NR) under control of the fasting-responsive transcriptional co-activator, peroxisome proliferator-activated co-activator 1alpha (PGC-1alpha). In a screen for compounds that mimic CR effects in the liver, we found statistically significant overlaps between the CR transcript profile in wild-type mice and the profiles altered by agonists of lipid-activated NR, including peroxisome proliferator-activated receptor alpha (PPARalpha), liver X receptor, and their obligate heterodimer partner, retinoid X receptor. The overlapping genes included those involved in CVD (lipid metabolism and inflammation) and cancer (cell fate). Based on this overlap, we hypothesized that some effects of CR are mediated by PPARalpha. As determined by transcript profiling, 19% of all gene expression changes in wild-type mice were dependent on PPARalpha, including Cyp4a10 and Cyp4a14, involved in fatty acid omega-oxidation, acute phase response genes, and epidermal growth factor receptor but not increases in PGC-1alpha. CR protected the livers of wild-type mice from damage induced by thioacetamide, a liver toxicant and hepatocarcinogen. CR protection was lost in PPARalpha-null mice due to inadequate tissue repair. These results demonstrate that PPARalpha mediates some of the effects of CR and indicate that a pharmacological approach to mimicking many of the beneficial effects of CR may be possible.

  9. Activation and inhibition of TMEM16A calcium-activated chloride channels.

    PubMed

    Ni, Yu-Li; Kuan, Ai-Seon; Chen, Tsung-Yu

    2014-01-01

    Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca(2+)-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca(2+), Sr(2+), and Ba(2+), and discovered that Mg(2+) competes with Ca(2+) in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore-as revealed by the permeability ratios of these anions-appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1.

  10. Activation and Inhibition of TMEM16A Calcium-Activated Chloride Channels

    PubMed Central

    Ni, Yu-Li; Kuan, Ai-Seon; Chen, Tsung-Yu

    2014-01-01

    Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca2+-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca2+, Sr2+, and Ba2+, and discovered that Mg2+ competes with Ca2+ in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore–as revealed by the permeability ratios of these anions–appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1. PMID:24489780

  11. Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. A review.

    PubMed

    Ricketts, Marie-Louise; Moore, David D; Banz, William J; Mezei, Orsolya; Shay, Neil F

    2005-06-01

    Consumption of soy has been demonstrated to reduce circulating cholesterol levels, most notably reducing low-density lipoprotein (LDL) cholesterol levels in hypercholesterolemic individuals. The component or components that might be responsible for this effect is still a matter of debate or controversy among many researchers. Candidate agents include an activity of soy protein itself, bioactive peptides produced during the digestive process, or the soy isoflavones. Although soy intake may provide other health benefits including preventative or remediative effects on cancer, osteoporosis and symptoms of menopause, this review will focus on isoflavones as agents affecting lipid metabolism. Isoflavones were first discovered as a bioactive agent disrupting estrogen action in female sheep, thereby earning the often-used term 'phytoestrogens'. Subsequent work confirmed the ability of isoflavones to bind to estrogen receptors. Along with the cholesterol-lowering effect of soy intake, research that is more recent has pointed to a beneficial antidiabetic effect of soy intake, perhaps mediated by soy isoflavones. The two common categories of antidiabetic drugs acting on nuclear receptors known as peroxisome proliferator activated receptors (PPARs) are the fibrates and glitazones. We and others have recently asked the research question 'do the soy isoflavones have activities as either "phytofibrates" or "phytoglitazones"?' Such an activity should be able to be confirmed both in vivo and in vitro. In both the in vivo and in vitro cases, this action has indeed been confirmed. Further work suggests a possible action of isoflavones similar to the nonestrogenic ligands that bind the estrogen-related receptors (ERRs). Recently, these receptors have been demonstrated to contribute to lipolytic processes. Finally, evaluation of receptor activation studies suggests that thyroid receptor activation may provide additional clues explaining the metabolic action of isoflavones. The recent

  12. Inhibition of Survivin Influences the Biological Activities of Canine Histiocytic Sarcoma Cell Lines

    PubMed Central

    Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro

    2013-01-01

    Canine histiocytic sarcoma (CHS) is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS. PMID:24260303

  13. Inhibition of carbonyl reductase activity in pig heart by alkyl phenyl ketones.

    PubMed

    Imamura, Yorishige; Narumi, Rika; Shimada, Hideaki

    2007-02-01

    The inhibitory effects of alkyl phenyl ketones on carbonyl reductase activity were examined in pig heart. In this study, carbonyl reductase activity was estimated as the ability to reduce 4-benzoylpyridine to S(-)-alpha-phenyl-4-pyridylmethanol in the cytosolic fraction from pig heart (pig heart cytosol). The order of their inhibitory potencies was hexanophenone > valerophenone > heptanophenone > butyrophenone > propiophenone. The inhibitory potencies of acetophenone and nonanophenone were much lower. A significant relationship was observed between Vmax/Km values for the reduction of alkyl phenyl ketones and their inhibitory potencies for carbonyl reductase activity in pig heart cytosol. Furthermore, hexanophenone was a competitive inhibitor for the enzyme activity. These results indicate that several alkyl phenyl ketones including hexanophenone inhibit carbonyl reductase activity in pig heart cytosol, by acting as substrate inhibitors.

  14. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    SciTech Connect

    Reed, James R.; Cawley, George F.; Ardoin, Taylor G.; Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W.; Backes, Wayne L.

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  15. Captopril and lisinopril only inhibit matrix metalloproteinase-2 (MMP-2) activity at millimolar concentrations.

    PubMed

    Kuntze, Luciana B; Antonio, Raquel C; Izidoro-Toledo, Tatiane C; Meschiari, Cesar A; Tanus-Santos, Jose E; Gerlach, Raquel F

    2014-03-01

    Matrix metalloproteinase-2 (MMP-2) shares structural similarities with the angiotensin-converting enzyme (ACE). ACE inhibitors have been described to inhibit MMP-2, but this inhibitory potential was not shown using a highly purified MMP-2. This study aimed to investigate the inhibitory potential of captopril and lisinopril regarding MMP-2 activity. The first objective was to test the potential of captopril to change the pH of the buffer solution. The second objective was to test the direct inhibitory effect of captopril and lisinopril on plasma MMP-2 and on recombinant human MMP-2 (rhMMP-2). The in vitro activity assays included gelatin zymography and a fluorimetric assay. Captopril solubilization significantly decreased the pH of the 50 mM Tris buffer solution at the following concentrations: 2 mM (p < 0.05), 4 mM and 8 mM (p < 0.01), while only the 8 mM lisinopril induced a drop in pH (p < 0.05). Thus, only 200 mM buffer solutions were used. Zymography results of plasma MMP-2 and rhMMP-2 showed that inhibition only happened at captopril concentrations ≥ 4 and 1 mM, respectively (p < 0.05), while only the higher concentration of lisinopril (8 mM) inhibited plasma MMP-2 (p < 0.05). In the fluorimetric assay, captopril led to significant inhibition of the rhMMP-2 activity at concentrations ≥2 mM (p < 0.01), whereas aminophenylmercuric acetate-activated rhMMP-2 was inhibited by 0.5 mM captopril (p < 0.01). The captopril and lisinopril concentrations found to inhibit MMP-2 are 3 orders of magnitude higher than those present in vivo after drug administration. We also discuss possible pitfalls for gelatinase inhibitory assays (besides the obvious pH problem already cited). In conclusion, this study's data show that captopril and lisinopril did not inhibit MMP-2 directly at the concentrations reached in vivo.

  16. Prepulse inhibition modulation by contextual conditioning of dopaminergic activity.

    PubMed

    Mena, Auxiliadora; De la Casa, Luis G

    2013-09-01

    When a neutral stimulus is repeatedly paired with a drug, an association is established between them that can induce two different responses: either an opponent response that counteracts the effect of the drug, or a response that is similar to that induced by the drug. In this paper, we focus on the analysis of the associations that can be established between the contextual cues and the administration of dopamine agonists or antagonists. Our hypothesis suggests that repeated administration of drugs that modulate dopaminergic activity in the presence of a specific context leads to the establishment of an association that subsequently results in a conditioned response to the context that is similar to that induced by the drug. To test this hypothesis, we conducted two experiments that revealed that contextual cues acquired the property to modulate pre-pulse inhibition by prior pairings of such context with the dopamine antagonist haloperidol (Experiment 1), and with the dopamine agonist d-amphetamine (Experiment 2). The implications of these results are discussed both at a theoretical level, and attending to the possibilities that could involve the use of context cues for the therapeutic administration of dopaminergic drugs.

  17. Oligonucleotide facilitators may inhibit or activate a hammerhead ribozyme.

    PubMed Central

    Jankowsky, E; Schwenzer, B

    1996-01-01

    Facilitators are oligonucleotides capable of affecting hammerhead ribozyme activity by interacting with the substrate at the termini of the ribozyme. Facilitator effects were determined in vitro using a system consisting of a ribozyme with 7 nucleotides in every stem sequence and two substrates with inverted facilitator binding sequences. The effects of 9mer and 12mer RNA as well as DNA facilitators which bind either adjacent to the 3'- or 5'-end of the ribozyme were investigated. A kinetic model was developed which allows determination of the apparent dissociation constant of the ribozyme-substrate complex from single turnover reactions. We observed a decreased dissociation constant of the ribozyme-substrate complex due to facilitator addition corresponding to an additional stabilization energy of delta delta G=-1.7 kcal/mol with 3'-end facilitators. The cleavage rate constant was increased by 3'-end facilitators and decreased by 5'-end facilitators. Values for Km were slightly lowered by all facilitators and kcat was increased by 3'-end facilitators and decreased by 5'-end facilitators in our system. Generally the facilitator effects increased with the length of the facilitators and RNA provided greater effects than DNA of the same sequence. Results suggest facilitator influences on several steps of the hammerhead reaction, substrate association, cleavage and dissociation of products. Moreover, these effects are dependent in different manners on ribozyme and substrate concentration. This leads to the conclusion that there is a concentration dependence whether activation or inhibition is caused by facilitators. Conclusions are drawn with regard to the design of hammerhead ribozyme facilitator systems. PMID:8602353

  18. Cool-1-mediated inhibition of c-Cbl modulates multiple critical properties of glioblastomas, including the ability to generate tumors in vivo.

    PubMed

    Stevens, Brett M; Folts, Christopher J; Cui, Wanchang; Bardin, Addie L; Walter, Kevin; Carson-Walter, Eleanor; Vescovi, Angelo; Noble, Mark

    2014-05-01

    We discovered that glioblastoma (GBM) cells use Cool-1/β-pix to inhibit normal activation of the c-Cbl ubiquitin ligase via the redox/Fyn/c-Cbl pathway and that c-Cbl inhibition is critical for GBM cell function. Restoring normal c-Cbl activity by Cool-1 knockdown in vitro reduced GBM cell division, almost eliminated generation of adhesion-independent spheroids, reduced the representation of cells expressing antigens thought to identify tumor initiating cells (TICs), reduced levels of several proteins of critical importance in TIC function (such as Notch-1 and Sox2), and increased sensitivity to BCNU (carmustine) and temozolomide (TMZ). In vivo, Cool-1 knockdown greatly suppressed the ability of GBM cells to generate tumors, an outcome that was c-Cbl dependent. In contrast, Cool-1 knockdown did not reduce division or increase BCNU or TMZ sensitivity in primary glial progenitor cells and Cool-1/c-Cbl complexes were not found in normal brain tissue. Our studies provide the first evidence that Cool-1 may be critical in the biology of human tumors, that suppression of c-Cbl by Cool-1 may be critical for generation of at least a subset of GBMs and offer a novel target that appears to be selectively necessary for TIC function and modulates chemoresistance in GBM cells. Targeting such proteins that inhibit c-Cbl offers potentially attractive opportunities for therapeutic development.

  19. The inflammatory/cancer-related IL-6/STAT3/NF-κB positive feedback loop includes AUF1 and maintains the active state of breast myofibroblasts

    PubMed Central

    Hendrayani, Siti-Fauziah; Al-Harbi, Bothaina; Al-Ansari, Mysoon M.; Silva, Gabriela; Aboussekhra, Abdelilah

    2016-01-01

    The IL-6/STAT3/NF-κB positive feedback loop links inflammation to cancer and maintains cells at a transformed state. Similarly, cancer-associated myofibroblats remains active even in absence of cancer cells. However, the molecular basis of this sustained active state remains elusive. We have shown here that breast cancer cells and IL-6 persistently activate breast stromal fibroblasts through the stimulation of the positive IL-6/STAT3/NF-κB feedback loop. Transient neutralization of IL-6 in culture inhibited this signaling circuit and reverted myofibrobalsts to a normalized state, suggesting the implication of the IL-6 autocrine feedback loop as well. Importantly, the IL-6/STAT3/NF-κB pro-inflammatory circuit was also active in cancer-associated fibroblasts isolated from breast cancer patients. Transient inhibition of STAT3 by specific siRNA in active fibroblasts persistently reduced the level of the RNA binding protein AUF1, blocked the loop and normalized these cells. Moreover, we present clear evidence that AUF1 is also part of this positive feedback loop. Interestingly, treatment of breast myofibroblasts with caffeine, which has been previously shown to persistently inhibit active breast stromal fibroblasts, blocked the positive feedback loop through potent and sustained inhibition of STAT3, AKT, lin28B and AUF1. These results indicate that the IL-6/STAT3/NF-κB positive feedback loop includes AUF1 and is responsible for the sustained active status of cancer-associated fibroblasts. We have also shown that normalizing myofibroblasts, which could be of great therapeutic value, is possible through the inhibition of this procarcinogenic circuit. PMID:27248826

  20. Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase.

    PubMed

    Henin, N; Vincent, M F; Gruber, H E; Van den Berghe, G

    1995-04-01

    AMP-activated protein kinase is a multisubstrate protein kinase that, in liver, inactivates both acetyl-CoA carboxylase, the rate-limiting enzyme of fatty acid synthesis, and 3-hydroxy-3-methyl-glutaryl-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. AICAR (5-amino 4-imidazolecarboxamide ribotide, ZMP) was found to stimulate up to 10-fold rat liver AMP-activated protein kinase, with a half-maximal effect at approximately 5 mM. In accordance with previous observations, addition to suspensions of isolated rat hepatocytes of 50-500 microM AICAriboside, the nucleoside corresponding to ZMP, resulted in the accumulation of millimolar concentrations of the latter. This was accompanied by a dose-dependent inactivation of both acetyl-CoA carboxylase and 3-hydroxy-3-methylglutaryl-CoA reductase. Addition of 50-500 microM AICAriboside to hepatocyte suspensions incubated in the presence of various substrates, including glucose and lactate/pyruvate, caused a parallel inhibition of both fatty acid and cholesterol synthesis. With lactate/pyruvate (10/1 mM), half-maximal inhibition was obtained at approximately 100 microM, and near-complete inhibition at 500 microM AICAriboside. These findings open new perspectives for the simultaneous control of triglyceride and cholesterol synthesis by pharmacological stimulators of AMP-activated protein kinase.

  1. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB.

    PubMed

    Brummelkamp, Thijn R; Nijman, Sebastian M B; Dirac, Annette M G; Bernards, René

    2003-08-14

    Protein modification by the conjugation of ubiquitin moieties--ubiquitination--plays a major part in many biological processes, including cell cycle and apoptosis. The enzymes that mediate ubiquitin-conjugation have been well-studied, but much less is known about the ubiquitin-specific proteases that mediate de-ubiquitination of cellular substrates. To study this gene family, we designed a collection of RNA interference vectors to suppress 50 human de-ubiquitinating enzymes, and used these vectors to identify de-ubiquitinating enzymes in cancer-relevant pathways. We report here that inhibition of one of these enzymes, the familial cylindromatosis tumour suppressor gene (CYLD), having no known function, enhances activation of the transcription factor NF-kappaB. We show that CYLD binds to the NEMO (also known as IKKgamma) component of the IkappaB kinase (IKK) complex, and appears to regulate its activity through de-ubiquitination of TRAF2, as TRAF2 ubiquitination can be modulated by CYLD. Inhibition of CYLD increases resistance to apoptosis, suggesting a mechanism through which loss of CYLD contributes to oncogenesis. We show that this effect can be relieved by aspirin derivatives that inhibit NF-kappaB activity, which suggests a therapeutic intervention strategy to restore growth control in patients suffering from familial cylindromatosis.

  2. Inhibition of poly(adenosine diphosphate-ribose) polymerase by the active form of vitamin D

    PubMed Central

    MABLEY, JON G.; WALLACE, REBECCA; PACHER, PÁL; MURPHY, KANNEGANTI; SZABÓ, CSABA

    2008-01-01

    Vitamin D is well characterized for its role in mineral homeostasis and maintenance of normal skeletal architecture. Vitamin D has been demonstrated to exert anti-inflammatory effects in a variety of disease states including diabetes, arthritis and inflammatory bowel disease. In these diseases poly[adenosine diphosphate (ADP)-ribose] polymerase (PARP) inhibitors have also proved effective as anti-inflammatory agents. Here we present data demonstrating that the active metabolite of vitamin D, 1α,25-dihydroxyvitamin D3, is a PARP inhibitor. UV irradiation-mediated PARP activation in human keratinocytes can be inhibited by treatment with vitamin D, 7-dehydrocholesterol or 1α,25-dihydroxyvitamin D3. Inhibition of cytochrome P450 reversed the PARP inhibitory action of vitamin D and 7-dehydrocholesterol, indicating that conversion to 1α,25-dihydroxyvitamin D3 mediates their PARP inhibitory action. Vitamin D may protect keratinocytes against over-activation of PARP resulting from exposure to sunlight. PARP inhibition may contribute to the pharmacological and anti-inflammatory effects of vitamin D. PMID:17487428

  3. Activation of peroxisome proliferator-activated receptor γ inhibits vascular calcification by upregulating Klotho

    PubMed Central

    Cheng, Lijuan; Zhang, Lei; Yang, Jun; Hao, Lirong

    2017-01-01

    Cardiovascular diseases are common in patients with chronic kidney disease. One of the key symptoms is the calcification of the vascular smooth muscle cells (VSMCs), which is induced by dysregulated mineral metabolism with high circulating levels of inorganic phosphate (Pi) and calcium. Klotho, which was originally identified as an aging suppressor gene, has been shown to be associated with vascular calcification. Since Klotho was recently identified as a target for nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ, the present study aimed to determine whether PPARγ regulates VSMC calcification through modulating the expression levels of Klotho. It was demonstrated that the expression of PPARγ was downregulated during Pi-induced VSMC calcification. In addition, treatment with PPARγ agonists inhibited the calcification and enhanced the expression of Klotho in VSMCs in a PPARγ-dependent manner. Of note, loss of Klotho expression by RNA interference abolished the ability of PPARγ activation to inhibit VSMC calcification. Furthermore, activation of Klotho as well as PPARγ inhibited the expression of Pi transporter 1/2 and reduced Pi influx into VSMCs. To the best of our knowledge, the present study was the first to demonstrate that PPARγ regulates VSMC calcification through activating Klotho.

  4. Inhibition of bactericidal activity by pentachlorophenol in two phagocyte populations from Fundulus heteroclitus

    SciTech Connect

    Roszell, L.E.; Anderson, R.S.

    1994-12-31

    The effects of pentachlorophenol (PCP) on the bactericidal activity of pronephritic phagocytes were studied in an estuarine fish, Fundulus heteroclitus. Following in vitro exposure to sublethal doses of PCP, macrophages and eosinophils were challenged with Listonella anguillarum, the bacterium responsible for vibriosis in marine and freshwater fish. Quantification of surviving bacteria was based on the reduction of MTT (3-[4,5 dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide). Bacteridical activity was inhibited at PCP concentrations greater than 5 ppm in both leukocyte populations; at 20 ppm bactericidal activity was essentially eliminated. The primary cellular mechanisms of bactericidal activity in these cells are phagocytosis and the phagocytically induced production of reactive oxygen intermediates (ROIs) including superoxide (O{sub 2}{sup {minus}}) and hydrogen peroxide (H{sub 2}O{sub 2}). Previous experiments have shown that these activities are inhibited at similar concentrations of PCP. These results indicate that the suppression of phagocytosis and the subsequent oxidative burst is responsible for the reduced killing seen in the current experiments. Nonspecific immune activities of phagocytic cells such as macrophages and eosinophils act as a first line of defense against invading pathogens; the suppression of these functions could ultimately lead to decreased resistance to infectious disease.

  5. Antioxidant, antimicrobial and urease inhibiting activities of methanolic extracts from Cyphostemma digitatum stem and roots.

    PubMed

    Khan, Rasool; Saif, Abdullah Qasem; Quradha, Mohammed Mansour; Ali, Jawad; Rauf, Abdur; Khan, Ajmal

    2016-01-01

    Cyphostemma digitatum stem and roots extracts were investigated for antioxidant, antimicrobial, urease inhibition potential and phytochemical analysis. Phytochemical screening of the roots and stem extract revealed the presence of secondary metabolites including flavonoids, alkaloids, coumarins, saponins, terpenoids, tannins, carbohydrates/reducing sugars and phenolic compounds. The methanolic extracts of the roots displayed highest antioxidant activity (93.518%) against DPPH while the crude methanolic extract of the stem showed highest antioxidant activity (66.163%) at 100 μg/mL concentration. The methanolic extracts of both stem and roots were moderately active or even found to be less active against the selected bacterial and fungal strains (Tables S2 and S3). The roots extract (methanol) showed significant urease enzyme inhibition activity (IC50 = 41.2 ± 0.66; 0.2 mg/mL) while the stem extract was found moderately active (IC50 = 401.1 ± 0.58; 0.2 mg/mL) against thiourea (IC50 = 21.011; 0.2 mg/mL).

  6. Inhibition of thyroid hormone sulfotransferase activity by brominated flame retardants and halogenated phenolics.

    PubMed

    Butt, Craig M; Stapleton, Heather M

    2013-11-18

    Many halogenated organic contaminants (HOCs) are considered endocrine disruptors and affect the hypothalamic-pituitary-thyroid axis, often by interfering with circulating levels of thyroid hormones (THs). We investigated one potential mechanism for TH disruption, inhibition of sulfotransferase activity. One of the primary roles of TH sulfation is to support the regulation of biologically active T3 through the formation of inactive THs. We investigated TH sulfotransferase inhibition by 14 hydroxylated polybrominated diphenyl ethers (OH BDEs), BDE 47, triclosan, and fluorinated, chlorinated, brominated, and iodinated analogues of 2,4,6-trihalogenated phenol and bisphenol A (BPA). A new mass spectrometry-based method was also developed to measure the formation rates of 3,3'-T2 sulfate (3,3'-T2S). Using pooled human liver cytosol, we investigated the influence of these HOCs on the sulfation of 3,3'-T2, a major substrate for TH sulfation. For the formation of 3,3'-T2S, the Michaelis constant (Km) was 1070 ± 120 nM and the Vmax was 153 ± 6.6 pmol min(-1) (mg of protein)(-1). All chemicals investigated inhibited sulfotransferase activity with the exception of BDE 47. The 2,4,6-trihalogenated phenols were the most potent inhibitors followed by the OH BDEs and then halogenated BPAs. The IC50 values for the OH BDEs were primarily in the low nanomolar range, which may be environmentally relevant. In silico molecular modeling techniques were also used to simulate the binding of OH BDE to SULT1A1. This study suggests that some HOCs, including antimicrobial chemicals and metabolites of flame retardants, may interfere with TH regulation through inhibition of sulfotransferase activity.

  7. Platyphylloside Isolated From Betula platyphylla Inhibit Adipocyte Differentiation and Induce Lipolysis Via Regulating Adipokines Including PPARγ in 3T3-L1 Cells

    PubMed Central

    Lee, Mina; Sung, Sang Hyun

    2016-01-01

    Background: Obesity causes or aggravates many health problems, both independently and in association with several pathological disorders, including Type II diabetes, hypertension, atherosclerosis, and cancer. Therefore, we screened small compounds isolated from natural products for the development of anti-obesity drugs. Objective: The purpose of this study was to investigate the anti-adipogenic activities of platyphylloside, diarylheptanoid isolated from Betula platyphylla, which was selected based on the screening using 3T3-L1 cells. Materials and Methods: To evaluate the inhibition of adipocyte differentiation and lipolysis, lipid contents of BPP on were measured using Oil Red O staining in 3T3-L1 cells. The mRNA and protein expression levels of various adipokines were measured by Quantitative real-time PCR and Western blotting analysis, respectively. Results: Platyphylloside showed significant inhibitory activity on adipocyte differentiation in 3T3-L1 cells and suppressed adipocyte differentiation even in the presence of troglitazone, a PPARγ agonist. Platyphylloside might suppress adipocyte differentiation through PPARγ, C/EBPα, and SREBP1-induced adipogenesis, which is synergistically associated with downstream adipocyte-specific gene promoters such as aP2, FAS, SCD-1, LPL, and Adiponectin. In addition, platyphylloside affected lipolysis by down-regulating perilipin and HSL and up-regulating TNFα. Conclusion: Taken together, the results reveal that platyphylloside has anti-adipogenic activity and highlight its potential in the prevention and treatment of obesity. SUMMARY The extract of B. platyphylla bark and its isolate, BPP, had anti-adipogenic activity in 3T3-L1 cells via suppression of adipocyte differentiation from preadipocytes.Treatment with BPP significantly down-regulated the expression of PPARγ, C/EBP, C/EBPβ, C/EBPδ, SREBP1c, SCD-1, FAS, aP2 and LPL.BPP induced a lipolytic response in mature adipocytes via up-regulation krof TNFá and down

  8. Dimethylfumarate suppresses adipogenic differentiation in 3T3-L1 preadipocytes through inhibition of STAT3 activity.

    PubMed

    Kang, Hyeon-Ji; Seo, Hyun-Ae; Go, Younghoon; Oh, Chang Joo; Jeoung, Nam Ho; Park, Keun-Gyu; Lee, In-Kyu

    2013-01-01

    The excessive accumulation of adipocytes contributes to the development of obesity and obesity-related diseases. The interactions of several transcription factors, such as C/EBPβ, PPARγ, C/EBPα, Nrf2, and STAT3, are required for adipogenic differentiation. Dimethylfumarate (DMF), an immune modulator and antioxidant, may function as an inhibitor of STAT3 and an activator of Nrf2. This study examined whether DMF inhibits adipogenic differentiation of 3T3-L1 preadipocytes by inhibiting STAT3 or activating Nrf2. DMF suppressed 3T3-L1 preadipocyte differentiation to mature adipocytes in a dose-dependent manner as determined by Oil Red O staining. The mRNA and protein levels of adipogenic genes, including C/EBPβ, C/EBPα, PPARγ, SREBP-1c, FAS, and aP2, were significantly lower in DMF-treated 3T3-L1 preadipocytes. Suppression of adipogenic differentiation by DMF treatment resulted primarily from inhibition of the early stages of differentiation. DMF inhibits clonal expansion during adipogenic differentiation through induction of a G1 cell cycle arrest. Additionally, DMF regulates cell cycle-related proteins, such as p21, pRb, and cyclin D. DMF treatment markedly inhibited differentiation medium-induced STAT3 phosphorylation and inhibited STAT3 transcriptional activation of a reporter construct composed of four synthetic STAT3-response elements. Moreover, inhibition of endogenous Nrf2 activity using a dominant negative Nrf2 did not abolish the DMF-induced inhibition of adipogenic differentiation of 3T3-L1 preadipocytes. In summary, DMF is a negative regulator of adipogenic differentiation based on its regulation of adipogenic transcription factors and cell cycle proteins. This negative regulation by DMF is mediated by STAT3 inhibition, but is unlikely to involve Nrf2 activation.

  9. Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9.

    PubMed

    Koo, Taeyoung; Lee, Jungjoon; Kim, Jin-Soo

    2015-06-01

    Programmable nucleases, which include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and RNA-guided engineered nucleases (RGENs) repurposed from the type II clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system are now widely used for genome editing in higher eukaryotic cells and whole organisms, revolutionising almost every discipline in biological research, medicine, and biotechnology. All of these nucleases, however, induce off-target mutations at sites homologous in sequence with on-target sites, limiting their utility in many applications including gene or cell therapy. In this review, we compare methods for detecting nuclease off-target mutations. We also review methods for profiling genome-wide off-target effects and discuss how to reduce or avoid off-target mutations.

  10. Inhibition and oxygen activation in copper amine oxidases.

    PubMed

    Shepard, Eric M; Dooley, David M

    2015-05-19

    Copper-containing amine oxidases (CuAOs) use both copper and 2,4,5-trihydroxyphenylalanine quinone (TPQ) to catalyze the oxidative deamination of primary amines. The CuAO active site is highly conserved and comprised of TPQ and a mononuclear type II copper center that exhibits five-coordinate, distorted square pyramidal coordination geometry with histidine ligands and equatorially and axially bound water in the oxidized, resting state. The active site is buried within the protein, and CuAOs from various sources display remarkable diversity with respect to the composition of the active site channel and cofactor accessibility. Structural and mechanistic factors that influence substrate preference and inhibitor sensitivity and selectivity have been defined. This Account summarizes the strategies used to design selective CuAO inhibitors based on active site channel characteristics, leading to either enhanced steric fits or the trapping of reactive electrophilic products. These findings provide a framework to support the future development of candidate molecules aimed at minimizing the negative side effects associated with drugs containing amine functionalities. This is vital given the existence of human diamine oxidase and vascular adhesion protein-1, which have distinct amine substrate preferences and are associated with different metabolic processes. Inhibition of these enzymes by antifungal or antiprotozoal agents, as well as classic monoamine oxidase (MAO) inhibitors, may contribute to the adverse side effects associated with drug treatment. These observations provide a rationale for the limited clinical value associated with certain amine-containing pharmaceuticals and emphasize the need for more selective AO inhibitors. This Account also discusses the novel roles of copper and TPQ in the chemistry of O2 activation and substrate oxidation. Reduced CuAOs exist in a redox equilibrium between the Cu(II)-TPQAMQ (aminoquinol) and Cu(I)-TPQSQ (semiquinone). Elucidating

  11. Local anesthetics inhibit tissue factor expression in activated monocytes via inhibition of tissue factor mRNA synthesis.

    PubMed

    Kim, Ji-Eun; Kim, Ki Jun; Ahn, Wonsik; Han, Kyou-Sup; Kim, Hyun Kyung

    2011-01-01

    Local anesthetics have been reported to have anticoagulant properties, but the mechanisms responsible for this action are poorly understood. Here, we evaluated the in vitro effects of 3 local anesthetics--lidocaine, ropivacaine, and bupivacaine--on the tissue factor expression by monocytes. Monocytes from peripheral blood were stimulated with lipopolysaccharide (LPS) in the presence or absence of local anesthetics. All 3 local anesthetics inhibited the expression of tissue factor antigen and tissue factor activity in LPS-stimulated monocytes in a dose- and time-dependent manner and reduced tissue factor messenger RNA (mRNA) expression in endothelial cells and a monocytic cell line. None of the 3 drugs induced apoptosis or affected the viability of monocytes. Our findings that local anesthetics inhibited the tissue factor induction in activated monocytes by inhibiting tissue factor mRNA level may demonstrate the feasibility of using local anesthetics in hypercoagulable and inflammatory conditions.

  12. Fatty acyl-CoA inhibition of beta-hydroxy-beta-methylglutaryl-CoA reductase activity.

    PubMed

    Faas, F H; Carter, W J; Wynn, J O

    1978-11-22

    The influence of the fatty acyl-CoA thioesters on rat liver microsomal hydroxymethylglutaryl-CoA reductase activity was tested in vitro to determine if the previously demonstrated inhibition of [14C]acetate incorporation into cholesterol is due to inhibition of this rate limiting step in cholesterol synthesis. The polyunsaturated fatty acyl-CoA thioesters caused the greatest inhibition of enzyme activity, 50 micron arachidonoyl-CoA inhibiting 67% and 5 micron inhibiting 22%. 50 micron linoleoyl-CoA inhibited 56% with the more saturated thioesters causing less inhibition. 50--100 micron free fatty acids, free CoA, cholesterol esters, phospholipids, carnitine derivatives, prostaglandins and non-specific detergents caused little or no inhibition of enzyme activity. Kinetic studies revealed the inhibition to be noncompetitive with respect to hydroxymethylglutaryl-CoA with a Ki for arachidonoyl CoA of 3.10 micron. Fatty acyl-CoA inhibition of in vitro cholesterol synthesis is due to inhibition of hydroxymethylglutaryl-CoA reductase activity. Variation in intracellular concentrations of fatty acyl-CoA thioesters may signficantly alter cholesterol synthesis.

  13. Preclinical activity of MBM-5 in gastrointestinal cancer by inhibiting NEK2 kinase activity

    PubMed Central

    Zhu, Mengli; Zhu, Tong; Jiang, Tongtong; Frett, Brendan; Hu, Wenhao; Li, Hong-yu; Ma, Mingliang; Zhang, Xiongwen

    2016-01-01

    NEK2 is a conserved mitotic regulator critical for cell cycle progression. Aberrant expression of NEK2 has been found in a variety of human cancers, making it an attractive molecular target for the design of novel anticancer therapeutics. In the present study, we have identified a novel compound MBM-5, which was found to bind to NEK2 with high affinity by docking simulations study. MBM-5 potently inhibited NEK2 kinase activity in vitro in a concentration-dependent manner. MBM-5 also suppressed cellular NEK2 kinase activity, as evidenced by the decreased phosphorylation of its substrate Hec1 on S165 in a concentration- and time-dependent manner. This inhibition impeded mitotic progression by inducing chromosome segregation defects and cytokinesis failure; therefore leading to accumulation of cells with ≥4N DNA content, which finally underwent apoptosis. More importantly, MBM-5 treatment effectively suppressed the tumor growth of human gastric and colorectal cancer cells xenografts. Taken together, we demonstrated that MBM-5 effectively inhibited the kinase activity of NEK2 and showed a potential application in anti-cancer treatment regimens. PMID:27764815

  14. The Satiety Signaling Neuropeptide Perisulfakinin Inhibits the Activity of Central Neurons Promoting General Activity

    PubMed Central

    Wicher, Dieter; Derst, Christian; Gautier, Hélène; Lapied, Bruno; Heinemann, Stefan H.; Agricola, Hans-Jürgen

    2007-01-01

    The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK) in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK) in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR), we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM) neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC50=11pM) due to reduction of a pacemaker Ca2+ current through cAMP-inhibited pTRPγ channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca2+ concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH): PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPγ channel that is activated by AKH under conditions of food shortage. PMID:18946521

  15. Activation of protein kinase C inhibits calcium-activated potassium channels in rat pituitary tumour cells.

    PubMed Central

    Shipston, M J; Armstrong, D L

    1996-01-01

    1. The regulation of large-conductance, calcium- and voltage-dependent potassium (BK) channels by protein kinase C (PKC) was investigated in clonal rat anterior pituitary cells (GH4C1), which were voltage clamped at -40 mV in a physiological potassium gradient through amphotericin-perforated patches. 2. Maximal activation of PKC by 100 nM phorbol 12, 13-dibutyrate (PdBu) almost completely inhibited the voltage-activated outward current through BK channels. In contrast PdBu had no significant effect on the residual outward current after block of BK channels with 2 mM TEA or 30 nM charybdotoxin. In single-channel recordings from cell-attached patches, PdBu reduced the open probability of BK channels more than eightfold with no significant effect on mean open lifetime or unitary conductance. 3. The effects of PdBu on BK channels were not mimicked by the 4 alpha-isomer, which does not activate PKC, and were blocked almost completely by 25 microM chelerythrine, a specific, noncompetitive PKC inhibitor. 4. PdBu had no significant effect on the amplitude of the pharmacologically isolated, high voltage-activated calcium current. 5. Inhibition of BK channel activity by PKC provides the first molecular mechanism linking hormonal activation of phospholipase C to sustained excitability in pituitary cells. PMID:8799890

  16. Buprofezin inhibits acetylcholinesterase activity in B-biotype Bemisia tabaci.

    PubMed

    Cottage, Emma L A; Gunning, Robin V

    2006-01-01

    B-biotype Bemisia tabaci is a severe insect pest worldwide in many ornamental, agricultural, and horticultural industries. Control of this insect is hampered by resistance to many acetylcholinesterase (AChE)-inhibiting insecticides, such as organophosphates and carbamates. Consequently, insect growth regulators such as buprofezin, which act by inhibiting chitin synthesis, are being investigated for use against B-biotype B. tabaci in Australia. This study discusses the effects of buprofezin on B. tabaciAChE.

  17. Styryl-lactone goniothalamin inhibits TNF-α-induced NF-κB activation.

    PubMed

    Orlikova, Barbora; Schumacher, Marc; Juncker, Tom; Yan, Choo Chee; Inayat-Hussain, Salmaan H; Hajjouli, Shéhérazade; Cerella, Claudia; Dicato, Mario; Diederich, Marc

    2013-09-01

    (R)-(+)-Goniothalamin (GTN), a styryl-lactone isolated from the medicinal plant Goniothalamus macrophyllus, exhibits pharmacological activities including cytotoxic and anti-inflammatory effects. In this study, GTN modulated TNF-α induced NF-κB activation. GTN concentrations up to 20 μM showed low cytotoxic effects in K562 chronic myelogenous leukemia and in Jurkat T cells. Importantly, at these concentrations, no cytotoxicity was observed in healthy peripheral blood mononuclear cells. Our results confirmed that GTN inhibited tumor necrosis factor-α (TNF-α)-induced NF-κB activation in Jurkat and K562 leukemia cells at concentrations as low as 5 μM as shown by reporter gene assays and western blots. Moreover, GTN down-regulated translocation of the p50/p65 heterodimer to the nucleus, prevented binding of NF-κB to its DNA response element and reduced TNF-α-activated interleukin-8 (IL-8) expression. In conclusion, GTN inhibits TNF-α-induced NF-κB activation at non-apoptogenic concentrations in different leukemia cell models without presenting toxicity towards healthy blood cells underlining the anti-leukemic potential of this natural compound.

  18. Inhibition of Fast Axonal Transport by Pathogenic SOD1 Involves Activation of p38 MAP Kinase

    PubMed Central

    Morfini, Gerardo A.; Bosco, Daryl A.; Brown, Hannah; Gatto, Rodolfo; Kaminska, Agnieszka; Song, Yuyu; Molla, Linda; Baker, Lisa; Marangoni, M. Natalia; Berth, Sarah; Tavassoli, Ehsan; Bagnato, Carolina; Tiwari, Ashutosh; Hayward, Lawrence J.; Pigino, Gustavo F.; Watterson, D. Martin; Huang, Chun-Fang; Banker, Gary; Brown, Robert H.; Brady, Scott T.

    2013-01-01

    Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS. PMID:23776455

  19. Anti-inflammatory activities of Physalis alkekengi var. franchetii extract through the inhibition of MMP-9 and AP-1 activation.

    PubMed

    Hong, Ju-Mi; Kwon, Ok-Kyoung; Shin, In-Sik; Song, Hyuck-Hwan; Shin, Na-Rae; Jeon, Chan-Mi; Oh, Sei-Ryang; Han, Sang-Bae; Ahn, Kyung-Seop

    2015-01-01

    Physalis alkekengi has been traditionally used for the treatment of coughs, middle ear infections, and sore throats in Korea, Europe, and China. It exhibits a variety of pharmacological activities such as anti-inflammatory, anti-oxidant, and anti-cancer effects. The anti-inflammatory effects of the P. alkekengi methanol extract (PA) and its molecular mechanisms have not yet been fully investigated. In the present study, the chromatogram of PA was established by UPLC analysis. The anti-inflammatory effects of PA were also investigated using murine microphage cell lines, RAW 264.7 cells, and a murine model of OVA induced asthma. In LPS-stimulated RAW264.7 cells, PA reduced the MMP-9 expression with decreases in the production of nitric oxide, inteleukin-6, and tumor necrosis factor-α. Furthermore, PA suppressed the phosphorylation of MAPKs, which resulted in the inhibition of AP-1 activation. These effects of PA were consistent with the results of the in vivo experiment. PA-treated mice significantly inhibited inflammatory cell counts and cytokine production in bronchoalveolar lavage fluids and airway-hyperresponsiveness in OVA-induced asthmatic mice. PA treated mice also showed a marked inhibition of inducible nitric oxide synthase and MMP-9 expression. In conclusion, our results suggest that PA may be a valuable therapeutic material in treating various inflammatory diseases, including allergic asthma.

  20. Inhibition of the activation of Hageman factor (factor XII) by peripheral blood cells.

    PubMed Central

    Ratnoff, O D; Emanuelson, M M; Ziats, N P

    1987-01-01

    Suspensions of peripheral blood mononuclear cells (PBMC), monocytes, T or B lymphocytes, platelets or granulocytes, and cell-depleted supernatant fluids of these suspensions inhibited activation of Hageman factor (HF, Factor XII) by ellagic acid, a property not shared by erythrocytes. PBMC also inhibited HF activation by glass or sulfatides. Contaminating platelets may have contributed to inhibition by PBMC. Elaboration of agents inhibiting HF activation required metabolically active cells. The inhibitor(s) in PBMC supernates were not identified with known agents, but had properties of a nonenzymatic protein. PBMC supernates did not contain fibrinogen, nor alter the thrombin, prothrombin, or partial thromboplastin times of normal plasma, amidolysis by activated plasma thromboplastin antecedent (Factor XIa) or activated Stuart factor (Factor Xa) or esterolysis by C1 (C1 esterase); they inhibited plasmin minimally. These experiments suggest that peripheral blood cells may impede intravascular coagulation. Whether this property helps maintain the fluidity of blood is unclear. PMID:3498741

  1. Inhibition of UDP-Glucuronosyltransferases (UGTs) Activity by constituents of Schisandra chinensis.

    PubMed

    Song, Jin-Hui; Cui, Li; An, Li-Bin; Li, Wen-Tao; Fang, Zhong-Ze; Zhang, Yan-Yan; Dong, Pei-Pei; Wu, Xue; Wang, Li-Xuan; Gonzalez, Frank J; Sun, Xiao-Yu; Zhao, De-Wei

    2015-10-01

    Structure-activity relationship for the inhibition of Schisandra chinensis's ingredients toward (Uridine-Diphosphate) UDP-glucuronosyltransferases (UGTs) activity was performed in the present study. In vitro incubation system was employed to screen the inhibition capability of S. chinensis's ingredients, and in silico molecular docking method was carried out to explain possible mechanisms. At 100 μM of compounds, the activity of UGTs was inhibited by less than 90% by schisandrol A, schisandrol B, schisandrin, schisandrin C, schisantherin A, gomisin D, and gomisin G. Schisandrin A exerted strong inhibition toward UGT1A1 and UGT1A3, with the residual activity to be 7.9% and 0% of control activity. Schisanhenol exhibited strong inhibition toward UGT2B7, with the residual activity to be 7.9% of control activity. Gomisin J of 100 μM inhibited 91.8% and 93.1% of activity of UGT1A1 and UGT1A9, respectively. Molecular docking prediction indicated different hydrogen bonds interaction resulted in the different inhibition potential induced by subtle structure alteration among schisandrin A, schisandrin, and schisandrin C toward UGT1A1 and UGT1A3: schisandrin A > schisandrin > schisandrin C. The detailed inhibition kinetic evaluation showed the strong inhibition of gomisin J toward UGT1A9 with the inhibition kinetic parameter (Ki ) to be 0.7 μM. Based on the concentrations of gomisin J in the plasma of the rats given with S. chinensis, high herb-drug interaction existed between S. chinensis and drugs mainly undergoing UGT1A9-mediated metabolism. In conclusion, in silico-in vitro method was used to give the inhibition information and possible inhibition mechanism for S. chinensis's components toward UGTs, which guide the clinical application of S. chinensis.

  2. Acupuncture Attenuated Inflammation and Inhibited Th17 and Treg Activity in Experimental Asthma

    PubMed Central

    Wei, Ying; Dong, Ming; Zhang, Hongying; Lv, Yubao; Liu, Jiaqi; Wei, Kai; Luo, Qingli; Sun, Jing; Liu, Feng; Xu, Fei; Dong, Jingcheng

    2015-01-01

    Acupuncture is an effective therapeutic method in asthma treatment in traditional Chinese medicine. Here, we evaluated the effect of acupuncture on airway hyperresponsiveness (AHR) and the associated inflammatory changes as well as Th17 and Treg activity in ovalbumin- (OVA-) induced experimental asthma. Our results revealed that acupuncture treatment significantly inhibited AHR, lung inflammation, and mucus secretion of experimental asthma mice. Furthermore, a decrease in lymphocytes and eosinophils as well as neutrophils was observed in bronchoalveolar lavage fluid (BALF) of mice treated with acupuncture. Acupuncture reduced the OVA specific IgE level as well as the Th17 cytokine levels including IL-17A, IL-17F, and IL-22 in the serum of the experimental asthma mice. Acupuncture treatment group also had reduced CD4+IL-17A+ cell numbers and increased CD4+Foxp3+ cell numbers in BALF. In addition, acupuncture could inhibit IL-17R, RORγt, p65, and the inhibitor of NF-κB kinase-α (IKKα) protein expression. Our results indicated that acupuncture was effective in inhibiting AHR and inflammation in OVA-induced experimental asthma, which may be associated with the regulation of Th17 and Treg activity and NF-κB pathway. PMID:26612993

  3. Creatine inhibits adipogenesis by downregulating insulin-induced activation of the phosphatidylinositol 3-kinase signaling pathway.

