Science.gov

Sample records for activity assay based

  1. Nanochannel-based electrochemical assay for transglutaminase activity.

    PubMed

    Fernández, Iñigo; Sánchez, Alfredo; Díez, Paula; Martínez-Ruiz, Paloma; Di Pierro, Prospero; Porta, Raffaele; Villalonga, Reynaldo; Pingarrón, José M

    2014-11-11

    A novel electrochemical assay to quantify transglutaminase activity is reported. The assay is based on the enzyme-controlled diffusion of Fe(CN)6(3-/4-) through amino-functionalized nanochannels of a mesoporous silica thin film on a Au surface in the presence of N-benzyloxycarbonyl-L-glutaminylglycine.

  2. A molecular beacon assay for measuring base excision repair activities.

    PubMed

    Maksimenko, Andrei; Ishchenko, Alexander A; Sanz, Guenhaël; Laval, Jacques; Elder, Rhoderick H; Saparbaev, Murat K

    2004-06-18

    The base excision repair (BER) pathway plays a key role in protecting the genome from endogenous DNA damage. Current methods to measure BER activities are indirect and cumbersome. Here, we introduce a direct method to assay DNA excision repair that is suitable for automation and industrial use, based on the fluorescence quenching mechanism of molecular beacons. We designed a single-stranded DNA oligonucleotide labelled with a 5'-fluorescein (F) and a 3'-Dabcyl (D) in which the fluorophore, F, is held in close proximity to the quencher, D, by the stem-loop structure design of the oligonucleotide. Following removal of the modified base or incision of the oligonucleotide, the fluorophore is separated from the quencher and fluorescence can be detected as a function of time. Several modified beacons have been used to validate the assay on both cell-free extracts and purified proteins. We have further developed the method to analyze BER in cultured cells. As described, the molecular beacon-based assay can be applied to all DNA modifications processed by DNA excision/incision repair pathways. Possible applications of the assay are discussed, including high-throughput real-time DNA repair measurements both in vitro and in living cells.

  3. Enzymatic assay for calmodulins based on plant NAD kinase activity

    SciTech Connect

    Harmon, A.C.; Jarrett, H.W.; Cormier, M.J.

    1984-01-01

    NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca/sup 2 -/-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K/sub 0.5/) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The A/sub 0.5/ s ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K/sub 0.5/'s for the activation of Ca/sup 2 +/-ATPase ranged from 36.3 ng/mol for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca/sup 2 +/. Palmitic acid had a slightly stimulatory effect in the presence of Ca/sup 2 +/ (10% of maximum), but no effect in the absence of Ca/sup 2 +/. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures. 30 references, 1 figure, 4 tables.

  4. A Fluorescence-based Assay of Phospholipid Scramblase Activity.

    PubMed

    Ploier, Birgit; Menon, Anant K

    2016-01-01

    Scramblases translocate phospholipids across the membrane bilayer bidirectionally in an ATP-independent manner. The first scramblase to be identified and biochemically verified was opsin, the apoprotein of the photoreceptor rhodopsin. Rhodopsin is a G protein-coupled receptor localized in rod photoreceptor disc membranes of the retina where it is responsible for the perception of light. Rhodopsin's scramblase activity does not depend on its ligand 11-cis-retinal, i.e., the apoprotein opsin is also active as a scramblase. Although constitutive and regulated phospholipid scrambling play an important role in cell physiology, only a few phospholipid scramblases have been identified so far besides opsin. Here we describe a fluorescence-based assay of opsin's scramblase activity. Opsin is reconstituted into large unilamellar liposomes composed of phosphatidylcholine, phosphatidylglycerol and a trace quantity of fluorescent NBD-labeled PC (1-palmitoyl-2-{6-[7-nitro-2-1,3-benzoxadiazole-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine). Scramblase activity is determined by measuring the extent to which NBD-PC molecules located in the inner leaflet of the vesicle are able to access the outer leaflet where their fluorescence is chemically eliminated by a reducing agent that cannot cross the membrane. The methods we describe have general applicability and can be used to identify and characterize scramblase activities of other membrane proteins. PMID:27684510

  5. Cell-based flow cytometry assay to measure cytotoxic activity.

    PubMed

    Noto, Alessandra; Ngauv, Pearline; Trautmann, Lydie

    2013-12-17

    Cytolytic activity of CD8+ T cells is rarely evaluated. We describe here a new cell-based assay to measure the capacity of antigen-specific CD8+ T cells to kill CD4+ T cells loaded with their cognate peptide. Target CD4+ T cells are divided into two populations, labeled with two different concentrations of CFSE. One population is pulsed with the peptide of interest (CFSE-low) while the other remains un-pulsed (CFSE-high). Pulsed and un-pulsed CD4+ T cells are mixed at an equal ratio and incubated with an increasing number of purified CD8+ T cells. The specific killing of autologous target CD4+ T cells is analyzed by flow cytometry after coculture with CD8+ T cells containing the antigen-specific effector CD8+ T cells detected by peptide/MHCI tetramer staining. The specific lysis of target CD4+ T cells measured at different effector versus target ratios, allows for the calculation of lytic units, LU₃₀/10(6) cells. This simple and straightforward assay allows for the accurate measurement of the intrinsic capacity of CD8+ T cells to kill target CD4+ T cells.

  6. GTP-specific fab fragment-based GTPase activity assay.

    PubMed

    Kopra, Kari; Rozwandowicz-Jansen, Anita; Syrjänpää, Markku; Blaževitš, Olga; Ligabue, Alessio; Veltel, Stefan; Lamminmäki, Urpo; Abankwa, Daniel; Härmä, Harri

    2015-03-17

    GTPases are central cellular signaling proteins, which cycle between a GDP-bound inactive and a GTP-bound active conformation in a controlled manner. Ras GTPases are frequently mutated in cancer and so far only few experimental inhibitors exist. The most common methods for monitoring GTP hydrolysis rely on luminescent GDP- or GTP-analogs. In this study, the first GTP-specific Fab fragment and its application are described. We selected Fab fragments using the phage display technology. Six Fab fragments were found against 2'/3'-GTP-biotin and 8-GTP-biotin. Selected antibody fragments allowed specific detection of endogenous, free GTP. The most potent Fab fragment (2A4(GTP)) showed over 100-fold GTP-specificity over GDP, ATP, or CTP and was used to develop a heterogeneous time-resolved luminescence based assay for the monitoring of GTP concentration. The method allows studying the GEF dependent H-Ras activation (GTP binding) and GAP-catalyzed H-Ras deactivation (GTP hydrolysis) at nanomolar protein concentrations.

  7. Activity-based assay for ricin-like toxins

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2007-02-06

    A method of detecting N-glycosylase activity in a sample involves incubating an oligodeoxyribonucleotide substrate containing a deoxyadenosine or deoxyuridine residue with the sample to be tested such that the N-glycosylase, if present, hydrolyzes the deoxyadenosine or deoxyuridine residue to result in an N-glycosylase product having an abasic site. A primer is annealed to the N-glycosylase product, and the primer is extended with a DNA polymerase, such as Taq DNA polymerase, that pauses at abasic sites. The resulting extension products are melted from the N-glycosylase product, allowed to form hairpins due to self-complementarity, and further extended in the presence of labeled precursors to result in labeled products. Extension products synthesized from undigested substrate as template do not result in labeled products. Thus, detection of labeled products results in detection of N-glycosylase activity. Oligodeoxyribonucleotide substrates, primer, and positive controls and a kit for N-glycosylase assay are also disclosed.

  8. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    PubMed

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  9. A barium based coordination polymer for the activity assay of deoxyribonuclease I.

    PubMed

    Song, Chan; Wang, Guan-Yao; Wang, Ya-Ling; Kong, De-Ming; Wang, Yong-Jian; Li, Yue; Ruan, Wen-Juan

    2014-10-01

    A new coordination polymer which shows an unusual 2D inorganic connectivity was constructed. This compound exhibits distinct fluorescence quenching ability to the dye-labeled single-stranded DNA probes with different lengths, based on which an analytical method was developed for the activity assay of deoxyribonuclease I.

  10. Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression.

    PubMed

    Auld, Douglas S; Thorne, Natasha; Maguire, William F; Inglese, James

    2009-03-01

    High-throughput screening (HTS) assays used in drug discovery frequently use reporter enzymes such as firefly luciferase (FLuc) as indicators of target activity. An important caveat to consider, however, is that compounds can directly affect the reporter, leading to nonspecific but highly reproducible assay signal modulation. In rare cases, this activity appears counterintuitive; for example, some FLuc inhibitors, acting through posttranslational Fluc reporter stabilization, appear to activate gene expression. Previous efforts to characterize molecules that influence luciferase activity identified a subset of 3,5-diaryl-oxadiazole-containing compounds as FLuc inhibitors. Here, we evaluate a number of compounds with this structural motif for activity against FLuc. One such compound is PTC124 {3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid}, a molecule originally identified in a cell-based FLuc assay as having nonsense codon suppression activity [Welch EM, et al., Nature (2007) 447:87-91]. We find that the potency of FLuc inhibition for the tested compounds strictly correlates with their activity in a FLuc reporter cell-based nonsense codon assay, with PTC124 emerging as the most potent FLuc inhibitor (IC(50) = 7 +/- 1 nM). However, these compounds, including PTC124, fail to show nonsense codon suppression activity when Renilla reniformis luciferase (RLuc) is used as a reporter and are inactive against the RLuc enzyme. This suggests that the initial discovery of PTC124 may have been biased by its direct effect on the FLuc reporter, implicating firefly luciferase as a molecular target of PTC124. Our results demonstrate the value of understanding potential interactions between reporter enzymes and chemical compounds and emphasize the importance of implementing the appropriate control assays before interpreting HTS results.

  11. The Peptide Microarray-Based Resonance Light Scattering Assay for Sensitively Detecting Intracellular Kinase Activity.

    PubMed

    Li, Tao; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-01-01

    The peptide microarray technology is a robust, reliable, and efficient technique for large-scale determination of enzyme activities, and high-throughput profiling of substrate/inhibitor specificities of enzymes. Here, the activities of cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) in different cell lysates have been detected by a peptide microarray-based resonance light scattering (RLS) assay with gold nanoparticle (GNP) probes. Highly sensitive detection of PKA activity in 0.1 μg total cell proteins of SHG-44 (human glioma cell) cell lysate (corresponding to 200 cells) is achieved by a selected peptide substrate. The experimental results also demonstrate that the RLS assay can be employed to evaluate the chemical regulation of intracellular kinase activity. PMID:26490469

  12. A Cell-Based Assay for Measuring Endogenous BcrAbl Kinase Activity and Inhibitor Resistance.

    PubMed

    Ouellette, Steven B; Noel, Brett M; Parker, Laurie L

    2016-01-01

    Kinase enzymes are an important class of drug targets, particularly in cancer. Cell-based kinase assays are needed to understand how potential kinase inhibitors act on their targets in a physiologically relevant context. Current cell-based kinase assays rely on antibody-based detection of endogenous substrates, inaccurate disease models, or indirect measurements of drug action. Here we expand on previous work from our lab to introduce a 96-well plate compatible approach for measuring cell-based kinase activity in disease-relevant human chronic myeloid leukemia cell lines using an exogenously added, multi-functional peptide substrate. Our cellular models natively express the BcrAbl oncogene and are either sensitive or have acquired resistance to well-characterized BcrAbl tyrosine kinase inhibitors. This approach measures IC50 values comparable to established methods of assessing drug potency, and its robustness indicates that it can be employed in drug discovery applications. This medium-throughput assay could bridge the gap between single target focused, high-throughput in vitro assays and lower-throughput cell-based follow-up experiments. PMID:27598410

  13. A Cell-Based Assay for Measuring Endogenous BcrAbl Kinase Activity and Inhibitor Resistance

    PubMed Central

    Ouellette, Steven B.; Noel, Brett M.; Parker, Laurie L.

    2016-01-01

    Kinase enzymes are an important class of drug targets, particularly in cancer. Cell-based kinase assays are needed to understand how potential kinase inhibitors act on their targets in a physiologically relevant context. Current cell-based kinase assays rely on antibody-based detection of endogenous substrates, inaccurate disease models, or indirect measurements of drug action. Here we expand on previous work from our lab to introduce a 96-well plate compatible approach for measuring cell-based kinase activity in disease-relevant human chronic myeloid leukemia cell lines using an exogenously added, multi-functional peptide substrate. Our cellular models natively express the BcrAbl oncogene and are either sensitive or have acquired resistance to well-characterized BcrAbl tyrosine kinase inhibitors. This approach measures IC50 values comparable to established methods of assessing drug potency, and its robustness indicates that it can be employed in drug discovery applications. This medium-throughput assay could bridge the gap between single target focused, high-throughput in vitro assays and lower-throughput cell-based follow-up experiments. PMID:27598410

  14. A chip-based assay for botulinum neurotoxin A activity in pharmaceutical preparations.

    PubMed

    Lévêque, Christian; Ferracci, Géraldine; Maulet, Yves; Grand-Masson, Chloé; Seagar, Michael; El Far, Oussama

    2015-05-01

    The production of botulinum neurotoxin A (BoNT/A) for therapeutic and cosmetic applications requires precise determination of batch potency, and the enzymatic activity of BoNT/A light chain is a crucial index that can be measured in vitro. We previously established a SNAP-25 chip-based assay using surface plasmon resonance (SPR) that is more sensitive than the standard mouse bioassay for the quantification of BoNT/A activity. We have now adapted this procedure for pharmaceutical preparations. The optimized SPR assay allowed multiple measurements on a single chip, including the kinetics of substrate cleavage. The activity of five different batches of a pharmaceutical BoNT/A preparation was determined in a blind study by SPR and found to be in agreement with data from the in vivo mouse lethality assay. Biosensor detection of specific proteolytic products has the potential to accurately monitor the activity of pharmaceutical BoNT/A preparations, and a single chip can be used to assay more than 100 samples.

  15. A TR-FRET-based functional assay for screening activators of CARM1.

    PubMed

    Zeng, Hao; Wu, Jiacai; Bedford, Mark T; Sbardella, Gianluca; Hoffmann, F Michael; Bi, Kun; Xu, Wei

    2013-05-10

    Epigenetics is an emerging field that demands selective cell-permeable chemical probes to perturb, especially in vivo, the activity of specific enzymes involved in modulating the epigenetic codes. Coactivator-associated arginine methyltransferase 1 (CARM1) is a coactivator of estrogen receptor α (ERα), the main target in human breast cancer. We previously showed that twofold overexpression of CARM1 in MCF7 breast cancer cells increased the expression of ERα-target genes involved in differentiation and reduced cell proliferation, thus leading to the hypothesis that activating CARM1 by chemical activators might be therapeutically effective in breast cancer. Selective, potent, cell-permeable CARM1 activators will be essential to test this hypothesis. Here we report the development of a cell-based, time-resolved (TR) FRET assay that uses poly(A) binding protein 1 (PABP1) methylation to monitor cellular activity of CARM1. The LanthaScreen TR-FRET assay uses MCF7 cells expressing GFP-PABP1 fusion protein through BacMam gene delivery system, methyl-PABP1 specific antibody, and terbium-labeled secondary antibody. This assay has been validated as reflecting the expression and/or activity of CARM1 and optimized for high throughput screening to identify CARM1 allosteric activators. This TR-FRET platform serves as a generic tool for functional screening of cell-permeable, chemical modulators of CARM1 for elucidation of its in vivo functions. PMID:23585185

  16. Selective activation of SHP2 activity by cisplatin revealed by a novel chemical probe-based assay

    SciTech Connect

    Kuo, Chun-Chen; Chu, Chi-Yuan; Lin, Jing-Jer; Lo, Lee-Chiang

    2010-01-01

    Src homology-2 (SH2) domain-containing phosphatase 2 (SHP2) is known to participate in several different signaling pathways to mediate cell growth, survival, migration, and differentiation. However, due to the lack of proper analytical tools, it is unclear whether the phosphatase activity of SHP2 is activated in most studies. We have previously developed an activity-based probe LCL2 that formed covalent linkage with catalytically active protein tyrosine phosphatases (PTPs). Here, by combining LCL2 with a SHP2 specific antibody, we established an assay system that enables the direct monitoring of SHP2 activity upon cisplatin treatment of cancer cells. The protocol is advantageous over conventional colorimetric or in-gel PTP assays as it is specific and does not require the use of radioisotope reagents. Using this assay, we found SHP2 activity was selectively activated by cisplatin. Moreover, the activation of SHP2 appeared to be specific for cisplatin as other DNA damage agents failed to activate the activity. Although the role of SHP2 activation by cisplatin treatments is still unclear to us, our results provide the first direct evidence for the activation of SHP2 during cisplatin treatments. More importantly, the concept of using activity-based probe in conjunction with target-specific antibodies could be extended to other enzyme classes.

  17. A chromism-based assay (CHROBA) technique for in situ detection of protein kinase activity.

    PubMed

    Tomizaki, Kin-ya; Jie, Xu; Mihara, Hisakazu

    2005-03-15

    A unique chromism-based assay technique (CHROBA) using photochromic spiropyran-containing peptides has been firstly established for detection of protein kinase A-catalyzed phosphorylation. The alternative method has advantages that avoid isolation and/or immobilization of kinase substrates to remove excess reagents including nonreactive isotope-labeled ATP or fluorescently-labeled anti-phosphoamino acid antibodies from the reaction mixture. Such a novel protocol based on thermocoloration of the spiropyran moiety in the peptide can offer not only an efficient screening method of potent kinase substrates but also a versatile analytical tool for monitoring other post-translational modification activities. PMID:15745830

  18. Zebrafish-based reporter gene assays reveal different estrogenic activities in river waters compared to a conventional human-derived assay.

    PubMed

    Sonavane, Manoj; Creusot, Nicolas; Maillot-Maréchal, Emmanuelle; Péry, Alexandre; Brion, François; Aїt-Aïssa, Selim

    2016-04-15

    Endocrine disrupting chemicals (EDCs) act on the endocrine system through multiple mechanisms of action, among them interaction with estrogen receptors (ERs) is a well-identified key event in the initiation of adverse outcomes. As the most commonly used estrogen screening assays are either yeast- or human-cell based systems, the question of their (eco)toxicological relevance when assessing risks for aquatic species can be raised. The present study addresses the use of zebrafish (zf) derived reporter gene assays, both in vitro (i.e. zf liver cell lines stably expressing zfERα, zfERβ1 and zfERβ2 subtypes) and in vivo (i.e. transgenic cyp19a1b-GFP zf embryos), to assess estrogenic contaminants in river waters. By investigating 20 French river sites using passive sampling, high frequencies of in vitro zfER-mediated activities in water extracts were measured. Among the different in vitro assays, zfERβ2 assay was the most sensitive and responsive one, enabling the detection of active compounds at all investigated sites. In addition, comparison with a conventional human-based in vitro assay highlighted sites that were able to active zfERs but not human ER, suggesting the occurrence of zf-specific ER ligands. Furthermore, a significant in vivo estrogenic activity was detected at the most active sites in vitro, with a good accordance between estradiol equivalent (E2-EQ) concentrations derived from both in vitro and in vivo assays. Overall, this study shows the relevance and usefulness of such novel zebrafish-based assays as screening tools to monitor estrogenic activities in complex mixtures such as water extracts. It also supports their preferred use compared to human-based assays to assess the potential risks caused by endocrine disruptive chemicals for aquatic species such as fish.

  19. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants.

    PubMed

    Wan, Hongxia; Liu, Dong; Yu, Xiangying; Sun, Haiyan; Li, Yan

    2015-05-15

    A Caco-2 cell-based antioxidant activity (CAA) assay for quantitative evaluation of antioxidants was developed by optimizing seeding density and culture time of Caco-2 cells, incubation time and concentration of fluorescent probe (2',7'-dichlorofluorescin diacetate, DCFH-DA), incubation way and incubation time of antioxidants (pure phytochemicals) and DCFH-DA with cells, and detection time of fluorescence. Results showed that the CAA assay was of good reproducibility and could be used to evaluate the antioxidant activity of antioxidants at the following conditions: seeding density of 5 × 10(4)/well, cell culture time of 24h, co-incubation of 60 μM DCFH-DA and pure phytochemicals with Caco-2 cells for 20 min and fluorescence recorded for 90 min. Additionally, a significant correlation was observed between CAA values and rat plasma ORAC values following the intake of antioxidants for selected pure phytochemicals (R(2) = 0.815, p < 0.01), demonstrating the good biological relevance of CAA assay.

  20. Convenient microtiter plate-based, oxygen-independent activity assays for flavin-dependent oxidoreductases based on different redox dyes.

    PubMed

    Brugger, Dagmar; Krondorfer, Iris; Zahma, Kawah; Stoisser, Thomas; Bolivar, Juan M; Nidetzky, Bernd; Peterbauer, Clemens K; Haltrich, Dietmar

    2014-04-01

    Flavin-dependent oxidoreductases are increasingly recognized as important biocatalysts for various industrial applications. In order to identify novel activities and to improve these enzymes in engineering approaches, suitable screening methods are necessary. We developed novel microtiter-plate-based assays for flavin-dependent oxidases and dehydrogenases using redox dyes as electron acceptors for these enzymes. 2,6-dichlorophenol-indophenol, methylene green, and thionine show absorption changes between their oxidized and reduced forms in the visible range, making it easy to judge visually changes in activity. A sample set of enzymes containing both flavoprotein oxidases and dehydrogenases - pyranose 2-oxidase, pyranose dehydrogenase, cellobiose dehydrogenase, D-amino acid oxidase, and L-lactate oxidase - was selected. Assays for these enzymes are based on a direct enzymatic reduction of the redox dyes and not on the coupled detection of a reaction product as in the frequently used assays based on hydrogen peroxide formation. The different flavoproteins show low Michaelis constants with these electron acceptor substrates, and therefore these dyes need to be added in only low concentrations to assure substrate saturation. In conclusion, these electron acceptors are useful in selective, reliable and cheap MTP-based screening assays for a range of flavin-dependent oxidoreductases, and offer a robust method for library screening, which could find applications in enzyme engineering programs. PMID:24376171

  1. A yeast-based assay identifies drugs active against human mitochondrial disorders.

    PubMed

    Couplan, Elodie; Aiyar, Raeka S; Kucharczyk, Roza; Kabala, Anna; Ezkurdia, Nahia; Gagneur, Julien; St Onge, Robert P; Salin, Bénédicte; Soubigou, Flavie; Le Cann, Marie; Steinmetz, Lars M; di Rago, Jean-Paul; Blondel, Marc

    2011-07-19

    Due to the lack of relevant animal models, development of effective treatments for human mitochondrial diseases has been limited. Here we establish a rapid, yeast-based assay to screen for drugs active against human inherited mitochondrial diseases affecting ATP synthase, in particular NARP (neuropathy, ataxia, and retinitis pigmentosa) syndrome. This method is based on the conservation of mitochondrial function from yeast to human, on the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and on the amenability of the yeast mitochondrial genome to site-directed mutagenesis. Our method identifies chlorhexidine by screening a chemical library and oleate through a candidate approach. We show that these molecules rescue a number of phenotypes resulting from mutations affecting ATP synthase in yeast. These compounds are also active on human cybrid cells derived from NARP patients. These results validate our method as an effective high-throughput screening approach to identify drugs active in the treatment of human ATP synthase disorders and suggest that this type of method could be applied to other mitochondrial diseases.

  2. A yeast-based assay identifies drugs active against human mitochondrial disorders

    PubMed Central

    Couplan, Elodie; Aiyar, Raeka S.; Kucharczyk, Roza; Kabala, Anna; Ezkurdia, Nahia; Gagneur, Julien; St. Onge, Robert P.; Salin, Bénédicte; Soubigou, Flavie; Le Cann, Marie; Steinmetz, Lars M.; di Rago, Jean-Paul; Blondel, Marc

    2011-01-01

    Due to the lack of relevant animal models, development of effective treatments for human mitochondrial diseases has been limited. Here we establish a rapid, yeast-based assay to screen for drugs active against human inherited mitochondrial diseases affecting ATP synthase, in particular NARP (neuropathy, ataxia, and retinitis pigmentosa) syndrome. This method is based on the conservation of mitochondrial function from yeast to human, on the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and on the amenability of the yeast mitochondrial genome to site-directed mutagenesis. Our method identifies chlorhexidine by screening a chemical library and oleate through a candidate approach. We show that these molecules rescue a number of phenotypes resulting from mutations affecting ATP synthase in yeast. These compounds are also active on human cybrid cells derived from NARP patients. These results validate our method as an effective high-throughput screening approach to identify drugs active in the treatment of human ATP synthase disorders and suggest that this type of method could be applied to other mitochondrial diseases. PMID:21715656

  3. FRET-based protein-DNA binding assay for detection of active NF-kappa B

    SciTech Connect

    Giannetti, Ambra; Baldini, Francesco; Wabuyele, Musundi B; Vo Dinh, Tuan

    2006-01-01

    A novel method to detect the active form of NF-{kappa}B, a transcription factor regulating a battery of inflammatory genes and playing a fundamental role in the development of numerous pathological states, has been developed. In the present work, we used fluorescence resonance energy transfer (FRET) to study DNA-protein binding interaction taking place between double-strand (ds) DNA immobilized in a glass capillary wall and p50 proteins. For this purpose, we developed a regenerable FRET-based system comprising of a single-strand (ss) DNA with auto-complementary sequence that is end-labeled with Cy5 dye and is highly specific for p50 proteins. The proteins were labeled with a Black Hole Quencher (BHQ-3) to be used as FRET pair. The interaction of p50/p50 homodimer active form with its DNA binding site was demonstrated by both electrophoretic mobility shift assays and FRET studies. These preliminary results demonstrated the feasibility of the FRET-based DNA technique to detect the active form of NF-{kappa}B protein with 90% detection efficiency. In addition, we show that the system is stable and highly regenerable.

  4. Liquid crystal based sensors monitoring lipase activity: a new rapid and sensitive method for cytotoxicity assays.

    PubMed

    Hussain, Zakir; Zafiu, Christian; Küpcü, Seta; Pivetta, Lucineia; Hollfelder, Nadine; Masutani, Akira; Kilickiran, Pinar; Sinner, Eva-Kathrin

    2014-06-15

    In this work we present liquid crystal (LC) based sensor devices to monitor cell viability. The sensing layer is composed by the LC and a planar monolayer of phospholipids. In the presence of minute traces of phospholipases, which hydrolyze enzymatically phospholipids, the LC-lipid interface is disintegrated. This event causes a change in orientation of the LC, which was followed in a polarized microscope. The lipase activity can be used to measure the cell viability, since members of this enzyme family are released by cells, as they undergo necrosis. The described sensor was used to monitor the presence of the lipases released from three different cell lines, which were either exposed to highly cytotoxic model compounds (sodium azide and paracetamol) or subjected to freeze-thaw cycles to induce cell death by a non-chemical based inducer for apoptosis, such as temperature. Finally, the comparison of lipase activity detected by a state-of-the-art fluorescence assay to the LC based system resulted in the superiority of the LC system concerning incubation time and sensitivity. PMID:24508543

  5. Fluorometric cell-based assay for β-galactosidase activity in probiotic gram-positive bacterial cells - Lactobacillus helveticus.

    PubMed

    Watson, Amanda L; Chiu, Norman H L

    2016-09-01

    Although methods for measuring β-galactosidase activity in intact gram-negative bacterial cells have been reported, the methods may not be applicable to measuring β-galactosidase activity in gram-positive bacterial cells. This report focuses on the development of a fluorometric cell-based assay for measuring β-galactosidase activity in gram-positive cells.

  6. A nanostructure-initiator mass spectrometry-based enzyme activity assay

    PubMed Central

    Northen, Trent R.; Lee, Jinq-Chyi; Hoang, Linh; Raymond, Jason; Hwang, Der-Ren; Yannone, Steven M.; Wong, Chi-Huey; Siuzdak, Gary

    2008-01-01

    We describe a Nanostructure-Initiator Mass Spectrometry (NIMS) enzymatic (Nimzyme) assay in which enzyme substrates are immobilized on the mass spectrometry surface by using fluorous-phase interactions. This “soft” immobilization allows efficient desorption/ionization while also enabling the use of surface-washing steps to reduce signal suppression from complex biological samples, which results from the preferential retention of the tagged products and reactants. The Nimzyme assay is sensitive to subpicogram levels of enzyme, detects both addition and cleavage reactions (sialyltransferase and galactosidase), is applicable over a wide range of pHs and temperatures, and can measure activity directly from crude cell lysates. The ability of the Nimzyme assay to analyze complex mixtures is illustrated by identifying and directly characterizing β-1,4-galactosidase activity from a thermophilic microbial community lysate. The optimal enzyme temperature and pH were found to be 65°C and 5.5, respectively, and the activity was inhibited by both phenylethyl-β-d-thiogalactopyranoside and deoxygalactonojirimycin. Metagenomic analysis of the community suggests that the activity is from an uncultured, unsequenced γ-proteobacterium. In general, this assay provides an efficient method for detection and characterization of enzymatic activities in complex biological mixtures prior to sequencing or cloning efforts. More generally, this approach may have important applications for screening both enzymatic and inhibitor libraries, constructing and screening glycan microarrays, and complementing fluorous-phase organic synthesis. PMID:18319341

  7. A fluorescence-based assay to monitor transcriptional activity of NFAT in living cells.

    PubMed

    Rinne, Andreas; Blatter, Lothar A

    2010-09-01

    Ca(2+)-sensitive NFAT (nuclear factor of activated T-cells) transcription factors are implicated in many pathophysiological processes in different cell types. The precise control of activation varies with NFAT isoform and cell type. Here we present feasibility of an in vivo assay (NFAT-RFP) that reports transcriptional activity of NFAT via expression of red fluorescent protein (RFP) in individual cells. This new tool allows continuous monitoring of transcriptional activity of NFAT in a physiological context in living cells. Furthermore, NFAT-RFP can be used simultaneously with NFAT-GFP fusion proteins to monitor transcriptional activity and subcellular localization of NFAT in the same cell.

  8. Inhibition of Cathepsin Activity in a Cell-Based Assay by a Light-Activated Ruthenium Compound

    PubMed Central

    Respondek, Tomasz; Sharma, Rajgopal; Herroon, Mackenzie K.; Garner, Robert N.; Knoll, Jessica D.; Cueny, Eric; Turro, Claudia; Podgorski, Izabela; Kodanko, Jeremy J.

    2014-01-01

    Light-activated inhibition of cathepsin activity was demonstrated with in a cell-based assay. Inhibitors of cathepsin K, Cbz-Leu-NHCH2CN (2) and Cbz-Leu-Ser(OBn)-CN (3), were caged within the complexes cis-[Ru(bpy)2(2)2]Cl2 (4) and cis-[Ru(bpy)2(3)2](BF4)2 (5), where bpy = 2,2′-bipyridine, as 1:1 mixtures of Δ- and Λ stereoisomers. Complexes 4 and 5 were characterized by 1H NMR, IR and UV-vis spectroscopies and electrospray mass spectrometry. Photochemical experiments confirm that 4 releases two molecules of 2 upon exposure to visible light for 15 min, whereas release of 3 by 5 requires longer irradiation times. IC50 determinations against purified cathepsin K under light and dark conditions with 4 and 5 confirm that inhibition is enhanced from 35 to 88-fold, respectively, upon irradiation with visible light. No apparent toxicity was observed for 4 in the absence or presence of irradiation in bone marrow macrophage (BMM) or PC-3 cells, as judged by the MTT assay, at concentrations up to 10 μM. Compound 5 is well tolerated at lower concentrations (<1 μM) but does show growth inhibitory effects at higher concentrations. Confocal microscopy experiments show that 4 reduces intracellular cathepsin activity in osteoclasts with light activation. These results support further development of caged nitrile-based inhibitors as chemical tools for investigating spatial aspects of proteolysis within living systems. PMID:24729544

  9. Erythrocytes and cell line-based assays to evaluate the cytoprotective activity of antioxidant components obtained from natural sources.

    PubMed

    Botta, Albert; Martínez, Verónica; Mitjans, Montserrat; Balboa, Elena; Conde, Enma; Vinardell, M Pilar

    2014-02-01

    Oxidative stress can damage cellular components including DNA, proteins or lipids, and may cause several skin diseases. To protect from this damage and addressing consumer's appeal to natural products, antioxidants obtained from algal and vegetal extracts are being proposed as antioxidants to be incorporated into formulations. Thus, the development of reliable, quick and economic in vitro methods to study the cytoactivity of these products is a meaningful requirement. A combination of erythrocyte and cell line-based assays was performed on two extracts from Sargassum muticum, one from Ulva lactuca, and one from Castanea sativa. Antioxidant properties were assessed in erythrocytes by the TBARS and AAPH assays, and cytotoxicity and antioxidant cytoprotection were assessed in HaCaT and 3T3 cells by the MTT assay. The extracts showed no antioxidant activity on the TBARS assay, whereas their antioxidant capacity in the AAPH assay was demonstrated. On the cytotoxicity assays, extracts showed low toxicity, with IC50 values higher than 200μg/mL. C. sativa extract showed the most favourable antioxidant properties on the antioxidant cytoprotection assays; while S. muticum and U. lactuca extracts showed a slight antioxidant activity. This battery of methods was useful to characterise the biological antioxidant properties of these natural extracts.

  10. Erythrocytes and cell line-based assays to evaluate the cytoprotective activity of antioxidant components obtained from natural sources.

    PubMed

    Botta, Albert; Martínez, Verónica; Mitjans, Montserrat; Balboa, Elena; Conde, Enma; Vinardell, M Pilar

    2014-02-01

    Oxidative stress can damage cellular components including DNA, proteins or lipids, and may cause several skin diseases. To protect from this damage and addressing consumer's appeal to natural products, antioxidants obtained from algal and vegetal extracts are being proposed as antioxidants to be incorporated into formulations. Thus, the development of reliable, quick and economic in vitro methods to study the cytoactivity of these products is a meaningful requirement. A combination of erythrocyte and cell line-based assays was performed on two extracts from Sargassum muticum, one from Ulva lactuca, and one from Castanea sativa. Antioxidant properties were assessed in erythrocytes by the TBARS and AAPH assays, and cytotoxicity and antioxidant cytoprotection were assessed in HaCaT and 3T3 cells by the MTT assay. The extracts showed no antioxidant activity on the TBARS assay, whereas their antioxidant capacity in the AAPH assay was demonstrated. On the cytotoxicity assays, extracts showed low toxicity, with IC50 values higher than 200μg/mL. C. sativa extract showed the most favourable antioxidant properties on the antioxidant cytoprotection assays; while S. muticum and U. lactuca extracts showed a slight antioxidant activity. This battery of methods was useful to characterise the biological antioxidant properties of these natural extracts. PMID:24134852

  11. Gold nanorods-based FRET assay for ultrasensitive detection of DNA methylation and DNA methyltransferase activity.

    PubMed

    Wang, Gang Lin; Luo, Hong Qun; Li, Nian Bing

    2014-09-21

    A fluorescence method for the detection of DNA methylation and the assay of methyltransferase activity is proposed using gold nanorods as a fluorescence quencher on the basis of fluorescence resonance energy transfer. It is demonstrated that this method is capable of detecting methyltransferase with a detection limit of 0.25 U mL(-1), which might make this method a good candidate for monitoring DNA methylation in the future. PMID:25028809

  12. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format.

    PubMed

    Basavannacharya, Chandrakala; Vasudevan, Subhash G

    2014-10-24

    Dengue fever is a major health concern worldwide. The virus encoded non-structural protein 3 (NS3) is a multifunctional protein endowed with protease, helicase, nucleoside triphosphatase (NTPase) and RNA 5' triphosphatase (RTPase) activities. Helicase activity of NS3 catalyzes the unwinding of double stranded polynucleotides by utilizing the energy released from ATP hydrolysis. As this activity is essential for replication, NS3 helicase represents an attractive drug target for developing a dengue antiviral drug. Here, we report fluorescence based molecular beacon helicase assay using a duplex RNA substrate that contains a fluorophore on the 5' end and a quencher on the 3' end of one of the strands. The assay was optimized with respect to several parameters and adapted to 384-well high-throughput screening format, with an average Z' factor of 0.65. Assay validation with a small diverse set library of 1600 compounds identified, suramin as a significant inhibitor of the helicase activity of NS3. Helicase activity deficient NS3 K199A was used in a counter-screen to identify compounds interfering with the assay. Suramin inhibited DENV (dengue virus) NS3 helicase activity with a Ki of 0.75±0.03μM as a non-competitive inhibitor. The molecular beacon helicase assay together with the counter screen and suramin as a tool compound can be used to identify novel inhibitors of DENV helicase.

  13. A nanostructure-initiator mass spectrometry-based enzyme activity assay

    SciTech Connect

    Siuzdak, Gary; Northen, Trent R.; Lee, Jinq-Chyi; Hoang, Linh; Raymond, Jason; Hwang, Der-Ren; Yannone, Steven M.; Wong, Chi-Huey; Siuzdak, Gary

    2008-03-10

    We describe a Nanostructure-Initiator Mass Spectrometry (NIMS) enzymatic (Nimzyme) assay in which enzyme substrates are immobilized on the mass spectrometry surface by using fluorous-phase interactions. This 'soft' immobilization allows efficient desorption/ionization while also enabling the use of surface-washing steps to reduce signal suppression from complex biological samples, which results from the preferential retention of the tagged products and reactants. The Nimzyme assay is sensitive to subpicogram levels of enzyme, detects both addition and cleavage reactions (sialyltransferase and galactosidase), is applicable over a wide range of pHs and temperatures, and can measure activity directly from crude cell lysates. The ability of the Nimzyme assay to analyze complex mixtures is illustrated by identifying and directly characterizing {beta}-1,4-galactosidase activity from a thermophilic microbial community lysate. The optimal enzyme temperature and pH were found to be 65 C and 5.5, respectively, and the activity was inhibited by both phenylethyl-{beta}-d-thiogalactopyranoside and deoxygalactonojirimycin. Metagenomic analysis of the community suggests that the activity is from an uncultured, unsequenced {gamma}-proteobacterium. In general, this assay provides an efficient method for detection and characterization of enzymatic activities in complex biological mixtures prior to sequencing or cloning efforts. More generally, this approach may have important applications for screening both enzymatic and inhibitor libraries, constructing and screening glycan microarrays, and complementing fluorous-phase organic synthesis. The interest in leveraging mass spectrometry for studying enzyme activities in complex biological samples derives from its high sensitivity and specificity; however, signal suppression and significant sample preparation requirements limit its overall utility (1). Here we describe a Nanostructure-Initiator Mass Spectrometry (NIMS) enzymatic (Nimzyme

  14. An aptamer based competition assay for protein detection using CNT activated gold-interdigitated capacitor arrays.

    PubMed

    Qureshi, Anjum; Roci, Irena; Gurbuz, Yasar; Niazi, Javed H

    2012-04-15

    An aptamer can specifically bind to its target molecule, or hybridize with its complementary strand. A target bound aptamer complex has difficulty to hybridize with its complementary strand. It is possible to determine the concentration of target based on affinity separation system for the protein detection. Here, we exploited this property using C-reactive protein (CRP) specific RNA aptamers as probes that were immobilized by physical adsorption on carbon nanotubes (CNTs) activated gold interdigitated electrodes of capacitors. The selective binding ability of RNA aptamer with its target molecule was determined by change in capacitance after allowing competitive binding with CRP and complementary RNA (cRNA) strands in pure form and co-mixtures (CRP:cRNA=0:1, 1:0, 1:1, 1:2 and 2:1). The sensor showed significant capacitance change with pure forms of CRP/cRNA while responses reduced considerably in presence of CRP:cRNA in co-mixtures (1:1 and 1:2) because of the binding competition. At a critical CRP:cRNA ratio of 2:1, the capacitance response was dramatically lost because of the dissociation of adsorbed aptamers from the sensor surface to bind when excess CRP. Binding assays showed that the immobilized aptamers had strong affinity for cRNA (K(d)=1.98 μM) and CRP molecules (K(d)=2.4 μM) in pure forms, but low affinity for CRP:cRNA ratio of 2:1 (K(d)=8.58 μM). The dynamic detection range for CRP was determined to be 1-8 μM (0.58-4.6 μg/capacitor). The approach described in this study is a sensitive label-free method to detect proteins based on affinity separation of target molecules that can potentially be used for probing molecular interactions.

  15. Development and validation of a simple cell-based fluorescence assay for dipeptidyl peptidase 1 (DPP1) activity.

    PubMed

    Thong, Bob; Pilling, James; Ainscow, Edward; Beri, Raj; Unitt, John

    2011-01-01

    Dipeptidyl peptidase 1 (DPP1) (EC 3.4.14.1; also known as cathepsin C, cathepsin J, dipeptidyl aminopeptidase, and dipeptidyl aminotransferase) is a lysosomal cysteinyl protease of the papain family involved in the intracellular degradation of proteins. Isolated enzyme assays for DPP1 activity using a variety of synthetic substrates such as dipeptide or peptide linked to amino-methyl-coumarin (AMC) or other fluorophores are well established. There is, however, no report of a simple whole-cell-based assay for measuring lysosomal DPP1 activity other than the use of flow cytometry (fluorescence-activated cell sorting) or the use of invasive activity-based probes or the production of physiological products such as neutrophil elastase. The authors investigated a number of DPP1 fluorogenic substrates that have the potential to access the lysosome and enable the measurement of DPP1 enzyme activity in situ. They describe the development and evaluation of a simple noninvasive fluorescence assay for measuring DPP1 activity in fresh or cryopreserved human THP-1 cells using the substrate H-Gly-Phe-AFC (amino-fluoro-coumarin). This cell-based fluorescence assay can be performed in a 96-well plate format and is ideally suited for determining the cell potency of potential DPP1 enzyme inhibitors.

  16. Development of a fluorescent microsphere-based multiplexed high-throughput assay system for profiling of transcription factor activation.

    PubMed

    Yaoi, Takuro; Jiang, Xin; Li, Xianqiang

    2006-06-01

    Transcription factors (TFs), which play crucial roles in the regulation of gene expression in the human genome, are highly regulated by a variety of mechanisms. A single extracellular stimulus can trigger multiple signaling pathways, and these in turn can activate multiple TFs to mediate the inducible expression of target genes. Alterations in the activities of TFs are often associated with human diseases, such as altered activating factor 1, estrogen receptor, and p53 function in cancer, nuclear factor kappaB in inflammatory diseases, and peroxisome proliferator-activated receptor gamma in obesity. A systematic assay for profiling the activation of TFs will aid in elucidating the mechanisms of TF activation, reveal altered TFs associated with human diseases, and aid in developing assays for drug discovery. Here, we developed a 24-plex fluorescent microsphere-based TF activation assay system with a 96-well plate format. The assay system enabled high-throughput profiling of the DNA binding activity of TFs in multiple samples with high sensitivity. PMID:16834534

  17. Quantifying microbial activity in deep subsurface sediments using a tritium based hydrognease enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Kallmeyer, J.

    2012-12-01

    Microbial life is widespread in Earth's subsurface and estimated to represent a significant fraction of Earth's total living biomass. However, very little is known about subsurface microbial activity and its fundamental role in biogeochemical cycles of carbon and other biologically important elements. Hydrogen is one of the most important elements in subsurface anaerobic microbial metabolism. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways. They either consume or produce protons for ATP synthesis. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy generating metabolic processes to electron acceptors such as CO2 or sulfate. H2ase enzyme targets a key metabolic compound in cellular metabolism therefore the assay can be used as a measure for total microbial activity without the need to identify any specific metabolic process. Using the highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey, in marine sediments of the Barents Sea and in deep subseafloor sediments from the Nankai Trough. H2ase activity could be quantified at all depths of all sites but the activity distribution varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3d-1 down to a depth of 1.60 m. At all sites the sulfate reduction rate profile followed the upper part of the H2ase activity profile until sulfate reduction reached the minimum detection limit (ca. 10 pmol cm-3d-1). H2ase activity could still be quantified after the decline of sulfate reduction, indicating that

  18. Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila.

    PubMed

    Pircs, Karolina; Nagy, Peter; Varga, Agnes; Venkei, Zsolt; Erdi, Balazs; Hegedus, Krisztina; Juhasz, Gabor

    2012-01-01

    Levels of the selective autophagy substrate p62 have been established in recent years as a specific readout for basal autophagic activity. Here we compared different experimental approaches for using this assay in Drosophila larvae. Similar to the more commonly used western blots, quantifying p62 dots in immunostained fat body cells of L3 stage larvae detected a strong accumulation of endogenous p62 aggregates in null mutants for Atg genes and S6K. Importantly, genes whose mutation or silencing results in early stage lethality can only be analyzed by microscopy using clonal analysis. The loss of numerous general housekeeping genes show a phenotype in large-scale screens including autophagy, and the p62 assay was potentially suitable for distinguishing bona fide autophagy regulators from silencing of a DNA polymerase subunit or a ribosomal gene that likely has a non-specific effect on autophagy. p62 accumulation upon RNAi silencing of known autophagy regulators was dependent on the duration of the knockdown effect, unlike in the case of starvation-induced autophagy. The endogenous p62 assay was more sensitive than a constitutively overexpressed p62-GFP reporter, which showed self-aggregation and large-scale accumulation even in control cells. We recommend western blots for following the conversion of overexpressed p62-GFP reporters to estimate autophagic activity if sample collection from mutant larvae or adults is possible. In addition, we also showed that overexpressed p62 or Atg8 reporters can strongly influence the phenotypes of each other, potentially giving rise to false or contradicting results. Overexpressed p62 aggregates also incorporated Atg8 reporter molecules that might lead to a wrong conclusion of strongly enhanced autophagy, whereas expression of an Atg8 reporter transgene rescued the inhibitory effect of a dominant-negative Atg4 mutant on basal and starvation-induced autophagy. PMID:22952930

  19. A rapid fluorescence assay for hSMUG1 activity based on modified molecular beacon.

    PubMed

    Yang, Xue; Tong, Chunyi; Long, Ying; Liu, Bin

    2011-01-01

    A new method for assay of hSMUG1 in real-time using molecular beacon is reported. hSMUG1 could be detected linearly in the range from 0.67 nM to 10.05 nM and the detection limit is 0.168 nM. In addition, this method was applied to detect the activity of hSMUG1 in tumor cells and study kinetics. The probe with low background signal has been shown to be suitable for the real-time monitoring of hSMUG1 activity, making this a promising method of high-throughput clinical sample analysis.

  20. Depolarization after resonance energy transfer (DARET): a sensitive fluorescence-based assay for botulinum neurotoxin protease activity.

    PubMed

    Gilmore, Marcella A; Williams, Dudley; Okawa, Yumiko; Holguin, Bret; James, Nicholas G; Ross, Justin A; Roger Aoki, K; Jameson, David M; Steward, Lance E

    2011-06-01

    The DARET (depolarization after resonance energy transfer) assay is a coupled Förster resonance energy transfer (FRET)-fluorescence polarization assay for botulinum neurotoxin type A or E (BoNT/A or BoNT/E) proteolytic activity that relies on a fully recombinant substrate. The substrate consists of blue fluorescent protein (BFP) and green fluorescent protein (GFP) flanking SNAP-25 (synaptosome-associated protein of 25 kDa) residues 134-206. In this assay, the substrate is excited with polarized light at 387 nm, which primarily excites the BFP, whereas emission from the GFP is monitored at 509 nm. Energy transfer from the BFP to the GFP in the intact substrate results in a substantial depolarization of the GFP emission. The energy transfer is eliminated when the fluorescent domains separate on cleavage by the endopeptidase, and emission from the directly excited GFP product fragment is then highly polarized, resulting in an overall increase in polarization. This increase in polarization can be monitored to assay the proteolytic activity of BoNT/A and BoNT/E in real time. It allows determination of the turnover rate of the substrate and the kinetic constants (V(max) and k(cat)) based on the concentration of cleaved substrate determined directly from the measurements using the additivity properties of polarization. The assay is amenable to high-throughput applications.

  1. Ultrasensitive detection of protease activity of anthrax and botulinum toxins by a new PCR-based assay.

    PubMed

    Kolesnikov, Alexander V; Kozyr, Arina V; Ryabko, Alyona K; Shemyakin, Igor G

    2016-02-01

    Anthrax and botulism are dangerous infectious diseases that can be fatal unless detected and treated quickly. Fatalities from these diseases are primarily due to endopeptidase toxins secreted by the pathogens. Rapid and sensitive detection of the presence of active toxins is the key element for protection from natural outbreaks of anthrax and botulism, as well as from the threat of bioterrorism. We describe an ultrasensitive polymerase chain reaction (PCR)-based assay for detecting proteolytic activity of anthrax and botulinum toxins using composite probes consisting of covalent peptide-DNA conjugate for the detection of anthrax, and noncovalent protein-aptamer assembly to assay botulinum toxin activity. Probes immobilized on the solid-phase support are cleaved by toxins to release DNA, which is detected by real-time PCR. Both assays can detect subpicogram quantities of active toxins isolated from composite matrices. Special procedures were developed to isolate intact toxins from the matrices under mild conditions. The assay is rapid, uses proven technologies, and can be modified to detect other proteolytic and biopolymer-degrading enzymes. PMID:26620058

  2. Image-based ELISA on an activated polypropylene microtest plate--a spectrophotometer-free low cost assay technique.

    PubMed

    Parween, Shahila; Nahar, Pradip

    2013-10-15

    In this communication, we report ELISA technique on an activated polypropylene microtest plate (APPµTP) as an illustrative example of a low cost diagnostic assay. Activated test zone in APPµTP binds a capture biomolecule through covalent linkage thereby, eliminating non-specific binding often prevalent in absorption based techniques. Efficacy of APPµTP is demonstrated by detecting human immunoglobulin G (IgG), human immunoglobulin E (IgE) and Aspergillus fumigatus antibody in patient's sera. Detection is done by taking the image of the assay solution by a desktop scanner and analyzing the color of the image. Human IgE quantification by color saturation in the image-based assay shows excellent correlation with absorbance-based assay (Pearson correlation coefficient, r=0.992). Significance of the relationship is seen from its p value which is 4.087e-11. Performance of APPµTP is also checked with respect to microtiter plate and paper-based ELISA. APPµTP can quantify an analyte as precisely as in microtiter plate with insignificant non-specific binding, a necessary prerequisite for ELISA assay. In contrast, paper-ELISA shows high non-specific binding in control sera (false positive). Finally, we have carried out ELISA steps on APPµTP by ultrasound waves on a sonicator bath and the results show that even in 8 min, it can convincingly differentiate a test sample from a control sample. In short, spectrophotometer-free image-based miniaturized ELISA on APPµTP is precise, reliable, rapid, and sensitive and could be a good substitute for conventional immunoassay procedures widely used in clinical and research laboratories.

  3. Conjugated polyelectrolyte based fluorescence turn-on assay for real-time monitoring of protease activity.

    PubMed

    Wang, Yanyan; Zhang, Yong; Liu, Bin

    2010-10-15

    A fluorescence "turn-on" assay for monitoring protease activity is developed on the basis of a water-soluble carboxylated polyfluorene derivative, PFP-CO₂Na, and its different fluorescence response toward cytochrome c (cyt c) and its fragments. PFP-CO₂Na is synthesized via Suzuki coupling polymerization between 2,7-dibromo-9,9-bis(3'-tert-butyl propanoate)fluorene and 1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-benzene, followed by treatment with trifluoroacetic acid and Na₂CO₃. The fluorescence of PFP-CO₂Na can be significantly quenched by cyt c due to complexation-mediated electron transfer between the polymer and protein. Using the complex of PFP-CO₂Na/cyt c as a substrate, a real-time fluorescence turn-on assay for trypsin activity study has been developed. Addition of trypsin to the substrate solution induces gradual recovery of the fluorescence intensity for PFP-CO₂Na due to trypsin-catalyzed hydrolysis of cyt c, which dissociates the heme moiety from the polymer vicinity. The time-dependent fluorescence intensity increase of PFP-CO₂Na in the presence of trypsin allows us to derive the initial reaction rates and k(cat)/K(m) (5350 M⁻¹ s⁻¹) for trypsin-catalyzed hydrolysis. Addition of trypsin inhibitor efficiently inhibits trypsin-catalyzed hydrolysis reaction of cyt c, which leads to a decreased fluorescence turn-on response of PFP-CO₂Na.

  4. Highly Sensitive and Multiple Enzyme Activity Assay Using Reagent-release Capillary-Isoelectric Focusing with Rhodamine 110-based Substrates.

    PubMed

    Sueyoshi, Kenji; Nogawa, Yuto; Sugawara, Kasumi; Endo, Tatsuro; Hisamoto, Hideaki

    2015-01-01

    In this study, a simple and highly sensitive enzyme activity assay based on reagent-release capillary-isoelectric focusing is described. Reagent-release capillaries containing a fluorescent substrate, which produces fluorescent products possessing an isoelectric point after reaction with enzymes, provides a simple procedure. This is because it allows to spontaneously inject a sample solution into the capillary by capillary action, mixing reagents, and subsequently concentrating the fluorescent products based on isoelectric focusing. Fluorescent rhodamine 110 and its monoamide derivative, which were generated as a final product and an intermediate, respectively, were then focused and separated by reagent-release capillary-isoelectric focusing. After 30 min of enzyme reactions, two focused fluorescent bands were clearly isolated along the prepared capillaries. Employing the focused band of rhodamine 110 monoamide allowed for highly sensitive detection of enzyme activity in the 10 pg mL(-1) order, while that of the conventional assay using a microplate was in the ng mL(-1) order. Furthermore, arraying reagent-release capillaries of different substrates on a chip allowed for simultaneous multi-assay of enzyme activity with good sensitivity in the pg mL(-1) order for each protein.

  5. Colorimetric Glucose Assay Based on Magnetic Particles Having Pseudo-peroxidase Activity and Immobilized Glucose Oxidase.

    PubMed

    Martinkova, Pavla; Opatrilova, Radka; Kruzliak, Peter; Styriak, Igor; Pohanka, Miroslav

    2016-05-01

    Magnetic particles (MPs) are currently used as a suitable alternative for peroxidase in the construction of novel biosensors, analytic and diagnostic methods. Their better chemical and thermal stabilities predestine them as appropriate pseudo-enzymatic catalysts. In this point of view, our research was focused on preparation of simply and fast method for immobilization of glucose oxidase onto surface of MPs with peroxidase-like activity. Spectrophotometric method (wavelength 450 nm) optimized for glucose determination using modified MPs has been successfully developed. Concentration curve for optimization of method was assayed, and Michaelis-Menten constant (K m) calculated, maximum reaction rate (V max), limit of detection, and correlation coefficient were determined to be 0.13 mmol/l (2.34 mg/dl), 1.79 pkat, 3.74 µmol/l (0.067 mg/dl), and 0.996, respectively. Interferences of other sugars such as sucrose, sorbitol, deoxyribose, maltose, and fructose were determined as well as effect of substances presenting in plasma (ascorbic acid, reduced glutathione, trolox, and urea). Results in comparison with positive and negative controls showed no interferences of the other sugars and no influence of plasma substances to measuring of glucose. The constructed method showed corresponding results with linear dependence and a correlation coefficient of 0.997. Possibility of repeated use of modified MPs was successfully proved. PMID:27041274

  6. A fluorescence-based hydrolytic enzyme activity assay for quantifying toxic effects of Roundup® to Daphnia magna.

    PubMed

    Ørsted, Michael; Roslev, Peter

    2015-08-01

    Daphnia magna is a widely used model organism for aquatic toxicity testing. In the present study, the authors investigated the hydrolytic enzyme activity of D. magna after exposure to toxicant stress. In vivo enzyme activity was quantified using 15 fluorogenic enzyme probes based on 4-methylumbelliferyl or 7-amino-4-methylcoumarin. Probing D. magna enzyme activity was evaluated using short-term exposure (24-48 h) to the reference chemical K2 Cr2 O7 or the herbicide formulation Roundup®. Toxicant-induced changes in hydrolytic enzyme activity were compared with changes in mobility (International Organization for Standardization standard 6341). The results showed that hydrolytic enzyme activity was quantifiable as a combination of whole body fluorescence of D. magna and the fluorescence of the surrounding water. Exposure of D. magna to lethal and sublethal concentrations of Roundup resulted in loss of whole body enzyme activity and release of cell constituents, including enzymes and DNA. Roundup caused comparable inhibition of mobility and alkaline phosphatase activity with median effective concentration values at 20 °C of 8.7 mg active ingredient (a.i.)/L to 11.7 mg a.i./L. Inhibition of alkaline phosphatase activity by Roundup was lowest at 14 °C and greater at 20 °C and 26 °C. The results suggest that the fluorescence-based hydrolytic enzyme activity assay (FLEA assay) can be used as an index of D. magna stress. Combining enzyme activity with fluorescence measurements may be applied as a simple and quantitative supplement for toxicity testing with D. magna.

  7. Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic-hybridization chain reaction amplified strategy.

    PubMed

    Zhang, Linqun; Liu, Yuanjian; Li, Ying; Zhao, Yuewu; Wei, Wei; Liu, Songqin

    2016-08-24

    A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6](3+), RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL(-1) to 10 U mL(-1), with a detection limit down to 0.03 U mL(-1). Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence.

  8. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands.

