Science.gov

Sample records for activities sod cat

  1. Do Superoxide Dismutase (SOD) and Catalase (CAT) protect Cells from DNA Damage Induced by Active Arsenicals?

    EPA Science Inventory

    Superoxide dismutase (SOD) catalyzes the conversion of superoxide to hydrogen peroxide, which can be converted to water and oxygen through the action of catalase. Heterozygous mice of strain B6: 129S7-SodltmlLeb/J were obtained from Jackson Laboratories and bred to produce offspr...

  2. A fused selenium-containing protein with both GPx and SOD activities

    SciTech Connect

    Yu, Huijun; Ge, Yan; Wang, Ying; Lin, Chi-Tsai; Li, Jing; Liu, Xiaoman; Zang, Tianzhu; Xu, Jiayun; Liu, Junqiu . E-mail: junqiuliu@jlu.edu.cn; Luo, Guimin; Shen, Jiacong

    2007-07-06

    As a safeguard against oxidative stress, the balance between the main antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) was believed to be more important than any single one, for example, dual-functional SOD/CAT enzyme has been proved to have better antioxidant ability than either single enzyme. By combining traditional fusion protein technology with amino acid auxotrophic expression system, we generated a bifunctional enzyme with both GPx and SOD activities. It displayed better antioxidant ability than GPx or SOD. Such dual-functional enzymes could facilitate further studies of the cooperation of GPx and SOD and generation of better therapeutic agents.

  3. Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses.

    PubMed

    Luo, Xiaoli; Wu, Jiahe; Li, Yuanbao; Nan, Zhirun; Guo, Xing; Wang, Yixue; Zhang, Anhong; Wang, Zhian; Xia, Guixian; Tian, Yingchuan

    2013-01-01

    In plants, CuZn superoxide dismutase (CuZnSOD, EC l.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and catalase (CAT, EC l.11.1.6) are important scavengers of reactive oxygen species (ROS) to protect the cell from damage. In the present study, we isolated three homologous genes (GhSOD1, GhAPX1, and GhCAT1) from Gossypium hirsutum. Overexpressing cassettes containing chimeric GhSOD1, GhAPX1, or GhCAT1 were introduced into cotton plants by Agrobacterium transformation, and overexpressed products of these genes were transported into the chloroplasts by transit peptide, as expected. The five types of transgenic cotton plants that overexpressed GhSOD1, GhAPX1, GhCAT1, GhSOD1 and GhAPX1 stack (SAT), and GhSOD1 and GhCAT1 stack (SCT) were developed. Analyses in the greenhouse showed that the transgenic plants had higher tolerance to methyl viologen (MV) and salinity than WT plants. Interestingly, SCT plants suffered no damage under stress conditions. Based on analyses of enzyme activities, electrolyte leakage, chlorophyll content, photochemical yield (Fv/Fm), and biomass accumulation under stresses, the SCT plants that simultaneously overexpressed GhSOD1 and GhCAT1 appeared to benefit from synergistic effects of two genes and exhibited the highest tolerance to MV and salt stress among the transgenic lines, while the SAT plants simultaneously overexpressing GhSOD1 and GhAPX1 did not. In addition, transgenic plants overexpressing antioxidant enzymes in their chloroplasts had higher tolerance to salt stress than those expressing the genes in their cytoplasms, although overall enzyme activities were almost the same. Therefore, the synergistic effects of GhSOD1 and GhCAT1 in chloroplasts provide a new strategy for enhancing stress tolerance to avoid yield loss.

  4. Adaptive flexibility of enzymatic antioxidants SOD, APX and CAT to high light stress: The clonal perennial monocot Iris pumila as a study case.

    PubMed

    Vuleta, Ana; Manitašević Jovanović, Sanja; Tucić, Branka

    2016-03-01

    High solar radiation has been recognized as one of the main causes of the overproduction of reactive oxygen species (ROS) and oxidative stress in plants. To remove the excess of ROS, plants use different antioxidants and tune their activity and/or isoform number as required for given light conditions. In this study, the adaptiveness of light-induced variation in the activities and isoform patterns of key enzymatic antioxidants SOD, APX and CAT was tested in leaves of Iris pumila clonal plants from two natural populations inhabiting a sun exposed dune site and a forest understory, using a reciprocal-transplant experiment. At the exposed habitat, the mean enzymatic activity of total SODs was significantly greater than that in the shaded one, while the amount of the mitochondrial MnSOD was notably higher compared to the plastidic Cu/ZnSOD. However, the number of Cu/ZnSOD isoforms was greater in the forest understory relative to the exposed site (three vs. two, respectively). An inverse relationship recorded between the quantities of MnSOD and Cu/ZnSOD in alternative light habitats might indicate that the two enzymes compensate each other in maintaining intracellular ROS and redox balance. The adaptive population differentiation in APX activity was exclusively recorded in the open habitat, which indicated that the synergistic effect of high light and temperature stress could be the principal selective factor, rather than high light alone. The enzymatic activity of CAT was similar between the two populations, implicating APX as the primary H2O2 scavenger in the I. pumila leaves exposed to high light intensity. PMID:26841194

  5. Effect of N+ Beam Exposure on Superoxide Dismutase and Catalase Activities and Induction of Mn-SOD in Deinococcus Radiodurans

    NASA Astrophysics Data System (ADS)

    Song, Dao-jun; Chen, Ruo-lei; Shao, Chun-lin; Wu, Li-jun; Yu, Zeng-liang

    2000-10-01

    Though bacteria of the radiation-resistant Deinococcus radiodurans have a high resistance to the lethal and mutagenic effects of many DNA-damaging agents, the mechanisms involved in the response of these bacteria to oxidative stress are poorly understood. In this report, the superoxide dismutase (SOD) and catalase (CAT) activities produced by these bacteria were measured, and the change of SOD and CAT activities by 20 keV N+ beam exposure was examined. Their activities were increased by N+ beam exposure from 8×1014 ions/cm2 to 6×1015 ions/cm2. The treatment of H2O2 and [CHCl3 +CH3CH2OH] and the measurement of absorption spectrum showed that the increase in SOD activity was resulted from inducible activities of Mn-SOD in D. radiodurans AS1.633 by N+ beam exposure. These results suggested that this bacteria possess inducible defense mechanisms against the deleterious effects of oxidization.

  6. Engineering of a novel tri-functional enzyme with MnSOD, catalase and cell-permeable activities.

    PubMed

    Luangwattananun, Piriya; Yainoy, Sakda; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Ayudhya, Chartchalerm Isarankura Na; Prachayasittikul, Virapong

    2016-04-01

    Cooperative function of superoxide dismutase (SOD) and catalase (CAT), in protection against oxidative stress, is known to be more effective than the action of either single enzyme. Chemical conjugation of the two enzymes resulted in molecules with higher antioxidant activity and therapeutic efficacy. However, chemical methods holds several drawbacks; e.g., loss of enzymatic activity, low homogeneity, time-consuming, and the need of chemical residues removal. Yet, the conjugated enzymes have never been proven to internalize into target cells. In this study, by employing genetic and protein engineering technologies, we reported designing and production of a bi-functional protein with SOD and CAT activities for the first time. To enable cellular internalization, cell penetrating peptide from HIV-1 Tat (TAT) was incorporated. Co-expression of CAT-MnSOD and MnSOD-TAT fusion genes allowed simultaneous self-assembly of the protein sequences into a large protein complex, which is expected to contained one tetrameric structure of CAT, four tetrameric structures of MnSOD and twelve units of TAT. The protein showed cellular internalization and superior protection against paraquat-induced cell death as compared to either complex bi-functional protein without TAT or to native enzymes fused with TAT. This study not only provided an alternative strategy to produce multifunctional protein complex, but also gained an insight into the development of therapeutic agent against oxidative stress-related conditions.

  7. Plasma antioxidants, genetic variation in SOD2, CAT, GPX1, GPX4, and prostate cancer survival

    PubMed Central

    Van Blarigan, Erin L.; Ma, Jing; Kenfield, Stacey A.; Stampfer, Meir J.; Sesso, Howard D.; Giovannucci, Edward L.; Witte, John S.; Erdman, John W.; Chan, June M.; Penney, Kathryn L.

    2014-01-01

    Background Antioxidants may reduce risk of aggressive prostate cancer, and single nucleotide polymorphisms (SNPs) in antioxidant genes may modify this association. Methods We used Cox proportional hazards regression to examine circulating prediagnostic alpha-tocopherol, gamma-tocopherol, and lycopene; SNPs in SOD2 (n=5), CAT (n=6), GPX1 (n=2), GPX4 (n=3); and their interactions and risk of lethal prostate cancer among 2,439 men with nonmetastatic prostate cancer in the Health Professionals Follow-up Study and Physicians’ Health Study. Results We observed 223 events over a median follow-up of 10 years. Higher alpha-tocopherol levels were associated with lower risk of lethal prostate cancer (hazard ratio (HR) 3rd v. 1st quartile (Q): 0.51; 95% confidence interval (CI): 0.30, 0.89; HR 4th v. 1st Q: 0.68; 95% CI: 0.41, 1.13; p-trend: 0.02). Men homozygous for the less common allele (G) at rs3746165 in GPX4 had a 35% lower risk of lethal prostate cancer compared to men homozygous for the more common allele (A) (HR: 0.65; 95% CI: 0.43, 0.99). Among men homozygous for the less common allele in rs3746165, high gamma-tocopherol levels were associated with a 3.5-fold increased risk of lethal prostate cancer (95% CI: 1.27, 9.72; p-value: 0.02; interaction p-value 0.01). Conclusions Among men with nonmetastatic prostate cancer, higher circulating prediagnostic alpha-tocopherol may be associated with lower risk of developing lethal disease. Variants in GPX4 may be associated with risk of lethal prostate cancer, and may modify the relation between gamma-tocopherol and prostate cancer survival. Impact Circulating tocopherol levels and variants in GPX4 may affect prostate cancer progression. PMID:24711484

  8. The effect of sarafloxacin on Cu/ZnSOD structure and activity

    NASA Astrophysics Data System (ADS)

    Cao, Zhaozhen; Liu, Rutao; Dong, Ziliang; Yang, Xinping; Chen, Yadong

    2015-02-01

    The effect of sarafloxacin to Cu/ZnSOD was evaluated via investigating the change in Cu/ZnSOD structure and the structure basis activity upon sarafloxacin binding. Multi-spectroscopic methods, isothermal titration microcalorimetry (ITC) and molecular docking method were adopted in this study. Sarafloxacin binds to Cu/ZnSOD mainly through hydrophobic and hydrogen bond forces and tends to be saturated as the molar ratio of sarafloxacin to Cu/ZnSOD reaches 4. The binding changed the microenvironment around Tyr and the secondary structure of Cu/ZnSOD but did not affect the activity of Cu/ZnSOD. Molecular docking study revealed that sarafloxacin binds into a hydrophobic area with possibility to form hydrogen bonds with Tyr 108, Asp 25, Pro 100 and Ser 103 of Cu/ZnSOD. The binding area locates on the surface of β-barrel close to the second Greek key loop (GK2) and V-loop but far away from the active site and active site channel of Cu/ZnSOD. These promoted the understanding of the experiment phenomenons. The binding of sarafloxacin does not affect the activity of Cu/ZnSOD should attribute to the binding not to change the microenvironment of Cu/ZnSOD active site and active site channel.

  9. Coal-burning endemic fluorosis is associated with reduced activity in antioxidative enzymes and Cu/Zn-SOD gene expression.

    PubMed

    Wang, Qi; Cui, Kang-ping; Xu, Yuan-yuan; Gao, Yan-ling; Zhao, Jing; Li, Da-sheng; Li, Xiao-lei; Huang, Hou-jin

    2014-02-01

    To study the effect of fluorine on the oxidative stress in coal-burning fluorosis, we investigated the environmental characteristics of coal-burning endemic fluorosis combined with fluorine content surveillance in air, water, food, briquette, and clay binder samples from Bijie region, Guizhou Province, southwest of China. The activities of antioxidant enzymes including copper/zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and level of lipid peroxidation such as malondialdehyde (MDA) were measured in serum samples obtained from subjects residing in the Bijie region. Expression of the Cu/Zn-SOD gene was assessed by quantitative reverse transcriptase PCR (qRT-PCR). Our results showed that people suffering from endemic fluorosis (the high and low exposure groups) had much higher MDA level. Their antioxidant enzyme activities and Cu/Zn-SOD gene expression levels were lower when compared to healthy people (the control group). Fluorosis can decrease the activities of antioxidant enzymes, which was associated with exposure level of fluorine. Down-regulation of Cu/Zn-SOD expression may play an important role in the aggravation of oxidative stress in endemic fluorosis.

  10. CDK4-mediated MnSOD activation and mitochondrial homeostasis in radioadaptive protection.

    PubMed

    Jin, Cuihong; Qin, Lili; Shi, Yan; Candas, Demet; Fan, Ming; Lu, Chung-Ling; Vaughan, Andrew T M; Shen, Rulong; Wu, Larry S; Liu, Rui; Li, Robert F; Murley, Jeffrey S; Woloschak, Gayle; Grdina, David J; Li, Jian Jian

    2015-04-01

    Mammalian cells are able to sense environmental oxidative and genotoxic conditions such as the environmental low-dose ionizing radiation (LDIR) present naturally on the earth's surface. The stressed cells then can induce a so-called radioadaptive response with an enhanced cellular homeostasis and repair capacity against subsequent similar genotoxic conditions such as a high dose radiation. Manganese superoxide dismutase (MnSOD), a primary mitochondrial antioxidant in mammals, has long been known to play a crucial role in radioadaptive protection by detoxifying O2(•-) generated by mitochondrial oxidative phosphorylation. In contrast to the well-studied mechanisms of SOD2 gene regulation, the mechanisms underlying posttranslational regulation of MnSOD for radioprotection remain to be defined. Herein, we demonstrate that cyclin D1/cyclin-dependent kinase 4 (CDK4) serves as the messenger to deliver the stress signal to mitochondria to boost mitochondrial homeostasis in human skin keratinocytes under LDIR-adaptive radioprotection. Cyclin D1/CDK4 relocates to mitochondria at the same time as MnSOD enzymatic activation peaks without significant changes in total MnSOD protein level. The mitochondrial-localized CDK4 directly phosphorylates MnSOD at serine-106 (S106), causing enhanced MnSOD enzymatic activity and mitochondrial respiration. Expression of mitochondria-targeted dominant negative CDK4 or the MnSOD-S106 mutant reverses LDIR-induced mitochondrial enhancement and adaptive protection. The CDK4-mediated MnSOD activation and mitochondrial metabolism boost are also detected in skin tissues of mice receiving in vivo whole-body LDIR. These results demonstrate a unique CDK4-mediated mitochondrial communication that allows cells to sense environmental genotoxic stress and boost mitochondrial homeostasis by enhancing phosphorylation and activation of MnSOD.

  11. CDK4-mediated MnSOD activation and mitochondrial homeostasis in radioadaptive protection.

    PubMed

    Jin, Cuihong; Qin, Lili; Shi, Yan; Candas, Demet; Fan, Ming; Lu, Chung-Ling; Vaughan, Andrew T M; Shen, Rulong; Wu, Larry S; Liu, Rui; Li, Robert F; Murley, Jeffrey S; Woloschak, Gayle; Grdina, David J; Li, Jian Jian

    2015-04-01

    Mammalian cells are able to sense environmental oxidative and genotoxic conditions such as the environmental low-dose ionizing radiation (LDIR) present naturally on the earth's surface. The stressed cells then can induce a so-called radioadaptive response with an enhanced cellular homeostasis and repair capacity against subsequent similar genotoxic conditions such as a high dose radiation. Manganese superoxide dismutase (MnSOD), a primary mitochondrial antioxidant in mammals, has long been known to play a crucial role in radioadaptive protection by detoxifying O2(•-) generated by mitochondrial oxidative phosphorylation. In contrast to the well-studied mechanisms of SOD2 gene regulation, the mechanisms underlying posttranslational regulation of MnSOD for radioprotection remain to be defined. Herein, we demonstrate that cyclin D1/cyclin-dependent kinase 4 (CDK4) serves as the messenger to deliver the stress signal to mitochondria to boost mitochondrial homeostasis in human skin keratinocytes under LDIR-adaptive radioprotection. Cyclin D1/CDK4 relocates to mitochondria at the same time as MnSOD enzymatic activation peaks without significant changes in total MnSOD protein level. The mitochondrial-localized CDK4 directly phosphorylates MnSOD at serine-106 (S106), causing enhanced MnSOD enzymatic activity and mitochondrial respiration. Expression of mitochondria-targeted dominant negative CDK4 or the MnSOD-S106 mutant reverses LDIR-induced mitochondrial enhancement and adaptive protection. The CDK4-mediated MnSOD activation and mitochondrial metabolism boost are also detected in skin tissues of mice receiving in vivo whole-body LDIR. These results demonstrate a unique CDK4-mediated mitochondrial communication that allows cells to sense environmental genotoxic stress and boost mitochondrial homeostasis by enhancing phosphorylation and activation of MnSOD. PMID:25578653

  12. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans.

    PubMed

    Gleason, Julie E; Li, Cissy X; Odeh, Hana M; Culotta, Valeria C

    2014-06-01

    Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker's yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80% similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS-SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.

  13. Cognitive activation theory of stress (CATS).

    PubMed

    Ursin, Holger; Eriksen, Hege R

    2010-05-01

    The cognitive activation theory of stress (CATS) is based on a long series of experiments on animals and on humans, in the laboratory, and in real life situations. From the common sense coping concept formulated by Seymour Levine; coping is when my "tommy" does not hurt, we have advanced to a systematic theory for what is behind the relaxed and happy coping rat (and cat). We also cover the translational leap to humans, starting with the now classic parachutist study. The bridge is based on formal and symbolic definitions, a theoretical short cut that Levine actually never really accepted. The essential pathophysiological concept is the potential pathological effects of sustained activation, which may occur in the absence of coping (positive response outcome expectancy). We review the current status of CATS in Behavioural Medicine by discussing its potential explanatory power in epidemiology, prevention and treatment of "subjective health complaints".

  14. Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice

    PubMed Central

    Lobsiger, Christian S.; Boillee, Severine; McAlonis-Downes, Melissa; Khan, Amir M.; Feltri, M. Laura; Yamanaka, Koji; Cleveland, Don W.

    2009-01-01

    Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1G37R) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells. PMID:19251638

  15. Free radicals and SOD activity of jaw cyst. Direct measurement and spin trapping studies by ESR.

    PubMed

    Kimura, H; Simodate, H; Suzuki, M

    1990-01-01

    Free radicals produced in the fluid of jaw cysts were directly measured at room temperature using ESR. With these samples, SOD activity of the cyst fluid was measured by the ESR spin trapping method with DMPO as a trapping agent. Freeze-dried samples of cyst fluid showed a broad ESR signal at g = 2.005. Relative signal intensity of samples from jaw cysts with inflammation was higher than jaw cysts without inflammation. SOD activity of cyst fluid with high viscosity showed higher values than that of cyst fluid with low viscosity. We suggest that free radicals produced in jaw cyst damage tissues while higher SOD activity of cyst fluid play a role in a self-defense mechanism against free radicals.

  16. Farnesoid X Receptor Antagonizes JNK Signaling Pathway in Liver Carcinogenesis by Activating SOD3

    PubMed Central

    Li, Cunbao; Guo, Cong; Li, Yanyan; Qi, Hui; Shen, Hailing; Kong, Jing; Long, Xuecheng; Yuan, Frank; Wang, Xichun

    2015-01-01

    The farnesoid X receptor (FXR) is a key metabolic and homeostatic regulator in the liver. In the present work, we identify a novel role of FXR in antagonizing c-Jun N-terminal kinase (JNK) signaling pathway in liver carcinogenesis by activating superoxide dismutase 3 (SOD3) transcription. Compared with wild-type mouse liver, FXR−/− mouse liver showed elevated JNK phosphorylation. JNK1 deletion suppressed the increase of diethylnitrosamine-induced tumor number in FXR−/− mice. These results suggest that JNK1 plays a key role in chemical-induced liver carcinogenesis in FXR−/− mice. We found that ligand-activated FXR was able to alleviate H2O2 or tetradecanoylphorbol acetate-induced JNK phosphorylation in human hepatoblastoma (HepG2) cells or mouse primary hepatocytes. FXR ligand decreased H2O2-induced reactive oxygen species (ROS) levels in wild-type but not FXR−/− mouse hepatocytes. FXR knockdown abolished the inhibition of 3-[2-[2-chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]-Benzoic acid (GW4064) on JNK phosphorylation and ROS production induced by H2O2 in HepG2 cells. The gene expression of SOD3, an antioxidant defense enzyme, was increased by FXR activation in vitro and in vivo. An FXR-responsive element, inverted repeat separated by 1 nucleotide in SOD3 promoter, was identified by a combination of transcriptional reporter assays, EMSAs, and chromatin immunoprecipitation assays, which indicated that SOD3 could be a direct FXR target gene. SOD3 knockdown abolished the inhibition of GW4064 on JNK phosphorylation induced by H2O2 in HepG2 cells. In summary, FXR may regulate SOD3 expression to suppress ROS production, resulting in decreasing JNK activity. These results suggest that FXR, as a novel JNK suppressor, may be an attractive therapeutic target for liver cancer treatment. PMID:25496033

  17. Farnesoid X receptor antagonizes JNK signaling pathway in liver carcinogenesis by activating SOD3.

    PubMed

    Wang, Yan-Dong; Chen, Wei-Dong; Li, Cunbao; Guo, Cong; Li, Yanyan; Qi, Hui; Shen, Hailing; Kong, Jing; Long, Xuecheng; Yuan, Frank; Wang, Xichun; Huang, Wendong

    2015-02-01

    The farnesoid X receptor (FXR) is a key metabolic and homeostatic regulator in the liver. In the present work, we identify a novel role of FXR in antagonizing c-Jun N-terminal kinase (JNK) signaling pathway in liver carcinogenesis by activating superoxide dismutase 3 (SOD3) transcription. Compared with wild-type mouse liver, FXR(-/-) mouse liver showed elevated JNK phosphorylation. JNK1 deletion suppressed the increase of diethylnitrosamine-induced tumor number in FXR(-/-) mice. These results suggest that JNK1 plays a key role in chemical-induced liver carcinogenesis in FXR(-/-) mice. We found that ligand-activated FXR was able to alleviate H₂O₂or tetradecanoylphorbol acetate-induced JNK phosphorylation in human hepatoblastoma (HepG2) cells or mouse primary hepatocytes. FXR ligand decreased H₂O₂-induced reactive oxygen species (ROS) levels in wild-type but not FXR(-/-) mouse hepatocytes. FXR knockdown abolished the inhibition of 3-[2-[2-chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]-Benzoic acid (GW4064) on JNK phosphorylation and ROS production induced by H₂O₂in HepG2 cells. The gene expression of SOD3, an antioxidant defense enzyme, was increased by FXR activation in vitro and in vivo. An FXR-responsive element, inverted repeat separated by 1 nucleotide in SOD3 promoter, was identified by a combination of transcriptional reporter assays, EMSAs, and chromatin immunoprecipitation assays, which indicated that SOD3 could be a direct FXR target gene. SOD3 knockdown abolished the inhibition of GW4064 on JNK phosphorylation induced by H₂O₂in HepG2 cells. In summary, FXR may regulate SOD3 expression to suppress ROS production, resulting in decreasing JNK activity. These results suggest that FXR, as a novel JNK suppressor, may be an attractive therapeutic target for liver cancer treatment.

  18. The role of cerium redox state in the SOD mimetic activity of nanoceria

    PubMed Central

    Heckert, Eric; Karakoti, Ajay; Seal, Sudipta; Self, William T.

    2008-01-01

    Cerium oxide nanoparticles (nanoceria) have recently been shown to protect cells against oxidative stress in both cell culture and animal models. Nanoceria has been shown to exhibit superoxide dismutase (SOD) activity using a ferricytochrome C assay, and it is this mimetic activity that has been postulated to be responsible for cellular protection by nanoceria. The nature of nanoceria’s antioxidant properties, specifically what physical characteristics make nanoceria effective at scavenging superoxide anion, is poorly understood. In this study electron paramagnetic resonance (EPR) analysis confirms the reactivity of nanoceria as an SOD mimetic. X-ray photoelectron spectroscopy (XPS) and UV-visible analysis of nanoceria treated with hydrogen peroxide demonstrate that a decrease in the Ce 3+/4+ ratio correlates directly with a loss of SOD mimetic activity. These results strongly suggest that the surface oxidation state of nanoceria plays an integral role in the SOD mimetic activity of nanoceria and that ability of nanoceria to scavenge superoxide is directly related to cerium (III) concentrations at the surface of the particle. PMID:18395249

  19. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress.

    PubMed

    Ozden, Ozkan; Park, Seong-Hoon; Kim, Hyun-Seok; Jiang, Haiyan; Coleman, Mitchell C; Spitz, Douglas R; Gius, David

    2011-02-01

    A fundamental observation in biology is that mitochondrial function, as measured by increased reactive oxygen species (ROS), changes significantly with age, suggesting a potential mechanistic link between the cellular processes governing longevity and mitochondrial metabolism homeostasis. In addition, it is well established that altered ROS levels are observed in multiple age-related illnesses including carcinogenesis, neurodegenerative, fatty liver, insulin resistance, and cardiac disease, to name just a few. Manganese superoxide dismutase (MnSOD) is the primary mitochondrial ROS scavenging enzyme that converts superoxide to hydrogen peroxide, which is subsequently converted to water by catalase and other peroxidases. It has recently been shown that MnSOD enzymatic activity is regulated by the reversible acetylation of specific, evolutionarily conserved lysine(s) in the protein. These results, suggest for the first time, that the mitochondria contain bidirectional post-translational signaling networks, similar to that observed in the cytoplasm and nucleus, and that changes in lysine acetylation alter MnSOD enzymatic activity. In addition, these new results demonstrate that the mitochondrial anti-aging or fidelity / sensing protein, SIRT3, responds to changes in mitochondrial nutrient and/or redox status to alter the enzymatic activity of specific downstream targets, including MnSOD that adjusts and/or maintains ROS levels as well as metabolic homeostatic poise. PMID:21386137

  20. Phenylbutazone Oxidation via Cu,Zn-SOD Peroxidase Activity: An EPR Study.

    PubMed

    Aljuhani, Naif; Whittal, Randy M; Khan, Saifur R; Siraki, Arno G

    2015-07-20

    We investigated the effect of Cu,Zn-superoxide dismutase (Cu,Zn-SOD)-peroxidase activity on the oxidation of the nonsteroidal anti-inflammatory drug phenylbutazone (PBZ). We utilized electron paramagnetic resonance (EPR) spectroscopy to detect free radical intermediates of PBZ, UV-vis spectrophotometry to monitor PBZ oxidation, oxygen analysis to determine the involvement of C-centered radicals, and LC/MS to determine the resulting metabolites. Using EPR spectroscopy and spin-trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), we found that the spin adduct of CO3(•-) (DMPO/(•)OH) was attenuated with increasing PBZ concentrations. The resulting PBZ radical, which was assigned as a carbon-centered radical based on computer simulation of hyperfine splitting constants, was trapped by both DMPO and MNP spin traps. Similar to Cu,Zn-SOD-peroxidase activity, an identical PBZ carbon-centered radical was also detected with the presence of both myeloperoxidase (MPO/H2O2) and horseradish peroxidase (HRP/H2O2). Oxygen analysis revealed depletion in oxygen levels when PBZ was oxidized by SOD peroxidase-activity, further supporting carbon radical formation. In addition, UV-vis spectra showed that the λmax for PBZ (λ = 260 nm) declined in intensity and shifted to a new peak that was similar to the spectrum for 4-hydroxy-PBZ when oxidized by Cu,Zn-SOD-peroxidase activity. LC/MS evidence supported the formation of 4-hydroxy-PBZ when compared to that of a standard, and 4-hydroperoxy-PBZ was also detected in significant yield. These findings together indicate that the carbonate radical, a product of SOD peroxidase activity, appears to play a role in PBZ metabolism. Interestingly, these results are similar to findings from heme peroxidase enzymes, and the context of this metabolic pathway is discussed in terms of a mechanism for PBZ-induced toxicity. PMID:26090772

  1. Effects of cigarette smoke on aerobic capacity and serum MDA content and SOD activity of animal

    PubMed Central

    Hu, Jian-Ping; Zhao, Xin-Ping; Ma, Xiao-Zhi; Wang, Yi; Zheng, Li-Jun

    2014-01-01

    Objective: Study the effects of cigarette smoke on aerobic capacity, serum MDA content and SOD activity of animal. Methods: 60 male mice are randomly divided into mild smoking group, heavy smoking group, and control group, and the exhausted swimming time, serum SOD activity and MDA content of the three groups of mice are respectively measured before and after the experiment. Results: After the experiment, the exhausted swimming time for the control group, mild smoking and heavy smoking groups is respectively 276.57 min, 215.57 min and 176.54 min, and the serum SOD activities for the three objects are 216.46 U/mL, 169.16 U/mL and 154.91 U/mL, and the MDA contents are respectively 16.41 mol/mL, 22.31 mol/mL and 23.55 mol/mL. According to the comparison, it is found that compared with the control group and pre-intervention, the exhausted swimming time and serum SOD activity of the smoking group decreases obviously, and its MDA content rises sharply, and the difference has significance (P < 0.05), moreover, the heavy smoking group has more obvious changes than the mild group. Conclusion: Cigarette smoke can significantly weaken the aerobic capacity and fatigue resistance of mice, and the more the smoking time is longer, the more the harmful effect is more serious, this is related to the SOD activity drops and MDA content rises due to smoking. PMID:25550969

  2. Hypoxia, reoxygenation and cytosolic manganese superoxide dismutase (cMnSOD) silencing in Litopenaeus vannamei: effects on cMnSOD transcripts, superoxide dismutase activity and superoxide anion production capacity.

    PubMed

    García-Triana, Antonio; Zenteno-Savín, Tania; Peregrino-Uriarte, Alma Beatriz; Yepiz-Plascencia, Gloria

    2010-11-01

    The effects of silencing the mRNA of cytosolic manganese superoxide dismutase (cMnSOD), an enzyme involved in the antioxidant defense, were analyzed in Whiteleg shrimp, Litopenaeus vannamei adults. Shrimp were intramuscularly injected with long dsRNAs corresponding to the N-terminal portion of the cMnSOD and held under normoxic conditions for 24h. Another group of shrimp was exposed to hypoxia for 6h followed by reoxygenation for 1h. Shrimp injected with long dsRNAs had lower cMnSOD transcripts in gills and hepatopancreas. In the cMnSOD silenced shrimp, superoxide dismutase (SOD) activity decreased in gills but not in hepatopancreas. Shrimp subjected to hypoxia had lower cMnSOD transcripts and SOD activity in gills and hepatopancreas; the production of superoxide anion (O2*-) by hemocytes was also lower in this group. Reoxygenation reverted the effect of hypoxia increasing the levels of cMnSOD transcripts, SOD activity and the production of O2*-. These results suggest that cMnSOD contributes significantly to the SOD activity in gills and hepatopancreas and indicate its importance in the redox system regulation for L. vannamei.

  3. Dietary resveratrol administration increases MnSOD expression and activity in mouse brain

    SciTech Connect

    Robb, Ellen L.; Winkelmolen, Lieke; Visanji, Naomi; Brotchie, Jonathan; Stuart, Jeffrey A.

    2008-07-18

    trans-Resveratrol (3,4',5-trihydroxystilbene; RES) is of interest for its reported protective effects in a variety of pathologies, including neurodegeneration. Many of these protective properties have been attributed to the ability of RES to reduce oxidative stress. In vitro studies have shown an increase in antioxidant enzyme activities following exposure to RES, including upregulation of mitochondrial superoxide dismutase, an enzyme that is capable of reducing both oxidative stress and cell death. We sought to determine if a similar increase in endogenous antioxidant enzymes is observed with RES treatment in vivo. Three separate modes of RES delivery were utilized; in a standard diet, a high fat diet and through a subcutaneous osmotic minipump. RES given in a high fat diet proved to be effective in elevating antioxidant capacity in brain resulting in an increase in both MnSOD protein level (140%) and activity (75%). The increase in MnSOD was not due to a substantial proliferation of mitochondria, as RES treatment induced a 10% increase in mitochondrial abundance (Citrate Synthase activity). The potential neuroprotective properties of MnSOD have been well established, and we demonstrate that a dietary delivery of RES is able to increase the expression and activity of this enzyme in vivo.

  4. Methoxy-derivatization of alkyl chains increases the in vivo efficacy of cationic Mn porphyrins. Synthesis, characterization, SOD-like activity, and SOD-deficient E. coli study of meta Mn(III) N-methoxyalkylpyridylporphyrins.

    PubMed

    Tovmasyan, Artak G; Rajic, Zrinka; Spasojevic, Ivan; Reboucas, Julio S; Chen, Xin; Salvemini, Daniela; Sheng, Huaxin; Warner, David S; Benov, Ludmil; Batinic-Haberle, Ines

    2011-04-28

    Cationic Mn(III) N-alkylpyridylporphyrins (MnPs) are potent SOD mimics and peroxynitrite scavengers and diminish oxidative stress in a variety of animal models of central nervous system (CNS) injuries, cancer, radiation, diabetes, etc. Recently, properties other than antioxidant potency, such as lipophilicity, size, shape, and bulkiness, which influence the bioavailability and the toxicity of MnPs, have been addressed as they affect their in vivo efficacy and therapeutic utility. Porphyrin bearing longer alkyl substituents at pyridyl ring, MnTnHex-2-PyP(5+), is more lipophilic, thus more efficacious in vivo, particularly in CNS injuries, than the shorter alkyl-chained analog, MnTE-2-PyP(5+). Its enhanced lipophilicity allows it to accumulate in mitochondria (relative to cytosol) and to cross the blood-brain barrier to a much higher extent than MnTE-2-PyP(5+). Mn(III) N-alkylpyridylporphyrins of longer alkyl chains, however, bear micellar character, and when used at higher levels, become toxic. Recently we showed that meta isomers are ∼10-fold more lipophilic than ortho species, which enhances their cellular accumulation, and thus reportedly compensates for their somewhat inferior SOD-like activity. Herein, we modified the alkyl chains of the lipophilic meta compound, MnTnHex-3-PyP(5+) via introduction of a methoxy group, to diminish its toxicity (and/or enhance its efficacy), while maintaining high SOD-like activity and lipophilicity. We compared the lipophilic Mn(III) meso-tetrakis(N-(6'-methoxyhexyl)pyridinium-3-yl)porphyrin, MnTMOHex-3-PyP(5+), to a hydrophilic Mn(III) meso-tetrakis(N-(2'-methoxyethyl)pyridinium-3-yl)porphyrin, MnTMOE-3-PyP(5+). The compounds were characterized by uv-vis spectroscopy, mass spectrometry, elemental analysis, electrochemistry, and ability to dismute O(2)˙(-). Also, the lipophilicity was characterized by thin-layer chromatographic retention factor, R(f). The SOD-like activities and metal-centered reduction potentials for the Mn

  5. Modulated expression and enzymatic activity of the monogonont rotifer Brachionus koreanus Cu/Zn- and Mn-superoxide dismutase (SOD) in response to environmental biocides.

    PubMed

    Kim, Bo-Mi; Lee, Jin Wuk; Seo, Jung Soo; Shin, Kyung-Hoon; Rhee, Jae-Sung; Lee, Jae-Seong

    2015-02-01

    Superoxide dismutases (SODs) are important antioxidant enzymes whose expression levels are often used as biomarkers for oxidative stress. To investigate the biomarker potential of the monogonont rotifer Brachionus koreanus SOD genes, the full-length Cu/Zn-SOD (Bk-Cu/Zn-SOD) and Mn-SOD (Bk-Mn-SOD) genes were cloned from genomic DNA and characterized. All amino acid residues involved in the formation of tertiary structure and metal binding in Bk-Cu/Zn-SOD and Bk-Mn-SOD were highly conserved across species. Phylogenetic analysis revealed that Bk-Mn-SOD, in particular, was closely clustered with mitochondrial Mn-SOD. Transcript analysis after exposure to six different biocides (alachlor, chlorpyrifos, dimethoate, endosulfan, lindane, and molinate) revealed that the transcriptional level of Bk-Cu/Zn-SOD was significantly increased in a dose-dependent manner. In contrast, the level of Bk-Mn-SOD transcript was significantly increased compared with control cells in response to chlorpyrifos, endosulfan, and molinate at their no observed effect concentrations (NOECs). However, exposure to alachlor, chlorpyrifos, and molinate significantly reduced the enzymatic activity of total SOD protein, while a decreased pattern was observed in all biocide treatments. Taken together, these results indicate that exposure to waterborne environmental biocides induces the transcription of Bk-Cu/Zn-SOD and Bk-Mn-SOD, but inhibits the enzymatic activity of Bk-SODs. These results contribute to our understanding of the modes of action of oxidative stress-mediating biocides on rotifer.

  6. A semisynthetic strategy leads to alteration of the backbone amidate ligand in the NiSOD active site

    SciTech Connect

    Campeciño, Julius O.; Dudycz, Lech W.; Tumelty, David; Berg, Volker; Cabelli, Diane E.; Maroney, Michael J.

    2015-07-01

    Computational investigations have implicated the amidate ligand in nickel superoxide dismutase (NiSOD) in stabilizing Ni-centered redox catalysis and in preventing cysteine thiolate ligand oxidation. To test these predictions, we have used an experimental approach utilizing a semisynthetic scheme that employs native chemical ligation of a pentapeptide (HCDLP) to recombinant S. coelicolor NiSOD lacking these N-terminal residues, NΔ5-NiSOD. Wild-type enzyme produced in this manner exhibits the characteristic spectral properties of recombinant WT-NiSOD and is as catalytically active. The semisynthetic scheme was also employed to construct a variant where the amidate ligand was converted to a secondary amine, H1*-NiSOD, a novel strategy that retains a backbone N-donor atom. The H1*-NiSOD variant was found to have only ~1% of the catalytic activity of the recombinant wild-type enzyme, and had altered spectroscopic properties. X-ray absorption spectroscopy reveals a four-coordinate planar site with N2S2-donor ligands, consistent with electronic absorption spectroscopic results indicating that the Ni center in H1*-NiSOD is mostly reduced in the as-isolated sample, as opposed to 50:50 Ni(II)/Ni(III) mixture that is typical for the recombinant wild-type enzyme. The EPR spectrum of as-isolated H1*-NiSOD accounts for ~11% of the Ni in the sample and is similar to WT-NiSOD, but more axial, with gz < gx,y. 14N-hyperfine is observed on gz

  7. A semisynthetic strategy leads to alteration of the backbone amidate ligand in the NiSOD active site

    DOE PAGES

    Campeciño, Julius O.; Dudycz, Lech W.; Tumelty, David; Berg, Volker; Cabelli, Diane E.; Maroney, Michael J.

    2015-07-01

    Computational investigations have implicated the amidate ligand in nickel superoxide dismutase (NiSOD) in stabilizing Ni-centered redox catalysis and in preventing cysteine thiolate ligand oxidation. To test these predictions, we have used an experimental approach utilizing a semisynthetic scheme that employs native chemical ligation of a pentapeptide (HCDLP) to recombinant S. coelicolor NiSOD lacking these N-terminal residues, NΔ5-NiSOD. Wild-type enzyme produced in this manner exhibits the characteristic spectral properties of recombinant WT-NiSOD and is as catalytically active. The semisynthetic scheme was also employed to construct a variant where the amidate ligand was converted to a secondary amine, H1*-NiSOD, a novel strategymore » that retains a backbone N-donor atom. The H1*-NiSOD variant was found to have only ~1% of the catalytic activity of the recombinant wild-type enzyme, and had altered spectroscopic properties. X-ray absorption spectroscopy reveals a four-coordinate planar site with N2S2-donor ligands, consistent with electronic absorption spectroscopic results indicating that the Ni center in H1*-NiSOD is mostly reduced in the as-isolated sample, as opposed to 50:50 Ni(II)/Ni(III) mixture that is typical for the recombinant wild-type enzyme. The EPR spectrum of as-isolated H1*-NiSOD accounts for ~11% of the Ni in the sample and is similar to WT-NiSOD, but more axial, with gz < gx,y. 14N-hyperfine is observed on gz« less

  8. Antimalarial, antimicrobial, cytotoxic, DNA interaction and SOD like activities of tetrahedral copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Mehta, Jugal V.; Gajera, Sanjay B.; Patel, Mohan N.

    2015-02-01

    The mononuclear copper(II) complexes with P, O-donor ligand and different fluoroquinolones have been synthesized and characterized by elemental analysis, electronic spectra, TGA, EPR, FT-IR and LC-MS spectroscopy. An antimicrobial efficiency of the complexes has been tested against five different microorganisms in terms of minimum inhibitory concentration (MIC) and displays very good antimicrobial activity. The binding strength and binding mode of the complexes with Herring Sperm DNA (HS DNA) have been investigated by absorption titration and viscosity measurement studies. The studies suggest the classical intercalative mode of DNA binding. Gel electrophoresis assay determines the ability of the complexes to cleave the supercoiled form of pUC19 DNA. Synthesized complexes have been tested for their SOD mimic activity using nonenzymatic NBT/NADH/PMS system and found to have good antioxidant activity. All the complexes show good cytotoxic and in vitro antimalarial activities.

  9. Lack of SOD1 gene mutations and activity alterations in two Italian families with amyotrophic lateral sclerosis.

    PubMed

    Gestri, D; Cecchi, C; Tedde, A; Latorraca, S; Orlacchio, A; Grassi, E; Massaro, A M; Liguri, G; St George-Hyslop, P H; Sorbi, S

    2000-08-11

    Amyotrophic lateral sclerosis (ALS) is a progressive fatal disorder, which results from the degeneration of motor neurons in the brain and spinal cord. Approximately 20% of the inherited autosomal dominant cases are due to mutations within the gene coding for Cu/Zn superoxide dismutase 1 (SOD1), a cytosolic homodimeric enzyme that catalyzes the dismutation of toxic superoxide anion. We investigated the presence of SOD1 gene mutations and activity alterations in two unrelated families of ALS patients from Elba, an island of central Italy. No mutation in SOD1 exon 1 to 5 and no activity alteration were observed in all members of the two analyzed ALS families (FALS). These data show an apparent heterogeneous distribution of ALS patients with SOD1 gene mutations among different populations and suggest that another genetic locus could be involved in the disease. PMID:10961653

  10. Cationic chlorophyl derivatives with SOD mimicking activity suppress the proliferation of human ovarian cancer cells.

    PubMed

    Kobayashi, Y; Maniki, M; Nakamura, K

    1996-06-01

    Derivatives of chlorophyl, e.g. Fe-chlorin e6-Na, alpha, beta, gamma, delta-Tetraphenylporphine-tetrasulfonic acid disulfonic acid salt tetrahydrate (Fe-TPPTS) and alpha, beta, gamma, delta-Tetrakis (4-N-trimethylaminophenyl) porphine, tetra (p-toluensulfonate (Fe-TTMAPP), express SOD mimicking activity. Examination was made of suppressive effects of human cancer cell lines by derivatives of chlorophyl. Fe-TPPTS and Fe-TTMAPP suppressed proliferation of the human ovarian cancer cell lines but Fe-chlorin e6-Na failed to suppress the proliferation. Lipid peroxide was increased by application of Fe-TPPTS and Fe-TTMAPP, but decreased by application of Fe-chlorin e6-Na. SOD activity of the cancer cells did not change by application of these drugs. TPPTS and TTMAPP have a cationic charge but Fe-chlorin e6-Na has an anionic charge. It is suggested that charge of these drugs relates to the suppressive effects of the cancer cell proliferation. PMID:10851538

  11. Nordihydroguaiaretic Acid Disrupts the Antioxidant Ability of Helicobacter pylori through the Repression of SodB Activity In Vitro

    PubMed Central

    Tsugawa, Hitoshi; Mori, Hideki; Matsuzaki, Juntaro; Masaoka, Tatsuhiro; Hirayama, Tasuku; Nagasawa, Hideko; Sakakibara, Yasubumi; Suematsu, Makoto

    2015-01-01

    Iron-cofactored superoxide dismutase (SodB) of Helicobacter pylori plays an indispensable role in the bacterium's colonization of the stomach. Previously, we demonstrated that FecA1, a Fe3+-dicitrate transporter homolog, contributes to SodB activation by supplying ferrous iron (Fe2+) to SodB, and fecA1-deletion mutant strains have reduced gastric mucosal-colonization ability in Mongolian gerbils, suggesting that FecA1 is a possible target for the development of a novel eradication therapy. This study aimed to identify novel FecA1-binding compounds in silico and then examined the effect of a predicted FecA1-binding compound on H. pylori SodB activity in vitro. Specifically, we demonstrated that nordihydroguaiaretic acid (NDGA) is a predicted FecA1-binding compound. NDGA reduced intracellular Fe2+ levels in H. pylori and reduced SodB activity. Additionally, NDGA increased H2O2 sensitivity of H. pylori and increased the metronidazole (Mtz) sensitivity. The present study demonstrated that NDGA repressed SodB activity associated with the gastric mucosal-colonization via inhibition of intracellular Fe2+ uptake by FecA1, suggesting that NDGA might be effective for the development of a novel eradication therapy. PMID:25945343

  12. Cats

    MedlinePlus

    ... found on the skin of people and animals. Methicillin-resistant Staphylococcus aureus (MRSA) is the same bacterium that has become resistant to some antibiotics. Cats and other animals often can carry MRSA ...

  13. The Arabidopsis DJ-1a protein confers stress protection through cytosolic SOD activation.

    PubMed

    Xu, Xiang Ming; Lin, Hong; Maple, Jodi; Björkblom, Benny; Alves, Guido; Larsen, Jan Petter; Møller, Simon Geir

    2010-05-15

    Mutations in the DJ-1 gene (also known as PARK7) cause inherited Parkinson's disease, which is characterized by neuronal death. Although DJ-1 is thought to be an antioxidant protein, the underlying mechanism by which loss of DJ-1 function contributes to cell death is unclear. Human DJ-1 and its Arabidopsis thaliana homologue, AtDJ-1a, are evolutionarily conserved proteins, indicating a universal function. To gain further knowledge of the molecular features associated with DJ-1 dysfunction, we have characterized AtDJ-1a. We show that AtDJ-1a levels are responsive to stress treatment and that AtDJ-1a loss of function results in accelerated cell death in aging plants. By contrast, transgenic plants with elevated AtDJ-1a levels have increased protection against environmental stress conditions, such as strong light, H(2)O(2), methyl viologen and copper sulfate. We further identify superoxide dismutase 1 (SOD1) and glutathione peroxidase 2 (GPX2) as interaction partners of both AtDJ-1a and human DJ-1, and show that this interaction results in AtDJ-1a- and DJ-1-mediated cytosolic SOD1 activation in a copper-dependent fashion. Our data have highlighted a conserved molecular mechanism for DJ-1 and revealed a new protein player in the oxidative stress response of plants. PMID:20406884

  14. Mitochondrial complex I, aconitase, and succinate dehydrogenase during hypoxia-reoxygenation: modulation of enzyme activities by MnSOD.

    PubMed

    Powell, Charles S; Jackson, Robert M

    2003-07-01

    Both NADH dehydrogenase (complex I) and aconitase are inactivated partially in vitro by superoxide (O2-.) and other oxidants that cause loss of iron from enzyme cubane (4Fe-4S) centers. We tested whether hypoxia-reoxygenation (H-R) by itself would decrease lung epithelial cell NADH dehydrogenase, aconitase, and succinate dehydrogenase (SDH) activities and whether transfection with adenoviral vectors expressing MnSOD (Ad.MnSOD) would inhibit oxidative enzyme inactivation and thus confirm a mechanism involving O2-. Human lung carcinoma cells with alveolar epithelial cell characteristics (A549 cells) were exposed to <1% O2-5% CO2 (hypoxia) for 24 h followed by air-5% CO2 for 24 h (reoxygenation). NADH dehydrogenase activity was assayed in submitochondrial particles; aconitase and SDH activities were measured in cell lysates. H-R significantly decreased NADH dehydrogenase, aconitase, and SDH activities. Ad.MnSOD increased mitochondrial MnSOD substantially and prevented the inhibitory effects of H-R on enzyme activities. Addition of alpha-ketoglutarate plus aspartate, but not succinate, to medium prevented cytotoxicity due to 2,3-dimethoxy-1,4-naphthoquinone. After hypoxia, cells displayed significantly increased dihydrorhodamine fluorescence, indicating increased mitochondrial oxidant production. Inhibition of NADH dehydrogenase, aconitase, and SDH activities during reoxygenation are due to excess O2-. produced in mitochondria, because enzyme inactivation can be prevented by overexpression of MnSOD. PMID:12665464

  15. Activation of AMPK/MnSOD signaling mediates anti-apoptotic effect of hepatitis B virus in hepatoma cells

    PubMed Central

    Li, Lei; Hong, Hong-Hai; Chen, Shi-Ping; Ma, Cai-Qi; Liu, Han-Yan; Yao, Ya-Chao

    2016-01-01

    AIM: To investigate the anti-apoptotic capability of the hepatitis B virus (HBV) in the HepG2 hepatoma cell line and the underlying mechanisms. METHODS: Cell viability and apoptosis were measured by MTT assay and flow cytometry, respectively. Targeted knockdown of manganese superoxide dismutase (MnSOD), AMP-activated protein kinase (AMPK) and hepatitis B virus X protein (HBx) genes as well as AMPK agonist AICAR and antagonist compound C were employed to determine the correlations of expression of these genes. RESULTS: HBV markedly protected the hepatoma cells from growth suppression and cell death in the condition of serum deprivation. A decrease of superoxide anion production accompanied with an increase of MnSOD expression and activity was found in HepG2.215 cells. Moreover, AMPK activation contributed to the up-regulation of MnSOD. HBx protein was identified to induce the expression of AMPK and MnSOD. CONCLUSION: Our results suggest that HBV suppresses mitochondrial superoxide level and exerts an anti-apoptotic effect by activating AMPK/MnSOD signaling pathway, which may provide a novel pharmacological strategy to prevent HCC. PMID:27158203

  16. Hinokitiol Exerts Anticancer Activity through Downregulation of MMPs 9/2 and Enhancement of Catalase and SOD Enzymes: In Vivo Augmentation of Lung Histoarchitecture.

    PubMed

    Huang, Chien-Hsun; Jayakumar, Thanasekaran; Chang, Chao-Chien; Fong, Tsorng-Harn; Lu, Shing-Hwa; Thomas, Philip Aloysius; Choy, Cheuk-Sing; Sheu, Joen-Rong

    2015-09-25

    Melanoma is extremely resistant to chemotherapy and the death rate is increasing hastily worldwide. Extracellular matrix promotes the migration and invasion of tumor cells through the production of matrix metalloproteinase (MMP)-2 and -9. Evidence has shown that natural dietary antioxidants are capable of inhibiting cancer cell growth. Our recent studies showed that hinokitiol, a natural bioactive compound, inhibited vascular smooth muscle cell proliferation and platelets aggregation. The present study is to investigate the anticancer efficacy of hinokitiol against B16-F10 melanoma cells via modulating tumor invasion factors MMPs, antioxidant enzymes in vitro. An in vivo mice model of histological investigation was performed to study the patterns of elastic and collagen fibers. Hinokitiol inhibited the expression and activity of MMPs-2 and -9 in B16-F10 melanoma cells, as measured by western blotting and gelatin zymography, respectively. An observed increase in protein expression of MMPs 2/9 in melanoma cells was significantly inhibited by hinokitiol. Notably, hinokitiol (1-5 μM) increased the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in melanoma cells. Also, hinokitiol (2-10 µM) concentration dependently reduced in vitro Fenton reaction induced hydroxyl radical (OH·) formation. An in vivo study showed that hinokitiol treatment increased elastic fibers (EF), collagens dispersion, and improved alveolar alterations in the lungs of B16/F10 injected mice. Overall, our findings propose that hinokitiol may be a potent anticancer candidate through down regulation of MMPs 9/2, reduction of OH· production and enhancement of antioxidant enzymes SOD and CAT.

  17. Activation of AMPK attenuates LPS-induced acute lung injury by upregulation of PGC1α and SOD1

    PubMed Central

    Wang, Guizuo; Song, Yang; Feng, Wei; Liu, Lu; Zhu, Yanting; Xie, Xinming; Pan, Yilin; Ke, Rui; Li, Shaojun; Li, Fangwei; Yang, Lan; Li, Manxiang

    2016-01-01

    Evidence suggests that an imbalance between oxidation and antioxidation is involved in the pathogenesis of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Activation of AMP-activated protein kinase (AMPK) has been shown to inhibit the occurrence of ALI/ARDS. However, it is unknown whether activation of AMPK benefits ALI/ARDS by restoration of the oxidant and antioxidant balance, and which mechanisms are responsible for this process. The present study aimed to address these issues. Lipopolysaccharide (LPS) induced pronounced pathological changes of ALI in mice; these were accompanied by elevated production of malondialdehyde (MDA) and decreased activity of superoxide dismutase (SOD) compared with control mice. Prior treatment of mice with the AMPK agonist metformin significantly suppressed the LPS-induced development of ALI, reduced the elevation of MDA and increased the activity of SOD. Further analysis indicated that activation of AMPK also stimulated the protein expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) and superoxide dismutase 1 (SOD1). This study suggests that activation of AMPK by metformin inhibits oxidative stress by upregulation of PGC1α and SOD1, thereby suppressing the development of ALI/ARDS, and has potential value in the clinical treatment of such conditions. PMID:27602077

  18. Polymorphisms in genes encoding antioxidant enzymes (SOD2, CAT, GPx, TXNRD, SEPP1, SEP15 and SELS) and risk of chronic kidney disease in Japanese - cross-sectional data from the J-MICC study.

    PubMed

    Hishida, Asahi; Okada, Rieko; Naito, Mariko; Morita, Emi; Wakai, Kenji; Hamajima, Nobuyuki; Hosono, Satoyo; Nanri, Hinako; Turin, Tanvir Chowdhury; Suzuki, Sadao; Kuwabara, Kazuyo; Mikami, Haruo; Budhathoki, Sanjeev; Watanabe, Isao; Arisawa, Kokichi; Kubo, Michiaki; Tanaka, Hideo

    2013-07-01

    Chronic kidney disease (CKD) is well known as a strong risk factor for both of end-stage renal disease and cardiovascular disease. To clarify the association of polymorphisms in the genes encoding antioxidant enzymes (SOD2, CAT, GPx, TXNRD, SEPP1, SEP15 and SELS) with the risk of CKD in Japanese, we examined this association using the cross-sectional data of Japan Multi-Institutional Collaborative Cohort (J-MICC) Study. The subjects were 3,285 men and women, aged 35-69 years, selected from J-MICC Study participants for whom genotyping were conducted by multiplex polymerase chain reaction-based Invader assay. The prevalence of CKD was determined for CKD stages 3-5 (eGFR <60 ml/min/1.73 m(2)). When those with CAT C-262T C/C were defined as reference, those with CAT C-262T C/T demonstrated the OR for CKD of 0.67 (95% CI 0.43-1.06) with the marginally significant trend for decreased odds ratio with increasing numbers of T allele (p = 0.070). There were no significant associations between the other polymorphisms with CKD risk. The present study found a marginally significant trend of the decreased risk of CKD with increasing numbers of T allele of CAT, which may suggest the possibility of personalized risk estimation of this life-limiting disease in the near future.

  19. SOD2 Mediates Amifostine-Induced Protection against Glutamate in PC12 Cells

    PubMed Central

    Jia, Ji; Zhang, Lei; Shi, Xiaolei; Wu, Mingchun; Zhou, Xiang; Liu, Xiaonan; Huo, Tingting

    2016-01-01

    Background. Cytoprotectant amifostine attenuates radiation-induced oxidative injury by increasing intracellular manganese superoxide dismutase (SOD2) in peripheral tissue. However, whether amifostine could protect neuronal cells against oxidative injury has not been reported. The purpose of this study is to explore the protection of amifostine in PC12 cells. Methods. PC12 cells exposed to glutamate were used to mimic neuronal oxidative injury. SOD assay kit was taken to evaluate intracellular Cu/Zn SOD (SOD1) and SOD2 activities; western blot analysis and immunofluorescence staining were performed to investigate SOD2 protein expression; MTT, lactate dehydrogenase (LDH), release and cell morphology were used to evaluate cell injury degree, and apoptotic rate and cleaved caspase-3 expression were taken to assess apoptosis; mitochondrial superoxide production, intracellular reactive oxygen species (ROS), and glutathione (GSH) and catalase (CAT) levels were evaluated by reagent kits. Results. Amifostine increased SOD2 activity and expression, decreased cell injury and apoptosis, reduced mitochondrial superoxide production and intracellular ROS generation, and restored intracellular GSH and CAT levels in PC12 cells exposed to glutamate. SOD2-siRNA, however, significantly reversed the amifostine-induced cytoprotective and antioxidative actions. Conclusion. SOD2 mediates amifostine-induced protection in PC12 cells exposed to glutamate. PMID:26770652

  20. Dietary carotenoid-rich oil supplementation improves exercise-induced anisocytosis in runners: influences of haptoglobin, MnSOD (Val9Ala), CAT (21A/T) and GPX1 (Pro198Leu) gene polymorphisms in dilutional pseudoanemia (sports anemia)

    PubMed Central

    2010-01-01

    Physical training induces beneficial adaptation, whereas exhaustive exercises increase reactive oxygen-species generation, thereby causing oxidative damage in plasma and erythrocytes, fractions susceptible to lipid peroxidation. Pequi (Caryocar brasiliense Camb.) is a Brazilian Cerrado fruit containing a carotenoid-rich oil. The aim was to investigate the effects of pequi-oil on exercise-induced oxidative damage in plasma and erythrocytes, after running in the same environment and undergoing weekly training under the same conditions as to type, intensity and length. Evaluations were accomplished after outdoor running on flat land before and after ingestion of 400 mg pequi-oil capsules for 14 days. Blood samples were taken after running and submitted to TBARS assay and erythrogram analysis. Haptoglobin, MnSOD (Val9Ala), CAT (21A/T) and GPX1 (Pro198Leu) gene polymorphisms were priorly investigated, so as to estimate genetic influence The reduction in erythrocytes, hemoglobin and hematocrit after pequi-oil treatment was notably associated with higher plasma expansion. Except for MCHC (mean corpuscular hemoglobin concentration) and RDW (red cell distribution width), the results were influenced by the polymorphisms studied. The best response to pequi-oil was presented by MnSOD Val/Val, CAT AA or AT genotypes and the GPX1 Pro allele. The significantly lower RDW and higher MHCH values were related to pequi-oil protective effects. Pequi oil, besides possessing other nutritional properties, showed protective blood effects. PMID:21637495

  1. SOD Therapeutics: Latest Insights into Their Structure-Activity Relationships and Impact on the Cellular Redox-Based Signaling Pathways

    PubMed Central

    Tovmasyan, Artak; Roberts, Emily R. H.; Vujaskovic, Zeljko; Leong, Kam W.; Spasojevic, Ivan

    2014-01-01

    Abstract Significance: Superoxide dismutase (SOD) enzymes are indispensable and ubiquitous antioxidant defenses maintaining the steady-state levels of O2·−; no wonder, thus, that their mimics are remarkably efficacious in essentially any animal model of oxidative stress injuries thus far explored. Recent Advances: Structure-activity relationship (half-wave reduction potential [E1/2] versus log kcat), originally reported for Mn porphyrins (MnPs), is valid for any other class of SOD mimics, as it is dominated by the superoxide reduction and oxidation potential. The biocompatible E1/2 of ∼+300 mV versus normal hydrogen electrode (NHE) allows powerful SOD mimics as mild oxidants and antioxidants (alike O2·−) to readily traffic electrons among reactive species and signaling proteins, serving as fine mediators of redox-based signaling pathways. Based on similar thermodynamics, both SOD enzymes and their mimics undergo similar reactions, however, due to vastly different sterics, with different rate constants. Critical Issues: Although log kcat(O2·−) is a good measure of therapeutic potential of SOD mimics, discussions of their in vivo mechanisms of actions remain mostly of speculative character. Most recently, the therapeutic and mechanistic relevance of oxidation of ascorbate and glutathionylation and oxidation of protein thiols by MnP-based SOD mimics and subsequent inactivation of nuclear factor κB has been substantiated in rescuing normal and killing cancer cells. Interaction of MnPs with thiols seems to be, at least in part, involved in up-regulation of endogenous antioxidative defenses, leading to the healing of diseased cells. Future Directions: Mechanistic explorations of single and combined therapeutic strategies, along with studies of bioavailability and translational aspects, will comprise future work in optimizing redox-active drugs. Antioxid. Redox Signal. 20, 2372–2415. PMID:23875805

  2. A wheat superoxide dismutase gene TaSOD2 enhances salt resistance through modulating redox homeostasis by promoting NADPH oxidase activity.

    PubMed

    Wang, Mengcheng; Zhao, Xin; Xiao, Zhen; Yin, Xunhao; Xing, Tian; Xia, Guangmin

    2016-05-01

    Superoxide dismutase (SOD) is believed to enhance abiotic stress resistance by converting superoxide radical (O2 (-)) to H2O2 to lower ROS level and maintain redox homeostasis. ROS level is controlled via biphasic machinery of ROS production and scavenging. However, whether the role of SOD in abiotic stress resistance is achieved through influencing the biophasic machinery is not well documented. Here, we identified a wheat copper-zinc (Cu/Zn) SOD gene, TaSOD2, who was responsive to NaCl and H2O2. TaSOD2 overexpression in wheat and Arabidopsis elevated SOD activities, and enhanced the resistance to salt and oxidative stress. TaSOD2 overexpression reduced H2O2 level but accelerated O2 (-) accumulation. Further, it improved the activities of H2O2 metabolic enzymes, elevated the activity of O2 (-) producer NADPH oxidase (NOX), and promoted the transcription of NOX encoding genes. The inhibition of NOX activity and the mutation of NOX encoding genes both abolished the salt resistance of TaSOD2 overexpression lines. These data indicate that Cu/Zn SOD enhances salt resistance, which is accomplished through modulating redox homeostasis via promoting NOX activity. PMID:26869262

  3. A wheat superoxide dismutase gene TaSOD2 enhances salt resistance through modulating redox homeostasis by promoting NADPH oxidase activity.

    PubMed

    Wang, Mengcheng; Zhao, Xin; Xiao, Zhen; Yin, Xunhao; Xing, Tian; Xia, Guangmin

    2016-05-01

    Superoxide dismutase (SOD) is believed to enhance abiotic stress resistance by converting superoxide radical (O2 (-)) to H2O2 to lower ROS level and maintain redox homeostasis. ROS level is controlled via biphasic machinery of ROS production and scavenging. However, whether the role of SOD in abiotic stress resistance is achieved through influencing the biophasic machinery is not well documented. Here, we identified a wheat copper-zinc (Cu/Zn) SOD gene, TaSOD2, who was responsive to NaCl and H2O2. TaSOD2 overexpression in wheat and Arabidopsis elevated SOD activities, and enhanced the resistance to salt and oxidative stress. TaSOD2 overexpression reduced H2O2 level but accelerated O2 (-) accumulation. Further, it improved the activities of H2O2 metabolic enzymes, elevated the activity of O2 (-) producer NADPH oxidase (NOX), and promoted the transcription of NOX encoding genes. The inhibition of NOX activity and the mutation of NOX encoding genes both abolished the salt resistance of TaSOD2 overexpression lines. These data indicate that Cu/Zn SOD enhances salt resistance, which is accomplished through modulating redox homeostasis via promoting NOX activity.

  4. Epicatechin Reduces Striatal MPP+-Induced Damage in Rats through Slight Increases in SOD-Cu,Zn Activity

    PubMed Central

    Rubio-Osornio, M.; Gorostieta-Salas, E.; Montes, S.; Pérez-Severiano, F.; Rubio, C.; Gómez, C.; Ríos, C.; Guevara, J.

    2015-01-01

    Parkinson's disease is a neurodegenerative disorder characterized by movement alterations caused by reduced dopaminergic neurotransmission in the nigrostriatal pathway, presumably by oxidative stress (OS). MPP+ intrastriatal injection leads to the overproduction of free radicals (FR). The increasing formation of FR produces OS, a decline in dopamine (DA) content, and behavioral disorders. Epicatechin (EC) has shown the ability to be FR scavenger, an antioxidant enzyme inductor, a redox state modulator, and transition metal chelator. Acute administration of 100 mg/kg of EC significantly prevented (P < 0.05) the circling MPP+-induced behavior (10 μg/8 μL). Likewise, EC significantly (P < 0.05) reduced the formation of fluorescent lipid products caused by MPP+. MPP+ injection produced (P < 0.05) increased enzymatic activity of the constitutive nitric oxide synthase (cNOS). This effect was blocked with acute EC pretreatment. Cu/Zn-dependent superoxide dismutase (Cu/Zn-SOD) activity was significantly (P < 0.05) reduced as a consequence of MPP+ damage. EC produced a slight increase (≈20%) in Cu/Zn-SOD activity in the control group. Such effects persisted in animals injured with MPP+. The results show that EC is effective against MPP+-induced biochemical and behavioral damage, which is possible by an increase in Cu/Zn-SOD activity. PMID:26301040

  5. The effects of acute acetaminophen toxicity on hepatic mRNA expression of SOD, CAT, GSH-Px, and levels of peroxynitrite, nitric oxide, reduced glutathione, and malondialdehyde in rabbit.

    PubMed

    Cigremis, Yilmaz; Turel, Huseyin; Adiguzel, Kevser; Akgoz, Muslum; Kart, Asim; Karaman, Musa; Ozen, Hasan

    2009-03-01

    We investigated the regulation of antioxidant system under acetaminophen (AAP) toxicity. Twelve male New Zealand rabbits were divided into two groups with the following treatments: Group 1 animals were intraperitoneally injected with single saline (control). Group 2 animals were treated with intraperitoneal injection of AAP at a dose of 250 mg/kg body weight. Four hours following the treatments, blood samples were collected and the rabbits were sacrificed to collect liver samples. Hepatocellular damage was evaluated by aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels as well as histopathological examinations and immunohistochemical analysis. Tissue-reduced glutathione (GSH), nitric oxide (NO(.)), and malondialdehyde (MDA) levels were also measured. mRNA expression levels of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) were measured by semi-quantitative RT-PCR. It was found that liver GSH was reduced significantly in AAP-treated rabbits (P < 0.05), while MDA and NO(.) levels were increased when they were compared to control (P < 0.05). Blood AST and ALT levels were also increased following AAP treatment (P < 0.05). Hepatocellular degeneration and severe necrosis were detected in histopathological examinations. Increased immunostaining was observed for inducible nitric oxide synthase (iNOS) and nitrotyrosine in the liver. There were no changes in mRNA expression levels of SOD, CAT, and GSH-Px after AAP treatment compared to control group. These results suggest that the expression of these enzymes, which are involved in the antioxidant system, may not be altered after AAP toxicity, although classical toxic changes such as depletion of GSH, hepatocellular necrosis, and increased immunostaining for iNOS and nitrotyrosine were detected.

  6. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD.

    PubMed

    Brandauer, Josef; Andersen, Marianne A; Kellezi, Holti; Risis, Steve; Frøsig, Christian; Vienberg, Sara G; Treebak, Jonas T

    2015-01-01

    The mitochondrial protein deacetylase sirtuin (SIRT) 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS) handling. We determined the requirement of AMP-activated protein kinase (AMPK) for exercise training-induced increases in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p < 0.01) and superoxide dismutase 2 (MnSOD; p < 0.05) protein abundance in quadriceps muscle of wild-type (WT; n = 13-15), but not AMPK α2 kinase dead (KD; n = 12-13) mice. We also observed a strong trend for increased MnSOD abundance in exercise-trained skeletal muscle of healthy humans (p = 0.051; n = 6). To further elucidate a role for AMPK in mediating these effects, we treated WT (n = 7-8) and AMPK α2 KD (n = 7-9) mice with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR). Four weeks of daily AICAR injections (500 mg/kg) resulted in AMPK-dependent increases in SIRT3 (p < 0.05) and MnSOD (p < 0.01) in WT, but not AMPK α2 KD mice. We also tested the effect of repeated AICAR treatment on mitochondrial protein levels in mice lacking the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PGC-1α KO; n = 9-10). Skeletal muscle SIRT3 and MnSOD protein abundance was reduced in sedentary PGC-1α KO mice (p < 0.01) and AICAR-induced increases in SIRT3 and MnSOD protein abundance was only observed in WT mice (p < 0.05). Finally, the acetylation status of SIRT3 target lysine residues on MnSOD (K122) or oligomycin-sensitivity conferring protein (OSCP; K139) was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling in skeletal muscle in response to exercise training. PMID:25852572

  7. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD

    PubMed Central

    Brandauer, Josef; Andersen, Marianne A.; Kellezi, Holti; Risis, Steve; Frøsig, Christian; Vienberg, Sara G.; Treebak, Jonas T.

    2015-01-01

    The mitochondrial protein deacetylase sirtuin (SIRT) 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS) handling. We determined the requirement of AMP-activated protein kinase (AMPK) for exercise training-induced increases in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p < 0.01) and superoxide dismutase 2 (MnSOD; p < 0.05) protein abundance in quadriceps muscle of wild-type (WT; n = 13–15), but not AMPK α2 kinase dead (KD; n = 12–13) mice. We also observed a strong trend for increased MnSOD abundance in exercise-trained skeletal muscle of healthy humans (p = 0.051; n = 6). To further elucidate a role for AMPK in mediating these effects, we treated WT (n = 7–8) and AMPK α2 KD (n = 7–9) mice with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR). Four weeks of daily AICAR injections (500 mg/kg) resulted in AMPK-dependent increases in SIRT3 (p < 0.05) and MnSOD (p < 0.01) in WT, but not AMPK α2 KD mice. We also tested the effect of repeated AICAR treatment on mitochondrial protein levels in mice lacking the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PGC-1α KO; n = 9–10). Skeletal muscle SIRT3 and MnSOD protein abundance was reduced in sedentary PGC-1α KO mice (p < 0.01) and AICAR-induced increases in SIRT3 and MnSOD protein abundance was only observed in WT mice (p < 0.05). Finally, the acetylation status of SIRT3 target lysine residues on MnSOD (K122) or oligomycin-sensitivity conferring protein (OSCP; K139) was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling in skeletal muscle in response to exercise training. PMID:25852572

  8. Identification of a Single-Nucleotide Insertion in the Promoter Region Affecting the sodC Promoter Activity in Brucella neotomae

    PubMed Central

    Moustafa, Dina A.; Jain, Neeta; Sriranganathan, Nammalwar; Vemulapalli, Ramesh

    2010-01-01

    Brucella neotomae is not known to be associated with clinical disease in any host species. Previous research suggested that B. neotomae might not express detectable levels of Cu/Zn superoxide dismutase (SOD), a periplasmic enzyme known to be involved in protecting Brucella from oxidative bactericidal effects of host phagocytes. This study was undertaken to investigate the genetic basis for the disparity in SOD expression in B. neotomae. Our Western blot and SOD enzyme assay analyses indicated that B. neotomae does express SOD, but at a substantially reduced level. Nucleotide sequence analysis of region upstream to the sodC gene identified a single-nucleotide insertion in the potential promoter region. The same single-nucleotide insertion was also detected in the sodC promoter of B. suis strain Thomsen, belonging to biovar 2 in which SOD expression was undetectable previously. Examination of the sodC promoter activities using translational fusion constructs with E. coli β-galactosidase demonstrated that the B. neotomae and B. suis biovar 2 promoters were very weak in driving gene expression. Site-directed mutation studies indicated that the insertion of A in the B. neotomae sodC promoter reduced the promoter activity. Increasing the level of SOD expression in B. neotomae through complementation with B. abortus sodC gene did not alter the bacterial survival in J774A.1 macrophage-like cells and in tissues of BALB/c and C57BL/6 mice. These results for the first time demonstrate the occurrence of a single-nucleotide polymorphism affecting promoter function and gene expression in Brucella. PMID:21124845

  9. The effect of black raspberry extracts on MnSOD activity in protection against concanavalin A induced liver injury

    PubMed Central

    Li, Xuanyi; Li, Yan; States, Vanessa A.; Li, Suping; Zhang, Xiang; Martin, Robert C.G.

    2015-01-01

    Inflammation and oxidative stress are the key events in carcinogenetic transformation. Black raspberries (BRB) have been demonstrated to have antioxidant, anti-inflammatory and anti-cancer bioactivities. In this study, a concanavalin A induced hepatitis mouse model is used to examine the effect of BRB extract on hepatic injury. Three BRB extracts, including ethanol/H2O extracts (both anthocyanin-contained fraction and non-anthocyanin-contained fraction) and hexane extract were used. The alterations in hepatic histology, apoptosis and oxidative stress were observed in the animals pretreated with BRB extracts and then challenged by concanavalin A. Results indicate that ethanol/H2O extracts can inhibit Con A induced liver injury. The hepatic protection by the ethanol/H2O BRB extracts is associated with decreases of lipid peroxidation and NDA oxidative damage. Importantly, the BRB extracts increase manganese superoxide dismutase (MnSOD) activity but not the CuZnSOD. The preservation of MnSOD by BRB extracts is associated with the protective action in the liver challenged by Con A. Ethanol/H2O BRB extracts function as antioxidants, thus demonstrating the critical role of oxidative stress in the Con A induced liver injury, and providing evidence that the protective effects of ethanol/H2O BRB extracts result, at least in part, from their antioxidant action. PMID:24911141

  10. Active Fe-Containing Superoxide Dismutase and Abundant sodF mRNA in Nostoc commune (Cyanobacteria) after Years of Desiccation

    PubMed Central

    Shirkey, Breanne; Kovarcik, Don Paul; Wright, Deborah J.; Wilmoth, Gabriel; Prickett, Todd F.; Helm, Richard F.; Gregory, Eugene M.; Potts, Malcolm

    2000-01-01

    Active Fe-superoxide dismutase (SodF) was the third most abundant soluble protein in cells of Nostoc commune CHEN/1986 after prolonged (13 years) storage in the desiccated state. Upon rehydration, Fe-containing superoxide disumutase (Fe-SOD) was released and the activity was distributed between rehydrating cells and the extracellular fluid. The 21-kDa Fe-SOD polypeptide was purified, the N terminus was sequenced, and the data were used to isolate sodF from the clonal isolate N. commune DRH1. sodF encodes an open reading frame of 200 codons and is expressed as a monocistronic transcript (of approximately 750 bases) from a region of the genome which includes genes involved in nucleic acid synthesis and repair, including dipyrimidine photolyase (phr) and cytidylate monophosphate kinase (panC). sodF mRNA was abundant and stable in cells after long-term desiccation. Upon rehydration of desiccated cells, there was a turnover of sodF mRNA within 15 min and then a rise in the mRNA pool to control levels (quantity of sodF mRNA in cells in late logarithmic phase of growth) over approximately 24 h. The extensive extracellular polysaccharide (glycan) of N. commune DRH1 generated superoxide radicals upon exposure to UV-A or -B irradiation, and these were scavenged by SOD. Despite demonstrated roles for the glycan in the desiccation tolerance of N. commune, it may in fact be a significant source of damaging free radicals in vivo. It is proposed that the high levels of SodF in N. commune, and release of the enzyme from dried cells upon rehydration, counter the effects of oxidative stress imposed by multiple cycles of desiccation and rehydration during UV-A or -B irradiation in situ. PMID:10613879

  11. GT-CATS: Tracking Operator Activities in Complex Systems

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Mitchell, Christine M.; Palmer, Everett A.

    1999-01-01

    Human operators of complex dynamic systems can experience difficulties supervising advanced control automation. One remedy is to develop intelligent aiding systems that can provide operators with context-sensitive advice and reminders. The research reported herein proposes, implements, and evaluates a methodology for activity tracking, a form of intent inferencing that can supply the knowledge required for an intelligent aid by constructing and maintaining a representation of operator activities in real time. The methodology was implemented in the Georgia Tech Crew Activity Tracking System (GT-CATS), which predicts and interprets the actions performed by Boeing 757/767 pilots navigating using autopilot flight modes. This report first describes research on intent inferencing and complex modes of automation. It then provides a detailed description of the GT-CATS methodology, knowledge structures, and processing scheme. The results of an experimental evaluation using airline pilots are given. The results show that GT-CATS was effective in predicting and interpreting pilot actions in real time.

  12. Neutralization of radical toxicity by temperature-dependent modulation of extracellular SOD activity in coral bleaching pathogen Vibrio shiloi and its role as a virulence factor.

    PubMed

    Murali, Malliga Raman; Raja, Subramaniya Bharathi; Devaraj, Sivasitambaram Niranjali

    2010-08-01

    Vibrio shiloi is the first and well-documented bacterium which causes coral bleaching, particularly, during summer, when seawater temperature is between 26 and 31 degrees C. Coral bleaching is the disruption of the symbiotic association between coral hosts and their photosynthetic microalgae zooxanthellae. This is either due to lowered resistance in corals to infection or increased virulence of the bacterium at the higher sea surface temperature. The concentration of the oxygen and resulting oxygen radicals produced by the zooxanthellae during photosynthesis are highly toxic to bacteria, which also assist corals in resisting the infection. Hence, in this study we examined the effect of different temperatures on the activity of a novel extracellular SOD in V. shiloi. We also partially characterized the SOD and clearly confirmed that the extracellular SOD produced by V. shiloi is Mn-SOD type, as it was not inhibited by H2O2 or KCN. Performing chemical susceptibility killing assay, we confirmed that extracellular SOD may act as first line of defense for the bacteria against the reactive oxygen species. Since, increased activity of novel Mn-SOD at higher temperature, leads to the neutralization of radical toxicity and facilitates the survival of V. shiloi. Hence, the extracellular Mn-SOD may be considered as a virulence factor.