    PubMed

    Lee, Nayeon; Kim, Inhee; Park, Soojeong; Han, Dasol; Ha, Soobong; Kwon, Mookwang; Kim, Juwan; Byun, Sung-Hyun; Oh, Wonil; Jeon, Hong Bae; Kweon, Dae-Hyuk; Cho, Jae Youl; Yoon, Keejung

    2015-04-15

    Creatine is a nitrogenous organic acid known to function in adenosine triphosphate (ATP) metabolism. Recent evidence indicates that creatine regulates the differentiation of mesenchymal stem cells (MSCs) in processes such as osteogenesis and myogenesis. In this study, we show that creatine also has a negative regulatory effect on fat cell formation. Creatine inhibits the accumulation of cytoplasmic triglycerides in a dose-dependent manner irrespective of the adipogenic cell models used, including a C3H10T1/2 MSC line, 3T3-L1 preadipocytes, and primary human MSCs. Consistently, a dramatic reduction in mRNA expression of adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), glucose transporters, 1 and 4 (Glut1, Glut4), and adipocyte markers, aP2 and adipsin, was observed in the presence of creatine. Creatine appears to exert its inhibitory effects on adipogenesis during early differentiation, but not late differentiation, or proliferation stages through inhibition of the PI3K-Akt-PPARγ signaling pathway. In an in vivo model, administration of creatine into mice resulted in body mass increase without fat accumulation. In summary, our results indicate that creatine downregulates adipogenesis through inhibition of phosphatidylinositol 3-kinase (PI3K) activation and imply the potent therapeutic value of creatine in treating obesity and obesity-related metabolic disorders.

  4. Romidepsin reduces histone deacetylase activity, induces acetylation of histones, inhibits proliferation, and activates apoptosis in immortalized epithelial endometriotic cells.

    PubMed

    Imesch, Patrick; Fink, Daniel; Fedier, André

    2010-12-01

    Romidepsin inhibited HDAC activity, produced acetylation of the histone proteins, up-regulated p21, and down-regulated cyclins B1 and D1, resulting in proliferation inhibition and apoptosis activation in 11z immortalized epithelial endometriotic cells. Our findings provide evidence that endometriotic cells are sensitive to the epigenetic effects of romidepsin and suggest that endometriosis may be therapeutically targeted by romidepsin.

  5. An Inhibition of p38 Mitogen Activated Protein Kinase Delays the Platelet Storage Lesion

    PubMed Central

    Skripchenko, Andrey; Awatefe, Helen; Thompson-Montgomery, Dedeene; Myrup, Andrew; Turgeon, Annette; Wagner, Stephen J.

    2013-01-01

    Background and Objectives Platelets during storage undergo diverse alterations collectively known as the platelet storage lesion, including metabolic, morphological, functional and structural changes. Some changes correlate with activation of p38 mitogen activated protein kinase (p38 MAPK). Another MAPK, extracellular signal-related kinase (ERK), is involved in PLT activation. The aim of this study was to compare the properties of platelets stored in plasma in the presence or absence of p38 and ERK MAPK inhibitors. Materials and Methods A single Trima apheresis platelet unit (n = 12) was aliquoted into five CLX storage bags. Two aliquots were continuously agitated with or without MAPK inhibitors. Two aliquots were subjected to 48 hours of interruption of agitation with or without MAPK inhibitors. One aliquot contained the same amount of solvent vehicle used to deliver the inhibitor. Platelets were stored at 20–24°C for 7 days and sampled on Days 1, 4, and 7 for 18 in vitro parameters. Results Inhibition of p38 MAPK by VX-702 leads to better maintenance of all platelet in vitro storage parameters including platelet mitochondrial function. Accelerated by interruption of agitation, the platelet storage lesion of units stored with VX-702 was diminished to that of platelets stored with continuous agitation. Inhibition of ERK MAPK did not ameliorate decrements in any in vitro platelet properties. Conclusion Signaling through p38 MAPK, but not ERK, is associated with platelet deterioration during storage. PMID:23967093

  6. Opioids inhibit visceral afferent activation of catecholamine neurons in the solitary tract nucleus.

    PubMed

    Cui, R J; Roberts, B L; Zhao, H; Andresen, M C; Appleyard, S M

    2012-10-11

    Brainstem A2/C2 catecholamine (CA) neurons within the solitary tract nucleus (NTS) influence many homeostatic functions, including food intake, stress, respiratory and cardiovascular reflexes. They also play a role in both opioid reward and withdrawal. Injections of opioids into the NTS modulate many autonomic functions influenced by catecholamine neurons including food intake and cardiac function. We recently showed that NTS-CA neurons are directly activated by incoming visceral afferent inputs. Here we determined whether opioid agonists modulate afferent activation of NTS-CA neurons using transgenic mice with EGFP expressed under the control of the tyrosine hydroxylase promoter (TH-EGFP) to identify catecholamine neurons. The opioid agonist Met-enkephalin (Met-Enk) significantly attenuated solitary tract-evoked excitatory postsynaptic currents (ST-EPSCs) in NTS TH-EGFP neurons by 80%, an effect reversed by wash or the mu opioid receptor-specific antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP). Met-Enk had a significantly greater effect to inhibit afferent inputs onto TH-EGFP-positive neurons than EGFP-negative neurons, which were only inhibited by 50%. The mu agonist, DAMGO, also inhibited the ST-EPSC in TH-EGFP neurons in a dose-dependent manner. In contrast, neither the delta agonist DPDPE, nor the kappa agonist, U69,593, consistently inhibited the ST-EPSC amplitude. Met-Enk and DAMGO increased the paired pulse ratio, decreased the frequency, but not amplitude, of mini-EPSCs and had no effect on holding current, input resistance or current-voltage relationships in TH-EGFP neurons, suggesting a presynaptic mechanism of action on afferent terminals. Met-Enk significantly reduced both the basal firing rate of NTS TH-EGFP neurons and the ability of afferent stimulation to evoke an action potential. These results suggest that opioids inhibit NTS-CA neurons by reducing an excitatory afferent drive onto these neurons through presynaptic inhibition of

  7. Should singing activities be included in speech and voice therapy for prepubertal children?

    PubMed

    Rinta, Tiija; Welch, Graham F

    2008-01-01

    Customarily, speaking and singing have tended to be regarded as two completely separate sets of behaviors in clinical and educational settings. The treatment of speech and voice disorders has focused on the client's speaking ability, as this is perceived to be the main vocal behavior of concern. However, according to a broader voice-science perspective, given that the same vocal structure is used for speaking and singing, it may be possible to include singing in speech and voice therapy. In this article, a theoretical framework is proposed that indicates possible benefits from the inclusion of singing in such therapeutic settings. Based on a literature review, it is demonstrated theoretically why singing activities can potentially be exploited in the treatment of prepubertal children suffering from speech and voice disorders. Based on this theoretical framework, implications for further empirical research and practice are suggested.

  8. PTEN inhibits PREX2-catalyzed activation of RAC1 to restrain tumor cell invasion.

    PubMed

    Mense, Sarah M; Barrows, Douglas; Hodakoski, Cindy; Steinbach, Nicole; Schoenfeld, David; Su, William; Hopkins, Benjamin D; Su, Tao; Fine, Barry; Hibshoosh, Hanina; Parsons, Ramon

    2015-03-31

    The tumor suppressor PTEN restrains cell migration and invasion by a mechanism that is independent of inhibition of the PI3K pathway and decreased activation of the kinase AKT. PREX2, a widely distributed GEF that activates the GTPase RAC1, binds to and inhibits PTEN. We used mouse embryonic fibroblasts and breast cancer cell lines to show that PTEN suppresses cell migration and invasion by blocking PREX2 activity. In addition to metabolizing the phosphoinositide PIP₃, PTEN inhibited PREX2-induced invasion by a mechanism that required the tail domain of PTEN, but not its lipid phosphatase activity. Fluorescent nucleotide exchange assays revealed that PTEN inhibited the GEF activity of PREX2 toward RAC1. PREX2 is a frequently mutated GEF in cancer, and examination of human tumor data showed that PREX2 mutation was associated with high PTEN expression. Therefore, we tested whether cancer-derived somatic PREX2 mutants, which accelerate tumor formation of immortalized melanocytes, were inhibited by PTEN. The three stably expressed, somatic PREX2 cancer mutants that we tested were resistant to PTEN-mediated inhibition of invasion but retained the ability to inhibit the lipid phosphatase activity of PTEN. In vitro analysis showed that PTEN did not block the GEF activity of two PREX2 cancer mutants and had a reduced binding affinity for the third. Thus, PTEN antagonized migration and invasion by restraining PREX2 GEF activity, and PREX2 mutants are likely selected in cancer to escape PTEN-mediated inhibition of invasion.

  9. How to Target Activated Ras Proteins: Direct Inhibition vs. Induced Mislocalization

    PubMed Central

    Brock, Ethan J.; Ji, Kyungmin; Reiners, John J.; Mattingly, Raymond R.

    2016-01-01

    Oncogenic Ras proteins are a driving force in a significant set of human cancers and wild-type, unmutated Ras proteins likely contribute to the malignant phenotype of many more. The overall challenge of targeting activated Ras proteins has great promise to treat cancer, but this goal has yet to be achieved. Significant efforts and resources have been committed to inhibiting Ras, but these energies have so far made little impact in the clinic. Direct attempts to target activated Ras proteins have faced many obstacles, including the fundamental nature of the gain-of-function oncogenic activity being produced by a loss-of-function at the biochemical level. Nevertheless, there has been very promising recent pre-clinical progress. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mislocalization. While these efforts to indirectly target Ras through inhibition of farnesyl transferase (FTase) were rationally designed, this strategy suffered from insufficient attention to the distinctions between the isoforms of Ras. This led to subsequent failures in large-scale clinical trials targeting K-Ras driven lung, colon, and pancreatic cancers. Despite these setbacks, efforts to indirectly target activated Ras through inducing its mislocalization have persisted. It is plausible that FTase inhibitors may still have some utility in the clinic, perhaps in combination with statins or other agents. Alternative approaches for inducing mislocalization of Ras through disruption of its palmitoylation cycle or interaction with chaperone proteins are in early stages of development. PMID:26423696

  10. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    SciTech Connect

    Ribeiro-Filho, Jaime; Calheiros, Andrea Surrage; Vieira-de-Abreu, Adriana; Moraes de Carvalho, Katharinne Ingrid; Silva Mendes, Diego da; Melo, Christianne Bandeira; Martins, Marco Aurélio; Silva Dias, Celidarque da; Piuvezam, Márcia Regina; and others

    2013-11-15

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca{sup ++} influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. • Curine

  11. 25 CFR 170.623 - How are IRR Program projects and activities included in a self-governance agreement?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false How are IRR Program projects and activities included in a... Contracts and Agreements Under Isdeaa § 170.623 How are IRR Program projects and activities included in a self-governance agreement? To include an IRR Program project or activity in a self-governance...

  12. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    SciTech Connect

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-07-11

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies.

  13. Activation of Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol) using a Supramolecular Trigger†

    PubMed Central

    Phillips, Daniel J.; Congdon, Thomas R.; Gibson, Matthew I.

    2016-01-01

    Antifreeze (glyco)proteins (AF(G)Ps) have potent ice recrystallisation inhibition (IRI) activity – a desirable phenomenon in applications such as cryopreservation, frozen food and more. In Nature AF(G)P activity is regulated by protein expression levels in response to an environmental stimulus; temperature. However, this level of regulation is not possible in synthetic systems. Here, a synthetic macromolecular mimic is introduced, using supramolecular assembly to regulate activity. Catechol-terminated poly(vinyl alcohol) was synthesised by RAFT polymerization. Upon addition of Fe3+, larger supramolecular star polymers form by assembly with two or three catechols. This increase in molecular weight effectively ‘switches on’ the IRI activity and is the first example of external control over the function of AFP mimetics. This provides a simple but elegant solution to the challenge of external control of AFP-mimetic function. PMID:28003855

  14. Modulation of olfactory bulb network activity by serotonin: synchronous inhibition of mitral cells mediated by spatially localized GABAergic microcircuits

    PubMed Central

    Schmidt, Loren J.

    2014-01-01

    Although inhibition has often been proposed as a central mechanism for coordinating activity in the olfactory system, relatively little is known about how activation of different inhibitory local circuit pathways can generate coincident inhibition of principal cells. We used serotonin (5-HT) as a pharmacological tool to induce spiking in ensembles of mitral cells (MCs), a primary output neuron in the olfactory bulb, and recorded intracellularly from pairs of MCs to directly assay coincident inhibitory input. We find that 5-HT disynaptically depolarized granule cells (GCs) only slightly but robustly increased the frequency of inhibitory postsynaptic inhibitory currents in MCs. Serotonin also triggered more coincident IPSCs in pairs of nearby MCs than expected by chance, including in MCs with truncated apical dendrites that lack glomerular synapses. That serotonin-triggered coincident inhibition in the absence of elevated GC somatic firing rates suggested that synchronized MC inhibition arose from glutamate receptor-mediated depolarization of GC dendrites or other (non-GC) interneurons outside the glomerular layer. Tetanic stimulation of GCL afferents to GCs triggered robust GC spiking, coincident inhibition in pairs of MCs, and recruited large-amplitude IPSCs in MCs. Enhancing neurotransmission through NMDARs by lowering the external Mg2+ concentration also increased inhibitory tone onto MCs but failed to promote synchronized inhibition. These results demonstrate that coincident MC inhibition can occur through multiple circuit pathways and suggests that the functional coordination between different GABAergic synapses in individual GCs can be dynamically regulated. PMID:25031366

  15. Inhibition of rabbit gastric glucosamine synthetase activity by Cu2+, Zn2+ and Se4+.

    PubMed

    Fujita, T; Sakuma, S; Takahashi, K; Bohtani, Y; Nishida, H; Fujimoto, Y

    1997-05-01

    The effects of Fe2+, Cu2+, Zn2+ and Se4+ on the activity of glucosamine synthetase, the rate-limiting enzyme of mucus synthesis, in rabbit gastric corporal mucosa were examined. Cu2+, Zn2+ and Se4+ inhibited the glucosamine synthetase activity at concentrations ranging from 1 to 10 microM (Cu2+, 8-98% inhibition; Zn2+, 10-99% inhibition; Se4+, 32-89% inhibition). The inhibitory effects of these three ions were much stronger than that of UDP-N-acetylglúcosamine known as a representative inhibitor of the glucosamine synthetase activity (10 microM, 52% inhibition). Fe2+ had no significant effect on the glucosamine synthetase activity up to 100 microM. These results suggest that Cu2+, Zn2+ and Se4+ can be potent inhibitors of gastric glucosamine synthetase activity.

  16. Central activation of the sympathetic nervous system including the adrenals in anaesthetized guinea pigs by the muscarinic agonist talsaclidine.

    PubMed

    Walland, A; Pieper, M P

    1998-04-01

    Talsaclidine, a novel M1-receptor selective muscarinic agonist for cholinergic substitution therapy of Alzheimer's disease, activates the sympathetic nervous system in guinea pigs and dogs at the orthosympathic ganglia and the paraganglionic adrenals. Results from guinea pigs provide indirect evidence for an additional central site of action. The present investigation in anaesthetized and vagotomized guinea pigs intended to demonstrate central activation of the sympathetic nervous system directly by comparing the blood pressure effects of intracerebroventricular and intravenous injections of small doses of talsaclidine. Increasing doses of 0.2 and 0.6 mg/kg talsaclidine were injected alternately into the third cerebral ventricle and intravenously in 6 guinea pigs before and after blockade of peripheral muscarinic receptors with 1 mg/kg ipratropium bromide i.v. In another group of 6 animals the injections were given into the cisterna cerebellomedullaris using the same protocol. In both groups central administration of talsaclidine caused dose-related hypertension while intravenous injections were hypotensive. Ipratropium bromide, a peripheral antimuscarinic drug, reversed this hypotensive action of intravenous talsaclidine into hypertension, but did not inhibit the effects of central administration. In contrast, atropine, an antimuscarinic drug which passes the blood-brain barrier, abolished the effect of 0.6 mg/kg talsaclidine injected into the cisterna cerebellomedullaris of 8 guinea pigs. The hypertensive effect of a first injection of 0.6 mg/kg talsaclidine into the cisterna cerebellomedullaris of 6 guinea pigs was approximately twice as large as that of a second given 90 min after bilateral adrenalectomy. Sham operation in another 6 animals was not inhibitory. The results demonstrate that talsaclidine, a selective muscarinic M1-receptor agonist, activates central parts of the sympathetic nervous system, including central projections of the adrenals by an action

  17. Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes

    PubMed Central

    Caron, Sandrine; Huaman Samanez, Carolina; Dehondt, Hélène; Ploton, Maheul; Briand, Olivier; Lien, Fleur; Dorchies, Emilie; Dumont, Julie; Postic, Catherine; Cariou, Bertrand; Lefebvre, Philippe

    2013-01-01

    The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver. The aim of this study was to determine whether FXR regulates the transcriptional activity of ChREBP in human hepatocytes and to unravel the underlying molecular mechanisms. Agonist-activated FXR inhibits glucose-induced transcription of several glycolytic genes, including the liver-type pyruvate kinase gene (L-PK), in the immortalized human hepatocyte (IHH) and HepaRG cell lines. This inhibition requires the L4L3 region of the L-PK promoter, known to bind the transcription factors ChREBP and hepatocyte nuclear factor 4α (HNF4α). FXR interacts directly with ChREBP and HNF4α proteins. Analysis of the protein complex bound to the L4L3 region reveals the presence of ChREBP, HNF4α, FXR, and the transcriptional coactivators p300 and CBP at high glucose concentrations. FXR activation does not affect either FXR or HNF4α binding to the L4L3 region but does result in the concomitant release of ChREBP, p300, and CBP and in the recruitment of the transcriptional corepressor SMRT. Thus, FXR transrepresses the expression of genes involved in glycolysis in human hepatocytes. PMID:23530060

  18. CKIP-1 regulates macrophage proliferation by inhibiting TRAF6-mediated Akt activation

    PubMed Central

    Zhang, Luo; Wang, Yiwu; Xiao, Fengjun; Wang, Shaoxia; Xing, Guichun; Li, Yang; Yin, Xiushan; Lu, Kefeng; Wei, Rongfei; Fan, Jiao; Chen, Yuhan; Li, Tao; Xie, Ping; Yuan, Lin; Song, Lei; Ma, Lanzhi; Ding, Lujing; He, Fuchu; Zhang, Lingqiang

    2014-01-01

    Macrophages play pivotal roles in development, homeostasis, tissue repair and immunity. Macrophage proliferation is promoted by macrophage colony-stimulating factor (M-CSF)-induced Akt signaling; yet, how this process is terminated remains unclear. Here, we identify casein kinase 2-interacting protein-1 (CKIP-1) as a novel inhibitor of macrophage proliferation. In resting macrophages, CKIP-1 was phosphorylated at Serine 342 by constitutively active GSK3β, the downstream target of Akt. This phosphorylation triggers the polyubiquitination and proteasomal degradation of CKIP-1. Upon M-CSF stimulation, Akt is activated by CSF-1R-PI3K and then inactivates GSK3β, leading to the stabilization of CKIP-1 and β-catenin proteins. β-catenin promotes the expression of proliferation genes including cyclin D and c-Myc. CKIP-1 interacts with TRAF6, a ubiquitin ligase required for K63-linked ubiquitination and plasma membrane recruitment of Akt, and terminates TRAF6-mediated Akt activation. By this means, CKIP-1 inhibits macrophage proliferation specifically at the late stage after M-CSF stimulation. Furthermore, CKIP-1 deficiency results in increased proliferation and decreased apoptosis of macrophages in vitro and CKIP-1−/− mice spontaneously develop a macrophage-dominated splenomegaly and myeloproliferation. Together, these data demonstrate that CKIP-1 plays a critical role in the regulation of macrophage homeostasis by inhibiting TRAF6-mediated Akt activation. PMID:24777252

  19. H2 inhibits TNF-α-induced lectin-like oxidized LDL receptor-1 expression by inhibiting nuclear factor κB activation in endothelial cells.

    PubMed

    Song, Guohua; Tian, Hua; Liu, Jia; Zhang, Hongle; Sun, Xuejun; Qin, Shucun

    2011-09-01

    H(2) is a therapeutic antioxidant that can reduce oxidative stress. Oxidized low-density lipoprotein, which plays roles in atherosclerosis, may promote endothelial dysfunction by binding the cell-surface receptor LOX-1. LOX-1 expression can be upregulated by various stimuli, including TNF-α. Thus, we aimed to examine whether the upregulation of LOX-1 by different stimuli could be blocked by H(2) in endothelial cells. H(2) significantly abolished the upregulation of LOX-1 by different stimuli, including TNF-α, at the protein and mRNA levels. The TNF-α-induced upregulation of LOX-1 was also attenuated by the NF-κB inhibitor N-acetyl-L-cysteine. H(2) inhibited the TNF-α-induced activation of NF-κB and the phosphorylation of IκB-α. Furthermore, H(2) inhibited the expression of LOX-1 and the activation of NF-κB in apolipoprotein E knockout mice, an animal model of atherosclerosis. Thus, H(2) probably inhibits cytokine-induced LOX-1 gene expression by suppressing NF-κB activation.

  20. Neutrophil maturation rate determines the effects of dipeptidyl peptidase 1 inhibition on neutrophil serine protease activity

    PubMed Central

    Wikell, C; Clifton, S; Shearer, J; Benjamin, A; Peters, S A

    2016-01-01

    Background and Purpose Neutrophil serine proteases (NSPs) are activated by dipeptidyl peptidase 1 (DPP1) during neutrophil maturation. The effects of neutrophil turnover rate on NSP activity following DPP1 inhibition was studied in a rat pharmacokinetic/pharmacodynamic model. Experimental Approach Rats were treated with a DPP1 inhibitor twice daily for up to 14 days; NSP activity was measured in onset or recovery studies, and an indirect response model was fitted to the data to estimate the turnover rate of the response. Key Results Maximum NSP inhibition was achieved after 8 days of treatment and a reduction of around 75% NSP activity was achieved at 75% in vitro DPP1 inhibition. Both the rate of inhibition and recovery of NSP activity were consistent with a neutrophil turnover rate of between 4–6 days. Using human neutrophil turnover rate, it is predicted that maximum NSP inhibition following DPP1 inhibition takes around 20 days in human. Conclusions and Implications Following inhibition of DPP1 in the rat, the NSP activity was determined by the amount of DPP1 inhibition and the turnover of neutrophils and is thus supportive of the role of neutrophil maturation in the activation of NSPs. Clinical trials to monitor the effect of a DPP1 inhibitor on NSPs should take into account the delay in maximal response on the one hand as well as the potential delay in a return to baseline NSP levels following cessation of treatment. PMID:27186823

  1. Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms.

    PubMed

    Raymond, J A; Fritsen, C H

    2001-08-01

    Ice-active substances (IASs), i.e., macromolecular substances that modify the shape of growing ice crystals, were previously found to be associated with various terrestrial and aquatic photosynthetic organisms from Antarctica, but their chemical nature and function are unknown. In this study, we used the ice-binding properties of the IASs to semipurify IASs from a cyanobacterial mat, a eukaryotic green alga (Prasiola sp.), and a moss (Bryum sp.) and examined the ice recrystallization inhibition (RI) activities of the semipure materials. The semipure materials contain both protein and carbohydrate in which the carbohydrate accounted for 73, 52, and 37%, respectively, of the total carbohydrate + protein. The IASs had RI activity at concentrations of 1.4, 0.05, and 0.01 microg ml-1, respectively. RI activity was greatly reduced by heat treatment, suggesting that the IASs inhibit recrystallization through a specific interaction with ice. These results raise the possibility that the IASs increase freezing tolerance of their respective organisms by preventing the recrystallization of ice.

  2. Dihydroartemisinin inhibits catabolism in rat chondrocytes by activating autophagy via inhibition of the NF-κB pathway

    PubMed Central

    Jiang, Li-Bo; Meng, De-Hua; Lee, Soo-Min; Liu, Shu-Hao; Xu, Qin-Tong; Wang, Yang; Zhang, Jian

    2016-01-01

    Osteoarthritis is a disease with inflammatory and catabolic imbalance in cartilage. Dihydroartemisinin (DHA), a natural and safe anti-malarial agent, has been reported to inhibit inflammation, but its effects on chondrocytes have yet to be elucidated. We investigated the effects of DHA on catabolism in chondrocytes. Viability of SD rats chondrocytes was analyzed. Autophagy levels were determined via expression of autophagic markers LC3 and ATG5, GFP-LC3 analysis, acridine orange staining, and electron microscopy. ATG5 siRNA induced autophagic inhibition. Catabolic gene and chemokine expression was evaluated using qPCR. The NF-κB inhibitor SM7368 and p65 over-expression were used to analyze the role of NF-κB pathway in autophagic activation. A concentration of 1 μM DHA without cytotoxicity increased LC3-II and ATG5 levels as well as autophagosomal numbers in chondrocytes. DHA inhibited TNF-α-induced expression of MMP-3 and -9, ADAMTS5, CCL-2 and -5, and CXCL1, which was reversed by autophagic inhibition. TNF-α-stimulated nuclear translocation and degradation of the p65 and IκBα proteins, respectively, were attenuated in DHA-treated chondrocytes. NF-κB inhibition activated autophagy in TNF-α-treated chondrocytes, but p65 over-expression reduced the autophagic response to DHA. These results indicate that DHA might suppress the levels of catabolic and inflammatory factors in chondrocytes by promoting autophagy via NF-κB pathway inhibition. PMID:27941926

  3. Rhodacyanine dye MKT-077 inhibits in vitro telomerase assay but has no detectable effects on telomerase activity in vivo.

    PubMed

    Wadhwa, Renu; Colgin, Lorel; Yaguchi, Tomoko; Taira, Kazunari; Reddel, Roger R; Kaul, Sunil C

    2002-08-01

    MKT-077, a cationic rhodacyanine dye analogue, causes selective toxicity to cancer cells. Its cellular targets elucidated thus far include oncogenic Ras, F-actin, mortalin (hmot-2)/mthsp70, and telomerase. Here we report that MKT-077 causes growth arrest of cancer cells in culture independent of their Ras, p53, or telomerase status. Telomerase activity is inhibited in vitro by MKT-077 in the telomerase assay used. However, the in vivo toxicity seen in telomerase-positive cancer cells was not accompanied by inhibition of telomerase activity or telomere shortening. Furthermore, cells with an alternative mechanism for lengthening of telomeres were also sensitive to MKT-077 and showed enhanced formation of alternative mechanism for lengthening of telomeres-associated PML bodies in their nuclei. The data suggested that inhibition of telomerase activity is unlikely to be a prime cause of MKT-077-induced toxicity in cancer cells.

  4. Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways.

    PubMed

    Tong, Wei; Zhang, Jing; Lodish, Harvey F

    2005-06-15

    Erythropoietin (Epo), along with its receptor EpoR, is the principal regulator of red cell development. Upon Epo addition, the EpoR signaling through the Janus kinase 2 (JAK2) activates multiple pathways including Stat5, phosphoinositide-3 kinase (PI-3K)/Akt, and p42/44 mitogen-activated protein kinase (MAPK). The adaptor protein Lnk is implicated in cytokine receptor signaling. Here, we showed that Lnk-deficient mice have elevated numbers of erythroid progenitors, and that splenic erythroid colony-forming unit (CFU-e) progenitors are hypersensitive to Epo. Lnk(-/-) mice also exhibit superior recovery after erythropoietic stress. In addition, Lnk deficiency resulted in enhanced Epo-induced signaling pathways in splenic erythroid progenitors. Conversely, Lnk overexpression inhibits Epo-induced cell growth in 32D/EpoR cells. In primary culture of fetal liver cells, Lnk overexpression inhibits Epo-dependent erythroblast differentiation and induces apoptosis. Lnk blocks 3 major signaling pathways, Stat5, Akt, and MAPK, induced by Epo in primary erythroblasts. In addition, the Lnk Src homology 2 (SH2) domain is essential for its inhibitory function, whereas the conserved tyrosine near the C-terminus and the pleckstrin homology (PH) domain of Lnk are not critical. Furthermore, wild-type Lnk, but not the Lnk SH2 mutant, becomes tyrosine-phosphorylated following Epo administration and inhibits EpoR phosphorylation and JAK2 activation. Hence, Lnk, through its SH2 domain, negatively modulates EpoR signaling by attenuating JAK2 activation, and regulates Epo-mediated erythropoiesis.

  5. Prefrontal activity during response inhibition decreases over time in the postpartum period.

    PubMed

    Bannbers, Elin; Gingnell, Malin; Engman, Jonas; Morell, Arvid; Sylvén, Sara; Skalkidou, Alkistis; Kask, Kristiina; Bäckström, Torbjörn; Wikström, Johan; Poromaa, Inger Sundström

    2013-03-15

    The postpartum period is characterized by complex hormonal changes, but human imaging studies in the postpartum period have thus far predominantly focused on the neural correlates of maternal behavior or postpartum depression, whereas longitudinal studies on neural correlates of cognitive function across the postpartum period in healthy women are lacking. The aim of this study was to longitudinally examine response inhibition, as a measure of executive function, during the postpartum period and its neural correlates in healthy postpartum women and non-postpartum controls. Thirteen healthy postpartum women underwent event-related functional magnetic resonance imaging while performing a Go/NoGo task. The first assessment was made within 48 h of delivery, and the second at 4-7 weeks postpartum. In addition, 13 healthy women examined twice during the menstrual cycle were included as non-postpartum controls. In postpartum women region of interest analyses revealed task-related decreased activations in the right inferior frontal gyrus, right anterior cingulate, and bilateral precentral gyri at the late postpartum assessment. Generally, postpartum women displayed lower activity during response inhibition in the bilateral inferior frontal gyri and precentral gyri compared to non-postpartum controls. No differences in performance on the Go/NoGo task were found between time-points or between groups. In conclusion, this study has discovered that brain activity in prefrontal areas during a response inhibition task decreases throughout the course of the first postpartum weeks and is lower than in non-postpartum controls. Further studies on the normal adaptive brain activity changes that occur during the postpartum period are warranted.

  6. Be BOLD: Encouraging Girls to Include Unstructured Bouts of Physical Activity into Daily Routines

    ERIC Educational Resources Information Center

    Hill, Kory; Williams, Gwynne M.

    2014-01-01

    Adolescent girls are less active than their male counterparts and physical activity levels tend to decline as one ages. One of the goals of concerned physical educators is to promote a physically active lifestyle and to teach skills and promote behaviors that will allow students to be active both in and out of school. This article presents a…

  7. Structure-activity relationships of C-terminal tri- and tetrapeptide fragments that inhibit gastrin activity.

    PubMed

    Martinez, J; Bali, J P; Magous, R; Laur, J; Lignon, M F; Briet, C; Nisato, D; Castro, B

    1985-03-01

    A series of tri- and tetrapeptide derivatives, analogues of the gastrin C-terminal region with no phenylalanine residue, were synthesized. These peptides were tested for their ability to inhibit gastrin-stimulated acid secretion in vivo as well as binding of [125I]-(Nle11)-HG-13 to gastric mucosal cell receptors in vitro. Most of the peptides tested exhibited gastrin antagonist activity in vivo and in vitro. Most active derivatives were 20-30 times more potent than the well-known gastrin antagonist derivatives proglumide and benzotript and had 20-200 times more binding affinity. The smallest fragment exhibiting antagonist activity was the tripeptide Boc-L-tryptophyl-L-methionyl-L-aspartic acid amide.

  8. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    SciTech Connect

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  9. Modelling of an activated primary settling tank including the fermentation process and VFA elutriation.

    PubMed

    Ribes, J; Ferrer, J; Bouzas, A; Seco, A

    2002-10-01

    A complete model of a primary settler including both sedimentation and biological processes is presented. It is a one-dimensional model based on the solids flux concept and the conservation of mass that uses the Takács model for the settling velocity, which is corrected by a compression function in the lower layers. The biological model is based on the ASM2 and enlarged with the fermentation model proposed by this research group. The settler was split in ten layers and the flux terms in the mass balance for each layer is obtained by means of the settling model. A pilot plant has been operated to study the primary sludge fermentation and volatile fatty acids (VFA) elutriation in a primary settler tank. The model has been tested with pilot plant experimental data with very good results. It has been able to simulate the VFA production in the settler and their elutriation with the influent wastewater for all the studied experiments. The developed model is easily applicable to secondary settlers and thickeners, also taking into account biological activity inside them.

  10. Measuring Outcomes in Adult Weight Loss Studies That Include Diet and Physical Activity: A Systematic Review

    PubMed Central

    Millstein, Rachel A.

    2014-01-01

    Background. Measuring success of obesity interventions is critical. Several methods measure weight loss outcomes but there is no consensus on best practices. This systematic review evaluates relevant outcomes (weight loss, BMI, % body fat, and fat mass) to determine which might be the best indicator(s) of success. Methods. Eligible articles described adult weight loss interventions that included diet and physical activity and a measure of weight or BMI change and body composition change. Results. 28 full-text articles met inclusion criteria. Subjects, settings, intervention lengths, and intensities varied. All studies measured body weight (−2.9 to −17.3 kg), 9 studies measured BMI (−1.1 to −5.1 kg/m2), 20 studies measured % body fat (−0.7 to −10.2%), and 22 studies measured fat mass (−0.9 to −14.9 kg). All studies found agreement between weight or BMI and body fat mass or body fat % decreases, though there were discrepancies in degree of significance between measures. Conclusions. Nearly all weight or BMI and body composition measures agreed. Since body fat is the most metabolically harmful tissue type, it may be a more meaningful measure of health change. Future studies should consider primarily measuring % body fat, rather than or in addition to weight or BMI. PMID:25525513

  11. C-reactive protein inhibits insulin activation of endothelial nitric oxide synthase via the immunoreceptor tyrosine-based inhibition motif of FcgammaRIIB and SHIP-1.

    PubMed

    Tanigaki, Keiji; Mineo, Chieko; Yuhanna, Ivan S; Chambliss, Ken L; Quon, Michael J; Bonvini, Ezio; Shaul, Philip W

    2009-06-05

    Insulin promotes the cardiovascular protective functions of the endothelium including NO production by endothelial NO synthase (eNOS), which it stimulates via Akt kinase which phosphorylates eNOS Ser1179. C-reactive protein (CRP) is an acute-phase reactant that is positively correlated with cardiovascular disease risk in patients with type 2 diabetes. We previously showed that CRP inhibits eNOS activation by insulin by blunting Ser1179 phosphorylation. We now elucidate the underlying molecular mechanisms. We first show in mice that CRP inhibits insulin-induced eNOS phosphorylation, indicating that these processes are operative in vivo. In endothelial cells we find that CRP attenuates insulin-induced Akt phosphorylation, and CRP antagonism of eNOS is negated by expression of constitutively active Akt; the inhibitory effect of CRP on Akt is also observed in vivo. A requirement for the IgG receptor FcgammaRIIB was demonstrated in vitro using blocking antibody, and reconstitution experiments with wild-type and mutant FcgammaRIIB in NIH3T3IR cells revealed that these processes require the ITIM (immunoreceptor tyrosine-based inhibition motif) of the receptor. Furthermore, we find that endothelium express SHIP-1 (Src homology 2 domain-containing inositol 5'-phosphatase 1), that CRP induces SHIP-1 stimulatory phosphorylation in endothelium in culture and in vivo, and that SHIP-1 knockdown by small interfering RNA prevents CRP antagonism of insulin-induced eNOS activation. Thus, CRP inhibits eNOS stimulation by insulin via FcgammaRIIB and its ITIM, SHIP-1 activation, and resulting blunted activation of Akt. These findings provide mechanistic linkage among CRP, impaired insulin signaling in endothelium, and greater cardiovascular disease risk in type 2 diabetes.

  12. Feedback inhibition of thymic secretory activity in mice treated by the thymic extract TP-1 (thymostimulin).

    PubMed Central

    Shoham, J; Ben-David, E; Sandbank, U

    1982-01-01

    The ultrastructural changes occurring in the medullary epithelium of the thymus of young mice, as a result of repeated injections of thymic extract, TP-1 (thymostimulin) was investigated. After daily injection of TP-1 for 3 weeks, no changes in thymus architecture could be observed by light microscopy. However, by electron microscopy, specific changes were noticed in the epithelial cells. The secretory granules became dilated and engorged; diameter of granules in normal control thymus was approximately 200-250 nm, but reached 1000 nm in treated mice. Degenerative changes appeared in some of these granules, including myelin bodies, distorted configuration and fat droplets. Signs of involution of whole cells and presence of cellular debri within macrophages were observed. Acid phosphatase staining disclosed many lysosomes containing ingested granules. No such findings were observed in control untreated mice, or in mice treated by a heart extract similarly prepared to TP-1. All these findings can be taken as ultrastructural evidence for feedback inhibition of thymic secretory activity, in analogy to the changes occurring other feedback inhibited, peptide hormone secreting glands. The data indicate that (i) the thymus respond to feedback inhibitory stimuli, as other endocrine glands do; (ii)TP-1, the thymic extract under study, contains a physiologically significant thymic hormone, which, when introduced in high doses can exert specific feedback inhibition. This can be taken as an additional, new criterion for the definition of thymic hormones. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7056566

  13. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition

    PubMed Central

    Caffa, Irene; D'Agostino, Vito; Damonte, Patrizia; Soncini, Debora; Cea, Michele; Monacelli, Fiammetta; Odetti, Patrizio; Ballestrero, Alberto; Provenzani, Alessandro; Longo, Valter D.; Nencioni, Alessio

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use. PMID:25909220

  14. Glycogen synthase kinase 3β suppresses polyglutamine aggregation by inhibiting Vaccinia-related kinase 2 activity

    PubMed Central

    Lee, Eunju; Ryu, Hye Guk; Kim, Sangjune; Lee, Dohyun; Jeong, Young-Hun; Kim, Kyong-Tai

    2016-01-01

    Huntington’s disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of polyglutamine repeats in the N-terminal of huntingtin. The amount of aggregate-prone protein is controlled by various mechanisms, including molecular chaperones. Vaccinia-related kinase 2 (VRK2) is known to negatively regulate chaperonin TRiC, and VRK2-facilitated degradation of TRiC increases polyQ protein aggregation, which is involved in HD. We found that VRK2 activity was negatively controlled by glycogen synthase kinase 3β (GSK3β). GSK3β directly bound to VRK2 and inhibited the catalytic activity of VRK2 in a kinase activity-independent manner. Furthermore, GSK3β increased the stability of TRiC and decreased the formation of HttQ103-GFP aggregates by inhibiting VRK2. These results indicate that GSK3β signaling may be a regulatory mechanism of HD progression and suggest targets for further therapeutic trials for HD. PMID:27377031

  15. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition.

    PubMed

    Caffa, Irene; D'Agostino, Vito; Damonte, Patrizia; Soncini, Debora; Cea, Michele; Monacelli, Fiammetta; Odetti, Patrizio; Ballestrero, Alberto; Provenzani, Alessandro; Longo, Valter D; Nencioni, Alessio

    2015-05-20

    Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use.

  16. Inhibition of Rac1 Activity in the Hippocampus Impairs the Forgetting of Contextual Fear Memory.

    PubMed

    Jiang, Lizhu; Mao, Rongrong; Zhou, Qixin; Yang, Yuexiong; Cao, Jun; Ding, Yuqiang; Yang, Yuan; Zhang, Xia; Li, Lingjiang; Xu, Lin

    2016-03-01

    Fear is crucial for survival, whereas hypermnesia of fear can be detrimental. Inhibition of the Rac GTPase is recently reported to impair the forgetting of initially acquired memory in Drosophila. Here, we investigated whether inhibition of Rac1 activity in rat hippocampus could contribute to the hypermnesia of contextual fear. We found that spaced but not massed training of contextual fear conditioning caused inhibition of Rac1 activity in the hippocampus and heightened contextual fear. Furthermore, intrahippocampal injection of the Rac1 inhibitor NSC23766 heightened contextual fear in massed training, while Rac1 activator CN04-A weakened contextual fear in spaced training rats. Our study firstly demonstrates that contextual fear memory in rats is actively regulated by Rac1 activity in the hippocampus, which suggests that the forgetting impairment of traumatic events in posttraumatic stress disorder may be contributed to the pathological inhibition of Rac1 activity in the hippocampus.

  17. EPAC activation inhibits acetaldehyde-induced activation and proliferation of hepatic stellate cell via Rap1.

    PubMed

    Yang, Yan; Yang, Feng; Wu, Xiaojuan; Lv, Xiongwen; Li, Jun

    2016-05-01

    Hepatic stellate cells (HSCs) activation represents an essential event during alcoholic liver fibrosis (ALF). Previous studies have demonstrated that the rat HSCs could be significantly activated after exposure to 200 μmol/L acetaldehyde for 48 h, and the cAMP/PKA signaling pathways were also dramatically upregulated in activated HSCs isolated from alcoholic fibrotic rat liver. Exchange protein activated by cAMP (EPAC) is a family of guanine nucleotide exchange factors (GEFs) for the small Ras-like GTPases Rap, and is being considered as a vital mediator of cAMP signaling in parallel with the principal cAMP target protein kinase A (PKA). Our data showed that both cAMP/PKA and cAMP/EPAC signaling pathways were involved in acetaldehyde-induced HSCs. Acetaldehyde could reduce the expression of EPAC1 while enhancing the expression of EPAC2. The cAMP analog Me-cAMP, which stimulates the EPAC/Rap1 pathway, could significantly decrease the proliferation and collagen synthesis of acetaldehyde-induced HSCs. Furthermore, depletion of EPAC2, but not EPAC1, prevented the activation of HSC measured as the production of α-SMA and collagen type I and III, indicating that EPAC1 appears to have protective effects on acetaldehyde-induced HSCs. Curiously, activation of PKA or EPAC perhaps has opposite effects on the synthesis of collagen and α-SMA: EPAC activation by Me-cAMP increased the levels of GTP-bound (activated) Rap1 while PKA activation by Phe-cAMP had no significant effects on such binding. These results suggested that EPAC activation could inhibit the activation and proliferation of acetaldehyde-induced HSCs via Rap1.

  18. Inhibition of Bacterial Toxin Activity by the Nuclear Stain, DRAQ5™.

    PubMed

    Webb, Joshua N; Koufos, Evan; Brown, Angela C

    2016-08-01

    The repeats-in-toxin family of toxins includes proteins produced by Gram negative bacteria such as Escherichia coli (α-hemolysin), Bordetella pertussis (adenylate cyclase toxin), and Aggregatibacter actinomycetemcomitans (LtxA), which contribute to the pathogenesis of these organisms by killing host cells. In the case of LtxA produced by A. actinomycetemcomitans, white blood cells are targeted, allowing the bacteria to avoid clearance by the host immune system. In its association with target cells, LtxA binds to a receptor, lymphocyte function-associated antigen-1, as well as membrane lipids and cholesterol, before being internalized via a lysosomal-mediated pathway. The motivation for this project comes from our discovery that DRAQ5™, a membrane-permeable nuclear stain, prevents the internalization of LtxA in a Jurkat T cell line. We hypothesized that DRAQ5™, in crossing the plasma membrane, alters the properties of the membrane to inhibit LtxA internalization. To investigate how DRAQ5™ interacts with the lipid membrane to prevent LtxA internalization, we used studied DRAQ5™-mediated membrane changes in model membranes using a variety of techniques, including differential scanning calorimetry and fluorescence spectroscopy. Our results suggest that DRAQ5™ inhibits the activity of LtxA by decreasing the fluidity of the cellular lipid membrane, which decreases LtxA binding. These results present an interesting possible anti-virulence strategy; by altering bacterial toxin activity by modifying membrane fluidity, it may be possible to inhibit the pathogenicity of A. actinomycetemcomitans.

  19. Inhibition of the activation of Hageman factor (factor XII) by platelet factor 4.

    PubMed

    Dumenco, L L; Everson, B; Culp, L A; Ratnoff, O D

    1988-09-01

    Platelet factor 4 is a polypeptide constituent of platelet alpha granules that is released during platelet aggregation and inhibits heparin-mediated reactions. Hageman factor (factor XII) is a plasma proenzyme that, when activated by certain negatively charged agents, initiates clotting via the intrinsic pathway of thrombin formation. In earlier studies using crude systems, platelet factor 4 inhibited activation of Hageman factor by dextran sulfate or cerebrosides, but not activation of Hageman factor by kaolin or ellagic acid. In the present study we examined the mechanisms of inhibition by platelet factor 4, using purified reagents. Platelet factor 4 inhibited activation of Hageman factor by ellagic acid, as measured by amidolysis of a synthetic substrate of activated Hageman factor, an effect inhibited by heparin or by an anti-platelet factor 4 antiserum. Coating glass tubes with platelet factor 4 before addition of normal plasma significantly lengthened the partial thromboplastin time of normal plasma. In addition, the clot-promoting properties of kaolin were inhibited by its prior exposure to platelet factor 4. Thus, the inhibitory properties of platelet factor 4 directed against the activation of Hageman factor were confirmed in a purified system. In this purified system, in contrast to earlier studies using crude systems, platelet factor 4 inhibited activation of Hageman factor by glass, ellagic acid, or kaolin.