    PubMed

    Lomin, Sergey N; Krivosheev, Dmitry M; Steklov, Mikhail Yu; Arkhipov, Dmitry V; Osolodkin, Dmitry I; Schmülling, Thomas; Romanov, Georgy A

    2015-04-01

    Cytokinin receptors play a key role in cytokinin-dependent processes regulating plant growth, development, and adaptation; therefore, the functional properties of these receptors are of great importance. Previously the properties of cytokinin receptors were investigated in heterologous assay systems using unicellular microorganisms, mainly bacteria, expressing receptor proteins. However, within microorganisms receptors reside in an alien environment that might distort the receptor properties. Therefore, a new assay system has been developed allowing studies of individual receptors within plant membranes (i.e. closer to their natural environment). The main ligand-binding characteristics of receptors from Arabidopsis [AHK2, AHK3, and AHK4] and maize (ZmHK1) were refined in this new system, and the properties of full-length Arabidopsis receptor AHK2 were characterized for the first time. Ligand specificity profiles of receptors towards cytokinin bases were comparable with the profiles retrieved in bacterial assay systems. In contrast, cytokinin-9-ribosides displayed a strongly reduced affinity for receptors in the plant assay system, indicating that ribosides as the common transport form of cytokinins have no or very weak cytokinin activity. This underpins the central role of free bases as the sole biologically active cytokinin compounds. According to molecular modelling and docking studies, N (9)-ribosylation alters the bonding pattern in cytokinin-receptor interaction and prevents β6-β7 loop movement important for tight hormone binding. A common feature of all receptors was a greatly reduced ligand binding at low (5.0-5.5) pH. The particularly high sensitivity of ZmHK1 to pH changes leads to the suggestion that some cytokinin receptors may play an additional role as pH sensors in the lumen of the endoplasmic reticulum.

  9. A High-Throughput Colorimetric Screening Assay for Terpene Synthase Activity Based on Substrate Consumption

    PubMed Central

    Furubayashi, Maiko; Ikezumi, Mayu; Kajiwara, Jun; Iwasaki, Miki; Fujii, Akira; Li, Ling; Saito, Kyoichi; Umeno, Daisuke

    2014-01-01

    Terpene synthases catalyze the formation of a variety of terpene chemical structures. Systematic mutagenesis studies have been effective in providing insights into the characteristic and complex mechanisms of C-C bond formations and in exploring the enzymatic potential for inventing new chemical structures. In addition, there is growing demand to increase terpene synthase activity in heterologous hosts, given the maturation of metabolic engineering and host breeding for terpenoid synthesis. We have developed a simple screening method for the cellular activities of terpene synthases by scoring their substrate consumption based on the color loss of the cell harboring carotenoid pathways. We demonstrate that this method can be used to detect activities of various terpene synthase or prenyltransferase genes in a high-throughput manner, irrespective of the product type, enabling the mutation analysis and directed evolution of terpene synthases. We also report the possibility for substrate-specific screening system of terpene synthases by taking advantage of the substrate-size specificity of C30 and C40 carotenoid pathways. PMID:24681801

  10. A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots.

    PubMed

    Qian, Zhao Sheng; Chai, Lu Jing; Huang, Yuan Yuan; Tang, Cong; Shen, Jia Jia; Chen, Jian Rong; Feng, Hui

    2015-06-15

    A convenient and real-time fluorometric assay with the assistance of copper ions based on aggregation and disaggregation of carbon quantum dots (CQDs) was developed to achieve highly sensitive detection of alkaline phosphatase activity. CQDs and pyrophosphate anions (PPi) were used as the fluorescent indicator and substrate for ALP activity assessment respectively. Richness of carboxyl groups on the surface of CQDs enables their severe aggregation triggered by copper ions, which results in effective fluorescence quenching. Under the catalytic hydrolysis of ALP, PPi can be rapidly transformed to phosphate ions. Stronger affinity of phosphate ions to copper ions than carboxyl groups is taken advantage of to achieve fluorescence recovery induced by re-dispersion of CQDs in the presence of ALP and PPi. Quantitative evaluation of ALP activity in a broad range from 16.7 to 782.6 U/L with the detection limit of 1.1 U/L can be realized in this way, which endows the assay with high enough sensitivity for practical detection in human serum. This strategy broadens the sensing application of fluorescent CQDs with excellent biocompatibility, and provides an example based on disaggregation in optical probe development.

  11. A novel photoelectrochemical biosensor for protein kinase activity assay based on phosphorylated graphite-like carbon nitride.

    PubMed

    Li, Xue; Zhou, Yunlei; Xu, Yan; Xu, Huijie; Wang, Minghui; Yin, Huanshun; Ai, Shiyun

    2016-08-31

    Protein kinases are general and significant regulators in the cell signaling pathway, and it is still greatly desired to achieve simple and quick kinase detection. Herein, we develop a simple and sensitive photoelectrochemical strategy for the detection of protein kinase activity based on the bond between phosphorylated peptide and phosphorylated graphite-like carbon nitride (P-g-C3N4) conjugates triggered by Zr(4+) ion coordination. Under optimal conditions, the increased photocurrent is proportional to the protein kinase A (PKA) concentration ranging from 0.05 to 50 U/mL with a detection limit of 0.077 U/mL. Moreover, this photoelectrochemical assay can be also applied to quantitative analysis of kinase inhibition. The results indicated that the IC50 value (inhibitor concentration producing 50% inhibitor) for ellagic acid was 9.1 μM. Moreover, the developed method is further applied to detect PKA activity in real samples, which contains serum from healthy person and gastric cancer patients and breast tissue from healthy person and breast cancer patients. Therefore, the established protocol provides a new and simple tool for assay of kinase activity and its inhibitors with low cost and high sensitivity. PMID:27506341

  12. A novel photoelectrochemical biosensor for protein kinase activity assay based on phosphorylated graphite-like carbon nitride.

    PubMed

    Li, Xue; Zhou, Yunlei; Xu, Yan; Xu, Huijie; Wang, Minghui; Yin, Huanshun; Ai, Shiyun

    2016-08-31

    Protein kinases are general and significant regulators in the cell signaling pathway, and it is still greatly desired to achieve simple and quick kinase detection. Herein, we develop a simple and sensitive photoelectrochemical strategy for the detection of protein kinase activity based on the bond between phosphorylated peptide and phosphorylated graphite-like carbon nitride (P-g-C3N4) conjugates triggered by Zr(4+) ion coordination. Under optimal conditions, the increased photocurrent is proportional to the protein kinase A (PKA) concentration ranging from 0.05 to 50 U/mL with a detection limit of 0.077 U/mL. Moreover, this photoelectrochemical assay can be also applied to quantitative analysis of kinase inhibition. The results indicated that the IC50 value (inhibitor concentration producing 50% inhibitor) for ellagic acid was 9.1 μM. Moreover, the developed method is further applied to detect PKA activity in real samples, which contains serum from healthy person and gastric cancer patients and breast tissue from healthy person and breast cancer patients. Therefore, the established protocol provides a new and simple tool for assay of kinase activity and its inhibitors with low cost and high sensitivity.

  13. A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity.

    PubMed

    Tan, Hongliang; Li, Qian; Zhou, Zhengchen; Ma, Chanjiao; Song, Yonghai; Xu, Fugang; Wang, Li

    2015-01-26

    Metal-organic frameworks (MOFs) with tunable structures and properties have recently been emerged as very interesting functional materials. However, the catalytic properties of MOFs as enzymatic mimics remain to be further investigated. In this work, we for the first time demonstrated the peroxidase-like activity of copper-based MOFs (HKUST-1) by employing thiamine (TH) as a peroxidase substrate. In the presence of H2O2, HKUST-1 can catalyze efficiently the conversion of non-fluorescent TH to strong fluorescent thiochrome. The catalytic activity of HKUST-1 is highly dependent on the temperature, pH and H2O2 concentrations. As a peroxidase mimic, HKUST-1 not only has the features of low cost, high stability and easy preparation, but also follows Michaelis-Menten behaviors and shows stronger affinity to TH than horseradish peroxidase (HRP). Based on the peroxidase-like activity of HKUST-1, a simple and sensitive fluorescent method for TH detection has been developed. As low as 1 μM TH can be detected with a linear range from 4 to 700 μM. The detection limit for TH is about 50 fold lower than that of HRP-based fluorescent assay. The proposed method was successfully applied to detect TH in tablets and urine samples and showed a satisfactory result. We believed that the present work could improve the understanding of catalytic behaviors of MOFs as enzymatic mimics and find out a wider application in bioanalysis.

  14. In vitro cell based assay for activity analysis of staphylococcal enterotoxin A in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Staphylococcal enterotoxins (SEs) are a leading cause of food poisoning. They function both as toxins that cause gastroenteritis after ingestion and as superantigens that non-specifically activate large numbers of T cells. Monkey or kitten bioassays were historically developed for analysis of SE act...

  15. An assay for ribonuclease activity, based on ultraviolet absorption of RNA hydrolysate, using phosphotungstic acid.

    PubMed

    Isobe, K; Uchiyama, S

    1986-06-01

    In the method for the determination of ribonuclease activity that depends on the ultraviolet absorption of the RNA hydrolysate, the uranium reagent (25% perchloric acid solution containing 0.75% uranyl acetate) is commonly used for the efficient precipitation of the unhydrolyzed RNA. However, this reagent is always contaminated by the presence of radioactive isotopes. Radioactive uranium is one of the substances used for atomic nuclear fuel and therefore, at least in Japan, the use of uranium compounds requires permission from the government. We tried to find another efficient and non-radioactive precipitant of RNA to replace the uranium reagent, and have developed a phosphotungsten reagent (25% perchloric acid solution containing 0.75% phosphotungstic acid plus 0.6% bovine serum albumin solution) which functions as efficiently as the uranium reagent in the precipitation of RNA. A cell-free crude extract of Dictyostelium discoideum was used as the source of ribonuclease.

  16. Development of a Lentivirus Vector-Based Assay for Non-Destructive Monitoring of Cell Fusion Activity

    PubMed Central

    Neshati, Zeinab; Liu, Jia; Zhou, Guangqian; Schalij, Martin J.; de Vries, Antoine A. F.

    2014-01-01

    Cell-to-cell fusion can be quantified by endowing acceptor and donor cells with latent reporter genes/proteins and activators of these genes/proteins, respectively. One way to accomplish this goal is by using a bipartite lentivirus vector (LV)-based cell fusion assay system in which the cellular fusion partners are transduced with a flippase-activatable Photinus pyralis luciferase (PpLuc) expression unit (acceptor cells) or with a recombinant gene encoding FLPeNLS+, a nuclear-targeted and molecularly evolved version of flippase (donor cells). Fusion of both cell populations will lead to the FLPe-dependent generation of a functional PpLuc gene. PpLuc activity is typically measured in cell lysates, precluding consecutive analysis of one cell culture. Therefore, in this study the PpLuc-coding sequence was replaced by that of Gaussia princeps luciferase (GpLuc), a secretory protein allowing repeated analysis of the same cell culture. In myotubes the spread of FLPeNLS+ may be limited due to its nuclear localization signal (NLS) causing low signal outputs. To test this hypothesis, myoblasts were transduced with LVs encoding either FLPeNLS+ or an NLS-less version of FLPe (FLPeNLS−) and subsequently co-cultured in different ratios with myoblasts containing the FLPe-activatable GpLuc expression cassette. At different times after induction of cell-to-cell fusion the GpLuc activity in the culture medium was determined. FLPeNLS+ and FLPeNLS− both activated the latent GpLuc gene but when the percentage of FLPe-expressing myoblasts was limiting, FLPeNLS+ generally yielded slightly higher signals than FLPeNLS− while at low acceptor-to-donor cell ratios FLPeNLS− was usually superior. The ability of FLPeNLS+ to spread through myofibers and to induce reporter gene expression is thus not limited by its NLS. However, at high FLPe concentrations the presence of the NLS negatively affected reporter gene expression. In summary, a rapid and simple chemiluminescence assay for

  17. Development of a lentivirus vector-based assay for non-destructive monitoring of cell fusion activity.

    PubMed

    Neshati, Zeinab; Liu, Jia; Zhou, Guangqian; Schalij, Martin J; de Vries, Antoine A F

    2014-01-01

    Cell-to-cell fusion can be quantified by endowing acceptor and donor cells with latent reporter genes/proteins and activators of these genes/proteins, respectively. One way to accomplish this goal is by using a bipartite lentivirus vector (LV)-based cell fusion assay system in which the cellular fusion partners are transduced with a flippase-activatable Photinus pyralis luciferase (PpLuc) expression unit (acceptor cells) or with a recombinant gene encoding FLPeNLS+, a nuclear-targeted and molecularly evolved version of flippase (donor cells). Fusion of both cell populations will lead to the FLPe-dependent generation of a functional PpLuc gene. PpLuc activity is typically measured in cell lysates, precluding consecutive analysis of one cell culture. Therefore, in this study the PpLuc-coding sequence was replaced by that of Gaussia princeps luciferase (GpLuc), a secretory protein allowing repeated analysis of the same cell culture. In myotubes the spread of FLPeNLS+ may be limited due to its nuclear localization signal (NLS) causing low signal outputs. To test this hypothesis, myoblasts were transduced with LVs encoding either FLPeNLS+ or an NLS-less version of FLPe (FLPeNLS-) and subsequently co-cultured in different ratios with myoblasts containing the FLPe-activatable GpLuc expression cassette. At different times after induction of cell-to-cell fusion the GpLuc activity in the culture medium was determined. FLPeNLS+ and FLPeNLS- both activated the latent GpLuc gene but when the percentage of FLPe-expressing myoblasts was limiting, FLPeNLS+ generally yielded slightly higher signals than FLPeNLS- while at low acceptor-to-donor cell ratios FLPeNLS- was usually superior. The ability of FLPeNLS+ to spread through myofibers and to induce reporter gene expression is thus not limited by its NLS. However, at high FLPe concentrations the presence of the NLS negatively affected reporter gene expression. In summary, a rapid and simple chemiluminescence assay for quantifying

  18. Blu-ray Technology-Based Quantitative Assays for Cardiac Markers: From Disc Activation to Multiplex Detection.

    PubMed

    Weng, Samuel; Li, Xiaochun; Niu, Michelle; Ge, Bixia; Yu, Hua-Zhong

    2016-07-01

    Acute myocardial infarction (AMI) is the leading cause of mortality and morbidity globally. To reduce the number of mortalities, reliable and rapid point-of-care (POC) diagnosis of AMI is extremely critical. We herein present a Blu-ray technology-based assay platform for multiplex cardiac biomarker detection; not only off-the-shelf Blu-ray discs (BDs) were adapted as substrates to prepare standard immunoassays and DNA aptamer/antibody hybrid assays for the three key cardiac marker proteins (myoglobin, troponin I, and C-creative protein) but also an unmodified optical drive was directly employed to read the assay results digitally. In particular, we have shown that all three cardiac markers can be quantitated in their respective physiological ranges of interest, and the detection limits achieved are comparable with conventional enzyme-linked immunosorbent assay (ELISA) kits. The Blu-ray assay platform was further validated by measuring real-world samples and establishing a linear correlation with the simultaneously obtained ELISA data. Without the need to modify either the hardware (Blu-ray discs and optical drives) or the software driver, this assay-on-a-BD technique promises to be a low-cost user-friendly quantitative tool for on-site chemical analysis and POC medical diagnosis.

  19. Blu-ray Technology-Based Quantitative Assays for Cardiac Markers: From Disc Activation to Multiplex Detection.

    PubMed

    Weng, Samuel; Li, Xiaochun; Niu, Michelle; Ge, Bixia; Yu, Hua-Zhong

    2016-07-01

    Acute myocardial infarction (AMI) is the leading cause of mortality and morbidity globally. To reduce the number of mortalities, reliable and rapid point-of-care (POC) diagnosis of AMI is extremely critical. We herein present a Blu-ray technology-based assay platform for multiplex cardiac biomarker detection; not only off-the-shelf Blu-ray discs (BDs) were adapted as substrates to prepare standard immunoassays and DNA aptamer/antibody hybrid assays for the three key cardiac marker proteins (myoglobin, troponin I, and C-creative protein) but also an unmodified optical drive was directly employed to read the assay results digitally. In particular, we have shown that all three cardiac markers can be quantitated in their respective physiological ranges of interest, and the detection limits achieved are comparable with conventional enzyme-linked immunosorbent assay (ELISA) kits. The Blu-ray assay platform was further validated by measuring real-world samples and establishing a linear correlation with the simultaneously obtained ELISA data. Without the need to modify either the hardware (Blu-ray discs and optical drives) or the software driver, this assay-on-a-BD technique promises to be a low-cost user-friendly quantitative tool for on-site chemical analysis and POC medical diagnosis. PMID:27268387

  20. Urolithins, intestinal microbial metabolites of Pomegranate ellagitannins, exhibit potent antioxidant activity in a cell-based assay.

    PubMed

    Bialonska, Dobroslawa; Kasimsetty, Sashi G; Khan, Shabana I; Ferreira, Daneel

    2009-11-11

    Many health benefits of pomegranate products have been attributed to the potent antioxidant action of their tannin components, mainly punicalagins and ellagic acid. While moving through the intestines, ellagitannins are metabolized by gut bacteria into urolithins that readily enter systemic circulation. In this study, the antioxidant properties of seven urolithin derivatives were evaluated in a cell-based assay. This method is biologically more relevant because it reflects bioavailability of the test compound to the cells, and the antioxidant action is determined in the cellular environment. Our results showed that the antioxidant activity of urolithins was correlated with the number of hydroxy groups as well as the lipophilicity of the molecule. The most potent antioxidants are urolithins C and D with IC(50) values of 0.16 and 0.33 microM, respectively, when compared to IC(50) values of 1.1 and 1.4 microM of the parent ellagic acid and punicalagins, respectively. The dihydroxylated urolithin A showed weaker antioxidant activity, with an IC(50) value 13.6 microM, however, the potency was within the range of urolithin A plasma concentrations. Therefore, products of the intestinal microbial transformation of pomegranate ellagitannins may account for systemic antioxidant effects.

  1. DNA-based hybridization chain reaction amplification for assaying the effect of environmental phenolic hormone on DNA methyltransferase activity.

    PubMed

    Xu, Zhenning; Yin, Huanshun; Han, Yunxiang; Zhou, Yunlei; Ai, Shiyun

    2014-06-01

    In this work, a novel electrochemical protocol with signal amplification for determination of DNA methylation and methyltransferase activity using DNA-based hybridization chain reaction (HCR) was proposed. After the gold electrode was modified with dsDNA, it was treated with M.SssI MTase, HpaII endonuclease, respectively. And then the HCR was initiated by the target DNA and two hairpin helper DNAs, which lead to the formation of extended dsDNA polymers on the electrode surface. The signal was amplified by the labeled biotin on the hairpin probes. As a result, the streptavidin-alkaline phosphatase (S-ALP) conjugated on the electrode surface through the specific interaction between biotin and S-ALP. ALP could convert 1-naphthyl phosphate into 1-naphthol and the latter could be electrochemically oxidized, which was used to monitor the methylation event and MTase activity. The HCR assay presents good electrochemical responses for the determination of M.SssI MTase at a concentration as low as 0.0067 uni tmL(-1). Moreover, the effects of anti-cancer drug and environmental phenolic hormone on M.SssI MTase activity were also investigated. The results indicated that 5-fluorouracil and daunorubicin hydrochloride could inhibit the activity, and the opposite results were obtained with bisphenol A and nonylphenol. Therefore, this method can not only provide a platform to screen the inhibitors of DNA MTase and develop new anticancer drugs, but also offer a novel technique to investigate the possible carcinogenesis mechanism. PMID:24856396

  2. Assay for methylmalonyl coenzyme A mutase activity based on determination of succinyl coenzyme A by ultrahigh-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Gotoh, Kana; Nakajima, Yoko; Tajima, Go; Hotta, Yuji; Kataoka, Tomoya; Kawade, Yoshihiro; Sugiyama, Naruji; Ito, Tetsuya; Kimura, Kazunori; Maeda, Yasuhiro

    2015-07-01

    Methylmalonic acidemia (MMA) is an inherited metabolic disease. In this condition, metabolism from methylmalonyl coenzyme A (CoA) to succinyl-CoA is inhibited because of either low methylmalonyl-CoA mutase (MCM) activity or adenosylcobalamin deficiency owing to altered vitamin B12 metabolism. A high-precision assay for detecting MCM activity would facilitate not only MMA diagnosis but also the ability to determine the severity of MMA. We developed an MCM assay method based on ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) that involves the determination of succinyl-CoA, which is formed in an enzyme reaction, using peripheral lymphocytes. Using 0.05, 0.5, and 5 μmol/L succinyl-CoA, the intra-assay coefficient of variation (CV) was less than 5.2% and the inter-assay CV was less than 8.7%. The MCM activities of five healthy individuals and four patients were investigated with this assay. The MCM activities of the patients were very low in relation to those of healthy individuals. Together, these results show that the UPLC-MS/MS method is useful for a detailed MCM activity assay.

  3. Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes

    PubMed Central

    Sykes, Melissa L.; Avery, Vicky M.

    2015-01-01

    We have developed a high content 384-well, image-based assay to estimate the effect of compound treatment on Trypanosoma cruzi amastigotes in 3T3 fibroblasts. In the same well, the effect of compound activity on host cells can also be determined, as an initial indicator of cytotoxicity. This assay has been used to identify active compounds from an in-house library of compounds with either known biological activity or that are FDA approved, and separately, from the Medicines for Malaria Venture Malaria Box collection. Active compounds were screened against T. cruzi trypomastigotes, utilising an assay developed with the viability dye resazurin. Twelve compounds with reconfirmed solid sample activity, with IC50 values of less than 10 μM and selectivity indices to T. cruzi amastigotes over 3T3 host cells of between >22 and 319 times were identified from these libraries. As 3T3 cells are contact inhibited, with limited proliferation in the assay, selective compounds of interest were profiled in a separate assay to estimate the viability of compound treated, replicating HEK293 cells. Selective compounds that were not previously reported in the literature were further profiled by extending the incubation time against amastigote infected 3T3 cells to determine if there were residual amastigotes post-treatment, important for the consideration of the exposure time required for further biological characterisation. The assay development process and the suitability of identified compounds as hit molecules for Chagas disease research are discussed. PMID:27120069

  4. Broad base biological assay using liquid based detection assays

    SciTech Connect

    Milanovich, F; Albala, J; Colston, B; Langlois, R; Venkateswaren, K

    2000-10-31

    The release of a biological agent by terrorists represents a serious threat to the safety of US citizens. At present there are over 50 pathogens and toxins on various agency threat lists. Most of these pathogens are rarely seen by public health personnel so the ability to rapidly identify their infection is limited. Since many pathogenic infections have symptomatic delays as long as several days, effective treatment is often compromised. This translates into two major deficiencies in our ability to counter biological terrorism (1) the lack of any credible technology to rapidly detect and identify all the pathogens or toxins on current threat lists and (2) the lack of a credible means to rapidly diagnose thousands of potential victims. In this SI we are developing a rapid, flexible, inexpensive, high throughput, and deeply multiplex-capable biological assay technology. The technology, which we call the Liquid Array (LA), utilizes optical encoding of small diameter beads which serve as the templates for biological capture assays. Once exposed to a fluid sample these beads can be identified and probed for target pathogens at rates of several thousand beads per second. Since each bead can be separately identified, one can perform parallel assays by assigning a different assay to each bead in the encoded set. The goal for this development is a detection technology capable of simultaneously identifying 100s of different bioagents and/or of rapidly diagnosing several thousand individuals. We are pursuing this research in three thrusts. In the first we are exploring the fundamental interactions of the beads with proteins and nucleic acids in complex mixtures. This will provide us with a complete understanding of the limits of the technology with respect to throughput and complex environment. A major spin-off of this activity is in the rapidly emerging field of proteomics where we may be able to rapidly assess the interactions responsible for cell metabolism, structural

  5. Quantitative comparisons of in vitro assays for estrogenic activities.

    PubMed Central

    Fang, H; Tong, W; Perkins, R; Soto, A M; Prechtl, N V; Sheehan, D M

    2000-01-01

    Substances that may act as estrogens show a broad chemical structural diversity. To thoroughly address the question of possible adverse estrogenic effects, reliable methods are needed to detect and identify the chemicals of these diverse structural classes. We compared three assays--in vitro estrogen receptor competitive binding assays (ER binding assays), yeast-based reporter gene assays (yeast assays), and the MCF-7 cell proliferation assay (E-SCREEN assay)--to determine their quantitative agreement in identifying structurally diverse estrogens. We examined assay performance for relative sensitivity, detection of active/inactive chemicals, and estrogen/antiestrogen activities. In this examination, we combined individual data sets in a specific, quantitative data mining exercise. Data sets for at least 29 chemicals from five laboratories were analyzed pair-wise by X-Y plots. The ER binding assay was a good predictor for the other two assay results when the antiestrogens were excluded (r(2) is 0.78 for the yeast assays and 0.85 for the E-SCREEN assays). Additionally, the examination strongly suggests that biologic information that is not apparent from any of the individual assays can be discovered by quantitative pair-wise comparisons among assays. Antiestrogens are identified as outliers in the ER binding/yeast assay, while complete antagonists are identified in the ER binding and E-SCREEN assays. Furthermore, the presence of outliers may be explained by different mechanisms that induce an endocrine response, different impurities in different batches of chemicals, different species sensitivity, or limitations of the assay techniques. Although these assays involve different levels of biologic complexity, the major conclusion is that they generally provided consistent information in quantitatively determining estrogenic activity for the five data sets examined. The results should provide guidance for expanded data mining examinations and the selection of appropriate

  6. Development of a simple and rapid assay for methylase activity based on DNA hairpin probe and Sybr Green I

    NASA Astrophysics Data System (ADS)

    Long, Yi; Zhou, Xiaoming

    2012-03-01

    Methylase is vital for a large number of biological reactions. Here we developed a new method for DNA methylase activity analysis. In this paper, a DNA hairpin probe with a sequence of 5'-GATC-3' in the stem region was designed. The 5'-GATC-3' sequence was targeted by Dam MTase and was methylated. Subsequently, restriction enzyme Dpnl recognized the site and cut it. Then the haipin probe was transformed into three single stranded DNA. This enzymatic process can be monitored by the change of SYBR green I fluorescence. The current label free assay is an useful tool for DNA methylase activity analysis due to its simplicity, speedability, and low cost.

  7. Development of a simple and rapid assay for methylase activity based on DNA hairpin probe and Sybr Green I

    NASA Astrophysics Data System (ADS)

    Long, Yi; Zhou, Xiaoming

    2011-11-01

    Methylase is vital for a large number of biological reactions. Here we developed a new method for DNA methylase activity analysis. In this paper, a DNA hairpin probe with a sequence of 5'-GATC-3' in the stem region was designed. The 5'-GATC-3' sequence was targeted by Dam MTase and was methylated. Subsequently, restriction enzyme Dpnl recognized the site and cut it. Then the haipin probe was transformed into three single stranded DNA. This enzymatic process can be monitored by the change of SYBR green I fluorescence. The current label free assay is an useful tool for DNA methylase activity analysis due to its simplicity, speedability, and low cost.

  8. Indole-based assay to assess the effect of ethanol on Pseudomonas putida F1 dioxygenase activity.

    PubMed

    da Silva, Márcio Luis Busi; Alvarez, Pedro J J

    2010-06-01

    Toluene dioxygenase (TDO) is ubiquitous in nature and has a broad substrate range, including benzene, toluene, ethylbenzene and xylenes (BTEX). Pseudomonas putida F1 (PpF1) induced on toluene is known to produce indigo from indole through the activity of TDO. In this work, a spectrophotometric assay previously developed to measure indole to indigo production rates was modified to characterize the effects of various ethanol concentrations on toluene aerobic biodegradation activity and assess catabolite repression of TDO. Indigo production rate by cells induced on toluene alone was 0.0012 +/- 0.0006 OD(610) min(-1). The presence of ethanol did not fully repress TDO activity when toluene was also available as a carbon source. However, indigo production rates by PpF1 grown on ethanol:toluene mixtures (3:1 w/w) decreased by approximately 50%. Overall, the proposed spectrophotometric assay is a simple approach to quantify TDO activity, and demonstrates how the presence of ethanol in groundwater contaminated with reformulated gasoline is likely to interfere with naturally occurring microorganisms from fully expressing their aerobic catabolic potential towards hydrocarbons bioremediation.

  9. An octaethylene glycol monododecyl ether-based mixed micellar assay for determining the lipid acyl hydrolase activity of patatin.

    PubMed

    Jiménez, M; Escribano, J; Pérez-Gilabert, M; Chazarra, S; Cabanes, J; García-Carmona, F

    2001-10-01

    Patatin was extracted from potato tubers (Solanum tuberosum L. cv. Spunta) and purified to homogeneity by ammonium sulfate salt fractionation and one sole chromatographic step. A spectrophotometric mixed micellar assay for patatin lipid acyl hydrolase (LAH) activity was designed with the detergent octaethylene glycol monododecyl ether (C12E8). Patatin LAH used p-nitrophenyl butyrate (PNP-butyrate) as substrate when solubilized in (C12E8) micelles. In the mixed micellar system, patatin LAH responds to the PNP-butyrate surface concentration expressed as mol% (= [PNP-butyratel x 100/([detergentl critical micellar concentration)) and not to the molarity of PNP-butyrate. The kinetic parameters were determined; Vmax was independent of the mixed micelle concentration, as was Km, when expressed as mol%. However, Km was dependent on C12E8 concentration when expressed in molar concentration. C12E8/PNP-butyrate proved to be a reliable system for assaying patatin LAH activity and is superior to the commonly used Triton X-100 and SDS methods. It permits investigation of the substrate requirements of patatin LAH activity because the concentration-independent Km can be determined both in mol% and as the absolute number of substrate molecules per micelle. In addition, the detergent did not affect the enzyme activity.

  10. Antioxidant Activity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays.

    PubMed

    Apak, Reşat; Özyürek, Mustafa; Güçlü, Kubilay; Çapanoğlu, Esra

    2016-02-10

    Measuring the antioxidant activity/capacity levels of food extracts and biological fluids is useful for determining the nutritional value of foodstuffs and for the diagnosis, treatment, and follow-up of numerous oxidative stress-related diseases. Biologically, antioxidants play their health-beneficial roles via transferring a hydrogen (H) atom or an electron (e(-)) to reactive species, thereby deactivating them. Antioxidant activity assays imitate this action; that is, antioxidants are measured by their H atom transfer (HAT) or e(-) transfer (ET) to probe molecules. Antioxidant activity/capacity can be monitored by a wide variety of assays with different mechanisms, including HAT, ET, and mixed-mode (ET/HAT) assays, generally without distinct boundaries between them. Understanding the principal mechanisms, advantages, and disadvantages of the measurement assays is important for proper selection of method for valid evaluation of antioxidant properties in desired applications. This work provides a general and up-to-date overview of HAT-based, mixed-mode (ET/HAT), and lipid peroxidation assays available for measuring antioxidant activity/capacity and the chemistry behind them, including a critical evaluation of their advantages and drawbacks.

  11. Biochemical assays on plasminogen activators and hormones from kidney sources

    NASA Technical Reports Server (NTRS)

    Barlow, Grant H.; Lewis, Marian L.; Morrison, Dennis R.

    1988-01-01

    Investigations were established for the purpose of analyzing the conditioned media from human embryonic kidney cell subpopulations separated in space by electrophoresis. This data is based on the experiments performed on STS-8 on the continuous flow electrophoresis system. The primary biological activity that was analyzed was plasminogen activator activity, but some assays for erythropoeitin and human granulocyte colony stimulating activity were also performed. It is concluded that a battery of assays are required to completely define the plasminogen activator profile of a conditioned media from cell culture. Each type of assay measures different parts of the mixture and are influenced by different parameters. The functional role of each assay is given along with an indication of which combination of assays are required to answer specific questions. With this type of information it is possible by combinations of assays with mathematical analysis to pinpoint a specific component of the system.

  12. Real-time fluorescence assays of alkaline phosphatase and ATP sulfurylase activities based on a novel PPi fluorescent probe.

    PubMed

    Wang, Xiaobo; Zhang, Zhiyang; Ma, Xiaoyan; Wen, Jinghan; Geng, Zhirong; Wang, Zhilin

    2015-05-01

    An anthracene-armed tetraaza macrocyclic fluorescent probe 3-(9-anthrylmethyl)-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene(l) for detecting Zn(2+) in aqueous medium was synthesized. L-Zn(2+) complex, showed selectivity toward pyrophosphate ion (PPi) by quenching the fluorescence in aqueous HEPES buffer (pH 7.4). Furthermore, L-Zn(2+) was also used to set up a real-time fluorescence assay for monitoring enzyme activities of alkaline phosphatase (ALP) and adenosine triphosphate sulfurylase (ATPS). In the presence of ALP inhibitor Na3VO4 and ATPS inhibitor chlorate, two enzymes activities decreased obviously, respectively.

  13. DNA Methyltransferase Activity Assays: Advances and Challenges

    PubMed Central

    Poh, Wan Jun; Wee, Cayden Pang Pee; Gao, Zhiqiang

    2016-01-01

    DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice. PMID:26909112

  14. DNA Methyltransferase Activity Assays: Advances and Challenges.

    PubMed

    Poh, Wan Jun; Wee, Cayden Pang Pee; Gao, Zhiqiang

    2016-01-01

    DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice.

  15. Spectrophotometric methods based on 2,6-dichloroindophenol acetate and indoxylacetate for butyrylcholinesterase activity assay in plasma.

    PubMed

    Pohanka, Miroslav; Drtinova, Lucie

    2013-03-15

    Butyrylcholinesterase (BChE) is an enzyme presented in quite high level in blood plasma where it participates in detoxification reactions. Due to fact that the enzyme is constituted in livers, it is a marker of liver parenchyma function. It can be used for diagnosis of poisoning for e.g., nerve agents or carbofuran and intoxication by some drugs such as rivastigmine. The present experiment is devoted for the creation of new spectrophotometric tests for assay of BChE activity in biological samples. Standard Ellman's method was compared with use of 2,6-dichloroindophenol acetate and indoxylacetate as chromogenic substrates. Maximal velocities and Michaelis constants were calculated for the substrates. Considering calibration, 2,6-dichloroindophenol acetate provided the lowest limit of detection: 1.20 × 10(-9)kat and a long linear range. All methods were verified using pooled human plasma samples and tested for potential interferents. 2,6-dichloroindophenol acetate is recommended as suitable substrate for BChE assay in clinical diagnostics.

  16. Assay of Chilling Injury in Wild and Domestic Tomatoes Based on Photosystem Activity of the Chilled Leaves

    PubMed Central

    Smillie, Robert M.; Nott, Robyn

    1979-01-01

    Tomato leaves were detached and stored at 0 C for various periods of time. Chloroplasts were isolated from the leaves and their photoreductive activities were determined. Comparisons were made between two altitudinal forms of the wild tomato Lycopersicon hirsutum Humb. and Bonpl. (a tropical lowlands form and a highlands form adapted to growth at 3,100 meters), and two cultivars of the domestic tomato L. esculentum Mill. In each case the capacity of the isolated chloroplasts to photoreduce ferricyanide declined linearly with time of storage of the leaves at 0 C, but not at 10 C. This injury developed more slowly in the high altitudinal form of the wild tomato compared with the low altitudinal form and the two domestic cultivars indicating an enhanced resistance toward chilling injury in the tomato from 3,100 meters. Chloroplast activity declined in green tomato fruit held at 0 C, at about the same rate as in the chilled leaves. Measurements of photochemical activities in the isolated chloroplasts and in vivo measurements of cytochrome-554 photooxidation in chilled leaves showed that the site of action of the chilling effect was water donation to photosystem II. The chilling-induced impairment of photoreductive activity in chloroplasts provides a useful assay for detecting and measuring differences in the susceptibility of plants to chilling injury. PMID:16660815

  17. Kinetic characterization of trans-proteolytic activity of Chikungunya virus capsid protease and development of a FRET-based HTS assay

    PubMed Central

    Aggarwal, Megha; Sharma, Rajesh; Kumar, Pravindra; Parida, Manmohan; Tomar, Shailly

    2015-01-01

    Chikungunya virus (CHIKV) capsid protein (CVCP) is a serine protease that possesses cis-proteolytic activity essential for the structural polyprotein processing and plays a key role in the virus life cycle. CHIKV being an emerging arthropod-borne pathogenic virus, is a public health concern worldwide. No vaccines or specific antiviral treatment is currently available for chikungunya disease. Thus, it is important to develop inhibitors against CHIKV enzymes to block key steps in viral reproduction. In view of this, CVCP was produced recombinantly and purified to homogeneity. A fluorescence resonance energy transfer (FRET)-based proteolytic assay was developed for high throughput screening (HTS). A FRET peptide substrate (DABCYL-GAEEWSLAIE-EDANS) derived from the cleavage site present in the structural polyprotein of CVCP was used. The assay with a Z’ factor of 0.64 and coefficient of variation (CV) is 8.68% can be adapted to high throughput format for automated screening of chemical libraries to identify CVCP specific protease inhibitors. Kinetic parameters Km and kcat/Km estimated using FRET assay were 1.26 ± 0.34 μM and 1.11 × 103 M−1 sec−1 respectively. The availability of active recombinant CVCP and cost effective fluorogenic peptide based in vitro FRET assay may serve as the basis for therapeutics development against CHIKV. PMID:26439734

  18. Antiviral activities of 15 dengue NS2B-NS3 protease inhibitors using a human cell-based viral quantification assay.

    PubMed

    Chu, Justin Jang Hann; Lee, Regina Ching Hua; Ang, Melgious Jin Yan; Wang, Wei-Ling; Lim, Huichang Annie; Wee, John Liang Kuan; Joy, Joma; Hill, Jeffrey; Brian Chia, C S

    2015-06-01

    The dengue virus is a mosquito-borne pathogen responsible for an estimated 50-100 million human dengue infections annually. There are currently no approved drugs against this disease, resulting in a major unmet clinical need. The dengue viral NS2B-NS3 protease has been identified as a plausible drug target due to its involvement in viral replication in mammalian host cells. In the past decade, at least 20 dengue NS2B-NS3 protease inhibitors have been reported in the literature with a range of inhibitory activities in protease assays. However, such assays do not shed light on an inhibitor's ability to penetrate human cell membranes where the viral protease resides. In this study, we investigated the antiviral activities of 15 small-molecule and peptide-based NS2B-NS3 inhibitors on dengue serotype 2-infected HuH-7 human hepatocarcinoma cells. Experimental results revealed anthraquinone ARDP0006 (compound 5) to be the most potent inhibitor which reduced dengue viral titer by more than 1 log PFU/mL at 1 μM in our cell-based assays involving HuH-7 and K562 cell lines, suggesting that its scaffold could serve as a lead for further medicinal chemistry studies. Compound 5 was also found to be non-cytotoxic at 1 μM over 3 days incubation on HuH-7 cells using the Alamar Blue cellular toxicity assay.

  19. Diced electrophoresis gel assay for screening enzymes with specified activities.

    PubMed

    Komatsu, Toru; Hanaoka, Kenjiro; Adibekian, Alexander; Yoshioka, Kentaro; Terai, Takuya; Ueno, Tasuku; Kawaguchi, Mitsuyasu; Cravatt, Benjamin F; Nagano, Tetsuo

    2013-04-24

    We have established the diced electrophoresis gel (DEG) assay as a proteome-wide screening tool to identify enzymes with activities of interest using turnover-based fluorescent substrates. The method utilizes the combination of native polyacrylamide gel electrophoresis (PAGE) with a multiwell-plate-based fluorometric assay to find protein spots with the specified activity. By developing fluorescent substrates that mimic the structure of neutrophil chemoattractants, we could identify enzymes involved in metabolic inactivation of the chemoattractants.

  20. A simple microplate-based method for the determination of α-amylase activity using the glucose assay kit (GOD method).

    PubMed

    Visvanathan, Rizliya; Jayathilake, Chathuni; Liyanage, Ruvini

    2016-11-15

    For the first time, a reliable, simple, rapid and high-throughput analytical method for the detection and quantification of α-amylase inhibitory activity using the glucose assay kit was developed. The new method facilitates rapid screening of a large number of samples, reduces labor, time and reagents and is also suitable for kinetic studies. This method is based on the reaction of maltose with glucose oxidase (GOD) and the development of a red quinone. The test is done in microtitre plates with a total volume of 260μL and an assay time of 40min including the pre-incubation steps. The new method is tested for linearity, sensitivity, precision, reproducibility and applicability. The new method is also compared with the most commonly used 3,5-dinitrosalicylic acid (DNSA) method for determining α-amylase activity. PMID:27283705

  1. A simple microplate-based method for the determination of α-amylase activity using the glucose assay kit (GOD method).

    PubMed

    Visvanathan, Rizliya; Jayathilake, Chathuni; Liyanage, Ruvini

    2016-11-15

    For the first time, a reliable, simple, rapid and high-throughput analytical method for the detection and quantification of α-amylase inhibitory activity using the glucose assay kit was developed. The new method facilitates rapid screening of a large number of samples, reduces labor, time and reagents and is also suitable for kinetic studies. This method is based on the reaction of maltose with glucose oxidase (GOD) and the development of a red quinone. The test is done in microtitre plates with a total volume of 260μL and an assay time of 40min including the pre-incubation steps. The new method is tested for linearity, sensitivity, precision, reproducibility and applicability. The new method is also compared with the most commonly used 3,5-dinitrosalicylic acid (DNSA) method for determining α-amylase activity.

  2. Rho family and Rap GTPase activation assays.

    PubMed

    Jennings, Richard T; Knaus, Ulla G

    2014-01-01

    The detection of Ras superfamily GTPase activity in innate immune cells is important when studying signaling events elicited by various ligands and cellular processes. The development of high-affinity probes detecting the activated, GTP-bound form of small GTPases has significantly enhanced our understanding of initiation and termination of GTPase-regulated signaling pathways. These probes are created by fusing a high-affinity GTPase-binding domain derived from a specific downstream effector protein to glutathione S-transferase (GST). Such domains bind preferentially to the GTP-bound form of the upstream Rho or Ras GTPase. Coupling these probes to beads enables extraction of the complex and subsequent quantification of the active GTP-binding protein by immunoblotting. Although effector domains that discriminate efficiently between GDP- and GTP-bound states and highly specific antibodies are not yet available for every small GTPase, analysis of certain members of the Rho and Ras GTPase family is now routinely performed. Here, we describe affinity-based pulldown assays for detection of Rho GTPase (Rac1/2, Cdc42, RhoA/B) and Rap1/2 activity in stimulated neutrophils or macrophages.

  3. Pulsating bead-based assay.

    PubMed

    Thompson, Jason A; Bau, Haim H

    2011-04-15

    In recent years, there has been a growing interest in using porous microbeads such as agarose beads as solid supports to bind target molecules from complex fluid samples. Porous beads have large surface area to volume ratios and high receptor concentrations, and they facilitate relatively high sensitivity detection and multiplexing. Unfortunately, to take full advantage of the porous beads' attributes, long incubation times are needed due to the relatively slow mass transfer of target molecules from the exterior solution into the beads' interior. To accelerate the mass transfer process, we propose a novel assay in which functionalized porous beads are periodically compressed and expanded. Preliminary experiments were carried out to compare the performance of the pulsating beads with that of conventional, nonpulsating beads. These experiments indicate that the pulsating beads significantly accelerate binding rates with minimal increase in nonspecific binding. Thus, pulsing has the potential of significantly reducing assay time.

  4. Highly sensitive electrochemiluminescenc assay of acetylcholinesterase activity based on dual biomarkers using Pd-Au nanowires as immobilization platform.

    PubMed

    Ye, Cui; Wang, Min-Qiang; Zhong, Xia; Chen, Shihong; Chai, Yaqin; Yuan, Ruo

    2016-05-15

    One-dimensional Pd-Au nanowires (Pd-Au NWs) were prepared and applied to fabricate an electrochemiluminescence (ECL) biosensor for the detection of acetylcholinesterase (AChE) activity. Compared with single-component of Pd or Au, the bimetallic nanocomposite of Pd-Au NWs offers a larger surface area for the immobilization of enzyme, and displays superior electrocatalytic activity and efficient electron transport capacity. In the presence of AChE and choline oxidase (ChOx), acetylcholine (ATCl) is hydrolyzed by AChE to generate thiocholine, then thiocholine is catalyzed by ChOx to produce H2O2 in situ, which serves as the coreactant to effectively enhance the ECL intensity in luminol-ECL system. The detection principle is based on the inhibited AChE and reactivated AChE as dual biomarkers, in which AChE was inhibited by organophosphorus (OP) agents, and then reactivated by obidoxime. Such dual biomarkers method can achieve credible evaluation for AChE activity via providing AChE activity before and after reactivation. The liner range for AChE activity detection was from 0.025 U L(-1) to 25 KU L(-1) with a low detection limit down to 0.0083 U L(-1). PMID:26686921

  5. Highly sensitive electrochemiluminescenc assay of acetylcholinesterase activity based on dual biomarkers using Pd-Au nanowires as immobilization platform.

    PubMed

    Ye, Cui; Wang, Min-Qiang; Zhong, Xia; Chen, Shihong; Chai, Yaqin; Yuan, Ruo

    2016-05-15

    One-dimensional Pd-Au nanowires (Pd-Au NWs) were prepared and applied to fabricate an electrochemiluminescence (ECL) biosensor for the detection of acetylcholinesterase (AChE) activity. Compared with single-component of Pd or Au, the bimetallic nanocomposite of Pd-Au NWs offers a larger surface area for the immobilization of enzyme, and displays superior electrocatalytic activity and efficient electron transport capacity. In the presence of AChE and choline oxidase (ChOx), acetylcholine (ATCl) is hydrolyzed by AChE to generate thiocholine, then thiocholine is catalyzed by ChOx to produce H2O2 in situ, which serves as the coreactant to effectively enhance the ECL intensity in luminol-ECL system. The detection principle is based on the inhibited AChE and reactivated AChE as dual biomarkers, in which AChE was inhibited by organophosphorus (OP) agents, and then reactivated by obidoxime. Such dual biomarkers method can achieve credible evaluation for AChE activity via providing AChE activity before and after reactivation. The liner range for AChE activity detection was from 0.025 U L(-1) to 25 KU L(-1) with a low detection limit down to 0.0083 U L(-1).

  6. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.

    PubMed

    Sun, Jian; Yang, Xiurong

    2015-12-15

    Based on the specific binding of Cu(2+) ions to the 11-mercaptoundecanoic acid (11-MUA)-protected AuNCs with intense orange-red emission, we have proposed and constructed a novel fluorescent nanomaterials-metal ions ensemble at a nonfluorescence off-state. Subsequently, an AuNCs@11-MUA-Cu(2+) ensemble-based fluorescent chemosensor, which is amenable to convenient, sensitive, selective, turn-on and real-time assay of acetylcholinesterase (AChE), could be developed by using acetylthiocholine (ATCh) as the substrate. Herein, the sensing ensemble solution exhibits a marvelous fluorescent enhancement in the presence of AChE and ATCh, where AChE hydrolyzes its active substrate ATCh into thiocholine (TCh), and then TCh captures Cu(2+) from the ensemble, accompanied by the conversion from fluorescence off-state to on-state of the AuNCs. The AChE activity could be detected less than 0.05 mU/mL within a good linear range from 0.05 to 2.5 mU/mL. Our proposed fluorescence assay can be utilized to evaluate the AChE activity quantitatively in real biological sample, and furthermore to screen the inhibitor of AChE. As far as we know, the present study has reported the first analytical proposal for sensing AChE activity in real time by using a fluorescent nanomaterials-Cu(2+) ensemble or focusing on the Cu(2+)-triggered fluorescence quenching/recovery. This strategy paves a new avenue for exploring the biosensing applications of fluorescent AuNCs, and presents the prospect of AuNCs@11-MUA-Cu(2+) ensemble as versatile enzyme activity assay platforms by means of other appropriate substrates/analytes. PMID:26141104

  7. Identification of candidate agents active against N. ceranae infection in honey bees: establishment of a medium throughput screening assay based on N. ceranae infected cultured cells.

    PubMed

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Many flowering plants in both natural ecosytems and agriculture are dependent on insect pollination for fruit set and seed production. Managed honey bees (Apis mellifera) and wild bees are key pollinators providing this indispensable eco- and agrosystem service. Like all other organisms, bees are attacked by numerous pathogens and parasites. Nosema apis is a honey bee pathogenic microsporidium which is widely distributed in honey bee populations without causing much harm. Its congener Nosema ceranae was originally described as pathogen of the Eastern honey bee (Apis cerana) but jumped host from A. cerana to A. mellifera about 20 years ago and spilled over from A. mellifera to Bombus spp. quite recently. N. ceranae is now considered a deadly emerging parasite of both Western honey bees and bumblebees. Hence, novel and sustainable treatment strategies against N. ceranae are urgently needed to protect honey and wild bees. We here present the development of an in vitro medium throughput screening assay for the identification of candidate agents active against N. ceranae infections. This novel assay is based on our recently developed cell culture model for N. ceranae and coupled with an RT-PCR-ELISA protocol for quantification of N. ceranae in infected cells. The assay has been adapted to the 96-well microplate format to allow automated analysis. Several substances with known (fumagillin) or presumed (surfactin) or no (paromomycin) activity against N. ceranae were tested as well as substances for which no data concerning N. ceranae inhibition existed. While fumagillin and two nitroimidazoles (metronidazole, tinidazole) totally inhibited N. ceranae proliferation, all other test substances were inactive. In summary, the assay proved suitable for substance screening and demonstrated the activity of two synthetic antibiotics against N. ceranae.

  8. Identification of candidate agents active against N. ceranae infection in honey bees: establishment of a medium throughput screening assay based on N. ceranae infected cultured cells.

    PubMed

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Many flowering plants in both natural ecosytems and agriculture are dependent on insect pollination for fruit set and seed production. Managed honey bees (Apis mellifera) and wild bees are key pollinators providing this indispensable eco- and agrosystem service. Like all other organisms, bees are attacked by numerous pathogens and parasites. Nosema apis is a honey bee pathogenic microsporidium which is widely distributed in honey bee populations without causing much harm. Its congener Nosema ceranae was originally described as pathogen of the Eastern honey bee (Apis cerana) but jumped host from A. cerana to A. mellifera about 20 years ago and spilled over from A. mellifera to Bombus spp. quite recently. N. ceranae is now considered a deadly emerging parasite of both Western honey bees and bumblebees. Hence, novel and sustainable treatment strategies against N. ceranae are urgently needed to protect honey and wild bees. We here present the development of an in vitro medium throughput screening assay for the identification of candidate agents active against N. ceranae infections. This novel assay is based on our recently developed cell culture model for N. ceranae and coupled with an RT-PCR-ELISA protocol for quantification of N. ceranae in infected cells. The assay has been adapted to the 96-well microplate format to allow automated analysis. Several substances with known (fumagillin) or presumed (surfactin) or no (paromomycin) activity against N. ceranae were tested as well as substances for which no data concerning N. ceranae inhibition existed. While fumagillin and two nitroimidazoles (metronidazole, tinidazole) totally inhibited N. ceranae proliferation, all other test substances were inactive. In summary, the assay proved suitable for substance screening and demonstrated the activity of two synthetic antibiotics against N. ceranae. PMID:25658121

  9. Identification of Candidate Agents Active against N. ceranae Infection in Honey Bees: Establishment of a Medium Throughput Screening Assay Based on N. ceranae Infected Cultured Cells

    PubMed Central

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Many flowering plants in both natural ecosytems and agriculture are dependent on insect pollination for fruit set and seed production. Managed honey bees (Apis mellifera) and wild bees are key pollinators providing this indispensable eco- and agrosystem service. Like all other organisms, bees are attacked by numerous pathogens and parasites. Nosema apis is a honey bee pathogenic microsporidium which is widely distributed in honey bee populations without causing much harm. Its congener Nosema ceranae was originally described as pathogen of the Eastern honey bee (Apis cerana) but jumped host from A. cerana to A. mellifera about 20 years ago and spilled over from A. mellifera to Bombus spp. quite recently. N. ceranae is now considered a deadly emerging parasite of both Western honey bees and bumblebees. Hence, novel and sustainable treatment strategies against N. ceranae are urgently needed to protect honey and wild bees. We here present the development of an in vitro medium throughput screening assay for the identification of candidate agents active against N. ceranae infections. This novel assay is based on our recently developed cell culture model for N. ceranae and coupled with an RT-PCR-ELISA protocol for quantification of N. ceranae in infected cells. The assay has been adapted to the 96-well microplate format to allow automated analysis. Several substances with known (fumagillin) or presumed (surfactin) or no (paromomycin) activity against N. ceranae were tested as well as substances for which no data concerning N. ceranae inhibition existed. While fumagillin and two nitroimidazoles (metronidazole, tinidazole) totally inhibited N. ceranae proliferation, all other test substances were inactive. In summary, the assay proved suitable for substance screening and demonstrated the activity of two synthetic antibiotics against N. ceranae. PMID:25658121

  10. 4-Hydroxy-N-propyl-1,8-naphthalimide esters: New fluorescence-based assay for analysing lipase and esterase activity.

    PubMed

    Nalder, Tim D; Ashton, Trent D; Pfeffer, Frederick M; Marshall, Susan N; Barrow, Colin J

    2016-01-01

    Research using 1,8-naphthalimide derivatives has expanded rapidly in recent years owing to their cell-permeable nature, ability to target certain cellular locations and fluorescent properties. Here we describe the synthesis of three new esters of 4-hydroxy-N-propyl-1,8-naphthalimide (NAP) and the development of a simple and sensitive assay protocol to measure the activity of carboxylester hydrolases. The NAP fluorophore was esterified with short (butyrate), medium (octanoate) and long (palmitate) chain fatty acids. The esters were spectroscopically characterised and their properties investigated for their suitability as assay substrates. The esters were found to be relatively stable under the conditions of the assay and levels of spontaneous hydrolysis were negligible. Non-specific hydrolysis by proteins such as bovine serum albumin was also minimal. A simple and rapid assay methodology was developed and used to analyse a range of commercially available enzymes that included enzymes defined as lipases, esterases and phospholipases. Clear differences were observed between the enzyme classes with respect to the hydrolysis of the various chain length esters, with lipases preferentially hydrolysing the medium chain ester, whereas esterases reacted more favourably with the short ester. The assay was found to be highly sensitive with the fluorophore detectable to the low nM range. These esters provide alternate substrates from established coumarin-based fluorophores, possessing distinctly different excitation (447 nm) and emission (555 nm) optima. Absorbing at 440-450 nm also offers the flexibility of analysis by UV-visible spectrophotometry. This represents the first instance of a naphthalimide-derived compound being used to analyse these enzymes.

  11. Assay and Inhibition of Diacylglycerol Lipase Activity

    PubMed Central

    Johnston, Meghan; Bhatt, Shachi R.; Sikka, Surina; Mercier, Richard W.; West, Jay M.; Makriyannis, Alexandros; Gatley, S. John; Duclos, Richard I.

    2012-01-01

    A series of N-formyl-α-amino acid esters of β-lactone derivatives structurally related to tetrahydrolipstatin (THL) and O-3841 were synthesized that inhibit human and murine diacylglycerol lipase (DAGL) activities. New ether lipid reporter compounds were developed for an in vitro assay to efficiently screen inhibitors of 1,2-diacyl-sn-glycerol hydrolysis and related lipase activities using fluorescence resonance energy transfer (FRET). A standardized thin layer chromatography (TLC) radioassay of diacylglycerol lipase activity utilizing the labeled endogenous substrate [1″-14C]1-stearoyl-2-arachidonoyl-sn-glycerol with phosphorimaging detection was used to quantify inhibition by following formation of the initial product [1″-14C]2-arachidonoylglycerol and further hydrolysis under the assay conditions to [1-14C]arachidonic acid. PMID:22738638

  12. An optimized micro-assay of myosin II ATPase activity based on the molybdenum blue method and its application in screening natural product inhibitors.

    PubMed

    Chen, Hong-Lin; Zhao, Jing; Zhang, Guan-Jun; Kou, Jun-Ping; Yu, Bo-Yang

    2016-06-01

    Myosin II plays multiple roles in physiological and pathological functions through its ATPase activity. The present study was designed to optimize a micro-assay of myosin II ATPase activity based on molybdenum blue method, using a known myosin II ATPase inhibitor, blebbistatin. Several parameters were observed in the enzymatic reaction procedure, including the concentrations of the substrate (ATP) and calcium chloride, pH, and the reaction and incubation times. The proportion of coloration agent was also investigated. The sensitivity of this assay was compared with the malachite green method and bioluminescence method. Additionally, 20 natural compounds were studied for myosin II ATPase inhibitory activity using the optimized method. Our results showed that ATP at the concentration of 5 mmol·L(-1) and ammonium molybdate : stannous chloride at the ratio of 15 : 1 could greatly improve the sensitivity of this method. The IC50 of blebbistatin obtained by this method was consistent with literature. Compound 8 was screened with inhibitory activity on myosin II ATPase. The optimized method showed similar accuracy, lower detecting limit, and wider linear range, which could be a promising approach to screening myosin II ATPase inhibitors in vitro. PMID:27473959

  13. A highly sensitive homogeneous electrochemical assay for alkaline phosphatase activity based on single molecular beacon-initiated T7 exonuclease-mediated signal amplification.

    PubMed

    Zhang, Lianfang; Hou, Ting; Li, Haiyin; Li, Feng

    2015-06-21

    Alkaline phosphatase (ALP), a class of enzymes that catalyzes the dephosphorylation of a variety of substrates, is one of the most commonly assayed enzymes in routine clinical practice, and an important biomarker related to many human diseases. Herein, a facile and highly sensitive homogeneous electrochemical biosensing strategy was proposed for the ALP activity detection based on single molecular beacon-initiated T7 exonuclease-assisted signal amplification. One 3'-phosphorylated and 5'-methylene blue (MB) labeled hairpin probe (HP) is ingeniously designed. In the presence of ALP, the dephosphorylation of HP, the subsequent Klenow fragment (KF) polymerase-catalyzed elongation and T7 exonuclease-catalyzed digestion of the duplex stem of HP take place, releasing MB-labeled mononucleotides and the trigger DNA (tDNA). tDNA then hybridizes with another HP and initiates the subsequent cycling cleavage process. As a result, a large amount of MB-labeled mononucleotides are released, generating a significantly amplified electrochemical signal toward the ALP activity assay. A directly measured detection limit as low as 0.1 U L(-1) is obtained, which is comparable to that of the fluorescence method and up to three orders of magnitude lower than that of the immobilization-based electrochemical strategy previously reported. In addition to high sensitivity and good selectivity, the as-proposed strategy also exhibits the advantages of simplicity and convenience, because the assay is carried out in the homogeneous solution phase and sophisticated electrode modification processes are avoided. Therefore, the homogeneous electrochemical method we proposed here is an ideal candidate for ALP activity detection in biochemical research and clinical practices. PMID:25924941

  14. A highly sensitive homogeneous electrochemical assay for alkaline phosphatase activity based on single molecular beacon-initiated T7 exonuclease-mediated signal amplification.