  13. Mesencephalic stimulation elicits inhibition of phrenic nerve activity in cat.

    PubMed

    Gallman, E A; Lawing, W L; Millhorn, D E

    1991-05-01

    1. Previous work from this laboratory has indicated that the mesencephalon is the anatomical substrate for a mechanism capable of inhibiting central respiratory drive in glomectomized cats for periods of up to 1 h or more following brief exposure to systemic hypoxia; phrenic nerve activity was used as an index of central respiratory drive. 2. The present study was undertaken to further localize the region responsible for the observed post-hypoxic inhibition of respiratory drive. We studied the phrenic nerve response to stimulations of the mesencephalon in anaesthetized, paralysed peripherally chemo-denervated cats with end-expired PCO2 and body temperature servo-controlled. 3. Stimulations of two types were employed. Electrical stimulation allowed rapid determination of sites from which phrenic inhibition could be elicited. Microinjections of excitatory amino acids were used subsequently in order to confine excitation to neuronal cell bodies and not axons of passage. 4. Stimulation of discrete regions of the ventromedial aspect of the mesencephalon in the vicinity of the red nucleus produced substantial inhibition of phrenic activity which lasted up to 45 min. Stimulation of other areas of the mesencephalon either produced no phrenic inhibition or resulted in a slight stimulation of phrenic activity. 5. The results are discussed in the context of the central respiratory response to hypoxia. PMID:1676420

  14. In vitro cytotoxicity, DNA cleavage and SOD-mimic activity of copper(II) mixed-ligand quinolinonato complexes.

    PubMed

    Buchtík, Roman; Trávníček, Zdeněk; Vančo, Ján

    2012-11-01

    Six mixed-ligand copper(II) complexes with the composition [Cu(qui)(L)]BF(4)·xH(2)O (1-6), where Hqui=2-phenyl-3-hydroxy-4(1H)-quinolinone, L=2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), bis(2-pyridyl)amine (ambpy) (3), 5-methyl-1,10-phenanthroline (mphen) (4), 5-nitro-1,10-phenanthroline (nphen) (5) and bathophenanthroline (bphen) (6), were prepared, fully characterized and studied for their in vitro cytotoxicity on human osteosarcoma (HOS) and human breast adenocarcinoma (MCF7) cancer cell lines. The overall promising results of the cytotoxicity were found for all the complexes, while the best results were achieved for complex 6, with IC(50)=2.6 ± 0.8 μM (HOS), and 1.3 ± 0.5 μM (MCF7). The interactions of the Cu(II) complexes 1-6 with calf thymus DNA were investigated by the UV-visible spectral titration. An agarose-gel electrophoretic method of oxidative damage determination to circular plasmid pUC19 was used to assess the ability of the complexes to act as chemical nucleases. A high effectiveness of DNA cleavage was observed for 2, 4 and 5. In vitro antioxidative activity of the complexes was studied by the superoxide dismutase-mimic (SOD-mimic) method. The best result was afforded by complex 1 with IC(50)=4.7 ± 1.0 μM, which corresponds to 10.2% of the native Cu,Zn-SOD enzyme activity. The ability of the tested complexes to interact with sulfur-containing biomolecules (cysteine and reduced glutathione) at physiological levels was proved by electrospray-ionization mass spectrometry (ESI-MS). PMID:23022693

  15. Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses.

    PubMed

    Kaouthar, Feki; Ameny, Farhat-Khemakhem; Yosra, Kamoun; Walid, Saibi; Ali, Gargouri; Faiçal, Brini

    2016-07-01

    In plant cells, the manganese superoxide dismutase (Mn-SOD) plays an elusive role in the response to oxidative stress. In this study, we describe the isolation and functional characterization of a novel Mn-SOD from durum wheat (Triticum turgidum L. subsp. Durum), named TdMnSOD. Molecular phylogeny analysis showed that the durum TdMnSOD exhibited high amino acids sequence identity with other Mn-SOD plants. The three-dimensional structure showed that TdMnSOD forms a homotetramer and each subunit is composed of a predominantly α-helical N-terminal domain and a mixed α/β C-terminal domain. TdMnSOD gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdMnSOD enhances tolerance of the transformed yeast cells to salt, osmotic, cold and H2O2-induced oxidative stresses. Moreover, the analysis of TdMnSOD transgenic Arabidopsis plants subjected to different environmental stresses revealed low H2O2 and high proline levels as compared to the wild-type plants. Compared with the non-transformed plants, an increase in the total SOD and two other antioxidant enzyme activities including catalase (CAT) and peroxidases (POD) was observed in the three transgenic lines subjected to abiotic stress. Taken together, these data provide evidence for the involvement of durum wheat TdMnSOD in tolerance to multiple abiotic stresses in crop plants. PMID:27152457

  16. Renal afferents signaling diuretic activity in the cat.

    PubMed

    Genovesi, S; Pieruzzi, F; Wijnmaalen, P; Centonza, L; Golin, R; Zanchetti, A; Stella, A

    1993-11-01

    Mechanoreceptors and chemoreceptors have been identified inside the kidney, but their functional role is still largely unclear. The aim of this study was to investigate whether changes in urine output could modify the discharge rate of renal afferent fibers. Experiments were performed in anesthetized cats in which afferent renal nerve activity (ARNA) was recorded by standard electrophysiological techniques from a centrally cut renal nerve. Arterial pressure, renal blood flow velocity, urine flow rate, and renal pelvic pressure were also measured. Three diuretic maneuvers were tested in the same cat: intravenous administration of physiological saline (8 to 13 mL/min for 2 minutes), furosemide (1 mg/kg), and atrial natriuretic peptide (ANP, 1 microgram/kg). The three maneuvers increased urine flow rate and pelvic pressure, respectively, 137.0 +/- 20.6% and 136.8 +/- 21.1% (saline), 148.6 +/- 31.7% and 139.6 +/- 43.5% (furosemide), and 75.9 +/- 7.9% and 62.1 +/- 21.2% (ANP) at the time of the maximum response. Arterial pressure slightly increased after saline, did not change after furosemide, and slightly decreased after ANP. Renal blood flow increased after saline and did not change after furosemide and ANP. The three maneuvers increased ARNA by 98.4 +/- 15.2% (saline), 270.7 +/- 100.8% (furosemide), and 59.6 +/- 23.4% (ANP). Changes in ARNA significantly correlate with changes in both pelvic pressure and urine flow rate. Our data demonstrate that increments in urine flow rate increase the firing rate of renal afferent fibers and suggest that (1) pelvic pressure is the major determinant of the neural response, and (2) this increased afferent discharge is due to activation of renal mechanoreceptors.

  17. The Feline Mystique: Dispelling the Myth of the Independent Cat.

    ERIC Educational Resources Information Center

    Soltow, Willow

    1984-01-01

    Describes learning activities about cats for primary and intermediate grades. Primary grade activity subjects include cat behavior, needs, breeds, storybook cats, and celestial cats. Intermediate grade activity subjects include cat history, care, language, literary cats, and cats in art. (BC)

  18. Study of SOD mimic and nucleic acid interaction activity exerted by enrofloxacin-based copper(II) complexes.

    PubMed

    Patel, Mohan N; Bhatt, Bhupesh S; Dosi, Promise A

    2012-12-01

    Five new copper(II) complexes of type [Cu(erx)(L)Cl] (erx, enrofloxacin; thiophene-2-carbaldehyde (L(1) ); pyridine-2-carbaldehyde (L(2) ); 2,2'-dipyridylamine (L(3) ); 4,5-diazafluoren-9-one (L(4) ); bis(3,5-dimethyl-1-pyrazolyl)methane (L(5) )) have been synthesized and characterized by elemental analysis, reflectance, IR, and FAB-MS. Complexes have been investigated for their interaction with calf thymus (CT) DNA utilizing the absorption-titration method, viscometric and DNA thermal denaturation studies. The cleavage reaction on pUC19 DNA has been monitored by agarose gel electrophoresis. The results indicated that the Cu(II) complexes can more effectively promote the cleavage of plasmid DNA at physiological pH and superoxide dismutase. The (SOD) activity of the complexes has been evaluated by the nitroblue tetrazolium assay, and the complexes catalyzed the dismutation of superoxide at pH 7.8 with IC(50) values of 0.35-1.25 μM. The complexes have also been screened for their antibacterial activity against five pathogenic bacteria.

  19. Study of SOD mimic and nucleic acid interaction activity exerted by enrofloxacin-based copper(II) complexes.

    PubMed

    Patel, Mohan N; Bhatt, Bhupesh S; Dosi, Promise A

    2012-12-01

    Five new copper(II) complexes of type [Cu(erx)(L)Cl] (erx, enrofloxacin; thiophene-2-carbaldehyde (L(1) ); pyridine-2-carbaldehyde (L(2) ); 2,2'-dipyridylamine (L(3) ); 4,5-diazafluoren-9-one (L(4) ); bis(3,5-dimethyl-1-pyrazolyl)methane (L(5) )) have been synthesized and characterized by elemental analysis, reflectance, IR, and FAB-MS. Complexes have been investigated for their interaction with calf thymus (CT) DNA utilizing the absorption-titration method, viscometric and DNA thermal denaturation studies. The cleavage reaction on pUC19 DNA has been monitored by agarose gel electrophoresis. The results indicated that the Cu(II) complexes can more effectively promote the cleavage of plasmid DNA at physiological pH and superoxide dismutase. The (SOD) activity of the complexes has been evaluated by the nitroblue tetrazolium assay, and the complexes catalyzed the dismutation of superoxide at pH 7.8 with IC(50) values of 0.35-1.25 μM. The complexes have also been screened for their antibacterial activity against five pathogenic bacteria. PMID:23255450

  20. Molecular mechanism on cadmium-induced activity changes of catalase and superoxide dismutase.

    PubMed

    Wang, Jing; Zhang, Hao; Zhang, Tong; Zhang, Rui; Liu, Rutao; Chen, Yadong

    2015-01-01

    Cadmium contributes to adverse effects of organisms probably because of its ability to induce oxidative stress via alterations in activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), but their molecular mechanisms remain unclear. We investigated the molecular mechanism of CAT and SOD response under Cd-induced oxidative stress in the liver of zebrafish. The enzyme activity changes observed in vitro were consistent with those seen in vivo, indicating the direct interaction of CAT and SOD with Cd contributes to their activity change in vivo. Further experiments utilizing multiple spectroscopic methods, isothermal titration calorimetry and a molecular docking study were performed to explore the mechanism of molecular interaction of CAT and SOD with Cd. Different interaction patterns were found that resulted in misfolding and changed the enzyme activities. Taken together, we suggest the misfolding of CAT and SOD contributes to their activity change under Cd-induced oxidative stress in vivo.

  1. Structural Diversity of Copper(II) Complexes with 9-Deazahypoxanthine and Their in Vitro SOD-Like Activity

    PubMed Central

    Gáliková, Jana; Trávníček, Zdeněk

    2015-01-01

    Two structurally different copper(II) complexes of the compositions [{Cu(9dhx)(H2O)3}2(µ-SO4)2] (1) and [Cu(9dhx)2(H2O)2(NO3)2]·H2O (2), involving 9-deazahypoxanthine (9dhx; 6-oxo-9-deazapurine; 9-deazahypoxanthine), have been prepared and characterized by elemental analysis, infrared and electronic spectroscopy, electrospray ionisation (ESI) mass spectrometry, thermogravimetric (TG) and differential thermal (DTA) analyses, and cyclic voltammetry. The X-ray structures of complexes 1 and [Cu(9dhx)2(H2O)2(NO3)2] (2a) revealed the distorted octahedral geometry in the vicinity of the copper(II) atoms, with the NO5 and N2O4 donor set, respectively. In the dimeric compound 1, the {Cu(9dhx)(H2O)3}2 units are bridged by sulfate groups with the Cu···Cu separation being 5.3446(2) Å. In both structures the 9dhx ligands are coordinated through the N3 atoms of the pyrimidine moieties. The SOD-like activity of complexes 1 and 2 was evaluated in vitro showing moderate effect, with the IC50 values equal to 18.20, and 53.33 μM, respectively. PMID:26184182

  2. Structural Diversity of Copper(II) Complexes with 9-Deazahypoxanthine and Their in Vitro SOD-Like Activity.

    PubMed

    Gáliková, Jana; Trávníček, Zdeněk

    2015-01-01

    Two structurally different copper(II) complexes of the compositions [{Cu(9dhx)(H2O)3}2(µ-SO4)2] (1) and [Cu(9dhx)2(H2O)2(NO3)2]·H2O (2), involving 9-deazahypoxanthine (9dhx; 6-oxo-9-deazapurine; 9-deazahypoxanthine), have been prepared and characterized by elemental analysis, infrared and electronic spectroscopy, electrospray ionisation (ESI) mass spectrometry, thermogravimetric (TG) and differential thermal (DTA) analyses, and cyclic voltammetry. The X-ray structures of complexes 1 and [Cu(9dhx)2(H2O)2(NO3)2] (2a) revealed the distorted octahedral geometry in the vicinity of the copper(II) atoms, with the NO5 and N2O4 donor set, respectively. In the dimeric compound 1, the {Cu(9dhx)(H2O)3}2 units are bridged by sulfate groups with the Cu···Cu separation being 5.3446(2) Å. In both structures the 9dhx ligands are coordinated through the N3 atoms of the pyrimidine moieties. The SOD-like activity of complexes 1 and 2 was evaluated in vitro showing moderate effect, with the IC50 values equal to 18.20, and 53.33 μM, respectively.

  3. Structural Diversity of Copper(II) Complexes with 9-Deazahypoxanthine and Their in Vitro SOD-Like Activity.

    PubMed

    Gáliková, Jana; Trávníček, Zdeněk

    2015-01-01

    Two structurally different copper(II) complexes of the compositions [{Cu(9dhx)(H2O)3}2(µ-SO4)2] (1) and [Cu(9dhx)2(H2O)2(NO3)2]·H2O (2), involving 9-deazahypoxanthine (9dhx; 6-oxo-9-deazapurine; 9-deazahypoxanthine), have been prepared and characterized by elemental analysis, infrared and electronic spectroscopy, electrospray ionisation (ESI) mass spectrometry, thermogravimetric (TG) and differential thermal (DTA) analyses, and cyclic voltammetry. The X-ray structures of complexes 1 and [Cu(9dhx)2(H2O)2(NO3)2] (2a) revealed the distorted octahedral geometry in the vicinity of the copper(II) atoms, with the NO5 and N2O4 donor set, respectively. In the dimeric compound 1, the {Cu(9dhx)(H2O)3}2 units are bridged by sulfate groups with the Cu···Cu separation being 5.3446(2) Å. In both structures the 9dhx ligands are coordinated through the N3 atoms of the pyrimidine moieties. The SOD-like activity of complexes 1 and 2 was evaluated in vitro showing moderate effect, with the IC50 values equal to 18.20, and 53.33 μM, respectively. PMID:26184182

  4. Acquisition of pro-oxidant activity of fALS-linked SOD1 mutants as revealed using circular dichroism and UV-resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimaki, Nobuhiro; Nishiya, Ken; Miura, Takashi; Nakabayashi, Takakazu

    2016-11-01

    The acquisition of pro-oxidant activity of the mutated form of human Cu, Zn-superoxide dismutase (SOD1) has been investigated to clarify the relationship between mutations in SOD1 and the pathogenesis of amyotrophic lateral sclerosis (ALS). Ala4 → Val (A4V) and Gly93 → Ala (G93A) mutants, which are representative ALS-linked SOD1 mutants, have been found to exhibit both the denaturation and the gain of pro-oxidant activity after incubation in the apo-form at a physiological condition of 37 °C and pH 7.4 and the rebinding of Cu2+. These characteristics are similar to those previously reported for the His43 → Arg (H43R) mutant. UV-resonance Raman spectra indicated that the coordination structure of the Cu-binding site catalyzing the oxidation reaction is the same among the denatured A4V, G93A, and H43R. Since wild-type SOD1 does not exhibit the denaturation in its apo-form at 37 °C and pH 7.4, the instability of the protein structure due to mutation can be considered as a significant factor that induces the denaturation and the subsequent pro-oxidant activity.

  5. The Fungal Sexual Pheromone Sirenin Activates the Human CatSper Channel Complex

    PubMed Central

    2015-01-01

    The basal fungus Allomyces macrogynus (A. macrogynus) produces motile male gametes displaying well-studied chemotaxis toward their female counterparts. This chemotaxis is driven by sirenin, a sexual pheromone released by the female gametes. The pheromone evokes a large calcium influx in the motile gametes, which could proceed through the cation channel of sperm (CatSper) complex. Herein, we report the total synthesis of sirenin in 10 steps and 8% overall yield and show that the synthetic pheromone activates the CatSper channel complex, indicated by a concentration-dependent increase in intracellular calcium in human sperm. Sirenin activation of the CatSper channel was confirmed using whole-cell patch clamp electrophysiology with human sperm. Based on this proficient synthetic route and confirmed activation of CatSper, analogues of sirenin can be designed as blockers of the CatSper channel that could provide male contraceptive agents. PMID:26674547

  6. Motor activity and muscle properties in the hemidecerebellate cat.

    PubMed

    Stenvers, J W; Eerbeek, O; de Jong, J M; Meijer, A E

    1983-09-01

    Luciani's ipsilaterally acting 'trophic' cerebellar influence on striated muscle was reinvestigated in hemidecerebellate preparations of varying extent. Cats with hindlimb postural asymmetries for 4 or more days after the lesion developed a bilateral reduction of maximum tetanic tension and increased twitch/tetanus ratios of soleus. In addition, soleus on the side of the lesion lost force and weight, showed decreased twitch contraction and half-relaxation times, elevated myosin ATPase activity in part of its fibres, occasional fibre necrosis and a few snake coils. Protracted postural asymmetry occurred only if complete hemicerebellectomy included ablation of the lateral vestibular nucleus and extended for at least 3.0 mm across the midline into the contralateral vermal and intermediate cortex, especially of Larsell's lobuli IV and V. Most simply, the cerebellar effect on muscle is explained as the result of altered motoneuronal activation patterns. Comparison of the experimental soleus changes with Holmes's clinical findings in cases of cerebellar injury suggests that muscle itself participates in experimental and human cerebellar asthenia.

  7. DNA binding, BSA interaction and SOD activity of two new nickel(II) complexes with glutamine Schiff base ligands.

    PubMed

    Wei, Qiang; Dong, Jianfang; Zhao, Peiran; Li, Manman; Cheng, Fengling; Kong, Jinming; Li, Lianzhi

    2016-08-01

    Two hexacoordinated octahedral nickel(II) complexes, [Ni(o-van-gln)(phen)(H2O)](1) and [Ni(sal-gln)(phen)(H2O)](2) [o-van-gln=a Schiff base derived from o-vanillin and glutamine, sal-gln=a Schiff base derived from salicylaldehyde and glutamine, phen=1,10-phenanthroline], have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. X-ray studies showed that nickel atoms of both 1 and 2 exhibit distorted NiN3O3 octahedral geometry. In each crystal, intermolecular hydrogen bonds form a two-dimensional network structure. DNA-binding properties of these two nickel(II) complexes were investigated by using UV-Vis absorption, fluorescence, circular dichroism (CD) spectroscopies and viscosity measurements. Results indicated that the two complexes can bind to calf thymus DNA (CT-DNA) via an intercalative mode, and complex 1 exhibits higher interaction with CT-DNA than complex 2. Furthermore, the interactions between the nickel(II) complexes with bovine serum albumin (BSA) have been studied by spectroscopies. The results indicated that both complexes could quench the intrinsic fluorescence of BSA in a static quenching process. The binding constants (Kb) and the numbers of binding sites (n) obtained are 1.10×10(5)M(-1) and 1.05 for complex 1 and 5.05×10(4)M(-1) and 0.997 for complex 2, respectively. Site-selective competitive binding investigation indicated that the binding sites of both the complexes are located in site I of sub-domains IIA of BSA. Assay of superoxide dismutase (SOD) activity of the nickel(II) complexes revealed that they exhibit significant superoxide scavenging activity with IC50=3.4×10(-5)M for complex 1 and 4.3×10(-5)M for complex 2, respectively.

  8. DNA binding, BSA interaction and SOD activity of two new nickel(II) complexes with glutamine Schiff base ligands.

    PubMed

    Wei, Qiang; Dong, Jianfang; Zhao, Peiran; Li, Manman; Cheng, Fengling; Kong, Jinming; Li, Lianzhi

    2016-08-01

    Two hexacoordinated octahedral nickel(II) complexes, [Ni(o-van-gln)(phen)(H2O)](1) and [Ni(sal-gln)(phen)(H2O)](2) [o-van-gln=a Schiff base derived from o-vanillin and glutamine, sal-gln=a Schiff base derived from salicylaldehyde and glutamine, phen=1,10-phenanthroline], have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. X-ray studies showed that nickel atoms of both 1 and 2 exhibit distorted NiN3O3 octahedral geometry. In each crystal, intermolecular hydrogen bonds form a two-dimensional network structure. DNA-binding properties of these two nickel(II) complexes were investigated by using UV-Vis absorption, fluorescence, circular dichroism (CD) spectroscopies and viscosity measurements. Results indicated that the two complexes can bind to calf thymus DNA (CT-DNA) via an intercalative mode, and complex 1 exhibits higher interaction with CT-DNA than complex 2. Furthermore, the interactions between the nickel(II) complexes with bovine serum albumin (BSA) have been studied by spectroscopies. The results indicated that both complexes could quench the intrinsic fluorescence of BSA in a static quenching process. The binding constants (Kb) and the numbers of binding sites (n) obtained are 1.10×10(5)M(-1) and 1.05 for complex 1 and 5.05×10(4)M(-1) and 0.997 for complex 2, respectively. Site-selective competitive binding investigation indicated that the binding sites of both the complexes are located in site I of sub-domains IIA of BSA. Assay of superoxide dismutase (SOD) activity of the nickel(II) complexes revealed that they exhibit significant superoxide scavenging activity with IC50=3.4×10(-5)M for complex 1 and 4.3×10(-5)M for complex 2, respectively. PMID:27295415

  9. Mechanism of the cardiovascular activity of dibenzoxazepine in cats.

    PubMed

    Lundy, P M

    1978-04-01

    Small i.v. doses of dibenzoxazepine (DBO) (50--400 microgram/kg) given to anesthetized cats resulted in dose related increases in heart rate (up to 70 beats/min) and blood pressure (up to 80 mm Hg). The pressor response was blocked by pretreatment of the animals with phentolamine; pretreatment for 3 days with 6-hydroxdopamine; with mecamylamine and spinal transection between C1 and C2 but not by propranolol or adrenalectomy. The increase in heart rate was blocked by pretreatment with propranolol, 6-hydroxydopamine, mecamylamine and spinal transection whereas adrenalectomy only affected the response slightly. DBO produced only negative effects on the isolated rabbit heart. Bioassay of arterial blood showed an increased level of circulating catecholamines corresponding to the cardiovascular stimulation. DBO had no tyramine-like activity on the isolated rabbit aortic strip but slightly potentiated the contraction induced by noradrenaline. These findings strongly suggest that the cardiovascular effects resulted from central stimulation of the sympathetic nervous system. A minor part of the observed sympathomimetic effects may also be the result of the ability of DBO to potentiate the effects of noradrenaline perhaps by blocking catecholamine uptake.

  10. Cu/Zn superoxide dismutase (SOD1) induction is implicated in the antioxidative and antiviral activity of acetylsalicylic acid in HCV-expressing cells.

    PubMed

    Rivas-Estilla, Ana María; Bryan-Marrugo, Owen Lloyd; Trujillo-Murillo, Karina; Pérez-Ibave, Diana; Charles-Niño, Claudia; Pedroza-Roldan, Cesar; Ríos-Ibarra, Clara; Ramírez-Valles, Eda; Ortiz-López, Rocío; Islas-Carbajal, María Cristina; Nieto, Natalia; Rincón-Sánchez, Ana Rosa

    2012-06-01

    We evaluated the participation of oxidative stress in the negative regulation of hepatitis C virus (HCV)-RNA induced by acetylsalicylic acid (ASA). We used the HCV subgenomic replicon cell system that stably expresses HCV-nonstructural proteins (Huh7 HCV replicon cells) and the parental cell line. Cells were exposed to 4 mM ASA at different times (12-72 h), and pyrrolidine dithiocarbamate (PDTC) was used as an antioxidant control. Reactive oxygen species (ROS) production, oxidized protein levels, cytosolic superoxide dismutase (Cu/Zn-SOD), and glutathione peroxidase (GPx) activity were measured to evaluate oxidative stress. In addition, viral RNA and prostaglandin (PGE(2)) levels were determined. We observed that ASA treatment decreased ROS production and oxidized protein levels in a time-dependent fashion in both parental and HCV replicon cells with a greater extent in the latter. Similar results were found with PDTC exposure. Average GPx activity was decreased, whereas a striking increase was observed in average cytosolic SOD activity at 48 and 72 h in both cells exposed to ASA, compared with untreated cells. HCV replicon cells showed higher levels of Cu/Zn-SOD expression (mRNA and protein) with ASA treatment (48 and 72 h), whereas NS5A protein levels showed decreased expression. In addition, we found that inhibition of SOD1 expression reversed the effect of ASA. Interestingly, PDTC downregulated HCV-RNA expression (55%) and PGE(2) (60%) levels, imitating ASA exposure. These results suggest that ASA treatment could reduce cellular oxidative stress markers and modify Cu/Zn-SOD expression, a phenomenon that may contribute to the mechanisms involved in HCV downregulation.

  11. Lysosomal and phagocytic activity is increased in astrocytes during disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis

    PubMed Central

    Baker, David J.; Blackburn, Daniel J.; Keatinge, Marcus; Sokhi, Dilraj; Viskaitis, Paulius; Heath, Paul R.; Ferraiuolo, Laura; Kirby, Janine; Shaw, Pamela J.

    2015-01-01

    Astrocytes are key players in the progression of amyotrophic lateral sclerosis (ALS). Previously, gene expression profiling of astrocytes from the pre-symptomatic stage of the SOD1G93A model of ALS has revealed reduced lactate metabolism and altered trophic support. Here, we have performed microarray analysis of symptomatic and late-stage disease astrocytes isolated by laser capture microdissection (LCM) from the lumbar spinal cord of the SOD1G93A mouse to complete the picture of astrocyte behavior throughout the disease course. Astrocytes at symptomatic and late-stage disease show a distinct up-regulation of transcripts defining a reactive phenotype, such as those involved in the lysosome and phagocytic pathways. Functional analysis of hexosaminidase B enzyme activity in the spinal cord and of astrocyte phagocytic ability has demonstrated a significant increase in lysosomal enzyme activity and phagocytic activity in SOD1G93A vs. littermate controls, validating the findings of the microarray study. In addition to the increased reactivity seen at both stages, astrocytes from late-stage disease showed decreased expression of many transcripts involved in cholesterol homeostasis. Staining for the master regulator of cholesterol synthesis, SREBP2, has revealed an increased localization to the cytoplasm of astrocytes and motor neurons in late-stage SOD1G93A spinal cord, indicating that down-regulation of transcripts may be due to an excess of cholesterol in the CNS during late-stage disease possibly due to phagocytosis of neuronal debris. Our data reveal that SOD1G93A astrocytes are characterized more by a loss of supportive function than a toxic phenotype during ALS disease progression and future studies should focus upon restorative therapies. PMID:26528138

  12. Safrole oxide induces neuronal apoptosis through inhibition of integrin beta4/SOD activity and elevation of ROS/NADPH oxidase activity.

    PubMed

    Su, Le; Zhao, BaoXiang; Lv, Xin; Wang, Nan; Zhao, Jing; Zhang, ShangLi; Miao, JunYing

    2007-02-20

    Neuronal apoptosis is a very important event in the development of the central nervous system (CNS), but the underlying mechanisms remain to be elucidated. We have previously shown that safrole oxide, a small molecule, induces integrin beta4 expression and promotes apoptosis in vascular endothelial cells. In this study, the effects of safrole oxide on cell growth and apoptosis have been examined in primary cultures of mouse neurons. Safrole oxide was found to significantly inhibit neuronal cell growth and to induce apoptosis. The inhibitory and apoptotic activities of safrole oxide followed a dose- and time-dependent manner. Interestingly, the expression of integrin beta4 was significantly inhibited with safrole oxide treatment. Furthermore, safrole oxide dramatically increases the level of intracellular reactive oxygen species (ROS) and the activity of NADPH oxidase. Moreover, manganese-dependent superoxide dismutase (MnSOD) activity was decreased significantly with safrole oxide treatment. Our study thus demonstrates that safrole oxide induces neuronal apoptosis through integrin beta4, ROS, NADPH, and MnSOD.

  13. Oral progestin induces rapid, reversible suppression of ovarian activity in the cat.

    PubMed

    Stewart, R A; Pelican, K M; Brown, J L; Wildt, D E; Ottinger, M A; Howard, J G

    2010-04-01

    The influence of oral progestin (altrenogest; ALT) on cat ovarian activity was studied using non-invasive fecal steroid monitoring. Queens were assigned to various ALT dosages: (1) 0mg/kg (control; n=5 cats); (2) 0.044 mg/kg (LOW; n=5); (3) 0.088 mg/kg (MID; n=6); or (4) 0.352 mg/kg (HIGH; n=6). Fecal estrogen and progestagen concentrations were quantified using enzyme immunoassays for 60 days before, 38 days during and 60 days after ALT treatment. Initiation of follicular activity was suppressed in all cats during progestin treatment, whereas controls continued to cycle normally. Females (n=6) with elevated fecal estrogens at treatment onset completed a normal follicular phase before returning to baseline and remained suppressed until treatment withdrawal. All cats receiving oral progestin re-initiated follicular activity after treatment, although MID cats experienced the most synchronized return (within 10-16 days). Mean baseline fecal estrogens and progestagens were higher (P<0.05) after treatment in HIGH, but not in LOW or MID cats compared to pre-treatment values. The results demonstrate that: (1) oral progestin rapidly suppresses initiation of follicular activity in the cat, but does not influence a follicular phase that exists before treatment initiation; and (2) queens return to normal follicular activity after progestin withdrawal. This study provides foundational information for research aimed at using progestin priming to improve ovarian response in felids scheduled for ovulation induction and assisted breeding. PMID:20051246

  14. N-terminal processing of membrane-targeted MnSOD and formation of multiple active superoxide dismutase dimers in the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC7120.

    PubMed

    Raghavan, Prashanth S; Rajaram, Hema; Apte, Shree K

    2013-10-01

    Anabaena sp. strain PCC7120 expresses a 30 kDa manganese-dependent superoxide dismutase (MnSOD) comprising a hydrophobic region (signal peptide + linker peptide) attached to a catalytic unit. Bioinformatics predicted cleavage of the signal peptide at (25)CQPQ by signal peptidase and of the linker peptide by an Arg-C-like protease at the Arg52/Arg59 residue. The three predicted forms of MnSOD were immunodetected in Anabaena, with the 30 kDa MnSOD found exclusively in the membrane and the shorter 27 and 24 kDa forms found both in the membrane and soluble fractions. The corresponding sodA gene was truncated for (a) the first eight residues, or, (b) the signal peptide, or (c) the entire hydrophobic region, or (d) the Arg52/Arg59 residues were modified to serine. Overexpression of these MnSOD variants in recombinant Anabaena strains revealed that (a) the 30 kDa membrane-targeted MnSOD was cleaved by membrane-localized signal peptidase either during or after its transport through the membrane to release the 27 kDa form, either in the cytosol or in the periplasmic/thylakoid lumen, (b) the 27 kDa form was further cleaved to the 24 kDa form by Arg-C-like protease, both in the cytosol and in the periplasmic/thylakoid lumen, (c) deletion of signal peptide localized the MnSOD forms in the cytosol, and (d) alteration of the signal/linker peptide cleavage sites interfered with MnSOD localization and processing. Homo/heterodimerization of the 24 and 27 kDa forms of MnSOD and the cytosolic iron-dependent SOD results in multiple SOD activities, from a single MnSOD gene (sodA), in different cellular compartments of Anabaena.

  15. Clones of FeSOD, MDHAR, DHAR Genes from White Clover and Gene Expression Analysis of ROS-Scavenging Enzymes during Abiotic Stress and Hormone Treatments.

    PubMed

    Zhang, Yan; Li, Zhou; Peng, Yan; Wang, Xiaojuan; Peng, Dandan; Li, Yaping; He, Xiaoshuang; Zhang, Xinquan; Ma, Xiao; Huang, Linkai; Yan, Yanhong

    2015-01-01

    Increased transcriptional levels of genes encoding antioxidant enzymes play important protective roles in coping with excessive accumulation of reactive oxygen species (ROS) in plants exposed to various abiotic stresses. To fully elucidate different evolutions and functions of ROS-scavenging enzymatic genes, we isolated iron superoxide dismutase (FeSOD), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) from white clover for the first time and subsequently tested dynamic expression profiles of these genes together with previously identified other antioxidant enzyme genes including copper zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase (MnSOD), glutathione reductase (GR), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in response to cold, drought, salinity, cadmium stress and exogenous abscisic acid (ABA) or spermidine (Spd) treatment. The cloned fragments of FeSOD, DHAR and MDHAR genes were 630, 471 and 669 bp nucleotide sequences encoding 210, 157 and 223 amino acids, respectively. Phylogenetic analysis indicated that both amino acid and nucleotide sequences of these three genes are highly conservative. In addition, the analysis of genes expression showed the transcription of GR, POD, MDHAR, DHAR and Cu/ZnSOD were rapidly activated with relatively high abundance during cold stress. Differently, CAT, APX, FeSOD, Cu/ZnSOD and MnSOD exhibited more abundant transcripts compared to others under drought stress. Under salt stress, CAT was induced preferentially (3-12 h) compared to GR which was induced later (12-72 h). Cadmium stress mainly up-regulated Cu/ZnSOD, DHAR and MDHAR. Interestingly, most of genes expression induced by ABA or Spd happened prior to various abiotic stresses. The particular expression patterns and different response time of these genes indicated that white clover differentially activates genes encoding antioxidant enzymes to mitigate the damage of ROS during various environmental

  16. Fast Skeletal Muscle Troponin Activator tirasemtiv Increases Muscle Function and Performance in the B6SJL-SOD1G93A ALS Mouse Model

    PubMed Central

    Ryans, Julie; Russell, Alan J.; Jia, Zhiheng; Hinken, Aaron C.; Morgans, David J.; Malik, Fady I.; Jasper, Jeffrey R.

    2014-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a motor neuron disease characterized by progressive motor neuron loss resulting in muscle atrophy, declining muscle function, and eventual paralysis. Patients typically die from respiratory failure 3 to 5 years from the onset of symptoms. Tirasemtiv is a fast skeletal troponin activator that sensitizes the sarcomere to calcium; this mechanism of action amplifies the response of muscle to neuromuscular input producing greater force when nerve input is reduced. Here, we demonstrate that a single dose of tirasemtiv significantly increases submaximal isometric force, forelimb grip strength, grid hang time, and rotarod performance in a female transgenic mouse model (B6SJL-SOD1G93A) of ALS with functional deficits. Additionally, diaphragm force and tidal volume are significantly higher in tirasemtiv-treated female B6SJL-SOD1G93A mice. These results support the potential of fast skeletal troponin activators to improve muscle function in neuromuscular diseases. PMID:24805850

  17. Fast skeletal muscle troponin activator tirasemtiv increases muscle function and performance in the B6SJL-SOD1G93A ALS mouse model.

    PubMed

    Hwee, Darren T; Kennedy, Adam; Ryans, Julie; Russell, Alan J; Jia, Zhiheng; Hinken, Aaron C; Morgans, David J; Malik, Fady I; Jasper, Jeffrey R

    2014-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a motor neuron disease characterized by progressive motor neuron loss resulting in muscle atrophy, declining muscle function, and eventual paralysis. Patients typically die from respiratory failure 3 to 5 years from the onset of symptoms. Tirasemtiv is a fast skeletal troponin activator that sensitizes the sarcomere to calcium; this mechanism of action amplifies the response of muscle to neuromuscular input producing greater force when nerve input is reduced. Here, we demonstrate that a single dose of tirasemtiv significantly increases submaximal isometric force, forelimb grip strength, grid hang time, and rotarod performance in a female transgenic mouse model (B6SJL-SOD1 G93A) of ALS with functional deficits. Additionally, diaphragm force and tidal volume are significantly higher in tirasemtiv-treated female B6SJL-SOD1 G93A mice. These results support the potential of fast skeletal troponin activators to improve muscle function in neuromuscular diseases.

  18. Antioxidant enzyme activities in different genders and tissues of amphioxus Branchiostoma belcheri tsingtauense

    NASA Astrophysics Data System (ADS)

    Wei, Ran; Zhang, Shicui; Wang, Changfa; Pang, Qiuxiang

    2007-01-01

    Information regarding antioxidant enzymes in amphioxus remains lacking, and this study was carried out to examine the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in different genders and tissues of amphioxus Branchiostoma belcheri tsingtauense. Results show that (1) CuZn-SOD, CAT and GPX activities in the whole amphioxus B. belcheri tsingtauense were basically at the same levels in male and female amphioxus, whereas both T-SOD and Mn-SOD activities in male amphioxus were significantly higher than that in the female ( P<0.05); (2) The testis had significantly higher T-SOD and CuZn-SOD activities than the ovary ( P<0.05); (3) CuZn-SOD activity was undetectable in the guts of male and female amphioxus; (4) For both male and female amphioxus, the activities of CAT and GPX in the gonads including testis and ovary were the lowest ( P<0.05) among the tissues examined; (5) The gut and gill had the same level GPX activities while the gut had a higher CAT activity; (6) There was no clear difference in CAT and GPX activities in the corresponding tissues between male and female amphioxus. The study on SOD, CAT and GPX activities in different genders and tissues of the protochordate provides data for future comparison of amphioxus antioxidant enzymes with those of invertebrates and vertebrates.

  19. Effects of dietary rosemary, rosemary volatile oil and vitamin E on broiler performance, meat quality and serum SOD activity.

    PubMed

    Yesilbag, D; Eren, M; Agel, H; Kovanlikaya, A; Balci, F

    2011-08-01

    1. The current study was conducted to evaluate the effects of dietary supplementation with vitamin E (as alpha-tocopherol acetate), dried rosemary leaves and rosemary volatile oil on the performance, meat quality (measured as sensory variables, pH, colour, malondialdehyde (MDA) level, and bacteria count) and serum superoxide dismutase (SOD) activity in broilers fed on maize-soybean meal based diets. 2. A total of 800 broiler chicks were randomly allocated to 8 dietary treatments, which were set up with 1 control group and 7 experimental groups. The control group (VitE1) was given a basal diet including 50 mg/kg alpha-tocopherol acetate, while the experimental groups were given 5 x 7 g/kg rosemary plant (R1), 8 x 6 g/kg plant (R2), 11 x 5 g/kg plant (R3), 100 mg/kg plant oil (RO1), 150 mg/kg plant oil (RO2), 200 mg/kg plant oil (RO3) or 200 mg/kg alpha-tocopherol acetate (VitE2). 3. Although there were no statistical differences observed for feed consumption, other performance variables including live weight gain, feed efficiency and carcase yield were significantly affected. The addition of rosemary volatile oil had more effect on the performance variables than did the rosemary plant itself. 4. As a measure of meat shelf life, TBA analyses were performed on the meat samples on d 1, 3 and 5 after culling. Meat MDA levels of groups fed diets with rosemary and rosemary volatile oil were significantly lower than that of groups fed diets containing alpha-tocopherol acetate alone. 5. Significant differences were also seen between the control and experimental groups for meat colour and meat pH values as well as for sensory analyses. 6. Microbiological analyses conducted at the end of the experiment showed that E. coli counts were significantly reduced in meat samples from the experimental groups. 7. In conclusion, dietary supplementation with rosemary and its volatile oil improved broiler meat quality. Moreover growth performance was positively affected by the rosemary

  20. Induction time of Fe-SOD synthesis and activity determine different tolerance of two Desmodesmus (green algae) strains to chloridazon: a study with synchronized cultures.

    PubMed

    Pokora, Wojciech; Tukaj, Zbigniew

    2013-09-01

    Cells of two Desmodesmus armatus strains (276-4a and 276-4d) grown asynchronously in batch cultures after 24-h treatment revealed different tolerance to chloridazon (photosynthetic herbicide) applied at a concentration of 3.45 mg L(-1). To find time- and cell cycle-dependent biochemical reasons leading to such a difference, a population of young autospores of both strains synchronized by a light/dark (14/10) regime were exposed to chloridazon at the initiation of the light period. Chloridazon reduced the growth and number of divisions of cell strain 276-4d. In consequence, at the end of the dark phase the number of released autospores was reduced by 50% compared with the control. In contrast, the growth and reproductive processes of cell strains 276-4a was unaffected. Moreover, chloridazon treatment speeded up cell development, as a result of which the release of autospores took this process observed in the control cells over. There is a relationship between photosynthetic activity response to chloridazon and time-dependent changes in Fe-SOD content and activity. The energy trapped in the reaction centre (RC) was similar in both strains, but the amount of energy absorbed by RCs was twice as high in strain 276-4d as in 276-4a. In consequence, non-photochemical energy dissipation occurring in the cells of 276-4d strain far exceed the value obtained for 276-4a strain. The control cells of both strains differed significantly in the content of FSD 1 and FSD 2 proteins, whereas the differences in Fe-SOD isoforms activities were slight. The 8-fold increase in SOD content in CHD treated cells of strain 276-4a was associated with the transience of photosynthetic efficiency impairment. In CHD treated cells of strain 276-4d, neither activity of Fe-SOD nor FSDs protein content was instantly affected. Different response of developing cells of two Desmodesmus strains to CHD is influenced by the inherent features of cells; the short time required to induce stress adaptive

  1. [Changes of T-SOD activity and MDA, GSH contents in blood of guinea pigs after exposure to narrow-band noise].

    PubMed

    Shi, X; Guo, F; Liang, Z; Zhu, Q; Yang, Y

    1998-08-01

    In order to evaluate the changes of lipid peroxide response induced by free radical after intense noise exposure, levels of T-SOD and MDA in serum and GSH in blood of guinea pigs were determined. Sixty male adult guinea pigs were used. The narrow band noise was centered at 1000Hz with 100Hz band width 126 dB SPL. It was found: 1) SOD activity in serum increased after 5d exposure (P > 0.05), but decreased after 10d exposure (P > 0. 05); 2) contents of MDA in serum increased (P < 0.05) and contents of GSH in blood decreased with increase of exposure time (P < 0.01). It shows that the lipid peroxide response induced by free radicals increased after intense noise exposure and it is possible to use free radical scavengers and/or antioxidant in prevention and treatment of noise induced damage.

  2. An active ingredient of Cat's Claw water extracts identification and efficacy of quinic acid.

    PubMed

    Sheng, Yezhou; Akesson, Christina; Holmgren, Kristin; Bryngelsson, Carl; Giamapa, Vincent; Pero, Ronald W

    2005-01-15

    Historic medicinal practice has defined Cat's Claw, also known as Una de Gato or Uncaria tomentosa, as an effective treatment for several health disorders including chronic inflammation, gastrointestinal dysfunction such as ulcers, tumors and infections. The efficacy of Cat's Claw was originally believed, as early as the 1960s, to be due to the presence of oxindole alkaloids. However, more recently water-soluble Cat's Claw extracts were shown not to contain significant amounts of alkaloids (<0.05%), and yet still were shown to be very efficacious. Here we characterize the active ingredients of a water-soluble Cat's Claw extract called C-Med-100 as inhibiting cell growth without cell death thus providing enhanced opportunities for DNA repair, and the consequences thereof, such as immune stimulation, anti-inflammation and cancer prevention. The active ingredients were chemically defined as quinic acid esters and could also be shown to be bioactive in vivo as quinic acid. PMID:15619581

  3. N-acetyl-L-cysteine increases MnSOD activity and enhances the recruitment of quiescent human fibroblasts to the proliferation cycle during wound healing.

    PubMed

    Mao, Gaowei; Goswami, Monali; Kalen, Amanda L; Goswami, Prabhat C; Sarsour, Ehab H

    2016-01-01

    The rebuilding of the connective tissue during wound healing requires the recruitment of fibroblasts to the wound area as well as reentry of quiescent fibroblasts to the proliferative cycle. Whether this process can be modulated by a small molecular weight thiol antioxidant N-acetyl-L-cysteine (NAC) was tested in normal human skin fibroblasts (NHFs) using a uni-directional wound healing assay. NAC treated cells demonstrated a decreased migration rate but increased number of proliferating cells recruited into the wound area post wounding. Fifteen day quiescent control and NAC treated NHFs were re-plated at a lower density and cell numbers counted at different days post-plating. Interestingly, NAC treated cells exhibited increased cellular proliferation indicated by both decreased cell population doubling time and increased S phase cells. NAC treated cells demonstrated decreased steady state levels of reactive oxygen species as well as increased protein and activity levels of manganese superoxide dismutase (MnSOD). NAC treatment failed to induce proliferation in quiescent cells lacking MnSOD expression. These results demonstrate that NAC enhanced the recruitment of quiescent NHFs into proliferation cycle during wound healing. Our results also suggest that the wound healing properties of NAC might be due to its ability to induce and enhance MnSOD expression and activity. Altogether, these findings suggest NAC might be potentially developed as a dietary intervention to improve tissue injury in animals and humans.

  4. Significant In Vivo Anti-Inflammatory Activity of Pytren4Q-Mn a Superoxide Dismutase 2 (SOD2) Mimetic Scorpiand-Like Mn (II) Complex

    PubMed Central

    Serena, Carolina; Calvo, Enrique; Clares, Mari Paz; Diaz, María Luisa; Chicote, Javier U.; Beltrán-Debon, Raúl; Fontova, Ramón; Rodriguez, Alejandro; García-España, Enrique; García-España, Antonio

    2015-01-01

    Background The clinical use of purified SOD enzymes has strong limitations due to their large molecular size, high production cost and immunogenicity. These limitations could be compensated by using instead synthetic SOD mimetic compounds of low molecular weight. Background/Methodology We have recently reported that two SOD mimetic compounds, the MnII complexes of the polyamines Pytren2Q and Pytren4Q, displayed high antioxidant activity in bacteria and yeast. Since frequently molecules with antioxidant properties or free-radical scavengers also have anti-inflammatory properties we have assessed the anti-inflammatory potential of Pytren2Q and Pytren4Q MnII complexes, in cultured macrophages and in a murine model of inflammation, by measuring the degree of protection they could provide against the cellular injury produced by lipopolisacharide, a bacterial endotoxin. Principal Findings In this report we show that the MnII complex of Pytren4Q but not that of Pytren2Q effectively protected human cultured THP-1 macrophages and whole mice from the inflammatory effects produced by LPS. These results obtained with two molecules that are isomers highlight the importance of gathering experimental data from animal models of disease in assessing the potential of candidate molecules. Conclusion/Significance The effective anti-inflammatory activity of the MnII complex of Pytren4Q in addition to its low toxicity, water solubility and ease of production would suggest it is worth taking into consideration for future pharmacological studies. PMID:25742129

  5. Cat Batiks.

    ERIC Educational Resources Information Center

    Buban, Marcia H.

    1998-01-01

    Discusses an art activity where fourth-grade students created backgrounds using melted paraffin and a variety of paints for their cat batik/collage. Explains that after the students created their backgrounds, they assembled their paper cats for the collage using smaller shapes glued together and wax to add texture for fur. (CMK)

  6. Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein.

    PubMed

    Perera, N C N; Godahewa, G I; Lee, Jehee

    2016-10-01

    Copper-zinc-superoxide dismutase (CuZnSOD) from Hippocampus abdominalis (HaCuZnSOD) is a metalloenzyme which belongs to the ubiquitous family of SODs. Here, we determined the characteristic structural features of HaCuZnSOD, analyzed its evolutionary relationships, and identified its potential immune responses and biological functions in relation to antioxidant defense mechanisms in the seahorse. The gene had a 5' untranslated region (UTR) of 67 bp, a coding sequence of 465 bp and a 3' UTR of 313 bp. The putative peptide consists of 154 amino acids. HaCuZnSOD had a predicted molecular mass of 15.94 kDa and a theoretical pI value of 5.73, which is favorable for copper binding activity. In silico analysis revealed that HaCuZnSOD had a prominent Cu-Zn_superoxide_dismutase domain, two Cu/Zn signature sequences, a putative N-glycosylation site, and several active sites including Cu(2+) and Zn(2+) binding sites. The three dimensional structure indicated a β-sheet barrel with 8 β-sheets and two short α-helical regions. Multiple alignment analyses revealed many conserved regions and active sites among its orthologs. The highest amino acid identity to HaCuZnSOD was found in Siniperca chuatsi (87.4%), while Maylandia zebra shared a close relationship in the phylogenetic analysis. Functional assays were performed to assess the antioxidant, biophysical and biochemical properties of overexpressed recombinant (r) HaCuZnSOD. A xanthine/XOD assay gave optimum results at pH 9 and 25 °C indicating these may be the best conditions for its antioxidant action in the seahorse. An MTT assay and flow cytometry confirmed that rHaCuZnSOD showed peroxidase activity in the presence of HCO3(-). In all the functional assays, the level of antioxidant activity of rHaCuZnSOD was concentration dependent; metal ion supplementation also increased its activity. The highest mRNA expressional level of HaCuZnSOD was found in blood. Temporal assessment under pathological stress showed a delay

  7. Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein.

    PubMed

    Perera, N C N; Godahewa, G I; Lee, Jehee

    2016-10-01

    Copper-zinc-superoxide dismutase (CuZnSOD) from Hippocampus abdominalis (HaCuZnSOD) is a metalloenzyme which belongs to the ubiquitous family of SODs. Here, we determined the characteristic structural features of HaCuZnSOD, analyzed its evolutionary relationships, and identified its potential immune responses and biological functions in relation to antioxidant defense mechanisms in the seahorse. The gene had a 5' untranslated region (UTR) of 67 bp, a coding sequence of 465 bp and a 3' UTR of 313 bp. The putative peptide consists of 154 amino acids. HaCuZnSOD had a predicted molecular mass of 15.94 kDa and a theoretical pI value of 5.73, which is favorable for copper binding activity. In silico analysis revealed that HaCuZnSOD had a prominent Cu-Zn_superoxide_dismutase domain, two Cu/Zn signature sequences, a putative N-glycosylation site, and several active sites including Cu(2+) and Zn(2+) binding sites. The three dimensional structure indicated a β-sheet barrel with 8 β-sheets and two short α-helical regions. Multiple alignment analyses revealed many conserved regions and active sites among its orthologs. The highest amino acid identity to HaCuZnSOD was found in Siniperca chuatsi (87.4%), while Maylandia zebra shared a close relationship in the phylogenetic analysis. Functional assays were performed to assess the antioxidant, biophysical and biochemical properties of overexpressed recombinant (r) HaCuZnSOD. A xanthine/XOD assay gave optimum results at pH 9 and 25 °C indicating these may be the best conditions for its antioxidant action in the seahorse. An MTT assay and flow cytometry confirmed that rHaCuZnSOD showed peroxidase activity in the presence of HCO3(-). In all the functional assays, the level of antioxidant activity of rHaCuZnSOD was concentration dependent; metal ion supplementation also increased its activity. The highest mRNA expressional level of HaCuZnSOD was found in blood. Temporal assessment under pathological stress showed a delay

  8. Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p.

    PubMed Central

    Randez-Gil, F; Bojunga, N; Proft, M; Entian, K D

    1997-01-01

    The Cat8p zinc cluster protein is essential for growth of Saccharomyces cerevisiae with nonfermentable carbon sources. Expression of the CAT8 gene is subject to glucose repression mainly caused by Mig1p. Unexpectedly, the deletion of the Mig1p-binding motif within the CAT8 promoter did not increase CAT8 transcription; moreover, it resulted in a loss of CAT8 promoter activation. Insertion experiments with a promoter test plasmid confirmed that this regulatory 20-bp element influences glucose repression and derepression as well. This finding suggests an upstream activating function of this promoter region, which is Mig1p independent, as delta mig1 mutants are still able to derepress the CAT8 promoter. No other putative binding sites such as a Hap2/3/4/5p site and an Abf1p consensus site were functional with respect to glucose-regulated CAT8 expression. Fusions of Cat8p with the Gal4p DNA-binding domain mediated transcriptional activation. This activation capacity was still carbon source regulated and depended on the Cat1p (Snf1p) protein kinase, which indicated that Cat8p needs posttranslational modification to reveal its gene-activating function. Indeed, Western blot analysis on sodium dodecyl sulfate-gels revealed a single band (Cat8pI) with crude extracts from glucose-grown cells, whereas three bands (Cat8pI, -II, and -III) were identified in derepressed cells. Derepression-specific Cat8pII and -III resulted from differential phosphorylation, as shown by phosphatase treatment. Only the most extensively phosphorylated modification (Cat8pIII) depended on the Cat1p (Snf1p) kinase, indicating that another protein kinase is responsible for modification form Cat8pII. The occurrence of Cat8pIII was strongly correlated with the derepression of gluconeogenic enzymes (phosphoenolpyruvate carboxykinase and fructose-1,6-bisphosphatase) and gluconeogenic PCK1 mRNA. Furthermore, glucose triggered the dephosphorylation of Cat8pIII, but this did not depend on the Glc7p (Cid1p

  9. Intrathecal Administration of Tempol Reduces Chronic Constriction Injury-Induced Neuropathic Pain in Rats by Increasing SOD Activity and Inhibiting NGF Expression.

    PubMed

    Zhao, Baisong; Pan, Yongying; Wang, Zixin; Tan, Yonghong; Song, Xingrong

    2016-08-01

    We investigate the antinociceptive effect of intrathecal and intraperitoneal tempol administration in a rat model of chronic constriction injury (CCI)-induced neuropathic pain and explore the underlying antinociceptive mechanisms of tempol. Rats were randomly assigned to four groups (n = 8 per group): sham group, CCI group, Tem1 group (intrathecal injection of tempol), and Tem2 group (intraperitoneal injection of tempol). Neuropathic pain was induced by CCI of the sciatic nerve. Tempol was intrathecally or intraperitoneally administered daily for 7 days beginning on postoperative day one. The mechanical withdrawal threshold and thermal withdrawal latency were tested on preoperative day 3 and postoperative days 1, 3, 5, 7, 10, 14, and 21. Structural changes were examined by hematoxylin and eosin staining, toluidine blue staining, and electron microscopy. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were determined using the thiobarbituric acid and nitroblue tetrazolium methods, respectively. Nerve growth factor (NGF) expression levels were determined by immunohistochemistry and Western blot. Intrathecal, but not intraperitoneal, injection of tempol produced a persistent antinociceptive effect. Intraperitoneal injection of tempol did not result in high enough concentration of tempol in the cerebrospinal fluid. Intrathecal, but not intraperitoneal, injection of tempol inhibited CCI-induced structural damage in the spinal cord reduced MDA levels, and increased SOD activities in the spinal cord. Furthermore, intrathecal, but not intraperitoneal, injection of tempol further downregulated the expression of NGF in the spinal cord following CCI, and this effect was blocked by p38MAPK inhibitor. Intrathecal injection of tempol produces antinociceptive effects and reduces CCI-induced structural damage in the spinal cord by increasing SOD activities and downregulating the expression of NGF via the p38MAPK pathway. Intraperitoneal administration of tempol does

  10. Vertebral orientations and muscle activation patterns during controlled head movements in cats.

    PubMed

    Keshner, E A

    1994-01-01

    The focus of these experiments was to determine the relationships between head movement, neck muscle activation patterns, and the positions and movements of the cervical vertebrae. One standing cat and one prone cat were trained to produce voluntary sinusoidal movements of the head in the sagittal plane. Video-opaque markers were placed on the cervical vertebrae, and intramuscular patch electrodes implanted in four muscles of the head and neck. Cinefluoroscopic images of cervical vertebral motion and electromyographic responses were simultaneously recorded. Analysis of the spinal movement revealed that the two cats used different strategies to keep their heads aligned with the tracker. In the standing cat, vertebral motion described a more circular arc, compared to a forward diagonal in the prone cat. Intervertebral motion was limited, but more acute angles appeared between the vertebrae of the prone lying than of the standing animal. Data revealed that the central nervous system could control several axes of motion to keep the cervical spine matched to the moving stimulus. Phase relations between the sinusoidal motion of the vertebral column, peak activation of the neck muscles, and that of the stimulus were examined, and several different control strategies were observed both between and within animals. The results suggest that the central nervous system engages in multiple strategies of musculo-skeletal coordination to achieve a single movement outcome. PMID:8056075

  11. Presence of membranous vesicles in cat seminal plasma: ultrastructural characteristics, protein profile and enzymatic activity.

    PubMed

    Polisca, A; Troisi, A; Minelli, A; Bellezza, I; Fontbonne, A; Zelli, R

    2015-02-01

    This study sought to verify the presence of membranous vesicles in cat seminal plasma by means of transmission electron microscopy and to identify protein profile and some of the enzymatic activities associated with these particles. The transmission electron microscopy observations showed the existence of different sized vesicular membranous structures of more or less spherical shape. These vesicles were surrounded by single-, double- or multiple-layered laminar membranes. The vesicle diameters ranged from 16.3 to 387.4 nm, with a mean of 116.5 ± 70.7 nm. Enzyme activity determinations showed the presence of dipeptilpeptidase IV, aminopeptidase, alkaline and acid phosphatase. To our knowledge, this is the first report that identifies and characterizes the membranous vesicles in cat seminal plasma. However, further studies are necessary to identify the exact site of production of these membranous vesicles in the cat male genital tract and to determine their specific roles in the reproductive events of this species.

  12. Nitrogen status dependent oxidative stress tolerance conferred by overexpression of MnSOD and FeSOD proteins in Anabaena sp. strain PCC7120.

    PubMed

    Raghavan, Prashanth S; Rajaram, Hema; Apte, Shree K

    2011-11-01

    The heterocystous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 displayed two superoxide dismutase (SOD) activities, namely FeSOD and MnSOD. Prolonged exposure of Anabaena PCC7120 cells to methyl viologen mediated oxidative stress resulted in loss of both SOD activities and induced cell lysis. The two SOD proteins were individually overexpressed constitutively in Anabaena PCC7120, by genetic manipulation. Under nitrogen-fixing conditions, overexpression of MnSOD (sodA) enhanced oxidative stress tolerance, while FeSOD (sodB) overexpression was detrimental. Under nitrogen supplemented conditions, overexpression of either SOD protein, especially FeSOD, conferred significant tolerance against oxidative stress. The results demonstrate a nitrogen status-dependent protective role of individual superoxide dismutases in Anabaena PCC7120 during oxidative stress.

  13. Tai Chi exercise increases SOD activity and total antioxidant status in saliva and is linked to an improvement of periodontal disease in the elderly.

    PubMed

    Mendoza-Núñez, Víctor Manuel; Hernández-Monjaraz, Beatriz; Santiago-Osorio, Edelmiro; Betancourt-Rule, José Miguel; Ruiz-Ramos, Mirna

    2014-01-01

    The aim of this study was to determine the effect of Tai Chi on biological markers of oxidative stress in saliva and its relationship with periodontal disease (PD) in older adults. We carried out a quasi-experimental study with a sample of 71 sedentary volunteers with PD who were divided into a control group of 34 subjects and an experimental group of 37 subjects who performed Tai Chi 5 days a week for a period of 6 months. PD status was characterized using the Periodontal Disease Index (PDI). Superoxide dismutase (SOD), total antioxidant status (TAS), and TBARS levels of both groups were measured by spectrophotometric methods. In addition, inflammation markers (TNF-α, IL-1β, IL-6, IL-8, and IL-10) were measured by flow cytometry. We found a statistically significant increase in SOD activity (P < 0.001) and TAS concentration (P < 0.05), whereas levels of IL-1β were significantly lower (P < 0.01). Likewise, a statistically significant decrease in the PDI (P < 0.05) was observed in subjects who performed Tai Chi during a period of 6 months. Our findings suggest that the practice of Tai Chi has both antioxidant and anti-inflammatory effects that are linked to the improvement of PD in older adults. PMID:24790703

  14. Tai Chi Exercise Increases SOD Activity and Total Antioxidant Status in Saliva and Is Linked to an Improvement of Periodontal Disease in the Elderly

    PubMed Central

    Hernández-Monjaraz, Beatriz; Santiago-Osorio, Edelmiro; Betancourt-Rule, José Miguel; Ruiz-Ramos, Mirna

    2014-01-01

    The aim of this study was to determine the effect of Tai Chi on biological markers of oxidative stress in saliva and its relationship with periodontal disease (PD) in older adults. We carried out a quasi-experimental study with a sample of 71 sedentary volunteers with PD who were divided into a control group of 34 subjects and an experimental group of 37 subjects who performed Tai Chi 5 days a week for a period of 6 months. PD status was characterized using the Periodontal Disease Index (PDI). Superoxide dismutase (SOD), total antioxidant status (TAS), and TBARS levels of both groups were measured by spectrophotometric methods. In addition, inflammation markers (TNF-α, IL-1β, IL-6, IL-8, and IL-10) were measured by flow cytometry. We found a statistically significant increase in SOD activity (P < 0.001) and TAS concentration (P < 0.05), whereas levels of IL-1β were significantly lower (P < 0.01). Likewise, a statistically significant decrease in the PDI (P < 0.05) was observed in subjects who performed Tai Chi during a period of 6 months. Our findings suggest that the practice of Tai Chi has both antioxidant and anti-inflammatory effects that are linked to the improvement of PD in older adults. PMID:24790703

  15. Activation of the endoplasmic reticulum stress response in skeletal muscle of G93A*SOD1 amyotrophic lateral sclerosis mice

    PubMed Central

    Chen, Dapeng; Wang, Yan; Chin, Eva R.

    2015-01-01

    Mutations in Cu/Zn superoxide dismutase (SOD1) are one of the genetic causes of Amyotrophic Lateral Sclerosis (ALS). Although the primary symptom of ALS is muscle weakness, the link between SOD1 mutations, cellular dysfunction and muscle atrophy and weakness is not well understood. The purpose of this study was to characterize cellular markers of ER stress in skeletal muscle across the lifespan of G93A*SOD1 (ALS-Tg) mice. Muscles were obtained from ALS-Tg and age-matched wild type (WT) mice at 70d (pre-symptomatic), 90d and 120–140d (symptomatic) and analyzed for ER stress markers. In white gastrocnemius (WG) muscle, ER stress sensors PERK and IRE1α were upregulated ~2-fold at 70d and remained (PERK) or increased further (IRE1α) at 120–140d. Phospho-eIF2α, a downstream target of PERK and an inhibitor of protein translation, was increased by 70d and increased further to 12.9-fold at 120–140d. IRE1α upregulation leads to increased splicing of X-box binding protein 1 (XBP-1) to the XBP-1s isoform. XBP-1s transcript was increased at 90d and 120–140d indicating activation of IRE1α signaling. The ER chaperone/heat shock protein Grp78/BiP was upregulated 2-fold at 70d and 90d and increased to 6.1-fold by 120–140d. The ER-stress-specific apoptotic signaling protein CHOP was upregulated 2-fold at 70d and 90d and increased to 13.3-fold at 120–140d indicating progressive activation of an apoptotic signal in muscle. There was a greater increase in Grp78/BiP and CHOP in WG vs. the more oxidative red gastrocnemius (RG) ALS-Tg at 120–140d indicating greater ER stress and apoptosis in fast glycolytic muscle. These data show that the ER stress response is activated in skeletal muscle of ALS-Tg mice by an early pre-symptomatic age and increases with disease progression. These data suggest a mechanism by which myocellular ER stress leads to reduced protein translation and contributes to muscle atrophy and weakness in ALS. PMID:26041991

  16. Cuneiform neurons activated during cholinergically induced active sleep in the cat.

    PubMed

    Pose, I; Sampogna, S; Chase, M H; Morales, F R

    2000-05-01

    In the present study, we report that the cuneiform (Cun) nucleus, a brainstem structure that before now has not been implicated in sleep processes, exhibits a large number of neurons that express c-fos during carbachol-induced active sleep (AS-carbachol). Compared with control (awake) cats, during AS-carbachol, there was a 671% increase in the number of neurons that expressed c-fos in this structure. Within the Cun nucleus, three immunocytochemically distinct populations of neurons were observed. One group consisted of GABAergic neurons, which predominantly did not express c-fos during AS-carbachol. Two other different populations expressed c-fos during this state. One of the Fos-positive (Fos(+)) populations consisted of a distinct group of nitric oxide synthase (NOS)-NADPH-diaphorase (NADPH-d)-containing neurons; the neurotransmitter of the other Fos(+) population remains unknown. The Cun nucleus did not contain cholinergic, catecholaminergic, serotonergic, or glycinergic neurons. On the basis of neuronal activation during AS-carbachol, as indicated by c-fos expression, we suggest that the Cun nucleus is involved, in an as yet unknown manner, in the physiological expression of active sleep. The finding of a population of NOS-NADPH-d containing neurons, which were activated during AS-carbachol, suggests that nitrergic modulation of their target cell groups is likely to play a role in active sleep-related physiological processes. PMID:10777795

  17. Activity patterns of the diaphragm during voluntary movements in awake cats.

    PubMed

    Uga, Minako; Niwa, Masatoshi; Ochiai, Naoyuki; Sasaki, Sei-Ichi

    2010-05-01

    The diaphragm is an important inspiratory muscle, and is also known to participate in the postural function. However, the activity of the diaphragm during voluntary movements has not been fully investigated in awake animals. In order to investigate the diaphragmatic activity during voluntary movements such as extending or rotating their body, we analyzed the electromyogram (EMG) of the diaphragm and trunk muscles in the cat using a technique for simultaneous recordings of EMG signals and video images. Periodic respiratory discharges occurred in the left and right costal diaphragm when the cat kept still. However, once the cat moved, their periodicity and/or synchrony were sometimes buried by non-respiratory activity. Such non-periodic diaphragmatic activities during voluntary movements are considered as the combination of respiratory activity and non-respiratory activity. Most of the diaphragmatic activities started shortly after the initiation of standing-up movements and occurred after the onset of trunk muscle activities. Those activities were more active compared to the normal respiratory activity. During rotation movements, left and right diaphragmatic activities showed asymmetrical discharge patterns and higher discharges than those during the resting situation. This asymmetrical activity may be caused by taking different lengths of each side of the diaphragm and trunk muscles. During reaching movements, the diaphragmatic activity occurred prior to or with the onset of trunk muscle activities. It is likely that diaphragmatic activities during reaching movements and standing-up movements may have been controlled by some different control mechanisms of the central nervous system. This study will suggest that the diaphragmatic activity is regulated not only by the respiratory center but also by inputs from the center for voluntary movements and/or sensory reflex pathways under the awake condition.

  18. An unexpected Schiff base-type Ni(II) complex: synthesis, crystal structures, fluorescence, electrochemical property and SOD-like activities.

    PubMed

    Chai, Lan-Qin; Zhang, Hong-Song; Huang, Jiao-Jiao; Zhang, Yu-Li

    2015-02-25

    An unexpected Schiff base-type Ni(II) complex, [Ni(L(2))2]⋅CH3OH (HL(2) = 1-(2-{[(E)-3, 5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Ni(II) acetate tetrahydrate with HL(1) (2-(3,5-dibromo-2-hydroxyphenyl)-4-methyl-1,2-dihydroquinazoline 3-oxide) originally. HL(1) and its corresponding Ni(II) complex were characterized by IR, (1)H NMR spectra, as well as by elemental analysis, UV-Vis and emission spectroscopy, respectively. Crystal structures of the ligand and complex have been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical property of the nickle complex was studied by cyclic voltammetry. In addition, SOD-like activities of HL(1) and Ni(II) complex were also investigated.

  19. An unexpected Schiff base-type Ni(II) complex: Synthesis, crystal structures, fluorescence, electrochemical property and SOD-like activities

    NASA Astrophysics Data System (ADS)

    Chai, Lan-Qin; Zhang, Hong-Song; Huang, Jiao-Jiao; Zhang, Yu-Li

    2015-02-01

    An unexpected Schiff base-type Ni(II) complex, [Ni(L2)2]ṡCH3OH (HL2 = 1-(2-{[(E)-3, 5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Ni(II) acetate tetrahydrate with HL1 (2-(3,5-dibromo-2-hydroxyphenyl)-4-methyl-1,2-dihydroquinazoline 3-oxide) originally. HL1 and its corresponding Ni(II) complex were characterized by IR, 1H NMR spectra, as well as by elemental analysis, UV-Vis and emission spectroscopy, respectively. Crystal structures of the ligand and complex have been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical property of the nickle complex was studied by cyclic voltammetry. In addition, SOD-like activities of HL1 and Ni(II) complex were also investigated.

  20. Accurate stepping on a narrow path: mechanics, EMG, and motor cortex activity in the cat.

    PubMed

    Farrell, Brad J; Bulgakova, Margarita A; Sirota, Mikhail G; Prilutsky, Boris I; Beloozerova, Irina N

    2015-11-01

    How do cats manage to walk so graciously on top of narrow fences or windowsills high above the ground while apparently exerting little effort? In this study we investigated cat full-body mechanics and the activity of limb muscles and motor cortex during walking along a narrow 5-cm path on the ground. We tested the hypotheses that during narrow walking 1) lateral stability would be lower because of the decreased base-of-support area and 2) the motor cortex activity would increase stride-related modulation because of imposed demands on lateral stability and paw placement accuracy. We measured medio-lateral and rostro-caudal dynamic stability derived from the extrapolated center of mass position with respect to the boundaries of the support area. We found that cats were statically stable in the frontal plane during both unconstrained and narrow-path walking. During narrow-path walking, cats walked slightly slower with more adducted limbs, produced smaller lateral forces by hindlimbs, and had elevated muscle activities. Of 174 neurons recorded in cortical layer V, 87% of forelimb-related neurons (from 114) and 90% of hindlimb-related neurons (from 60) had activities during narrow-path walking distinct from unconstrained walking: more often they had a higher mean discharge rate, lower depth of stride-related modulation, and/or longer period of activation during the stride. These activity changes appeared to contribute to control of accurate paw placement in the medio-lateral direction, the width of the stride, rather than to lateral stability control, as the stability demands on narrow-path and unconstrained walking were similar.

  1. Accurate stepping on a narrow path: mechanics, EMG, and motor cortex activity in the cat

    PubMed Central

    Farrell, Brad J.; Bulgakova, Margarita A.; Sirota, Mikhail G.; Prilutsky, Boris I.

    2015-01-01

    How do cats manage to walk so graciously on top of narrow fences or windowsills high above the ground while apparently exerting little effort? In this study we investigated cat full-body mechanics and the activity of limb muscles and motor cortex during walking along a narrow 5-cm path on the ground. We tested the hypotheses that during narrow walking 1) lateral stability would be lower because of the decreased base-of-support area and 2) the motor cortex activity would increase stride-related modulation because of imposed demands on lateral stability and paw placement accuracy. We measured medio-lateral and rostro-caudal dynamic stability derived from the extrapolated center of mass position with respect to the boundaries of the support area. We found that cats were statically stable in the frontal plane during both unconstrained and narrow-path walking. During narrow-path walking, cats walked slightly slower with more adducted limbs, produced smaller lateral forces by hindlimbs, and had elevated muscle activities. Of 174 neurons recorded in cortical layer V, 87% of forelimb-related neurons (from 114) and 90% of hindlimb-related neurons (from 60) had activities during narrow-path walking distinct from unconstrained walking: more often they had a higher mean discharge rate, lower depth of stride-related modulation, and/or longer period of activation during the stride. These activity changes appeared to contribute to control of accurate paw placement in the medio-lateral direction, the width of the stride, rather than to lateral stability control, as the stability demands on narrow-path and unconstrained walking were similar. PMID:26354314

  2. SOD2 targeted gene editing by CRISPR/Cas9 yields Human cells devoid of MnSOD.

    PubMed

    Cramer-Morales, Kimberly; Heer, Collin D; Mapuskar, Kranti A; Domann, Frederick E

    2015-12-01

    To date no models exist to study MnSOD deficiency in human cells. To address this deficiency, we created a SOD2-null human cell line that is completely devoid of detectable MnSOD protein expression and enzyme activity. We utilized the CRISPR/Cas9 system to generate biallelic SOD2 disruption in HEK293T cells. These SOD2-null cells exhibit impaired clonogenic activity, which was rescued by either treatment with GC4419, a pharmacological small-molecule mimic of SOD, or growth in hypoxia. The phenotype of these cells is primarily characterized by impaired mitochondrial bioenergetics. The SOD2-null cells displayed perturbations in their mitochondrial ultrastructure and preferred glycolysis as opposed to oxidative phosphorylation to generate ATP. The activities of mitochondrial complex I and II were both significantly impaired by the absence of MnSOD activity, presumably from disruption of the Fe/S centers in NADH dehydrogenase and succinate dehydrogenase subunit B by the aberrant redox state in the mitochondrial matrix of SOD2-null cells. By creating this model we provide a novel tool with which to study the consequences of lack of MnSOD activity in human cells. PMID:26208779

  3. Mechanistic study of CuZn-SOD from Ipomoea carnea mutated at dimer interface: enhancement of peroxidase activity upon monomerization.

    PubMed

    Mishra, Panchanand; Dixit, Anshuman; Ray, Mamata; Sabat, Surendra Chandra

    2014-02-01

    The enzymatically active monomeric form of CuZn-superoxide dismutase has always been of interest to decipher the structure-function relationship in this class of enzymes. In the present study, spectroscopic and enzymatic characteristics of the dimeric and monomeric forms of recombinant Ipomoea carnea CuZn-superoxide dismutase were made to decipher their stability and altered catalytic properties. The monomeric form of protein was produced through site directed mutagenesis by replacing a conserved hydrophobic leucine with a polar lysine residue at the dimer-interface. Spectral characteristics of both the forms (monomer and dimer) showed the presence of novel electronic transitions. Superoxide scavenging activity of the mutated form was reduced to nearly half of the activity found in the native enzyme. Concomitantly, compared to native form the mutated enzyme showed an increase in peroxidase activity. High temperature dependent circular dichroism spectral analysis, differential scanning calorimetric profile, and the measurement of temperature dependent superoxide scavenging activity indicated an increased susceptibility of the mutated form to higher temperature as compared to the native form. The inhibitor studies like hydrogen peroxide, diethyldithiocarbamate and phenylglyoxal also indicate higher susceptibility, which might be due to, altered arrangement of active site residues as a consequence of the mutation. Molecular modeling and MD simulation studies further indicated that this specific mutation induces loss of hydrophobic interaction at dimer interface, resulting in the observed instability of the dimeric form. Increased peroxidative activity of the enzyme, upon monomerization may have physiological implication essentially in presence of high concentration of H2O2, as in case of plant cells specifically under stress conditions. PMID:24513093

  4. DNA interaction, SOD, peroxidase and nuclease activity studies of iron complex having ligand with carboxamido nitrogen donors

    NASA Astrophysics Data System (ADS)

    Ghosh, Kaushik; Tyagi, Nidhi; Kumar, Hemant; Rathi, Sweety

    2015-07-01

    Complex (Et3HN)[FeIII(bpb)Cl2], 1 {where H2bpb: N,N‧-(1,2-phenylene)bis(pyridine-2-carboxamide)} was synthesized and characterized by reported procedure (Yang et al., 1991). Complex 1 was found to be effective in superoxide scavenging activity and an IC50 value of 4.1 μM was obtained in xanthine-xanthine oxidase nitro blue tetrazolium assay. Peroxidase-like activity of this complex was determined by the oxidation of 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). DNA interaction studies of complex 1 showed binding of DNA through external or groove binding. Complex 1 exhibited chemical nuclease activity in the presence of hydrogen peroxide and cleaved supercoiled pBR322 DNA to its linear and nicked circular form at physiological pH. Mechanistic studies indicated possible role of hydroxyl radical (radOH) species in DNA cleavage activity via hydroperoxo intermediate: [FeIIIsbnd OOH-]2+ → [FeIVdbnd O]2+ + radOH.

  5. Synthesis, characterization, antibacterial activity, SOD mimic and interaction with DNA of drug based copper(II) complexes.

    PubMed

    Patel, Mohan N; Dosi, Promise A; Bhatt, Bhupesh S; Thakkar, Vasudev R

    2011-02-01

    Novel metal complexes of the second-generation quinolone antibacterial agent enrofloxacin with copper(II) and neutral bidentate ligands have been prepared and characterized with elemental analysis reflectance, IR and mass spectroscopy. Complexes have been screened for their in-vitro antibacterial activity against two Gram(+ve) Staphylococcus aureus, Bacillus subtilis, and three Gram((-ve)) Serratia marcescens, Escherichia coli and Pseudomonas aeruginosa organisms using the double dilution technique. The binding of this complex with CT-DNA has been investigated by absorption titration, salt effect and viscosity measurements. Binding constant is ranging from 1.3×10(4)-3.7×10(4). The cleavage ability of complexes has been assessed by gel electrophoresis using pUC19 DNA. The catalytic activity of the copper(II) complexes towards the superoxide anion (O2.-) dismutation was assayed by their ability to inhibit the reduction of nitroblue tetrazolium (NBT).

  6. Synthesis, characterization, antibacterial activity, SOD mimic and interaction with DNA of drug based copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Patel, Mohan N.; Dosi, Promise A.; Bhatt, Bhupesh S.; Thakkar, Vasudev R.