  20. 45 CFR 287.130 - Can NEW Program activities include job market assessments, job creation and economic development...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false Can NEW Program activities include job market assessments, job creation and economic development activities? 287.130 Section 287.130 Public Welfare... Program Design and Operations § 287.130 Can NEW Program activities include job market assessments,...

  1. 45 CFR 287.130 - Can NEW Program activities include job market assessments, job creation and economic development...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 2 2014-10-01 2012-10-01 true Can NEW Program activities include job market assessments, job creation and economic development activities? 287.130 Section 287.130 Public Welfare... Program Design and Operations § 287.130 Can NEW Program activities include job market assessments,...

  2. 45 CFR 287.130 - Can NEW Program activities include job market assessments, job creation and economic development...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 2 2012-10-01 2012-10-01 false Can NEW Program activities include job market assessments, job creation and economic development activities? 287.130 Section 287.130 Public Welfare... Program Design and Operations § 287.130 Can NEW Program activities include job market assessments,...

  3. 45 CFR 287.130 - Can NEW Program activities include job market assessments, job creation and economic development...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 2 2013-10-01 2012-10-01 true Can NEW Program activities include job market assessments, job creation and economic development activities? 287.130 Section 287.130 Public Welfare... Program Design and Operations § 287.130 Can NEW Program activities include job market assessments,...

  4. Chlorotoxin does not inhibit volume-regulated, calcium-activated and cyclic AMP-activated chloride channels

    PubMed Central

    Maertens, Chantal; Wei, Lin; Tytgat, Jan; Droogmans, Guy; Nilius, Bernd

    2000-01-01

    It was the aim of this study to look for a high-affinity and selective polypeptide toxin, which could serve as a probe for the volume-regulated anion channel (VRAC) or the calcium-activated chloride channel (CaCC). We have partially purified chlorotoxin, including new and homologous short chain insectotoxins, from the crude venom of Leiurus quinquestriatus quinquestriatus (Lqq) by means of gel filtration chromatography. Material eluting between 280 and 420 min, corresponding to fractions 15–21, was lyophilized and tested on VRAC and CaCC, using the whole-cell patch-clamp technique. We have also tested the commercially available chlorotoxin on VRAC, CaCC, the cystic fibrosis transmembrane conductance regulator (CFTR) and on the glioma specific chloride channel (GCC). VRAC and the correspondent current, ICl,swell, was activated in Cultured Pulmonary Artery Endothelial (CPAE) cells by a 25% hypotonic solution. Neither of the fractions 16–21 significantly inhibited ICl,swell (n=4–5). Ca2+-activated Cl− currents, ICl,Ca, activated by loading T84 cells via the patch pipette with 1 μM free Ca2+, were not inhibited by any of the tested fractions (15–21), (n=2–5). Chlorotoxin (625 nM) did neither effect ICl,swell nor ICl,Ca (n=4–5). The CFTR channel, transiently transfected in COS cells and activated by a cocktail containing IBMX and forskolin, was not affected by 1.2 μM chlorotoxin (n=5). In addition, it did not affect currents through GCC. We conclude that submicromolar concentrations of chlorotoxin do not block volume-regulated, Ca2+-activated and CFTR chloride channels and that it can not be classified as a general chloride channel toxin. PMID:10683204

  5. Activation of AMP-activated protein kinase inhibits ER stress and renal fibrosis.

    PubMed

    Kim, Hyosang; Moon, Soo Young; Kim, Joon-Seok; Baek, Chung Hee; Kim, Miyeon; Min, Ji Yeon; Lee, Sang Koo

    2015-02-01

    It has been suggested that endoplasmic reticulum (ER) stress facilitates fibrotic remodeling. Therefore, modulation of ER stress may serve as one of the possible therapeutic approaches to renal fibrosis. We examined whether and how activation of AMP-activated protein kinase (AMPK) suppressed ER stress induced by chemical ER stress inducers [tunicamycin (TM) and thapsigargin (TG)] and also nonchemical inducers in tubular HK-2 cells. We further investigated the in vivo effects of AMPK on ER stress and renal fibrosis. Western blot analysis, immunofluorescence, small interfering (si)RNA experiments, and immunohistochemical staining were performed. Metformin (the best known clinical activator of AMPK) suppressed TM- or TG-induced ER stress, as shown by the inhibition of TM- or TG-induced upregulation of glucose-related protein (GRP)78 and phosphorylated eukaryotic initiation factor-2α through induction of heme oxygenase-1. Metformin inhibited TM- or TG-induced epithelial-mesenchymal transitions as well. Compound C (AMPK inhibitor) blocked the effect of metformin, and 5-aminoimidazole-4-carboxamide-1β riboside (another AMPK activator) exerted the same effects as metformin. Transfection with siRNA targeting AMPK blocked the effect of metformin. Consistent with the results of cell culture experiments, metformin reduced renal cortical GRP78 expression and increased heme oxygenase-1 expression in a mouse model of ER stress-induced acute kidney injury by TM. Activation of AMPK also suppressed ER stress by transforming growth factor-β, ANG II, aldosterone, and high glucose. Furthermore, metformin reduced GRP78 expression and renal fibrosis in a mouse model of unilateral ureteral obstruction. In conclusion, AMPK may serve as a promising therapeutic target through reducing ER stress and renal fibrosis.

  6. There Is No Free Won’t: Antecedent Brain Activity Predicts Decisions to Inhibit

    PubMed Central

    Filevich, Elisa; Kühn, Simone; Haggard, Patrick

    2013-01-01

    Inhibition of prepotent action is an important aspect of self-control, particularly in social contexts. Action inhibition and its neural bases have been extensively studied. However, the neural precursors of free decisions to inhibit have hardly been studied. We asked participants to freely choose to either make a rapid key press in response to a visual cue, or to transiently inhibit action, and briefly delay responding. The task required a behavioural response on each trial, so trials involving inhibition could be distinguished from those without inhibition as those showing slower reaction times. We used this criterion to classify free-choice trials as either rapid or inhibited/delayed. For 13 participants, we measured the mean amplitude of the ERP activity at electrode Cz in three subsequent 50 ms time windows prior to the onset of the signal that either instructed to respond or inhibit, or gave participants a free choice. In two of these 50 ms time windows (−150 to −100, and −100 to −50 ms relative to action onset), the amplitude of prestimulus ERP differed between trials where participants ”freely” chose whether to inhibit or to respond rapidly. Larger prestimulus ERP amplitudes were associated with trials in which participants decided to act rapidly as compared to trials in which they decided to delay their responses. Last-moment decisions to inhibit or delay may depend on unconscious preparatory neural activity. PMID:23418420

  7. In vitro inhibition of blood cholinesterase activities from horse, cow, and rat by tetrachlorvinphos.

    PubMed

    Karanth, Subramanya; Pope, Carey

    2003-01-01

    The organophosphorus insecticide tetrachlorvinphos (TCVP) is commonly used as a feed-through larvicide in many livestock species, including cattle and horses. Cholinesterase (ChE) activity in blood (generally plasma or whole blood) is often employed to assess organophosphorus insecticide intoxication in animals as well as humans. In many species, including horse and man, plasma contains predominantly butyrylcholinesterase whereas red blood cells in all species express exclusively acetylcholinesterase. To evalulate the comparative interaction of TCVP with blood ChEs in different species, we compared the in vitro sensitivity of ChE activity in plasma and erythrocytes from horse, cow, and rat. Horse plasma ChE was most sensitive (IC(50), 30 minutes, 30 degrees C = 97 nM), whereas horse erythrocyte ChE activity was least sensitive (IC(50) > 1 mM). In contrast, cow plasma ChE showed lower sensitivity (IC(50) = 784 microM) to inhibition by TCVP than erythrocyte ChE (IC(50) = 216 microM). Rat plasma and erythrocyte ChE activities had relatively similar sensitivity to TCVP (IC(50) = 54 microM and 78 microM, respectively). The results suggest that plasma and erythrocyte ChE from horse, cow, and rat show marked species- and blood fraction-dependent differences in sensitivity to TCVP. Knowledge of such differences in sensitivity of blood ChE activities to TCVP may be important in the clinical interpretation of intoxication with this pesticide across species.

  8. The Structural Basis for Activation and Inhibition of ZAP-70 Kinase Domain.

    PubMed

    Huber, Roland G; Fan, Hao; Bond, Peter J

    2015-10-01

    ZAP-70 (Zeta-chain-associated protein kinase 70) is a tyrosine kinase that interacts directly with the activated T-cell receptor to transduce downstream signals, and is hence a major player in the regulation of the adaptive immune response. Dysfunction of ZAP-70 causes selective T cell deficiency that in turn results in persistent infections. ZAP-70 is activated by a variety of signals including phosphorylation of the kinase domain (KD), and binding of its regulatory tandem Src homology 2 (SH2) domains to the T cell receptor. The present study investigates molecular mechanisms of activation and inhibition of ZAP-70 via atomically detailed molecular dynamics simulation approaches. We report microsecond timescale simulations of five distinct states of the ZAP-70 KD, comprising apo, inhibited and three phosphorylated variants. Extensive analysis of local flexibility and correlated motions reveal crucial transitions between the states, thus elucidating crucial steps in the activation mechanism of the ZAP-70 KD. Furthermore, we rationalize previously observed staurosporine-bound crystal structures, suggesting that whilst the KD superficially resembles an "active-like" conformation, the inhibitor modulates the underlying protein dynamics and restricts it in a compact, rigid state inaccessible to ligands or cofactors. Finally, our analysis reveals a novel, potentially druggable pocket in close proximity to the activation loop of the kinase, and we subsequently use its structure in fragment-based virtual screening to develop a pharmacophore model. The pocket is distinct from classical type I or type II kinase pockets, and its discovery offers promise in future design of specific kinase inhibitors, whilst mutations in residues associated with this pocket are implicated in immunodeficiency in humans.

  9. Inhibition of ADP-ribosyltransferase activity of cholera toxin by MDL 12330A and chlorpromazine.

    PubMed

    Bitonti, A J

    1984-04-30

    ADP-ribosylation by cholera toxin of the guanine nucleotide binding regulatory protein (Gs) of rat liver membrane adenylate cyclase was inhibited by 0.1-1 mM MDL 12330A or 0.1-1 mM chlorpromazine. Basal as well as cholera toxin activated adenylate cyclase activity in liver membranes was also inhibited by the two drugs. NAD glycohydrolase activity and self-ADP-ribosylation of cholera toxin were also inhibited by MDL 12330A and chlorpromazine. These effects of MDL 12330A and chlorpromazine may be related to their effects on cholera toxin-induced fluid secretion in vivo.

  10. RIG-I inhibits pancreatic β cell proliferation through competitive binding of activated Src

    PubMed Central

    Pan, Yi; Li, GuangMing; Zhong, HengGao; Chen, MeiJuan; Chen, TingTing; Gao, LiLi; Wu, HuiWen; Guo, Jun

    2016-01-01

    Nutrition is a necessary condition for cell proliferation, including pancreatic β cells; however, over-nutrition, and the resulting obesity and glucolipotoxicity, is a risk factor for the development of Type 2 diabetes mellitus (DM), and causes inhibition of pancreatic β-cells proliferation and their loss of compensation for insulin resistance. Here, we showed that Retinoic acid (RA)-inducible gene I (RIG-I) responds to nutrient signals and induces loss of β cell mass through G1 cell cycle arrest. Risk factors for type 2 diabetes (e.g., glucolipotoxicity, TNF-α and LPS) activate Src in pancreatic β cells. Elevated RIG-I modulated the interaction of activated Src and STAT3 by competitive binding to STAT3. Elevated RIG-I downregulated the transcription of SKP2, and increased the stability and abundance of P27 protein in a STAT3-dependent manner, which was associated with inhibition of β cell growth elicited by Src. These results supported a role for RIG-I in β cell mass loss under conditions of metabolic surplus and suggested that RIG-I-induced blocking of Src/STAT3 signalling might be involved in G1 phase cycle arrest through the Skp2/P27 pathway in pancreatic β cells. PMID:27349479

  11. Chrysophanol Inhibits NALP3 Inflammasome Activation and Ameliorates Cerebral Ischemia/Reperfusion in Mice

    PubMed Central

    Zhang, Nan; Liu, Xiaoxia; Wang, Hong; Xue, Jing; Yu, Jingying; Kang, Ning; Wang, Xiaolu

    2014-01-01

    The most effective way to contain cerebral ischemic injury is reperfusion; however, reperfusion itself may result in tissue injury, for which inflammatory damage is one of the main causative factors. NALP3 inflammasome is a multiprotein complex. It consists of NALP3, ASC, and caspase-1, whose function is to switch on the inflammatory process. Chrysophanol is an extract from plants of Rheum genus and it possesses many pharmacological effects including its anti-inflammation activity. In this study, the effects of chrysophanol in cerebral ischemia/reperfusion and the potential mechanisms were investigated. Male CD1 mice were subject to transient middle cerebral artery occlusion (tMCAO). The NALP3 inflammasome activation status and its dynamic expression during the natural inflammatory response induced by tMCAO were first profiled. The neuroprotective effects of chrysophanol were then assessed and the potential mechanisms mediating the observed neuroprotection were then explored. Physical parameters including neurological deficit, infarct size, brain edema, and BBB permeability were measured at 24 h after tMCAO. Confocal microscopy, Western blotting, immunohistochemistry, and qRT-PCR techniques were utilized to analyze the expression of NALP3 inflammasome and IL-1β. Our results indicated that the brain tissue damage during cerebral ischemia/reperfusion is accompanied by NALP3 inflammasome activation. Chrysophanol could inhibit the activation of NALP3 inflammasome and protect cerebral ischemic stroke. PMID:24876671

  12. Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells

    PubMed Central

    Wang, Zhongyuan; Li, Bo; Zhou, Liang; Yu, Shubin; Su, Zijie; Song, Jiaxing; Sun, Qi; Sha, Ou; Wang, Xiaomei; Jiang, Wenqi; Willert, Karl; Wei, Lei; Carson, Dennis A.; Lu, Desheng

    2016-01-01

    Prodigiosin, a natural red pigment produced by numerous bacterial species, has exhibited promising anticancer activity; however, the molecular mechanisms of action of prodigiosin on malignant cells remain unclear. Aberrant activation of the Wnt/β-catenin signaling cascade is associated with numerous human cancers. In this study, we identified prodigiosin as a potent inhibitor of the Wnt/β-catenin pathway. Prodigiosin blocked Wnt/β-catenin signaling by targeting multiple sites of this pathway, including the low-density lipoprotein-receptor-related protein (LRP) 6, Dishevelled (DVL), and glycogen synthase kinase-3β (GSK3β). In breast cancer MDA-MB-231 and MDA-MB-468 cells, nanomolar concentrations of prodigiosin decreased phosphorylation of LRP6, DVL2, and GSK3β and suppressed β-catenin–stimulated Wnt target gene expression, including expression of cyclin D1. In MDA-MB-231 breast cancer xenografts and MMTV-Wnt1 transgenic mice, administration of prodigiosin slowed tumor progression and reduced the expression of phosphorylated LRP6, phosphorylated and unphosphorylated DVL2, Ser9 phosphorylated GSK3β, active β-catenin, and cyclin D1. Through its ability to inhibit Wnt/β-catenin signaling and reduce cyclin D1 levels, prodigiosin could have therapeutic activity in advanced breast cancers. PMID:27799526

  13. NFκB-inducing kinase inhibits NFκB activity specifically in neurons of the CNS.

    PubMed

    Mao, Xianrong; Phanavanh, Bounleut; Hamdan, Hamdan; Moerman-Herzog, Andréa M; Barger, Steven W

    2016-04-01

    The control of NFκB in CNS neurons appears to differ from that in other cell types. Studies have reported induction of NFκB in neuronal cultures and immunostaining in vivo, but others have consistently detected little or no transcriptional activation by NFκB in brain neurons. To test if neurons lack some component of the signal transduction system for NFκB activation, we transfected cortical neurons with several members of this signaling system along with a luciferase-based NFκB-reporter plasmid; RelA was cotransfected in some conditions. No component of the NFκB pathway was permissive for endogenous NFκB activity, and none stimulated the activity of exogenous RelA. Surprisingly, however, the latter was inhibited by cotransfection of NFκB-inducing kinase (NIK). Fluorescence imaging of RelA indicated that co-expression of NIK sequestered RelA in the cytoplasm, similar to the effect of IκBα. NIK-knockout mice showed elevated expression of an NFκB-reporter construct in neurons in vivo. Cortical neurons cultured from NIK-knockout mice showed elevated expression of an NFκB-reporter transgene. Consistent with data from other cell types, a C-terminal fragment of NIK suppressed RelA activity in astrocytes as well as neurons. Therefore, the inhibitory ability of the NIK C-terminus was unbiased with regard to cell type. However, inhibition of NFκB by full-length NIK is a novel outcome that appears to be specific to CNS neurons. This has implications for unique aspects of transcription in the CNS, perhaps relevant to aspects of development, neuroplasticity, and neuroinflammation. Full-length NIK was found to inhibit (down arrow) transcriptional activation of NFκB in neurons, while it elevated (up arrow) activity in astrocytes. Deletion constructs corresponding to the N-terminus or C-terminus also inhibited NFκB in neurons, while only the C-terminus did so in astrocytes. One possible explanation is that the inhibition in neurons occurs via two different

  14. Decavanadate inhibits the cell-free activation of neutrophil NADPH oxidase without affecting tyrosine phosphorylation.

    PubMed

    Okamura, N; Sakai, T; Nishimura, Y; Sakai, M; Araki, S; Yamaguchi, M; Ishibashi, S

    1999-08-01

    NADPH oxidase was activated by arachidonate in a cell-free system consisting of membrane and cytosol fractions prepared from guinea pig neutrophils. Vanadate apparently inhibited the NADPH oxidase activity in the cell-free system (IC50=2 microM) without phosphotyrosine accumulation. The pH dependency and stability of the inhibitory effect observed for vanadate solution indicated that decavanadate, an isopolyanion of vanadate, was responsible for the inhibition. Pervanadate (vanadyl hydroperoxide) also inhibited the oxidase activity but at a higher concentration (IC50=0.2 mM). Decavanadate lowered the Vmax but did not affect the Km value of NADPH oxidase for NADPH. Decavanadate inhibited the activation process of NADPH oxidase but not the oxidase activity itself. Decavanadate-pretreatment of membrane and cytosol fractions irreversibly decreased the abilities of both fractions to activate NADPH oxidase in the cell-free system. Translocation of p47-phox, one of the cytosolic activation factors of NADPH oxidase, from cytosol to membrane, was little affected by decavanadate. These results suggest that decavanadate inhibits the activation of NADPH oxidase in the cell-free system without affecting the phosphotyrosine phosphatase, and that decavanadate can bind to both the membrane and cytosolic activation factors when they are in a dormant state, but not to the active oxidase complex.

  15. Potent inhibition by star fruit of human cytochrome P450 3A (CYP3A) activity.

    PubMed

    Hidaka, Muneaki; Fujita, Ken-ichi; Ogikubo, Tetsuya; Yamasaki, Keishi; Iwakiri, Tomomi; Okumura, Manabu; Kodama, Hirofumi; Arimori, Kazuhiko

    2004-06-01

    There has been very limited information on the capacities of tropical fruits to inhibit human cytochrome P450 3A (CYP3A) activity. Thus, the inhibitory effects of tropical fruits on midazolam 1'-hydroxylase activity of CYP3A in human liver microsomes were evaluated. Eight tropical fruits such as common papaw, dragon fruit, kiwi fruit, mango, passion fruit, pomegranate, rambutan, and star fruit were tested. We also examined the inhibition of CYP3A activity by grapefruit (white) and Valencia orange as controls. The juice of star fruit showed the most potent inhibition of CYP3A. The addition of a star fruit juice (5.0%, v/v) resulted in the almost complete inhibition of midazolam 1'-hydroxylase activity (residual activity of 0.1%). In the case of grape-fruit, the residual activity was 14.7%. The inhibition depended on the amount of fruit juice added to the incubation mixture (0.2-6.0%, v/v). The elongation of the preincubation period of a juice from star fruit (1.25 or 2.5%, v/v) with the microsomal fraction did not alter the CYP3A inhibition, suggesting that the star fruit did not contain a mechanism-based inhibitor. Thus, we discovered filtered extracts of star fruit juice to be inhibitors of human CYP3A activity in vitro.

  16. EGFR-activating mutations correlate with a Fanconi anemia-like cellular phenotype that includes PARP inhibitor sensitivity.

    PubMed

    Pfäffle, Heike N; Wang, Meng; Gheorghiu, Liliana; Ferraiolo, Natalie; Greninger, Patricia; Borgmann, Kerstin; Settleman, Jeffrey; Benes, Cyril H; Sequist, Lecia V; Zou, Lee; Willers, Henning

    2013-10-15

    In patients with lung cancer whose tumors harbor activating mutations in the EGF receptor (EGFR), increased responses to platinum-based chemotherapies are seen compared with wild-type cancers. However, the mechanisms underlying this association have remained elusive. Here, we describe a cellular phenotype of cross-linker sensitivity in a subset of EGFR-mutant lung cancer cell lines that is reminiscent of the defects seen in cells impaired in the Fanconi anemia pathway, including a pronounced G2-M cell-cycle arrest and chromosomal radial formation. We identified a defect downstream of FANCD2 at the level of recruitment of FAN1 nuclease and DNA interstrand cross-link (ICL) unhooking. The effect of EGFR mutation was epistatic with FANCD2. Consistent with the known role of FANCD2 in promoting RAD51 foci formation and homologous recombination repair (HRR), EGFR-mutant cells also exhibited an impaired RAD51 foci response to ICLs, but not to DNA double-strand breaks. EGFR kinase inhibition affected RAD51 foci formation neither in EGFR-mutant nor wild-type cells. In contrast, EGFR depletion or overexpression of mutant EGFR in wild-type cells suppressed RAD51 foci, suggesting an EGFR kinase-independent regulation of DNA repair. Interestingly, EGFR-mutant cells treated with the PARP inhibitor olaparib also displayed decreased FAN1 foci induction, coupled with a putative block in a late HRR step. As a result, EGFR-mutant lung cancer cells exhibited olaparib sensitivity in vitro and in vivo. Our findings provide insight into the mechanisms of cisplatin and PARP inhibitor sensitivity of EGFR-mutant cells, yielding potential therapeutic opportunities for further treatment individualization in this genetically defined subset of lung cancer.

  17. CORRELATIONS OF PESTICIDE-INDUCED CHOLINESTERASE INHIBITION AND MOTOR ACTIVITY CHANGES IN ADULT RATS.

    EPA Science Inventory

    The acute neurobehavioral effects of acetylcholinesterase-inhibiting pesticides are primarily due to overstimulation of the cholinergic system. Lowered motor activity levels represent a sensitive endpoint with which to monitor functional changes in laboratory animals exposed to ...

  18. Na+, K+-activated-ATPase inhibition in rainbow trout: A site for organochlorine pesticide toxicity?

    USGS Publications Warehouse

    Davis, Paul W.; Wedemeyer, Gary A.

    1971-01-01

    1. The Na+, K+-activated, Mg2+-dependent-ATPase enzyme system in a heavy microsomal fraction of rainbow trout (Salmo gairdneri) brain was inhibited in vitro by chlorinated hydrocarbon pesticides.2. T50 (concentration at 50 per cent inhibition) values for dicofol, endosulfan and DDT were 5 × 10−6, 3 × 10−5 and 1 × 10−4 M respectively. Similar inhibition by these pesticides occurred in kidney and gill ATPase preparations.3. An unexpected finding was a failure of the classic inhibitor, ouabain, to block the Na+, K+-activated component of ATPase activity in the gill.4. It is suggested that inhibition of ATPase activity may be a causal factor in the toxic effects of organochlorine pesticides in fishes.

  19. Combination therapy including CpG oligodeoxynucleotides and entecavir induces early viral response and enhanced inhibition of viral replication in a woodchuck model of chronic hepadnaviral infection.

    PubMed

    Meng, Zhongji; Zhang, Xiaoyong; Pei, Rongjuan; Zhang, Ejuan; Kemper, Thekla; Vollmer, Jörg; Davis, Heather L; Glebe, Dieter; Gerlich, Wolfram; Roggendorf, Michael; Lu, Mengji

    2016-01-01

    CpG oligodeoxynucleotides (ODNs) stimulate immune cells via TLR9 and are potentially useful immunomodulators for the treatment of chronic viral infections. In the present study, different classes of CpGs were tested for their capacities for innate immune activation and antiviral activities in the woodchuck model. A class P CpG ODN was found to stimulate interferon (IFN) production in woodchuck peripheral blood mononuclear cells (PBMCs) in vitro, and following subcutaneous administration in vivo, it was observed to induce IFN and MxA expression in woodchuck PBMCs. Combination treatment with CpG ODN and entecavir (ETV) led to effective suppression of the woodchuck hepatitis virus (WHV) load in the woodchucks, with early viral responses and inhibition of replication. The woodchuck hepatitis surface antigen (WHsAg) serum concentrations were strongly decreased by CpG and ETV together but not by either agent alone, indicating synergistic effects. However, viral control post-treatment was still transient, similar to that observed with ETV alone. Significantly elevated levels of serum aspartate aminotransferase (AST) but not of alanine aminotransferase (ALT) in some of the woodchucks receiving CpG ODN were noted, but these increases were resolved before the completion of treatment and were not associated with an elevated serum bilirubin level or coagulation disorders, suggesting the absence of a significant safety concern.

  20. Capsaicin Inhibits Dimethylnitrosamine-Induced Hepatic Fibrosis by Inhibiting the TGF-β1/Smad Pathway via Peroxisome Proliferator-Activated Receptor Gamma Activation.

    PubMed

    Choi, Jae Ho; Jin, Sun Woo; Choi, Chul Yung; Kim, Hyung Gyun; Lee, Gi Ho; Kim, Yong An; Chung, Young Chul; Jeong, Hye Gwang

    2017-01-18

    Capsaicin (CPS) exerts many pharmacological effects, but any possible influence on liver fibrosis remains unclear. Therefore, we evaluated the inhibitory effects of CPS on dimethylnitrosamine (DMN) and TGF-β1-induced liver fibrosis in rats and hepatic stellate cells (HSCs). CPS inhibited DMN-induced hepatotoxicity, NF-κB activation, and collagen accumulation. CPS also suppressed the DMN-induced increases in α-SMA, collagen type I, MMP-2, and TNF-α. In addition, CPS inhibited DMN-induced TGF-β1 expression (from 2.3 ± 0.1 to 1.0 ± 0.1) and Smad2/3 phosphorylation (from 1.5 ± 0.1 to 1.1 ± 0.1 and from 1.6 ± 0.1 to 1.1 ± 0.1, respectively) by activating Smad7 expression (from 0.1 ± 0.0 to 0.9 ± 0.1) via PPAR-γ induction (from 0.2 ± 0.0 to 0.8 ± 0.0) (p < 0.05). Furthermore, in HSCs, CPS inhibited the TGF-β1-induced increases in α-SMA and collagen type I expression, via PPAR-γ activation. These results indicate that CPS can ameliorate hepatic fibrosis by inhibiting the TGF-β1/Smad pathway via PPAR-γ activation.

  1. Inhibition of human natural killer cell activity by Pseudomonas aeruginosa alkaline protease and elastase.

    PubMed Central

    Pedersen, B K; Kharazmi, A

    1987-01-01

    The present study was designed to examine the effect of Pseudomonas aeruginosa alkaline protease (AP) and elastase (Ela) on human natural killer (NK) cell activity in vitro. AP and Ela were found to inhibit NK cell function. Addition of alpha interferon and interleukin-2 did not abolish this inhibition of NK cell activity. Adhesion of effector to target cells was studied in a single-cell agarose assay of monocyte-depleted NK-cell-enriched cell populations. AP and Ela were shown to inhibit effector/target cell conjugate formation. Furthermore, AP and Ela inhibited the binding of the monoclonal antibody Leu-11, which reacts with the Fc receptor of NK cells. The inhibition of NK cell binding to the target cell by P. aeruginosa proteases is most likely due to proteolytic cleavage of the surface receptors involved in the binding of the effector cell to the target cell. PMID:3030937

  2. 5-aminoimidazole-4-carboxamide ribonucleoside and AMP-activated protein kinase inhibit signalling through NF-κB.

    PubMed

    Katerelos, Marina; Mudge, Stuart J; Stapleton, David; Auwardt, Russell B; Fraser, Scott A; Chen, C-G; Kemp, Bruce E; Power, David A

    2010-10-01

    Activation of nuclear factor-kappa B (NF-κB) is one of the most important pro-inflammatory mechanisms in disease. In this study, we show that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an intermediate in nucleoside metabolism, inhibits signalling by NF-κB in three cell types, including bovine aortic endothelial cells (BAEC). The block in the NF-κB signalling pathway occurred beyond degradation of IκB-α and movement of p65 into the nucleus of BAEC. There was, however, reduced binding of NF-κB from AICAR-treated cells to a κB-consensus oligonucleotide, suggesting that part of the mechanism was a reduction in NF-κB DNA-binding activity. Although AICAR is metabolized to ZMP and then adenosine, adenosine had no effect on activation of an NF-κB reporter. ZMP, however, activates the metabolic stress-sensing AMP-activated protein kinase (AMPK). Transfection of active AMPK into BAEC reduced NF-κB reporter activity compared with a kinase-dead mutant, suggesting that part of the ability of AICAR to inhibit NF-κB signalling is due to activation of AMPK. Inhibition of NF-κB signalling may be important in the anti-inflammatory action of drugs such as sulfasalazine and methotrexate, which led to the accumulation of AICAR within target cells.

  3. PTEN inhibits PREX2-catalyzed activation of RAC1 to restrain tumor cell invasion

    PubMed Central

    Mense, Sarah M.; Barrows, Douglas; Hodakoski, Cindy; Steinbach, Nicole; Schoenfeld, David; Su, William; Hopkins, Benjamin D.; Su, Tao; Fine, Barry; Hibshoosh, Hanina; Parsons, Ramon

    2016-01-01

    The tumor suppressor PTEN restrains cell migration and invasion by a mechanism that is independent of inhibition of the PI3K pathway and decreased activation of the kinase AKT. PREX2, a widely distributed GEF that activates the GTPase RAC1, binds to and inhibits PTEN. We used mouse embryonic fibroblasts and breast cancer cell lines to show that PTEN suppresses cell migration and invasion by blocking PREX2 activity. In addition to metabolizing the phosphoinositide PIP3, PTEN inhibited PREX2-induced invasion by a mechanism that required the tail domain of PTEN, but not its lipid phosphatase activity. Fluorescent nucleotide exchange assays revealed that PTEN inhibited the GEF activity of PREX2 toward RAC1. PREX2 is a frequently mutated GEF in cancer, and examination of human tumor data showed that PREX2 mutation was associated with high PTEN expression. Therefore, we tested whether cancer-derived somatic PREX2 mutants, which accelerate tumor formation of immortalized melanocytes, were inhibited by PTEN. The three stably expressed, somatic PREX2 cancer mutants that we tested were resistant to PTEN-mediated inhibition of invasion but retained the ability to inhibit the lipid phosphatase activity of PTEN. In vitro analysis showed that PTEN did not block the GEF activity of two PREX2 cancer mutants and had a reduced binding affinity for the third. Thus, PTEN antagonized migration and invasion by restraining PREX2 GEF activity, and PREX2 mutants are likely selected in cancer to escape PTEN-mediated inhibition of invasion. PMID:25829446

  4. Harmonine, a defence compound from the harlequin ladybird, inhibits mycobacterial growth and demonstrates multi-stage antimalarial activity

    PubMed Central

    Röhrich, Christian Rene; Ngwa, Che Julius; Wiesner, Jochen; Schmidtberg, Henrike; Degenkolb, Thomas; Kollewe, Christian; Fischer, Rainer; Pradel, Gabriele; Vilcinskas, Andreas

    2012-01-01

    The harlequin ladybird beetle Harmonia axyridis has been introduced in many countries as a biological control agent, but has become an invasive species threatening the biodiversity of native ladybirds. Its invasive success has been attributed to its vigorous resistance against diverse pathogens. This study demonstrates that harmonine ((17R,9Z)-1,17-diaminooctadec-9-ene), which is present in H. axyridis haemolymph, displays broad-spectrum antimicrobial activity that includes human pathogens. Antibacterial activity is most pronounced against fast-growing mycobacteria and Mycobacterium tuberculosis, and the growth of both chloroquine-sensitive and -resistant Plasmodium falciparum strains is inhibited. Harmonine displays gametocytocidal activity, and inhibits the exflagellation of microgametocytes and zygote formation. In an Anopheles stephensi mosquito feeding model, harmonine displays transmission-blocking activity. PMID:21937493

  5. Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2008-09-01

    Dust and black carbon aerosol have long been known to have potentially important and diverse impacts on cloud droplet formation. Most studies to date focus on the soluble fraction of such particles, and ignore interactions of the insoluble fraction with water vapor (even if known to be hydrophilic). To address this gap, we develop a new parameterization framework that considers cloud droplet formation within an ascending air parcel containing insoluble (but wettable) particles mixed with aerosol containing an appreciable soluble fraction. Activation of particles with a soluble fraction is described through well-established Köhler Theory, while the activation of hydrophilic insoluble particles is treated by "adsorption-activation" theory. In the latter, water vapor is adsorbed onto insoluble particles, the activity of which is described by a multilayer Frankel-Halsey-Hill (FHH) adsorption isotherm modified to account for particle curvature. We further develop FHH activation theory, and i) find combinations of the adsorption parameters AFHH, BFHH for which activation into cloud droplets is not possible, and, ii) express activation properties (critical supersaturation) that follow a simple power law with respect to dry particle diameter. Parameterization formulations are developed for sectional and lognormal aerosol size distribution functions. The new parameterization is tested by comparing the parameterized cloud droplet number concentration against predictions with a detailed numerical cloud model, considering a wide range of particle populations, cloud updraft conditions, water vapor condensation coefficient and FHH adsorption isotherm characteristics. The agreement between parameterization and parcel model is excellent, with an average error of 10% and R2 ~0.98.

  6. Activation and inhibition of rat neuronal nicotinic receptors by ABT-418

    PubMed Central

    Papke, Roger L; Thinschmidt, Jeffrey S; Moulton, Becky A; Meyer, Edwin M; Poirier, Amy

    1997-01-01

    ABT-418 appeared to function as a relatively broad spectrum activator of neuronal nicotinic receptors, expressed in Xenopus oocytes, with little cross reactivity to the mammalian muscle receptor subtype. However, the relative potencies of ABT-418 at the various subtypes differed from those acetylcholine (ACh). For example, ACh was most potent at α3β2 (EC50≈30 μM) and least potent at α2β2 (EC50≈500 μM). ABT-418 was most potent at α4β2 and α2β2 (EC50≈6 μM and 11 μM, respectively) and least potent at α3β4 (EC50≈188 μM).In addition to activating neuronal receptors, ABT-418 exhibited complex properties, including the inhibition of ACh responses.The current responses elicited by relatively high concentrations of ABT-418 on the α4β2 receptor subtype were protracted beyond the application interval. The coapplication of ABT-418 with either of the use-dependent inhibitors bis(1,2,2,6,6-tetramethyl-4-pipendimyl)sebacate (BTMPS) or tetramethyl-pipenidine (TMP) eliminated the late protracted phase of the currents with only small effects on the initial activation phase. When the reversible inhibitor TMP was washed from the bath, the previously inhibited late current reappeared, suggesting that the observed mixed agonist-antagonist effects of ABT-418 and (±)-epibatidine on α4β2 were due to a concentration-dependent noncompetitive inhibition, an effect similar to that obtained for (−)-nicotine.The inhibition of α4β2 receptors by ABT-418 was voltage-dependent. When high concentrations of ABT-418 were applied under depolarizing conditions, additional late currents could be observed under conditions which suggested that a build up of ABT-418 in an unstirred layer over the surface of the oocyte was occurring. This may have been due to the dissociation of the drug from channel blocking sites on the receptors themselves, or alternatively, from the plasma membrane of the cells. PMID:9031746

  7. Human neutrophil leukocyte elastase activity is inhibited by Phenol Red

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neutrophil elastase (NE) activity in urine, sputum and nasal mucous is used as an indicator of inflammation due to viral or bacterial infection. However, bovine nasal mucous neutrophils collected, lysed and stored in Dulbecco's minimal medium containing Phenol Red, showed no NE activity with methox...

  8. Diffractive laser beam homogenizer including a photo-active material and method of fabricating the same

    SciTech Connect

    Bayramian, Andy J; Ebbers, Christopher A; Chen, Diana C

    2014-05-20

    A method of manufacturing a plurality of diffractive optical elements includes providing a partially transmissive slide, providing a first piece of PTR glass, and directing first UV radiation through the partially transmissive slide to impinge on the first piece of PTR glass. The method also includes exposing predetermined portions of the first piece of PTR glass to the first UV radiation and thermally treating the exposed first piece of PTR glass. The method further includes providing a second piece of PTR glass and directing second UV radiation through the thermally treated first piece of PTR glass to impinge on the second piece of PTR glass. The method additionally includes exposing predetermined portions of the second piece of PTR glass to the second UV radiation, thermally treating the exposed second piece of PTR glass, and repeating providing and processing of the second piece of PTR glass using additional pieces of PTR glass.

  9. 7 CFR 981.441 - Credit for market promotion activities, including paid advertising.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... communication network), or portions of a web-site that target the farming or grower trade. (iii) For any... complementary product(s), or a handler selling multiple complementary products, including other nuts, with...

  10. 7 CFR 981.441 - Credit for market promotion activities, including paid advertising.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... communication network), or portions of a web-site that target the farming or grower trade. (iii) For any... complementary product(s), or a handler selling multiple complementary products, including other nuts, with...

  11. 7 CFR 981.441 - Credit for market promotion activities, including paid advertising.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... communication network), or portions of a web-site that target the farming or grower trade. (iii) For any... complementary product(s), or a handler selling multiple complementary products, including other nuts, with...

  12. 25 CFR 170.623 - How are IRR Program projects and activities included in a self-governance agreement?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How are IRR Program projects and activities included in a self-governance agreement? 170.623 Section 170.623 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE... self-governance agreement? To include an IRR Program project or activity in a self-governance...

  13. Cyclic-GMP-dependent protein kinase inhibits the Ras/Mitogen-activated protein kinase pathway.

    PubMed

    Suhasini, M; Li, H; Lohmann, S M; Boss, G R; Pilz, R B

    1998-12-01

    Agents which increase the intracellular cyclic GMP (cGMP) concentration and cGMP analogs inhibit cell growth in several different cell types, but it is not known which of the intracellular target proteins of cGMP is (are) responsible for the growth-suppressive effects of cGMP. Using baby hamster kidney (BHK) cells, which are deficient in cGMP-dependent protein kinase (G-kinase), we show that 8-(4-chlorophenylthio)guanosine-3', 5'-cyclic monophosphate and 8-bromoguanosine-3',5'-cyclic monophosphate inhibit cell growth in cells stably transfected with a G-kinase Ibeta expression vector but not in untransfected cells or in cells transfected with a catalytically inactive G-kinase. We found that the cGMP analogs inhibited epidermal growth factor (EGF)-induced activation of mitogen-activated protein (MAP) kinase and nuclear translocation of MAP kinase in G-kinase-expressing cells but not in G-kinase-deficient cells. Ras activation by EGF was not impaired in G-kinase-expressing cells treated with cGMP analogs. We show that activation of G-kinase inhibited c-Raf kinase activation and that G-kinase phosphorylated c-Raf kinase on Ser43, both in vitro and in vivo; phosphorylation of c-Raf kinase on Ser43 uncouples the Ras-Raf kinase interaction. A mutant c-Raf kinase with an Ala substitution for Ser43 was insensitive to inhibition by cGMP and G-kinase, and expression of this mutant kinase protected cells from inhibition of EGF-induced MAP kinase activity by cGMP and G-kinase, suggesting that Ser43 in c-Raf is the major target for regulation by G-kinase. Similarly, B-Raf kinase was not inhibited by G-kinase; the Ser43 phosphorylation site of c-Raf is not conserved in B-Raf. Activation of G-kinase induced MAP kinase phosphatase 1 expression, but this occurred later than the inhibition of MAP kinase activation. Thus, in BHK cells, inhibition of cell growth by cGMP analogs is strictly dependent on G-kinase and G-kinase activation inhibits the Ras/MAP kinase pathway (i) by

  14. Berberine regulates AMP-activated protein kinase signaling pathways and inhibits colon tumorigenesis in mice.

    PubMed

    Li, Weidong; Hua, Baojin; Saud, Shakir M; Lin, Hongsheng; Hou, Wei; Matter, Matthias S; Jia, Libin; Colburn, Nancy H; Young, Matthew R

    2015-10-01

    Colorectal cancer, a leading cause of cancer death, has been linked to inflammation and obesity. Berberine, an isoquinoline alkaloid, possesses anti-inflammatory, anti-diabetes and anti-tumor properties. In the azoxymethane initiated and dextran sulfate sodium (AOM/DSS) promoted colorectal carcinogenesis mouse model, berberine treated mice showed a 60% reduction in tumor number (P = 0.009), a 48% reduction in tumors <2 mm, (P = 0.05); 94% reduction in tumors 2-4 mm, (P = 0.001), and 100% reduction in tumors >4 mm (P = 0.02) compared to vehicle treated mice. Berberine also decreased AOM/DSS induced Ki-67 and COX-2 expression. In vitro analysis showed that in addition to its anti-proliferation activity, berberine also induced apoptosis in colorectal cancer cell lines. Berberine activated AMP-activated protein kinase (AMPK), a major regulator of metabolic pathways, and inhibited mammalian target of rapamycin (mTOR), a downstream target of AMPK. Furthermore, 4E-binding protein-1 and p70 ribosomal S6 kinases, downstream targets of mTOR, were down regulated by berberine treatment. Berberine did not affect Liver kinase B1 (LKB1) activity or the mitogen-activated protein kinase pathway. Berberine inhibited Nuclear Factor kappa-B (NF-κB) activity, reduced the expression of cyclin D1 and survivin, induced phosphorylation of p53 and increased caspase-3 cleavage in vitro. Berberine inhibition of mTOR activity and p53 phosphorylation was found to be AMPK dependent, while inhibition NF-κB was AMPK independent. In vivo, berberine also activated AMPK, inhibited mTOR and p65 phosphorylation and activated caspase-3 cleavage. Our data suggests that berberine suppresses colon epithelial proliferation and tumorigenesis via AMPK dependent inhibition of mTOR activity and AMPK independent inhibition of NF-κB.

  15. Electrode including porous particles with embedded active material for use in a secondary electrochemical cell

    DOEpatents

    Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt

    1978-04-25

    Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure. The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.

  16. In vitro and in vivo anti-plasmodial activity of essential oils, including hinokitiol.

    PubMed

    Fujisaki, Ryuichi; Kamei, Kiyoko; Yamamura, Mariko; Nishiya, Hajime; Inouye, Shigeharu; Takahashi, Miki; Abe, Shigeru

    2012-03-01

    Abstract. The anti-plasmodial activity of 47 essential oils and 10 of their constituents were screened for in vitro activity against Plasmodium falciparum. Five of these essential oils (sandalwood, caraway, monarda, nutmeg, and Thujopsis dolabrata var. hondai) and 2 constituents (thymoquinone and hinokitiol) were found to be active against P. falciparum in vitro, with 50% inhibitory concentration (IC50) values equal to or less than 1.0 microg/ml. Furthermore, in vivo analysis using a rodent model confirmed the anti-plasmodial potential of subcutaneously administered sandalwood oil, and percutaneously administered hinokitiol and caraway oil against rodent P. berghei. Notably, these oils showed no efficacy when administered orally, intraperitoneally or intravenously. Caraway oil and hinokitiol dissolved in carrier oil, applied to the skin of hairless mice caused high levels in the blood, with concentrations exceeding their IC50 values.