    PubMed

    Zhang, Lianfang; Hou, Ting; Li, Haiyin; Li, Feng

    2015-06-21

    Alkaline phosphatase (ALP), a class of enzymes that catalyzes the dephosphorylation of a variety of substrates, is one of the most commonly assayed enzymes in routine clinical practice, and an important biomarker related to many human diseases. Herein, a facile and highly sensitive homogeneous electrochemical biosensing strategy was proposed for the ALP activity detection based on single molecular beacon-initiated T7 exonuclease-assisted signal amplification. One 3'-phosphorylated and 5'-methylene blue (MB) labeled hairpin probe (HP) is ingeniously designed. In the presence of ALP, the dephosphorylation of HP, the subsequent Klenow fragment (KF) polymerase-catalyzed elongation and T7 exonuclease-catalyzed digestion of the duplex stem of HP take place, releasing MB-labeled mononucleotides and the trigger DNA (tDNA). tDNA then hybridizes with another HP and initiates the subsequent cycling cleavage process. As a result, a large amount of MB-labeled mononucleotides are released, generating a significantly amplified electrochemical signal toward the ALP activity assay. A directly measured detection limit as low as 0.1 U L(-1) is obtained, which is comparable to that of the fluorescence method and up to three orders of magnitude lower than that of the immobilization-based electrochemical strategy previously reported. In addition to high sensitivity and good selectivity, the as-proposed strategy also exhibits the advantages of simplicity and convenience, because the assay is carried out in the homogeneous solution phase and sophisticated electrode modification processes are avoided. Therefore, the homogeneous electrochemical method we proposed here is an ideal candidate for ALP activity detection in biochemical research and clinical practices.

  15. An exploration of the estrogen receptor transcription activity of capsaicin analogues via an integrated approach based on in silico prediction and in vitro assays.

    PubMed

    Li, Juan; Ma, Duo; Lin, Yuan; Fu, Jianjie; Zhang, Aiqian

    2014-06-16

    Capsaicin has been considered as an alternative template of dichlorodiphenyl trichloroethane (DDT) in antifouling paint. However, information regarding the estrogenic activity of capsaicin analogues is rather limited in comparison to that of DDT analogues and their metabolites. We here explore the ER transcription activity of selected capsaicin analogues via an integrated approach based on in silico prediction and in vitro assays. Molecular simulation and the agonist/antagonist differential-docking screening identified 6-iodonordihydrocapsaicin (6-I-CPS) as a weak ERα agonist, while anti-estrogenicity was expected for N-arachidonoyldopamine, capsazepine, dihydrocapsaicin, trichostatin A, and capsaicin. On the contrary, the large volume of analogues, such as phorbol 12-phenylacetate 13-acetate 20-homovanillate and phorbol 12,13-dinonanoate 20-homovanillate, cannot fit well with the ER cavity. The result of MVLN assay was in accord with the in silico prediction. 6-I-CPS was demonstrated to induce luciferase gene expression, while the other analogues of relatively small molecular volume reduced luciferase gene expression in MVLN cells, both in the absence and presence of estradiol. This finding suggested that the ER transcription activity of capsaicin analogues is generated at least partly through the ERα-mediated pathway. Moreover, receptor polymorphism analysis indicated that capsaicin analogues may exhibit diverse species selectivity for human beings and marine species.

  16. Trend of telomerase activity change during human iPSC self-renewal and differentiation revealed by a quartz crystal microbalance based assay

    NASA Astrophysics Data System (ADS)

    Zhou, Yitian; Zhou, Ping; Xin, Yinqiang; Wang, Jie; Zhu, Zhiqiang; Hu, Ji; Wei, Shicheng; Ma, Hongwei

    2014-11-01

    Telomerase plays an important role in governing the life span of cells for its capacity to extend telomeres. As high activity of telomerase has been found in stem cells and cancer cells specifically, various methods have been developed for the evaluation of telomerase activity. To overcome the time-consuming procedures and complicated manipulations of existing methods, we developed a novel method named Telomeric Repeat Elongation Assay based on Quartz crystal microbalance (TREAQ) to monitor telomerase activity during the self-renewal and differentiation of human induced pluripotent stem cells (hiPSCs). TREAQ results indicated hiPSCs possess invariable telomerase activity for 11 passages on Matrigel and a steady decline of telomerase activity when differentiated for different periods, which is confirmed with existing golden standard method. The pluripotency of hiPSCs during differentiation could be estimated through monitoring telomerase activity and compared with the expression levels of markers of pluripotency gene via quantitative real time PCR. Regular assessment for factors associated with pluripotency or stemness was expensive and requires excessive sample consuming, thus TREAQ could be a promising alternative technology for routine monitoring of telomerase activity and estimate the pluripotency of stem cells.

  17. Assay of DAGLα/β Activity.

    PubMed

    Bisogno, Tiziana

    2016-01-01

    The endocannabinoid 2-arachidonoylglycerol (2-AG) exerts its physiological action by binding to and functionally activating type-1 (CB1) and type-2 (CB2) cannabinoid receptors. It is thought to be produced through the action of sn-1 selective diacylglycerol lipase (DAGL) that catalyzes 2-AG biosynthesis from sn-2-arachidonate-containing diacylglycerols. Since 2-AG biosynthetic enzymes have been identified only recently, little information on methodological approaches for measuring DAGL activity is as yet available. Here, a highly sensitive radiometric assay to measure DAGL activity by using 1-oleoyl[1-(14)C]-2-arachidonoylglycerol as the substrate is reported. All the steps needed to perform lipid extraction, fractionation by thin-layer chromatography (TLC), and quantification of radiolabeled [(14)C]-oleic acid via scintillation counting are described in detail. PMID:27245901

  18. A new cell-based innate immune receptor assay for the examination of receptor activity, ligand specificity, signalling pathways and the detection of pyrogens.

    PubMed

    Burger-Kentischer, Anke; Abele, Ina S; Finkelmeier, Doris; Wiesmüller, Karl-Heinz; Rupp, Steffen

    2010-06-30

    The pattern recognition receptors (PRRs) of the innate immune system are the first defence line of the immune system. Toll-like receptors (TLRs) are the most well known and the best examined of the PR receptors. In the last years TLRs had been studied in different ways resulting in a lot of new insights in the function and signalling pathways of these receptors. However, it was not possible to investigate individual combinations of the TLRs and their specific ligands, because of the complex network in immune signalling resulting in interference with each other. This work shows a new cell-based assay, established for the analysis of single PRRs or heterodimers. For this purpose NIH3T3 (mouse fibroblasts) were stably transfected with the NF-kappaB-inducible reporter gene secreted alkaline phosphatase (SEAP) together with the corresponding combinations of human TLRs and their co-receptors (e.g. TLR1/2, TLR2/6 and TLR4/CD14). The specificity of the respective cell lines was shown by induction with variations of specific and unspecific ligands (immune-stimulating components of microorganisms or synthetic ligands). Analysis via the NF-kappaB-dependent reporter gene SEAP allows a direct way to detect the human TLR-activity. Our results showed that this assay is highly sensitive and specific for the respective ligands. For the synthetic ligands Pam(2)CysSK(4) the assay demonstrates a detection limit of 1 pg/ml for TLR2/6. In summary, this test system allows the investigation of individual human PRR-receptors in a highly specific way, without interference with other immune components opening new avenues for novel insights in the innate immune system and its applications.

  19. A miniaturized fibrinolytic assay for plasminogen activators

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Nachtwey, D. S.; Damron, K. L.

    1991-01-01

    This report describes a micro-clot lysis assay (MCLA) for evaluating fibrinolytic activity of plasminogen activators (PA). Fibrin clots were formed in wells of microtiter plates. Lysis of the clots by PA, indicated by change in turbidity (optical density, OD), was monitored with a microplate reader at five minutes intervals. Log-log plots of PA dilution versus endpoint, the time at which the OD value was halfway between the maximum and minimum value for each well, were linear over a broad range of PA concentrations (2-200 International units/ml). The MCLA is a modification and miniaturization of well established fibrinolytic methods. The significant practical advantages of the MCLA are that it is a simple, relatively sensitive, non-radioactive, quantitative, kinetic, fibrinolytic micro-technique which can be automated.

  20. Cell-based Assays to Identify Inhibitors of Viral Disease

    PubMed Central

    Green, Neil; Ott, Robert D.; Isaacs, Richard J.; Fang, Hong

    2009-01-01

    Background Antagonizing the production of infectious virus inside cells requires drugs that can cross the cell membrane without harming host cells. Objective It is therefore advantageous to establish intracellular potency of anti-viral drug candidates early in the drug-discovery pipeline. Methods To this end, cell-based assays are being developed and employed in high-throughput drug screening, ranging from assays that monitor replication of intact viruses to those that monitor activity of specific viral proteins. While numerous cell-based assays have been developed and investigated, rapid counter screens are also needed to define the specific viral targets of identified inhibitors and to eliminate nonspecific screening hits. Results/Conclusions Here, we describe the types of cell-based assays being used in antiviral drug screens and evaluate the equally important counter screens that are being employed to reach the full potential of cell-based high-throughput screening. PMID:19750206

  1. Application of intact cell-based NFAT-β-lactamase reporter assay for Pasteurella multocida toxin-mediated activation of calcium signaling pathway

    PubMed Central

    Luo, Shuhong; Ho, Mengfei; Wilson, Brenda A.

    2009-01-01

    Pasteurella multocida toxin (PMT) stimulates and subsequently uncouples phospholipase C β1 (PLCβ1) signal transduction through its selective action on the alpha subunit of the Gq protein. Here, we describe the application of an NFAT-β-lactamase reporter assay as a functional readout for PMT-induced activation of the Gq-protein-coupled PLCβ1-IP3-Ca2+ signaling pathway. Use of the NFAT-β-lactamase reporter assay with a cell-permeable fluorogenic substrate provides high sensitivity due to the absence of endogenous β-lactamase activity in mammalian cells. This assay system was optimized for cell density, dose and time exposure of PMT stimulation. It is suited for quantitative characterization of PMT activity in mammalian cells and for use as a high-throughput screening method for PMT deletion and point mutants suitable for vaccine development. This method has application for diagnostic screening of clinical isolates of toxinogenic P. multocida. PMID:18190943

  2. Analyte detection using an active assay

    DOEpatents

    Morozov, Victor; Bailey, Charles L.; Evanskey, Melissa R.

    2010-11-02

    Analytes using an active assay may be detected by introducing an analyte solution containing a plurality of analytes to a lacquered membrane. The lacquered membrane may be a membrane having at least one surface treated with a layer of polymers. The lacquered membrane may be semi-permeable to nonanalytes. The layer of polymers may include cross-linked polymers. A plurality of probe molecules may be arrayed and immobilized on the lacquered membrane. An external force may be applied to the analyte solution to move the analytes towards the lacquered membrane. Movement may cause some or all of the analytes to bind to the lacquered membrane. In cases where probe molecules are presented, some or all of the analytes may bind to probe molecules. The direction of the external force may be reversed to remove unbound or weakly bound analytes. Bound analytes may be detected using known detection types.

  3. Assays for aptamer-based platforms.

    PubMed

    Citartan, Marimuthu; Gopinath, Subash C B; Tominaga, Junji; Tan, Soo-Choon; Tang, Thean-Hock

    2012-04-15

    Aptamers are single stranded DNA or RNA oligonucleotides that have high affinity and specificity towards a wide range of target molecules. Aptamers have low molecular weight, amenable to chemical modifications and exhibit stability undeterred by repetitive denaturation and renaturation. Owing to these indispensable advantages, aptamers have been implemented as molecular recognition element as alternative to antibodies in various assays for diagnostics. By amalgamating with a number of methods that can provide information on the aptamer-target complex formation, aptamers have become the elemental tool for numerous biosensor developments. In this review, administration of aptamers in applications involving assays of fluorescence, electrochemistry, nano-label and nano-constructs are discussed. Although detection strategies are different for various aptamer-based assays, the core of the design strategies is similar towards reporting the presence of specific target binding to the corresponding aptamers. It is prognosticated that aptamers will find even broader applications with the development of new methods of transducing aptamer target binding.

  4. Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays.

    PubMed

    Aleshin, Vasily A; Artiukhov, Artem V; Oppermann, Henry; Kazantsev, Alexey V; Lukashev, Nikolay V; Bunik, Victoria I

    2015-01-01

    Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay. PMID:26308058

  5. Expression and Characterization of Recombinant, Tetrameric and Enzymatically Active Influenza Neuraminidase for the Setup of an Enzyme-Linked Lectin-Based Assay

    PubMed Central

    Prevato, Marua; Ferlenghi, Ilaria; Bonci, Alessandra; Uematsu, Yasushi; Anselmi, Giulia; Giusti, Fabiola; Bertholet, Sylvie; Legay, Francois; Telford, John Laird; Settembre, Ethan C.; Maione, Domenico; Cozzi, Roberta

    2015-01-01

    Developing a universal influenza vaccine that induces broad spectrum and longer-term immunity has become an important potentially achievable target in influenza vaccine research and development. Hemagglutinin (HA) and neuraminidase (NA) are the two major influenza virus antigens. Although antibody responses against influenza virus are mainly directed toward HA, NA is reported to be more genetically stable; hence NA-based vaccines have the potential to be effective for longer time periods. NA-specific immunity has been shown to limit the spread of influenza virus, thus reducing disease symptoms and providing cross-protection against heterosubtypic viruses in mouse challenge experiments. The production of large quantities of highly pure and stable NA could be beneficial for the development of new antivirals, subunit-based vaccines, and novel diagnostic tools. In this study, recombinant NA (rNA) was produced in mammalian cells at high levels from both swine A/California/07/2009 (H1N1) and avian A/turkey/Turkey/01/2005 (H5N1) influenza viruses. Biochemical, structural, and immunological characterizations revealed that the soluble rNAs produced are tetrameric, enzymatically active and immunogenic, and finally they represent good alternatives to conventionally used sources of NA in the Enzyme-Linked Lectin Assay (ELLA). PMID:26280677

  6. Paper-based assay of antioxidant activity using analyte-mediated on-paper nucleation of gold nanoparticles as colorimetric probes.

    PubMed

    Choleva, Tatiana G; Kappi, Foteini A; Giokas, Dimosthenis L; Vlessidis, Athanasios G

    2015-02-20

    With the increasing interest in the health benefits arising from the consumption of dietary products rich in antioxidants, there exists a clear demand for easy-to-use and cost-effective tests that can be used for the identification of the antioxidant power of food products. Paper-based analytical devices constitute a remarkable platform for such expedient and low-cost assays with minimal external resources but efforts in this direction are still scarce. In this work we introduce a new paper-based device in the form of a sensor patch that enables the determination of antioxidant activity through analyte-driven on-paper formation of gold nanoparticles. The principle of detection capitalizes, for the first time, on the on-paper nucleation of gold ions to its respective nanoparticles, upon reduction by antioxidant compounds present in an aqueous sample. The ensuing chromatic transitions, induced on the paper surface, are used as an optical "signature" of the antioxidant strength of the solution. The response of the paper-based sensor was evaluated against a large variety of antioxidant species and the respective dose response curves were constructed. On the basis of these data, the contribution of each species according to its chemical structure was elucidated. For the analysis of real samples, a concentration-dependent colorimetric response was established against Gallic acid equivalents over a linear range of 10 μM-1.0 mM, with detection limits at the low and ultra-low μM levels (i.e. <1.0 μM) and satisfactory precision (RSD=3.6-12.6%). The sensor has been tested for the assessment of antioxidant activity in real samples (teas and wines) and the results correlated well with commonly used antioxidant detection methods. Importantly, the sensor performed favorably for long periods of time when stored at moisture-free and low temperature conditions without losing its activity thus posing as an attractive alternative to the assessment of antioxidant activity without

  7. A Spectrophotometric Assay Optimizing Conditions for Pepsin Activity.

    ERIC Educational Resources Information Center

    Harding, Ethelynda E.; Kimsey, R. Scott

    1998-01-01

    Describes a laboratory protocol optimizing the conditions for the assay of pepsin activity using the Coomasie Blue dye binding assay of protein concentration. The dye bonds through strong, noncovalent interactions to basic and aromatic amino acid residues. (DDR)

  8. Comparison of plaque- and enzyme-linked immunospot-based assays to measure the neutralizing activities of monoclonal antibodies specific to domain III of dengue virus envelope protein.

    PubMed

    Liu, Lidong; Wen, Kun; Li, Jie; Hu, Dongmei; Huang, Yanfen; Qiu, Liwen; Cai, Jianpiao; Che, Xiaoyan

    2012-01-01

    The plaque reduction neutralization test (PRNT) is used widely to measure the neutralization activity of anti-dengue virus (DENV) antibodies, but it is time-consuming and labor-intensive and has low sample throughput. For fast and convenient measurement of neutralizing antibodies, especially in evaluating the efficiency of the DENV vaccines on a large scale, a new method is needed to replace PRNT. In recent decades, several microneutralization assays have been developed to overcome the limitations of PRNT. In the present study, we evaluated one of these, the enzyme-linked immunospot microneutralization test (ELISPOT-MNT), in comparison with PRNT. ELISPOT-MNT is performed in 96-well format, and the plaques are developed after 2 to 4 days using an ELISA to transform them into spots, which are detected automatically with an ELISPOT instrument. The assay is faster than PRNT, has a high throughput, and is more objective. We used 10 monoclonal antibodies (MAbs) against domain III of the DENV envelope protein (EDIII) to evaluate the two assays; all of these MAbs cross-react with all four serotypes of DENV as measured by immunofluorescence assay. The two neutralization assays were performed simultaneously to measure the 50% inhibitory concentration (IC(50)) of these MAbs. Using PRNT as the reference and treating IC(50) values higher than 50 μg/ml of MAbs as negative, ELISPOT-MNT showed a sensitivity of 95.6% and specificity of 88.24% when 10 MAbs were tested against four DENV serotype strains. A good correlation (R(2) = 0.672; P = 0.000) was observed between the two assays, making ELISPOT-MNT a potentially valuable method for measure of neutralizing antibodies against DENV.

  9. Comparison of Plaque- and Enzyme-Linked Immunospot-Based Assays To Measure the Neutralizing Activities of Monoclonal Antibodies Specific to Domain III of Dengue Virus Envelope Protein

    PubMed Central

    Liu, Lidong; Wen, Kun; Li, Jie; Hu, Dongmei; Huang, Yanfen; Qiu, Liwen; Cai, Jianpiao

    2012-01-01

    The plaque reduction neutralization test (PRNT) is used widely to measure the neutralization activity of anti-dengue virus (DENV) antibodies, but it is time-consuming and labor-intensive and has low sample throughput. For fast and convenient measurement of neutralizing antibodies, especially in evaluating the efficiency of the DENV vaccines on a large scale, a new method is needed to replace PRNT. In recent decades, several microneutralization assays have been developed to overcome the limitations of PRNT. In the present study, we evaluated one of these, the enzyme-linked immunospot microneutralization test (ELISPOT-MNT), in comparison with PRNT. ELISPOT-MNT is performed in 96-well format, and the plaques are developed after 2 to 4 days using an ELISA to transform them into spots, which are detected automatically with an ELISPOT instrument. The assay is faster than PRNT, has a high throughput, and is more objective. We used 10 monoclonal antibodies (MAbs) against domain III of the DENV envelope protein (EDIII) to evaluate the two assays; all of these MAbs cross-react with all four serotypes of DENV as measured by immunofluorescence assay. The two neutralization assays were performed simultaneously to measure the 50% inhibitory concentration (IC50) of these MAbs. Using PRNT as the reference and treating IC50 values higher than 50 μg/ml of MAbs as negative, ELISPOT-MNT showed a sensitivity of 95.6% and specificity of 88.24% when 10 MAbs were tested against four DENV serotype strains. A good correlation (R2 = 0.672; P = 0.000) was observed between the two assays, making ELISPOT-MNT a potentially valuable method for measure of neutralizing antibodies against DENV. PMID:22116689

  10. A new assay system for guinea pig interferon biological activity.

    PubMed

    Yamamoto, Toshiko; Jeevan, Amminikutty; Ohishi, Kazue; Nojima, Yasuhiro; Umemori, Kiyoko; Yamamoto, Saburo; McMurray, David N

    2002-07-01

    We have developed an assay system for guinea pig interferon (IFN) based on reduction of viral cytopathic effect (CPE) in various cell lines. CPE inhibition was detected optimally in the guinea pig fibroblast cell line 104C1 infected with encephalomyocarditis virus (EMCV). The amount of biologically active guinea pig IFN was quantified by estimating viable cell numbers colorimetrically by means of a tetrazolium compound, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt (WST-1) and 1-methoxy-5-methylphenazinium methylsulfate (PMS). WST-1 color developed until stopped by the addition of sulfuric acid. This had no effect on the colorimetric assay, and the color was stable for at least 24 h. The acid also inactivated the EMCV and, thus, eliminated the viral hazard. Inhibition of CPE activity was highly correlated with the concentration of culture supernatants from BCG-vaccinated guinea pig splenocytes stimulated in vitro with tuberculin or an immunostimulatory oligoDNA. This assay detected guinea pig IFN and human IFN-alpha, but not IFN-gamma from human, mouse, rat, pig, or dog. This assay system has proved useful for the titration of guinea pig IFN, being easy to perform, free from viral hazard, relatively species specific, highly reproducible, and inexpensive.

  11. Mining Chemical Activity Status from High-Throughput Screening Assays

    PubMed Central

    Soufan, Othman; Ba-alawi, Wail; Afeef, Moataz; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B.

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare. PMID:26658480

  12. A microtiterplate-based screening assay to assess diverse effects on cytochrome P450 enzyme activities in primary rat hepatocytes by various compounds.

    PubMed

    Schaeffner, I; Petters, J; Aurich, H; Frohberg, P; Christ, B

    2005-02-01

    During the development of potential drugs it is useful to identify pharmacological and/or toxicological side effects of a compound as early as possible in order to exclude them from further development for reasons of time and cost. Activation or inactivation of members of the cytochrome P450-dependent monooxygenase system (CYP450) might indicate potential undesired effects of a given compound. However, results using CYP450 assay systems are often inconsistent because of different experimental settings. Therefore, it was the goal of the present study to optimize the CYP450 assay in primary rat hepatocytes with respect to the time point of addition of and duration of exposure to alpha-naphthoflavone (ANF) and beta-naphthoflavone (BNF) as well as trans-resveratrol (RES), which have well-described stimulatory and inhibitory effects on CYP450 enzymes of the 1A and 2B family, respectively. Hepatocytes were also treated with putative lipoxygenase (LOX)/cyclooxygenase (COX) inhibitors with unknown impact on CYP450 enzyme activity in order to detect potential side effects. Cells were cultured for up to 7 days on 96-well microtiter plates, and enzyme activity was determined by a conventional fluorescence spectroscopy assay. ANF and BNF, given to the cells after 4 days of culture, stimulated CYP1A and 2B activities significantly in a concentration-dependent fashion after long-term exposure for at least 1 day. However, during short-term exposure for 1-6 h, CYP1A activity was inhibited, while CYP2B was increased weakly by ANF but not BNF. RES inhibited CYP1A activity during short- and long-term exposure without affecting CYP2B activity. From the results it was concluded that primary rat hepatocytes should be cultured for at least 3-4 days but no longer prior to the assay. The assay should be performed at two different time points of exposure, i.e., 6 h for short-term and 24 h for long-term exposure. The compounds under investigation should be applied at two different

  13. Quantitative detection of RT activity by PERT assay: feasibility and limits to a standardized screening assay for human vaccines.

    PubMed

    André, M; Morgeaux, S; Fuchs, F

    2000-06-01

    The detection of adventitious retroviruses has always been critical for assessing the safety concerns associated with viral vaccines. Assays for the enzymatic activity of reverse transcriptase (RT) are used as general methods for the detection of both known and unknown retroviruses. Several studies using newly-developed ultrasensitive PCR-based RT assays reported RT activity in viral vaccines grown in chicken cells. Here, we have assessed the performances of such a PCR-based RT assay--PERT assay--for the quantitative detection of RT activity in vaccines. Sensitivity, linearity and reproducibility of the method were studied on purified RT and viral vaccines treated to release RT from potentially contaminant retroviruses. The level of RT activity detected in chicken cell-derived vaccines was higher for live attenuated vaccines compared to inactivated ones. Contrary to other studies, RT activity was found in some mammalian cell-derived vaccines. AZT-TP sensitivity of RT activities detected in these vaccines and discrimination between retroviral and RT-like activities was further investigated. Feasibility and limits of PERT assay as a broad-spectrum retroviruses detection method in vaccines are discussed.

  14. Dehydrogenase activity of forest soils depends on the assay used

    NASA Astrophysics Data System (ADS)

    Januszek, Kazimierz; Długa, Joanna; Socha, Jarosław

    2015-01-01

    Dehydrogenases are exclusively intracellular enzymes, which play an important role in the initial stages of oxidation of soil organic matter. One of the most frequently used methods to estimate dehydrogenase activity in soil is based on the use of triphenyltetrazolium chloride as an artificial electron acceptor. The purpose of this study was to compare the activity of dehydrogenases of forest soils with varied physicochemical properties using different triphenyltetrazolium chloride assays. The determination was carried out using the original procedure by Casida et al., a modification of the procedure which involves the use of Ca(OH)2 instead of CaCO3, the Thalmann method, and the assay by Casida et al. without addition of buffer or any salt. Soil dehydrogenase activity depended on the assay used. Dehydrogenase determined by the Casida et al. method without addition of buffer or any salt correlated with the pH values of soils. The autoclaved strongly acidic samples of control soils showed high concentrations of triphenylformazan, probably due to chemical reduction of triphenyltetrazolium chloride. There is, therefore, a need for a sterilization method other than autoclaving, ie a process that results in significant changes in soil properties, thus helping to increase the chemical reduction of triphenyltetrazolium chloride.

  15. A novel label-free fluorescence strategy for methyltransferase activity assay based on dsDNA-templated copper nanoparticles coupled with an endonuclease-assisted signal transduction system.

    PubMed

    Lai, Q Q; Liu, M D; Gu, C C; Nie, H G; Xu, X J; Li, Z H; Yang, Z; Huang, S M

    2016-02-21

    Evaluating DNA methyltransferase (MTase) activity has received considerable attention due to its significance in the fields of early cancer clinical diagnostics and drug discovery. Herein, we proposed a novel label-free fluorescence method for MTase activity assay by coupling double-stranded DNA (dsDNA)-templated copper nanoparticles (CuNPs) with an endonuclease-assisted signal transduction system. In this strategy, dsDNA molecules were first methylated by DNA adenine methylation (Dam) MTase and then cleaved by the methylation-sensitive restriction endonuclease DpnI. The cleaved DNA fragments could not act as efficient templates for the formation of fluorescent CuNPs and thus no fluorescence signal was produced. Under optimized experimental conditions, the developed strategy exhibited a sensitive fluorescence response to Dam MTase activity. This strategy was also demonstrated to provide an excellent platform to the inhibitor screening for Dam MTase. These results demonstrated the great potential for the practical applications of the proposed strategy for Dam MTase activity assay. PMID:26764536

  16. Colorimetric assay for T4 polynucleotide kinase activity based on the horseradish peroxidase-mimicking DNAzyme combined with λ exonuclease cleavage.

    PubMed

    Jiang, Cheng; Yan, Chunyan; Jiang, Jianhui; Yu, Ruqin

    2013-03-01

    T4 polynucleotide kinase (PNK) plays a critical role in various cellular events. Here, we describe a novel colorimetric strategy for estimating the activity of PNK and screening its inhibitors taking advantage of the efficient cleavage of λ exonuclease and the horseradish peroxidase-mimicking DNAzyme (HRPzyme) signal amplification. A label-free hairpin DNA with the sequence of HRPzyme was utilized in the assay. The 5'-hydroxyl terminal of the hairpin DNA was firstly phosphorylated in the presence of PNK and then digested by λ exonuclease. As a result, the blocked 'HRPzyme' sequence of the hairpin DNA was released due to the removal of its completely complementary sequence. Using this strategy, the assay for PNK activity was successfully translated into the detection of HRPzyme. Because of the completely blocking and efficiently releasing of HRPzyme, the colorimetric method exhibited an excellent performance in PNK analysis with a low detection limit of 0.06 U mL(-1) and a wide detection range from 0.06 to 100 U mL(-1). Additionally, the effects of different inhibitors on PNK activity were also evaluated. The proposed strategy holds great potential in the development of high-throughput phosphorylation investigation as well as in the screening of the related drugs.

  17. Fluorescence assay for evaluating microbicidal activity of hand antiseptics.

    PubMed

    Lopez-Gigosos, Rosa M; Mariscal, Alberto; Mariscal-Lopez, Eloisa; Gutierrez-Bedmar, Mario; Fernandez, Joaquin

    2015-11-01

    We developed a fluorescent β-d-glucuronidase activity (BGA)-based assay for detecting and quantifying Escherichia coli in samples to assess the biocide efficacy of hand antiseptics. The fluorescence level is proportional to the number of viable E. coli organisms present. We compared our assay results to those of the E. coli plate count method specified by the European standard for testing hygienic hand rub disinfectant products (EN1500). The plate count method requires excessive handling and materials and is not valid if the number of organisms per plate is too low or high for counting in many of the samples. We optimized the fluorescent assay based on the cleavage of 4-methylumbelliferyl-β-d-glucuronide by adding 4-nitrophenyl-β-d-glucuronide, a nonfluorogenic BGA substrate, to induce glucuronidase activity and reduce assay time. Furthermore, our method can be automated and eliminates the need for multiple dilutions. Fluorescence was temporally monitored, and the time required to reach a specific value of fluorescence was correlated with the initial number of viable E. coli organisms on the samples. There was a positive correlation (P < 0.05) with a high correlation coefficient (R(2) = 0.82) between the E. coli counts by plate count and fluorescence methods. Reported effects in fluorescent BGA were compared to the EN1500 plate count method with five hand disinfectants. We found our method more advantageous, because it was as sensitive as the EN1500 method, requires less time to complete, and is less expensive and less laborious than conventional plating techniques.

  18. Fluorescence assay for evaluating microbicidal activity of hand antiseptics.

    PubMed

    Lopez-Gigosos, Rosa M; Mariscal, Alberto; Mariscal-Lopez, Eloisa; Gutierrez-Bedmar, Mario; Fernandez, Joaquin

    2015-11-01

    We developed a fluorescent β-d-glucuronidase activity (BGA)-based assay for detecting and quantifying Escherichia coli in samples to assess the biocide efficacy of hand antiseptics. The fluorescence level is proportional to the number of viable E. coli organisms present. We compared our assay results to those of the E. coli plate count method specified by the European standard for testing hygienic hand rub disinfectant products (EN1500). The plate count method requires excessive handling and materials and is not valid if the number of organisms per plate is too low or high for counting in many of the samples. We optimized the fluorescent assay based on the cleavage of 4-methylumbelliferyl-β-d-glucuronide by adding 4-nitrophenyl-β-d-glucuronide, a nonfluorogenic BGA substrate, to induce glucuronidase activity and reduce assay time. Furthermore, our method can be automated and eliminates the need for multiple dilutions. Fluorescence was temporally monitored, and the time required to reach a specific value of fluorescence was correlated with the initial number of viable E. coli organisms on the samples. There was a positive correlation (P < 0.05) with a high correlation coefficient (R(2) = 0.82) between the E. coli counts by plate count and fluorescence methods. Reported effects in fluorescent BGA were compared to the EN1500 plate count method with five hand disinfectants. We found our method more advantageous, because it was as sensitive as the EN1500 method, requires less time to complete, and is less expensive and less laborious than conventional plating techniques. PMID:26276114

  19. Fluorescence Assay for Evaluating Microbicidal Activity of Hand Antiseptics

    PubMed Central

    Lopez-Gigosos, Rosa M.; Mariscal-Lopez, Eloisa; Gutierrez-Bedmar, Mario; Fernandez, Joaquin

    2015-01-01

    We developed a fluorescent β-d-glucuronidase activity (BGA)-based assay for detecting and quantifying Escherichia coli in samples to assess the biocide efficacy of hand antiseptics. The fluorescence level is proportional to the number of viable E. coli organisms present. We compared our assay results to those of the E. coli plate count method specified by the European standard for testing hygienic hand rub disinfectant products (EN1500). The plate count method requires excessive handling and materials and is not valid if the number of organisms per plate is too low or high for counting in many of the samples. We optimized the fluorescent assay based on the cleavage of 4-methylumbelliferyl-β-d-glucuronide by adding 4-nitrophenyl-β-d-glucuronide, a nonfluorogenic BGA substrate, to induce glucuronidase activity and reduce assay time. Furthermore, our method can be automated and eliminates the need for multiple dilutions. Fluorescence was temporally monitored, and the time required to reach a specific value of fluorescence was correlated with the initial number of viable E. coli organisms on the samples. There was a positive correlation (P < 0.05) with a high correlation coefficient (R2 = 0.82) between the E. coli counts by plate count and fluorescence methods. Reported effects in fluorescent BGA were compared to the EN1500 plate count method with five hand disinfectants. We found our method more advantageous, because it was as sensitive as the EN1500 method, requires less time to complete, and is less expensive and less laborious than conventional plating techniques. PMID:26276114

  20. Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase.

    PubMed

    Zhou, Yunlei; Yin, Huanshun; Li, Xue; Li, Zhi; Ai, Shiyun; Lin, Hai

    2016-12-15

    A sensitive and selective electrochemical biosensor was fabricated for protein kinase A (PKA) activity assay. Multiple signal amplification techniques were employed including the nanocomposite of gold nanoparticles and carbon nanospheres (Au@C), the biocomposite of SiO2 and streptavidin (SiO2-SA), the composite of AuNPs and biotinylated β-galactosidase (AuNPs-B-Gal) and in situ enzymatic generation of electrochemical activity molecule of p-aminophenol. After peptides were assembled on Au@C modified electrode surface, they were phosphorylated by PKA in the presence of ATP. Then, biotinylated Phos-tag was modified on electrode surface through the specific interaction between Phos-tag and phosphate group. Finally, SiO2-SA and AuNPs-B-Gal were captured through the specific interaction between biotin and streptavidin. Because the electrochemical response of p-aminophenol was directly related to PKA concentration, an innovative electrochemical assay could be realized for PKA detection. The detection limit was 0.014unit/mL. The developed method showed high detection sensitivity and selectivity. In addition, the fabricated biosensor can be also applied to detect PKA in human normal gastricepithelial cell line and human gastric carcinoma cell line with satisfactory results.

  1. Monkey Feeding Assay for Testing Emetic Activity of Staphylococcal Enterotoxin.

    PubMed

    Seo, Keun Seok

    2016-01-01

    Staphylococcal enterotoxins (SEs) are unique bacterial toxins that cause gastrointestinal toxicity as well as superantigenic activity. Since systemic administration of SEs induces superantigenic activity leading to toxic shock syndrome that may mimic enterotoxic activity of SEs such as vomiting and diarrhea, oral administration of SEs in the monkey feeding assay is considered as a standard method to evaluate emetic activity of SEs. This chapter summarizes and discusses practical considerations of the monkey feeding assay used in studies characterizing classical and newly identified SEs.

  2. Assay of nitrogenase activity in intact plant systems.

    PubMed

    Jain, M K; Vlassak, K

    1975-01-01

    Nitrogenase activity was assayed in intact system of Cichorium intybus, a non-leguminous commercially cultivated crop, Dahlia pinnata and Helianthus annus, and Taraxacum officinale, a common weed plant. The assay was made in fabricated cylinders which could accomodate pot with plants. In such kind of assay along with rhizosphere microflora, the nitrogen fixed by phyllosphere nitrogen fixing microflora could also be accounted, which otherwise was difficult to be accounted for. PMID:1211718

  3. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure-activity relationships of the 4-aryl group.

    PubMed

    Kemnitzer, William; Drewe, John; Jiang, Songchun; Zhang, Hong; Wang, Yan; Zhao, Jianghong; Jia, Shaojuan; Herich, John; Labreque, Denis; Storer, Richard; Meerovitch, Karen; Bouffard, David; Rej, Rabindra; Denis, Real; Blais, Charles; Lamothe, Serge; Attardo, Giorgio; Gourdeau, Henriette; Tseng, Ben; Kasibhatla, Shailaja; Cai, Sui Xiong

    2004-12-01

    By applying a novel cell- and caspase-based HTS assay, 2-amino-3-cyano-7-(dimethylamino)-4-(3-methoxy-4,5-methylenedioxyphenyl)-4H-chromene (1a) has been identified as a potent apoptosis inducer. Compound 1a was found to induce nuclear fragmentation and PARP cleavage, as well as to arrest cells at the G(2)/M stage and to induce apoptosis as determined by the flow cytometry analysis assay in multiple human cell lines (e.g. Jurkat, T47D). Through structure-activity relationship (SAR) studies of the 4-aryl group, a 4- and 7-fold increase in potency was obtained from the screening hit 1a to the lead compounds 2-amino-4-(3-bromo-4,5-dimethoxyphenyl)-3-cyano-7-(dimethylamino)-4H-chromene (1c) and 2-amino-3-cyano-7-(dimethylamino)-4-(5-methyl-3-pyridyl)-4H-chromene (4e), with an EC(50) of 19 and 11 nM in the caspase activation assay in T47D breast cancer cells, respectively. The 2-amino-4-aryl-3-cyano-7-(dimethylamino)-4H-chromenes also were found to be highly active in the growth inhibition MTT assay, with GI(50) values in the low nanomolar range for compound 1c. Significantly, compound 1c was found to have a GI(50) value of 2 nM in the paclitaxel resistant, p-glycoprotein overexpressed, MES-SA/DX5 tumor cells. Functionally, compound 1c was found to be a potent inhibitor of tubulin polymerization and to effectively inhibit the binding of colchicine to tubulin. These results confirm that the cell-based caspase activation assay is a powerful tool for the discovery of potent apoptosis inducers and suggest that the 4-aryl-4H-chromenes have the potential to be developed into future anticancer agents.

  4. The Inhibition of Mast Cell Activation of Radix Paeoniae alba Extraction Identified by TCRP Based and Conventional Cell Function Assay Systems

    PubMed Central

    Fu, Huiying; Cheng, Hongqiang; Cao, Gang; Zhang, Xingde; Tu, Jue; Sun, Mingjiao; Mou, Xiaozhou; Shou, Qiyang; Ke, Yuehai

    2016-01-01

    Chinese herbs have long been used to treat allergic disease, but recently the development was greatly impeded by the lack of good methods to explore the mechanism of action. Here, we showed the effects of Chinese herb Radix Paeoniae alba were identified and characterized by a mast cell activation assay that involves electronic impedance readouts for dynamic monitoring of cellular responses to produce time-dependent cell responding profiles (TCRPs), and the anti-allergic activities were further confirmed with various conventional molecular and cell biology tools. We found Radix P. alba can dose-dependently inhibit TCPRs, and have anti-allergic function in vitro and in vivo. Radix P. alba suppressed mast cell degranulation not only inhibiting the translocation of granules to the plasma membrane, but also blocking membrane fusion and exocytosis; and that there may be other anti-allergic components in addition to paeoniflorin. Our results suggest that Radix P. alba regulated mast cell activation with multiple targets, and this approach is also suitable for discovering other mast cell degranulation-targeting Chinese herbs and their potential multi-target mechanisms. PMID:27195739

  5. Measuring MAP kinase activity in immune complex assays.

    PubMed

    Cherkasova, Vera A

    2006-11-01

    I present an overview of published methods for measuring mitogen activated protein (MAP) kinase activity on endogenous associated substrates, exogenously added substrates as well as determination of activation loop phosphorylation as a read-out of kinase activity in vivo. Detailed procedures for these assays are given for two MAP kinases (MAPKs) Fus3 and Kss1 and compared with other published protocols, including the protocols for Hog1 and Mpk1 MAPKs. Measuring kinase activity in immune complex assays can serve as an approach for identification of potential substrates of protein kinases as well as for detecting other kinase-associated proteins. PMID:16890454

  6. Automated filter paper assay for determination of cellulase activity.

    PubMed

    Decker, Stephen R; Adney, William S; Jennings, Edward; Vinzant, Todd B; Himmel, Michael E

    2003-01-01

    Recent developments in molecular breeding and directed evolution have promised great developments in industrial enzymes as demonstrated by exponential improvements in beta-lactamase and green fluorescent protein (GFP). Detection of and screening for improved enzymes are relatively easy if the target enzyme is expressible in a suitable high-throughput screening host and a clearly defined and usable screen or selection is available, as with GFP and beta-lactamase. Fungal cellulases, however, are difficult to measure and have limited expressibility in heterologous hosts. Furthermore, traditional cellulase assays are tedious and time-consuming. Multiple enzyme components, an insoluble substrate, and generally slow reaction rates have plagued cellulase researchers interested in creating cellulase mixtures with increased activities and/or enhanced biochemical properties. Although the International Union of Pure and Applied Chemists standard measure of cellulase activity, the filter paper assay (FPA), can be reproduced in most laboratories with some effort, this method has long been recognized for its complexity and susceptibility to operator error. Our current automated FPA method is based on a Cyberlabs C400 robotics deck equipped with customized incubation, reagent storage, and plate-reading capabilities that allow rapid evaluation of cellulases acting on cellulose and has a maximum throughput of 84 enzyme samples per day when performing the automated FPA.

  7. Assaying the Kinase Activity of LRRK2 in vitro

    PubMed Central

    Lewis, Patrick A.

    2012-01-01

    outputs for LRRK2 kinase activity have been reported. Autophosphorylation of LRRK2 itself, phosphorylation of Myelin Basic Protein (MBP) as a generic kinase substrate and phosphorylation of an artificial substrate - dubbed LRRKtide, based upon phosphorylation of threonine 558 in Moesin - have all been used, as have a series of putative physiological substrates including α-synuclein, Moesin and 4-EBP14-17. The status of these proteins as substrates for LRRK2 remains unclear, and as such the protocol described below will focus on using MBP as a generic substrate, noting the utility of this system to assay LRRK2 kinase activity directed against a range of potential substrates. PMID:22301813

  8. Expanding Targets of DNAzyme-based Sensors through Deactivation and Activation of DNAzymes by Single Uracil Removal: Sensitive Fluorescent Assay of Uracil-DNA Glycosylase

    PubMed Central

    Xiang, Yu

    2012-01-01

    Although deoxyribozymes (DNAzymes) have been widely used as biosensors for the detection of their cofactors and the targets of related aptazymes, it is desirable to expand their range of analytes to take advantage of the DNAzyme-based signal amplification for more sensitive detections. In this study, the activity of uracil-DNA glycosylase (UNG) was successfully detected and quantified by deoxyuridine-modified DNAzymes that underwent UNG-dependent deactivation or activation. In one design, the indispensable thymidine T2.1 in the 8–17 DNAzyme was replaced with a deoxyuridine, resulting in minimal change of the DNAzyme’s activity. Since UNG is capable of removing uracils from single- or double-stranded DNAs, the modified DNAzyme was deactivated when the uracil at the indispensable thymidine site was eliminated by UNG. In another design, introducing a deoxyuridine to the 3′ position of the deoxycytidine C13 in the catalytic core of the same DNAzyme caused significant decrease of the activity. However, the removal of the interfering deoxyuridine by UNG activated the DNAzyme. By monitoring the activity change of the DNAzymes through the fluorescence enhancement from the DNAzyme-catalyzed cleavage of DNA substrates labeled by a fluorophore and quencher pair, the UNG activity was measured based on UNG-dependent deactivation and activation of the DNAzymes. The method was found to be able to detect UNG activity as low as 0.0034 U/mL. Such a method can be applied to the detection of other nucleotide-modifying enzymes and expand the analyte range of DNAzyme-based biosensors. PMID:23072386

  9. Enzyme activity assays within microstructured optical fibers enabled by automated alignment

    PubMed Central

    Warren-Smith, Stephen C.; Nie, Guiying; Schartner, Erik P.; Salamonsen, Lois A.; Monro, Tanya M.

    2012-01-01

    A fluorescence-based enzyme activity assay has been demonstrated within a small-core microstructured optical fiber (MOF) for the first time. To achieve this, a reflection-based automated alignment system has been developed, which uses feedback and piezoelectric actuators to maintain optical alignment. The auto-alignment system provides optical stability for the time required to perform an activity assay. The chosen assay is based on the enzyme proprotein convertase 5/6 (PC6) and has important applications in women’s health. PMID:23243579

  10. Using novel in vitro NociOcular assay based on TRPV1 channel activation for prediction of eye sting potential of baby shampoos.

    PubMed

    Forsby, Anna; Norman, Kimberly G; El Andaloussi-Lilja, Johanna; Lundqvist, Jessica; Walczak, Vincent; Curren, Rodger; Martin, Katharine; Tierney, Neena K

    2012-10-01

    The transient receptor potential vanilloid type 1 (TRPV1) channel is one of the most well-characterized pain-inducing receptors. The purpose of this study was to predict human eye stinging of 19 baby bath and shampoo formulations by studying TRPV1 activity, as measured by increase in intracellular free Ca(2+). The NociOcular test, a novel recombinant neuronal in vitro model with high expression of functional TRPV1 channels, was used to test formulations containing a variety of surfactants, preservatives, and fragrances. TRPV1-specific Ca(2+) influx was abolished when the TRPV1 channel antagonist capsazepine was applied to the cells prior to shampoo samples. The positive control, an adult shampoo that contains cocamide monoethanolamine (CMEA), a known stinging ingredient, was the most active sample tested in the NociOcular test. The negative control, a marketed baby shampoo, was negative in the NociOcular and human tests. Seven of the formulations induced stinging in the human test, and of those six were positive in the NociOcular test. Twelve formulations were classified as nonstinging in the human test, and of those ten were negative in the NociOcular test. There was no correlation between the clinical stinging results for the baby formulations and the data generated from other in vitro eye irritation assays (cytosensor microphysiometer, neutral red uptake, EpiOcular, transepithelial permeability). Our data support that the TRPV1 channel is a principal mediator of eye-stinging sensation induced by baby bath and shampoo formulations and that the NociOcular test may be a valuable in vitro tool to predict human eye-stinging sensation.

  11. An in vivo assay for chemoattractant activity.

    PubMed

    Zetter, B R; Rasmussen, N; Brown, L

    1985-09-01

    We have devised an implantable device for the study of leukocyte chemoattraction. The device consists of a 0.25-mm thick patch of Dacron fabric coupled to a disc of ethylene vinyl acetate copolymer. Such polymers can release biologically active molecules at a constant rate for at least 18 days. Attracted cells invade and are trapped within the Dacron fabric. Upon removal from the host, the fabric patches are sectioned and stained to reveal the distribution of attracted cells. Distinct patterns of cellular accumulation can be seen for different chemoattractant molecules. These include the attraction of eosinophils by histamine, monocytes by tuftsin, and mast cells by glycyl-histidyl-lysine. Maximal accumulation of specific cell types occurs at postimplantation days 1 to 2 for neutrophils, days 3 to 5 for monocytes, and days 5 to 6 for macrophages and eosinophils. Control polymers fail to cause significant leukocyte accumulation, indicating that neither the polymer nor the Dacron fabric provokes an inflammatory response. PMID:3162062

  12. Pitfalls in the assay of carboxymethylcellulase activity. [Sclerotium rolfsii

    SciTech Connect

    Lindner, W.A.; Dennison, C.; Quicke, G.V.

    1983-02-01

    A purified endocellulase from Sclerotium rolfsii and a crude cellulase preparation from Trichoderma reesei are used to illustrate several pitfalls associated with the assay of carboxymethylcellulase activity and the subsequent attainment of linear enzyme dilution curves. It is shown that the nature of both the enzymes and the substrate make the assay unsuitable for use in the calculation of enzyme recovery and purity. (Refs. 16).

  13. Urolithins display both antioxidant and pro-oxidant activities depending on assay system and conditions.

    PubMed

    Kallio, Tuija; Kallio, Johanna; Jaakkola, Mari; Mäki, Marianne; Kilpeläinen, Pekka; Virtanen, Vesa

    2013-11-13

    The biological effects of polyphenolic ellagitannins are mediated by their intestinal metabolites, urolithins. This study investigated redox properties of urolithins A and B using ORAC assay, three cell-based assays, copper-initiated pro-oxidant activity (CIPA) assay, and cyclic voltammetry. Urolithins were strong antioxidants in the ORAC assay, but mostly pro-oxidants in cell-based assays, although urolithin A was an antioxidant in cell culture medium. Parent compound ellagic acid was a strong extracellular antioxidant, but showed no response in the intracellular assay. The CIPA assay confirmed the pro-oxidant activity of ellagitannin metabolites. In the cell proliferation assay, urolithins but not ellagic acid decreased growth and metabolism of HepG2 liver cells. In cyclic voltammetry, the oxidation of urolithin A was partly reversible, but that of urolithin B was irreversible. These results illustrate how strongly measured redox properties depend on the employed assay system and conditions and emphasize the importance of studying pro-oxidant and antioxidant activities in parallel.

  14. Identification of proteins capable of metal reduction from the proteome of the Gram-positive bacterium Desulfotomaculum reducens MI-1 using an NADH-based activity assay

    SciTech Connect

    Otwell, Annie E.; Sherwood, Roberts; Zhang, Sheng; Nelson, Ornella D.; Li, Zhi; Lin, Hening; Callister, Stephen J.; Richardson, Ruth E.

    2015-01-01

    Metal reduction capability has been found in numerous species of environmentally abundant Gram-positive bacteria. However, understanding of microbial metal reduction is based almost solely on studies of Gram-negative organisms. In this study, we focus on Desulfotomaculum reducens MI-1, a Gram-positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. D. reducens has been shown to reduce not only Fe(III), but also the environmentally important contaminants U(VI) and Cr(VI). By extracting, separating, and analyzing the functional proteome of D. reducens, using a ferrozine-based assay in order to screen for chelated Fe(III)-NTA reduction with NADH as electron donor, we have identified proteins not previously characterized as iron reductases. Their function was confirmed by heterologous expression in E. coli. These are the protein NADH:flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase FAD/NAD(P)-binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble (presumably membrane) protein fraction, suggesting a type of membrane-association, although PSORTb predicts both proteins are cytoplasmic. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. This study is the first functional proteomic analysis of D. reducens, and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram-positive bacterium.

  15. ApoHRP-based assay to measure intracellular regulatory heme.

    PubMed

    Atamna, Hani; Brahmbhatt, Marmik; Atamna, Wafa; Shanower, Gregory A; Dhahbi, Joseph M

    2015-02-01

    The majority of the heme-binding proteins possess a "heme-pocket" that stably binds to heme. Usually known as housekeeping heme-proteins, they participate in a variety of metabolic reactions (e.g., catalase). Heme also binds with lower affinity to the "Heme-Regulatory Motifs" (HRM) in specific regulatory proteins. This type of heme binding is known as exchangeable or regulatory heme (RH). Heme binding to HRM proteins regulates their function (e.g., Bach1). Although there are well-established methods for assaying total cellular heme (e.g., heme-proteins plus RH), currently there is no method available for measuring RH independent of the total heme (TH). The current study describes and validates a new method to measure intracellular RH. This method is based on the reconstitution of apo-horseradish peroxidase (apoHRP) with heme to form holoHRP. The resulting holoHRP activity is then measured with a colorimetric substrate. The results show that apoHRP specifically binds RH but not with heme from housekeeping heme-proteins. The RH assay detects intracellular RH. Furthermore, using conditions that create positive (hemin) or negative (N-methyl protoporphyrin IX) controls for heme in normal human fibroblasts (IMR90), the RH assay shows that RH is dynamic and independent of TH. We also demonstrated that short-term exposure to subcytotoxic concentrations of lead (Pb), mercury (Hg), or amyloid-β (Aβ) significantly alters intracellular RH with little effect on TH. In conclusion the RH assay is an effective assay to investigate intracellular RH concentration and demonstrates that RH represents ∼6% of total heme in IMR90 cells. PMID:25525887

  16. ApoHRP-based Assay to Measure Intracellular Regulatory Heme

    PubMed Central

    Atamna, Hani; Brahmbhatt, Marmik; Atamna, Wafa; Shanower, Gregory A.; Dhahbi, Joseph M.

    2015-01-01

    The majority of the heme-binding proteins possess a “heme-pocket” that stably binds with heme. Usually known as housekeeping heme-proteins, they participate in a variety of metabolic reactions (e.g., catalase). Heme also binds with lower affinity to the “Heme-Regulatory Motifs” (HRM) in specific regulatory proteins. This type of heme binding is known as exchangeable or regulatory heme (RH). Heme binding to HRM proteins regulates their function (e.g., Bach1). Although there are well-established methods for assaying total cellular heme (e.g., heme-proteins plus RH), currently there is no method available for measuring RH independently from the total heme (TH). The current study describes and validates a new method to measure intracellular RH. The method is based on the reconstitution of apo-horseradish peroxidase (apoHRP) with heme to form holoHRP. The resulting holoHRP activity is then measured with a colorimetric substrate. The results show that apoHRP specifically binds RH but not with heme from housekeeping heme-proteins. The RH assay detects intracellular RH. Furthermore, using conditions that create positive (hemin) or negative (N-methyl protoporphyrin IX) controls for heme in normal human fibroblasts (IMR90), the RH assay shows that RH is dynamic and independent from TH. We also demonstrated that short-term exposure to subcytotoxic concentrations of lead (Pb), mercury (Hg), or amyloid-β(Aβ) significantly alters intracellular RH with little effect on TH. In conclusion the RH assay is an effective assay to investigate intracellular RH concentration and demonstrates that RH represents ~6% of total heme in IMR90 cells. PMID:25525887

  17. Quantum Dot-Based Cell Motility Assay

    SciTech Connect

    Gu, Weiwei; Pellegrino, Teresa; Parak Wolfgang J; Boudreau,Rosanne; Le Gros, Mark A.; Gerion, Daniele; Alivisatos, A. Paul; Larabell, Carolyn A.

    2005-06-06

    Because of their favorable physical and photochemical properties, colloidal CdSe/ZnS-semiconductor nanocrystals (commonly known as quantum dots) have enormous potential for use in biological imaging. In this report, we present an assay that uses quantum dots as markers to quantify cell motility. Cells that are seeded onto a homogeneous layer of quantum dots engulf and absorb the nanocrystals and, as a consequence, leave behind a fluorescence-free trail. By subsequently determining the ratio of cell area to fluorescence-free track area, we show that it is possible to differentiate between invasive and noninvasive cancer cells. Because this assay uses simple fluorescence detection, requires no significant data processing, and can be used in live-cell studies, it has the potential to be a powerful new tool for discriminating between invasive and noninvasive cancer cell lines or for studying cell signaling events involved in migration.

  18. Assays to measure the activation of membrane tyrosine kinase receptors: focus on cellular methods.

    PubMed

    Minor, Lisa K

    2003-09-01

    Many methods have been explored as means to measure the activation and inhibition of tyrosine kinase receptors, in vitro using the isolated kinase domain, and in living cells. Kinase activity has been measured in enzyme assays using a peptide substrate, but with different detection systems. These include the radioactive FlashPlate assay, the fluorescent resonance energy transfer (FRET) assay, the dissociation-enhance lanthanide fluorescence immunoassay (DELFIA) and other formats. These methods have successfully identified inhibitors of receptor activity. Cell-based assays have recently emerged to measure receptor activation and inhibition. When membrane tyrosine kinase receptors become activated, they increase their state of phosphorylation. This phosphorylation may lead to an increase in tyrosine kinase-specific activity. Methods have been developed that take advantage of these properties. These include measuring the ligand-stimulated total tyrosine phosphorylation of the receptor using a DELFIA or an ELISA assay, measuring ligand-stimulated enzyme activation of the receptor by quantifying enzyme activity, and dimerization of the activated receptor using bioluminescence resonance energy transfer (BRET). Although cell-based assays are still in their infancy, these techniques may prove a valuable addition to the receptor screening strategy.

  19. Nondestructive assay using active and passive computed tomography

    SciTech Connect

    Roberson, G. P. ,LLNL

    1998-07-01

    The United States Department of Energy (DOE) has over 600,000 transuranic (TRU) waste drums temporarily stored at nearly 40 sites within the United States. Contents of these drums must be characterized before they are transported for permanent disposal. Traditional gamma-ray methods used to characterize nuclear waste introduce errors that are related to nonuniform measurement responses associated with unknown radioactive source and matrix material distributions. These errors can be reduced by application of tomographic techniques, that measure these distributions. The Lawrence Livermore National Laboratory (LLNL) has developed two tomographic-based waste assay systems. They use external radioactive sources and tomography-protocol to map the attenuation within a waste drum as a function of mono-energetic gamma-ray energy in waste containers. Passive tomography is used to localize and identify specific radioactive waste contents within the same waste containers. Reconstruction of the passive data via the active images allows internal waste radioactivities in a drum to be corrected for any overlying heterogeneous materials, thus yielding an absolute assay of the waste radioactivities. Calibration of both systems requires only point source measurements and are independent of matrix materials. The first system is housed at LLNL and was developed to study and validate research concepts. The second system is being developed with Bioimaging Research, Inc. (BIR) and is housed within a mobile waste characterization trailer. This system has traveled to three DOE facilities to demonstrate the active and passive computed tomography capability. Both systems have participated in and successfully passed the requirements of formal DOE-sponsored intercomparison studies. The systems have measured approximately 1 to 100 grains of plutonium within a variety of waste matrix materials. Laboratory and field results from these two systems over the past several years show that both systems

  20. A signal "on" photoelectrochemical biosensor for assay of protein kinase activity and its inhibitor based on graphite-like carbon nitride, Phos-tag and alkaline phosphatase.