    2011-02-01

    Novel metal complexes of the second-generation quinolone antibacterial agent enrofloxacin with copper(II) and neutral bidentate ligands have been prepared and characterized with elemental analysis reflectance, IR and mass spectroscopy. Complexes have been screened for their in-vitro antibacterial activity against two Gram (+ve)Staphylococcus aureus, Bacillus subtilis, and three Gram (-ve)Serratia marcescens, Escherichia coli and Pseudomonas aeruginosa organisms using the double dilution technique. The binding of this complex with CT-DNA has been investigated by absorption titration, salt effect and viscosity measurements. Binding constant is ranging from 1.3 × 10 4-3.7 × 10 4. The cleavage ability of complexes has been assessed by gel electrophoresis using pUC19 DNA. The catalytic activity of the copper(II) complexes towards the superoxide anion (O 2rad -) dismutation was assayed by their ability to inhibit the reduction of nitroblue tetrazolium (NBT).

  7. SOD activity and DNA binding properties of a new symmetric porphyrin Schiff base ligand and its metal complexes.

    PubMed

    Çay, Sevim; Köse, Muhammet; Tümer, Ferhan; Gölcü, Ayşegül; Tümer, Mehmet

    2015-12-01

    4-Methoxy-2,6-bis(hydroxymethyl)phenol (1) was prepared from the reaction of 4-methoxyphenol and formaldehyde. The compound (1) was then oxidized to the 4-methoxy-2,6-diformylphenol (2) compound. Molecular structure of compound (2) was determined by X-ray diffraction method. A new symmetric porphyrin Schiff base ligand 4-methoxy-2,6-bis[5-(4-iminophenyl)-10,15,20-triphenylporphyrin]phenol (L) was prepared from the reaction of the 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (TTP-NH2) and the compound (2) in the toluene solution. The metal complexes (Cu(II), Fe(III), Mn(III), Pt(II) and Zn(II)) of the ligand (L) were synthesized and characterized by the spectroscopic and analytical methods. The DNA (fish sperm FSdsDNA) binding studies of the ligand and its complexes were performed using UV-vis spectroscopy. Additionally, superoxide dismutase activities of the porphyrin Schiff base metal complexes were investigated. Additionally, electrochemical, photoluminescence and thermal properties of the compounds were investigated.

  8. Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat.

    PubMed

    Morales, F R; Sampogna, S; Rampon, C; Luppi, P H; Chase, M H

    2006-09-29

    It is well established that, during rapid eye movement (REM) sleep, somatic motoneurons are subjected to a barrage of inhibitory synaptic potentials that are mediated by glycine. However, the source of this inhibition, which is crucial for the maintenance and preservation of REM sleep, has not been identified. Consequently, the present study was undertaken to determine in cats the location of the glycinergic neurons, that are activated during active sleep, and are responsible for the postsynaptic inhibition of motoneurons that occurs during this state. For this purpose, a pharmacologically-induced state of active sleep (AS-carbachol) was employed. Antibodies against glycine-conjugated proteins were used to identify glycinergic neurons and immunocytochemical techniques to label the Fos protein were employed to identify activated neurons. Two distinct populations of glycinergic neurons that expressed c-fos were distinguished. One population was situated within the nucleus reticularis gigantocellularis (NRGc) and nucleus magnocellularis (Mc) in the rostro-ventral medulla; this group of neurons extended caudally to the ventral portion of the nucleus paramedianus reticularis (nPR). Forty percent of the glycinergic neurons in the NRGc and Mc and 25% in the nPR expressed c-fos during AS-carbachol. A second population was located in the caudal medulla adjacent to the nucleus ambiguus (nAmb), wherein 40% of the glycinergic cells expressed c-fos during AS-carbachol. Neither population of glycinergic cells expressed c-fos during quiet wakefulness or quiet (non-rapid eye movement) sleep. We suggest that the population of glycinergic neurons in the NRGc, Mc, and nPR participates in the inhibition of somatic brainstem motoneurons during active sleep. These neurons may also be responsible for the inhibition of sensory and other processes during this state. It is likely that the group of glycinergic neurons adjacent to the nucleus ambiguus (nAmb) is responsible for the active

  9. Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat.

    PubMed

    Morales, F R; Sampogna, S; Rampon, C; Luppi, P H; Chase, M H

    2006-09-29

    It is well established that, during rapid eye movement (REM) sleep, somatic motoneurons are subjected to a barrage of inhibitory synaptic potentials that are mediated by glycine. However, the source of this inhibition, which is crucial for the maintenance and preservation of REM sleep, has not been identified. Consequently, the present study was undertaken to determine in cats the location of the glycinergic neurons, that are activated during active sleep, and are responsible for the postsynaptic inhibition of motoneurons that occurs during this state. For this purpose, a pharmacologically-induced state of active sleep (AS-carbachol) was employed. Antibodies against glycine-conjugated proteins were used to identify glycinergic neurons and immunocytochemical techniques to label the Fos protein were employed to identify activated neurons. Two distinct populations of glycinergic neurons that expressed c-fos were distinguished. One population was situated within the nucleus reticularis gigantocellularis (NRGc) and nucleus magnocellularis (Mc) in the rostro-ventral medulla; this group of neurons extended caudally to the ventral portion of the nucleus paramedianus reticularis (nPR). Forty percent of the glycinergic neurons in the NRGc and Mc and 25% in the nPR expressed c-fos during AS-carbachol. A second population was located in the caudal medulla adjacent to the nucleus ambiguus (nAmb), wherein 40% of the glycinergic cells expressed c-fos during AS-carbachol. Neither population of glycinergic cells expressed c-fos during quiet wakefulness or quiet (non-rapid eye movement) sleep. We suggest that the population of glycinergic neurons in the NRGc, Mc, and nPR participates in the inhibition of somatic brainstem motoneurons during active sleep. These neurons may also be responsible for the inhibition of sensory and other processes during this state. It is likely that the group of glycinergic neurons adjacent to the nucleus ambiguus (nAmb) is responsible for the active

  10. Antimutagenic and antiherpetic activities of different preparations from Uncaria tomentosa (cat's claw).

    PubMed

    Caon, Thiago; Kaiser, Samuel; Feltrin, Clarissa; de Carvalho, Annelise; Sincero, Thaís Cristine Marques; Ortega, George González; Simões, Cláudia Maria Oliveira

    2014-04-01

    Uncaria tomentosa have been used to treat viral diseases such as herpes due to multiple pharmacological effects, but its therapeutic efficacy against this virus have not been reported yet. Thus, in vitro antiherpetic activity of hydroethanolic extract from barks, purified fractions of quinovic acid glycosides and oxindole alkaloids was evaluated by plaque reduction assay, including mechanistic studies (virucidal, attachment and penetration action). Once exposure to physical agents might lead to reactivation of the herpetic infection, antimutagenic effect (pre-, simultaneous and post-treatment protocols) was also evaluated by Comet assay. The antiherpetic activity from the samples under investigation seemed to be associated with the presence of polyphenols or their synergistic effect with oxindole alkaloids or quinovic acid glycosides, once both purified fractions did not present activity when evaluated alone. Inhibition of viral attachment in the host cells was the main mechanism of antiviral activity. Although both purified fractions displayed the lowest antimutagenic activity in pre and simultaneous treatment, they provided a similar effect to that of cat's claw hydroethanolic extract in post-treatment. Given that purified fractions may result in a reduced antiherpetic activity, the use of cat's claw hydroethanolic extract from barks should be prioritized in order to obtain a synergistic effect.

  11. Inhibition of midbrain-evoked tonic and rhythmic motor activity by cutaneous stimulation in decerebrate cats.

    PubMed

    Beyaert, C A; Haouzi, P; Marchal, F

    2003-03-01

    The effect of mechanical and electrical stimulation of cervical cutaneous afferents was analysed on both the centrally induced tonic and rhythmic activities in hindlimb antagonist muscle nerves of 16 decerebrate paralysed cats. Electrical stimulation of dorsal midbrain evoked in the nerve to the tibialis anterior muscle (TAn) either rhythmic discharges (n=14), associated with tonic discharges in ten cats, or only tonic discharges (n=4). Centrally induced activity in the ipsilateral nerve to gastrocnemius medialis (GMn) occurred in fewer cats (n=12) and displayed similar patterns as in TAn. Manual traction of the scruff of the neck reduced the TAn tonic and rhythmic discharges (n=6) by 73% (P<0.05) and 71% (P<0.05), respectively, and reduced only the tonic component of GMn discharges (by 41%, n=3). Electrical stimulation (impulses 0.1-0.5 ms, 50 Hz) of cervical nerves belonging to C5 or C6 dermatomes, the intensity (0.4-4 mA) of which induced minimal inhibition of both TAn and GMn discharges, reduced significantly the tonic component of TAn discharges (by 39%, n=4). At higher intensities of electrical cervical nerve stimulation (2-6 mA) inducing maximal inhibitory effect, both tonic and rhythmic activities in TAn and GMn were both significantly reduced by, respectively, 81% and 94% in TAn (n=7), and by 49% and 43% in GMn (n=7). Electrical cervical nerve stimulation consistently reduced the isolated tonic discharge in TAn by 66% (n=4, P<0.05) and in GMn by 23% (n=3) when present. Thus the tonic component was more sensitive to inhibition than the rhythmic component of hindlimb muscle nerve activity.

  12. Frequency of gamma activity is modulated by motivation in the auditory cortex of cat.

    PubMed

    Karmos, G; Lakatos, P; Pincze, Zsuzsanna; Rajkai, Cs; Ulbert, I

    2002-01-01

    Repetitive acoustic stimuli elicit steady-state response (SSR) in the gamma-band both in humans and in mammals. Our aim was to investigate changes of the spontaneous gamma activity and the SSR in the auditory cortex of cats in the background of an instrumental conditioning situation. Epidural electrodes were chronically implanted above the auditory neocortex. The presentation rate of the clicks varied between 20 and 65/s. Spontaneous EEG and SSR were collected in three behavioral states: in an indifferent environment, in the instrumental cage while the cat was waiting for the light CS, and when she stepped on the pedal and was waiting for the meat reward. Using different repetition rate clicks we determined which stimulus rate elicited the largest SSR in these three situations. In quiet animal the highest SSR appeared at 28-30/s. Before and during the CS the optimal stimulus rate shifted to 32-38/s. The frequency of the spontaneous gamma activity changed in parallel way depending on the situation. We conclude that both the SSR and the spontaneous gamma activity reflect resonant activity of the same neuronal circuit of the auditory cortex, and it is modulated by the motivational state of the animal.

  13. Cat vestibular neurons that exhibit different responses to active and passive yaw head rotations

    NASA Technical Reports Server (NTRS)

    Robinson, F. R.; Tomko, D. L.

    1987-01-01

    Neurons in the vestibular nuclei were recorded in alert cats during voluntary yaw rotations of the head and during the same rotations delivered with a turntable driven from a record of previous voluntary movements. During both voluntary and passive rotations, 35 percent (6/17) of neurons tested responded at higher rates or for a larger part of the movement during voluntary movements than during the same rotations delivered with the turntable. Neck sensory input was evaluated separately in many of these cells and can account qualitatively for the extra firing present during active movement.

  14. EEG-confirmed epileptic activity in a cat with VGKC-complex/LGI1 antibody-associated limbic encephalitis.

    PubMed

    Pakozdy, Akos; Glantschnigg, Ursula; Leschnik, Michael; Hechinger, Harald; Moloney, Teresa; Lang, Bethan; Halasz, Peter; Vincent, Angela

    2014-03-01

    A 5-year-old, female client-owned cat presented with acute onset of focal epileptic seizures with orofacial twitching and behavioural changes. Magnetic resonance imaging showed bilateral temporal lobe hyperintensities and the EEG was consistent with ictal epileptic seizure activity. After antiepileptic and additional corticosteroid treatment, the cat recovered and by 10 months of follow-up was seizure-free without any problem. Retrospectively, antibodies to LGI1, a component of the voltage-gated potassium channel-complex, were identified. Feline focal seizures with orofacial involvement have been increasingly recognised in client-owned cats, and autoimmune limbic encephalitis was recently suggested as a possible aetiology. This is the first report of EEG, MRI and long-term follow-up of this condition in cats which is similar to human limbic encephalitis.

  15. Stimulation of raphe (obscurus) nucleus causes long-term potentiation of phrenic nerve activity in cat.

    PubMed

    Millhorn, D E

    1986-12-01

    1. The respiratory response, measured as integrated phrenic nerve activity, during and for up to an hour following 10 min of continuous electrical stimulation of raphe obscurus was quantitated in anaesthetized, artificially ventilated cats whose carotid sinus nerves and vagus nerves had been cut. End-tidal PCO2 and body temperature were kept constant with servocontrollers. 2. Stimulation of raphe obscurus caused a significant increase in both phrenic tidal activity and respiratory frequency that persisted following cessation of the stimulus. This persistent facilitation is referred to as 'long-term potentiation' of respiration. 3. Control stimulations in the parenchyma of the medulla oblongata failed to stimulate respiration and cause the long-term potentiation. 4. Both the direct facilitatory effects of raphe obscurus stimulation on phrenic nerve activity and the long-term potentiation of respiration following the stimulus were prevented by pre-treating cats with methysergide, a serotonin receptor antagonist. 5. The results are discussed in terms of the raphe obscurus being the potential source of the long-term potentiation of respiration that occurs following stimulation of carotid body afferents (Millhorn, Eldridge & Waldrop, 1980a, b). PMID:3114470

  16. Feeding frequency, but not dietary water content, affects voluntary physical activity in young lean adult female cats.

    PubMed

    de Godoy, M R C; Ochi, K; de Oliveira Mateus, L F; de Justino, A C C; Swanson, K S

    2015-05-01

    The objective of this study was to investigate whether increased dietary water content and feeding frequency increased voluntary physical activity of young, lean adult female cats. A replicated 4 × 4 Latin square design with a 2 × 2 factorial treatment arrangement (feeding frequency and water content) was used. The 4 treatments consisted of 1 meal daily dry pet food without added water (1D; 12% moisture as is), 1 meal daily dry pet food with added water (1W; 70% total water content), 4 meals daily dry pet food without added water (4D; 12% moisture as is), and 4 meals daily dry pet food with added water (4W; 70% total water content). Eight healthy adult, lean, intact, young, female domestic shorthair cats were used in this experiment. Voluntary physical activity was evaluated using Actical activity monitors placed on collars and worn around the cats' necks for the last 7 d of each experimental period of 14 d. Food anticipatory activity (FAA) was calculated based on 2 h prior to feeding periods and expressed as a percentage of total daily voluntary physical activity. Increased feeding frequency (4 vs. 1 meal daily) resulted in greater average daily activity (P = 0.0147), activity during the light period (P = 0.0023), and light:dark activity ratio (P = 0.0002). In contrast, physical activity during the dark period was not altered by feeding frequency (P > 0.05). Cats fed 4 meals daily had increased afternoon FAA (P= 0.0029) compared with cats fed once daily. Dietary water content did not affect any measure of voluntary physical activity. Increased feeding frequency is an effective strategy to increase the voluntary physical activity of cats. Thus, it may assist in the prevention and management of obesity.

  17. Medullary lateral tegmental field neurons influence the timing and pattern of phrenic nerve activity in cats.

    PubMed

    Orer, Hakan S; Gebber, Gerard L; Barman, Susan M

    2006-08-01

    In an effort to characterize the role of the medullary lateral tegmental field (LTF) in regulating respiration, we tested the effects of selective blockade of excitatory (EAA) and inhibitory amino acid (IAA) receptors in this region on phrenic nerve activity (PNA) of vagus-intact and vagotomized cats anesthetized with dial-urethane. We found distinct patterns of changes in central respiratory rate, duration of inspiratory and expiratory phases of PNA (Ti and Te, respectively), and I-burst amplitude after selective blockade of EAA and IAA receptors in the LTF. First, blockade of N-methyl-D-aspartate (NMDA) receptors significantly (P < 0.05) decreased central respiratory rate primarily by increasing Ti but did not alter I-burst amplitude. Second, blockade of non-NMDA receptors significantly reduced I-burst amplitude without affecting central respiratory rate. Third, blockade of GABAA receptors significantly decreased central respiratory rate by increasing Te and significantly reduced I-burst amplitude. Fourth, blockade of glycine receptors significantly decreased central respiratory rate by causing proportional increases in Ti and Te and significantly reduced I-burst amplitude. These changes in PNA were markedly different from those produced by blockade of EAA or IAA receptors in the pre-Bötzinger complex. We propose that a proper balance of excitatory and inhibitory inputs to several functionally distinct pools of LTF neurons is essential for maintaining the normal pattern of PNA in anesthetized cats.

  18. Hypocretinergic facilitation of synaptic activity of neurons in the nucleus pontis oralis of the cat.

    PubMed

    Xi, Ming Chu; Fung, Simon J; Yamuy, Jack; Morales, Francisco R; Chase, Michael H

    2003-06-27

    The present study was undertaken to explore the neuronal mechanisms of hypocretin actions on neurons in the nucleus pontis oralis (NPO), a nucleus which plays a key role in the generation of active (REM) sleep. Specifically, we sought to determine whether excitatory postsynaptic potentials (EPSPs) evoked by stimulation of the laterodorsal tegmental nucleus (LDT) and spontaneous EPSPs in NPO neurons are modulated by hypocretin. Accordingly, recordings were obtained from NPO neurons in the cat in conjunction with the juxtacellular microinjection of hypocretin-1 onto intracellularly recorded cells. The application of hypocretin-1 significantly increased the mean amplitude of LDT-evoked EPSPs of NPO neurons. In addition, the frequency and the amplitude of spontaneous EPSPs in NPO neurons increased following hypocretin-1 administration. These data suggest that hypocretinergic processes in the NPO are capable of modulating the activity of NPO neurons that receive excitatory cholinergic inputs from neurons in the LDT. PMID:12763260

  19. Medullary raphe neuron activity is altered during fictive cough in the decerebrate cat.

    PubMed

    Baekey, David M; Morris, Kendall F; Nuding, Sarah C; Segers, Lauren S; Lindsey, Bruce G; Shannon, Roger

    2003-01-01

    Chemical lesions in the medullary raphe nuclei region influence cough. This study examined whether firing patterns of caudal medullary midline neurons were altered during cough. Extracellular neuron activity was recorded with microelectrode arrays in decerebrated, neuromuscular-blocked, ventilated cats. Cough-like motor patterns (fictive cough) in phrenic and lumbar nerves were elicited by mechanical stimulation of the intrathoracic trachea. Discharge patterns of respiratory and nonrespiratory-modulated neurons were altered during cough cycles (58/133); 45 increased and 13 decreased activity. Fourteen cells changed firing rate during the inspiratory and/or expiratory phases of cough. Altered patterns in 43 cells were associated with the duration of, or extended beyond, the cough episodes. The different response categories suggest that multiple factors influence the discharge patterns during coughing: e.g., respiratory-modulated and tonic inputs and intrinsic connections. These results suggest involvement of midline neurons (i.e., raphe nuclei) in the cough reflex.

  20. Precise rhythmicity in activity of neocortical, thalamic and brain stem neurons in behaving cats and rabbits.

    PubMed

    Dunin-Barkowski, Witali L; Sirota, Mikhail G; Lovering, Andrew T; Orem, John M; Vidruk, Edward H; Beloozerova, Irina N

    2006-11-25

    Rhythmic discharges of neurons are believed to be involved in information processing in both sensory and motor systems. However their fine structure and functional role need further elucidation. We employed a pattern-based approach to search for episodes of precisely rhythmic activity of single neurons recorded in different brain structures in behaving cats and rabbits. We defined discharge patterns using an algorithmic description, which is different from the previously suggested template methods. We detected episodes of precisely rhythmic discharges, specifically, triads of constant (precision +/-2.5%) inter-spike intervals in the 10-70 ms range. In 54% (67/125) of neurons tested, these patterns could not be explained by random occurrences or by steady or slowly changing input. Rhythmic patterns occurred at a wide range of inter-spike intervals, and were imbedded in non-rhythmic activity. In many neurons, timing of these precisely rhythmic patterns was related to different locomotion tasks or to respiration.

  1. Medullary respiratory neural activity during hypoxia in NREM and REM sleep in the cat.

    PubMed

    Lovering, Andrew T; Fraigne, Jimmy J; Dunin-Barkowski, Witali L; Vidruk, Edward H; Orem, John M

    2006-02-01

    Intact unanesthetized cats hyperventilate in response to hypocapnic hypoxia in both wakefulness and sleep. This hyperventilation is caused by increases in diaphragmatic activity during inspiration and expiration. In this study, we recorded 120 medullary respiratory neurons during sleep in hypoxia. Our goal was to understand how these neurons change their activity to increase breathing efforts and frequency in response to hypoxia. We found that the response of medullary respiratory neurons to hypoxia was variable. While the activity of a small majority of inspiratory (58%) and expiratory (56%) neurons was increased in response to hypoxia, the activity of a small majority of preinspiratory (57%) neurons was decreased. Cells that were more active in hypoxia had discharge rates that averaged 183% (inspiratory decrementing), 154% (inspiratory augmenting), 155% (inspiratory), 230% (expiratory decrementing), 191% (expiratory augmenting), and 136% (expiratory) of the rates in normoxia. The response to hypoxia was similar in non-rapid-eye-movement (NREM) and REM sleep. Additionally, changes in the profile of activity were observed in all cell types examined. These changes included advanced, prolonged, and abbreviated patterns of activity in response to hypoxia; for example, some inspiratory neurons prolonged their discharge into expiration during the postinspiratory period in hypoxia but not in normoxia. Although changes in activity of the inspiratory neurons could account for the increased breathing efforts and activity of the diaphragm observed during hypoxia, the mechanisms responsible for the change in respiratory rate were not revealed by our data.

  2. C-fos expression in the pons and medulla of the cat during carbachol-induced active sleep.

    PubMed

    Yamuy, J; Mancillas, J R; Morales, F R; Chase, M H

    1993-06-01

    Microinjection of carbachol into the rostral pontine tegmentum of the cat induces a state that is comparable to naturally occurring active (REM, rapid eye movement) sleep. We sought to determine, during this pharmacologically induced behavioral state, which we refer to as active sleep-carbachol, the distribution of activated neuron within the pons and medulla using c-fos immunocytochemistry as a functional marker. Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited higher numbers of c-fos-expressing neurons in (1) the medial and portions of the lateral reticular formation of the pons and medulla, (2) nuclei in the dorsolateral rostral pons, (3) various raphe nuclei, including the dorsal, central superior, magnus, pallidus, and obscurus, (4) the medial and lateral vestibular, prepositus hypoglossi, and intercalatus nuclei, and (5) the abducens nuclei. On the other hand, the mean number of c-fos-expressing neurons found in the masseter, facial, and hypoglossal nuclei was lower in carbachol-injected than in control cats. The data indicate that c-fos expression can be employed as a marker of state-dependent neuronal activity. The specific sites in which there were greater numbers of c-fos-expressing neurons during active sleep-carbachol are discussed in relation to the state of active sleep, as well as the functional role that these sites play in generating the various physiological patterns of activity that occur during this state. PMID:8501533

  3. Behavioral state-specific inhibitory postsynaptic potentials impinge on cat lumbar motoneurons during active sleep.

    PubMed

    Morales, F R; Boxer, P; Chase, M H

    1987-11-01

    High-gain intracellular records were obtained from lumbar motoneurons in intact, undrugged cats during naturally occurring states of wakefulness, quiet sleep, and active sleep. Spontaneous, discrete, inhibitory postsynaptic potentials (IPSPs) were found to impinge on lumbar motoneurons during all states of sleep and wakefulness. IPSPs which occurred during wakefulness and quiet sleep were of relatively low amplitude and had a low frequency of occurrence. During the state of active sleep there occurred a great increase in inhibitory input. This was the result of the appearance of large-amplitude IPSPs and of an increase in the frequency of low-amplitude IPSPs which were indistinguishable from those recorded during wakefulness and quiet sleep. In addition to a difference in amplitude, the time course of the large IPSPs recorded during active sleep further differentiated them from the smaller IPSPs recorded during wakefulness, quiet sleep, and active sleep; i.e., their rise-time and half-width were of longer duration and their rate-of-rise was significantly faster. We suggest that the large, active sleep-specific IPSPs reflect the activity of a group of inhibitory interneurons which are inactive during wakefulness and quiet sleep and which discharge during active sleep. These as yet unidentified interneurons would then serve as the last link in the brain stem-spinal cord inhibitory system which is responsible for producing muscle atonia during the state of active sleep. PMID:3666087

  4. Investigating the Conformational Structure and Potential Site Interactions of SOD Inhibitors on Ec-SOD in Marine Mud Crab Scylla serrata: A Molecular Modeling Approach.

    PubMed

    Paital, Biswaranjan; Sablok, Gaurav; Kumar, Sunil; Singh, Sanjeev Kumar; Chainy, G B N

    2016-09-01

    Superoxide dismutases (SODs) act as a first line of the enzymatic antioxidant defense system to control cellular superoxide anion toxicity. Previously, several inhibitors have been widely identified and catalogued for inhibition of SOD activity; however, still the information about the mechanism of interaction and points toward the inhibitor interactions in structures of SODs in general and in extracellular (Ec)-SOD in particular is still in naive. In the present research, we present an insight to elucidate the molecular basis of interactions of SOD inhibitors with Ec-SOD in mud crab Scylla serrata using molecular modeling and docking approaches. Different inhibitors of SOD such as hydrogen peroxide [Formula: see text], potassium cyanide, sodium dodecyl sulfate (SDS), [Formula: see text]-mercaptoethanol and dithiocarbamate were screened to understand the potential sites that may act as sites for cleavage or blocking in the protein. SOD-SDS and [Formula: see text] complex interactions indicate residues Pro72 and Asp102 of the predicted crab Ec-SOD as common targets. The GOLD result indicates that Pro72, Asp102 and Thr103 are commonly acting as the site of interaction in Ec-SOD of S. serrata with SOD inhibitors. For the first time, the results of this study provide an insight into the structural properties of Ec-SOD of S. serrata and define the possible involvements between the amino acids present in its active sites, i.e., in the regions from 70 to 84 and from 101 to 103 and different inhibitors.

  5. Fusimotor influence on jaw muscle spindle activity during swallowing-related movements in the cat.

    PubMed

    Taylor, A; Hidaka, O; Durbaba, R; Ellaway, P H

    1997-08-15

    1. The activity patterns of muscle spindle afferents in jaw-closer muscles were studied during reflex swallowing movements in anaesthetized cats. Simultaneous records were made of the electromyogram (EMG) in masseter and anterior digastric muscles and of the unloaded jaw movements. The underlying patterns of fusimotor activity were deduced by comparing afferent discharges occurring during active swallowing with those occurring when exactly the same movements were imposed passively. The interpretation of spindle behaviour was greatly facilitated by characterizing the afferents according to the evidence for their contact with the various intrafusal muscle fibres, derived from testing with succinylcholine. It was also valuable to have two different types of afferent recorded simultaneously. 2. There was clear evidence of fusimotor activity occurring during active jaw closing so as to oppose the spindle silencing. This effect was most marked in b2c-type afferents (probably secondaries) and was therefore attributed to a modulation of static fusimotor discharge approximately in parallel with alpha-activity. 3. Afferents with evidence of bag1 fibre contacts (primaries) showed much greater sensitivity to muscle lengthening during active movement than when the movement was imposed. This difference was exaggerated when anaesthesia was deepened for the passive movements. This was interpreted as evidence for a higher level of dynamic fusimotor activity maintained during active movements than at rest. 4. The results support the view that for a variety of active jaw movements, static fusimotor neurone firing is modulated roughly in parallel with alpha-activity but leading it so as to counteract spindle unloading. Dynamic fusimotor neurone firing appears to be set at a raised level during active movements. Anaesthesia appears to depress activity in the alpha-motoneurones more than in gamma-motoneurones.

  6. Cognitive activation theory of stress (CATS): from fish brains to the Olympics.

    PubMed

    Eriksen, Hege R; Murison, Robert; Pensgaard, Anne Marte; Ursin, Holger

    2005-11-01

    The Cognitive Activation Theory of Stress (CATS) offers formal and systematic definitions of the terms and concepts used in stress research. The stress response depends on acquired expectancies to the outcome of the stimulus and the available responses. The stress response itself is an alarm, an increase in arousal necessary for performance and adequate reactions to challenges. The response is healthy and necessary for survival. Only when sustained over time may potential health risks occur. The basic rules for when stress occurs are the same across cultures and species, from fish to Olympic performance in humans. The important dimensions for health are positive expectancies of outcome (coping), control, and safety, for all individuals in all species. PMID:15964143

  7. Influences of laryngeal afferent inputs on intralaryngeal muscle activity during vocalization in the cat.

    PubMed

    Shiba, K; Yoshida, K; Nakajima, Y; Konno, A

    1997-01-01

    The present study was undertaken to elucidate the possible role of the laryngeal afferent inputs in the regulation of intralaryngeal muscle activity during vocalization. We studied the influences of airflow and/or pressure applied to the larynx on intralaryngeal muscle activity during vocalization in ketamine-anesthetized cats. Vocalization was induced by airflow applied to the upper airway, which was isolated from the lower airway, during pontine call site stimulation. When the upper airway was open to the atmosphere through the nostrils and mouth, the airflow increased not only the vocal fold adductor and tensor activities but also the duration of these activities. The adductor and tensor activities were increased suddenly at a critical subglottic pressure level equivalent to the subglottic pressure threshold for vocalization. These effects were significantly reduced by sectioning of the internal branch of the superior laryngeal nerve or by lidocaine application to the laryngeal mucosa. Sustained pressure applied to the isolated upper airway, when the mouth and nostrils were occluded, did not affect adductor or tensor activities. These results indicate that the afferent inputs evoked by vocal fold stretching or vibration play an important role in the motor control of intralaryngeal and respiratory muscles during vocalization.

  8. Central effects of 5-HT on respiratory and hypoglossal activities in the adult cat.

    PubMed

    Rose, D; Khater-Boidin, J; Toussaint, P; Duron, B

    1995-07-01

    The activities of the diaphragmatic, internal intercostal and hypoglossal-innervated muscles were studied in adult decerebrate cats in response to 5-HT and related agents (8-OH-DPAT and DOI). The drugs were placed on the floor of the IVth ventricle. The mean respiratory frequency (Fi) increased (124-193% of the control value) within 3 min of the 5-HT application, and decreased thereafter (30-90%). The mean Ti and Te changed similarly, but opposite to Fi. With some delay, the hypoglossal-innervated muscles were tonically activated or exhibited increased activities. Methysergide pretreatment completely blocked the effect of 5-HT on all the respiratory parameters and the hypoglossal-innervated muscles activities. The responses to 8-OH-DPAT and DOI indicate that 5-HT modulates the respiratory frequency via activation of both 5-HT1A and 5-HT2 receptors. Nevertheless, the effect of 5-HT on both the expiratory and hypoglossal-innervated muscles seems to depend on 5-HT2 receptors activation only.

  9. Neuronal activity in the primary visual cortex of the cat freely viewing natural images.

    PubMed

    Maldonado, P E; Babul, C M

    2007-02-23

    Many studies have now demonstrated that neurons in the visual cortex of cats and monkeys change their activity when stimuli are presented beyond their classical receptive field, and that these responses are not readily apparent from their receptive field properties. However few studies have been conducted to investigate the discharge properties of neurons in the visual cortex of animals when they are allow to freely view natural images. We employ tetrodes, which enable simultaneous and separable recordings of small numbers of neighboring neurons, to record 102 single units from 59 sites from areas 17 and 18 of two alert cats. While the animals viewed either natural images or black screens, they made frequent saccadic eye movements and gaze fixations. Fixations onto an image's location increased neuronal firing peaking at 80-100 ms after the fixation onset, to then decrease steadily with time despite continuous fixation. Saccades trigger a fast decrease in firing rate for both images and darkness. When we examined the incidence of correlated firing, we observed significant synchrony during the initial phases of visual fixations when the animals viewed natural scenes. Such synchrony was absent during saccadic eye movements and during eye movements in darkness. Our data revealed that scanning of natural scenes is associated with a rapid succession of distinct fixation-related activation patterns that included transient rate changes and excess coincident firing. The transient nature of these synchronization phenomena suggests a fast acting mechanism, which is in good agreement with the evidence that basic operations of scene analysis must be accomplished within a few tens of milliseconds in primary visual cortex.

  10. Radiation-Induced Reductions in Neurogenesis are Ameliorated in Mice Deficient in CuZnSOD or MnSOD

    PubMed Central

    Fishman, Kelly; Baure, Jennifer; Zou, Yani; Huang, Ting-Ting; Andres-Mach, Marta; Rola, Radoslaw; Suarez, Tatiana; Acharya, Munjal; Limoli, Charles L.; Lamborn, Kathleen R.; Fike, John R.

    2009-01-01

    Ionizing irradiation significantly affects hippocampal neurogenesis and is associated with cognitive impairments; these effects may be influenced by an altered microenvironment. Oxidative stress is a factor that has been shown to affect neurogenesis, and one of the protective pathways to deal with such stress involves the antioxidant enzyme superoxide dismutase (SOD). This study addressed how the deficiency of cytoplasmic (SOD1) or mitochondrial (SOD2) SOD impacts radiation effects on hippocampal neurogenesis. Wild type (WT), SOD 1 and SOD2 knock out (KO) mice received a single x-ray dose of 5 Gy, and quantification of the survival and phenotypic fate of newly generated cells in the dentate subgranular zone was performed 2 months later. Radiation exposure reduced neurogenesis in WT mice but had no apparent effect in KO mice, although baseline levels of neurogenesis were reduced in both SOD KO strains prior to irradiation. Additionally, there were marked and significant differences between WT and both KO strains in how irradiation affected newly generated astrocytes and activated microglia. The mechanism(s) responsible for these effects are not yet known, but a pilot in vitro study suggests a ‘protective’ effect of elevated levels of superoxide. Overall, these data suggest that under conditions of SOD deficiency, there is a common pathway dictating how neurogenesis is affected by ionizing irradiation. PMID:19703553

  11. Effects of ionic and non-ionic solutions on intradental nerve activity in the cat.

    PubMed

    Bilotto, G; Markowitz, K; Kim, S

    1988-02-01

    Intradental nerve activity (INA) was recorded from cat canine teeth to determine whether solutions altering intradental nerve sensitivity were strongly correlated to the osmotic concentration of the solution or via a more direct action on intradental nerve excitability. The effects of various ionic and non-ionic solutions were tested in both deep and shallow dentinal cavities. With saline in the deep dentinal cavity a very low firing rate or resting nerve spike (action potentials) activity was recorded. When 3 M NaCl was placed in the same or similar cavity a high discharge rate of nerve spike activity was obtained. This 3 M NaCl elicited activity was utilized to determine the inhibitory or excitatory effects of various test agents on the intradental nerves. The following agents: MgCl2, MgSO4, and CaCl2 were inhibitory to the INA response elicited by 3 M NaCl. Non-ionic solutions of urea or sucrose failed to evoke INA and they were also minimally effective in altering 3 M NaCl elicited activity. Shallow cavities were utilized to maintain the tubular structure of dentin relatively intact. In the shallow cavity preparations hypertonic sucrose or urea failed to evoke INA, even when dentin was etched with 50% citric acid for 2 min. The results suggest that the osmolarity of these solutions is a poor indicator of the INA. PMID:3362559

  12. [Correlation between brain stem aminergic neuronal activity and EEG patterns in a wakeful cat].

    PubMed

    Kulichenko, A M; Dyagileva -Fokina, Yu O; Kolotilova, O I; Pavlenko, V B

    2013-01-01

    There was carried out a correlation analysis for the frequency of the background impulse activity of the brain stem monoaminergic neurons and the spectral power of electroencephalogram frequency components in a wakeful cat. The frequency of the background impulse activity in the studied neurons was found to be reliably (p < 0.05) correlated with all basic electroencephalogram rhythms. Among the statistically significant correlations, there were most often observed the positive ones between the background impulse activity of the ventral tegmentum dopaminergic neurons and the locus coeruleus noradrenergic neurons, on the one hand, and the power spectral density of alpha-rhythm, on the other hand (40.3% and 48.0% respectively). Besides, 47.7% of the raphe nuclei serotoninergic neurons under study showed positive correlation between their impulse activity and the spectral power density of beta-rhythm. The results obtained let us assume the possibility of taking specific EEG patterns as markers of activity for the basic cerebral monoaminergic systems.

  13. Time budget and activity patterns of oncilla cats (Leopardus tigrinus) in captivity.

    PubMed

    Resende, Letícia de Souza; Neto, Glauce Lima e; Carvalho, Patrícia Gonçalves Duarte; Landau-Remy, Gabriella; Ramos-Júnior, Valdir de Almeida; Andriolo, Artur; Genaro, Gelson

    2014-01-01

    Researchers have reported on the diet of Leopardus tigrinus and ecological aspects, but studies of behavior are scarce. The aims of this study were to describe the time budget and activity patterns of 10 captive Leopardus tigrinus individuals. The group had an activity budget of 66% resting, 20.66% moving, 6.08% vigilant, 3.12% feeding, and 4.14% other activities during 720 hr of observations. The activity budgets of the males and females did not differ significantly; however, males ate more than did females. The nonhuman animals spent more time resting during the day than during the night. Moving, socializing, maintenance, and vigilance showed statistically higher mean values at night. Group analysis of the temporal pattern of behavior showed bimodal peaks. Activity levels were high from 5 a.m. to 6 a.m. and decreased through the day only to peak again at 7 p.m. Stereotypic pacing peaked at dawn and at dusk. Patterns of vigilance, feeding, and maintenance were also determined for the group during a 24-hr period. These results may be useful for the development of management plans and effective conservation strategies for captive cats.

  14. Notch pathway is activated in cell culture and mouse models of mutant SOD1-related familial amyotrophic lateral sclerosis, with suppression of its activation as an additional mechanism of neuroprotection for lithium and valproate.

    PubMed

    Wang, S-Y; Ren, M; Jiang, H-Z; Wang, J; Jiang, H-Q; Yin, X; Qi, Y; Wang, X-D; Dong, G-T; Wang, T-H; Yang, Y-Q; Feng, H-L

    2015-08-20

    Amyotrophic lateral sclerosis (ALS) is an idiopathic and lethal neurodegenerative disease that currently has no effective treatment. A recent study found that the Notch signaling pathway was up-regulated in a TAR DNA-binding protein-43 (TDP-43) Drosophila model of ALS. Notch signaling acts as a master regulator in the central nervous system. However, the mechanisms by which Notch participates in the pathogenesis of ALS have not been completely elucidated. Recent studies have shown that the mood stabilizers lithium and valproic acid (VPA) are able to regulate Notch signaling. Our study sought to confirm the relationship between the Notch pathway and ALS and whether the Notch pathway contributes to the neuroprotective effects of lithium and VPA in ALS. We found that the Notch pathway was activated in in vitro and in vivo models of ALS, and suppression of Notch activation with a Notch signaling inhibitor, N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) and Notch1 siRNA significantly reduced neuronal apoptotic signaling, as evidenced by the up-regulation of Bcl-2 as well as the down-regulation of Bax and cytochrome c. We also found that lithium and VPA suppressed the Notch activation associated with the superoxide dismutase-1 (SOD1) mutation, and the combination of lithium and VPA produced a more robust effect than either agent alone. Our findings indicate that the Notch pathway plays a critical role in ALS, and the neuroprotective effects of lithium and VPA against mutant SOD1-mediated neuronal damage are at least partially dependent on their suppression of Notch activation.

  15. Long-term effects of axotomy on neural activity during cat locomotion.

    PubMed

    Gordon, T; Hoffer, J A; Jhamandas, J; Stein, R B

    1980-06-01

    1. Neural activity was recorded from cats during locomotion on a treadmill using electrodes in Silastic cuffs placed around the sciatic nerve and the lateral gastrocnemius-soleus, medial gastrocnemius, common peroneal and tibial nerve branches. Each branch gave characteristic patterns of activity which were studied before and after it was cut distal to the recording cuffs. Sensory and motor components were separated and measured using cross-correlation techniques. The amplitude of the cross-correlation peaks was compared with the amplitude of compound action potentials evoked by electrical stimulation and recorded from the same sites in the anaesthetized animal. 2. Sensory activity declined rapidly following axotomy and did not recover unless reinnervation occurred. Sensory activity even 5 months after nerve section and resuture had recovered to only a fraction of the control values. This reduction is attributed to a decline in the evoked compound potentials and to many fibres being unsuccessful in regenerating to appropriate sensory organs. 3. Motor activity declined more than could be accounted for by a decline in evoked potentials over the first month after axotomy. The extra reduction represents a decline in the number of impulses generated by alpha-motoneurones after axotomy. If regeneration was permitted, motor activity recovered to higher levels than did the evoked potentials for the whole nerve. Even if regeneration was prevented by nerve ligation, motoneurones continued to generate activity at a stable level over a period of months during which whole nerve compound potentials continued to decline. 4. The modulation of motor activity in ligated nerves during the step cycle was still appropriate to the required movement. Thus, activity recorded from severed nerves in human amputees may be useful in controlling powered artificial limbs. The persistence of motor activity may be responsible for the lesser degree of atrophy found in motor fibres than in sensory

  16. Research on acupuncture points and cortical functional activation position in cats by infrared imaging detection

    NASA Astrophysics Data System (ADS)

    Chen, Shuwang; Sha, Zhanyou; Wang, Shuhai; Wen, Huanming

    2007-12-01

    The research of the brain cognition is mainly to find out the activation position in brain according to the stimulation at present in the world. The research regards the animals as the experimental objects and explores the stimulation response on the cerebral cortex of acupuncture. It provides a new method, which can detect the activation position on the creatural cerebral cortex directly by middle-far infrared imaging. According to the theory of local temperature situation, the difference of cortical temperature maybe associate with the excitement of cortical nerve cells, the metabolism of local tissue and the local hemal circulation. Direct naked detection of temperature variety on cerebral cortex is applied by middle and far infrared imaging technology. So the activation position is ascertained. The effect of stimulation response is superior to other indirect methods. After removing the skulls on the head, full of cerebral cortex of a cat are exposed. By observing the infrared images and measuring the temperatures of the visual cerebral cortex during the process of acupuncturing, the points are used to judge the activation position. The variety in the cortical functional sections is corresponding to the result of the acupuncture points in terms of infrared images and temperatures. According to experimental results, we know that the variety of a cortical functional section is corresponding to a special acupuncture point exactly.

  17. A cytoplasmic Cu-Zn superoxide dismutase SOD1 contributes to hyphal growth and virulence of Fusarium graminearum.

    PubMed

    Yao, Sheng-Hua; Guo, Yan; Wang, Yan-Zhang; Zhang, Dong; Xu, Ling; Tang, Wei-Hua

    2016-06-01

    Superoxide dismutases (SODs) are scavengers of superoxide radicals, one of the main reactive oxygen species (ROS) in the cell. SOD-based ROS scavenging system constitutes the frontline defense against intra- and extracellular ROS, but the roles of SODs in the important cereal pathogen Fusarium graminearum are not very clear. There are five SOD genes in F. graminearum genome, encoding cytoplasmic Cu-Zn SOD1 and MnSOD3, mitochondrial MnSOD2 and FeSOD4, and extracellular CuSOD5. Previous studies reported that the expression of SOD1 increased during infection of wheat coleoptiles and florets. In this work we showed that the recombinant SOD1 protein had the superoxide dismutase activity in vitro, and that the SOD1-mRFP fusion protein localized in the cytoplasm of F. graminearum. The Δsod1 mutants had slightly reduced hyphal growth and markedly increased sensitivity to the intracellular ROS generator menadione. The conidial germination under extracellular oxidative stress was significantly delayed in the mutants. Wheat floret infection assay showed that the Δsod1 mutants had a reduced pathogenicity. Furthermore, the Δsod1 mutants had a significant reduction in production of deoxynivalenol mycotoxin. Our results indicate that the cytoplasmic Cu-Zn SOD1 affects fungal growth probably depending on detoxification of intracellular superoxide radicals, and that SOD1-mediated deoxynivalenol production contributes to the virulence of F. graminearum in wheat head infection. PMID:27037138

  18. Sensorimotor cortical influences on cuneate nucleus rhythmic activity in the anesthetized cat.

    PubMed

    Marino, J; Canedo, A; Aguilar, J

    2000-01-01

    This work aimed to study whether the sensorimotor cerebral cortex spreads down its rhythmic patterns of activity to the dorsal column nuclei. Extracellular and intracellular recordings were obtained from the cuneate nucleus of chloralose-anesthetized cats. From a total of 140 neurons tested (106 cuneolemniscal), 72 showed spontaneous rhythmic activity within the slow (< 1 Hz), delta (1-4 Hz), spindle (5-15 Hz) and higher frequencies, with seven cells having the delta rhythm coupled to slow oscillations. The spindle activity recorded in the cuneate was tightly coupled to the thalamo-cortico-thalamic spindle rhythmicity. Bilateral or contralateral removal of the frontoparietal cortex abolished the cuneate slow and spindle oscillations. Oscillatory paroxysmal activity generated by fast electrical stimulation (50-100 Hz/1-2 s) of the sensorimotor cortex induced burst firing synchronized with the paroxysmal cortical "spike" on all the non-lemniscal neurons, and inhibitory responses also coincident with the cortical paroxysmal "spike" in the majority (71%) of the cuneolemniscal cells. The remaining lemniscal-projecting neurons showed bursting activity (11%) or sequences of excitation-inhibition (18%) also time-locked to the cortical paroxysmal "spike". Additionally, the cerebral cortex induced coherent oscillatory activity between thalamic ventroposterolateral and cuneate neurons. Electrolytic lesion of the pyramidal tract abolished the cortically induced effects on the contralateral cuneate nucleus, as well as on the ipsilateral medial lemniscus. The results demonstrate that the sensorimotor cortex imposes its rhythmic patterns on the cuneate nucleus through the pyramidal tract, and that the corticocuneate network can generate normal and abnormal patterns of synchronized activity, such as delta waves, spindles and spike-and-wave complexes. The cuneate neurons, however, are able to generate oscillatory activity above 1 Hz in the absence of cortical input, which implies

  19. GABAergic mechanisms in the pedunculopontine tegmental nucleus of the cat promote active (REM) sleep.

    PubMed

    Torterolo, Pablo; Morales, Francisco R; Chase, Michael H

    2002-07-19

    The pedunculopontine tegmental nucleus (PPT) has been implicated in the generation and/or maintenance of both active sleep (AS) and wakefulness (W). GABAergic neurons are present within this nucleus and recent studies have shown that these neurons are active during AS. In order to examine the role of mesopontine GABAergic processes in the generation of AS, the GABA(A) agonist muscimol and the GABA(A) antagonist bicuculline were microinjected into the PPT of chronic cats that were prepared for recording the states of sleep and wakefulness. Muscimol increased the time spent in AS by increasing the frequency and duration of AS episodes; this increase in AS was at the expense of the time spent in wakefulness. A decrease in PGO density during AS was also observed following the microinjection of muscimol. On the other hand, bicuculline decreased both AS and quiet sleep and increased the time spent in wakefulness. These data suggest that GABA acts on GABA(A) receptors within the PPT to facilitate the generation of AS by suppressing the activity of waking-related processes within this nucleus. PMID:12106660

  20. Preferred locomotor phase of activity of lumbar interneurons during air-stepping in subchronic spinal cats.

    PubMed

    AuYong, Nicholas; Ollivier-Lanvin, Karen; Lemay, Michel A

    2011-03-01

    Spinal locomotor circuits are intrinsically capable of driving a variety of behaviors such as stepping, scratching, and swimming. Based on an observed rostrocaudal wave of activity in the motoneuronal firing during locomotor tasks, the traveling-wave hypothesis proposes that spinal interneuronal firing follows a similar rostrocaudal pattern of activation, suggesting the presence of spatially organized interneuronal modules within the spinal motor system. In this study, we examined if the spatial organization of the lumbar interneuronal activity patterns during locomotor activity in the adult mammalian spinal cord was consistent with a traveling-wave organizational scheme. The activity of spinal interneurons within the lumbar intermediate zone was examined during air-stepping in subchronic spinal cats. The preferred phase of interneuronal activity during a step cycle was determined using circular statistics. We found that the preferred phases of lumbar interneurons from both sides of the cord were evenly distributed over the entire step cycle with no indication of functional groupings. However, when units were subcategorized according to spinal hemicords, the preferred phases of units on each side largely fell around the period of extensor muscle activity on each side. In addition, there was no correlation between the preferred phases of units and their rostrocaudal locations along the spinal cord with preferred phases corresponding to both flexion and extension phases of the step cycle found at every rostrocaudal level of the cord. These results are consistent with the hypothesis that interneurons operate as part of a longitudinally distributed network rather than a rostrocaudally organized traveling-wave network.

  1. That Fat Cat

    ERIC Educational Resources Information Center

    Lambert, Phyllis Gilchrist

    2012-01-01

    This activity began with a picture book, Nurit Karlin's "Fat Cat On a Mat" (HarperCollins; 1998). The author and her students started their project with a 5-inch circular template for the head of their cats. They reviewed shapes as they drew the head and then added the ears and nose, which were triangles. Details to the face were added when…

  2. Selective depletion of vascular EC-SOD augments chronic hypoxic pulmonary hypertension.

    PubMed

    Nozik-Grayck, Eva; Woods, Crystal; Taylor, Joann M; Benninger, Richard K P; Johnson, Richard D; Villegas, Leah R; Stenmark, Kurt R; Harrison, David G; Majka, Susan M; Irwin, David; Farrow, Kathryn N

    2014-12-01

    Excess superoxide has been implicated in pulmonary hypertension (PH). We previously found lung overexpression of the antioxidant extracellular superoxide dismutase (EC-SOD) attenuates PH and pulmonary artery (PA) remodeling. Although comprising a small fraction of total SOD activity in most tissues, EC-SOD is abundant in arteries. We hypothesize that the selective loss of vascular EC-SOD promotes hypoxia-induced PH through redox-sensitive signaling pathways. EC-SOD(loxp/loxp) × Tg(cre/SMMHC) mice (SMC EC-SOD KO) received tamoxifen to conditionally deplete smooth muscle cell (SMC)-derived EC-SOD. Mice were exposed to hypobaric hypoxia for 35 days, and PH was assessed by right ventricular systolic pressure measurements and right ventricle hypertrophy. Vascular remodeling was evaluated by morphometric analysis and two-photon microscopy for collagen. We examined cGMP content and soluble guanylate cyclase expression and activity in lung, lung phosphodiesterase 5 (PDE5) expression and activity, and expression of endothelial nitric oxide synthase and GTP cyclohydrolase-1 (GTPCH-1), the rate-limiting enzyme in tetrahydrobiopterin synthesis. Knockout of SMC EC-SOD selectively decreased PA EC-SOD without altering total lung EC-SOD. PH and vascular remodeling induced by chronic hypoxia was augmented in SMC EC-SOD KO. Depletion of SMC EC-SOD did not impact content or activity of lung soluble guanylate cyclase or PDE5, yet it blunted the hypoxia-induced increase in cGMP. Although total eNOS was not altered, active eNOS and GTPCH-1 decreased with hypoxia only in SMC EC-SOD KO. We conclude that the localized loss of PA EC-SOD augments chronic hypoxic PH. In addition to oxidative inactivation of NO, deletion of EC-SOD seems to reduce eNOS activity, further compromising pulmonary vascular function. PMID:25326578

  3. SOD

    NASA Astrophysics Data System (ADS)

    Fischer, R. X.; Baur, W. H.

    This document is part of Subvolume E `Zeolite-Type Crystal Structures and their Chemistry. Framework Type Codes RON to STI' of Volume 14 `Microporous and other Framework Materials with Zeolite-Type Structures' of Landolt-Börnstein Group IV `Physical Chemistry'.

  4. Antioxidant activity of protocatechuates evaluated by DPPH, ORAC, and CAT methods.

    PubMed

    Grajeda-Iglesias, Claudia; Salas, Erika; Barouh, Nathalie; Baréa, Bruno; Panya, Atikorn; Figueroa-Espinoza, Maria Cruz

    2016-03-01

    Hibiscus sabdariffa L. is a worldwide consumed plant, principally after infusion of its dried sepals and calyces, which are usually discarded. Nevertheless, they represent a potential source of natural bioactive compounds, e.g. polyphenols, which could add value to this under-exploited plant. Protocatechuic acid (PA) was chosen as a model of the phenolic acids that can be extracted from H. sabdariffa. In order to modify PA hydrophilic character, which limits its use in lipid-rich food products, PA was esterified to C1-C18 alcohols, and the impact of lipophilization on its antioxidant activity was evaluated in both, an homogeneous (DPPH and ORAC methods) and an heterogeneous (CAT method) system. Results herein obtained showed that, depending on the grafted alkyl chain length, lipophilization could positively affect the antioxidant activity of PA in heterogeneous media; therefore, support its use as an innovative way to synthesize molecules with an improved antioxidant capacity and potential to be used as multifunctional preservatives in food. PMID:26471615

  5. Activity of Caudate Nucleus Neurons in a Visual Fixation Paradigm in Behaving Cats

    PubMed Central

    Nagypál, Tamás; Gombkötő, Péter; Barkóczi, Balázs; Benedek, György; Nagy, Attila

    2015-01-01

    Beside its motor functions, the caudate nucleus (CN), the main input structure of the basal ganglia, is also sensitive to various sensory modalities. The goal of the present study was to investigate the effects of visual stimulation on the CN by using a behaving, head-restrained, eye movement-controlled feline model developed recently for this purpose. Extracellular multielectrode recordings were made from the CN of two cats in a visual fixation paradigm applying static and dynamic stimuli. The recorded neurons were classified in three groups according to their electrophysiological properties: phasically active (PAN), tonically active (TAN) and high-firing (HFN) neurons. The response characteristics were investigated according to this classification. The PAN and TAN neurons were sensitive primarily to static stimuli, while the HFN neurons responded primarily to changes in the visual environment i.e. to optic flow and the offset of the stimuli. The HFNs were the most sensitive to visual stimulation; their responses were stronger than those of the PANs and TANs. The majority of the recorded units were insensitive to the direction of the optic flow, regardless of group, but a small number of direction-sensitive neurons were also found. Our results demonstrate that both the static and the dynamic components of the visual information are represented in the CN. Furthermore, these results provide the first piece of evidence on optic flow processing in the CN, which, in more general terms, indicates the possible role of this structure in dynamic visual information processing. PMID:26544604

  6. Activity of pyramidal tract neurons in the cat during standing and walking on an inclined plane.

    PubMed

    Karayannidou, A; Beloozerova, I N; Zelenin, P V; Stout, E E; Sirota, M G; Orlovsky, G N; Deliagina, T G

    2009-08-01

    To keep balance when standing or walking on a surface inclined in the roll plane, the cat modifies its body configuration so that the functional length of its right and left limbs becomes different. The aim of the present study was to assess the motor cortex participation in the generation of this left/right asymmetry. We recorded the activity of fore- and hindlimb-related pyramidal tract neurons (PTNs) during standing and walking on a treadmill. A difference in PTN activity at two tilted positions of the treadmill (+/- 15 deg) was considered a positional response to surface inclination. During standing, 47% of PTNs exhibited a positional response, increasing their activity with either the contra-tilt (20%) or the ipsi-tilt (27%). During walking, PTNs were modulated in the rhythm of stepping, and tilts of the supporting surface evoked positional responses in the form of changes to the magnitude of modulation in 58% of PTNs. The contra-tilt increased activity in 28% of PTNs, and ipsi-tilt increased activity in 30% of PTNs. We suggest that PTNs with positional responses contribute to the modifications of limb configuration that are necessary for adaptation to the inclined surface. By comparing the responses to tilts in individual PTNs during standing and walking, four groups of PTNs were revealed: responding in both tasks (30%); responding only during standing (16%); responding only during walking (30%); responding in none of the tasks (24%). This diversity suggests that common and separate cortical mechanisms are used for postural adaptation to tilts during standing and walking.

  7. Response of serotonergic caudal raphe neurons in relation to specific motor activities in freely moving cats.

    PubMed

    Veasey, S C; Fornal, C A; Metzler, C W; Jacobs, B L

    1995-07-01

    Serotonergic neuronal responses during three specific motor activities were studied in nuclei raphe obscurus (NRO) and raphe pallidus (NRP) of freely moving cats by means of extracellular single-unit recordings. Responses to treadmill-induced locomotion were primarily excitatory, with 21 of 24 neurons displaying increased firing rates, directly related to treadmill speed. Individual regression analyses determined three response patterns: maximal activation at low speed (0.25 m/sec), augmentation of neuronal activity only at high treadmill speed (0.77 m/sec), and a linear increase. A smaller fraction of NRO and NRP serotonergic neurons (6 of 27) also responded to hypercarbic ventilatory challenge with increased firing rates. The magnitude of neuronal response was dependent upon the fraction of inspired CO2 and was related to ventilatory motor output, specifically, inspiratory amplitude. A subgroup of neurons responsive to hypercarbia in wakefulness demonstrated significant reductions in neuronal response to hypercarbia in slow-wave sleep. Finally, unit activity for 12 of 29 cells increased in response to spontaneous feeding, displaying two distinct patterns of neuronal response in relation to onset and termination of feeding: rapid activation and deactivation versus a gradual increase and decrease. More than half of the cells studied under all three conditions were responsive to more than one motor task. These results indicate that serotonergic caudal raphe neurons are responsive to specific motor system challenges, with many neurons responsive to multiple motor tasks, and that the responsiveness of serotonergic neurons to at least one motor task, hypercarbic ventilatory challenge, is state dependent.

  8. Endogenous bradykinin activates ischaemically sensitive cardiac visceral afferents through kinin B2 receptors in cats

    PubMed Central

    Tjen-A-Looi, Stephanie C; Pan, Hui-Lin; Longhurst, John C

    1998-01-01

    Activity of ischaemically sensitive cardiac visceral afferents during myocardial ischaemia induces both angina and cardiovascular reflexes. Increased production of bradykinin (BK) and cyclo-oxygenase products (i.e. prostaglandins (PGs)) occurs during myocardial ischaemia. However, the role of these agents in activation of ischaemically sensitive cardiac afferents has not been established. The present study tested the hypothesis that BK produced during ischaemia activates cardiac afferents through kinin B2 receptors. Single-unit activity of cardiac afferents innervating the left ventricle was recorded from the left thoracic sympathetic chain (T1–T4) of anaesthetized cats. Ischaemically sensitive cardiac afferents were identified according to their response to 5 min of myocardial ischaemia. The mechanism of BK in activation of ischaemically sensitive cardiac afferents was determined by injection of BK (1 μg kg−1 i.a.), des-Arg9-BK (1 μg kg−1 i.a., a specific kinin B1 receptor agonist), kinin B2 receptor antagonists: HOE140 (30 μg kg−1 i.v.) and NPC-17731 (40 μg kg−1 i.v.), cyclo-oxygenase inhibition with indomethacin (5 mg kg−1 i.v.) and NPC-17731 (40 μg kg−1 i.v.) after pretreatment with indomethacin (5 mg kg−1 i.v.). We observed that BK increased the discharge rate of all eleven ischaemically sensitive cardiac afferents from 0.39 ± 0.12 to 1.47 ± 0.37 impulses s−1 (P < 0.05). Conversely, des-Arg9-BK did not significantly increase the activity of eleven ischaemically sensitive fibres (0.58 ± 0.02 vs. 0.50 ± 0.18 impulses s−1). HOE140 significantly attenuated the response of twelve afferents to ischaemia (0.61 ± 0.22 to 1.85 ± 0.5 vs. 0.53 ± 0.16 to 1.09 ± 0.4 impulses s−1). NPC-17731, another kinin B2 receptor antagonist, had similar inhibitory effects on six other ischaemically sensitive cardiac afferents (0.35 ± 0.14 to 1.19 ± 0.29 vs. 0.22 ± 0.08 to 0.23 ± 0.07 impulses s−1). Indomethacin significantly reduced the

  9. Selective knockdown of mutant SOD1 in Schwann cells ameliorates disease in G85R mutant SOD1 transgenic mice.

    PubMed

    Wang, Lijun; Pytel, Peter; Feltri, M Laura; Wrabetz, Lawrence; Roos, Raymond P

    2012-10-01

    Mutants of superoxide dismutase type 1 (mtSOD1) that have full dismutase activity (e.g., G37R) as well as none (e.g., G85R) cause familial amyotrophic lateral sclerosis (FALS), indicating that mtSOD1-induced FALS results from a toxicity rather than loss in SOD1 enzymatic activity. Still, it has remained unclear whether mtSOD1 dismutase activity can influence disease. A previous study demonstrated that Cre-mediated knockdown of G37R expression in Schwann cells (SCs) of G37R transgenic mice shortened the late phase of disease and survival. These results suggested that the neuroprotective effect of G37R expressed in SCs was greater than its toxicity, presumably because its dismutase activity counteracted reactive oxygen species (ROS). In order to further investigate this, we knocked down G85R in SCs by crossing G85R(flox) mice with myelin-protein-zero (P(0)):Cre mice, which express Cre recombinase in SCs. Knockdown of G85R in SCs of G85R mice delayed disease onset and extended survival indicating that G85R expression in SCs is neurotoxic. These results demonstrate differences in the effect on disease of dismutase active vs. inactive mtSOD1 suggesting that both a loss as well as gain in function of mtSOD1 influence FALS pathogenesis. The results suggest that mtSOD1-induced FALS treatment may have to be adjusted depending on the cell type targeted and particular mtSOD1 involved.

  10. Some aspects of the modular organization of the primary visual cortex of the cat: patterns of cytochrome oxidase activity.

    PubMed

    Merkul'eva, N S; Makarov, F N

    2008-10-01

    The distribution of the enzyme cytochrome oxidase (CO) in continuous series of parasagittal sections from field 17 and frontal sections of the dorsal nucleus of the lateral geniculate body (LGB) from normal kittens and adult cats was studied. In all cats apart from neonates, layer IV showed regularly alternating areas with above-background levels of CO activity ("spots"). There was a significant increase in the contrast of the "spots" from days 13 to 21, which was followed by a significant decrease from days 48 to 93. These changes coincided with ontogenetic changes in the level of visual system plasticity. There were no differences in CO activity between layers A and A1 of the dorsal nucleus of the LGB. It is suggested that the non-uniform distribution of the level of functional activity of neurons in field 17 reflects the formation of columnar cortical structures during the critical period of postnatal ontogenesis.

  11. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    PubMed

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P < 0.01) reduced the amplitude of the reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions.

  12. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    PubMed

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P < 0.01) reduced the amplitude of the reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. PMID:25056352

  13. Rhythmic neuronal activity in the lateral cerebellum of the cat during visually guided stepping.

    PubMed

    Marple-Horvat, D E; Criado, J M

    1999-07-15

    1. The discharge patterns of 117 lateral cerebellar neurones were studied in cats during visually guided stepping on a horizontal circular ladder. Ninety per cent of both nuclear cells (53/59) and Purkinje cells (53/58) showed step-related rhythmic modulations of their discharge frequency (one or more periods of 'raised activity' per step cycle of the ipsilateral forelimb). 2. For 31% of nuclear cells (18/59) and 34% of Purkinje cells (20/58) the difference between the highest and lowest discharge rates in different parts of the step cycle was > 50 impulses s-1. 3. Individual neurones differed widely in the phasing of their discharges relative to the step cycle. Nevertheless, for both Purkinje cells and nuclear cells population activity was significantly greater in swing than in stance; the difference was more marked for the nuclear population. 4. Some cells exhibited both step-related rhythmicity and visual responsiveness (28 of 67 tested, 42%), whilst others were rhythmically active during locomotion and increased their discharge rate ahead of saccadic eye movements (11 of 54 tested, 20%). The rhythmicity of cells that were visually responsive was typical of the rhythmicity seen in the whole locomotor-related population. The step-related rhythmicity of cells that also discharged in relation to saccades was generally below average strength compared with the cortical and nuclear populations as a whole. 5. The possibility is discussed that the rhythmicity of dentate neurones acts as a powerful source of excitatory locomotor drive to motor cortex, and may thereby contribute to establishing the step-related rhythmicity of motor cortical (including pyramidal tract) neurones. More generally, the activity patterns of lateral cerebellar neurones provide for a role in the production of visually guided, co-ordinated eye and body movements.

  14. The mechanical actions of muscles predict the direction of muscle activation during postural perturbations in the cat hindlimb.

    PubMed

    Honeycutt, Claire F; Nichols, T Richard

    2014-03-01

    Humans and cats respond to balance challenges, delivered via horizontal support surface perturbations, with directionally selective muscle recruitment and constrained ground reaction forces. It has been suggested that this postural strategy arises from an interaction of limb biomechanics and proprioceptive networks in the spinal cord. A critical experimental validation of this hypothesis is to test the prediction that the principal directions of muscular activation oppose the directions responding muscles exert their forces on the environment. Therefore, our objective was to quantify the endpoint forces of a diverse set of cat hindlimb muscles and compare them with the directionally sensitive muscle activation patterns generated in the intact and decerebrate cat. We hypothesized that muscles are activated based on their mechanical advantage. Our primary expectation was that the principal direction of muscle activation during postural perturbations will be directed oppositely (180°) from the muscle endpoint ground reaction force. We found that muscle activation during postural perturbations was indeed directed oppositely to the endpoint reaction forces of that muscle. These observations indicate that muscle recruitment during balance challenges is driven, at least in part, by limb architecture. This suggests that sensory sources that provide feedback about the mechanical environment of the limb are likely important to appropriate and effective responses during balance challenges. Finally, we extended the analysis to three dimensions and different stance widths, laying the groundwork for a more comprehensive study of postural regulation than was possible with measurements confined to the horizontal plane and a single stance configuration.

  15. Activity of thoracic and lumbar epaxial extensors during postural responses in the cat

    NASA Technical Reports Server (NTRS)

    Macpherson, J. M.; Fung, J.; Peterson, B. W. (Principal Investigator)

    1998-01-01

    This study examined the role of trunk extensor muscles in the thoracic and lumbar regions during postural adjustments in the freely standing cat. The epaxial extensor muscles participate in the rapid postural responses evoked by horizontal translation of the support surface. The muscles segregate into two regional groups separated by a short transition zone, according to the spatial pattern of the electromyographic (EMG) responses. The upper thoracic muscles (T5-9) respond best to posteriorly directed translations, whereas the lumbar muscles (T13 to L7) respond best to anterior translations. The transition group muscles (T10-12) respond to almost all translations. Muscles group according to vertebral level rather than muscle species. The upper thoracic muscles change little in their response with changes in stance distance (fore-hindpaw separation) and may act to stabilize the intervertebral angles of the thoracic curvature. Activity in the lumbar muscles increases along with upward rotation of the pelvis (iliac crest) as stance distance decreases. Lumbar muscles appear to stabilize the pelvis with respect to the lumbar vertebrae (L7-sacral joint). The transition zone muscles display a change in spatial tuning with stance distance, responding to many directions of translation at short distances and focusing to respond best to contralateral translations at the long stance distance.

  16. The structure of EEG arousal as a dynamic ensemble of neuronal activities in cat motor cortex.

    PubMed

    Ezure, K; Oshima, T

    1981-01-01

    1. Intracellular potentials were recorded from 164 cells in cat precruciate cortex, and their responses were examined during the phasic and tonic phases of EEG arousal. 2. According to the initial responses corresponding to phasic EEG arousal, these cells were classified into 71 E (excitation), 49 I (inhibition), 38 DF (disfacilitation), and 6 DI (disinhibition) cells. 3. The late responses corresponding to tonic EEG arousal varied among these cells. Thirty-two of the 164 cells were unresponsive. Of the remaining cells, 102 showed excitation, 16 inhibition, 12 disfacilitation, and 2 disinhibition. These cells were retermed +E, +I, +DF, and +DI cells, respectively. 4. +E cells were located at all depths through laminae I to VI, but the majority were found in laminae IIIb-VI. +I cells were between lamina I and the lower half of lamina III (IIIb), and +DF and +DI cells were between lamina I and the upper half of lamina III (IIIa). From these characteristic layer distributions it is postulated that an upward cascade transmission from deep to superficial layers occurs during tonic EEG arousal. 5. Nine types of combinations of the initial and late responses were found: E, I, DF or DI with +E, E or I with +I, E or I with +DF, and I with +DI. To explain these various activity patterns, an 'arousal' circuit model was proposed by combining the downward and upward cascade transmission patterns. The elementary structure of cortical arousal was thus formulated, and discussed from the development aspect of behavior.

  17. A group II-activated ascending tract of lumbosacral origin in the cat spinal cord.

    PubMed Central

    Harrison, P J; Riddell, J S

    1990-01-01

    1. Electrophysiological investigations have revealed a population of ascending tract neurones originating in the lumbosacral enlargement, with input from group II muscle afferents of the cat hindlimb. 2. Single-unit microelectrode recordings were made in the lateral funiculus at L6, from the axons of thirty-four ascending tract neurones. All of the axons were antidromically activated by stimulation of the ipsilateral lateral funiculus at Th13 and, whenever tested (eight units), at C1. 3. Conduction velocities of the axons, between the L6 and Th13 segment, ranged from 33 to 92 m s-1 (mean 61 m s-1). 4. All of the ascending tract neurones were discharged following electrical stimulation of muscle nerves at group II strength, but not by weaker stimuli in the group I range. Most of the investigated neurones were excited by group II afferents of more than one muscle nerve. In addition, a proportion of the units tested could also be discharged by cutaneous and by joint afferents. 5. Responses to natural stimuli were investigated in eighteen ascending tract neurones discharged by electrical stimulation of group II afferents in the gastrocnemius-soleus (GS) and plantaris (P1) nerves which were dissected free in continuity with their muscles. Seven units were spontaneously active. Eight units responded to isometric contraction of the GS/P1 muscles with a discharge occurring mainly on the falling phase of muscle tension. Nine units increased their discharge frequency in response to stretching of the muscles and five units responded to mechanically probing the muscles with a blunt instrument. 6. The final termination sites of this group of ascending tract neurones has yet to be determined. Initial attempts (three units) to antidromically activate the neurones from the cerebellum have been unsuccessful. Other likely areas of termination in the brain stem are considered. PMID:2213583

  18. Short latency activation of pyramidal tract cells by Group I afferent volleys in the cat

    PubMed Central

    Swett, John E.; Bourassa, Charles M.

    1967-01-01

    1. The contralateral bulbar pyramids were explored with low impedance micro-electrodes in cats anaesthetized with chloralose to reveal the effect of Group I afferent volleys (deep radial nerve of the forelimb) on pyramidal tract (Pt) cells. 2. Low rate (0·5/sec) stimulation of Group I afferents produced small responses (5-30 μV) in the bulbar pyramid which could be detected only with response averaging methods. The responses appeared with an initial latency of 7·0-11·2 msec and reached peak amplitude in 15·7 msec (mean latency). The pyramidal tract origin of the potential was demonstrated by its depression at stimulus rates above 1-2 sec and its disappearance at rates above 4/sec. 3. Recordings of neurones in the Group I cortical projection zone of the posterior sigmoid gyrus revealed that several types of cells, including Pt cells, were activated by Group I afferent volleys. 4. Pt cells responding to Group I afferent volleys frequently received convergent actions from low threshold cutaneous nerve volleys. 5. Averaged response recordings from electrodes positioned in the medial portions of the lateral funiculus of the spinal cord at the level of C2, revealed a response to Group I afferent volleys as early as 7·4 msec which possessed the same characteristics as the relayed response to Group I in the bulbar pyramids. Some Pt cells, activated by Group I volleys orthodromically, could also be antidromically activated by stimulation of the recording site in C2. 6. It was concluded that group I afferent volleys can influence, after short latencies, Pt and non-Pt cells and that some of these Pt cells gave rise to axons incorporated in the corticospinal tract. PMID:16992239

  19. Distinctive patterns of static and dynamic gamma motor activity during locomotion in the decerebrate cat.

    PubMed

    Taylor, A; Ellaway, P H; Durbaba, R; Rawlinson, S

    2000-12-15

    Simultaneous recordings were made from gamma (gamma) motor axons and from muscle spindle afferents of the medial gastrocnemius (MG) muscle during locomotion in decerebrate cats. The gamma-neurons were identified as static or dynamic (gammas or gammad) by correlating their behaviour during midbrain stimulation with changes in muscle spindle afferent responses to muscle stretch. On the basis of their behaviour during locomotion, gammas neurons could be divided into two groups. One group (type-1) showed strongly and smoothly modulated discharge increasing in parallel with the active muscle shortening in ankle extension, but with phase advance. The other group (type-2) also showed a modulated pattern, but with increased firing centred on the flexion phase. The proportions of the two were 13 type-1 and 7 type-2. The type-1 firing pattern accurately predicted the difference in firing frequency for secondary afferents obtained by subtracting from the recordings made during active movements the response of the same units to the movements repeated passively in the absence of fusimotor activity. The type-2 pattern also became consistent with the difference signal, when operated on by a phase lag appropriate to the effects of bag2 intrafusal fibres. These results suggest that there may be some degree of separate control of chain and bag2 intrafusal fibres. The discharge of gammad axons was also found to fluctuate with the locomotor cycle, with a pattern very distinct from that of the gammas records. The gammad firing frequency rose very suddenly from zero to a maximum at the onset of muscle shortening and continued into the beginning of lengthening. The term 'interrupted' discharge is suggested as a useful description. The timing of this discharge was shown to be appropriate for sensitising the primary afferents to detect the onset of stretch.

  20. Catalase, but not MnSOD, inhibits glucose deprivation-activated ASK1-MEK-MAPK signal transduction pathway and prevents relocalization of Daxx: hydrogen peroxide as a major second messenger of metabolic oxidative stress.

    PubMed

    Song, Jae J; Lee, Yong J

    2003-10-01

    Overexpression of catalase, but not manganese superoxide dismutase (MnSOD), inhibited glucose deprivation-induced cytotoxicity and c-Jun N-terminal kinase 1 (JNK1) activation in human prostate adenocarcinoma DU-145 cells. Suppression of JNK1 activation by catalase overexpression resulted from inhibition of apoptosis signal-regulating kinase 1 (ASK1) activation by preventing dissociation of thioredoxin (TRX) from ASK1. Overexpression of catalase also inhibited relocalization of Daxx from the nucleus to the cytoplasm as well as association of Daxx with ASK1 during glucose deprivation. Taken together, hydrogen peroxide (H(2)O(2)) rather than superoxide anion (O(2) (*-)) acts as a second messenger of metabolic oxidative stress to activate the ASK1-MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)-mitogen-activated protein kinase (MAPK) signal transduction pathway.

  1. ALS-linked mutant SOD1 damages mitochondria by promoting conformational changes in Bcl-2

    PubMed Central

    Pedrini, Steve; Sau, Daniela; Guareschi, Stefania; Bogush, Marina; Brown, Robert H.; Naniche, Nicole; Kia, Azadeh; Trotti, Davide; Pasinelli, Piera

    2010-01-01

    In mutant superoxide dismutase (SOD1)-linked amyotrophic lateral sclerosis (ALS), accumulation of misfolded mutant SOD1 in spinal cord mitochondria is thought to cause mitochondrial dysfunction. Whether mutant SOD1 is toxic per se or whether it damages the mitochondria through interactions with other mitochondrial proteins is not known. We previously identified Bcl-2 as an interacting partner of mutant SOD1 specifically in spinal cord, but not in liver, mitochondria of SOD1 mice and patients. We now show that mutant SOD1 toxicity relies on this interaction. Mutant SOD1 induces mitochondrial morphological changes and compromises mitochondrial membrane integrity leading to release of Cytochrome C only in the presence of Bcl-2. In cells, mouse and human spinal cord with SOD1 mutations, the binding to mutant SOD1 triggers a conformational change in Bcl-2 that results in the uncovering of its toxic BH3 domain and conversion of Bcl-2 into a toxic protein. Bcl-2 carrying a mutagenized, non-toxic BH3 domain fails to support mutant SOD1 mitochondrial toxicity. The identification of Bcl-2 as a specific target and active partner in mutant SOD1 mitochondrial toxicity suggests new therapeutic strategies to inhibit the formation of the toxic mutant SOD1/Bcl-2 complex and to prevent mitochondrial damage in ALS. PMID:20460269

  2. The first structure of a cold-adapted superoxide dismutase (SOD): biochemical and structural characterization of iron SOD from Aliivibrio salmonicida

    PubMed Central

    Pedersen, Hege Lynum; Willassen, Nils Peder; Leiros, Ingar

    2009-01-01

    Superoxide dismutases (SODs) are metalloenzymes that catalyse the dismutation of the superoxide radical anion into O2 and H2O2 in a two-step reaction. The crystal structure of the iron superoxide dismutase from the cold-adapted and fish-pathogenic bacterium Aliivibrio salmonicida (asFeSOD) has been determined and refined to 1.7 Å resolution. The protein has been characterized and compared with the closely related homologous iron superoxide dismutase from the mesophilic Escherichia coli (ecFeSOD) in an attempt to rationalize its environmental adaptation. ecFeSOD shares 75% identity with asFeSOD. Compared with the mesophilic FeSOD, the psychrophilic FeSOD has distinct temperature differences in residual activity and thermostability that do not seem to be related to structural differences such as intramolecular or intermolecular ion bonds, hydrogen bonds or cavity sizes. However, an increased net negative charge on the surface of asFeSOD may explain its lower thermostability com­­pared with ecFeSOD. Activity measurements and differential scanning calori­metry measurements revealed that the psychrophilic asFeSOD had a thermostability that was significantly higher than the optimal growth temperature of the host organism. PMID:19193992

  3. Propranolol, but not naloxone, enhances spinal reflex bladder activity and reduces pudendal inhibition in cats.

    PubMed

    Rogers, Marc J; Xiao, Zhiying; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-01-01

    This study examined the role of β-adrenergic and opioid receptors in spinal reflex bladder activity and in the inhibition induced by pudendal nerve stimulation (PNS) or tibial nerve stimulation (TNS). Spinal reflex bladder contractions were induced by intravesical infusion of 0.25% acetic acid in α-chloralose-anesthetized cats after an acute spinal cord transection (SCT) at the thoracic T9/T10 level. PNS or TNS at 5 Hz was applied to inhibit these spinal reflex contractions at 2 and 4 times the threshold intensity (T) for inducing anal or toe twitch, respectively. During a cystrometrogram (CMG), PNS at 2T and 4T significantly (P < 0.05) increased bladder capacity from 58.0 ± 4.7% to 85.8 ± 10.3% and 96.5 ± 10.7%, respectively, of saline control capacity, while TNS failed to inhibit spinal reflex bladder contractions. After administering propranolol (3 mg/kg iv, a β₁/β₂-adrenergic receptor antagonist), the effects of 2T and 4T PNS on bladder capacity were significantly (P < 0.05) reduced to 64.5 ± 9.5% and 64.7 ± 7.3%, respectively, of the saline control capacity. However, the residual PNS inhibition (about 10% increase in capacity) was still statistically significant (P < 0.05). Propranolol treatment also significantly (P = 0.0019) increased the amplitude of bladder contractions but did not change the control bladder capacity. Naloxone (1 mg/kg iv, an opioid receptor antagonist) had no effect on either spinal reflex bladder contractions or PNS inhibition. At the end of experiments, hexamethonium (10 mg/kg iv, a ganglionic blocker) significantly (P < 0.05) reduced the amplitude of the reflex bladder contractions. This study indicates an important role of β₁/β₂-adrenergic receptors in pudendal inhibition and spinal reflex bladder activity.