  17. PEDF inhibits AGE-induced podocyte apoptosis via PPAR-gamma activation.

    PubMed

    Ishibashi, Yuji; Matsui, Takanori; Ohta, Keisuke; Tanoue, Ryuichiro; Takeuchi, Masayoshi; Asanuma, Katsuhiko; Fukami, Kei; Okuda, Seiya; Nakamura, Kei-ichiro; Yamagishi, Sho-ichi

    2013-01-01

    Advanced glycation end products (AGEs) formed at an accelerated rate under diabetes, elicit oxidative and pro-apoptotic reactions in various types of cells, including podocytes, thus being involved in the development and progression of diabetic nephropathy. Recently, we, along with others, have found that pigment epithelium-derived factor (PEDF), a glycoprotein with potent neuronal differentiating activity, inhibits AGE-elicited mesangial and tubular cell damage through its anti-oxidative properties. However, the effects of PEDF on podocyte loss, one of the characteristic features of diabetic nephropathy remain unknown. In this study, we investigated whether and how PEDF could protect against AGE-elicited podocyte apoptosis in vitro. AGEs decreased PEDF mRNA level in podocytes, which was blocked by neutralizing antibody raised against receptor for AGEs (RAGE-Ab). PEDF or RAGE-Ab was found to inhibit the AGE-induced up-regulation of RAGE mRNA level, oxidative stress generation and resultant apoptosis in podocytes. All of the beneficial effects of PEDF on AGE-exposed podocytes were blocked by the treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPARγ). Further, although PEDF did not affect protein expression levels of PPARγ, it significantly restored the PPARγ transcriptional activity in AGE-exposed podocytes. The present results demonstrated for the first time that PEDF could block the AGE-induced apoptotic cell death of podocytes by suppressing RAGE expression and subsequent ROS generation partly via PPARγ activation. Our present study suggests that substitution of PEDF proteins may be a promising strategy for preventing the podocyte loss in diabetic nephropathy.

  18. Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2009-04-01

    Dust and black carbon aerosol have long been known to exert potentially important and diverse impacts on cloud droplet formation. Most studies to date focus on the soluble fraction of these particles, and overlook interactions of the insoluble fraction with water vapor (even if known to be hydrophilic). To address this gap, we developed a new parameterization that considers cloud droplet formation within an ascending air parcel containing insoluble (but wettable) particles externally mixed with aerosol containing an appreciable soluble fraction. Activation of particles with a soluble fraction is described through well-established Köhler theory, while the activation of hydrophilic insoluble particles is treated by "adsorption-activation" theory. In the latter, water vapor is adsorbed onto insoluble particles, the activity of which is described by a multilayer Frenkel-Halsey-Hill (FHH) adsorption isotherm modified to account for particle curvature. We further develop FHH activation theory to i) find combinations of the adsorption parameters AFHH, BFHH which yield atmospherically-relevant behavior, and, ii) express activation properties (critical supersaturation) that follow a simple power law with respect to dry particle diameter. The new parameterization is tested by comparing the parameterized cloud droplet number concentration against predictions with a detailed numerical cloud model, considering a wide range of particle populations, cloud updraft conditions, water vapor condensation coefficient and FHH adsorption isotherm characteristics. The agreement between parameterization and parcel model is excellent, with an average error of 10% and R2~0.98. A preliminary sensitivity study suggests that the sublinear response of droplet number to Köhler particle concentration is not as strong for FHH particles.

  19. Crizotinib Inhibits Hyperpolarization-activated Cyclic Nucleotide-Gated Channel 4 Activity

    PubMed Central

    Zhang, Zhushan; Huang, Tai-Qin; Nepliouev, Igor; Zhang, Hengtao; Barnett, Adam S.; Rosenberg, Paul B.; Ou, Sai-Hong I.; Stiber, Jonathan A.

    2017-01-01

    Background Sinus bradycardia is frequently observed in patients treated with crizotinib, a receptor tyrosine kinase inhibitor used for the treatment of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). We investigated whether crizotinib could influence heart rate (HR) through direct cardiac effects. Methods The direct effect of crizotinib on HR was studied using ECG analysis of Langendorff-perfused mouse hearts. The whole-cell patch clamp technique was used to measure the effects of crizotinib on the hyperpolarization-activated funny current, If, in mouse sinoatrial node cells (SANCs) and hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) activity in HEK-293 cells stably expressing human HCN4. Results Crizotinib resulted in a dose-dependent reduction in HR in isolated intact mouse hearts with a half maximal inhibitory concentration (IC50) of 1.7 ± 0.4 μmol/L. Because ECG analysis revealed that crizotinib (0–5 μmol/L) resulted in significant reductions in HR in isolated mouse hearts without changes in PR, QRS, or QT intervals, we performed whole-cell patch clamp recordings of SANCs which showed that crizotinib inhibited If which regulates cardiac pacemaker activity. Crizotinib resulted in diminished current density of HCN4, the major molecular determinant of If, with an IC50 of 1.4 ± 0.3 μmol/L. Crizotinib also slowed HCN4 activation and shifted the activation curve to the left towards more hyperpolarized potentials. Conclusions Our results suggest that crizotinib’s effects on HCN4 channels play a significant role in mediating its observed effects on HR. PMID:28217366

  20. Bayesian models trained with HTS data for predicting β-haematin inhibition and in vitro antimalarial activity

    PubMed Central

    Wicht, Kathryn J.; Combrinck, Jill M.; Smith, Peter J.; Egan, Timothy J.

    2015-01-01

    A large quantity of high throughput screening (HTS) data for antimalarial activity has become available in recent years. This includes both phenotypic and target-based activity. Realising the maximum value of these data remains a challenge. In this respect, methods that allow such data to be used for virtual screening maximise efficiency and reduce costs. In this study both in vitro antimalarial activity and inhibitory data for β-haematin formation, largely obtained from publically available sources, has been used to develop Bayesian models for inhibitors of β-haematin formation and in vitro antimalarial activity. These models were used to screen two in silico compound libraries. In the first, the 1510 U.S. Food and Drug Administration approved drugs available on PubChem were ranked from highest to lowest Bayesian score based on a training set of β-haematin inhibiting compounds active against P. falciparum that did not include any of the clinical antimalarials or close analogues. The six known clinical antimalarials that inhibit β-haematin formation were ranked in the top 2.1% of compounds. Furthermore, the in vitro antimalarial hit-rate for this prioritised set of compounds was found to be 81% in the case of the subset where activity data are available in PubChem. In the second, a library of about 5,000 commercially available compounds (AldrichCPR) was virtually screened for ability to inhibit β-haematin formation and then for in vitro antimalarial activity. A selection of 34 compounds was purchased and tested, of which 24 were predicted to be β-haematin inhibitors. The hit rate for inhibition of β-haematin formation was found to be 25% and a third of these were active against P. falciparum, corresponding to enrichments estimated at about 25- and 140-fold relative to random screening, respectively. PMID:25573118

  1. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation.

    PubMed

    Wang, Su Bin; Jang, Ji Yong; Chae, Yun Hee; Min, Ji Hyun; Baek, Jin Young; Kim, Myunghee; Park, Yunjeong; Hwang, Gwi Seo; Ryu, Jae-Sang; Chang, Tong-Shin

    2015-06-01

    Reactive oxygen species (ROS) generated upon collagen stimulation act as second messengers to propagate various platelet-activating events. Among the ROS-generating enzymes, NADPH oxidase (NOX) plays a prominent role in platelet activation. Thus, NOX has been suggested as a novel target for anti-platelet drug development. Although kaempferol has been identified as a NOX inhibitor, the influence of kaempferol on the activation of platelets and the underlying mechanism have never been investigated. Here, we studied the effects of kaempferol on NOX activation, ROS-dependent signaling pathways, and functional responses in collagen-stimulated platelets. Superoxide anion generation stimulated by collagen was significantly inhibited by kaempferol in a concentration-dependent manner. More importantly, kaempferol directly bound p47(phox), a major regulatory subunit of NOX, and significantly inhibited collagen-induced phosphorylation of p47(phox) and NOX activation. In accordance with the inhibition of NOX, ROS-dependent inactivation of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) was potently protected by kaempferol. Subsequently, the specific tyrosine phosphorylation of key components (Syk, Vav1, Btk, and PLCγ2) of collagen receptor signaling pathways was suppressed by kaempferol. Kaempferol also attenuated downstream responses, including cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Ultimately, kaempferol inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. This study shows that kaempferol impairs collagen-induced platelet activation through inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2. This effect suggests that kaempferol has therapeutic potential for the prevention and treatment of thrombovascular diseases.

  2. Antioxidant and nitric oxide inhibition activities of Thai medicinal plants.

    PubMed

    Makchuchit, Sunita; Itharat, Arunporn; Tewtrakul, Supinya

    2010-12-01

    Nineteen Thai medicinal plants used in Thai traditional medicine preparation to treat colds, asthma and fever were studied for their antioxidant and NO inhibitory activities. Three extracts were obtained from each plant. First extract obtained by macerating the plant part in 95% ethanol (Et) residue was boiled in water, where water extract (EW) was obtained. The third extract (HW) was obtained by boiling each plant in water similar to that of Thai traditional medicine practice. These extracts were tested for their antioxidant activity using DPPH assay, and anti-inflammatory activity by determination of inhibitory activity on lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 cell lines using Griess reagent. Results indicated that Et, EW and HW of Syzygium aromaticum showed the highest antioxidant activity (EC50 = 6.56, 4.73 and 5.30 microg/ml, respectively). Et of Atractylodes lancea exhibited the most potent inhibitory activity on lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 cells, with IC50 value of 9.70 microg/ml, followed by Et of Angelica sinensis and Cuminum cyminum (IC50 = 12.52 and 13.56 microg/ml, respectively) but water extract (EW, HW) of all plants were apparently inactive. These results of anti-inflammatory activity of these plants correspond with the traditional use for fever; cold, allergic-related diseases and inflammatory-related diseases.

  3. EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function.

    PubMed

    Phuchareon, Janyaporn; McCormick, Frank; Eisele, David W; Tetsu, Osamu

    2015-07-21

    Nonsmall cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. About 14% of NSCLCs harbor mutations in epidermal growth factor receptor (EGFR). Despite remarkable progress in treatment with tyrosine kinase inhibitors (TKIs), only 5% of patients achieve tumor reduction >90%. The limited primary responses are attributed partly to drug resistance inherent in the tumor cells before therapy begins. Recent reports showed that activation of receptor tyrosine kinases (RTKs) is an important determinant of this innate drug resistance. In contrast, we demonstrate that EGFR inhibition promotes innate drug resistance despite blockade of RTK activity in NSCLC cells. EGFR TKIs decrease both the mitogen-activated protein kinase (MAPK) and Akt protein kinase pathways for a short time, after which the Ras/MAPK pathway becomes reactivated. Akt inhibition selectively blocks the transcriptional activation of Ets-1, which inhibits its target gene, dual specificity phosphatase 6 (DUSP6), a negative regulator specific for ERK1/2. As a result, ERK1/2 is activated. Furthermore, elevated c-Src stimulates Ras GTP-loading and activates Raf and MEK kinases. These observations suggest that not only ERK1/2 but also Akt activity is essential to maintain Ets-1 in an active state. Therefore, despite high levels of ERK1/2, Ets-1 target genes including DUSP6 and cyclins D1, D3, and E2 remain suppressed by Akt inhibition. Reduction of DUSP6 in combination with elevated c-Src renews activation of the Ras/MAPK pathway, which enhances cell survival by accelerating Bim protein turnover. Thus, EGFR TKIs evoke innate drug resistance by preventing Akt activity and inactivating Ets-1 function in NSCLC cells.

  4. Observing a fictitious stressful event: haematological changes, including circulating leukocyte activation.

    PubMed

    Mian, Rubina; Shelton-Rayner, Graham; Harkin, Brendan; Williams, Paul

    2003-03-01

    The aim of this study was to assess the effect of watching a psychological stressful event on the activation of leukocytes in healthy human volunteers. Blood samples were obtained from 32 healthy male and female subjects aged between 20 and 26 years before, during and after either watching an 83-minute horror film that none of the subjects had previously seen (The Texas Chainsaw Massacre, 1974) or by sitting quietly in a room (control group). Total differential cell counts, leukocyte activation as measured by the nitroblue tetrazolium (NBT) test, heart rate and blood pressure (BP) measurements were taken at defined time points. There were significant increases in peripheral circulating leukocytes, the number of activated circulating leukocytes, haemoglobin (Hb) concentration and haematocrit (Hct) in response to the stressor. These were accompanied by significant increases in heart rate, systolic and diastolic BP (P<0.05 from baseline). This is the first reported study on the effects of observing a psychologically stressful, albeit fictitious event on circulating leukocyte numbers and the state of leukocyte activation as determined by the nitrotetrazolium test.

  5. Population and Human Development: A Course Curriculum Including Lesson Plans, Activities and Bibliography.

    ERIC Educational Resources Information Center

    Murphy, Elaine M.

    This course outline suggests materials and learning activities on the interrelated causes and consequences of population growth and other population concerns. Designed to educate general college audiences, it is also intended for use as a preservice course for teachers. In addition, the course can be modified for high school students. The course…

  6. Beyond Right or Wrong: Challenges of Including Creative Design Activities in the Classroom

    ERIC Educational Resources Information Center

    Brennan, Karen

    2015-01-01

    In this article, we explore challenges encountered by K-12 educators in establishing classroom cultures that support creative learning activities with the Scratch programming language. Providing opportunities for students to understand and to build capacities for creative work was described by many of the teachers that we interviewed as a central…

  7. Sixty Minutes of Physical Activity per Day Included within Preschool Academic Lessons Improves Early Literacy

    ERIC Educational Resources Information Center

    Kirk, Stacie M.; Kirk, Erik P.

    2016-01-01

    Background: The effects of increases in physical activity (PA) on early literacy skills in preschool children are not known. Methods: Fifty-four African-American preschool children from a low socioeconomic urban Head Start participated over 8 months. A 2-group, quasi-experimental design was used with one preschool site participating in the PA…

  8. Using assistive technology adaptations to include students with learning disabilities in cooperative learning activities.

    PubMed

    Bryant, D P; Bryant, B R

    1998-01-01

    Cooperative learning (CL) is a common instructional arrangement that is used by classroom teachers to foster academic achievement and social acceptance of students with and without learning disabilities. Cooperative learning is appealing to classroom teachers because it can provide an opportunity for more instruction and feedback by peers than can be provided by teachers to individual students who require extra assistance. Recent studies suggest that students with LD may need adaptations during cooperative learning activities. The use of assistive technology adaptations may be necessary to help some students with LD compensate for their specific learning difficulties so that they can engage more readily in cooperative learning activities. A process for integrating technology adaptations into cooperative learning activities is discussed in terms of three components: selecting adaptations, monitoring the use of the adaptations during cooperative learning activities, and evaluating the adaptations' effectiveness. The article concludes with comments regarding barriers to and support systems for technology integration, technology and effective instructional practices, and the need to consider technology adaptations for students who have learning disabilities.

  9. Physical Activity Programs in Higher Education: Modifying Net/Wall Games to Include Individuals with Disabilities

    ERIC Educational Resources Information Center

    Braga, Luciana; Tracy, Julia F.; Taliaferro, Andrea R.

    2015-01-01

    The growing number of students with disabilities in higher education settings has presented challenges for instructors with regards to appropriate inclusion. Concerning physical activity courses in higher education, instructors may not have the knowledge or resources to make modifications and accommodations that will ultimately result in…

  10. Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation.

    PubMed

    Coutinho-Silva, Robson; Stahl, Lynn; Raymond, Marie-Noëlle; Jungas, Thomas; Verbeke, Philippe; Burnstock, Geoffrey; Darville, Toni; Ojcius, David M

    2003-09-01

    Chlamydia trachomatis survives within host cells by inhibiting fusion between Chlamydia vacuoles and lysosomes. We show here that treatment of infected macrophages with ATP leads to killing of chlamydiae through ligation of the purinergic receptor, P2X(7)R. Chlamydial killing required phospholipase D (PLD) activation, as PLD inhibition led to rescue of chlamydiae in ATP-treated macrophages. However, there was no PLD activation nor chlamydial killing in ATP-treated P2X(7)R-deficient macrophages. P2X(7)R ligation exerts its effects by promoting fusion between Chlamydia vacuoles and lysosomes. P2X(7)R stimulation also resulted in macrophage death, but fusion with lysosomes preceded macrophage death and PLD inhibition did not prevent macrophage death. These results suggest that P2X(7)R ligation leads to PLD activation, which is directly responsible for inhibition of infection.

  11. Inhibition of transcriptional activity of c-JUN by SIRT1

    SciTech Connect

    Gao Zhanguo; Ye Jianping

    2008-11-28

    c-JUN is a major component of heterodimer transcription factor AP-1 (Activator Protein-1) that activates gene transcription in cell proliferation, inflammation and stress responses. SIRT1 (Sirtuin 1) is a histone deacetylase that controls gene transcription through modification of chromatin structure. However, it is not clear if SIRT1 regulates c-JUN activity in the control of gene transcription. Here, we show that SIRT1 associated with c-JUN in co-immunoprecipitation of whole cell lysate, and inhibited the transcriptional activity of c-JUN in the mammalian two hybridization system. SIRT1 was found in the AP-1 response element in the matrix metalloproteinase-9 (MMP9) promoter DNA leading to inhibition of histone 3 acetylation as shown in a ChIP assay. The SIRT1 signal was reduced by the AP-1 activator PMA, and induced by the SIRT1 activator Resveratrol in the promoter DNA. SIRT1-mediaetd inhibition of AP-1 was demonstrated in the MMP9 gene expression at the gene promoter, mRNA and protein levels. In mouse embryonic fibroblast (MEF) with SIRT1 deficiency (SIRT1{sup -/-}), mRNA and protein of MMP9 were increased in the basal condition, and the inhibitory activity of Resveratrol was significantly attenuated. Glucose-induced MMP9 expression was also inhibited by SIRT1 in response to Resveratrol. These data consistently suggest that SIRT1 directly inhibits the transcriptional activity of AP-1 by targeting c-JUN.

  12. Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells.

    PubMed

    Jeong, Soo-Jin; Pise-Masison, Cynthia A; Radonovich, Michael F; Park, Hyeon Ung; Brady, John N

    2005-10-06

    AKT activation enhances resistance to apoptosis and induces cell survival signaling through multiple downstream pathways. We now present evidence that AKT is activated in HTLV-1-transformed cells and that Tax activation of AKT is linked to NF-kappaB activation, p53 inhibition and cell survival. Overexpression of AKT wild type (WT), but not a kinase dead (KD) mutant, resulted in increased Tax-mediated NF-kappaB activation. Blocking AKT with the PI3K/AKT inhibitor LY294002 or AKT SiRNA prevented NF-kappaB activation and inhibition of p53. Treatment of C81 cells with LY294002 resulted in an increase in the p53-responsive gene MDM2, suggesting a role for AKT in the Tax-mediated regulation of p53 transcriptional activity. Further, we show that LY294002 treatment of C81 cells abrogates in vitro IKKbeta phosphorylation of p65 and causes a reduction of p65 Ser-536 phosphorylation in vivo, steps critical to p53 inhibition. Interestingly, blockage of AKT function did not affect IKKbeta phosphorylation of IkappaBalpha in vitro suggesting selective activity of AKT on the IKKbeta complex. Finally, AKT prosurvival function in HTLV-1-transformed cells is linked to expression of Bcl-xL. We suggest that AKT plays a role in the activation of prosurvival pathways in HTLV-1-transformed cells, possibly through NF-kappaB activation and inhibition of p53 transcription activity.

  13. An Updated Review of Interventions that Include Promotion of Physical Activity for Adult Men.

    PubMed

    Bottorff, Joan L; Seaton, Cherisse L; Johnson, Steve T; Caperchione, Cristina M; Oliffe, John L; More, Kimberly; Jaffer-Hirji, Haleema; Tillotson, Sherri M

    2015-06-01

    The marked disparity in life expectancy between men and women suggests men are a vulnerable group requiring targeted health promotion programs. As such, there is an increasing need for health promotion strategies that effectively engage men with their health and/or illness management. Programs that promote physical activity could significantly improve the health of men. Although George et al. (Sports Med 42(3):281, 30) reviewed physical activity programs involving adult males published between 1990 and 2010, developments in men's health have prompted the emergence of new sex- and gender-specific approaches targeting men. The purpose of this review was to: (1) extend and update the review undertaken by George et al. (Sports Med 42(3):281, 30) concerning the effectiveness of physical activity programs in males, and (2) evaluate the integration of gender-specific influences in the content, design, and delivery of men's health promotion programs. A search of MEDLINE, CINAHL, ScienceDirect, Web of Science, PsycINFO, the Cochrane Library, and the SPORTDiscus databases for articles published between January 2010 and August 2014 was conducted. In total, 35 studies, involving evaluations of 31 programs, were identified. Findings revealed that a variety of techniques and modes of delivery could effectively promote physical activity among men. Though the majority of programs were offered exclusively to men, 12 programs explicitly integrated gender-related influences in male-specific programs in ways that recognized men's interests and preferences. Innovations in male-only programs that focus on masculine ideals and gender influences to engage men in increasing their physical activity hold potential for informing strategies to promote other areas of men's health.

  14. IRF-1 inhibits NF-κB activity, suppresses TRAF2 and cIAP1 and induces breast cancer cell specific growth inhibition.

    PubMed

    Armstrong, Michaele J; Stang, Michael T; Liu, Ye; Yan, Jin; Pizzoferrato, Eva; Yim, John H

    2015-01-01

    Interferon Regulatory Factor (IRF)-1, originally identified as a transcription factor of the human interferon (IFN)-β gene, mediates tumor suppression and may inhibit oncogenesis. We have shown that IRF-1 in human breast cancer cells results in the down-regulation of survivin, tumor cell death, and the inhibition of tumor growth in vivo in xenogeneic mouse models. In this current report, we initiate studies comparing the effect of IRF-1 in human nonmalignant breast cell and breast cancer cell lines. While IRF-1 in breast cancer cells results in growth inhibition and cell death, profound growth inhibition and cell death are not observed in nonmalignant human breast cells. We show that TNF-α or IFN-γ induces IRF-1 in breast cancer cells and results in enhanced cell death. Abrogation of IRF-1 diminishes TNF-α and IFN-γ-induced apoptosis. We test the hypothesis that IRF-1 augments TNF-α-induced apoptosis in breast cancer cells. Potential signaling networks elicited by IRF-1 are investigated by evaluating the NF-κB pathway. TNF-α and/or IFN-γ results in decreased presence of NF-κB p65 in the nucleus of breast cancer cells. While TNF-α and/or IFN-γ can induce IRF-1 in nonmalignant breast cells, a marked change in NF-κB p65 is not observed. Moreover, the ectopic expression of IRF-1 in breast cancer cells results in caspase-3, -7, -8 cleavage, inhibits NF-κB activity, and suppresses the expression of molecules involved in the NF-κB pathway. These data show that IRF-1 in human breast cancer cells elicits multiple signaling networks including intrinsic and extrinsic cell death and down-regulates molecules involved in the NF-κB pathway.

  15. Forsythiaside inhibits cigarette smoke-induced lung inflammation by activation of Nrf2 and inhibition of NF-κB.

    PubMed

    Cheng, Li; Li, Fan; Ma, Rui; Hu, Xianping

    2015-09-01

    Cigarette smoke has been reported to be the major cause of chronic obstructive pulmonary disease (COPD). It causes persistent inflammation by regulating the redox-sensitive pathways. Forsythiaside, an active constituent isolated from the Chinese medicinal herb Forsythia suspensa, has been reported to have anti-inflammatory and anti-oxidant effects. Thus, in this study, we investigated the protective effects of forsythiaside against cigarette smoke-induced lung inflammation in mice. COPD mice model was established by cigarette smoke. Forsythiaside was given 2h before cigarette smoke exposure for five consecutive days. Bronchoalveolar lavage fluid and lung tissues were collected to assess pathological changes, lipid peroxidation, inflammatory cytokine production, Nrf-2, and NF-κB expression. Our results showed that forsythiaside attenuated the infiltration of inflammatory cells, NO and inflammatory cytokines TNF-α, IL-6 and IL-1β production, and reversed the CS-induced decrease of glutathione/glutathione disulfide (GSH/GSSG) ratio. Western blot analysis showed that forsythiaside inhibited cigarette smoke-induced NF-κB activation. In addition, forsythiaside dose-dependently up-regulated the expression of Nrf2 and HO-1. In conclusion, forsythiaside protected against cigarette smoke-induced lung injury through activating Nrf2 and inhibiting NF-κB signaling pathway.

  16. Chelating agents inhibit activity and prevent expression of streptococcal glucan-binding lectins.

    PubMed Central

    Lü-Lü; Singh, J S; Galperin, M Y; Drake, D; Taylor, K G; Doyle, R J

    1992-01-01

    Several of the cariogenic mutans streptococci produce cell wall-associated glucan-binding lectins (GBLs). The lectins bind alpha-1,6-linked glucans and have no affinity for other polysaccharides or anomeric linkages. When citrate or lactate was included in the growth medium, expression of the activities of the GBLs of Streptococcus cricetus and S. sobrinus was prevented. Furthermore, chelating agents, including citrate, lactate, EDTA, and acetylacetone, were able to reversibly inhibit glucan-induced aggregation of GBL+ streptococci. In addition, the chelating agents prevented sucrose-dependent streptococcal adhesion to glass surfaces and dispersed preformed adherent masses of the streptococci. Neither citrate nor other chelating agents modified the activities of glucosyltransferases. Expression of the lectin could only be achieved by the addition of manganous ion to the growth medium. Chloramphenicol and other metabolic inhibitors prevented synthesis of GBL in cells obtained from manganese-deficient medium and shifted to manganous ion-sufficient medium. The GBL may be a manganoprotein, the manganese of which may be perturbed, but not removed, by chelating agents. During synthesis of the GBL, manganous ion may be required in order for the protein to achieve an active conformation. Citrate or other chelating agents may have promise as anticaries agents. Images PMID:1500189

  17. Gossypol enantiomers potently inhibit human placental 3β-hydroxysteroid dehydrogenase 1 and aromatase activities.

    PubMed

    Dong, Yaoyao; Mao, Baiping; Li, Linxi; Guan, Hongguo; Su, Ying; Li, Xiaoheng; Lian, Qingquan; Huang, Ping; Ge, Ren-Shan

    2016-03-01

    Gossypol is a chemical isolated from cotton seeds. It exists as (+) or (-) enantiomer and has been tested for anticancer, abortion-inducing, and male contraception. Progesterone formed from pregnenolone by 3β-hydroxysteroid dehydrogenase 1 (HSD3B1) and estradiol from androgen by aromatase (CYP19A1) are critical for the maintenance of pregnancy or associated with some cancers. In this study we compared the potencies of (+)- and (-)-gossypol enantiomers in the inhibition of HSD3B1 and aromatase activities as well as progesterone and estradiol production in human placental JEG-3 cells. (+) Gossypol showed potent inhibition on human placental HSD3B1 with IC50 value of 2.3 μM, while (-) gossypol weakly inhibited it with IC50 over 100 μM. In contrast, (-) gossypol moderately inhibited CYP19A1 activity with IC50 of 23 μM, while (+) gossypol had no inhibition when the highest concentration (100 μM) was tested. (+) Gossypol enantiomer competitively inhibited HSD3B1 against substrate pregnenolone and showed mixed mode against NAD(+). (-) Gossypol competitively inhibited CYP19A1 against substrate testosterone. Gossypol enantiomers showed different potency related to their inhibition on human HSD3B1 and CYP19A1. Whether gossypol enantiomer is used alone or in combination relies on its application and beneficial effects.

  18. Emodin inhibits migration and invasion of DLD-1 (PRL-3) cells via inhibition of PRL-3 phosphatase activity.

    PubMed

    Han, Young-Min; Lee, Su-Kyung; Jeong, Dae Gwin; Ryu, Seong Eon; Han, Dong Cho; Kim, Dae Keun; Kwon, Byoung-Mog

    2012-01-01

    Anthraquinones have been reported as phosphatase inhibitors. Therefore, anthraquinone derivatives were screened to identify a potent phosphatase inhibitor against the phosphatase of regenerating liver-3 (PRL-3). Emodin strongly inhibited phosphatase activity of PRL-3 with IC(50) values of 3.5μM and blocked PRL-3-induced tumor cell migration and invasion in a dose-dependent manner. Emodin rescued the phosphorylation of ezrin, which is a known PRL-3 substrate. The results of this study reveal that emodin is a PRL-3 inhibitor and a good lead molecule for obtaining a selective PRL-3 inhibitor.

  19. Space Resources for Teachers: Biology, Including Suggestions for Classroom Activities and Laboratory Experiments.

    ERIC Educational Resources Information Center

    Lee, Tom E.; And Others

    This compilation of resource units concerns the latest developments in space biology. Some of the topics included are oxygen consumption, temperature, radiation, rhythms, weightlessness, acceleration and vibration stress, toxicity, and sensory and perceptual problems. Many of the topics are interdisciplinary and relate biology, physiology,…

  20. Synthesis and acetylcholinesterase/butyrylcholinesterase inhibition activity of new tacrine-like analogues.

    PubMed

    Marco, J L; de los Ríos, C; Carreiras, M C; Baños, J E; Badía, A; Vivas, N M

    2001-03-01

    The synthesis and preliminary results for acetylcholinesterase and butyrylcholinesterase inhibition activity of a series of pyrano[2,3-b]quinolines (2, 3) and benzonaphthyridines (5, 6) derivatives are described. These molecules are tacrine-like analogues which have been prepared from readily available polyfunctionalized ethyl [6-amino-5-cyano-4H-pyrans and 6-amino-5-cyanopyridines]-3-carboxylates via Friedlander condensation with selected ketones. These compounds showed moderate acetylcholinesterase inhibition activity, the more potent (2e, 5b) being 6 times less active than tacrine. The butyrylcholinesterase activity of some of these molecules is also discussed.

  1. The insect peptide CopA3 inhibits lipopolysaccharide-induced macrophage activation.

    PubMed

    Nam, Hyo Jung; Oh, Ah Reum; Nam, Seung Taek; Kang, Jin Ku; Chang, Jong Soo; Kim, Dae Hong; Lee, Ji Hye; Hwang, Jae Sam; Shong, Ko Eun; Park, Mi Jung; Seok, Heon; Kim, Ho

    2012-10-01

    We recently demonstrated that the insect peptide CopA3 (LLCIALRKK), a disulfide-linked dimeric peptide, exerts antimicrobial and anti-inflammatory activities in a mouse colitis model. Here, we examined whether CopA3 inhibited activation of macrophages by LPS. Exposure of an unseparated mouse peritoneal cell population or isolated peritoneal macrophages to LPS markedly increased secretion of IL-6 and TNF-α; these effects were significantly inhibited by CopA3 treatment. The inhibitory effect of CopA3 was also evident in murine macrophage cell line, RAW 264.7. Western blotting revealed that LPS-induced activation of STAT1 and STAT5 in macrophages was significantly inhibited by CopA3. Inhibition of JAK (STAT1/STAT5 kinase) with AG490 markedly reduced the production of IL-6 and TNF-α in macrophages. Collectively, these observations suggest that CopA3 inhibits macrophage activation by inhibiting activating phosphorylations of the transcription factors, STAT1 and STAT5, and blocking subsequent production of IL-6 and TNF-α and indicate that CopA3 may be useful as an immune-modulating agent.

  2. A spatial model of cellular molecular trafficking including active transport along microtubules.

    PubMed

    Cangiani, A; Natalini, R

    2010-12-21

    We consider models of Ran-driven nuclear transport of molecules such as proteins in living cells. The mathematical model presented is the first to take into account for the active transport of molecules along the cytoplasmic microtubules. All parameters entering the models are thoroughly discussed. The model is tested by numerical simulations based on discontinuous Galerkin finite element methods. The numerical experiments are compared to the behavior observed experimentally.

  3. p-HPEA-EDA, a phenolic compound of virgin olive oil, activates AMP-activated protein kinase to inhibit carcinogenesis.

    PubMed

    Khanal, Prem; Oh, Won-Keun; Yun, Hyo Jeong; Namgoong, Gwang Mo; Ahn, Sang-Gun; Kwon, Seong-Min; Choi, Hoo-Kyun; Choi, Hong Seok

    2011-04-01

    Phenolic constituents of virgin olive oil are reported to have antitumor activity. However, the underlying molecular mechanisms and specific target proteins of virgin olive oil remain to be elucidated. Here, we report that dialdehydic form of decarboxymethyl ligstroside aglycone (p-HPEA-EDA), a phenolic compound of virgin olive oil, inhibits tumor promoter-induced cell transformation in JB6 Cl41 cells and suppress cyclooxygenase-2 (COX-2) and tumorigenicity by adenosine monophosphate-activated protein kinase (AMPK) activation in HT-29 cells. p-HPEA-EDA inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced phosphorylation of extracellular signal-regulated kinases 1/2 and p90RSK in JB6 Cl41 cells, resulting in the inhibition of cell proliferation, activator protein-1 transactivation and cell transformation promoted by TPA. Moreover, p-HPEA-EDA strongly inhibited the cell viability and COX-2 expression by activation of AMPK activity in HT-29 cells, resulted from depletion of intracellular adenosine triphosphate. p-HPEA-EDA-induced activation of caspase-3 and poly-adenosine diphosphate-ribose polymerase, phosphorylation of p53 (Ser15) and DNA fragmentation in HT-29 cells, leading to apoptosis. Importantly, p-HPEA-EDA suppressed the colony formation of HT-29 cells in soft agar. In contrast, Compound C, an AMPK inhibitor, and Z-DEVD-FMK, a caspase-3 inhibitor, blocked the p-HPEA-EDA-inhibited colony formation in HT-29 cells. In vivo chorioallantoic membrane assay also showed that p-HPEA-EDA-inhibited tumorigenicity of HT-29 cells. These findings revealed that targeted activation of AMPK and inhibition of COX-2 expression by p-HPEA-EDA contribute to the chemopreventive and chemotherapeutic potential of virgin olive oil against colon cancer cells.

  4. Lycopene and other carotenoids inhibit estrogenic activity of 17beta-estradiol and genistein in cancer cells.

    PubMed

    Hirsch, Keren; Atzmon, Andrea; Danilenko, Michael; Levy, Joseph; Sharoni, Yoav

    2007-08-01

    Epidemiological evidence suggests that carotenoids prevent several types of cancer, including mammary and endometrial cancers. On the other hand, such studies have also shown that estrogens are the most important risk factors for these cancer types. Genistein, the phytoestrogen mainly found in soy, also shows significant estrogenic activity when tested at concentrations found in human blood. The aim of this study was to determine whether carotenoids inhibit signaling of steroidal estrogen and phytoestrogen which could explain their cancer preventive activity. Similar to the known effect of 17beta-estradiol (E(2)), treatment of breast (T47D and MCF-7) and endometrial (ECC-1) cancer cells with phytoestrogens induced cell proliferation, cell-cycle progression and transactivation of the estrogen response element (ERE). However, each of the tested carotenoids (lycopene, phytoene, phytofluene, and beta-carotene) inhibited cancer cell proliferation induced by either E(2) or genistein. The inhibition of cell growth by lycopene was accompanied by slow down of cell-cycle progression from G1 to S phase. Moreover, the carotenoids inhibited estrogen-induced transactivation of ERE that was mediated by both estrogen receptors (ERs) ERalpha and ERbeta. The possibility that this inhibition results from competition of carotenoid-activated transcription systems on a limited pool of shared coactivators with the ERE transcription system was tested. Although cotransfection of breast and endometrial cancer cells with four different coactivators (SRC-1, SRC-2, SRC-3, and DRIP) strongly stimulated ERE reporter gene activity, it did not oppose the inhibitory effect of carotenoids. These results suggest that dietary carotenoids inhibit estrogen signaling of both 17beta-estradiol and genistein, and attenuate their deleterious effect in hormone-dependent malignancies.

  5. Inhibition of aldehyde dehydrogenase 2 activity enhances antimycin-induced rat cardiomyocytes apoptosis through activation of MAPK signaling pathway.

    PubMed

    Zhang, Peng; Xu, Danling; Wang, Shijun; Fu, Han; Wang, Keqiang; Zou, Yunzeng; Sun, Aijun; Ge, Junbo

    2011-12-01

    Aldehyde dehydrogenase 2 (ALDH2), a mitochondrial-specific enzyme, has been proved to be involved in oxidative stress-induced cell apoptosis, while little is known in cardiomyocytes. This study was aimed at investigating the role of ALDH2 in antimycin A-induced cardiomyocytes apoptosis by suppressing ALDH2 activity with a specific ALDH2 inhibitor Daidzin. Antimycin A (40μg/ml) was used to induce neonatal cardiomyocytes apoptosis. Daidzin (60μM) effectively inhibited ALDH2 activity by 50% without own effect on cell apoptosis, and significantly enhanced antimycin A-induced cardiomyocytes apoptosis from 33.5±4.4 to 56.5±6.4% (Hochest method, p<0.05), and from 57.9±1.9 to 74.0±11.9% (FACS, p<0.05). Phosphorylation of activated MAPK signaling pathway, including extracellular signal-regulated kinase (ERK1/2), c-Jun NH2-terminal kinase (JNK) and p38 was also increased in antimycin A and daidzin treated cardiomyocytes compared to the cells treated with antimycin A alone. These findings indicated that modifying mitochondrial ALDH2 activity/expression might be a potential therapeutic option on reducing oxidative insults induced cardiomyocytes apoptosis.

  6. C-5-Modified Tetrahydropyrano-Tetrahydofuran-Derived Protease Inhibitors (PIs) Exert Potent Inhibition of the Replication of HIV-1 Variants Highly Resistant to Various PIs, including Darunavir

    PubMed Central

    Aoki, Manabu; Hayashi, Hironori; Yedidi, Ravikiran S.; Martyr, Cuthbert D.; Takamatsu, Yuki; Aoki-Ogata, Hiromi; Nakamura, Teruya; Nakata, Hirotomo; Das, Debananda; Yamagata, Yuriko; Ghosh, Arun K.

    2015-01-01

    ABSTRACT We identified three nonpeptidic HIV-1 protease inhibitors (PIs), GRL-015, -085, and -097, containing tetrahydropyrano-tetrahydrofuran (Tp-THF) with a C-5 hydroxyl. The three compounds were potent against a wild-type laboratory HIV-1 strain (HIV-1WT), with 50% effective concentrations (EC50s) of 3.0 to 49 nM, and exhibited minimal cytotoxicity, with 50% cytotoxic concentrations (CC50) for GRL-015, -085, and -097 of 80, >100, and >100 μM, respectively. All the three compounds potently inhibited the replication of highly PI-resistant HIV-1 variants selected with each of the currently available PIs and recombinant clinical HIV-1 isolates obtained from patients harboring multidrug-resistant HIV-1 variants (HIVMDR). Importantly, darunavir (DRV) was >1,000 times less active against a highly DRV-resistant HIV-1 variant (HIV-1DRVRP51); the three compounds remained active against HIV-1DRVRP51 with only a 6.8- to 68-fold reduction. Moreover, the emergence of HIV-1 variants resistant to the three compounds was considerably delayed compared to the case of DRV. In particular, HIV-1 variants resistant to GRL-085 and -097 did not emerge even when two different highly DRV-resistant HIV-1 variants were used as a starting population. In the structural analyses, Tp-THF of GRL-015, -085, and -097 showed strong hydrogen bond interactions with the backbone atoms of active-site amino acid residues (Asp29 and Asp30) of HIV-1 protease. A strong hydrogen bonding formation between the hydroxyl moiety of Tp-THF and a carbonyl oxygen atom of Gly48 was newly identified. The present findings indicate that the three compounds warrant further study as possible therapeutic agents for treating individuals harboring wild-type HIV and/or HIVMDR. IMPORTANCE Darunavir (DRV) inhibits the replication of most existing multidrug-resistant HIV-1 strains and has a high genetic barrier. However, the emergence of highly DRV-resistant HIV-1 strains (HIVDRVR) has recently been observed in vivo and in

  7. Evaluation of antioxidant and urease inhibition activities of roots of Glycyrrhiza glabra.

    PubMed

    Lateef, Mehreen; Iqbal, Lubna; Fatima, Nudrat; Siddiqui, Kauser; Afza, Nighat; Zia-ul-Haq, Muhammad; Ahmad, Mansoor

    2012-01-01

    The object of this study is to determine the antioxidant activity of extracts from Glycyrrhiza glabra roots. The parent extract is methanolic extract while its sub fractions were prepared in ethyl acetate, chloroform, and n-butanol. The method based on scavenging activity and reduction capability of 1, 1-diphenyl-2-picrylhydrazyl radical (DPPH). Urease inhibition activities of these extracts were also evaluated. Chloroform fraction was the most effective antioxidant with 87.7% activity but the activity is less than the crude methanolic extract i.e. 90%. Chloroform fraction showed the same trend in reducing power as that in radical scavenging activity. However n- butanol extract was devoid of any activity when compared to standard BHA. Crude methanolic fraction and its sub-fractions were also screened for enzyme inhibition activities using jackbean urease as substrate. Significant anti urease activity i.e. 72 % was observed in the ethyl acetate fraction with respect to standard inhibitor thiourea.

  8. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    SciTech Connect

    Mena, Natalia P.; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C.; Nunez, Marco T.

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  9. Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent antitumor activity.

    PubMed

    Turkson, James; Zhang, Shumin; Palmer, Jay; Kay, Heidi; Stanko, Joseph; Mora, Linda B; Sebti, Said; Yu, Hua; Jove, Richard

    2004-12-01

    DNA-alkylating agents that are platinum complexes induce apoptotic responses and have wide application in cancer therapy. The potential for platinum compounds to modulate signal transduction events that contribute to their therapeutic outcome has not been extensively examined. Among the signal transducer and activator of transcription (STAT) proteins, Stat3 activity is frequently up-regulated in many human tumors. Various lines of evidence have established a causal role for aberrant Stat3 activity in malignant transformation and provided validation for its targeting in the development of small-molecule inhibitors as novel cancer therapeutics. We report here that platinum-containing compounds disrupt Stat3 signaling and suppress its biological functions. The novel platinum (IV) compounds, CPA-1, CPA-7, and platinum (IV) tetrachloride block Stat3 activity in vitro at low micromolar concentrations. In malignant cells that harbor constitutively activated Stat3, CPA-1, CPA-7, and platinum (IV) tetrachloride inhibit cell growth and induce apoptosis in a manner that reflects the attenuation of persistent Stat3 activity. By contrast, cells that do not contain persistent Stat3 activity are marginally affected or are not affected by these compounds. Moreover, CPA-7 induces the regression of mouse CT26 colon tumor, which correlates with the abrogation of persistent Stat3 activity in tumors. Thus, the modulation of oncogenic signal transduction pathways, such as Stat3, may be one of the key molecular mechanisms for the antitumor effects of platinum (IV)-containing complexes.

  10. Cerebellar brain inhibition in the target and surround muscles during voluntary tonic activation

    PubMed Central

    Panyakaew, Pattamon; Cho, Hyun Joo; Srivanitchapoom, Prachaya; Popa, Traian; Wu, Tianxia; Hallett, Mark

    2016-01-01

    Motor surround inhibition is the neural mechanism that selectively favors the contraction of target muscles and inhibits nearby muscles to prevent unwanted movements. This inhibition was previously reported at the onset of a movement, but not during a tonic contraction. Cerebellar brain inhibition (CBI) is reduced in active muscles during tonic activation; however, it has not been studied in the surround muscles. CBI was evaluated in the first dorsal interosseus (FDI) as the target muscle, and the abductor digiti minimi (ADM), flexor carpi radialis (FCR), and extensor carpi radialis (ECR) as surround muscles during rest and tonic activation of FDI in fourteen subjects. Cerebellar stimulation was performed under MRI-guided neuronavigation targeting lobule VIII of the cerebellar hemisphere. Stimulus intensities for cerebellar stimulation were based on the resting motor cortex threshold (RMT) and adjusted for the depth difference between the cerebellar and motor cortices. We used 90% to 120% of adjusted RMT as the conditioning stimulus intensity during rest. The intensity that generated the best CBI at rest in the FDI was selected for use during tonic activation. During selective tonic activation of FDI, CBI was significantly reduced only for FDI but not for the surround muscles. Unconditioned MEP sizes were increased in all muscles during FDI tonic activation compared to rest, despite background EMG activity increasing only for the FDI. Our study suggests that the cerebellum may play an important role in selective tonic finger movement by reducing its inhibition in the motor cortex only for the relevant agonist muscle. PMID:26900871

  11. Essential Oil of Pinus koraiensis Exerts Antiobesic and Hypolipidemic Activity via Inhibition of Peroxisome Proliferator-Activated Receptors Gamma Signaling

    PubMed Central

    Ko, Hyun-Suk; Lee, Hyo-Jeong; Lee, Hyo-Jung; Sohn, Eun Jung; Yun, Miyong; Lee, Min-Ho; Kim, Sung-Hoon

    2013-01-01

    Our group previously reported that essential oil of Pinus koraiensis (EOPK) exerts antihyperlipidemic effects via upregulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A. In the present study, we investigated the antiobesity and hypolipidemic mechanism of EOPK using in vitro 3T3-L1 cells and in vivo HFD-fed rats. EOPK markedly suppressed fat accumulation and intracellular triglyceride associated with downregulation of adipogenic transcription factor expression, including PPARγ and CEBPα in the differentiated 3T3-L1 adipocytes. Additionally, EOPK attenuated the expression levels of FABP and GPDH as target genes of PPARγ during adipocyte differentiation. Furthermore, PPARγ inhibitor GW9662 enhanced the decreased expression of FABP and PPARγ and fat accumulation induced by EOPK. To confirm the in vitro activity of EOPK, animal study was performed by administering normal diet, HFD, and/or EOPK at the dose of 100 or 200 mg/kg for 6 weeks. Consistently, EOPK significantly suppressed body weight gain, serum triglyceride, total cholesterol, LDL cholesterol, and AI value and increased HDL cholesterol in a dose-dependent manner. Immunohistochemistry revealed that EOPK treatment abrogated the expression of PPARγ in the liver tissue sections of EOPK-treated rats. Taken together, our findings suggest that EOPK has the antiobesic and hypolipidemic potential via inhibition of PPARγ-related signaling. PMID:23997801

  12. Sumoylation delays the ATF7 transcription factor subcellular localization and inhibits its transcriptional activity.

    PubMed

    Hamard, Pierre-Jacques; Boyer-Guittaut, Michaël; Camuzeaux, Barbara; Dujardin, Denis; Hauss, Charlotte; Oelgeschläger, Thomas; Vigneron, Marc; Kedinger, Claude; Chatton, Bruno

    2007-01-01

    Over the past few years, small ubiquitin-like modifier (SUMO) modification has emerged as an important regulator of diverse pathways and activities including protein localization and transcriptional regulation. We identified a consensus sumoylation motif (IKEE), located within the N-terminal activation domain of the ATF7 transcription factor and thus investigated the role of this modification. ATF7 is a ubiquitously expressed transcription factor, homologous to ATF2, that binds to CRE elements within specific promoters. This protein is able to heterodimerize with Jun or Fos proteins and its transcriptional activity is mediated by interaction with TAF12, a subunit of the general transcription factor TFIID. In the present article, we demonstrate that ATF7 is sumoylated in vitro (using RanBP2 as a E3-specific ligase) and in vivo. Moreover, we show that ATF7 sumoylation affects its intranuclear localization by delaying its entry into the nucleus. Furthermore, SUMO conjugation inhibits ATF7 transactivation activity by (i) impairing its association with TAF12 and (ii) blocking its binding-to-specific sequences within target promoters.