    PubMed

    Yin, Huanshun; Sun, Bing; Dong, Linfeng; Li, Bingchen; Zhou, Yunlei; Ai, Shiyun

    2015-02-15

    A highly sensitive and selective photoelectrochemical (PEC) biosensor is fabricated for the detection of protein kinase activity based on visible-light active graphite-like carbon nitride (g-C3N4) and the specific recognition utility of Phos-tag for protein kinase A (PKA)-induced phosphopeptides. For assembling the substrate peptides, g-C3N4 and gold nanoparticles (g-C3N4-AuNPs) complex is synthesized and characterized. When the immobilized peptides on g-C3N4-AuNPs modified ITO electrode are phosphorylated under PKA catalysis, they can be specifically identified and binded with biotin functionalized Phos-tag (Phos-tag-biotin) in the presence of Zn(2+). Then, through the specific interaction between biotin and avidin, avidin functionalized alkaline phosphatase (avidin-ALP) is further assembled to catalyze its substrate of l-ascorbic acid-2-phosphate trisodium salt (AAP) to produce electron donor of ascorbic acid (AA), resulting an increased photocurrent compared with the absence of phosphorylation event. Based on the specific identification effect of Phos-tag, the fabricated biosensor presents excellent selectivity for capturing the phosphorylated serine residues in the substrate peptides. With the good photoactivity of g-C3N4 and ALP-catalyzed signal amplification, the fabricated biosensor presents high sensitivity and low detection limit (0.015 unit/mL, S/N = 3) for PKA. The applicability of this PEC biosensor is further testified by the evaluation of PKA inhibition by HA-1077 with the IC50 value of 1.18μM. This new strategy is also successfully applied to detect the change of PKA activity in cancer cell lysate with and without drug stimulation. Therefore, the developed PEC method has great potential in screening of kinase inhibitors and highly sensitive detection of kinase activity.

  1. Comparison of the luminescent ADP-Glo assay to a standard radiometric assay for measurement of protein kinase activity.

    PubMed

    Sanghera, Jasbinder; Li, Rick; Yan, Jun

    2009-12-01

    Many assay technologies have been developed and utilized to efficiently assay and screen against protein kinase targets. The radiometric assay format for assaying the protein kinase targets has been considered the "Gold Standard" format since it allows the direct readout of kinase functional activity and is a universal assay that is highly sensitive. However, the hazardous nature of the radiometric assay together with the regulatory hurdles has led to the development of alternative assay formats for assessing protein kinase activity measurements. The luminescent ADP-Glo assay has been developed as an alternative to radiometric format for assaying protein kinase targets. This assay allows the measurement of the ADP product formed during the kinase reaction. Therefore, the luminescent ADP-Glo assay is similar to the radiometric format in that it measures the direct product of the protein kinase reaction. Furthermore, since the ADP product is generated by all protein kinase reactions, this is a universal format that can be used for assaying any given protein kinase target. Analysis of data generated with multiple protein kinase targets and the luminescent ADP-Glo technology shows comparable results to the radiometric assay format. Therefore, the luminescent ADP-Glo assay is a robust new technology for evaluating catalytic function of protein kinases as well as other ATPases.

  2. Interlaboratory comparison of four in vitro assays for assessing androgenic and antiandrogenic activity of environmental chemicals.

    PubMed Central

    Körner, Wolfgang; Vinggaard, Anne Marie; Térouanne, Béatrice; Ma, Risheng; Wieloch, Carise; Schlumpf, Margret; Sultan, Charles; Soto, Ana M

    2004-01-01

    We evaluated and compared four in vitro assays to detect androgen agonists and antagonists in an international interlaboratory study. Laboratory 1 used a cell proliferation assay (assay 1) with human mammary carcinoma cells stably transfected with human androgen receptor. The other laboratories used reporter gene assays, two based on stably transfected human prostate carcinoma cells (assay 2) or human mammary carcinoma cells (assay 4), and the third based on transient transfection of Chinese hamster ovary cells (assay 3). Four laboratories received four coded compounds and two controls: two steroidal androgens, two antiandrogens, an androgenic control, 5alpha-dihydrotestosterone (DHT), and an antiandrogenic control, bicalutamide (ICI 176,334). All laboratories correctly detected the androgenic activity of 4-androsten-3,17-dione and 17alpha-methyltestosterone. For both compounds, the calculated androgenic potencies relative to the positive control (RAPs) remained within one order of magnitude. However, laboratory 3 calculated a 50-fold higher RAP for 4-androsten-3,17-dione. All assays detected and quantified the antiandrogenic effect of vinclozolin [median inhibitory concentration (IC50) values ranging from 1.1 times symbol 10(-7) M to 4.7 times symbol 10(-7) M]. In assays 2 and 3, vinclozolin showed partial androgenic activity at the highest concentrations tested. For vinclozolin, calculated antiandrogenic potencies relative to bicalutamide (RAAPs) differed no more than a factor of 10, and IC50 values matched those of bicalutamide. Similarly, we found antiandrogenic activity for tris-(4-chlorophenyl)methanol. RAAP values were between 0.086 and 0.37. Three assays showed cytotoxicity for this compound at or above 1 times symbol 10(-5) M. In summary, all assays proved sensitive screening tools to detect and quantify androgen receptor-mediated androgenic and antiandrogenic effects of these chemicals accurately, with coefficients of variation between 8 and 90%. PMID

  3. A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols.

    PubMed

    Kim, Sung-Bae; Naganawa, Ryuichi; Murata, Shingo; Nakayama, Takayoshi; Miller, Simon; Senda, Toshiya

    2016-01-01

    A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants. PMID:27424913

  4. A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols.

    PubMed

    Kim, Sung-Bae; Naganawa, Ryuichi; Murata, Shingo; Nakayama, Takayoshi; Miller, Simon; Senda, Toshiya

    2016-01-01

    A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants.

  5. STRESS PATHWAY-BASED REPORTER ASSAYS TO ASSESS TOXICITY OF ENVIRONMENTAL CHEMICALS.

    EPA Science Inventory

    There is an increasing need for assays for the rapid and efficient assessment of toxicities of large numbers of environmental chemicals. To meet this need, we are developing cell-based reporter assays that measure the activation of key molecular stress pathways. We are using pro...

  6. Toxin activity assays, devices, methods and systems therefor

    DOEpatents

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon

    2016-04-05

    Embodiments of the present invention are directed toward devices, system and method for conducting toxin activity assay using sedimentation. The toxin activity assay may include generating complexes which bind to a plurality of beads in a fluid sample. The complexes may include a target toxin and a labeling agent, or may be generated due to presence of active target toxin and/or labeling agent designed to be incorporated into complexes responsive to the presence of target active toxin. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a lower density than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  7. A new robust kinetic assay for DAP epimerase activity.

    PubMed

    Hor, Lilian; Peverelli, Martin G; Perugini, Matthew A; Hutton, Craig A

    2013-10-01

    DAP epimerase is the penultimate enzyme in the lysine biosynthesis pathway. The most versatile assay for DAP epimerase catalytic activity employs a coupled DAP epimerase-DAP dehydrogenase enzyme system with a commercial mixture of DAP isomers as substrate. DAP dehydrogenase converts meso-DAP to THDP with concomitant reduction of NADP(+) to NADPH. We show that at high concentrations, accumulation of NADPH results in inhibition of DAPDH, resulting in spurious kinetic data. A new assay has been developed employing DAP decarboxylase that allows the reliable characterisation of DAP epimerase enzyme kinetics. PMID:23838343

  8. Capillary electrophoresis-based nanoscale assays for monitoring ecto-5'-nucleotidase activity and inhibition in preparations of recombinant enzyme and melanoma cell membranes.

    PubMed

    Iqbal, Jamshed; Jirovsky, David; Lee, Sang-Yong; Zimmermann, Herbert; Müller, Christa E

    2008-02-01

    Powerful capillary electrophoresis (CE) methods were developed for monitoring the reaction of ecto-5'-nucleotidase (ecto-5'-NT, CD73), a (patho)biochemically important enzyme that hydrolyzes nucleoside-5'-monophosphates to the corresponding nucleosides. The enzymatic reaction was performed either before injection into the capillary (method A) or directly within the capillary (method B). In method A, separation of substrates and products was achieved within 8 min using an eCAP fused-silica capillary (20 cm effective length, 75 microM i.d., UV detection at 260 nm), 40 mM sodium borate buffer (pH 9.1), normal polarity, and a constant voltage of 15 kV. In method B, the sandwich technique was applied; substrate dissolved in reaction buffer (10mM Hepes [pH 7.4], 2mM MgCl2, and 1mM CaCl2) was hydrodynamically injected into a fused-silica capillary (30 cm, 75 microM i.d.), followed by enzyme (recombinant rat ecto-5'-NT) and subsequent injection of substrate solution. The reaction was initiated by the application of 1 kV voltage for 1 min. The voltage was turned off for 1 min and again turned on at a constant voltage of 15 kV to elute products (nucleosides) within 4 min using borate buffer (40 mM, pH 9.1). Thus, assays could be performed within 6 min, including enzymatic reaction, separation, and quantification of the formed nucleoside. The CE methods were used for measuring enzyme kinetics and for assaying inhibitors and substrates. In addition, the online assay was successfully applied to melanoma cell membrane preparations natively expressing the human ecto-5'-NT.

  9. A calibration curve for immobilized dihydrofolate reductase activity assay.

    PubMed

    Singh, Priyanka; Morris, Holly; Tivanski, Alexei V; Kohen, Amnon

    2015-09-01

    An assay was developed for measuring the active-site concentration, activity, and thereby the catalytic turnover rate (k cat) of an immobilized dihydrofolate reductase model system (Singh et al., (2015), Anal. Biochem). This data article contains a calibration plot for the developed assay. In the calibration plot rate is plotted as a function of DHFR concentration and shows linear relationship. The concentration of immobilized enzyme was varied by using 5 different size mica chips. The dsDNA concentration was the same for all chips, assuming that the surface area of the mica chip dictates the resulting amount of bound enzyme (i.e. larger sized chip would have more bound DHFR). The activity and concentration of each chip was measured.

  10. How Do Detergents Work? A Qualitative Assay to Measure Amylase Activity

    ERIC Educational Resources Information Center

    Novo, M. Teresa; Casanoves, Marina; Garcia-Vallvé, Santi; Pujadas, Gerard; Mulero, Miquel; Valls, Cristina

    2016-01-01

    We present a practical activity focusing on two main goals: to give learners the opportunity to experience how the scientific method works and to increase their knowledge about enzymes in everyday situations. The exercise consists of determining the amylase activity of commercial detergents. The methodology is based on a qualitative assay using a…

  11. Test battery with the human cell line activation test, direct peptide reactivity assay and DEREK based on a 139 chemical data set for predicting skin sensitizing potential and potency of chemicals.

    PubMed

    Takenouchi, Osamu; Fukui, Shiho; Okamoto, Kenji; Kurotani, Satoru; Imai, Noriyasu; Fujishiro, Miyuki; Kyotani, Daiki; Kato, Yoshinao; Kasahara, Toshihiko; Fujita, Masaharu; Toyoda, Akemi; Sekiya, Daisuke; Watanabe, Shinichi; Seto, Hirokazu; Hirota, Morihiko; Ashikaga, Takao; Miyazawa, Masaaki

    2015-11-01

    To develop a testing strategy incorporating the human cell line activation test (h-CLAT), direct peptide reactivity assay (DPRA) and DEREK, we created an expanded data set of 139 chemicals (102 sensitizers and 37 non-sensitizers) by combining the existing data set of 101 chemicals through the collaborative projects of Japan Cosmetic Industry Association. Of the additional 38 chemicals, 15 chemicals with relatively low water solubility (log Kow > 3.5) were selected to clarify the limitation of testing strategies regarding the lipophilic chemicals. Predictivities of the h-CLAT, DPRA and DEREK, and the combinations thereof were evaluated by comparison to results of the local lymph node assay. When evaluating 139 chemicals using combinations of three methods based on integrated testing strategy (ITS) concept (ITS-based test battery) and a sequential testing strategy (STS) weighing the predictive performance of the h-CLAT and DPRA, overall similar predictivities were found as before on the 101 chemical data set. An analysis of false negative chemicals suggested a major limitation of our strategies was the testing of low water-soluble chemicals. When excluded the negative results for chemicals with log Kow > 3.5, the sensitivity and accuracy of ITS improved to 97% (91 of 94 chemicals) and 89% (114 of 128). Likewise, the sensitivity and accuracy of STS to 98% (92 of 94) and 85% (111 of 129). Moreover, the ITS and STS also showed good correlation with local lymph node assay on three potency classifications, yielding accuracies of 74% (ITS) and 73% (STS). Thus, the inclusion of log Kow in analysis could give both strategies a higher predictive performance. PMID:25820183

  12. Test battery with the human cell line activation test, direct peptide reactivity assay and DEREK based on a 139 chemical data set for predicting skin sensitizing potential and potency of chemicals.

    PubMed

    Takenouchi, Osamu; Fukui, Shiho; Okamoto, Kenji; Kurotani, Satoru; Imai, Noriyasu; Fujishiro, Miyuki; Kyotani, Daiki; Kato, Yoshinao; Kasahara, Toshihiko; Fujita, Masaharu; Toyoda, Akemi; Sekiya, Daisuke; Watanabe, Shinichi; Seto, Hirokazu; Hirota, Morihiko; Ashikaga, Takao; Miyazawa, Masaaki

    2015-11-01

    To develop a testing strategy incorporating the human cell line activation test (h-CLAT), direct peptide reactivity assay (DPRA) and DEREK, we created an expanded data set of 139 chemicals (102 sensitizers and 37 non-sensitizers) by combining the existing data set of 101 chemicals through the collaborative projects of Japan Cosmetic Industry Association. Of the additional 38 chemicals, 15 chemicals with relatively low water solubility (log Kow > 3.5) were selected to clarify the limitation of testing strategies regarding the lipophilic chemicals. Predictivities of the h-CLAT, DPRA and DEREK, and the combinations thereof were evaluated by comparison to results of the local lymph node assay. When evaluating 139 chemicals using combinations of three methods based on integrated testing strategy (ITS) concept (ITS-based test battery) and a sequential testing strategy (STS) weighing the predictive performance of the h-CLAT and DPRA, overall similar predictivities were found as before on the 101 chemical data set. An analysis of false negative chemicals suggested a major limitation of our strategies was the testing of low water-soluble chemicals. When excluded the negative results for chemicals with log Kow > 3.5, the sensitivity and accuracy of ITS improved to 97% (91 of 94 chemicals) and 89% (114 of 128). Likewise, the sensitivity and accuracy of STS to 98% (92 of 94) and 85% (111 of 129). Moreover, the ITS and STS also showed good correlation with local lymph node assay on three potency classifications, yielding accuracies of 74% (ITS) and 73% (STS). Thus, the inclusion of log Kow in analysis could give both strategies a higher predictive performance.

  13. Active and passive computed tomography for nondestructive assay

    SciTech Connect

    Bernardi, R T; Camp, D E; Clard, D; Jackson, J A; Martz, H E, Decman, D J; Roberson, G P

    1998-10-28

    Traditional gamma-ray methods used to characterize nuclear waste introduce errors that are related to non-uniform measurement responses associated with unknown radioactive source and matrix material distributions. These errors can be reduced by applying an active and passive tomographic technique (A&PCT) developed at the Lawrence Livermore National Laboratory (LLNL). The technique uses an external radioactive source and active tomography to map the attenuation within a waste barrel as a function of mono-energetic gamma-ray energy. Passive tomography is used to localize and identify specific radioactive waste within the same container. Reconstruction of the passive data using the attenuation maps at specific energies allows internal waste radioactivity to be corrected for any overlying heterogeneous materials, thus yielding an absolute assay of the waste activity. LLNL and Bio-Imaging Research, Inc. have collaborated in a technology transfer effort to integrate an A&PCT assay system into a mobile waste characterization trailer. This mobile system has participated in and passed several formal DOE-sponsored performance demonstrations, tests and evaluations. The system is currently being upgraded with multiple detectors to improve throughput, automated gamma-ray analysis code to simplify the assay, and a new emission reconstruction code to improve accuracy

  14. A High-Throughput Assay for Rho Guanine Nucleotide Exchange Factors Based on the Transcreener GDP Assay.

    PubMed

    Reichman, Melvin; Schabdach, Amanda; Kumar, Meera; Zielinski, Tom; Donover, Preston S; Laury-Kleintop, Lisa D; Lowery, Robert G

    2015-12-01

    Ras homologous (Rho) family GTPases act as molecular switches controlling cell growth, movement, and gene expression by cycling between inactive guanosine diphosphate (GDP)- and active guanosine triphosphate (GTP)-bound conformations. Guanine nucleotide exchange factors (GEFs) positively regulate Rho GTPases by accelerating GDP dissociation to allow formation of the active, GTP-bound complex. Rho proteins are directly involved in cancer pathways, especially cell migration and invasion, and inhibiting GEFs holds potential as a therapeutic strategy to diminish Rho-dependent oncogenesis. Methods for measuring GEF activity suitable for high-throughput screening (HTS) are limited. We developed a simple, generic biochemical assay method for measuring GEF activity based on the fact that GDP dissociation is generally the rate-limiting step in the Rho GTPase catalytic cycle, and thus addition of a GEF causes an increase in steady-state GTPase activity. We used the Transcreener GDP Assay, which relies on selective immunodetection of GDP, to measure the GEF-dependent stimulation of steady-state GTP hydrolysis by small GTPases using Dbs (Dbl's big sister) as a GEF for Cdc42, RhoA, and RhoB. The assay is well suited for HTS, with a homogenous format and far red fluorescence polarization (FP) readout, and it should be broadly applicable to diverse Rho GEF/GTPase pairs.

  15. Photon upconversion in homogeneous fluorescence-based bioanalytical assays.

    PubMed

    Soukka, Tero; Rantanen, Terhi; Kuningas, Katri

    2008-01-01

    Upconverting phosphors (UCPs) are very attractive reporters for fluorescence resonance energy transfer (FRET)-based bioanalytical assays. The large anti-Stokes shift and capability to convert near-infrared to visible light via sequential absorption of multiple photons enable complete elimination of autofluorescence, which commonly impairs the performance of fluorescence-based assays. UCPs are ideal donors for FRET, because their very narrow-banded emission allows measurement of the sensitized acceptor emission, in principle, without any crosstalk from the donor emission at a wavelength just tens of nanometers from the emission peak of the donor. In addition, acceptor dyes emitting at visible wavelengths are essentially not excited by near-infrared, which further emphasizes the unique potential of upconversion FRET (UC-FRET). These characteristics result in favorable assay performance using detection instrumentation based on epifluorometer configuration and laser diode excitation. Although UC-FRET is a recently emerged technology, it has already been applied in both immunoassays and nucleic acid hybridization assays. The technology is also compatible with optically difficult biological samples, such as whole blood. Significant advances in assay performance are expected using upconverting lanthanide-doped nanocrystals, which are currently under extensive research. UC-FRET, similarly to other fluorescence techniques based on resonance energy transfer, is strongly distance dependent and may have limited applicability, for example in sandwich-type assays for large biomolecules, such as viruses. In this article, we summarize the essentials of UC-FRET, describe its current applications, and outline the expectations for its future potential.

  16. Establishment of a luciferase assay-based screening system: Fumitremorgin C selectively inhibits cellular proliferation of immortalized astrocytes expressing an active form of AKT

    SciTech Connect

    Wang Lei; Sasai, Ken Akagi, Tsuyoshi; Tanaka, Shinya

    2008-08-29

    The AKT pathway is frequently activated in glioblastoma, and as such, inhibitors of this pathway could prove very useful as anti-glioblastoma therapies. Here we established immortalized astrocytes expressing Renilla luciferase as well as those expressing both an active form of AKT and firefly luciferase. Since both luciferase activities represent the numbers of corresponding cell lines, novel inhibitors of the AKT pathway can be identified by treating co-cultures containing the two types of luciferase-expressing cells with individual compounds. Indeed, such a screening system succeeded in identifying fumitremorgin C as an efficient inhibitor of the AKT pathway, which was further confirmed by the ability of fumitremorgin C to selectively inhibit the growth of immortalized astrocytes expressing an active form of AKT. The present study proposes a broadly applicable approach for identifying therapeutic agents that target the pathways and/or molecules responsible for cancer development.

  17. Time-resolved Förster-resonance-energy-transfer DNA assay on an active CMOS microarray

    PubMed Central

    Schwartz, David Eric; Gong, Ping; Shepard, Kenneth L.

    2008-01-01

    We present an active oligonucleotide microarray platform for time-resolved Förster resonance energy transfer (TR-FRET) assays. In these assays, immobilized probe is labeled with a donor fluorophore and analyte target is labeled with a fluorescence quencher. Changes in the fluorescence decay lifetime of the donor are measured to determine the extent of hybridization. In this work, we demonstrate that TR-FRET assays have reduced sensitivity to variances in probe surface density compared with standard fluorescence-based microarray assays. Use of an active array substrate, fabricated in a standard complementary metal-oxide-semiconductor (CMOS) process, provides the additional benefits of reduced system complexity and cost. The array consists of 4096 independent single-photon avalanche diode (SPAD) pixel sites and features on-chip time-to-digital conversion. We demonstrate the functionality of our system by measuring a DNA target concentration series using TR-FRET with semiconductor quantum dot donors. PMID:18515059

  18. Synthesis and Assay of SIRT1-Activating Compounds.

    PubMed

    Dai, H; Ellis, J L; Sinclair, D A; Hubbard, B P

    2016-01-01

    The NAD(+)-dependent deacetylase SIRT1 plays key roles in numerous cellular processes including DNA repair, gene transcription, cell differentiation, and metabolism. Overexpression of SIRT1 protects against a number of age-related diseases including diabetes, cancer, and Alzheimer's disease. Moreover, overexpression of SIRT1 in the murine brain extends lifespan. A number of small-molecule sirtuin-activating compounds (STACs) that increase SIRT1 activity in vitro and in cells have been developed. While the mechanism for how these compounds act on SIRT1 was once controversial, it is becoming increasingly clear that they directly interact with SIRT1 and enhance its activity through an allosteric mechanism. Here, we present detailed chemical syntheses for four STACs, each from a distinct structural class. Also, we provide a general protocol for purifying active SIRT1 enzyme and outline two complementary enzymatic assays for characterizing the effects of STACs and similar compounds on SIRT1 activity. PMID:27423864

  19. A Rapid and Efficient Luminescence-based Method for Assaying Phosphoglycosyltransferase Enzymes

    PubMed Central

    Das, Debasis; Walvoort, Marthe. T. C.; Lukose, Vinita; Imperiali, Barbara

    2016-01-01

    Phosphoglycosyltransferases (PGTs) are families of integral membrane proteins with intriguingly diverse architectures. These enzymes function to initiate many important biosynthetic pathways including those leading to peptidoglycan, N-linked glycoproteins and lipopolysaccharide O-antigen. In spite of tremendous efforts, characterization of these enzymes remains a challenge not only due to the inherent difficulties associated with the purification of integral membrane proteins but also due to the limited availability of convenient assays. Current PGT assays include radioactivity-based methods, which rely on liquid-liquid or solid-liquid extractions, multienzyme systems linked to lactate dehydrogenase and NAD+ generation, and HPLC-based approaches, all of which may suffer from low sensitivity and low throughput. Herein, we present the validation of a new luminescence-based assay (UMP-Glo) for measuring activities of PGT enzymes. This assay measures UMP, the by-product of PGT reactions, in a sensitive and quantitative manner by measuring the luminescence output in a discontinuous coupled assay system. The assay is rapid and robust in nature, and also compatible with microtiter plate formats. Activity and kinetic parameters of PglC, a PGT from Campylobacter jejuni, were quickly established using this assay. The efficacy of the assay was further corroborated using two different PGTs; PglC from Helicobacter pullorum and WecA from Thermatoga maritima. PMID:27624811

  20. A Rapid and Efficient Luminescence-based Method for Assaying Phosphoglycosyltransferase Enzymes.

    PubMed

    Das, Debasis; Walvoort, Marthe T C; Lukose, Vinita; Imperiali, Barbara

    2016-01-01

    Phosphoglycosyltransferases (PGTs) are families of integral membrane proteins with intriguingly diverse architectures. These enzymes function to initiate many important biosynthetic pathways including those leading to peptidoglycan, N-linked glycoproteins and lipopolysaccharide O-antigen. In spite of tremendous efforts, characterization of these enzymes remains a challenge not only due to the inherent difficulties associated with the purification of integral membrane proteins but also due to the limited availability of convenient assays. Current PGT assays include radioactivity-based methods, which rely on liquid-liquid or solid-liquid extractions, multienzyme systems linked to lactate dehydrogenase and NAD(+) generation, and HPLC-based approaches, all of which may suffer from low sensitivity and low throughput. Herein, we present the validation of a new luminescence-based assay (UMP-Glo) for measuring activities of PGT enzymes. This assay measures UMP, the by-product of PGT reactions, in a sensitive and quantitative manner by measuring the luminescence output in a discontinuous coupled assay system. The assay is rapid and robust in nature, and also compatible with microtiter plate formats. Activity and kinetic parameters of PglC, a PGT from Campylobacter jejuni, were quickly established using this assay. The efficacy of the assay was further corroborated using two different PGTs; PglC from Helicobacter pullorum and WecA from Thermatoga maritima. PMID:27624811

  1. A highly sensitive telomerase activity assay that eliminates false-negative results caused by PCR inhibitors.

    PubMed

    Yaku, Hidenobu; Murashima, Takashi; Miyoshi, Daisuke; Sugimoto, Naoki

    2013-01-01

    An assay for telomerase activity based on asymmetric polymerase chain reaction (A-PCR) on magnetic beads (MBs) and subsequent application of cycling probe technology (CPT) is described. In this assay, the telomerase reaction products are immobilized on MBs, which are then washed to remove PCR inhibitors that are commonly found in clinical samples. The guanine-rich sequences (5'-(TTAGGG)n-3') of the telomerase reaction products are then preferentially amplified by A-PCR, and the amplified products are subsequently detected via CPT, where a probe RNA with a fluorophore at the 5' end and a quencher at the 3' end is hydrolyzed by RNase H in the presence of the target DNA. The catalyst-mediated cleavage of the probe RNA enhances fluorescence from the 5' end of the probe. The assay allowed us to successfully detect HeLa cells selectively over normal human dermal fibroblast (NHDF) cells. Importantly, this selectivity produced identical results with regard to detection of HeLa cells in the absence and presence of excess NHDF cells; therefore, this assay can be used for practical clinical applications. The lower limit of detection for HeLa cells was 50 cells, which is lower than that achieved with a conventional telomeric repeat amplification protocol assay. Our assay also eliminated false-negative results caused by PCR inhibitors. Furthermore, we show that this assay is appropriate for screening among G-quadruplex ligands to find those that inhibit telomerase activity.

  2. A highly sensitive telomerase activity assay that eliminates false-negative results caused by PCR inhibitors.

    PubMed

    Yaku, Hidenobu; Murashima, Takashi; Miyoshi, Daisuke; Sugimoto, Naoki

    2013-01-01

    An assay for telomerase activity based on asymmetric polymerase chain reaction (A-PCR) on magnetic beads (MBs) and subsequent application of cycling probe technology (CPT) is described. In this assay, the telomerase reaction products are immobilized on MBs, which are then washed to remove PCR inhibitors that are commonly found in clinical samples. The guanine-rich sequences (5'-(TTAGGG)n-3') of the telomerase reaction products are then preferentially amplified by A-PCR, and the amplified products are subsequently detected via CPT, where a probe RNA with a fluorophore at the 5' end and a quencher at the 3' end is hydrolyzed by RNase H in the presence of the target DNA. The catalyst-mediated cleavage of the probe RNA enhances fluorescence from the 5' end of the probe. The assay allowed us to successfully detect HeLa cells selectively over normal human dermal fibroblast (NHDF) cells. Importantly, this selectivity produced identical results with regard to detection of HeLa cells in the absence and presence of excess NHDF cells; therefore, this assay can be used for practical clinical applications. The lower limit of detection for HeLa cells was 50 cells, which is lower than that achieved with a conventional telomeric repeat amplification protocol assay. Our assay also eliminated false-negative results caused by PCR inhibitors. Furthermore, we show that this assay is appropriate for screening among G-quadruplex ligands to find those that inhibit telomerase activity. PMID:24071983

  3. Nanobeads-based assays. The case of gluten detection

    NASA Astrophysics Data System (ADS)

    Venditti, Iole; Fratoddi, Ilaria; Vittoria Russo, Maria; Bellucci, Stefano; Crescenzo, Roberta; Iozzino, Luisa; Staiano, Maria; Aurilia, Vincenzo; Varriale, Antonio; Rossi, Mosè; D'Auria, Sabato

    2008-11-01

    In order to verify if the use of nanobeads of poly[phenylacetylene-(co-acrylic acid)] (PPA/AA) in the ELISA test would affect the immune-activity of the antibodies (Ab) and/or the activity of the enzymes used to label the Ab anti-rabbit IGg, in this work we immobilized the horse liver peroxidase labelled Ab anti-rabbit IGg onto PPA/AA nanobeads. The gluten test was chosen as the model to demonstrate the usefulness of these nanobeads in immunoassays. The synthesis of PPA/AA nanobeads was performed by a modified emulsion polymerization. Self-assembly of nanospheres with mean diameter equal to 200 nm was achieved by casting aqueous suspensions. The materials were characterized by traditional spectroscopic techniques, while the size and dispersion of the particles were analysed by scanning electron microscopy (SEM) measurements. The obtained results show that the immobilization process of the Abs onto PPA/AA did not affect either the immune-response of the Abs or the functional activity of the peroxidase suggesting the usefulness of PPA/AA for the design of advanced nanobeads-based assays for the simultaneous screening of several analytes in complex media.

  4. Automated cell-based assay for screening of aquaporin inhibitors.

    PubMed

    Mola, Maria Grazia; Nicchia, Grazia Paola; Svelto, Maria; Spray, David C; Frigeri, Antonio

    2009-10-01

    Aquaporins form water channels that play major roles in a variety of physiological processes so that altered expression or function may underlie pathological conditions. In order to identify compounds that modulate aquaporin function, we have implemented a functional assay based on rapid measurement of osmotically induced cell volume changes to screen several libraries of diverse drugs. The time course of fluorescence changes in calcein-loaded cells was analyzed during an osmotic challenge using a 96-multiwell fluorescence plate reader. This system was validated using astrocyte primary cultures and fibroblasts that strongly express endogenous AQP4 and AQP1 proteins, respectively, as well as AQP4-transfected cells. We screened 3575 compounds, including 418 FDA-approved and commercially available drugs, for their effect on AQP-mediated water transport. Primary screening yielded 10 compounds that affected water transport activity in both astrocytes and AQP4-transfected cells and 42 compounds that altered cell volume regulation in astrocytes. Selected drugs were then analyzed on AQP1-expressing erythrocytes and AQP4-expressing membrane vesicles by stopped-flow light scattering. Four molecules of the National Cancer Institute's chemical library (NSC164914, NSC670229, NSC168597, NSC301460) were identified that differentially affected both AQP4 and AQP1 mediated water transport, with EC50 values between 20 and 50 microM. This fluorescence microplate reader-based assay may, thus, provide a platform for high-throughput screening which, when coupled to a secondary evaluation to confirm target specificity, should allow discovery of AQP-specific compounds for novel therapeutic strategies in the treatment of water balance disorders. PMID:19705854

  5. A novel live cell assay to measure diacylglycerol lipase α activity

    PubMed Central

    Singh, Praveen K.; Markwick, Rachel; Howell, Fiona V.; Williams, Gareth; Doherty, Patrick

    2016-01-01

    Diacylglycerol lipase α (DAGLα) hydrolyses DAG to generate the principal endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) in the central nervous system. DAGLα dependent cannabinoid (CB) signalling has been implicated in numerous processes including axonal growth and guidance, adult neurogenesis and retrograde signalling at the synapse. Recent studies have implicated DAGLα as an emerging drug target for several conditions including pain and obesity. Activity assays are critical to the drug discovery process; however, measurement of diacylglycerol lipase (DAGL) activity using its native substrate generally involves low-throughput MS techniques. Some relatively high-throughput membrane based assays utilizing surrogate substrates have been reported, but these do not take into account the rate-limiting effects often associated with the ability of a drug to cross the cell membrane. In the present study, we report the development of a live cell assay to measure DAGLα activity. Two previously reported DAGLα surrogate substrates, p-nitrophenyl butyrate (PNPB) and 6,8-difluoro-4-methylumbelliferyl octanoate (DiFMUO), were evaluated for their ability to detect DAGLα activity in live cell assays using a human cell line stably expressing the human DAGLα transgene. Following optimization, the small molecule chromogenic substrate PNPB proved to be superior by providing lower background activity along with a larger signal window between transfected and parental cells when compared with the fluorogenic substrate DiFMUO. The assay was further validated using established DAGL inhibitors. In summary, the live cell DAGLα assay reported here offers an economical and convenient format to screen for novel inhibitors as part of drug discovery programmes and compliments previously reported high-throughput membrane based DAGL assays. PMID:27013337

  6. A novel live cell assay to measure diacylglycerol lipase α activity.

    PubMed

    Singh, Praveen K; Markwick, Rachel; Howell, Fiona V; Williams, Gareth; Doherty, Patrick

    2016-06-01

    Diacylglycerol lipase α (DAGLα) hydrolyses DAG to generate the principal endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) in the central nervous system. DAGLα dependent cannabinoid (CB) signalling has been implicated in numerous processes including axonal growth and guidance, adult neurogenesis and retrograde signalling at the synapse. Recent studies have implicated DAGLα as an emerging drug target for several conditions including pain and obesity. Activity assays are critical to the drug discovery process; however, measurement of diacylglycerol lipase (DAGL) activity using its native substrate generally involves low-throughput MS techniques. Some relatively high-throughput membrane based assays utilizing surrogate substrates have been reported, but these do not take into account the rate-limiting effects often associated with the ability of a drug to cross the cell membrane. In the present study, we report the development of a live cell assay to measure DAGLα activity. Two previously reported DAGLα surrogate substrates, p-nitrophenyl butyrate (PNPB) and 6,8-difluoro-4-methylumbelliferyl octanoate (DiFMUO), were evaluated for their ability to detect DAGLα activity in live cell assays using a human cell line stably expressing the human DAGLα transgene. Following optimization, the small molecule chromogenic substrate PNPB proved to be superior by providing lower background activity along with a larger signal window between transfected and parental cells when compared with the fluorogenic substrate DiFMUO. The assay was further validated using established DAGL inhibitors. In summary, the live cell DAGLα assay reported here offers an economical and convenient format to screen for novel inhibitors as part of drug discovery programmes and compliments previously reported high-throughput membrane based DAGL assays.

  7. ORGANOPHOSPHORUS HYDROLASE-BASED ASSAY FOR ORGANOPHOSPHATE PESTICIDES

    EPA Science Inventory

    We report a rapid and versatile Organophosphorus hydrolase (OPH)-based method for measurement of organophosphates. This assay is based on a substrate-dependent change in pH at the local vicinity of the enzyme. The pH change is monitored using fluorescein isothiocyanate (FITC), ...

  8. Determination of Pulmozyme (dornase alpha) stability using a kinetic colorimetric DNase I activity assay.

    PubMed

    Lichtinghagen, Ralf

    2006-07-01

    An enzymatic activity assay was developed for the determination of dornase alpha human recombinant desoxyribonuclease (DNase I) stability. The method was adapted from a colorimetric endpoint enzyme activity assay for DNase I based on the degradation of a DNA/methyl green complex. With the described modifications the kinetic measurement of enzyme activity is feasible on an automated analyzer system within a rather short time. The development of this assay was based on the need for reliable detection of a possible loss of enzyme activity after transferring the commercial therapeutic agent into sealed glass vials required for a placebo-controlled study. The measuring range of this stability test was from 0 to 3000 U/L corresponding to 0-120% of the original enzyme activity; CV values of control solutions inside the measuring range were between 3% and 5%. The enzyme activity decreased less than 15% during the observation period of 180 days. In conclusion the current kinetic assay is a reliable method for a simple time-saving determination of DNase I activity to test Pulmozyme stability as required for quality control. As dornase alpha is used for inhalation, this method also proved its reliability in testing DNase stability during aerosolization with new inhalation devices (e-flow). PMID:16682175

  9. Construction of a Turn Off-On-Off Fluorescent System Based on Competitive Coordination of Cu2+ between 6,7-Dihydroxycoumarin and Pyrophosphate Ion for Sensitive Assay of Pyrophosphatase Activity

    PubMed Central

    Zhao, Liu; Miao, Yanqing; Liu, Chunye; Zhang, Chenxiao

    2016-01-01

    The detection of pyrophosphatase (PPase) activity is of great significance in diagnosing diseases and understanding the function of PPase-related biological events. This study constructed a turn off-on-off fluorescent system for PPase activity assay based on PPase-regulated competitive coordination of Cu2+ between a water-soluble fluorescent probe 6,7-dihydroxycoumarin (DHC) and pyrophosphate (PPi). The probe DHC can coordinate with Cu2+ and consequently display on-off type fluorescence response. Furthermore, the in situ formed nonfluorescent Cu2+-DHC complex can act as an effective off-on type fluorescent probe for sensing PPi due to the higher coordination reactivity between Cu2+ and PPi than that between Cu2+ and DHC. The subsequent addition of PPase to the mixture containing Cu2+, DHC, and PPi leads to the fluorescence requenching of the system again (an off state) because PPase catalyzes the hydrolysis of PPi into orthophosphate in the reaction system. Under the optimum conditions, the decrease of the fluorescence intensity of DHC-Cu2+-PPi system was linear with the increase of the PPase activity in the range from 0.1 to 0.3 U. The detection limit was down to 0.028 U PPase (S/N = 3). Moreover, the as-established system was also applied to evaluate PPase inhibitor. This study offers a simple yet effective method for the detection of PPase activity. PMID:27766179

  10. Automated conductimetric assay of human serum cholinesterase activity.

    PubMed

    Duffy, P; Wallach, J M

    1989-01-01

    Serum cholinesterase activity was determined by conductimetry using samples in the microliter range. Butyrylcholine iodide was demonstrated to be a convenient substrate for the conductimetric assay. Validation of the microassay was made by using either purified enzyme or control serum. In the range of 0-60 U/l, a linear relationship was demonstrated. Correlation with a reference spectrophotometric method was obtained with a slope of 1.18. An explanation of this value is proposed, as different hydrolysis rates were obtained with human sera, depending on the substrate used (butyrylthio- or butyryl-choline ester).

  11. Novel assay for direct fluorescent imaging of sialidase activity

    NASA Astrophysics Data System (ADS)

    Tomin, A.; Shkandina, T.; Bilyy, R.

    2011-07-01

    Here we describe a novel approach to sialidase activity estimation. Sialidases (EC 3.2.1.18, exo-α-sialidases), also known as neuraminidases, are the group of enzymes, which hydrolyze the glycoside bound between terminal sialic acid and subsequent carbohydrate residue in glycoproteins and glycolipids. Sialic acids are the group of monosaccharides with acidic properties, since they are acetylated or glycolylated derivates of neuraminic acid. Flu and some other viruses use neuraminidase activity to infect host cells. The level of sialylation was shown to be tightly connected with tumor cell invasiveness and metastatic potential, sialylation level also determines the clearance of aged or virus-infected cells. Thus, detection of sialidase activity is of primary importance for clinical diagnostics as well as life science research. The authors developed the assay for both visualization and estimation of sialidase activity in living cells. Previously known methods for sialidase activity detection required destruction of cellular material, or were low-sensitive, or provided no information on the activity localization in certain intracellular compartment. To overcome these problems, a fluorogenic neuraminidase substrate, 4-MUNA was utilized, and the method for detection of neuraminidase activity using fluorescent microscopy was proposed, it provided a high signal level and information on cellular localization of the studied enzyme. By using this approach the increase of sialidase activity on apoptotic cells was demonstrated in comparison to viable and primary necrotic cells.

  12. An improved 96-well turbidity assay for T4 lysozyme activity.

    PubMed

    Toro, Tasha B; Nguyen, Thao P; Watt, Terry J

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: •Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays;•Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and•Incorporates a simplified expression and purification protocol for T4 lysozyme.

  13. Inhibition of Microglia Activation as a Phenotypic Assay in Early Drug Discovery

    PubMed Central

    Figuera-Losada, Mariana; Rojas, Camilo; Slusher, Barbara S.

    2014-01-01

    Complex biological processes such as inflammation, cell death, migration, proliferation, and the release of biologically active molecules can be used as outcomes in phenotypic assays during early stages of drug discovery. Although target-based approaches have been widely used over the past decades, a disproportionate number of first-in-class drugs have been identified using phenotypic screening. This review details phenotypic assays based on inhibition of microglial activation and their utility in primary and secondary screening, target validation, and pathway elucidation. The role of microglia, both in normal as well as in pathological conditions such as chronic neurodegenerative diseases, is reviewed. Methodologies to assess microglia activation in vitro are discussed in detail, and classes of therapeutic drugs known to decrease the proinflammatory and cytotoxic responses of activated microglia are appraised, including inhibitors of glutaminase, cystine/glutamate antiporter, nuclear factor κB, and mitogen-activated protein kinases. PMID:23945875

  14. High content cell-based assay for the inflammatory pathway

    NASA Astrophysics Data System (ADS)

    Mukherjee, Abhishek; Song, Joon Myong

    2015-07-01

    Cellular inflammation is a non-specific immune response to tissue injury that takes place via cytokine network orchestration to maintain normal tissue homeostasis. However chronic inflammation that lasts for a longer period, plays the key role in human diseases like neurodegenerative disorders and cancer development. Understanding the cellular and molecular mechanisms underlying the inflammatory pathways may be effective in targeting and modulating their outcome. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that effectively combines the pro-inflammatory features with the pro-apoptotic potential. Increased levels of TNF-α observed during acute and chronic inflammatory conditions are believed to induce adverse phenotypes like glucose intolerance and abnormal lipid profile. Natural products e. g., amygdalin, cinnamic acid, jasmonic acid and aspirin have proven efficacy in minimizing the TNF-α induced inflammation in vitro and in vivo. Cell lysis-free quantum dot (QDot) imaging is an emerging technique to identify the cellular mediators of a signaling cascade with a single assay in one run. In comparison to organic fluorophores, the inorganic QDots are bright, resistant to photobleaching and possess tunable optical properties that make them suitable for long term and multicolor imaging of various components in a cellular crosstalk. Hence we tested some components of the mitogen activated protein kinase (MAPK) pathway during TNF-α induced inflammation and the effects of aspirin in HepG2 cells by QDot multicolor imaging technique. Results demonstrated that aspirin showed significant protective effects against TNF-α induced cellular inflammation. The developed cell based assay paves the platform for the analysis of cellular components in a smooth and reliable way.

  15. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays.

    PubMed

    López-Alarcón, Camilo; Denicola, Ana

    2013-02-01

    Oxidative stress is associated with several pathologies like cardiovascular, neurodegenerative, cancer and even aging. It has been suggested that a diet rich in antioxidants would be beneficial to human health and a lot of interest is focused on the determination of antioxidant capacity of natural products. Different chemical methods have been developed including the popular ORAC that evaluates the potential of a sample as inhibitor of a target molecule oxidation. Chemical-based methods are useful for screening, they are low cost, high-throughput and yield an index value (expressed as equivalents of Trolox) that allows comparing and ordering different products. More recently, nanoparticles-based assays have been developed to sense the antioxidant power of natural products. However, the antioxidant capacity indexes obtained by chemical assays cannot extrapolate the performance of the sample in vivo. Considering that antioxidant action is not limited to scavenging free radicals but includes upregulation of antioxidant and detoxifying enzymes, modulation of redox cell signaling and gene expression, it is necessary to move to cellular assays in order to evaluate the potential antioxidant activity of a compound or extract. Animal models and human studies are more appropriate but also more expensive and time-consuming, making the cell culture assays very attractive as intermediate testing methods. Cellular antioxidant activity (CAA) assays, activation of redox transcription factors, inhibition of oxidases or activation of antioxidant enzymes are reviewed and compared with the classical in vitro chemical-based assays for evaluation of antioxidant capacity of natural products.

  16. Hormonal activity of polycyclic musks evaluated by reporter gene assay.

    PubMed

    Mori, Taiki; Iida, Mitsuru; Ishibashi, Hiroshi; Kohra, Shinya; Takao, Yuji; Takemasa, Takehiro; Arizono, Koji

    2007-01-01

    Synthetic musk fragrance compounds, such as polycyclic musks (PCMs), are a group of chemicals used extensively as personal care products, and can be found in the environment and the human body. PCMs, such as 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexa-methylcyclopenta-gamma-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyltetralin (AHTN), are known to have agonistic activities toward human estrogen receptor alpha (hERalpha) and hERbeta, and have antagonistic activity toward the human androgen receptor (hAR), as shown in several reporter gene assays. However, little is known about the interaction of PCMs with the human thyroid hormone receptor (hTR), and the hormonal effects of other PCMs except for HHCB and AHTN. In this study, we focus on the interactions of six PCMs, namely, HHCB, AHTN, 4-acetyl-1,1-dimethyl-6-tert-butyl-indan (ADBI), 6-acetyl-1,1,2,3,3,5-hexamethylindan (AHMI), 6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone (DPMI), and 5-acetyl-1,1,2,6-tetramethyl-3-isopropy-lindan (ATII) with hERalpha, hAR, and hTRbeta by in vitro reporter gene assay using Chinese hamster ovary cells. All the samples were found to be agonists toward hERalpha, whereas no agonistic activities of these PCMs for hAR and hTRbeta were observed. No antagonistic activities for hERalpha and hTRbeta were observed at the concentrations tested. However, several PCMs, namely, HHCB, AHTN, ATII, ADBI, and AHMI, showed dose-dependent antagonistic activities for hAR, and the IC50 values of these compounds were estimated to be 1.0 x 10(-7), 1.5 x 10(-7), 1.4 x 10(-7), 9.8 x 10(-6), and 1.4 x 10(-7) M, respectively. The results suggest that these PCMs interact with hERalpha and hAR but have no hormonal effect on hTRbeta. This is the first report on the agonistic and antagonistic activities of ATII, ADBI, AHMI, and DPMI for hERalpha and hAR as determined by in vitro reporter gene assay using stably transfected Chinese hamster ovary cells.

  17. Immunomagnetic nanoparticle-based assays for detection of biomarkers

    PubMed Central

    Park, Hoyoung; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    The emergence of biomarkers as key players in the paradigm shift towards preventative medicine underscores the need for their detection and quantification. Advances made in the field of nanotechnology have played a crucial role in achieving these needs, and have contributed to recent advances in the field of medicine. Nanoparticle-based immunomagnetic assays, in particular, offer numerous advantages that utilize the unique physical properties of magnetic nanoparticles. In this review, we focus on recent developments and trends with regards to immunomagnetic assays used for detection of biomarkers. The various immunomagnetic assays are categorized into the following: particle-based multiplexing, signal control, microfluidics, microarray, and automation. Herein, we analyze each category and discuss their advantages and disadvantages. PMID:24285924

  18. Editor's Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity on In Vitro Assay Activity Across a Diverse Chemical and Assay Space.

    PubMed

    Judson, Richard; Houck, Keith; Martin, Matt; Richard, Ann M; Knudsen, Thomas B; Shah, Imran; Little, Stephen; Wambaugh, John; Woodrow Setzer, R; Kothya, Parth; Phuong, Jimmy; Filer, Dayne; Smith, Doris; Reif, David; Rotroff, Daniel; Kleinstreuer, Nicole; Sipes, Nisha; Xia, Menghang; Huang, Ruili; Crofton, Kevin; Thomas, Russell S

    2016-08-01

    Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, responses of 1060 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a battery of 815 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress/cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least 2 viability/cytotoxicity assays within the concentration range tested (typically up to 100 μM) activated a median of 12% of assay endpoints whereas those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (eg, receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a greater number of specific biomolecular interactions are generally designed to be bioactive (pharmaceuticals or pesticidal active ingredients), whereas intentional food-use chemicals tended to show the fewest specific interactions. The analyses presented here provide context for use of these data in ongoing studies to predict in vivo toxicity from chemicals lacking extensive hazard assessment. PMID:27208079

  19. Editor's Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity on In Vitro Assay Activity Across a Diverse Chemical and Assay Space.

    PubMed

    Judson, Richard; Houck, Keith; Martin, Matt; Richard, Ann M; Knudsen, Thomas B; Shah, Imran; Little, Stephen; Wambaugh, John; Woodrow Setzer, R; Kothya, Parth; Phuong, Jimmy; Filer, Dayne; Smith, Doris; Reif, David; Rotroff, Daniel; Kleinstreuer, Nicole; Sipes, Nisha; Xia, Menghang; Huang, Ruili; Crofton, Kevin; Thomas, Russell S

    2016-08-01

    Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, responses of 1060 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a battery of 815 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress/cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least 2 viability/cytotoxicity assays within the concentration range tested (typically up to 100 μM) activated a median of 12% of assay endpoints whereas those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (eg, receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a greater number of specific biomolecular interactions are generally designed to be bioactive (pharmaceuticals or pesticidal active ingredients), whereas intentional food-use chemicals tended to show the fewest specific interactions. The analyses presented here provide context for use of these data in ongoing studies to predict in vivo toxicity from chemicals lacking extensive hazard assessment.

  20. Evaluation of immunostimulatory activity of Chyawanprash using in vitro assays.

    PubMed

    Madaan, Alka; Kanjilal, Satyajyoti; Gupta, Arun; Sastry, J L N; Verma, Ritu; Singh, Anu T; Jaggi, Manu

    2015-03-01

    Chyawanprash is an ayurvedic formulation used in Indian traditional medicinal system for its beneficial effect on human health. We investigated the immunostimulatory effects of Chyawanprash (CHY) using in vitro assays evaluating the secretion of cytokines such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin-1beta (IL-1β) and Macrophage Inflammatory Protein-1-alpha (MIP-1-α) from murine bone marrow derived Dendritic Cells (DC) which play pivotal role in immunostimulation. The effects of CHY on phagocytosis in murine macrophages (RAW264.7) and Natural Killer (NK) cell activity were also investigated. At non-cytotoxic concentrations (20-500 μg/ml), CHY enhanced the secretion of all the three cytokines from DC. CHY also stimulated both, macrophage (RAW264.7) as well as NK cell activity, in vitro. In conclusion, the data substantiates the immunoprotective role of CHY at cellular level mediated by immunostimulation in key immune cells viz. dendritic Cells, macrophages and NK cells.

  1. Measurement of Separase Proteolytic Activity in Single Living Cells by a Fluorogenic Flow Cytometry Assay

    PubMed Central

    Haaß, Wiltrud; Kleiner, Helga; Müller, Martin C.; Hofmann, Wolf-Karsten; Fabarius, Alice; Seifarth, Wolfgang

    2015-01-01

    ESPL1/Separase, an endopeptidase, is required for centrosome duplication and separation of sister-chromatides in anaphase of mitosis. Overexpression and deregulated proteolytic activity of Separase as frequently observed in human cancers is associated with the occurrence of supernumerary centrosomes, chromosomal missegregation and aneuploidy. Recently, we have hypothesized that increased Separase proteolytic activity in a small subpopulation of tumor cells may serve as driver of tumor heterogeneity and clonal evolution in chronic myeloid leukemia (CML). Currently, there is no quantitative assay to measure Separase activity levels in single cells. Therefore, we have designed a flow cytometry-based assay that utilizes a Cy5- and rhodamine 110 (Rh110)-biconjugated Rad21 cleavage site peptide ([Cy5-D-R-E-I-M-R]2-Rh110) as smart probe and intracellular substrate for detection of Separase enzyme activity in living cells. As measured by Cy5 fluorescence the cellular uptake of the fluorogenic peptide was fast and reached saturation after 210 min of incubation in human histiocytic lymphoma U937 cells. Separase activity was recorded as the intensity of Rh110 fluorescence released after intracellular peptide cleavage providing a linear signal gain within a 90–180 min time slot. Compared to conventional cell extract-based methods the flow cytometric assay delivers equivalent results but is more reliable, bypasses the problem of vague loading controls and unspecific proteolysis associated with whole cell extracts. Especially suited for the investigaton of blood- and bone marrow-derived hematopoietic cells the flow cytometric Separase assay allows generation of Separase activity profiles that tell about the number of Separase positive cells within a sample i.e. cells that currently progress through mitosis and about the range of intercellular variation in Separase activity levels within a cell population. The assay was used to quantify Separase proteolytic activity in leukemic

  2. A sensitive flow cytometry-based nucleotide excision repair assay unexpectedly reveals that mitogen-activated protein kinase signaling does not regulate the removal of UV-induced DNA damage in human cells.

    PubMed

    Rouget, Raphael; Auclair, Yannick; Loignon, Martin; Affar, El Bachir; Drobetsky, Elliot A

    2008-02-29

    In response to diverse genotoxic stimuli (e.g. UV and cisplatin), the mitogen-activated protein kinases ERK1/2, JNK1/2, and p38alpha/beta become rapidly phosphorylated and in turn activate multiple downstream effectors that modulate apoptosis and/or growth arrest. Furthermore, previous lines of evidence have strongly suggested that ERK1/2 and JNK1/2 participate in global-genomic nucleotide excision repair, a critical antineoplastic pathway that removes helix-distorting DNA adducts induced by a variety of mutagenic agents, including UV. To rigorously evaluate the potential role of mitogen-activated protein kinases in global-genomic nucleotide excision repair, various human cell strains (primary skin fibroblasts, primary lung fibroblasts, and HCT116 colon carcinoma cells) were treated with highly specific chemical inhibitors, which, following UV exposure, (i) abrogated the capacities of ERK1/2, JNK1/2, or p38alpha/beta to phosphorylate specific downstream effectors and (ii) characteristically modulated cellular proliferation, clonogenic survival, and/or apoptosis. A highly sensitive flow cytometry-based nucleotide excision repair assay recently optimized and validated in our laboratory was then employed to directly demonstrate that the kinetics of UV DNA photoadduct repair are highly similar in mock-treated versus mitogen-activated protein kinase inhibitor-treated cells. These data on primary and tumor cells treated with pharmacological inhibitors were fully corroborated by repair studies using (i) short hairpin RNA-mediated knockdown of ERK1/2 or JNK1/2 in human U2OS osteosarcoma cells and (ii) expression of a dominant negative p38alpha mutant in human primary lung fibroblasts. Our results provide solid evidence for the first time, in disaccord with a burgeoning perception, that mitogen-activated protein kinase signaling does not influence the efficiency of human global-genomic nucleotide excision repair.

  3. [Detection of viable metabolically active yeast cells using a colorimetric assay].

    PubMed

    Růzicka, F; Holá, V

    2008-02-01

    The increasing concern of yeasts able to form biofilm brings about the need for susceptibility testing of both planktonic and biofilm cells. Detection of viability or metabolic activity of yeast cells after exposure to antimicrobials plays a key role in the assessment of susceptibility testing results. Colorimetric assays based on the color change of the medium in the presence of metabolically active cells proved suitable for this purpose. In this study, the usability of a colorimetric assay with the resazurin redox indicator for monitoring the effect of yeast inoculum density on the reduction rate was tested. As correlation between the color change rate and inoculum density was observed, approximate quantification of viable cells was possible. The assay would be of relevance to antifungal susceptibility testing in both planktonic and biofilm yeasts.

  4. Development of an Immunoperoxidase Monolayer Assay for the Detection of Antibodies against Peste des Petits Ruminants Virus Based on BHK-21 Cell Line Stably Expressing the Goat Signaling Lymphocyte Activation Molecule

    PubMed Central

    Chen, Weiye; Li, Cuicui; Xie, Meimei; Bu, Zhigao

    2016-01-01

    From 2013 to 2015, peste des petits ruminants (PPR) broke out in more than half of the provinces of China; thus, the application and development of diagnostic methods are very important for the control of PPR. Here, an immunoperoxidase monolayer assay (IPMA) was developed to detect antibodies against PPR. However, during IPMA development, we found that Vero cells were not the appropriate choice because staining results were not easily observed. Therefore, we first established a baby hamster kidney-goat signaling lymphocyte activation molecule (BHK-SLAM) cell line that could stably express goat SLAM for at least 20 generations. Compared with Vero cells, the PPR-mediated cytopathic effect occurred earlier in BHK-SLAM cells, and large syncytia appeared after virus infection. Based on this cell line and recombinant PPR virus expressing the green fluorescent protein (GFP) (rPPRV-GFP), an IPMA for PPR diagnosis was developed. One hundred and ninety-eight PPR serum samples from goats or sheep were tested by the IPMA and virus neutralization test (VNT). Compared with the VNT, the sensitivity and specificity of the IPMA were 91% and 100%, respectively, and the coincidence rate of the two methods was 95.5%. The IPMA assay could be completed in 4 h, compared with more than 6 d for the VNT using rPPRV-GFP, and it is easily performed, as the staining results can be observed under a microscope. Additionally, unlike the VNT, the IPMA does not require antigen purification, which will reduce its cost. In conclusion, the established IPMA will be an alternative method that replaces the VNT for detecting antibodies against PPRV in the field. PMID:27768770

  5. Chimeric RNA-DNA molecular beacon assay for ribonuclease H activity.

    PubMed

    Rizzo, J; Gifford, L K; Zhang, X; Gewirtz, A M; Lu, P

    2002-08-01

    Current methods to detect and assay ribonuclease H (RNase H) activity are indirect and time-consuming. Here we introduce a direct and sensitive method, based on the fluorescence quenching mechanism of molecular beacons, to assay RNA cleavage in RNA:DNA hybrids. An RNA-DNA chimeric beacon assay for RNase H enzymatic activity was developed. The substrate is a single-stranded RNA-DNA chimeric oligonucleotide labeled with a 5'-fluorescein and a 3'-DABCYL. The fluorophore (fluorescein) of the probe is held in close proximity to the quencher (DABCYL) by the RNA:DNA stem-loop structure. When the RNA sequence of the RNA:DNA hybrid stem is cleaved, the fluorophore is separated from the quencher and fluorescence can be detected as a function of time. Chimeric beacons with different stem lengths and sequences have been surveyed for this assay with E. coli RNase H. We found that the beacon kinetic parameters are in qualitative agreement with previously reported values using more cumbersome assays. This method permits real-time detection of RNase H activity and a convenient approach to RNase H kinetic and mechanistic study.