  4. Propranolol, but not naloxone, enhances spinal reflex bladder activity and reduces pudendal inhibition in cats.

    PubMed

    Rogers, Marc J; Xiao, Zhiying; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-01-01

    This study examined the role of β-adrenergic and opioid receptors in spinal reflex bladder activity and in the inhibition induced by pudendal nerve stimulation (PNS) or tibial nerve stimulation (TNS). Spinal reflex bladder contractions were induced by intravesical infusion of 0.25% acetic acid in α-chloralose-anesthetized cats after an acute spinal cord transection (SCT) at the thoracic T9/T10 level. PNS or TNS at 5 Hz was applied to inhibit these spinal reflex contractions at 2 and 4 times the threshold intensity (T) for inducing anal or toe twitch, respectively. During a cystrometrogram (CMG), PNS at 2T and 4T significantly (P < 0.05) increased bladder capacity from 58.0 ± 4.7% to 85.8 ± 10.3% and 96.5 ± 10.7%, respectively, of saline control capacity, while TNS failed to inhibit spinal reflex bladder contractions. After administering propranolol (3 mg/kg iv, a β₁/β₂-adrenergic receptor antagonist), the effects of 2T and 4T PNS on bladder capacity were significantly (P < 0.05) reduced to 64.5 ± 9.5% and 64.7 ± 7.3%, respectively, of the saline control capacity. However, the residual PNS inhibition (about 10% increase in capacity) was still statistically significant (P < 0.05). Propranolol treatment also significantly (P = 0.0019) increased the amplitude of bladder contractions but did not change the control bladder capacity. Naloxone (1 mg/kg iv, an opioid receptor antagonist) had no effect on either spinal reflex bladder contractions or PNS inhibition. At the end of experiments, hexamethonium (10 mg/kg iv, a ganglionic blocker) significantly (P < 0.05) reduced the amplitude of the reflex bladder contractions. This study indicates an important role of β₁/β₂-adrenergic receptors in pudendal inhibition and spinal reflex bladder activity. PMID:25394827

  5. Localization of Serotoninergic Neurons that Participate in Regulating Diaphragm Activity in the Cat

    PubMed Central

    Rice, Cory D.; Lois, James H.; Kerman, Ilan A.; Yates, Bill J.

    2009-01-01

    Although a considerable body of literature indicates that serotoninergic neurons affect diaphragm activity both through direct inputs to phrenic motoneurons and multisynaptic connections involving the brainstem respiratory groups, the locations of the serotoninergic neurons that modulate breathing have not been well defined. The present study identified these neurons in cats by combining the transneuronal retrograde transport of rabies virus from the diaphragm with the immunohistochemical detection of the N-terminal region of tryptophan hydroxylase-2 (TPH2), the brain-specific isoform of the enzyme responsible for the initial and rate-limiting step in serotonin synthesis. TPH2-immunopositive neurons were present in the midline raphe nuclei, formed a column in the ventrolateral medulla near the lateral reticular nucleus, and were spread across the dorsal portion of the pons just below the fourth ventricle. In most animals, only a small fraction of neurons (typically < 20%) labeled for TPH2 in each of the medullary raphe nuclei and the medullary ventrolateral column were infected with rabies virus. However, the percentage of medullary neurons dual-labeled for both rabies and TPH2 was much higher in animals with very advanced infections where virus had spread transneuronally through many synapses. Furthermore, in all cases, TPH2-immunopositive neurons that were infected by rabies virus were significantly less prevalent in the pons than the medulla. These findings suggest that although serotoninergic neurons with direct influences on diaphragm activity are widely scattered in the brainstem, the majority of these neurons are located in the medulla. Many nonserotoninergic neurons in the raphe nuclei were also infected with rabies virus, indicating that midline cells utilizing multiple neurotransmitters participate in the control of breathing. PMID:19433074

  6. [Effects of chemical ripeners on chlorophyll content and antioxidant enzyme activities of rapeseed pod].

    PubMed

    Zhou, Ke-jin; Guan, Chun-yun; Xiao, Wen-na

    2009-12-01

    A field experiment was conducted to study the effects of ripeners Diguat and Roundup on the chlorophyll content, activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), cell membrane permeability, and malondialdehyde (MDA) content of rapeseed pods. Under effects of Diquat, the chlorophyll content decreased, while the activities of SOD, POD, and CAT, cell membrane permeability, and MDA content increased significantly, leading to the peroxidation of membrane lipid. These effects increased with increasing Diquat concentration. After treated with Roundup, the chlorophyll content had less change, activities of SOD, POD, and CAT increased slowly, and cell membrane permeability and MDA content had no obvious increase. With the increasing time of ripeners treatment, the activities of protective enzymes were inhibited to different degree, possibly due to the changes of molecular structure of antioxidant enzyme system under effects of the ripeners.

  7. Anti-inflammatory and antioxidant activities of cat's claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content.

    PubMed

    Sandoval, M; Okuhama, N N; Zhang, X J; Condezo, L A; Lao, J; Angeles', F M; Musah, R A; Bobrowski, P; Miller, M J S

    2002-05-01

    Cat's claw is an herbal medicine from the Amazon that is used widely to treat inflammatory disorders. The purpose of this study was to characterize the antioxidative and antiinflammatory properties of cat's claw, Uncaria tomentosa (UT) and Uncaria guianensis (UG). Alkaloids and flavanols were determined using reversed-phase HPLC; scavenging of 1,1-diphenyl-2-picrilhydrazyl (DPPH), hydroxyl radicals, and lipid peroxidation by spectrophotometry; and TNFalpha production by ELISA. Anti-inflammatory activity was assessed in vitro by inhibition of TNFalpha and nitrite production from RAW 264.7 cells exposed to LPS (50 ng/ml) and in vivo using the indomethacin-induced gastritis model. Apoptosis was assessed using the TUNEL technique and TNFalpha mRNA by in situ RT-PCR. In each of the antioxidant assays tested, UG was more potent than UT (P < 0.01). The total oxindole and pentacyclic alkaloid content of UT was 35-fold > UG. The IC50 value for inhibition of TNFalpha production was significantly (P < 0.01) higher for UT (14.1 ng/ml) vs UG (9.5 ng/ml), yet at concentrations that were considerable lower than that required for antioxidant activity. Non-alkaloid HPLC fractions from UT decreased LPS-induced TNFalpha and nitrite production in RAW 264.7 cells (P < 0.01) at a concentration range comparable to the parent botanical. Oral pretreatment for 3 d with UT protected against indomethacin-induced gastritis, and prevented TNFalpha mRNA expression and apoptosis. These results indicate that while both species of cat's claw provide effective antioxidant and anti-inflammatory activities, U. guianensis is more potent. In conclusion, the presence of oxindole or pentacyclic alkaloids did not influence the antioxidant and anti-inflammatory properties of cat's claw.

  8. Liver specific expression of Cu/ZnSOD extends the lifespan of Sod1 null mice.

    PubMed

    Zhang, Yiqiang; Liu, Yuhong; Walsh, Michael; Bokov, Alex; Ikeno, Yuji; Jang, Young C; Perez, Viviana I; Van Remmen, Holly; Richardson, Arlan

    2016-03-01

    Genetic ablation of CuZn-superoxide dismutase (Sod1) in mice (Sod1(-/-) mice) leads to shortened lifespan with a dramatic increase in hepatocellular carcinoma and accelerated aging phenotypes, including early onset sarcopenia. To study the tissue specific effects of oxidative stress in the Sod1(-/-) mice, we generated mice that only express the human SOD1 gene specifically in the liver of Sod1(-/-) mice (Sod1(-/-)/hSOD1(alb) mice). Expression of hSOD1 in the liver of Sod1(-/-) mice improved liver function, reduced oxidative damage in liver, and partially restored the expression of several genes involved in tumorigenesis, which are abnormally expressed in the livers of the Sod1(-/-) mice. However, liver specific expression of hSOD1 did not prevent the loss of body weight and muscle mass and alterations in the structure of neuromuscular junctions. The expression of hSOD1 in the liver of Sod1(-/-) mice significantly improved the lifespan of Sod1(-/-) mice; however, the lifespan of the Sod1(-/-)/hSOD1(alb) mice was still significantly shorter than wild type mice.

  9. Activity of red nucleus neurons in the cat during postural corrections

    PubMed Central

    Zelenin, P. V.; Beloozerova, I. N.; Sirota, M. G.; Orlovsky, G. N.; Deliagina, T. G.

    2010-01-01

    The dorsal-side-up body posture in standing quadrupeds is maintained by the postural system, which includes spinal and supraspinal mechanisms driven by somatosensory inputs from the limbs. A number of descending tracts can transmit suprasinal commands for postural corrections. The first aim of this study was to understand whether the rubrospinal tract participates in their transmission. We recorded activity of red nucleus neurons (RNNs) in the cat maintaining balance on the periodically tilting platform. Most neurons were identified as rubrospinal ones. It was found that many RNNs were profoundly modulated by tilts, suggesting that they transmit postural commands. The second aim of this study was to examine the contribution of sensory inputs from individual limbs to posture-related RNNs modulation. Each RNN was recorded during standing on all four limbs, as well as when two or three limbs were lifted from the platform and could not signal platform displacements. By comparing RNN responses in different tests, we found that the amplitude and phase of responses in the majority of RNNs were determined primarily by sensory input from the corresponding (fore or hind) contralateral limb, whereas inputs from other limbs made a much smaller contribution to RNNs modulation. These findings suggest that the rubrospinal system is primarily involved in the intra-limb postural coordination, i.e., in the feedback control of the corresponding limb and, to a lesser extent, in the inter-limb coordination. This study provides a new insight into the formation of supraspinal motor commands for postural corrections. PMID:20980611

  10. Superoxide Dismutases, SOD1 and SOD2, Play a Distinct Role in the Fat Body during Pupation in Silkworm Bombyx mori

    PubMed Central

    Nojima, Yosui; Ito, Katsuhiko; Ono, Hiromasa; Nakazato, Takeru; Bono, Hidemasa; Yokoyama, Takeshi; Sato, Ryoichi; Suetsugu, Yoshitaka; Nakamura, Yuki; Yamamoto, Kimiko; Satoh, Jun-ichi; Tabunoki, Hiroko; Fugo, Hajime

    2015-01-01

    One way that aerobic biological systems counteract the generation of reactive oxygen species (ROS) is with superoxide dismutase proteins SOD1 and SOD2 that metabolize superoxide radicals to molecular oxygen and hydrogen peroxide or scavenge oxygen radicals produced by the extensive oxidation-reduction and electron-transport reactions that occur in mitochondria. We characterized SOD1 and SOD2 of Bombyx mori isolated from the fat body of larvae. Immunological analysis demonstrated the presence of BmSOD1 and BmSOD2 in the silk gland, midgut, fat body, Malpighian tubules, testis and ovary from larvae to adults. We found that BmSOD2 had a unique expression pattern in the fat body through the fifth instar larval developmental stage. The anti-oxidative functions of BmSOD1 and BmSOD2 were assessed by exposing larvae to insecticide rotenone or vasodilator isosorbide dinitrate, which is an ROS generator in BmN4 cells; however, exposure to these compounds had no effect on the expression levels of either BmSOD protein. Next, we investigated the physiological role of BmSOD1 and BmSOD2 under environmental oxidative stress, applied through whole-body UV irradiation and assayed using quantitative RT-PCR, immunoblotting and microarray analysis. The mRNA expression level of both BmSOD1 and BmSOD2 was markedly increased but protein expression level was increased only slightly. To examine the differences in mRNA and protein level due to UV irradiation intensity, we performed microarray analysis. Gene set enrichment analysis revealed that genes in the insulin signaling pathway and PPAR signaling pathway were significantly up-regulated after 6 and 12 hours of UV irradiation. Taken together, the activities of BmSOD1 and BmSOD2 may be related to the response to UV irradiation stress in B. mori. These results suggest that BmSOD1 and BmSOD2 modulate environmental oxidative stress in the cell and have a specific role in fat body of B. mori during pupation. PMID:25714339

  11. Superoxide dismutases, SOD1 and SOD2, play a distinct role in the fat body during pupation in silkworm Bombyx mori.

    PubMed

    Nojima, Yosui; Ito, Katsuhiko; Ono, Hiromasa; Nakazato, Takeru; Bono, Hidemasa; Yokoyama, Takeshi; Sato, Ryoichi; Suetsugu, Yoshitaka; Nakamura, Yuki; Yamamoto, Kimiko; Satoh, Jun-ichi; Tabunoki, Hiroko; Fugo, Hajime

    2015-01-01

    One way that aerobic biological systems counteract the generation of reactive oxygen species (ROS) is with superoxide dismutase proteins SOD1 and SOD2 that metabolize superoxide radicals to molecular oxygen and hydrogen peroxide or scavenge oxygen radicals produced by the extensive oxidation-reduction and electron-transport reactions that occur in mitochondria. We characterized SOD1 and SOD2 of Bombyx mori isolated from the fat body of larvae. Immunological analysis demonstrated the presence of BmSOD1 and BmSOD2 in the silk gland, midgut, fat body, Malpighian tubules, testis and ovary from larvae to adults. We found that BmSOD2 had a unique expression pattern in the fat body through the fifth instar larval developmental stage. The anti-oxidative functions of BmSOD1 and BmSOD2 were assessed by exposing larvae to insecticide rotenone or vasodilator isosorbide dinitrate, which is an ROS generator in BmN4 cells; however, exposure to these compounds had no effect on the expression levels of either BmSOD protein. Next, we investigated the physiological role of BmSOD1 and BmSOD2 under environmental oxidative stress, applied through whole-body UV irradiation and assayed using quantitative RT-PCR, immunoblotting and microarray analysis. The mRNA expression level of both BmSOD1 and BmSOD2 was markedly increased but protein expression level was increased only slightly. To examine the differences in mRNA and protein level due to UV irradiation intensity, we performed microarray analysis. Gene set enrichment analysis revealed that genes in the insulin signaling pathway and PPAR signaling pathway were significantly up-regulated after 6 and 12 hours of UV irradiation. Taken together, the activities of BmSOD1 and BmSOD2 may be related to the response to UV irradiation stress in B. mori. These results suggest that BmSOD1 and BmSOD2 modulate environmental oxidative stress in the cell and have a specific role in fat body of B. mori during pupation. PMID:25714339

  12. DOLLY SODS WILDERNESS, WEST VIRGINIA.

    USGS Publications Warehouse

    Englund, Kenneth J.; Hill, James J.

    1984-01-01

    Coal, the principal mineral resource of the Dolly Sods Wilderness, West Virginia is in at least seven beds of low- to medium-volatile bituminous rank. Of these beds, four are of sufficient thickness, quality, and extent to contain demonstrated coal resources which are estimated to total about 15. 5 million short tons in areas of substantiated coal resource potential. A Small-scale development of the coal resources of the Dolly Sods Wilderness has been by several shallow adits which provided fuel for locomotives during early logging operations and by a one truck mine. All mine entries are now abandoned. Peat, shale, clay, and sandstone, occur in the area but because of remoteness of markets and inaccessability they are not classified as resources in this report. Natural gas may occur in rocks underlying the area, but because of a lack of subsurface information an estimate of resource potential has not been made. No evidence of metallic-mineral resources was found during this investigation.

  13. Article expression, purification, and characterization of Cu/ZnSOD from Panax ginseng.

    PubMed

    Ding, Dayong; Liu, Shichao; Wang, Kai; Huang, Lihong; Zhao, Jisheng

    2014-01-01

    Superoxide dismutase (SOD) has a strong antioxidant effect, but the traditional SOD extraction method is not the most efficient method of SOD amplification. In this study, we report the cloning of the Cu/ZnSOD gene from Panax ginseng into a temperature-regulated expression plasmid, pBV220. Cu/ZnSOD inclusion bodies were expressed in E. coli at a high level. Then, the inclusion bodies were purified by ion-exchange chromatography and molecular sieve chromatography. Finally, we obtained stable SOD in the bacterial broth, with a protein content of 965 mg/L and enzyme specific activity of 9389.96 U/mg. These results provide a foundation for future studies on the antioxidant mechanisms of ginseng and the development and application of ginseng Cu/ZnSOD. PMID:24936711

  14. Modulation of MnSOD in Cancer:Epidemiological and Experimental Evidence

    PubMed Central

    Kim, Aekyong

    2010-01-01

    Since it was first observed in late 1970s that human cancers often had decreased manganese superoxide dismutase (MnSOD) protein expression and activity, extensive studies have been conducted to verify the association between MnSOD and cancer. Significance of MnSOD as a primary mitochondrial antioxidant enzyme is unquestionable; results from in vitro, in vivo and epidemiological studies are in harmony. On the contrary, studies regarding roles of MnSOD in cancer often report conflicting results. Although putative mechanisms have been proposed to explain how MnSOD regulates cellular proliferation, these mechanisms are not capitulated in epidemiological studies. This review discusses most recent epidemiological and experimental studies that examined the association between MnSOD and cancer, and describes emerging hypotheses of MnSOD as a mitochondrial redox regulatory enzyme and of how altered mitochondrial redox may affect physiology of normal as well as cancer cells. PMID:24278510

  15. Activity of neurons of the subthalamic nucleus in relation to motor performance in the cat.

    PubMed

    Cheruel, F; Dormont, J F; Farin, D

    1996-03-01

    The activity of subthalamic nucleus neurons related to motor performance was studied in three unrestrained cats operantly conditioned to perform a lever-release movement. The movement was initiated either rapidly after the trigger stimulus (a brief sound) in a simple reaction-time paradigm or after a delay in trials identified by a tone cue. These paradigms were randomly presented. The activity of 171 neurons was recorded in the contralateral and in the ipsilateral subthalamic nucleus, with respect to the performing limb. The mean spontaneous activity of cells in the ipsilateral side (18.5 +/- 13.8 imp/s, mean +/- SD) was higher than that in the contralateral side (8.5 +/- 8.1 imp/s). A total of 145 cells (85%) presented significant changes in activity in relation to the lever-release movement (task-related cells). The remaining 26 cells were either related to other events of the task (n = 15; lever-press or reinforcement occurrence) or not related at all to the task performance (n = 11). The majority of changes of activity of task-related cells were initial increases in discharge, which started on average, 127 ms before movement onset and lasted several hundreds of milliseconds. These increases in discharge were more frequent in the contralateral side (75 of 80 task-related cells, 94%) than in the ipsilateral side (43 of 65 task-related cells, 66%). The changes in activity, either increases or decreases, occurred early after the trigger stimulus, since 62% of them had a latency of less than 100 ms. Although the mean latency of initial increases was rather similar in both sides (97 ms contralateral versus 104 ms ipsilateral), the contralateral side was characterized by a high proportion of very early responses (less than 20 ms). For most neurons, the early changes in activity described above were absent after the trigger stimulus in the delayed condition. For certain neurons, the changes in activity prior to movement were different in reaction-time condition and in

  16. [Modification of impulse activity of cat brainstem monoaminergic cells caused by bemitil].

    PubMed

    Kolotilova, O I; Koreniuk, I I; Fokina, Iu O

    2008-01-01

    The study was carried out on brainstem noradrenergetic and serotoninergic neurons of cats and the effect of bemitil (100 mg/kg) introduction was investigated. The results indicate on specific bemitil action on scrotonin- and noradrenergetic neuromediator brain systems. Dose-dependency of the effect of bemitil is revealed.

  17. Multichannel detrended fluctuation analysis reveals synchronized patterns of spontaneous spinal activity in anesthetized cats.

    PubMed

    Rodríguez, Erika E; Hernández-Lemus, Enrique; Itzá-Ortiz, Benjamín A; Jiménez, Ismael; Rudomín, Pablo

    2011-01-01

    The analysis of the interaction and synchronization of relatively large ensembles of neurons is fundamental for the understanding of complex functions of the nervous system. It is known that the temporal synchronization of neural ensembles is involved in the generation of specific motor, sensory or cognitive processes. Also, the intersegmental coherence of spinal spontaneous activity may indicate the existence of synaptic neural pathways between different pairs of lumbar segments. In this study we present a multichannel version of the detrended fluctuation analysis method (mDFA) to analyze the correlation dynamics of spontaneous spinal activity (SSA) from time series analysis. This method together with the classical detrended fluctuation analysis (DFA) were used to find out whether the SSA recorded in one or several segments in the spinal cord of the anesthetized cat occurs either in a random or in an organized manner. Our results are consistent with a non-random organization of the sets of neurons involved in the generation of spontaneous cord dorsum potentials (CDPs) recorded either from one lumbar segment (DFA-α mean = 1.04[Formula: see text]0.09) or simultaneously from several lumbar segments (mDFA-α mean = 1.01[Formula: see text]0.06), where α = 0.5 indicates randomness while α = 0.5 indicates long-term correlations. To test the sensitivity of the mDFA method we also examined the effects of small spinal lesions aimed to partially interrupt connectivity between neighboring lumbosacral segments. We found that the synchronization and correlation between the CDPs recorded from the L5 and L6 segments in both sides of the spinal cord were reduced when a lesion comprising the left dorsal quadrant was performed between the segments L5 and L6 (mDFA-[Formula: see text] = 0.992 as compared to initial conditions mDFA-α = 1.186). The synchronization and correlation were reduced even further after a similar additional right spinal lesion (mDFA-α = 0.924). In contrast

  18. Pacemaker activity in a sensory ending with multiple encoding sites: the cat muscle spindle primary ending.

    PubMed Central

    Banks, R W; Hulliger, M; Scheepstra, K A; Otten, E

    1997-01-01

    1. A combined physiological, histological and computer modelling study was carried out on muscle spindles of the cat tenuissimus muscle to examine whether there was any correlation between the functional interaction of putative encoding sites, operated separately by static and dynamic fusimotor neurones, and the topological structure of the preterminal branches of the primary sensory ending. 2. Spindles, whose I a responses to stretch and separate and combined static and dynamic fusimotor stimulation were recorded in physiological experiments, were located in situ. Subsequently the ramifications of the sensory ending were reconstructed histologically, and the topology of the branch tree was used in computer simulations of I a responses to examine the effect of the electronic separation of encoding sites on the static-dynamic interaction pattern. 3. Interactions between separate static and dynamic inputs, manifest in responses to combineed stimulation, were quantified by a coefficient of interaction (Ci) which, by definition, was 1 for strictly linear summation of separate inputs and zero for maximum occlusion between inputs. 4. For the majority of spindles static-dynamic interactions were characterized by pronounced occlusion (C1 < 0.35). In these spindles putative encoding sites (the peripheral heminodes of the branches supplying the intrafusal fibres activated by individual fusimotor efferents) were separated by a minimum conduction path of between three and ten myelinated segments (2-9 nodes of Ranvier). In contrast, significant summation (C1, approximately 0.7) was found in only one spindle. In this case putative encoding sites were separated by a single node. 5. Occlusion was not due to encoder saturation and it could not be accounted for by any other known physiological mechanisms (intrafusal fatigue or unloading). It is therefore attributed to competitive pacemaker interaction between encoding sites which are largely selectively operated by static and

  19. Multichannel detrended fluctuation analysis reveals synchronized patterns of spontaneous spinal activity in anesthetized cats.

    PubMed

    Rodríguez, Erika E; Hernández-Lemus, Enrique; Itzá-Ortiz, Benjamín A; Jiménez, Ismael; Rudomín, Pablo

    2011-01-01

    The analysis of the interaction and synchronization of relatively large ensembles of neurons is fundamental for the understanding of complex functions of the nervous system. It is known that the temporal synchronization of neural ensembles is involved in the generation of specific motor, sensory or cognitive processes. Also, the intersegmental coherence of spinal spontaneous activity may indicate the existence of synaptic neural pathways between different pairs of lumbar segments. In this study we present a multichannel version of the detrended fluctuation analysis method (mDFA) to analyze the correlation dynamics of spontaneous spinal activity (SSA) from time series analysis. This method together with the classical detrended fluctuation analysis (DFA) were used to find out whether the SSA recorded in one or several segments in the spinal cord of the anesthetized cat occurs either in a random or in an organized manner. Our results are consistent with a non-random organization of the sets of neurons involved in the generation of spontaneous cord dorsum potentials (CDPs) recorded either from one lumbar segment (DFA-α mean = 1.04[Formula: see text]0.09) or simultaneously from several lumbar segments (mDFA-α mean = 1.01[Formula: see text]0.06), where α = 0.5 indicates randomness while α = 0.5 indicates long-term correlations. To test the sensitivity of the mDFA method we also examined the effects of small spinal lesions aimed to partially interrupt connectivity between neighboring lumbosacral segments. We found that the synchronization and correlation between the CDPs recorded from the L5 and L6 segments in both sides of the spinal cord were reduced when a lesion comprising the left dorsal quadrant was performed between the segments L5 and L6 (mDFA-[Formula: see text] = 0.992 as compared to initial conditions mDFA-α = 1.186). The synchronization and correlation were reduced even further after a similar additional right spinal lesion (mDFA-α = 0.924). In contrast

  20. Nitrergic ventro-medial medullary neurons activated during cholinergically induced active (rapid eye movement) sleep in the cat.

    PubMed

    Pose, I; Sampogna, S; Chase, M H; Morales, F R

    2011-01-13

    The rostral ventro-medial medullary reticular formation is a complex structure that is involved with a variety of motor functions. It contains glycinergic neurons that are activated during active (rapid eye movement (REM)) sleep (AS); these neurons appear to be responsible for the postsynaptic inhibition of motoneurons that occurs during this state. We have reported that neurons in this same region contain nitric oxide (NO) synthase and that they innervate brainstem motor pools. In the present study we examined the c-fos expression of these neurons after carbachol-induced active sleep (C-AS). Three control and four experimental cats were employed to identify c-fos expressing nitrergic neurons using immunocytochemical techniques to detect the Fos protein together with neuronal nitric oxide synthase (nNOS) or nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity. The classical neurotransmitter content of the nitrergic cells in this region was examined through the combination of immunocytochemical techniques for the detection of glutamate, glycine, choline acetyltransferase (ChAT), tyrosine hydroxilase (TH) or GABA together with nNOS. During C-AS, there was a 1074% increase in the number of nitrergic neurons that expressed c-fos. These neurons did not contain glycine, ChAT, TH or GABA, but a subpopulation (15%) of them displayed glutamate-like immunoreactivity. Therefore, some of these neurons contain both an excitatory neurotransmitter (glutamate) and an excitatory neuromodulator (NO); the neurotransmitter content of the rest of them remains to be determined. Because some of the nitrergic neurons innervate brainstem motoneurons it is possible that they participate in the generation of tonic and excitatory phasic motor events that occur during AS. We also suggest that these nitrergic neurons may be involved in autonomic regulation during this state. In addition, because NO has trophic effects on target neurons, the present findings represent the

  1. GABAergic neurons of the cat dorsal raphe nucleus express c-fos during carbachol-induced active sleep.

    PubMed

    Torterolo, P; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2000-11-24

    Serotonergic neurons of the dorsal raphe nucleus (DRN) cease firing during active sleep (AS, also called rapid-eye-movement sleep). This cessation of electrical activity is believed to play a 'permissive' role in the generation of AS. In the present study we explored the possibility that GABAergic cells in the DRN are involved in the suppression of serotonergic activity during AS. Accordingly, we examined whether immunocytochemically identified GABAergic neurons in the DRN were activated, as indicated by their expression of c-fos, during carbachol-induced AS (AS-carbachol). Three chronically-prepared cats were euthanized after prolonged episodes of AS that was induced by microinjections of carbachol into the nucleus pontis oralis. Another four cats (controls) were maintained 2 h in quiet wakefulness before being euthanized. Thereafter, immunocytochemical studies were performed on brainstem sections utilizing antibodies against Fos, GABA and serotonin. When compared with identically prepared tissue from awake cats, the number of Fos+ neurons was larger in the DRN during AS-carbachol (35.9+/-5.6 vs. 13.9+/-4.4, P<0.05). Furthermore, a larger number of GABA+ Fos+ neurons were observed during AS-carbachol than during wakefulness (24.8+/-3.3 vs. 4.0+/-1.0, P<0.001). These GABA+ Fos+ neurons were distributed asymmetrically with a larger number located ipsilaterally to the site of injection. There was no significant difference between control and experimental animals in the number of non-GABAergic neurons that expressed c-fos in the DRN. We therefore suggest that activated GABAergic neurons of the DRN are responsible for the inhibition of serotonergic neurons that occurs during natural AS. PMID:11082488

  2. Modulation of superoxide dismutase (SOD) isozymes by organ development and high long-term salinity in the halophyte Cakile maritima.

    PubMed

    Houmani, Hayet; Rodríguez-Ruiz, Marta; Palma, José M; Abdelly, Chedly; Corpas, Francisco J

    2016-05-01

    Superoxide dismutase (SOD) activity catalyzes the disproportionation of superoxide radicals into hydrogen peroxide and oxygen. This enzyme is considered to be a first line of defense for controlling the production of reactive oxygen species (ROS). In this study, the number and type of SOD isozymes were identified in the principal organs (roots, stems, leaves, flowers, and seeds) of Cakile maritima. We also analyzed the way in which the activity of these SOD isozymes is modulated during development and under high long-term salinity (400 mM NaCl) stress conditions. The data indicate that this plant contains a total of ten SOD isozymes: two Mn-SODs, one Fe-SOD, and seven CuZn-SODs, with the Fe-SOD being the most prominent isozyme in the different organs analyzed. Moreover, the modulation of SOD isozymes, particularly CuZn-SODs, was only detected during development and under severe salinity stress conditions. These data suggest that, in C. maritima, the occurrence of these CuZn-SODs in roots and leaves plays an adaptive role since this CuZn-SOD isozyme might replace the diminished Fe-SOD activity under salinity stress to overcome this adverse environmental condition. PMID:26159565

  3. Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene

    PubMed Central

    Melo, Sônia C.; Santos, Regineide X.; Melgaço, Ana C.; Pereira, Alanna C. F.; Pungartnik, Cristina; Brendel, Martin

    2015-01-01

    Heterologous expression of a putative manganese superoxide dismutase gene (SOD2) of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF) coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs) located the protein of M. perniciosa (MpSod2p) in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet–C (UVC) radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN) that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE)-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT) level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae. PMID:26039235

  4. Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene.

    PubMed

    Melo, Sônia C; Santos, Regineide X; Melgaço, Ana C; Pereira, Alanna C F; Pungartnik, Cristina; Brendel, Martin

    2015-06-01

    Heterologous expression of a putative manganese superoxide dismutase gene (SOD2) of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF) coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs) located the protein of M. perniciosa (MpSod2p) in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet-C (UVC) radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN) that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE)-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT) level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae.

  5. The benefits of sunflower oleodistillate (SOD) in pediatric dermatology.

    PubMed

    Eichenfield, Lawrence F; McCollum, Alexandra; Msika, Philippe

    2009-01-01

    For millennia, sunflower seed oil has been used in folk medicine for both skin care and the treatment of skin disorders. In its natural state, the oil contains high levels of essential fatty acids, particularly linoleic acid, which has skin barrier-enhancing properties. A sunflower oleodistillate (SOD), which is produced through a molecular distillation process without the use of solvents, has been shown to increase the epidermal key lipid synthesis and to reduce inflammation in vitro and in animal models. It has also been shown to activate peroxisome proliferative-activated receptor-alpha (PPAR-alpha) in vitro. As PPAR-alpha agonists have been shown to stimulate keratinocyte differentiation, improve barrier function, and enhance lipid metabolism in the skin, it has been suggested that SOD might also be efficacious in atopic dermatitis (AD). An initial clinical evaluation of the care effect of a 2% SOD emulsion in 20 adult volunteers with atopic skin revealed the moisturizing properties of SOD. Finally, a strong steroid-sparing effect and a positive effect on quality-of-life parameters were clearly demonstrated for the 2% SOD cream in studies in infants and babies with AD.

  6. Effects of ankle extensor muscle afferent inputs on hip abductor and adductor activity in the decerebrate walking cat.

    PubMed

    Bolton, D A E; Misiaszek, J E

    2012-12-01

    Electrical stimulation of the lateral gastrocnemius-soleus (LGS) nerve at group I afferent strength leads to adaptations in the amplitude and timing of extensor muscle activity during walking in the decerebrate cat. Such afferent feedback in the stance leg might result from a delay in stance onset of the opposite leg. Concomitant adaptations in hip abductor and adductor activity would then be expected to maintain lateral stability and balance until the opposite leg is able to support the body. As many hip abductors and adductors are also hip extensors, we hypothesized that stimulation of the LGS nerve at group I afferent strength would produce increased activation and prolonged burst duration in hip abductor and adductor muscles in the premammillary decerebrate walking cat. LGS nerve stimulation during the extensor phase of the locomotor cycle consistently increased burst amplitude of the gluteus medius and adductor femoris muscles, but not pectineus or gracilis. In addition, LGS stimulation prolonged the burst duration of both gluteus medius and adductor femoris. Unexpectedly, long-duration LGS stimulus trains resulted in two distinct outcomes on the hip abductor and adductor bursting pattern: 1) a change of burst duration and timing similar to medial gastrocnemius; or 2) to continue rhythmically bursting uninterrupted. These results indicate that activation of muscle afferents from ankle extensors contributes to the regulation of activity of some hip abductor and adductor muscles, but not all. These results have implications for understanding the neural control of stability during locomotion, as well as the organization of spinal locomotor networks. PMID:22972967

  7. Acquired retinal folds in the cat.

    PubMed

    MacMillan, A D

    1976-06-01

    Retinal folds were found in 5 cats. The apparent cause of the folding was varied: in 1 cat the folds appeared after a localized retinal detachment; in 2 cats the condition accompanied other intraocular abnormalities associated with feline infectious peritonitis; 1 cat had active keratitis, and the retinal changes were thought to have been injury related; and 1 cat, bilaterally affected, had chronic glomerulonephritis. PMID:945253

  8. GABAA and GABAB receptor-mediated effects on the spontaneous activity of the longitudinal layer in cat terminal ileum.

    PubMed

    Pencheva, N; Radomirov, R; Venkova, K

    1991-01-01

    1. GABA and GABAergic agonists-muscimol and (+/-)baclofen changed the spontaneous mechanical activity in isolated cat terminal ileum. 2. GABA at doses ranging from 5 microM to 2 mM produced concentration-dependent biphasic responses consisting of a transient relaxation followed by contractions with a tonic and a phasic components. 3. The GABA-induced relaxation was sensitive to bicuculline and picrotoxinin and was mimicked by muscimol, while the GABA-induced contractions were insensitive to bicuculline and picrotoxinin and were mimicked by (+/-)baclofen. Specific cross desensitization occurred between GABA and muscimol or GABA and (+/-)baclofen. 4. The bicuculline-sensitive relaxation induced by GABA and muscimol was abolished by atropine or tetrodotoxin (TTX), while the bicuculline-insensitive contractions induced by GABA and (+/-)baclofen were not antagonized by atropine or TTX, though they were slightly suppressed. 5. The GABA effects in the longitudinal layer of cat terminal ileum were mediated by the following receptors: -GABAA prejunctional receptors whose activation causes relaxation, probably through an inhibitory action on cholinergic neurons; -GABAB prejunctional receptors whose activation cause contractions; -GABAB postjunctional receptors located on the smooth muscle membrane whose activation induces tonic and phasic contractions.

  9. The role of Cu/Zn-SOD and Mn-SOD in the immune response to oxidative stress and pathogen challenge in the clam Meretrix meretrix.

    PubMed

    Lu, Xia; Wang, Chao; Liu, Baozhong

    2015-01-01

    The copper/zinc superoxide dismutase (Cu/Zn-SOD) and manganese superoxide dismutase (Mn-SOD) could effectively eliminate reactive oxygen species (ROS) and maintain the redox balance of immune system. In the present study, the potential synergy of Cu/Zn-SOD and Mn-SOD in immune system was investigated in the clam Meretrix meretrix. The expression of Cu/Zn-SOD mainly distributed in hepatopancreas and that of Mn-SOD was higher in gill of M. meretrix, and their mRNA and protein activity paralleled with each other. In response to H2O2 challenge, Cu/Zn-SOD mRNA showed significantly higher level at 24 h post-challenge and Mn-SOD mRNA was significantly higher at 12 and 24 h post-challenge in the experimental clams than in the control clams (P<0.05). After injection with Vibrio-parahaemolyticus-related bacterium (MM21), the Cu/Zn-SOD mRNA was significantly up-regulated at 24 h and 48 h post-injection and Mn-SOD mRNA was significantly higher at 24 h post-injection in MM21-injected clams than in control clams (P<0.05), suggesting that both of them might involve in the immune defense to Vibrio challenge. The mRNA expression of Cu/Zn-SOD and Mn-SOD was examined in a Vibrio-resistant population and a control population after MM21 immersion challenge. The increased transcription of Cu/Zn-SOD and Mn-SOD in the resistant population suggested both of them could benefit the immune system to defend against pathogen infection. As expression of Mn-SOD mRNA depended on stimuli and was more easily inducible, its response to H2O2 and Vibrio challenge was earlier than Cu/Zn-SOD. Our study suggested the redox balance might play an important role in M. meretrix to resist pathogen infection.

  10. Mutant SOD1 forms ion channel: implications for ALS pathophysiology.

    PubMed

    Allen, Michael J; Lacroix, Jérome J; Ramachandran, Srinivasan; Capone, Ricardo; Whitlock, Jenny L; Ghadge, Ghanashyam D; Arnsdorf, Morton F; Roos, Raymond P; Lal, Ratnesh

    2012-03-01

    Point mutations in the gene encoding copper-zinc superoxide dismutase (SOD1) impart a gain-of-function to this protein that underlies 20-25% of all familial amyotrophic lateral sclerosis (FALS) cases. However, the specific mechanism of mutant SOD1 toxicity has remained elusive. Using the complementary techniques of atomic force microscopy (AFM), electrophysiology, and cell and molecular biology, here we examine the structure and activity of A4VSOD1, a mutant SOD1. AFM of A4VSOD1 reconstituted in lipid membrane shows discrete tetrameric pore-like structure with outer and inner diameters 12.2 and 3.0nm respectively. Electrophysiological recordings show distinct ionic conductances across bilayer for A4VSOD1 and none for wildtype SOD1. Mouse neuroblastoma cells exposed to A4VSOD1 undergo membrane depolarization and increases in intracellular calcium. These results provide compelling new evidence that a mutant SOD1 is capable of disrupting cellular homeostasis via an unregulated ion channel mechanism. Such a "toxic channel" mechanism presents a new therapeutic direction for ALS research. PMID:21930207

  11. Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles.

    PubMed

    Song, Chongfu; Sheng, Liangquan; Zhang, Xiaobo

    2012-10-01

    Superoxide dismutase (SOD) has been widely applied in medical treatments, cosmetic, food, agriculture, and chemical industries. In industry, the immobilization of enzymes can offer better stability, feasible continuous operations, easy separation and reusing, and significant decrease of the operation costs. However, little attention has focused on the immobilization of the SOD, as well as the immobilization of thermostable enzymes. In this study, the recombinant thermostable manganese superoxide dismutase (Mn-SOD) of Thermus thermophilus wl was purified and covalently immobilized onto supermagnetic 3-APTES-modified Fe(3)O(4)@SiO(2) nanoparticles using glutaraldehyde method to prepare the Mn-SOD bound magnetic nanoparticles. The Mn-SOD nanoparticles were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer analysis. The results indicated that the diameter of Mn-SOD nanoparticles was 40 (± 5) nm, and its saturation magnetization value was 27.9 emu/g without remanence or coercivity. By comparison with the free Mn-SOD, it was found that the immobilized Mn-SOD on nanoparticles exhibited better resistance to temperature, pH, metal ions, enzyme inhibitors, and detergents. The results showed that the immobilized Mn-SOD on nanoparticles could be reused ten times without significant decrease of enzymatic activity. Therefore, our study presented a novel strategy for the immobilization of thermostable Mn-SOD and for the application of thermostable enzymes. PMID:22237672

  12. Antioxidant enzyme activity and mRNA expression in reproductive tract of adult male European Bison (Bison bonasus, Linnaeus 1758).

    PubMed

    Koziorowska-Gilun, M; Gilun, P; Fraser, L; Koziorowski, M; Kordan, W; Stefanczyk-Krzymowska, S

    2013-02-01

    Antioxidants in the male reproductive tract are the main defence factors against oxidative stress caused by reactive oxygen species production, which compromises sperm function and male fertility. This study was designed to determine the activity of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the testicular and epididymidal tissues of adult male European bison (Bison bonasus). The reproductive tract tissues were subjected to real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to quantify mRNA expression levels of five antioxidant enzymes: copper/zinc SOD (Cu/Zn SOD), secretory extracellular SOD (Ec-SOD), CAT, phospholipid hydroperoxide glutathione peroxidase (PHGPx) and GPx5. The corpus and cauda epididymidal tissues displayed greater (p < 0.05) SOD activity compared with the testicular tissue. It was found that CAT activity was lowest (p < 0.05) in the cauda epididymidis, whereas negligible GPx activity was detected in the reproductive tract tissues. There were no detectable differences in the mRNA expression level of Cu/Zn SOD among the different reproductive tract tissues. Small amounts of Ec-SOD mRNA were found in the reproductive tract, particularly in the epididymides. The caput and cauda epididymides exhibited greater (p < 0.05) level of CAT mRNA expression, whereas PHGPx mRNA was more (p < 0.05) expressed in the testis. Furthermore, extremely large amounts of GPx5 mRNA were detected in the caput epididymidal tissue compared with other tissues of the reproductive tract. It can be suggested that the activity of the antioxidant enzymes and the relative gene expression of the enzymes confirm the presence of tissue-specific antioxidant defence systems in the bison reproductive tract, which are required for spermatogenesis, epididymal maturation and storage of spermatozoa.

  13. Superoxide dismutase (SOD) genes in Streptomyces peucetius: effects of SODs on secondary metabolites production.

    PubMed

    Kanth, Bashistha Kumar; Jnawali, Hum Nath; Niraula, Narayan Prasad; Sohng, Jae Kyung

    2011-07-20

    Two superoxide dismutase (SOD) genes; sod1 and sod2, from Streptomyces peucetius ATCC 27952 show high similarity to other known SODs from Streptomyces coelicolor A3(2) and Streptomyces avermitilis MA-4680. These sod1 and sod2 were cloned into pIBR25 expression vector under a strong ermE* promoter to enhance secondary metabolites from Streptomyces strains. The recombinant expression plasmids; pIBR25SD1 and pIBR25SD2, were constructed to overexpress sod1 and sod2 respectively to enhance production of doxorubicin (DXR) in S. peucetius, clavulanic acid (CA) in Streptomyces clavuligerus NRRL 3585 and actinorhodin (ACT) and undecylprodigiosin (Red) in Streptomyces lividans TK24. Biomass variation, antibiotics production and transcriptional analysis of regulatory genes in recombinant strains have been studied to understand the effect of sod1 and sod2. The cell growth analysis shows that life span of all recombinant strains was found to be elevated as compared to wild type cells. In S. peucetius, overexpression of sod1 and sod2 was not effective in DXR production but in case of S. clavuligerus, CA production was increased by 2.5 and 1.5 times in sod1 and sod2 overexpression, respectively while in case of S. lividans, ACT production was increased by 1.4 and 1.6 times and Red production by 1.5 and 1.2 times upon sod1 and sod2 overexpressions, respectively as compared to the corresponding wild type strains. PMID:20888207

  14. Induction of active (REM) sleep and motor inhibition by hypocretin in the nucleus pontis oralis of the cat.

    PubMed

    Xi, Ming-Chu; Fung, Simon J; Yamuy, Jack; Morales, Francisco R; Chase, Michael H

    2002-06-01

    Hypocretin (orexin)-containing neurons in the hypothalamus, which have been implicated in the pathology of narcolepsy, project to nuclei in the brain stem reticular formation that are involved in the control of the behavioral states of sleep and wakefulness. Among these nuclei is the nucleus pontis oralis (NPO). Consequently, the present study was undertaken to determine if the hypocretinergic system provides regulatory input to neurons in the NPO with respect to the generation of the states of sleep and wakefulness. Accordingly, polygraphic recordings and behavioral observations were obtained before and after hypocretin-1 and -2 were microinjected into the NPO in chronic, unanesthetized cats. Microinjections of either hypocretin-1 or -2 elicited, with a short latency, a state of active [rapid eye movement (REM)] sleep that appeared identical to naturally occurring active sleep. The percentage of time spent in active sleep was significantly increased. Dissociated states, which are characterized by the presence of muscle atonia without one or more of the electrophysiological correlates of active sleep, also arose following the injection. The effect of juxtacellular application of hypocretin-1 on the electrical activity of intracellularly recorded NPO neurons was then examined in the anesthetized cat. In this preparation, the application of hypocretin-1 resulted in the depolarization of NPO neurons, an increase in the frequency of their discharge and an increase in their excitability. These latter data represent the first description of the in vivo action of hypocretin on intracellularly recorded neuronal activity and provide evidence that the active sleep-inducing effects of hypocretin are due to a direct excitatory action on NPO neurons. Therefore we suggest that hypocretinergic processes in the NPO may play a role in the generation of active sleep, particularly muscle atonia and therefore are likely to be involved in the pathology of narcolepsy. PMID:12037191

  15. Treatment of Bignathic Malocclusions With Multistage Active Force Orthodontic Movements in a Cat.

    PubMed

    Lothamer, Chad W; Soukup, Jason W

    2016-03-01

    Abstract Untreated malocclusions may lead to negative oral health sequelae including, but not limited to, pain, dental trauma, periodontal disease, and endodontic disease. Thus, orthodontic treatments of malocclusion in companion animals are often pursued for reasons other than cosmesis. Treatment may provide a pain-free, functional occlusion with the opportunity for the best possible long-term oral health. This report describes the multistage orthodontic treatment of a bignathic malocclusion in a cat, highlighting the complexities and complications that may arise with orthodontic movement of multiple teeth. PMID:27487651

  16. Treatment of Bignathic Malocclusions With Multistage Active Force Orthodontic Movements in a Cat.

    PubMed

    Lothamer, Chad W; Soukup, Jason W

    2016-03-01

    Abstract Untreated malocclusions may lead to negative oral health sequelae including, but not limited to, pain, dental trauma, periodontal disease, and endodontic disease. Thus, orthodontic treatments of malocclusion in companion animals are often pursued for reasons other than cosmesis. Treatment may provide a pain-free, functional occlusion with the opportunity for the best possible long-term oral health. This report describes the multistage orthodontic treatment of a bignathic malocclusion in a cat, highlighting the complexities and complications that may arise with orthodontic movement of multiple teeth.

  17. Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis.

    PubMed

    Kaur, Simran J; McKeown, Stephanie R; Rashid, Shazia

    2016-02-15

    Amyotrophic lateral sclerosis (ALS) is a neural disorder that causes death of the motor neurons in the brain and spinal cord; this affects the voluntary muscles and gradually leads to paralysis of the whole body. Most ALS cases are sporadic, though about 5-10% are familial. ALS is caused by multiple factors including mutation in any one of a number of specific genes, one of the most frequently affected is superoxide dismutase (SOD) 1. Alterations in SOD 1 have been linked with several variants of familial ALS. SOD 1 is a powerful antioxidant enzyme that protects cells from the damaging effects of superoxide radicals. The enzyme binds both copper and zinc ions that are directly involved in the deactivation of toxic superoxide radicals. Mutated SOD1 gene can acquire both gain and loss of function mutations. The most commonly identified mutations in SOD1 that affect protein activity are D90A, A4V and G93A. Deleterious mutations have been shown to modify SOD1 activity, which leads to the accumulation of highly toxic hydroxyl radicals. Accumulation of these free radicals causes degradation of both nuclear and mitochondrial DNA and protein misfolding, features which can be used as pathological indicators associated with ALS. Numerous clinical trials have been carried out over last few years with limited success. In some patients advanced techniques like gene and stem cell therapy have been trialed. However no definitive treatment option can provide a cure and currently ALS is managed by drugs and other supportive therapies. Consequently there is a need to identify new approaches for treatment of this ultimately fatal disease.

  18. Biphasic GABA-A receptor-mediated effect on the spontaneous activity of the circular layer in cat terminal ileum.

    PubMed

    Pencheva, N; Radomirov, R

    1993-07-01

    1. The GABA and GABA-A receptor agonist muscimol changed the spontaneous mechanical activity of a circular layer isolated from cat terminal ileum, while the selective GABA-B receptor agonist (+/-)baclofen had no effect. 2. GABA at doses ranging from 1 microM to 2 mM elicited concentration-dependent biphasic responses which consisted of a relaxation followed by contraction, with a tonic and a phasic component. The EC50 values, calculated at 95% confidence limits (CL), were 94.9 microM (83.5-109.8 microM) and 66.0 microM (51.2-75.5 microM) for the relaxation and contractile phases, respectively. 3. The GABA-induced biphasic responses were sensitive to bicuculline and picrotoxinin and were entirely mimicked by muscimol. Bicuculline competitively antagonized the effects of GABA and gave closely similar pA2 values for both phases of these responses--inhibitory and stimulatory. Cross-desensitization occurred only between GABA and muscimol and not between (+/-)baclofen and GABA, or (+/-)baclofen and muscimol. 4. Both bicuculline-sensitive phases evoked by GABA and muscimol were abolished by tetrodotoxin or atropine, but were unaffected by guanethidine or naloxone. 5. The present results suggested that the biphasic GABA effect on the mechanical activity of the circular layer in cat terminal ileum was mediated by prejunctional GABA-A receptors, most probably through an action on the cholinergic pathway.

  19. [Effects of Bt corn straw insecticidal proteins on enzyme activities of Eisenia fetida].

    PubMed

    Shu, Ying-hua; Ma, Hong-hui; Du, Yan; Wang, Jian-wu

    2011-08-01

    Bacillus thuringiensis (Bt) proteins released from Bt corn can enter soil ecosystem via returning straw into field, root exudation, and pollen fluttering-down. In this study, the straws of Bt corn and its near-isogenic non-Bt line were added into soil with an application rate of 5% and 7.5% to breed Eisenia fetida, and the total protein content and the activities of acetylcholine esterase (AchE), glutathione peroxidase (GSH-PX), catalase (CAT), and superoxide dismutase (SOD) in E. fetida were determined after 7 and 14 days. Under the same application rate of the straws, the total protein content and GSH-PX activity of E. fetida decreased while the AchE, CAT, and SOD activities increased on the 14th day, compared with those on the 7th day. The Bt corn straw increased the SOD activity and decreased the AchE and GSH-PX activities, but had less effects on the total protein content and CAT activity, compared with non-Bt corn straw. All the results suggested that Bt corn straw had no inhibitory effect on E. fetida total protein but could inhibit the AchE and GSH-PX activities, and could not induce CAT activity but induce SOD activity within a short time.

  20. Progesterone Accelerates the Completion of Sperm Capacitation and Activates CatSper Channel in Spermatozoa from the Rhesus Macaque.

    PubMed

    Sumigama, Shiho; Mansell, Steven; Miller, Melissa; Lishko, Polina V; Cherr, Gary N; Meyers, Stuart A; Tollner, Theodore

    2015-12-01

    During transit through the female reproductive tract, mammalian spermatozoa are exposed to increasing concentrations of progesterone (P4) released by the cumulus oophorus. P4 triggers massive calcium influx into human sperm through activation of the sperm-specific calcium channel CatSper. These properties of human spermatozoa are thought to be unique since CatSper is not progesterone sensitive in rodent sperm. Here, by performing patch clamp recording from spermatozoa from rhesus macaque for the first time, we report that they express P4-sensitive CatSper channel identically to human sperm and react to P4 by inducing responsiveness to zona pellucida, unlike human sperm, which respond directly to P4. We have also determined the physiologic levels of P4 capable of inducing capacitation-associated changes in macaque sperm. Progesterone (1 μM) induced up to a 3-fold increase in the percentage of sperm undergoing the zona pellucida-induced acrosome reaction with the lowest threshold as low as 10 nM of P4. Submicromolar levels of P4 induced a dose-dependent increase in curvilinear velocity and lateral head displacement, while sperm protein tyrosine phosphorylation was not altered. Macaque spermatozoa exposed to 10 μM of P4 developed fully hyperactivated motility. Similar to human sperm, on approaching cumulus mass and binding to zona pellucida, macaque spermatozoa display hyperactivation and undergo an acrosome reaction that coincides with the rise in the sperm intracellular calcium. Taken together, these data indicate that P4 accelerates the completion of capacitation and provides evidence of spermatozoa "priming" as they move into a gradient of progesterone in search for the oocyte.

  1. The Functional Role of MnSOD as a Biomarker of Human Diseases and Therapeutic Potential of a New Isoform of a Human Recombinant MnSOD

    PubMed Central

    Borrelli, Antonella; Schiattarella, Antonietta; Mancini, Aldo

    2014-01-01

    Reactive oxygen species (ROS) are generated as a consequence of metabolic reactions in the mitochondria of eukaryotic cells. This work describes the role of the manganese superoxide dismutase (MnSOD) as a biomarker of different human diseases and proposes a new therapeutic application for the prevention of cancer and its treatment. The paper also describes how a new form of human MnSOD was discovered, its initial application, and its clinical potentials. The MnSOD isolated from a human liposarcoma cell line (LSA) was able to kill cancer cells expressing estrogen receptors, but it did not have cytotoxic effects on normal cells. Together with its oncotoxic activity, the recombinant MnSOD (rMnSOD) exerts a radioprotective effect on normal cells irradiated with X-rays. The rMnSOD is characterized by the presence of a leader peptide, which allows the protein to enter cells: this unique property can be used in the radiodiagnosis of cancer or chemotherapy, conjugating radioactive substances or chemotherapic drugs to the leader peptide of the MnSOD. Compared to traditional chemotherapic agents, the drugs conjugated with the leader peptide of MnSOD can selectively reach and enter cancer cells, thus reducing the side effects of traditional treatments. PMID:24511533

  2. Hydrogen sulfide activates the carotid body chemoreceptors in cat, rabbit and rat ex vivo preparations.

    PubMed

    Jiao, Yingfu; Li, Qian; Sun, Biying; Zhang, Guohua; Rong, Weifang

    2015-03-01

    We and others previously reported experimental evidence suggesting an important role for hydrogen sulfide (H2S) in oxygen sensing in murine carotid body chemoreceptors. More recent data implicated abnormal H2S-mediated chemoreceptor signaling in pathological conditions such as chronic heart failure and hypertension. However, the idea of H2S as a mediator of oxygen-sensing in chemoreceptors has been challenged. In particular, it was shown that exogenous H2S inhibited the release of neurotransmitters (ACh and ATP) from the cat carotid body, raising the possibility that there exists significant species difference in H2S-mediated signaling in chemoreceptors. This study was designed specifically to determine the effect of H2S on chemoreceptors in different species. We conducted multiunit extracellular recordings of the sinus nerve in the ex vivo carotid body preparation taken from the rat, the cat and the rabbit. As observed in the mouse carotid body, H2S donors (NaHS or Na2S) evoked qualitatively similar excitatory responses of the afferent sinus nerves of the species studied here. The excitatory effects of the H2S donors were concentration-dependent and reversible. The sinus nerve responses to H2S donors were prevented by blockade of the transmission between type I cells and the afferent terminals, as was the response to hypoxia. These results demonstrate that exogenous H2S exerts qualitatively similar excitatory effects on chemoreceptor afferents of different species. The role of endogenous H2S-mediated signaling in carotid body function in different species awaits further investigation.

  3. Profiling of SOD isoenzymes in compartments of the developing bovine antral follicle

    PubMed Central

    Combelles, Catherine M.H.; Holick, Emily A.; Paolella, Louis J.; Walker, David C.; Wu, Qiaqia

    2011-01-01

    The antral follicle constitutes a complex and regulated ovarian microenvironment that influences oocyte quality. Oxidative stress is a cellular state that may play a role during folliculogenesis and oogenesis, although direct supporting evidence is currently lacking. We thus evaluated the expression of the three isoforms (SOD1, 2, 3) of the enzymatic antioxidant superoxide dismutase in all of the cellular (granulosa cells, cumulus cells, oocytes) and extracellular (follicular fluid) compartments of the follicle. Comparisons were performed in bovine ovaries across progressive stages of antral follicular development. Follicular fluid possessed increased amounts of SOD1, 2, 3 in small when compared to large antral follicles; concomitantly, total SOD activity was highest in follicular fluids from smaller diameter follicles. SOD1, 2, and 3 proteins were expressed in granulosa cells without any fluctuations with follicle sizes. All three SOD isoforms were present but distributed differently in oocytes from small, medium, or large antral follicles. Cumulus cells expressed high levels of SOD3, some SOD2, but no detectable SOD1. Our studies provide a temporal and spatial expression profile of the three SOD isoforms in the different compartments of the developing bovine antral follicles. These results lay the ground for future investigations into the potential regulation and roles of antioxidants during folliculogenesis and oogenesis. PMID:20197373

  4. Cat scratch disease (image)

    MedlinePlus

    Cat scratch disease is an infectious illness associated with cat scratches, bites, or exposure to cat saliva, causing chronic swelling of the lymph nodes. Cat scratch disease is possibly the most common cause of chronic ...

  5. Malignant histiocytosis in a cat.

    PubMed

    Court, E A; Earnest-Koons, K A; Barr, S C; Gould, W J

    1993-11-01

    A 13-year-old male domestic shorthair cat was found to have normocytic hypochromic regenerative anemia, lymphopenia, eosinopenia, thrombocytopenia, hyperglycemia, hyperbilirubinemia, and a prolonged activated partial thromboplastin time. Transfusions of packed RBC failed to maintain the PCV above 13% for > 8 hours. The cat was euthanatized. At necropsy, the spleen liver, lymph nodes, and bone marrow were infiltrated with malignant histiocytes undergoing erythrophagocytosis.

  6. Cellular and subcellular distributions of delta opioid receptor activation sites in the ventral oral pontine tegmentum of the cat.

    PubMed

    Alvira-Botero, Maria Ximena; Garzón, Miguel

    2006-12-01

    The ventral division of the reticular oral pontine nucleus (vRPO) is a pontine tegmentum region critically involved in REM sleep generation. Previous reports of morphine microinjections in the cat pontine tegmentum have shown that opioid receptor activation in this region modulates REM sleep. Even though opiate administration has marked effects on sleep-wake cycle architecture, the distribution of opioid receptors in vRPO has only been partially described. Using an antiserum directed against delta opioid receptor (DOR), to which morphine binds, in the present study, we use (1) light microscopy to determine DOR cellular distribution in the rostral pontine tegmentum and (2) electron microscopy to determine DOR subcellular distribution in the cat vRPO. In the dorsal pons, DOR immunoreactivity was evenly distributed throughout the neuropil of the reticular formation and was particularly intense in the parabrachial nuclei and locus coeruleus; the ventral and central areas of the RPO and locus coeruleus complex were especially rich in DOR-labeled somata. Within the vRPO, DOR was localized mainly in the cytoplasm and on plasma membranes of medium to large dendrites (47.8% of DOR-labeled profiles), which received both symmetric and asymmetric synaptic contacts mainly from non-labeled (82% of total inputs) axon terminals. Less frequently, DOR was distributed presynaptically in axon terminals (19% of DOR-labeled profiles). Our results suggest that DOR activation in vRPO regulates REM sleep occurrence by modulating postsynaptic responses to both excitatory and inhibitory afferents. DOR activation in vRPO could have, however, an additional role in direct modulation of neurotransmitter release from axon terminals.

  7. An unexpected cobalt(III) complex containing a Schiff base ligand: Synthesis, crystal structure, spectroscopic behavior, electrochemical property and SOD-like activity

    NASA Astrophysics Data System (ADS)

    Chai, Lan-Qin; Huang, Jiao-Jiao; Zhang, Hong-Song; Zhang, Yu-Li; Zhang, Jian-Yu; Li, Yao-Xin

    2014-10-01

    An unexpected mononuclear Co(III) complex, [Co(L2)2·(CH3COO)]·CH3OH (HL2 = 1-(2-{[(E)-3,5-dichloro-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Co(II) acetate tetrahydrate with HL1 originally. The plausible reaction mechanism for the formation of quinazoline-type ligand was proposed. HL1 and its corresponding Co(III) complex were characterized by IR, as well as by elemental analysis and UV-vis spectroscopy. The crystal structure of the complex has been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical properties of the cobalt(III) complex were studied by cyclic voltammetry and X-ray photoelectron spectrum (XPS). In addition, superoxide dismutase-like activities of HL1 and Co(III) complex were also investigated.

  8. An unexpected cobalt(III) complex containing a Schiff base ligand: Synthesis, crystal structure, spectroscopic behavior, electrochemical property and SOD-like activity.

    PubMed

    Chai, Lan-Qin; Huang, Jiao-Jiao; Zhang, Hong-Song; Zhang, Yu-Li; Zhang, Jian-Yu; Li, Yao-Xin

    2014-10-15

    An unexpected mononuclear Co(III) complex, [Co(L2)2·(CH3COO)]·CH3OH (HL2=1-(2-{[(E)-3,5-dichloro-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Co(II) acetate tetrahydrate with HL1 originally. The plausible reaction mechanism for the formation of quinazoline-type ligand was proposed. HL1 and its corresponding Co(III) complex were characterized by IR, as well as by elemental analysis and UV-vis spectroscopy. The crystal structure of the complex has been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical properties of the cobalt(III) complex were studied by cyclic voltammetry and X-ray photoelectron spectrum (XPS). In addition, superoxide dismutase-like activities of HL1 and Co(III) complex were also investigated.

  9. Patterns of spatio-temporal correlations in the neural activity of the cat motor cortex during trained forelimb movements.

    PubMed

    Ghosh, Soumya; Putrino, David; Burro, Bianca; Ring, Alexander

    2009-06-01

    In order to study how neurons in the primary motor cortex (MI) are dynamically linked together during skilled movement, we recorded simultaneously from many cortical neurons in cats trained to perform a reaching and retrieval task using their forelimbs. Analysis of task-related spike activity in the MI of the hemisphere contralateral to the reaching forelimb (in identified forelimb or hindlimb representations) recorded through chronically implanted microwires, was followed by pairwise evaluation of temporally correlated activity in these neurons during task performance using shuffle corrected cross-correlograms. Over many months of recording, a variety of task-related modulations of neural activities were observed in individual efferent zones. Positively correlated activity (mainly narrow peaks at zero or short latencies) was seen during task performance frequently between neurons recorded within the forelimb representation of MI, rarely within the hindlimb area of MI, and never between forelimb and hindlimb areas. Correlated activity was frequently observed between neurons with different patterns of task-related activity or preferential activity during different task elements (reaching, feeding, etc.), and located in efferent zones with dissimilar representation as defined by intracortical microstimulation. The observed synchronization of action potentials among selected but functionally varied groups of MI neurons possibly reflects dynamic recruitment of network connections between efferent zones during skilled movement.

  10. Cutaneous inputs from the back abolish locomotor-like activity and reduce spastic-like activity in the adult cat following complete spinal cord injury

    PubMed Central

    Frigon, Alain; Thibaudier, Yann; Johnson, Michael D.; Heckman, C.J.; Hurteau, Marie-France

    2012-01-01

    Spasticity is a condition that can include increased muscle tone, clonus, spasms, and hyperreflexia. In this study, we report the effect of manually stimulating the dorsal lumbosacral skin on spontaneous locomotor-like activity and on a variety of reflex responses in 5 decerebrate chronic spinal cats treated with clonidine. Cats were spinalized 1 month before the terminal experiment. Stretch reflexes were evoked by stretching the left triceps surae muscles. Crossed reflexes were elicited by electrically stimulating the right tibial or superficial peroneal nerves. Windup of reflex responses was evoked by electrically stimulating the left tibial or superficial peroneal nerves. We found that pinching the skin of the back abolished spontaneous locomotor-like activity. We also found that back pinch abolished the rhythmic activity observed during reflex testing without eliminating the reflex responses. Some of the rhythmic episodes of activity observed during reflex testing were consistent with clonus with an oscillation frequency greater than 3 Hz. Pinching the skin of the back effectively abolished rhythmic activity occurring spontaneously or evoked during reflex testing, irrespective of oscillation frequency. The results are consistent with the hypothesis that locomotion and clonus are produced by common central pattern-generators. Stimulating the skin of the back could prove helpful in managing undesired rhythmic activity in spinal cord-injured humans. PMID:22487200

  11. 7 CFR 1437.309 - Turfgrass sod.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... stratum of soil bound by mature grass and plant roots into a thick mat produced in commercial quantities for sale. (b) Specific species, types or varieties of grass intended for turfgrass sod will...

  12. 7 CFR 1437.309 - Turfgrass sod.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... stratum of soil bound by mature grass and plant roots into a thick mat produced in commercial quantities for sale. (b) Specific species, types or varieties of grass intended for turfgrass sod will...

  13. 7 CFR 1437.309 - Turfgrass sod.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... stratum of soil bound by mature grass and plant roots into a thick mat produced in commercial quantities for sale. (b) Specific species, types or varieties of grass intended for turfgrass sod will...

  14. 7 CFR 1437.309 - Turfgrass sod.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... stratum of soil bound by mature grass and plant roots into a thick mat produced in commercial quantities for sale. (b) Specific species, types or varieties of grass intended for turfgrass sod will...

  15. 7 CFR 1437.309 - Turfgrass sod.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... stratum of soil bound by mature grass and plant roots into a thick mat produced in commercial quantities for sale. (b) Specific species, types or varieties of grass intended for turfgrass sod will...

  16. Novel Nanodimension artificial red blood cells that act as O2 and CO2 carrier with enhanced antioxidant activity: PLA-PEG nanoencapsulated PolySFHb-superoxide dismutase-catalase-carbonic anhydrase

    PubMed Central

    Gao, Wei; Bian, Yuzhu; Chang, Thomas M.S.

    2013-01-01

    Poly(ethylene glycol)-Poly(lactic acid) block-copolymer (PEG-PLA) was prepared and characterized using Fourier transform infrared spectrophotometer (FTIR). Glutaraldehyde was used to crosslink stroma-free hemoglobin (SFHb), superoxide dismutase (SOD), catalase (CAT), and carbonic anhydrase (CA) into a soluble complex of PolySFHb-SOD-CAT-CA. PEG-PLA was then used to nanoencapsulated PolySFHb-SOD-CAT-CA by oil in water emulsification. This resulted in the formation of PLA-PEG-PolySFHb-SOD-CAT-CA nanocapsules that have enhanced antioxidant activity and that can transport both O2 and CO2. These are homogeneous particles with an average diameter of 100 nm with good dispersion and core shell structure, high entrapment efficiency (EE%), and nanocapsule percent recovery. A lethal hemorrhagic shock model in rats was used to evaluate the therapeutic effect of the PLA-PEG-PolySFHb-SOD-CAT-CA nanocapsules. Infusion of this preparation resulted in the lowering of the elevated tissue PCO2 and also recovery of the mean arterial pressure (MAP). PMID:23336597

  17. The relationship of mucosal bacteria to duodenal histopathology, cytokine mRNA, and clinical disease activity in cats with inflammatory bowel disease.

    PubMed

    Janeczko, S; Atwater, D; Bogel, E; Greiter-Wilke, A; Gerold, A; Baumgart, M; Bender, H; McDonough, P L; McDonough, S P; Goldstein, R E; Simpson, K W

    2008-04-01

    Feline inflammatory bowel disease (IBD) is the term applied to a group of poorly understood enteropathies that are considered a consequence of uncontrolled intestinal inflammation in response to a combination of elusive environmental, enteric microbial, and immunoregulatory factors in genetically susceptible cats. The present study sought to examine the relationship of mucosal bacteria to intestinal inflammation and clinical disease activity in cats with inflammatory bowel disease. Duodenal biopsies were collected from 27 cats: 17 undergoing diagnostic investigation of signs of gastrointestinal disease, and 10 healthy controls. Subjective duodenal histopathology ranged from normal (10), through mild (6), moderate (8), and severe (3) IBD. The number and spatial distribution of mucosal bacteria was determined by fluorescence in situ hybridization with probes to 16S rDNA. Mucosal inflammation was evaluated by objective histopathology and cytokine profiles of duodenal biopsies. The number of mucosa-associated Enterobacteriaceae was higher in cats with signs of gastrointestinal disease than healthy cats (P<0.001). Total numbers of mucosal bacteria were strongly associated with changes in mucosal architecture (P<0.001) and the density of cellular infiltrates, particularly macrophages (P<0.002) and CD3(+)lymphocytes (P<0.05). The number of Enterobacteriaceae, E. coli, and Clostridium spp. correlated with abnormalities in mucosal architecture (principally atrophy and fusion), upregulation of cytokine mRNA (particularly IL-1, -8 and -12), and the number of clinical signs exhibited by the affected cats. These data establish that the density and composition of the mucosal flora is related to the presence and severity of intestinal inflammation in cats and suggest that mucosal bacteria are involved in the etiopathogenesis of feline IBD.

  18. Why does SOD overexpression sometimes enhance, sometimes decrease, hydrogen peroxide production? A minimalist explanation.

    PubMed

    Gardner, Rui; Salvador, Armindo; Moradas-Ferreira, Pedro

    2002-06-15

    Toxic effects of superoxide dismutase (SOD) overexpression are commonly attributed to increased hydrogen peroxide (H(2)O(2)) production. Still, published experiments yield contradictory evidence on whether SOD overexpression increases or decreases H(2)O(2) production. We analyzed this issue using a minimal mathematical model. The most relevant mechanisms of superoxide consumption are treated as pseudo first-order processes, and both superoxide production and the activity of enzymes other than SOD were considered constant. Even within this simple framework, SOD overexpression may increase, hold constant, or decrease H(2)O(2) production. At normal SOD levels, the outcome depends on the ratio between the rate of processes that consume superoxide without forming H(2)O(2) and the rate of processes that consume superoxide with high (>/= 1) H(2)O(2) yield. In cells or cellular compartments where this ratio is exceptionally low (< 1), a modest decrease in H(2)O(2) production upon SOD overexpression is expected. Where the ratio is higher than unity, H(2)O(2) production should increase, but at most linearly, with SOD activity. The results are consistent with the available experimental observations. According to the minimal model, only where most superoxide is eliminated through H(2)O(2)-free processes does SOD activity have the moderately large influence on H(2)O(2) production observed in some experiments.

  19. Group II-activated lumbosacral interneurones with an ascending projection to midlumbar segments of the cat spinal cord.

    PubMed Central

    Harrison, P J; Riddell, J S

    1989-01-01

    1. In anaesthetized cats, single-unit microelectrode recordings were made in the lateral funiculus at L6, from the axons of lumbosacral interneurones discharged by hindlimb group II muscle afferents. 2. The level of the ascending projection of these interneurones was investigated by antidromic activation of their axons in the lateral funiculus from different spinal levels. The majority of units encountered were found to have an ascending projection to at least the L4 level and, of these, most (85%) did not project beyond the L4 or L3 segments of the cord. 3. The axons studied were discharged by group II afferents primarily from knee extensor muscles. Some units were discharged in addition by cutaneous and/or joint afferents. 4. The implications of this ascending projection are discussed. PMID:2778739

  20. [Effect of food motivation on the impulse activity of neurons of the somatic cortex of the cat].

    PubMed

    Busel', B I; Moldavan, M G

    1987-01-01

    Spike reactions of the same somatic cortex neurons (areas 3 and 4) were analyzed during unconditioned stimulation. They were registered in the untrained hungry cats under conditions of rest and with food motivation. A decrease of the intensity of initial spike reactions, disappearance of the late neuronal responses following electro-cutaneous stimulation as well as changes in the level of the background activity were observed during emergence of food motivation. Resemblance and correlation between time of appearance of neuronal reactions and respected movements during conditioned stimulation under various levels of food motivational excitation were shown. This correlation depended on the level of the animal satiation. The results show the possibility of considerable influence of food motivation on the patterns of spike reactions in the somatic cortex neurons.

  1. Effects of phthalate ester treatment on seed germination and antioxidant enzyme activities of Phaseolus radiatus L.

    PubMed

    Liu, Wenli; Zhang, Chongbang; Liu, Shuyuan

    2014-05-01

    Effects of di-(2-ethylhexyl) phthalate and di-n-butyl phthalate on seed germination rate and antioxidant enzymes activities of mung bean (Phaseolus radiatus L.) were investigated. Results showed that under the treatment with 10 mg/kg of phthalate esters (PAEs), superoxide dismutase (SOD), peroxidase and catalase (CAT) activities were higher than those of the control (p > 0.05). But SOD and CAT activities decreased with the PAEs concentrations and the treatment duration, and were significantly lower than those of the control (p < 0.05). Effect of PAEs stress on SOD activity in germinating seeds of mung bean displayed a significant dose-effect relationship.

  2. Manganese superoxide dismutase, MnSOD and its mimics

    PubMed Central

    Miriyala, Sumitra; Spasojevic, Ivan; Tovmasyan, Artak; Salvemini, Daniela; Vujaskovic, Zeljko; St. Clair, Daret; Batinic-Haberle, Ines

    2011-01-01

    Increased understanding of the role of mitochondria under physiological and pathological conditions parallels increased exploration of synthetic and natural compounds able to mimic MnSOD – endogenous mitochondrial antioxidant defense essential for the existence of virtually all aerobic organisms from bacteria to humans. This review describes most successful mitochondrially-targeted redox-active compounds, Mn porphyrins and MitoQ10 in detail, and briefly addresses several other compounds that are either catalysts of O2·− dismutation, or its non-catalytic scavengers, and that reportedly attenuate mitochondrial dysfunction. While not a true catalyst (SOD mimic) of O2·− dismutation, MitoQ10 oxidizes O2·− to O2 with a high rate constant. In vivo it is readily reduced to quinol, MitoQH2, which in turn reduces ONOO− to ·NO2, producing semiquinone radical that subsequently dismutes to MitoQ10 and MitoQH2, completing the “catalytic” cycle. In MitoQ10, the redox-active unit was coupled to alkyl chain and monocationic triphenylphosphonium ion in order to reach mitochondria. Mn porphyrin-based SOD mimics, however, were designed so that their multiple cationic charge and alkyl chains determine both their remarkable SOD potency and carry them into mitochondria. Several animal efficacy studies such as skin carcinogenesis and UVB-mediated mtDNA damage, and subcellular distribution studies of Saccharomyces cerevisiae and mouse heart provided unambiguous evidence that Mn porphyrins mimic the site and action of MnSOD, which in turn contributes to their efficacy in numerous in vitro and in vivo models of oxidative stress. Within a class of Mn porphyrins, lipophilic analogues are particularly effective for treating central nervous system injuries where mitochondria play key role. PMID:22198225

  3. Activation of delta-type opioid receptors modulates the responses of cat terminal ileum to field electrical stimulation.

    PubMed

    Venkova, K; Pencheva, N; Radomirov, R

    1990-01-01

    1. The effects of (D-Ala2, D-Leu5) enkephalin amide (DADLE) on the responses of the cat terminal ileum to field electrical stimulation (pulse duration of 0.5 msec, train duration of 10 sec, 30 V) were evaluated by the changes in the contractile or the relaxatory responses of longitudinal and circular strips to electrical stimuli with a frequency of 2, 10 or 30 Hz. 2. Stimulation with a frequency of 2, 10 or 30 Hz elicited contractile responses from the longitudinal strips while in the circular strips 2 Hz stimulation induced contractions and 10 or 30 Hz stimulation caused relaxation. Tetrodotoxin (TTX) (0.1 mumol/l) abolished the electrically-induced responses in both longitudinal and circular strips. 3. DADLE (1 nmol/l) significantly inhibited the cholinergic contractile responses of the longitudinal strips to 2, 10 or 30 Hz stimulation and the contractile responses of the circular strips to 2 Hz stimulation. The relaxatory responses of the circular strips to 10 or 30 Hz stimulation were insignificantly increased by DADLE. 4. On the background of guanetidine (10 mumol/l) and atropine (3 mumol/l) DADLE significantly decreased the nonadrenergic, noncholinergic relaxatory responses of the circular strips to 2, 10 or 30 Hz stimulation. 5. DADLE did not change the maximum effects and the EC50 values of acetylcholine and noradrenaline in both longitudinal and circular strips. 6. It is suggested that in the cat terminal ileum activation of delta-type opioid receptors modulates the mechanical activity suppressing the cholinergic responses in the longitudinal and circular layers as well as the adrenergic and nonadrenergic, noncholinergic responses in the circular layer.