  13. Catalase ameliorates hepatic fibrosis by inhibition of hepatic stellate cells activation.

    PubMed

    Dong, Yuwei; Qu, Ying; Xu, Mingyi; Wang, Xingpeng; Lu, Lungen

    2014-01-01

    Catalase, an endogenous antioxidant enzyme, is thought to have rescue effects on hepatic fibrosis. In this study, the regulation of catalase in CCl₄-induced hepatic fibrogenesis was investigated. Our results indicated that catalase expression was decreased upon CCl₄ treatment in a time-dependent manner, while the expression of several profibrosis and proangiogenic factors, including transforming growth factor (TGF)-beta 1, vascular endothelial growth factor (VEGF), and angiopoietin 1 were significantly increased. To assess the role of catalase in hepatic fibrosis, catalase was overexpressed in HSC-T6 cells. This overexpression resulted in the inhibition of cell proliferation, migratory activity, and alpha-smooth muscle actin (alpha-SMA) expression, key features that characterize activation of hepatic stellate cells (HSC). Overexpression of catalase led to a decrease in the secretion of collagen type 1 and angiopoietin 1. These results indicate that loss of catalase activity is involved in the pathogenesis of hepatic fibrosis caused by the activation of HSCs.

  14. Mechanisms of growth inhibition of primary prostate epithelial cells following gamma irradiation or photodynamic therapy include senescence, necrosis, and autophagy, but not apoptosis.

    PubMed

    Frame, Fiona M; Savoie, Huguette; Bryden, Francesca; Giuntini, Francesca; Mann, Vincent M; Simms, Matthew S; Boyle, Ross W; Maitland, Norman J

    2016-01-01

    In comparison to more differentiated cells, prostate cancer stem-like cells are radioresistant, which could explain radio-recurrent prostate cancer. Improvement of radiotherapeutic efficacy may therefore require combination therapy. We have investigated the consequences of treating primary prostate epithelial cells with gamma irradiation and photodynamic therapy (PDT), both of which act through production of reactive oxygen species (ROS). Primary prostate epithelial cells were cultured from patient samples of benign prostatic hyperplasia and prostate cancer prior to treatment with PDT or gamma irradiation. Cell viability was measured using MTT and alamar blue assay, and cell recovery by colony-forming assays. Immunofluorescence of gamma-H2AX foci was used to quantify DNA damage, and autophagy and apoptosis were assessed using Western blots. Necrosis and senescence were measured by propidium iodide staining and beta-galactosidase staining, respectively. Both PDT and gamma irradiation reduced the colony-forming ability of primary prostate epithelial cells. PDT reduced the viability of all types of cells in the cultures, including stem-like cells and more differentiated cells. PDT induced necrosis and autophagy, whereas gamma irradiation induced senescence, but neither treatment induced apoptosis. PDT and gamma irradiation therefore inhibit cell growth by different mechanisms. We suggest these treatments would be suitable for use in combination as sequential treatments against prostate cancer.

  15. Inhibition of human placental aromatase activity by hydroxylated polybrominated diphenyl ethers (OH-PBDEs)

    SciTech Connect

    Canton, Rocio F. Scholten, Deborah E.A.; Marsh, Goeran; Jong, Paul C. de; Berg, Martin van den

    2008-02-15

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants in many different polymers, resins and substrates. Due to their widespread production and use, their high binding affinity to particles, and their lipophilic properties, several PBDE congeners can bioaccumulate in the environment. As a result, PBDEs and their hydroxylated metabolites (OH-PBDEs) have been detected in humans and various wildlife samples, such as birds, seals, and whales. Furthermore, certain OH-PBDEs and their methoxylated derivatives (MeO-PBDEs) are natural products in the marine environment. Recently, our laboratory focused on the possible effects on steroidogenesis of PBDEs and OH-PBDEs, e.g. in the human adrenocortical carcinoma (H295R) cell line indicating that some OH-PBDEs can significantly influence steroidogenic enzymes like CYP19 (aromatase) and CYP17. In the present study, human placental microsomes have been used to study the possible interaction of twenty two OH-PBDEs and MeO-PBDEs with aromatase, the enzyme that mediates the conversion of androgens into estrogens. All OH-PBDE derivates showed significant inhibition of placental aromatase activity with IC{sub 50} values in the low micromolar range, while the MeO-PBDEs did not have any effect on this enzyme activity. Enzyme kinetics studies indicated that two OH-PBDEs, 5-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (5-OH-BDE47) and 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE47), had a mixed-type inhibition of aromatase activity with apparent K{sub i}/K{sub i}' of 7.68/0,02 {mu}M and 5.01/0.04 {mu}M respectively. For comparison, some structurally related compounds, a dihydroxylated polybrominated biphenyl, which is a natural product (2,2'-dihyroxy-3,3',5,5'-tetrabromobiphenyl (2,2'-diOH-BB80)) and its non-bromo derivative were also included in the study. Again inhibition of aromatase activity could be measured, but their potency was significantly less than those observed for the OH-PBDEs. These results show

  16. Inhibition of human placental aromatase activity by hydroxylated polybrominated diphenyl ethers (OH-PBDEs).

    PubMed

    Cantón, Rocío F; Scholten, Deborah E A; Marsh, Göran; de Jong, Paul C; van den Berg, Martin

    2008-02-15

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants in many different polymers, resins and substrates. Due to their widespread production and use, their high binding affinity to particles, and their lipophilic properties, several PBDE congeners can bioaccumulate in the environment. As a result, PBDEs and their hydroxylated metabolites (OH-PBDEs) have been detected in humans and various wildlife samples, such as birds, seals, and whales. Furthermore, certain OH-PBDEs and their methoxylated derivatives (MeO-PBDEs) are natural products in the marine environment. Recently, our laboratory focused on the possible effects on steroidogenesis of PBDEs and OH-PBDEs, e.g. in the human adrenocortical carcinoma (H295R) cell line indicating that some OH-PBDEs can significantly influence steroidogenic enzymes like CYP19 (aromatase) and CYP17. In the present study, human placental microsomes have been used to study the possible interaction of twenty two OH-PBDEs and MeO-PBDEs with aromatase, the enzyme that mediates the conversion of androgens into estrogens. All OH-PBDE derivates showed significant inhibition of placental aromatase activity with IC(50) values in the low micromolar range, while the MeO-PBDEs did not have any effect on this enzyme activity. Enzyme kinetics studies indicated that two OH-PBDEs, 5-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (5-OH-BDE47) and 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE47), had a mixed-type inhibition of aromatase activity with apparent K(i)/K(i)' of 7.68/0,02 microM and 5.01/0.04 microM respectively. For comparison, some structurally related compounds, a dihydroxylated polybrominated biphenyl, which is a natural product (2,2'-dihyroxy-3,3',5,5'-tetrabromobiphenyl (2,2'-diOH-BB80)) and its non-bromo derivative were also included in the study. Again inhibition of aromatase activity could be measured, but their potency was significantly less than those observed for the OH-PBDEs. These results show that a

  17. EGCG inhibits CTGF expression via blocking NF-κB activation in cardiac fibroblast.

    PubMed

    Cai, Yi; Yu, Shan-Shan; Chen, Ting-Ting; Gao, Si; Geng, Biao; Yu, Yang; Ye, Jian-Tao; Liu, Pei-Qing

    2013-01-15

    Connective tissue growth factor (CTGF) has been reported to play an important role in tissue fibrosis and presents a promising therapeutic target for fibrotic diseases. In heart, inappropriate increase in level of CTGF promotes fibroblast proliferation and extracellular matrix (ECM) accumulation, thereby exacerbating cardiac hypertrophy and subsequent failure. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea, possesses multiple protective effects on the cardiovascular system including cardiac fibrosis. However, the molecular mechanism by which EGCG exerts its anti-fibrotic effects has not been well investigated. In this study, we found that EGCG could significantly reduce collagen synthesis, fibronectin (FN) expression and cell proliferation in rat cardiac fibroblasts stimulated with angiotensinII (AngII). It also ameliorated cardiac fibrosis in rats submitted to abdominal aortic constriction (AAC). Moreover, EGCG attenuated the excessive expression of CTGF induced by AAC or AngII, and reduced the nuclear translocation of NF-κB p65 subunit and degradation of IκB-α. Subsequently, we demonstrated that in cardiac fibroblasts NF-κB inhibition could suppress AngII-induced CTGF expression. Taken together, these findings provide the first evidence that the effect of EGCG against cardiac fibrosis may be attributed to its inhibition on NF-κB activation and subsequent CTGF overexpression, suggesting the therapeutic potential of EGCG on the prevention of cardiac remodeling in patients with pressure overload hypertrophy.

  18. Inhibition of β-Secretase Activity by Monoterpenes, Sesquiterpenes, and C13 Norisoprenoids.

    PubMed

    Marumoto, Shinsuke; Okuno, Yoshiharu; Miyazawa, Mitsuo

    2017-04-04

    Inhibition of β-secretase (BACE1) is currently regarded as the leading treatment strategy for Alzheimer's disease. In the present study, we aimed to screen the in vitro inhibitory activity of 80 types of aroma compounds (monoterpenes, sesquiterpenes, and C13 norisoprenoids), including plant-based types, at a 200-μM concentration against a recombinant human BACE1. The results showed that the most potent inhibitor of BACE1 was geranyl acetone followed by (+)-camphor, (-)-fenchone, (+)-fenchone, and (-)-camphor with the half-maximal inhibitory concentration (IC50) values of 51.9 ± 3.9, 95.9 ± 11.0, 106.3 ± 14.9, 117.0 ± 18.6, and 134.1 ± 16.4 μM, respectively. Furthermore, the mechanism of inhibition of BACE1 by geranyl acetone was analyzed using Dixon kinetics plus Cornish-Bowden plots, which revealed mixedtype mode. Therefore aroma compounds may be used as potential lead molecules for designing anti-BACE1 agents.

  19. Inhibition of Neutrophil Adhesion and Antimicrobial Activity by Diluted Hydrosol Prepared from Rosa damascena.

    PubMed

    Maruyama, Naho; Tansho-Nagakawa, Shigeru; Miyazaki, Chizuru; Shimomura, Kazuyuki; Ono, Yasuo; Abe, Shigeru

    2017-01-01

    Hydrosol prepared from the flowers of Rosa damascena (rose water) has been traditionally used for various health-related issues, including skin troubles such as erythema, itchiness, swelling. For the care of these skin troubles caused by microbial infection, both antimicrobial and antiinflammatory effects are required. Here, we investigated the effects of rose water on the growth of Candida albicans and methicillin-resistant Staphylococcus aureus (MRSA), which cause skin infections, and on the function of neutrophils, which play a major role in the regulation of inflammatory reactions. To assess its modulatory effects on neutrophils, the effects of rose water against neutrophil adhesion response were evaluated. Rose water inhibited mycelial growth of C. albicans at a concentration of ca. 2.2%, and reduced viability of MRSA within 1 h. Rose water suppressed neutrophil activation induced by lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-α), and N-formyl-Met-Leu-Phe (fMLP) at 5-15%. It also reduced the LPS- and TNF-α-induced cell surface expression of the adhesion-related molecule, cluster of differentiation (CD) 11b, but did not affect the migratory capacity of neutrophils with or without chemoattractant. These results suggest that rose water may reduce the pathogenicity of microbes, and attenuate neutrophil stimulation, which is involved in inflammatory responses. These findings suggest that rose water has a potential effect to inhibit skin inflammation caused by microbes.

  20. Inhibition of matrix metalloproteinase activity in human dentin via novel antibacterial monomer

    PubMed Central

    Li, Fang; Majd, Hessam; Weir, Michael D.; Arola, Dwayne D.; Xu, Hockin H.K.

    2015-01-01

    Objectives Dentin-composite bond failure is caused by factors including hybrid layer degradation, which in turn can be caused by hydrolysis and enzymatic degradation of the exposed collagen in the dentin. The objectives of this study were to investigate a new antibacterial monomer (dimethylaminododecyl methacrylate, DMADDM) as an inhibitor for matrix metalloproteinases (MMPs), and to determine the effects of DMADDM on both soluble recombinant human MMPs (rhMMPs) and dentin matrix-bound endogenous MMPs. Methods Inhibitory effects of DMADDM at six mass% (0.1% to 10%) on soluble rhMMP-8 and rhMMP-9 were measured using a colorimetic assay. Matrix-bound endogenous MMP activity was evaluated in demineralized human dentin. Dentin beams were divided into four groups (n = 10) and incubated in calcium- and zinc-containing media (control medium); or control medium + 0.2% chlorhexidine (CHX); 5% 12-methacryloyloxydodecylpyridinium bromide (MDPB); or 5% DMADDM. Dissolution of dentin collagen peptides was evaluated by mechanical testing in three-point flexure, loss of dentin mass, and a hydroxyproline assay. Results Use of 0.1% to 10% DMADDM exhibited a strong concentration-dependent anti-MMP effect, reaching 90% of inhibition on rhMMP-8 and rhMMP-9 at 5% DMADDM concentration. Dentin beams in medium with 5% DMADDM showed 34% decrease in elastic modulus (vs. 73% decrease for control), 3% loss of dry dentin mass (vs. 28% loss for control), and significantly less solubilized hydroxyproline when compared with control (p < 0.05). Significance The new antibacterial monomer DMADDM was effective in inhibiting both soluble rhMMPs and matrix-bound human dentin MMPs. These results, together with previous studies showing that adhesives containing DMADDM inhibited biofilms without compromising dentin bond strength, suggest that DMADDM is promising for use in adhesives to prevent collagen degradation in hybrid layer and protect the resin-dentin bond. PMID:25595564

  1. Extraction of rice bran extract and some factors affecting its inhibition of polyphenol oxidase activity and browning in potato.

    PubMed

    Boonsiripiphat, Kunnikar; Theerakulkait, Chockchai

    2009-01-01

    The extraction conditions of rice bran extract (RBE), including extraction ratio, extraction time, and extraction temperature, were studied in relation to enzymatic browning inhibition in potato. The inhibitory effect of RBE on potato polyphenol oxidase (PPO) activity and its total phenolic compound content were highest at an extraction ratio of 1:3 (rice bran:water, w/v), extraction time of 30 min, and extraction temperature of 40 degrees C. RBE showed the most inhibitory effect on PPO activity at pH 6.5. However, the inhibitory effect of RBE on potato PPO activity and its total phenolic compound content were decreased at the higher temperature and longer time.

  2. Novel Antiplatelet Activity of Minocycline Involves Inhibition of MLK3-p38 Mitogen Activated Protein Kinase Axis

    PubMed Central

    Jackson, Joseph W.; Singh, Meera V.; Singh, Vir B.; Jones, Letitia D.; Davidson, Gregory A.; Ture, Sara; Morrell, Craig N.; Schifitto, Giovanni; Maggirwar, Sanjay B.

    2016-01-01

    Platelets play an essential role in hemostasis and wound healing by facilitating thrombus formation at sites of injury. Platelets also mediate inflammation and contain several pro-inflammatory molecules including cytokines and chemokines that mediate leukocyte recruitment and activation. Not surprisingly, platelet dysfunction is known to contribute to several inflammatory disorders. Antiplatelet therapies, such as aspirin, adenosine diphosphate (ADP) antagonists, glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitors, and anticoagulants such as warfarin, dampen platelet activity at the risk of unwarranted bleeding. Thus, the development of drugs that reduce platelet-mediated inflammation without interfering with thrombus formation is of importance to combat platelet-associated disorders. We have shown here for the first time that the tetracycline antibiotic, minocycline, administered to HIV-infected individuals reduces plasma levels of soluble CD40L and platelet factor 4 levels, host molecules predominately released by platelets. Minocycline reduced the activation of isolated platelets in the presence of the potent platelet activator, thrombin, as measured by ELISA and flow cytometry. Platelet degranulation was reduced upon exposure to minocycline as shown by mepacrine retention and flow cytometry. However, minocycline had no effect on spreading, aggregation, GPIIb/IIIa activation, or in vivo thrombus formation. Lastly, immunoblot analysis suggests that the antiplatelet activity of minocycline is likely mediated by inhibition of mixed lineage kinase 3 (MLK3)-p38 MAPK signaling axis and loss of p38 activity. Our findings provide a better understanding of platelet biology and a novel repurposing of an established antibiotic, minocycline, to specifically reduce platelet granule release without affecting thrombosis, which may yield insights in generating novel, specific antiplatelet therapies. PMID:27270236

  3. Brain-derived neurotrophic factor inhibits calcium channel activation, exocytosis, and endocytosis at a central nerve terminal.

    PubMed

    Baydyuk, Maryna; Wu, Xin-Sheng; He, Liming; Wu, Ling-Gang

    2015-03-18

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic function and plasticity and plays important roles in neuronal development, survival, and brain disorders. Despite such diverse and important roles, how BDNF, or more generally speaking, neurotrophins affect synapses, particularly nerve terminals, remains unclear. By measuring calcium currents and membrane capacitance during depolarization at a large mammalian central nerve terminal, the rat calyx of Held, we report for the first time that BDNF slows down calcium channel activation, including P/Q-type channels, and inhibits exocytosis induced by brief depolarization or single action potentials, inhibits slow and rapid endocytosis, and inhibits vesicle mobilization to the readily releasable pool. These presynaptic mechanisms may contribute to the important roles of BDNF in regulating synapses and neuronal circuits and suggest that regulation of presynaptic calcium channels, exocytosis, and endocytosis are potential mechanisms by which neurotrophins achieve diverse neuronal functions.

  4. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides.

    PubMed

    Mitchell, Daniel E; Gibson, Matthew I

    2015-10-12

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs.

  5. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides

    PubMed Central

    2015-01-01

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs. PMID:26407233

  6. Calpain activation through galectin-3 inhibition sensitizes prostate cancer cells to cisplatin treatment

    PubMed Central

    Wang, Y; Nangia-Makker, P; Balan, V; Hogan, V; Raz, A

    2010-01-01

    Prostate cancer will develop chemoresistance following a period of chemotherapy. This is due, in part, to the acquisition of antiapoptotic properties by the cancer cells and, therefore, development of novel strategies for treatment is of critical need. Here, we attempt to clarify the role of the antiapoptotic molecule galectin-3 in prostate cancer cells using siRNA and antagonist approaches. The data showed that Gal-3 inhibition by siRNA or its antagonist GCS-100/modified citrus pectin (MCP) increased cisplatin-induced apoptosis of PC3 cells. Recent studies have indicated that cisplatin-induced apoptosis may be mediated by calpain, a calcium-dependent protease, as its activation leads to cleavage of androgen receptor into an androgen-independent isoform in prostate cancer cells. Thus, we examined whether calpain activation is associated with the Gal-3 function of regulating apoptosis. Here, we report that Gal-3 inhibition by siRNA or GCS-100/MCP enhances calpain activation, whereas Gal-3 overexpression inhibits it. Inhibition of calpain using its inhibitor and/or siRNA attenuated the proapoptotic effect of Gal-3 inhibition, suggesting that calpain activation may be a novel mechanism for the proapoptotic effect of Gal-3 inhibition. Thus, a paradigm shift for treating prostate cancer is suggested whereby a combination of a non-toxic anti-Gal-3 drug together with a toxic chemotherapeutic agent could serve as a novel therapeutic modality for chemoresistant prostate cancers. PMID:21368866

  7. A Methodology for Post Operational Clean Out of a Highly Active Facility Including Solids Behaviour - 12386

    SciTech Connect

    Edmondson, Michael J.; Ward, Tracy R.; Maxwell, Lisa J.

    2012-07-01

    The Highly Active Liquor Evaporation and Storage (HALES) plant at Sellafield handles acidic fission product containing liquor with typical activities of the order of 18x10{sup 9} Bq/ml. A strategy experimental feedback approach has been used to establish a wash regime for the Post Operational Clean Out (POCO) of the oldest storage tanks for this liquor. Two different wash reagents have been identified as being potentially suitable for removal of acid insoluble fission product precipitates. Ammonium carbamate and sodium carbonate yield similar products during the proposed wash cycle. The proposed wash reagents provide dissolution of caesium phosphomolybdate (CPM) and zirconium molybdate (ZM) solid phases but yields a fine, mobile precipitate of metal carbonates from the Highly Active Liquor (HAL) supernate. Addition of nitric acid to the wash effluent can cause CPM to precipitate where there is sufficient caesium and phosphorous available. Where they are not present (from ZM dissolution) the nitric acid addition initially produces a nitrate precipitate which then re-dissolves, along with the metal carbonates, to give a solid-free solution. The different behaviour of the two solids during the wash cycle has led to the proposal for an amended flowsheet. Additional studies on the potential to change the morphology of crystallising ZM have presented opportunities for changing the rheology of ZM sediments through doping with tellurium or particular organic acids. Two different wash reagents have been identified as being potentially suitable for the POCO of HALES Oldside HASTs. AC and SC both yield similar products during the proposed wash cycle. However, the different behaviour of the two principle HAL solids, CPM and ZM, during the wash cycle has led to the proposal for an amended flowsheet. Additional studies on the potential to change the morphology of crystallising ZM have presented opportunities for changing its rheology through doping with tellurium or certain

  8. Inhibition of H3K27me3 Histone Demethylase Activity Prevents the Proliferative Regeneration of Zebrafish Lateral Line Neuromasts

    PubMed Central

    Bao, Beier; He, Yingzi; Tang, Dongmei; Li, Wenyan; Li, Huawei

    2017-01-01

    The H3K27 demethylases are involved in a variety of biological processes, including cell differentiation, proliferation, and cell death by regulating transcriptional activity. However, the function of H3K27 demethylation in the field of hearing research is poorly understood. Here, we investigated the role of H3K27me3 histone demethylase activity in hair cell regeneration using an in vivo animal model. Our data showed that pharmacologic inhibition of H3K27 demethylase activity with the specific small-molecule inhibitor GSK-J4 decreased the number of regenerated hair cells in response to neomycin damage. Furthermore, inhibition of H3K27me3 histone demethylase activity dramatically suppressed cell proliferation and activated caspase-3 levels in the regenerating neuromasts of the zebrafish lateral line. GSK-J4 administration also increased the expression of p21 and p27 in neuromast cells and inhibited the ERK signaling pathway. Collectively, our findings indicate that H3K27me3 demethylation is a key epigenetic regulator in the process of hair cell regeneration in zebrafish and suggest that H3K27me3 histone demethylase activity might be a novel therapeutic target for the treatment of hearing loss. PMID:28348517

  9. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  10. LIPID PEROXIDATION GENERATES BIOLOGICALLY ACTIVE PHOSPHOLIPIDS INCLUDING OXIDATIVELY N-MODIFIED PHOSPHOLIPIDS

    PubMed Central

    Davies, Sean S.; Guo, Lilu

    2014-01-01

    Peroxidation of membranes and lipoproteins converts “inert” phospholipids into a plethora of oxidatively modified phospholipids (oxPL) that can act as signaling molecules. In this review, we will discuss four major classes of oxPL: mildly oxygenated phospholipids, phospholipids with oxidatively truncated acyl chains, phospholipids with cyclized acyl chains, and phospholipids that have been oxidatively N-modified on their headgroups by reactive lipid species. For each class of oxPL we will review the chemical mechanisms of their formation, the evidence for their formation in biological samples, the biological activities and signaling pathways associated with them, and the catabolic pathways for their elimination. We will end by briefly highlighting some of the critical questions that remain about the role of oxPL in physiology and disease. PMID:24704586

  11. [Development of asymmetric synthesis of optically active compounds including fluoroorganic molecules].

    PubMed

    Iseki, K

    1999-11-01

    The synthesis of chiral fluorinated molecules is important in the biological and medicinal chemistry fields in view of the influence of fluorine's unique properties on biological activity. In recent years, we have studied asymmetric synthesis focussing on such optically active compounds. This review describes 1) diastereoselective trifluoromethylation of chiral N-acyloxazolidinones, 2) catalytic enantioselective aldol reactions of fluorine-substituted ketene silyl acetals, and 3) catalytic enantioselective allylation of aldehydes mediated by chiral Lewis bases. The trifluoromethylation of lithium enolates of N-acyloxazolidinones with iodotrifluoromethane is mediated by triethylborane to give the corresponding trifluoromethylated products with up to 86% diastereomeric excess. The stereoselective reaction is considered to proceed through the attack of the trifluoromethyl radical on the less hindered face of the lithium imide. Difluoroketene and bromofluoroketene trimethylsilyl ethyl acetals react with various aldehydes in the presence of chiral Lewis acids to afford the corresponding desired aldols with up to 99% enantiomeric excess (ee). It is noteworthy that the aldol reactions of the fluorine-substituted acetals at -78 degrees C and at higher temperatures (-45 or -20 degrees C) provide the (+)- and (-)-aldols, respectively, with excellent-to-good enantioselectivity. Chiral phosphoramides newly prepared from (S)-proline were found to catalyze the allylation and crotylation of aromatic aldehydes with allylic trichlorosilanes in good enantioselective yields (up to 90% ee). (S,S)-Bis(alpha-methylbenzyl)formamide developed as an efficient catalyst for the allylation and crotylation of aliphatic aldehydes mediates the enantioselective addition with the assistance of hexamethylphosphoramide (HMPA) to afford the corresponding homoallylic alcohols in up to 98% ee.

  12. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    PubMed

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  13. Caspase-8 inhibition represses initial human monocyte activation in septic shock model

    PubMed Central

    Oliva-Martin, Maria Jose; Sanchez-Abarca, Luis Ignacio; Rodhe, Johanna; Carrillo-Jimenez, Alejandro; Vlachos, Pinelopi; Herrera, Antonio Jose; Garcia-Quintanilla, Albert; Caballero-Velazquez, Teresa; Perez-Simon, Jose Antonio; Joseph, Bertrand; Venero, Jose Luis

    2016-01-01

    In septic patients, the onset of septic shock occurs due to the over-activation of monocytes. We tested the therapeutic potential of directly targeting innate immune cell activation to limit the cytokine storm and downstream phases. We initially investigated whether caspase-8 could be an appropriate target given it has recently been shown to be involved in microglial activation. We found that LPS caused a mild increase in caspase-8 activity and that the caspase-8 inhibitor IETD-fmk partially decreased monocyte activation. Furthermore, caspase-8 inhibition induced necroptotic cell death of activated monocytes. Despite inducing necroptosis, caspase-8 inhibition reduced LPS-induced expression and release of IL-1β and IL-10. Thus, blocking monocyte activation has positive effects on both the pro and anti-inflammatory phases of septic shock. We also found that in primary mouse monocytes, caspase-8 inhibition did not reduce LPS-induced activation or induce necroptosis. On the other hand, broad caspase inhibitors, which have already been shown to improve survival in mouse models of sepsis, achieved both. Thus, given that monocyte activation can be regulated in humans via the inhibition of a single caspase, we propose that the therapeutic use of caspase-8 inhibitors could represent a more selective alternative that blocks both phases of septic shock at the source. PMID:27250033

  14. Inhibition of proteasome activity by various fruits and vegetables is associated with cancer cell death.

    PubMed

    Chen, Marina S; Chen, Di; Dou, Q Ping

    2004-01-01

    There is a large amount of scientific evidence showing that fruits and vegetables lower the risk of cancer. However, the responsible molecular mechanisms remain poorly understood. Our previous studies have demonstrated that inhibition of proteasomal chymotrypsin-like activity is associated with cancer cell apoptosis, which may also be the major mechanism responsible for the anticancer effects of green tea polyphenols. In the current study, we tested the hypothesis that some fruits and vegetables inhibit tumor cell proteasome activity and that this inhibition contributes to their cancer-preventative activities. We report that the extracts of apple and grape are more potent than onion, tomato and celery in: (i) inhibiting the proteasomal chymotrypsin-like activity in leukemia Jurkat T cell extract; (ii) accumulating the polyubiquitinated proteins in intact Jurkat T cells; (iii) inducing activation of caspase-3/-7 and cleavage of poly(ADP-ribose) polymerase in intact Jurkat T cells; and (iv) inducing the appearance of spherical cells preferentially in prostate cancer PC-3 over the normal NIH 3T3 cell line. We also found that strawberry extract had some effect on Jurkat T cell extract and the prostate PC-3 cell line but not on intact Jurkat T cells. Our findings suggest that the proteasome is a cancer-related molecular target for, at least, the extracts of apple, grape and onion, and that the inhibition of proteasome activity by these fruits or vegetable may contribute to their cancer-preventative effects, although other molecular mechanisms may also be involved.

  15. Insulin activates Erk1/2 signaling in the dorsal vagal complex to inhibit glucose production.

    PubMed

    Filippi, Beatrice M; Yang, Clair S; Tang, Christine; Lam, Tony K T

    2012-10-03

    Insulin activates PI3-kinase (PI3K)/AKT to regulate glucose homeostasis in the peripheral tissues and the mediobasal hypothalamus (MBH) of rodents. We report that insulin infusion into the MBH or dorsal vagal complex (DVC) activated insulin receptors. The same dose of insulin that activated MBH PI3K/AKT did not in the DVC. DVC insulin instead activated Erk1/2 and lowered glucose production in rats and mice. Molecular and chemical inhibition of DVC Erk1/2 negated, while activation of DVC Erk1/2 recapitulated, the effects of DVC insulin. Circulating insulin failed to inhibit glucose production when DVC Erk1/2 was inhibited in normal rodents, while DVC insulin action was disrupted in high-fat-fed rodents. Activation of DVC ATP-sensitive potassium channels was necessary for insulin-Erk1/2 and sufficient to inhibit glucose production in normal and high-fat-fed rodents. DVC is a site of insulin action where insulin triggers Erk1/2 signaling to inhibit glucose production and of insulin resistance in high-fat feeding.

  16. Tamoxifen does not inhibit the swell activated chloride channel in human neutrophils during the respiratory burst

    SciTech Connect

    Ahluwalia, Jatinder

    2008-10-31

    Effective functioning of neutrophils relies upon electron translocation through the NADPH oxidase (NOX). The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential in activated human neutrophils. Swelling activated chloride channels have been demonstrated in part to counteract the depolarisation generated by the NADPH oxidase I{sub e}. In the present study, the effects of inhibitors of swell activated chloride channels on ROS production and on the swelling activated chloride conductance was investigated in activated human neutrophils. Tamoxifen (10 {mu}M), a specific inhibitor for swell activated chloride channels in neutrophils, completely inhibited both the PMA and FMLP stimulated respiratory burst. This inhibition of the neutrophil respiratory burst was not due to the blocking effect of tamoxifen on the swelling activated chloride conductance in these cells. These results demonstrate that a tamoxifen insensitive swell activated chloride channel has important significance during the neutrophil respiratory burst.

  17. Hypoxia inhibits semicarbazide-sensitive amine oxidase activity in adipocytes.

    PubMed

    Repessé, Xavier; Moldes, Marthe; Muscat, Adeline; Vatier, Camille; Chetrite, Gérard; Gille, Thomas; Planes, Carole; Filip, Anna; Mercier, Nathalie; Duranteau, Jacques; Fève, Bruno

    2015-08-15

    Semicarbazide-sensitive amine oxidase (SSAO), an enzyme highly expressed on adipocyte plasma membranes, converts primary amines into aldehydes, ammonium and hydrogen peroxide, and is likely involved in endothelial damage during the course of diabetes and obesity. We investigated whether in vitro, adipocyte SSAO was modulated under hypoxic conditions that is present in adipose tissue from obese or intensive care unit. Physical or pharmacological hypoxia decreased SSAO activity in murine adipocytes and human adipose tissue explants, while enzyme expression was preserved. This effect was time-, dose-dependent and reversible. This down-regulation was confirmed in vivo in subcutaneous adipose tissue from a rat model of hypoxia. Hypoxia-induced suppression in SSAO activity was independent of the HIF-1-α pathway or of oxidative stress, but was partially antagonized by medium acidification. Hypoxia-induced down-regulation of SSAO activity could represent an adaptive mechanism to lower toxic molecules production, and may thus protect from tissue injury during these harmful conditions.

  18. Multifunctional bioscaffolds for 3D culture of melanoma cells reveal increased MMP activity and migration with BRAF kinase inhibition.

    PubMed

    Leight, Jennifer L; Tokuda, Emi Y; Jones, Caitlin E; Lin, Austin J; Anseth, Kristi S

    2015-04-28

    Matrix metalloproteinases (MMPs) are important for many different types of cancer-related processes, including metastasis. Understanding the functional impact of changes in MMP activity during cancer treatment is an important facet not typically evaluated as part of preclinical research. With MMP activity being a critical component of the metastatic cascade, we designed a 3D hydrogel system to probe whether pharmacological inhibition affected human melanoma cell proteolytic activity; metastatic melanoma is a highly aggressive and drug-resistant form of skin cancer. The relationship between MMP activity and drug treatment is unknown, and therefore we used an in situ fluorogenic MMP sensor peptide to determine how drug treatment affects melanoma cell MMP activity in three dimensions. We encapsulated melanoma cells from varying stages of progression within PEG-based hydrogels to examine the relationship between drug treatment and MMP activity. From these results, a metastatic melanoma cell line (A375) and two inhibitors that inhibit RAF (PLX4032 and sorafenib) were studied further to determine whether changes in MMP activity led to a functional change in cell behavior. A375 cells exhibited increased MMP activity despite an overall decrease in metabolic activity with PLX4032 treatment. The changes in proteolytic activity correlated with increased cell elongation and increased single-cell migration. In contrast, sorafenib did not alter MMP activity or cell motility, showing that the changes induced by PLX4032 were not a universal response to small-molecule inhibition. Therefore, we argue the importance of studying MMP activity with drug treatment and its possible implications for unwanted side effects.

  19. Iodide-induced inhibition of adenylate cyclase activity in horse and dog thyroid.

    PubMed

    Cochaux, P; Van Sande, J; Swillens, S; Dumont, J E

    1987-12-30

    The characteristics of the iodide-induced inhibition of cyclic AMP accumulation in dog thyroid slices have been previously described [Van Sande, J., Cochaux, P. and Dumont, J. E. (1985) Mol. Cell. Endocrinol. 40, 181-192]. In the present study we investigated the characteristics of the iodide-induced inhibition of adenylate cyclase activity in dog and horse thyroid. The inhibition of cyclic AMP accumulation by iodide in stimulated horse thyroid slices was similar to that observed in dog thyroid slices. The inhibition was observed in slices stimulated by thyroid-stimulating hormone, cholera toxin and forskolin. Increasing the concentration of the stimulators did not overcome the iodide-induced inhibition. Adenylate cyclase activity, assayed in crude homogenates or in plasma-membrane-containing particulates (100,000 x g pellets), was lower in homogenates or in particulates prepared from iodide-treated slices than from control slices. This inhibition was observed on the cyclase activity stimulated by forskolin, fluoride or guanosine 5'-[beta, gamma-imino]triphosphate, but also on the basal activity. It was relieved when the homogenate was prepared from slices incubated with iodide and methimazole. Similar results were obtained with dog thyroid. The inhibition persisted when the particulate fraction was washed three times during 1 h at 100,000 x g, in the presence of bovine serum albumin or increasing concentration of KCl. It was similar whatever the duration of the cyclase assay, in a large range of protein concentration. These results indicate that a stable modification of adenylate cyclase activity, closely related to the plasma membrane, was induced when slices were incubated with iodide. Iodide inhibition did not modify the affinity of adenylate cyclase for its substrate (MgATP), but induced a decrease of the maximal velocity of the enzyme. The percentage inhibition was slightly decreased when Mg2+ concentration increased, and markedly decreased when Mn2

  20. Sulfate- and sialic acid-containing glycolipids inhibit DNA polymerase alpha activity.

    PubMed

    Simbulan, C M; Taki, T; Tamiya-Koizumi, K; Suzuki, M; Savoysky, E; Shoji, M; Yoshida, S

    1994-03-16

    The effects of various glycolipids on the activity of immunoaffinity-purified calf thymus DNA polymerase alpha were studied in vitro. Preincubation with sialic acid-containing glycolipids, such as sialosylparagloboside (SPG), GM3, GM1, and GD1a, and sulfatide (cerebroside sulfate ester, CSE) dose-dependently inhibited the activity of DNA polymerase alpha, while other glycolipids, as well as free sphingosine and ceramide did not. About 50% inhibition was achieved by preincubating the enzyme with 2.5 microM of CSE, 50 microM of SPG or GM3, and 80 microM of GM1. Inhibition was noncompetitive with both the DNA template and the substrate dTTP, as well as with the other dNTPs. Since the inhibition was largely reversed by the addition of 0.05% Nonidet P40, these glycolipids may interact with the hydrophobic region of the enzyme protein. Apparently, the sulfate moiety in CSE and the sialic acid moiety in gangliosides were essential for the inhibition since neither neutral glycolipids (i.e., glucosylceramide, galactosylceramide, lactosylceramide) nor asialo-gangliosides (GA1 and GA2) showed any inhibitory effect. Furthermore, the ceramide backbone was also found to be necessary for maximal inhibition since the inhibition was largely abolished by substituting the lipid backbone with cholesterol. Increasing the number of sialic acid moieties per molecule further enhanced the inhibition, while elongating the sugar chain diminished it. It was clearly shown that the N-acetyl residue of the sialic acid moiety is particularly essential for inhibition by both SPG and GM3 because the loss of this residue or substitution with a glycolyl residue completely negated their inhibitory effect on DNA polymerase alpha activity.

  1. Inhibition of endocytosis exacerbates TNF-α-induced endothelial dysfunction via enhanced JNK and p38 activation.

    PubMed

    Choi, Hyehun; Nguyen, Hong N; Lamb, Fred S

    2014-04-15

    Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine that causes endothelial dysfunction. Endocytosis of TNF-α receptors (TNFR) precedes endosomal reactive oxygen species (ROS) production, which is required for NF-κB activation in vascular smooth muscle cells. It is unknown how endocytosis of TNFRs impacts signaling in endothelial cells. We hypothesized that TNF-α-induced endothelial dysfunction is induced by both endosomal and cell surface events, including NF-κB and mitogen-activated protein kinases (MAPKs) activation, and endocytosis of the TNFR modifies signaling. Mesenteric artery segments from C57BL/6 mice were treated with TNF-α (10 ng/ml) for 22 h in tissue culture, with or without signaling inhibitors (dynasore for endocytosis, SP600125 for JNK, SB203580 for p38, U0126 for ERK), and vascular function was assessed. Endothelium-dependent relaxation to acetylcholine (ACh) was impaired by TNF-α, and dynasore exacerbated this, whereas JNK or p38 inhibition prevented these effects. In cultured endothelial cells from murine mesenteric arteries, dynasore potentiated JNK and p38 but not ERK phosphorylation and promoted cell death. NF-κB activation by TNF-α was decreased by dynasore. JNK inhibition dramatically increased both the magnitude and duration of TNF-α-induced NF-κB activation and potentiated intercellular adhesion molecule-1 (ICAM-1) activation. Dynasore still inhibited NF-κB activation in the presence of SP600125. Thus TNF-α-induced endothelial dysfunction is both JNK and p38 dependent. Endocytosis modulates the balance of NF-κB and MAPK signaling, and inhibition of NF-κB activation by JNK limits this pro-proliferative signal, which may contribute to endothelial cell death in response to TNF-α.

  2. Characterization and Antioxidant Properties of Six Algerian Propolis Extracts: Ethyl Acetate Extracts Inhibit Myeloperoxidase Activity

    PubMed Central

    Boufadi, Yasmina Mokhtaria; Soubhye, Jalal; Riazi, Ali; Rousseau, Alexandre; Vanhaeverbeek, Michel; Nève, Jean; Boudjeltia, Karim Zouaoui; Van Antwerpen, Pierre

    2014-01-01

    Because propolis contains many types of antioxidant compounds such as polyphenols and flavonoids, it can be useful in preventing oxidative damages. Ethyl acetate extracts of propolis from several Algerian regions show high activity by scavenging free radicals, preventing lipid peroxidation and inhibiting myeloperoxidase (MPO). By fractioning and assaying ethyl acetate extracts, it was observed that both polyphenols and flavonoids contribute to these activities. A correlation was observed between the polyphenol content and the MPO inhibition. However, it seems that kaempferol, a flavonoid, contributes mainly to the MPO inhibition. This molecule is in a high amount in the ethyl acetate extract and demonstrates the best efficiency towards the enzyme with an inhibiting concentration at 50% of 4 ± 2 μM. PMID:24514562

  3. Mathematical modeling of copper(II) ion inhibition on COD removal in an activated sludge unit.

    PubMed

    Pamukoglu, M Yunus; Kargi, Fikret

    2007-07-19

    A mathematical model was developed to describe the Cu(II) ion inhibition on chemical oxygen demand (COD) removal from synthetic wastewater containing 15 mg l(-1) Cu(II) in an activated sludge unit. Experimental data obtained at different sludge ages (5-30 days) and hydraulic residence times (HRT) (5-25 h) were used to determine the kinetic, stoichiometric and inhibition constants for the COD removal rate in the presence and absence of Cu(II) ions. The inhibition pattern was identified as non-competitive, since Cu(II) ion inhibitions were observed both on maximum specific substrate removal rate (k) and on the saturation constant (Ks) with the inhibition constants of 97 and 18 mg l(-1), respectively, indicating more pronounced inhibition on Ks. The growth yield coefficient (Y) decreased and the death rate constant (b) increased in the presence of Cu(II) ions due to copper ion toxicity on microbial growth with inhibition constants of 29 and 200 mg l(-1), respectively indicating more effective inhibition on the growth yield coefficient or higher maintenance requirements. The mathematical model with the predetermined kinetic constants was able to predict the system performance reasonably well especially at high HRT operations.

  4. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    SciTech Connect

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivates a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release.

  5. Frontostriatal activity and connectivity increase during proactive inhibition across adolescence and early adulthood.

    PubMed

    Vink, Matthijs; Zandbelt, Bram B; Gladwin, Thomas; Hillegers, Manon; Hoogendam, Janna Marie; van den Wildenberg, Wery P M; Du Plessis, Stefan; Kahn, René S

    2014-09-01

    During adolescence, functional and structural changes in the brain facilitate the transition from childhood to adulthood. Because the cortex and the striatum mature at different rates, temporary imbalances in the frontostriatal network occur. Here, we investigate the development of the subcortical and cortical components of the frontostriatal network from early adolescence to early adulthood in 60 subjects in a cross-sectional design, using functional MRI and a stop-signal task measuring two forms of inhibitory control: reactive inhibition (outright stopping) and proactive inhibition (anticipation of stopping). During development, reactive inhibition improved: older subjects were faster in reactive inhibition. In the brain, this was paralleled by an increase in motor cortex suppression. The level of proactive inhibition increased, with older subjects slowing down responding more than younger subjects when anticipating a stop-signal. Activation increased in the right striatum, right ventral and dorsal inferior frontal gyrus, and supplementary motor area. Moreover, functional connectivity during proactive inhibition increased between striatum and frontal regions with age. In conclusion, we demonstrate that developmental improvements in proactive inhibition are paralleled by increases in activation and functional connectivity of the frontostriatal network. These data serve as a stepping stone to investigate abnormal development of the frontostriatal network in disorders such as schizophrenia and attention-deficit hyperactivity disorder.