  6. Antioxidant Activity/Capacity Measurement. 3. Reactive Oxygen and Nitrogen Species (ROS/RNS) Scavenging Assays, Oxidative Stress Biomarkers, and Chromatographic/Chemometric Assays.

    PubMed

    Apak, Reşat; Özyürek, Mustafa; Güçlü, Kubilay; Çapanoğlu, Esra

    2016-02-10

    There are many studies in which the antioxidant potential of different foods have been analyzed. However, there are still conflicting results and lack of information as a result of unstandardized assay techniques and differences between the principles of the methods applied. The measurement of antioxidant activity, especially in the case of mixtures, multifunctional or complex multiphase systems, cannot be evaluated satisfactorily using a simple antioxidant test due to the many variables influencing the results. In the literature, there are many antioxidant assays that are used to measure the total antioxidant activity/capacity of food materials. In this review, reactive oxygen and nitrogen species (ROS/RNS) scavenging assays are evaluated with respect to their mechanism, advantages, disadvantages, and potential use in food systems. On the other hand, in vivo antioxidant activity (AOA) assays including oxidative stress biomarkers and cellular-based assays are covered within the scope of this review. Finally, chromatographic and chemometric assays are reviewed, focusing on their benefits especially with respect to their time saving, cost-effective, and sensitive nature.

  7. Ultra Fast and Sensitive Liquid Chromatography Tandem Mass Spectrometry Based Assay for Galactose-1-Phosphate Uridylyltransferase and Galactokinase Deficiencies

    PubMed Central

    Li, Yijun; Ptolemy, Adam S.; Harmonay, Lauren; Kellogg, Mark; Berry, Gerard T.

    2013-01-01

    The diagnosis of transferase and galactokinase deficiency galactosemia usually involves the measurement of erythrocyte galactose-1-phosphate uridylyltransferase (GALT) and galactokinase (GALK) enzyme activity, respectively. The current gold standard assays for these enzymes are radioactive assays, which are laborious and/or incapable of measuring low enzyme activities. To further our knowledge of genotype-phenotype relationships, we had developed an assay for GALT activity alone using LC-MS/MS. In this study we generated a robust and sensitive LC-MS/MS based GALT and GALK assay using a novel normal phase chromatographic condition. We improved upon our earlier assay by drastically reducing the instrument run time and eliminating the use of an ion pairing reagent. Stable isotope labeled substrates were utilized in the GALT and GALK assays. The enzymatic products ([13C6]-uridine diphosphate galactose in GALT assay and [13C6]-galactose-1-phosphate in GALK assay) were quantified in a 3 min LC-MS/MS run. The assays were sensitive enough to allow for the quantification of enzyme activities as low as 0.2% and 0.3% of normal control values in the GALT and GALK assays, respectively. Thirty-three samples from non-galactosemic patients were assayed to have erythrocyte GALT activity of 23.4 ± 4.2 and GALK activity of 1.8 ± 0.47 (mean ± SD) µmol·(g Hgb) −1·hr−1. Erythrocyte GALT activities in a cohort of 16 patients with classic galactosemia were measured: 4 patients had GALT activity less than 1% of normal control values and the remaining 12 had no detectable GALT activity. No GALK activity was detected in a GALK deficient sample we analzyed. Lastly, we tested the feasibility of adapting this LC-MS/MS based GALT/GALK assay as a newborn screening (NBS) test. PMID:20863731

  8. Ultra fast and sensitive liquid chromatography tandem mass spectrometry based assay for galactose-1-phosphate uridylyltransferase and galactokinase deficiencies.

    PubMed

    Li, Yijun; Ptolemy, Adam S; Harmonay, Lauren; Kellogg, Mark; Berry, Gerard T

    2011-01-01

    The diagnosis of transferase and galactokinase deficiency galactosemia usually involves the measurement of erythrocyte galactose-1-phosphate uridylyltransferase (GALT) and galactokinase (GALK) enzyme activity, respectively. The current gold standard assays for these enzymes are radioactive assays, which are laborious and/or incapable of measuring low enzyme activities. To further our knowledge of genotype-phenotype relationships, we had developed an assay for GALT activity alone using LC-MS/MS. In this study we generated a robust and sensitive LC-MS/MS based GALT and GALK assay using a novel normal phase chromatographic condition. We improved upon our earlier assay by drastically reducing the instrument run time and eliminating the use of an ion pairing reagent. Stable isotope labeled substrates were utilized in the GALT and GALK assays. The enzymatic products ([(13)C(6)]-uridine diphosphate galactose in GALT assay and [(13)C(6)]-galactose-1-phosphate in GALK assay) were quantified in a 3 min LC-MS/MS run. The assays were sensitive enough to allow for the quantification of enzyme activities as low as 0.2% and 0.3% of normal control values in the GALT and GALK assays, respectively. Thirty-three samples from non-galactosemic patients were assayed to have erythrocyte GALT activity of 23.4±4.2 and GALK activity of 1.8±0.47 (mean±SD) μmol⋅(g Hgb)(-1) h(-1). Erythrocyte GALT activities in a cohort of 16 patients with classic or severe galactosemia were measured: 4 patients had GALT activity less than 1% of normal control values and the remaining 12 had no detectable GALT activity. No GALK activity was detected in a GALK deficient sample we analyzed. Lastly, we tested the feasibility of adapting this LC-MS/MS based GALT/GALK assay as a newborn screening (NBS) test.

  9. Ultra fast and sensitive liquid chromatography tandem mass spectrometry based assay for galactose-1-phosphate uridylyltransferase and galactokinase deficiencies.

    PubMed

    Li, Yijun; Ptolemy, Adam S; Harmonay, Lauren; Kellogg, Mark; Berry, Gerard T

    2011-01-01

    The diagnosis of transferase and galactokinase deficiency galactosemia usually involves the measurement of erythrocyte galactose-1-phosphate uridylyltransferase (GALT) and galactokinase (GALK) enzyme activity, respectively. The current gold standard assays for these enzymes are radioactive assays, which are laborious and/or incapable of measuring low enzyme activities. To further our knowledge of genotype-phenotype relationships, we had developed an assay for GALT activity alone using LC-MS/MS. In this study we generated a robust and sensitive LC-MS/MS based GALT and GALK assay using a novel normal phase chromatographic condition. We improved upon our earlier assay by drastically reducing the instrument run time and eliminating the use of an ion pairing reagent. Stable isotope labeled substrates were utilized in the GALT and GALK assays. The enzymatic products ([(13)C(6)]-uridine diphosphate galactose in GALT assay and [(13)C(6)]-galactose-1-phosphate in GALK assay) were quantified in a 3 min LC-MS/MS run. The assays were sensitive enough to allow for the quantification of enzyme activities as low as 0.2% and 0.3% of normal control values in the GALT and GALK assays, respectively. Thirty-three samples from non-galactosemic patients were assayed to have erythrocyte GALT activity of 23.4±4.2 and GALK activity of 1.8±0.47 (mean±SD) μmol⋅(g Hgb)(-1) h(-1). Erythrocyte GALT activities in a cohort of 16 patients with classic or severe galactosemia were measured: 4 patients had GALT activity less than 1% of normal control values and the remaining 12 had no detectable GALT activity. No GALK activity was detected in a GALK deficient sample we analyzed. Lastly, we tested the feasibility of adapting this LC-MS/MS based GALT/GALK assay as a newborn screening (NBS) test. PMID:20863731

  10. A passive-active neutron device for assaying remote-handled transuranic waste

    SciTech Connect

    Estep, R.J.; Coop, K.L.; Deane, T.M.; Lujan, J.E.

    1989-01-01

    A combined passive-active neutron assay device was constructed for assaying remote-handled transuranic waste. A study of matrix and source position effects in active assays showed that a knowledge of the source position alone is not sufficient to correct for position-related errors in highly moderating or absorbing matrices. An alternate function for the active assay of solid fuel pellets was derived, although the efficacy of this approach remains to be established. 4 refs., 7 figs., 1 tab.

  11. High-Throughput FRET Assay Yields Allosteric SERCA Activators

    PubMed Central

    Cornea, Razvan L.; Lockamy, Elizabeth L.; Gruber, Simon J.; Muretta, Joseph M.; Jin, Dongzhu; Chen, Jiqiu; Dahl, Russell; Bartfai, Tamas; Zsebo, Krisztina M.; Gillispie, Gregory D.; Thomas, David D.

    2013-01-01

    Using fluorescence resonance energy transfer (FRET), we performed a high-throughput screen (HTS) in a reconstituted membrane system, seeking compounds that reverse inhibition of sarco-/endoplasmic reticulum Ca-ATPase (SERCA) by its endogenous regulator, phospholamban (PLB). Such compounds have long been sought to correct aberrant Ca2+ regulation in heart failure. Donor-SERCA was reconstituted in phospholipid membranes with or without acceptor-PLB, and FRET was measured in a steady-state fluorescence microplate reader. A 20,000-compound library was tested in duplicate. Compounds that decreased FRET by more than three standard deviations were considered hits. From 43 primary hits (0.2%), 31 (72%) were found to be false positives upon more thorough testing. The remaining 12 hits were tested in assays of Ca-ATPase activity, and six of these activated SERCA significantly, by as much as 60%, and several also enhanced cardiomyocyte contractility. These compounds directly activated SERCA from heart and other tissues. These results validate our FRET approach and set the stage for medicinal chemistry and pre-clinical testing. We were concerned about the high rate of false positives, resulting from the low precision of steady-state fluorescence. Preliminary studies with a novel fluorescence lifetime plate reader show 20-fold higher precision. This instrument can dramatically increase the quality of future HT. PMID:22923787

  12. High-throughput FRET assay yields allosteric SERCA activators.

    PubMed

    Cornea, Razvan L; Gruber, Simon J; Lockamy, Elizabeth L; Muretta, Joseph M; Jin, Dongzhu; Chen, Jiqiu; Dahl, Russell; Bartfai, Tamas; Zsebo, Krisztina M; Gillispie, Gregory D; Thomas, David D

    2013-01-01

    Using fluorescence resonance energy transfer (FRET), we performed a high-throughput screen (HTS) in a reconstituted membrane system, seeking compounds that reverse inhibition of sarcoplasmic reticulum Ca-ATPase (SERCA) by its cardiac regulator, phospholamban (PLB). Such compounds have long been sought to correct aberrant Ca(2+) regulation in heart failure. Donor-SERCA was reconstituted in phospholipid membranes with or without acceptor-PLB, and FRET was measured in a steady-state fluorescence microplate reader. A 20 000-compound library was tested in duplicate. Compounds that decreased FRET by more than three standard deviations were considered hits. From 43 hits (0.2%), 31 (72%) were found to be false-positives upon more thorough FRET testing. The remaining 12 hits were tested in assays of Ca-ATPase activity, and six of these activated SERCA significantly, by as much as 60%, and several also enhanced cardiomyocyte contractility. These compounds directly activated SERCA from heart and other tissues. These results validate our FRET approach and set the stage for medicinal chemistry and preclinical testing. We were concerned about the high rate of false-positives, resulting from the low precision of steady-state fluorescence. Preliminary studies with a novel fluorescence lifetime plate reader show 20-fold higher precision. This instrument can dramatically increase the quality of future HTS.

  13. Estimation of specific activity of 177Lu by 'saturation assay' principle using DOTA as ligand.

    PubMed

    Pillai, Ambikalmajan M R; Chakraborty, Sudipta; Das, Tapas

    2015-01-01

    Lutetium-177 is a widely used therapeutic radionuclide in targeted therapy and it is important to know its specific activity at the time of radiopharmaceutical preparation, especially for radiolabeling peptides. However, there are no direct methods for the experimental determination of the specific activity which can be readily applied in a hospital radiopharmacy. A new technique based on the 'saturation assay' principle using DOTA as the binding agent for the estimation of specific activity of (177)Lu is reported. The studies demonstrate the proof of principle of this new assay technique. The method is general and can be modified and applied for the estimation of specific activity of other metallic radionuclides by using DOTA or other suitable chelating agents.

  14. A specific mechanism for nonspecific activation in reporter-gene assays.

    PubMed

    Auld, Douglas S; Thorne, Natasha; Nguyen, Dac-Trung; Inglese, James

    2008-08-15

    The importance of bioluminescence in enabling a broad range of high-throughput screening (HTS) assay formats is evidenced by widespread use in industry and academia. Therefore, understanding the mechanisms by which reporter enzyme activity can be modulated by small molecules is critical to the interpretation of HTS data. In this Perspective, we provide evidence for stabilization of luciferase by inhibitors in cell-based luciferase reporter-gene assays resulting in the counterintuitive phenomenon of signal activation. These data were derived from our analysis of luciferase inhibitor compound structures and their prevalence in the Molecular Libraries Small Molecule Repository using 100 HTS experiments available in PubChem. Accordingly, we found an enrichment of luciferase inhibitors in luciferase reporter-gene activation assays but not in assays using other reporters. In addition, for several luciferase inhibitor chemotypes, we measured reporter stabilization and signal activation in cells that paralleled the inhibition determined using purified luciferase to provide further experimental support for these contrasting effects.

  15. Plant Compounds Enhance the Assay Sensitivity for Detection of Active Bacillus cereus Toxin

    PubMed Central

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-01-01

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety. PMID:25767986

  16. Plant compounds enhance the assay sensitivity for detection of active Bacillus cereus toxin.

    PubMed

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-03-01

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety. PMID:25767986

  17. Plant compounds enhance the assay sensitivity for detection of active Bacillus cereus toxin.

    PubMed

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-03-11

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety.

  18. Utility of an appropriate reporter assay: Heliotrine interferes with GAL4/upstream activation sequence-driven reporter gene systems.

    PubMed

    Luckert, Claudia; Hessel, Stefanie; Lampen, Alfonso; Braeuning, Albert

    2015-10-15

    Reporter gene assays are widely used for the assessment of transcription factor activation following xenobiotic exposure of cells. A critical issue with such assays is the possibility of interference of test compounds with the test system, for example, by direct inhibition of the reporter enzyme. Here we show that the pyrrolizidine alkaloid heliotrine interferes with reporter signals derived from GAL4-based nuclear receptor transactivation assays by a mechanism independent of luciferase enzyme inhibition. These data highlight the necessity to conduct proper control experiments in order to avoid perturbation of reporter assays by test chemicals.

  19. Immunomodulatory assays to study structure-activity relationships of thalidomide.

    PubMed

    Shannon, E J; Morales, M J; Sandoval, F

    1997-01-01

    Thalidomide, which has a long history of tragedy because of its ability to cause severe birth defects, is very effective in alleviating erythema nodosum leprosum in leprosy patients and aphthous ulcers in AIDS patients. The causes of these inflammatory diseases and the mechanism by which thalidomide diminishes them are unknown. It has been suggested that modulation of the immune response plays an important role. We found that thalidomide exerts immunomodulatory activity in three bioassays. It suppresses an IgM plaque forming cell response in mice injected with sheep erythrocytes: it inhibits TNF-alpha production by LPS stimulated human mononuclear cells: and it enhances IL-2 production by Con-A stimulated human mononuclear cells. We employed these bioassays to compare the activity of 15 analogs of thalidomide with thalidomide itself. Eight of the compounds were derivatives of the glutarimide moiety of thalidomide and the others were phthalimide or derivatives of the phthalimide moiety of thalidomide. N-hydroxyphthalimide, a simple derivative of phthalimide, was more effective than thalidomide and was also the most effective of the compounds assayed in suppressing the IgM plaque and TNF-alpha responses, but it did not enhance the IL-2 response, instead, it significantly suppressed it.

  20. Mutagenic activity of isoxazolylnaphthoquinoneimines assayed by micronucleus bone marrow test.

    PubMed

    Sicardi, S M; Ferrato, E

    1995-05-01

    Studies were undertaken to evaluate the ability of various quinoneimines to induce micronuclei in bone marrow cells as a measure of their genotoxicity. Accordingly, 2-hydroxy-N-(3,4-dimethyl-5-isoxazolyl)-1,4-naphthoquinone-4-imine (I), its 2-acetyl derivative (II) and 2-[(5-methyl-3-isoxazolyl)amino]-N-(5-methyl-3-isoxazolyl)-1 ,4- naphthoquinone-4-imine (III), as well as two of their precursors, 2-hydroxynaphthoquinone (NQ-2-OH) and 3,4-dimethyl-5-aminoisoxazole (DMAI) were given by intraperitoneal injection at 5, 50, 100 and 200 mg/Kg doses to S.J.L. Swiss mice with 24 h sampling time. Compounds I and II displayed highly significant differences at 50, 100 and 200 mg/kg doses (p < 0.01) and their mutagenic dose response curves correlated closely with an inverted U-shaped form whose interpretation is still the subject of controversy. NQ-2-OH only produced a significant increase in micronucleus frequency at 50 mg/kg, whereas no mutagenic activity was found for compound III and DMAI at the doses assayed. At 50 mg/kg the order of relative mutagenic potencies was I > II > NQ-2-OH. Mechanisms advanced to explain loss of drug activity at high doses include capture saturation, enzymatic induction during metabolism and participation of an independent defense system. PMID:7753107

  1. Filter-based assay for Escherichia coli in aqueous samples using bacteriophage-based amplification.

    PubMed

    Derda, Ratmir; Lockett, Matthew R; Tang, Sindy K Y; Fuller, Renee C; Maxwell, E Jane; Breiten, Benjamin; Cuddemi, Christine A; Ozdogan, Aysegul; Whitesides, George M

    2013-08-01

    This paper describes a method to detect the presence of bacteria in aqueous samples, based on the capture of bacteria on a syringe filter, and the infection of targeted bacterial species with a bacteriophage (phage). The use of phage as a reagent provides two opportunities for signal amplification: (i) the replication of phage inside a live bacterial host and (ii) the delivery and expression of the complementing gene that turns on enzymatic activity and produces a colored or fluorescent product. Here we demonstrate a phage-based amplification scheme with an M13KE phage that delivers a small peptide motif to an F(+), α-complementing strain of Escherichia coli K12, which expresses the ω-domain of β-galactosidase (β-gal). The result of this complementation-an active form of β-gal-was detected colorimetrically, and the high level of expression of the ω-domain of β-gal in the model K12 strains allowed us to detect, on average, five colony-forming units (CFUs) of this strain in 1 L of water with an overnight culture-based assay. We also detected 50 CFUs of the model K12 strain in 1 L of water (or 10 mL of orange juice, or 10 mL of skim milk) in less than 4 h with a solution-based assay with visual readout. The solution-based assay does not require specialized equipment or access to a laboratory, and is more rapid than existing tests that are suitable for use at the point of access. This method could potentially be extended to detect many different bacteria with bacteriophages that deliver genes encoding a full-length enzyme that is not natively expressed in the target bacteria.

  2. Determining estrogenic activity in serum from ovariectomized rats treated with environmental compounds using an in vitro estrogen-mediated transcriptional activation assay (T47D-KBluc)

    EPA Science Inventory

    The use of cell-based assays to quantify low levels of estrogen in human serum is an accepted method. These assays are more sensitive but less specific than radioimmunoassays (RIA). Thus, we hypothesized that estrogen responsive T47D-KBluc cells would detect estrogenic activity i...

  3. Determining estrogenic activity in serum from ovariectomized rats treated with environmental compounds using an in vitro estrogen-mediated transcriptional activation assay (T47D-KBluc).

    EPA Science Inventory

    The use of cell-based assays to quantify low levels of estrogen in human serum is an accepted method. These assays are more sensitive but less specific than radioimmunoassays (RIA). Thus, we hypothesized that estrogen responsive T47D-KBluc cells would detect estrogenic activity i...

  4. Direct assay of glutathione peroxidase activity using high-performance capillary electrophoresis.

    PubMed

    Pascual, P; Martinez-Lara, E; Bárcena, J A; López-Barea, J; Toribio, F

    1992-10-01

    A fast, sensitive and direct method has been developed for the determination of glutathione peroxidase activity (both selenium- and non-selenium-dependent) in cell-free preparations. The assay is based on the separation and quantitation of reduced and oxidized glutathione by capillary electrophoresis. The electrophoretic separation buffer was 100 mM sodium tetraborate (pH 8.2) containing 100 mM sodium dodecylsulphate. A micellar electrokinetic mechanism took place under these conditions, and a total mass recovery was observed for both peptides. The reproducibility of migration times was excellent (less than 3% variability). A linear detector response range was observed in the range 5-50 U/ml, and both the reproducibility and accuracy were satisfied. Samples out of this linear range could be analysed by either increasing the reaction time or diluting the enzyme preparation. The results obtained with the new direct capillary electrophoresis assay were compared with those derived from a reversed phase high-performance liquid chromatographic and spectrophotometric coupled assay. A very good agreement was found between the two direct assay methods in all samples. Capillary electrophoresis is a versatile technique that allows the automation of the glutathione peroxidase assay in a reproducible manner and within a relatively short time with sufficient accuracy and precision. PMID:1430007

  5. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity

    PubMed Central

    Israeli, Ma’ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Cohen, Ofer; Chitlaru, Theodor

    2016-01-01

    Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules. PMID:27548219

  6. Complementary non-radioactive assays for investigation of human flap endonuclease 1 activity

    PubMed Central

    Dorjsuren, Dorjbal; Kim, Daemyung; Maloney, David J.; Wilson, David M.; Simeonov, Anton

    2011-01-01

    FEN1, a key participant in DNA replication and repair, is the major human flap endonuclease that recognizes and cleaves flap DNA structures. Deficiencies in FEN1 function or deletion of the fen1 gene have profound biological effects, including the suppression of repair of DNA damage incurred from the action of various genotoxic agents. Given the importance of FEN1 in resolving abnormal DNA structures, inhibitors of the enzyme carry a potential as enhancers of DNA-interactive anticancer drugs. To facilitate the studies of FEN1 activity and the search for novel inhibitors, we developed a pair of complementary-readout homogeneous assays utilizing fluorogenic donor/quencher and AlphaScreen chemiluminescence strategies. A previously reported FEN1 inhibitor 3-hydroxy-5-methyl-1-phenylthieno[2,3-d]pyrimidine-2,4(1H,3H)-dione displayed equal potency in the new assays, in agreement with its published IC50. The assays were optimized to a low 4 µl volume and used to investigate a set of small molecules, leading to the identification of previously-unreported FEN1 inhibitors, among which aurintricarboxylic acid and NSC-13755 (an arylstibonic derivative) displayed submicromolar potency (average IC50 of 0.59 and 0.93 µM, respectively). The availability of these simple complementary assays obviates the need for undesirable radiotracer-based assays and should facilitate efforts to develop novel inhibitors for this key biological target. PMID:21062821

  7. Antioxidant activity of puha (Sonchus oleraceus L.) as assessed by the cellular antioxidant activity (CAA) assay.

    PubMed

    McDowell, Arlene; Thompson, Scott; Stark, Mirjam; Ou, Zong-Quan; Gould, Kevin S

    2011-12-01

    There is considerable interest in antioxidant dietary components that can be protective against degenerative diseases in humans. Puha (Sonchus oleraceus L.) is a rich source of polyphenols, and exhibits strong antioxidant activity as measured by the 2,2-diphenylpicrylhydrazyl (DPPH) assay. However, the potential of puha to protect against degenerative diseases requires that low molecular weight antioxidants (LMWA) are absorbed by, and active in, human cells. The cellular antioxidant activity (CAA) assay was used to investigate the antioxidant activity of puha leaf extracts. Preparation methods of freezing and freeze-drying reduced the total polyphenolic content compared with fresh puha, but did not affect the LMWA potential as determined by the DPPH assay. The IC(50) values were 0.012 ± 0.003 mg/mL and 0.010 ± 0.005 mg/mL for freeze-dried and fresh puha leaves, respectively. Using the CAA assay, it was shown that LMWAs from foliar extracts of puha were effectively absorbed into HepG2 cells, and exerted antioxidant activity at levels comparable to those of extracts from blueberry fruits, the much-touted antioxidant superfood. Methylene blue staining of HepG2 cells indicated that puha extracts were not cytotoxic at concentrations below 100 mg DW/mL. The data indicate the potential of puha as a nutraceutical supplement for human health.

  8. Development and validation of cell-based assays for the detection of neutralizing antibodies to drug products: a practical approach.

    PubMed

    Jolicoeur, Pierre; Tacey, Richard L

    2012-12-01

    Neutralizing antibodies (NAbs) that bind to drug products and may diminish or eliminate the associated biological activity are an unintended and undesirable outcome of some drug products. Standard immunoassays can detect drug-specific antibodies but cannot distinguish NAbs, so cell-based assays are often preferred because they closely mimic the mechanism by which NAbs and drug products interact in vivo. Each cell-based NAb assay is unique and based on several factors, such as the drug product, study population and phase of development (preclinical or clinical). The type of NAb assay (direct or indirect) depends on the drug's mechanism of action. Key steps in assay development are: selecting a suitable cell line, choosing the proper cellular response (end point method), selection of proper controls and optimization of assay parameters. Once developed, the assay must be rigorously tested (validated) to ensure that it meets several important criteria and is fit for its intended purpose. PMID:23244285

  9. FluxCTTX: A LIMS-based tool for management and analysis of cytotoxicity assays data

    PubMed Central

    2015-01-01

    Background Cytotoxicity assays have been used by researchers to screen for cytotoxicity in compound libraries. Researchers can either look for cytotoxic compounds or screen "hits" from initial high-throughput drug screens for unwanted cytotoxic effects before investing in their development as a pharmaceutical. These assays may be used as an alternative to animal experimentation and are becoming increasingly important in modern laboratories. However, the execution of these assays in large scale and different laboratories requires, among other things, the management of protocols, reagents, cell lines used as well as the data produced, which can be a challenge. The management of all this information is greatly improved by the utilization of computational tools to save time and guarantee quality. However, a tool that performs this task designed specifically for cytotoxicity assays is not yet available. Results In this work, we have used a workflow based LIMS -- the Flux system -- and the Together Workflow Editor as a framework to develop FluxCTTX, a tool for management of data from cytotoxicity assays performed at different laboratories. The main work is the development of a workflow, which represents all stages of the assay and has been developed and uploaded in Flux. This workflow models the activities of cytotoxicity assays performed as described in the OECD 129 Guidance Document. Conclusions FluxCTTX presents a solution for the management of the data produced by cytotoxicity assays performed at Interlaboratory comparisons. Its adoption will contribute to guarantee the quality of activities in the process of cytotoxicity tests and enforce the use of Good Laboratory Practices (GLP). Furthermore, the workflow developed is complete and can be adapted to other contexts and different tests for management of other types of data. PMID:26696462

  10. Considerations for an active and passive scanner to assay nuclear waste drums

    SciTech Connect

    Martz, H.E.; Azevedo, S.G.; Roberson, G.P.; Schneberk, D.J.; Koenig, Z.M.; Camp, D.C. )

    1990-06-08

    Radioactive wastes are generated at many DOE laboratories, military facilities, fuel fabrication and enrichment plants, reactors, hospitals, and university research facilities. At all of these sites, wastes must be separated, packaged, categorized, and packed into some sort of container--usually 208-L (55-gal) drums--for shipment to waste-storage sites. Prior to shipment, the containers must be labeled, assayed, and certified; the assay value determines the ultimate disposition of the waste containers. An accurate nondestructive assay (NDA) method would identify all the radioisotopes present and provide a quantitative measurement of their activity in the drum. In this way, waste containers could be routed in the most cost-effective manner and without having to reopen them. Currently, the most common gamma-ray method used to assay nuclear waste drums is segmented gamma-ray scanning (SGS) spectrometer that crudely measures only the amount of {sup 235}U or {sup 239}Pu present in the drum. This method uses a spatially-averaged, integrated, emitted gamma-ray-intensity value. The emitted intensity value is corrected by an assumed constant-attenuation value determined by a spatially-averaged, transmission (or active) measurement. Unfortunately, this typically results in an inaccurate determination of the radioactive activities within a waste drum because this measurement technique is valid only for homogeneous-attenuation or known drum matrices. However, since homogeneous-attenuation matrices are not common and may be unknown, other NDA techniques based on active and Passive CT (A PCT) are under development. The active measurement (ACT) yields a better attenuation matrix for the drum, while the passive measurement (PCT) more accurately determines the identity of the radioisotopes present and their activities. 9 refs., 2 figs.

  11. Microfluidic-based Time-kill Kinetic Assay

    PubMed Central

    Billings, Nicole; Rusconi, Roberto; Stocker, Roman; Ribbeck, Katharina

    2016-01-01

    In many environments, bacteria favor a sessile, surface-attached community lifestyle. These communities, termed biofilms, are ubiquitous among many species of bacteria. In some cases, biofilms form under flow conditions. Flow chambers, and in particular microfluidic channels, can be used to observe biofilm development and physiological effects while varying nutrient conditions, flow velocities, or introducing antimicrobials to the biofilm in real time. Here, we describe a microfluidic-based kill-kinetics assay for the observation of antimicrobial effects on biofilms under flowing conditions.

  12. A colorimetric sandwich-type assay for sensitive thrombin detection based on enzyme-linked aptamer assay.

    PubMed

    Park, Jun Hee; Cho, Yea Seul; Kang, Sungmuk; Lee, Eun Jeong; Lee, Gwan-Ho; Hah, Sang Soo

    2014-10-01

    A colorimetric sandwich-type assay based on enzyme-linked aptamer assay has been developed for the fast and sensitive detection of as low as 25 fM of thrombin with high linearity. Aptamer-immobilized glass was used to capture the target analyte, whereas a second aptamer, functionalized with horseradish peroxidase (HRP), was employed for the conventional 3,5,3',5'-tetramethylbenzidine (TMB)-based colorimetric detection. Without the troublesome antibody requirement of the conventional enzyme-linked immunosorbent assay (ELISA), as low as 25 fM of thrombin could be rapidly and reproducibly detected. This assay has superior, or at least equal, recovery and accuracy to that of conventional antibody-based ELISA.

  13. A continuous spectrophotometric assay that distinguishes between phospholipase A1 and A2 activities[S

    PubMed Central

    El Alaoui, Meddy; Soulère, Laurent; Noiriel, Alexandre; Popowycz, Florence; Khatib, Abdallah; Queneau, Yves; Abousalham, Abdelkarim

    2016-01-01

    A new spectrophotometric assay was developed to measure, continuously and specifically, phospholipase A1 (PLA1) or phospholipase A2 (PLA2) activities using synthetic glycerophosphatidylcholines (PCs) containing α-eleostearic acid, either at the sn-1 position [1-α-eleostearoyl-2-octadecyl-rac-glycero-3-phosphocholine (EOPC)] or at the sn-2 position [1-octadecyl-2-α-eleostearoyl-rac-glycero-3-phosphocholine (OEPC)]. The substrates were coated onto the wells of microtiter plates. A nonhydrolyzable ether bond, with a non-UV-absorbing alkyl chain, was introduced at the other sn position to prevent acyl chain migration during lipolysis. Upon enzyme action, α-eleostearic acid is liberated and then solubilized into the micellar phase. The PLA1 or PLA2 activity was measured by the increase in absorbance at 272 nm due to the transition of α-eleostearic acid from the adsorbed to the soluble state. EOPC and OEPC differentiate, with excellent accuracy, between PLA1 and PLA2 activity. Lecitase®, guinea pig pancreatic lipase-related protein 2 (known to be a PLA1 enzyme), bee venom PLA2, and porcine pancreatic PLA2 were all used to validate the assay. Compared with current assays used for continuously measuring PLA1 or PLA2 activities and/or their inhibitors, the development of this sensitive enzymatic method, using coated PC substrate analogs to natural lipids and based on the UV spectroscopic properties of α-eleostearic acid, is a significant improvement. PMID:27194811

  14. An Affinity-Based Fluorescence Polarization Assay for Protein Tyrosine Phosphatases

    PubMed Central

    Zhang, Sheng; Chen, Lan; Kumar, Sanjai; Wu, Li; Lawrence, David S.; Zhang, Zhong-Yin

    2007-01-01

    Protein tyrosine phosphatases (PTPs) are important signaling enzymes that control such fundamental processes as proliferation, differentiation, survival/apoptosis, as well as adhesion and motility. Potent and selective PTP inhibitors serve not only as powerful research tools, but also as potential therapeutics against a variety illness including cancer and diabetes. PTP activity-based assays are widely used in high throughput screening (HTS) campaigns for PTP inhibitor discovery. These assays suffer from a major weakness, in that the reactivity of the active site Cys can cause serious problems as highly reactive oxidizing and alkylating agents may surface as hits. We describe the development of a fluorescence polarization (FP)-based displacement assay that makes the use of an active site Cys to Ser mutant PTP (e.g., PTP1B/C215S) that retains the wild type binding affinity. The potency of library compounds is assessed by their ability to compete with the fluorescently labeled active site ligand for binding to the Cys to Ser PTP mutant. Finally, the substitution of the active site Cys by a Ser renders the mutant PTP insensitive to oxidation and alkylation and thus will likely eliminate “false” positives due to modification of the active site Cys that destroy the phosphatase activity. PMID:17532513

  15. A novel assay of biofilm antifungal activity reveals that amphotericin B and caspofungin lyse Candida albicans cells in biofilms.

    PubMed

    DiDone, Louis; Oga, Duana; Krysan, Damian J

    2011-08-01

    The ability of Candida albicans to form drug-resistant biofilms is an important factor in its contribution to human disease. Assays to identify and characterize molecules with activity against fungal biofilms are crucial for the development of drugs with improved anti-biofilm activity. Here we report the application of an adenylate kinase (AK)-based cytotoxicity assay of fungal cell lysis to the characterization of agents active against C. albicans biofilms. We have developed three protocols for the AK assay. The first measures AK activity in the supernatants of biofilms treated with antifungal drugs and can be performed in parallel with a standard 2,3-bis-(2-methoxy-4-nitro-5-sulphophenyl)-2H-tetrazolium-5-caboxanilide-based biofilm susceptibility assay; a second, more sensitive protocol measures the AK activity present within the biofilm matrix; and a third procedure allows the direct visualization of lytic activity toward biofilms formed on catheter material. Amphotericin B and caspofungin, the two most effective anti-biofilm drugs currently used to treat fungal infections, both directly lyse planktonic C. albicans cells in vitro, leading to the release of AK into the culture medium. These studies serve to validate the AK-based lysis assay as a useful addition to the methods for the characterization of antifungal agents active toward biofilms and provide insights into the mode of action of amphotericin B and caspofungin against C. albicans biofilms.

  16. A novel assay of biofilm antifungal activity reveals that amphotericin B and caspofungin lyse Candida albicans cells in biofilms.

    PubMed

    DiDone, Louis; Oga, Duana; Krysan, Damian J

    2011-08-01

    The ability of Candida albicans to form drug-resistant biofilms is an important factor in its contribution to human disease. Assays to identify and characterize molecules with activity against fungal biofilms are crucial for the development of drugs with improved anti-biofilm activity. Here we report the application of an adenylate kinase (AK)-based cytotoxicity assay of fungal cell lysis to the characterization of agents active against C. albicans biofilms. We have developed three protocols for the AK assay. The first measures AK activity in the supernatants of biofilms treated with antifungal drugs and can be performed in parallel with a standard 2,3-bis-(2-methoxy-4-nitro-5-sulphophenyl)-2H-tetrazolium-5-caboxanilide-based biofilm susceptibility assay; a second, more sensitive protocol measures the AK activity present within the biofilm matrix; and a third procedure allows the direct visualization of lytic activity toward biofilms formed on catheter material. Amphotericin B and caspofungin, the two most effective anti-biofilm drugs currently used to treat fungal infections, both directly lyse planktonic C. albicans cells in vitro, leading to the release of AK into the culture medium. These studies serve to validate the AK-based lysis assay as a useful addition to the methods for the characterization of antifungal agents active toward biofilms and provide insights into the mode of action of amphotericin B and caspofungin against C. albicans biofilms. PMID:21674619

  17. A high-throughput fluorescence-based assay for Plasmodium dihydroorotate dehydrogenase inhibitor screening.

    PubMed

    Caballero, Iván; Lafuente, María José; Gamo, Francisco-Javier; Cid, Concepción

    2016-08-01

    Plasmodium dihydroorotate dehydrogenase (DHODH) is a mitochondrial membrane-associated flavoenzyme that catalyzes the rate-limiting step of de novo pyrimidine biosynthesis. DHODH is a validated target for malaria, and DSM265, a potent inhibitor, is currently in clinical trials. The enzyme catalyzes the oxidation of dihydroorotate to orotate using flavin mononucleotide (FMN) as cofactor in the first half of the reaction. Reoxidation of FMN to regenerate the active enzyme is mediated by ubiquinone (CoQD), which is the physiological final electron acceptor and second substrate of the reaction. We have developed a fluorescence-based high-throughput enzymatic assay to find DHODH inhibitors. In this assay, the CoQD has been replaced by a redox-sensitive fluorogenic dye, resazurin, which changes to a fluorescent state on reduction to resorufin. Remarkably, the assay sensitivity to find competitive inhibitors of the second substrate is higher than that reported for the standard colorimetric assay. It is amenable to 1536-well plates with Z' values close to 0.8. The fact that the human enzyme can also be assayed in the same format opens additional applications of this assay to the discovery of inhibitors to treat cancer, transplant rejection, autoimmune diseases, and other diseases mediated by rapid cellular growth. PMID:27133204

  18. Progress in high-throughput assays of MGMT and APE1 activities in cell extracts.

    PubMed

    Georgiadis, Panagiotis; Polychronaki, Nektaria; Kyrtopoulos, Soterios A

    2012-08-01

    DNA repair activity is of interest as a potential biomarker of individual susceptibility to genotoxic agents. In view of the current trend for exploitation of large cohorts in molecular epidemiology projects, there is a pressing need for the development of phenotypic DNA repair assays that are high-throughput, very sensitive, inexpensive and reliable. Towards this goal we have developed and validated two phenotypic assays for the measurement of two DNA repair enzymes in cell extracts: (1) O(6)-methylguanine-DNA-methyltransferase (MGMT), which repairs the O(6)-alkylguanine-type of adducts induced in DNA by alkylating genotoxins; and (2) apurinic/apyrimidinic endonuclease 1 (APE 1), which participates in base excision repair (BER) by causing a rate-limiting DNA strand cleavage 5' to the abasic sites. The MGMT assay makes use of the fact that: (a) the enzyme works by irreversibly transferring the alkyl group from the O(6) position of guanine to a cystein residue in its active site and thereby becomes inactivated and (b) that the free base O(6)-benzylguanine (BG) is a very good substrate for MGMT. In the new assay, cell extracts are incubated with BG tagged with biotin and the resulting MGMT-BG-biotin complex is immobilized on anti-MGMT-coated microtiter plates, followed by quantitation using streptavidin-conjugated alkaline phosphatase and a chemiluminescence-producing substrate. A one-step/one-tube phenotypic assay for APE1 activity has been developed based on the use of a fluorescent molecular beacon (partially self-complementary oligonucleotide with a hairpin-loop structure carrying a fluorophore and a quencher at each end). It also contains a single tetrahydrofuran residue (THF) which is recognized and cleaved by APE1, and the subsequently formed single-stranded oligomer becomes a fluorescence signal emitter. Both assays are highly sensitive, require very small amounts of protein extracts, are relatively inexpensive and can be easily automated. They have been

  19. Development of a Fluorescent Quenching Based High Throughput Assay to Screen for Calcineurin Inhibitors

    PubMed Central

    Mukherjee, Abhisek; Syeb, Kathleen; Concannon, John; Callegari, Keri; Soto, Claudio; Glicksman, Marcie A.

    2015-01-01

    Currently there is no effective treatment available for major neurodegenerative disorders associated to protein misfolding, including Alzheimer’s and Parkinson's disease. One of most promising therapeutic approaches under development focuses on inhibiting the misfolding and aggregation pathway. However, it is likely that by the time clinical symptoms appear, there is a large accumulation of misfolded aggregates and a very substantial damage to the brain. Thus, it seems that at the clinical stage of the disease it is necessary also to develop strategies aiming to prevent the neuronal damage produced by already formed misfolded aggregates. Chronic activation of calcineurin (CaN), a type IIB phosphatase, has been implicated as a pivotal molecule connecting synaptic loss and neuronal damage to protein misfolding. The fact that the crystal structure of CaN is also well established makes it an ideal target for drug discovery. CaN activity assays for High Throughput Screening (HTS) reported so far are based on absorbance. In this article we report the development of a fluorescent quenching based CaN activity assay suitable for robotic screening of large chemical libraries to find novel inhibitors. The assay yielded a Z score of 0.84 with coefficient of variance ≤ 15%. Our results also show that this assay can be used to identify CaN inhibitors with a wide range of potencies. PMID:26176772

  20. Development of a Fluorescent Quenching Based High Throughput Assay to Screen for Calcineurin Inhibitors.

    PubMed

    Mukherjee, Abhisek; Syeb, Kathleen; Concannon, John; Callegari, Keri; Soto, Claudio; Glicksman, Marcie A

    2015-01-01

    Currently there is no effective treatment available for major neurodegenerative disorders associated to protein misfolding, including Alzheimer's and Parkinson's disease. One of most promising therapeutic approaches under development focuses on inhibiting the misfolding and aggregation pathway. However, it is likely that by the time clinical symptoms appear, there is a large accumulation of misfolded aggregates and a very substantial damage to the brain. Thus, it seems that at the clinical stage of the disease it is necessary also to develop strategies aiming to prevent the neuronal damage produced by already formed misfolded aggregates. Chronic activation of calcineurin (CaN), a type IIB phosphatase, has been implicated as a pivotal molecule connecting synaptic loss and neuronal damage to protein misfolding. The fact that the crystal structure of CaN is also well established makes it an ideal target for drug discovery. CaN activity assays for High Throughput Screening (HTS) reported so far are based on absorbance. In this article we report the development of a fluorescent quenching based CaN activity assay suitable for robotic screening of large chemical libraries to find novel inhibitors. The assay yielded a Z score of 0.84 with coefficient of variance ≤ 15%. Our results also show that this assay can be used to identify CaN inhibitors with a wide range of potencies. PMID:26176772

  1. A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase.

    PubMed

    Yu, Kai; Hu, Sheng; Huang, Jun; Mei, Le-He

    2011-08-10

    A pH-sensitive colorimetric assay has been established to quantitatively measure glutamate decarboxylase (GAD) activity in bacterial cell extracts using a microplate format. GAD catalyzes the irreversible α-decarboxylation of L-glutamate to γ-aminobutyrate. The assay is based on the color change of bromocresol green due to an increase in pH as protons are consumed during the enzyme-catalyzed reaction. Bromocresol green was chosen as the indicator because it has a similar pK(a) to the acetate buffer used. The corresponding absorbance change at 620 nm was recorded with a microplate reader as the reaction proceeded. A difference in the enzyme preparation pH and optimal pH for GAD activity of 2.5 did not prevent this method from successfully allowing the determination of reaction kinetic parameters and the detection of improvements in enzymatic activity with a low coefficient of variance. Our assay is simple, rapid, requires minimal sample concentration and can be carried out in robotic high-throughput devices used as standard in directed evolution experiments. In addition, it is also applicable to other reactions that involve a change in pH.

  2. Development of a sensitive multi-well colorimetric assay for active NFκB

    PubMed Central

    Renard, Patricia; Ernest, Isabelle; Houbion, Andrée; Art, Muriel; Le Calvez, Hervé; Raes, Martine; Remacle, José

    2001-01-01

    The transcription factor nuclear factor κB (NFκB) is a key factor in the immune response triggered by a wide variety of molecules such as inflammatory cytokines, or some bacterial and viral products. This transcription factor represents a new target for the development of anti-inflammatory molecules, but this type of research is currently hampered by the lack of a convenient and rapid screening assay for NFκB activation. Indeed, NFκB DNA-binding capacity is traditionally estimated by radioactive gel shift assay. Here we propose a new DNA-binding assay based on the use of multi-well plates coated with a cold oligonucleotide containing the consensus binding site for NFκB. The presence of the DNA-bound transcription factor is then detected by anti-NFκB antibodies and revealed by colorimetry. This assay is easy to use, non-radioactive, highly reproducible, specific for NFκB, more sensitive than regular radioactive gel shift and very convenient for high throughput screening. PMID:11160941

  3. Fe65 does not stabilize AICD during activation of transcription in a luciferase assay

    SciTech Connect

    Huysseune, Sandra; Kienlen-Campard, Pascal; Octave, Jean-Noel . E-mail: octave@nchm.ucl.ac.be

    2007-09-21

    The APP intracellular domain (AICD) could be involved in signaling via interaction with the adaptor protein Fe65, and with the histone acetyl transferase Tip60. However, the real function of AICD and Fe65 in regulation of transcription remains controversial. In this study, the human APPGal4 fusion protein was expressed in CHO cells and the transcriptional activity of AICDGal4 was measured in a luciferase-based reporter assay. AICDGal4 was stabilized by expression of Fe65 and levels of AICDGal4 controlled luciferase activity. On the contrary, when human APP was expressed in CHO cells, coexpression of Fe65 increased luciferase activity without affecting the amount of AICD fragment. AICD produced from APP was protected from degradation by orthophenanthroline, but not by lactacystine, indicating that AICD is not a substrate of the chymotryptic activity of the proteasome. It is concluded that Fe65 can control luciferase activity without stabilizing the labile AICD fragment.

  4. Arginase Activity in Mitochondria - an Interfering Factor in Nitric Oxide Synthase Activity Assays

    PubMed Central

    Venkatakrishnan, Priya; Nakayasu, Ernesto S.; Almeida, Igor C.; Miller, R. Timothy

    2009-01-01

    Previously, in tightly controlled studies, using three independent, yet complementary techniques, we refuted the claim that a mitochondrial nitric oxide synthase (mtNOS) isoform exists within pure, rat liver mitochondria (MT). Of those techniques, the NOS-catalyzed [14C]-L-arginine to [14C]-L-citrulline conversion assay (NOS assay) with MT samples indicated a weak, radioactive signal that was NOS-independent [1]. Aliquots of samples from the NOS assays were then extracted with acetone, separated by high performance thin-layer chromatography (HPTLC) and exposed to autoradiography. Results obtained from these samples showed no radioactive band for L-citrulline. However, a fast-migrating, diffuse, radioactive band was observed in the TLC lanes loaded with MT samples. In this manuscript, we identify and confirm that this radioactive signal in MT samples is due to the arginase-catalyzed conversion of [14C]-L-arginine to [14C]-urea. The current results, in addition to reconfirming the absence of NOS activity in rat liver MT, also show the need to include arginase inhibitors in studies using MT samples in order to avoid confounding results when using NOS activity assays. (Supported by ES 011982 & 2G12RR008124 to RTM & UTEP, respectively). PMID:19896461

  5. Arginase activity in mitochondria - An interfering factor in nitric oxide synthase activity assays

    SciTech Connect

    Venkatakrishnan, Priya; Nakayasu, Ernesto S.; Almeida, Igor C.; Miller, R.T.

    2010-04-09

    Previously, in tightly controlled studies, using three independent, yet complementary techniques, we refuted the claim that a mitochondrial nitric oxide synthase (mtNOS) isoform exists within pure, rat liver mitochondria (MT). Of those techniques, the NOS-catalyzed [{sup 14}C]-L-arginine to [{sup 14}C]-L-citrulline conversion assay (NOS assay) with MT samples indicated a weak, radioactive signal that was NOS-independent . Aliquots of samples from the NOS assays were then extracted with acetone, separated by high performance thin-layer chromatography (HPTLC) and exposed to autoradiography. Results obtained from these samples showed no radioactive band for L-citrulline. However, a fast-migrating, diffuse, radioactive band was observed in the TLC lanes loaded with MT samples. In this manuscript, we identify and confirm that this radioactive signal in MT samples is due to the arginase-catalyzed conversion of [{sup 14}C]-L-arginine to [{sup 14}C]-urea. The current results, in addition to reconfirming the absence of NOS activity in rat liver MT, also show the need to include arginase inhibitors in studies using MT samples in order to avoid confounding results when using NOS activity assays.

  6. Reconciling Apparent Variability in Effects of Biochar Amendment on Soil Enzyme Activities by Assay Optimization

    SciTech Connect

    Bailey, Vanessa L.; Fansler, Sarah J.; Smith, Jeffery L.; Bolton, Harvey

    2011-02-01

    Applying biochar to soils as an ameliorative substance and mechanism for C sequestration has received a great deal of interest in light of the sustained fertility observed in the Terra Preta soils of Brazil. The effects of synthetic biochars on biochemical processes needs to be better understood in order to determine if this is a reasonable practice in managed systems. The biochar studied was formed from the fast-pyrolysis of a switchgrass feedstock. Four soil enzymes were studied: β-glucosidase, β-N-acetylglucosaminidase, lipase, and leucine aminopeptidase. Both colorimetric and fluorescent assays were used for β-glucosidase and β-N-acetylglucosaminidase. Seven days after biochar was added to microcosms of a Palouse silt loam, the fluorescence-based assays indicated increased activities of the four enzymes, compared to non-amended soil. To clarify the mechanisms of the observed effects,in the absence of soil, purified enzymes or substrates were briefly exposed to biochar and then assayed. Except for β-N-acetylglucosaminidase, the exposure of substrate to biochar reduced the apparent activity of the remaining three enzymes in vitro, suggesting that sorption reactions between the substrate and biochar either removed the substrate from the assays or impeded the enzyme binding. The activity of purified β-N-acetylglucosaminidase increased significantly following biochar exposure, suggesting a chemical stimulation of enzyme functioning. We conclude that biochar added to soil acts as a substrate that can stimulate the soil microbial biomass and its activity. Our in vitro study suggests that biochar is not biochemically inert. Biochar amendments are likely to have effects that are currently difficult to predict, and that could impact overall soil function.

  7. Development of a competitive fluorescence-based synaptosome binding assay for brevetoxins.

    PubMed

    McCall, Jennifer R; Jacocks, Henry M; Baden, Daniel G; Bourdelais, Andrea J

    2012-09-01

    Brevetoxins are a family of ladder-frame polyether toxins produced during blooms of the marine dinoflagellate Karenia brevis. Inhalation of brevetoxins aerosolized by wind and wave action can lead to asthma-like symptoms in beach goers. Consumption of either shellfish or finfish exposed to K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to activation of voltage-sensitive sodium channels (VSSCs) in cell membranes. Binding of brevetoxin analogs and competitors to site 5 on these channels has historically been measured using a radioligand competition assay that is fraught with difficulty, including slow analysis time, production of radioactive waste, and cumbersome and expensive methods associated with the generation of radioactive labeled ligands. In this study, we describe the development of a novel fluorescent synaptosome binding assay for the brevetoxin receptor. BODIPY(®)-conjugated to PbTx-2 was used as the labeled ligand. The BODIPY(®)-PbTx-2 conjugate was found to displace [(3)H]-PbTx-3 from its binding site on VSSCs on rat brain synaptosomes with an equilibrium inhibition constant of 0.11 nM. We have shown that brevetoxin A and B analogs are all able to compete for binding with the fluorescent ligand. Most importantly, this assay was validated against the current site 5 receptor binding assay standard, the radioligand receptor assay for the brevetoxin receptor using [(3)H]-PbTx-3 as the labeled ligand. The fluorescence based assay yielded equilibrium inhibition constants comparable to the radioligand assay for all brevetoxin analogs. The fluorescence based assay was quicker, far less expensive, and did not generate radioactive waste or need radioactive facilities. As such, this fluorescence-based assay can be used to replace the current radioligand assay for site 5 on voltage-sensitive sodium channels and will be a vital tool for future experiments examining the binding affinity of

  8. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity.

    PubMed

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A; Bradford, William D; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S; Li, Rong

    2015-06-01

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein-based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation.

  9. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity

    PubMed Central

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A.; Bradford, William D.; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S.; Li, Rong

    2015-01-01

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein−based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. PMID:25823586

  10. Microfluidic, Bead-Based Assay: Theory and Experiments

    PubMed Central

    Thompson, Jason A.; Bau, Haim H.

    2009-01-01

    Microbeads are frequently used as a solid support for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. However, relatively few studies investigate the binding kinetics on modified bead surfaces in a microfluidics context. In this study, a customized hot embossing technique is used to stamp microwells in a thin plastic substrate where streptavidin-coated agarose beads are selectively placed and subsequently immobilized within a conduit. Biotinylated quantum dots are used as a label to monitor target analyte binding to the bead's surface. Three-dimensional finite element simulations are carried out to model the binding kinetics on the bead's surface. The model accounts for surface exclusion effects resulting from a single quantum dot occluding multiple receptor sites. The theoretical predictions are compared and favorably agree with experimental observations. The theoretical simulations provide a useful tool to predict how varying parameters affect microbead reaction kinetics and sensor performance. This study enhances our understanding of bead-based microfluidic assays and provides a design tool for developers of point-of-care, lab-on-chip devices for medical diagnosis, food and water quality inspection, and environmental monitoring. PMID:19766545

  11. Assays to Measure PTEN Lipid Phosphatase Activity In Vitro from Purified Enzyme or Immunoprecipitates.

    PubMed

    Spinelli, Laura; Leslie, Nicholas R

    2016-01-01

    PTEN is a one of the most frequently mutated tumor suppressors in human cancers. It is essential for regulating diverse biological processes and through its lipid phosphatase activity regulates the PI 3-Kinase signaling pathway. Sensitive phosphatase assays are employed to study the catalytic activity of PTEN against phospholipid substrates. Here we describe protocols to assay PTEN lipid phosphatase activity using either purified enzyme (purified PTEN lipid phosphatase assay) or PTEN immunopurified from tissues or cultured cells (cellular IP PTEN lipid phosphatase assay) against vesicles containing radiolabeled PIP3 substrate. PMID:27514802

  12. A functional assay-based strategy for nanomaterial risk forecasting.

    PubMed

    Hendren, Christine Ogilvie; Lowry, Gregory V; Unrine, Jason M; Wiesner, Mark R

    2015-12-01

    The study of nanomaterial impacts on environment, health and safety (nanoEHS) has been largely predicated on the assumption that exposure and hazard can be predicted from physical-chemical properties of nanomaterials. This approach is rooted in the view that nanoöbjects essentially resemble chemicals with additional particle-based attributes that must be included among their intrinsic physical-chemical descriptors. With the exception of the trivial case of nanomaterials made from toxic or highly reactive materials, this approach has yielded few actionable guidelines for predicting nanomaterial risk. This article addresses inherent problems in structuring a nanoEHS research strategy based on the goal of predicting outcomes directly from nanomaterial properties, and proposes a framework for organizing data and designing integrated experiments based on functional assays (FAs). FAs are intermediary, semi-empirical measures of processes or functions within a specified system that bridge the gap between nanomaterial properties and potential outcomes in complex systems. The three components of a functional assay are standardized protocols for parameter determination and reporting, a theoretical context for parameter application and reference systems. We propose the identification and adoption of reference systems where FAs may be applied to provide parameter estimates for environmental fate and effects models, as well as benchmarks for comparing the results of FAs and experiments conducted in more complex and varied systems. Surface affinity and dissolution rate are identified as two critical FAs for characterizing nanomaterial behavior in a variety of important systems. The use of these FAs to predict bioaccumulation and toxicity for initial and aged nanomaterials is illustrated for the case of silver nanoparticles and Caenorhabditis elegans.