  4. Xanthine oxidase, but not neutrophils, contributes to activation of cardiac sympathetic afferents during myocardial ischaemia in cats

    PubMed Central

    Tjen-A-Looi, Stephanie C; Fu, Liang-Wu; Longhurst, John C

    2002-01-01

    Activation of cardiac sympathetic afferents during myocardial ischaemia causes angina and induces important cardiovascular reflex responses. Reactive oxygen species (ROS) are important chemical stimuli of cardiac afferents during and after ischaemia. Iron-catalysed Fenton chemistry constitutes one mechanism of production of hydroxyl radicals. Another potential source of these species is xanthine oxidase-catalysed oxidation of purines. Polymorphonuclear leukocytes (PMNs) also contribute to the production of ROS in some conditions. The present study tested the hypothesis that both xanthine oxidase-catalysed oxidation of purines and neutrophils provide a source of ROS sufficient to activate cardiac afferents during ischaemia. We recorded single-unit activity of cardiac afferents innervating the ventricles recorded from the left thoracic sympathetic chain (T1-5) of anaesthetized cats to identify the afferents' responses to ischaemia. The role of xanthine oxidase in activation of these afferents was determined by infusion of oxypurinol (10 mg kg−1, i.v.), an inhibitor of xanthine oxidase. The importance of neutrophils as a potential source of ROS in the activation of cardiac afferents during ischaemia was assessed by the infusion of a polyclonal antibody (3 mg ml−1 kg−1, i.v.) raised in rabbits immunized with cat PMNs. This antibody decreased the number of circulating PMNs and, to a smaller extent, platelets. Since previous data suggest that platelets release serotonin (5-HT), which activates cardiac afferents through a serotonin receptor (subtype 3,5-HT3 receptor) mechanism, before treatment with the antibody in another group, we blocked 5-HT3 receptors on sensory nerve endings with tropisetron (300 μg kg−1, i.v.). We observed that oxypurinol significantly decreased the activity of cardiac afferents during myocardial ischaemia from 1.5 ± 0.4 to 0.8 ± 0.4 impulses s−1. Similarly, the polyclonal antibody significantly reduced the discharge frequency of

  5. Fos and serotonin immunoreactivity in the raphe nuclei of the cat during carbachol-induced active sleep: a double-labeling study.

    PubMed

    Yamuy, J; Sampogna, S; López-Rodríguez, F; Luppi, P H; Morales, F R; Chase, M H

    1995-07-01

    The microinjection of carbachol into the nucleus pontis oralis produces a state which is polygraphically and behaviorally similar to active sleep (rapid eye movement sleep). In the present study, using double-labeling techniques for serotonin and the protein product of c-fos (Fos), we sought to examine whether immunocytochemically identified serotonergic neurons of the raphe nuclei of the cat were activated, as indicated by their expression of c-fos, during this pharmacologically-induced behavioral state (active sleep-carbachol). Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited a significantly greater number of c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus. Whereas most of the c-fos-expressing neurons in the raphe dorsalis were small, those in the raphe magnus were medium-sized and in the raphe pallidus they were small and medium-sized. The mean number of serotonergic neurons that expressed c-fos (i.e. double-labeled cells) was similar in control and active sleep-carbachol cats. These data indicate that there is an increased number of non-serotonergic, c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus during the carbachol-induced state.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7477901

  6. Cd(2+) sensitivity and permeability of a low voltage-activated Ca(2+) channel with CatSper-like selectivity filter.

    PubMed

    Garza-López, Edgar; Chávez, Julio César; Santana-Calvo, Carmen; López-González, Ignacio; Nishigaki, Takuya

    2016-07-01

    CatSper is a sperm-specific Ca(2+) channel that plays an essential role in the male fertility. However, its biophysical properties have been poorly characterized mainly due to its deficient heterologous expression. As other voltage-gated Ca(2+) channels (CaVs), CatSper possesses a conserved Ca(2+)-selective filter motif ([T/S]x[D/E]xW) in the pore region. Interestingly, CatSper conserves four aspartic acids (DDDD) as the negatively charged residues in this motif while high voltage-activated CaVs have four glutamic acids (EEEE) and low voltage-activated CaVs possess two glutamic acids and two aspartic acids (EEDD). Previous studies based on site-directed mutagenesis of L- and T-type channels showed that the number of D seems to have a negative correlation with their cadmium (Cd(2+)) sensitivity. These results suggest that CatSper (DDDD) would have low sensitivity to Cd(2+). To explore Cd(2+)-sensitivity and -permeability of CatSper, we performed two types of experiments: 1) Electrophysiological analysis of heterologously expressed human CaV3.1 channel and three pore mutants (DEDD, EDDD and DDDD), 2) Cd(2+) imaging of human spermatozoa with FluoZin-1. Electrophysiological studies showed a significant increase in Cd(2+) and manganese (Mn(2+)) currents through the CaV3.1 mutants as well as a reduction in the inhibitory effect of Cd(2+) on the Ca(2+) current. In fluorescence imaging with human sperm, we observed an increase in Cd(2+) influx potentiated by progesterone, a potent activator of CatSper. These results support our hypothesis, namely that Cd(2+)-sensitivity and -permeability are related to the absolute number of D in the Ca(2+)-selective filter independently to the type of the Cav channels.

  7. Preoptic area unit activity during sleep and wakefulness in the cat.

    PubMed

    Kaitin, K I

    1984-02-01

    The spontaneous discharge of 86 preoptic area (POA) neurons was recorded extracellularly in chronically prepared cats during wakefulness (W), slow-wave sleep (SWS), and REM sleep. Of these, the percentage of units exhibiting maximal discharge rates in SWS and REM sleep (84%) was significantly greater than that of those exhibiting a maximal discharge rate in W (16%). Furthermore, those neurons that discharged rapidly in sleep (fast units) generally had a reduced discharge rate in W. Sixteen of the 86 units showed a strong tendency to discharge in bursts during SWS but not during W or REM sleep. The mean coefficient of variation and the mean discharge rate for these bursting cells in SWS were significantly greater than the corresponding values for the same cells in W and REM sleep, and for the nonbursting cells in SWS. Because POA stimulation is known to initiate behavioral and electrocortical signs of sleep, it is suggested that "fast units" in SWS with reduced discharge rates in W, may be "hypnogenic" cells.

  8. Molecular cloning and functional characterization of MnSOD from Dunaliella salina.

    PubMed

    Zhang, Shu; Li, Xin Ran; Xu, Hui; Cao, Yu; Ma, Shu Han; Cao, Yi; Qiao, Dairong

    2014-05-01

    Dunaliella salina, a unicellular green alga, has the potential to grow in hypersaline environments via one of its gene products, superoxide dismutase (SOD). The superoxide radicals (O2 (-) ) produced by environmental stresses can cause damage to cells, and SOD catalyzes the turnover of such free radicals to protect cells. In this study, the gene coding for SOD in D. salina was cloned and the product was further identified and characterized. The open reading frame of this gene was 651 bp long, encoding for 217 amino acids. According to the sequence alignment using BLAST, native polyacrylamide electrophoresis for SOD activity analysis, and atomic absorption spectroscopy analysis, this protein belongs to the manganese-containing superoxide dismutase (MnSOD) family. Complementation analysis, performed by introducing plasmids carrying an inducible version of the D. salina gene encoding for MnSOD into an SOD-deficient mutant of E.coli, revealed that this gene could not only complement the defects in SOD activity, but was also capable of providing a stronger tolerance to restrictive growth conditions, such as high salt and prolonged UV exposure, compared to the tolerance of wild-type strains.

  9. Differential involvement of excitatory and inhibitory neurons of cat motor cortex in coincident spike activity related to behavioral context.

    PubMed

    Putrino, David; Brown, Emery N; Mastaglia, Frank L; Ghosh, Soumya

    2010-06-01

    To assess temporal associations in spike activity between pairs of neurons in the primary motor cortex (MI) related to different behaviors, we compared the incidence of coincident spiking activity of task-related (TR) and non-task-related (NTR) neurons during a skilled motor task and sitting quietly in adult cats (Felis domestica). Chronically implanted microwires were used to record spike activity of MI neurons in four animals (two male and two female) trained to perform a skilled reaching task or sit quietly. Neurons were identified as TR if spike activity was modulated during the task (and NTR if not). Based on spike characteristics, they were also classified as either regular-spiking (RS, putatively excitatory) or fast-spiking (FS, putatively inhibitory) neurons. Temporal associations in the activities of simultaneously recorded neurons were evaluated using shuffle-corrected cross-correlograms. Pairs of NTR and TR neurons showed associations in their firing patterns over wide areas of MI (representing forelimb and hindlimb movements) during quiet sitting, more commonly involving RS neurons. During skilled task performance, however, significantly coincident firing was seen almost exclusively between TR neurons in a smaller part of MI (representing forelimb movements), involving mainly FS neurons. The findings of this study show evidence for widespread interactions in MI when the animal sits quietly, which changes to a more specific and restricted pattern of interactions during task performance. Different populations of excitatory and inhibitory neurons appear to be synchronized during skilled movement and quiet sitting.

  10. c-fos Expression in mesopontine noradrenergic and cholinergic neurons of the cat during carbachol-induced active sleep: a double-labeling study.

    PubMed

    Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    1998-01-01

    The interaction of cholinergic and catecholaminergic mechanisms in the mesopontine region has been hypothesized as being critical for the generation and maintenance of active (REM) sleep. To further examine this hypothesis, we sought to determine the pattern of neuronal activation (via c-fos expression) of catecholaminergic and cholinergic neurons in this region during active sleep induced by the pontine microapplication of carbachol (designated as active sleep-carbachol). Accordingly, we used two sets of double-labeling techniques; the first to identify tyrosine hydroxylase-containing neurons (putative catecholaminergic cells) which also express the c-fos protein product Fos, and the second to reveal choline acetyltransferase-containing neurons (putative cholinergic cells) which also express Fos. Compared to control cats, active sleep-carbachol cats exhibited a significantly greater number of Fos-expressing neurons in the dorsolateral region of the pons, which encompasses the locus coeruleus, the lateral pontine reticular formation, the peribrachial nuclei and the latero-dorsal and pedunculo-pontine tegmental nuclei. However, both control and active sleep-carbachol cats exhibited a similar number of catecholaminergic and cholinergic neurons in those regions that expressed Fos (i.e., double-labeled cells). A large number of c-fos-expressing neurons in the active sleep-carbachol cats whose neurotransmitter phenotype was not identified suggests that non-catecholaminergic, non-cholinergic neuronal populations in mesopontine regions are involved in the generation and maintenance of active sleep. The lack of increased c-fos expression in catecholaminergic neurons during active sleep-carbachol confirms and extends previous data that indicate that these cells are silent during active sleep-carbachol and naturally-occurring active sleep. The finding that cholinergic neurons of the dorsolateral pons were not activated either during wakefulness or active sleep

  11. c-fos Expression in mesopontine noradrenergic and cholinergic neurons of the cat during carbachol-induced active sleep: a double-labeling study.

    PubMed

    Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    1998-01-01

    The interaction of cholinergic and catecholaminergic mechanisms in the mesopontine region has been hypothesized as being critical for the generation and maintenance of active (REM) sleep. To further examine this hypothesis, we sought to determine the pattern of neuronal activation (via c-fos expression) of catecholaminergic and cholinergic neurons in this region during active sleep induced by the pontine microapplication of carbachol (designated as active sleep-carbachol). Accordingly, we used two sets of double-labeling techniques; the first to identify tyrosine hydroxylase-containing neurons (putative catecholaminergic cells) which also express the c-fos protein product Fos, and the second to reveal choline acetyltransferase-containing neurons (putative cholinergic cells) which also express Fos. Compared to control cats, active sleep-carbachol cats exhibited a significantly greater number of Fos-expressing neurons in the dorsolateral region of the pons, which encompasses the locus coeruleus, the lateral pontine reticular formation, the peribrachial nuclei and the latero-dorsal and pedunculo-pontine tegmental nuclei. However, both control and active sleep-carbachol cats exhibited a similar number of catecholaminergic and cholinergic neurons in those regions that expressed Fos (i.e., double-labeled cells). A large number of c-fos-expressing neurons in the active sleep-carbachol cats whose neurotransmitter phenotype was not identified suggests that non-catecholaminergic, non-cholinergic neuronal populations in mesopontine regions are involved in the generation and maintenance of active sleep. The lack of increased c-fos expression in catecholaminergic neurons during active sleep-carbachol confirms and extends previous data that indicate that these cells are silent during active sleep-carbachol and naturally-occurring active sleep. The finding that cholinergic neurons of the dorsolateral pons were not activated either during wakefulness or active sleep

  12. Effects of frontal eye field stimulation upon activities of the lateral geniculate body of the cat.

    PubMed

    Tsumoto, T; Suzuki, D A

    1976-06-18

    Effects of electrical stimulation of the frontal eye field (FEF) upon activites of the lateral geniculate body (LG) were studied in encephale isole cats. In some experiments the effects were examined by recording field responses of the dorsal nucleus of LG (LGd) and the visual cortex (VC) to electrical stimulation of the optic chiasm (OX). Conditioning repetitive stimulation of FEF exerted no significant effects on the r1 wave of LGd responses but had a facilitatory effect on the r2 wave. FEF-induced facilitation of VC responses was prominent in the late postsynaptic components. These effects had latencies of 50-100 msec and durations of 200-500 msec. Transection of the midbrain showed that most of the FEF-effect was not mediated via the brainstem reticular formation. Extracellular unitary recordings were made from 125 neurons, of which 91 were LGd neurons, 23 neurons of the caudal part of the thalamic reticular nucleus (TRc) and 11 neurons of the ventral nucleus of LG (LGv). In 30 to 87 LGd relay neurons FEF stimuli increased response probabilities to OX stimuli and their spontaneous discharges. These FEF-facilitated LGd neurons were distinguished from the non-affected ones in that the former had longer OX-latencies than the latter. The FEF-facilitated neurons probably correspond to "X" neurons of LGd. In 17 TRc neurons the effects were inhibitory. Their time courses were similar to those of the facilitation in the LGd relay neurons. Seven LGv neurons recieved facilitaroy effects from FEF. Among them 5 neurons showed short-latency (6.7-17 msec) responses to FEF single shocks. The FEF sites inducing conjugate lateral eye movements exerted stronger facilitatory effects than those inducing upward or centering eye movements did. It is suggested that the effects may subserve to cancel the inhibitory convergence onto X-cells just after saccadic eye movements so as to improve visual information transmission through LGd during the eye fixation.

  13. Effects of thalidomide and pentobarbital on neuronal activity in the preoptic area during sleep and wakefulness in the cat.

    PubMed

    Kaitin, K I

    1985-01-01

    To test the hypothesis that sleep produced by thalidomide, unlike that of pentobarbital, is associated with increased neuronal activity in the preoptic area (POA), the spontaneous activity of 96 POA neurons was recorded in chronically prepared cats during alert wakefulness (W), deep slow-wave sleep (SWS), and REM sleep in a drug-free preparation and after administration of thalidomide (4 mg/kg) and pentobarbital (4 or 8 mg/kg). Thalidomide, unlike pentobarbital, at a dose that significantly increased the amount of SWS, failed to depress neuronal activity in the POA compared to drug-free controls. Mean discharge rates during thalidomide treatment were similar to drug-free rates. In contrast, rates during low-dose pentobarbital treatment were significantly less than those of drug-free and thalidomide-treated animals. Rates during high-dose pentobarbital treatment were significantly less than those in all other groups. Thalidomide, compared with the other groups, in addition to increasing the amount of SWS, significantly increased the total amount of REM sleep as well as REM sleep as a percent of total sleep, but did not produce ataxia or behavioral excitement. These results do not confirm the initial hypothesis, but suggest that hypnotic drugs that do not depress neuronal activity in the POA may be devoid of some of the unwanted side effects often associated with the more commonly prescribed hypnotic medications.

  14. Characterization of Recombinant B. abortus Strain RB51SOD Toward Understanding the Uncorrelated Innate and Adaptive Immune Responses Induced by RB51SOD Compared to Its Parent Vaccine Strain RB51

    PubMed Central

    Zhu, Jianguo; Larson, Charles B.; Ramaker, Megan Ann; Quandt, Kimberly; Wendte, Jered M.; Ku, Kimberly P.; Chen, Fang; Jourdian, George W.; Vemulapalli, Ramesh; Schurig, Gerhardt G.; He, Yongqun

    2011-01-01

    Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD) in a recombinant strain of RB51 (strain RB51SOD) significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. An attempt has been made to better understand the mechanism of the enhanced protective immunity of RB51SOD compared to its parent strain RB51. We previously reported that RB51SOD stimulated enhanced Th1 immune response. In this study, we further found that T effector cells derived from RB51SOD-immunized mice exhibited significantly higher cytotoxic T lymphocyte activity than T effector cells derived from RB51-immunized mice against virulent B. abortus-infected target cells. Meanwhile, the macrophage responses to these two strains were also studied. Compared to RB51, RB51SOD cells had a lower survival rate in macrophages and induced lower levels of macrophage apoptosis and necrosis. The decreased survival of RB51SOD cells correlates with the higher sensitivity of RB51SOD, compared to RB51, to the bactericidal action of either Polymyxin B or sodium dodecyl sulfate (SDS). Furthermore, a physical damage to the outer membrane of RB51SOD was observed by electron microscopy. Possibly due to the physical damage, overexpressed Cu/Zn SOD in RB51SOD was found to be released into the bacterial cell culture medium. Therefore, the stronger adaptive immunity induced by RB51SOD did not correlate with the low level of innate immunity induced by RB51SOD compared to RB51. This unique and apparently contradictory profile is likely associated with the differences in outer membrane integrity and Cu/Zn SOD release. PMID:22919576

  15. Characterization of recombinant B. abortus strain RB51SOD toward understanding the uncorrelated innate and adaptive immune responses induced by RB51SOD compared to its parent vaccine strain RB51.

    PubMed

    Zhu, Jianguo; Larson, Charles B; Ramaker, Megan Ann; Quandt, Kimberly; Wendte, Jered M; Ku, Kimberly P; Chen, Fang; Jourdian, George W; Vemulapalli, Ramesh; Schurig, Gerhardt G; He, Yongqun

    2011-01-01

    Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD) in a recombinant strain of RB51 (strain RB51SOD) significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. An attempt has been made to better understand the mechanism of the enhanced protective immunity of RB51SOD compared to its parent strain RB51. We previously reported that RB51SOD stimulated enhanced Th1 immune response. In this study, we further found that T effector cells derived from RB51SOD-immunized mice exhibited significantly higher cytotoxic T lymphocyte activity than T effector cells derived from RB51-immunized mice against virulent B. abortus-infected target cells. Meanwhile, the macrophage responses to these two strains were also studied. Compared to RB51, RB51SOD cells had a lower survival rate in macrophages and induced lower levels of macrophage apoptosis and necrosis. The decreased survival of RB51SOD cells correlates with the higher sensitivity of RB51SOD, compared to RB51, to the bactericidal action of either Polymyxin B or sodium dodecyl sulfate (SDS). Furthermore, a physical damage to the outer membrane of RB51SOD was observed by electron microscopy. Possibly due to the physical damage, overexpressed Cu/Zn SOD in RB51SOD was found to be released into the bacterial cell culture medium. Therefore, the stronger adaptive immunity induced by RB51SOD did not correlate with the low level of innate immunity induced by RB51SOD compared to RB51. This unique and apparently contradictory profile is likely associated with the differences in outer membrane integrity and Cu/Zn SOD release.

  16. Neuronal activity of the cat supraoptic nucleus is influenced by muscle small-diameter afferent (groups III and IV) receptors.

    PubMed

    Kannan, H; Yamashita, H; Koizumi, K; Brooks, C M

    1988-08-01

    In anesthetized cats, responses of single neurosecretory neurons of the supraoptic nucleus to activation of muscle receptors were investigated. Electrical stimulation (1-3 pulses at 200 Hz) of group III and IV pure muscle afferents (gastrocnemius nerve) evoked excitation of greater than 50% of supraoptic nucleus neurons (n = 50), whereas stimulation of group Ia or Ib fibers was ineffective. Baroreceptor stimulation inhibited 95% of these supraoptic nucleus neurons that responded to activation of muscle afferents. Excitation of receptors in the gastrocnemius muscle by intra-arterial injection of chemicals (NaCl, KCl, and bradykinin) increased firing rates of most (84%, 74%, and 80%, respectively) neurosecretary neurons. The magnitude of the excitatory response was dose dependent--bradykinin being the most effective. The response disappeared after muscle denervation. When the gastrocnemius muscle alone was contracted phasically by ventral root stimulation, discharges of the supraoptic nucleus neurons increased, whereas quick stretch of the muscle had no effect. We conclude that activation of muscle receptors by chemical or mechanical stimulus can directly excite neurosecretory neurons in the supraoptic nucleus and that afferent impulses are carried by polymodal fibers of small diameter but not by the largest afferents (group I) from the muscle. The results may relate to increased concentrations of plasma vasopressin during exercise.

  17. Prolonged ethanol administration depletes mitochondrial DNA in MnSOD-overexpressing transgenic mice, but not in their wild type littermates

    SciTech Connect

    Larosche, Isabelle; Choumar, Amal; Fromenty, Bernard; Letteron, Philippe; Abbey-Toby, Adje; Van Remmen, Holly; Epstein, Charles J.; Richardson, Arlan; Feldmann, Gerard; Pessayre, Dominique; Mansouri, Abdellah

    2009-02-01

    Alcohol consumption increases reactive oxygen species formation and lipid peroxidation, whose products can damage mitochondrial DNA (mtDNA) and alter mitochondrial function. A possible role of manganese superoxide dismutase (MnSOD) on these effects has not been investigated. To test whether MnSOD overexpression modulates alcohol-induced mitochondrial alterations, we added ethanol to the drinking water of transgenic MnSOD-overexpressing (TgMnSOD) mice and their wild type (WT) littermates for 7 weeks. In TgMnSOD mice, alcohol administration further increased the activity of MnSOD, but decreased cytosolic glutathione as well as cytosolic glutathione peroxidase activity and peroxisomal catalase activity. Whereas ethanol increased cytochrome P-450 2E1 and mitochondrial ROS generation in both WT and TgMnSOD mice, hepatic iron, lipid peroxidation products and respiratory complex I protein carbonyls were only increased in ethanol-treated TgMnSOD mice but not in WT mice. In ethanol-fed TgMnSOD mice, but not ethanol-fed WT mice, mtDNA was depleted, and mtDNA lesions blocked the progress of polymerases. The iron chelator, DFO prevented hepatic iron accumulation, lipid peroxidation, protein carbonyl formation and mtDNA depletion in alcohol-treated TgMnSOD mice. Alcohol markedly decreased the activities of complexes I, IV and V of the respiratory chain in TgMnSOD, with absent or lesser effects in WT mice. There was no inflammation, apoptosis or necrosis, and steatosis was similar in ethanol-treated WT and TgMnSOD mice. In conclusion, prolonged alcohol administration selectively triggers iron accumulation, lipid peroxidation, respiratory complex I protein carbonylation, mtDNA lesions blocking the progress of polymerases, mtDNA depletion and respiratory complex dysfunction in TgMnSOD mice but not in WT mice.

  18. Region-specific network plasticity in simulated and living cortical networks: comparison of the center of activity trajectory (CAT) with other statistics.

    PubMed

    Chao, Zenas C; Bakkum, Douglas J; Potter, Steve M

    2007-09-01

    Electrically interfaced cortical networks cultured in vitro can be used as a model for studying the network mechanisms of learning and memory. Lasting changes in functional connectivity have been difficult to detect with extracellular multi-electrode arrays using standard firing rate statistics. We used both simulated and living networks to compare the ability of various statistics to quantify functional plasticity at the network level. Using a simulated integrate-and-fire neural network, we compared five established statistical methods to one of our own design, called center of activity trajectory (CAT). CAT, which depicts dynamics of the location-weighted average of spatiotemporal patterns of action potentials across the physical space of the neuronal circuitry, was the most sensitive statistic for detecting tetanus-induced plasticity in both simulated and living networks. By reducing the dimensionality of multi-unit data while still including spatial information, CAT allows efficient real-time computation of spatiotemporal activity patterns. Thus, CAT will be useful for studies in vivo or in vitro in which the locations of recording sites on multi-electrode probes are important. PMID:17873432

  19. Region-specific network plasticity in simulated and living cortical networks: comparison of the center of activity trajectory (CAT) with other statistics

    NASA Astrophysics Data System (ADS)

    Chao, Zenas C.; Bakkum, Douglas J.; Potter, Steve M.

    2007-09-01

    Electrically interfaced cortical networks cultured in vitro can be used as a model for studying the network mechanisms of learning and memory. Lasting changes in functional connectivity have been difficult to detect with extracellular multi-electrode arrays using standard firing rate statistics. We used both simulated and living networks to compare the ability of various statistics to quantify functional plasticity at the network level. Using a simulated integrate-and-fire neural network, we compared five established statistical methods to one of our own design, called center of activity trajectory (CAT). CAT, which depicts dynamics of the location-weighted average of spatiotemporal patterns of action potentials across the physical space of the neuronal circuitry, was the most sensitive statistic for detecting tetanus-induced plasticity in both simulated and living networks. By reducing the dimensionality of multi-unit data while still including spatial information, CAT allows efficient real-time computation of spatiotemporal activity patterns. Thus, CAT will be useful for studies in vivo or in vitro in which the locations of recording sites on multi-electrode probes are important.

  20. Activation of mGlu3 metabotropic glutamate receptors enhances GDNF and GLT-1 formation in the spinal cord and rescues motor neurons in the SOD-1 mouse model of amyotrophic lateral sclerosis.

    PubMed

    Battaglia, Giuseppe; Riozzi, Barbara; Bucci, Domenico; Di Menna, Luisa; Molinaro, Gemma; Pallottino, Simone; Nicoletti, Ferdinando; Bruno, Valeria

    2015-02-01

    Enhancement of glial-derived neurotrophic factor (GDNF) is an established therapeutic target for amyotrophic lateral sclerosis (ALS). Activation of group II metabotropic glutamate (mGlu) receptors with the orthosteric agonist, LY379268, enhanced GDNF levels in cultured spinal cord astrocytes from wild-type mice and mGlu2(-/-) mice, but not in astrocytes from mGlu3(-/-) mice. LY379268 protected Sternberger monoclonal incorporated antibody-32 (SMI-32)(+) motor neurons against excitotoxic death in mixed cultures of spinal cord cells, and its action was abrogated by anti-GDNF antibodies. Acute systemic injection of LY379268 (0.5, 1 or 5mg/kg, i.p.) enhanced spinal cord GDNF levels in wild-type and mGlu2(-/-) mice, but not in mGlu3(-/-) mice. No tolerance developed to the GDNF-enhancing effect of LY379268 when the drug was continuously delivered for 28days by means of s.c. osmotic minipumps (0.5-5mg/day). Double fluorescent immunostaining showed a co-localization of GDNF with the astrocyte marker, GFAP, but not with the neuronal marker, Neuronal Nuclear Antigen (NeuN), or with SMI-32. Continuous infusion of LY379268 also enhanced the expression of the glutamate transporter GLT-1, in the spinal cord. These data laid the groundwork for the study of LY379268 in ALS mice. Continuous treatment with 1 or 5mg/kg/day with LY379268 had a beneficial effect on neurological disability in SOD1G93A mice. At day 40 of treatment, LY379268 enhanced spinal cord levels of GDNF and GLT-1, and rescued spinal cord motor neurons, as assessed by stereologic counting of SMI-32(+) cells. LY379268 had no significant effect on the mortality rate of SODG93A. These findings encourage the development of selective mGlu3 receptor agonists/enhancers as neuroprotective agents in ALS. PMID:25434487

  1. A polysaccharide-peptide complex from abalone mushroom (Pleurotus abalonus) fruiting bodies increases activities and gene expression of antioxidant enzymes and reduces lipid peroxidation in senescence-accelerated mice.

    PubMed

    Li, L; Ng, T B; Song, M; Yuan, F; Liu, Z K; Wang, C L; Jiang, Y; Fu, M; Liu, F

    2007-06-01

    The antioxidant effects of a polysaccharide-peptide complex (F22) from mushroom (Pleurotus abalonus)-fruiting bodies were studied. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in the liver, kidney, and brain of senescence-accelerated mice showed a marked increase after treatment with the polysaccharide-peptide complex. Concurrently, the gene expression levels of SOD, CAT, and GPx, as determined with real-time polymerase chain reaction, were up-regulated in the liver, kidney, and brain, whereas the MDA content in these organs declined. The maximal lifespan of the mice was prolonged.

  2. Aggregated α-Synuclein Increases SOD1 Oligomerization in a Mouse Model of Amyotrophic Lateral Sclerosis.

    PubMed

    Koch, Yvonne; Helferich, Anika M; Steinacker, Petra; Oeckl, Patrick; Walther, Paul; Weishaupt, Jochen H; Danzer, Karin M; Otto, Markus

    2016-08-01

    Aggregation of misfolded disease-related proteins is a hallmark of neurodegenerative diseases. Aggregate propagation accompanying disease progression has been demonstrated for different proteins (eg, for α-synuclein). Additional evidence supports aggregate cross-seeding activity for α-synuclein. For mutated superoxide dismutase 1 (SOD1), which causes familial amyotrophic lateral sclerosis (ALS), self-propagation of aggregation and cell-to-cell transmission have been demonstrated in vitro. However, there is a prominent lack of in vivo data concerning aggregation and cross-aggregation processes of SOD1. We analyzed the effect of α-synuclein and SOD1 seeds in cell culture using protein fragment complementation assay and intracerebral injection of α-synuclein and SOD1 seeds into SOD1(G93A) transgenic ALS mice. Survival of injected mice was determined, and SOD1 aggregates in the facial nuclei were quantified during disease course. We found that α-synuclein preformed fibrils increased the oligomerization rate of SOD1 in vivo and in vitro, whereas aggregated SOD1 did not exert any effect in both experimental setups. Notably, survival of ALS mice was not changed after inoculation of preformed fibrils. We conclude that misfolded α-synuclein can increase SOD1 aggregation and suppose that α-synuclein seeds are transported from the temporal cortex to the facial nuclei. However, unlike other proteins, the further enhancement of a self-aggregation process by additional SOD1 could not be confirmed in our models.

  3. Glycolytic enzyme activity is essential for domestic cat (Felis catus) and cheetah (Acinonyx jubatus) sperm motility and viability in a sugar-free medium.

    PubMed

    Terrell, Kimberly A; Wildt, David E; Anthony, Nicola M; Bavister, Barry D; Leibo, S P; Penfold, Linda M; Marker, Laurie L; Crosier, Adrienne E

    2011-06-01

    We have previously reported a lack of glucose uptake in domestic cat and cheetah spermatozoa, despite observing that these cells produce lactate at rates that correlate positively with sperm function. To elucidate the role of glycolysis in felid sperm energy production, we conducted a comparative study in the domestic cat and cheetah, with the hypothesis that sperm motility and viability are maintained in both species in the absence of glycolytic metabolism and are fueled by endogenous substrates. Washed ejaculates were incubated in chemically defined medium in the presence/absence of glucose and pyruvate. A second set of ejaculates was exposed to a chemical inhibitor of either lactate dehydrogenase (sodium oxamate) or glyceraldehyde-3-phosphate dehydrogenase (alpha-chlorohydrin). Sperm function (motility and acrosomal integrity) and lactate production were assessed, and a subset of spermatozoa was assayed for intracellular glycogen. In both the cat and cheetah, sperm function was maintained without exogenous substrates and following lactate dehydrogenase inhibition. Lactate production occurred in the absence of exogenous hexoses, but only if pyruvate was present. Intracellular glycogen was not detected in spermatozoa from either species. Unexpectedly, glycolytic inhibition by alpha-chlorohydrin resulted in an immediate decline in sperm motility, particularly in the domestic cat. Collectively, our findings reveal an essential role of the glycolytic pathway in felid spermatozoa that is unrelated to hexose metabolism or lactate formation. Instead, glycolytic enzyme activity could be required for the metabolism of endogenous lipid-derived glycerol, with fatty acid oxidation providing the primary energy source in felid spermatozoa.

  4. Effects of salinity change on two superoxide dismutases (SODs) in juvenile marbled eel Anguilla marmorata.

    PubMed

    Wang, Li; Wang, Xiaolu; Yin, Shaowu

    2016-01-01

    Salinity is one of the most important factors that affect the fish growth and survival. Superoxide dismutases (SODs), as the primary antioxidant enzymes, play a first role in the process of preventing oxidative stress caused by excessive superoxide anion (O[Formula: see text]) in living organisms. In the present study, we investigated the effects of salinity on the gene expressions as well as enzymatic activities of MnSOD and Cu/ZnSOD in gill, intestine, kidney, liver and muscle tissues of the marbled eel Anguilla marmorata. We found that the liver might possess stronger redox capacity compared with other tissues. Furthermore, the gene expressions and enzymatic activities of SODs in juvenile marbled eels could be effectively enhanced by low salinity but inhibited when the salinity was higher than the body tolerance. Our findings indicated that MnSOD and Cu/ZnSOD played vital roles in the adaptation of marbled eels to salinity variation, which contributed to the elucidation of physiological adaptation and regulatory mechanism of SODs in eels. PMID:27547518

  5. Effects of salinity change on two superoxide dismutases (SODs) in juvenile marbled eel Anguilla marmorata.

    PubMed

    Wang, Li; Wang, Xiaolu; Yin, Shaowu

    2016-01-01

    Salinity is one of the most important factors that affect the fish growth and survival. Superoxide dismutases (SODs), as the primary antioxidant enzymes, play a first role in the process of preventing oxidative stress caused by excessive superoxide anion (O[Formula: see text]) in living organisms. In the present study, we investigated the effects of salinity on the gene expressions as well as enzymatic activities of MnSOD and Cu/ZnSOD in gill, intestine, kidney, liver and muscle tissues of the marbled eel Anguilla marmorata. We found that the liver might possess stronger redox capacity compared with other tissues. Furthermore, the gene expressions and enzymatic activities of SODs in juvenile marbled eels could be effectively enhanced by low salinity but inhibited when the salinity was higher than the body tolerance. Our findings indicated that MnSOD and Cu/ZnSOD played vital roles in the adaptation of marbled eels to salinity variation, which contributed to the elucidation of physiological adaptation and regulatory mechanism of SODs in eels.

  6. Effects of salinity change on two superoxide dismutases (SODs) in juvenile marbled eel Anguilla marmorata

    PubMed Central

    2016-01-01

    Salinity is one of the most important factors that affect the fish growth and survival. Superoxide dismutases (SODs), as the primary antioxidant enzymes, play a first role in the process of preventing oxidative stress caused by excessive superoxide anion (O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{2}^{-}$\\end{document}2−) in living organisms. In the present study, we investigated the effects of salinity on the gene expressions as well as enzymatic activities of MnSOD and Cu/ZnSOD in gill, intestine, kidney, liver and muscle tissues of the marbled eel Anguilla marmorata. We found that the liver might possess stronger redox capacity compared with other tissues. Furthermore, the gene expressions and enzymatic activities of SODs in juvenile marbled eels could be effectively enhanced by low salinity but inhibited when the salinity was higher than the body tolerance. Our findings indicated that MnSOD and Cu/ZnSOD played vital roles in the adaptation of marbled eels to salinity variation, which contributed to the elucidation of physiological adaptation and regulatory mechanism of SODs in eels. PMID:27547518

  7. Interactions between hypocretinergic and GABAergic systems in the control of activity of neurons in the cat pontine reticular formation.

    PubMed

    Xi, M; Fung, S J; Yamuy, J; Chase, M H

    2015-07-01

    Anatomical studies have demonstrated that hypocretinergic and GABAergic neurons innervate cells in the nucleus pontis oralis (NPO), a nucleus responsible for the generation of active (rapid eye movement (REM)) sleep (AS) and wakefulness (W). Behavioral and electrophysiological studies have shown that hypocretinergic and GABAergic processes in the NPO are involved in the generation of AS as well as W. An increase in hypocretin in the NPO is associated with both AS and W, whereas GABA levels in the NPO are elevated during W. We therefore examined the manner in which GABA modulates NPO neuronal responses to hypocretin. We hypothesized that interactions between the hypocretinergic and GABAergic systems in the NPO play an important role in determining the occurrence of AS or W. To determine the veracity of this hypothesis, we examined the effects of the juxtacellular application of hypocretin-1 and GABA on the activity of NPO neurons, which were recorded intracellularly, in chloralose-anesthetized cats. The juxtacellular application of hypocretin-1 significantly increased the mean amplitude of spontaneous EPSPs and the frequency of discharge of NPO neurons; in contrast, the juxtacellular microinjection of GABA produced the opposite effects, i.e., there was a significant reduction in the mean amplitude of spontaneous EPSPs and a decrease in the discharge of these cells. When hypocretin-1 and GABA were applied simultaneously, the inhibitory effect of GABA on the activity of NPO neurons was reduced or completely blocked. In addition, hypocretin-1 also blocked GABAergic inhibition of EPSPs evoked by stimulation of the laterodorsal tegmental nucleus. These data indicate that hypocretin and GABA function within the context of a neuronal gate that controls the activity of AS-on neurons. Therefore, we suggest that the occurrence of either AS or W depends upon interactions between hypocretinergic and GABAergic processes as well as inputs from other sites that project to AS

  8. [Effects of di-n-butyl phthalate on the antioxidant enzyme activities and lipid peroxidation level of Perna viridis].

    PubMed

    Qin, Jie-fang; Chen, Hai-gang; Cai, Wen-gui; Yang, Tao; Jia, Xiao-ping

    2011-07-01

    A laboratory experiment was conducted to examine the superoxide dismutase (SOD) and catalase (CAT) activities and the lipid peroxidation (LPO) level presented by malondialdehyde (MDA) in visceral mass and mantle of green mussel (Perna viridis) after exposure to 0.5- 62.5 mg x L(-1) of di-n-butyl phthalate (DBP) for 15 days, and to study the change characteristics of these biochemical indicators after the green mussel released into DBP-free seawater for 10 days. During exposure period, the SOD activity in visceral mass was inhibited first and then reached the level of the control at 0.5 and 2.5 mg x L(-1) of DBP, but inhibited significantly (P< 0.01) at 12.5 and 62.5 mg L(-1) of DBP. The CAT activity in visceral mass was inhibited at all test concentrations of DBP, while the LPO level was obviously induced. During the chronic DBP exposure, the SOD and CAT activities in the mantle were induced significantly but had no regular pattern, and the LPO level was also obviously induced. After the exposed green mussel was released into clean seawater, the SOD and CAT activities in the visceral mass in 12.5 and 62.5 mg DBP x L(-1) groups recovered much slowly, but the LPO level gradually recovered to control level. During the recovery period, the SOD activity in the mantle showed an increasing trend with time, but the CAT activity and LPO level reached gradually to the level of the control.

  9. Evoked activity in the hypothalamus and amygdala of the cat in conditions of food-related motivation and emotional tension.

    PubMed

    Pavlova, I V; Vanetsian, G L

    2006-02-01

    The amplitude-time characteristics of potentials evoked by clicks were analyzed in bilateral leads from the lateral hypothalamus and amygdala in cats in conditions of food-related motivation, emotional tension (presentation of dogs), and orientational reactions. In conditions of food-related motivation, as compared with the satiated state, there were decreases in the latent periods and changes in the amplitudes of the P1 and N2 components in the hypothalamus and P1, N2, and N3 in the amygdala. The most marked changes occurred on the left side in both structures. Presentation of dogs induced decreases in the latent periods of all components (including N1) of evoked potentials in the hypothalamus and amygdala, the most marked changes in the hypothalamus occurring on the right side and the most marked changes in the amygdala occurring on the left side. Conversely, orientational reactions to emotionally neutral stimuli induced increases in the latent periods of evoked potentials. It is concluded that there is an increase in sensory reactivity in the hypothalamus and amygdala in motivational-emotional states. It is suggested that the side of dominance in these structures may be associated both with the factor of the activity/passivity of the behavior in conditions of fear and the genesis of the emotion (motivational or informational).

  10. Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. II. Walking on an inclined plane.

    PubMed

    Matsuyama, K; Drew, T

    2000-11-01

    The experiments described in this report were designed to determine the contribution of vestibulospinal neurons (VSNs) in Deiters' nucleus and of reticulospinal neurons (RSNs) in the medullary reticular formation to the modifications of the walking pattern that are associated with locomotion on an inclined plane. Neuronal discharge patterns were recorded from 44 VSNs and 63 RSNs in cats trained to walk on a treadmill whose orientation was varied from +20 degrees (uphill) to -10 degrees (downhill), referred to as pitch tilt, and from 20 degrees roll tilt left to 20 degrees roll tilt right. During uphill locomotion, a majority of VSNs (25/44) and rhythmically active RSNs (24/39) showed an increase in peak discharge frequency, above that observed during locomotion on a level surface. VSNs, unlike some of the RSNs, exhibited no major deviations from the overall pattern of the activity recorded during level walking. The relative increase in discharge frequency of the RSNs (on average, 31.8%) was slightly more than twice that observed in the VSNs (on average, 14.4%), although the average absolute change in discharge frequency was similar (18.2 Hz in VSNs and 21.6 Hz in RSNs). Changes in discharge frequency during roll tilt were generally more modest and were more variable, than those observed during uphill locomotion as were the relative changes in the different limb muscle electromyograms that we recorded. In general, discharge frequency in VSNs was more frequently increased when the treadmill was rolled to the right (ear down contralateral to the recording site) than when it was rolled to the left. Most VSNs that showed significant linear relationships with treadmill orientation in the roll plane increased their activity during right roll and decreased activity during left roll. Discharge activity in phasically modulated RSNs was also modified by roll tilt of the treadmill. Modulation of activity in RSNs that discharged twice in each step cycle was frequently

  11. c-fos expression in brainstem premotor interneurons during cholinergically induced active sleep in the cat.

    PubMed

    Morales, F R; Sampogna, S; Yamuy, J; Chase, M H

    1999-11-01

    The present study was undertaken to identify trigeminal premotor interneurons that become activated during carbachol-induced active sleep (c-AS). Their identification is a critical step in determining the neural circuits responsible for the atonia of active sleep. Accordingly, the retrograde tracer cholera toxin subunit B (CTb) was injected into the trigeminal motor nuclei complex to label trigeminal interneurons. To identify retrograde-labeled activated neurons, immunocytochemical techniques, designed to label the Fos protein, were used. Double-labeled (i.e., CTb(+), Fos(+)) neurons were found exclusively in the ventral portion of the medullary reticular formation, medial to the facial motor nucleus and lateral to the inferior olive. This region, which encompasses the ventral portion of the nucleus reticularis gigantocellularis and the nucleus magnocellularis, corresponds to the rostral portion of the classic inhibitory region of. This region contained a mean of 606 +/- 41.5 ipsilateral and 90 +/- 32.0 contralateral, CTb-labeled neurons. These cells were of medium-size with an average soma diameter of 20-35 micrometer. Approximately 55% of the retrogradely labeled cells expressed c-fos during a prolonged episode of c-AS. We propose that these neurons are the interneurons responsible for the nonreciprocal postsynaptic inhibition of trigeminal motoneurons that occurs during active sleep. PMID:10531453

  12. Neural mechanism of activity spread in the cat motor cortex and its relation to the intrinsic connectivity.

    PubMed

    Capaday, Charles; van Vreeswijk, Carl; Ethier, Christian; Ferkinghoff-Borg, Jesper; Weber, Doug

    2011-05-15

    Motor cortical points are linked by intrinsic horizontal connections having a recurrent network topology. However, it is not known whether neural activity can propagate over the area covered by these intrinsic connections and whether there are spatial anisotropies of synaptic strength, as opposed to synaptic density. Moreover, the mechanisms by which activity spreads have yet to be determined. To address these issues, an 8 × 8 microelectrode array was inserted in the forelimb area of the cat motor cortex (MCx). The centre of the array had a laser etched hole ∼500 μm in diameter. A microiontophoretic pipette, with a tip diameter of 2-3 μm, containing bicuculline methiodide (BIC) was inserted in the hole and driven to a depth of 1200-1400 μm from the cortical surface. BIC was ejected for ∼2min from the tip of the micropipette with positive direct current ranging between 20 and 40 nA in different experiments. This produced spontaneous nearly periodic bursts (0.2-1.0 Hz) of multi-unit activity in a radius of about 400 μm from the tip of the micropipette. The bursts of neural activity spread at a velocity of 0.11-0.24 ms⁻¹ (mean=0.14 mm ms⁻¹, SD=0.05)with decreasing amplitude.The area activated was on average 7.22 mm² (SD=0.91 mm²), or ∼92% of the area covered by the recording array. The mode of propagation was determined to occur by progressive recruitment of cortical territory, driven by a central locus of activity of some 400 μm in radius. Thus, activity did not propagate as a wave. Transection of the connections between the thalamus and MCx did not significantly alter the propagation velocity or the size of the recruited area, demonstrating that the bursts spread along the routes of intrinsic cortical connectivity. These experiments demonstrate that neural activity initiated within a small motor cortical locus (≤ 400 μm in radius) can recruit a relatively large neighbourhood in which a variety of muscles acting at several forelimb joints are

  13. Patterns of fusimotor activity during locomotion in the decerebrate cat deduced from recordings from hindlimb muscle spindles.

    PubMed

    Taylor, A; Durbaba, R; Ellaway, P H; Rawlinson, S

    2000-02-01

    1. Recordings have been made from multiple single muscle spindle afferents from medial gastrocnemius (MG) and tibialis anterior (TA) muscles of one hindlimb in decerebrate cats, together with ankle rotation and EMG signals, during treadmill locomotion. Whilst the other three limbs walked freely, the experimental limb was denervated except for the nerves to MG and TA and secured so that it could rotate only at the ankle joint, without any external load. Each afferent was characterised by succinylcholine testing with regard to its intrafusal fibre contacts. Active movements were recorded and then replayed through a servo mechanism to reproduce the muscle length changes passively after using a barbiturate to suppress gamma-motor firing. 2. The difference in secondary afferent firing obtained by subtracting the discharge during passive movements from that during active movements was taken to represent the profile of static fusimotor activity. This indicated an increase before the onset of movement followed by a strongly modulated discharge in parallel with muscle shortening during locomotion. The pattern of static firing matched the pattern of unloaded muscle shortening very closely in the case of TA and with some phase advance in the case of MG. The same effects were observed in primary afferents. 3. Primary afferents with bag1 (b1) contacts in addition showed higher firing frequencies during muscle lengthening in active than in passive movements. This indicated increased dynamic fusimotor firing during active locomotion. There was no evidence as to whether this fluctuated during the movement cycles. 4. When the mean active minus passive difference profile of firing in bag2-chain (b2c) type primary afferents was subtracted from that for b1b2c afferents, the difference was dominated by a peak centred on the moment of maximum lengthening velocity (v). 5. The component of the active minus passive difference firing due to b1 fibre contacts could be modelled by f(t) = av

  14. Molecular cloning and characterization of Siamese crocodile (Crocodylus siamensis) copper, zinc superoxide dismutase (CSI-Cu,Zn-SOD) gene.

    PubMed

    Sujiwattanarat, Penporn; Pongsanarakul, Parinya; Temsiripong, Yosapong; Temsiripong, Theeranan; Thawornkuno, Charin; Uno, Yoshinobu; Unajak, Sasimanas; Matsuda, Yoichi; Choowongkomon, Kiattawee; Srikulnath, Kornsorn

    2016-01-01

    Superoxide dismutase (SOD, EC 1.15.1.1) is an antioxidant enzyme found in all living cells. It regulates oxidative stress by breaking down superoxide radicals to oxygen and hydrogen peroxide. A gene coding for Cu,Zn-SOD was cloned and characterized from Siamese crocodile (Crocodylus siamensis; CSI). The full-length expressed sequence tag (EST) of this Cu,Zn-SOD gene (designated as CSI-Cu,Zn-SOD) contained 462bp encoding a protein of 154 amino acids without signal peptides, indicated as intracellular CSI-Cu,Zn-SOD. This agreed with the results from the phylogenetic tree, which indicated that CSI-Cu,Zn-SOD belonged to the intracellular Cu,Zn-SOD. Chromosomal location determined that the CSI-Cu,Zn-SOD was localized to the proximal region of the Siamese crocodile chromosome 1p. Several highly conserved motifs, two conserved signature sequences (GFHVHEFGDNT and GNAGGRLACGVI), and conserved amino acid residues for binding copper and zinc (His(47), His(49), His(64), His(72), His(81), Asp(84), and His(120)) were also identified in CSI-Cu,Zn-SOD. Real-time PCR analysis showed that CSI-Cu,Zn-SOD mRNA was expressed in all the tissues examined (liver, pancreas, lung, kidney, heart, and whole blood), which suggests a constitutively expressed gene in these tissues. Expression of the gene in Escherichia coli cells followed by purification yielded a recombinant CSI-Cu,Zn-SOD, with Km and Vmax values of 6.075mM xanthine and 1.4×10(-3)mmolmin(-1)mg(-1), respectively. This Vmax value was 40 times lower than native Cu,Zn-SOD (56×10(-3)mmolmin(-1)mg(-1)), extracted from crocodile erythrocytes. This suggests that cofactors, protein folding properties, or post-translational modifications were lost during the protein purification process, leading to a reduction in the rate of enzyme activity in bacterial expression of CSI-Cu,Zn-SOD.

  15. [Non-invasive transcutaneous spinal cord stimulation facilitates locomotor activity in decerebrated and spinal cats].

    PubMed

    Musienko, P E; Bogacheva, I N; Savochin, A A; Kilimnik, V A; Gorskiĭ, O V; Nikitin, O A; Gerasimenko, Ia P

    2013-08-01

    It is known that spinal neuronal networks activated by epidural electrical stimulation (EES) can produce the stepping EMG pattern and control the locomotor behavior. At present study we showed that non-invasive transcutaneous electrical spinal cord stimulation (tESCS) applied to the lumbar-sacral enlargement can facilitate the locomotor activity in decerebrated and spinal animals. The comparison of the motor responses evoked by EES vs tESCS showed that both methods produce the locomotor patterns with close properties and similar reflex mechanisms. The data obtained suggest that tESCS is an efficient approach for investigation of the locomotor control in acute and chronic experiments as well as facilitates of the locomotor abilities after spinal cord injury. Taking to account the non-invasivity and easement of tESCS, this approach could be further implemented in clinical practice for rehabilitation of the patient with spinal cord injury.

  16. The Role of Conserved Tyrosine Residues in NiSOD Catalysis: A Case of Convergent Evolution

    SciTech Connect

    Herbst, R.; Guce, A; Bryngelson, P; Higgins, K; Ryan, K; Cabelli, D; Garman, S; Maroney, M

    2009-01-01

    Superoxide dismutases rely on protein structural elements to adjust the redox potential of the metallocenter to an optimum value near 300 mV (vs NHE), to provide a source of protons for catalysis, and to control the access of anions to the active site. These aspects of the catalytic mechanism are examined herein for recombinant preparations of the nickel-dependent SOD (NiSOD) from Streptomyces coelicolor and for a series of mutants that affect a key tyrosine residue, Tyr9 (Y9F-, Y62F-, Y9F/Y62F-, and D3A-NiSOD). Structural aspects of the nickel sites are examined by a combination of EPR and X-ray absorption spectroscopies, and by single-crystal X-ray diffraction at 1.9 A resolution in the case of Y9F- and D3A-NiSODs. The functional effects of the mutations are examined by kinetic studies employing pulse radiolytic generation of O2- and by redox titrations. These studies reveal that although the structure of the nickel center in NiSOD is unique, the ligand environment is designed to optimize the redox potential at 290 mV and results in the oxidation of 50% of the nickel centers in the oxidized hexamer. Kinetic investigations show that all of the mutant proteins have considerable activity. In the case of Y9F-NiSOD, the enzyme exhibits saturation behavior that is not observed in wild-type (WT) NiSOD and suggests that release of peroxide is inhibited. The crystal structure of Y9F-NiSOD reveals an anion binding site that is occupied by either Cl- or Br- and is located close to but not within bonding distance of the nickel center. The structure of D3A-NiSOD reveals that in addition to affecting the interaction between subunits, this mutation repositions Tyr9 and leads to altered chemistry with peroxide. Comparisons with Mn(SOD) and Fe(SOD) reveal that although different strategies for adjusting the redox potential and supply of protons are employed, NiSOD has evolved a similar strategy for controlling the access of anions to the active site.

  17. Sod2 knock-down in the musculature has whole organism consequences in Drosophila

    PubMed Central

    Martin, Ian; Jones, Melanie A.; Rhodenizer, Devin; Zheng, Jie; Warrick, John M.; Seroude, Laurent; Grotewiel, Mike

    2009-01-01

    Oxidative damage to cell macromolecules by reactive oxygen species is associated with numerous diseases and aging. In Drosophila, RNAi-mediated silencing of the mitochondrial antioxidant manganese superoxide dismutase (SOD2) throughout the body dramatically reduces life span, accelerates senescence of locomotor function, and enhances sensitivity to applied oxidative stress. Here, we show that Sod2 knock-down in the musculature alone is sufficient to cause the shortened life span and accelerated locomotor declines observed with knock-down of Sod2 throughout the body, indicating that Sod2 deficiency in muscle is central to these phenotypes. Knock-down of Sod2 in the muscle also increased caspase activity (a marker for apoptosis) and caused a mitochondrial pathology characterized by swollen mitochondria, decreased mitochondrial content and reduced ATP levels. These findings indicate that Sod2 plays a crucial role in the musculature in Drosophila and that the consequences of Sod2 loss in this tissue extend to the viability of the organism as a whole. PMID:19545620

  18. Variations of antioxidant enzyme activity and malondialdehyde content in nemertean Cephalothrix hongkongiensis after exposure to heavy metals

    NASA Astrophysics Data System (ADS)

    Wu, Haiyi; Zhao, Xidan; Sun, Shichun

    2010-07-01

    The antioxidant enzyme activity and malondialdehyde (MDA) content of Cephalothrix hongkongiensis were studied to assess variations in the biochemical/physiological parameters of nemerteans under heavy metal stress. Worms were exposed to copper, zinc and cadmium solutions at different concentrations, and the activity of three antioxidant enzymes, catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX), and MDA content were measured. The results show that the activity of each enzyme changed immediately after exposure to heavy metals. CAT was invariably inhibited throughout the experimental period, while the SOD activity was significantly elevated by exposure to Cu2+ for 48 h, but then decreased. SOD was inhibited by Zn2+during the first 12 h of exposure, but activated when exposed for longer periods. Under Cd2+ stress, SOD activity decreased within 72 h. GPX activity varied greatly, being significantly increased by both Cu2+ and Zn2+, but significantly inhibited by Cd2+ in the first 12-24 h after exposure. MDA content increased on Cu2+ exposure, but normally decreased on Zn2+ exposure. MDA content followed an increase-decrease-increase pattern under Cd2+ stress. In conclusion, the antioxidant system of this nemertean is sensitive to heavy metals, and its CAT activity may be a potential biomarker for monitoring heavy metal levels in the environment.

  19. Manganese superoxide dismutase (SOD2/MnSOD)/catalase and SOD2/GPx1 ratios as biomarkers for tumor progression and metastasis in prostate, colon, and lung cancer.

    PubMed

    Miar, Ana; Hevia, David; Muñoz-Cimadevilla, Henar; Astudillo, Aurora; Velasco, Julio; Sainz, Rosa M; Mayo, Juan C

    2015-08-01

    The role of manganese-dependent superoxide dismutase (SOD2/MnSOD) during tumor progression has been studied for several decades with controversial results. While SOD2 downregulation was initially associated with tumor initiation and was proposed as a tumor suppressor gene, recent studies have reported that SOD2 might favor tumor progression and dissemination. To our knowledge this is the first time that changes in SOD2 expression in three different types of tumors, i.e., prostate, lung, and colon cancer, are studied by analyzing both SOD2 mRNA and protein levels in a total of 246 patients' samples. In prostate samples, SOD2 protein levels were also increased, especially in middle stage tumors. In the case of colon and lung tumors both mRNA and protein SOD2 levels were increased in malignant tissues compared to those in nontumor samples. More importantly, all metastases analyzed showed increased levels of SOD2 when compared to those of normal primary tissue and healthy adjacent tissue. Together, these results suggest that a common redox imbalance in these three types of tumor occurs at intermediate stages which then might favor migration and invasion, leading to a more aggressive cancer type. Consequently, the ratios SOD2/catalase and SOD2/Gpx1 could be considered as potential markers during progression from tumor growth to metastasis.

  20. Monoaminergic control of spinal locomotor networks in SOD1G93A newborn mice

    PubMed Central

    Milan, Léa; Barrière, Grégory; De Deurwaerdère, Philippe; Cazalets, Jean-René; Bertrand, Sandrine S.

    2014-01-01

    Mutations in the gene that encodes Cu/Zn-superoxide dismutase (SOD1) are the cause of approximately 20% of familial forms of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While ALS symptoms appear in adulthood, spinal motoneurons exhibit functional alterations as early as the embryonic and postnatal stages in the murine model of ALS, the SOD1 mice. Monoaminergic – i.e., dopaminergic (DA), serotoninergic (5-HT), and noradrenergic (NA) – pathways powerfully control spinal networks and contribute significantly to their embryonic and postnatal maturation. Alterations in monoaminergic neuromodulation during development could therefore lead to impairments in the motoneuronal physiology. In this study, we sought to determine whether the monoaminergic spinal systems are modified in the early stages of development in SOD1 mice. Using a post-mortem analysis by high performance liquid chromatography (HPLC), monoaminergic neuromodulators and their metabolites were quantified in the lumbar spinal cord of SOD1 and wild-type (WT) mice aged one postnatal day (P1) and P10. This analysis underscores an increased content of DA in the SOD1 lumbar spinal cord compared to that of WT mice but failed to reveal any modification of the other monoaminergic contents. In a next step, we compared the efficiency of the monoaminergic compounds in triggering and modulating fictive locomotion in WT and SOD1 mice. This study was performed in P1–P3 SOD1 mice and age-matched control littermates using extracellular recordings from the lumbar ventral roots in the in vitro isolated spinal cord preparation. This analysis revealed that the spinal networks of SOD1G93A mice could generate normal locomotor activity in the presence of NMA-5-HT. Interestingly, we also observed that SOD1 spinal networks have an increased sensitivity to NA compared to WT spinal circuits but exhibited similar DA responses. PMID:25071458

  1. Is SOD1 loss of function involved in amyotrophic lateral sclerosis?

    PubMed

    Saccon, Rachele A; Bunton-Stasyshyn, Rosie K A; Fisher, Elizabeth M C; Fratta, Pietro

    2013-08-01

    Mutations in the gene superoxide dismutase 1 (SOD1) are causative for familial forms of the neurodegenerative disease amyotrophic lateral sclerosis. When the first SOD1 mutations were identified they were postulated to give rise to amyotrophic lateral sclerosis through a loss of function mechanism, but experimental data soon showed that the disease arises from a--still unknown--toxic gain of function, and the possibility that loss of function plays a role in amyotrophic lateral sclerosis pathogenesis was abandoned. Although loss of function is not causative for amyotrophic lateral sclerosis, here we re-examine two decades of evidence regarding whether loss of function may play a modifying role in SOD1-amyotrophic lateral sclerosis. From analysing published data from patients with SOD1-amyotrophic lateral sclerosis, we find a marked loss of SOD1 enzyme activity arising from almost all mutations. We continue to examine functional data from all Sod1 knockout mice and we find obvious detrimental effects within the nervous system with, interestingly, some specificity for the motor system. Here, we bring together historical and recent experimental findings to conclude that there is a possibility that SOD1 loss of function may play a modifying role in amyotrophic lateral sclerosis. This likelihood has implications for some current therapies aimed at knocking down the level of mutant protein in patients with SOD1-amyotrophic lateral sclerosis. Finally, the wide-ranging phenotypes that result from loss of function indicate that SOD1 gene sequences should be screened in diseases other than amyotrophic lateral sclerosis.

  2. SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model

    PubMed Central

    Harraz, Maged M.; Marden, Jennifer J.; Zhou, Weihong; Zhang, Yulong; Williams, Aislinn; Sharov, Victor S.; Nelson, Kathryn; Luo, Meihui; Paulson, Henry; Schöneich, Christian; Engelhardt, John F.

    2008-01-01

    Neurodegeneration in familial amyotrophic lateral sclerosis (ALS) is associated with enhanced redox stress caused by dominant mutations in superoxide dismutase–1 (SOD1). SOD1 is a cytosolic enzyme that facilitates the conversion of superoxide (O2•–) to H2O2. Here we demonstrate that SOD1 is not just a catabolic enzyme, but can also directly regulate NADPH oxidase–dependent (Nox-dependent) O2•– production by binding Rac1 and inhibiting its GTPase activity. Oxidation of Rac1 by H2O2 uncoupled SOD1 binding in a reversible fashion, producing a self-regulating redox sensor for Nox-derived O2•– production. This process of redox-sensitive uncoupling of SOD1 from Rac1 was defective in SOD1 ALS mutants, leading to enhanced Rac1/Nox activation in transgenic mouse tissues and cell lines expressing ALS SOD1 mutants. Glial cell toxicity associated with expression of SOD1 mutants in culture was significantly attenuated by treatment with the Nox inhibitor apocynin. Treatment of ALS mice with apocynin also significantly increased their average life span. This redox sensor mechanism may explain the gain-of-function seen with certain SOD1 mutations associated with ALS and defines new therapeutic targets. PMID:18219391

  3. Candida albicans SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense

    PubMed Central

    Gleason, Julie E.; Galaleldeen, Ahmad; Peterson, Ryan L.; Taylor, Alexander B.; Holloway, Stephen P.; Waninger-Saroni, Jessica; Cormack, Brendan P.; Cabelli, Diane E.; Hart, P. John; Culotta, Valeria Cizewski

    2014-01-01

    The human fungal pathogens Candida albicans and Histoplasma capsulatum have been reported to protect against the oxidative burst of host innate immune cells using a family of extracellular proteins with similarity to Cu/Zn superoxide dismutase 1 (SOD1). We report here that these molecules are widespread throughout fungi and deviate from canonical SOD1 at the primary, tertiary, and quaternary levels. The structure of C. albicans SOD5 reveals that although the β-barrel of Cu/Zn SODs is largely preserved, SOD5 is a monomeric copper protein that lacks a zinc-binding site and is missing the electrostatic loop element proposed to promote catalysis through superoxide guidance. Without an electrostatic loop, the copper site of SOD5 is not recessed and is readily accessible to bulk solvent. Despite these structural deviations, SOD5 has the capacity to disproportionate superoxide with kinetics that approach diffusion limits, similar to those of canonical SOD1. In cultures of C. albicans, SOD5 is secreted in a disulfide-oxidized form and apo-pools of secreted SOD5 can readily capture extracellular copper for rapid induction of enzyme activity. We suggest that the unusual attributes of SOD5-like fungal proteins, including the absence of zinc and an open active site that readily captures extracellular copper, make these SODs well suited to meet challenges in zinc and copper availability at the host–pathogen interface. PMID:24711423

  4. Cat and Dog Bites

    MedlinePlus

    MENU Return to Web version Cat and Dog Bites Cat and Dog Bites How should I take care of a bite from a cat or a dog? Whether from a family pet or a neighborhood stray, cat and dog bites are common. Here are some ...

  5. Detection of emetic activity in the cat by monitoring venous pressure and audio signals

    NASA Technical Reports Server (NTRS)

    Nagahara, A.; Fox, Robert A.; Daunton, Nancy G.; Elfar, S.

    1991-01-01

    To investigate the use of audio signals as a simple, noninvasive measure of emetic activity, the relationship between the somatic events and sounds associated with retching and vomiting was studied. Thoracic venous pressure obtained from an implanted external jugular catheter was shown to provide a precise measure of the somatic events associated with retching and vomiting. Changes in thoracic venous pressure monitored through an indwelling external jugular catheter with audio signals, obtained from a microphone located above the animal in a test chamber, were compared. In addition, two independent observers visually monitored emetic episodes. Retching and vomiting were induced by injection of xylazine (0.66mg/kg s.c.), or by motion. A unique audio signal at a frequency of approximately 250 Hz is produced at the time of the negative thoracic venous pressure change associated with retching. Sounds with higher frequencies (around 2500 Hz) occur in conjunction with the positive pressure changes associated with vomiting. These specific signals could be discriminated reliably by individuals reviewing the audio recordings of the sessions. Retching and those emetic episodes associated with positive venous pressure changes were detected accurately by audio monitoring, with 90 percent of retches and 100 percent of emetic episodes correctly identified. Retching was detected more accurately (p is less than .05) by audio monitoring than by direct visual observation. However, with visual observation a few incidents in which stomach contents were expelled in the absence of positive pressure changes or detectable sounds were identified. These data suggest that in emetic situations, the expulsion of stomach contents may be accomplished by more than one neuromuscular system and that audio signals can be used to detect emetic episodes associated with thoracic venous pressure changes.

  6. Mice Overexpressing Both Non-Mutated Human SOD1 and Mutated SOD1G93A Genes: A Competent Experimental Model for Studying Iron Metabolism in Amyotrophic Lateral Sclerosis

    PubMed Central

    Gajowiak, Anna; Styś, Agnieszka; Starzyński, Rafał R.; Bednarz, Aleksandra; Lenartowicz, Małgorzata; Staroń, Robert; Lipiński, Paweł

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by degeneration and loss of motor neurons in the spinal cord, brainstem and motor cortex. Up to 10% of ALS cases are inherited (familial, fALS) and associated with mutations, frequently in the superoxide dismutase 1 (SOD1) gene. Rodent transgenic models of ALS are often used to elucidate a complex pathogenesis of this disease. Of importance, both ALS patients and animals carrying mutated human SOD1 gene show symptoms of oxidative stress and iron metabolism misregulation. The aim of our study was to characterize changes in iron metabolism in one of the most commonly used models of ALS – transgenic mice overexpressing human mutated SOD1G93A gene. We analyzed the expression of iron-related genes in asymptomatic, 2-month-old and symptomatic, 4-month-old SOD1G93A mice. In parallel, respective age-matched mice overexpressing human non-mutated SOD1 transgene and control mice were analyzed. We demonstrate that the overexpression of both SOD1 and SOD1G93A genes account for a substantial increase in SOD1 protein levels and activity in selected tissues and that not all the changes in iron metabolism genes expression are specific for the overexpression of the mutated form of SOD1. PMID:26778957

  7. Radioactive iodine therapy in cats with hyperthyroidism

    SciTech Connect

    Turrel, J.M.; Feldman, E.C.; Hays, M.; Hornof, W.J.

    1984-03-01

    Eleven cats with hyperthyroidism were treated with radioactive iodine (/sup 131/I). Previous unsuccessful treatments for hyperthyroidism included hemithyroidectomy (2 cats) and an antithyroid drug (7 cats). Two cats had no prior treatment. Thyroid scans, using technetium 99m, showed enlargement and increased radionuclide accumulation in 1 thyroid lobe in 5 cats and in both lobes in 6 cats. Serum thyroxine concentrations were high and ranged from 4.7 to 18 micrograms/dl. Radioactive iodine tracer studies were used to determine peak radioactive iodine uptake (RAIU) and effective and biological half-lives. Activity of /sup 131/I administered was calculated from peak RAIU, effective half-life, and estimated thyroid gland weight. Activity of /sup 131/I administered ranged from 1.0 to 5.9 mCi. The treatment goal was to deliver 20,000 rad to hyperactive thyroid tissue. However, retrospective calculations based on peak RAIU and effective half-life obtained during the treatment period showed that radiation doses actually ranged from 7,100 to 64,900 rad. Complete ablation of the hyperfunctioning thyroid tissue and a return to euthyroidism were seen in 7 cats. Partial responses were seen in 2 cats, and 2 cats became hypothyroid. It was concluded that /sup 131/I ablation of thyroid tumors was a reasonable alternative in the treatment of hyperthyroidism in cats. The optimal method of dosimetry remains to be determined.

  8. Effects of UV-B irradiation on isoforms of antioxidant enzymes and their activities in red alga Grateloupia filicina (Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Zhao, Jiqiang; Li, Lixia

    2014-11-01

    Macroalgae in a littoral zone are inevitably exposed to UV-B irradiance. We analyzed the effects of UV-B on isoenzyme patterns and activities of superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) of red algae Grateloupia filicina (Lamour.) C. Agardh. The activities of SOD, CAT, and APX changed in response to UV-B in a time- and dose-dependent manner. POX activity increased significantly under all three UV-B treatments. The enzymatic assay showed three distinct bands of SODI (Mn-SOD), SODII (Fe-SOD), and SODIII (CuZn-SOD) under a low (Luv) and medium (Muv) dose of UV-B irradiation, while SODI and SODIII activities decreased significantly when exposed to a high dose of UV-B irradiation (Huv). The activity of POX isoenzymes increased significantly after exposure to UV-B, which is consistent with the total activity. In addition, a clear decrease in activity of CATIV was detected in response to all the three doses of UV treatments. Some bands of APX isoenzyme were also clearly influenced by UV-B irradiation. Correspondingly, the daily growth rate declined under all the three exposure doses, and was especially significant under Muv and Huv treatments. These data suggest that, although the protection mechanisms of antioxidant defense system are partly inducible by UV-B to prevent the damage, G. filicina has incomplete tolerance to higher UV-B irradiation stress.

  9. Association of Age-Related Macular Degeneration with Erythrocyte Antioxidant Enzymes Activity and Serum Total Antioxidant Status

    PubMed Central

    Plestina-Borjan, Ivna; Katusic, Damir; Medvidovic-Grubisic, Maria; Supe-Domic, Daniela; Bucan, Kajo; Tandara, Leida; Rogosic, Veljko

    2015-01-01

    The aim was to estimate association of the oxidative stress with the occurrence of age-related macular degeneration (AMD). The activities of erythrocyte antioxidant enzymes: superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) and additionally serum total antioxidant status (TAS) were used as indicators of the oxidative stress level. 57 AMD patients (32 early and 25 late AMD) and 50 healthy, age and gender matched controls were included. GPx activity (P < 0.001) and serum TAS (P = 0.015) were significantly lower in AMD patients. The difference was not significant for SOD or CAT activities. Significant interaction between GPx and SOD was detected (P = 0.003). At high levels of SOD activity (over 75th percentile), one standard deviation decrease in GPx increases the odds for AMD for six times (OR = 6.22; P < 0.001). ROC analysis revealed that combined values of GPx activity and TAS are significant determinants of AMD status. Accuracy, sensitivity, specificity, and positive and negative predictive values were 75%, 95%, 52%, 69%, and 90%, respectively. The study showed that low GPx activity and TAS are associated with AMD. SOD modulates the association of GPx and AMD. The results suggest that erythrocyte antioxidant enzymes activity and serum TAS could be promising markers for the prediction of AMD. PMID:25815109

  10. Seasonal variations of the activity of antioxidant defense enzymes in the red mullet (Mullus barbatus l.) from the Adriatic Sea.

    PubMed

    Pavlović, Sladjan Z; Borković Mitić, Slavica S; Radovanović, Tijana B; Perendija, Branka R; Despotović, Svetlana G; Gavrić, Jelena P; Saicić, Zorica S

    2010-02-26

    This study investigated seasonal variations of antioxidant defense enzyme activities: total, manganese, copper zinc containing superoxide dismutase (Tot SOD, Mn SOD, CuZn SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and biotransformation phase II enzyme glutathione-S-transferase (GST) activity in the liver and white muscle of red mullet (Mullus barbatus). The investigations were performed in winter and spring at two localities: Near Bar (NB) and Estuary of the River Bojana (EB) in the Southern Adriatic Sea. At both sites, Mn SOD, GSH-Px, GR and GST activities decreased in the liver in spring. In the white muscle, activities of Mn SOD, GSH-Px, GR and GST in NB decreased in spring. GR decreased in spring in EB, while CAT activity was higher in spring at both sites. The results of Principal Component Analysis (PCA) based on correlations indicated a clear separation of various sampling periods for both investigated tissues and a marked difference between two seasons. Our study is the first report on antioxidant defense enzyme activities in the red mullet in the Southern Adriatic Sea. It indicates that seasonal variations of antioxidant defense enzyme activities should be used in further biomonitoring studies in fish species.

  11. Mammary gene expression and activity of antioxidant enzymes and concentration of the mammalian lignan enterolactone in milk and plasma of dairy cows fed flax lignans and infused with flax oil in the abomasum.

    PubMed

    Côrtes, Cristiano; Palin, Marie-France; Gagnon, Nathalie; Benchaar, Chaouki; Lacasse, Pierre; Petit, Hélène V

    2012-10-28

    The objectives of the study were to investigate the effects of dietary supplementation of flax hulls and/or flax oil on the activity of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX)) in plasma and the mammary gland and the relative mRNA abundance of antioxidant genes in the mammary gland of dairy cows. A total of eight dairy cows were used in a replicated 4 × 4 Latin square design. There were four treatments: control with no flax hulls (CONT), 9·88% flax hulls in the DM (HULL), control with 500 g flax oil/d infused in the abomasum (COFO), 9·88% flax hulls in the DM and 500 g flax oil/d infused in the abomasum (HUFO). Plasma GPX activity tended to decrease with flax oil supplementation. Cows fed HULL had higher levels of CAT, GPX1 and SOD1 mRNA in the mammary gland and lower mRNA abundance of GPX3, SOD2 and SOD3 compared with those fed CONT. Abundance of CAT, GPX1, GPX3, SOD2 and SOD3 mRNA was down-regulated in the mammary gland of cows fed HUFO compared to those fed CONT. The mRNA abundance of CAT, GPX1, GPX3 and SOD3 was lower in the mammary gland of cows fed COFO than in the mammary gland of cows fed CONT. The present study demonstrates that flax hulls contribute to increasing the abundance of some antioxidant genes, which can contribute to protecting against oxidative stress damage occurring in the mammary gland and other tissues of dairy cows.

  12. Modification of Superoxide Dismutase 1 (SOD1) Properties by a GFP Tag – Implications for Research into Amyotrophic Lateral Sclerosis (ALS)

    PubMed Central

    Hendriks, William T.; Bros-Facer, Virginie; van Minnen, Jan; Martin, Joanne E.; Jackson, Graham S.; Greensmith, Linda; Schiavo, Giampietro; Fisher, Elizabeth M. C.

    2010-01-01

    Background Since the discovery that mutations in the enzyme SOD1 are causative in human amyotrophic lateral sclerosis (ALS), many strategies have been employed to elucidate the toxic properties of this ubiquitously expressed mutant protein, including the generation of GFP-SOD1 chimaeric proteins for studies in protein localization by direct visualization using fluorescence microscopy. However, little is known about the biochemical and physical properties of these chimaeric proteins, and whether they behave similarly to their untagged SOD1 counterparts. Methodology/Principal Findings Here we compare the physicochemical properties of SOD1 and the effects of GFP-tagging on its intracellular behaviour. Immunostaining demonstrated that SOD1 alone and GFP-SOD1 have an indistinguishable intracellular distribution in PC12 cells. Cultured primary motor neurons expressing GFP or GFP-SOD1 showed identical patterns of cytoplasmic expression and of movement within the axon. However, GFP tagging of SOD1 was found to alter some of the intrinsic properties of SOD1, including stability and specific activity. Evaluation of wildtype and mutant SOD1, tagged at either the N- or C-terminus with GFP, in PC12 cells demonstrated that some chimaeric proteins were degraded to the individual proteins, SOD1 and GFP. Conclusions/Significance Our findings indicate that most, but not all, properties of SOD1 remain the same with a GFP tag. PMID:20221404

  13. APPLICATION OF COMPUTER-AIDED TOMOGRAPHY (CAT) AS A POTENTIAL INDICATOR OF MARINE MARCO BENTHIC ACTIVITY ALONG POLLUTION GRADIENTS

    EPA Science Inventory

    Sediment cores were imaged using a local hospital CAT scanner. These image data were transferred to a personal computer at our laboratory using specially developed software. Previously, we reported an inverse correlation (r2 = 0.98, P<0.01) between the average sediment x-ray atte...

  14. Hypophosphatemia associated with enteral alimentation in cats.

    PubMed

    Justin, R B; Hohenhaus, A E

    1995-01-01

    Hypophosphatemia is uncommon in cats, but it has been reported in association with diabetes mellitus and hepatic lipidosis, where it can cause hemolysis, rhabdomyopathy, depression, seizures, and coma. The purpose of this article is to describe 9 cats that developed low serum phosphorus concentrations (< 2.5 mg/dL) subsequent to enteral alimentation. Serum biochemical analyses from more than 6,000 cats were reviewed. The medical records of all cats with hypophosphatemia were examined for history of enteral alimentation; diabetic cats were excluded from the study. Nine cats, ranging in age from 3 to 17 years, were identified. All cats had normal serum phosphorus concentrations before tube feeding began. Onset of hypophosphatemia occurred 12 to 72 hours after initiation of enteral alimentation, and the nadir for phosphorus concentrations ranged from 0.4 to 2.4 mg/dL. Hemolysis occurred in 6 of the 9 cats. Hypophosphatemia secondary to enteral alimentation is an uncommon clinical finding in cats. Cats with high alanine aminotransferase activity, hyperbilirubinemia, and weight loss should be closely monitored for hypophosphatemia during the first 72 hours of enteral alimentation.

  15. [Characteristics of the functional coupling of cerebral cortical neurons in cats and the signal meaning of the stimulus (the hypothesis of the information switching of conditioned reflex activity)].

    PubMed

    Komissarov, V I

    1988-01-01

    In chronic experiments on cats interrelations were studied between impulse activity of neurones of various auditory cortical zones and associative area under the action of defensive, alimentary or differential acoustic signals. It was found that shifts of the impulse activity of neurones in the studied cortical zones and correlation dependence between them appearing in the given conditions, were of a selective character and were connected with signal meaning of acoustic signals. Neurophysiological mechanisms are discussed of the revealed reorganization of the composition of functional relations of neurones of the cortical representation of the conditioned stimulus analyzer.

  16. Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain: protective effects of myo-inositol.