  6. Ozone control of biological activity during Earth's history, including the KT catastrophe

    NASA Technical Reports Server (NTRS)

    Sheldon, W. R.

    1994-01-01

    There have been brief periods since the beginning of the Cambrian some 600 m.y. ago when mass extinctions destroyed a significant fraction of living species. The most widely studied of these events is the catastrophe at the KT boundary that ended the long dominance of the dinosaurs. In addition to mass extinctions, there is another profound discontinuity in the history of Earth's biota, the explosion of life at the end of the Precambrian era which is an episode that is not explained well at all. For some 3 b.y. before the Cambrian, life had been present on Earth, but maintained a low level of activity which is an aspect of the biota that is puzzling, especially during the last two-thirds of that period. During the last 2 b.y. before the Cambrian, conditions at the Earth's surface were suitable for a burgeoning of the biota, according to most criteria: the oceans neither boiled nor were fozen solid during this time, and the atmosphere contained sufficient O for the development of animals. The purpose of this paper is to suggest that mass extinctions and the lackluster behavior of the Precambrian biota share a common cause: an inadequate amount of ozone in the atmosphere.

  7. Design of a high-lift experiment in water including active flow control

    NASA Astrophysics Data System (ADS)

    Beutel, T.; Sattler, S.; El Sayed, Y.; Schwerter, M.; Zander, M.; Büttgenbach, S.; Leester-Schädel, M.; Radespiel, R.; Sinapius, M.; Wierach, P.

    2014-07-01

    This paper describes the structural design of an active flow-control experiment. The aim of the experiment is to investigate the increase in efficiency of an internally blown Coanda flap using unsteady blowing. The system uses tailor-made microelectromechanical (MEMS) pressure sensors to determine the state of the oncoming flow and an actuated lip to regulate the mass flow and velocity of a stream near a wall over the internally blown flap. Sensors and actuators are integrated into a highly loaded system that is extremely compact. The sensors are connected to a bus system that feeds the data into a real-time control system. The piezoelectric actuators using the d 33 effect at a comparable low voltage of 120 V are integrated into a lip that controls the blowout slot height. The system is designed for closed-loop control that efficiently avoids flow separation on the Coanda flap. The setup is designed for water-tunnel experiments in order to reduce the free-stream velocity and the system’s control frequency by a factor of 10 compared with that in air. This paper outlines the function and verification of the system’s main components and their development.

  8. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase

    PubMed Central

    Sahonero-Canavesi, Diana X.; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M.; Geiger, Otto

    2016-01-01

    Summary Phospholipids are well known for their membrane forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth. PMID:25711932

  9. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase.

    PubMed

    Sahonero-Canavesi, Diana X; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M; Geiger, Otto

    2015-09-01

    Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.

  10. Antiplatelet activity of beta-carboline alkaloids from Perganum harmala: a possible mechanism through inhibiting PLCgamma2 phosphorylation.

    PubMed

    Im, Ji-Hyun; Jin, Yong-Ri; Lee, Jung-Jin; Yu, Ji-Yeon; Han, Xiang-Hua; Im, Se-Hyuk; Hong, Jin Tae; Yoo, Hwan-Soo; Pyo, Myoung-Yun; Yun, Yeo-Pyo

    2009-01-01

    Beta-carboline alkaloids including harmalol, harmaline, norharmane, harmol, harmine and harmane are important constituents of the medicinal plant, Perganum harmala L. (Zygophylaceae), which has been used in traditional medicine. In the present study, the antiplatelet activities of six beta-carboline alkaloid compounds were investigated in vitro. At a concentration of 200 microM, these compounds have no effect on arachidonic acid (AA)-, thrombin- and U46619 (a thromboxane A2 mimic)-stimulated platelet aggregation. On the contrary, it was revealed that collagen-induced platelet aggregation could be inhibited by these compounds with different potencies (harmane and harmine were most potent, harmol had medium potency, and harmol, norharmane, harmalol and harmaline had a weak, non significant effect), indicating a selective inhibition on collagen-mediated platelet activation. Consistently, further study revealed that collagen-mediated phospholipase (PL) Cgamma2 and protein tyrosine phosphorylation, cytosolic calcium mobilization and arachidonic acid liberation were completely inhibited by harmane and harmine in a concentration-dependent manner, while the other compounds were only partially or not effective at all. Taken together, these results indicate that three of these six beta-carboline alkaloids can selectively affect collagen-induced platelet aggregation with different potencies; in particular, harmane and harmine were most potent, and their antiplatelet activities may be mediated by inhibiting PLCgamma2 and protein tyrosine phosphorylation with sequential suppression of cytosolic calcium mobilization and arachidonic acid liberation, indicating that harmane and harmine have a potential to be developed as a novel agent for atherothrombotic diseases.

  11. Chronic Cadmium Exposure Lead to Inhibition of Serum and Hepatic Alkaline Phosphatase Activity in Wistar Rats.

    PubMed

    Treviño, Samuel; Andrade-García, Alejandra; Herrera Camacho, Irma; León-Chavez, Bertha Alicia; Aguilar-Alonso, Patricia; Flores, Gonzalo; Brambila, Eduardo

    2015-12-01

    Alkaline phosphatase (ALP) activity in the serum and liver from rats administered with cadmium (Cd) in drinking water was studied. After metal administration, Cd showed a time-dependent accumulation in the liver, meanwhile metallothionein had a maximum increase at 1 month, remaining in this level until the end of the study. On the other hand, serum and liver ALP activity was decreased after 3 months exposure. To determine if Cd produced an inhibition on enzyme, apo-ALP prepared from both nonexposed and exposed rats was reactivated with Zn, showing 60% more activity as compared with the enzyme isolated from nonexposed rats. In vitro assays showed that Cd-ALP was partially reactivated with Zn; however, in the presence of cadmium, Zn-ALP was completely inhibited. Kinetic studies indicate a noncompetitive inhibition by Cd; these results suggest that Cd can substitute Zn, and/or Cd can interact with nucleophilic ligands essential for the enzymatic activity.

  12. Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity

    PubMed Central

    Stasiak, Marta; Boncela, Joanna; Perreau, Corinne; Karamanou, Konstantina; Chatron-Colliet, Aurore; Proult, Isabelle; Przygodzka, Patrycja; Chakravarti, Shukti; Maquart, François-Xavier; Kowalska, M. Anna; Wegrowski, Yanusz; Brézillon, Stéphane

    2016-01-01

    Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment. PMID:26930497

  13. Inhibition of PA endonuclease activity of influenza virus RNA polymerase by Kampo medicines.

    PubMed

    Shirayama, Riku; Shoji, Masaki; Sriwilaijaroen, Nongluk; Hiramatsu, Hiroaki; Suzuki, Yasuo; Kuzuhara, Takashi

    To find a novel influenza inhibitor targeting the endonuclease activity of influenza A virus polymerase acidic protein (PA), which is essential for the acquisition of primers for viral mRNA transcription, seven Kampo extracts were tested in vitro for their ability to inhibit endonuclease activity of the recombinant PA protein that was expressed and purified from Escherichia coli. The Kampo medicines Kakkonto, Shosaikoto, Saikokeishito, Keishito, Maobushisaishinto, and Maoto, but not Chikujountanto, inhibited PA endonuclease activity in a dose-dependent manner. Our results indicate that Kampo medicines are good sources providing a structural lead for optimization of an influenza endonuclease inhibitor.

  14. Ischemia Activates Neutrophils But Inhibits Their Local and Remote Diapedesis.

    DTIC Science & Technology

    2007-11-02

    mediated polymorphonuclear leukocyte (PMN) activation and diapedesis . Anesthetized rabbits were subjected to three hours of hindlimb ischemia (n = 8) or...introduced into an abraded skin chamber or intratracheally induced diapedesis in non-ischemic animals. PMN accumulations in the+skin chamber were...exp 4) PMN/mm(exp 3) compared to 5 +/- 1 X 10(exp 4) PMN/mm(exp 3) with sham plasma (n = 4, pɘ.05). Diapedesis was completely prevented (0-3 PMN/mm(exp

  15. Akt phosphorylates Tal1 oncoprotein and inhibits its repressor activity.

    PubMed

    Palamarchuk, Alexey; Efanov, Alexey; Maximov, Vadim; Aqeilan, Rami I; Croce, Carlo M; Pekarsky, Yuri

    2005-06-01

    The helix-loop-helix transcription factor Tal1 is required for blood cell development and its activation is a frequent event in T-cell acute lymphoblastic leukemia. The Akt (protein kinase B) kinase is a key player in transduction of antiapoptotic and proliferative signals in T cells. Because Tal1 has a putative Akt phosphorylation site at Thr90, we investigated whether Akt regulates Tal1. Our results show that Akt specifically phosphorylates Thr90 of the Tal1 protein within its transactivation domain in vitro and in vivo. Coimmunoprecipitation experiments showed the presence of Tal1 in Akt immune complexes, suggesting that Tal1 and Akt physically interact. We further showed that phosphorylation of Tal1 by Akt causes redistribution of Tal1 within the nucleus. Using luciferase assay, we showed that phosphorylation of Tal1 by Akt decreased repressor activity of Tal1 on EpB42 (P4.2) promoter. Thus, these data indicate that Akt interacts with Tal1 and regulates Tal1 by phosphorylation at Thr90 in a phosphatidylinositol 3-kinase-dependent manner.

  16. δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.

    PubMed

    Wang, Hong; Hong, Jungil; Yang, Chung S

    2016-11-01

    The cancer preventive activity of vitamin E is suggested by epidemiological studies and supported by animal studies with vitamin E forms, γ-tocopherol and δ-tocopherol (δ-T). Several recent large-scale cancer prevention trials with high dose of α-tocopherol, however, yielded disappointing results. Whether vitamin E prevents or promotes cancer is a serious concern. A better understanding of the molecular mechanisms of action of the different forms of tocopherols would enhance our understanding of this topic. In this study, we demonstrated that δ-T was the most effective tocopherol form in inhibiting prostate cancer cell growth, by inducing cell cycle arrest and apoptosis. By profiling the effects of δ-T on the cell signaling using the phospho-kinase array, we found that the most inhibited target was the phosphorylation of AKT on T308. Further study on the activation of AKT by EGFR and IGFR revealed that δ-T attenuated the EGF/IGF-induced activation of AKT (via the phosphorylation of AKT on T308 induced by the activation of PIK3). Expression of dominant active PIK3 and AKT in prostate cancer cell line DU145 in which PIK3, AKT, and PTEN are wild type caused the cells to be reflectory to the inhibition of δ-T, supporting that δ-T inhibits the PIK3-mediated activation of AKT. Our data also suggest that δ-T interferes with the EGF-induced EGFR internalization, which leads to the inhibition of the receptor tyrosine kinase-dependent activation of AKT. In summary, our results revealed a novel mechanism of δ-T in inhibiting prostate cancer cell growth, supporting the cancer preventive activity δ-T. © 2015 Wiley Periodicals, Inc.

  17. Calcium-activated butyrylcholinesterase in human skin protects acetylcholinesterase against suicide inhibition by neurotoxic organophosphates

    SciTech Connect

    Schallreuter, Karin U.; University of Bradford ). E-mail: K.Schallreuter@bradford.ac.uk; Gibbons, Nicholas C.J.; Elwary, Souna M.; Parkin, Susan M.; Wood, John M.

    2007-04-20

    The human epidermis holds an autocrine acetylcholine production and degradation including functioning membrane integrated and cytosolic butyrylcholinesterase (BuchE). Here we show that BuchE activities increase 9-fold in the presence of calcium (0.5 x 10{sup -3}M) via a specific EF-hand calcium binding site, whereas acetylcholinesterase (AchE) is not affected. {sup 45}Calcium labelling and computer simulation confirmed the presence of one EF-hand binding site per subunit which is disrupted by H{sub 2}O{sub 2}-mediated oxidation. Moreover, we confirmed the faster hydrolysis by calcium-activated BuchE using the neurotoxic organophosphate O-ethyl-O-(4-nitrophenyl)-phenylphosphonothioate (EPN). Considering the large size of the human skin with 1.8 m{sup 2} surface area with its calcium gradient in the 10{sup -3}M range, our results implicate calcium-activated BuchE as a major protective mechanism against suicide inhibition of AchE by organophosphates in this non-neuronal tissue.

  18. Inhibition of Rac1 GTPase activity affects porcine oocyte maturation and early embryo development

    PubMed Central

    Song, Si-Jing; Wang, Qiao-Chu; Jia, Ru-Xia; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2016-01-01

    Mammalian oocyte asymmetric division relies on the eccentric positioning of the spindle, resulting in the polar body formation. Small signaling G protein Rac1 is a member of GTPases, which regulates a diverse array of cellular events, including the control of cell growth, cytoskeletal reorganization, and the activation of protein kinases. However, effects of Rac1 on the porcine oocyte maturation and early embryo development are not fully understood. In present study we investigated the role of Rac1 in oocyte maturation and embryo cleavage. We first found that Rac1 localized at the cortex of the porcine oocytes, and disrupting the Rac1 activities by treating with NSC 23766 led to the failure of polar body emission. In addition, a majority of treated oocytes exhibited abnormal spindle morphology, indicating that Rac1 may involve into porcine oocyte spindle formation. This might be due to the regulation of Rac1 on MAPK, since p-MAPK expression decreased after NSC 23766 treatments. Moreover, we found that the position of most meiotic spindles in treated oocytes were away from the cortex, indicating the roles of Rac1 on meiotic spindle positioning. Our results also showed that inhibition of Rac1 activity caused the failure of early embryo development. Therefore, our study showed the critical roles of Rac1 GTPase on porcine oocyte maturation and early embryo cleavage. PMID:27694954

  19. Cyclosporin A inhibits calcineurin (phosphatase 2B) and P-glycoprotein activity in Entamoeba histolytica.

    PubMed

    Carrero, Julio C; Lugo, Haydee; Pérez, D Guillermo; Ortiz-Martínez, César; Laclette, Juan P

    2004-08-01

    Cyclosporin A (CsA) inhibits the proliferation of several protozoan parasites through blocking the activity of calcineurin (Cn) or P-glycoproteins (Pgp). We report here, that inhibition of the proliferation of Entamoeba histolytica trophozoites, the causal agent of human amebiasis, is due to interference of the phosphatase activity of Cn, in a similar fashion to the effect of this immunosuppressive drug on T lymphocytes. The non-immunosuppressive CsA analog PSC-833, which binds Pgp without interfering the function of Cn, did not inhibit the proliferation of HM1:IMSS trophozoites. Moreover, phosphatase activity of amebic Cn, detected using the phosphopeptide RII, was drastically affected by incubation with CsA, but not with PSC-833. On the other hand, both drugs were also tested on clone C2 trophozoites, which grow in the presence of emetine due to over-expression of Pgp. The effect of CsA was similar to that observed on HM1:IMSS trophozoites, whereas PSC-833 only affected the proliferation and viability of clone C2 when the trophozoites were grown in the presence of 40 microM of emetine, suggesting an interference of the Pgp activity. This suggestion was confirmed by results from experiments of Pgp-dependent effux of rhodamine from pre-loaded trophozoites, in the presence of either of these drugs. Therefore, CsA inhibition of E. histolytica trophozoite proliferation is more likely due to Cn than Pgp activity inhibition.

  20. Theoretical analysis of the relationship between positive/negative cooperativity and enzyme activation/inhibition.

    PubMed

    Ge, Hao; Qian, Min

    2009-09-01

    Cooperativity is one of the "paradigms" in enzyme kinetics and molecular biology. But the classical textbook treatment of enzyme kinetics always indeed separates the concepts of positive/negative cooperativity from enzyme activation/inhibition, at least partially. Few theoretical analysis of their relationship has been discussed, although its experimental investigations might date back at least to 1970s. In the present paper, we try to apply the change of free energy as a connective parameter for investigating the relationship between positive/negative cooperativity and enzyme activation/inhibition through several classic equilibrium binding models. It is explicitly shown that the terms of positive/negative cooperativity could be equivalently regarded as enzyme activation/inhibition of the saturation function induced by the substrate molecule itself rather than any other additional effectors. Moreover, both the degree of cooperativity phenomenon and the degree of enzyme activation/inhibition monotonically increase with the change of free energy. Note that this result is quite different from the idea of relating cooperativity to the concepts of "substrate activation/inhibition", which is identified when at high substrate concentrations the reaction rate decreases instead of tending towards the maximum velocity, since it always needs a second substrate molecule.

  1. α-1 Antitrypsin Inhibits Caspase-3 Activity, Preventing Lung Endothelial Cell Apoptosis

    PubMed Central

    Petrache, Irina; Fijalkowska, Iwona; Medler, Terry R.; Skirball, Jarrett; Cruz, Pedro; Zhen, Lijie; Petrache, Horia I.; Flotte, Terence R.; Tuder, Rubin M.

    2006-01-01

    α-1 Antitrypsin (A1AT) is an abundant circulating serpin with a postulated function in the lung of potently inhibiting neutrophil-derived proteases. Emphysema attributable to A1AT deficiency led to the concept that a protease/anti-protease imbalance mediates cigarette smoke-induced emphysema. We hypothesized that A1AT has other pathobiological relevant functions in addition to elastase inhibition. We demonstrate a direct prosurvival effect of A1AT through inhibition of lung alveolar endothelial cell apoptosis. Primary pulmonary endothelial cells internalized human A1AT, which co-localized with and inhibited staurosporine-induced caspase-3 activation. In cell-free studies, native A1AT, but not conformers lacking an intact reactive center loop, inhibited the interaction of recombinant active caspase-3 with its specific substrate. Furthermore, overexpression of human A1AT via replication-deficient adeno-associated virus markedly attenuated alveolar wall destruction and oxidative stress caused by caspase-3 instillation in a mouse model of apoptosis-dependent emphysema. Our findings suggest that direct inhibition of active caspase-3 by A1AT may represent a novel anti-apoptotic mechanism relevant to disease processes characterized by excessive structural cell apoptosis, oxidative stress, and inflammation, such as pulmonary emphysema. PMID:17003475

  2. Metabolic inhibition enhances Ca(2+)-activated K+ current in smooth muscle cells of rabbit portal vein.

    PubMed

    Miller, A L; Morales, E; Leblanc, N R; Cole, W C

    1993-12-01

    The effect of metabolic inhibition on macroscopic and single-channel K+ currents in isolated rabbit portal vein myocytes was investigated by patch-clamp technique. Depression of adenosine triphosphate synthesis was produced by 2-deoxy-D-glucose (10 mM) and either cyanide (2 mM) or dinitrophenol (50 microM). Outward quasi-steady-state current evoked by a ramp protocol and outward time-dependent current during step depolarizations were increased during metabolic inhibition. The reversal potential for quasi-steady-state current shifted negatively toward equilibrium potential of K+ during treatment consistent with a role for K+ conductance and hyperpolarization of membrane potential. The macroscopic K+ current affected was 1) voltage dependent, 2) inhibited by intracellular Ca2+ chelation and low tetraethylammonium ion (1 mM) but unaffected by 4-aminopyridine (2 mM), and 3) associated with a rise in intracellular Ca2+ assessed by indo 1. Metabolic inhibition caused an increase in voltage-dependent large-conductance K+ channel (120-130 pS) activity in cell-attached patches of myocytes bathed in physiological solution (140 mM K+ in pipette). The channels were blocked in a flickery fashion by tetraethylammonium ion (0.5 mM) and inhibited with charybdotoxin (100 nM). We conclude that metabolic inhibition increases the activity of large-conductance Ca(2+)-activated K+ channels in vascular smooth muscle.

  3. A review on structure-activity relationship of dietary polyphenols inhibiting α-amylase.

    PubMed

    Xiao, Jianbo; Ni, Xiaoling; Kai, Guoyin; Chen, Xiaoqing

    2013-01-01

    The inhibitory effects of dietary polyphenols against α-amylase have attracted great interest among researchers. The aim of this review is to give an overview of the research reports on the structure-activity relationship of polyphenols inhibiting α-amylase. The molecular structures that influence the inhibition are the following: (1) The hydroxylation of flavonoids improved the inhibitory effect on α-amylase; (2) Presence of an unsaturated 2,3-bond in conjugation with a 4-carbonyl group has been associated with stronger inhibition; (3) The glycosylation of flavonoids decreased the inhibitory effect on α-amylase depending on the conjugation site and the class of sugar moiety; (4) The methylation and methoxylation of flavonoids obviously weakened the inhibitory effect; (5) The galloylated catechins have higher inhibition than nongalloylated catechins; the catechol-type catechins were stronger than the pyrogallol-type catechins; the inhibition activities of the catechins with 2,3-trans structure were higher than those of the catechins with 2,3-cis structure; (6) Cyanidin-3-glucoside showed higher inhibition against than cyanidin and cyanidin-3-galactoside and cyanidin-3,5-diglucoside had no inhibitory activity; (7) Ellagitannins with β-galloyl groups at glucose C-1 positions have higher inhibitory effect than the α-galloyl and nongalloyl compounds and the molecular weight of ellagitannins is not an important element.

  4. 45 CFR 287.130 - Can NEW Program activities include job market assessments, job creation and economic development...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... assessments, job creation and economic development activities? 287.130 Section 287.130 Public Welfare... creation and economic development activities? (a) A Tribe may conduct job market assessments within its NEW Program. These might include the following: (1) Consultation with the Tribe's economic development...

  5. Extracellular nucleotides inhibit oxalate transport by human intestinal Caco-2-BBe cells through PKC-δ activation.

    PubMed

    Amin, Ruhul; Sharma, Sapna; Ratakonda, Sireesha; Hassan, Hatim A

    2013-07-01

    Nephrolithiasis remains a major health problem in Western countries. Seventy to 80% of kidney stones are composed of calcium oxalate, and small changes in urinary oxalate affect risk of kidney stone formation. Intestinal oxalate secretion mediated by the anion exchanger SLC26A6 plays an essential role in preventing hyperoxaluria and calcium oxalate nephrolithiasis, indicating that understanding the mechanisms regulating intestinal oxalate transport is critical for management of hyperoxaluria. Purinergic signaling modulates several intestinal processes through pathways including PKC activation, which we previously found to inhibit Slc26a6 activity in mouse duodenal tissue. We therefore examined whether purinergic stimulation with ATP and UTP affects oxalate transport by human intestinal Caco-2-BBe (C2) cells. We measured [¹⁴C]oxalate uptake in the presence of an outward Cl⁻ gradient as an assay of Cl⁻/oxalate exchange activity, ≥50% of which is mediated by SLC26A6. We found that ATP and UTP significantly inhibited oxalate transport by C2 cells, an effect blocked by the PKC inhibitor Gö-6983. Utilizing pharmacological agonists and antagonists, as well as PKC-δ knockdown studies, we observed that ATP inhibits oxalate transport through the P2Y₂ receptor, PLC, and PKC-δ. Biotinylation studies showed that ATP inhibits oxalate transport by lowering SLC26A6 surface expression. These findings are of potential relevance to pathophysiology of inflammatory bowel disease-associated hyperoxaluria, where supraphysiological levels of ATP/UTP are expected and overexpression of the P2Y₂ receptor has been reported. We conclude that ATP and UTP inhibit oxalate transport by lowering SLC26A6 surface expression in C2 cells through signaling pathways including the P2Y₂ purinergic receptor, PLC, and PKC-δ.

  6. Nitric oxide inhibition of adenylyl cyclase type 6 activity is dependent upon lipid rafts and caveolin signaling complexes.

    PubMed

    Ostrom, Rennolds S; Bundey, Richard A; Insel, Paul A

    2004-05-07

    Several cell types, including cardiac myocytes and vascular endothelial cells, produce nitric oxide (NO) via both constitutive and inducible isoforms of NO synthase. NO attenuates cardiac contractility and contributes to contractile dysfunction in heart failure, although the precise molecular mechanisms for these effects are poorly defined. Adenylyl cyclase (AC) isoforms type 5 and 6, which are preferentially expressed in cardiac myocytes, may be inhibited via a direct nitrosylation by NO. Because endothelial NO synthase (eNOS and NOS3), beta-adrenergic (betaAR) receptors, and AC6 all can localize in lipid raft/caveolin-rich microdomains, we sought to understand the role of lipid rafts in organizing components of betaAR-G(s)-AC signal transduction together with eNOS. Using neonatal rat cardiac myocytes, we found that disruption of lipid rafts with beta-cyclodextrin inhibited forskolin-stimulated AC activity and cAMP production, eliminated caveolin-3-eNOS interaction, and increased NO production. betaAR- and G(s)-mediated activation of AC activity were inhibited by beta-cyclodextrin treatment, but prostanoid receptor-stimulated AC activity, which appears to occur outside caveolin-rich microdomains, was unaffected unless eNOS was overexpressed and lipid rafts were disrupted. An NO donor, SNAP, inhibited basal and forskolin-stimulated cAMP production in both native cardiac myocytes and cardiac myocytes and pulmonary artery endothelial cells engineered to overexpress AC6. These effects of SNAP were independent of guanylyl cyclase activity and were mimicked by overexpression of eNOS. The juxtaposition of eNOS with betaAR and AC types 5 and 6 results in selective regulation of betaAR by eNOS activity in lipid raft domains over other G(s)-coupled receptors localized in nonraft domains. Thus co-localization of multiple signaling components in lipid rafts provides key spatial regulation of AC activity.

  7. 14 CFR 440.11 - Duration of coverage for licensed launch, including suborbital launch, or permitted activities...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Duration of coverage for licensed launch, including suborbital launch, or permitted activities; modifications. 440.11 Section 440.11 Aeronautics and... Duration of coverage for licensed launch, including suborbital launch, or permitted...

  8. Quantitative Structure Activity Relationship for Inhibition of Human Organic Cation/Carnitine Transporter (OCTN2)

    PubMed Central

    Diao, Lei; Ekins, Sean; Polli, James E.

    2010-01-01

    Organic cation/carnitine transporter (OCTN2; SLC22A5) is an important transporter for L-carnitine homeostasis, but can be inhibited by drugs, which may cause L-carnitine deficiency and possibly other OCTN2-mediated drug-drug interactions. One objective was to develop a quantitative structure–activity relationship (QSAR) of OCTN2 inhibitors, in order to predict and identify other potential OCTN2 inhibitors and infer potential clinical interactions. A second objective was to assess two high renal clearance drugs that interact with OCTN2 in vitro (cetirizine and cephaloridine) for possible OCTN2-mediated drug-drug interactions. Using previously generated in vitro data of 22 drugs, a 3D quantitative pharmacophore model and a Bayesian machine learning model were developed. The four pharmacophore features include two hydrophobic groups, one hydrogen-bond acceptor, and one positive ionizable center. The Bayesian machine learning model was developed using simple interpretable descriptors and function class fingerprints of maximum diameter 6 (FCFP_6). An external test set of 27 molecules, including 15 newly identified OCTN2 inhibitors, and a literature test set of 22 molecules were used to validate both models. The computational models afforded good capability to identify structurally diverse OCTN2 inhibitors, providing a valuable tool to predict new inhibitors efficiently. Inhibition results confirmed our previously observed association between rhabdomyolysis and Cmax/Ki ratio. The two high renal clearance drugs cetirizine and cephaloridine were found not to be OCTN2 substrates and their diminished elimination by other drugs is concluded not to be mediated by OCTN2. PMID:20831193

  9. Manassantin A isolated from Saururus chinensis inhibits 5-lipoxygenase-dependent leukotriene C4 generation by blocking mitogen-activated protein kinase activation in mast cells.

    PubMed

    Kim, Su Jeong; Lu, Yue; Kwon, Okyun; Hwangbo, Kyoung; Seo, Chang-Seob; Lee, Seung Ho; Kim, Cheorl-Ho; Chang, Young-Chae; Son, Jong Keun; Chang, Hyeun Wook

    2011-01-01

    In this study, manassantin A (Man A), an herbal medicine isolated from Saururus chinensis (S. chinensis), markedly inhibited 5-lipoxygenase (5-LO)-dependent leukotriene C(4) (LTC(4)) generation in bone marrow-derived mast cells (BMMCs) in a concentration-dependent manner. To investigate the molecular mechanisms underlying the inhibition of LTC(4) generation by Man A, we assessed the effects of Man A on phosphorylation of cytosolic phospholipase A(2) (cPLA(2)) and mitogen-activated protein kinases (MAPKs). Inhibition of LTC(4) generation by Man A was accompanied by a decrease in cPLA(2) phosphorylation, which occurred via the MAPKs including extracellular signal-regulated protein kinase-1/2 (ERK1/2) as well as p38 and c-Jun N-terminal kinase (JNK) pathways. Taken together, the present study suggests the Man A represents a potential therapeutic approach for the treatment of airway allergic-inflammatory diseases.

  10. Inhibition of unwinding and ATPase activities of pea MCM6 DNA helicase by actinomycin and nogalamycin.

    PubMed

    Tran, Ngoc Quang; Pham, Xuan Hoi; Tuteja, Renu; Tuteja, Narendra

    2011-03-01

    Pea mini-chromosome maintenance 6 (MCM6) single subunit (93 kDa) forms homohexamer (560 kDa) and contains an ATP-dependent and replication fork stimulated 3' to 5' DNA unwinding activity along with intrinsic DNA-dependent ATPase and ATP-binding activities [Plant Mol. Biol. 2010; DOI: 10.1007/s11103-010-9675-7]. Here, we have determined the effect of various DNA-binding agents, such as actinomycin, nogalamycin, daunorubicin, doxorubicin, distamycin, camptothecin, cyclophosphamide, ellipticine, VP-16, novobiocin, netropsin, cisplatin, mitoxantrone and genistein on the DNA unwinding and ATPase activities of the pea MCM6 DNA helicase. The results show that actinomycin and nogalamycin inhibited the DNA helicase (apparent Ki values of 10 and 1 μM, respectively) and ATPase (apparent Ki values of 100 and 17 μM, respectively) activities. Although, daunorubicin and doxorubicin also inhibited the DNA helicase activity of pea MCM6, but with less efficiency; however, these could not inhibit the ATPase activity. These results suggest that the intercalation of the inhibitors into duplex DNA generates a complex that impedes translocation of MCM6, resulting in the inhibitions of the activities. This study could be useful in our better understanding of the mechanism of plant nuclear DNA helicase unwinding.

  11. Inhibition of creatine kinase activity from rat cerebral cortex by D-2-hydroxyglutaric acid in vitro.

    PubMed

    da Silva, Cleide G; Bueno, Ana Rúbia F; Schuck, Patrícia F; Leipnitz, Guilhian; Ribeiro, César A J; Rosa, Rafael B; Dutra Filho, Carlos S; Wyse, Angela T S; Wannmacher, Clóvis M D; Wajner, Moacir

    2004-01-01

    D-2-Hydroxyglutaric acid (DGA) is the biochemical hallmark of patients affected by the neurometabolic disorder known as D-2-hydroxyglutaric aciduria (DHGA). Although this disease is predominantly characterized by severe neurological findings, the underlying mechanisms of brain injury are virtually unknown. In the present study, we investigated the effect of DGA on total, cytosolic, and mitochondrial creatine kinase (CK) activities from cerebral cortex of 30-day-old Wistar rats. Total CK activity (tCK) was measured in whole cell homogenates, whereas cytosolic and mitochondrial activities were measured in the cytosolic and mitochondrial preparations from cerebral cortex. We verified that CK activities were significantly inhibited by DGA (11-34% inhibition) at concentrations as low as 0.25 mM, being the mitochondrial fraction the most affected activity. Kinetic studies revealed that the inhibitory effect of DGA was non-competitive in relation to phosphocreatine. We also observed that this inhibition was fully prevented by pre-incubation of the homogenates with reduced glutathione, suggesting that the inhibitory effect of DGA on tCK activity is possibly mediated by oxidation of essential thiol groups of the enzyme. Considering the importance of CK activity for brain metabolism homeostasis, our results suggest that inhibition of this enzyme by increased levels of DGA may be related to the neurodegeneration of patients affected by DHGA.

  12. IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL RAT TESTIS THROUGH THE INHIBITION OF CYP17 ACTIVITY

    EPA Science Inventory

    IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL RAT TESTIS THROUGH THE INHIBITION OF CYP17 ACTIVITY

    Chad R. Blystone1, David J. Dix2, and John C. Rockett2
    1Department of Environmental and Molecular Toxicology, NC State University, R...

  13. Connexin43 recruits PTEN and Csk to inhibit c-Src activity in glioma cells and astrocytes

    PubMed Central

    González-Sánchez, Ana; Jaraíz-Rodríguez, Myriam; Domínguez-Prieto, Marta; Herrero-González, Sandra; Medina, José M.; Tabernero, Arantxa

    2016-01-01

    Connexin43 (Cx43), the major protein forming gap junctions in astrocytes, is reduced in high-grade gliomas, where its ectopic expression exerts important effects, including the inhibition of the proto-oncogene tyrosine-protein kinase Src (c-Src). In this work we aimed to investigate the mechanism responsible for this effect. The inhibition of c-Src requires phosphorylation at tyrosine 527 mediated by C-terminal Src kinase (Csk) and dephosphorylation at tyrosine 416 mediated by phosphatases, such as phosphatase and tensin homolog (PTEN). Our results showed that the antiproliferative effect of Cx43 is reduced when Csk and PTEN are silenced in glioma cells, suggesting the involvement of both enzymes. Confocal microscopy and immunoprecipitation assays confirmed that Cx43, in addition to c-Src, binds to PTEN and Csk in glioma cells transfected with Cx43 and in astrocytes. Pull-down assays showed that region 266–283 in Cx43 is sufficient to recruit c-Src, PTEN and Csk and to inhibit the oncogenic activity of c-Src. As a result of c-Src inhibition, PTEN was increased with subsequent inactivation of Akt and reduction of proliferation of human glioblastoma stem cells. We conclude that the recruitment of Csk and PTEN to the region between residues 266 and 283 within the C-terminus of Cx43 leads to c-Src inhibition. PMID:27391443

  14. ERK5 Activation in Macrophages Promotes Efferocytosis and Inhibits Atherosclerosis

    PubMed Central

    Heo, Kyung-Sun; Cushman, Hannah J.; Akaike, Masashi; Woo, Chang-Hoon; Wang, Xin; Qiu, Xing; Fujiwara, Keigi; Abe, Jun-ichi

    2015-01-01

    Background Efferocytosis is a process by which dead and dying cells are removed by phagocytic cells. Efferocytosis by macrophages is thought to curb the progression of atherosclerosis, but the mechanistic insight of this process is lacking. Methods and Results When macrophages were fed apoptotic cells or treated with pitavastatin in vitro, efferocytosis-related signaling and phagocytic capacity were upregulated in an ERK5 activity–dependent manner. Macrophages isolated from macrophage-specific ERK5-null mice exhibited reduced efferocytosis and levels of gene and protein expression of efferocytosis-related molecules. When these mice were crossed with low-density lipoprotein receptor−/− mice and fed a high-cholesterol diet, atherosclerotic plaque formation was accelerated, and the plaques had more advanced and vulnerable morphology. Conclusions Our results demonstrate that ERK5, which is robustly activated by statins, is a hub molecule that upregulates macrophage efferocytosis, thereby suppressing atherosclerotic plaque formation. Molecules that upregulate ERK5 and its signaling in macrophages may be good drug targets for suppressing cardiovascular diseases. PMID:25001623

  15. Acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum grown on germinated brown rice.

    PubMed

    Hasnat, Abul; Pervin, Mehnaz; Lim, Beong Ou

    2013-06-07

    In this study, the acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum grown on germinated brown rice (GLBR) were evaluated. In antioxidant assays in vitro, GLBR was found to have strong metal chelating activity, DPPH, ABTS, hydroxyl and superoxide radical scavenging activity. Cell-based antioxidant methods were used, including lipid peroxidation on brain homogenate and AAPH-induced erythrocyte haemolysis. In antioxidant assays in vivo, mice were administered with GLBR and this significantly enhanced the activities of antioxidant enzymes in the mice sera, livers and brains. The amount of total phenolic and flavonoid compounds were 43.14 mg GAE/g and 13.36 mg CE/g dry mass, respectively. GLBR also exhibited acetylcholinesterase inhibitory activity. In addition, HPLC analyses of GLBR extract revealed the presence of different phenolic compounds. These findings demonstrate the remarkable potential of GLBR extract as valuable source of antioxidants which exhibit interesting acetylcholinesterase inhibitory activity.

  16. Should Physical Activity Be Included in Nutrition Education? A Comparison of Nutrition Outcomes with and without In-Class Activities

    ERIC Educational Resources Information Center

    Palmer-Keenan, Debra M.; Corda, Kirsten

    2014-01-01

    Limited-resource adults' dietary intakes and nutrition behaviors improve as a result of Expanded Food and Nutrition Education Program (EFNEP)/Supplemental Nutrition Assistance Program Education (SNAP-Ed) participation; however, physical activity education is needed for improved health. The experimental study reported here assessed if spending time…

  17. Bufalin derivative BF211 inhibits proteasome activity in human lung cancer cells in vitro by inhibiting β1 subunit expression and disrupting proteasome assembly

    PubMed Central

    Sun, Peng; Feng, Li-xing; Zhang, Dong-mei; Liu, Miao; Liu, Wang; Mi, Tian; Wu, Wan-ying; Jiang, Bao-hong; Yang, Min; Hu, Li-hong; Guo, De-an; Liu, Xuan

    2016-01-01

    Aim: Bufalin is one of the active components in the traditional Chinese medicine ChanSu that is used to treat arrhythmia, inflammation and cancer. BF211 is a bufalin derivative with stronger cytotoxic activity in cancer cells. The aim of this study was to identify the putative target proteins of BF211 and the signaling pathways in cancer cells. Methods: A549 human lung cancer cells were treated with BF211. A SILAC-based proteomic analysis was used to detect the protein expression profiles of BF211-treated A549 cells. Cellular proteasome activities were examined using fluorogenic peptide substrates, and the binding affinities of BF211 to recombinant proteasome subunit proteins were evaluated using the Biacore assay. The expression levels of proteasome subunits were determined using RT-PCR and Western blotting, and the levels of the integral 26S proteasome were evaluated using native PAGE analysis. Results: The proteomic analysis revealed that 1282 proteins were differentially expressed in BF211-treated A549 cells, and the putative target proteins of BF211 were associated with various cellular functions, including transcription, translation, mRNA splicing, ribosomal protein synthesis and proteasome function. In A549 cells, BF211 (5, 10, and 20 nmol/L) dose-dependently inhibited the enzymatic activities of proteasome. But BF211 displayed a moderate affinity in binding to proteasome β1 subunit and no binding affinity to the β2 and β5 subunits. Moreover, BF211 (0.1, 1, and 10 nmol/L) did not inhibit the proteasome activities in the cell lysates. BF211 (5, 10, and 20 nmol/L) significantly decreased the expression level of proteasome β1 subunit and the levels of integral 26S proteasome in A549 cells. Similarly, knockdown of the β1 subunit with siRNA in A549 cells significantly decreased integral 26S proteasome and proteasome activity. Conclusion: BF211 inhibits proteasome activity in A549 cells by decreasing β1 subunit expression and disrupting proteasome assembly

  18. In skeletal muscle advanced glycation end products (AGEs) inhibit insulin action and induce the formation of multimolecular complexes including the receptor for AGEs.

    PubMed

    Cassese, Angela; Esposito, Iolanda; Fiory, Francesca; Barbagallo, Alessia P M; Paturzo, Flora; Mirra, Paola; Ulianich, Luca; Giacco, Ferdinando; Iadicicco, Claudia; Lombardi, Angela; Oriente, Francesco; Van Obberghen, Emmanuel; Beguinot, Francesco; Formisano, Pietro; Miele, Claudia

    2008-12-26

    Chronic hyperglycemia promotes insulin resistance at least in part by increasing the formation of advanced glycation end products (AGEs). We have previously shown that in L6 myotubes human glycated albumin (HGA) induces insulin resistance by activating protein kinase Calpha (PKCalpha). Here we show that HGA-induced PKCalpha activation is mediated by Src. Coprecipitation experiments showed that Src interacts with both the receptor for AGE (RAGE) and PKCalpha in HGA-treated L6 cells. A direct interaction of PKCalpha with Src and insulin receptor substrate-1 (IRS-1) has also been detected. In addition, silencing of IRS-1 expression abolished HGA-induced RAGE-PKCalpha co-precipitation. AGEs were able to induce insulin resistance also in vivo, as insulin tolerance tests revealed a significant impairment of insulin sensitivity in C57/BL6 mice fed a high AGEs diet (HAD). In tibialis muscle of HAD-fed mice, insulin-induced glucose uptake and protein kinase B phosphorylation were reduced. This was paralleled by a 2.5-fold increase in PKCalpha activity. Similarly to in vitro observations, Src phosphorylation was increased in tibialis muscle of HAD-fed mice, and co-precipitation experiments showed that Src interacts with both RAGE and PKCalpha. These results indicate that AGEs impairment of insulin action in the muscle might be mediated by the formation of a multimolecular complex including RAGE/IRS-1/Src and PKCalpha.

  19. Resveratrol inhibits the hydrogen dioxide-induced apoptosis via Sirt 1 activation in osteoblast cells.

    PubMed

    He, Na; Zhu, Xuewei; He, Wei; Zhao, Shiwei; Zhao, Weiyan; Zhu, Chunlei

    2015-01-01

    Sirt 1 plays a critical role in stress responses. We determined the deregulation of Sirt 1 activity, p53 acetylation, Bcl-2 expression, and mitochondria-dependent apoptosis in mouse osteoblast MC3T3-E1 cells which were exposed to H2O2. And then we investigated the protective role of Sirt 1 activator, Resveratrol (RSV), against the H2O2-induced apoptosis. Results demonstrated that Sirt 1 and Bcl-2 were inhibited, whereas p53 acetylation, Bax, and caspase 9 were promoted by H2O2, as was aggravated by the Sirt 1 inhibitor, EX-527. Instead, RSV inhibited the H2O2-induced both p53 acetylation and the caspase 9 activation, whereas ameliorated the H2O2-induced Bcl-2 inhibition and apoptosis. In conclusion, Sirt 1 was downregulated during the H2O2-induced apoptosis in MC3T3-E1 cells. And the chemical activation of Sirt 1 inhibited the H2O2-induced apoptosis via the downregulation of p53 acetylation. Our results suggest that Sirt 1 upregulation appears to be an important strategy to inhibit the oxidative stress-induced apoptosis.

  20. Paclitaxel inhibits the hyper-activation of spleen cells by lipopolysaccharide and induces cell death

    PubMed Central

    Kim, Hyun-Ji

    2016-01-01

    Paclitaxel was isolated from the bark of the Pacific yew, Taxus brevifolia, and used as an anticancer agent. Paclitaxel prevents cancer cell division by inhibiting spindle fiber function, inducing cell death. A recent study demonstrated that paclitaxel binds to myeloid differentiation protein-2 of Toll-like receptor 4 and prevents the signal transduction of lipopolysaccharide (LPS). Paclitaxel converts immune cells hypo-responsive to LPS. In this study, we investigated whether paclitaxel can inhibit the phenotype and function of immune cells. To accomplish this, we used spleen cells, a major type of immune cell, LPS, a representative inflammatory agent and a mitogen for B lymphocytes. LPS profoundly increased the activation and cytokine production of spleen cells. However, paclitaxel significantly inhibited LPS-induced hyper-activation of spleen cells. Furthermore, we found that paclitaxel induced cell death of LPS-treated spleen cells. These results suggest that paclitaxel can inhibit the hyper-immune response of LPS in spleen cells via a variety of mechanisms. These findings suggest that paclitaxel can be used as a modulating agent for diseases induced by hyper-activation of B lymphocytes. Taken together, these results demonstrate that paclitaxel inhibits the function of spleen cells activated by LPS, and further induces cell death. PMID:27030196

  1. Feed-forward inhibition of androgen receptor activity by glucocorticoid action in human adipocytes.

    PubMed

    Hartig, Sean M; He, Bin; Newberg, Justin Y; Ochsner, Scott A; Loose, David S; Lanz, Rainer B; McKenna, Neil J; Buehrer, Benjamin M; McGuire, Sean E; Marcelli, Marco; Mancini, Michael A

    2012-09-21

    We compared transcriptomes of terminally differentiated mouse 3T3-L1 and human adipocytes to identify cell-specific differences. Gene expression and high content analysis (HCA) data identified the androgen receptor (AR) as both expressed and functional, exclusively during early human adipocyte differentiation. The AR agonist dihydrotestosterone (DHT) inhibited human adipocyte maturation by downregulation of adipocyte marker genes, but not in 3T3-L1. It is interesting that AR induction corresponded with dexamethasone activation of the glucocorticoid receptor (GR); however, when exposed to the differentiation cocktail required for adipocyte maturation, AR adopted an antagonist conformation and was transcriptionally repressed. To further explore effectors within the cocktail, we applied an image-based support vector machine (SVM) classification scheme to show that adipocyte differentiation components inhibit AR action. The results demonstrate human adipocyte differentiation, via GR activation, upregulates AR but also inhibits AR transcriptional activity.