  13. A functional assay-based strategy for nanomaterial risk forecasting.

    PubMed

    Hendren, Christine Ogilvie; Lowry, Gregory V; Unrine, Jason M; Wiesner, Mark R

    2015-12-01

    The study of nanomaterial impacts on environment, health and safety (nanoEHS) has been largely predicated on the assumption that exposure and hazard can be predicted from physical-chemical properties of nanomaterials. This approach is rooted in the view that nanoöbjects essentially resemble chemicals with additional particle-based attributes that must be included among their intrinsic physical-chemical descriptors. With the exception of the trivial case of nanomaterials made from toxic or highly reactive materials, this approach has yielded few actionable guidelines for predicting nanomaterial risk. This article addresses inherent problems in structuring a nanoEHS research strategy based on the goal of predicting outcomes directly from nanomaterial properties, and proposes a framework for organizing data and designing integrated experiments based on functional assays (FAs). FAs are intermediary, semi-empirical measures of processes or functions within a specified system that bridge the gap between nanomaterial properties and potential outcomes in complex systems. The three components of a functional assay are standardized protocols for parameter determination and reporting, a theoretical context for parameter application and reference systems. We propose the identification and adoption of reference systems where FAs may be applied to provide parameter estimates for environmental fate and effects models, as well as benchmarks for comparing the results of FAs and experiments conducted in more complex and varied systems. Surface affinity and dissolution rate are identified as two critical FAs for characterizing nanomaterial behavior in a variety of important systems. The use of these FAs to predict bioaccumulation and toxicity for initial and aged nanomaterials is illustrated for the case of silver nanoparticles and Caenorhabditis elegans. PMID:26188653

  14. A simple liposome assay for the screening of zinc ionophore activity of polyphenols.

    PubMed

    Clergeaud, Gael; Dabbagh-Bazarbachi, Husam; Ortiz, Mayreli; Fernández-Larrea, Juan B; O'Sullivan, Ciara K

    2016-04-15

    An efficient liposomal system for screening the zinc ionophore activity of a selected library consisting of the most relevant dietary polyphenols is presented. The zinc ionophore activity was demonstrated by exploring the use of zinc-specific fluorophore FluoZin-3 loaded liposomes as simple membrane tools that mimic the cell membrane. The zinc ionophore activity was demonstrated as the capacity of polyphenols to transport zinc cations across the liposome membrane and increase the zinc-specific fluorescence of the encapsulated fluorophore FluoZin-3. In addition, the zinc chelation strength of the polyphenols was also tested in a competition assay based on the fluorescence quenching of zinc-dependent fluorescence emitted by zinc-FluoZin-3 complex. Finally, the correlation between the chelation capacity and ionophore activity is demonstrated, thus underlining the sequestering or ionophoric activity that the phenolic compounds can display, thus, providing better knowledge of the importance of the structural conformation versus their biological activity. Furthermore, the assays developed can be used as tools for rapid, high-throughput screening of families of polyphenols towards different biometals. PMID:26617034

  15. A simple liposome assay for the screening of zinc ionophore activity of polyphenols.

    PubMed

    Clergeaud, Gael; Dabbagh-Bazarbachi, Husam; Ortiz, Mayreli; Fernández-Larrea, Juan B; O'Sullivan, Ciara K

    2016-04-15

    An efficient liposomal system for screening the zinc ionophore activity of a selected library consisting of the most relevant dietary polyphenols is presented. The zinc ionophore activity was demonstrated by exploring the use of zinc-specific fluorophore FluoZin-3 loaded liposomes as simple membrane tools that mimic the cell membrane. The zinc ionophore activity was demonstrated as the capacity of polyphenols to transport zinc cations across the liposome membrane and increase the zinc-specific fluorescence of the encapsulated fluorophore FluoZin-3. In addition, the zinc chelation strength of the polyphenols was also tested in a competition assay based on the fluorescence quenching of zinc-dependent fluorescence emitted by zinc-FluoZin-3 complex. Finally, the correlation between the chelation capacity and ionophore activity is demonstrated, thus underlining the sequestering or ionophoric activity that the phenolic compounds can display, thus, providing better knowledge of the importance of the structural conformation versus their biological activity. Furthermore, the assays developed can be used as tools for rapid, high-throughput screening of families of polyphenols towards different biometals.

  16. A homogeneous fluorometric assay platform based on novel synthetic proteins

    SciTech Connect

    Vardar-Schara, Goenuel; Krab, Ivo M.; Yi, Guohua; Su, Wei Wen . E-mail: wsu@hawaii.edu

    2007-09-14

    Novel synthetic recombinant sensor proteins have been created to detect analytes in solution, in a rapid single-step 'mix and read' noncompetitive homogeneous assay process, based on modulating the Foerster resonance energy transfer (FRET) property of the sensor proteins upon binding to their targets. The sensor proteins comprise a protein scaffold that incorporates a specific target-capturing element, sandwiched by genetic fusion between two molecules that form a FRET pair. The utility of the sensor proteins was demonstrated via three examples, for detecting an anti-biotin Fab antibody, a His-tagged recombinant protein, and an anti-FLAG peptide antibody, respectively, all done directly in solution. The diversity of sensor-target interactions that we have demonstrated in this study points to a potentially universal applicability of the biosensing concept. The possibilities for integrating a variety of target-capturing elements with a common sensor scaffold predict a broad range of practical applications.

  17. Hybridization assay based on evanescent fluorescence excitation and collection

    NASA Astrophysics Data System (ADS)

    Sumner, James J.; Mmerole, Robert U.; Stratis-Cullum, Dimitra N.; Yi, Hyunmin; Bentley, William E.; Gillespie, James B.

    2003-08-01

    There is a great need for high throughput and sensitive sensors for genetic analysis. These sensors can be used for varied purposes from monitoring gene expression in organims to speciation of possible pathogens. Consequently, an instrument capable of these tasks would be a great benefit for food and water safety, medical diagnostics and defense of military and civilian populations from biological threats. This work examines the development of a hybridization-based biosensor using a novel tapered fiber optic rpobe. The immobilization of single-stranded, synthetic ologinucleotides utilizing aminoproplytriethoxysilane and glutaraldehyde was implemented on the fiber optic sensor. Hybridization takes place with a complementary analyte sequence followed by a fluorescent, labeled signaling probe to form a sandwich assay. Following hybridization, the fiber is interrogated with a diode laser source and the resulting fluorescence signal is detected using a miniature spectrometer.

  18. Development of A Cell-Based Assay to Identify Small Molecule Inhibitors of FGF23 Signaling.

    PubMed

    Diener, Susanne; Schorpp, Kenji; Strom, Tim-Matthias; Hadian, Kamyar; Lorenz-Depiereux, Bettina

    2015-10-01

    Fibroblast growth factor 23 (FGF23) is a bone-derived endocrine key regulator of phosphate homeostasis. It inhibits renal tubular phosphate reabsorption by activating receptor complexes composed of FGF receptor 1c (FGFR1c) and the co-receptor Klotho. As a major signaling pathway mitogen-activated protein kinase (MAPK) pathway is employed. In this study, we established an FGF23-inducible cell model by stably expressing human Klotho in HEK293 cells (HEK293-KL cells) containing endogenous FGF receptors. To identify novel small molecule compounds that modulate FGF23/FGFR1c/Klotho signaling, we developed and optimized a cell-based assay that is suited for high-throughput screening. The assay monitors the phosphorylation of endogenous extracellular signal-regulated kinase 1 and 2 in cellular lysates of HEK293-KL cells after induction with FGF23. This cell-based assay was highly robust (Z' factor >0.5) and the induction of the system is strictly dependent on the presence of FGF23. The inhibitor response curves generated using two known MAPK pathway inhibitors correlate well with data obtained by another assay format. This assay was further used to identify small molecule modulators of the FGF23 signaling cascade by screening the 1,280 food and drug administration-approved small molecule library of Prestwick Chemical. The primary hit rate was 2% and false positives were efficiently identified by retesting the hits in primary and secondary validation screening assays and in western blot analysis. Intriguingly, by using a basic FGF (bFGF)/FGFR counterscreening approach, one validated hit compound retained specificity toward FGF23 signaling, while bFGF signaling was not affected. Since increased plasma concentrations of FGF23 are the main cause of many hypophosphatemic disorders, a modulation of its effect could be a potential novel strategy for therapeutic intervention. Moreover, this strategy may be valuable for other disorders affecting phosphate homeostasis. PMID:26461432

  19. Development of Tyrosinase Promoter-Based Fluorescent Assay for Screening of Anti-melanogenic Agents.

    PubMed

    Lee, JaeHo; Lee, SeungJun; Lee, ByungMan; Roh, KyungBaeg; Park, DeokHoon; Jung, EunSun

    2015-01-01

    For screening of skin-whitening ingredients that modulate inhibition of melanogenesis, tyrosinase promoter-based assay using a three-dimensional (3D) spheroid culture technique is a beneficial tool to improve the accuracy of raw material screening in cosmetics through mimicking of the in vivo microenvironment. Although the advantages of high-throughput screening (HTS) are widely known, there has been little focus on specific cell-based promoter assays for HTS in identifying skin-whitening ingredients that inhibit accumulation of melanin. The aim of this study was therefore to develop a large-scale compatible assay through pTyr-EGFP, an enhanced green fluorescent protein (EGFP)-based tyrosinase-specific promoter, to seek potential melanogenesis inhibitors for cosmetic use. Herein, a stably transfected human melanoma cell line expressing EGFP under the control of a 2.2-kb fragment derived from the tyrosinase gene was generated. Spontaneous induction of the tyrosinase promoter by 3D spheroid culture resulted in increased expression of EGFP, providing a significant correlation with the tyrosinase mRNA level, and subsequent inhibition of tyrosinase activity. Importantly, the pTyr-EGFP system provided successful tracking of the changes in the live image and real-time monitoring. Thus tyrosinase promoter-based fluorescent assay using a 3D spheroid culture can be useful as a screening system for exploring the efficiency of anti-melanogenesis ingredients. PMID:26179334

  20. Nanoporous membranes enable concentration and transport in fully wet paper-based assays.

    PubMed

    Gong, Max M; Zhang, Pei; MacDonald, Brendan D; Sinton, David

    2014-08-19

    Low-cost paper-based assays are emerging as the platform for diagnostics worldwide. Paper does not, however, readily enable advanced functionality required for complex diagnostics, such as analyte concentration and controlled analyte transport. That is, after the initial wetting, no further analyte manipulation is possible. Here, we demonstrate active concentration and transport of analytes in fully wet paper-based assays by leveraging nanoporous material (mean pore diameter ≈ 4 nm) and ion concentration polarization. Two classes of devices are developed, an external stamp-like device with the nanoporous material separate from the paper-based assay, and an in-paper device patterned with the nanoporous material. Experimental results demonstrate up to 40-fold concentration of a fluorescent tracer in fully wet paper, and directional transport of the tracer over centimeters with efficiencies up to 96%. In-paper devices are applied to concentrate protein and colored dye, extending their limits of detection from ∼10 to ∼2 pmol/mL and from ∼40 to ∼10 μM, respectively. This approach is demonstrated in nitrocellulose membrane as well as paper, and the added cost of the nanoporous material is very low at ∼0.015 USD per device. The result is a major advance in analyte concentration and manipulation for the growing field of low-cost paper-based assays.

  1. Fluorinated Pickering Emulsions with Nonadsorbing Interfaces for Droplet-based Enzymatic Assays.

    PubMed

    Pan, Ming; Lyu, Fengjiao; Tang, Sindy K Y

    2015-08-01

    This work describes the use of fluorinated Pickering emulsions with nonadsorbing interfaces in droplet-based enzymatic assays. State-of-the-art droplet assays have relied on one type of surfactants consisting of perfluorinated polyether and polyethylene glycol (PFPE-PEG). These surfactants are known to have limitations including the tedious synthesis and interdrop molecular transport which leads to the cross-contamination of droplet contents. Previously we have shown that replacing surfactants with nanoparticles as droplet stabilizers mitigate interdrop transport of small molecules. The nonspecific adsorption of enzymes on nanoparticle surface, however, could cause structural changes in enzymes and consequently the loss of enzymatic activity. To overcome such challenge, we render nanoparticle surface nonadsorbing to enzymes by in situ adsorption of polyethylene glycol (PEG) on particle surfaces. We show that enzyme activities are preserved in droplets stabilized by PEG-adsorbed nanoparticles, and are comparable with those in drops stabilized by PFPE-PEG surfactants. In addition, our nonadsorbing Pickering emulsions successfully prevent interdrop molecular transport, thereby maintaining the accuracy of droplet assays. The particles are also simple and economical to synthesize. The PEG-adsorbed nanoparticles described in this work are thus a competitive alternative to the current surfactant system, and can potentially enable new droplet-based biochemical assays.

  2. Validation of a high throughput flow cytometric in vitro micronucleus assay including assessment of metabolic activation in TK6 cells.

    PubMed

    Thougaard, Annemette V; Christiansen, Joan; Mow, Tomas; Hornberg, Jorrit J

    2014-12-01

    Genotoxicity is an unacceptable property for new drug candidates and we employ three screening assays during the drug discovery process to identify genotoxicity early and optimize chemical series. One of these methods is the flow cytometric in vitro micronucleus assay for which protocol optimizations have been described recently. Here, we report further validation of the assay in TK6 cells including assessment of metabolic activation. We first optimized assay conditions to allow for testing with and without metabolic activation in parallel in a 96-well plate format. Then, we tested a set of 48 compounds carefully selected to contain known in vivo genotoxins, nongenotoxins and drugs. Avoidance of irrelevant positives, a known issue with mammalian cell-based genotoxicity assays, is important to prevent early deselection of potentially promising compounds. Therefore, we enriched the validation set with compounds that were previously reported to produce irrelevant positive results in mammalian cell-based genotoxicity assays. The resulting dataset was used to set the relevant cut-off values for scoring a compound positive or negative, such that we obtained an optimal balance of high sensitivity (88%) and high specificity (87%). Finally, we tested an additional set of 16 drugs to further probe assay performance and 14 of them were classified correctly. To our knowledge, the present study is the most comprehensive validation of the in vitro flow cytometric micronucleus assay and the first to report parallel assessment with metabolic activation in reasonable throughput. The assay allows for rapidly screening novel compounds for genotoxicity and is therefore well-suited for use in early drug discovery projects. Environ.

  3. A continuous assay for foot-and-mouth disease virus 3C protease activity.

    PubMed

    Jaulent, Agnès M; Fahy, Aodhnait S; Knox, Stephen R; Birtley, James R; Roqué-Rosell, Núria; Curry, Stephen; Leatherbarrow, Robin J

    2007-09-15

    Foot-and-mouth disease virus is a highly contagious pathogen that spreads rapidly among livestock and is capable of causing widespread agricultural and economic devastation. The virus genome is translated to produce a single polypeptide chain that subsequently is cleaved by viral proteases into mature protein products, with one protease, 3C(pro), carrying out the majority of the cleavages. The highly conserved nature of this protease across different viral strains and its crucial role in viral maturation and replication make it a very desirable target for inhibitor design. However, the lack of a convenient and high-throughput assay has been a hindrance in the characterization of potential inhibitors. In this article, we report the development of a continuous assay with potential for high throughput using fluorescence resonance energy transfer-based peptide substrates. Several peptide substrates containing the 3C-specific cleavage site were synthesized, varying both the positions and separation of the fluorescent donor and quencher groups. The best substrate, with a specificity constant k(cat)/K(M) of 57.6+/-2.0M(-1) s(-1), was used in inhibition assays to further characterize the protease's activity against a range of commercially available inhibitors. The inhibition profile of the enzyme showed characteristics of both cysteine and serine proteases, with the chymotrypsin inhibitor TPCK giving stoichiometric inhibition of the enzyme and allowing active site titration of the 3C(pro).

  4. A novel protease activity assay using a protease-responsive chaperone protein

    SciTech Connect

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  5. A MEMBRANE FILTER PROCEDURE FOR ASSAYING CYTOTOXIC ACTIVITY IN HETEROTROPHIC BACTERIA ISOLATED FROM DRINKING WATER

    EPA Science Inventory

    Cytotoxic activity assays of Gram-negative, heterotrophic bacteria are often laborious and time consuming. The objective of this study was to develop in situ procedures for testing potential cytotoxic activities of heterotrophic bacteria isolated from drinking water systems. Wate...

  6. A Simple and Fast Kinetic Assay for the Determination of Fructan Exohydrolase Activity in Perennial Ryegrass (Lolium perenne L.).

    PubMed

    Gasperl, Anna; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; van der Graaff, Eric; Roitsch, Thomas

    2015-01-01

    Despite the fact that fructans are the main constituent of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates, little knowledge is available on the regulation of the enzymes involved in fructan metabolism. The analysis of enzyme activities involved in this process has been hampered by the low affinity of the fructan enzymes for sucrose and fructans used as fructosyl donor. Further, the analysis of fructan composition and enzyme activities is restricted to specialized labs with access to suited HPLC equipment and appropriate fructan standards. The degradation of fructan polymers with high degree of polymerization (DP) by fructan exohydrolases (FEHs) to fructosyloligomers is important to liberate energy in the form of fructan, but also under conditions where the generation of low DP polymers is required. Based on published protocols employing enzyme coupled endpoint reactions in single cuvettes, we developed a simple and fast kinetic 1-FEH assay. This assay can be performed in multi-well plate format using plate readers to determine the activity of 1-FEH against 1-kestotriose, resulting in a significant time reduction. Kinetic assays allow an optimal and more precise determination of enzyme activities compared to endpoint assays, and enable to check the quality of any reaction with respect to linearity of the assay. The enzyme coupled kinetic 1-FEH assay was validated in a case study showing the expected increase in 1-FEH activity during cold treatment. This assay is cost effective and could be performed by any lab with access to a plate reader suited for kinetic measurements and readings at 340 nm, and is highly suited to assess temporal changes and relative differences in 1-FEH activities. Thus, this enzyme coupled kinetic 1-FEH assay is of high importance both to the field of basic fructan research and plant breeding.

  7. A Simple and Fast Kinetic Assay for the Determination of Fructan Exohydrolase Activity in Perennial Ryegrass (Lolium perenne L.)

    PubMed Central

    Gasperl, Anna; Morvan-Bertrand, Annette; Prud’homme, Marie-Pascale; Roitsch, Thomas

    2015-01-01

    Despite the fact that fructans are the main constituent of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates, little knowledge is available on the regulation of the enzymes involved in fructan metabolism. The analysis of enzyme activities involved in this process has been hampered by the low affinity of the fructan enzymes for sucrose and fructans used as fructosyl donor. Further, the analysis of fructan composition and enzyme activities is restricted to specialized labs with access to suited HPLC equipment and appropriate fructan standards. The degradation of fructan polymers with high degree of polymerization (DP) by fructan exohydrolases (FEHs) to fructosyloligomers is important to liberate energy in the form of fructan, but also under conditions where the generation of low DP polymers is required. Based on published protocols employing enzyme coupled endpoint reactions in single cuvettes, we developed a simple and fast kinetic 1-FEH assay. This assay can be performed in multi-well plate format using plate readers to determine the activity of 1-FEH against 1-kestotriose, resulting in a significant time reduction. Kinetic assays allow an optimal and more precise determination of enzyme activities compared to endpoint assays, and enable to check the quality of any reaction with respect to linearity of the assay. The enzyme coupled kinetic 1-FEH assay was validated in a case study showing the expected increase in 1-FEH activity during cold treatment. This assay is cost effective and could be performed by any lab with access to a plate reader suited for kinetic measurements and readings at 340 nm, and is highly suited to assess temporal changes and relative differences in 1-FEH activities. Thus, this enzyme coupled kinetic 1-FEH assay is of high importance both to the field of basic fructan research and plant breeding. PMID:26734049

  8. Luciferase-based assay for adenosine: application to S-adenosyl-L-homocysteine hydrolase.

    PubMed

    Burgos, Emmanuel S; Gulab, Shivali A; Cassera, María B; Schramm, Vern L

    2012-04-17

    S-Adenosyl-L-homocysteine hydrolase (SAHH) catalyzes the reversible conversion of S-adenosyl-L-homocysteine (SAH) to adenosine (ADO) and L-homocysteine, promoting methyltransferase activity by relief of SAH inhibition. SAH catabolism is linked to S-adenosylmethionine metabolism, and the development of SAHH inhibitors is of interest for new therapeutics with anticancer or cholesterol-lowering effects. We have developed a continuous enzymatic assay for adenosine that facilitates high-throughput analysis of SAHH. This luciferase-based assay is 4000-fold more sensitive than former detection methods and is well suited for continuous monitoring of ADO formation in a 96-well-plate format. The high-affinity adenosine kinase from Anopheles gambiae efficiently converts adenosine to adenosine monophosphate (AMP) in the presence of guanosine triphosphate. AMP is converted to adenosine triphosphate and coupled to firefly luciferase. With this procedure, kinetic parameters (K(m), k(cat)) for SAHH were obtained, in good agreement with literature values. Assay characteristics include sustained light output combined with ultrasensitive detection (10(-7) unit of SAHH). The assay is documented with the characterization of slow-onset inhibition for inhibitors of the hydrolase. Application of this assay may facilitate the development of SAHH inhibitors and provide an ultrasensitive detection for the formation of adenosine from other biological reactions.

  9. Electrochemical Assay for the Signal-on Detection of Human DNA Methyltransferase Activity

    PubMed Central

    Muren, Natalie B.; Barton, Jacqueline K.

    2013-01-01

    Strategies to detect human DNA methyltransferases are needed, given that aberrant methylation by these enzymes is associated with cancer initiation and progression. Here we describe a non-radioactive, antibody-free, electrochemical assay in which methyltransferase activity on DNA-modified electrodes confers protection from restriction for signal-on detection. We implement this assay with a multiplexed chip platform and show robust detection of both bacterial (SssI) and human (Dnmt1) methyltransferase activity. Essential to work with human methyltransferases, our unique assay design allows activity measurements on both unmethylated and hemimethylated DNA substrates. We validate this assay by comparison with a conventional radioactive method. The advantages of electrochemistry over radioactivity and fluorescence make this assay an accessible and promising new approach for the sensitive, label-free detection of human methyltransferase activity. PMID:24164112

  10. Implementation and Use of State-of-the-Art, Cell-Based In Vitro Assays.

    PubMed

    Langer, Gernot

    2016-01-01

    The impressive advances in the generation and interpretation of functional omics data have greatly contributed to a better understanding of the (patho-)physiology of many biological systems and led to a massive increase in the number of specific targets and phenotypes to investigate in both basic and applied research. The obvious complexity revealed by these studies represents a major challenge to the research community and asks for improved target characterisation strategies with the help of reliable, high-quality assays. Thus, the use of living cells has become an integral part of many research activities because the cellular context more closely represents target-specific interrelations and activity patterns. Although still predominant, the use of traditional two-dimensional (2D) monolayer cell culture models has been gradually complemented by studies based on three-dimensional (3D) spheroid (Sutherland 1988) and other 3D tissue culture systems (Santos et al. 2012; Matsusaki et al. 2014) in an attempt to employ model systems more closely representing the microenvironment of cells in the body. Hence, quite a variety of state-of-the-art cell culture models are available for the generation of novel chemical probes or the identification of starting points for drug development in translational research and pharma drug discovery. In order to cope with these information-rich formats and their increasing technical complexity, cell-based assay development has become a scientific research topic in its own right and is used to ensure the provision of significant, reliable and high-quality data outlasting any discussions related to the current "irreproducibility epidemic" (Dolgin 2014; Prinz et al. 2011; Schatz 2014). At the same time the use of cells in microplate assay formats has become state of the art and greatly facilitates rigorous cell-based assay development by providing the researcher with the opportunity to address the multitude of factors affecting the actual

  11. A microsystem to assay lysosomal enzyme activities in cultured retinal pigment epithelial cells.

    PubMed

    Cabral, L; Unger, W; Boulton, M; Marshall, J

    1988-11-01

    A microsystem to assay the activity of lysosomal enzymes in a small number of cultured RPE cells is described. The activities of acid phosphatase, a-mannosidase, B-glucuronidase and N-acetyl-B-glucosaminidase were estimated in different human RPE cultures of varying passages. Some biochemical characteristics for each of the enzyme assays were studied including the effect of pH, the saturating concentrations of the appropriate substrates and the relationship between the enzyme activity and the number of cells assayed. The method presented is straightforward, avoids complicated tissue fractionation procedures and is able to estimate enzyme activities in as few as 10(4) cells. PMID:3243083

  12. In Vitro Assay to Measure Phosphatidylethanolamine Methyltransferase Activity

    PubMed Central

    Zufferey, Rachel

    2016-01-01

    Phosphatidylethanolamine methyltransferases are biosynthetic enzymes that catalyze the transfer of one or more methyl group(s) from S-adenosyl-L-methionine onto phosphatidylethanolamine, monomethyl-phosphatidylethanolamine, or dimethyl-phosphatidylethanolamine to give either monomethyl-phosphatidylethanolamine, dimethyl-phosphatidylethanolamine or phosphatidylcholine. These enzymes are ubiquitous in animal cells, fungi, and are also found in approximately 10% of bacteria. They fulfill various important functions in cell physiology beyond their direct role in lipid metabolism such as in insulin resistance, diabetes, atherosclerosis, cell growth, or virulence. The present manuscript reports on a simple cell-free enzymatic assay that measures the transfer of tritiated methyl group(s) from S-[Methyl-3H]adenosyl-L-methionine onto phosphatidylethanolamine using whole cell extracts as an enzyme source. The resulting methylated forms of phosphatidylethanolamine are hydrophobic and thus, can be separated from water soluble S-[Methyl-3H]adenosyl-L-methionine by organic extraction. This assay can potentially be applied to any other cell types and used to test inhibitors/drugs specific to a phosphatidylethanolamine methyltransferase of interest without the need to purify the enzyme. PMID:26780155

  13. Microfluidic System for Automated Cell-based Assays.

    PubMed

    Lee, Philip J; Ghorashian, Navid; Gaige, Terry A; Hung, Paul J

    2007-12-01

    Microfluidic cell culture is a promising technology for applications in the drug screening industry. Key benefits include improved biological function, higher quality cell-based data, reduced reagent consumption, and lower cost. In this work, we demonstrate how a microfluidic cell culture design was adapted to be compatible with the standard 96-well plate format. Key design features include the elimination of tubing and connectors, the ability to maintain long term continuous perfusion cell culture using a passive gravity driven pump, and direct analysis on the outlet wells of the microfluidic plate. A single microfluidic culture plate contained 8 independent flow units, each with 10(4) cells at a flow rate of 50 μl/day (6 minute residence time). The cytotoxicity of the anti-cancer drug etoposide was measured on HeLa cells cultured in this format, using a commercial lactate dehydrogenase (LDH) plate reader assay. The integration of microfluidic cell culture methods with commercial automation capabilities offers an exciting opportunity for improved cell-based screening.

  14. The Hornworm Assay: Useful in Mathematically-Based Biological Investigations

    ERIC Educational Resources Information Center

    Rice, Stanley A.; Griffin, Jennifer R.

    2004-01-01

    Hornworms are good assay organisms for leaf toxins, and can be raised on an artificial medium ("chow"), consisting of corn meal, soy flour, dry milk, yeast and other additives and preservatives. The hornworm assay is less useful in ecological and toxicological research, but is very useful in learning about experimental design and hypothesis…

  15. A single-molecule digital enzyme assay using alkaline phosphatase with a cumarin-based fluorogenic substrate.

    PubMed

    Obayashi, Yusuke; Iino, Ryota; Noji, Hiroyuki

    2015-08-01

    Digitalization of fluorogenic enzymatic assays through the use of femtoliter chamber array technology is an emerging approach to realizing highly quantitative bioassays with single-molecule sensitivity. However, only a few digital fluorogenic enzyme assays have been reported, and the variations of the digital enzyme assays are basically limited to fluorescein- and resorufin-based fluorogenic assays. This limitation hampers the realization of a multiplex digital enzyme assay such as a digital enzyme-linked immunosorbent assay (ELISA). In this study, after optimization of buffer conditions, we achieved a single-molecule digital enzyme alkaline phosphatase (ALP) assay with a cumarin-based fluorogenic substrate, 4-methylunbelliferyl phosphate (4-MUP). When ALP molecules were encapsulated in a 44-femtoliter chamber array at a low ratio of less than 1 molecule per chamber, each chamber showed a discrete fluorescence signal in an all-or-none manner, allowing the digital counting of the number of active enzyme molecules. The fraction of fluorescent chambers linearly decreased with the enzyme concentration, obeying the Poisson distribution as expected. We also demonstrated a dual-color digital enzyme assay with a ALP/4-MUP and β-galactosidase (β-gal)/resorufin-β-d-galactopyranoside combination. The activities of single ALP and β-gal molecules were clearly detected simultaneously. The method developed in this study will enable us to carry out a parallelized, multiplex digital ELISA.

  16. Fluorescence-based assay as a new screening tool for toxic chemicals

    PubMed Central

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-01-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients. PMID:27653274

  17. Fluorescence-based assay as a new screening tool for toxic chemicals

    NASA Astrophysics Data System (ADS)

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-09-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  18. Antiviral activity of a Rac GEF inhibitor characterized with a sensitive HIV/SIV fusion assay

    SciTech Connect

    Pontow, Suzanne; Harmon, Brooke; Campbell, Nancy; Ratner, Lee

    2007-11-10

    A virus-dependent fusion assay was utilized to examine the activity of a panel of HIV-1, -2, and SIV isolates of distinct coreceptor phenotypes. This assay allowed identification of entry inhibitors, and characterization of an antagonist of a Rac guanine nucleotide exchange factor, as an inhibitor of HIV-mediated fusion.

  19. Antibody-Based Assays for Phenotyping of Extracellular Vesicles

    PubMed Central

    Pugholm, Lotte Hatting; Revenfeld, Anne Louise Schacht; Søndergaard, Evo Kristina Lindersson; Jørgensen, Malene Møller

    2015-01-01

    Extracellular vesicles (EVs) are a heterogeneous population of membrane-enclosed vesicles. EVs are recognized as important players in cell-to-cell communication and are described to be involved in numerous biological and pathological processes. The fact that EVs are involved in the development and progression of several diseases has formed the basis for the use of EV analysis in a clinical setting. As the interest in EVs has increased immensely, multiple techniques have been developed aiming at characterizing these vesicles. These techniques characterize different features of EVs, like the size distribution, enumeration, protein composition, and the intravesicular cargo (e.g., RNA). This review focuses on techniques that exploit the specificity and sensitivity associated with antibody-based assays to characterize the protein phenotype of EVs. The protein phenotype of EVs can provide information on the functionality of the vesicles and may be used for identification of disease-related biomarkers. Thus, protein profiling of EVs holds great diagnostic and prognostic potential. PMID:26770974

  20. Colloidal gold probe based rapid immunochromatographic strip assay for cortisol.

    PubMed

    Nara, Seema; Tripathi, Vinay; Singh, Harpal; Shrivastav, Tulsidas G

    2010-12-01

    A rapid and semi-quantitative immunochromatographic strip (ICS) test for cortisol analysis in serum was developed. The test strip was based on a competitive assay format. Colloidal gold nanoparticles were synthesized and coupled with cortisol-3-carboxymethyloxime-adipic acid dihydrazide-bovine serum albumin (F-3-CMO-ADH-BSA) antigen to directly compete with cortisol in human serum samples. F-3-CMO-ADH-BSA-gold label and uncoupled colloidal gold nanoparticles were appropriately characterized using UV-vis spectroscopy, transmission electron microscopy and atomic force microscopy. Anticortisol antibody raised against F-3-CMO-BSA immunogen in New Zealand white rabbits was coated on the NC membrane as test line. Anti-BSA antibody was used as control line. The lower detection limit of the ICS test was 30 ngmL(-1) with visual detection and was completed in 10 min. About 30 human serum samples were also analyzed by the developed strip test and their range of cortisol concentration was established. The developed ICS test is rapid, economic and user friendly. PMID:21056716

  1. A fluorescence polarization based assay for glucose sensing

    NASA Astrophysics Data System (ADS)

    Cummins, Brian M.; Coté, Gerard L.

    2012-03-01

    A fluorescence polarization (FP) assay was developed to determine concentrations of glucose using concanavalin A (ConA) and fluorescently-labeled dextran. Predictive FP responses to glucose were elicited for different assay configurations using mathematical modeling and displayed herein. Using 4 kDa FITC-dextran, we predicted a change of 0.120 P units from 0 mg/dL glucose to 500 mg/dL. This shows the potential that a homogenous, reproducible FP assay can be engineered to measure glucose concentrations using tetrameric ConA and 4k kDa FITC-dextran.

  2. Evaluation of potential endocrine activity of 2,4-dichlorophenoxyacetic acid using in vitro assays.

    PubMed

    Coady, Katherine K; Kan, H Lynn; Schisler, Melissa R; Gollapudi, B Bhaskar; Neal, Barbara; Williams, Amy; LeBaron, Matthew J

    2014-08-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in five in vitro screening assays to assess the potential for interaction with the androgen, estrogen and steroidogenesis pathways in the endocrine system. The assays were conducted to meet the requirements of the in vitro component of Tier 1 of the United States Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP), and included assays for estrogen receptor (ER) binding (rat uterine cytosol ER binding assay), ER-mediated transcriptional activation (HeLa-9903-ERα transactivation assay), androgen receptor (AR) binding (rat prostate cytosol AR binding assay), aromatase enzymatic activity inhibition (recombinant human CYP19 aromatase inhibition assay), and interference with steroidogenesis (H295R steroidogenesis assay). Results from these five assays demonstrated that 2,4-D does not have the potential to interact in vitro with the estrogen, androgen, or steroidogenesis pathways. These in vitro data are consistent with a corresponding lack of endocrine effects observed in apical in vivo animal studies, and thus provide important supporting data valuable in a comprehensive weight of evidence evaluation indicating a low potential of 2,4-D to interact with the endocrine system.

  3. [Methods of hygromycin B phosphotransferase activity assay in transgenic plant].

    PubMed

    Zhuo, Qin; Yang, Xiaoguang

    2004-07-01

    Hygromycin B phosphotransferase (HPT) is a widely used selectable marker protein of transgenic plant. Detection of its activity is critical to studies on the development of various transgenic plants, silence of inserted gene, marker-free system development and safety assessment of transgenic food. In this paper, several methods for detecting the activity of this enzyme were reviewed.

  4. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE: INDUCED BY RADIATION, CHEMICALS AND ENZYMES

    EPA Science Inventory

    A simple and rapid assay to detect DNA damage is reported. This assay is based on the ability of certain dyes to fluoresce upon intercalation with dsDNA. Damage caused by ultraviolet (UV) radiation, chemicals or restriction enzymes is detected using this assay. UV radiation at...

  5. Measurement of factor v activity in human plasma using a microplate coagulation assay.

    PubMed

    Tilley, Derek; Levit, Irina; Samis, John A

    2012-09-09

    In response to injury, blood coagulation is activated and results in generation of the clotting protease, thrombin. Thrombin cleaves fibrinogen to fibrin which forms an insoluble clot that stops hemorrhage. Factor V (FV) in its activated form, FVa, is a critical cofactor for the protease FXa and accelerator of thrombin generation during fibrin clot formation as part of prothrombinase (1, 2). Manual FV assays have been described (3, 4), but they are time consuming and subjective. Automated FV assays have been reported (5-7), but the analyzer and reagents are expensive and generally provide only the clot time, not the rate and extent of fibrin formation. The microplate platform is preferred for measuring enzyme-catalyzed events because of convenience, time, cost, small volume, continuous monitoring, and high-throughput (8, 9). Microplate assays have been reported for clot lysis (10), platelet aggregation (11), and coagulation Factors (12), but not for FV activity in human plasma. The goal of the method was to develop a microplate assay that measures FV activity during fibrin formation in human plasma. This novel microplate method outlines a simple, inexpensive, and rapid assay of FV activity in human plasma. The assay utilizes a kinetic microplate reader to monitor the absorbance change at 405 nm during fibrin formation in human plasma (Figure 1) (13). The assay accurately measures the time, initial rate, and extent of fibrin clot formation. It requires only μl quantities of plasma, is complete in 6 min, has high-throughput, is sensitive to 24-80 pM FV, and measures the amount of unintentionally activated (1-stage activity) and thrombin-activated FV (2-stage activity) to obtain a complete assessment of its total functional activity (2-stage activity - 1-stage activity). Disseminated intravascular coagulation (DIC) is an acquired coagulopathy that most often develops from pre-existing infections (14). DIC is associated with a poor prognosis and increases mortality

  6. A Cell-based PDE4 Assay in 1536-well Plate format for High Throughput Screening

    PubMed Central

    Titus, Steven A.; Li, Xiao; Southall, Noel; Lu, Jianming; Inglese, James; Brasch, Michael; Austin, Christopher P.; Zheng, Wei

    2009-01-01

    The cyclic nucleotide phosphodiesterases (PDEs) are intracellular enzymes that catalyze the hydrolysis of 3', 5'-cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), to their corresponding 5'-nucleotide monophosphates. These enzymes play an important role in controlling cellular concentrations of cyclic nucleotides and thus regulate a variety of cellular signaling events. PDEs are emerging as drug targets for several diseases including asthma, cardiovascular disease, ADHD, Parkinson’s disease, and Alzheimer’s disease. Though biochemical assays with purified recombinant PDE enzymes and cAMP or cGMP substrate are commonly used for compound screening, cell-based assays would provide a better assessment of compound activity in a more physiological context. Here we report the development and validation of a new cell-based PDE4 assay using a constitutively active GPCR as a driving force for cAMP production and a cyclic nucleotide gated (CNG) cation channel as a biosensor in 1536-well plates. PMID:18591513

  7. Immobilization and activity assay of cytochrome P450 on patterned lipid membranes

    SciTech Connect

    Ueda, Yoshihiro; Morigaki, Kenichi . E-mail: morigaki-kenichi@aist.go.jp; Tatsu, Yoshiro; Yumoto, Noboru; Imaishi, Hiromasa . E-mail: himaish@kobe-u.ac.jp

    2007-04-20

    We report on a methodology for immobilizing cytochrome P450 on the surface of micropatterned lipid bilayer membranes and measuring the enzymatic activity. The patterned bilayer comprised a matrix of polymeric lipid bilayers and embedded fluid lipid bilayers. The polymeric lipid bilayer domains act as a barrier to confine fluid lipid bilayers in defined areas and as a framework to stabilize embedded membranes. The fluid bilayer domains, on the other hand, can contain lipid compositions that facilitate the fusion between lipid membranes, and are intended to be used as the binding agent of microsomes containing rat CYP1A1. By optimizing the membrane compositions of the fluid bilayers, we could selectively immobilize microsomal membranes on these domains. The enzymatic activity was significantly higher on lipid bilayer substrates compared with direct adsorption on glass. Furthermore, competitive assay experiment between two fluorogenic substrates demonstrated the feasibility of bioassays based on immobilized P450s.

  8. Rapid reverse phase-HPLC assay of HMG-CoA reductase activity

    PubMed Central

    Mozzicafreddo, Matteo; Cuccioloni, Massimiliano; Eleuteri, Anna Maria; Angeletti, Mauro

    2010-01-01

    Radioisotope-based and mass spectrometry coupled to chromatographic techniques are the conventional methods for monitoring HMG-CoA reductase (HMGR) activity. Irrespective of offering adequate sensitivity, these methods are often cumbersome and time-consuming, requiring the handling of radiolabeled chemicals or elaborate ad-hoc derivatizing procedures. We propose a rapid and versatile reverse phase-HPLC method for assaying HMGR activity capable of monitoring the levels of both substrates (HMG-CoA and NADPH) and products (CoA, mevalonate, and NADP+) in a single 20 min run with no pretreatment required. The linear dynamic range was 10–26 pmol for HMG-CoA, 7–27 nmol for NADPH, 0.5–40 pmol for CoA and mevalonate, and 2–27 nmol for NADP+, and limit of detection values were 2.67 pmol, 2.77 nmol, 0.27 pmol, and 1.3 nmol, respectively. PMID:20418539

  9. Evaluation of the antioxidants activities of four Slovene medicinal plant species by traditional and novel biosensory assays.

    PubMed

    Kintzios, Spiridon; Papageorgiou, Katerina; Yiakoumettis, Iakovos; Baricevic, Dea; Kusar, Anita

    2010-11-01

    We investigated the antioxidant activity of methanolic and water extracts of Slovene accessions of four medicinal plant species (Salvia officinalis, Achillea millefolium, Origanum vulgare subsp. vulgare and Gentiana lutea). Their free radical-scavenging activity against the DPPH. free radical was studied with a spectrophotometric assay, while their biological activity with the help of a laboratory-made biosensor based on immobilized fibroblast cells (assay duration: 3 min). The observed antioxidant activity of the extracts from the four investigated medicinal plant species was dependent on both the solvent used for extraction and the assay method (conventional or biosensor-based). Independently from the assay method and the solvent used for extraction, the lowest scavenging activity was observed in root extracts of G. lutea. Treatment of the immobilized cells with the plant extracts resulted in an increase of the cell membrane potential (membrane hyperpolarization), possibly due to the reduction of membrane damage due to oxidation. The novel cell biosensor could be utilized as a rapid, high throughput tool for screening the antioxidant properties of plant-derived compounds.

  10. Antimutagenic activity of extracts of natural substances in the Salmonella/microsome assay.

    PubMed

    Horn, Rubem Cesar; Vargas, Vera Maria Ferrão

    2003-03-01

    Scientific information regarding plants used in folk medicine in the form of teas and their effect on human health or on genetic material has been the subject of many different types of investigation. The antimutagenic activity of two plants Maytenus ilicifolia and Peltastes peltatus, both rich in compounds of the flavonoid and tannin groups and frequently employed in folk medicine, was studied. Antimutagenicity was determined against known mutagenic substances (4-oxide-1-nitroquinoline, sodium azide, 2-nitrofluorene, aflatoxin B(1), 2-aminofluorene and 2-aminoanthracene), using the Salmonella/microsome assay. Infusions of P.peltatus showed high cytotoxicity and a co-mutagenic effect for induction of base pair substitution mutations with 4-oxide-1-nitroquinoline (-S9 mix). Infusions of M.ilicifolia produced similar effects for frameshift and base pair substitution mutations. With the mutagens 2-nitrofluorene (TA98) and sodium azide (TA100) no significant enhancement effects (co-mutagenic effects) were observed and inhibition of mutagenic activity and cytotoxicity were also diminished. In assays evaluating antimutagenic activity in the presence of metabolic activation utilizing S9 mix, high and significant inhibition of aflatoxin B(1)-, 2-aminofluorene- and 2-aminoanthracene-induced mutagenicity was observed in the presence of the infusions using both TA98 and TA100 and employing doses ranging from 25 to 500 mg/plate. Seventy-five percent of the doses tested exhibited a significant or suggestive decrease in induced mutagenicity with the infusion of M.ilicifolia. With the infusion of P.peltatus significant or suggestive antimutagenic responses were observed with 50% of the doses evaluated. Complexity was clearly noted in the responses observed in the interaction of aqueous extracts of M.ilicifolia and P.peltastes with the genetic material and metabolites generated by the S9 mix played an important role in the protection of DNA. PMID:12621065

  11. Microchip-based ultrafast serodiagnostic assay for tuberculosis

    PubMed Central

    Mani, Vigneshwaran; Paleja, Bhairav; Larbi, Karima; Kumar, Pavanish; Tay, Jo Ann; Siew, Jie Yee; Inci, Fatih; Wang, ShuQi; Chee, Cynthia; Wang, Yee Tang; Demirci, Utkan; De Libero, Gennaro; Singhal, Amit

    2016-01-01

    Access to point-of-care (POC), rapid, inexpensive, sensitive, and instrument-free tests for the diagnosis of tuberculosis (TB) remains a major challenge. Here, we report a simple and low-cost microchip-based TB ELISA (MTBE) platform for the detection of anti-mycobacterial IgG in plasma samples in less than 15 minutes. The MTBE employs a flow-less, magnet-actuated, bead-based ELISA for simultaneous detection of IgG responses against multiple mycobacterial antigens. Anti-trehalose 6,6′-dimycolate (TDM) IgG responses were the strongest predictor for differentiating active tuberculosis (ATB) from healthy controls (HC) and latent tuberculosis infections (LTBI). The TDM-based MTBE demonstrated superior sensitivity compared to sputum microscopy (72% vs. 56%) with 80% and 63% positivity among smear-positive and smear-negative confirmed ATB samples, respectively. Receiver operating characteristic analysis indicated good accuracy for differentiating ATB from HC (AUC = 0.77). Thus, TDM-based MTBE can be potentially used as a screening device for rapid diagnosis of active TB at the POC. PMID:27775039

  12. A continuous sirtuin activity assay without any coupling to enzymatic or chemical reactions

    PubMed Central

    Schuster, Sabine; Roessler, Claudia; Meleshin, Marat; Zimmermann, Philipp; Simic, Zeljko; Kambach, Christian; Schiene-Fischer, Cordelia; Steegborn, Clemens; Hottiger, Michael O.; Schutkowski, Mike

    2016-01-01

    Sirtuins are NAD+ dependent lysine deacylases involved in many regulatory processes such as control of metabolic pathways, DNA repair and stress response. Modulators of sirtuin activity are required as tools for uncovering the biological function of these enzymes and as potential therapeutic agents. Systematic discovery of such modulators is hampered by the lack of direct and continuous activity assays. The present study describes a novel continuous assay based on the increase of a fluorescence signal subsequent to sirtuin mediated removal of a fluorescent acyl chain from a modified TNFα-derived peptide. This substrate is well recognized by human sirtuins 1–6 and represents the best sirtuin 2 substrate described so far with a kcat/KM-value of 176 000 M−1s−1. These extraordinary substrate properties allow the first determination of Ki-values for the specific Sirt2 inhibitory peptide S2iL5 (600 nM) and for the quasi-universal sirtuin inhibitor peptide thioxo myristoyl TNFα (80 nM). PMID:26940860

  13. Evaluation and analysis of dengue virus enhancing and neutralizing activities using simple high-throughput assays.

    PubMed

    Li, Xiao-Quan; Chen, Jing; Huang, Yan-Fen; Ding, Xi-Xia; Liu, Li-Dong; Qiu, Li-Wen; Pan, Yu-Xian; Deng, Yong-Qiang; Hu, Dong-Mei; Di, Biao; Qin, Cheng-Feng; Che, Xiao-Yan

    2013-07-01

    The risk of antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is a major obstacle for the development of dengue vaccine candidates. Here, we described a novel approach for assessment of ADE by measuring DENV nonstructural protein 1 (NS1) production in culture supernatants with Fcγ receptor-expressing K562 cells in ELISA format (ELISA-ADE). Enhancing activities quantified by measurement of kinetics of NS1 production were in a good agreement with the results of the virus titration assay. In conjunction with the previously established enzyme-linked immunospot-based micro-neutralization test (ELISPOT-MNT) in 96-well format, the observable dose-response profiles of enhancing and neutralizing activities against all four DENV serotypes were produced with two flaviviral envelope cross-reactive monoclonal antibodies and four primary DENV-1-infected human sera. The simple high-throughput ELISA-ADE assay offers advantages for quantitative measurement of infection enhancement that can potentially be applied to large-scale seroepidemiological studies of DENV infection and vaccination.

  14. Field-based multiplex and quantitative assay platforms for diagnostics

    NASA Astrophysics Data System (ADS)

    Venkatasubbarao, Srivatsa; Dixon, C. Edward; Chipman, Russell; Scherer, Axel; Beshay, Manal; Kempen, Lothar U.; Chandra Sekhar, Jai Ganesh; Yan, Hong; Puccio, Ava; Okonkwo, David; McClain, Stephen; Gilbert, Noah; Vyawahare, Saurabh

    2011-06-01

    The U.S. military has a continued interest in the development of handheld, field-usable sensors and test kits for a variety of diagnostic applications, such as traumatic brain injury (TBI) and infectious diseases. Field-use presents unique challenges for biosensor design, both for the readout unit and for the biological assay platform. We have developed robust biosensor devices that offer ultra-high sensitivity and also meet field-use needs. The systems under development include a multiplexed quantitative lateral flow test strip for TBI diagnostics, a field test kit for the diagnosis of pathogens endemic to the Middle East, and a microfluidic assay platform with a label-free reader for performing complex biological automated assays in the field.

  15. Alternative Methods for the Detection of Emerging Marine Toxins: Biosensors, Biochemical Assays and Cell-Based Assays

    PubMed Central

    Reverté, Laia; Soliño, Lucía; Carnicer, Olga; Diogène, Jorge; Campàs, Mònica

    2014-01-01

    The emergence of marine toxins in water and seafood may have a considerable impact on public health. Although the tendency in Europe is to consolidate, when possible, official reference methods based on instrumental analysis, the development of alternative or complementary methods providing functional or toxicological information may provide advantages in terms of risk identification, but also low cost, simplicity, ease of use and high-throughput analysis. This article gives an overview of the immunoassays, cell-based assays, receptor-binding assays and biosensors that have been developed for the screening and quantification of emerging marine toxins: palytoxins, ciguatoxins, cyclic imines and tetrodotoxins. Their advantages and limitations are discussed, as well as their possible integration in research and monitoring programs. PMID:25431968

  16. Dual-readout fluorescent assay of protein kinase activity by use of TiO2-coated magnetic microspheres.

    PubMed

    Bai, Jie; Zhao, Yunjie; Wang, Zhibin; Liu, Chenghui; Wang, Yucong; Li, Zhengping

    2013-05-01

    A simple, highly sensitive, and dual-readout fluorescent assay is developed for the detection of protein kinase activity based on the specific recognition utility of TiO2-coated Fe3O4/SiO2 magnetic microspheres (TMSPs) for kinase-induced phosphopeptides. When the fluorophore-labeled substrate peptides are phosphorylated by the kinase reaction, they can bind specifically to the TiO2 layer of TMSPs by means of phosphate groups, resulting in fluorophore enrichment on the TMSP surfaces. The accumulated fluorophores on the TMSPs are proportional to the kinase activity, and the fluorescence signal readout could be run through either direct fluorescent imaging of the TMSPs or measurement of the fluorescence intensity by simply detaching the fluorescent phosphopeptides into the solution. The TMSPs exhibit extremely high selectivity for capturing phosphorylated peptides over the nonphosphorylated ones, resulting in an ultrahigh fluorescence signal-to-background ratio of 42, which is the highest fluorescence change thus far in fluorescent assays for detection of protein kinase activities. Therefore, the proposed fluorescent assay presents high sensitivity, low detection limit of 0.1 milliunit/μL, and wide dynamic range from 0.5 milliunit/μL to 0.5 unit/μL with protein kinase A (PKA) as a model target. Moreover, the TMSP-based fluorescent assay can simultaneously quantify multiple kinase activities with their specific peptides labeled with different dyes. This new strategy is also successfully applied to monitoring drug-triggered PKA activation in cell lysates. Therefore, the TMSP-based fluorescent assay is very promising in high-throughput screening of kinase inhibitors and in highly sensitive detection of kinase activity, and thus it is a valuable tool for development of targeted therapy, clinical diagnosis, and studies of fundamental life science. PMID:23581884

  17. A microsphere-based assay for mutation analysis of the biotinidase gene using dried blood spots.

    PubMed

    Lindau-Shepard, Barbara; Janik, David K; Pass, Kenneth A

    2012-09-01

    Biotinidase deficiency is an autosomal recessive syndrome caused by defects in the biotinidase gene, the product of which affects biotin metabolism. Newborn screening (NBS) for biotinidase deficiency can identify affected infants prior to onset of symptoms; biotin supplementation can resolve or prevent the clinical features. In NBS, dry blood spots (DBS) are usually tested for biotinidase enzyme activity by colorimetric analysis. By taking advantage of the multiplexing capabilities of the Luminex platform, we have developed a microsphere-based array genotyping method for the simultaneous detection of six disease causing mutations in the biotinidase gene, thereby permitting a second tier of molecular analysis. Genomic DNA was extracted from 3.2 mm DBS. Biotinidase gene sequences, containing the mutations of interest, were amplified by multiplexed polymerase chain reaction, followed by multiplexed allele-specific primer extension using universally tagged genotyping primers. The products were then hybridized to anti-tag carrying xTAG microspheres and detected on the Luminex platform. Genotypes were verified by sequencing. Genotyping results of 22 known biotinidase deficient samples by our xTAG biotinidase assay was in concordance with the results obtained from DNA sequencing, for all 6 mutations used in our panel. These results indicate that genotyping by an xTAG microsphere-based array is accurate, flexible, and can be adapted for high-throughput. Since NBS for biotinidase deficiency is by enzymatic assay, less than optimal quality of the DBS itself can compromise enzyme activity, while the DNA from these samples mostly remains unaffected. This assay warrants evaluation as a viable complement to the biotinidase semi-quantitative colorimetric assay. PMID:27625817

  18. Spore germination based assay for monitoring antibiotic residues in milk at dairy farm.

    PubMed

    Kumar, Naresh; Raghu, Hirikyathanahalli Vishweswaraiah; Kumar, Abhishek; Haldar, Lopamudra; Khan, Alia; Rane, Sharmila; Malik, Ravinder Kumar

    2012-07-01

    Spore germination based assay involves the transformation of dormant spores of Bacillus stearothermophilus 953 into active vegetative cells. The inhibition of germination process specifically in presence of antibiotic residues was used as a novel approach for monitoring target contaminants in milk. The indicator organism i.e., B. stearothermophilus 953 was initially allowed to sporulate by seeding in sporulation medium and incubating at 55 °C for 18 ± 2 h. The spores exhibited a typical chain behavior as revealed through phase contrast microscopy. The minimal medium inoculated with activated spores was incubated at 64 °C for 2-3 h for germination and outgrowth in presence of specific germinant mixture containing dextrose, whey powder and skimmed milk powder added in specific ratio along with reconstituted milk as negative control and test milk samples. The change in color of the medium from purple to yellow was used as criteria for detection of antibiotic residues in milk. The efficiency of the developed assay was evaluated through a surveillance study on 228 samples of raw, pasteurized and dried milks and results were compared with AOAC approved microbial receptor assay. The presence of antibiotic level was 10.08 % at Codex maximum residual limit having false positive result only in 0.43 % of the samples. The results of the present investigation suggest that developed spore based assay can be a practical solution to dairy industry for its application at farm level, milk processing units, independent testing and R & D centres in order to comply with the legal requirements set by Codex. PMID:22806162

  19. A microsphere-based assay for mutation analysis of the biotinidase gene using dried blood spots

    PubMed Central

    Lindau-Shepard, Barbara; Janik, David K.; Pass, Kenneth A.

    2012-01-01

    Biotinidase deficiency is an autosomal recessive syndrome caused by defects in the biotinidase gene, the product of which affects biotin metabolism. Newborn screening (NBS) for biotinidase deficiency can identify affected infants prior to onset of symptoms; biotin supplementation can resolve or prevent the clinical features. In NBS, dry blood spots (DBS) are usually tested for biotinidase enzyme activity by colorimetric analysis. By taking advantage of the multiplexing capabilities of the Luminex platform, we have developed a microsphere-based array genotyping method for the simultaneous detection of six disease causing mutations in the biotinidase gene, thereby permitting a second tier of molecular analysis. Genomic DNA was extracted from 3.2 mm DBS. Biotinidase gene sequences, containing the mutations of interest, were amplified by multiplexed polymerase chain reaction, followed by multiplexed allele-specific primer extension using universally tagged genotyping primers. The products were then hybridized to anti-tag carrying xTAG microspheres and detected on the Luminex platform. Genotypes were verified by sequencing. Genotyping results of 22 known biotinidase deficient samples by our xTAG biotinidase assay was in concordance with the results obtained from DNA sequencing, for all 6 mutations used in our panel. These results indicate that genotyping by an xTAG microsphere-based array is accurate, flexible, and can be adapted for high-throughput. Since NBS for biotinidase deficiency is by enzymatic assay, less than optimal quality of the DBS itself can compromise enzyme activity, while the DNA from these samples mostly remains unaffected. This assay warrants evaluation as a viable complement to the biotinidase semi-quantitative colorimetric assay.

  20. A sensitive and facile assay for the measurement of activated protein C activity levels in vivo.

    PubMed

    Orthner, C L; Kolen, B; Drohan, W N

    1993-05-01

    Activated protein C (APC) is a serine protease which plays an important role as a naturally occurring antithrombotic enzyme. APC, which is formed by thrombin-catalyzed limited proteolysis of the zymogen protein C, functions as an anticoagulant by proteolytic inactivation of the coagulation cofactors VIIIa and Va: APC is inhibited by several members of the serpin family as well a by alpha 2-macroglobulin. APC is being developed as a therapeutic for the prevention and treatment of thrombosis. We have developed an assay to quantify circulating levels of enzymatically active APC during its administration to patients, in healthy individuals, and in various disease states. This assay utilizes an EDTA-dependent anti-protein C monoclonal antibody (Mab) 7D7B10 to capture both APC and protein C from plasma, prepared from blood collected in an anticoagulant supplemented with the reversible inhibitor p-aminobenzamidine. Mab 7D7B10-derivatized agarose beads are added to the wells of a 96-well filtration plate, equilibrated with Tris-buffered saline, and incubated for 10 min with 200 microliters of plasma. After washing, APC and protein C are eluted from the immunosorbent beads with a calcium-containing buffer into the wells of a 96-well microtiter plate containing antithrombin III (ATIII) and heparin. The amidolytic activity of APC is then measured on a kinetic plate reader following the addition of L-pyroglutamyl-L-prolyl-L-arginine-p-nitroanilide (S-2366) substrate. The rate of substrate hydrolysis was proportional to APC concentration over a 200-fold concentration range (5.0 to 1,000 ng/ml) when measured continuously over a 15 to 30 min time period.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Validation of a Flow Cytometry Based Binding Assay for Evaluation of Monoclonal Antibody Recognizing EGF Receptor

    PubMed Central

    Cedeño-Arias, Mercedes; Sánchez-Ramírez, Javier; Blanco-Santana, Rancés; Rengifo-Calzado, Enrique

    2011-01-01

    An ideal test used to characterize a product must be appropriate for the measurement of product quality, manufacturing consistency, product stability, and comparability studies. Flow cytometry has been successfully applied to the examination of antibodies and receptors on membrane surfaces; however, to date, the analytical validation of cytometry based assays is limited. Here we report on the validation of a flow cytometry-based assay used in the evaluation of nimotuzumab binding to cells over-expressing EGFR on cell surface. The assay was validated by examining, assay robustness, specificity, repeatability and intermediate precision. The assay was highly specific, robust for all studied factors except for cell fixation with 1% paraformaldehyde and met criteria for precision with RSD < 2%. In addition the assay has stability-indicating properties evidenced by the ability to detect changes in mAb degraded samples. Most importantly, the assay demonstrated to be useful for its intended use. PMID:21886904

  2. Quantitative analysis of G-protein-coupled receptor internalization using DnaE intein-based assay.

    PubMed

    Lu, Bin; Chen, Linjie; Zhang, Yaping; Shi, Ying; Zhou, Naiming

    2016-01-01

    G-protein-coupled receptors (GPCRs), the largest family of cell surface receptors, are involved in many physiological processes. They represent highly important therapeutic targets for drug discovery. Currently, there are numerous cell-based assays developed for the pharmacological profiling of GPCRs and the identification of novel agonists and antagonists. However, the development of new, faster, easier, and more cost-effective approaches to detect GPCR activity remains highly desirable. β-arrestin-dependent internalization has been demonstrated to be a common mechanism for most GPCRs. Here we describe a novel assay for quantitative analysis of GPCR internalization based on DnaE intein-mediated reconstitution of fragmented Renilla luciferase or Firefly luciferase when activated GPCRs interact with β-arrestin2 or Rab5. Further validation, using functionally divergent GPCRs, showed that EC50 values obtained for the known agonists and antagonists were in close agreement with the results of previous reports. This suggests that this assay is sensitive enough to permit quantification of GPCR internalization. Compared with conventional assays, this novel assay system is cost-effective, rapid, and easy to manipulate. These advantages may allow this assay to be used universally as a functional cell-based system for GPCR characterization and in the screening process of drug discovery. PMID:26928549

  3. Assessing Kinase Activity in Plants with In-Gel Kinase Assays.

    PubMed

    Wang, Pengcheng; Zhu, Jian-Kang

    2016-01-01

    The in-gel protein kinase assay is a powerful method to measure the protein phosphorylation activity of specific protein kinases. Any protein substrate can be embedded in polyacrylamide gels where they can be phosphorylated by protein kinases that are separated in the gel under denaturing conditions and then renatured. The kinase activity can be visualized in situ in the gels by autoradiography. This method has been used to compare the activities of protein kinases in parallel samples or to identify their potential substrates. Here, we describe in detail an in-gel kinase assay to measure the activity of some protein kinases in plants.