    PubMed

    Jiang, Wei-Dan; Liu, Yang; Hu, Kai; Jiang, Jun; Li, Shu-Hong; Feng, Lin; Zhou, Xiao-Qiu

    2014-10-01

    The brain is the center of the nervous system in all vertebrates, and homeostasis of the brain is crucial for fish survival. Copper (Cu) is essential for normal cellular processes in most eukaryotic organisms but is toxic in excess. Although Cu is indicated as a potent neurotoxicant, information regarding its threat to fish brain and underlying mechanisms is still scarce. In accordance, the objective of this study was to assess the effects and the potential mechanism of Cu toxicity by evaluating brain oxidative status, the enzymatic and mRNA levels of antioxidant genes, as well as the Nrf2/ARE signaling in the brain of fish after Cu exposure. The protective effects of myo-inositol (MI) against subsequent Cu exposure were also investigated. The results indicate that induction of oxidative stress by Cu is shown by increases in brain ROS production, lipid peroxidation and protein oxidation, which are accompanied by depletions of antioxidants, including total superoxide dismutase (T-SOD), CuZnSOD, glutathione-S-transferase (GST) and glutathione reductase (GR) activities and glutathione (GSH) content. Cu exposure increased the catalase (CAT) and glutathione peroxidase (GPx) activities. Further molecular results showed that Cu exposure up-regulated CuZnSOD, GPx1a and GR mRNA levels, suggesting an adaptive mechanism against stress. Moreover, Cu exposure increased fish brain Nrf2 nuclear accumulation and increased its ability of binding to ARE (CuZnSOD), which supported the increased CuZnSOD mRNA levels. In addition, Cu exposure caused increases of the expression of the Nrf2, Maf G1 (rather than Maf G2 gene) and PKCd genes, suggesting that de novo synthesis of those factors is required for the protracted induction of such antioxidant genes. However, the modulation of Keap1a (rather than Keap1b) of fish brain under Cu exposure might be used to turn off of the signaling cascade and avoid harmful effects. Interestingly, pre-treatment of fish with MI prevented the fish brain

  17. Activations of c-fos/c-jun signaling are involved in the modulation of hypothalamic superoxide dismutase (SOD) and neuropeptide Y (NPY) gene expression in amphetamine-mediated appetite suppression

    SciTech Connect

    Hsieh, Y.-S.; Yang, S.-F.; Chiou, H.-L.; Kuo, D.-Y. . E-mail: dykuo@csmu.edu.tw

    2006-04-15

    Amphetamine (AMPH) is known as an anorectic agent. The mechanism underlying the anorectic action of AMPH has been attributed to its inhibitory action on hypothalamic neuropeptide Y (NPY), an appetite stimulant in the brain. This study was aimed to examine the molecular mechanisms behind the anorectic effect of AMPH. Results showed that AMPH treatment decreased food intake, which was correlated with changes of NPY mRNA level, but increased c-fos, c-jun and superoxide dismutase (SOD) mRNA levels in hypothalamus. To determine if c-fos or c-jun was involved in the anorectic response of AMPH, infusions of antisense oligonucleotide into the brain were performed at 1 h before daily AMPH treatment in freely moving rats, and the results showed that c-fos or c-jun knockdown could block this anorectic response and restore NPY mRNA level. Moreover, c-fos or c-jun knockdown could partially block SOD mRNA level that might involve in the modulation of NPY gene expression. It was suggested that c-fos/c-jun signaling might involve in the central regulation of AMPH-mediated feeding suppression via the modulation of NPY gene expression.

  18. Suppression of EC-SOD by oxLDL During Vascular Smooth Muscle Cell Proliferation.

    PubMed

    Makino, Junya; Asai, Rei; Hashimoto, Mao; Kamiya, Tetsuro; Hara, Hirokazu; Ninomiya, Masayuki; Koketsu, Mamoru; Adachi, Tetsuo

    2016-11-01

    Reactive oxygen species (ROS) produced by endothelial cells and macrophages play important roles in atherogenesis because they promote the formation of oxidized low-density lipoproteins (oxLDL). Extracellular-superoxide dismutase (EC-SOD) is mainly produced by vascular smooth muscle cells (VSMCs), is secreted into the extracellular space, and protects cells from the damaging effects of the superoxide anion. Thus, the expression of EC-SOD in VSMCs is crucial for protecting cells against atherogenesis; however, oxLDL-induced changes in the expression of EC-SOD in VSMCs have not yet been examined. We herein showed that oxLDL decreased EC-SOD mRNA and protein levels by binding to lectin-like oxidized LDL receptor-1 (LOX-1). Moreover, we demonstrated the significant role of mitogen-activated protein kinase (MEK)/extracellular-regulated protein kinase (ERK) signaling in oxLDL-elicited reductions in the expression of EC-SOD and proliferation of VSMCs. The results obtained with the FCS treatment indicate that oxLDL-elicited reductions in the expression of EC-SOD are related to the proliferation of VSMCs. We herein showed for the first time that luteolin, a natural product, restored oxLDL-induced decreases in the expression of EC-SOD and proliferation of VSMCs. Collectively, the results of the present study suggest that oxLDL accelerates the development of atherosclerosis by suppressing the expression of EC-SOD and also that luteolin has potential as a treatment for atherosclerosis. J. Cell. Biochem. 117: 2496-2505, 2016. © 2016 Wiley Periodicals, Inc. PMID:26990420

  19. A Common Polymorphism in EC-SOD Affects Cardiopulmonary Disease Risk by Altering Protein Distribution

    PubMed Central

    Hartney, John M.; Stidham, Timothy; Goldstrohm, David A.; Oberley-Deegan, Rebecca E.; Weaver, Michael R.; Valnickova-Hansen, Zuzana; Scavenius, Carsten; Benninger, Richard K.P.; Leahy, Katelyn F.; Johnson, Richard; Gally, Fabienne; Kosmider, Beata; Zimmermann, Angela K.; Enghild, Jan J.; Nozik-Grayck, Eva; Bowler, Russell P.

    2014-01-01

    Background The enzyme extracellular superoxide dismutase (EC-SOD; SOD3) is a major antioxidant defense in lung and vasculature. A nonsynonomous single nucleotide polymorphism (SNP) in EC-SOD (rs1799895) leads to an arginine to glycine (Arg->Gly) amino acid substitution at position 213 (R213G) in the heparin-binding domain (HBD). In recent human genetic association studies, this SNP attenuates the risk of lung disease, yet paradoxically increases the risk of cardiovascular disease. Methods and Results Capitalizing on the complete sequence homology between human and mouse in the HBD, we created an analogous R213G SNP knockin mouse. The R213G SNP did not change enzyme activity, but shifted the distribution of EC-SOD from lung and vascular tissue to extracellular fluid (e.g. bronchoalveolar lavage fluid (BALF) and plasma). This shift reduces susceptibility to lung disease (lipopolysaccharide-induced lung injury) and increases susceptibility to cardiopulmonary disease (chronic hypoxic pulmonary hypertension). Conclusions We conclude that EC-SOD provides optimal protection when localized to the compartment subjected to extracellular oxidative stress: thus, the redistribution of EC-SOD from the lung and pulmonary circulation to the extracellular fluids is beneficial in alveolar lung disease but detrimental in pulmonary vascular disease. These findings account for the discrepant risk associated with R213G in humans with lung diseases compared with cardiovascular diseases. PMID:25085920

  20. Age-Related Changes in Antioxidant and Glutathione S-Transferase Enzyme Activities in the Asian Clam.

    PubMed

    Vranković, J

    2016-03-01

    Aging is accompanied by increased production of free oxygen radicals and impairment of normal cellular functions. The aim of this work was to provide preliminary data on age-related differences in the activities of antioxidant enzymes and phase II biotransformation enzyme glutathione S-transferase (GST) in a wild population of the Asian clam Corbicula fluminea. The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), and GST were assessed in visceral mass of four age classes (0+-, 1+-, 2+-, and 3+-year-old) of C. fluminea clams. Age-related changes were seen in antioxidant enzyme status: levels of total SOD (totSOD) (P < 0.05), MnSOD, and CuZnSOD (P < 0.05) activities increased progressively during aging from younger to older clams. Changes in CAT and GR activities with advancing age were found, the levels being the highest in age class II, then being lower in age classes III and IV (P < 0.05). Activities of GPX and GST were lower in the senescent individuals (2+- and 3+-year-old clams) compared with young individuals (0+- and 1+-year-old clams). Overall, the decline of glutathione-dependent enzyme activities, coupled with higher and lower activities of totSOD and CAT, respectively, as the individual grows older, may render the older animals more susceptible to oxidative stress. Data reported here are not intended to be exhaustive since they concern only age/size structure of the population at one locality, so more detailed studies on both the developmental stages and levels of antioxidant enzymes of this new alien species in Serbian rivers are required. PMID:27262191

  1. Interactive effect of salicylic acid on some physiological features and antioxidant enzymes activity in ginger (Zingiber officinale Roscoe).

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E

    2013-01-01

    The effect of foliar salicylic acid (SA) applications (10⁻³ and 10⁻⁵ M) on activities of nitrate reductase, guaiacol peroxidase (POD), superoxide dismutases (SOD), catalase (CAT) and proline enzymes and physiological parameters was evaluated in two ginger varieties (Halia Bentong and Halia Bara) under greenhouse conditions. In both varieties, tested treatments generally enhanced photosynthetic rate and total dry weight. Photosynthetic rate increases were generally accompanied by increased or unchanged stomatal conductance levels, although intercellular CO₂ concentrations of treated plants were typically lower than in controls. Lower SA concentrations were generally more effective in enhancing photosynthetic rate and plant growth. Exogenous application of SA increased antioxidant enzyme activities and proline content; the greatest responses were obtained in plants sprayed with 10⁻⁵ M SA, with significant increases observed in CAT (20.1%), POD (45.2%), SOD (44.1%) and proline (43.1%) activities. Increased CAT activity in leaves is naturally expected to increase photosynthetic efficiency and thus net photosynthesis by maintaining a constant CO₂ supply. Our results support the idea that low SA concentrations (10⁻⁵ M) may induce nitrite reductase synthesis by mobilizing intracellular NO³⁻ and can provide protection to nitrite reductase degradation in vivo in the absence of NO³⁻. Observed positive correlations among proline, SOD, CAT and POD activities in the studied varieties suggest that increased SOD activity was accompanied by increases in CAT and POD activities because of the high demands of H₂O₂ quenching. PMID:23698049

  2. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.

    PubMed

    Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo

    2015-03-01

    Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. PMID:25511255

  3. Cat-Scratch Disease

    MedlinePlus

    ... Patients Infants and Young Children Publications & Materials Announcements Cat-Scratch Disease Recommend on Facebook Tweet Share Compartir ( ... play and learn how to attack prey. How cats and people become infected Kitten playing with a ...

  4. Cat Scratch Disease

    MedlinePlus

    Cat scratch disease (CSD) is an illness caused by the bacterium Bartonella henselae. Almost half of all cats carry the infection ... symptoms of CSD, call your doctor. Centers for Disease Control and Prevention

  5. Tuna fish diet influences cat behavior. [Elevated levels of selenium and mercury in commercial tuna fish cat food

    SciTech Connect

    Houpt, K.A.; Essick, L.A.; Shaw, E.B.; Alo, D.K.; Gilmartin, J.E.; Gutenmann, W.H.; Littman, C.B.; Lisk, D.J.

    1988-01-01

    When observed in their home cages, cats fed commercial tuna fish cat food were less active, vocalized less, and spent more time on the floor and more time eating than cats fed commercial beef cat food. There were no differences in response to human handling between the two groups. There were no differences in learning ability on a two-choice point maze or in reversal learning in the same maze between beef- and tuna-fed cats. The behavior of the groups differed in a 15-min open field test only in the number of toys contacted. Cats fed the tuna had elevated tissue levels of mercury and selenium.

  6. Single chain variable fragment antibodies block aggregation and toxicity induced by familial ALS-linked mutant forms of SOD1

    PubMed Central

    Ghadge, Ghanashyam D.; Pavlovic, John; Koduvayur, Sujatha P.; Kay, Brian K.; Roos, Raymond P.

    2013-01-01

    Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (known as FALS) with an autosomal dominant inheritance pattern, and ~25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase (SOD1). There is convincing evidence that mutant SOD1 (mtSOD1) kills motor neurons (MNs) because of a gain-of-function toxicity, most likely related to aggregation of mtSOD1. A number of recent reports have suggested that antibodies can be used to treat mtSOD1-induced FALS. To follow up on the use of antibodies as potential therapeutics, we generated single chain fragments of variable region antibodies (scFvs) against SOD1, and then expressed them as ‘intrabodies’ within a motor neuron cell line. In the present study, we describe isolation of human scFvs that interfere with mtSOD1 in vitro aggregation and toxicity. These scFvs may have therapeutic potential in sporadic ALS, as well as FALS, given that sporadic ALS may also involve abnormalities in the SOD1 protein or activity. PMID:23607939

  7. MiR-146a regulates SOD2 expression in H2O2 stimulated PC12 cells.

    PubMed

    Ji, Guohua; Lv, Ke; Chen, Hailong; Wang, Tingmei; Wang, Yanli; Zhao, Dingsheng; Qu, Lina; Li, Yinghui

    2013-01-01

    SOD2 (superoxide dismutase 2) is one of the endogenous antioxidant enzymes that protect against reactive oxygen species. While explorations of SOD2 expression regulation are mainly focused on transcriptional and post-translational activation, there are few reports about the post-transcriptional regulation of SOD2. MicroRNAs (miRNAs) are 21nt-25nt (nucleotide) small noncoding RNAs that have emerged as indispensable regulators of gene expression. Here we show that miR-146a, a widely expressed miRNA, is up-regulated by H2O2-induced stress. By sequence analysis we found a binding site for miR-146a in the sod2 mRNA 3'UTR, and a luciferase reporter assay confirmed that miR-146a can interact with this sod2 regulatory region. Our results further show that miR-146a could down-regulate the SOD2 protein expression, and antisense-miR-146a could reverse the decrease of both the SOD2 level and cell viability in H2O2 treated PC12 cells. In conclusion, here we have identified a novel function of miR-146a in the post-transcriptional regulation of SOD2 expression.

  8. Getting a CAT Scan

    MedlinePlus

    ... Here's Help White House Lunch Recipes Getting a CAT Scan (Video) KidsHealth > For Kids > Getting a CAT Scan (Video) A A A en español Obtención de una tomografía computada (video) CAT stands for "computerized axial tomography." Translated, that means ...

  9. Neuronal mechanisms of active (rapid eye movement) sleep induced by microinjections of hypocretin into the nucleus pontis oralis of the cat.

    PubMed

    Xi, M-C; Chase, M H

    2006-06-19

    Hypocretinergic (orexinergic) neurons in the hypothalamus project to the nucleus pontis oralis, a nucleus which plays a crucial role in the generation of active (rapid eye movement) sleep. We recently reported that the microinjection of hypocretin into the nucleus pontis oralis of chronically-instrumented, unanesthetized cats induces a behavioral state that is comparable to naturally-occurring active sleep. The present study examined the intracellular signaling pathways underlying the active sleep-inducing effects of hypocretin. Accordingly, hypocretin-1, a protein kinase C inhibitor and a protein kinase A inhibitor were injected into the nucleus pontis oralis in selected combinations in order to determine their effects on sleep and waking states of chronically instrumented, unanesthetized cats. Microinjections of hypocretin-1 into the nucleus pontis oralis elicited active sleep with a short latency. However, a pre-injection of bisindolylmaleimide-I, a protein kinase C-specific inhibitor, completely blocked the active sleep-inducing effects of hypocretin-1. The combined injection of bisindolylmaleimide-I and hypocretin-1 significantly increased the latency to active sleep induced by hypocretin-1; it also abolished the increase in the time spent in active sleep induced by hypocretin-1. On the other hand, the injection of 2'5'-dideoxyadenosine, an adenylyl cyclase inhibitor, did not block the occurrence of active sleep by hypocretin-1. We conclude that the active sleep-inducing effect of hypocretin in the nucleus pontis oralis is mediated by intracellular signaling pathways that act via G-protein stimulation of protein kinase C. PMID:16533574

  10. Responses of neurons in the gracile nucleus of cats to innocuous and noxious stimuli: basic characterization and antidromic activation from the thalamus.

    PubMed

    Cliffer, K D; Hasegawa, T; Willis, W D

    1992-09-01

    1. Responses to innocuous and noxious mechanical and thermal stimuli were recorded from 90 neurons in the gracile nucleus of anesthetized cats. Cells were tested by antidromic activation for projections to the contralateral ventrobasal thalamus. 2. Cells were characterized broadly by their responses to mechanical stimuli as 1) responding only to tapping (16%), 2) fast-adapting to low-intensity mechanical stimuli (33%), or 3) slowly adapting (51%; most with a fast-adapting component to their responses). All fast-adapting cells and those slowly adapting cells that were tested with noxious heat were further categorized on the basis of their patterns of firing and responses to stimuli. These plus the tap-responsive cells comprised a more restricted sample of 76 categorized cells. 3. Many (22) slowly adapting cells responded to noxious heat (69% of tested slowly adapting cells; 29% of all categorized cells), either on the first application (9 cells) or after sensitization (13 cells), indicating input originating in nociceptors. Nearly all of these (21) responded more to intense pressure than to innocuous pressure. The majority of slowly adapting cells not responsive to noxious heat (5 of 8) or not tested with it (8 of 12) also responded more to intense than to innocuous pressure, suggesting possible input originating in nociceptors. Most cells that responded to noxious heat also had both rapidly and slowly adapting responses with low thresholds. Many were recorded in the range of the cluster region of the gracile nucleus. 4. Cells antidromically activated from the thalamus projected to the rostral part of the ventral posterior lateral nucleus, regardless of their physiological category, and included many with nociceptive input. Latencies of antidromic activation were shorter at more caudal locations in the gracile nucleus, indicating higher conduction velocities to the thalamus. Responses of antidromically activated cells to low-intensity phasic stimuli tended to be

  11. Signal transduction of aortic and carotid sinus baroreceptors is not modified by central command during spontaneous motor activity in decerebrate cats.

    PubMed

    Matsukawa, Kanji; Ishii, Kei; Kadowaki, Akito; Ishida, Tomoko; Idesako, Mitsuhiro; Liang, Nan

    2014-05-15

    Our laboratory has suggested that central command provides selective inhibition of the cardiomotor component of aortic baroreflex at the start of exercise, preserving carotid sinus baroreflex. It is postulated that central command may modify the signal transduction of aortic baroreceptors, so as to decrease aortic baroreceptor input to the cardiovascular centers, and, thereby, can cause the selective inhibition of aortic baroreflex. To test the hypothesis, we directly analyzed the responses in multifiber aortic nerve activity (AoNA) and carotid sinus nerve activity (CsNA) during spontaneous motor activity in decerebrate, paralyzed cats. The increases of 62-104% in mean AoNA and CsNA were found during spontaneous motor activity, in proportion to a rise of 35 ± 3 mmHg (means ± SE) in mean arterial blood pressure (MAP), and had an attenuating tendency by restraining heart rate (HR) at the lower intrinsic frequency of 154 ± 6 beats/min. Brief occlusion of the abdominal aorta was conducted before and during spontaneous motor activity to produce a mechanically evoked increase in MAP and, thereby, to examine the stimulus-response relationship of arterial baroreceptors. Although the sensitivity of the MAP-HR baroreflex curve was markedly blunted during spontaneous motor activity, the stimulus-response relationships of AoNA and CsNA were not influenced by spontaneous motor activity, irrespective of the absence or presence of the HR restraint. Thus, it is concluded that aortic and carotid sinus baroreceptors can code beat-by-beat blood pressure during spontaneous motor activity in decerebrate cats and that central command is unlikely to modulate the signal transduction of arterial baroreceptors.

  12. Loss of SOD3 (EcSOD) expression promotes an aggressive phenotype in human pancreatic ductal adenocarcinoma

    PubMed Central

    O’Leary, Brianne R.; Fath, Melissa A.; Bellizzi, Andrew M.; Hrabe, Jennifer E.; Button, Anna M.; Allen, Bryan G.; Case, Adam J.; Altekruse, Sean; Wagner, Brett A.; Buettner, Garry R.; Lynch, Charles F.; Hernandez, Brenda Y.; Cozen, Wendy; Beardsley, Robert A.; Keene, Jeffery; Henry, Michael D.; Domann, Frederick E.; Spitz, Douglas R.; Mezhir, James J.

    2015-01-01

    Purpose Pancreatic ductal adenocarcinoma (PDA) cells are known to produce excessive amounts of reactive oxygen species (ROS), particularly superoxide, which may contribute to the aggressive and refractory nature of this disease. Extracellular superoxide dismutase (EcSOD) is an antioxidant enzyme that catalyzes the dismutation of superoxide in the extracellular environment. The current work tests the hypothesis that EcSOD modulates PDA growth and invasion by modifying the redox balance in PDA. Experimental Design We evaluated the prognostic significance of EcSOD in a human tissue microarray of patients with PDA. EcSOD overexpression was performed in PDA cell lines and animal models of disease. The impact of EcSOD on PDA cell lines was evaluated with Matrigel invasion in combination with a superoxide-specific SOD mimic and a nitric oxide synthase inhibitor to determine the mechanism of action of EcSOD in PDA. Results Loss of EcSOD expression is a common event in PDA, which correlated with worse disease biology. Overexpression of EcSOD in PDA cell lines resulted in decreased invasiveness that appeared to be related to reactions of superoxide with nitric oxide. Pancreatic cancer xenografts overexpressing EcSOD also demonstrated slower growth and peritoneal metastasis. Over-expression of EcSOD or treatment with a superoxide-specific SOD mimic caused significant decreases in PDA cell invasive capacity. Conclusions These results support the hypothesis that loss of EcSOD leads to increased reactions of superoxide with nitric oxide which contributes to the invasive phenotype. These results allow for the speculation that superoxide dismutase mimetics might inhibit PDA progression in human clinical disease. PMID:25634994

  13. Pulmonary thromboembolism in cats.

    PubMed

    Schermerhorn, Thomas; Pembleton-Corbett, Julie R; Kornreich, Bruce

    2004-01-01

    Pulmonary thromboembolism (PTE) is rarely diagnosed in cats, and the clinical features of the disease are not well known. PTE was diagnosed at postmortem examination in 17 cats, a prevalence of 0.06% over a 24-year period. The age of affected cats ranged from 10 months to 18 years, although young (<4 years) and old (>10 years) cats were more commonly affected than were middle-aged cats. Males and females were equally affected. The majority of cats with PTE (n = 16) had concurrent disease, which was often severe. The most common diseases identified in association with PTE were neoplasia, anemia of unidentified cause, and pancreatitis. Cats with glomerulonephritis, encephalitis, pneumonia, heart disease, and hepatic lipidosis were also represented in this study. Most cats with PTE demonstrated dyspnea and respiratory distress before death or euthanasia, but PTE was not recognized ante mortem in any cat studied. In conclusion, PTE can affect cats of any age and is associated with a variety of systemic and inflammatory disorders. It is recommended that the same clinical criteria used to increase the suspicion of PTE in dogs should also be applied to cats. PMID:15320593

  14. Mn-SOD Upregulation by Electroacupuncture Attenuates Ischemic Oxidative Damage via CB1R-Mediated STAT3 Phosphorylation.

    PubMed

    Sun, Sisi; Chen, Xiyao; Gao, Yang; Liu, Zhaoyu; Zhai, Qian; Xiong, Lize; Cai, Min; Wang, Qiang

    2016-01-01

    Electroacupuncture (EA) pretreatment elicits the neuroprotective effect against cerebral ischemic injury through cannabinoid receptor type 1 receptor (CB1R). In current study, we aimed to investigate whether the signal transducer and activator of transcription 3 (STAT3) and manganese superoxide dismutase (Mn-SOD) were involved in the antioxidant effect of EA pretreatment through CB1R. At 2 h after EA pretreatment, focal cerebral ischemic injury was induced by transient middle cerebral artery occlusion for 60 min in C57BL/6 mice. The expression of Mn-SOD in the penumbra was assessed by Western blot and immunoflourescent staining at 2 h after reperfusion. In the presence or absence of Mn-SOD small interfering RNA (siRNA), the neurological deficit score, the infarct volume, the terminal deoxynucleotidyl transferase-mediated dUDP-biotin nick end labeling (TUNEL) staining, and oxidative stress were evaluated. Furthermore, the Mn-SOD protein expression and phosphorylation of STAT3 at Y705 were also determined in the presence and absence of CB1R antagonists (AM251, SR141716) and CB1R agonists (arachidonyl-2-chloroethylamide (ACEA), WIN 55,212-2). EA pretreatment upregulated the Mn-SOD protein expression and Mn-SOD-positive neuronal cells at 2 h after reperfusion. EA pretreatment also attenuated oxidative stress, inhibited cellular apoptosis, and induced neuroprotection against ischemic damage, whereas these beneficial effects of EA pretreatment were reversed by knockdown of Mn-SOD. Mn-SOD upregulation and STAT3 phosphorylation by EA pretreatment were abolished by two CB1R antagonists, while pretreatment with two CB1R agonists increased the expression of Mn-SOD and phosphorylation level of STAT3. Mn-SOD upregulation by EA attenuates ischemic oxidative damage through CB1R-mediated STAT3 phosphorylation in stroke mice, which may represent one new mechanism of EA pretreatment-induced neuroprotection against cerebral ischemia.

  15. Effect of N + ion implantation on antioxidase activity in Blakeslea trispora

    NASA Astrophysics Data System (ADS)

    Ning, Zhang; Long, Yu

    2008-09-01

    The effect of N + implantation on the activities of CAT, POD, SOD, T-AOC and the capacities of scavenging O 2- rad and OH rad in Blakeslea trispora (-) were studied. Results showed that N + implantation caused different changes of CAT, POD, SOD, T-AOC activities and cell scavenging O 2- rad and OH rad capacities. With the implantation dose increasing CAT activity was lower than the control sample, while POD, SOD activities and the scavenging O 2- rad and OH rad capacities all decreased at the beginning, and then increased lately. At the dose of 6.0×10 15 N + cm -2 T-AOC activity was lowest, while at the dose of 1.2×10 15 N + cm -2 its activity was highest, and this change trend was same to the B. trispora (-) survival rate curve. So we speculated that the changes of these antioxidases activity of B. trispora (-) induced by low-energy N + probably have some relationship with its "saddle shape" survival rate curve.

  16. Possible involvement of an extracellular superoxide dismutase (SodA) as a radical scavenger in poly(cis-1,4-isoprene) degradation.

    PubMed

    Schulte, Carina; Arenskötter, Matthias; Berekaa, Mahmoud M; Arenskötter, Quyen; Priefert, Horst; Steinbüchel, Alexander

    2008-12-01

    Gordonia westfalica Kb1 and Gordonia polyisoprenivorans VH2 induce the formation of an extracellular superoxide dismutase (SOD) during poly(cis-1,4-isoprene) degradation. To investigate the function of this enzyme in G. polyisoprenivorans VH2, the sodA gene was disrupted. The mutants exhibited reduced growth in liquid mineral salt media containing poly(cis-1,4-isoprene) as the sole carbon and energy source, and no SOD activity was detectable in the supernatants of the cultures. Growth experiments revealed that SodA activity is required for optimal growth on poly(cis-1,4-isoprene), whereas this enzyme has no effect on aerobic growth in the presence of water-soluble substrates like succinate, acetate, and propionate. This was detected by activity staining, and proof of expression was by antibody detection of SOD. When SodA from G. westfalica Kb1 was heterologously expressed in the sodA sodB double mutant Escherichia coli QC779, the recombinant mutant exhibited increased resistance to paraquat, thereby indicating the functionality of the G. westfalica Kb1 SodA and indirectly protection of G. westfalica cells by SodA from oxidative damage. Both sodA from G. polyisoprenivorans VH2 and sodA from G. westfalica Kb1 coded for polypeptides comprising 209 amino acids and having approximately 90% and 70% identical amino acids, respectively, to the SodA from Mycobacterium smegmatis strain MC(2) 155 and Micrococcus luteus NCTC 2665. As revealed by activity staining experiments with the wild type and the disruption mutant of G. polyisoprenivorans, this bacterium harbors only one active SOD belonging to the manganese family. The N-terminal sequences of the extracellular SodA proteins of both Gordonia species showed no evidence of leader peptides for the mature proteins, like the intracellular SodA protein of G. polyisoprenivorans VH2, which was purified under native conditions from the cells. In G. westfalica Kb1 and G. polyisoprenivorans VH2, SodA probably provides protection

  17. Therapeutic rAAVrh10 Mediated SOD1 Silencing in Adult SOD1(G93A) Mice and Nonhuman Primates.

    PubMed

    Borel, Florie; Gernoux, Gwladys; Cardozo, Brynn; Metterville, Jake P; Toro Cabreja, Gabriela C; Song, Lina; Su, Qin; Gao, Guang Ping; Elmallah, Mai K; Brown, Robert H; Mueller, Christian

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease; survival in ALS is typically 3-5 years. No treatment extends patient survival by more than three months. Approximately 20% of familial ALS and 1-3% of sporadic ALS patients carry a mutation in the gene encoding superoxide dismutase 1 (SOD1). In a transgenic ALS mouse model expressing the mutant SOD1(G93A) protein, silencing the SOD1 gene prolongs survival. One study reports a therapeutic effect of silencing the SOD1 gene in systemically treated adult ALS mice; this was achieved with a short hairpin RNA, a silencing molecule that has raised multiple safety concerns, and recombinant adeno-associated virus (rAAV) 9. We report here a silencing method based on an artificial microRNA termed miR-SOD1 systemically delivered using adeno-associated virus rAAVrh10, a serotype with a demonstrated safety profile in CNS clinical trials. Silencing of SOD1 in adult SOD1(G93A) transgenic mice with this construct profoundly delayed both disease onset and death in the SOD1(G93A) mice, and significantly preserved muscle strength and motor and respiratory functions. We also document that intrathecal delivery of the same rAAVrh10-miR-SOD1 in nonhuman primates significantly and safely silences SOD1 in lower motor neurons. This study supports the view that rAAVrh10-miR-SOD1 merits further development for the treatment of SOD1-linked ALS in humans. PMID:26710998

  18. Therapeutic rAAVrh10 Mediated SOD1 Silencing in Adult SOD1G93A Mice and Nonhuman Primates

    PubMed Central

    Borel, Florie; Gernoux, Gwladys; Cardozo, Brynn; Metterville, Jake P.; Toro Cabreja, Gabriela C.; Song, Lina; Su, Qin; Gao, Guang Ping; Elmallah, Mai K.; Brown, Robert H.; Mueller, Christian

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease; survival in ALS is typically 3–5 years. No treatment extends patient survival by more than three months. Approximately 20% of familial ALS and 1–3% of sporadic ALS patients carry a mutation in the gene encoding superoxide dismutase 1 (SOD1). In a transgenic ALS mouse model expressing the mutant SOD1G93A protein, silencing the SOD1 gene prolongs survival. One study reports a therapeutic effect of silencing the SOD1 gene in systemically treated adult ALS mice; this was achieved with a short hairpin RNA, a silencing molecule that has raised multiple safety concerns, and recombinant adeno-associated virus (rAAV) 9. We report here a silencing method based on an artificial microRNA termed miR-SOD1 systemically delivered using adeno-associated virus rAAVrh10, a serotype with a demonstrated safety profile in CNS clinical trials. Silencing of SOD1 in adult SOD1G93A transgenic mice with this construct profoundly delayed both disease onset and death in the SOD1G93A mice, and significantly preserved muscle strength and motor and respiratory functions. We also document that intrathecal delivery of the same rAAVrh10-miR-SOD1 in nonhuman primates significantly and safely silences SOD1 in lower motor neurons. This study supports the view that rAAVrh10-miR-SOD1 merits further development for the treatment of SOD1-linked ALS in humans. PMID:26710998

  19. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.

    PubMed

    Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef

    2013-11-01

    The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women.

  20. The effect of ILLLI on peripheral blood SOD, MDA in psoriasis treatment

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Nie, Fan

    2005-07-01

    Objective: To research the effect of Intravascular low level laser irradiation (ILLLI) on the SOD,MDA in the treatment of psoriasis. Method :47 patients suffering from psoriasis from five groups were treated by Intravascular low level laser irradiation (power:4-5mw,1h per day, period of treatment: 10 days) .We checked the change of SOD,MDA peripheral blood in 10 normal people between pre and post treatment. Group A were treated by He-Ne laser combined with drug, group B were treated by semi-conductor laser combined with drug, group C were treated only by He-Ne laser, group D were treated only by semiconductor laser, group E were treated only by drug . Results: The levels of SOD in red cell of psoriatic patients from five groups after treatment were significantly lower than that of controlled group. The levels of SOD of them were significantly increased and nearly closed to that of controlled group; the levels of MDA in red cell of psoriatic patients from five groups after treatment were significantly higher than that of controlled group; the levels of MDA of them are decreased ,however, they were still not recovered to normal levels. Conclusions: ILLLI, both He-Ne laser and semiconductor laser, can activate SOD in psoriasis patients and enhance their ability of anti-oxidation.

  1. Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading.

    PubMed

    Morikawa, Daichi; Nojiri, Hidetoshi; Saita, Yoshitomo; Kobayashi, Keiji; Watanabe, Kenji; Ozawa, Yusuke; Koike, Masato; Asou, Yoshinori; Takaku, Tomoiku; Kaneko, Kazuo; Shimizu, Takahiko

    2013-11-01

    Oxidative stress contributes to the pathogenesis of age-related diseases as well as bone fragility. Our previous study demonstrated that copper/zinc superoxide dismutase (Sod1)-deficient mice exhibit the induction of intracellular reactive oxygen species (ROS) and bone fragility resulting from low-turnover bone loss and impaired collagen cross-linking (Nojiri et al. J Bone Miner Res. 2011;26:2682-94). Mechanical stress also plays an important role in the maintenance of homeostasis in bone tissue. However, the molecular links between oxidative and mechanical stresses in bone tissue have not been fully elucidated. We herein report that mechanical unloading significantly increased intracellular ROS production and the specific upregulation of Sod1 in bone tissue in a tail-suspension experiment. We also reveal that Sod1 loss exacerbated bone loss via reduced osteoblastic abilities during mechanical unloading. Interestingly, we found that the administration of an antioxidant, vitamin C, significantly attenuated bone loss during unloading. These results indicate that mechanical unloading, in part, regulates bone mass via intracellular ROS generation and the Sod1 expression, suggesting that activating Sod1 may be a preventive strategy for ameliorating mechanical unloading-induced bone loss.

  2. In vitro antimicrobial activity of the leaf extract of Harungana madagascariensis Lam. Ex Poir. (Hypericaceae) against strains causing otitis externa in dogs and cats.

    PubMed

    Moulari, B; Pellequer, Y; Chaumont, J P; Guillaume, Y C; Millet, J

    2007-03-01

    Otitis externa in dogs and cats is always caused by a combination of yeasts and bacteria, among which the most important are Malassezia pachydermatis, Staphylococcus intermedius and Pseudomonas species. These organisms often develop resistance to classical antimicrobial agents. Therefore, the aim of this study was to investigate the antimicrobial activities of an ethyl acetate leaf extract of Harungana madagascariensis against the organisms cited, to carry out the phytochemical investigation of this extract and to determine its bioactive chemical class using dilution techniques, the bioautography method and the standard phytochemical method described by Harborne (1973). Phytochemical analysis revealed the presence of saponins, tannins, flavonoids, alkaloids and anthracenic derivatives. The bioassay showed that the antimicrobial properties may be attributed to astilbin, a flavanone derivative identified on the basis of its spectroscopic data. The results suggest that the extract could be used in an antimicrobial preparation effective against the whole range of organisms incriminated in otitis externa in dogs and cats, with a minimal inhibitory concentration (MIC) of 250 microg/ml.

  3. Effects of lead on the activities of antioxidant enzymes in watercress, Nasturtium officinale R. Br.

    PubMed

    Keser, Gonca; Saygideger, Saadet

    2010-11-01

    The aim of the present study is to evaluate the oxidative effects of lead with increased concentrations by the determination of antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and ascorbate peroxidase (AP)) and lipid peroxidation levels in the stem and leaves of watercress (Nasturtium officinale R. Br.) which was exposed to lead acetate, Pb (CH3COOH)2 regime with concentrations of 0, 50, 100, 200, 250, and 500 mg/L Pb in a hydroponic culture. After 14 days, accumulation of lipid peroxidation in stems and leaves and changes in activity of antioxidant enzymes were determined spectrophotometrically. The maximum accumulation was observed in the highest concentration group. In this group, lipid peroxidation levels were three times higher than the control group in the stem and leaves. The highest induction in SOD and GR activities were determined at 200 mg/L Pb group in stem, whereas CAT and AP activities were higher than other groups at the concentration of 250 and 100 mg/L Pb, respectively. The increase in CAT activity was found to be greater than GR, SOD, and AP activities in stems of watercress under Pb treatment. Both lead accumulation and antioxidant enzyme responses were higher in stems than in leaves. The results of the present study suggested that the induction in antioxidant responses could be occurring as an adaptive mechanism to the oxidative potential of lead accumulation.

  4. Effects of met-enkephalin on the mechanical activity and distribution of met-enkephalin-like immunoreactivity in the cat small intestine.

    PubMed

    Radomirov, R; Venkova, K; Davidoff, M; Pencheva, N

    1990-01-01

    Naloxone-dependent effects of Met-enkephalin (10(-8) M) on the spontaneous and electrically induced mechanical activities were studied in longitudinal and circular preparations isolated from the cat duodenum, jejunum and ileum. Met-Enkephalin changed the spontaneous activity of all preparations tested with the exception of the circular preparations from the ileum. Met-Enkephalin-induced responses of the longitudinal preparations from the ileum were abolished by treatment with tetrodotoxin (10(-7) M), while the responses of both longitudinal and circular preparations from the duodenum and jejunum were only partially depressed, being resistant to tetrodotoxin components. The latter were most pronounced in the duodenum. The neurogenic electrically induced (0.5 msec, 5 Hz, 150 pulses) responses of all the preparations consisted mainly of contractile components which were significantly and naloxone-dependently reduced by Met-enkephalin (10(-8) M). The contractile components of the responses, which were reduced by Met-enkephalin, were entirely abolished by atropine (3 x 10(-6) M). Both Met-enkephalin and atropine inhibitory effects on the neurogenic responses were more pronounced in the ileum. Met-Enkephalin was found in nerve fibers of the myenteric plexus distributed mainly among the circular muscle. Single immunoreactive nerve fibers were observed in the longitudinal muscle layer of the duodenum but not in the jejunum and ileum. The distribution of Met-enkephalin-like immunoreactivity along the small intestine did not show significant differences among the three intestinal regions tested. The results obtained suggest that Met-enkephalin can modulate the mechanical activity of the cat small intestine, inhibiting cholinergic transmission and/or activating smooth muscle opioid receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Toward functional Ni-SOD biomimetics: achieving a structural/electronic correlation with redox dynamics.

    PubMed

    Gale, Eric M; Simmonett, Andrew C; Telser, Joshua; Schaefer, Henry F; Harrop, Todd C

    2011-10-01

    We have prepared and characterized a Ni complex with an N(3)S(2) ligand set (1) that represents the first isolable synthetic model of the reduced form of the Ni-SOD (SOD = superoxide dismutase) active site featuring all relevant donor functionality in the proper spatial distribution. As revealed by X-ray crystallography, the axial py-N donor of 1 does not bind Ni(II) in the solid state or in solution like SOD. Oxidation of 1 provides a disulfide-linked dinuclear species, [{Ni(N(3)S(2))}(2)] (2), which we have isolated and characterized. Moreover, the 1 → 2 conversion is reversible, much like redox cycling in the enzyme.

  6. The leader peptide of a human rec. MnSOD as molecular carrier which delivers high amounts of Cisplatin into tumor cells inducing a fast apoptosis in vitro.

    PubMed

    Borrelli, Antonella; Schiattarella, Antonietta; Mancini, Roberto; Morelli, Franco; Capasso, Clemente; De Luca, Viviana; Gori, Enrico; Mancini, Aldo

    2011-01-15

    The leader peptide of a recombinant MnSOD (rMnSOD-Lp) constitutes the carrier that allows rMnSOD to penetrate tumor cells. A synthetic preparation of rMnSOD-Lp was ⁶⁸Ga labeled (rMnSOD-Lp- ⁶⁸Ga) and injected into animals bearing spontaneous mammary cancers, followed by PET examinations, which demonstrated unambiguously the tumor sites in all the animals, suggesting that if rMnSOD-Lp was able to transport the radioisotope into tumor cells, it would also be able to deliver cytotoxic molecules. The rMnSOD-Lp was, therefore, conjugated to cisplatin (rMnSOD-Lp-CC) and added to cultured tumor cells. Equal concentrations of cisplatin were used for the tests. After treating the ovarian cancer cells with 11.1 μg of cisplatin alone, analysis by atomic absorbance spectrophotometry was able to detect only 6 ng of platinum, whereas when the same cells were treated with the same amount of cisplatin conjugated to leader peptide rMnSOD, 387 ng of platinum were detected, i.e., an amount 80 times greater. Only the tumor cells died following treatment with rMnSOD-Lp-CC; molecular analysis revealed that its addition generated an increasing expression of Erk-2 and Bax products, which could be inhibited only by a selective MAP/ERK kinase inhibitor (PD98059), revealing that rMnSOD-Lp-CC has an apoptotic function, exactly as occurs when using the cisplatin alone. Data are statistically significant and indicate that by using rMnSOD-Lp-CC, the cisplatin can be transformed from an agent with antireplicative activity into a specific and selective antitumor molecule, increasing its therapeutic index. We think that rMnSOD-Lp-CC deserves to be considered as a new antitumor agent.

  7. A second copper zinc superoxide dismutase (CuZnSOD) in the blue crab Callinectes sapidus: cloning and up-regulated expression in the hemocytes after immune challenge.

    PubMed

    Sook Chung, J; Bachvaroff, T R; Trant, J; Place, A

    2012-01-01

    The full-length cDNA (1362 nucleotides, GenBank JF736621) encoding an extracellular copper zinc superoxide dismutase initially isolated from an EST library of the blue crab Callinectes sapidus was characterized using 3' RACE and named Cas-ecCuZnSOD-2. The open reading frame of Cas-ecCuZnSOD-2 contains 203 deduced amino acids with the conserved active catalytic center for copper and zinc binding and the post-translational modification at two putative N-glycosylation and nine phosphorylation sites. Overall, the deduced amino acids of Cas-ecCuZnSOD-2 shared only 35% sequence identity with that of Cas-ecCuZnSOD (GenBank AF264031) which was previously found in C. sapidus, while it showed ∼75% sequence identity to Scylla paramamosain ecCuZnSOD (GenBank FJ774661). The expression profile of Cas-ecCuZnSOD-2 and the other three C. sapidus SODs: ecCuZn, cytMn- and mitMn SODs was largely ubiquitous among the tested tissues obtained from a juvenile female at intermolt: brain, eyestalk ganglia, pericardial organs, and thoracic ganglia complex (nervous system); hepatopancreas (digestive system); heart, artery and hemocytes (circulatory system); gill and antennal gland (excretory system), hypodermis, and Y-organ (endocrine organ). Our study reports, for the first time in the crustaceans, expression analyses for all four Cas-SODs in hemocytes after immune challenges. Crabs challenged with lipopolysaccharides (LPS) injection had a remarkable induction of Cas-ecCuZnSOD-2 expression along with three other SODs in hemocytes, suggesting that Cas-SODs including Cas-ecCuZnSOD-2 are involved in the defense system, possibly innate immunity and immunocompetency of C. sapidus.

  8. Molecular cloning and characterization of Siamese crocodile (Crocodylus siamensis) copper, zinc superoxide dismutase (CSI-Cu,Zn-SOD) gene.

    PubMed

    Sujiwattanarat, Penporn; Pongsanarakul, Parinya; Temsiripong, Yosapong; Temsiripong, Theeranan; Thawornkuno, Charin; Uno, Yoshinobu; Unajak, Sasimanas; Matsuda, Yoichi; Choowongkomon, Kiattawee; Srikulnath, Kornsorn

    2016-01-01

    Superoxide dismutase (SOD, EC 1.15.1.1) is an antioxidant enzyme found in all living cells. It regulates oxidative stress by breaking down superoxide radicals to oxygen and hydrogen peroxide. A gene coding for Cu,Zn-SOD was cloned and characterized from Siamese crocodile (Crocodylus siamensis; CSI). The full-length expressed sequence tag (EST) of this Cu,Zn-SOD gene (designated as CSI-Cu,Zn-SOD) contained 462bp encoding a protein of 154 amino acids without signal peptides, indicated as intracellular CSI-Cu,Zn-SOD. This agreed with the results from the phylogenetic tree, which indicated that CSI-Cu,Zn-SOD belonged to the intracellular Cu,Zn-SOD. Chromosomal location determined that the CSI-Cu,Zn-SOD was localized to the proximal region of the Siamese crocodile chromosome 1p. Several highly conserved motifs, two conserved signature sequences (GFHVHEFGDNT and GNAGGRLACGVI), and conserved amino acid residues for binding copper and zinc (His(47), His(49), His(64), His(72), His(81), Asp(84), and His(120)) were also identified in CSI-Cu,Zn-SOD. Real-time PCR analysis showed that CSI-Cu,Zn-SOD mRNA was expressed in all the tissues examined (liver, pancreas, lung, kidney, heart, and whole blood), which suggests a constitutively expressed gene in these tissues. Expression of the gene in Escherichia coli cells followed by purification yielded a recombinant CSI-Cu,Zn-SOD, with Km and Vmax values of 6.075mM xanthine and 1.4×10(-3)mmolmin(-1)mg(-1), respectively. This Vmax value was 40 times lower than native Cu,Zn-SOD (56×10(-3)mmolmin(-1)mg(-1)), extracted from crocodile erythrocytes. This suggests that cofactors, protein folding properties, or post-translational modifications were lost during the protein purification process, leading to a reduction in the rate of enzyme activity in bacterial expression of CSI-Cu,Zn-SOD. PMID:26523498

  9. Neuronal activity in the lateral cerebellum of the cat related to visual stimuli at rest, visually guided step modification, and saccadic eye movements.

    PubMed

    Marple-Horvat, D E; Criado, J M; Armstrong, D M

    1998-01-15

    1. The discharge patterns of 166 lateral cerebellar neurones were studied in cats at rest and during visually guided stepping on a horizontal circular ladder. A hundred and twelve cells were tested against one or both of two visual stimuli: a brief full-field flash of light delivered during eating or rest, and a rung which moved up as the cat approached. Forty-five cells (40%) gave a short latency response to one or both of these stimuli. These visually responsive neurones were found in hemispheral cortex (rather than paravermal) and the lateral cerebellar nucleus (rather than nucleus interpositus). 2. Thirty-seven cells (of 103 tested, 36%) responded to flash. The cortical visual response (mean onset latency 38 ms) was usually an increase in Purkinje cell discharge rate, of around 50 impulses s-1 and representing 1 or 2 additional spikes per trial (1.6 on average). The nuclear response to flash (mean onset latency 27 ms) was usually an increased discharge rate which was shorter lived and converted rapidly to a depression of discharge or return to control levels, so that there were on average only an additional 0.6 spikes per trial. A straightforward explanation of the difference between the cortical and nuclear response would be that the increased inhibitory Purkinje cell output cuts short the nuclear response. 3. A higher proportion of cells responded to rung movement, sixteen of twenty-five tested (64%). Again most responded with increased discharge, which had longer latency than the flash response (first change in dentate output ca 60 ms after start of movement) and longer duration. Peak frequency changes were twice the size of those in response to flash, at 100 impulses s-1 on average and additional spikes per trial were correspondingly 3-4 times higher. Both cortical and nuclear responses were context dependent, being larger when the rung moved when the cat was closer than further away. 4. A quarter of cells (20 of 84 tested, 24%) modulated their activity in

  10. Sod cutting and soil biota effects on seedling performance

    NASA Astrophysics Data System (ADS)

    Weijtmans, Kim; Jongejans, Eelke; van Ruijven, Jasper

    2009-09-01

    Sod cutting (i.e. top soil removal) is a restoration management option for enhancing seedling establishment and for lowering the nutrient concentration in eutrophicated soils of nutrient-poor species-rich grasslands. Removal of the upper soil changes not only abiotic soil properties but may also affect the resident soil community. We investigated the effects of sod cutting on the establishment and performance of two endangered plant species ( Cirsium dissectum and Succisa pratensis) while simultaneously manipulating the interaction between seedlings and soil biota. In intact grassland and sod-cut areas at two localities, seedlings were grown in plastic tubes. Half of the tubes had a filter that excluded roots but allowed entry of fungal hyphae and soil microorganisms. The other tubes were closed (i.e. no contact with the surrounding soil). In a greenhouse experiment we studied the effect of soil solutions (with or without fungal tissue) from three grasslands and three sod-cut areas on seedling growth. Sod cutting had a positive net effect on seedling growth for S. pratensis. Access to (mycorrhizal) fungi and other soil biota resulted in a negative impact on seedling growth of both plant species, both in grassland and sod-cut areas. The greenhouse experiment confirmed that the soil biota in these meadows reduced seedling growth. Although sod cutting did not mitigate negative plant-soil feedback, it enhanced seedling growth, presumably by decreasing competition for light. Sod cutting is therefore very useful when seedling establishment needs to be stimulated.

  11. Cat-scratch Disease.

    PubMed

    Klotz, Stephen A; Ianas, Voichita; Elliott, Sean P

    2011-01-15

    Cat-scratch disease is a common infection that usually presents as tender lymphadenopathy. It should be included in the differential diagnosis of fever of unknown origin and any lymphadenopathy syndrome. Asymptomatic, bacteremic cats with Bartonella henselae in their saliva serve as vectors by biting and clawing the skin. Cat fleas are responsible for horizontal transmission of the disease from cat to cat, and on occasion, arthropod vectors (fleas or ticks) may transmit the disease to humans. Cat-scratch disease is commonly diagnosed in children, but adults can present with it as well. The causative microorganism, B. henselae, is difficult to culture. Diagnosis is most often arrived at by obtaining a history of exposure to cats and a serologic test with high titers (greater than 1:256) of immunoglobulin G antibody to B. henselae. Most cases of cat-scratch disease are self-limited and do not require antibiotic treatment. If an antibiotic is chosen, azithromycin has been shown in one small study to speed recovery. Infrequently, cat-scratch disease may present in a more disseminated form with hepatosplenomegaly or meningoencephalitis, or with bacillary angiomatosis in patients with AIDS.

  12. Aqueous Extract of Phyllanthus niruri Leaves Displays In Vitro Antioxidant Activity and Prevents the Elevation of Oxidative Stress in the Kidney of Streptozotocin-Induced Diabetic Male Rats

    PubMed Central

    Giribabu, Nelli; Rao, Pasupuleti Visweswara; Kumar, Korla Praveen; Muniandy, Sekaran; Swapna Rekha, Somesula; Salleh, Naguib

    2014-01-01

    P. niruri has been reported to possess antidiabetic and kidney protective effects. In the present study, the phytochemical constituents and in vitro antioxidant activity of P. niruri leaf aqueous extract were investigated together with its effect on oxidative stress and antioxidant enzymes levels in diabetic rat kidney. Results. Treatment of diabetic male rats with P. niruri leaf aqueous extract (200 and 400 mg/kg) for 28 consecutive days prevents the increase in the amount of lipid peroxidation (LPO) product, malondialdehyde (MDA), and the diminution of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity levels in the kidney of diabetic rats. The amount of LPO showed strong negative correlation with SOD, CAT, and GPx activity levels. P. niruri leaf aqueous extract exhibits in vitro antioxidant activity with IC50 slightly lower than ascorbic acid. Phytochemical screening of plant extract indicates the presence of polyphenols. Conclusion. P. niruri leaf extract protects the kidney from oxidative stress induced by diabetes. PMID:24991228

  13. Nuclear and microtubule remodeling and in vitro development of nuclear transferred cat oocytes with skin fibroblasts of the domestic cat (Felis silvestris catus) and leopard cat (Prionailurus bengalensis).

    PubMed

    Yin, X J; Lee, Y H; Jin, J Y; Kim, N H; Kong, I K

    2006-10-01

    The leopard cat (Prionailurus bengalensis), a member of the felidae family, is a threatened animal in South Korea. In terms of protecting endangered felids, nuclear transfer (NT) is a potentially valuable technique for assuring the continuation of species with dwindling numbers. In the present experiment, nuclear and microtubule remodeling and the in vitro developmental potential of enucleated domestic cat oocytes reconstructed with nuclei of somatic cells from either domestic cat fibroblast (DCF) or leopard cat fibroblast (LCF) were evaluated. Microtubule aster is allocated to de-condensed chromatin following nuclear transfer (3h after activation) of fibroblast cells from both domestic and leopard cats, suggesting the introduction of a somatic cell centrosome. The transferred fibroblast nuclei formed a large, swollen, pronuclear-like structure in most reconstructed oocytes, in the cat or leopard cat. At 18h following nuclear transfer, mitosis occurred, and according to the photo (F) it appears that spindle microtubules and two asters were observed. The percentages of blastocyst formation from nuclear transfer embryos derived from domestic cat fibroblasts (4/46, 8.6%) were not significantly different than those for nuclear transfer embryos constructed with leopard cat fibroblasts (4/52, 7.6%). These results indicate that nuclear and microtubule remodeling processes and in vitro developmental ability are similar in reconstructed cat oocytes following transfer of nuclei from either domestic or leopard cats. PMID:16310987

  14. Region-specific localization of NOS isoforms and NADPH-diaphorase activity in the intratesticular and excurrent duct systems of adult domestic cats (Felis catus).

    PubMed

    Liman, Narin; Alan, Emel

    2016-03-01

    Nitric oxide (NO) is produced by nitric oxide synthases (NOSs) and plays an important role in all levels of reproduction from the brain to the reproductive organs. Recently, it has been discovered that all germ cells and Leydig cells in the cat testis exhibit stage-dependent nuclear and cytoplasmic endothelial (eNOS) and inducible (iNOS)-NOS immunoreactivity and cytoplasmic nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) reactivity. As a continuation of this finding, in this study, cellular localization of NADPH-d and immunolocalization and expression of all three NOS isoforms were investigated in the intratesticular (tubuli recti and rete testis), and excurrent ducts (efferent ductules, epididymal duct and vas deferens) of adult cats using histochemistry, immunohistochemistry and western blotting. NADPH-d activity was found in the midpiece of the spermatozoa tail and epithelial cells of all of ducts, except for nonciliated cells of the efferent ductules. Even though the immunoblotting results revealed similar levels of nNOS, eNOS and iNOS in the caput, corpus and cauda segments of epididymis and the vas deferens, immunostainings showed cell-specific localization in the efferent ductules and region- and cell-specific localization in the epididymal duct. All of three NOS isoforms were immunolocalized to the nuclear membrane and cytoplasm of the epithelial cells in all ducts, but were found in the tail and the cytoplasmic droplets of spermatozoa. These data suggest that NO/NOS activity might be of importance not only for the functions of the intratesticular and excurrent ducts but also for sperm maturation. PMID:26910642

  15. Effects of leu-enkephalin on the mechanical activity of longitudinal and circular muscles of the small intestine of the cat.

    PubMed

    Venkova, K; Radomirov, R; Pencheva, N

    1989-11-01

    The effects of leu-enkephalin on the spontaneous and electrically-evoked activity were studied in the longitudinal and circular strips isolated from the duodenum, jejunum and ileum of the cat. Leu-enkephalin affected the spontaneous activity of both longitudinal and circular strips, with the exception of the circular strips from the ileum, in a naloxone-dependent manner. Elimination of the neural input to the smooth muscle cells with tetrodotoxin blocked the effects of leu-enkephalin in the longitudinal and circular strips from the jejunum and in the longitudinal strips from the ileum. In the longitudinal strips from the duodenum the effect was resistant to tetrodotoxin, while in the circular strips a tetrodotoxin-sensitive component of the effect of leu-enkephalin was observed. Since leu-enkephalin evoked opposite effects in the longitudinal and circular layers of one and the same region, it is concluded that leu-enkephalin-induced modulation of the motility of the small intestine in the cat is a physiological phenomenon. Electrical stimulation, at a frequency of 5 Hz, evoked contractile responses in the longitudinal strips and relaxant, as well as low-amplitude, contractile responses in the circular strips. Rebound contractions developed after the end of stimulation in all preparations tested, with the exception of the longitudinal strips from the duodenum. Leu-enkephalin decreased the contractile components and tended to potentiate the relaxant components of the responses in a naloxone-dependent manner. Atropine inhibited the contractile components of the responses and significantly depressed the rebound contractions. Leu-enkephalin, applied after atropine, was ineffective suggesting that leu-enkephalin-induced modulation was mediated mainly through interaction with cholinergic transmission.

  16. Regulation of CuZnSOD and Its Redox Signaling Potential: Implications for Amyotrophic Lateral Sclerosis

    PubMed Central

    Hitchler, Michael J.

    2014-01-01

    Abstract Significance: Molecular oxygen is a Janus-faced electron acceptor for biological systems, serving as a reductant for respiration, or as the genesis for oxygen-derived free radicals that damage macromolecules. Superoxide is well known to perturb nonheme iron proteins, including Fe/S proteins such as aconitase and succinate dehydrogenase, as well as other enzymes containing labile iron such as the prolyl hydroxylase domain-containing family of enzymes; whereas hydrogen peroxide is more specific for two-electron reactions with thiols on glutathione, glutaredoxin, thioredoxin, and the peroxiredoxins. Recent Advances: Over the past two decades, familial cases of amyotrophic lateral sclerosis (ALS) have been shown to have an association with commonly altered superoxide dismutase 1 (SOD1) activity, expression, and protein structure. This has led to speculation that an altered redox balance may have a role in creating the ALS phenotype. Critical Issues: While SOD1 alterations in familial ALS are manifold, they generally create perturbations in the flux of electrons. The nexus of SOD1 between one- and two-electron signaling processes places it at a key signaling regulatory checkpoint for governing cellular responses to physiological and environmental cues. Future Directions: The manner in which ALS-associated mutations adjust SOD1's role in controlling the flow of electrons between one- and two-electron signaling processes remains obscure. Here, we discuss the ways in which SOD1 mutations influence the form and function of copper zinc SOD, the consequences of these alterations on free radical biology, and how these alterations might influence cell signaling during the onset of ALS. Antioxid. Redox Signal. 20, 1590–1598. PMID:23795822

  17. Soluble RAGE Treatment Delays Progression of Amyotrophic Lateral Sclerosis in SOD1 Mice

    PubMed Central

    Juranek, Judyta K.; Daffu, Gurdip K.; Geddis, Matthew S.; Li, Huilin; Rosario, Rosa; Kaplan, Benjamin J.; Kelly, Lauren; Schmidt, Ann Marie

    2016-01-01

    The etiology of amyotrophic lateral sclerosis (ALS), a fatal motor neuron disorder characterized by progressive muscle weakness and spasticity, remains largely unknown. Approximately 5–10% of cases are familial, and of those, 15–20% are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Mutations of the SOD1 gene interrupt cellular homeostasis and contribute to cellular toxicity evoked by the presence of altered SOD1, along with other toxic species, such as advanced glycation end products (AGEs). AGEs trigger activation of their chief cell surface receptor, RAGE (receptor for advanced glycation end products), and induce RAGE-dependent cellular stress and inflammation in neurons, thereby affecting their function and leading to apoptosis. Here, we show for the first time that the expression of RAGE is higher in the SOD1 transgenic mouse model of ALS vs. wild-type mouse spinal cord. We tested whether pharmacological blockade of RAGE may delay the onset and progression of disease in this mouse model. Our findings reveal that treatment of SOD1 transgenic mice with soluble RAGE (sRAGE), a natural competitor of RAGE that sequesters RAGE ligands and blocks their interaction with cell surface RAGE, significantly delays the progression of ALS and prolongs life span compared to vehicle treatment. We demonstrate that in sRAGE-treated SOD1 transgenic animals at the final stage of the disease, a significantly higher number of neurons and lower number of astrocytes is detectable in the spinal cord. We conclude that RAGE antagonism may provide a novel therapeutic strategy for ALS intervention. PMID:27242430

  18. Interaction between dimer interface residues of native and mutated SOD1 protein: a theoretical study.

    PubMed

    Keerthana, S P; Kolandaivel, P

    2015-04-01

    Cu-Zn superoxide dismutase 1 (SOD1) is a highly conserved bimetallic protein enzyme, used for the scavenging the superoxide radicals (O2 (-)) produced due to aerobic metabolism in the mitochondrial respiratory chain. Over 100 mutations have been identified and found to be in the homodimeric structure of SOD1. The enzyme has to be maintained in its dimeric state for the structural stability and enzymatic activity. From our investigation, we found that the mutations apart from the dimer interface residues are found to affect the dimer stability of protein and hence enhancing the aggregation and misfolding tendency of mutated protein. The homodimeric state of SOD1 is found to be held together by the non-covalent interactions. The molecular dynamics simulation has been used to study the hydrogen bond interactions between the dimer interface residues of the monomers in native and mutated forms of SOD1 in apo- and holo-states. The results obtained by this analysis reveal the fact that the loss of hydrogen bond interactions between the monomers of the dimer is responsible for the reduced stability of the apo- and holo-mutant forms of SOD1. The conformers with dimer interface residues in native and mutated protein obtained by the molecular dynamics simulation is subjected to quantum mechanical study using M052X/6-31G(d) level of theory. The charge transfer between N-H···O interactions in the dimer interface residues were studied. The weak interaction between the monomers of the dimer accounts for the reduced dimerization and enhanced deformation energy in the mutated SOD1 protein. PMID:25578810

  19. CAT5, a new gene necessary for derepression of gluconeogenic enzymes in Saccharomyces cerevisiae.

    PubMed Central

    Proft, M; Kötter, P; Hedges, D; Bojunga, N; Entian, K D

    1995-01-01

    PCK1 encoding phosphoenolpyruvate carboxykinase is transcriptionally regulated by two upstream activating elements. By screening for mutants that failed to derepress a UAS2PCK1-CYC1-lacZ reporter gene we isolated the new recessive derepression mutation cat5. The CAT5 gene encodes a protein of 272 amino acids showing a 42% identity to the ZC395.2 gene product of Caenorhabditis elegans whose function is unknown. Deletion of CAT5 caused a complete loss of glucose derepression affecting gluconeogenic key enzymes. Respiration, but not mitochondrial cytochrome c oxidase activity, was also affected. CAT5 expression is 5- to 6-fold repressed by glucose, and CAT5 transcriptional activation was dependent on CAT1 (SNF1), CAT8 and CAT5 itself. The CAT5 gene is necessary for UAS1PCK1 and UAS2PCK1 protein binding since a carbon source-specific interaction was no longer detectable in cat5 mutants. Glucose derepression of gluconeogenesis depends on the active Cat1 (Snf1) protein kinase and the Cat8 zinc cluster activator. Mig1p-independent overexpression of CAT8 did not stimulate activation of gluconeogenic promoters in cat1 and in cat5 mutants. Since Cat8p multicopy expression suppresses the ethanol growth deficiency in cat1 (snf1) mutants, these results indicate that activation of Cat8p by the Cat1p (Snf1p) kinase and the Cat5p protein might be necessary for release from glucose repression. Images PMID:8557031

  20. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus.

    PubMed

    Bhattacharya, S K; Bhattacharya, A; Kumar, A; Ghosal, S

    2000-05-01

    The effect of a standardized extract of Bacopa monniera Linn. was assessed on rat brain frontal cortical, striatal and hippocampal superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities, following administration for 7, 14 or 21 days. The effects induced by this extract (bacoside A content 82% +/- 0.5%), administered in doses of 5 and 10 mg/kg, orally, were compared with the effects induced by (-) deprenyl (2 mg/kg, p. o.) administered for the same time periods. Bacopa monniera (BM) induced a dose-related increase in SOD, CAT and GPX activities, in all the brain regions investigated, after 14 and 21 days of drug administration. On the contrary, deprenyl induced an increase in SOD, CAT and GPX activities in the frontal cortex and striatum, but not in the hippocampus, after treatment for 14 or 21 days. The results suggest that BM, like deprenyl, exhibits a significant antioxidant effect after subchronic administration which, unlike the latter, extends to the hippocampus as well. The results suggest that the increase in oxidative free radical scavenging activity by BM may explain, at least in part, the cognition- facilitating action of BM, recorded in Ayurvedic texts, and demonstrated experimentally and clinically.

  1. Lesions of structures showing FOS expression to cat presentation: effects on responsivity to a Cat, Cat odor, and nonpredator threat.

    PubMed

    Blanchard, D Caroline; Canteras, Newton S; Markham, Chris M; Pentkowski, Nathan S; Blanchard, Robert J

    2005-01-01

    Exposure of rats to a cat elicits Fos activity in a number of brain areas or structures. Based on hodological relationships of these, Canteras has proposed a medial hypothalamic defense system, with input from several forebrain sites. Both electrolytic and neurotoxic lesions of the dorsal premammillary nucleus, which shows the strongest Fos response to cat exposure, produce striking decrements in a number of defensive behaviors to a cat or to cat odor stimuli, but do not have a major effect on either postshock freezing, or responsivity to the odor of a female in estrus. Neurotoxic lesions of the medial amygdala produce decrements in defensiveness to predator stimuli, particularly odor stimuli, that are consistent with a view of this structure as involved with allomonal cues. While dorsal hippocampal lesions had little effect on responsivity to predator stimuli, neurotoxic lesions of the ventral hippocampus reduced freezing and enhanced a variety of nondefensive behaviors to both cat odor and footshock, with similar reductions in defensiveness during context conditioning tests for cat odor, cat exposure and footshock. These results support the view that the dorsal premammillary nucleus is strongly and selectively involved in control of responsivity to predator stimuli. Structures with important input into the medial hypothalamic defense system appear also to be functionally involved with antipredator defensive behaviors, and these lesion studies may suggest specific hypotheses as to the particular defense functions of different areas.

  2. Knockout of SOD1 promotes conversion of selenocysteine to dehydroalanine in murine hepatic GPX1 protein¶

    PubMed Central

    Wang, Shi Kui; Weaver, Jeremy D.; Zhang, Sheng; Lei, Xin Gen

    2011-01-01

    Se-dependent glutathione peroxidase-1 (GPX1) and Cu,Zn-superoxide dismutase (SOD1) are two major intracellular antioxidant enzymes. This study was to elucidate biochemical mechanisms for the 40% loss of hepatic GPX1 activity in SOD1−/− mice. Compared with the wild-type (WT), the SOD1−/− mice showed no change in the total amount of GPX1 protein. However, their total enzyme protein exhibited a 31 and 38% decrease (P < 0.05) in the apparent kcat for hydrogen peroxide and tert-butyl peroxide (at 2 mM GSH), respectively. Most striking, mass spectrometry revealed two chemical forms of the 47th residue of GPX1: the projected native selenocysteine (Sec) and the Se-lost dehydroalanine (DHA). The hepatic GPX1 protein of the SOD1−/− mice contained 38% less Sec and 77% more DHA than that of WT, respectively, and showed aggravated dissociation of the tetramer structure. In conclusion, knockout of SOD1 elevated the conversion of Sec to DHA in the active site of hepatic GPX1, leading to proportional decreases in the apparent kcat and activity of the enzyme protein as a whole. Our data reveal a structural and kinetic mechanism for the in vivo functional dependence of GPX1 on SOD1 in mammals, and provide a novel mass spectrometric method for the assay of oxidative modification of the GPX1 protein. PMID:21420488

  3. Temporally structured impulse activity in spontaneously discharging somatosensory cortical neurons in the awake cat: recognition and quantitative description of four different patterns of bursts, post-recording GFAP immunohistology and computer reconstruction of the studied cortical surface.

    PubMed

    Miasnikov, A A; Webster, H H; Dykes, R W

    1999-04-01

    We elaborated two methods used in two previous publications [J. Martinson, H.H. Webster, A.A. Myasnikov, R.W. Dykes, Recognition of temporally structured activity in spontaneously discharging neurons in the somatosensory cortex in waking cats, Brain Res. 750 (1997) 129-140 [16]; H.H. Webster, I. Salimi, A.A. Myasnikov, R.W. Dykes. The effects of peripheral deafferentation on spontaneously bursting neurons in the somatosensory cortex of waking cats, Brain Res. 750 (1997) 109-121 [21

  4. Hyperadrenocorticism in a cat.

    PubMed

    Zerbe, C A; Nachreiner, R F; Dunstan, R W; Dalley, J B

    1987-03-01

    A diabetic cat with hyperadrenocorticism had polydipsia, polyuria, ventral abdominal alopecia, thin dry skin, and a pendulous abdomen. Results of laboratory testing indicated persistent resting hypercortisolemia, hyperresponsiveness of the adrenal glands (increased cortisol concentration) to ACTH gel, and no suppression of cortisol concentrations after administration of dexamethasone at 0.01 or 1.0 mg/kg of body weight. Necropsy revealed a pituitary gland tumor, bilateral adrenal hyperplasia, hepatic neoplasia, and demodicosis. Adrenal gland function was concurrently assessed in 2 cats with diabetes mellitus. One cat had resting hypercortisolemia, and both had hyperresponsiveness to ACTH gel (increased cortisol concentration) at one hour. After administration of dexamethasone (0.01 and 1.0 mg/kg), the diabetic cats appeared to have normal suppression of cortisol concentrations. The effects of mitotane were investigated in 4 clinically normal cats. Adrenocortical suppression of cortisol production occurred in 2 of 4 cats after dosages of 25, 37, and 50 mg/kg. Three cats remained clinically normal throughout the study. One cat experienced vomiting, diarrhea, and anorexia.

  5. Obesity in show cats.

    PubMed

    Corbee, R J

    2014-12-01

    Obesity is an important disease with a high prevalence in cats. Because obesity is related to several other diseases, it is important to identify the population at risk. Several risk factors for obesity have been described in the literature. A higher incidence of obesity in certain cat breeds has been suggested. The aim of this study was to determine whether obesity occurs more often in certain breeds. The second aim was to relate the increased prevalence of obesity in certain breeds to the official standards of that breed. To this end, 268 cats of 22 different breeds investigated by determining their body condition score (BCS) on a nine-point scale by inspection and palpation, at two different cat shows. Overall, 45.5% of the show cats had a BCS > 5, and 4.5% of the show cats had a BCS > 7. There were significant differences between breeds, which could be related to the breed standards. Most overweight and obese cats were in the neutered group. It warrants firm discussions with breeders and cat show judges to come to different interpretations of the standards in order to prevent overweight conditions in certain breeds from being the standard of beauty. Neutering predisposes for obesity and requires early nutritional intervention to prevent obese conditions. PMID:24612018

  6. Diseases Transmitted by Cats.

    PubMed

    Goldstein, Ellie J C; Abrahamian, Fredrick M

    2015-10-01

    Humans and cats have shared a close relationship since ancient times. Millions of cats are kept as household pets, and 34% of households have cats. There are numerous diseases that may be transmitted from cats to humans. General modes of transmission, with some overlapping features, can occur through inhalation (e.g., bordetellosis); vector-borne spread (e.g., ehrlichiosis); fecal-oral route (e.g., campylobacteriosis); bite, scratch, or puncture (e.g., rabies); soil-borne spread (e.g., histoplasmosis); and direct contact (e.g., scabies). It is also likely that the domestic cat can potentially act as a reservoir for many other zoonoses that are not yet recognized. The microbiology of cat bite wound infections in humans is often polymicrobial with a broad mixture of aerobic (e.g., Pasteurella, Streptococcus, Staphylococcus) and anaerobic (e.g., Fusobacterium, Porphyromonas, Bacteroides) microorganisms. Bacteria recovered from infected cat bite wounds are most often reflective of the oral flora of the cat, which can also be influenced by the microbiome of their ingested prey and other foods. Bacteria may also originate from the victim's own skin or the physical environment at the time of injury. PMID:26542039

  7. Neuronal network analysis based on arrival times of active-sleep specific inhibitory postsynaptic potentials in spinal cord motoneurons of the cat.

    PubMed

    Engelhardt, J K; Chase, M H

    2001-07-20

    The neuronal network responsible for motoneuron inhibition and loss of muscle tone during active (REM) sleep can be activated by the injection of the cholinergic agonist carbachol into a circumscribed region of the brainstem reticular formation. In the present report, we studied the arrival times of inhibitory postsynaptic potentials (IPSPs) observed in intracellular recordings from cat spinal cord motoneurons. These recordings were obtained during episodes of motor inhibition induced by carbachol or during motor inhibition associated with naturally occurring active sleep. When the observed IPSP arrival times were analyzed as a superposition of renewal processes occurring in a pool of pre-motor inhibitory interneurons, it was possible to estimate the following parameters: (1) the number of independent sources of the IPSPs; (2) the rate at which each source was bombarded with excitatory postsynaptic potentials (EPSPs); and (3) the number of EPSPs required to bring each source to threshold. From the data based upon the preceding parameters and the unusually large amplitudes of the active sleep-specific IPSPs, we suggest that each source is a cluster of synchronously discharging pre-motor inhibitory interneurons. The analysis of IPSP arrival times as a superposition of renewal processes, therefore, provides quantitative information regarding neuronal activity that is as far as two synapses upstream from the site of the recording electrode. Consequently, we suggest that a study of the temporal evolution of these parameters could provide a basis for dynamic analyses of this neuronal network and, in the future, for other neuronal networks as well. PMID:11457433

  8. Involvement of superoxide in ozone-induced airway hyperresponsiveness in anesthetized cats

    SciTech Connect

    Takahashi, T.; Miura, M.; Katsumata, U.; Ichinose, M.; Kimura, K.; Inoue, H.; Takishima, T.; Shirato, K. )

    1993-07-01

    To determine whether oxygen radical scavengers inhibit ozone-induced airway hyperresponsiveness, we examined the protective effect of polyethylene glycol-superoxide dismutase (PEG-SOD) and PEG-catalase (PEG-CAT) on ozone-induced airway hyperresponsiveness in cat airways. Twenty-five cats divided into five groups were anesthetized and mechanically ventilated. There was no difference between the groups in baseline airway responsiveness to inhaled acetylcholine (ACh). In the control group, AChPC, the concentration required to produce a doubling increase in baseline pulmonary resistance, was significantly reduced by ozone exposure (2.0 ppm for 2 h); the ratios of AChPC before ozone exposure to after ozone exposure (AChPC ratio) were 14.8 +/- 5.7 (p < 0.001) and 4.80 +/- 1.6 (p < 0.01) 30 and 120 min after exposure, respectively. Local administration of PEG-SOD (2,000 U/kg) into airways partially but significantly prevented ozone-induced airway hyperresponsiveness. The AChPC ratios were 6.2 +/- 1.4 and 1.5 +/- 0.2 30 and 120 min after exposure, respectively, which were significantly different from those of the control group (p < 0.05), whereas PEG-CAT pretreatment (6,000 U/kg) was without effect. Combined pretreatment with PEG-SOD and PEG-CAT had no additional protective effect compared with PEG-SOD alone. PEG-SOD had no direct effect on airway responsiveness to ACh. These results suggest that superoxide may be involved in ozone-induced airway hyperresponsiveness.

  9. State of cat genomics.

    PubMed

    O'Brien, Stephen J; Johnson, Warren; Driscoll, Carlos; Pontius, Joan; Pecon-Slattery, Jill; Menotti-Raymond, Marilyn

    2008-06-01

    Our knowledge of cat family biology was recently expanded to include a genomics perspective with the completion of a draft whole genome sequence of an Abyssinian cat. The utility of the new genome information has been demonstrated by applications ranging from disease gene discovery and comparative genomics to species conservation. Patterns of genomic organization among cats and inbred domestic cat breeds have illuminated our view of domestication, revealing linkage disequilibrium tracks consequent of breed formation, defining chromosome exchanges that punctuated major lineages of mammals and suggesting ancestral continental migration events that led to 37 modern species of Felidae. We review these recent advances here. As the genome resources develop, the cat is poised to make a major contribution to many areas in genetics and biology.

  10. Eosinophilic leukaemia in a cat.

    PubMed

    Sharifi, Hassan; Nassiri, Seyed Mahdi; Esmaelli, Hossein; Khoshnegah, Javad

    2007-12-01

    A 14-year-old female domestic shorthair cat was presented to Tehran University Veterinary Teaching Hospital for a persistent fever, anorexia, intermittent vomiting, weight loss and weakness. The main clinical signs were pale mucous membranes, dehydration and splenomegaly. The complete blood count and serum biochemistry tests revealed non-regenerative anaemia, thrombocytopenia and increased alkaline phosphatase (ALP) activity. An enzyme-linked immunosorbent assay (ELISA) test for feline leukaemia virus was negative. Blood film and bone marrow examination revealed a large number of immature eosinophils with variable sizes and numbers of faintly azurophilic granules. Cytochemical staining of blood film demonstrated 70% positive cells for ALP activity. Four percent CD34 positive cells were detected by flow cytometry. As eosinophilic leukaemia is difficult to identify by light microscopy, well-defined diagnostic criteria and the use of flow cytometry and cytochemical staining can improve the ability to correctly diagnose this type of leukaemia in cats. PMID:17669677

  11. [Effects of cadmium stress on active oxygen generation, lipid peroxidation and antioxidant enzyme activities in radish seedlings].