  2. Inhibition of a signaling pathway in cardiac muscle cells by active mitogen-activated protein kinase kinase.

    PubMed Central

    Thorburn, J; Carlson, M; Mansour, S J; Chien, K R; Ahn, N G; Thorburn, A

    1995-01-01

    Signaling via the Ras pathway involves sequential activation of Ras, Raf-1, mitogen-activated protein kinase kinase (MKK), and the extracellular signal-regulated (ERK) group of mitogen-activated protein (MAP) kinases. Expression from the c-Fos, atrial natriuretic factor (ANF), and myosin light chain-2 (MLC-2) promoters during phenylephrine-induced cardiac muscle cell hypertrophy requires activation of this pathway. Furthermore, constitutively active Ras or Raf-1 can mimic the action of phenylephrine in inducing expression from these promoters. In this study, we tested whether constitutively active MKK, the molecule immediately downstream of Raf, was sufficient to induce expression. Expression of constitutively active MKK induce ERK2 kinase activity and caused expression from the c-Fos promoter, but did not significantly activate expression of reporter genes under the control of either the ANF or MLC-2 promoters. Expression of CL100, a phosphatase that inactivates ERKs, prevented expression from all of the promoters. Taken together, these data suggest that ERK activation is required for expression from the Fos, ANF, and MLC-2 promoters but MKK and ERK activation is sufficient for expression only from the Fos promoter. Constitutively active MKK synergized with phenylephrine to increase expression from a c-Fos- or an AP1-driven reporter. However, active MKK inhibited phenylephrine- and Raf-1-induced expression from the ANF and MLC-2 promoters. A DNA sequence in the MLC-2 promoter that is a target for inhibition by active MKK, but not CL100, was mapped to a previously characterized DNA element (HF1) that is responsible for cardiac specificity. Thus, activation of cardiac gene expression during phenylephrine-induced hypertrophy requires ERK activation but constitutive activation by MKK can inhibit expression by targeting a DNA element that controls the cardiac specificity of gene expression. PMID:8589450

  3. Anandamide inhibits nuclear factor-kappaB activation through a cannabinoid receptor-independent pathway.

    PubMed

    Sancho, Rocío; Calzado, Marco A; Di Marzo, Vincenzo; Appendino, Giovanni; Muñoz, Eduardo

    2003-02-01

    Anandamide (arachidonoylethanolamine, AEA), an endogenous agonist for both the cannabinoid CB(1) receptor and the vanilloid VR1 receptor, elicits neurobehavioral, anti-inflammatory, immunomodulatory, and proapoptotic effects. Because of the central role of nuclear factor-kappaB (NF-kappaB) in the inflammatory process and the immune response, we postulated that AEA might owe some of its effects to the suppression of NF-kappaB. This study shows that AEA inhibits tumor necrosis factor-alpha (TNFalpha)-induced NF-kappaB activation by direct inhibition of the IkappaB kinase (IKK)beta and, to a lesser extent, the IKKalpha subunits of kappaB inhibitor (IkappaB) kinase complex, and that IKKs inhibition by AEA correlates with inhibition of IkappaBalpha degradation, NF-kappaB binding to DNA, and NF-kappaB-dependent transcription in TNFalpha-stimulated cells. AEA also prevents NF-kappaB-dependent reporter gene expression induced by mitogen-activated protein kinase kinase kinase and NF-kappaB-inducing kinase. The NF-kappaB inhibitory activity of AEA was independent of CB(1) and CB(2) activation in TNFalpha-stimulated 5.1 and A549 cell lines, which do not express vanilloid receptor 1, and was not mediated by hydrolytic products formed through the activity of the enzyme fatty acid amide hydrolase. Chemical modification markedly affected AEA inhibitory activity on NF-kappaB, suggesting rather narrow structure-activity relationships and the specific interaction with a molecular target. Substitution of the alkyl moiety with less saturated fatty acids generally reduced or abolished activity. However, replacement of the ethanolamine "head" with a vanillyl group led to potent inhibition of TNFalpha-induced NF-kappaB-dependent transcription. These findings provide new mechanistic insights into the anti-inflammatory and proapoptotic activities of AEA, and should foster the synthesis of improved analogs amenable to pharmaceutical development as anti-inflammatory agents.

  4. Inhibition of natural killer cell activity by eicosapentaenoic acid in vivo and in vitro

    SciTech Connect

    Yamashita, N.; Sugiyama, E.; Hamazaki, T.; Yano, S.

    1988-01-15

    To examine the effects of in vivo eicosapentaenoic acid (EPA) on natural killer (NK) cell activity, C3H/He mice each received a single intraperitoneal bolus of an emulsion of trieicosapentaenoyl-glycerol (EPA-TG). Spleen cells were tested for NK activity using /sup 51/Chromium-release assays against YAC-1 target cells. Forty eight hours after injection, NK activity was inhibited in a dose-dependent manner. EPA-TG emulsion also inhibited the NK activity of NK-enriched effector cells. Decreased cytotoxicity was first noted 24 hr after injection; it resumed the baseline by 7 days. The addition of EPA-TG emulsion to a cytotoxicity assay system resulted in moderate depression of NK activity. These results demonstrate that EPA has significant immunomodulatory effects on NK activity.

  5. Polymer brain-nanotherapeutics for multipronged inhibition of microglial α-synuclein aggregation, activation, and neurotoxicity.

    PubMed

    Bennett, Neal K; Chmielowski, Rebecca; Abdelhamid, Dalia S; Faig, Jonathan J; Francis, Nicola; Baum, Jean; Pang, Zhiping P; Uhrich, Kathryn E; Moghe, Prabhas V

    2016-12-01

    Neuroinflammation, a common neuropathologic feature of neurodegenerative disorders including Parkinson disease (PD), is frequently exacerbated by microglial activation. The extracellular protein α-synuclein (ASYN), whose aggregation is characteristic of PD, remains a key therapeutic target, but the control of synuclein trafficking and aggregation within microglia has been challenging. First, we established that microglial internalization of monomeric ASYN was mediated by scavenger receptors (SR), CD36 and SRA1, and was rapidly accompanied by the formation of ASYN oligomers. Next, we designed a nanotechnology approach to regulate SR-mediated intracellular ASYN trafficking within microglia. We synthesized mucic acid-derivatized sugar-based amphiphilic molecules (AM) with optimal stereochemistry, rigidity, and charge for enhanced dual binding affinity to SRs and fabricated serum-stable nanoparticles via flash nanoprecipitation comprising hydrophobe cores and amphiphile shells. Treatment of microglia with AM nanoparticles decreased monomeric ASYN internalization and intracellular ASYN oligomer formation. We then engineered composite deactivating NPs with dual character, namely shell-based SR-binding amphiphiles, and core-based antioxidant poly (ferrulic acid), to investigate concerted inhibition of oxidative activation. In ASYN-challenged microglia treated with NPs, we observed decreased ASYN-mediated acute microglial activation and diminished microglial neurotoxicity caused by exposure to aggregated ASYN. When the composite NPs were administered in vivo within the substantia nigra of fibrillar ASYN-challenged wild type mice, there was marked attenuation of activated microglia. Overall, SR-targeting AM nanotechnology represents a novel paradigm in alleviating microglial activation in the context of synucleinopathies like PD and other neurodegenerative diseases.

  6. Topoisomerase inhibition, nucleolytic and electrolytic contribution on DNA binding activity exerted by biological active analogue of coordination compounds.

    PubMed

    Patel, Mohan N; Bhatt, Bhupesh S; Dosi, Promise A

    2012-04-01

    The neutral mononuclear copper complexes with the quinolone antibacterial drug ciprofloxacin and bipyridine derivatives have been synthesized and characterized. Complexes were screened for their antibacterial activity against three Gram((-)) and two Gram((+)) bacteria, and study suggests inhibition of gyrase activity by metal complexes as the possible mechanism. The nucleolytic activity of adducts was carried out on double stranded pUC19 DNA using gel electrophoresis in the presence of radical scavenging agents that suggest hydrolytic cleavage mechanism for plasmid DNA.

  7. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    SciTech Connect

    Franco, Gilson C.N.; Nakanishi, Tadashi; Ohta, Kouji; Rosalen, Pedro L.; Groppo, Francisco C.; Bartlett, John D.; Stashenko, Philip; Taubman, Martin A.; Kawai, Toshihisa

    2011-06-10

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  8. Hypouricaemic action of mangiferin results from metabolite norathyriol via inhibiting xanthine oxidase activity.

    PubMed

    Niu, Yanfen; Liu, Jia; Liu, Hai-Yang; Gao, Li-Hui; Feng, Guo-Hua; Liu, Xu; Li, Ling

    2016-09-01

    Context Mangiferin has been reported to possess a potential hypouricaemic effect. However, the pharmacokinetic studies in rats showed that its oral bioavailability was only 1.2%, suggesting that mangiferin metabolites might exert the action. Objective The hypouricaemic effect and the xanthine oxidase inhibition of mangiferin and norathyriol, a mangiferin metabolite, were investigated. Inhibition of norathyriol analogues (compounds 3-9) toward xanthine oxidase was also evaluated. Materials and methods For a dose-dependent study, mangiferin (1.5-6.0 mg/kg) and norathyriol (0.92-3.7 mg/kg) were administered intragastrically to mice twice daily for five times. For a time-course study, mice received mangiferin and norathyriol both at a single dose of 7.1 μmol/kg. In vitro, inhibition of test compounds (2.4-2.4 mM) against xanthine oxidase activity was evaluated by the spectrophotometrical method. The inhibition type was identified from Lineweaver-Burk plots. Results Norathyriol (0.92, 1.85 and 3.7 mg/kg) dose dependently decreased the serum urate levels by 27.0, 33.6 and 37.4%, respectively. The action was more potent than that of mangiferin at the low dose, but was equivalent at the higher doses. Additionally, the hypouricaemic action of them exhibited a time dependence. In vitro, norathyriol markedly inhibited the xanthine oxidase activities, with the IC50 value of 44.6 μM, but mangiferin did not. The kinetic studies showed that norathyriol was an uncompetitive inhibitor by Lineweaver-Burk plots. The structure-activity relationships exhibited that three hydroxyl groups in norathyriol at the C-1, C-3 and C-6 positions were essential for maintaining xanthine oxidase inhibition. Discussion and conclusion Norathyriol was responsible for the hypouricaemic effect of mangiferin via inhibiting xanthine oxidase activity.

  9. Non-specific binding sites help to explain mixed inhibition in mushroom tyrosinase activities.

    PubMed

    Hassani, Sorour; Haghbeen, Kamahldin; Fazli, Mostafa

    2016-10-21

    Inhibition and activation studies of tyrosinase could prove beneficial to agricultural, food, cosmetic, and pharmaceutical industries. Although non-competitive and mixed-inhibition are frequent modes observed in kinetics studies on mushroom tyrosinase (MT) activities, the phenomena are left unexplained. In this study, dual effects of phthalic acid (PA) and cinnamic acid (CA) on MT during mono-phenolase activity were demonstrated. PA activated and inhibited MT at concentrations lower and higher than 150 μM, respectively. In contrast, CA inhibited and activated MT at concentrations lower and higher than 5 μM. The mode of inhibition for both effectors was mixed-type. Complex kinetics of MT in the presence of a modulator could partly be ascribed to its mixed-cooperativity. However, to explain mixed-inhibition mode, it is necessary to demonstrate how the ternary complex of substrate/enzyme/effector is formed. Therefore, we looked for possible non-specific binding sites using MT tropolone-bound PDB (2Y9X) in the computational studies. When tropolone was in MTPa (active site), PA and CA occupied different pockets (named MTPb and MTPc, respectively). The close Moldock scores of PA binding posed in MTPb and MTPa suggested that MTPb could be a secondary binding site for PA. Similar results were obtained for CA. Ensuing results from 10 ns molecular dynamics simulations for 2Y9X-effector complexes indicated that the structures were gradually stabilized during simulation. Tunnel analysis by using CAVER Analyst and CHEXVIS resulted in identifying two distinct channels that assumingly participate in exchanging the effectors when the direct channel to MTPa is not accessible.

  10. Endoxifen, the active metabolite of tamoxifen, inhibits cloned hERG potassium channels.

    PubMed

    Chae, Yun Ju; Lee, Keon Jin; Lee, Hong Joon; Sung, Ki-Wug; Choi, Jin-Sung; Lee, Eun Hui; Hahn, Sang June

    2015-04-05

    The effects of tamoxifen, and its active metabolite endoxifen (4-hydroxy-N-desmethyl-tamoxifen), on hERG currents stably expressed in HEK cells were investigated using the whole-cell patch-clamp technique and an immunoblot assay. Tamoxifen and endoxifen inhibited hERG tail currents at -50mV in a concentration-dependent manner with IC50 values of 1.2 and 1.6μM, respectively. The steady-state activation curve of the hERG currents was shifted to the hyperpolarizing direction in the presence of endoxifen. The voltage-dependent inhibition of hERG currents by endoxifen increased steeply in the voltage range of channel activation. The inhibition by endoxifen displayed a shallow voltage dependence (δ=0.18) in the full activation voltage range. A fast application of endoxifen induced a reversible block of hERG tail currents during repolarization in a concentration-dependent manner, which suggested an interaction with the open state of the channel. Endoxifen also decreased the hERG current elicited by a 5s depolarizing pulse to +60mV to inactivate the hERG currents, suggesting an interaction with the activated (open and/or inactivated) states of the channels. Tamoxifen and endoxifen inhibited the hERG channel protein trafficking to the plasma membrane in a concentration-dependent manner with endoxifen being more potent than tamoxifen. These results indicated that tamoxifen and endoxifen inhibited the hERG current by direct channel blockage and by the disruption of channel trafficking to the plasma membrane in a concentration-dependent manner. A therapeutic concentration of endoxifen inhibited the hERG current by preferentially interacting with the activated (open and/or inactivated) states of the channel.

  11. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    SciTech Connect

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li{sub 2}CO{sub 3} significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li{sub 2}CO{sub 3} did not affect PI3K-mediated PI(3,4,5)P{sub 3} production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li{sub 2}CO{sub 3} on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li{sub 2}CO{sub 3} significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li{sub 2}CO{sub 3} significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity.

  12. SLO2 Channels Are Inhibited by All Divalent Cations That Activate SLO1 K+ Channels.

    PubMed

    Budelli, Gonzalo; Sun, Qi; Ferreira, Juan; Butler, Alice; Santi, Celia M; Salkoff, Lawrence

    2016-04-01

    Two members of the family of high conductance K(+)channels SLO1 and SLO2 are both activated by intracellular cations. However, SLO1 is activated by Ca(2+)and other divalent cations, while SLO2 (Slack or SLO2.2 from rat) is activated by Na(+) Curiously though, we found that SLO2.2 is inhibited by all divalent cations that activate SLO1, with Zn(2+)being the most effective inhibitor with an IC50of ∼8 μmin contrast to Mg(2+), the least effective, with an IC50of ∼ 1.5 mm Our results suggest that divalent cations are not SLO2 pore blockers, but rather inhibit channel activity by an allosteric modification of channel gating. By site-directed mutagenesis we show that a histidine residue (His-347) downstream of S6 reduces inhibition by divalent cations. An analogous His residue present in some CNG channels is an inhibitory cation binding site. To investigate whether inhibition by divalent cations is conserved in an invertebrate SLO2 channel we cloned the SLO2 channel fromDrosophila(dSLO2) and compared its properties to those of rat SLO2.2. We found that, like rat SLO2.2, dSLO2 was also activated by Na(+)and inhibited by divalent cations. Inhibition of SLO2 channels in mammals andDrosophilaby divalent cations that have second messenger functions may reflect the physiological regulation of these channels by one or more of these ions.

  13. Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots.

    PubMed

    Wang, Yan; Curtis-Long, Marcus J; Lee, Byong Won; Yuk, Heung Joo; Kim, Dae Wook; Tan, Xue Fei; Park, Ki Hun

    2014-02-01

    Flemingia philippinensis is used as a foodstuff or medicinal plant in the tropical regions of China. The methanol (95%) extract of the roots of this plant showed potent tyrosinase inhibition (80% inhibition at 30μg/ml). Activity-guided isolation yielded six polyphenols that inhibited both the monophenolase (IC50=1.01-18.4μM) and diphenolase (IC50=5.22-84.1μM) actions of tyrosinase. Compounds 1-6 emerged to be three new polyphenols and three known flavanones, flemichin D, lupinifolin and khonklonginol H. The new compounds (1-3) were identified as dihydrochalcones which we named fleminchalcones (A-C), respectively. The most potent inhibitor, dihydrochalcone (3) showed significant inhibitions against both the monophenolase (IC50=1.28μM) and diphenolase (IC50=5.22μM) activities of tyrosinase. Flavanone (4) possessing a resorcinol group also inhibited monophenolase (IC50=1.79μM) and diphenolase (IC50=7.48μM) significantly. In kinetic studies, all isolated compounds behaved as competitive inhibitors. Fleminchalcone A was found to have simple reversible slow-binding inhibition against monophenolase.

  14. Low-power laser irradiation inhibits Aβ25-35-induced cell apoptosis through Akt activation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhigang; Tang, Yonghong

    2009-08-01

    Low-power laser irradiation (LPLI) can modulate various cellular processes such as proliferation, differentiation and apoptosis. Recently, LPLI has been applied to moderate Alzheimer's disease (AD), but the underlying mechanism remains unknown. The protective role of LPLI against the amyloid beta peptide (Aβ), a major constituent of AD plaques, has not been studied. PI3K/Akt pathway is extremely important in protecting cells from apoptosis caused by diverse stress stimuli. However, whether LPLI can inhibit Aβ-induced apoptosis through Akt activation is still unclear. In current study, using FRET (fluorescence resonance energy transfer) technique, we investigated the activity of Akt in response to LPLI treatment. B kinase activity reporter (BKAR), a recombinant FRET probe of Akt, was utilized to dynamically detect the activation of Akt after LPLI treatment. The results show that LPLI promoted the activation of Akt. Moreover, LPLI inhibits apoptosis induced by Aβ25-35 and the apoptosis inhibition can be abolished by wortmannin, a specific inhibitor of PI3K/Akt. Taken together, these results suggest that LPLI can inhibit Aβ25-35-induced cell apoptosis through Akt activation.

  15. Depolymerization of macrophage microfilaments prevents induction and inhibits activity of nitric oxide synthase.

    PubMed

    Fernandes, P D; Araujo, H M; Riveros-Moreno, V; Assreuy, J

    1996-12-01

    We have investigated the relationship between peritoneal murine macrophage cytoskeleton and nitric oxide (NO) synthase (NOS). Activation of the cells with lipopolysaccharide plus interferon-gamma (LI) induced iNOS, detected by nitrite or by labeled L-citrulline production and by a specific antibody against macrophage iNOS. Addition of cytochalasin B (a microfilament-depolymerizing agent) caused a dose-dependent inhibition in NO production by macrophages, whereas colchicine (a microtubule depolymerizing agent) inhibited it only by 20% and not dose-dependently. Addition of cytochalasin B together with LI abolished nitrite and L-citrulline accumulation as well as the amount of iNOS antigen in activated macrophage. Moreover, addition of cytochalasin B 6 or 12 h after stimulus, also decreased the nitrite and L-citrulline production by macrophages although iNOS antigen content by Western blot was the same in the presence or in the absence of cytochalasin B added 12 h after activation. Since cytochalasin B failed to inhibit iNOS activity directly, its inhibitory effects on NO production by macrophages is likely to be indirect, through microfilament network in central regions of cells, but not in filaments seen at pseudopodia or edging processes. Our findings demonstrate that disruption of microfilaments but not of microtubules prevents the iNOS induction process and inhibits its enzymatic activity in activated macrophages.

  16. White button mushroom phytochemicals inhibit aromatase activity and breast cancer cell proliferation.

    PubMed

    Grube, B J; Eng, E T; Kao, Y C; Kwon, A; Chen, S

    2001-12-01

    Estrogen is a major factor in the development of breast cancer. In situ estrogen production by aromatase/estrogen synthetase in breast cancer plays a dominant role in tumor proliferation. Because natural compounds such as flavones and isoflavones have been shown to be inhibitors of aromatase, it is thought that vegetables that contain these phytochemicals can inhibit aromatase activity and suppress breast cancer cell proliferation. Heat-stable extracts were prepared from vegetables and screened for their ability to inhibit aromatase activity in a human placental microsome assay. The white button mushroom (species Agaricus bisporus) suppressed aromatase activity dose dependently. Enzyme kinetics demonstrated mixed inhibition, suggesting the presence of multiple inhibitors or more than one inhibitory mechanism. "In cell" aromatase activity and cell proliferation were measured using MCF-7aro, an aromatase-transfected breast cancer cell line. Phytochemicals in the mushroom aqueous extract inhibited aromatase activity and proliferation of MCF-7aro cells. These results suggest that diets high in mushrooms may modulate the aromatase activity and function in chemoprevention in postmenopausal women by reducing the in situ production of estrogen.

  17. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells

    PubMed Central

    Du, Xueliang; Matsumura, Takeshi; Edelstein, Diane; Rossetti, Luciano; Zsengellér, Zsuzsanna; Szabó, Csaba; Brownlee, Michael

    2003-01-01

    In this report, we show that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron transport chain activates the three major pathways of hyperglycemic damage found in aortic endothelial cells by inhibiting GAPDH activity. In bovine aortic endothelial cells, GAPDH antisense oligonucleotides activated each of the pathways of hyperglycemic vascular damage in cells cultured in 5 mM glucose to the same extent as that induced by culturing cells in 30 mM glucose. Hyperglycemia-induced GAPDH inhibition was found to be a consequence of poly(ADP-ribosyl)ation of GAPDH by poly(ADP-ribose) polymerase (PARP), which was activated by DNA strand breaks produced by mitochondrial superoxide overproduction. Both the hyperglycemia-induced decrease in activity of GAPDH and its poly(ADP-ribosyl)ation were prevented by overexpression of either uncoupling protein–1 (UCP-1) or manganese superoxide dismutase (MnSOD), which decrease hyperglycemia-induced superoxide. Overexpression of UCP-1 or MnSOD also prevented hyperglycemia-induced DNA strand breaks and activation of PARP. Hyperglycemia-induced activation of each of the pathways of vascular damage was abolished by blocking PARP activity with the competitive PARP inhibitors PJ34 or INO-1001. Elevated glucose increased poly(ADP-ribosyl)ation of GAPDH in WT aortae, but not in the aortae from PARP-1–deficient mice. Thus, inhibition of PARP blocks hyperglycemia-induced activation of multiple pathways of vascular damage. PMID:14523042

  18. IL-4 inhibits TNF-α-mediated osteoclast formation by inhibition of RANKL expression in TNF-α-activated stromal cells and direct inhibition of TNF-α-activated osteoclast precursors via a T-cell-independent mechanism in vivo.

    PubMed

    Fujii, Toshiya; Kitaura, Hideki; Kimura, Keisuke; Hakami, Zaki Weli; Takano-Yamamoto, Teruko

    2012-10-01

    It has been reported that osteoclastogenesis is induced by tumor necrosis factor (TNF)-α. Interleukin (IL)-4 is the most important cytokine involved in humoral immunity. However, no studies have investigated the effect of IL-4 on TNF-α-mediated osteoclast formation in vivo. In this study, we investigated the effect of IL-4 on TNF-α-mediated osteoclast formation in vivo. TNF-α was administered with and without IL-4 into the supracalvariae of mice. The number of osteoclasts and the levels of mRNA for cathepsin K and tartrate-resistant acid phosphate, both osteoclast markers, in mice administered TNF-α and IL-4 were lower than those in mice administered TNF-α alone. The level of tartrate-resistant acid phosphatase form 5b (TRACP5b) as a marker of bone resorption in mice administered both TNF-α and IL-4 was also lower. We showed that IL-4 inhibited TNF-α-mediated osteoclast formation in osteoclast precursors in vitro. Expression of receptor activator of NF-κB ligand (RANKL) in TNF-α-activated stromal cells was also inhibited. Furthermore, we investigated whether IL-4 had effects on both stromal cells and osteoclast precursors in TNF-α-mediated osteoclast formation in vivo. Using mice whose stromal cells and osteoclast precursors were chimeric for the presence of TNF receptors, IL-4 inhibited TNF-α-mediated osteoclast formation in the presence of TNF-α-responsive stromal cells, and TNF-α-responsive osteoclast precursors in vivo. IL-4 also inhibited TNF-α-induced RANKL expression in the presence of TNF-α-responsive stromal cells in vivo. This event is dependent on p38 inhibition in vitro. Additionally, IL-4 inhibited TNF-α-mediated osteoclast formation in T cell-depleted mice. In summary, we conclude that IL-4 inhibited TNF-α-mediated osteoclast formation by inhibiting expression of RANKL in TNF-α-activated stromal cells, and directly inhibited TNF-α-activated osteoclast precursors in vivo via a T cell-independent mechanism.

  19. Chemical or genetic Pin1 inhibition exerts potent anticancer activity against hepatocellular carcinoma by blocking multiple cancer-driving pathways

    PubMed Central

    Liao, Xin-Hua; Zhang, Arina Li; Zheng, Min; Li, Mei-Qing; Chen, Champ Peng; Xu, Huijuan; Chu, Qing-Song; Yang, Dayun; Lu, Wenxian; Tsai, Ting-Fen; Liu, Hekun; Zhou, Xiao Zhen; Lu, Kun Ping

    2017-01-01

    Hepatocellular carcinoma (HCC) is one of the most prevalent and malignant cancers with high inter- and intra-tumor heterogeneity. A central common signaling mechanism in cancer is proline-directed phosphorylation, which is further regulated by the unique proline isomerase Pin1. Pin1 is prevalently overexpressed in human cancers including ~70% of HCC, and promotes tumorigenesis by activating multiple cancer-driving pathways. However, it was challenging to evaluate the significance of targeting Pin1 in cancer treatment until the recent identification of all-trans retinoic acid (ATRA) as a Pin1 inhibitor. Here we systematically investigate functions of Pin1 and its inhibitor ATRA in the development and treatment of HCC. Pin1 knockdown potently inhibited HCC cell proliferation and tumor growth in mice. ATRA-induced Pin1 degradation inhibited the growth of HCC cells, although at a higher IC50 as compared with breast cancer cells, likely due to more active ATRA metabolism in liver cells. Indeed, inhibition of ATRA metabolism enhanced the sensitivity of HCC cells to ATRA. Moreover, slow-releasing ATRA potently and dose-dependently inhibited HCC growth in mice. Finally, chemical or genetic Pin1 ablation blocked multiple cancer-driving pathways simultaneously in HCC cells. Thus, targeting Pin1 offers a promising therapeutic approach to simultaneously stop multiple cancer-driving pathways in HCC. PMID:28262728

  20. Miniaturized Growth Inhibition Assay to Assess the Anti-blood Stage Activity of Antibodies.

    PubMed

    Duncan, Elizabeth H; Bergmann-Leitner, Elke S

    2015-01-01

    While no immune correlate for blood-stage specific immunity against Plasmodium falciparum malaria has been identified, there is strong evidence that antibodies directed to various malarial antigens play a crucial role. In an effort to evaluate the role of antibodies in inhibiting growth and/or invasion of erythrocytic stages of the malaria parasite it will be necessary to test large sample sets from Phase 2a/b trials as well as epidemiological studies. The major constraints for such analyses are (1) availability of sufficient sample quantities (especially from infants and small children) and (2) the throughput of standard growth inhibition assays. The method described here assesses growth- and invasion inhibition by measuring the metabolic activity and viability of the parasite (by using a parasite lactate dehydrogenase-specific substrate) in a 384-microtiter plate format. This culture method can be extended beyond the described detection system to accommodate other techniques commonly used for growth/invasion-inhibition.

  1. Inhibition of biomass activity in the via nitrite nitrogen removal processes by veterinary pharmaceuticals.

    PubMed

    Alvarino, Teresa; Katsou, Evina; Malamis, Simos; Suarez, Sonia; Omil, Francisco; Fatone, Francesco

    2014-01-01

    The inhibitory effect of two veterinary pharmaceuticals was studied for different types of biomass involved in via nitrite nitrogen removal processes. Batch tests were conducted to determine the inhibition level of acetaminophen (PAR) and doxycycline (DOX) on the activity of short-cut nitrifying, denitrifying and anoxic ammonium oxidation (anammox) biomass and phosphorus accumulating organisms (PAOs). All biomass types were affected by PAR and DOX, with anammox being the most sensitive bacteria. DOX inhibited more the biomass treating high strength nitrogenous effluents (HSNE) than low strength nitrogenous effluents (LSNE). The phosphorus uptake inhibition under anoxic conditions was lower than 25% in the presence of PAR up to 400 mg L(-1). The same DOX concentration inhibited anoxic phosphorus uptake more than 65% for biomass treating LSNE and HSNE. Heterotrophic denitrifying bacteria seem to be more robust at high DOX and PAR concentrations than anammox. Both veterinary products inactivated ammonium oxidizing, Accumulibacter phosphatis and denitrifying bacteria.

  2. Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement

    PubMed Central

    Smith, Nikaïa; Pietrancosta, Nicolas; Davidson, Sophia; Dutrieux, Jacques; Chauveau, Lise; Cutolo, Pasquale; Dy, Michel; Scott-Algara, Daniel; Manoury, Bénédicte; Zirafi, Onofrio; McCort-Tranchepain, Isabelle; Durroux, Thierry; Bachelerie, Françoise; Schwartz, Olivier; Münch, Jan; Wack, Andreas; Nisole, Sébastien; Herbeuval, Jean-Philippe

    2017-01-01

    Plasmacytoid dendritic cells (pDC) are specialized in secretion of type I interferon in response to pathogens. Here we show that natural monoamines and synthetic amines inhibit pDC activation by RNA viruses. Furthermore, a synthetic analogue of histamine reduces type I interferon production in a mouse model of influenza infection. We identify CXC chemokine receptor 4 (CXCR4) as a receptor used by amines to inhibit pDC. Our study establishes a functional link between natural amines and the innate immune system and identifies CXCR4 as a potential ‘on-off' switch of pDC activity with therapeutic potential. PMID:28181493

  3. Mycelium of fungi isolated from mouldy foods inhibits Staphylococcus aureus including MRSA – A rationale for the re-introduction of mycotherapy?

    PubMed Central

    Alnaimat, Sulaiman; Alharbi, Naiyf S.; Alharbi, Sulaiman Ali; Salmen, Saleh H.; Chinnathambi, Arunachalam; Al-Johny, Bassam O.; Wainwright, M.

    2015-01-01

    Fungal mycelium capable of producing antibacterial agents was isolated from samples of apple, beetroot, lemon and orange; the mycelium of all isolates produced penicillin, while the apple and beetroot samples also produced the antibacterial mycotoxin patulin. The known penicillin-producing fungi were shown to produce penicillin, but not patulin. The mycelial discs of all of fruit and vegetable isolates, as well as the two known penicillin producing fungi, inhibited Staphylococcus aureus, and mycelium of all isolates inhibited MRSA, in contrast, only one of the two known penicillin-producers did so. The results are discussed in relation to the possibility of using the mycelium of Penicillium species in mycotherapy. PMID:26288565

  4. AMPK-autophagy inhibition sensitizes icaritin-induced anti-colorectal cancer cell activity.

    PubMed

    Zhou, Chunxian; Gu, Jun; Zhang, Gang; Dong, Da; Yang, Qunying; Chen, Min-Bin; Xu, Dongfeng

    2017-01-18

    The current research studied the potential effect of autophagy on icaritin-induced anti-colorectal cancer (CRC) cell activity. Treatment of icaritin in both primary and established (HT-29) CRC cells induced feedback activation of autophagy, evidenced by p62 degradation, Beclin-1 and autophagy-related gene-5 (ATG-5) upregulation, as well as light chain 3B (LC3B)-GFP puncta formation. Pharmacological inhibiting of autophagy dramatically potentiated icaritin-induced CRC cell death and apoptosis. Meanwhile, shRNA-mediated knockdown of Beclin-1 or ATG-5 also sensitized icaritin-induced CRC cell death and apoptosis. Icaritin activated AMP-activated protein kinase (AMPK) signaling in CRC cells, functioning as the upstream signaling for autophagy activation. shRNA/siRNA-mediated knockdown of AMPKα1inhibited icaritin-induced autophagy activation, but exacerbated CRC cell death. On the other hand, the AMPK activator compound 13 (C13) or the autophagy activator MHY1485 attenuated icaritin-induced cytotoxicity. In nude mice, icaritin (oral administration)-induced HT-29 tumor growth inhibition was potentiated when combined with AMPKα1 shRNA knockdown in tumors. We conclude that feedback activation of AMPK-autophagy pathway could be a primary resistance factor of icaritin.

  5. Cannabinoids inhibit the activation of ERK MAPK in PMA/Io-stimulated mouse splenocytes.

    PubMed

    Faubert Kaplan, Barbara L; Kaminski, Norbert E

    2003-10-01

    The mechanism of action of immune suppression by cannabinoids involves suppression of interleukin-2 (IL-2) production in phorbol ester plus calcium ionophore (PMA/Io)-stimulated lymphocytes. This decrease in IL-2 was due to inhibition of activator protein-1 (AP-1) and nuclear factor of activated T cells (NF-AT) transcription factors, both of which depend on proteins that are regulated by the extracellular signal-regulated kinase subgroup of the mitogen-activated protein kinases (ERK MAPK). Thus, the objective of the present study was to characterize the effects of cannabinoid compounds on ERK MAPK under conditions where IL-2 expression was suppressed. Using the MEK inhibitor PD098059 in order to assess the role of ERK MAPK in PMA/Io-stimulated splenocytes (SPLC), it was determined that IL-2 production and expression of c-fos and c-jun nuclear protein expression depended on activation of ERK MAPK. In response to PMA/Io, expression of nuclear phosphorylated ERK MAPK was rapidly induced, peaked at approximately 15 min, and was sustained for up to 240 min. Pretreatment with cannabinol (CBN) inhibited expression of phosphorylated ERK MAPK at several time points up to 240 min post cellular activation. Furthermore, WIN-55212-2, a synthetic cannabinoid, inhibited expression of phosphorylated ERK MAPK at 240 min post cellular activation. CBN did not induce activation of ERK MAPK in the absence of PMA/Io. Collectively, these studies suggest that cannabinoid-induced inhibition of IL-2 in PMA/Io-stimulated splenocytes might be due, in part, to inhibition of ERK MAPK activation.

  6. Fluoxetine prevents oligodendrocyte cell death by inhibiting microglia activation after spinal cord injury.

    PubMed

    Lee, Jee Y; Kang, So R; Yune, Tae Y

    2015-05-01

    Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans.

  7. Anti-inflammatory activity of flavonoids in Nepalese propolis is attributed to inhibition of the IL-33 signaling pathway.

    PubMed

    Funakoshi-Tago, Megumi; Okamoto, Kazuhi; Izumi, Rika; Tago, Kenji; Yanagisawa, Ken; Narukawa, Yuji; Kiuchi, Fumiyuki; Kasahara, Tadashi; Tamura, Hiroomi

    2015-03-01

    Propolis has been used in folk medicine to improve health and prevent inflammatory diseases; however, the components that exhibit its anti-inflammatory activity remain unknown. We herein investigated the effects of flavonoids isolated from Nepalese propolis on the IL-33 signaling pathway to clarify the anti-inflammatory mechanism involved. Of the 8 types of flavonoids isolated from Nepalese propolis, 4 types of compounds, such as 3',4'-dihydroxy-4-methoxydalbergione, 4-methoxydalbergion, cearoin, and chrysin, markedly inhibited the IL-33-induced mRNA expression of inflammatory genes including IL-6, TNFα and IL-13 in bone marrow-derived mast cells (BMMC). These four flavonoids also inhibited the IL-33-induced activation of nuclear factor κB (NF-κB), which was consistent with their inhibitory effects on cytokine expression. The effects of these flavonoids are attributed to inhibition of IL-33-induced activation of IKK, which leads to the degradation of IκBα and nuclear localization of NF-κB. On the other hand, other flavonoids isolated from Nepalese propolis, such as isoliquiritigenin, plathymenin, 7-hydroxyflavanone, and (+)-medicarpin, had no effect on the IL-33 signaling pathway or cytokine expression. Therefore, these results indicate that 3',4'-dihydroxy-4-methoxydalbergione, 4-methoxydalbergion, cearoin, and chrysin are the substances responsible for the anti-inflammatory activity of Nepalese propolis.

  8. Ceftiofur impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-{kappa}B and MAPK

    SciTech Connect

    Ci Xinxin; Song Yu; Zeng Fanqin; Zhang Xuemei; Li Hongyu; Wang Xinrui; Cui Junqing Deng Xuming

    2008-07-18

    Ceftiofur is a new broad-spectrum, third-generation cephalosporin antibiotic for veterinary use. Immunopharmacological studies can provide new information on the immunomodulatory activities of some drugs, including their effect on cytokine productions. For this reason, we investigated the effect of ceftiofur on cytokine productions in vitro. We found that ceftiofur can downregulate tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin-1{beta} (IL-1{beta}), and interleukin-6 (IL-6), but did not affect interleukin-10 (IL-10) production. We further investigated signal transduction mechanisms to determine how ceftiofur affects. RAW 264.7 cells were pretreated with 1, 5, or 10 mg/L of ceftiofur 1 h prior to treatment with 1 mg/L of LPS. Thirty minutes later, cells were harvested and mitogen activated protein kinases (MAPKs) activation was measured by Western blot. Alternatively, cells were fixed and nuclear factor-{kappa}B (NF-{kappa}B) activation was measured using immunocytochemical analysis. Signal transduction studies showed that ceftiofur significantly inhibited extracellular signal-regulated kinase (ERK), p38, and c-jun NH{sub 2}-terminal kinase (JNK) phosphorylation protein expression. Ceftiofur also inhibited p65-NF-{kappa}B translocation into the nucleus. Therefore, ceftiofur may inhibit LPS-induced production of inflammatory cytokines by blocking NF-{kappa}B and MAPKs signaling in RAW264.7 cells.

  9. PKC{eta} confers protection against apoptosis by inhibiting the pro-apoptotic JNK activity in MCF-7 cells

    SciTech Connect

    Rotem-Dai, Noa; Oberkovitz, Galia; Abu-Ghanem, Sara; Livneh, Etta

    2009-09-10

    Apoptosis is frequently regulated by different protein kinases including protein kinase C family enzymes. Both inhibitory and stimulatory effects were demonstrated for several of the different PKC isoforms. Here we show that the novel PKC isoform, PKC{eta}, confers protection against apoptosis induced by the DNA damaging agents, UVC irradiation and the anti-cancer drug - Camptothecin, of the breast epithelial adenocarcinoma MCF-7 cells. The induced expression of PKC{eta} in MCF-7 cells, under the control of the tetracycline-responsive promoter, resulted in increased cell survival and inhibition of cleavage of the apoptotic marker PARP-1. Activation of caspase-7 and 9 and the release of cytochrome c were also inhibited by the inducible expression of PKC{eta}. Furthermore, JNK activity, required for apoptosis in MCF-7, as indicated by the inhibition of both caspase-7 cleavage and cytochrome c release from the mitochondria in the presence of the JNK inhibitor SP600125, was also suppressed by PKC{eta} expression. Hence, in contrast to most PKC isoforms enhancing JNK activation, our studies show that PKC{eta} is an anti-apoptotic protein, acting as a negative regulator of JNK activity. Thus, PKC{eta} could represent a target for intervention aimed to reduce resistance to anti-cancer treatments.

  10. The ErbB Kinase Domain: Structural Perspectives into Kinase Activation and Inhibition

    PubMed Central

    Bose, Ron; Zhang, Xuewu

    2009-01-01

    Epidermal growth factor receptor (EGFR) and its family members, ErbB2, ErB3 and ErB4, are receptor tyrosine kinases which send signals into the cell to regulate many critical processes including development, tissue homeostasis, and tumorigenesis. Central to the signaling of these receptors is their intracellular kinase domain, which is activated by ligand-induced dimerization of the receptor and phosphorylates several tyrosine residues in the C-terminal tail. The phosphorylated tail then recruits other signaling molecules and relays the signal to downstream pathways. A model of the autoinhibition, activation and feedback inhibition mechanisms for the ErbB kinase domain has emerged from a number of recent structural studies. Meanwhile, recent clinical studies have revealed the relationship between specific ErbB kinase mutations and the responsiveness to kinase inhibitor drugs. We will review these regulation mechanisms of the ErbB kinase domain, and discuss the binding specificity of kinase inhibitors and the effects of kinase domain mutations found in cancer patients from a structural perspective. PMID:18761339

  11. Targeting Bacterial Cell Wall Peptidoglycan Synthesis by Inhibition of Glycosyltransferase Activity.

    PubMed

    Mesleh, Michael F; Rajaratnam, Premraj; Conrad, Mary; Chandrasekaran, Vasu; Liu, Christopher M; Pandya, Bhaumik A; Hwang, You Seok; Rye, Peter T; Muldoon, Craig; Becker, Bernd; Zuegg, Johannes; Meutermans, Wim; Moy, Terence I

    2016-02-01

    Synthesis of bacterial cell wall peptidoglycan requires glycosyltransferase enzymes that transfer the disaccharide-peptide from lipid II onto the growing glycan chain. The polymerization of the glycan chain precedes cross-linking by penicillin-binding proteins and is essential for growth for key bacterial pathogens. As such, bacterial cell wall glycosyltransferases are an attractive target for antibiotic drug discovery. However, significant challenges to the development of inhibitors for these targets include the development of suitable assays and chemical matter that is suited to the nature of the binding site. We developed glycosyltransferase enzymatic activity and binding assays using the natural products moenomycin and vancomycin as model inhibitors. In addition, we designed a library of disaccharide compounds based on the minimum moenomycin fragment with peptidoglycan glycosyltransferase inhibitory activity and based on a more drug-like and synthetically versatile disaccharide building block. A subset of these disaccharide compounds bound and inhibited the glycosyltransferase enzymes, and these compounds could serve as chemical entry points for antibiotic development.

  12. Carbamazepine directly inhibits adipocyte differentiation through activation of the ERK 1/2 pathway

    PubMed Central

    Turpin, E; Muscat, A; Vatier, C; Chetrite, G; Corruble, E; Moldes, M; Fève, B

    2013-01-01

    Background and Purpose Carbamazepine (CBZ), known for its anti-epileptic, analgesic and mood-stabilizing properties, is also known to induce weight gain but the pathophysiology of this adverse effect is still largely unknown. We tested the hypothesis that CBZ could have a direct effect on adipocyte development and metabolism. Experimental Research We studied the effects of CBZ on morphological biochemical and molecular markers of adipogenesis, using several pre-adipocyte murine cell lines (3T3-L1, 3T3-F442A and T37i cells) and primary cultures of human pre-adipocytes. To delineate the mechanisms underlying the effect of CBZ, clonal expansion of pre-adipocytes, pro-adipogenic transcription factors, glucose uptake and lipolysis were also examined. Key Results CBZ strongly inhibited pre-adipocyte differentiation and triglyceride accumulation in a time- and dose-dependent manner in all models. Pleiotropic mechanisms were at the basis of the inhibitory effects of CBZ on adipogenesis and cell lipid accumulation. They included suppression of both clonal expansion and major adipogenic transcription factors such as PPAR-γ and CCAAT/enhancer binding protein-α, activation of basal lipolysis and decrease in insulin-stimulated glucose transport. Conclusions and Implications The effect of CBZ on adipogenesis involves activation of the ERK1/2 pathway. Our results show that CBZ acts directly on pre-adipocytes and adipocytes to alter adipose tissue development and metabolism. PMID:22889231

  13. Inhibiting NF-κB Activation by Small Molecules As a Therapeutic Strategy

    PubMed Central

    Gupta, Subash C; Sundaram, Chitra; Reuter, Simone; Aggarwal, Bharat B

    2010-01-01

    Because nuclear factor-κB (NF-κB) is a ubiquitously expressed proinflammatory transcription factor that regulates the expression of over 500 genes involved in cellular transformation, survival, proliferation, invasion, angiogenesis, metastasis, and inflammation, the NF-κB signaling pathway has become a potential target for pharmacological intervention. A wide variety of agents can activate NF-κB through canonical and noncanonical pathways. Canonical pathway involves various steps including the phosphorylation, ubiquitnation, and degradation of the inhibitor of NF-κB (IκBα), which leads to the nuclear translocation of the p50- p65 subunits of NF-κB followed by p65 phosphorylation, acetylation and methylation, DNA binding, and gene transcription. Thus, agents that can inhibit protein kinases, protein phosphatases, proteasomes, ubiquitnation, acetylation, methylation, and DNA binding steps have been identified as NF-κB inhibitors. Here, we review the small molecules that suppress NF-κB activation and thus may have therapeutic potential. PMID:20493977

  14. Differences between Angus and Holstein cattle in the Lupinus leucophyllus induced inhibition of fetal activity.

    PubMed

    Green, Benedict T; Panter, Kip E; Lee, Stephen T; Welch, Kevin D; Pfister, James A; Gardner, Dale R; Stegelmeier, Bryan L; Davis, T Zane

    2015-11-01

    Calves with congenital defects born to cows that have grazed teratogenic Lupinus spp. during pregnancy can suffer from what is termed crooked calf syndrome. Crooked calf syndrome defects include cleft palate, spinal column defects and limb malformations formed by alkaloid-induced inhibition of fetal movement. In this study, we tested the hypothesis that there are differences in fetal activity of fetuses carried by Holstein verses Angus heifers orally dosed with 1.1 g/kg dried ground Lupinus leucophyllus. Fetal activity was monitored via transrectal ultrasonography and maternal serum was analyzed for specific lupine alkaloids. There were more (P < 0.05) movements in fetuses of Holstein heifers than those in Angus heifers at eight and 12 h after oral dosing. In addition to serum alkaloid toxicokinetic differences, the Holstein heifers had significantly lower serum concentrations of anagyrine at 2, 4, and 8 h after oral dosing than Angus heifers. Holstein heifers also had significantly greater serum concentrations of lupanine at 12, 18 and 24 h after dosing than the Angus heifers. These results suggest that there are breed differences in susceptibility to lupine-induced crooked calf syndrome. These differences may also be used to discover genetic markers that identify resistant animals, thus facilitating selective breeding of resistant herds.