  4. Portable ceria nanoparticle-based assay for rapid detection of food antioxidants (NanoCerac).

    PubMed

    Sharpe, Erica; Frasco, Thalia; Andreescu, Daniel; Andreescu, Silvana

    2013-01-01

    With increased awareness of nutrition and the advocacy for healthier food choices, there exists a great demand for a simple, easy-to-use test that can reliably measure the antioxidant capacity of dietary products. We report development and characterization of a portable nanoparticle based-assay, similar to a small sensor patch, for rapid and sensitive detection of food antioxidants. The assay is based on the use of immobilized ceria nanoparticles, which change color after interaction with antioxidants by means of redox and surface chemistry reactions. Monitoring corresponding optical changes enables sensitive detection of antioxidants in which the nanoceria provides an optical 'signature' of antioxidant power, while the antioxidants act as reducing agents. The sensor has been tested for the detection of common antioxidant compounds including ascorbic acid, gallic acid, vanillic acid, quercetin, caffeic acid, and epigallocatechin gallate and its function has been successfully applied for the assessment of antioxidant activity in real samples (teas and medicinal mushrooms). The colorimetric response was concentration dependent, with detection limits ranging from 20 to 400 μM depending on the antioxidant involved. Steady-state color intensity was achieved within seconds upon addition of antioxidants. The results are presented in terms of Gallic Acid Equivalents (GAE). The sensor performed favorably when compared with commonly used antioxidant detection methods. This assay is particularly appealing for remote sensing applications, where specialized equipment is not available, and also for high throughput analysis of a large number of samples. Potential applications for antioxidant detection in remote locations are envisioned. PMID:23139929

  5. Active nondestructive assay of nuclear materials: principles and applications

    SciTech Connect

    Gozani, Tsahi

    1981-01-01

    The purpose of this book is to present, coherently and comprehensively, the wealth of available but scattered information on the principles and applications of active nondestructive analysis (ANDA). Chapters are devoted to the following: background and overview; interactions of neutrons with matter; interactions of ..gamma..-rays with matter; neutron production and sources; ..gamma..-ray production and sources; effects of neutron and ..gamma..-ray transport in bulk media; signatures of neutron- and photon-induced fissions; neutron and photon detection systems and electronics; representative ANDA systems; and instrument analysis, calibration, and measurement control for ANDA. Each chapter has an introductory section describing the relationship of the topic of that chapter to ANDA. Each chapter ends with a section that summarizes the main results and conclusions of the chapter, and a reference list.

  6. Fluorometric microplate assay to measure glutathione S-transferase activity in insects and mites using monochlorobimane.

    PubMed

    Nauen, Ralf; Stumpf, Natascha

    2002-04-15

    Elevated levels of glutathione S-transferases (GSTs) play a major role as a mechanism of resistance to insecticides and acaricides in resistant pest insects and mites, respectively. Such compounds are either detoxicated directly via phase I metabolism or detoxicated by phase II metabolism of metabolites as formed by microsomal monooxygenases. Here we used monochlorobimane (MCB) as an artificial substrate and glutathione to determine total GST activity in equivalents of single pest insects and spider mites in a sensitive 96-well plate-based assay system by measuring the enzymatic conversion of MCB to its fluorescent bimane-glutathione adduct. The differentiation by their GST activity between several strains of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), with different degrees of resistance to numerous acaricides was more sensitive with MCB compared to the commonly used substrate 1-chloro-2,4-dinitrobenzene (CDNB). Compared to an acaricide-susceptible reference strain, one field population of T. urticae showed a more than 10-fold higher GST activity measured with MCB, in contrast to a less than 2-fold higher activity when CDNB was used. Furthermore, we showed that GST activity can be sensitively assessed with MCB in homogenates of pest insects such as Heliothis virescens, Spodoptera frugiperda (Lepidoptera: Noctuidae), Plutella xylostella (Lepidoptera: Yponomeutidae), and Myzus persicae (Hemiptera: Aphididae). PMID:11950219

  7. Photography by Cameras Integrated in Smartphones as a Tool for Analytical Chemistry Represented by an Butyrylcholinesterase Activity Assay.

    PubMed

    Pohanka, Miroslav

    2015-06-11

    Smartphones are popular devices frequently equipped with sensitive sensors and great computational ability. Despite the widespread availability of smartphones, practical uses in analytical chemistry are limited, though some papers have proposed promising applications. In the present paper, a smartphone is used as a tool for the determination of cholinesterasemia i.e., the determination of a biochemical marker butyrylcholinesterase (BChE). The work should demonstrate suitability of a smartphone-integrated camera for analytical purposes. Paper strips soaked with indoxylacetate were used for the determination of BChE activity, while the standard Ellman's assay was used as a reference measurement. In the smartphone-based assay, BChE converted indoxylacetate to indigo blue and coloration was photographed using the phone's integrated camera. A RGB color model was analyzed and color values for the individual color channels were determined. The assay was verified using plasma samples and samples containing pure BChE, and validated using Ellmans's assay. The smartphone assay was proved to be reliable and applicable for routine diagnoses where BChE serves as a marker (liver function tests; some poisonings, etc.). It can be concluded that the assay is expected to be of practical applicability because of the results' relevance.

  8. Photography by Cameras Integrated in Smartphones as a Tool for Analytical Chemistry Represented by an Butyrylcholinesterase Activity Assay

    PubMed Central

    Pohanka, Miroslav

    2015-01-01

    Smartphones are popular devices frequently equipped with sensitive sensors and great computational ability. Despite the widespread availability of smartphones, practical uses in analytical chemistry are limited, though some papers have proposed promising applications. In the present paper, a smartphone is used as a tool for the determination of cholinesterasemia i.e., the determination of a biochemical marker butyrylcholinesterase (BChE). The work should demonstrate suitability of a smartphone-integrated camera for analytical purposes. Paper strips soaked with indoxylacetate were used for the determination of BChE activity, while the standard Ellman’s assay was used as a reference measurement. In the smartphone-based assay, BChE converted indoxylacetate to indigo blue and coloration was photographed using the phone’s integrated camera. A RGB color model was analyzed and color values for the individual color channels were determined. The assay was verified using plasma samples and samples containing pure BChE, and validated using Ellmans’s assay. The smartphone assay was proved to be reliable and applicable for routine diagnoses where BChE serves as a marker (liver function tests; some poisonings, etc.). It can be concluded that the assay is expected to be of practical applicability because of the results’ relevance. PMID:26110404

  9. A novel, non-radioactive eukaryotic in vitro transcription assay for sensitive quantification of RNA polymerase II activity

    PubMed Central

    2014-01-01

    Background Many studies of the eukaryotic transcription mechanism and its regulation rely on in vitro assays. Conventional RNA polymerase II transcription assays are based on radioactive labelling of the newly synthesized RNA. Due to the inefficient in vitro transcription, the detection of the RNA involving purification and gel electrophoresis is laborious and not always quantitative. Results Herein, we describe a new, non-radioactive, robust and reproducible eukaryotic in vitro transcription assay that has been established in our laboratory. Upon transcription, the newly synthesized RNA is directly detected and quantified using the QuantiGene assay. Alternatively, the RNA can be purified and a primer extension followed by PCR detection or qPCR quantification can be performed. When applied to assess the activity of RNA polymerase II inhibitors, this new method allowed an accurate estimation of their relative potency. Conclusions Our novel assay provides a non-radioactive alternative to a standard in vitro transcription assay that allows for sensitive detection and precise quantification of the newly transcribed, unlabelled RNA and is particularly useful for quantification of strong transcriptional inhibitors like α-amanitin. Moreover, the method can be easily adapted to quantify the reaction yield and the transcription efficiency of other eukaryotic in vitro systems, thus providing a complementary tool for the field of transcriptional research. PMID:24694320

  10. beta-Galactosidase activity assay using far-red-shifted fluorescent substrate DDAOG.

    PubMed

    Gong, Haibiao; Zhang, Bin; Little, Garrick; Kovar, Joy; Chen, Huaxian; Xie, Wen; Schutz-Geschwender, Amy; Olive, D Michael

    2009-03-01

    beta-Galactosidase (beta-gal) is commonly used as a reporter gene in biological research, and a wide variety of substrates have been developed to assay its activity. One substrate, 9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl) beta-d-galactopyranoside (DDAOG), can be cleaved by beta-gal to produce 7-hydroxy-9H(I,3-dichloro-9,9-dimethylacridin-2-one) (DDAO). On excitation, DDAO generates a far-red-shifted fluorescent signal. Using this substrate, we developed a beta-gal activity assay method. The DDAO signal was stable for at least 18h. The signal intensity was linearly related to both the enzyme amount and substrate concentration. An optimized buffer for the beta-gal/DDAOG assay was also formulated. When compared with the colorimetric substrate o-nitrophenyl-beta-d-galactopyranoside (ONPG), the signal-to-background ratio of the DDAOG method was approximately 12-fold higher. The beta-gal/DDAOG assay method was also tested in transiently transfected cells employing both pharmacologically and genetically inducible gene expression systems. The ability to detect signal induction is comparable to a similar assay using luciferase as the signal generating moiety. The beta-gal/DDAOG assay method should provide a fluorescent reporter assay system for the wide variety of beta-gal systems currently in use. PMID:19103143

  11. A novel prothrombin time assay for assessing the anticoagulant activity of oral factor Xa inhibitors.

    PubMed

    Barrett, Yu Chen; Wang, Zhaoqing; Knabb, Robert M

    2013-09-01

    Conventional prothrombin time (PT) assays have limited sensitivity and dynamic range in monitoring the anticoagulant activity of direct factor Xa inhibitors. Hence, new assays are needed. We modified a PT assay by adding calcium chloride (CaCl2) to the thromboplastin reagent to increase assay dynamic range and improve sensitivity. Effects of calcium and sodium ion concentrations, and sample handling, were evaluated to optimize assay performance. Increasing concentrations of calcium ions produced progressive increases in PT across the factor Xa inhibitor concentrations of 0 to 2500 nmol/L for razaxaban and apixaban. The greatest effect was seen when the thromboplastin reagent was diluted 1:2.25 with 100 mmol/L CaCl2 (thus selected for routine use). The optimized assay showed an interassay precision of 1.5 to 9.3 percentage coefficient of variation (%CV) for razaxaban and 3.1 to 4.6 %CV for apixaban. We conclude that the modified PT assay is likely to be suitable as a pharmacodynamic marker for activity at therapeutic concentrations of factor Xa inhibitors.

  12. Detection and characterisation of Complement protein activity in bovine milk by bactericidal sequestration assay.

    PubMed

    Maye, Susan; Stanton, Catherine; Fitzgerald, Gerald F; Kelly, Philip M

    2015-08-01

    While the Complement protein system in human milk is well characterised, there is little information on its presence and activity in bovine milk. Complement forms part of the innate immune system, hence the importance of its contribution during milk ingestion to the overall defences of the neonate. A bactericidal sequestration assay, featuring a Complement sensitive strain, Escherichia coli 0111, originally used to characterise Complement activity in human milk was successfully applied to freshly drawn bovine milk samples, thus, providing an opportunity to compare Complement activities in both human and bovine milks. Although not identical in response, the levels of Complement activity in bovine milk were found to be closely comparable with that of human milk. Differential counts of Esch. coli 0111 after 2 h incubation were 6.20 and 6.06 log CFU/ml, for raw bovine and human milks, respectively - the lower value representing a stronger Complement response. Exposing bovine milk to a range of thermal treatments e.g. 42, 45, 65, 72, 85 or 95 °C for 10 min, progressively inhibited Complement activity by increasing temperature, thus confirming the heat labile nature of this immune protein system. Low level Complement activity was found, however, in 65 and 72 °C heat treated samples and in retailed pasteurised milk which highlights the outer limit to which high temperature, short time (HTST) industrial thermal processes should be applied if retention of activity is a priority. Concentration of Complement in the fat phase was evident following cream separation, and this was also reflected in the further loss of activity recorded in low fat variants of retailed pasteurised milk. Laboratory-based churning of the cream during simulated buttermaking generated an aqueous (buttermilk) phase with higher levels of Complement activity than the fat phase, thus pointing to a likely association with the milk fat globule membrane (MFGM) layer.

  13. New immunocapture enzyme (ICE) assay for quantification of cancer procoagulant activity: studies of inhibitors.

    PubMed

    Mielicki, W P; Tagawa, M; Gordon, S G

    1994-04-01

    A new, sensitive and specific immunocapture enzyme (ICE) assay for quantitation of the enzymatic activity of cancer procoagulant (CP) has been developed. The assay had good reproducibility (inter- and intra-assay CV were 6.4% and 5.7% respectively) and was linear for concentrations of CP from 0.5 microgram/ml to 10 micrograms/ml (r2 = 0.995). Using this assay the inhibition of CP by iodoacetamide, mercuric chloride, E-64, leupeptin and antipain was demonstrated. There was no significant effect of cystatin and natural plasma proteinase inhibitors alpha 1-antitrypsin, alpha 1-antichymotrypsin, alpha 2-macroglobulin and antithrombin-III/heparin, on the activity of the CP.

  14. Suggested improvements to the standard filter paper assay used to measure cellulase activity.

    PubMed

    Coward-Kelly, Guillermo; Aiello-Mazzari, Cateryna; Kim, Sehoon; Granda, Cesar; Holtzapple, Mark

    2003-06-20

    Two suggestions can be found in the literature to improve the reproducibility of the Mandels' filter paper assay: add supplemental cellobiase and increase the boiling time for color development. Here we provide data that strongly supports adding supplemental cellobiase. Adding supplemental cellobiase increased assay response by 56%. Cellulases from different sources have different cellobiase activities, which would cause significant variation in the assay response. There is no need for additional boiling time-5 minutes is sufficient. For maximum reproducibility, it is essential that the water bath vigorously boil so that temperature excursions are minimized.

  15. Suggested improvements to the standard filter paper assay used to measure cellulase activity.

    PubMed

    Coward-Kelly, Guillermo; Aiello-Mazzari, Cateryna; Kim, Sehoon; Granda, Cesar; Holtzapple, Mark

    2003-06-20

    Two suggestions can be found in the literature to improve the reproducibility of the Mandels' filter paper assay: add supplemental cellobiase and increase the boiling time for color development. Here we provide data that strongly supports adding supplemental cellobiase. Adding supplemental cellobiase increased assay response by 56%. Cellulases from different sources have different cellobiase activities, which would cause significant variation in the assay response. There is no need for additional boiling time-5 minutes is sufficient. For maximum reproducibility, it is essential that the water bath vigorously boil so that temperature excursions are minimized. PMID:12673775

  16. Heavy metal impurities impair the spectrophotometric assay of ribulose bisphosphate carboxylase activity.

    PubMed

    Walbot, V

    1977-01-01

    An inverse relationship between the concentration of ribose 5-phosphate and apparent ribulose bisphosphate carboxylase activity was observed. The Lilley-Walker assay spectrophotometric assay, in which the 3-phosphoglyceric acid-dependent oxidation of reduced pyridine nucleotide is measured, is shown to be highly sensitive to inhibition by heavy metals. Analysis of the purity of reagents showed that ribose 5-phosphate is often contaminated with lead in sufficient quantity to impair the assay. This noncompetitive inhibition by ribose 5-phosphate is independent of the competitive inhibition of this substrate as an ATP sink as described by Slabas and Walker. A method for checking reagent purity and removing heavy metal contaminants is described.

  17. Guanine-rich DNA-based peroxidase mimetics for colorimetric assays of alkaline phosphatase.

    PubMed

    Yang, Jinjin; Zheng, Lin; Wang, Yu; Li, Wei; Zhang, Jinli; Gu, Junjie; Fu, Yan

    2016-03-15

    DNA-based peroxidase mimetics are facilely constructed through Cu(II)-coordination with different oligonucleotides involving G20, C20, A20 and T20, respectively, with high peroxidase mimicking activity as well as high stability against proteins. Peroxidase-like activities of DNA-Cu(II) complexes are greatly associated with the sequence composition of DNA templates, which decrease in the following order: G20>C20>A20>T20. G20-Cu(II) complex ([Cu(2+)]/[base]=0.05) possesses the Km value of 0.257 mM toward 3,3',5,5'-tetramethylbenzidine and 102.3mM toward hydrogen peroxide at 25 °C. G20-Cu(II) complexes are employed to develop a colorimetric turn-on assay of alkaline phosphatase with high sensitivity and selectivity, on the basis of pyrophosphate-induced inhibition of their intrinsic peroxidase-like activities. The limit of detection is achieved as 0.84 U/L with the linear response region of 20-200 U/L. Such colorimetric assay system is probably applicable for the quantitative determination of ALP in biological fluids.

  18. Evaluation of the oxidase like activity of nanoceria and its application in colorimetric assays.

    PubMed

    Hayat, Akhtar; Cunningham, Jessica; Bulbul, Gonca; Andreescu, Silvana

    2015-07-23

    Nanomaterial-based enzyme mimics have attracted considerable interest in chemical analysis as alternative catalysts to natural enzymes. However, the conditions in which such particles can replace biological catalysts and their selectivity and reactivity profiles are not well defined. This work explored the oxidase like properties of nanoceria particles in the development of colorimetric assays for the detection of dopamine and catechol. Selectivity of the system with respect to several phenolic compounds, the effect of interferences and real sample analysis are discussed. The conditions of use such as buffer composition, selectivity, pH, reaction time and particle type are defined. Detection limits of 1.5 and 0.2μM were obtained with nanoceria for dopamine and catechol. The same assay could be used as a general sensing platform for the detection of other phenolics. However, the sensitivity of the method varies significantly with the particle type, buffer composition, pH and with the structure of the phenolic compound. The results demonstrate that nanoceria particles can be used for the development of cost effective and sensitive methods for the detection of these compounds. However, the selection of the particle system and experimental conditions is critical for achieving high sensitivity. Recommendations are provided on the selection of the particle system and reaction conditions to maximize the oxidase like activity of nanoceria. PMID:26231899

  19. High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria

    PubMed Central

    2016-01-01

    In order to identify the most attractive starting points for drugs that can be used to prevent malaria, a diverse chemical space comprising tens of thousands to millions of small molecules may need to be examined. Achieving this throughput necessitates the development of efficient ultra-high-throughput screening methods. Here, we report the development and evaluation of a luciferase-based phenotypic screen of malaria exoerythrocytic-stage parasites optimized for a 1536-well format. This assay uses the exoerythrocytic stage of the rodent malaria parasite, Plasmodium berghei, and a human hepatoma cell line. We use this assay to evaluate several biased and unbiased compound libraries, including two small sets of molecules (400 and 89 compounds, respectively) with known activity against malaria erythrocytic-stage parasites and a set of 9886 diversity-oriented synthesis (DOS)-derived compounds. Of the compounds screened, we obtain hit rates of 12–13 and 0.6% in preselected and naïve libraries, respectively, and identify 52 compounds with exoerythrocytic-stage activity less than 1 μM and having minimal host cell toxicity. Our data demonstrate the ability of this method to identify compounds known to have causal prophylactic activity in both human and animal models of malaria, as well as novel compounds, including some exclusively active against parasite exoerythrocytic stages. PMID:27275010

  20. A flow cytometry-based dopamine transporter binding assay using antagonist-conjugated quantum dots

    SciTech Connect

    Kovtun, Oleg; Ross, Emily; Tomlinson, Ian; Rosenthal, Sandra

    2012-01-01

    Here we present the development and validation of a flow cytometry-based dopamine transporter (DAT) binding assay that uses antagonist-conjugated quantum dots (QDs).We anticipate that our QD-based assay is of immediate value to the high throughput screening of novel DAT modulators.

  1. Comparison of non-magnetic and magnetic beads in bead-based assays.

    PubMed

    Hansenová Maňásková, Silvie; van Belkum, Alex; Endtz, Hubert P; Bikker, Floris J; Veerman, Enno C I; van Wamel, Willem J B

    2016-09-01

    Multiplex bead-based flow cytometry is an attractive way for simultaneous, rapid and cost-effective analysis of multiple analytes in a single sample. Previously, we developed various bead-based assays using non-magnetic beads coated with Staphylococcus aureus and Streptococcus pneumoniae antigens for the detection of antibodies. Here, we compared the performance of the assay using non-magnetic beads with one based on the newly developed magnetic beads. We optimized the magnetic beads' coupling procedure and antibody detection assays for S. aureus and S. pneumoniae antigens and we measured IgG in human pooled serum against a series of S. aureus and S. pneumoniae-derived antigens in a singleplex and in a multiplex assay, respectively. For the multiplex assay, the comparison between magnetic and non-magnetic beads showed: i) in the majority of the cases (13 of the 17 tested S. pneumoniae antigens) significantly higher Median Fluorescence Intensity (MFI) values, ii) lower detection limits, iii) lower coefficient of variation (CV: 12% vs. 7% for non-magnetic vs. magnetic beads), so lower inter-assay variation and hence higher reproducibility. Magnetic bead coupling is cost effective, as we used 25% of the normal amount of antigen and only 50% of the beads in comparison to the non-magnetic beads. This optimized magnetic-based assay, which combines ease of use with an improved assay performance, allows detection of antibodies with a low titer that are potentially missed with the non-magnetic-based assay. PMID:27296810

  2. Development of a fluorescence anisotropy-based assay for Dop, the first enzyme in the pupylation pathway.

    PubMed

    Hecht, Nir; Gur, Eyal

    2015-09-15

    The Pup-proteasome system (PPS) carries out regulated tagging and degradation of proteins in bacterial species belonging to the phyla Actinobacteria and Nitrospira. In the pathogen Mycobacterium tuberculosis, where this proteolytic pathway was initially discovered, PPS enzymes are essential for full virulence and persistence in the mammalian host. As such, PPS enzymes are potential targets for development of antituberculosis therapeutics. Such development often requires sensitive and robust assays for measurements of enzymatic activities and the effect of examined inhibitors. Here, we describe the development of an in vitro activity assay for Dop, the first enzyme in the PPS. Based on fluorescence anisotropy measurements, this assay is simple, sensitive, and compatible with a high-throughput format for screening purposes. We demonstrate how this assay can also be reliably and conveniently used for detailed kinetic measurements of Dop activity. As such, this assay is of value for basic research into Dop and the PPS. Finally, we show that the assay developed here primarily for the mycobacterial Dop can be readily employed with other Dop enzymes, using the same simple protocol. PMID:26095396

  3. A high-throughput assay of NK cell activity in whole blood and its clinical application

    SciTech Connect

    Lee, Saet-byul; Cha, Junhoe; Kim, Im-kyung; Yoon, Joo Chun; Lee, Hyo Joon; Park, Sang Woo; Cho, Sunjung; Youn, Dong-Ye; Lee, Heyja; Lee, Choong Hwan; Lee, Jae Myun; Lee, Kang Young; Kim, Jongsun

    2014-03-14

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as {sup 51}Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer.

  4. Detection of Dengue Viral RNA Using a Nucleic Acid Sequence-Based Amplification Assay

    PubMed Central

    Wu, Shuenn-Jue L.; Lee, Eun Mi; Putvatana, Ravithat; Shurtliff, Roxanne N.; Porter, Kevin R.; Suharyono, Wuryadi; Watts, Douglas M.; King, Chwan-Chuen; Murphy, Gerald S.; Hayes, Curtis G.; Romano, Joseph W.

    2001-01-01

    Faster techniques are needed for the early diagnosis of dengue fever and dengue hemorrhagic fever during the acute viremic phase of infection. An isothermal nucleic acid sequence-based amplification (NASBA) assay was optimized to amplify viral RNA of all four dengue virus serotypes by a set of universal primers and to type the amplified products by serotype-specific capture probes. The NASBA assay involved the use of silica to extract viral nucleic acid, which was amplified without thermocycling. The amplified product was detected by a probe-hybridization method that utilized electrochemiluminescence. Using normal human plasma spiked with dengue viruses, the NASBA assay had a detection threshold of 1 to 10 PFU/ml. The sensitivity and specificity of the assay were determined by testing 67 dengue virus-positive and 21 dengue virus-negative human serum or plasma samples. The “gold standard” used for comparison and evaluation was the mosquito C6/36 cell culture assay followed by an immunofluorescent assay. Viral infectivity titers in test samples were also determined by a direct plaque assay in Vero cells. The NASBA assay was able to detect dengue viral RNA in the clinical samples at plaque titers below 25 PFU/ml (the detection limit of the plaque assay). Of the 67 samples found positive by the C6/36 assay, 66 were found positive by the NASBA assay, for a sensitivity of 98.5%. The NASBA assay had a specificity of 100% based on the negative test results for the 21 normal human serum or plasma samples. These results indicate that the NASBA assay is a promising assay for the early diagnosis of dengue infections. PMID:11473994

  5. A zebrafish scale assay to monitor dioxin-like activity in surface water samples.

    PubMed

    Pelayo, Sergi; López-Roldán, Ramón; González, Susana; Casado, Marta; Raldúa, Demetrio; Cortina, Jose Luis; Piña, Benjamin

    2011-10-01

    New regulations on water quality require a close control of the possible biological activities known or unexpected pollutants may bring about. We present here a protocol based on the direct exposure of zebrafish to river water and the analysis of expression of specific genes in their scales to determine the presence of compounds with dioxin-like biological activity. The method does not require the killing of animals and allows detection of the biological activity after a single day of exposure. When tested, the method with real samples from the Llobregat River, clear temporal and spatial variations were observed, demonstrating its suitability for monitoring natural variations in water quality linked to specific discharges. High biological activities were unrelated to the currently checked water quality parameters (macropollutants, turbidity, TOC, etc.), but they did correlate with the presence of micropollutants (estrogens, detergents, etc.) related to domestic and/or industrial runoffs. The scale assay therefore provides a new tool to evaluate water quality changes that cannot be easily derived from the existing standard analytical procedures. It ranks among the very few described protocols able to detect biological effects from natural water samples, without a pre-concentration step, and after only 24 h of exposure. PMID:21822775

  6. A sensitive, rapid and inexpensive way to assay pesticide toxicity based on electrochemical biosensor.

    PubMed

    Yong, Daming; Liu, Chang; Yu, Dengbin; Dong, Shaojun

    2011-03-15

    We reported a rapid toxicity assay method using electrochemical biosensor for pesticides, Escherichia coli (E. coli) was taken as a model microorganism for test. In this method, we adopted ferricyanide instead of natural electron acceptor O(2), and then microbial oxidation was substantially accelerated. Toxicity assays measured the effect of toxic materials on the metabolic activity of microorganisms. The current signal of ferrocyanide produced from the metabolism was proven to be directly related to the toxicity, which could be amplified by ultramicroelectrode array (UMEA). The ratio of the electrochemical signals, recorded in the presence and absence of toxin, provided an index of inhibition. Accordingly, a direct toxicity assessment (DTA) based on chronoamperometry was proposed to detect the effect of toxic chemicals on microorganisms. 3,5-Dichlorophenol (DCP) was taken as the reference toxicant, its IC50 was estimated to be 8.0mg/L. Three pesticides were examined using this method. IC50 values of 6.5mg/L for Ametryn, 22 mg/L for Fenamiphos and 5.7 mg/L for Endosulfan were determined and in line with EC50 values reported in the literature. Atomic force microscopy (AFM) was also used for morphology characterization of E. coli induced by three pesticides. These results confirmed the present electrochemical method used is reliable. In addition, the electrochemical method is a sensitive, rapid and inexpensive way for toxicity assays of pesticides. PMID:21315890

  7. Identification of heme oxygenase-1 stimulators by a convenient ELISA-based bilirubin quantification assay.

    PubMed

    Rücker, Hannelore; Amslinger, Sabine

    2015-01-01

    The upregulation of heme oxygenase-1 (HO-1) has proven to be a useful tool for fighting inflammation. In order to identify new HO-1 inducers, an efficient screening method was developed which can provide new lead structures for drug research. We designed a simple ELISA-based HO-1 enzyme activity assay, which allows for the screening of 12 compounds in parallel in the setting of a 96-well plate. The well-established murine macrophage cell line RAW264.7 is used and only about 26µg of protein from whole cell lysates is needed for the analysis of HO-1 activity. The quantification of HO-1 activity is based on an indirect ELISA using the specific anti-bilirubin antibody 24G7 to quantify directly bilirubin in the whole cell lysate, applying a horseradish peroxidase-tagged antibody together with ortho-phenylenediamine and H2O2 for detection. The bilirubin is produced on the action of HO enzymes by converting their substrate heme to biliverdin and additional recombinant biliverdin reductase together with NADPH at pH 7.4 in buffer. This sensitive assay allows for the detection of 0.57-82pmol bilirubin per sample in whole cell lysates. Twenty-three small molecules, mainly natural products with an α,β-unsaturated carbonyl unit such as polyphenols, including flavonoids and chalcones, terpenes, an isothiocyanate, and the drug oltipraz were tested at typically 6 or 24h incubation with RAW264.7 cells. The activity of known HO-1 inducers was confirmed, while the chalcones cardamonin, flavokawain A, calythropsin, 2',3,4'-trihydroxy-4-methoxychalcone (THMC), and 2',4'-dihydroxy-3,4-dimethoxychalcone (DHDMC) were identified as new potent HO-1 inducers. The highest inductive power after 6h incubation was found at 10µM for DHDMC (6.1-fold), carnosol (3.9-fold), butein (3.1-fold), THMC (2.9-fold), and zerumbone (2.5-fold). Moreover, the time dependence of HO-1 protein production for DHDMC was compared to its enzyme activity, which was further evaluated in the presence of

  8. A versatile assay for the identification of RNA silencing suppressors based on complementation of viral movement.

    PubMed

    Powers, Jason G; Sit, Tim L; Qu, Feng; Morris, T Jack; Kim, Kook-Hyung; Lommel, Steven A

    2008-07-01

    The cell-to-cell movement of Turnip crinkle virus (TCV) in Nicotiana benthamiana requires the presence of its coat protein (CP), a known suppressor of RNA silencing. RNA transcripts of a TCV construct containing a reporter gene (green fluorescent protein) (TCV-sGFP) in place of the CP open reading frame generated foci of three to five cells. TCV CP delivered in trans by Agrobacterium tumefaciens infiltration potentiated movement of TCV-sGFP and increased foci diameter, on average, by a factor of four. Deletion of the TCV movement proteins in TCV-sGFP (construct TCVDelta92-sGFP) abolished the movement complementation ability of TCV CP. Other known suppressors of RNA silencing from a wide spectrum of viruses also complemented the movement of TCV-sGFP when delivered in trans by Agrobacterium tumefaciens. These include suppressors from nonplant viruses with no known plant movement function, demonstrating that this assay is based solely on RNA silencing suppression. While the TCV-sGFP construct is primarily used as an infectious RNA transcript, it was also subcloned for direct expression from Agrobacterium tumefaciens for simple quantification of suppressor activity based on fluorescence levels in whole leaves. Thus, this system provides the flexibility to assay for suppressor activity in either the cytoplasm or nucleus, depending on the construct employed. PMID:18533829

  9. A versatile assay for the identification of RNA silencing suppressors based on complementation of viral movement.

    PubMed

    Powers, Jason G; Sit, Tim L; Qu, Feng; Morris, T Jack; Kim, Kook-Hyung; Lommel, Steven A

    2008-07-01

    The cell-to-cell movement of Turnip crinkle virus (TCV) in Nicotiana benthamiana requires the presence of its coat protein (CP), a known suppressor of RNA silencing. RNA transcripts of a TCV construct containing a reporter gene (green fluorescent protein) (TCV-sGFP) in place of the CP open reading frame generated foci of three to five cells. TCV CP delivered in trans by Agrobacterium tumefaciens infiltration potentiated movement of TCV-sGFP and increased foci diameter, on average, by a factor of four. Deletion of the TCV movement proteins in TCV-sGFP (construct TCVDelta92-sGFP) abolished the movement complementation ability of TCV CP. Other known suppressors of RNA silencing from a wide spectrum of viruses also complemented the movement of TCV-sGFP when delivered in trans by Agrobacterium tumefaciens. These include suppressors from nonplant viruses with no known plant movement function, demonstrating that this assay is based solely on RNA silencing suppression. While the TCV-sGFP construct is primarily used as an infectious RNA transcript, it was also subcloned for direct expression from Agrobacterium tumefaciens for simple quantification of suppressor activity based on fluorescence levels in whole leaves. Thus, this system provides the flexibility to assay for suppressor activity in either the cytoplasm or nucleus, depending on the construct employed.

  10. Improved sensitivity of an acid sphingomyelinase activity assay using a C6:0 sphingomyelin substrate.

    PubMed

    Chuang, Wei-Lien; Pacheco, Joshua; Cooper, Samantha; Kingsbury, Jonathan S; Hinds, John; Wolf, Pavlina; Oliva, Petra; Keutzer, Joan; Cox, Gerald F; Zhang, Kate

    2015-06-01

    Short-chain C6-sphingomyelin is an artificial substrate that was used in an acid sphingomyelinase activity assay for a pilot screening study of patients with Niemann-Pick disease types A and B. Using previously published multiplex and single assay conditions, normal acid sphingomyelinase activity levels (i.e. false negative results) were observed in two sisters with Niemann-Pick B who were compound heterozygotes for two missense mutations, p.C92W and p.P184L, in the SMPD1 gene. Increasing the sodium taurocholate detergent concentration in the assay buffer lowered the activity levels of these two patients into the range observed with other patients with clear separation from normal controls. PMID:26937397

  11. Activities of the OECD/NEA Expert Group on Assay Data for Spent Nuclear Fuel

    SciTech Connect

    Gauld, Ian C; Rugama, Yolanda

    2009-01-01

    Management of spent nuclear fuel is a key issue for many NEA member countries. In nuclear criticality safety, the decision of many countries to advance burnup credit as part of their licensing strategy has heightened recent interest in experimental data needed to validate computer codes used in burnup credit calculations. This paper discusses recent activities of an Expert Group on assay data, formed under the OECD/NEA/NSC/WPNCS (Working Party on Nuclear Criticality Safety) to help coordinate isotopic assay data activities and facilitate international collaboration between NEA member countries developing or implementing burnup credit methodologies. Recent activities of the Expert Group are described, focusing on the planned expansion of the Spent Fuel Isotopic Composition Database (SFCOMPO), and preparation of a state-of-the-art report on assay data that includes sections on recommended radiochemical analysis methods, techniques, and lessons learned from previous experiments.

  12. A modified ferrous oxidation-xylenol orange assay for lipoxygenase activity in rice grains.

    PubMed

    Timabud, Tarinee; Sanitchon, Jirawat; Pongdontri, Paweena

    2013-12-01

    Ferrous oxidation-xylenol orange assay reagent was reformulated by using spectral analysis of ferric-xylenol orange complex to detect low concentrations of lipoxygenase rice grain products. Reducing the levels of ferrous sulphate and xylenol orange in the FOX reagent enabled the detection of low concentrations of hydroperoxy fatty acid derived from lipoxygenase activity in the range of 0.1-1.5 μM. Protein, substrate and time courses of the modified FOX assay were studied to determine lipoxygenase activity in rice grain. The assay was also applicable as a high throughput technique for comparisons of lipoxygenase activity from various rice varieties. This has important implications for rapid screening for low-lipoxygenase containing rice cultivars in rice breeding program and grain quality during storage.

  13. Comparison of bee products based on assays of antioxidant capacities

    PubMed Central

    Nakajima, Yoshimi; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Mishima, Satoshi; Hara, Hideaki

    2009-01-01

    Background Bee products (including propolis, royal jelly, and bee pollen) are popular, traditional health foods. We compared antioxidant effects among water and ethanol extracts of Brazilian green propolis (WEP or EEP), its main constituents, water-soluble royal jelly (RJ), and an ethanol extract of bee pollen. Methods The hydrogen peroxide (H2O2)-, superoxide anion (O2·-)-, and hydroxyl radical (HO·)- scavenging capacities of bee products were measured using antioxidant capacity assays that employed the reactive oxygen species (ROS)-sensitive probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) or aminophenyl fluorescein (APF). Results The rank order of antioxidant potencies was as follows: WEP > EEP > pollen, but neither RJ nor 10-hydroxy-2-decenoic acid (10-HDA) had any effects. Concerning the main constituents of WEP, the rank order of antioxidant effects was: caffeic acid > artepillin C > drupanin, but neither baccharin nor coumaric acid had any effects. The scavenging effects of caffeic acid were as powerful as those of trolox, but stronger than those of N-acetyl cysteine (NAC) or vitamin C. Conclusion On the basis of the present assays, propolis is the most powerful antioxidant of all the bee product examined, and its effect may be partly due to the various caffeic acids it contains. Pollen, too, exhibited strong antioxidant effects. PMID:19243635

  14. Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay.

    PubMed

    Sun, Yiyi; Zang, Zhihe; Zhong, Ling; Wu, Min; Su, Qing; Gao, Xiurong; Zan, Wang; Lin, Dong; Zhao, Yan; Zhang, Zhonglin

    2013-01-01

    Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (-)-arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases. PMID:23691032

  15. MTS dye based colorimetric CTLL-2 cell proliferation assay for product release and stability monitoring of interleukin-15: assay qualification, standardization and statistical analysis.

    PubMed

    Soman, Gopalan; Yang, Xiaoyi; Jiang, Hengguang; Giardina, Steve; Vyas, Vinay; Mitra, George; Yovandich, Jason; Creekmore, Stephen P; Waldmann, Thomas A; Quiñones, Octavio; Alvord, W Gregory

    2009-08-31

    A colorimetric cell proliferation assay using soluble tetrazolium salt [(CellTiter 96(R) Aqueous One Solution) cell proliferation reagent, containing the (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) and an electron coupling reagent phenazine ethosulfate], was optimized and qualified for quantitative determination of IL-15 dependent CTLL-2 cell proliferation activity. An in-house recombinant Human (rHu)IL-15 reference lot was standardized (IU/mg) against an international reference standard. Specificity of the assay for IL-15 was documented by illustrating the ability of neutralizing anti-IL-15 antibodies to block the product specific CTLL-2 cell proliferation and the lack of blocking effect with anti-IL-2 antibodies. Under the defined assay conditions, the linear dose-response concentration range was between 0.04 and 0.17ng/ml of the rHuIL-15 produced in-house and 0.5-3.0IU/ml for the international standard. Statistical analysis of the data was performed with the use of scripts written in the R Statistical Language and Environment utilizing a four-parameter logistic regression fit analysis procedure. The overall variation in the ED(50) values for the in-house reference standard from 55 independent estimates performed over the period of 1year was 12.3% of the average. Excellent intra-plate and within-day/inter-plate consistency was observed for all four parameter estimates in the model. Different preparations of rHuIL-15 showed excellent intra-plate consistency in the parameter estimates corresponding to the lower and upper asymptotes as well as to the 'slope' factor at the mid-point. The ED(50) values showed statistically significant differences for different lots and for control versus stressed samples. Three R-scripts improve data analysis capabilities allowing one to describe assay variations, to draw inferences between data sets from formal statistical tests, and to set up improved assay acceptance

  16. Accuracy of the Fluorescence-Activated Cell Sorting Assay for the Aquaporin-4 Antibody (AQP4-Ab): Comparison with the Commercial AQP4-Ab Assay Kit

    PubMed Central

    Kim, Yoo-Jin; Cheon, So Young; Kim, Boram; Jung, Kyeong Cheon; Park, Kyung Seok

    2016-01-01

    Background The aquaporin-4 antibody (AQP4-Ab) is a disease-specific autoantibody to neuromyelitis optica (NMO). We aimed to evaluate the accuracy of the FACS assay in detecting the AQP4-Ab compared with the commercial cell-based assay (C-CBA) kit. Methods Human embryonic kidney-293 cells were transfected with human aquaporin-4 (M23) cDNA. The optimal cut off values of FACS assay was tested using 1123 serum samples from patients with clinically definite NMO, those at high risk for NMO, patients with multiple sclerosis, patients with other idiopathic inflammatory demyelinating diseases, and negative controls. The accuracy of FACS assay and C-CBA were compared in consecutive 225 samples that were collected between January 2014 and June 2014. Results With a cut-off value of MFIi of 3.5 and MFIr of 2.0, the receiver operating characteristic curve for the FACS assay showed an area under the curve of 0.876. Among 225 consecutive sera, the FACS assay and C-CBA had a sensitivity of 77.3% and 69.7%, respectively, in differentiating the sera of definite NMO patients from sera of controls without IDD or of MS. Both assay had a good specificity of 100% in it. The overall positivity of the C-CBA among FACS-positive sera was 81.5%; moreover, its positivity was low as 50% among FACS-positive sera with relatively low MFIis. Conclusions Both the FACS assay and C-CBA are sensitive and highly specific assays in detecting AQP4-Ab. However, in some sera with relatively low antibody titer, FACS-assay can be a more sensitive assay option. In real practice, complementary use of FACS assay and C-CBA will benefit the diagnosis of NMO patients, because the former can be more sensitive among low titer sera and the latter are easier to use therefore can be widely used. PMID:27658059

  17. Development of a spontaneously active dorsal root ganglia assay using multiwell multielectrode arrays.

    PubMed

    Newberry, Kim; Wang, Shuya; Hoque, Nina; Kiss, Laszlo; Ahlijanian, Michael K; Herrington, James; Graef, John D

    2016-06-01

    In vitro phenotypic assays of sensory neuron activity are important tools for identifying potential analgesic compounds. These assays are typically characterized by hyperexcitable and/or abnormally, spontaneously active cells. Whereas manual electrophysiology experiments provide high-resolution biophysical data to characterize both in vitro models and potential therapeutic modalities (e.g., action potential characteristics, the role of specific ion channels, and receptors), these techniques are hampered by their low throughput. We have established a spontaneously active dorsal root ganglia (DRG) platform using multiwell multielectrode arrays (MEAs) that greatly increase the ability to evaluate the effects of multiple compounds and conditions on DRG excitability within the context of a cellular network. We show that spontaneous DRG firing can be attenuated with selective Na(+) and Ca(2+) channel blockers, as well as enhanced with K(+) channel blockers. In addition, spontaneous activity can be augmented with both the transient receptor potential cation channel subfamily V member 1 agonist capsaicin and the peptide bradykinin and completely blocked with neurokinin receptor antagonists. Finally, we validated the use of this assay by demonstrating that commonly used neuropathic pain therapeutics suppress DRG spontaneous activity. Overall, we have optimized primary rat DRG cells on a multiwell MEA platform to generate and characterize spontaneously active cultures that have the potential to be used as an in vitro phenotypic assay to evaluate potential therapeutics in rodent models of pain. PMID:27052585

  18. Development of APE1 enzymatic DNA repair assays: low APE1 activity is associated with increase lung cancer risk.

    PubMed

    Sevilya, Ziv; Leitner-Dagan, Yael; Pinchev, Mila; Kremer, Ran; Elinger, Dalia; Lejbkowicz, Flavio; Rennert, Hedy S; Freedman, Laurence S; Rennert, Gad; Paz-Elizur, Tamar; Livneh, Zvi

    2015-09-01

    The key role of DNA repair in removing DNA damage and minimizing mutations makes it an attractive target for cancer risk assessment and prevention. Here we describe the development of a robust assay for apurinic/apyrimidinic (AP) endonuclease 1 (APE1; APEX1), an essential enzyme involved in the repair of oxidative DNA damage. APE1 DNA repair enzymatic activity was measured in peripheral blood mononuclear cell protein extracts using a radioactivity-based assay, and its association with lung cancer was determined using conditional logistic regression with specimens from a population-based case-control study with 96 lung cancer cases and 96 matched control subjects. The mean APE1 enzyme activity in case patients was 691 [95% confidence interval (CI) = 655-727] units/ng protein, significantly lower than in control subjects (mean = 793, 95% CI = 751-834 units/ng protein, P = 0.0006). The adjusted odds ratio for lung cancer associated with 1 SD (211 units) decrease in APE1 activity was 2.0 (95% CI = 1.3-3.1; P = 0.002). Comparison of radioactivity- and fluorescence-based assays showed that the two are equivalent, indicating no interference by the fluorescent tag. The APE1Asp148Glu SNP was associated neither with APE1 enzyme activity nor with lung cancer risk. Taken together, our results indicate that low APE1 activity is associated with lung cancer risk, consistent with the hypothesis that 'bad DNA repair', rather than 'bad luck', is involved in cancer etiology. Such assays may be useful, along with additional DNA repair biomarkers, for risk assessment of lung cancer and perhaps other cancers, and for selecting individuals to undergo early detection techniques such as low-dose CT.

  19. Cell migration in confinement: a micro-channel-based assay.

    PubMed

    Heuzé, Mélina L; Collin, Olivier; Terriac, Emmanuel; Lennon-Duménil, Ana-Maria; Piel, Matthieu

    2011-01-01

    This chapter describes a method to study cells migrating in micro-channels, a confining environment of well-defined geometry. This assay is a complement to more complex 3D migration systems and provides several advantages even if it does not recapitulate the full complexity of 3D migration. Important parameters such as degree of adhesion, degree of confinement, mechanical properties, and geometry can be varied independently of each other. The device is fully compatible with almost any type of light microscopy and the simple geometry makes automated analysis very easy to perform, which allows screening strategy. The chapters is divided into five parts describing the design of different types of migration chambers, the fabrication of a mold by photolithography, the assembly of the chamber, the loading of cells, and finally the imaging on live or fixed cells. PMID:21748692

  20. Enzyme assays using sensor arrays based on ion-selective carbon nanotube field-effect transistors.

    PubMed

    Melzer, K; Bhatt, V Deep; Jaworska, E; Mittermeier, R; Maksymiuk, K; Michalska, A; Lugli, P

    2016-10-15

    In the fields of clinical diagnostics and point-of-care diagnosis as well as food and environmental monitoring there is a high demand for reliable high-throughput, rapid and highly sensitive assays for a simultaneous detection of several analytes in complex and low-volume samples. Sensor platforms based on solution-processable electrolyte-gated carbon nanotube field-effect transistors (CNT-FETs) are a simple and cost-effective alternative for conventional assays. In this work we demonstrate a selective as well as direct detection of the products of an enzyme-substrate interaction, here the for metabolic processes important urea-urease system, with sensors based on spray-coated CNT-FETs. The selective and direct detection is achieved by immobilizing the enzyme urease via certain surface functionalization techniques on the sensor surface and further modifying the active interfaces with polymeric ion-selective membranes as well as pH-sensitive layers. Thereby, we can avoid the generally applied approach for a field-effect based detection of enzyme reactions via detecting changes in the pH value due to an on-going enzymatic reaction and directly detect selectively the products of the enzymatic conversion. Thus, we can realize a buffering-capacity independent monitoring of changes in the substrate concentration. PMID:27140308

  1. Enzyme assays using sensor arrays based on ion-selective carbon nanotube field-effect transistors.

    PubMed

    Melzer, K; Bhatt, V Deep; Jaworska, E; Mittermeier, R; Maksymiuk, K; Michalska, A; Lugli, P

    2016-10-15

    In the fields of clinical diagnostics and point-of-care diagnosis as well as food and environmental monitoring there is a high demand for reliable high-throughput, rapid and highly sensitive assays for a simultaneous detection of several analytes in complex and low-volume samples. Sensor platforms based on solution-processable electrolyte-gated carbon nanotube field-effect transistors (CNT-FETs) are a simple and cost-effective alternative for conventional assays. In this work we demonstrate a selective as well as direct detection of the products of an enzyme-substrate interaction, here the for metabolic processes important urea-urease system, with sensors based on spray-coated CNT-FETs. The selective and direct detection is achieved by immobilizing the enzyme urease via certain surface functionalization techniques on the sensor surface and further modifying the active interfaces with polymeric ion-selective membranes as well as pH-sensitive layers. Thereby, we can avoid the generally applied approach for a field-effect based detection of enzyme reactions via detecting changes in the pH value due to an on-going enzymatic reaction and directly detect selectively the products of the enzymatic conversion. Thus, we can realize a buffering-capacity independent monitoring of changes in the substrate concentration.

  2. Cell-Based Assay for Identifying the Modulators of Antioxidant Response Element Signaling Pathway.

    PubMed

    Zhao, Jinghua; Shukla, Sunita J; Xia, Menghang

    2016-01-01

    The antioxidant response element (ARE) signaling pathway plays an important role in the amelioration of cellular oxidative stress. Thus, assays that detect this pathway can be useful for identifying chemicals that induce or inhibit oxidative stress signaling. The focus of this chapter is to describe a cell-based ARE assay in a quantitative high-throughput screening (qHTS) format to test a large collection of compounds that induce nuclear factor erythroid 2-related factor (Nrf2)/ARE signaling. The assay is described through cell handling, assay preparation, and instrument usage. PMID:27518623

  3. A competitive and reversible deactivation approach to catalysis-based quantitative assays

    PubMed Central

    Koide, Kazunori; Tracey, Matthew P.; Bu, Xiaodong; Jo, Junyong; Williams, Michael J.; Welch, Christopher J.

    2016-01-01

    Catalysis-based signal amplification makes optical assays highly sensitive and widely useful in chemical and biochemical research. However, assays must be fine-tuned to avoid signal saturation, substrate depletion and nonlinear performance. Furthermore, once stopped, such assays cannot be restarted, limiting the dynamic range to two orders of magnitude with respect to analyte concentrations. In addition, abundant analytes are difficult to quantify under catalytic conditions due to rapid signal saturation. Herein, we report an approach in which a catalytic reaction competes with a concomitant inactivation of the catalyst or consumption of a reagent required for signal generation. As such, signal generation proceeds for a limited time, then autonomously and reversibly stalls. In two catalysis-based assays, we demonstrate restarting autonomously stalled reactions, enabling accurate measurement over five orders of magnitude, including analyte levels above substrate concentration. This indicates that the dynamic range of catalysis-based assays can be significantly broadened through competitive and reversible deactivation. PMID:26891765

  4. Modulating temporal control of NF-kappaB activation: implications for therapeutic and assay selection.

    PubMed

    Klinke, David J; Ustyugova, Irina V; Brundage, Kathleen M; Barnett, John B

    2008-06-01

    The activation of transcription factor NF-kappaB (nuclear factor-kappaB) plays a central role in the induction of many inflammatory response genes. This process is characterized by either oscillations or stable induction of NF-kappaB nuclear binding. Changes in dynamics of binding result in the expression of distinct subsets of genes leading to different physiological outcomes. We examined NF-kappaB DNA binding activity in lipopolysaccharide (LPS)-stimulated IC-21 cells by electromobility shift assay and nonradioactive transcription factor assay and interpreted the results using a kinetic model of NF-kappaB activation. Both assays detected damped oscillatory behavior of NF-kappaB with differences in sensitivity and reproducibility. 3,4-Dichloropropionaniline (DCPA) was used to modulate the oscillatory behavior of NF-kappaB after LPS stimulation. DCPA is known to inhibit the production of two NF-kappaB-inducible cytokines, IL-6 and tumor necrosis factor alpha, by reducing but not completely abrogating NF-kappaB-induced transcription. DCPA treatment resulted in a potentiation of early LPS-induced NF-kappaB activation. The nonradioactive transcription factor assay, which has a higher signal/noise ratio than the electromobility shift assay, combined with in silico modeling, produced results that revealed changes in NF-kappaB dynamics which, to the best of our knowledge, have never been previously reported. These results highlight the importance of cell type and stimulus specificity in transcription factor activity assessment. In addition, assay selection has important implications for network inference and drug discovery. PMID:18281385

  5. Modulating Temporal Control of NF-κB Activation: Implications for Therapeutic and Assay Selection

    PubMed Central

    Klinke, David J.; Ustyugova, Irina V.; Brundage, Kathleen M.; Barnett, John B.

    2008-01-01

    The activation of transcription factor NF-κB (nuclear factor-κB) plays a central role in the induction of many inflammatory response genes. This process is characterized by either oscillations or stable induction of NF-κB nuclear binding. Changes in dynamics of binding result in the expression of distinct subsets of genes leading to different physiological outcomes. We examined NF-κB DNA binding activity in lipopolysaccharide (LPS)-stimulated IC-21 cells by electromobility shift assay and nonradioactive transcription factor assay and interpreted the results using a kinetic model of NF-κB activation. Both assays detected damped oscillatory behavior of NF-κB with differences in sensitivity and reproducibility. 3,4-Dichloropropionaniline (DCPA) was used to modulate the oscillatory behavior of NF-κB after LPS stimulation. DCPA is known to inhibit the production of two NF-κB-inducible cytokines, IL-6 and tumor necrosis factor α, by reducing but not completely abrogating NF-κB-induced transcription. DCPA treatment resulted in a potentiation of early LPS-induced NF-κB activation. The nonradioactive transcription factor assay, which has a higher signal/noise ratio than the electromobility shift assay, combined with in silico modeling, produced results that revealed changes in NF-κB dynamics which, to the best of our knowledge, have never been previously reported. These results highlight the importance of cell type and stimulus specificity in transcription factor activity assessment. In addition, assay selection has important implications for network inference and drug discovery. PMID:18281385

  6. A protein chip membrane-capture assay for botulinum neurotoxin activity

    SciTech Connect

    Marconi, Severine; Ferracci, Geraldine; Berthomieu, Maelys; Kozaki, Shunji; Miquelis, Raymond; Boucraut, Jose; Seagar, Michael

    2008-12-15

    Botulinum neurotoxins A and B (BoNT/A and B) are neuromuscular blocking agents which inhibit neurotransmission by cleaving the intra-cellular presynaptic SNARE proteins SNAP-25 and VAMP2, localized respectively in plasma membrane and synaptic vesicles. These neurotoxins are both dangerous pathogens and powerful therapeutic agents with numerous clinical and cosmetic applications. Consequently there is a need for in vitro assays of their biological activity to screen for potential inhibitors and to replace the widely used in vivo mouse assay. Surface plasmon resonance (SPR) was used to measure membrane vesicle capture by antibodies against SNAP-25 and VAMP2. Substrate cleavage by BoNTs modified capture providing a method to assay toxin activity. Firstly using synaptic vesicles as a substrate, a comparison of the EC{sub 50}s for BoNT/B obtained by SPR, ELISA or flow cytometry indicated similar sensitivity although SPR assays were more rapid. Sonication of brain or neuronal cultures generated plasma membrane fragments with accessible intra-cellular epitopes adapted to measurement of BoNT/A activity. SPR responses were proportional to antigen concentration permitting detection of as little as 4 pM SNAP-25 in crude lysates. BoNT/A activity was assayed using monoclonal antibodies that specifically recognize a SNAP-25 epitope generated by the proteolytic action of the toxin. Incubation of intact primary cultured neurons with BoNT/A yielded an EC{sub 50} of 0.5 pM. The SPR biosensor method was sensitive enough to monitor BoNT/A and B activity in cells cultured in a 96-well format providing an alternative to experimental animals for toxicological assays.

  7. A facile low-cost enzymatic paper-based assay for the determination of urine creatinine.

    PubMed

    Talalak, Kwanrutai; Noiphung, Julaluk; Songjaroen, Temsiri; Chailapakul, Orawon; Laiwattanapaisal, Wanida

    2015-11-01

    Creatinine is one of many markers used to investigate kidney function. This paper describes a low-cost enzymatic paper-based analytical device (enz-PAD) for determining urine creatinine. The disposable dead volumes of creatinine enzyme reagents from an automatic analyser cassette were utilised. Whatman No. 3 paper was cut into long rectangular shapes (4×40 mm(2)) on which the enzyme reagents, R1 and R2, were adsorbed in two consecutive regions. The assay was performed by immersing test strips into urine samples contained in microwells to allow creatinine in the sample to react with immobilised active ingredients and, then, traverse via capillary action to the detection area where chromogen products accumulated. The method is based on hydrogen peroxide (H2O2) formation via creatinine conversion using creatininase, creatinase, and sarcosine oxidase. The liberated H2O2 reacts with 4-aminophenazone and 2,4,6-triiodo-3-hydroxybenzoic acid to form quinoneimine with a pink-red colour at the detection zone. The linear range of the creatinine assay was 2.5-25 mg dL(-1) (r(2)=0.983), and the detection limit was 2.0 mg dL(-1). The colorimetric enz-PAD for the creatinine assay was highly correlated with a conventional alkaline picrate method when real urine samples were evaluated (r(2)=0.977; n=40). This simple and nearly zero-cost paper-based device provides a novel alternative method for screening urinary creatinine and will be highly beneficial for developing countries.