    PubMed

    Tang, Chun-Fang; Liu, Yun-Guo; Zeng, Guang-Ming; Li, Cheng-Feng; Xu, Wei-Hua

    2004-08-01

    When seedlings of radish were treated with Cd2+ from 125 to 500 micromol/L, for a period of 12 to 96 h in hydroponic system, increase in ratio of SOD to CAT and levels of O(-.)(2), H(2)O(2), MDA indicate that Cd2+ induces oxidative stress in radish plants. Antioxidant enzyme activities responded differently to the level and time of Cd2+ treatment. Under 125 micromol/L Cd2+ treatment a gradual increase in SOD activity was observed; at 250, 500 micromol/L Cd2+ treatment SOD activity increased first, then declined considerably to even lower than that of the control during later Cd2+ treatment. A gradual decrease in roots and a marked increase in leaves in CAT activity were detected. GR activity in both leaves and roots were enhanced significantly with the increase in content of Cd2+ and time of treatment. The increase in GR activity suggests that AsA-GsH cycle may be activated to scavenge the AOS or the synthesis of PC may be stimulated to chelate cadmium.

  12. Comparative study of aural microflora in healthy cats, allergic cats and cats with systemic disease.

    PubMed

    Pressanti, Charline; Drouet, Clémence; Cadiergues, Marie-Christine

    2014-12-01

    Twenty healthy cats (group 1) with clinically normal ears, 15 cats with systemic disease (group 2) and 15 allergic cats (group 3) were included in a prospective study. The experimental unit was the ear. A clinical score was established for each ear canal after otoscopic examination. Microbial population was assessed on cytological examination of smears performed with the cotton-tipped applicator smear technique. Fungal population was significantly more prominent in allergic cats (P <0.001) and in diseased cats compared with healthy cats (P <0.02). Bacterial population was significantly higher in allergic cats than in healthy cats (P <0.001) and cats suffering from systemic disease (P <0.001). Bacterial overgrowth was also higher in cats with systemic disease than healthy cats. In cats from group 2, only fungal overgrowth was associated with otitis severity. In group 3, only bacterial overgrowth was associated with otitis severity.

  13. Comparative study of aural microflora in healthy cats, allergic cats and cats with systemic disease.

    PubMed

    Pressanti, Charline; Drouet, Clémence; Cadiergues, Marie-Christine

    2014-12-01

    Twenty healthy cats (group 1) with clinically normal ears, 15 cats with systemic disease (group 2) and 15 allergic cats (group 3) were included in a prospective study. The experimental unit was the ear. A clinical score was established for each ear canal after otoscopic examination. Microbial population was assessed on cytological examination of smears performed with the cotton-tipped applicator smear technique. Fungal population was significantly more prominent in allergic cats (P <0.001) and in diseased cats compared with healthy cats (P <0.02). Bacterial population was significantly higher in allergic cats than in healthy cats (P <0.001) and cats suffering from systemic disease (P <0.001). Bacterial overgrowth was also higher in cats with systemic disease than healthy cats. In cats from group 2, only fungal overgrowth was associated with otitis severity. In group 3, only bacterial overgrowth was associated with otitis severity. PMID:24509255

  14. Antioxidative enzymes activity and malondialdehyde concentration during mitoxantrone therapy in multiple sclerosis patients.

    PubMed

    Adamczyk-Sowa, M; Sowa, P; Pierzchala, K; Polaniak, R; Labuz-Roszak, B

    2012-12-01

    Mitoxantrone (MX) is approved for the treatment of aggressive relapsing-remitting, secondary-progressive and progressive-relapsing form of multiple sclerosis (MS). The mechanism of its action is multiaxial, however, it is not free from side effects. The causes of the side effects are still unknown and require further investigation. The aim of this study was to investigate the influence of MX therapy on enzymatic parameters of endogenous antioxidative status: manganese and copper/zinc superoxide dismutase (MnSOD, Cu/ZnSOD), catalase (CAT), glutathione peroxidase (GSH-Px) and lipid peroxidation marker--malondialdehyde (MDA) in blood serum and cerebrospinal fluid (CSF) in patients suffering from MS. After the MX therapy serum and the CSF MDA concentrations increased significantly. We reported that MnSOD activities decrease in serum and the CSF, while, surprisingly, the serum Cu/ZnSOD activity increases after the MX therapy. We also noted a marked decrease in CSF CAT and GSH-Px activity after the MX treatment. Our results strongly suggest the influence of MX therapy on oxidation/antioxidation status of serum and the CSF. These findings open up new opportunities for a better understanding of underlying physiopathological events in MS and provide a new insight into MX's mechanisms of action, especially its potent side effects.

  15. Effect of N-methyl-D-aspartic acid on activity of superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione level in selected organs of the mouse.

    PubMed

    Szaroma, Waldemar; Dziubek, K; Kapusta, E

    2014-09-01

    One of the major classes of ionotropic glutamate receptors is the class of N-methyl-D-aspartate receptors (NMDARs). Receptor activation recruits, via calcium signal transduction mechanisms which play important roles in oxidative metabolism, mitochondrial free radical production and occurrence of other mitochondrial factors which potentially contribute to excitotoxicity and neuronal death. In the present study, the effects of stimulation of NMDARs by applying N-methyl-D-aspartic acid (NMDA) in the brain, liver, kidneys and pancreas on change of the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSHPx) and in the amount of reduced glutathione (GSH) in blood, brain, liver and kidneys has been investigated. Statistically significant decrease of the activity of SOD, CAT and GSHPx and in the amount of reduced glutathione (GSH) was found in the examined organs after administration of NMDA, an agonist of NMDA receptors, demonstrating that NMDA administration compromises the antioxidant status in the investigated organs of the mouse.

  16. Voltage-sensitive-dye imaging of microstimulation-evoked neural activity through intracortical horizontal and callosal connections in cat visual cortex

    NASA Astrophysics Data System (ADS)

    Suzurikawa, Jun; Tani, Toshiki; Nakao, Masayuki; Tanaka, Shigeru; Takahashi, Hirokazu

    2009-12-01

    Recently, intrinsic signal optical imaging has been widely used as a routine procedure for visualizing cortical functional maps. We do not, however, have a well-established imaging method for visualizing cortical functional connectivity indicating spatio-temporal patterns of activity propagation in the cerebral cortex. In the present study, we developed a novel experimental setup for investigating the propagation of neural activities combining the intracortical microstimulation (ICMS) technique with voltage sensitive dye (VSD) imaging, and demonstrated the feasibility of this setup applying to the measurement of time-dependent intra- and inter-hemispheric spread of ICMS-evoked excitation in the cat visual cortices, areas 17 and 18. A microelectrode array for the ICMS was inserted with a specially designed easy-to-detach electrode holder around the 17/18 transition zones (TZs), where the left and right hemispheres were interconnected via the corpus callosum. The microelectrode array was stably anchored in agarose without any holder, which enabled us to visualize evoked activities even in the vicinity of penetration sites as well as in a wide recording region that covered a part of both hemispheres. The VSD imaging could successfully visualize ICMS-evoked excitation and subsequent propagation in the visual cortices contralateral as well as ipsilateral to the ICMS. Using the orientation maps as positional references, we showed that the activity propagation patterns were consistent with previously reported anatomical patterns of intracortical and interhemispheric connections. This finding indicates that our experimental system can serve for the investigation of cortical functional connectivity.

  17. Network activity in neurons of the motor and prefrontal areas of the cortex in trained cats in conditions of systemic administration of m-cholinoreceptor blockers.

    PubMed

    Khokhlova, V N; Merzhanova, G Kh; Dolbakyan, E E

    2002-01-01

    Experiments on five cats already trained to an operant conditioned food-procuring reflex to light were used to study the network activity of cells in the frontal and motor areas of the cortex accompanying disruption of conditioned reflex behavior in conditions of systemic administration of m-cholinoreceptor blockers. The activity of cortical neurons and their network properties were assessed using auto- and cross-correlation histograms. Doses of central m-cholinoreceptor blockers (the non-selective blocker scopolamine and the relatively selective m1-cholinoreceptor blocker trihexyphenidyl) disrupted performance of the operant motor reflex but had no effect on the appearance of contextual behavior and responses to switching on of the conditioned signal (standing up, elevating the paw). This was accompanied by 1) changes in the patterns of neuron activity in the moor and frontal areas of the cortex, with increases in train, rhythmic, and rhythmic train activity in cortical cells; 2) appearance of synchronicity in the operation of cortical neurons; 3) decreases in the numbers of direct interneuronal connections in the motor and frontal areas of the cortex and in the numbers of connections between these structures.

  18. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models.

    PubMed

    Suder, Katrin; Funke, Klaus; Zhao, Yongqiang; Kerscher, Nicolas; Wennekers, Thomas; Wörgötter, Florentin

    2002-06-01

    We investigated how changes in the temporal firing rate of thalamocortical activity affect the spatiotemporal structure of receptive field (RF) subunits in cat primary visual cortex. Spike activity of 67 neurons (48 simple, 19 complex cells) was extracellulary recorded from area 17/18 of anesthetized and paralyzed cats. A total of 107 subfields (on/off) were mapped by applying a reverse correlation technique to the activity elicited by bright and dark rectangles flashed for 300 ms in a 20x10 grid. We found that the width of the (suprathreshold) discharge fields shrank on average by 22% during this 300-ms-long stimulus presentation time. Fifty-eight subfields (54%) shrank by more than 20% of peak width and only ten (less than 10%) showed a slight increase over time. The main size reduction took place 40-60 ms after response onset, which corresponded to the transition from transient peak firing to tonic visual activity in thalamocortical relay cells (TC). The experimentally obtained RFs were then fitted with the aid of a neural field model of the primary visual pathway. Assuming a Gaussian-shaped spatial sensitivity profile across the RF subfield width, the model allowed us to estimate the subthreshold RF (depolarization field, D-field) from the minimal discharge field (MDF). The model allowed us to test to what degree the temporal dynamics of thalamocortical activity contributes to the spatiotemporal changes of cortical RFs. To this end, we performed the fitting procedure either with a pure feedforward model or with a field model that also included intracortical feedback. Spatial and temporal parameters obtained from fits of the experimental RFs matched closely to those achieved by simulating a pure feedforward system with the field model but were not compatible with additional intracortical feedback. Thus, our results show that dot stimulation, which optimally excites thalamocortical cells, leads to a shrinkage with respect to the size of the RF subfield at the

  19. Modulation of postsynaptic activities of thalamic lateral geniculate neurons by spontaneous changes in number of retinal inputs in chronic cats. 1. Input-output relations.

    PubMed

    Fourment, A; Hirsch, J C; Marc, M E; Guidet, C

    1984-06-01

    The experiments were designed to explore the role of retinal inputs compared with that of the behavioral state in the modulation of the output of thalamic lateral geniculate neurons during sleep and wakefulness in cats with intact visual pathways. We made the following assumptions: the retinal dark discharge, while showing spontaneous pauses in activity, does not vary with the behavioral state; the optic tract inputs postsynaptically elicit subthreshold activities called S-potentials which in turn generate spikes, the degree of transformation being dependent on the level of alertness. On the basis of these assumptions, it could be expected that changes in retinal input frequency would modify the rate of the S-potentials. Therefore the effect of spontaneous decreases in frequency of S-potentials on the spike rate and pattern was examined in juxta- and intracellular recordings from chronically implanted cats during natural sleep and wakefulness. During quiet wakefulness and light slow-wave sleep, lateral geniculate relay neurons normally displayed numerous S-potentials associated with a moderate firing rate. Many neurons occasionally showed transient reductions in frequency of the S-potentials and an oversimplification of the discharges which combined a decreased rate with a prevalent rhythmical burst pattern. Antidromic responsiveness remained unchanged. The oscillatory periods recurred two to six times without any alteration in the control state level. They were not observed throughout wakefulness and paradoxical sleep, during which neuronal activity combined a high spike rate with a low S-potential rate. The modifications were confirmed by computation of the mean rates and of the inter-event intervals. The transfer ratio (spikes/S-potentials + spikes) significantly increased both during the oscillatory periods poor in S-potentials of quiet wakefulness and during active wakefulness. But the correlation between the transfer ratio and the spike frequency, which was

  20. Antioxidant enzymes activities in obese Tunisian children

    PubMed Central

    2013-01-01

    Background The oxidant stress, expected to increase in obese adults, has an important role in the pathogenesis of many diseases. It results when free radical formation is greatly increased or protective antioxidant mechanisms are compromised. The main objective of this study is to evaluate the antioxidant response to obesity-related stress in healthy children. Methods A hundred and six healthy children (54 obese and 52 controls), aged 6–12 years old, participated in this study. The collected data included anthropometric measures, blood pressure, fasting glucose, total cholesterol, triglycerides and enzymatic antioxidants (Superoxide dismutase: SOD, Catalase: CAT and Glutathione peroxidase: GPx). Results The first step antioxidant response, estimated by the SOD activity, was significantly higher in obese children compared with normal-weight controls (p < 0.05). Mean activities of anti-radical GPx and CAT enzymes were not affected by the BMI increase. Although, total cholesterol levels were statistically higher in the obese group, there was no significant association with the SOD activity. Conclusions The obesity-related increase of the oxidant stress can be observed even in the childhood period. In addition to the complications of an increased BMI, obesity itself can be considered as an independent risk factor of free radical production resulting in an increased antioxidant response. PMID:23360568

  1. SOD1 Overexpression Preserves Baroreflex Control of Heart Rate with an Increase of Aortic Depressor Nerve Function

    PubMed Central

    Hatcher, Jeffrey; Gu, He; Cheng, Zixi (Jack)

    2016-01-01

    Overproduction of reactive oxygen species (ROS), such as the superoxide radical (O2∙−), is associated with diseases which compromise cardiac autonomic function. Overexpression of SOD1 may offer protection against ROS damage to the cardiac autonomic nervous system, but reductions of O2∙− may interfere with normal cellular functions. We have selected the C57B6SJL-Tg (SOD1)2 Gur/J mouse as a model to determine whether SOD1 overexpression alters cardiac autonomic function, as measured by baroreflex sensitivity (BRS) and aortic depressor nerve (ADN) recordings, as well as evaluation of baseline heart rate (HR) and mean arterial pressure (MAP). Under isoflurane anesthesia, C57 wild-type and SOD1 mice were catheterized with an arterial pressure transducer and measurements of HR and MAP were taken. After establishing a baseline, hypotension and hypertension were induced by injection of sodium nitroprusside (SNP) and phenylephrine (PE), respectively, and ΔHR versus ΔMAP were recorded as a measure of baroreflex sensitivity (BRS). SNP and PE treatment were administered sequentially after a recovery period to measure arterial baroreceptor activation by recording aortic depressor nerve activity. Our findings show that overexpression of SOD1 in C57B6SJL-Tg (SOD1)2 Gur/J mouse preserved the normal HR, MAP, and BRS but enhanced aortic depressor nerve function. PMID:26823951

  2. A novel mechanism of protein thermostability: a unique N-terminal domain confers heat resistance to Fe/Mn-SODs

    PubMed Central

    Wang, Wei; Ma, Ting; Zhang, Baoliang; Yao, Nana; Li, Mingchang; Cui, Lianlei; Li, Guoqiang; Ma, Zhenping; Cheng, Jiansong

    2014-01-01

    Superoxide dismutases (SODs), especially thermostable SODs, are widely applied in medical treatments, cosmetics, food, agriculture, and other industries given their excellent antioxidant properties. A novel thermostable cambialistic SOD from Geobacillus thermodenitrificans NG80-2 exhibits maximum activity at 70°C and high thermostability over a broad range of temperatures (20–80°C). Unlike other reported SODs, this enzyme contains an extra repeat-containing N-terminal domain (NTD) of 244 residues adjacent to the conserved functional SODA domain. Deletion of the NTD dramatically decreased its optimum active temperature (OAT) to 30°C and also impaired its thermostability. Conversely, appending the NTD to a mesophilic counterpart from Bacillus subtilis led to a moderately thermophilic enzyme (OAT changed from 30 to 55°C) with improved heat resistance. Temperature-dependant circular dichroism analysis revealed the enhanced conformational stability of SODs fused with this NTD. Furthermore, the NTD also contributes to the stress resistance of host proteins without altering their metal ion specificity or oligomerisation form except for a slight effect on their pH profile. We therefore demonstrate that the NTD confers outstanding thermostability to the host protein. To our knowledge, this is the first discovery of a peptide capable of remarkably improving protein thermostability and provides a novel strategy for bioengineering thermostable SODs. PMID:25445927

  3. Immunoreactive Cu-SOD and Mn-SOD in lymphocytes sub-populations from normal and trisomy 21 subjects according to age

    SciTech Connect

    Baeteman, M.A.; Baret, A.; Courtiere, A.; Rebuffel, P.; Mattei, J.F.

    1983-02-21

    Copper and manganese superoxide dismutases (Cu-SOD and Mn-SOD) were measured by radioimmunoassay in B and T lymphocytes and macrophages, in patients with trisomy 21 and in matched controls. In the controls, Cu-SOD was present in greater amounts than Mn-SOD and there were quantitative differences in the distribution in the three cellular sub-populations. In trisomy 21, levels of Cu-SOD were raised, with no change in levels of Mn-SOD, supporting the theory of a gene dosage effect. There were significant positive and negative correlations between age and Cu-SOD levels in controls, and a correlation approaching significance for Mn-SOD. In trisomy 21, there was no correlation between age and Cu-SOD levels, and the only significant correlation for Mn-SOD was for B lymphocytes.

  4. [Diarrhea in cats].

    PubMed

    Rutgers, H C

    1992-11-15

    Diarrhoea is regarded as the characteristic symptom of intestinal disturbances. However, cats with intestinal disturbances can also show other symptoms such as vomiting, increased or decreased appetite and loss of weight. Cats with diarrhoea are usually only referred to the clinic if they have a chronic problem. Acute diarrhoea reacts well to symptomatic treatment, but chronic diarrhoea requires a specific diagnosis for a directed therapy and prognosis. It is essential to examine faeces and blood when evaluating a cat with diarrhoea. In contrast to the situation for dogs, there are no good specific digestion and absorption tests available for cats to evaluate pancreatic and intestinal function. Exocrine pancreatic insufficiency rarely occurs in cats. A preliminary diagnosis of small intestine disorders can be made on the basis of the faeces staining positive for fat, an oral fat absorption test and the response to therapy. The definitive diagnosis must usually await the results of histological examination of intestinal biopsy samples. Cats with acute diarrhoea often recover spontaneously, and symptomatic treatment is only necessary for severe cases. A specific diagnosis is needed for cats with chronic diarrhoea, to enable directed treatment. Corticosteroids are used in the treatment of chronic enteritis because of their immunosuppressive and anti-inflammatory actions. Antibiotics are only indicated for specific bacterial infections (such as Salmonella and Campylobacter), bloody diarrhoea, or rampant bacterial growth. Specially formulated diets play a major role in the treatment of both acute and chronic diarrhoea.

  5. An inactivating mutation in the SOD 1 gene causes familial amyotrophic lateral sclerosis

    SciTech Connect

    Pramatarova, A.; Rouleau, G.A.; Goto, J.

    1994-09-01

    Amyotrophic lateral sclerosis (ALS) is characterized by highly selective death of large motor neurons in the cerebral cortex and spinal cord. The familial form of ALS (FALS) accounts for approximately 10% of the cases and is transmitted in an autosomal dominant manner. Recently the defective gene causing chromosome 21-linked FALS was shown to be the Cu/Zn superoxide dismutase (SOD 1). However, the precise mechanism of neurotoxicity seen in FALS with SOD 1 mutations is still unknown. Until now all SOD 1 mutations reported were single base pair substitutions (missense). We have identified a nonsense mutation in exon 5 of the SOD 1 gene in a FALS kindred. This two base pair deletion provokes a frameshift and a predicted premature truncation of the protein. The region affected has a very important structural and functional role: it contains part of the active loop and is involved in dimer contact. We would predict that the loss of these structures would impair the functioning of the enzyme.

  6. Autoimmunity in Membranous Nephropathy Targets Aldose Reductase and SOD2

    PubMed Central

    Prunotto, Marco; Carnevali, Maria Luisa; Candiano, Giovanni; Murtas, Corrado; Bruschi, Maurizio; Corradini, Emilia; Trivelli, Antonella; Magnasco, Alberto; Petretto, Andrea; Santucci, Laura; Mattei, Silvia; Gatti, Rita; Scolari, Francesco; Kador, Peter; Allegri, Landino

    2010-01-01

    Glomerular targets of autoimmunity in human membranous nephropathy are poorly understood. Here, we used a combined proteomic approach to identify specific antibodies against podocyte proteins in both serum and glomeruli of patients with membranous nephropathy (MN). We detected specific anti–aldose reductase (AR) and anti–manganese superoxide dismutase (SOD2) IgG4 in sera of patients with MN. We also eluted high titers of anti-AR and anti-SOD2 IgG4 from microdissected glomeruli of three biopsies of MN kidneys but not from biopsies of other glomerulonephritides characterized by IgG deposition (five lupus nephritis and two membranoproliferative glomerulonephritis). We identified both antigens in MN biopsies but not in other renal pathologies or normal kidney. Confocal and immunoelectron microscopy (IEM) showed co-localization of anti-AR and anti-SOD2 with IgG4 and C5b-9 in electron-dense podocyte immune deposits. Preliminary in vitro experiments showed an increase of SOD2 expression on podocyte plasma membrane after treatment with hydrogen peroxide. In conclusion, our data support AR and SOD2 as renal antigens of human MN and suggest that oxidative stress may drive glomerular SOD2 expression. PMID:20150532

  7. Superoxide dismutase promotes the epithelial-mesenchymal transition of pancreatic cancer cells via activation of the H2O2/ERK/NF-κB axis.

    PubMed

    Li, Wei; Cao, Lei; Han, Liang; Xu, Qinhong; Ma, Qingyong

    2015-01-01

    Our previous study revealed that superoxide dismutase (SOD)-dependent production of reactive oxygen species (ROS) was able to increase the invasive ability of pancreatic cancer cells. However, the underlying mechanisms by which SOD enhances metastasis are still not fully elucidated. As epithelial-mesenchymal transition (EMT) is a key player in tumor metastasis, the aim of this study was to evaluate whether SOD affects EMT in pancreatic cancer cells and the related mechanism. Human pancreatic cancer cells BxPC-3 and Panc-1 were utilized to examine the level of hydrogen peroxide (H2O) in the absence or presence of SOD and catalase (CAT). The activation of phospho-ERK and phospho-NF-κB were measured by western blot analysis. Wound healing assay and transwell invasion assay were used to detect the migratory and invasive potential of cancer cells. The EMT-related factors, E-cadherin, N-cadherin and vimentin were detected by QT-PCR and western blot analysis. The results of present study showed that SOD not only increased cell migration and invasion in pancreatic cancer, but also mediated the expression of EMT-related factors and cell morphology. In addition, the levels of phospho-ERK and phospho-NF-κB were induced by SOD which could be counter-balanced by both CAT treatment and PD 98059 (an ERK inhibitor). Taken together, these data indicate that SOD promotes the invasive and migratory activity of pancreatic cancer. Blocking the H2O2/ERK/NF-κB axis might be a novel strategy for the treatment of this severe malignancy. PMID:25825208

  8. Mutant Copper-Zinc Superoxide Dismutase (SOD1) Induces Protein Secretion Pathway Alterations and Exosome Release in Astrocytes

    PubMed Central

    Basso, Manuela; Pozzi, Silvia; Tortarolo, Massimo; Fiordaliso, Fabio; Bisighini, Cinzia; Pasetto, Laura; Spaltro, Gabriella; Lidonnici, Dario; Gensano, Francesco; Battaglia, Elisa; Bendotti, Caterina; Bonetto, Valentina

    2013-01-01

    Amyotrophic lateral sclerosis is the most common motor neuron disease and is still incurable. The mechanisms leading to the selective motor neuron vulnerability are still not known. The interplay between motor neurons and astrocytes is crucial in the outcome of the disease. We show that mutant copper-zinc superoxide dismutase (SOD1) overexpression in primary astrocyte cultures is associated with decreased levels of proteins involved in secretory pathways. This is linked to a general reduction of total secreted proteins, except for specific enrichment in a number of proteins in the media, such as mutant SOD1 and valosin-containing protein (VCP)/p97. Because there was also an increase in exosome release, we can deduce that astrocytes expressing mutant SOD1 activate unconventional secretory pathways, possibly as a protective mechanism. This may help limit the formation of intracellular aggregates and overcome mutant SOD1 toxicity. We also found that astrocyte-derived exosomes efficiently transfer mutant SOD1 to spinal neurons and induce selective motor neuron death. We conclude that the expression of mutant SOD1 has a substantial impact on astrocyte protein secretion pathways, contributing to motor neuron pathology and disease spread. PMID:23592792

  9. Activity of antioxidant enzymes in response to atmospheric pressure induced physiological stress in deep-sea hydrothermal vent mussel Bathymodiolus azoricus.

    PubMed

    Martins, Inês; Romão, Célia V; Goulart, Joana; Cerqueira, Teresa; Santos, Ricardo S; Bettencourt, Raul

    2016-03-01

    Deep sea hydrothermal Bathymodiolus azoricus mussels from Portuguese EEZ Menez Gwen hydrothermal field possess the remarkable ability to overcome decompression and survive successfully at atmospheric pressure conditions. We investigated the potential use of antioxidant defense enzymes in mussel B. azoricus as biomarkers of oxidative stress induced by long term acclimatization to atmospheric pressure conditions. Mussels collected at Menez Gwen hydrothermal field were acclimatized for two weeks in three distinct conditions suitable of promoting physiological stress, (i) in plain seawater for concomitant endosymbiont bacteria loss, (ii) in plain seawater under metal iron exposure, (iii) constant bubbling methane and pumped sulfide for endosymbiont bacteria survival. The enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and iron storage proteins in addition to electrophoretic profiles were examined in vent mussel gills and digestive gland. Gills showed approximately 3 times more SOD specific activity than digestive glands. On the other hand, digestive glands showed approximately 6 times more CAT specific activity than gills. Iron storage proteins were identified in gill extracts from all experimental conditions mussels. However, in digestive gland extracts only fresh collected mussels and after 2 weeks in FeSO4 showed the presence of iron storage proteins. The differences between SOD, CAT specific activities and the presence of iron storage proteins in the examined tissues reflect dissimilar metabolic and antioxidant activities, as a result of tissue specificities and acclimatization conditions influences on the organism. PMID:26790096

  10. Changes in correlation between spontaneous activity of dorsal horn neurones lead to differential recruitment of inhibitory pathways in the cat spinal cord

    PubMed Central

    Chávez, D; Rodríguez, E; Jiménez, I; Rudomin, P

    2012-01-01

    Simultaneous recordings of cord dorsum potentials along the lumbo-sacral spinal cord of the anaesthetized cat revealed the occurrence of spontaneous synchronous negative (n) and negative–positive (np) cord dorsum potentials (CDPs). The npCDPs, unlike the nCDPs, appeared preferentially associated with spontaneous negative dorsal root potentials (DRPs) resulting from primary afferent depolarization. Spontaneous npCDPs recorded in preparations with intact neuroaxis or after spinalization often showed a higher correlation than the nCDPs recorded from the same pair of segments. The acute section of the sural and superficial peroneal nerves further increased the correlation between paired sets of npCDPs and reduced the correlation between the nCDPs recorded from the same pair of segments. It is concluded that the spontaneous nCDPs and npCDPs are produced by the activation of interconnected sets of dorsal horn neurones located in Rexed's laminae III–IV and bilaterally distributed along the lumbo-sacral spinal cord. Under conditions of low synchronization in the activity of this network of neurones there would be a preferential activation of the intermediate nucleus interneurones mediating Ib non-reciprocal postsynaptic inhibition. Increased synchronization in the spontaneous activity of this ensemble of dorsal horn neurones would recruit the interneurones mediating primary afferent depolarization and presynaptic inhibition and, at the same time, reduce the activation of pathways mediating Ib postsynaptic inhibition. Central control of the synchronization in the spontaneous activity of dorsal horn neurones and its modulation by cutaneous inputs is envisaged as an effective mechanism for the selection of alternative inhibitory pathways during the execution of specific motor or sensory tasks. PMID:22271870

  11. Cat-scratch disease

    MedlinePlus

    ... Sometimes, an infected lymph node may form a tunnel ( fistula ) through the skin and drain (leak fluid). ... disease: Wash your hands thoroughly with soap and water after playing with your cat. Especially wash any ...

  12. Effects of Lipophilic Extract of Viscum album L. and Oleanolic Acid on Migratory Activity of NIH/3T3 Fibroblasts and on HaCat Keratinocytes

    PubMed Central

    Kuonen, R.; Weissenstein, U.; Urech, K.; Kunz, M.; Hostanska, K.; Estko, M.; Heusser, P.; Baumgartner, S.

    2013-01-01

    Viscum album L. lipophilic extract (VALE) contains pharmacologically active pentacyclic triterpenes that are known to exhibit immunomodulatory, antitumor, and wound healing activity. Preliminary clinical observations indicate that VALE was able to influence cutaneous wound healing in vivo. The objective of this study was to investigate wound closure related properties of VALE in vitro. As measured in a wound healing assay, VALE and its predominant triterpene oleanolic acid (OA) significantly and dose dependently promoted the migration of NIH/3T3 fibroblasts in vitro, thereby leading to an enhanced wound closure. Compared to the negative control, maximal stimulation by 26.1% and 26.2%, respectively, was attained with 10 μg/mL VALE and 1 μg/mL OA. Stimulation of proliferation in NIH/3T3 fibroblasts by VALE and OA could be excluded. At higher concentrations both substances affected proliferation and viability of NIH/3T3 fibroblasts and HaCat keratinocytes. In the toxic range of concentrations of VALE and OA, migration of NIH/3T3 fibroblasts was suppressed. The extent of the stimulatory effect on cell migration of VALE quite closely corresponded to the effect expected by the concentrations of OA contained in the crude extract VALE. These data support the casual observation that Viscum album L. lipophilic extract might modulate wound healing related processes in vivo. PMID:24379890

  13. GABAergic neurons of the laterodorsal and pedunculopontine tegmental nuclei of the cat express c-fos during carbachol-induced active sleep.

    PubMed

    Torterolo, P; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2001-02-23

    The laterodorsal and pedunculopontine tegmental nuclei (LDT-PPT) are involved in the generation of active sleep (AS; also called REM or rapid eye movement sleep). Although the LDT-PPT are composed principally of cholinergic neurons that participate in the control of sleep and waking states, the function of the large number of GABAergic neurons that are also located in the LDT-PPT is unknown. Consequently, we sought to determine if these neurons are activated (as indicated by their c-fos expression) during active sleep induced by the microinjection of carbachol into the rostro-dorsal pons (AS-carbachol). Accordingly, immunocytochemical double-labeling techniques were used to identify GABA and Fos protein, as well as choline acetyltransferase (ChAT), in histological sections of the LDT-PPT. Compared to control awake cats, there was a larger number of GABAergic neurons that expressed c-fos during AS-carbachol (31.5+/-6.1 vs. 112+/-15.2, P<0.005). This increase in the number of GABA+Fos+ neurons occurred on the ipsilateral side relative to the injection site; there was a small decrease in GABA+Fos+ cells in the contralateral LDT-PPT. However, the LDT-PPT neurons that exhibited the largest increase in c-fos expression during AS-carbachol were neither GABA+ nor ChAT+ (47+/-22.5 vs. 228.7+/-14.0, P<0.0005). The number of cholinergic neurons that expressed c-fos during AS-carbachol was not significantly different compared to wakefulness. These data demonstrate that, during AS-carbachol, GABAergic as well as an unidentified population of neurons are activated in the LDT-PPT. We propose that these non-cholinergic LDT-PPT neurons may participate in the regulation of active sleep. PMID:11172778

  14. Stimulation of the greater occipital nerve increases metabolic activity in the trigeminal nucleus caudalis and cervical dorsal horn of the cat.

    PubMed

    Goadsby, P J; Knight, Y E; Hoskin, K L

    1997-10-01

    Patients with primary headache syndromes often describe a distribution of pain that involves both frontal and occipital parts of the head. Such a distribution of pain does not respect the cutaneous sensory innervation of the head which would divide it into anterior (trigeminally innervated) and posterior (spinal nerve root innervated) regions. Studies of pain-producing intracranial structures, such as the superior sagittal sinus, have demonstrated that second order neurons as caudal as C2 are activated after either electrical or mechanical stimulation. For this study cats were anaesthetised with halothane (during surgery) and alpha-chloralose (60 mg/kg, i.p., then 20 mg/kg intravenous maintenance), paralysed (gallamine 6 mg/kg) and ventilated. The greater occipital nerve was isolated bilaterally and stimulated unilaterally using hook electrodes with stimuli of 100 V at 0.3 Hz. Metabolic activity in the caudal brain stem and upper cervical cord was measured using 2-deoxyglucose autoradiography and quantitative densitometry. Stimulation of the greater occipital nerve increased metabolic activity by 220% ipsilateral to stimulation and by a lesser amount contralaterally. Increases in metabolic activity were seen in the dorsal horn at the level of C1 and C2 as might be predicted from the cervical origin of the nerve. Neuronal activation appeared contiguous with the trigeminal nucleus caudalis and was in the same distribution as is seen when trigeminally-innervated structures are stimulated. These data suggest that the well recognised clinical phenomenon of pain at the front and back of the head and in the upper neck are likely to be a consequence of overlap of processing of nociceptive information at the level of the second order neurons. PMID:9414053

  15. GABAergic neurons of the laterodorsal and pedunculopontine tegmental nuclei of the cat express c-fos during carbachol-induced active sleep.

    PubMed

    Torterolo, P; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2001-02-23

    The laterodorsal and pedunculopontine tegmental nuclei (LDT-PPT) are involved in the generation of active sleep (AS; also called REM or rapid eye movement sleep). Although the LDT-PPT are composed principally of cholinergic neurons that participate in the control of sleep and waking states, the function of the large number of GABAergic neurons that are also located in the LDT-PPT is unknown. Consequently, we sought to determine if these neurons are activated (as indicated by their c-fos expression) during active sleep induced by the microinjection of carbachol into the rostro-dorsal pons (AS-carbachol). Accordingly, immunocytochemical double-labeling techniques were used to identify GABA and Fos protein, as well as choline acetyltransferase (ChAT), in histological sections of the LDT-PPT. Compared to control awake cats, there was a larger number of GABAergic neurons that expressed c-fos during AS-carbachol (31.5+/-6.1 vs. 112+/-15.2, P<0.005). This increase in the number of GABA+Fos+ neurons occurred on the ipsilateral side relative to the injection site; there was a small decrease in GABA+Fos+ cells in the contralateral LDT-PPT. However, the LDT-PPT neurons that exhibited the largest increase in c-fos expression during AS-carbachol were neither GABA+ nor ChAT+ (47+/-22.5 vs. 228.7+/-14.0, P<0.0005). The number of cholinergic neurons that expressed c-fos during AS-carbachol was not significantly different compared to wakefulness. These data demonstrate that, during AS-carbachol, GABAergic as well as an unidentified population of neurons are activated in the LDT-PPT. We propose that these non-cholinergic LDT-PPT neurons may participate in the regulation of active sleep.

  16. Concentration of D-dimers in healthy cats and sick cats with and without disseminated intravascular coagulation (DIC).

    PubMed

    Tholen, Inger; Weingart, Christiane; Kohn, Barbara

    2009-10-01

    The objective of this prospective study was to measure concentrations of D-dimers in 48 cats with various diseases and in 20 healthy cats to evaluate the sensitivity and specificity for D-dimers to diagnose disseminated intravascular coagulation (DIC). The cats were classified as having DIC if an underlying disease and at least three of the following criteria were present: thrombocytopenia, prolonged activated partial thromboplastin time, prothrombin time or thrombin time, schistocytes and/or a reduced antithrombin activity. D-dimer concentrations were measured using a semi-quantitative latex agglutination (LA) test (Accuclot D-Dimer, Sigma Diagnostics). The D-dimer test was positive for 8/12 cats with DIC and for 16/36 sick cats without DIC. D-dimers were negative for all healthy control cats. The comparison of the sick cats with DIC and those without DIC revealed a specificity and sensitivity of the D-dimer test of 56% and 67%; a comparison of the results for healthy cats and cats with DIC revealed a specificity and sensitivity of 100% and 67%, respectively. The D-dimer LA test is only of limited value for the diagnosis of DIC in cats.

  17. EROD activity and antioxidant defenses of sea bass (Dicentrarchus labrax) after an in vivo chronic hydrocarbon pollution followed by a post-exposure period.

    PubMed

    Danion, Morgane; Le Floch, Stéphane; Lamour, François; Quentel, Claire

    2014-12-01

    Chronic concentrations of polycyclic aromatic hydrocarbons (PAHs) have been commonly detected in international estuaries ecosystems. Reliable indicators still need to be found in order to properly assess the impact of PAHs in fish. After an in vivo chronic exposure to hydrocarbons, the enzymatic activity of 7-ethoxyresorufin O-deethylase (EROD) and the antioxidant defense system were assessed in sea bass, Dicentrarchus labrax. A total of 45 fish were exposed to the water-soluble fraction of Arabian crude oil, similar to a complex pollution by hydrocarbons chronically observed in situ, while 45 other control fish sustained the same experimental conditions in clean seawater. Fish samples were made after a 21-day exposure period and after a 15-day recovery period in clean fresh water. Throughout the experiment, liver EROD activity was significantly higher in contaminated fish than in control fish. In addition, nonenzymatic (total glutathione) and enzymatic (GPx, SOD, and CAT) antioxidant defense parameters measured in liver were not significantly different in fish. Furthermore, in gills, glutathione content had significantly increased while SOD activity had significantly decreased in contaminated fish compared to controls. On the other hand, CAT and GPx activities were not affected. Chronic exposure to PAHs disturbing the first step (SOD) and inhibiting the second step (GPx and CAT) could induce oxidative stress in tissues by the formation of oxygen radicals. After the postexposure period, there was no significant difference between control and contaminated fish in any of the antioxidant defense parameters measured in gills, attesting to the reversibility of the effects.

  18. Pharmacodynamics of warfarin in cats.

    PubMed

    Smith, S A; Kraft, S L; Lewis, D C; Melethil, S; Freeman, L C

    2000-12-01

    The overall purpose of this study was to evaluate the pharmacodynamic response to warfarin in cats. The specific aim was to determine if a log-linear indirect response model (Nagashima et al., 1969) used to describe the in vivo effect of warfarin in humans could be applied to cats. The pharmacokinetics of racemic warfarin were described using a non-compartmental approach. The relationship between prothrombin complex activity (PCA) and normalized prothrombin time (PTR) was defined for feline plasma under our experimental conditions, and determined to be: %PCA=12.38+648 e-PTR/0.492. These data were then integrated and used to predict the warfarin dose associated with therapeutic anti-coagulation defined as an International Normalized Ratio (INR) of 2.0-3.0. The maximum prothrombinopenic response to warfarin in cats after a single intravenous dose of 0.5 mg/kg occurred at 24-48 h. Pharmacodynamic modeling suggested that each cat had a narrow therapeutic range of the steady-state concentration of total warfarin required to appropriately block prothrombin complex synthesis (median: 265.2-358.7 ng/mL). The median daily dose range predicted to yield therapeutic concentrations of warfarin was 0.061-0.088 mg/kg per day. Wide inter-individual variations in both pharmacokinetics and pharmacodynamic response suggest that a more optimal dosing of warfarin may be possible with the development of individual pharmacokinetic/pharmacodynamic algorithms, analogous to those currently employed in human patients. PMID:11168910

  19. Loss of oxidation-reduction specificity in amyotrophic lateral sclerosis-associated CuZnSOD mutants.

    PubMed

    Cafe, C; Testa, M P; Sheldon, P J; French, W P; Ellerby, L M; Bredesen, D E

    2000-10-01

    Both transgenic mouse and cell culture models of familial amyotrophic lateral sclerosis (FALS) support a gain-of-function effect for the mutations in copper-zinc superoxide dismutase (CuZnSOD) associated with FALS, but the nature of the function gained remains incompletely characterized. We previously reported an enhanced peroxidase activity for FALS-associated CuZnSOD mutants. Because one of the targets of such activity is CuZnSOD itself, we examined peroxide-mediated inactivation of wild-type and mutant CuZnSODs, and found that the mutants are more readily inactivated. Inactivation of the mutants was associated with fragmentation, which did not occur in the wild-type enzyme under these conditions. Furthermore, the reduction of the FALS-associated mutants by ascorbate was enhanced markedly when compared to the wild-type enzyme. The visible spectra of the mutants showed a consistent blue shift of the peak at 680 nm in the wild-type enzyme, suggesting an alteration in copper-site geometry. These results extend previous studies demonstrating enhanced peroxidase activity in the mutants, and suggest that the toxic function that leads to motor neuron degeneration may result from a loss of specificity of the redox reactions catalyzed by CuZnSOD.

  20. Cardiac peroxisome proliferator-activated receptor-γ expression is modulated by oxidative stress in acutely infrasound-exposed cardiomyocytes.

    PubMed

    Pei, Zhaohui; Meng, Rongsen; Zhuang, Zhiqiang; Zhao, Yiqiao; Liu, Fangpeng; Zhu, Miao-Zhang; Li, Ruiman

    2013-12-01

    The aim of the present study was to examine the effects of acute infrasound exposure on oxidative damage and investigate the underlying mechanisms in rat cardiomyocytes. Neonatal rat cardiomyocytes were cultured and exposed to infrasound for several days. In the study, the expression of CAT, GPx, SOD1, and SOD2 and their activities in rat cardiomyocytes in infrasound exposure groups were significantly decreased compared to those in the various time controls, along with significantly higher levels of O2 (-) and H2O2. Decreased cardiac cell viability was not observed in various time controls. A significant reduction in cardiac cell viability was observed in the infrasound group compared to the control, while significantly increased cardiac cell viability was observed in the infrasound exposure and rosiglitazone pretreatment group. Compared to the control, rosiglitazone significantly upregulated CAT, GPx, SOD1, and SOD2 expression and their activities in rat cardiomyocytes exposed to infrasound, while the levels of O2 (-) or H2O2 were significantly decreased. A potential link between a significant downregulation of PPAR-γ expression in rat cardiomyocytes in the infrasound group was compared to the control and infrasound-induced oxidative stress. These findings indicate that infrasound can induce oxidative damage in rat cardiomyocytes by inactivating PPAR-γ. PMID:23632742

  1. Increased activities of both superoxide dismutase and catalase were indicators of acute depressive episodes in patients with major depressive disorder.

    PubMed

    Tsai, Meng-Chang; Huang, Tiao-Lai

    2016-01-30

    Oxidative stress may play an important role in the pathophysiology of major depressive disorder (MDD). The aim of this study was to investigate the serum levels of oxidative stress biomarkers and S100B in patients with MDD in an acute phase, and evaluate the changes in superoxide dismutase (SOD), protein carbonyl content (PCC), glutathione peroxidase (GPX), 8-hydroxy 2'-deoxyguanosine after treatment (8-OHdG), catalase (CAT), thiobarbituric acid reactive substances (TBARS) and S100B. We consecutively enrolled 21 MDD inpatients in an acute phase and 40 healthy subjects. Serum oxidative stress markers were measured with assay kits. Serum SOD and CAT activities in MDD patients in an acute phase were significantly higher than those of healthy subjects, and serum PCC levels were significantly lower. The HAM-D scores had a significantly positive association with S100B levels. Eighteen depressed patients were followed up, and there was no significant difference among all of the markers after treatment. In conclusion, our results suggest that increased activities of both SOD and CAT might be indicators of acute depressive episodes in MDD patients.

  2. Formation of High-Order Oligomers by a Hyperthemostable Fe-Superoxide Dismutase (tcSOD)

    PubMed Central

    Wang, Sha; Dong, Zhi-Yang; Yan, Yong-Bin

    2014-01-01

    Hyperthermostable proteins are highly resistant to various extreme conditions. Many factors have been proposed to contribute to their ultrahigh structural stability. Some thermostable proteins have larger oligomeric size when compared to their mesophilic homologues. The formation of compact oligomers can minimize the solvent accessible surface area and increase the changes of Gibbs free energy for unfolding. Similar to mesophilic proteins, hyperthermostable proteins also face the problem of unproductive aggregation. In this research, we investigated the role of high-order oligomerization in the fight against aggregation by a hyperthermostable superoxide dismutase identified from Tengchong, China (tcSOD). Besides the predominant tetramers, tcSOD could also form active high-order oligomers containing at least eight subunits. The dynamic equilibrium between tetramers and high-order oligomers was not significantly affected by pH, salt concentration or moderate temperature. The secondary and tertiary structures of tcSOD remained unchanged during heating, while cross-linking experiments showed that there were conformational changes or structural fluctuations at high temperatures. Mutational analysis indicated that the last helix at the C-terminus was involved in the formation of high-order oligomers, probably via domain swapping. Based on these results, we proposed that the reversible conversion between the active tetramers and high-order oligomers might provide a buffering system for tcSOD to fight against the irreversible protein aggregation pathway. The formation of active high-order oligomers not only increases the energy barrier between the native state and unfolded/aggregated state, but also provides the enzyme the ability to reproduce the predominant oligomers from the active high-order oligomers. PMID:25313557

  3. Cloning and characterization of two catA genes in Acinetobacter lwoffii K24.

    PubMed

    Kim, S I; Leem, S H; Choi, J S; Chung, Y H; Kim, S; Park, Y M; Park, Y K; Lee, Y N; Ha, K S

    1997-08-01

    Two novel type I catechol 1,2-dioxygenases inducible on aniline media were isolated from Acinetobacter lwoffii K24. Although the two purified enzymes, CD I1 and CD I2, had similar intradiol cleavage activities, they showed different substrate specificities for catechol analogs, physicochemical properties, and amino acid sequences. Two catA genes, catA1 and catA2, encoding by CD I1 and CD I2, respectively, were isolated from the A. lwoffii K24 genomic library by using colony hybridization and PCR. Two DNA fragments containing the catA1 and catA2 genes were located on separate regions of the chromosome. They contained open reading frames encoding 33.4- and 30.4-kDa proteins. The amino acid sequences of the two proteins matched well with previously determined sequences. Interestingly, further analysis of the two DNA fragments revealed the locations of the catB and catC genes as well. Moreover, the DNA fragment containing catA1 had a cluster of genes in the order catB1-catC1-catA1 while the catB2-catA2-catC2 arrangement was found in the catA2 DNA fragment. These results may provide an explanation of the different substrate specificities and physicochemical properties of CD I1 and CD I2. PMID:9260969

  4. Functional analysis of superoxide dismutases (SODs) in sunflower under biotic and abiotic stress conditions. Identification of two new genes of mitochondrial Mn-SOD.

    PubMed

    Fernández-Ocaña, Ana; Chaki, Mounira; Luque, Francisco; Gómez-Rodríguez, María V; Carreras, Alfonso; Valderrama, Raquel; Begara-Morales, Juan C; Hernández, Luis E; Corpas, Francisco J; Barroso, Juan B

    2011-07-15

    Superoxide dismutases (SODs) are a family of metalloenzymes that catalyse the disproportionation of superoxide radicals into hydrogen peroxide and oxygen. In sunflower (Helianthus annuus L.) seedlings, two new Mn-SOD isozymes, designated as I and II, were identified. However, no evidence for a Fe-SOD was found. Both Mn-SOD I and Mn-SOD II have a cleaved sequence of 14 residues that target the mitochondrion with a probability of 81% and 95%, respectively. The gene expression of these new mitochondrial Mn-SODs as well as the previously reported cytosolic and chloroplastic CuZnSODs was analyzed by real-time quantitative reverse transcription-PCR. This was done in the main organs (roots, hypocotyls, and cotyledons) of sunflower seedlings and also under biotic (infection by the pathogen Plasmopara halstedii) and abiotic stress conditions, including high and low temperature and mechanical wounding. Both CuZn-SODs had a gene expression of 1000-fold higher than that of mitochondrial Mn-SODs. And the expression of the Mn-SOD I was approximately 12-fold higher than that of Mn-SOD II. The Mn-SOD I showed a significant modulation in response to the assayed biotic and abiotic stresses even when it had no apparent oxidative stress, such as low temperature. Thus, it is proposed that the mitochondrial Mn-SOD I gene could act as an early sensor of adverse conditions to prevent potential oxidative damage.

  5. Influence of different chemical agents (H2O2, t-BHP and MMS) on the activity of antioxidant enzymes in human HepG2 and hamster V79 cells; relationship to cytotoxicity and genotoxicity.

    PubMed

    Slamenova, D; Kozics, K; Melusova, M; Horvathova, E

    2015-01-01

    We investigated activities of antioxidant enzymes (AEs), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) in human HepG2 and hamster V79 cells treated with a scale of concentrations of hydrogen peroxide (H2O2), tert-butyl hydroperoxide (t-BHP) and methyl methanesulfonate (MMS). Cytotoxicity and genotoxicity of these substances were evaluated simultaneously. We have found out that H2O2, t-BHP and MMS predictably induce significant concentration-dependent increase of DNA lesions in both cell lines. Cytotoxicity detected in V79 cells with help of PE test was in a good conformity with the level of DNA damage. MTT test has proved unsuitable, except for MMS-treated V79 cells. Compared with human cells HepG2, hamster cells V79 manifested approximately similar levels of SOD and CAT but ten times higher activity of GPx. Across all concentrations tested the most significant increase of activity of the enzyme CAT was found in H2O2- and t-BHP-treated HepG2 cells, of the enzyme SOD in t-BHP- and MMS-treated V79 cells, and of the enzyme GPx in H2O2-treated V79 cells. We suggest that stimulation of enzyme activity by the relevant chemical compounds may result from transcriptional or post-transcriptional regulation of the expression of the genes CAT, SOD and GPx. Several authors suggest that moderate levels of toxic reactants can induce increase of AEs activities, while very high levels of reactants can induce their decrease, as a consequence of damage of the molecular machinery required to induce AEs. Based on a great amount of experiments, which were done and described within this paper, we can say that the above mentioned principle does not apply in general. Only the reactions of t-BHP affected HepG2 cells were consistent with this idea.

  6. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. PMID:24927388

  7. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity.

  8. Cats protecting birds revisited.

    PubMed

    Fan, Meng; Kuang, Yang; Feng, Zhilan

    2005-09-01

    In this paper, we revisit the dynamical interaction among prey (bird), mesopredator (rat), and superpredator (cat) discussed in [Courchamp, F., Langlais, M., Sugihara, G., 1999. Cats protecting birds: modelling the mesopredator release effect. Journal of Animal Ecology 68, 282-292]. First, we develop a prey-mesopredator-superpredator (i.e., bird-rat-cat, briefly, BRC) model, where the predator's functional responses are derived based on the classical Holling's time budget arguments. Our BRC model overcomes several model construction problems in Courchamp et al. (1999), and admits richer, reasonable and realistic dynamics. We explore the possible control strategies to save or restore the bird by controlling or eliminating the rat or the cat when the bird is endangered. We establish the existence of two types of mesopredator release phenomena: severe mesopredator release, where once superpredators are suppressed, a burst of mesopredators follows which leads their shared prey to extinction; and mild mesopredator release, where the mesopredator release could assert more negative impact on the endemic prey but does not lead the endemic prey to extinction. A sharp sufficient criterion is established for the occurrence of severe mesopredator release. We also show that, in a prey-mesopredator-superpredator trophic food web, eradication of introduced superpredators such as feral domestic cats in the BRC model, is not always the best solution to protect endemic insular prey. The presence of a superpredator may have a beneficial effect in such systems. PMID:15998496

  9. Pancreatitis in cats.

    PubMed

    Armstrong, P Jane; Williams, David A

    2012-08-01

    Pancreatitis was considered a rare disease in the cat until a couple of decades ago when several retrospective studies of severe acute pancreatitis were published. It was apparent that few of the diagnostic tests of value in the dog were helpful in cats. With increasing clinical suspicion, availability of abdominal ultrasonography, and introduction of pancreas-specific blood tests of increasing utility, it is now accepted that acute pancreatitis is probably almost as common in cats as it is in dogs, although the etiology(s) remain more obscure. Pancreatitis in cats often co-exists with inflammatory bowel disease, less commonly with cholangitis, and sometimes with both. Additionally, pancreatitis may trigger hepatic lipidosis, while other diseases, such as diabetes mellitus, may be complicated by pancreatitis. Therapy is similar to that used in dogs, with added emphasis on early nutritional support to prevent hepatic lipidosis. Less is known about chronic pancreatitis than the acute form, but chronic pancreatitis is more common in cats than it is in dogs and may respond positively to treatment with corticosteroids.

  10. Long-lived alphaMUPA transgenic mice show reduced SOD2 expression, enhanced apoptosis and reduced susceptibility to the carcinogen dimethylhydrazine.

    PubMed

    Tirosh, Oren; Pardo, Michal; Schwartz, Betty; Miskin, Ruth

    2005-12-01

    Calorie restriction (CR) extends the life span of various species through mechanisms that are as yet unclear. Recently, we have reported that mitochondrion-mediated apoptosis was enhanced in alphaMUPA transgenic mice that spontaneously eat less and live longer compared with their wild-type (WT) control mice. To understand the molecular mechanisms underlying the increased apoptosis, we compared alphaMUPA and WT mice for parameters associated with SOD2 (MnSOD), a mitochondrial antioxidant enzyme that converts superoxide radicals into H(2)O(2) and is also known to inhibit apoptosis. The SOD2-related parameters included the levels of SOD2 mRNA, immunoreactivity and enzymatic activity in the liver, lipid oxidation and aconitase activity in isolated liver mitochondria, and the sensitivity of the mice to paraquat, an agent that elicits oxidative stress. In addition, we compared the mice for the levels of SOD2 mRNA after treatment with bacterial lipopolysaccharides (LPS), and for the DNA binding activity of NFkappaB as a marker for the inflammatory state. We extended SOD2 determination to the colon, where we also examined the formation of pre-neoplastic aberrant crypt foci (ACF) following treatment with dimethylhydrazine (DMH), a colonic organotypic carcinogen. Overall, alphaMUPA mice showed reduced basal levels of SOD2 gene expression and activity concomitantly with reduced lipid oxidation, increased aconitase activity and enhanced paraquat sensitivity, while maintaining the capacity to produce high levels of SOD2 in response to the inflammatory stimulus. alphaMUPA mice also showed increased resistance to DMH-induced pre-neoplasia. Collectively, these data are consistent with a model, in which an optimal fine-tuning of SOD2 throughout a long-term regimen of reduced eating could contribute to longevity, at least in the alphaMUPA mice. PMID:16139868

  11. SOD1 exhibits allosteric frustration to facilitate metal binding affinity.

    PubMed

    Das, Atanu; Plotkin, Steven S

    2013-03-01

    Superoxide dismutase-1 (SOD1) is a ubiquitous, Cu and Zn binding, free-radical defense enzyme whose misfolding and aggregation play a potential key role in amyotrophic lateral sclerosis, an invariably fatal neurodegenerative disease. Over 150 mutations in SOD1 have been identified with a familial form of the disease, but it is presently not clear what unifying features, if any, these mutants share to make them pathogenic. Here, we develop several unique computational assays for probing the thermo-mechanical properties of both ALS-associated and rationally designed SOD1 variants. Allosteric interaction-free energies between residues and metals are calculated, and a series of atomic force microscopy experiments are simulated with variable tether positions to quantify mechanical rigidity "fingerprints" for SOD1 variants. Mechanical fingerprinting studies of a series of C-terminally truncated mutants, along with an analysis of equilibrium dynamic fluctuations while varying native constraints, potential energy change upon mutation, frustratometer analysis, and analysis of the coupling between local frustration and metal binding interactions for a glycine scan of 90 residues together, reveal that the apo protein is internally frustrated, that these internal stresses are partially relieved by mutation but at the expense of metal-binding affinity, and that the frustration of a residue is directly related to its role in binding metals. This evidence points to apo SOD1 as a strained intermediate with "self-allostery" for high metal-binding affinity. Thus, the prerequisites for the function of SOD1 as an antioxidant compete with apo state thermo-mechanical stability, increasing the susceptibility of the protein to misfold in the apo state.

  12. Syntheses, characterization, and SOD activity studies of barbital-based nickel(II) complexes with different chelating amines: The X-ray crystal structures of Barb-H and [Ni(Barb)2(en)2] (Barb = 5,5-diethylbarbiturate)

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mohamed M.; Mersal, Gaber A. M.; Al-Juaid, Salih; El-Shazly, Samir A.

    2014-01-01

    Four new mixed ligand nickel(II) complexes, viz., [Ni(Barb)2(H2O)4] 1, [Ni(Barb)2(en)2] 2, [Ni(Barb)2(pn)2] 3, and [Ni(Barb)2(BPA)(H2O)] 4 (Barb = 5,5-diethylbarbiturate, en = ethylenediamine, pn = propylenediamine, and BPA = bis(2-picolyl)amine) have been synthesized and characterized by means of elemental analysis, spectroscopic (FT-IR, Raman, and UV-Vis), and thermal analysis measurements. The spectral techniques suggest that all the nickel(II) complexes (1-4) exhibit octahedral geometry. The very low electrical conductance of the complexes supports their neutral nature. The monomeric nature of the complexes was assessed from their electronic spectra. X-ray diffraction studies were performed for the drug Barb-H and its nickel(II) complex 2. Complex 2 crystallizes in monoclinic space group P21/c with Z = 2. The barbital drug is N-coordinated and the en molecules act as bichelating ligands, leading to an NiN6 octahedral coordination. Molecules of complex 2 are connected via NH⋯O hydrogen bonds, involving hydrogen atoms of both Barb and en ligands. The redox behavior of all complexes was investigated by cyclic voltammetry. Superoxide dismutase activity of these complexes has also been measured.

  13. Cats are not small dogs: the emergence of feline medicine.

    PubMed

    Lynn, Amy

    2006-11-01

    Cats have finally garnered the attention they deserve in veterinary medicine, however, there is still much to learn about this unique species and new challenges surface daily. For example, at the time of writing, avian influenza in cats is being closely monitored by world veterinary and health officials. Controversial topics, such as how to manage the homeless cat population, declawing, and cloning will continue to spark active debate. However, the future appears promising for cats as more veterinarians, researchers, and organizations increase their focus on felines. PMID:17526136

  14. Toxoplasmosis in two cats with inflammatory intestinal disease.

    PubMed

    Peterson, J L; Willard, M D; Lees, G E; Lappin, M R; Dieringer, T; Floyd, E

    1991-08-15

    Lymphocytic-plasmacytic enteritis, a chronic inflammatory intestinal disease, was diagnosed in 2 cats. In 1 cat, recurrence of clinical signs after initiating treatment was attributed to relapse of the inflammatory intestinal disease, but was found to be attributable to relapsing toxoplasmosis secondary to immunosuppressive drug therapy. Treatment with clindamycin resolved the recurrent toxoplasmosis. In the second cat, clinical signs of toxoplasmosis did not develop, but serologic testing yielded evidence of active toxoplasmosis. Treatment with clindamycin caused the titers to decrease. Relapsing toxoplasmosis may be responsible for apparent resistance to treatment in cats for inflammatory intestinal disease being treated with immunosuppressive drugs.

  15. Analysis of Mutant SOD1 Electrophoretic Mobility by Blue Native Gel Electrophoresis; Evidence for Soluble Multimeric Assemblies

    PubMed Central

    Brown, Hilda H.; Borchelt, David R.

    2014-01-01

    Mutations in superoxide dismutase 1 (SOD1) cause familial forms of amyotrophic lateral sclerosis (fALS). Disease causing mutations have diverse consequences on the activity and half-life of the protein, ranging from complete inactivity and short half-life to full activity and long-half-life. Uniformly, disease causing mutations induce the protein to misfold and aggregate and such aggregation tendencies are readily visualized by over-expression of the proteins in cultured cells. In the present study we have investigated the potential of using immunoblotting of proteins separated by Blue-Native gel electrophoresis (BNGE) as a means to identify soluble multimeric forms of mutant protein. We find that over-expressed wild-type human SOD1 (hSOD1) is generally not prone to form soluble high molecular weight entities that can be separated by BNGE. For ALS mutant SOD1, we observe that for all mutants examined (A4V, G37R, G85R, G93A, and L126Z), immunoblots of BN-gels separating protein solubilized by digitonin demonstrated varied amounts of high molecular weight immunoreactive entities. These entities lacked reactivity to ubiquitin and were partially dissociated by reducing agents. With the exception of the G93A mutant, these entities were not reactive to the C4F6 conformational antibody. Collectively, these data demonstrate that BNGE can be used to assess the formation of soluble multimeric assemblies of mutant SOD1. PMID:25121776

  16. Sirt3-MnSOD axis represses nicotine-induced mitochondrial oxidative stress and mtDNA damage in osteoblasts.

    PubMed

    Li, Yong; Yu, Chen; Shen, Guangsi; Li, Guangfei; Shen, Junkang; Xu, Youjia; Gong, Jianping

    2015-04-01

    Increasing evidence has suggested an important role played by reactive oxygen species in the pathogenesis of osteoporosis. Tobacco smoking is an important risk factor for the development of osteoporosis, and nicotine is one of the major components in tobacco. However, the mechanism by which nicotine promotes osteoporosis is not fully understood. Here, in this study, we found that nicotine-induced mitochondrial oxidative stress and mitochondrial DNA (mtDNA) damage in osteoblasts differentiated from mouse mesenchymal stem cell. The activity of MnSOD, one of the mitochondrial anti-oxidative enzymes, was significantly reduced by nicotine due to the reduced level of Sirt3. Moreover, it was also found that Sirt3 could promote MnSOD activity by deacetylating MnSOD. Finally, Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP, a MnSOD mimetic) was found to markedly reduce the effect of nicotine on osteoblasts. In summary, Sirt3-MnSOD axis was identified as a negative component in nicotine-induced mitochondrial oxidative stress and mtDNA damage, and MnTBAP may serve as a potential therapeutic drug for osteoporosis. PMID:25757953

  17. Grape pomace extract exerts antioxidant effects through an increase in GCS levels and GST activity in muscle and endothelial cells

    PubMed Central

    GOUTZOURELAS, NIKOLAOS; STAGOS, DIMITRIOS; HOUSMEKERIDOU, ANASTASIA; KARAPOULIOU, CHRISTINA; KERASIOTI, EFTHALIA; ALIGIANNIS, NEKTARIOS; SKALTSOUNIS, ALEXIOS L; SPANDIDOS, DEMETRIOS A; TSATSAKIS, ARISTIDIS M; KOURETAS, DEMETRIOS

    2015-01-01

    In a previous study, we demonstrated that a grape pomace extract (GPE) exerted antioxidant activity in endothelial (EA.hy926) and muscle (C2C12) cells through an increase in glutathione (GSH) levels. In the present study, in order to elucidate the mechanisms responsible for the antioxidant activity of GPE, its effects on the expression of critical antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD)1, heme oxygenase 1 (HO-1) and gamma-glutamylcysteine synthetase (GCS) were assessed in EA.hy926 and C2C12 cells. Moreover, the effects of GPE on CAT, SOD and glutathione S-transferase (GST) enzymatic activity were evaluated. For this purpose, the C2C12 and EA.hy926 cells were treated with GPE at low and non-cytotoxic concentrations (2.5 and 10 µg/ml for the C2C12 cells; 0.068 and 0.250 µg/ml for the EA.hy926 cells) for 3, 6, 12, 18 and 24 h. Following incubation, enzymatic expression and activity were assessed. The results revealed that treatment with GPE significantly increased GCS levels and GST activity in both the C2C12 and EA.hy926 cells. However, GPE significantly decreased CAT levels and activity, but only in the muscle cells, while it had no effect on CAT levels and activity in the endothelial cells. Moreover, treatment with GPE had no effect on HO-1 and SOD expression and activity in both cell lines. Therefore, the present results provide further evidence of the crucial role of GSH systems in the antioxidant effects exerted by GPE. Thus, GPE may prove to be effective for use as a food supplement for the treatment of oxidative stress-induced pathological conditions of the cardiovascular and skeletal muscle systems, particularly those associated with low GSH levels. PMID:26082074

  18. Salmonella enterica serovar Typhimurium BaeSR two-component system positively regulates sodA in response to ciprofloxacin.

    PubMed

    Guerrero, P; Collao, B; Álvarez, R; Salinas, H; Morales, E H; Calderón, I L; Saavedra, C P; Gil, F

    2013-10-01

    In response to antibiotics, bacteria activate regulatory systems that control the expression of genes that participate in detoxifying these compounds, like multidrug efflux systems. We previously demonstrated that the BaeSR two-component system from Salmonella enterica serovar Typhimurium (S. Typhimurium) participates in the detection of ciprofloxacin, a bactericidal antibiotic, and in the positive regulation of mdtA, an efflux pump implicated in antibiotic resistance. In the present work, we provide further evidence for a role of the S. Typhimurium BaeSR two-component system in response to ciprofloxacin treatment and show that it regulates sodA expression. We demonstrate that, in the absence of BaeSR, the transcript levels of sodA and the activity of its gene product are lower. Using electrophoretic mobility shift assays and transcriptional fusions, we demonstrate that BaeR regulates sodA by a direct interaction with the promoter region.

  19. STUDY TO ESTABLISH THE ACCEPTANCE RANGE FOR PEROXYL RADICALS SCAVENGER CAPACITY OF NATURAL SOD.

    PubMed

    Lupu, Andreea-Roxana; Cremer, Lidia

    2015-01-01

    In the context of an emerging market of food supplements, the proven quality of the antioxidant products should be the main criteria for using them. The production process has to be carefully controlled and complementary tests are needed to demonstrate the correspondence between real and declared properties of final product. Using well characterized compounds with proven antioxidant activity in biological systems as reference brings a plus of rigorously to the testing protocol. The aim of this study was to determine the acceptance range for the antioxidant (peroxyl radicals scavenger) capacity of "Natural SOD" by using for comparison ascorbic acid (vitamin C). The established acceptance range complete our previous results concerning the antioxidant capacity of Natural SOD using validated ORAC method and creates premises for supplementary checking of the batches in the current production and improving the product quality. PMID:27328523

  20. [Declawing in cats?].

    PubMed

    de Jonge, I

    1983-02-15

    Those forms of behaviour in which cats use their claws are reviewed. Forms of undesirable use of the claws and possible solutions to this problem are discussed. An inquiry among veterinary practitioners showed that nearly fifty per cent of these practitioners refused to declaw cats on principle. Approximately seventy-five per cent of the veterinarians taking part in the inquiry advocated that the Royal Netherlands Veterinary Association should state its position with regard to declawing. It is concluded by the present author that declawing is unacceptable for ethical and ethological reasons. PMID:6836550

  1. Th17 Cell Response in SOD1G93A Mice following Motor Nerve Injury

    PubMed Central

    Ni, Allen; Yang, Tao; Mesnard-Hoaglin, Nichole A.; Gutierrez, Rafael; Stubbs, Evan B.; McGuire, Susan O.; Sanders, Virginia M.; Jones, Kathryn J.; Foecking, Eileen M.; Xin, Junping

    2016-01-01

    An increased risk of ALS has been reported for veterans, varsity athletes, and professional football players. The mechanism underlying the increased risk in these populations has not been identified; however, it has been proposed that motor nerve injury may trigger immune responses which, in turn, can accelerate the progression of ALS. Accumulating evidence indicates that abnormal immune reactions and inflammation are involved in the pathogenesis of ALS, but the specific immune cells involved have not been clearly defined. To understand how nerve injury and immune responses may contribute to ALS development, we investigated responses of CD4+ T cell after facial motor nerve axotomy (FNA) at a presymptomatic stage in a transgenic mouse model of ALS (B6SJL SOD1G93A). SOD1G93A mice, compared with WT mice, displayed an increase in the basal activation state of CD4+ T cells and higher frequency of Th17 cells, which were further enhanced by FNA. In conclusion, SOD1G93A mice exhibit abnormal CD4+ T cell activation with increased levels of Th17 cells prior to the onset of neurological symptoms. Motor nerve injury exacerbates Th17 cell responses and may contribute to the development of ALS, especially in those who carry genetic susceptibility to this disease. PMID:27194826

  2. Th17 Cell Response in SOD1G93A Mice following Motor Nerve Injury.

    PubMed

    Ni, Allen; Yang, Tao; Mesnard-Hoaglin, Nichole A; Gutierrez, Rafael; Stubbs, Evan B; McGuire, Susan O; Sanders, Virginia M; Jones, Kathryn J; Foecking, Eileen M; Xin, Junping

    2016-01-01

    An increased risk of ALS has been reported for veterans, varsity athletes, and professional football players. The mechanism underlying the increased risk in these populations has not been identified; however, it has been proposed that motor nerve injury may trigger immune responses which, in turn, can accelerate the progression of ALS. Accumulating evidence indicates that abnormal immune reactions and inflammation are involved in the pathogenesis of ALS, but the specific immune cells involved have not been clearly defined. To understand how nerve injury and immune responses may contribute to ALS development, we investigated responses of CD4(+) T cell after facial motor nerve axotomy (FNA) at a presymptomatic stage in a transgenic mouse model of ALS (B6SJL SOD1(G93A)). SOD1(G93A) mice, compared with WT mice, displayed an increase in the basal activation state of CD4(+) T cells and higher frequency of Th17 cells, which were further enhanced by FNA. In conclusion, SOD1(G93A) mice exhibit abnormal CD4(+) T cell activation with increased levels of Th17 cells prior to the onset of neurological symptoms. Motor nerve injury exacerbates Th17 cell responses and may contribute to the development of ALS, especially in those who carry genetic susceptibility to this disease.

  3. SOD-Mimic Cu(II) Dimeric Complexes Involving Kinetin and Its Derivative: Preparation and Characterization

    PubMed Central

    Novotná, Radka; Trávníček, Zdeněk; Herchel, Radovan

    2012-01-01

    Two SOD-mimic active dimeric Cu(II) chlorido complexes of the compositions [Cu2(μ-HL1)4Cl2]Cl2 (1) and [Cu2(μ-HL2)2(μ-Cl)2(HL2)2Cl2] · 4H2O (2) involving the cosmetologically relevant cytokinin kinetin (N6-furfuryladenine, HL1) and its derivative N6-(5-methylfurfuryl)adenine (HL2) have been synthesized and characterized by elemental analysis, infrared, and electronic spectroscopy, ESI+ mass spectrometry, conductivity and temperature dependence of magnetic susceptibility measurements, and thermogravimetric (TG) and differential thermal (DTA) analyses. The results of these methods, particularly the temperature dependence of magnetic susceptibility, showed the complexes to be dimeric with a strong antiferromagnetic exchange (J = −290 cm−1 for complex 1 and J = −160 cm−1 for 2). The complexes have been identified as auspicious SOD-mimics, as their antiradical activity evaluated by the in vitro SOD-mimic assay resulted in the IC50 values equal to 8.13 μM (1) and 0.71 μM (2). PMID:22966218

  4. SOD-Mimic Cu(II) Dimeric Complexes Involving Kinetin and Its Derivative: Preparation and Characterization.

    PubMed

    Novotná, Radka; Trávníček, Zdeněk; Herchel, Radovan

    2012-01-01

    Two SOD-mimic active dimeric Cu(II) chlorido complexes of the compositions [Cu(2)(μ-HL(1))(4)Cl(2)]Cl(2) (1) and [Cu(2)(μ-HL(2))(2)(μ-Cl)(2)(HL(2))(2)Cl(2)] · 4H(2)O (2) involving the cosmetologically relevant cytokinin kinetin (N6-furfuryladenine, HL(1)) and its derivative N6-(5-methylfurfuryl)adenine (HL(2)) have been synthesized and characterized by elemental analysis, infrared, and electronic spectroscopy, ESI+ mass spectrometry, conductivity and temperature dependence of magnetic susceptibility measurements, and thermogravimetric (TG) and differential thermal (DTA) analyses. The results of these methods, particularly the temperature dependence of magnetic susceptibility, showed the complexes to be dimeric with a strong antiferromagnetic exchange (J = -290 cm(-1) for complex 1 and J = -160 cm(-1) for 2). The complexes have been identified as auspicious SOD-mimics, as their antiradical activity evaluated by the in vitro SOD-mimic assay resulted in the IC(50) values equal to 8.13 μM (1) and 0.71 μM (2). PMID:22966218

  5. A Comparison of the Structure and Function of the Highly Homologous Maize Antioxidant Cu/Zn Superoxide Dismutase Genes, Sod4 and Sod4a

    PubMed Central

    Kernodle, S. P.; Scandalios, J. G.

    1996-01-01

    Two highly similar cytosolic Cu/Zn Sod (Sod4 and Sod4A) genes have been isolated from maize. Sod4A contains eight exons and seven introns. The Sod4 partial sequence contains five introns. The introns in both genes are located in the same position and have highly homologous sequences in several regions. The largest intron (>1200 bp) interrupts the 5' leader sequence. The presence of different regulatory motifs in the promoter region of each gene may indicate distinct responses to various conditions. Zymogram and RNA blot analyses show that Sod4 and Sod4A are expressed in all tissues of the maize plant. The developmental profiles of Sod4 and Sod4A mRNA accumulation differ in scutella during sporophytic development. RNA blot analysis of the respective Sod mRNAs indicates a differential, tissue-specific response of each gene to certain stressors. RNA isolated from stem tissue of ethephon-treated seedlings shows an increase in the Sod4 but not the Sod4A transcript while there is no change in transcripts of either gene in leaves or roots. There is differential mRNA accumulation between the two genes in leaf and stem tissue of paraquat-treated seedlings. Other agents that can cause oxidative stress were also tested for differential expression of the genes. PMID:8878695

  6. Tissue plasminogen activator followed by antioxidant-loaded nanoparticle delivery promotes activation/mobilization of progenitor cells in infarcted rat brain.

    PubMed

    Petro, Marianne; Jaffer, Hayder; Yang, Jun; Kabu, Shushi; Morris, Viola B; Labhasetwar, Vinod

    2016-03-01

    Inherent neuronal and circulating progenitor cells play important roles in facilitating neuronal and functional recovery post stroke. However, this endogenous repair process is rather limited, primarily due to unfavorable conditions in the infarcted brain involving reactive oxygen species (ROS)-mediated oxidative stress and inflammation following ischemia/reperfusion injury. We hypothesized that during reperfusion, effective delivery of antioxidants to ischemic brain would create an environment without such oxidative stress and inflammation, thus promoting activation and mobilization of progenitor cells in the infarcted brain. We administered recombinant human tissue-type plasminogen activator (tPA) via carotid artery at 3 h post stroke in a thromboembolic rat model, followed by sequential administration of the antioxidants catalase (CAT) and superoxide dismutase (SOD), encapsulated in biodegradable nanoparticles (nano-CAT/SOD). Brains were harvested at 48 h post stroke for immunohistochemical analysis. Ipsilateral brain slices from animals that had received tPA + nano-CAT/SOD showed a widespread distribution of glial fibrillary acidic protein-positive cells (with morphology resembling radial glia-like neural precursor cells) and nestin-positive cells (indicating the presence of immature neurons); such cells were considerably fewer in untreated animals or those treated with tPA alone. Brain sections from animals receiving tPA + nano-CAT/SOD also showed much greater numbers of SOX2- and nestin-positive progenitor cells migrating from subventricular zone of the lateral ventricle and entering the rostral migratory stream than in t-PA alone treated group or untreated control. Further, animals treated with tPA + nano-CAT/SOD showed far fewer caspase-positive cells and fewer neutrophils than did other groups, as well as an inhibition of hippocampal swelling. These results suggest that the antioxidants mitigated the inflammatory response, protected neuronal cells

  7. "catR": An R Package for Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Magis, David; Raiche, Gilles

    2011-01-01

    Computerized adaptive testing (CAT) is an active current research field in psychometrics and educational measurement. However, there is very little software available to handle such adaptive tasks. The R package "catR" was developed to perform adaptive testing with as much flexibility as possible, in an attempt to provide a developmental and…

  8. Raising awareness of common problems in older cats.

    PubMed

    2016-08-13

    The need to actively look for signs of disease in older cats was discussed during a recent conference held by the International Society of Feline Medicine (ISFM) in Malta. Delegates heard that many older cats could be suffering from diseases associated with ageing but might show only subtle clinical signs. Suzanne Jarvis reports. PMID:27516559

  9. Multiple representations of information in the primary auditory cortex of cats. I. Stability and change in slow components of unit activity after conditioning with a click conditioned stimulus.

    PubMed

    Woody, C D; Zotova, E; Gruen, E

    2000-06-16

    Recordings of activity were made from 647 single units of the A(I) cortex of awake cats to evaluate behavioral state-dependent changes in the population response to a 70-dB click. Averages of PST histograms of unit activity were used to assess the changes in response. This report focuses on slow components of the responses disclosed by averages employing bin widths of 16 ms. Responses were compared before and after a Pavlovian blink CR was produced by forward pairing of click conditioned stimuli (CSs) with USs. A backward-paired 70-dB hiss was presented as a discriminative stimulus. Studies were also done after backward pairing of the click CSs (backward conditioning) that produced weak sensitization instead of a conditioned response. There were four main findings. First, components of activity elicited 32-160 ms after presenting the hiss decreased significantly after conditioning and after backward conditioning. The decreases after conditioning represented the most pronounced changes in activity evoked by either clicks or hisses in this behavioral state. Second, baseline firing decreased after both conditioning and backward conditioning. The direction of baseline change was opposite that found in adjacent cortical regions and in A(I) cortex after operant conditioning employing an acoustic cue. Third, prior to conditioning, unit activity in response to the hiss declined before the sound of the hiss reached its peak or terminated. This decrease was thought to represent a habituatory adaptation of response to a prolonged acoustic stimulus. This type of habituation to a lengthy stimulus has been recognized, behaviorally, but has not been observed previously in the activity of units of the auditory receptive cortex. Fourth, the percentage of click responsive units did not change significantly after the click was used as a CS for conditioning, and despite the accompanying changes in baseline activity, the absolute levels of activity summed in the first 16 ms after click

  10. Loss of Antibiotic Tolerance in Sod-Deficient Mutants Is Dependent on the Energy Source and Arginine Catabolism in Enterococci

    PubMed Central

    Ladjouzi, Rabia; Bizzini, Alain; van Schaik, Willem; Zhang, Xinglin; Rincé, Alain; Benachour, Abdellah

    2015-01-01

    ABSTRACT Enterococci are naturally tolerant to typically bactericidal cell wall-active antibiotics, meaning that their growth is inhibited but they are not killed even when exposed to a high concentration of the drug. The molecular reasons for this extraordinary tolerance are still incompletely understood. Previous work showed that resistance to killing collapsed specifically in mutants affected in superoxide dismutase (Sod) activity, arguing that bactericidal antibiotic treatment led to induction of a superoxide burst. In the present work, we show that loss of antibiotic tolerance in ΔsodA mutants of pathogenic enterococci is dependent on the energy source present during antibiotic treatment. Hexoses induce greater killing than the pentose ribose, and no killing was observed with glycerol as the energy source. These results point to glycolytic reactions as crucial for antibiotic-mediated killing of ΔsodA mutants. A transposon mutant library was constructed in Enterococcus faecalis ΔsodA mutants and screened for restored tolerance of vancomycin. Partially restored tolerance was observed in mutants with transposon integrations into intergenic regions upstream of regulators implicated in arginine catabolism. In these mutants, the arginine deiminase operon was highly upregulated. A model for the action of cell wall-active antibiotics in tolerant and nontolerant bacteria is proposed. IMPORTANCE Antibiotic tolerance is a serious clinical concern, since tolerant bacteria have considerably increased abilities to resist killing by bactericidal drugs. Using enterococci as models for highly antibiotic-tolerant pathogens, we showed that tolerance of these bacteria is linked to their superoxide dismutase (Sod), arguing that bactericidal antibiotics induce generation of reactive oxygen species inside cells. Wild-type strains are tolerant because they detoxify these deleterious molecules by the activity of Sod, whereas Sod-deficient strains are killed. This study showed that

  11. Vibrational Schroedinger Cats

    NASA Technical Reports Server (NTRS)

    Kis, Z.; Janszky, J.; Vinogradov, An. V.; Kobayashi, T.