  15. Ku70 Serine 155 mediates Aurora B inhibition and activation of the DNA damage response

    PubMed Central

    Fell, Victoria L.; Walden, Elizabeth A.; Hoffer, Sarah M.; Rogers, Stephanie R.; Aitken, Amelia S.; Salemi, Louisa M.; Schild-Poulter, Caroline

    2016-01-01

    The Ku heterodimer (Ku70/Ku80) is the central DNA binding component of the classical non-homologous end joining (NHEJ) pathway that repairs DNA double-stranded breaks (DSBs), serving as the scaffold for the formation of the NHEJ complex. Here we show that Ku70 is phosphorylated on Serine 155 in response to DNA damage. Expression of Ku70 bearing a S155 phosphomimetic substitution (Ku70 S155D) in Ku70-deficient mouse embryonic fibroblasts (MEFs) triggered cell cycle arrest at multiple checkpoints and altered expression of several cell cycle regulators in absence of DNA damage. Cells expressing Ku70 S155D exhibited a constitutive DNA damage response, including ATM activation, H2AX phosphorylation and 53BP1 foci formation. Ku70 S155D was found to interact with Aurora B and to have an inhibitory effect on Aurora B kinase activity. Lastly, we demonstrate that Ku and Aurora B interact following ionizing radiation treatment and that Aurora B inhibition in response to DNA damage is dependent upon Ku70 S155 phosphorylation. This uncovers a new pathway where Ku may relay signaling to Aurora B to enforce cell cycle arrest in response to DNA damage. PMID:27849008

  16. Potent inhibition of human neutrophil activations by bractelactone, a novel chalcone from Fissistigma bracteolatum

    SciTech Connect

    Wu, Yang-Chang; Sureshbabu, Munisamy; Fang, Yao-Ching; Wu, Yi-Hsiu; Lan, Yu-Hsuan; Chang, Fang-Rong; Chang, Ya-Wen; Hwang, Tsong-Long

    2013-02-01

    Fissistigma bracteolatum is widely used in traditional medicine to treat inflammatory diseases. However, its active components and mechanisms of action remain unclear. In this study, (3Z)-6,7-dihydroxy-4-methoxy-3-(phenylmethylidene)-5-(3-phenylpropanoyl) -1-benzofuran-2(3H) (bractelactone), a novel chalcone from F. bracteolatum, showed potent inhibitory effects against superoxide anion (O{sub 2}{sup ·−}) production, elastase release, and CD11b expression in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced human neutrophils. However, bractelactone showed only weak inhibition of phorbol myristate acetate-caused O{sub 2}{sup ·−} production. The peak cytosolic calcium concentration ([Ca{sup 2+}]{sub i}) was unaltered by bractelactone in FMLP-induced neutrophils, but the decay time of [Ca{sup 2+}]{sub i} was significantly shortened. In a calcium-free solution, changes in [Ca{sup 2+}]{sub i} caused by the addition of extracellular Ca{sup 2+} were inhibited by bractelactone in FMLP-activated cells. In addition, bractelactone did not alter the phosphorylation of p38 MAPK, ERK, JNK, or AKT or the concentration of cAMP. These results suggest that bractelactone selectively inhibits store-operated calcium entry (SOCE). In agreement with this concept, bractelactone suppressed sustained [Ca{sup 2+}]{sub i} changes in thapsigargin-activated neutrophils. Furthermore, bractelactone did not alter FMLP-induced formation of inositol 1,4,5-triphosphate. Taken together, our results demonstrate that the anti-inflammatory effects of bractelactone, an active ingredient of F. bracteolatum, in human neutrophils are through the selective inhibition of SOCE. Highlights: ► Bractelactone isolated from Fissistigma bracteolatum. ► Bractelactone inhibited FMLP-induced human neutrophil activations. ► Bractelactone had no effect on IP3 formation. ► Bractelactone did not alter MAPKs, AKT, and cAMP pathways. ► Bractelactone inhibited store-operated calcium entry.

  17. Liver δ-Aminolevulinate Dehydratase Activity is Inhibited by Neonicotinoids and Restored by Antioxidant Agents

    PubMed Central

    Sauer, Elisa; Moro, Angela M.; Brucker, Natália; Nascimento, Sabrina; Gauer, Bruna; Fracasso, Rafael; Gioda, Adriana; Beck, Ruy; Moreira, José C. F.; Eifler-Lima, Vera Lucia; Garcia, Solange Cristina

    2014-01-01

    Neonicotinoids represent the most used class of insecticides worldwide, and their precursor, imidacloprid, is the most widely marketed. The aim of this study was to evaluate the effect of imidacloprid on the activity of hepatic δ-aminolevulinate dehydratase (δ-ALA-D), protective effect of potential antioxidants against this potential effect and presence of chemical elements in the constitution of this pesticide. We observed that δ-ALA-D activity was significantly inhibited by imidacloprid at all concentrations tested in a dose-dependent manner. The IC50 value was obtained and used to evaluate the restoration of the enzymatic activity. δ-ALA-D inhibition was completely restored by addition of dithiotreitol (DTT) and partly by ZnCl2, demonstrating that the inhibition occurs by oxidation of thiol groups and by displacement of the Zn (II), which can be explained by the presence of chemical elements found in the constitution of pesticides. Reduced glutathione (GSH) had the best antioxidant effect against to δ-ALA-D inhibition caused by imidacloprid, followed by curcumin and resveratrol. It is well known that inhibition of the enzyme δ-ALA-D may result in accumulation of its neurotoxic substrate (δ-ALA), in this line, our results suggest that further studies are needed to investigate the possible neurotoxicity induced by neonicotinoids and the involvement of antioxidants in cases of poisoning by neonicotinoids. PMID:25402564

  18. Liver δ-aminolevulinate dehydratase activity is inhibited by neonicotinoids and restored by antioxidant agents.

    PubMed

    Sauer, Elisa; Moro, Angela M; Brucker, Natália; Nascimento, Sabrina; Gauer, Bruna; Fracasso, Rafael; Gioda, Adriana; Beck, Ruy; Moreira, José C F; Eifler-Lima, Vera Lucia; Garcia, Solange Cristina

    2014-11-13

    Neonicotinoids represent the most used class of insecticides worldwide, and their precursor, imidacloprid, is the most widely marketed. The aim of this study was to evaluate the effect of imidacloprid on the activity of hepatic δ-aminolevulinate dehydratase (δ-ALA-D), protective effect of potential antioxidants against this potential effect and presence of chemical elements in the constitution of this pesticide. We observed that δ-ALA-D activity was significantly inhibited by imidacloprid at all concentrations tested in a dose-dependent manner. The IC50 value was obtained and used to evaluate the restoration of the enzymatic activity. δ-ALA-D inhibition was completely restored by addition of dithiotreitol (DTT) and partly by ZnCl2, demonstrating that the inhibition occurs by oxidation of thiol groups and by displacement of the Zn (II), which can be explained by the presence of chemical elements found in the constitution of pesticides. Reduced glutathione (GSH) had the best antioxidant effect against to δ-ALA-D inhibition caused by imidacloprid, followed by curcumin and resveratrol. It is well known that inhibition of the enzyme δ-ALA-D may result in accumulation of its neurotoxic substrate (δ-ALA), in this line, our results suggest that further studies are needed to investigate the possible neurotoxicity induced by neonicotinoids and the involvement of antioxidants in cases of poisoning by neonicotinoids.

  19. Inhibition of nitric oxide synthase expression in activated microglia and peroxynitrite scavenging activity by Opuntia ficus indica var. saboten.

    PubMed

    Lee, Ming Hong; Kim, Jae Yeon; Yoon, Jeong Hoon; Lim, Hyo Jin; Kim, Tae Hee; Jin, Changbae; Kwak, Wie-Jong; Han, Chang-Kyun; Ryu, Jae-Ha

    2006-09-01

    Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO-), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. A butanol fraction obtained from 50% ethanol extracts of Opuntia ficus indica var. saboten (Cactaceae) stem (SK OFB901) and its hydrolysis product (SK OFB901H) inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC50 15.9, 4.2 microg/mL, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at higher than 30 microg/mL as observed by western blot analysis and RT-PCR experiment. They also inhibited the degradation of I-kappaB-alpha in activated microglia. Moreover, they showed strong activity of peroxynitrite scavenging in a cell free bioassay system. These results imply that Opuntia ficus indica may have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity.

  20. Inhibition of intrinsic proteolytic activities moderates preanalytical variability and instability of human plasma.

    PubMed

    Yi, Jizu; Kim, Changki; Gelfand, Craig A

    2007-05-01

    Human plasma and serum proteins are subject to intrinsic proteolytic degradation both during and after blood collection. By monitoring peptides, we investigated the stability of plasma and serum samples and the effects of anticoagulants and protease inhibitors on the plasma samples. Serum and plasma were subjected to time-course incubation, and the peptides (750-3200 Da) were extracted and analyzed with MALDI-TOF MS. Peptides of interest were further identified by MALDI-TOF/TOF MS and ESI-MS/MS analyses. Our observations indicate that plasma peptides are significantly different from serum peptides. Intrinsic proteases cause these differences between plasma and serum samples, as well as the differences among three plasma samples using either EDTA, sodium citrate, or heparin as the anticoagulant, which accounts for partial inhibitory effects on plasma proteolytic activities. Proteases and peptidases, including both aminopeptidases and carboxypeptidases, also cause time-dependent, sequential generation and digestion of the peptides in serum and all three plasmas, specifically during early sample collection and processing. Protease inhibitors within an EDTA-plasma-collection device inhibit both intrinsic plasma peptidases and proteases and moderate the time-dependent changes of the plasma peptides, including bradykinin, and complement C4- and C3- derived peptides. Our results suggest that mixing protease inhibitors immediately with blood during blood collection provides enhanced stabilization of the plasma proteome.

  1. Inhibition of NADPH oxidase activation in endothelial cells by ortho-methoxy-substituted catechols.

    PubMed

    Johnson, David K; Schillinger, Kurt J; Kwait, David M; Hughes, Chambers V; McNamara, Erin J; Ishmael, Fauod; O'Donnell, Robert W; Chang, Ming-Mei; Hogg, Michael G; Dordick, Jonathan S; Santhanam, Lakshmi; Ziegler, Linda M; Holland, James A

    2002-01-01

    NADPH oxidase is a major enzymatic source of oxygen free radicals in stimulated endothelial cells (ECs). The ortho-methoxy-substituted catechol, apocynin (4-hydroxy-3-methoxyacetophenone), isolated from the traditional medicinal plant Picrorhiza kurroa, inhibits the release of superoxide anion (O2*-) by this enzyme. The compound acts by blocking the assembly of a functional NADPH oxidase complex. The underlying chemistry of this inhibitory activity, and its physiological significance to EC proliferation, have been investigated. A critical event is the reaction of ortho-methoxy-substituted catechols with reactive oxygen species (ROS) and peroxidase. Analysis of this reaction reveals that apocynin is converted to a symmetrical dimer through the formation of a 5,5' carbon-carbon bond. Both reduced glutathione and L-cysteine inhibit this dimerization process. Catechols without the ortho-methoxy-substituted group do not undergo this chemical reaction. Superoxide production by an endothelial cell-free system incubated with apocynin was nearly completely inhibited after a lagtime for inhibition of ca. 2 min. Conversely, O2*- production was nearly completely inhibited, without a lagtime, by incubation with the dimeric form of apocynin. The apocynin dimer undergoes a two-electron transfer reaction with standard redox potentials of -0.75 and -1.34 V as determined by cyclic voltammetry. Inhibition of endothelial NADPH oxidase by apocynin caused a dose-dependent inhibition of cell proliferation. These findings identify a metabolite of an ortho-methoxy-substituted catechol, which may be the active compound formed within stimulated ECs that prevents NADPH oxidase complex assembly and activation.

  2. Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species

    SciTech Connect

    Haase, Hajo; Engelhardt, Gabriela; Hebel, Silke; Rink, Lothar

    2011-01-01

    Mercury intoxication profoundly affects the immune system, in particular, signal transduction of immune cells. However, the mechanism of the interaction of mercury with cellular signaling pathways, such as mitogen activated protein kinases (MAPK), remains elusive. Therefore, the objective of this study is to investigate three potential ways in which Hg{sup 2+} ions could inhibit MAPK dephosphorylation in the human T-cell line Jurkat: (1) by direct binding to phosphatases; (2) by releasing cellular zinc (Zn{sup 2+}); and (3) by inducing reactive oxygen species (ROS). Hg{sup 2+} causes production of ROS, measured by dihydrorhodamine 123, and triggers ROS-mediated Zn{sup 2+} release, detected with FluoZin-3. Yet, phosphatase-inhibition is not mediated by binding of Zn{sup 2+} or Hg{sup 2+}. Rather, phosphatases are inactivated by at least two forms of thiol oxidation; initial inhibition is reversible with reducing agents such as Tris(2-carboxyethyl)phosphine. Prolonged inhibition leads to non-reversible phosphatase oxidation, presumably oxidizing the cysteine thiol to sulfinic- or sulfonic acid. Notably, phosphatases are a particularly sensitive target for Hg{sup 2+}-induced oxidation, because phosphatase activity is inhibited at concentrations of Hg{sup 2+} that have only minor impact on over all thiol oxidation. This phosphatase inhibition results in augmented, ROS-dependent MAPK phosphorylation. MAPK are important regulators of T-cell function, and MAPK-activation by inhibition of phosphatases seems to be one of the molecular mechanisms by which mercury affects the immune system.

  3. Staphylococcal exopolysaccharides inhibit lymphocyte proliferative responses by activation of monocyte prostaglandin production.

    PubMed Central

    Stout, R D; Ferguson, K P; Li, Y N; Lambe, D W

    1992-01-01

    The glycocalyx (exopolysaccharides) of Staphylococcus epidermidis has been reported to inhibit a variety of host defense mechanisms. We have examined the inhibitory effects of glycocalyx on the proliferation of human peripheral blood mononuclear cells (PBMC) and the mechanism of this inhibition. Glycocalyx isolated and partially purified under endotoxin-free conditions from defined liquid medium cultures of S. epidermidis and Staphylococcus lugdunensis inhibited the proliferative response of PBMC when added to cultures at 10 to 100 micrograms/ml. Glycocalyx-mediated inhibition of phytohemagglutinin-stimulated proliferation of PBMC required the presence of plastic-adherent peripheral blood monocytes. Culture supernatants of monocytes stimulated with glycocalyx contained a soluble factor that inhibited the proliferation of monocyte-depleted PBMC. This soluble inhibitory factor was not produced in the absence of glycocalyx or in the presence of both glycocalyx and indomethacin. Analysis of the supernatants of cultures of adherent monocytes revealed that glycocalyx from S. epidermidis and from S. lugdunensis could activate monocyte production of prostaglandin E2 (PGE2), human interleukin-1, and tumor necrosis factor alpha. The addition of purified PGE2, at the same levels of PGE2 (greater than or equal to 10(-9) M) generated in the monocyte cultures, to PBMC cultures resulted in a similar inhibition of proliferative responses. It is concluded that, contrary to previous suggestions, the bacterial glycocalyx does not have a direct inhibitory effect on T lymphocytes. However, it does appear that glycocalyx from coagulase-negative staphylococci can activate monocyte PGE2 production and that it is this activity that in turn contributes to the inhibition of T-cell proliferation. PMID:1541565

  4. Blockade of T-cell activation by dithiocarbamates involves novel mechanisms of inhibition of nuclear factor of activated T cells.

    PubMed Central

    Martínez-Martínez, S; Gómez del Arco, P; Armesilla, A L; Aramburu, J; Luo, C; Rao, A; Redondo, J M

    1997-01-01

    Dithiocarbamates (DTCs) have recently been reported as powerful inhibitors of NF-kappaB activation in a number of cell types. Given the role of this transcription factor in the regulation of gene expression in the inflammatory response, NF-kappaB inhibitors have been suggested as potential therapeutic drugs for inflammatory diseases. We show here that DTCs inhibited both interleukin 2 (IL-2) synthesis and membrane expression of antigens which are induced during T-cell activation. This inhibition, which occurred with a parallel activation of c-Jun transactivating functions and expression, was reflected by transfection experiments at the IL-2 promoter level, and involved not only the inhibition of NF-kappaB-driven reporter activation but also that of nuclear factor of activated T cells (NFAT). Accordingly, electrophoretic mobility shift assays (EMSAs) indicated that pyrrolidine DTC (PDTC) prevented NF-kappaB, and NFAT DNA-binding activity in T cells stimulated with either phorbol myristate acetate plus ionophore or antibodies against the CD3-T-cell receptor complex and simultaneously activated the binding of AP-1. Furthermore, PDTC differentially targeted both NFATp and NFATc family members, inhibiting the transactivation functions of NFATp and mRNA induction of NFATc. Strikingly, Western blotting and immunocytochemical experiments indicated that PDTC promoted a transient and rapid shuttling of NFATp and NFATc, leading to their accelerated export from the nucleus of activated T cells. We propose that the activation of an NFAT kinase by PDTC could be responsible for the rapid shuttling of the NFAT, therefore transiently converting the sustained transactivation of this transcription factor that occurs during lymphocyte activation, and show that c-Jun NH2-terminal kinase (JNK) can act by directly phosphorylating NFATp. In addition, the combined inhibitory effects on NFAT and NF-KB support a potential use of DTCs as immunosuppressants. PMID:9343406

  5. Inhibition of the activation of Hageman factor (factor XII) by complement subcomponent C1q.

    PubMed

    Rehmus, E H; Greene, B M; Everson, B A; Ratnoff, O D

    1987-08-01

    Hageman factor (HF, Factor XII) is activated by glass, collagen, and ellagic acid, and initiates blood coagulation via the intrinsic pathway. C1q inhibits collagen-induced platelet aggregation and adherence of platelets to glass, effects attributable to the collagen-like region of C1q. We examined the actions of C1q on HF activation. Incubation of C1q with HF before addition of HF-deficient plasma extended the activated partial thromboplastin time. Similarly, when glass tubes were coated with C1q before testing, the partial thromboplastin time of normal plasma was increased. C1q reduced the activation of HF by ellagic acid, as measured by the release of p-nitroaniline from the synthetic substrate H-D-prolyl-L-phenylalanyl-L-arginine-p-nitroanilide dihydrochloride, an effect inhibited by monoclonal anti-human C1q murine IgG and by digestion of C1q by collagenase. Thus, C1q inhibits activation of HF in vitro in clot-promoting and amidolytic assays and suggests a regulatory mechanism for the inhibition of coagulation.

  6. Inhibition of the activation of Hageman factor (factor XII) by complement subcomponent C1q.

    PubMed Central

    Rehmus, E H; Greene, B M; Everson, B A; Ratnoff, O D

    1987-01-01

    Hageman factor (HF, Factor XII) is activated by glass, collagen, and ellagic acid, and initiates blood coagulation via the intrinsic pathway. C1q inhibits collagen-induced platelet aggregation and adherence of platelets to glass, effects attributable to the collagen-like region of C1q. We examined the actions of C1q on HF activation. Incubation of C1q with HF before addition of HF-deficient plasma extended the activated partial thromboplastin time. Similarly, when glass tubes were coated with C1q before testing, the partial thromboplastin time of normal plasma was increased. C1q reduced the activation of HF by ellagic acid, as measured by the release of p-nitroaniline from the synthetic substrate H-D-prolyl-L-phenylalanyl-L-arginine-p-nitroanilide dihydrochloride, an effect inhibited by monoclonal anti-human C1q murine IgG and by digestion of C1q by collagenase. Thus, C1q inhibits activation of HF in vitro in clot-promoting and amidolytic assays and suggests a regulatory mechanism for the inhibition of coagulation. PMID:3038961

  7. In vitro inhibition of superoxide anion production and superoxide dismutase activity by zinc in human spermatozoa.

    PubMed

    Gavella, M; Lipovac, V; Vucić, M; Sverko, V

    1999-08-01

    The in vitro effect of zinc on superoxide anion (O2-) generation and on SOD-like activity in spermatozoa of infertile men was investigated. The formation of superoxide anion was stimulated by NADPH and the level of superoxide anion was measured by the reduction of ferricytochrome c. Both Percoll-isolated (n = 14) and washed spermatozoa (n = 14) exposed to 1 mmol/L zinc (60 min, 37 degrees C), released less (p < 0.002 and p < 0.04, respectively) superoxide anions than did zinc-untreated spermatozoa. These results implicate a possible role for zinc as a scavenger of excessive superoxide anions produced by defective spermatozoa in semen after ejaculation. Additionally, zinc was found to dose-dependently inhibit superoxide dismutase (SOD)-like activity of spermatozoa in vitro. The inhibition of SOD-like activity by an equal concentration of zinc (1 mmol/L) was less pronounced in oligospermic (p < 0.002; n = 16) and asthenozoospermic (p < 0.0005; n = 20) than in normozoospermic samples (p < 0.0001; n = 20). This differential ability of zinc to inhibit SOD-like activity may be relevant to the physiological function of spermatozoa in fertilization. The evidence that zinc may elicit an inhibition of both superoxide anion production and SOD-like activity in human spermatozoa, indicate the existence of novel, zinc-related mechanism(s) involved in the oxidative events occurring after ejaculation, with a possible modulatory effect on germ cell function.

  8. Inhibition of pea chloroplast DNA helicase unwinding and ATPase activities by DNA-interacting ligands.

    PubMed

    Tuteja, N; Phan, T N

    1998-03-27

    DNA helicases unwind the duplex DNA in an ATP dependent manner and thus play an essential role in DNA replication, repair, recombination and transcription. Any DNA-interacting ligand which will modulate DNA helicase activity may interrupt practically all kinds of DNA transactions. There are no studies on the effect of various cytotoxic DNA-interacting ligands on organelle helicases. We have determined the effect of camptothecin, VP-16 (etoposide), ellipticine, genistein, novobiocin, m-AMSA, actinomycin C1, ethidium bromide, daunorubicin and nogalamycin on unwinding and ATPase activities of purified chloroplast DNA helicase from pea (Pisum sativum). Our study has shown that DNA-intercalating ligands actinomycin C1, ethidium bromide, daunorubicin and nogalamycin were inhibiting the DNA unwinding activity with an apparent Ki of 2.9 microM, 3.0 microM, 1.4 microM and 1.0 microM, respectively. These four inhibitors also inhibited the ATPase activity of pea chloroplast DNA helicase. These results indicate that the intercalation of the inhibitors into DNA generates a complex that impedes the translocation of chloroplast DNA helicase, resulting in both inhibition of unwinding activity and ATP hydrolysis. This study would be useful for understanding the mechanism of organelle DNA helicase unwinding and the mechanism by which these DNA-interacting ligands inhibit cellular function.

  9. Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A

    PubMed Central

    Lu, Yingying; Dong, Shichen; Hao, Baixia; Li, Chang; Zhu, Kaiyuan; Guo, Wenjing; Wang, Qian; Cheung, King-Ho; Wong, Connie WM; Wu, Wu-Tian; Markus, Huss; Yue, Jianbo

    2014-01-01

    Autophagy is a catabolic lysosomal degradation process essential for cellular homeostasis and cell survival. Dysfunctional autophagy has been associated with a wide range of human diseases, e.g., cancer and neurodegenerative diseases. A large number of small molecules that modulate autophagy have been widely used to dissect this process and some of them, e.g., chloroquine (CQ), might be ultimately applied to treat a variety of autophagy-associated human diseases. Here we found that vacuolin-1 potently and reversibly inhibited the fusion between autophagosomes and lysosomes in mammalian cells, thereby inducing the accumulation of autophagosomes. Interestingly, vacuolin-1 was less toxic but at least 10-fold more potent in inhibiting autophagy compared with CQ. Vacuolin-1 treatment also blocked the fusion between endosomes and lysosomes, resulting in a defect in general endosomal-lysosomal degradation. Treatment of cells with vacuolin-1 alkalinized lysosomal pH and decreased lysosomal Ca2+ content. Besides marginally inhibiting vacuolar ATPase activity, vacuolin-1 treatment markedly activated RAB5A GTPase activity. Expression of a dominant negative mutant of RAB5A or RAB5A knockdown significantly inhibited vacuolin-1-induced autophagosome-lysosome fusion blockage, whereas expression of a constitutive active form of RAB5A suppressed autophagosome-lysosome fusion. These data suggest that vacuolin-1 activates RAB5A to block autophagosome-lysosome fusion. Vacuolin-1 and its analogs present a novel class of drug that can potently and reversibly modulate autophagy. PMID:25483964

  10. AKT activation controls cell survival in response to HDAC6 inhibition

    PubMed Central

    Kaliszczak, M; Trousil, S; Ali, T; Aboagye, E O

    2016-01-01

    HDAC6 is emerging as an important therapeutic target for cancer. We investigated mechanisms responsible for survival of tumor cells treated with a HDAC6 inhibitor. Expression of the 20 000 genes examined did not change following HDAC6 treatment in vivo. We found that HDAC6 inhibition led to an increase of AKT activation (P-AKT) in vitro, and genetic knockdown of HDAC6 phenocopied drug-induced AKT activation. The activation of AKT was not observed in PTEN null cells; otherwise, PTEN/PIK3CA expression per se did not predict HDAC6 inhibitor sensitivity. Interestingly, HDAC6 inhibitor treatment led to inactivating phosphorylation of PTEN (P-PTEN Ser380), which likely led to the increased P-AKT in cells that express PTEN. Synergy was observed with phosphatidylinositol 3'-kinases (PI3K) inhibitor treatment in vitro, accompanied by increased caspase 3/7 activity. Furthermore, combination of HDAC6 inhibitor with a PI3K inhibitor caused substantial tumor growth inhibition in vivo compared with either treatment alone, also detectable by Ki-67 immunostaining and 18F-FLT positron emission tomography (PET). In aggregate AKT activation appears to be a key survival mechanism for HDAC6 inhibitor treatment. Our findings indicate that dual inhibition of HDAC6 and P-AKT may be necessary to substantially inhibit growth of solid tumors. PMID:27362804

  11. Inhibition of urokinase plasminogen activator “uPA” activity alters ethanol consumption and conditioned place preference in mice

    PubMed Central

    Al Maamari, Elyazia; Al Ameri, Mouza; Al Mansouri, Shamma; Bahi, Amine

    2014-01-01

    Urokinase plasminogen activator, uPA, is a serine protease implicated in addiction to drugs of abuse. Using its specific inhibitor, B428, we and others have characterized the role of uPA in the rewarding properties of psychostimulants, including cocaine and amphetamine, but none have examined the role of uPA in ethanol use disorders. Therefore, in the current study, we extended our observations to the role of uPA in ethanol consumption and ethanol-induced conditioned place preference. The general aim of the present series of experiments was to investigate the effects of the administration of the B428 on voluntary alcohol intake and ethanol conditioned reward. A two-bottle choice, unlimited-access paradigm was used to compare ethanol intake between vehicle- and 3, 10, and 30 mg/kg B428-administered mice. For this purpose, the mice were presented with an ethanol solution (2.5%–20%) and water, at each concentration for 4 days, and their consumption was measured daily. Consumption of saccharin and quinine solutions was also measured. Systemic administration of B428 dose-dependently decreased ethanol intake and preference. Additionally, B428 mice did not differ from vehicle mice in their intake of graded solutions of tastants, suggesting that the uPA inhibition did not alter taste function. Also, ethanol metabolism was not affected following B428 injection. More importantly, 1.5 g/kg ethanol-induced conditioned place preference acquisition was blocked following B428 administration. Taken together, our results are the first to implicate uPA inhibition in the regulation of ethanol consumption and preference, and suggest that uPA may be considered as a possible therapeutic drug target for alcoholism and abstinence. PMID:25258509

  12. Melanocortin 4 receptor activation inhibits presynaptic N-type calcium channels in amygdaloid complex neurons.

    PubMed

    Agosti, Francina; López Soto, Eduardo J; Cabral, Agustina; Castrogiovanni, Daniel; Schioth, Helgi B; Perelló, Mario; Raingo, Jesica

    2014-09-01

    The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor involved in food intake and energy expenditure regulation. MC4R activation modifies neuronal activity but the molecular mechanisms by which this regulation occurs remain unclear. Here, we tested the hypothesis that MC4R activation regulates the activity of voltage-gated calcium channels and, as a consequence, synaptic activity. We also tested whether the proposed effect occurs in the amygdala, a brain area known to mediate the anorexigenic actions of MC4R signaling. Using the patch-clamp technique, we found that the activation of MC4R with its agonist melanotan II specifically inhibited 34.5 ± 1.5% of N-type calcium currents in transiently transfected HEK293 cells. This inhibition was concentration-dependent, voltage-independent and occluded by the Gαs pathway inhibitor cholera toxin. Moreover, we found that melanotan II specifically inhibited 25.9 ± 2.0% of native N-type calcium currents and 55.4 ± 14.4% of evoked inhibitory postsynaptic currents in mouse cultured amygdala neurons. In vivo, we found that the MC4R agonist RO27-3225 increased the marker of cellular activity c-Fos in several components of the amygdala, whereas the N-type channel blocker ω conotoxin GVIA increased c-Fos expression exclusively in the central subdivision of the amygdala. Thus, MC4R specifically inhibited the presynaptic N-type channel subtype, and this inhibition may be important for the effects of melanocortin in the central subdivision of the amygdala.

  13. Inhibition of digestive enzyme activities by copper in the guts of various marine benthic invertebrates.

    PubMed

    Chen, Zhen; Mayer, Lawrence M; Weston, Donald P; Bock, Michael J; Jumars, Peter A

    2002-06-01

    Digestive systems of deposit and suspension feeders can be exposed to high concentrations of copper (Cu) by ingestion of contaminated sediments. We assessed a potential impact of this Cu exposure on digestive enzyme activities in a wide range of benthic organisms by monitoring enzyme activities in their gut fluids during in vitro titrations with dissolved Cu, which mimics Cu solubilization from sediments. Increasing Cu inhibited digestive protease activities at threshold values, which varied widely among organisms, from 8 microM for an echinoderm to 0.4 M for an echiuran. More Cu was required to inhibit proteases in guts containing higher amino acid concentrations because strong Cu-binding sites on amino acids prevent Cu interaction with the enzymatically active sites. Threshold Cu concentrations were similar for proteases, esterases, lipases, and alpha- and beta-glucosidases, suggesting the same inhibition mechanism. Copper was less effective at inhibiting enzymes at lower pH, suggesting that protons can compete with Cu ion for binding to enzymatically active sites or that enzyme conformation is less vulnerable to Cu inhibition at lower pH. These results lead to the counterintuitive conclusion that deposit feeders with low enzyme activity, low amino acid concentration, and high pH values are most vulnerable to harm from sedimentary Cu by this mechanism, although they solubilize less sedimentary Cu than their counterparts with high enzyme activity, high amino acid concentrations, and low gut pH. In general, digestive systems of echinoderms may therefore be more susceptible to Cu contamination than those of polychaetes, with various other phyla showing intermediate susceptibilities. If threshold Cu values are converted to solid-phase sedimentary Cu concentrations, the thresholds are at least consistent with Cu loadings that have been observed to lead to biological impacts in the field.

  14. Cerebellar brain inhibition in the target and surround muscles during voluntary tonic activation.

    PubMed

    Panyakaew, Pattamon; Cho, Hyun Joo; Srivanitchapoom, Prachaya; Popa, Traian; Wu, Tianxia; Hallett, Mark

    2016-04-01

    Motor surround inhibition is the neural mechanism that selectively favours the contraction of target muscles and inhibits nearby muscles to prevent unwanted movements. This inhibition was previously reported at the onset of a movement, but not during a tonic contraction. Cerebellar brain inhibition (CBI) is reduced in active muscles during tonic activation; however, it has not been studied in the surround muscles. CBI was evaluated in the first dorsal interosseus (FDI) muscle as the target muscle, and the abductor digiti minimi, flexor carpi radialis and extensor carpi radialis muscles as surround muscles, during rest and tonic activation of the FDI muscle in 21 subjects. Cerebellar stimulation was performed under magnetic resonance imaging-guided neuronavigation targeting lobule VIII of the cerebellar hemisphere. Stimulus intensities for cerebellar stimulation were based on the resting motor cortex threshold (RMT) and adjusted for the depth difference between the cerebellar and motor cortices. We used 90-120% of the adjusted RMT as the conditioning stimulus intensity during rest. The intensity that generated the best CBI at rest in the FDI muscle was selected for use during tonic activation. During selective tonic activation of the FDI muscle, CBI was significantly reduced only for the FDI muscle, and not for the surround muscles. Unconditioned motor evoked potential sizes were increased in all muscles during FDI muscle tonic activation as compared with rest, despite background electromyography activity increasing only for the FDI muscle. Our study suggests that the cerebellum may play an important role in selective tonic finger movement by reducing its inhibition in the motor cortex only for the relevant agonist muscle.

  15. Reactive oxygen species are involved in arsenic trioxide inhibition of pyruvate dehydrogenase activity.

    PubMed

    Samikkannu, Thangavel; Chen, Chien-Hung; Yih, Ling-Huei; Wang, Alexander S S; Lin, Shu-Yu; Chen, Tsen-Chien; Jan, Kun-Yan

    2003-03-01

    Arsenite was shown to inhibit pyruvate dehydrogenase (PDH) activity through binding to vicinal dithiols in pure enzyme and tissue extract. However, no data are available on how arsenite inhibits PDH activity in human cells. The IC(50) values for arsenic trioxide (As(2)O(3)) to inhibit the PDH activity in porcine heart pure enzyme preparation and in human leukemia cell line HL60 cells were estimated to be 182 and 2 microM, respectively. Thus, As(2)O(3) inactivation of PDH activity was about 90 times more potent in HL60 cells than in purified enzyme preparation. The IC(50) values for As(2)O(3) and phenylarsine oxide to reduce the vicinal thiol content in HL60 cells were estimated to be 81.7 and 1.9 microM, respectively. Thus, As(2)O(3) is a potent PDH inhibitor but a weak vicinal thiol reacting agent in HL60 cells. Antioxidants but not dithiol compounds suppressed As(2)O(3) inhibition of PDH activity in HL60 cells. Conversely, dithiol compounds but not antioxidants suppressed the inhibition of PDH activity by phenylarsine oxide. As(2)O(3) increased H(2)O(2) level in HL60 cells, but this was not observed for phenylarsine oxide. Mitochondrial respiration inhibitors suppressed the As(2)O(3)-induced H(2)O(2) production and As(2)O(3) inhibition of PDH activity. Moreover, metal chelators ameliorated whereas Fenton metals aggravated As(2)O(3) inhibition of PDH activity. Treatment with H(2)O(2) plus Fenton metals also decreased the PDH activity in HL60 cells. Therefore, it seems that As(2)O(3) elevates H(2)O(2) production in mitochondria and this may produce hydroxyl through the Fenton reaction and result in oxidative damage to the protein of PDH. The present results suggest that arsenite may cause protein oxidation to inactivate an enzyme and this can occur at a much lower concentration than arsenite binding directly to the critical thiols.

  16. Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures.

    PubMed

    Rutherford, L C; DeWan, A; Lauer, H M; Turrigiano, G G

    1997-06-15

    The excitability of cortical circuits is modulated by interneurons that release the inhibitory neurotransmitter GABA. In primate and rodent visual cortex, activity deprivation leads to a decrease in the expression of GABA. This suggests that activity is able to adjust the strength of cortical inhibition, but this has not been demonstrated directly. In addition, the nature of the signal linking activity to GABA expression has not been determined. Activity is known to regulate the expression of the neurotrophin brain-derived neurotrophic factor (BDNF), and BDNF has been shown to influence the phenotype of GABAergic interneurons. We use a culture system from postnatal rat visual cortex to test the hypothesis that activity is regulating the strength of cortical inhibition through the regulation of BDNF. Cultures were double-labeled against GABA and the neuronal marker MAP2, and the percentage of neurons that were GABA-positive was determined. Blocking spontaneous activity in these cultures reversibly decreased the number of GABA-positive neurons without affecting neuronal survival. Voltage-clamp analysis of inhibitory currents demonstrated that activity blockade also decreased GABA-mediated inhibition onto pyramidal neurons and raised pyramidal neuron firing rates. All of these effects were prevented by incubation with BDNF during activity blockade, but not by neurotrophin 3 or nerve growth factor. Additionally, blockade of neurotrophin signaling mimicked the effects of activity blockade on GABA expression. These data suggest that activity regulates cortical inhibition through a BDNF-dependent mechanism and that this neurotrophin plays an important role in the control of cortical excitability.

  17. Chemical Inhibition of Histone Deacetylases 1 and 2 Induces Fetal Hemoglobin through Activation of GATA2.

    PubMed

    Shearstone, Jeffrey R; Golonzhka, Olga; Chonkar, Apurva; Tamang, David; van Duzer, John H; Jones, Simon S; Jarpe, Matthew B

    2016-01-01

    Therapeutic intervention aimed at reactivation of fetal hemoglobin protein (HbF) is a promising approach for ameliorating sickle cell disease (SCD) and β-thalassemia. Previous studies showed genetic knockdown of histone deacetylase (HDAC) 1 or 2 is sufficient to induce HbF. Here we show that ACY-957, a selective chemical inhibitor of HDAC1 and 2 (HDAC1/2), elicits a dose and time dependent induction of γ-globin mRNA (HBG) and HbF in cultured primary cells derived from healthy individuals and sickle cell patients. Gene expression profiling of erythroid progenitors treated with ACY-957 identified global changes in gene expression that were significantly enriched in genes previously shown to be affected by HDAC1 or 2 knockdown. These genes included GATA2, which was induced greater than 3-fold. Lentiviral overexpression of GATA2 in primary erythroid progenitors increased HBG, and reduced adult β-globin mRNA (HBB). Furthermore, knockdown of GATA2 attenuated HBG induction by ACY-957. Chromatin immunoprecipitation and sequencing (ChIP-Seq) of primary erythroid progenitors demonstrated that HDAC1 and 2 occupancy was highly correlated throughout the GATA2 locus and that HDAC1/2 inhibition led to elevated histone acetylation at well-known GATA2 autoregulatory regions. The GATA2 protein itself also showed increased binding at these regions in response to ACY-957 treatment. These data show that chemical inhibition of HDAC1/2 induces HBG and suggest that this effect is mediated, at least in part, by histone acetylation-induced activation of the GATA2 gene.

  18. Chemical Inhibition of Histone Deacetylases 1 and 2 Induces Fetal Hemoglobin through Activation of GATA2

    PubMed Central

    Golonzhka, Olga; Chonkar, Apurva; Tamang, David; van Duzer, John H.; Jones, Simon S.; Jarpe, Matthew B.

    2016-01-01

    Therapeutic intervention aimed at reactivation of fetal hemoglobin protein (HbF) is a promising approach for ameliorating sickle cell disease (SCD) and β-thalassemia. Previous studies showed genetic knockdown of histone deacetylase (HDAC) 1 or 2 is sufficient to induce HbF. Here we show that ACY-957, a selective chemical inhibitor of HDAC1 and 2 (HDAC1/2), elicits a dose and time dependent induction of γ-globin mRNA (HBG) and HbF in cultured primary cells derived from healthy individuals and sickle cell patients. Gene expression profiling of erythroid progenitors treated with ACY-957 identified global changes in gene expression that were significantly enriched in genes previously shown to be affected by HDAC1 or 2 knockdown. These genes included GATA2, which was induced greater than 3-fold. Lentiviral overexpression of GATA2 in primary erythroid progenitors increased HBG, and reduced adult β-globin mRNA (HBB). Furthermore, knockdown of GATA2 attenuated HBG induction by ACY-957. Chromatin immunoprecipitation and sequencing (ChIP-Seq) of primary erythroid progenitors demonstrated that HDAC1 and 2 occupancy was highly correlated throughout the GATA2 locus and that HDAC1/2 inhibition led to elevated histone acetylation at well-known GATA2 autoregulatory regions. The GATA2 protein itself also showed increased binding at these regions in response to ACY-957 treatment. These data show that chemical inhibition of HDAC1/2 induces HBG and suggest that this effect is mediated, at least in part, by histone acetylation-induced activation of the GATA2 gene. PMID:27073918

  19. Aryl hydrocarbon receptor activation inhibits in vitro differentiation of human monocytes and Langerhans dendritic cells.

    PubMed

    Platzer, Barbara; Richter, Susanne; Kneidinger, Doris; Waltenberger, Darina; Woisetschläger, Maximilian; Strobl, Herbert

    2009-07-01

    The transcription factor aryl hydrocarbon receptor (AhR) represents a promising therapeutic target in allergy and autoimmunity. AhR signaling induced by the newly described ligand VAF347 inhibits allergic lung inflammation as well as suppresses pancreatic islet allograft rejection. These effects are likely mediated via alterations in dendritic cell (DC) function. Moreover, VAF347 induces tolerogenic DCs. Langerhans cells (LCs) are immediate targets of exogenous AhR ligands at epithelial surfaces; how they respond to AhR ligands remained undefined. We studied AhR expression and function in human LCs and myelopoietic cell subsets using a lineage differentiation and gene transduction model of human CD34(+) hematopoietic progenitors. We found that AhR is highly regulated during myeloid subset differentiation. LCs expressed highest AhR levels followed by monocytes. Conversely, neutrophil granulocytes lacked AhR expression. AhR ligands including VAF347 arrested the differentiation of monocytes and LCs at an early precursor cell stage, whereas progenitor cell expansion or granulopoiesis remained unimpaired. AhR expression was coregulated with the transcription factor PU.1 during myeloid subset differentiation. VAF347 inhibited PU.1 induction during initial monocytic differentiation, and ectopic PU.1 restored monocyte and LC generation in the presence of this compound. AhR ligands failed to interfere with cytokine receptor signaling during LC differentiation and failed to impair LC activation/maturation. VAF347-mediated antiproliferative effect on precursors undergoing LC lineage differentiation occurred in a clinically applicable serum-free culture model and was not accompanied by apoptosis induction. In conclusion, AhR agonist signaling interferes with transcriptional processes leading to monocyte/DC lineage commitment of human myeloid progenitor cells.

  20. Chk1 inhibition activates p53 through p38 MAPK in tetraploid cancer cells.

    PubMed

    Vitale, Ilio; Senovilla, Laura; Galluzzi, Lorenzo; Criollo, Alfredo; Vivet, Sonia; Castedo, Maria; Kroemer, Guido

    2008-07-01

    We have previously shown that tetraploid cancer cells succumb through a p53-dependent apoptotic pathway when checkpoint kinase 1 (Chk1) is depleted by small interfering RNAs (siRNAs) or inhibited with 7-hydroxystaurosporine (UCN-01). Here, we demonstrate that Chk1 inhibition results in the activating phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Depletion of p38 MAPK by transfection with a siRNA targeting the alpha isoform of p38 MAPK (p38alpha MAPK) abolishes the phosphorylation of p53 on serines 15 and 46 that is induced by Chk1 knockdown. The siRNA-mediated downregulation and pharmacological inhibition of p38alpha MAPK (with SB 203580) also reduces cell death induced by Chk1 knockdown or UCN-01. These results underscore the role of p38 MAPK as a pro-apoptotic kinase in the p53-dependant pathway for the therapeutic elimination of polyploidy cells.

  1. NADPH oxidase inhibitor DPI is neuroprotective at femtomolar concentrations through inhibition of microglia over-activation.

    PubMed

    Qian, Li; Gao, Xi; Pei, Zhong; Wu, Xuefei; Block, Michelle; Wilson, Belinda; Hong, Jau-Shyong; Flood, Patrick M

    2007-01-01

    In this paper we report that diphenyliodonium (DPI), a NADPH oxidase inhibitor, shows potent anti-inflammatory and neuroprotective effects at femtomolar concentrations (10(-13) to 10(-14) M) in primary midbrain cultures. Mechanistic studies revealed that DPI-elicited effects were mediated by the inhibition of LPS-induced microglial ROS production and the subsequent release of pro-inflammatory cytokine TNFa, and the production of nitric oxide. Further studies