    1996-01-01

    The optical Schroedinger cat states are simple realizations of quantum states having nonclassical features. It is shown that vibrational analogues of such states can be realized in an experiment of double pulse excitation of vibrionic transitions. To track the evolution of the vibrational wave packet we derive a non-unitary time evolution operator so that calculations are made in a quasi Heisenberg picture.

  12. CAT altitude avoidance system

    NASA Technical Reports Server (NTRS)

    Gary, B. L. (Inventor)

    1982-01-01

    A method and apparatus are provided for indicating the altitude of the tropopause or of an inversion layer wherein clear air turbulence (CAT) may occur, and the likely severity of any such CAT, includes directing a passive microwave radiometer on the aircraft at different angles with respect to the horizon. The microwave radiation measured at a frequency of about 55 GHz represents the temperature of the air at an ""average'' range of about 3 kilometers, so that the sine of the angle of the radiometer times 3 kilometers equals the approximate altitude of the air whose temperature is measured. A plot of altitude (with respect to the aircraft) versus temperature of the air at that altitude, can indicate when an inversion layer is present and can indicate the altitude of the tropopause or of such an inversion layer. The plot can also indicate the severity of any CAT in an inversion layer. If CAT has been detected in the general area, then the aircraft can be flown at an altitude to avoid the tropopause or inversion layer.

  13. The molecular cat.

    PubMed

    Pedio, Maddalena; Chergui, Majed

    2009-02-23

    A manifestation of electronic entanglement in core-level spectroscopic measurements of diatomic molecules, reported recently by Schöffler and co-workers, is discussed. The results are reminiscent of Schrödinger's famous Gedanken experiment with the cat (see picture).

  14. Membranous nephropathy in sibling cats.

    PubMed

    Nash, A S; Wright, N G

    1983-08-20

    Membranous nephropathy was diagnosed in two sibling cats from the same household. Both cases presented with the nephrotic syndrome but 33 months elapsed before the second cat became ill, by which time the first cat had been in full clinical remission for over a year. PMID:6623883

  15. Cat Scratch Disease (For Parents)

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Cat Scratch Disease KidsHealth > For Parents > Cat Scratch Disease Print A A A Text Size ... Doctor en español Enfermedad por arañazo de gato Cat scratch disease is a bacterial infection that a ...

  16. EzCatDB: the enzyme reaction database, 2015 update.

    PubMed

    Nagano, Nozomi; Nakayama, Naoko; Ikeda, Kazuyoshi; Fukuie, Masaru; Yokota, Kiyonobu; Doi, Takuo; Kato, Tsuyoshi; Tomii, Kentaro

    2015-01-01

    The EzCatDB database (http://ezcatdb.cbrc.jp/EzCatDB/) has emphasized manual classification of enzyme reactions from the viewpoints of enzyme active-site structures and their catalytic mechanisms based on literature information, amino acid sequences of enzymes (UniProtKB) and the corresponding tertiary structures from the Protein Data Bank (PDB). Reaction types such as hydrolysis, transfer, addition, elimination, isomerization, hydride transfer and electron transfer have been included in the reaction classification, RLCP. This database includes information related to ligand molecules on the enzyme structures in the PDB data, classified in terms of cofactors, substrates, products and intermediates, which are also necessary to elucidate the catalytic mechanisms. Recently, the database system was updated. The 3D structures of active sites for each PDB entry can be viewed using Jmol or Rasmol software. Moreover, sequence search systems of two types were developed for the EzCatDB database: EzCat-BLAST and EzCat-FORTE. EzCat-BLAST is suitable for quick searches, adopting the BLAST algorithm, whereas EzCat-FORTE is more suitable for detecting remote homologues, adopting the algorithm for FORTE protein structure prediction software. Another system, EzMetAct, is also available to searching for major active-site structures in EzCatDB, for which PDB-formatted queries can be searched.

  17. EzCatDB: the enzyme reaction database, 2015 update.

    PubMed

    Nagano, Nozomi; Nakayama, Naoko; Ikeda, Kazuyoshi; Fukuie, Masaru; Yokota, Kiyonobu; Doi, Takuo; Kato, Tsuyoshi; Tomii, Kentaro

    2015-01-01

    The EzCatDB database (http://ezcatdb.cbrc.jp/EzCatDB/) has emphasized manual classification of enzyme reactions from the viewpoints of enzyme active-site structures and their catalytic mechanisms based on literature information, amino acid sequences of enzymes (UniProtKB) and the corresponding tertiary structures from the Protein Data Bank (PDB). Reaction types such as hydrolysis, transfer, addition, elimination, isomerization, hydride transfer and electron transfer have been included in the reaction classification, RLCP. This database includes information related to ligand molecules on the enzyme structures in the PDB data, classified in terms of cofactors, substrates, products and intermediates, which are also necessary to elucidate the catalytic mechanisms. Recently, the database system was updated. The 3D structures of active sites for each PDB entry can be viewed using Jmol or Rasmol software. Moreover, sequence search systems of two types were developed for the EzCatDB database: EzCat-BLAST and EzCat-FORTE. EzCat-BLAST is suitable for quick searches, adopting the BLAST algorithm, whereas EzCat-FORTE is more suitable for detecting remote homologues, adopting the algorithm for FORTE protein structure prediction software. Another system, EzMetAct, is also available to searching for major active-site structures in EzCatDB, for which PDB-formatted queries can be searched. PMID:25324316

  18. Guanabenz Treatment Accelerates Disease in a Mutant SOD1 Mouse Model of ALS.

    PubMed

    Vieira, Fernando G; Ping, Qinggong; Moreno, Andy J; Kidd, Joshua D; Thompson, Kenneth; Jiang, Bingbing; Lincecum, John M; Wang, Monica Z; De Zutter, Gerard S; Tassinari, Valerie R; Levine, Beth; Hatzipetros, Theo; Gill, Alan; Perrin, Steven

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of motor neurons. The mechanisms leading to motor neuron degeneration in ALS are unclear. However, there is evidence for involvement of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in ALS, notably in mutant SOD1 mediated models of ALS. Stress induced phosphorylation of the eIF2 alpha subunit by eukaryotic translation initiation factor 2-alpha kinase 3 Perk activates the UPR. Guanabenz is a centrally acting alpha2 adrenergic receptor agonist shown to interact with a regulatory subunit of the protein phosphatase, Pp1/Gadd34, and selectively disrupt the dephosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eif2alpha). Here we demonstrate that guanabenz is protective in fibroblasts expressing G93A mutant SOD1 when they are exposed to tunicamycin mediated ER stress. However, in contrast to other reports, guanabenz treatment accelerated ALS-like disease progression in a strain of mutant SOD1 transgenic ALS mice. This study highlights challenges of pharmacological interventions of cellular stress responses in whole animal models of ALS.

  19. Guanabenz Treatment Accelerates Disease in a Mutant SOD1 Mouse Model of ALS

    PubMed Central

    Vieira, Fernando G.; Ping, Qinggong; Moreno, Andy J.; Kidd, Joshua D.; Thompson, Kenneth; Jiang, Bingbing; Lincecum, John M.; Wang, Monica Z.; De Zutter, Gerard S.; Tassinari, Valerie R.; Levine, Beth; Hatzipetros, Theo; Gill, Alan; Perrin, Steven

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of motor neurons. The mechanisms leading to motor neuron degeneration in ALS are unclear. However, there is evidence for involvement of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in ALS, notably in mutant SOD1 mediated models of ALS. Stress induced phosphorylation of the eIF2 alpha subunit by eukaryotic translation initiation factor 2-alpha kinase 3 Perk activates the UPR. Guanabenz is a centrally acting alpha2 adrenergic receptor agonist shown to interact with a regulatory subunit of the protein phosphatase, Pp1/Gadd34, and selectively disrupt the dephosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eif2alpha). Here we demonstrate that guanabenz is protective in fibroblasts expressing G93A mutant SOD1 when they are exposed to tunicamycin mediated ER stress. However, in contrast to other reports, guanabenz treatment accelerated ALS-like disease progression in a strain of mutant SOD1 transgenic ALS mice. This study highlights challenges of pharmacological interventions of cellular stress responses in whole animal models of ALS. PMID:26288094

  20. Gene expressions of Mn-SOD and GPx-1 in streptozotocin-induced diabetes: effect of antioxidants.

    PubMed

    Sadi, Gökhan; Güray, Tülin

    2009-07-01

    Increased oxidative stress and impaired antioxidant defense mechanisms are believed to be the important factors contributing to the pathogenesis and progression of diabetes mellitus. In this study, we have reported the effects of the streptozotocin-induced diabetes on the gene expression and the activities of two antioxidant enzymes, manganese superoxide dismutase (MnSOD) and glutathione peroxidase (GPx). We also studied the effects of two antioxidants, vitamin C and DL-alpha-lipoic acid (LA), on the system. Our results showed no significant change in both enzymes activities in diabetic animals compared to controls. Similarly, mRNA and protein profiles of MnSOD showed no change. Though the mRNA expression of GPx did not show any change, Western-blot analysis results demonstrated that protein expression is increased. LA, which is a water- and lipid-soluble antioxidant, decreased the protein expression of MnSOD, though mRNA levels and activities remained unchanged. LA treatment increased the GPx activities in diabetic tissues, significantly, and RT-PCR and Western-blot analysis results demonstrated that this increase in activity is not regulated at the gene level, as both mRNA and protein levels did not change. Supplementing the animals with vitamin C, a powerful water-soluble antioxidant, increased the mRNA expression of MnSOD, though the protein expression and the activity did not change statistically. On the other hand GPx activity increased significantly through post-translational modifications, as both mRNA and protein expressions did not change. These results together with our previous findings about the gene expressions of catalase and Cu-Zn SOD indicate the presence of very intricate control mechanisms regulating the activities of antioxidant enzymes in order to prevent the damaging effects of oxidative stress.

  1. [Rate of microsuccessions: Structure and floristic richness recovery after sod transplantation in alpine plant communities].

    PubMed

    Kipkeev, A M; Cherednichenko, O V; Tekeev, D K; Onipchenko, V G

    2015-01-01

    Reciprocal transplantations of sod pieces have been conducted in alpine plant communities of the northwestern Caucasus. During 25 years, the changes in floristic richness and successional rates have been registered. Study objects were chosen to be. plant communities located along the toposequence from ridges to hollows with gradient of snow. cover thickness increase and vegetation period decrease, namely alpine lichen heath (ALH), Festuca varia grasslands (FVG), Geranium-Hedysarum meadows (GHM), and snow bed communities (SBC). The results of the study confirm the hypothesis about floristic richness of transplanted pieces to come closer to that of a background acceptor community. It is shown that during succession the variability reduces if sod pieces from different communities are transplanted into a common one. In particular, this is evident in case of SBC, where floristic richness of sod pieces transplanted from ALH and GHM has reduced noticeably. Also, it is evident from the results that the more different are donor and acceptor communities the higher is the rate of their changing. However, the assumption of higher succession rate in more productive communities has not been affirmed. On the opposite, communities with initially low productivity turned out to change faster than those with high productivity. It is found out that sod pieces transplanted to upper areas of the toposequence have had higher rate of alteration in comparison with those transplanted to lower areas. The reason behind this, as it may be suggested, is a longer growth season, which means a more prolonged period of high functional activity, and, accordingly, more time for the effects of competition, bringing seeds over, etc. In whole, the rate of succession decreases as the time from the moment of transplantation.increases, especially in communities with low productivity. PMID:26852571

  2. Solution oxygen-17 NMR application for observing a peroxidized cysteine residue in oxidized human SOD1

    NASA Astrophysics Data System (ADS)

    Fujiwara, Noriko; Yoshihara, Daisaku; Sakiyama, Haruhiko; Eguchi, Hironobu; Suzuki, Keiichiro

    2016-12-01

    NMR active nuclei, 1H, 13C and 15N, are usually used for determination of protein structure. However, solution 17O-NMR application to proteins is extremely limited although oxygen is an essential element in biomolecules. Proteins are oxidized through cysteine residues by two types of oxidation. One is reversible oxidation such as disulphide bonding (Cys-S-S-Cys) and the other is irreversible oxidation to cysteine sulfinic acid (Cys-SO 2H) and cysteine sulfonic acid (Cys-SO 3H). Copper,Zinc-superoxide dismutase (SOD1) is a key enzyme in the protection of cells from the superoxide anion radical. The SH group at Cys 111 residue in human SOD1 is selectively oxidized to -SO 2H and -SO 3H with atmospheric oxygen, and this oxidized human SOD1 is also suggested to play an important role in the pathophysiology of various neurodegenerative diseases, probably mainly via protein aggregation. Therefore, information on the structural and the dynamics of the oxidized cysteine residue would be crucial for the understanding of protein aggregation mechanism. Although the -SO 3H group on proteins cannot be directly detected by conventional NMR techniques, we successfully performed the site-specific 17O-labeling of Cys 111 in SOD1 using ^{17}it {O}2 gas and the 17O-NMR analysis for the first time. We observed clear 17O signal derived from a protein molecule and show that 17O-NMR is a sensitive probe for studying the structure and dynamics of the 17O-labeled protein molecule. This novel and unique strategy can have great impact on many research fields in biology and chemistry.

  3. The Chemistry of Cat Litter: Activities for High School Students to Evaluate a Commercial Product's Properties and Claims Using the Tools of Chemistry

    ERIC Educational Resources Information Center

    Celestino, Teresa; Marchetti, Fabio

    2015-01-01

    Educating future scientists and citizens is more effective if students are guided to correctly apply what they learned in school to their daily lives. This experience-based work is focused on the study of a well-known commercial product: cat litter. This material offers different starting points for a critical examination. Questions related to…

  4. Regulation of system x(c)- in the SOD1-G93A mouse model of ALS.

    PubMed

    Albano, Rebecca; Liu, XiaoQian; Lobner, Doug

    2013-12-01

    The cystine/glutamate antiporter (system xc-) is critical for the generation of the antioxidant glutathione by transporting cystine into the cell. At the same time, system xc- also releases glutamate, which can potentially lead to excitotoxicity. The dual actions of system xc- make it of great interest in any disease, like amyotrophic lateral sclerosis (ALS), in which there is evidence of the involvement of both oxidative stress and excitotoxicity. The present study investigated the regulation of system xc- in the spinal cord of the SOD1-G93A transgenic mouse model of ALS. In acute spinal cord slices of 70day old SOD1-G93A transgenic mice cystine uptake by system xc- was significantly increased compared to age matched non-transgenic mice; but it was not significantly different at 55, 100, or 130days. The 70day old SOD1-G93A transgenic mice also showed significantly increased glutamate release in the presence of cystine. d-Aspartate uptake through excitatory amino acid transporters (EAATs), the main mechanism by which glutamate is cleared from the extracellular space, was also examined. In spinal cord slices of 70day old SOD1-G93A mice no change in d-aspartate uptake was found. Together, these findings suggest that at 70days of age, SOD1-G93A transgenic mice have increased system xc- activity, but no change in EAAT function. These results raise the possibility that excitotoxicity in the SOD1-G93A transgenic mouse, at least at early time points, may be due to increased system xc- activity and not decreased EAAT function.

  5. X monosomy in a virilized female cat.

    PubMed

    Szczerbal, I; Nizanski, W; Dzimira, S; Nowacka-Woszuk, J; Ochota, M; Switonski, M

    2015-04-01

    An infertile Siamese female cat was subjected for clinical, histological, cytogenetic and molecular studies due to ambiguous external genitalia (vulva, vagina, rudimentary penis and scrotum-like structure) and masculine behaviour. An elevated oestrogen activity and a detectable level of testosterone were found. The cat underwent laparotomy. The gonads and the uterus were removed and subjected for histological studies, which showed ovaries with corpora lutea and a some primordial follicles. Chromosome studies of lymphocyte and fibroblast cultures, with the use of Giemsa staining, G-banding and whole X chromosome painting by fluorescence in situ hybridization, revealed pure X monosomy. Molecular analysis showed the absence of the SRY gene. Our study revealed for the first time that X monosomy in cats may be associated with virilization, in spite of the lack of the SRY gene. PMID:25611903

  6. X monosomy in a virilized female cat.

    PubMed

    Szczerbal, I; Nizanski, W; Dzimira, S; Nowacka-Woszuk, J; Ochota, M; Switonski, M

    2015-04-01

    An infertile Siamese female cat was subjected for clinical, histological, cytogenetic and molecular studies due to ambiguous external genitalia (vulva, vagina, rudimentary penis and scrotum-like structure) and masculine behaviour. An elevated oestrogen activity and a detectable level of testosterone were found. The cat underwent laparotomy. The gonads and the uterus were removed and subjected for histological studies, which showed ovaries with corpora lutea and a some primordial follicles. Chromosome studies of lymphocyte and fibroblast cultures, with the use of Giemsa staining, G-banding and whole X chromosome painting by fluorescence in situ hybridization, revealed pure X monosomy. Molecular analysis showed the absence of the SRY gene. Our study revealed for the first time that X monosomy in cats may be associated with virilization, in spite of the lack of the SRY gene.

  7. The superoxide dismutase SodA is targeted to the periplasm in a SecA-dependent manner by a novel mechanism.

    PubMed

    Krehenbrink, Martin; Edwards, Anne; Downie, J Allan

    2011-10-01

    The manganese/iron-type superoxide dismutase (SodA) of Rhizobium leguminosarum bv. viciae 3841 is exported to the periplasm of R. l. bv. viciae and Escherichia coli. However, it does not possess a hydrophobic cleaved N-terminal signal peptide typically present in soluble proteins exported by the Sec-dependent (Sec) pathway or the twin-arginine translocation (TAT) pathway. A tatC mutant of R. l. bv. viciae exported SodA to the periplasm, ruling out export of SodA as a complex with a TAT substrate as a chaperone. The export of SodA was unaffected in a secB mutant of E. coli, but its export from R. l. bv. viciae was inhibited by azide, an inhibitor of SecA ATPase activity. A temperature-sensitive secA mutant of E. coli was strongly reduced for SodA export. The 10 N-terminal amino acid residues of SodA were sufficient to target the reporter protein alkaline phosphatase to the periplasm. Our results demonstrate the export of a protein lacking a classical signal peptide to the periplasm by a SecA-dependent, but SecB-independent targeting mechanism. Export of the R. l. bv. viciae SodA to the periplasm was not limited to the genus Rhizobium, but was also observed in other proteobacteria.

  8. Cu/Zn superoxide dismutase mRNA and enzyme activity, and susceptibility to lipid peroxidation, increases with aging in murine brains.

    PubMed

    de Haan, J B; Newman, J D; Kola, I

    1992-04-01

    To protect against reactive oxygen species, prokaryotic and eukaryotic cells have developed an antioxidant defence mechanism where O2- is converted to H2O2 by superoxide dismutase (Sod), and in a second step, H2O2 is converted to H2O by catalase (Cat) and/or glutathione peroxidase (Gpx). If Sod levels are increased without a concomitant Gpx increase, then the intermediate H2O2 accumulates. This intermediate could undergo the Fenton's reaction, generating hydroxyl radicals which may lead to lipid peroxidation in cells. In this study, we investigate the expression of Sod1, Gpx1 and susceptibility to lipid peroxidation during the aging process in mouse brains. We demonstrate that the mRNA levels and enzyme activity of Sod1 are higher in brains from adult mice compared to neonatal mice. Furthermore, we show that a linear increase in Sod1 mRNA and enzyme activity occurs with aging (1-100 weeks). On the contrary, we find that the mRNA and enzyme activity for Gpx1 does not increase with aging in mouse brains. In addition, our results demonstrate that the susceptibility of murine brains to lipid peroxidation increases with aging. The data in this study are consistent with the notion that reactive oxygen species may contribute to the aging process in mammalian brains. These results are discussed in relation to the normal aging process in mammals, and to the premature aging and mental retardation in Down syndrome.

  9. Making a Cat's Eye in a Classroom

    ERIC Educational Resources Information Center

    Rovsek, Barbara

    2010-01-01

    Three plain mirrors, perpendicular to each other, reflect a beam of light back into the direction it came from. An activity is suggested where pupils can employ this feature of perpendicular mirrors and make their own corner cube retroreflector--a kind of cat's eye. (Contains 7 figures and 1 footnote.)

  10. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns

    PubMed Central

    Feng, Kun; Yu, Jiahong; Cheng, Yuan; Ruan, Meiying; Wang, Rongqing; Ye, Qingjing; Zhou, Guozhi; Li, Zhimiao; Yao, Zhuping; Yang, Yuejian; Zheng, Qingsong; Wan, Hongjian

    2016-01-01

    Superoxide dismutases (SODs) are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS) caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L.) is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants. PMID:27625661

  11. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns

    PubMed Central

    Feng, Kun; Yu, Jiahong; Cheng, Yuan; Ruan, Meiying; Wang, Rongqing; Ye, Qingjing; Zhou, Guozhi; Li, Zhimiao; Yao, Zhuping; Yang, Yuejian; Zheng, Qingsong; Wan, Hongjian

    2016-01-01

    Superoxide dismutases (SODs) are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS) caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L.) is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants.

  12. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns.

    PubMed

    Feng, Kun; Yu, Jiahong; Cheng, Yuan; Ruan, Meiying; Wang, Rongqing; Ye, Qingjing; Zhou, Guozhi; Li, Zhimiao; Yao, Zhuping; Yang, Yuejian; Zheng, Qingsong; Wan, Hongjian

    2016-01-01

    Superoxide dismutases (SODs) are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS) caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L.) is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants. PMID:27625661

  13. Genetic testing in domestic cats.

    PubMed

    Lyons, Leslie A

    2012-12-01

    Varieties of genetic tests are currently available for the domestic cat that support veterinary health care, breed management, species identification, and forensic investigations. Approximately thirty-five genes contain over fifty mutations that cause feline health problems or alterations in the cat's appearance. Specific genes, such as sweet and drug receptors, have been knocked-out of Felidae during evolution and can be used along with mtDNA markers for species identification. Both STR and SNP panels differentiate cat race, breed, and individual identity, as well as gender-specific markers to determine sex of an individual. Cat genetic tests are common offerings for commercial laboratories, allowing both the veterinary clinician and the private owner to obtain DNA test results. This article will review the genetic tests for the domestic cat, and their various applications in different fields of science. Highlighted are genetic tests specific to the individual cat, which are a part of the cat's genome.

  14. Antioxidant Enzymatic Activities and Gene Expression Associated with Heat Tolerance in the Stems and Roots of Two Cucurbit Species (“Cucurbita maxima” and “Cucurbita moschata”) and Their Interspecific Inbred Line “Maxchata”

    PubMed Central

    Ara, Neelam; Nakkanong, Korakot; Lv, Wenhui; Yang, Jinghua; Hu, Zhongyuan; Zhang, Mingfang

    2013-01-01

    The elucidation of heat tolerance mechanisms is required to combat the challenges of global warming. This study aimed to determine the antioxidant enzyme responses to heat stress, at the enzymatic activity and gene expression levels, and to investigate the antioxidative alterations associated with heat tolerance in the stems and roots of squashes using three genotypes differing in heat tolerance. Plants of heat-tolerant “C. moschata”, thermolabile “C. maxima” and moderately heat-tolerant interspecific inbred line “Maxchata” genotypes were exposed to moderate (37 °C) and severe (42 °C) heat shocks. “C. moschata” exhibited comparatively little oxidative damage, with the lowest hydrogen peroxide (H2O2), superoxide (O2−) and malondialdehyde (MDA) contents in the roots compared to stems, followed by “Maxchata”. The enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) were found to be increased with heat stress in tolerant genotypes. The significant inductions of FeSOD, MnSOD, APX2, CAT1 and CAT3 isoforms in tolerant genotypes suggested their participation in heat tolerance. The differential isoform patterns of SOD, APX and CAT between stems and roots also indicated their tissue specificity. Furthermore, despite the sequence similarity of the studied antioxidant genes among “C. maxima” and “Maxchata”, most of these genes were highly induced under heat stress in “Maxchata”, which contributed to its heat tolerance. This phenomenon also indicated the involvement of other unknown genetic and/or epigenetic factors in controlling the expression of these antioxidant genes in squashes, which demands further exploration. PMID:24336062

  15. Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit species ("Cucurbita maxima" and "Cucurbita moschata") and their interspecific inbred line "Maxchata".

    PubMed

    Ara, Neelam; Nakkanong, Korakot; Lv, Wenhui; Yang, Jinghua; Hu, Zhongyuan; Zhang, Mingfang

    2013-12-10

    The elucidation of heat tolerance mechanisms is required to combat the challenges of global warming. This study aimed to determine the antioxidant enzyme responses to heat stress, at the enzymatic activity and gene expression levels, and to investigate the antioxidative alterations associated with heat tolerance in the stems and roots of squashes using three genotypes differing in heat tolerance. Plants of heat-tolerant "C. moschata", thermolabile "C. maxima" and moderately heat-tolerant interspecific inbred line "Maxchata" genotypes were exposed to moderate (37 °C) and severe (42 °C) heat shocks. "C. moschata" exhibited comparatively little oxidative damage, with the lowest hydrogen peroxide (H2O2), superoxide (O2(-)) and malondialdehyde (MDA) contents in the roots compared to stems, followed by "Maxchata". The enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) were found to be increased with heat stress in tolerant genotypes. The significant inductions of FeSOD, MnSOD, APX2, CAT1 and CAT3 isoforms in tolerant genotypes suggested their participation in heat tolerance. The differential isoform patterns of SOD, APX and CAT between stems and roots also indicated their tissue specificity. Furthermore, despite the sequence similarity of the studied antioxidant genes among "C. maxima" and "Maxchata", most of these genes were highly induced under heat stress in "Maxchata", which contributed to its heat tolerance. This phenomenon also indicated the involvement of other unknown genetic and/or epigenetic factors in controlling the expression of these antioxidant genes in squashes, which demands further exploration.

  16. Cat scratch disease.

    PubMed

    Bozhkov, V; Madjov, R; Plachkov, I; Arnaudov, P; Chernopolsky, P; Krasnaliev, I

    2014-01-01

    Approximately 24,000 people are infected with cat scratch disease (CSD) every year. CSD is caused by the bacteria Bartonella henselae, a gram-negative bacteria most often transmitted to humans through a bite or scratch from an infected cat or kitten. Although CSD is often a benign and self-limiting condition, it can affect any major organ system in the body, manifesting in different ways and sometimes leading to lifelong sequelae. It is a disease that is often overlooked in primary care because of the wide range of symptom presentation and relative rarity of serious complications. It is important for health care providers to recognize patients at risk for CSD, know what laboratory testing and treatments are available, and be aware of complications that may arise from this disease in the future.

  17. Crystallized Schroedinger cat states

    SciTech Connect

    Castanos, O.; Lopez-Pena, R.; Man`ko, V.I.

    1995-11-01

    Crystallized Schroedinger cat states (male and female) are introduced on the base of extension of group construction for the even and odd coherent states of the electromagnetic field oscillator. The Wigner and Q functions are calculated and some are plotted for C{sub 2}, C{sub 3}, C{sub 4}, C{sub 5}, C{sub 3v} Schroedinger cat states. Quadrature means and dispersions for these states are calculated and squeezing and correlation phenomena are studied. Photon distribution functions for these states are given explicitly and are plotted for several examples. A strong oscillatory behavior of the photon distribution function for some field amplitudes is found in the new type of states.

  18. Effect of UV-C irradiation and low temperature storage on bioactive compounds, antioxidant enzymes and radical scavenging activity of papaya fruit.

    PubMed

    Rivera-Pastrana, Dulce M; Gardea, Alfonso A; Yahia, Elhadi M; Martínez-Téllez, Miguel A; González-Aguilar, Gustavo A

    2014-12-01

    Mature green 'Maradol' papaya fruits were exposed to ultraviolet (UV)-C irradiation (1.48 kJ·m(-2)) and stored at 5 or 14 °C. Changes in total phenols, total flavonoids, enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), as well as the scavenging activity against 2,2-diphenyl-1picrylhydrazyl (DPPH) and 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals were investigated in peel and flesh tissues at 0, 5, 10 and 15 days of storage. UV-C irradiation increased significantly (P < 0.05) the flavonoid content (2.5 and 26 %) and ABTS radical scavenging activity (5.7 and 6 %) in flesh and peel at 14 °C respectively; and CAT activity (16.7 %) in flesh at 5 °C. Flavonoid contents, CAT and SOD activities were positively affected under low storage temperature (5 °C). DPPH and ABTS radical scavenging activities increased in both control and UV-C treated papaya peel during storage at 5 °C. UV-C irradiation effect on radical scavenging of papaya peel could be attributed to increased flavonoid content. Papaya antioxidant system was activated by UV-C and cold storage by increasing phenolic content and antioxidant enzymatic activities as a defense response against oxidative-stress. PMID:25477649

  19. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin

    PubMed Central

    Pi, Huifeng; Xu, Shangcheng; Reiter, Russel J; Guo, Pan; Zhang, Lei; Li, Yuming; Li, Min; Cao, Zhenwang; Tian, Li; Xie, Jia; Zhang, Ruiqi; He, Mindi; Lu, Yonghui; Liu, Chuan; Duan, Weixia; Yu, Zhengping; Zhou, Zhou

    2015-01-01

    Cadmium is one of the most toxic metal compounds found in the environment. It is well established that Cd induces hepatotoxicity in humans and multiple animal models. Melatonin, a major secretory product of the pineal gland, has been reported to protect against Cd-induced hepatotoxicity. However, the mechanism behind this protection remains to be elucidated. We exposed HepG2 cells to different concentrations of cadmium chloride (2.5, 5, and 10 μM) for 12 h. We found that Cd induced mitochondrial-derived superoxide anion-dependent autophagic cell death. Specifically, Cd decreased SIRT3 protein expression and activity and promoted the acetylation of SOD2, superoxide dismutase 2, mitochondrial, thus decreasing its activity, a key enzyme involved in mitochondrial ROS production, although Cd did not disrupt the interaction between SIRT3 and SOD2. These effects were ameliorated by overexpression of SIRT3. However, a catalytic mutant of SIRT3 (SIRT3H248Y) lacking deacetylase activity lost the capacity to suppress Cd-induced autophagy. Notably, melatonin treatment enhanced the activity but not the expression of SIRT3, decreased the acetylation of SOD2, inhibited mitochondrial-derived O2•− production and suppressed the autophagy induced by 10 μM Cd. Moreover, 3-(1H-1,2,3-triazol-4-yl)pyridine, a confirmed selective SIRT3 inhibitor, blocked the melatonin-mediated suppression of autophagy by inhibiting SIRT3-SOD2 signaling. Importantly, melatonin suppressed Cd-induced autophagic cell death by enhancing SIRT3 activity in vivo. These results suggest that melatonin exerts a hepatoprotective effect on mitochondrial-derived O2•−-stimulated autophagic cell death that is dependent on the SIRT3/SOD2 pathway. PMID:26120888

  20. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin.

    PubMed

    Pi, Huifeng; Xu, Shangcheng; Reiter, Russel J; Guo, Pan; Zhang, Lei; Li, Yuming; Li, Min; Cao, Zhenwang; Tian, Li; Xie, Jia; Zhang, Ruiqi; He, Mindi; Lu, Yonghui; Liu, Chuan; Duan, Weixia; Yu, Zhengping; Zhou, Zhou

    2015-01-01

    Cadmium is one of the most toxic metal compounds found in the environment. It is well established that Cd induces hepatotoxicity in humans and multiple animal models. Melatonin, a major secretory product of the pineal gland, has been reported to protect against Cd-induced hepatotoxicity. However, the mechanism behind this protection remains to be elucidated. We exposed HepG2 cells to different concentrations of cadmium chloride (2.5, 5, and 10 μM) for 12 h. We found that Cd induced mitochondrial-derived superoxide anion-dependent autophagic cell death. Specifically, Cd decreased SIRT3 protein expression and activity and promoted the acetylation of SOD2, superoxide dismutase 2, mitochondrial, thus decreasing its activity, a key enzyme involved in mitochondrial ROS production, although Cd did not disrupt the interaction between SIRT3 and SOD2. These effects were ameliorated by overexpression of SIRT3. However, a catalytic mutant of SIRT3 (SIRT3(H248Y)) lacking deacetylase activity lost the capacity to suppress Cd-induced autophagy. Notably, melatonin treatment enhanced the activity but not the expression of SIRT3, decreased the acetylation of SOD2, inhibited mitochondrial-derived O2(•-) production and suppressed the autophagy induced by 10 μM Cd. Moreover, 3-(1H-1,2,3-triazol-4-yl)pyridine, a confirmed selective SIRT3 inhibitor, blocked the melatonin-mediated suppression of autophagy by inhibiting SIRT3-SOD2 signaling. Importantly, melatonin suppressed Cd-induced autophagic cell death by enhancing SIRT3 activity in vivo. These results suggest that melatonin exerts a hepatoprotective effect on mitochondrial-derived O2(•-)-stimulated autophagic cell death that is dependent on the SIRT3/SOD2 pathway.

  1. Mitochondrial damage revealed by immunoselection for ALS-linked misfolded SOD1

    PubMed Central

    Pickles, Sarah; Destroismaisons, Laurie; Peyrard, Sarah L.; Cadot, Sarah; Rouleau, Guy A.; Brown, Robert H.; Julien, Jean-Pierre; Arbour, Nathalie; Velde, Christine Vande

    2016-01-01

    Mutant superoxide dismutase 1 (SOD1) selectively associates with spinal cord mitochondria in rodent models of SOD1-mediated amyotrophic lateral sclerosis. A portion of mutant SOD1 exists in a non-native/misfolded conformation that is selectively recognized by conformational antibodies. Misfolded SOD1 is common to all mutant SOD1 models, is uniquely found in areas affected by the disease and is considered to mediate toxicity. We report that misfolded SOD1 recognized by the antibody B8H10 is present in greater abundance in mitochondrial fractions of SOD1G93A rat spinal cords compared with oxidized SOD1, as recognized by the C4F6 antibody. Using a novel flow cytometric assay, we detect an age-dependent deposition of B8H10-reactive SOD1 on spinal cord mitochondria from both SOD1G93A rats and SOD1G37R mice. Mitochondrial damage, including increased mitochondrial volume, excess superoxide production and increased exposure of the toxic BH3 domain of Bcl-2, tracks positively with the presence of misfolded SOD1. Lastly, B8H10 reactive misfolded SOD1 is present in the lysates and mitochondrial fractions of lymphoblasts derived from ALS patients carrying SOD1 mutations, but not in controls. Together, these results highlight misfolded SOD1 as common to two ALS rodent animal models and familial ALS patient lymphoblasts with four different SOD1 mutations. Studies in the animal models point to a role for misfolded SOD1 in mitochondrial dysfunction in ALS pathogenesis. PMID:23736301

  2. Periplasmic superoxide dismutase SodCI of Salmonella binds peptidoglycan to remain tethered within the periplasm

    PubMed Central

    Kim, Byoungkwan; Slauch, James M.

    2015-01-01

    Summary Salmonellae survive and propagate in macrophages to cause serious systemic disease. Periplasmic superoxide dismutase plays a critical role in this survival by combating phagocytic superoxide. Salmonella Typhimurium strain 14028 produces two periplasmic superoxide dismutases, SodCI and SodCII. Although both proteins are produced during infection, only SodCI is functional in the macrophage phagosome. We have previously shown that SodCI, relative to SodCII, is both protease resistant and tethered within the periplasm, and that either of these properties is sufficient to allow a SodC to protect against phagocytic superoxide. Tethering is defined as remaining cell-associated after osmotic shock or treatment with cationic antimicrobial peptides. Here we show that SodCI non-covalently binds peptidoglycan. SodCI binds to Salmonella and Bacillus peptidoglycan, but not peptidoglycan from Staphylococcus. Moreover, binding can be inhibited by a diaminopimelic acid containing tripeptide, but not a lysine containing tripeptide, showing that the protein recognizes the peptide portion of the peptidoglycan. Replacing nine amino acids in SodCII with the corresponding residues from SodCI confers tethering, partially delineating an apparently novel peptidoglycan binding domain. These changes in sequence increase the affinity of SodCII for peptidoglycan fragments to match that of SodCI, and allow the now tethered SodCII to function during infection. PMID:25998832

  3. Calpastatin inhibits motor neuron death and increases survival of hSOD1(G93A) mice.

    PubMed

    Rao, Mala V; Campbell, Jabbar; Palaniappan, Arti; Kumar, Asok; Nixon, Ralph A

    2016-04-01

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease with a poorly understood cause and no effective treatment. Given that calpains mediate neurodegeneration in other pathological states and are abnormally activated in ALS, we investigated the possible ameliorative effects of inhibiting calpain over-activation in hSOD1(G93A) transgenic (Tg) mice in vivo by neuron-specific over-expression of calpastatin (CAST), the highly selective endogenous inhibitor of calpains. Our data indicate that over-expression of CAST in hSOD1(G93A) mice, which lowered calpain activation to levels comparable to wild-type mice, inhibited the abnormal breakdown of cytoskeletal proteins (spectrin, MAP2 and neurofilaments), and ameliorated motor axon loss. Disease onset in hSOD1(G93A) /CAST mice compared to littermate hSOD1(G93A) mice is delayed, which accounts for their longer time of survival. We also find that neuronal over-expression of CAST in hSOD1(G93A) transgenic mice inhibited production of putative neurotoxic caspase-cleaved tau and activation of Cdk5, which have been implicated in neurodegeneration in ALS models, and also reduced the formation of SOD1 oligomers. Our data indicate that inhibition of calpain with CAST is neuroprotective in an ALS mouse model. CAST (encoding calpastatin) inhibits hyperactivated calpain to prevent motor neuron disease operating through a cascade of events as indicated in the schematic, with relevance to amyotrophic lateral sclerosis (ALS). We propose that over-expression of CAST in motor neurons of hSOD1(G93A) mice inhibits activation of CDK5, breakdown of cytoskeletal proteins (NFs, MAP2 and Tau) and regulatory molecules (Cam Kinase IV, Calcineurin A), and disease-causing proteins (TDP-43, α-Synuclein and Huntingtin) to prevent neuronal loss and delay neurological deficits. In our experiments, CAST could also inhibit cleavage of Bid, Bax, AIF to prevent mitochondrial, ER and lysosome-mediated cell death mechanisms. Similarly, CAST

  4. Helicobacter pylori isolated from the domestic cat: public health implications.

    PubMed Central

    Handt, L K; Fox, J G; Dewhirst, F E; Fraser, G J; Paster, B J; Yan, L L; Rozmiarek, H; Rufo, R; Stalis, I H

    1994-01-01

    Helicobacter pylori has been directly linked with active chronic gastritis, peptic ulceration, and gastric adenocarcinoma in humans. Although a substantial portion of the human population is colonized with H. pylori, the patterns of transmission of the organism remain in doubt, and reservoir hosts have not been identified. This study documents the isolation of H. pylori from domestic cats obtained from a commercial vendor. The isolation of H. pylori from these cats was confirmed by morphologic and biochemical evaluations, fatty acid analysis, and 16S rRNA sequence analysis. H. pylori was cultured from 6 cats and organisms compatible in appearance with H. pylori were observed in 15 additional cats by histologic examination. In most animals, H. pylori was present in close proximity to mucosal epithelial cells or in mucus layers of the glandular or surface epithelium. Microscopically, H. pylori-infected cat stomachs contained a mild to severe diffuse lymphoplasmacytic infiltrate with small numbers of neutrophils and eosinophils in the subglandular and gastric mucosae. Lymphoid follicles were also noted, particularly in the antrum, and often displaced glandular mucosal tissue. Thus, the domestic cat may be a potential model for H. pylori disease in humans. Also, the isolation of H. pylori from domestic cats raises the possibility that the organism may be a zoonotic pathogen, with transmission occurring from cats to humans. Images PMID:8188360

  5. Multiple invasions of an infectious retrovirus in cat genomes.

    PubMed

    Shimode, Sayumi; Nakagawa, So; Miyazawa, Takayuki

    2015-01-01

    Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of host germ-line cells. While most ERVs are defective, some are active and express viral proteins. The RD-114 virus is a replication-competent feline ERV, and several feline cell lines produce infectious RD-114 viral particles. All domestic cats are considered to have an ERV locus encoding a replication-competent RD-114 virus in their genomes; however, the locus has not been identified. In this study, we investigated RD-114 virus-related proviral loci in genomes of domestic cats, and found that none were capable of producing infectious viruses. We also found that all domestic cats have an RD-114 virus-related sequence on chromosome C2, termed RDRS C2a, but populations of the other RDRSs are different depending on the regions where cats live or breed. Our results indicate that RDRS C2a, the oldest RD-114-related provirus, entered the host genome before an ancestor of domestic cats started diverging and the other new RDRSs might have integrated into migrating cats in Europe. We also show that infectious RD-114 virus can be resurrected by the recombination between two non-infectious RDRSs. From these data, we conclude that cats do not harbor infectious RD-114 viral loci in their genomes and RD-114-related viruses invaded cat genomes multiple times. PMID:25641657

  6. Multiple invasions of an infectious retrovirus in cat genomes

    PubMed Central

    Shimode, Sayumi; Nakagawa, So; Miyazawa, Takayuki

    2015-01-01

    Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of host germ-line cells. While most ERVs are defective, some are active and express viral proteins. The RD-114 virus is a replication-competent feline ERV, and several feline cell lines produce infectious RD-114 viral particles. All domestic cats are considered to have an ERV locus encoding a replication-competent RD-114 virus in their genomes; however, the locus has not been identified. In this study, we investigated RD-114 virus-related proviral loci in genomes of domestic cats, and found that none were capable of producing infectious viruses. We also found that all domestic cats have an RD-114 virus-related sequence on chromosome C2, termed RDRS C2a, but populations of the other RDRSs are different depending on the regions where cats live or breed. Our results indicate that RDRS C2a, the oldest RD-114-related provirus, entered the host genome before an ancestor of domestic cats started diverging and the other new RDRSs might have integrated into migrating cats in Europe. We also show that infectious RD-114 virus can be resurrected by the recombination between two non-infectious RDRSs. From these data, we conclude that cats do not harbor infectious RD-114 viral loci in their genomes and RD-114-related viruses invaded cat genomes multiple times. PMID:25641657

  7. Multiple invasions of an infectious retrovirus in cat genomes.

    PubMed

    Shimode, Sayumi; Nakagawa, So; Miyazawa, Takayuki

    2015-02-02

    Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of host germ-line cells. While most ERVs are defective, some are active and express viral proteins. The RD-114 virus is a replication-competent feline ERV, and several feline cell lines produce infectious RD-114 viral particles. All domestic cats are considered to have an ERV locus encoding a replication-competent RD-114 virus in their genomes; however, the locus has not been identified. In this study, we investigated RD-114 virus-related proviral loci in genomes of domestic cats, and found that none were capable of producing infectious viruses. We also found that all domestic cats have an RD-114 virus-related sequence on chromosome C2, termed RDRS C2a, but populations of the other RDRSs are different depending on the regions where cats live or breed. Our results indicate that RDRS C2a, the oldest RD-114-related provirus, entered the host genome before an ancestor of domestic cats started diverging and the other new RDRSs might have integrated into migrating cats in Europe. We also show that infectious RD-114 virus can be resurrected by the recombination between two non-infectious RDRSs. From these data, we conclude that cats do not harbor infectious RD-114 viral loci in their genomes and RD-114-related viruses invaded cat genomes multiple times.

  8. Restoration of auditory nerve synapses in cats by cochlear implants.

    PubMed

    Ryugo, D K; Kretzmer, E A; Niparko, J K

    2005-12-01

    Congenital deafness results in abnormal synaptic structure in endings of the auditory nerve. If these abnormalities persist after restoration of auditory nerve activity by a cochlear implant, the processing of time-varying signals such as speech would likely be impaired. We stimulated congenitally deaf cats for 3 months with a six-channel cochlear implant. The device used human speech-processing programs, and cats responded to environmental sounds. Auditory nerve fibers exhibited a recovery of normal synaptic structure in these cats. This rescue of synapses is attributed to a return of spike activity in the auditory nerve and may help explain cochlear implant benefits in childhood deafness. PMID:16322457

  9. Risk behaviours exhibited by free-roaming cats in a suburban US town.

    PubMed

    Loyd, K A T; Hernandez, S M; Abernathy, K J; Shock, B C; Marshall, G J

    2013-09-28

    Free-roaming cats may experience numerous hazardous encounters in the outdoor environment, including: vehicular accidents, aggression from other animals and exposure to infectious disease. This research quantitatively examined the outdoor activities of 55 owned cats by monitoring pets outfitted with 'KittyCam' video cameras. KittyCams are a type of Crittercam, designed by National Geographic to allow recording of a cat-eye view without disrupting behaviour. We investigated the activities of free-roaming cats in suburban Athens-Clarke County, Georgia, during all four seasons. Research objectives included documenting the type and regularity of risk behaviours exhibited by free-roaming cats and identifying characteristics of pet cats (eg, age, sex, roaming habitat) which predict risky behaviour in the outdoors. The most common risk behaviours exhibited by suburban free-roaming cats included crossing roads (45 per cent of our sample), encountering strange cats (25 per cent), eating and drinking substances away from home (25 per cent), exploring storm drain systems (20 per cent), and entering crawlspaces of houses (20 per cent). Male cats were more likely to engage in risk behaviours than female cats, and older cats engaged in fewer risk behaviours than younger individuals. We hope this information can be used to encourage the public to keep cats indoors more often (with consideration for their indoor quality of life) or supervise them while outdoors. PMID:23913174

  10. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life.

    PubMed

    Elchuri, Sailaja; Oberley, Terry D; Qi, Wenbo; Eisenstein, Richard S; Jackson Roberts, L; Van Remmen, Holly; Epstein, Charles J; Huang, Ting-Ting

    2005-01-13

    Mice deficient in CuZn superoxide dismutase (CuZnSOD) showed no overt abnormalities during development and early adulthood, but had a reduced lifespan and increased incidence of neoplastic changes in the liver. Greater than 70% of Sod1-/- mice developed liver nodules that were either nodular hyperplasia or hepatocellular carcinoma (HCC). Cross-sectional studies with livers collected from Sod1-/- and age-matched +/+ controls revealed extensive oxidative damage in the cytoplasm and, to a lesser extent, in the nucleus and mitochondria from as early as 3 months of age. A marked reduction in cytosolic aconitase, increased levels of 8-oxo dG and F2-isoprostanes, and a moderate reduction in glutathione peroxidase activities and porin levels were observed in all age groups of Sod1-/- mice examined. There were also age-related reductions in Mn superoxide dismutase activities and carbonic anhydrase III. Parallel to the biochemical changes, there were progressive increases in the DNA repair enzyme APEX1, the cell cycle control proteins cyclin D1 and D3, and the hepatocyte growth factor receptor Met. Increased cell proliferation in the presence of persistent oxidative damage to macromolecules likely contributes to hepatocarcinogenesis later in life. PMID:15531919

  11. Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. I. Patterns of firing activity and synaptic responses.

    PubMed

    Baranyi, A; Szente, M B; Woody, C D

    1993-06-01

    1. Patterns of firing activity and characteristics of antidromic and synaptic responses to stimulation of the pyramidal tract at peduncular level [peduncular pyramidal tract (PP)] and the ventrolateral thalamic nucleus (VL) were studied in neurons of area 4 gamma of the motor cortex of awake, chronic cats using intracellular microelectrode techniques. The results offer a new functional classification of neocortical neurons based on electrophysiological properties of the 640 recorded cells. 2. Four classes of neurons were distinguished: (class i) inactivating bursting (ib) neurons (n = 60) including fast antidromic response PP (fPP) (n = 0), slow antidromic response PP (sPP) (n = 11), and no antidromic response PP cells (nPP) (n = 49); (class ii) noninactivating bursting (nib) neurons (n = 79), including fPP (n = 23), sPP (n = 0), and nPP cells (n = 56); (class iii) fast-spiking (fsp) neurons (n = 56), including fPP (n = 0), sPP (n = 0), and nPP cells (n = 56); and (class iv) regular-spiking (rsp) neurons (n = 445), including fPP (n = 96), sPP (n = 38), and nPP cells (n = 311). (Neurons in each classification were further separated by their antidromic responses to PP stimulation: fast PP (fPP) slow PP (sPP), or nPP cells, the latter not responding antidromically to electrical stimulation of the peduncle.) 3. Recurrent monosynaptic excitatory postsynaptic potentials (EPSPs) followed antidromic spikes elicited by PP stimulation in most (96%) fPP but much fewer (24%) sPP cells. In fPP cells, it was possible to separate the PP EPSPs into two monosynaptic EPSP components that were generated by other fPP and sPP cells, respectively. VL stimulation evoked monosynaptic EPSPs in 100% of fPP cells (vs. 63% of sPP cells) and antidromic action potentials in 16% of fPP cells (vs. 12% of sPP cells). 4. Firing activity consisted of single spike discharges in most PP cells; however, noninactivating bursting was observed in 19% of fPP cells, and inactivating bursting was observed in

  12. Inactivation of cytochrome c oxidase by mutant SOD1s in mouse motoneuronal NSC-34 cells is independent from copper availability but is because of nitric oxide.

    PubMed

    Arciello, Mario; Capo, Concetta Rosa; Cozzolino, Mauro; Ferri, Alberto; Nencini, Monica; Carrì, Maria Teresa; Rossi, Luisa

    2010-01-01

    The copper-enzyme cytochrome c oxidase (Cytox) has been indicated as a primary molecular target of mutant copper, zinc superoxide dismutase (SOD1) in familial amyotrophic lateral sclerosis (fALS); however, the mechanism underlying its inactivation is still unclear. As the toxicity of mutant SOD1s could arise from their selective recruitment to mitochondria, it is conceivable that they might compete with Cytox for the mitochondrial copper pool causing Cytox inactivation. To investigate this issue, we used mouse motoneuronal neuroblastoma x spinal cord cell line-34, stably transfected for the inducible expression of low amounts of wild-type or mutant (G93A, H46R, and H80R) human SOD1s and compared the effects observed on Cytox with those obtained by copper depletion. We demonstrated that all mutants analyzed induced cell death and decreased the Cytox activity, but not the protein content of the Cytox subunit II, at difference with copper depletion that also affected subunit II protein. Copper supplementation did not counteract mutant hSOD1s toxicity. Otherwise, the treatment of neuroblastoma x spinal cord cell line-34 expressing G93A, H46R, or H80R hSOD1 mutants, and showing constitutive expression of iNOS and nNOS, with either a NO scavenger, or NOS inhibitors prevented the inhibition of Cytox activity and rescued cell viability. These results support the involvement of NO in mutant SOD1s-induced Cytox damage, and mitochondrial toxicity. PMID:19845829

  13. Antioxidant enzymes activities of Burkholderia spp. strains-oxidative responses to Ni toxicity.

    PubMed

    Dourado, M N; Franco, M R; Peters, L P; Martins, P F; Souza, L A; Piotto, F A; Azevedo, R A

    2015-12-01

    Increased agriculture production associated with intense application of herbicides, pesticides, and fungicides leads to soil contamination worldwide. Nickel (Ni), due to its high mobility in soils and groundwater, constitutes one of the greatest problems in terms of environmental pollution. Metals, including Ni, in high concentrations are toxic to cells by imposing a condition of oxidative stress due to the induction of reactive oxygen species (ROS), which damage lipids, proteins, and DNA. This study aimed to characterize the Ni antioxidant response of two tolerant Burkholderia strains (one isolated from noncontaminated soil, SNMS32, and the other from contaminated soil, SCMS54), by measuring superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Ni accumulation and bacterial growth in the presence of the metal were also analyzed. The results showed that both strains exhibited different trends of Ni accumulation and distinct antioxidant enzymes responses. The strain from contaminated soil (SCMS54) exhibited a higher Ni biosorption and exhibited an increase in SOD and GST activities after 5 and 12 h of Ni exposure. The analysis of SOD, CAT, and GR by nondenaturing PAGE revealed the appearance of an extra isoenzyme in strain SCMS54 for each enzyme. The results suggest that the strain SCMS54 isolated from contaminated soil present more plasticity with potential to be used in soil and water bioremediation.

  14. Antioxidant enzymes activities of Burkholderia spp. strains-oxidative responses to Ni toxicity.

    PubMed

    Dourado, M N; Franco, M R; Peters, L P; Martins, P F; Souza, L A; Piotto, F A; Azevedo, R A

    2015-12-01

    Increased agriculture production associated with intense application of herbicides, pesticides, and fungicides leads to soil contamination worldwide. Nickel (Ni), due to its high mobility in soils and groundwater, constitutes one of the greatest problems in terms of environmental pollution. Metals, including Ni, in high concentrations are toxic to cells by imposing a condition of oxidative stress due to the induction of reactive oxygen species (ROS), which damage lipids, proteins, and DNA. This study aimed to characterize the Ni antioxidant response of two tolerant Burkholderia strains (one isolated from noncontaminated soil, SNMS32, and the other from contaminated soil, SCMS54), by measuring superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Ni accumulation and bacterial growth in the presence of the metal were also analyzed. The results showed that both strains exhibited different trends of Ni accumulation and distinct antioxidant enzymes responses. The strain from contaminated soil (SCMS54) exhibited a higher Ni biosorption and exhibited an increase in SOD and GST activities after 5 and 12 h of Ni exposure. The analysis of SOD, CAT, and GR by nondenaturing PAGE revealed the appearance of an extra isoenzyme in strain SCMS54 for each enzyme. The results suggest that the strain SCMS54 isolated from contaminated soil present more plasticity with potential to be used in soil and water bioremediation. PMID:26289332

  15. Targeting SOD1 reduces experimental non–small-cell lung cancer

    PubMed Central

    Glasauer, Andrea; Sena, Laura A.; Diebold, Lauren P.; Mazar, Andrew P.; Chandel, Navdeep S.

    2013-01-01

    Approximately 85% of lung cancers are non–small-cell lung cancers (NSCLCs), which are often diagnosed at an advanced stage and associated with poor prognosis. Currently, there are very few therapies available for NSCLCs due to the recalcitrant nature of this cancer. Mutations that activate the small GTPase KRAS are found in 20% to 30% of NSCLCs. Here, we report that inhibition of superoxide dismutase 1 (SOD1) by the small molecule ATN-224 induced cell death in various NSCLC cells, including those harboring KRAS mutations. ATN-224–dependent SOD1 inhibition increased superoxide, which diminished enzyme activity of the antioxidant glutathione peroxidase, leading to an increase in intracellular hydrogen peroxide (H2O2) levels. We found that ATN-224–induced cell death was mediated through H2O2-dependent activation of P38 MAPK and that P38 activation led to a decrease in the antiapoptotic factor MCL1, which is often upregulated in NSCLC. Treatment with both ATN-224 and ABT-263, an inhibitor of the apoptosis regulators BCL2/BCLXL, augmented cell death. Furthermore, we demonstrate that ATN-224 reduced tumor burden in a mouse model of NSCLC. Our results indicate that antioxidant inhibition by ATN-224 has potential clinical applications as a single agent, or in combination with other drugs, for the treatment of patients with various forms of NSCLC, including KRAS-driven cancers. PMID:24292713

  16. Association of the Ala16Val MnSOD gene polymorphism with plasma leptin levels and oxidative stress biomarkers in obese patients.

    PubMed

    Becer, Eda; Çırakoğlu, Ayşe

    2015-08-15

    Chronic oxidative stress is a major characteristic of obesity. Manganese superoxide dismutase (MnSOD) is an antioxidant enzyme known to be present within mitochondria and is considered a main defense against oxidative stress. The aim of this study was to investigate the association between the MnSOD gene Ala16Val polymorphism in obesity in terms of body mass index (BMI), lipid parameters, plasma leptin levels, homeostasis model assessment of insulin resistance (HOMA-IR), and oxidative stress biomarkers. The study included 150 obese and 120 non-obese subjects. The MnSOD Ala16Val polymorphism was determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Plasma leptin levels, serum lipid, superoxide dismutase (SOD), malondialdehyde (MDA), and anthropometric parameters were measured. No association was found between the MnSOD gene Ala16Val polymorphism and BMI in the study or control group. Strikingly, in the study group, obese subjects with the VV genotype had significantly higher plasma leptin levels (p<0.001) than those with the AA and AV genotypes. Serum total cholesterol (p<0.01) and MDA (p<0.001) levels were significantly higher in subjects with the VV genotype for MnSOD in the obese and non-obese groups. In the obese group, subjects with the VV genotype had significantly lower SOD (p<0.001) activity than the AA and AV genotypes. Our results suggest that the MnSOD gene polymorphism was associated with leptin levels and superoxide dismutase activity in the obese group but had no direct association with obesity. Moreover, the Ala16Val polymorphism has a significant effect on lipid profiles and MDA levels in both obese and non-obese subjects.

  17. Hypereosinophilic syndrome in two cats.

    PubMed

    Takeuchi, Yoshinori; Matsuura, Shinobu; Fujino, Yasuhito; Nakajima, Mayumi; Takahashi, Masashi; Nakashima, Ko; Sakai, Yusuke; Uetsuka, Koji; Ohno, Koichi; Nakayama, Hiroyuki; Tsujimoto, Hajime

    2008-10-01

    Two cats showing chronic vomiting, diarrhea and weight loss were found to have leukocytosis with marked eosinophilia. Both cats were diagnosed with hypereosinophilic syndrome by the findings of increased eosinophils and their precursors in the bone marrow, eosinophilic infiltration into multiple organs, and exclusion of other causes for eosinophilia. Although cytoreductive chemotherapy with hydroxycarbamide and prednisolone was performed, these two cats died 48 days and 91 days after the initial presentation. PMID:18981665

  18. Hydrogen peroxide mediates hyperglycemia-induced invasive activity via ERK and p38 MAPK in human pancreatic cancer

    PubMed Central

    Ma, Jiguang; Li, Xuqi; Xu, Qinhong; Duan, Wanxing; Chen, Xin; Lv, Yunfu; Zhou, Shuang; Wu, Erxi; Ma, Qingyong; Huo, Xiongwei

    2015-01-01

    Diabetes mellitus and pancreatic cancer are intimately related, as approximately 85% of pancreatic cancer patients suffer from glucose intolerance or even diabetes. In this study, we evaluate the underlying mechanism by which hyperglycemia modulates the invasive potential of cancer cells and contributes to their enhanced metastatic behavior. Here we show that hyperglycemia increases the hydrogen peroxide (H2O2) concentration through up-regulation of manganese superoxide dismutase (SOD2) expression, which further activates the ERK and p38 MAPK pathways, as well as the transcription factors NF-κB and AP-1, in a time-dependent manner. The invasion of pancreatic cancer cells resulting from the activation of the H2O2/MAPK axis under high glucose conditions is effectively inhibited by PD 98059 (ERK inhibitor), SB 203580 (p38 MAPK inhibitor), polyethylene glycol-conjugated catalase (PEG-CAT), or the siRNA specific to SOD2. In addition, streptozotocin-treated diabetic nude mice exhibit a stronger tumor invasive ability in renal capsule xenografts which could be suppressed by PEG-CAT treatment. Furthermore, the integrated optical density (IOD) of SOD2 and uPA stainings is higher in the tumor tissues of pancreatic cancer patients with diabetes compared with pancreatic cancer patients with euglycemia. Taken together, our results demonstrate that hyperglycemia enhances cell invasive ability through the SOD2/H2O2/MAPK axis in human pancreatic cancer. Thus, SOD2/H2O2/MAPK axis may represent a promising therapeutic target for pancreatic cancer patients combined with diabetes mellitus. PMID:26439801

  19. Contraceptive vaccines for the humane control of community cat populations.

    PubMed

    Levy, Julie K

    2011-07-01

    Free-roaming unowned stray and feral cats exist throughout the world, creating concerns regarding their welfare as well as their impact on the environment and on public health. Millions of healthy cats are culled each year in an attempt to control their numbers. Surgical sterilization followed by return to the environment is an effective non-lethal population control method but is limited in scope because of expense and logistical impediments. Immunocontraception has the potential to be a more practical and cost-effective method of control. This is a review of current research in immunocontraception in domestic cats. Functional characteristics of an ideal immunocontraceptive for community cats would include a wide margin of safety for target animals and the environment, rapid onset and long duration of activity following a single treatment in males and females of all ages, and sex hormone inhibition. In addition, product characteristics should include stability and ease of use under field conditions, efficient manufacturing process, and low cost to the user. Two reproductive antigens, zona pellucida and GnRH, have been identified as possible targets for fertility control in cats. Zona pellucida, which is used successfully in multiple wildlife species, has achieved little success in cats. In contrast, immunization against GnRH has resulted in long-term contraception in both male and female cats following a single dose. GnRH is an ideal contraceptive target because it regulates pituitary and gonadal hormone responses in both males and females, thus suppressing nuisance behaviors associated with sex hormones in addition to preventing pregnancy. The responsiveness of cats to fertility control via GnRH suppression should encourage researchers and cat control stakeholders to continue efforts to optimize vaccines that induce multiyear contraception following a single dose in a high proportion of treated cats.

  20. Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene.

    PubMed

    Aksmann, Anna; Pokora, Wojciech; Baścik-Remisiewicz, Agnieszka; Dettlaff-Pokora, Agnieszka; Wielgomas, Bartosz; Dziadziuszko, Małgorzata; Tukaj, Zbigniew

    2014-12-01

    Heavy metals (HM) and polycyclic aromatic hydrocarbons (PAHs) are present in the freshwater environment at concentrations that can be hazardous to the biota. Among HMs and PAHs, cadmium (Cd) and anthracene (ANT) are the most prevalent and toxic ones. The response of Chlamydomonas cells to Cd and ANT at concentrations that markedly reduced the growth of algal population was investigated in this study. At such concentrations, both cadmium and anthracene were recognized as oxidative stress inducers, since high concentration of H2O2 in treated cultures was observed. Therefore, as a part of the "molecular phase" of the cell response to this stress, we examined the time-dependent expression of genes encoding the main antioxidative enzymes: superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), as well as the activity of these enzymes in cells, with special attention paid to chloroplastic and mitochondrial isoforms of SOD. To characterize the cell response at the "physiological level", we examined the photosynthetic activity of stressed cells via analysis of chlorophyll a fluorescence in vivo. In contrast to standard ecotoxicity studies in which the growth end-points are usually determined, herein we present time-dependent changes in algal cell response to Cd- and ANT-induced stress. The most significant effect(s) of the toxicants on photosynthetic activity was observed in the 6th hour, when strong depression of PI parameter value, an over 50 percent reduction of the active reaction center fraction (RC0) and a 3-fold increase in non-photochemical energy dissipation (DI0/RC) were noted. At the same time, the increase (up to 2.5-fold) in mRNA transcript of SOD and CAT genes, followed by the enhancement in the enzyme activity was observed. The high expression of the Msd 3 gene in treated Chlamydomonas cells probably complements the partial loss of chloroplast Fe-SOD and APX activity, while catalase and Mn-SOD 5 seem to be the major enzymes responsible for

  1. Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene.

    PubMed

    Aksmann, Anna; Pokora, Wojciech; Baścik-Remisiewicz, Agnieszka; Dettlaff-Pokora, Agnieszka; Wielgomas, Bartosz; Dziadziuszko, Małgorzata; Tukaj, Zbigniew

    2014-12-01

    Heavy metals (HM) and polycyclic aromatic hydrocarbons (PAHs) are present in the freshwater environment at concentrations that can be hazardous to the biota. Among HMs and PAHs, cadmium (Cd) and anthracene (ANT) are the most prevalent and toxic ones. The response of Chlamydomonas cells to Cd and ANT at concentrations that markedly reduced the growth of algal population was investigated in this study. At such concentrations, both cadmium and anthracene were recognized as oxidative stress inducers, since high concentration of H2O2 in treated cultures was observed. Therefore, as a part of the "molecular phase" of the cell response to this stress, we examined the time-dependent expression of genes encoding the main antioxidative enzymes: superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), as well as the activity of these enzymes in cells, with special attention paid to chloroplastic and mitochondrial isoforms of SOD. To characterize the cell response at the "physiological level", we examined the photosynthetic activity of stressed cells via analysis of chlorophyll a fluorescence in vivo. In contrast to standard ecotoxicity studies in which the growth end-points are usually determined, herein we present time-dependent changes in algal cell response to Cd- and ANT-induced stress. The most significant effect(s) of the toxicants on photosynthetic activity was observed in the 6th hour, when strong depression of PI parameter value, an over 50 percent reduction of the active reaction center fraction (RC0) and a 3-fold increase in non-photochemical energy dissipation (DI0/RC) were noted. At the same time, the increase (up to 2.5-fold) in mRNA transcript of SOD and CAT genes, followed by the enhancement in the enzyme activity was observed. The high expression of the Msd 3 gene in treated Chlamydomonas cells probably complements the partial loss of chloroplast Fe-SOD and APX activity, while catalase and Mn-SOD 5 seem to be the major enzymes responsible for

  2. Role of Hog1, Tps1 and Sod1 in boric acid tolerance of Saccharomyces cerevisiae.

    PubMed

    Schmidt, Martin; Akasaka, Kento; Messerly, Jeffrey T; Boyer, Michael P

    2012-10-01

    In order to identify genetic contributions to boric acid (BA) resistance, a yeast knockout collection was screened for BA-sensitive mutants. Prominent among the BA-sensitive mutants were strains with defects in the cytoplasmic part of the high osmolarity/glycerol (HOG) signalling pathway, the trehalose-synthesis pathway (TPS1/TPS2) and the copper-zinc superoxide dismutase SOD1. An analysis of HOG-pathway mutants and fluorescence microscopy of Hog1-GFP fusions showed that the non-redundant cytoplasmic components of the pathway, Pbs2p and Hog1p, are required to maintain BA resistance, but that import of the activated Hog1p kinase into the nucleus neither occurs during BA stress nor is necessary for wild-type-like BA tolerance. Pbs2p and Hog1p are also required to support normal morphogenesis during BA stress as their absence leads to BA-induced hyperpolarized growth. An analysis of Sod1p and Tps1p expression revealed that BA stress induces superoxide dismutase and increases trehalose synthesis activity, albeit only after a 7 h delay. We conclude that normal BA resistance of Saccharomyces cerevisiae depends on the functioning of HOG signalling, the trehalose synthesis pathway and superoxide dismutase activity. PMID:22902726

  3. Role of Hog1, Tps1 and Sod1 in boric acid tolerance of Saccharomyces cerevisiae.

    PubMed

    Schmidt, Martin; Akasaka, Kento; Messerly, Jeffrey T; Boyer, Michael P

    2012-10-01

    In order to identify genetic contributions to boric acid (BA) resistance, a yeast knockout collection was screened for BA-sensitive mutants. Prominent among the BA-sensitive mutants were strains with defects in the cytoplasmic part of the high osmolarity/glycerol (HOG) signalling pathway, the trehalose-synthesis pathway (TPS1/TPS2) and the copper-zinc superoxide dismutase SOD1. An analysis of HOG-pathway mutants and fluorescence microscopy of Hog1-GFP fusions showed that the non-redundant cytoplasmic components of the pathway, Pbs2p and Hog1p, are required to maintain BA resistance, but that import of the activated Hog1p kinase into the nucleus neither occurs during BA stress nor is necessary for wild-type-like BA tolerance. Pbs2p and Hog1p are also required to support normal morphogenesis during BA stress as their absence leads to BA-induced hyperpolarized growth. An analysis of Sod1p and Tps1p expression revealed that BA stress induces superoxide dismutase and increases trehalose synthesis activity, albeit only after a 7 h delay. We conclude that normal BA resistance of Saccharomyces cerevisiae depends on the functioning of HOG signalling, the trehalose synthesis pathway and superoxide dismutase activity.

  4. Serum thyroxine concentrations after radioactive iodine therapy in cats with hyperthyroidism

    SciTech Connect

    Meric, S.M.; Hawkins, E.C.; Washabau, R.J.; Turrel, J.M.; Feldman, E.C.

    1986-05-01

    Thirty-one cats with hyperthyroidism were given one dose of radioactive iodine (131I) IV. Serum thyroxine (T4) concentrations were measured before treatment in all cats, at 12-hour intervals after treatment in 10 cats, and at 48-hour intervals after treatment in 21 cats. Serum T4 concentrations also were measured one month after /sup 131/I therapy in 29 cats. Activity of 131I administered was 1.5 to 6.13 mCi, resulting in a dose of 20,000 rads to the thyroid. Serum T4 concentrations before /sup 131/I administration were 5.3 to 51.0 micrograms/dl, with a median T4 concentration of 11.0 micrograms/dl. Serum T4 decreased most rapidly during the first 3 to 6 days after treatment. Sixteen cats (55%) had normal serum thyroxine concentrations by day 4 after 131I administration, and 23 cats (74%) were euthyroxinemic by day 8 after treatment. One month after administration of 131I, the 29 cats evaluated were clinically improved, and 24 (83%) of the 29 cats evaluated had normal serum T4 concentrations, 3 cats (10%) remained hyperthyroxinemic, and 2 cats (7%) were hypothyroxinemic. Therefore, administration of 131I was a safe and effective method to quickly decrease serum T4 concentrations in hyperthyroid cats.

  5. Two superoxide dismutase (SOD) with different subcellular localizations involved in innate immunity in Crassostrea hongkongensis.

    PubMed

    Yu, Ziniu; He, Xiaocui; Fu, Dingkun; Zhang, Yang

    2011-10-01

    SODs are ubiquitous metalloenzymes that can scavenge superoxides in response to various stresses. In the present study, full-length cDNAs of two SOD genes were isolated from Crassostrea hongkongensis (designated ChMnSOD and ChCuZnSOD). The cDNAs are 997 and 918 bp in length with ORFs of 675 and 468 bp (encoding 225 and 156 amino acids), respectively. Sequence analysis revealed a conserved Sod_Fe domain in ChMnSOD, and a Sod_Cu_Zn domain in ChCuZnSOD. Subcellular localization of ChMnSOD is mitochondrial while intracellular expression of ChCuZnSOD is detected. Although their expression overlaps in a wide range of tissues, ChMnSOD mRNA expression is high in gonad while ChCuZnSOD's is strong in adductor muscle. After infection by Vibrio alginolyticus, ChMnSOD mRNA was up-regulated 5 fold (p < 0.05) at 4 h, but returned to normal level 6 h post-infection. The expression of ChCuZnSOD gene showed a slight delay to the infection challenge and was elevated roughly 4 fold after 8 h (p < 0.05), returning to normal at 12 h post-infection. The elevated transcript levels of the two SOD genes in response to V. alginolyticus infection highlights their important functions in eliminating toxic reactive oxygen species (ROS) and protecting organisms from bacterial invasion in C. hongkongensis.

  6. Astrocytes expressing mutant SOD1 and TDP43 trigger motoneuron death that is mediated via sodium channels and nitroxidative stress.

    PubMed

    Rojas, Fabiola; Cortes, Nicole; Abarzua, Sebastian; Dyrda, Agnieszka; van Zundert, Brigitte

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal paralytic disorder caused by dysfunction and degeneration of motor neurons. Multiple disease-causing mutations, including in the genes for SOD1 and TDP-43, have been identified in ALS. Astrocytes expressing mutant SOD1 are strongly implicated in the pathogenesis of ALS: we have shown that media conditioned by astrocytes carrying mutant SOD1(G93A) contains toxic factor(s) that kill motoneurons by activating voltage-sensitive sodium (Na v ) channels. In contrast, a recent study suggests that astrocytes expressing mutated TDP43 contribute to ALS pathology, but do so via cell-autonomous processes and lack non-cell-autonomous toxicity. Here we investigate whether astrocytes that express diverse ALS-causing mutations release toxic factor(s) that induce motoneuron death, and if so, whether they do so via a common pathogenic pathway. We exposed primary cultures of wild-type spinal cord cells to conditioned medium derived from astrocytes (ACM) that express SOD1 (ACM-SOD1(G93A) and ACM-SOD1(G86R)) or TDP43 (ACM-TDP43(A315T)) mutants; we show that such exposure rapidly (within 30-60 min) increases dichlorofluorescein (DCF) fluorescence (indicative of nitroxidative stress) and leads to extensive motoneuron-specific death within a few days. Co-application of the diverse ACMs with anti-oxidants Trolox or esculetin (but not with resveratrol) strongly improves motoneuron survival. We also find that co-incubation of the cultures in the ACMs with Na v channel blockers (including mexiletine, spermidine, or riluzole) prevents both intracellular nitroxidative stress and motoneuron death. Together, our data document that two completely unrelated ALS models lead to the death of motoneuron via non-cell-autonomous processes, and show that astrocytes expressing mutations in SOD1 and TDP43 trigger such cell death through a common pathogenic pathway that involves nitroxidative stress, induced at least in part by Na v channel activity. PMID

  7. The effects of superoxide dismutase addition to the transport medium on cumulus-oocyte complex apoptosis and IVF outcome in cats (Felis catus).

    PubMed

    Cocchia, Natascia; Corteggio, Annunziata; Altamura, Gennaro; Tafuri, Simona; Rea, Silviana; Rosapane, Isabella; Sica, Alessandro; Landolfi, Francesco; Ciani, Francesca

    2015-03-01

    The aim of the present study was to examine the effects of superoxide dismutase (SOD) addition to the ovary transport medium (4°C, 3-72 h) on ovarian cell viability and apoptosis and in vitro embryo production (IVEP) in domestic cats. The ovaries collected from 76 mixed-breed domestic queens were randomly assigned to the control or SOD-treated groups and incubated for 3, 24, 48 or 72 h. The ovaries were then subjected to the following: (1) fixed in formalin to assess the incidence of apoptosis (fragmented DNA in situ detection kit), (2) stored at -196°C in liquid nitrogen to evaluate the expression of the pro-apoptotic Bax gene and the anti-apoptotic Bcl-2 gene (RT-PCR), and (3) used to obtain the cumulus-oocyte complexes (COCs) in order to test the cell viability (carboxyfluorescein or trypan blue staining) and IVEP. The incidence of apoptosis appeared to be higher in the control compared with the SOD-treated ovaries. The ovarian expression of Bax was lower and the Bcl-2 expression was higher in the SOD-treated group compared with the control group. The presence of SOD in the transport medium increased the viability of COCs and IVEP compared with the control medium. In summary, the supplementation of the ovary transport medium with SOD reduced cellular apoptosis and enhanced COC survival and IVEP in domestic cats. PMID:25726378

  8. Managing odds in stem cells: insights into the role of mitochondrial antioxidant enzyme MnSOD.

    PubMed

    Sheshadri, Preethi; Kumar, Anujith

    2016-01-01

    Reactive oxygen species (ROS) have been poised at a straddled state of being beneficiary as well detrimental depending on its threshold levels. Maintaining the homeostasis of ROS is imperative for normal cellular physiology, wherein physiological concentrations of ROS are involved in cell signaling and elevated ROS contribute to the development of various diseases. Superoxide dismutases (SODs), enzymes involved in dismutation of superoxide anion to hydrogen peroxide, arrive as a first line of defense when there is perturbation in the homeostasis of ROS. As mitochondria are the main site of superoxide production, among SODs, mitochondrial manganese SOD (MnSOD) is the primary antioxidant enzyme that protects cells from ROS. Most importantly, knockout of MnSOD leads to postnatal lethality and tissue-specific conditional knockout in brain resulted in death of mice, conclusively portraying the essential role of MnSOD in development. Although MnSOD has been extensively discussed with the purview of tumor biology and aging, understanding the crucial role of MnSOD in stem cell physiology is still at its infant stage. Ever increasing progress in stem cell research has recently unveiled the essential role of MnSOD in self-renewal and differentiation of stem cells. In this review, we will conglomerate the current aspects by which MnSOD can contribute to embryonic stem cells' and adult stem cells' functions and interpret the necessity of understanding MnSOD for further stem cell mediated applications.

  9. College Students and Their Cats

    ERIC Educational Resources Information Center

    Weinstein, Lawrence; Alexander, Ralph

    2010-01-01

    Twenty-two Siamese and 32 mixed breed cats' personalities were rated by their respective college student owners and compared. Further, the owners' self rated personality traits were correlated with the pets'; significant Siamese and Mixed differences and correlations were obtained. These are the first data to examine breed of cat on a personality…