  8. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY RADIATION, CHEMICAL MUTAGENS AND ENZYMES

    EPA Science Inventory

    A simple and rapid assay to detect DNA damage is reported. This novel assay is based on changes in melting/annealing behavior and facilitated using certain dyes that increase their fluorescence upon association with double stranded (ds)DNA. Damage caused by ultraviolet (UV) ra...

  9. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY STYRENE OXIDE

    EPA Science Inventory

    A rapid and simple assay to detect DNA damage to calf thymus DNA caused by styrene oxide (SO) is reported. This assay is based on changes observed in the melting and annealing behavior of the damaged DNA. The melting annealing process was monitored using a fluorescence indicat...

  10. Opportunities for bead-based multiplex assays in veterinary diagnostic laboratories

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bead based multiplex assays (BBMA) also referred to as Luminex, MultiAnalyte Profiling or cytometric bead array (CBA) assays, are applicable for high throughput, simultaneous detection of multiple analytes in solution (from several, up to 50-500 analytes within a single, small sample volume). Curren...

  11. Ex vivo effects of low-dose rivaroxaban on specific coagulation assays and coagulation factor activities in patients under real life conditions.

    PubMed

    Mani, Helen; Hesse, Christian; Stratmann, Gertrud; Lindhoff-Last, Edelgard

    2013-01-01

    Global coagulation assays display variable effects at different concentrations of rivaroxaban. The aim of this study is to quantify the ex vivo effects of low-dose rivaroxaban on thrombophilia screening assays and coagulation factor activities based on the administration time, and to show how to mask possible interferences. Plasma samples from 40 patients receiving rivaroxaban 10 mg daily were investigated to measure activities of clotting factor II, V, VII, VIII, IX, XI, XII and XIII; protein C- and protein S-levels; lupus anticoagulants; anticardiolipin IgG and IgM; D-dimer, heparin-platelet factor 4 (HPF4) antibodies and screening tests for von Willebrand disease (VWD). Two hours after rivaroxaban administration, the activities of clotting factors were significantly decreased to different extents, except for factor XIII. Dilution of plasma samples resulted in neutralisation of these interferences. The chromogenic protein C activity assay was not affected by rivaroxaban. Depending on the timing of tablet intake in relation to blood sampling protein S activity was measured falsely high when a clotting assay was used. False-positive results for lupus anticoagulants were observed depending on the assay system used and the administration time of rivaroxaban. ELISA-based assays such as anticardiolipin IgG and IgM, D-dimer, HPF4-antibodies and the turbidimetric assays for VWD were not affected by rivaroxaban. Specific haemostasis clotting tests should be performed directly prior to rivaroxaban intake. Assay optimisation in the presence of rivaroxaban can be achieved by plasma dilution. Immunologic assays are not influenced by rivaroxaban, while chromogenic assays can be used, when they do not depend on factor Xa.

  12. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides.

    PubMed

    Long, Qian; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-06-15

    This paper reports a novel nanosensor for organophosphorus pesticides based on the fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs). The detection mechanism is based on the facts that AuNPs quench the fluorescence of UCNPs and organophosphorus pesticides (OPs) inhibit the activity of acetylcholinesterase (AChE) which catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine. Under the optimized conditions, the logarithm of the pesticides concentration was proportional to the inhibition efficiency. The detection limits of parathion-methyl, monocrotophos and dimethoate reached 0.67, 23, and 67 ng/L, respectively. Meanwhile, the biosensor shows good sensitivity, stability, and could be successfully applied to detection of OPs in real food samples, suggesting the biosensor has potentially extensive application clinic diagnoses assays.

  13. Cucurbiturils: molecular nanocapsules for time-resolved fluorescence-based assays.

    PubMed

    Marquez, Cesar; Huang, Fang; Nau, Werner M

    2004-03-01

    A new fluorescent host-guest system based on the inclusion of the fluorophore 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) into the cavity of the molecular container compound cucurbit[7]uril (CB7) has been designed which possesses an exceedingly long-lived emission (690 ns in aerated water). The large binding constant of (4 +/- 1) x 10(5) M(-1) along with the resistance of the CB7.DBO complex toward external fluorescence quenchers allow the use of CB7 as an enhancer in time-resolved fluorescence-based assays, e.g., to screen enzyme activity or inhibition by using DBO-labeled peptides as substrates. The response of CB7.DBO to different environmental conditions and possible quenchers are described.

  14. Immunological-based assays for specific detection of shrimp viruses.

    PubMed

    Chaivisuthangkura, Parin; Longyant, Siwaporn; Sithigorngul, Paisarn

    2014-02-12

    Among shrimp viral pathogens, white spot syndrome virus (WSSV) and yellow head virus (YHV) are the most lethal agents, causing serious problems for both the whiteleg shrimp, Penaeus (Litopenaeus) vannamei, and the black tiger shrimp, Penaeus (Penaeus) monodon. Another important virus that infects P. vannamei is infectious myonecrosis virus (IMNV), which induces the white discoloration of affected muscle. In the cases of taura syndrome virus and Penaeus stylirostris densovirus (PstDNV; formerly known as infectious hypodermal and hematopoietic necrosis virus), their impacts were greatly diminished after the introduction of tolerant stocks of P. vannamei. Less important viruses are Penaeus monodon densovirus (PmDNV; formerly called hepatopancreatic parvovirus), and Penaeus monodon nucleopolyhedrovirus (PemoNPV; previously called monodon baculovirus). For freshwater prawn, Macrobrachium rosenbergii nodavirus and extra small virus are considered important viral pathogens. Monoclonal antibodies (MAbs) specific to the shrimp viruses described above have been generated and used as an alternative tool in various immunoassays such as enzyme-linked immunosorbent assay, dot blotting, Western blotting and immunohistochemistry. Some of these MAbs were further developed into immunochromatographic strip tests for the detection of WSSV, YHV, IMNV and PemoNPV and into a dual strip test for the simultaneous detection of WSSV/YHV. The strip test has the advantages of speed, as the result can be obtained within 15 min, and simplicity, as laboratory equipment and specialized skills are not required. Therefore, strip tests can be used by shrimp farmers for the pond-side monitoring of viral infection. PMID:24567913

  15. Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength

    PubMed Central

    Paskin, Taylor R.; Jellies, John; Bacher, Jessica; Beane, Wendy S.

    2014-01-01

    Planarians are free-living aquatic flatworms that possess a well-documented photophobic response to light. With a true central nervous system and simple cerebral eyes (ocelli), planarians are an emerging model for regenerative eye research. However, comparatively little is known about the physiology of their photoreception or how their behavior is affected by various wavelengths. Most phototactic studies have examined planarian behavior using white light. Here, we describe a novel planarian behavioral assay to test responses to small ranges of visible wavelengths (red, blue, green), as well as ultraviolet (UV) and infrared (IR) which have not previously been examined. Our data show that planarians display behavioral responses across a range of wavelengths. These responses occur in a hierarchy, with the shortest wavelengths (UV) causing the most intense photophobic responses while longer wavelengths produce no effect (red) or an apparent attraction (IR). In addition, our data reveals that planarian photophobia is comprised of both a general photophobic response (that drives planarians to escape the light source regardless of wavelength) and wavelength-specific responses that encompass specific behavioral reactions to individual wavelengths. Our results serve to improve the understanding of planarian phototaxis and suggest that behavioral studies performed with white light mask a complex behavioral interaction with the environment. PMID:25493551

  16. Immunological-based assays for specific detection of shrimp viruses

    PubMed Central

    Chaivisuthangkura, Parin; Longyant, Siwaporn; Sithigorngul, Paisarn

    2014-01-01

    Among shrimp viral pathogens, white spot syndrome virus (WSSV) and yellow head virus (YHV) are the most lethal agents, causing serious problems for both the whiteleg shrimp, Penaeus (Litopenaeus) vannamei, and the black tiger shrimp, Penaeus (Penaeus) monodon. Another important virus that infects P. vannamei is infectious myonecrosis virus (IMNV), which induces the white discoloration of affected muscle. In the cases of taura syndrome virus and Penaeus stylirostris densovirus (PstDNV; formerly known as infectious hypodermal and hematopoietic necrosis virus), their impacts were greatly diminished after the introduction of tolerant stocks of P. vannamei. Less important viruses are Penaeus monodon densovirus (PmDNV; formerly called hepatopancreatic parvovirus), and Penaeus monodon nucleopolyhedrovirus (PemoNPV; previously called monodon baculovirus). For freshwater prawn, Macrobrachium rosenbergii nodavirus and extra small virus are considered important viral pathogens. Monoclonal antibodies (MAbs) specific to the shrimp viruses described above have been generated and used as an alternative tool in various immunoassays such as enzyme-linked immunosorbent assay, dot blotting, Western blotting and immunohistochemistry. Some of these MAbs were further developed into immunochromatographic strip tests for the detection of WSSV, YHV, IMNV and PemoNPV and into a dual strip test for the simultaneous detection of WSSV/YHV. The strip test has the advantages of speed, as the result can be obtained within 15 min, and simplicity, as laboratory equipment and specialized skills are not required. Therefore, strip tests can be used by shrimp farmers for the pond-side monitoring of viral infection. PMID:24567913

  17. A chemiluminescent microtiter plate assay for sensitive detection of protein kinase activity.

    PubMed

    Lehel, C; Daniel-Issakani, S; Brasseur, M; Strulovici, B

    1997-01-15

    A chemiluminescent protein kinase assay using biotinylated substrate peptides captured on a streptavidin-coated microtiter plate and monoclonal antibodies to detect their phosphorylation is described. Assay conditions were optimized and validated for sensitive measurement of protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II (CAM-KII), receptor interacting protein, and src activities. The newly developed chemiluminescent assay has several advantages over currently used radioactive or colorimetric methods. It is highly sensitive at low enzyme and substrate concentrations and high, close to physiological ATP levels. It is fast, simple to perform and amenable to automation and high-throughput drug screening. The assay is also robust, exhibiting minimum interference from solvents and test substances from various sources. Overall, among the presently available methods for the detection of protein kinase activity, chemiluminescence was found to provide the highest sensitivity under conditions most closely mimicking the intracellular environment. This assay is expected to be useful in both academic and industrial laboratories, especially in identifying novel classes of protein kinase inhibitors.

  18. A novel high-throughput activity assay for the Trypanosoma brucei editosome enzyme REL1 and other RNA ligases

    PubMed Central

    Zimmermann, Stephan; Hall, Laurence; Riley, Sean; Sørensen, Jesper; Amaro, Rommie E.; Schnaufer, Achim

    2016-01-01

    The protist parasite Trypanosoma brucei causes Human African trypanosomiasis (HAT), which threatens millions of people in sub-Saharan Africa. Without treatment the infection is almost always lethal. Current drugs for HAT are difficult to administer and have severe side effects. Together with increasing drug resistance this results in urgent need for new treatments. T. brucei and other trypanosomatid pathogens require a distinct form of post-transcriptional mRNA modification for mitochondrial gene expression. A multi-protein complex called the editosome cleaves mitochondrial mRNA, inserts or deletes uridine nucleotides at specific positions and re-ligates the mRNA. RNA editing ligase 1 (REL1) is essential for the re-ligation step and has no close homolog in the mammalian host, making it a promising target for drug discovery. However, traditional assays for RELs use radioactive substrates coupled with gel analysis and are not suitable for high-throughput screening of compound libraries. Here we describe a fluorescence-based REL activity assay. This assay is compatible with a 384-well microplate format and sensitive, satisfies statistical criteria for high-throughput methods and is readily adaptable for other polynucleotide ligases. We validated the assay by determining kinetic properties of REL1 and by identifying REL1 inhibitors in a library of small, pharmacologically active compounds. PMID:26400159

  19. A Chromogenic Assay Suitable for High-Throughput Determination of Limit Dextrinase Activity in Barley Malt Extracts.

    PubMed

    Bøjstrup, Marie; Marri, Lucia; Lok, Finn; Hindsgaul, Ole

    2015-12-23

    Twenty-four malt samples were assayed for limit dextrinase activity using a chromogenic assay developed recently in our group. The assay utilizes a small soluble chromogenic substrate which is hydrolyzed selectively by limit dextrinase in a coupled assay to release the chromophore 2-chloro-4-nitrophenol. The release of the chromophore, corresponding to the activity of limit dextrinase, can be followed by measuring the UV absorption at 405 nm. The 24 malt samples represented a wide variation of limit dextrinase activities, and these activities could be clearly differentiated by the assay. The results obtained were comparable with the results obtained from a commercially available assay, Limit-Dextrizyme from Megazyme International Ireland. Furthermore, the improved assay uses a soluble substrate. That makes it well suited for high-throughput screening as it can be handled in a 96-well plate format. PMID:26615836

  20. RT-qPCR-based microneutralization assay for human cytomegalovirus using fibroblasts and epithelial cells.

    PubMed

    Wang, Xiao; Peden, Keith; Murata, Haruhiko

    2015-12-16

    Human cytomegalovirus (HCMV) is a leading cause of congenital infection that can result in serious disabilities in affected children. To facilitate HCMV vaccine development, a microscale neutralization assay based on reverse transcription quantitative PCR (RT-qPCR) was developed to quantify HCMV-neutralizing antibodies. Our approach relies on the generation of crude lysates from virus-infected cells that are amenable to direct analysis by RT-qPCR, thereby circumventing rate-limiting procedures associated with sample RNA extraction and purification. By serial passaging of the laboratory HCMV strain AD169 in epithelial cells (ARPE-19), a revertant virus with restored epithelial cell tropism, designated AD169(wt131), was obtained. AD169 and AD169(wt131) were evaluated in both epithelial cells (ARPE-19) and fibroblasts (MRC-5) by one-step RT-qPCR targeting the immediate-early gene IE1 transcript of HCMV. Expression kinetics indicated that RT-qPCR assessment could be conducted as early as 6h post-infection. Human serum samples (n=30) from healthy donors were tested for HCMV-specific IgG using a commercially available ELISA and for HCMV-neutralizing activity using our RT-qPCR-based neutralization assay. In agreement with the ELISA results, higher neutralizing activity was observed in the HCMV IgG seropositive group when compared with the HCMV IgG seronegative group. In addition, HCMV IgG seropositive human sera exhibited higher neutralizing titers using epithelial cells compared with using fibroblasts (geometric mean titers of 344 and 8 in ARPE-19 cells and MRC-5 cells, respectively). Our assay was robust to variation in input virus dose. In addition, a simple lysis buffer containing a non-ionic detergent was successfully demonstrated to be a less costly alternative to commercial reagents for cell-lysate preparation. Thus, our rapid HCMV neutralization assay may be a straightforward and flexible high-throughput tool for measuring antibody responses induced by vaccination

  1. Portable ceria nanoparticle-based assay for rapid detection of food antioxidants (NanoCerac)

    PubMed Central

    Sharpe, Erica; Frasco, Thalia; Andreescu, Daniel; Andreescu, Silvana

    2012-01-01

    With increased awareness of nutrition and the advocacy for healthier food choices, there exists a great demand for a simple, easy-to-use test that can reliably measure the antioxidant capacity of dietary products. We report development and characterization of a portable nanoparticle based-assay, similar to a small sensor patch, for rapid and sensitive detection of food antioxidants. The assay is based on the use of immobilized ceria nanoparticles, which change color after interaction with antioxidants by means of redox and surface chemistry reactions. Monitoring corresponding optical changes enables sensitive detection of antioxidants in which the nanoceria provides an optical ‘signature’ of antioxidant power, while the antioxidants act as reducing agents. The sensor has been tested for the detection of common antioxidant compounds including ascorbic acid, gallic acid, vanilic acid, quercetin, caffeic acid, and epigallocatechin gallate and its function has been successfully applied for the assessment of antioxidant activity in real samples (teas and medicinal mushrooms). The colorimetric response was concentration dependent, with detection limits ranging from 20–400 μM depending on the antioxidant involved. Steady-state color intensity was achieved within seconds upon addition of antioxidants. The results are presented in terms of Gallic Acid Equivalents (GAE). The sensor performed favorably when compared with commonly used antioxidant detection methods. This assay is particularly appealing for remote sensing applications, where specialized equipment is not available, and also for high throughput analysis of a large number of samples. Potential applications for antioxidant detection in remote locations are envisioned. PMID:23139929

  2. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of a biochar made from switchgrass on four soil enzymes (ß- glucosidase, ß-N-acetylglucosaminidase, lipase, and leucine aminopeptidase) to determine if biochar would consistently modify soil biological activities. Inconsistent results from enzyme assays of char-amended soils s...

  3. Detection of sodium channel activators by a rapid fluorimetric microplate assay.

    PubMed

    Louzao, M C; Vieytes, M R; Yasumoto, T; Botana, L M

    2004-04-01

    Marine toxins such as brevetoxins and ciguatoxins are produced by dinoflagellates and can accumulate in seafood. These toxins affect humans through seafood consumption. Intoxication is mainly characterized by gastrointestinal and neurological disorders and, in most severe cases, by cardiovascular problems. To prevent the consumption of food contaminated with these toxins, shellfish have been tested by mouse bioassay. However, this method is expensive, time-consuming, and ethically questionable. The objective of this study was to use a recently developed fluorimetric microplate assay to rapidly detect brevetoxins and ciguatoxins. The method is based on the pharmacological effect of brevetoxins and ciguatoxins known to activate sodium channels and involves (i). the incubation of excitable cells in 96 well microtiter plates with the fluorescent dye bis-oxonol, whose distribution across the membrane is potential-dependent, and (ii). dose-dependent cell depolarization by the toxins. Our findings demonstrate that measuring changes in membrane potential induced by brevetoxins and ciguatoxins allowed their quantitation. Active toxins could be reliably detected at concentrations in the nanomolar range. The simplicity, sensitivity, and possibility of being automated provide the basis for development of a practical alternative to conventional testing for brevetoxins and ciguatoxins.

  4. Exonuclease I manipulating primer-modified gold nanoparticles for colorimetric telomerase activity assay.

    PubMed

    Zhang, Lei; Zhang, Sijin; Pan, Wei; Liang, Qingcheng; Song, Xingyu

    2016-03-15

    Telomerase is a widely accepted cancer biomarker. The conventional method for telomerase activity assay, the telomeric repeat amplification protocol (TRAP), is time-consuming and susceptible to contaminants. Therefore, development of simple and sensitive strategies for telomerase detection is still a challenging subject. Here we develop a highly sensitive method for telomerase detection based on primer-modified gold nanoparticles (GNPs) manipulated by exonuclease I (Exo I). In the absence of telomerase, Exo I digests the substrate nucleic acid on the surface of GNPs, inducing the GNPs' aggregation. In the presence of telomerase, the telomerase elongation products which fold into G-quadruplex are resistant to the digestion of Exo I, and protect the GNPs from aggregation. By using this method, we can detect telomerase activity in 100 HL-60 cancer cells mL(-1) by naked eyes, and the detection limit is 29 HL-60 cells mL(-1). This method is very simple and reliable, without any separation and amplification procedure. We also demonstrate the feasibility of this protocol for screening of telomerase inhibitors as anticancer agents. This method is promising to be applied in early clinical diagnosis and drug discovery. PMID:26402592

  5. Comparison of cell-based and PCR-based assays as methods for measuring infectivity of Tulane virus.

    PubMed

    Shan, Lei; Yang, David; Wang, Dapeng; Tian, Peng

    2016-05-01

    In this study, we used Tulane virus (TV) as a surrogate for HuNoV to evaluate for correlation between two cell-based assays and three PCR-based assays. Specifically, the cell-based plaque and TCID50 assays measure for infectious virus particles, while the PCR-based RNase exposure, porcine gastric mucin in-situ-capture qRT-PCR (PGM-ISC-qRT-PCR), and antibody in-situ-capture qRT-PCR (Ab-ISC-qRT-PCR) assays measure for an amplicon within encapsidated viral genome. Ten batches of viral stocks ranging from 3.41 × 10(5) to 6.67 × 10(6) plaque forming units (PFUs) were used for side by side comparison with PFU as a reference. The results indicate that one PFU was equivalent to 6.69 ± 2.34 TCID50 units, 9.75 ± 10.87 RNase-untreated genomic copies (GCs), 2.87 ± 3.05 RNase-treated GCs, 0.07 ± 0.07 PGM-ISC-qRT-PCR GCs, and 0.52 ± 0.39 Ab-ISC-qRT-PCR GCs. We observed that while the cell-based assays were consistent with each other, the TCID50 assay was more sensitive than the plaque assay. In contrast, the PCR-based assays were not always consistent with the cell-based assays. The very high variations in GCs as measured by both ISC-RT-qPCR assays made them difficult to correlate against the relatively small variations (<20-fold) in the PFUs or TCID50 units as measured by the cell-based assays.

  6. Comparison of arsenic bioaccessibility in housedust and contaminated soils based on four in vitro assays.

    PubMed

    Li, Hong-Bo; Li, Jie; Zhu, Ya-Guang; Juhasz, Albert L; Ma, Lena Q

    2015-11-01

    Few studies have assessed As bioaccessibility in housedust using different in vitro assays and compared to those in contaminated soils. We determined As bioaccessibility in 24 housedust samples (4.48-38.2 mg kg(-1)) using SBRC, IVG, DIN, and PBET assays and they averaged 73, 68, 53, and 48% in the gastric phase and 26, 46, 55 and 43% in the intestinal phase of the 4 assays. The corresponding As bioaccessibility in 34 As-contaminated soils (22-6899 mg kg(-1)) were 34, 25, 22, and 22% in the gastric phase and 18, 19, 21, and 20% in the intestinal phase, which was 1.5-2.7 fold lower than those in housedust possibly due to differences in contamination sources and properties. Based on the gastric phase of SBRC assay, As bioaccessibility was 44-96% in housedust and 2.3-80% in soils. Variation in As bioaccessibility among assays was similar for housedust and soils, with SBRC assay providing the highest bioaccessibility in gastric phase. In intestinal phase, dissolved As was probably adsorbed onto precipitated iron oxides, causing a sharp decrease in As bioaccessibility by SBRC assay. Unlike SBRC assay, gastric constituents (pepsin, mucin, phosphate, and citrate) in other 3 assays inhibited As adsorption and/or enhanced As dissolution, leading to greater As bioaccessibility. The greater As bioaccessibility in housedust than soil suggests the potential of greater health risk from As exposure to housedust than soil. PMID:26136157

  7. Interference sources in ATP bioluminescence assay of silica nanoparticle toxicity to activated sludge.

    PubMed

    Sibag, Mark; Kim, Seung Hwan; Kim, Choah; Kim, Hee Jun; Cho, Jinwoo

    2015-06-01

    ATP measurement provides an overview of the general state of microbial activity, and thus it has proven useful for the evaluation of nanoparticle toxicity in activated sludge. ATP bioluminescence assay, however, is susceptible to interference by the components of activated sludge other than biomass. This paper presents the interference identified specific to the use of this assay after activated sludge respiration inhibition test of silica nanoparticles (OECD 209). We observed a high degree of interference (90%) in the presence of 100 mg/L silica nanoparticles and a low level of ATP being measured (0.01 μM); and 30% interference by the synthetic medium regardless of silica nanoparticle concentration and ATP level in the samples. ATP measurement in activated sludge with different MLSS concentrations revealed interference of high biomass content. In conclusion, silica nanoparticles, synthetic medium and activated sludge samples themselves interfere with ATP bioluminescence; this will need to be considered in the evaluation of silica nanoparticle toxicity to activated sludge when this type of assay is used. PMID:25892589

  8. Interference sources in ATP bioluminescence assay of silica nanoparticle toxicity to activated sludge.

    PubMed

    Sibag, Mark; Kim, Seung Hwan; Kim, Choah; Kim, Hee Jun; Cho, Jinwoo

    2015-06-01

    ATP measurement provides an overview of the general state of microbial activity, and thus it has proven useful for the evaluation of nanoparticle toxicity in activated sludge. ATP bioluminescence assay, however, is susceptible to interference by the components of activated sludge other than biomass. This paper presents the interference identified specific to the use of this assay after activated sludge respiration inhibition test of silica nanoparticles (OECD 209). We observed a high degree of interference (90%) in the presence of 100 mg/L silica nanoparticles and a low level of ATP being measured (0.01 μM); and 30% interference by the synthetic medium regardless of silica nanoparticle concentration and ATP level in the samples. ATP measurement in activated sludge with different MLSS concentrations revealed interference of high biomass content. In conclusion, silica nanoparticles, synthetic medium and activated sludge samples themselves interfere with ATP bioluminescence; this will need to be considered in the evaluation of silica nanoparticle toxicity to activated sludge when this type of assay is used.

  9. HPLC-MTT assay: anticancer activity of aqueous garlic extract is from allicin.

    PubMed

    Lee, Jenny; Gupta, Shalini; Huang, Jin-Sheng; Jayathilaka, Lasanthi P; Lee, Bao-Shiang

    2013-05-15

    A strategy using reversed-phase high-performance liquid chromatography (HPLC), thin layer chromatography (TLC), mass spectrometry (MS), nuclear magnetic resonance (NMR), chemical synthesis, and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay to identify allicin as the active anticancer compound in aqueous garlic extract (AGE) is described. Changing the pH of AGE from 7.0 to 5.0 eliminated interfering molecules and enabled a clean HPLC separation of the constituents in AGE. MTT assay of the HPLC fractions identified an active fraction. Further analysis by TLC, MS, and NMR verified the active HPLC fraction as allicin. Chemically synthesized allicin was used to provide further confirmation. The results clearly identify the active compound in AGE as allicin.

  10. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor

    NASA Astrophysics Data System (ADS)

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Alkan, Fulya Üstün; Apak, Reşat

    2014-11-01

    A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based ‘cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2. Thus, the CUPRAC absorbance due to H2O2 oxidation concomitant with Cu(I)-Nc formation decreased proportionally with catalase. The developed sensor gave a linear response over a wide concentration range of H2O2 (0.68-78.6 μM). This optical sensor-based method applicable to tissue homogenates proved to be efficient for low hydrogen peroxide concentrations (physiological and nontoxic levels) to which the widely used UV method is not accurately responsive. Thus, conventional problems of the UV method arising from relatively low sensitivity and selectivity, and absorbance disturbance due to gaseous oxygen evolution were overcome. The catalase findings of the proposed method for tissue homogenates were statistically alike with those of HPLC.

  11. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor.

    PubMed

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Alkan, Fulya Üstün; Apak, Reşat

    2014-11-11

    A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based 'cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2. Thus, the CUPRAC absorbance due to H2O2 oxidation concomitant with Cu(I)-Nc formation decreased proportionally with catalase. The developed sensor gave a linear response over a wide concentration range of H2O2 (0.68-78.6 μM). This optical sensor-based method applicable to tissue homogenates proved to be efficient for low hydrogen peroxide concentrations (physiological and nontoxic levels) to which the widely used UV method is not accurately responsive. Thus, conventional problems of the UV method arising from relatively low sensitivity and selectivity, and absorbance disturbance due to gaseous oxygen evolution were overcome. The catalase findings of the proposed method for tissue homogenates were statistically alike with those of HPLC.

  12. A Sensitive Microplate Assay for Lipase Activity Measurement Using Olive Oil Emulsion Substrate: Modification of the Copper Soap Colorimetric Method.

    PubMed

    Mustafa, Ahmad; Karmali, Amin; Abdelmoez, Wael

    2016-01-01

    The present work involves a sensitive high-throughput microtiter plate based colorimetric assay for estimating lipase activity using cupric acetate pyridine reagent (CAPR). In the first approach, three factors two levels factorial design methodology was used to evaluate the interactive effect of different parameters on the sensitivity of the assay method. The optimization study revealed that the optimum CAPR concentration was 7.5% w/v, the optimum solvent was heptane and the optimum CAPR pH was 6. In the second approach, the optimized colorimetric microplate assay was used to measure lipase activity based on enzymatic hydrolysis of olive oil emulsion substrate at 37°C and 150 rpm. The emulsion substrates were formulated by using olive oil, triton X-100 (10% v/v in pH 8) and sodium phosphate buffer of pH 8 in ratio of 1:1:1 in the case of Candida sp. lipase. While in the case of immobilized lipozyme RMIM, The emulsion substrates were formulated by using olive oil, triton X-100 (1% v/v in pH 8) and sodium phosphate buffer of pH 8 in ratio of 2:1:1. Absorbance was measured at 655 nm. The stability of this assay (in terms of colored heptane phase absorbance readings) retained more than 92.5% after 24 h at 4°C compared to the absorbance readings measured at zero time. In comparison with other lipase assay methods, beside the developed sensitivity, the reproducibility and the lower limit of detection (LOD) of the proposed method, it permits analyzing of 96 samples at one time in a 96-well microplate. Furthermore, it consumes small quantities of chemicals and unit operations. PMID:27581492

  13. Capability and limitation study of the DDT passive-active neutron waste assay instrument

    SciTech Connect

    Nicholas, N.J.; Coop, K.L.; Estep, R.J.

    1992-05-01

    The differential-dieaway-technique passive-active neutron assay system is widely used by transuranic waste generators to certify their drummed waste for eventual shipment to the Waste Isolation Pilot Plant (WIPP). Stricter criteria being established for waste emplacement at the WIPP site has led to a renewed interest in improvements to and a better understanding of current nondestructive assay (NDA) techniques. Our study includes the effects of source position, extreme matrices, high neutron backgrounds, and source self-shielding to explore the system`s capabilities and limitations and to establish a basis for comparison with other NDA systems. 11 refs.

  14. Capability and limitation study of the DDT passive-active neutron waste assay instrument

    SciTech Connect

    Nicholas, N.J.; Coop, K.L.; Estep, R.J.

    1992-05-01

    The differential-dieaway-technique passive-active neutron assay system is widely used by transuranic waste generators to certify their drummed waste for eventual shipment to the Waste Isolation Pilot Plant (WIPP). Stricter criteria being established for waste emplacement at the WIPP site has led to a renewed interest in improvements to and a better understanding of current nondestructive assay (NDA) techniques. Our study includes the effects of source position, extreme matrices, high neutron backgrounds, and source self-shielding to explore the system's capabilities and limitations and to establish a basis for comparison with other NDA systems. 11 refs.

  15. Data set of optimal parameters for colorimetric red assay of epoxide hydrolase activity.

    PubMed

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-09-01

    The data presented in this article are related to the research article entitled "Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization" [1]. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to the corresponding vicinal diols. This article describes the optimal parameters for the colorimetric red assay to determine the enzymatic activity, with an emphasis on the characterization of the kinetic parameters, pH optimum and thermal stability of this enzyme. The effects of reagents that are not resistant to oxidation by sodium periodate on the reactions can generate false positives and interfere with the final results of the red assay. PMID:27366781

  16. Evaluation of Two PCR-Based Swine-Specific Fecal Source Tracking Assays (Poster)

    EPA Science Inventory

    Several PCR-based methods have been proposed to identify swine fecal pollution in environmental waters. However, the specificity and distribution of these targets have not been adequately assessed. Consequently, the utility of these assays in identifying swine fecal contamination...

  17. THYROID AXIS INHIBITION IN XENOPUS LAEVIS: DEVELOPMENT OF AN AMPHIBIAN-BASED SCREENING ASSAY

    EPA Science Inventory

    In response to the initial EDSTAC recommendations, research was conducted on the development of a Xenopus laevis based tail resorption assay for evaluating thyroid axis disruption. These experiments highlighted key limitations associated with relying on tail resorption as a measu...

  18. The promoter competition assay (PCA): a new approach to identify motifs involved in the transcriptional activity of reporter genes.

    PubMed

    Hube, Florent; Myal, Yvonne; Leygue, Etienne

    2006-05-01

    Identifying particular motifs responsible for promoter activity is a crucial step toward the development of new gene-based preventive and therapeutic strategies. However, to date, experimental methods to study promoter activity remain limited. We present in this report a promoter competition assay designed to identify, within a given promoter region, motifs critical for its activity. This assay consists in co-transfecting the promoter to be analyzed and double-stranded oligonucleotides which will compete for the binding of transcription factors. Using the recently characterized SBEM promoter as model, we first delineated the feasibility of the method and optimized the experimental conditions. We then identified, within an 87-bp region responsible for a strong expression of the reporter gene, an octamer-binding site essential for its transcriptional regulation. The importance of this motif has been confirmed by site-directed mutagenesis. The promoter competition assay appears to be a fast and efficient approach to identify, within a given promoter sequence, sites critical for its activity.

  19. Penicillinase-based enzyme-linked immunosorbent assay for the detection of plant viruses.

    PubMed

    Sudarshana, M R; Reddy, D V

    1989-10-01

    A penicillinase (PNC)-based, enzyme-linked immunosorbent assay (ELISA) was standardized to detect maize mosaic virus (MMV) in sorghum leaf extracts, peanut mottle virus (PMV) in pea leaf extracts, and tomato spotted wilt virus (TSWV) in peanut leaf extracts. Rabbit Fc-specific antibodies were conjugated with PNC by a single step glutaraldehyde bridge. Among several indicators tested, bromothymol blue (BTB) was found suitable for measuring PNC activity under simulated conditions. Two reagents, starch-iodine complex (SIC) and a mixed pH indicator, containing bromocresol purple and BTB (2:1) used earlier for the PNC-based ELISA, were compared with BTB for utilization in the PNC-based ELISA. SIC gave a slightly higher virus titre than BTB or the mixed pH indicator, but it often gave nonspecific reactions. Sodium or potassium salts of penicillin-G at 0.5-1.0 mg/ml and BTB at 0.2 mg/ml were found to be suitable as substrate-indicator mixture for PNC-based ELISA. The sensitivity of the PNC system was comparable to those of the alkaline phosphatase (ALP) and horseradish peroxidase (HRP) systems in detecting MMV, PMV, and TSWV. The PNC conjugate could be used at a greater dilution than those of the ALP and HRP conjugates and the BTB substrate mixture was stable for at least 3 weeks at 4 degrees C. Penicillin is readily available in developing countries, and at a substantially lower cost than p-nitrophenyl phosphate, the commonly used substrate for ALP in the plate ELISA. Thus the PNC-based ELISA provides a less expensive means for assaying plant viruses by ELISA.

  20. Development and validation of an assay for urinary tissue factor activity.

    PubMed Central

    Lwaleed, B A; Chisholm, M; Francis, J L

    1999-01-01

    BACKGROUND: Activation of blood coagulation is a common complication of cancer and inflammation in both humans and experimental animals. Increased production of tissue factor--the principal initiator of the coagulation process--by endothelial cells, monocytes, and macrophages has been implicated in these conditions. AIM: To investigate whether urinary tissue factor (uTF) might reflect the state of monocyte/macrophage activation and be a useful diagnostic test. METHODS: Urine was centrifuged at 51,000 g to sediment tissue factor containing membrane vesicles. The tissue factor was then solubilised in beta-octyl-glucopyranoside and assayed in a specific chromogenic assay adapted for use in microtitre plates. RESULTS: The assay proved to be sensitive, specific, and reproducible. The normal range of uTF was relatively narrow and unaffected by age, sex, or cigarette smoking. Levels were not significantly influenced by storage of urine samples before assay or by the presence of fresh blood in the urine sample. CONCLUSIONS: This method may have diagnostic application in the study of haemostatic activation in patients with cancer and other disease states. Images PMID:10450183

  1. An optical assay of the transport activity of ClC-7

    PubMed Central

    Zanardi, Ilaria; Zifarelli, Giovanni; Pusch, Michael

    2013-01-01

    Osteoporosis, characterized by excessive osteoclast mediated bone resorption, affects millions of people worldwide representing a major public health problem. ClC-7 is a chloride-proton exchanger localized in lysosomes and in the resorption lacuna in osteoclasts where it is essential for bone resorption. Thus, drugs targeted at ClC-7 have been proposed for ameliorating osteoporosis. However, functional assays suited for high throughput screening (HTS) of ClC-7 function are lacking. Here we describe two complementary variants of purely optical assays of the transport activity of ClC-7, redirected to the plasma membrane employing a genetically encoded fluorescent Cl−/pH indicator fused to the ClC-7 protein. These simple and robust functional assays of ClC-7 transport are well-suited to be applied in HTS of small-molecule inhibitors and may help to develop drugs suited for the treatment of osteoporosis. PMID:23390581

  2. In vitro activity assays for MYST histone acetyltransferases and adaptation for high-throughput inhibitor screening

    PubMed Central

    McCullough, Cheryl E.; Marmorstein, Ronen

    2016-01-01

    Lysine acetylation is a post-translational modification that is carried out by acetyltransferases. The MYST proteins form the largest and most diverse family of acetyltransferases, which regulate gene expression, DNA repair, and cell cycle homeostasis, among other activities, by acetylating both histone and non-histone proteins. This chapter will describe methods for the preparation and biochemical characterization of MYST family acetyltransferases, including protocols for the preparation of recombinant protein, enzyme assays for measuring steady state parameters and binding assays to measure cofactor and inhibitor binding. We also provide details on adapting these assays for high throughput screening for small molecule MYST inhibitors. This chapter seeks to prepare researchers for some hurdles that they may encounter when studying the MYST proteins so that there may be better opportunity to plan appropriate controls and obtain high quality data. PMID:27372752

  3. Assay of insulator enhancer-blocking activity with the use of transient transfection.

    PubMed

    Smirnov, N A; Didych, D A; Akopov, S B; Nikolaev, L G; Sverdlov, E D

    2013-08-01

    We used a transient transfection of cultured cells with linearized plasmids to analyze the enhancer-blocking activity of potential insulators including the standard cHS4 chicken beta-globin insulator and several DNA fragments selected from the human genome sequence. About 60-80% of the potential insulators do reveal the enhancer-blocking activity when probed by the transient transfection assay. The activity of different sequences is characterized by certain tissue specificity and by dependence on the orientation of the fragments relative to the promoter. Thus, the transfection model may be used for quantitative analysis of the enhancer-blocking activity of the potential insulators. PMID:24228877

  4. Transactivation and Coactivator Recruitment Assays for Measuring Farnesoid X Receptor Activity.

    PubMed

    Hsu, Chia-Wen Amy; Zhao, Jinghua; Xia, Menghang

    2016-01-01

    The farnesoid X receptor (FXR) is a nuclear receptor responsible for homeostasis of bile acids, lipids, and glucose. Compounds that alter endogenous FXR signaling can be used as therapeutic candidates or identified as potentially hazardous compounds depending on exposure doses and health states. Therefore, there is an increasing need for high-throughput screening assays of FXR activity to profile large numbers of environmental chemicals and drugs. This chapter describes a workflow of FXR modulator identification and characterization. To identify compounds that modulate FXR transactivation at the cellular level, we first screen compounds from the Tox21 10 K compound library in an FXR-driven beta-lactamase reporter gene assay multiplexed with a cell viability assay in the same well of the 1536-well plates. The selected compounds are then tested biochemically for their ability to modulate FXR-coactivator binding interactions using a time-resolved fluorescence resonance energy transfer (TR-FRET) coactivator assay. The assay results from the workflow can be used to prioritize compounds for more extensive investigations. PMID:27518622

  5. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells.

    PubMed

    James, Dominic I; Durant, Stephen; Eckersley, Kay; Fairweather, Emma; Griffiths, Louise A; Hamilton, Nicola; Kelly, Paul; O'Connor, Mark; Shea, Kerry; Waddell, Ian D; Ogilvie, Donald J

    2016-01-01

    After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years. PMID:27610220

  6. Transactivation and Coactivator Recruitment Assays for Measuring Farnesoid X Receptor Activity.

    PubMed

    Hsu, Chia-Wen Amy; Zhao, Jinghua; Xia, Menghang

    2016-01-01

    The farnesoid X receptor (FXR) is a nuclear receptor responsible for homeostasis of bile acids, lipids, and glucose. Compounds that alter endogenous FXR signaling can be used as therapeutic candidates or identified as potentially hazardous compounds depending on exposure doses and health states. Therefore, there is an increasing need for high-throughput screening assays of FXR activity to profile large numbers of environmental chemicals and drugs. This chapter describes a workflow of FXR modulator identification and characterization. To identify compounds that modulate FXR transactivation at the cellular level, we first screen compounds from the Tox21 10 K compound library in an FXR-driven beta-lactamase reporter gene assay multiplexed with a cell viability assay in the same well of the 1536-well plates. The selected compounds are then tested biochemically for their ability to modulate FXR-coactivator binding interactions using a time-resolved fluorescence resonance energy transfer (TR-FRET) coactivator assay. The assay results from the workflow can be used to prioritize compounds for more extensive investigations.

  7. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells

    PubMed Central

    James, Dominic I.; Durant, Stephen; Eckersley, Kay; Fairweather, Emma; Griffiths, Louise A.; Hamilton, Nicola; Kelly, Paul; O'Connor, Mark; Shea, Kerry; Waddell, Ian D.; Ogilvie, Donald J.

    2016-01-01

    After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years. PMID:27610220

  8. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells

    PubMed Central

    James, Dominic I.; Durant, Stephen; Eckersley, Kay; Fairweather, Emma; Griffiths, Louise A.; Hamilton, Nicola; Kelly, Paul; O'Connor, Mark; Shea, Kerry; Waddell, Ian D.; Ogilvie, Donald J.

    2016-01-01

    After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years.

  9. High-throughput assay for the identification of Hsp90 inhibitors based on Hsp90-dependent refolding of firefly luciferase.

    PubMed

    Galam, Lakshmi; Hadden, M Kyle; Ma, Zeqiang; Ye, Qi-Zhuang; Yun, Bo-Geon; Blagg, Brian S J; Matts, Robert L

    2007-03-01

    Previously, we have demonstrated that the renaturation of heat denatured firefly luciferase is dependent upon the activity of Hsp90 in rabbit reticulocyte lysate. Here, we demonstrate that this assay may identify inhibitors that obstruct the chaperone activity of Hsp90 either by direct binding to its N-terminal or C-terminal nucleotide binding sites or by interference with the ability of the chaperone to switch conformations. The assay was adapted and optimized for high-throughput screening. Greater than 20,000 compounds were screened to demonstrate the feasibility of using this assay on a large scale. The assay was reproducible (av Z-factor=0.62) and identified 120 compounds that inhibited luciferase renaturation by greater than 70% at a concentration of 12.5 microg/mL. IC50 values for twenty compounds with varying structures were determined for inhibition of luciferase refolding and in cell-based assays for Hsp90 inhibition. Several compounds had IC50 values <10 microM and represent a number of new lead structures with the potential for further development and optimization as potent Hsp90 inhibitors.

  10. Real-time nucleic acid sequence-based amplification assay for detection of hepatitis A virus.

    PubMed

    Abd el-Galil, Khaled H; el-Sokkary, M A; Kheira, S M; Salazar, Andre M; Yates, Marylynn V; Chen, Wilfred; Mulchandani, Ashok

    2005-11-01

    A nucleic acid sequence-based amplification (NASBA) assay in combination with a molecular beacon was developed for the real-time detection and quantification of hepatitis A virus (HAV). A 202-bp, highly conserved 5' noncoding region of HAV was targeted. The sensitivity of the real-time NASBA assay was tested with 10-fold dilutions of viral RNA, and a detection limit of 1 PFU was obtained. The specificity of the assay was demonstrated by testing with other environmental pathogens and indicator microorganisms, with only HAV positively identified. When combined with immunomagnetic separation, the NASBA assay successfully detected as few as 10 PFU from seeded lake water samples. Due to its isothermal nature, its speed, and its similar sensitivity compared to the real-time RT-PCR assay, this newly reported real-time NASBA method will have broad applications for the rapid detection of HAV in contaminated food or water.

  11. Recombinase polymerase amplification-based assay to diagnose Giardia in stool samples.

    PubMed

    Crannell, Zachary Austin; Cabada, Miguel Mauricio; Castellanos-Gonzalez, Alejandro; Irani, Ayesha; White, Arthur Clinton; Richards-Kortum, Rebecca

    2015-03-01

    Giardia duodenalis is one of the most commonly identified parasites in stool samples. Although relatively easy to treat, giardiasis can be difficult to detect as it presents similar to other diarrheal diseases. Here, we present a recombinase polymerase amplification-based Giardia (RPAG) assay to detect the presence of Giardia in stool samples. The RPAG assay was characterized on the bench top using stool samples spiked with Giardia cysts where it showed a limit-of-detection nearly as low as the gold standard polymerase chain reaction assay. The RPAG assay was then tested in the highlands of Peru on 104 stool samples collected from the surrounding communities where it showed 73% sensitivity and 95% specificity against a polymerase chain reaction and microscopy composite gold standard. Further improvements in clinical sensitivity will be needed for the RPAG assay to have clinical relevance.

  12. Solid-phase assay of lectin activity using HRP-conjugated glycoproteins.

    PubMed

    Kojima-Aikawa, Kyoko

    2014-01-01

    Various enzyme-conjugated probes have been widely used for detection of specific interactions between biomolecules. In the case of glycan-protein interaction, horseradish peroxidase (HRP)-conjugated glycoproteins (HRP-GPs) are useful for the detection of carbohydrate-binding activity of plant and animal lectins. In this chapter, a typical solid-phase assay of the carbohydrate-binding activity of Sophora japonica agglutinin I, a Gal/GalNAc-specific lectin, using HRP-conjugated asialofetuin is described. HRP-GPs are versatile tools for probing lectin activities in crude extracts, screening many samples at one time, and applicable not only for solid-phase binding assays but also samples which are dot- or Western-blotted onto the membrane. PMID:25117228

  13. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin.

    PubMed

    Camacho-Ruiz, María de Los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A

    2015-05-01

    A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples.

  14. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin.

    PubMed

    Camacho-Ruiz, María de Los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A

    2015-05-01

    A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples. PMID:25748441

  15. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin[S

    PubMed Central

    Camacho-Ruiz, María de los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A.

    2015-01-01

    A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples. PMID:25748441

  16. Bioluminescence-based neuraminidase inhibition assay for monitoring influenza virus drug susceptibility in clinical specimens.

    PubMed

    Marjuki, Henju; Mishin, Vasiliy P; Sleeman, Katrina; Okomo-Adhiambo, Margaret; Sheu, Tiffany G; Guo, Lizheng; Xu, Xiyan; Gubareva, Larisa V

    2013-11-01

    The QFlu prototype bioluminescence-based neuraminidase (NA) inhibition (NI) assay kit was designed to detect NA inhibitor (NAI)-resistant influenza viruses at point of care. Here, we evaluated its suitability for drug susceptibility assessment at a surveillance laboratory. A comprehensive panel of reference viruses (n = 14) and a set of 90 seasonal influenza virus A and B isolates were included for testing with oseltamivir and/or zanamivir in the QFlu assay using the manufacturer-recommended protocol and a modified version attuned to surveillance requirements. The 50% inhibitory concentrations (IC50s) generated were compared with those of NI assays currently used for monitoring influenza drug susceptibility, the fluorescent (FL) and chemiluminescent (CL) assays. To provide proof of principle, clinical specimens (n = 235) confirmed by real-time reverse transcription (RT)-PCR to contain influenza virus A(H1N1)pdm09 and prescreened for the oseltamivir resistance marker H275Y using pyrosequencing were subsequently tested in the QFlu assay. All three NI assays were able to discriminate the reference NA variants and their matching wild-type viruses based on the difference in their IC50s. Unless the antigenic types were first identified, certain NA variants (e.g., H3N2 with E119V) could be detected among seasonal viruses using the FL assays only. Notably, the QFlu assay identified oseltamivir-resistant A(H1N1)pdm09 viruses carrying the H275Y marker directly in clinical specimens, which is not feasible with the other two phenotypic assays, which required prior virus culturing in cells. Furthermore, The QFlu assay allows detection of the influenza virus A and B isolates carrying established and potential NA inhibitor resistance markers and may become a useful tool for monitoring drug resistance in clinical specimens. PMID:23917311

  17. Cell-based assays and animal models for GPCR drug screening.

    PubMed

    Takakura, Hideo; Hattori, Mitsuru; Tanaka, Miho; Ozawa, Takeaki

    2015-01-01

    The family of G protein-coupled receptors (GPCRs) remains a central focus of basic pharmacology and drug discovery efforts. Convenient methods to assess the efficacy of potentially therapeutic reagents for GPCRs are strongly required for high-throughput screening (HTS) assay. We recently developed a rapid, sensitive, and quantitative method for detecting potential chemicals that act on GPCRs using split luciferase complementation. In principle, this is based on the detection of interactions of GPCR with β-arrestin, which translocates to the activated GPCRs. This method can facilitate the construction of HTS systems in a multi-well plate format. Particularly, the method is compatible with single-cell imaging and animal models and even deeper tissues such as organs, because of its high sensitivity, suggesting that promising candidates from HTS assay can be moved easily to the next phase for additional analysis. This system can contribute to the effective evaluation of potentially therapeutic reagents and expedite the development of new drugs for GPCRs. PMID:25563190

  18. Medically Relevant Assays with a Simple Smartphone and Tablet Based Fluorescence Detection System

    PubMed Central

    Wargocki, Piotr; Deng, Wei; Anwer, Ayad G.; Goldys, Ewa M.

    2015-01-01

    Cell phones and smart phones can be reconfigured as biomedical sensor devices but this requires specialized add-ons. In this paper we present a simple cell phone-based portable bioassay platform, which can be used with fluorescent assays in solution. The system consists of a tablet, a polarizer, a smart phone (camera) and a box that provides dark readout conditions. The assay in a well plate is placed on the tablet screen acting as an excitation source. A polarizer on top of the well plate separates excitation light from assay fluorescence emission enabling assay readout with a smartphone camera. The assay result is obtained by analysing the intensity of image pixels in an appropriate colour channel. With this device we carried out two assays, for collagenase and trypsin using fluorescein as the detected fluorophore. The results of collagenase assay with the lowest measured concentration of 3.75 µg/mL and 0.938 µg in total in the sample were comparable to those obtained by a microplate reader. The lowest measured amount of trypsin was 930 pg, which is comparable to the low detection limit of 400 pg for this assay obtained in a microplate reader. The device is sensitive enough to be used in point-of-care medical diagnostics of clinically relevant conditions, including arthritis, cystic fibrosis and acute pancreatitis. PMID:26007723

  19. Medically relevant assays with a simple smartphone and tablet based fluorescence detection system.

    PubMed

    Wargocki, Piotr; Deng, Wei; Anwer, Ayad G; Goldys, Ewa M

    2015-01-01

    Cell phones and smart phones can be reconfigured as biomedical sensor devices but this requires specialized add-ons. In this paper we present a simple cell phone-based portable bioassay platform, which can be used with fluorescent assays in solution. The system consists of a tablet, a polarizer, a smart phone (camera) and a box that provides dark readout conditions. The assay in a well plate is placed on the tablet screen acting as an excitation source. A polarizer on top of the well plate separates excitation light from assay fluorescence emission enabling assay readout with a smartphone camera. The assay result is obtained by analysing the intensity of image pixels in an appropriate colour channel. With this device we carried out two assays, for collagenase and trypsin using fluorescein as the detected fluorophore. The results of collagenase assay with the lowest measured concentration of 3.75 µg/mL and 0.938 µg in total in the sample were comparable to those obtained by a microplate reader. The lowest measured amount of trypsin was 930 pg, which is comparable to the low detection limit of 400 pg for this assay obtained in a microplate reader. The device is sensitive enough to be used in point-of-care medical diagnostics of clinically relevant conditions, including arthritis, cystic fibrosis and acute pancreatitis. PMID:26007723

  20. Using Exclusion-Based Sample Preparation (ESP) to Reduce Viral Load Assay Cost.

    PubMed

    Berry, Scott M; Pezzi, Hannah M; Williams, Eram D; Loeb, Jennifer M; Guckenberger, David J; Lavanway, Alex J; Puchalski, Alice A; Kityo, Cissy M; Mugyenyi, Peter N; Graziano, Franklin M; Beebe, David J

    2015-01-01

    Viral load (VL) measurements are critical to the proper management of HIV in developing countries. However, access to VL assays is limited by the high cost and complexity of existing assays. While there is a need for low cost VL assays, performance must not be compromised. Thus, new assays must be validated on metrics of limit of detection (LOD), accuracy, and dynamic range. Patient plasma samples from the Joint Clinical Research Centre in Uganda were de-identified and measured using both an existing VL assay (Abbott RealTime HIV-1) and our assay, which combines low cost reagents with a simplified method of RNA isolation termed Exclusion-Based Sample Preparation (ESP).71 patient samples with VLs ranging from <40 to >3,000,000 copies/mL were used to compare the two methods. We demonstrated equivalent LOD (~50 copies/mL) and high accuracy (average difference between methods of 0.08 log, R2 = 0.97). Using expenditures from this trial, we estimate that the cost of the reagents and consumables for this assay to be approximately $5 USD. As cost is a significant barrier to implementation of VL testing, we anticipate that our assay will enhance access to this critical monitoring test in developing countries.

  1. Using Exclusion-Based Sample Preparation (ESP) to Reduce Viral Load Assay Cost

    PubMed Central

    Berry, Scott M.; Pezzi, Hannah M.; Williams, Eram D.; Loeb, Jennifer M.; Guckenberger, David J.; Lavanway, Alex J.; Puchalski, Alice A.; Kityo, Cissy M.; Mugyenyi, Peter N.; Graziano, Franklin M.; Beebe, David J.

    2015-01-01

    Viral load (VL) measurements are critical to the proper management of HIV in developing countries. However, access to VL assays is limited by the high cost and complexity of existing assays. While there is a need for low cost VL assays, performance must not be compromised. Thus, new assays must be validated on metrics of limit of detection (LOD), accuracy, and dynamic range. Patient plasma samples from the Joint Clinical Research Centre in Uganda were de-identified and measured using both an existing VL assay (Abbott RealTime HIV-1) and our assay, which combines low cost reagents with a simplified method of RNA isolation termed Exclusion-Based Sample Preparation (ESP).71 patient samples with VLs ranging from <40 to >3,000,000 copies/mL were used to compare the two methods. We demonstrated equivalent LOD (~50 copies/mL) and high accuracy (average difference between methods of 0.08 log, R2 = 0.97). Using expenditures from this trial, we estimate that the cost of the reagents and consumables for this assay to be approximately $5 USD. As cost is a significant barrier to implementation of VL testing, we anticipate that our assay will enhance access to this critical monitoring test in developing countries. PMID:26630135

  2. Characterization of the DNA-binding activity of HIV-1 integrase using a filter binding assay.

    PubMed

    Haugan, I R; Nilsen, B M; Worland, S; Olsen, L; Helland, D E

    1995-12-26

    Based on the selective binding of proteins and DNA to distinct filter materials a double-layered dot blot radio assay was developed to evaluate the binding of DNA to HIV-1 integrase. In this assay the DNA-binding was found to be independent of Mn2+ concentration, inhibited by concentrations of Mg2+ above 5 mM, abolished by zinc chelation and inhibited by monoclonal antibodies reacting with either the N-terminal or C-terminal regions of integrase. Atomic absorption spectroscopy revealed the molar ratio between integrase and zinc to be close to 1. It is concluded that both the N-terminal and the C-terminal regions of integrase are involved in DNA-binding and that the reported double-layered dot blot radio assay is well suited for further characterization of the integrase.

  3. Thiopurine methyl transferase activity: new extraction conditions for high-performance liquid chromatographic assay.

    PubMed

    Ganiere-Monteil, C; Pineau, A; Kergueris, M F; Azoulay, C; Bourin, M

    1999-04-30

    A new liquid-liquid extraction is described for thiopurine methyl transferase (TPMT, EC 2.1.1.67) activity determination: the use of a pH 9.5 NH4Cl buffer solution, before adding the solvent mixture, allows more rapid extraction, avoiding a centrifugation step, and reduces the global cost of analysis. After the extraction step, 6-methylmercaptopurine, synthesised during the enzymatic reaction, is determined by a liquid chromatographic assay. Analytical performance of the assay was tested on spiked erythrocyte lysates. The linear concentration range was 5-250 ng ml(-1) (r> or =0.997, slope=1.497, intercept=-0.367). The recoveries were 82.8, 89.9 and 82.2% for 75, 125 and 225 ng ml(-1), respectively. The coefficients of variation were < or =6.1% for within-day assay (n=6) and < or =9.5% for between-day assay precision (n=6; 14 days). TPMT activity was determined in a French adult Caucasian population (7 =70). The results ranged from 7.8 to 27.8 nmol h(-1) ml(-1) packed red blood cells and the frequency distribution histogram is similar to that previously published.

  4. Evaluation of a Novel PCR-Based Assay for Detection and Identification of Chlamydia trachomatis Serovars in Cervical Specimens▿

    PubMed Central

    Quint, Koen; Porras, Carolina; Safaeian, Mahboobeh; González, Paula; Hildesheim, Allan; Quint, Wim; van Doorn, Leen-Jan; Silva, Sandra; Melchers, Willem; Schiffman, Mark; Rodríguez, Ana Cecilia; Wacholder, Sholom; Freer, Enrique; Cortes, Bernal; Herrero, Rolando

    2007-01-01

    The aims of this study were to compare a novel PCR-based Chlamydia trachomatis detection and genotyping (Ct-DT) assay with the FDA-approved, commercially available C. trachomatis detection Hybrid Capture 2 (HC2) assay and to investigate the C. trachomatis serovar distribution among young women in a rural Costa Rican study population. A total of 5,828 sexually active women participating in a community-based trial in Costa Rica were tested for C. trachomatis by HC2. A sample of 1,229 specimens consisting of 100% HC2 C. trachomatis-positive specimens (n = 827) and a random sample of 8% HC2 C. trachomatis-negative specimens (n = 402) were tested with the Ct-DT assay. Agreement between the two assays was determined by the unweighted kappa statistic. Discrepant specimens were tested with a second commercially available test (COBAS TaqMan). The Ct-DT-positive specimens were further analyzed with the Ct-DT genotyping step to investigate the distribution of 14 different C. trachomatis serovars (A, B/Ba, C, D/Da, E, F, G/Ga, H, I/Ia, J, K, L1, L2/L2a, and L3). After accounting for the sampling fraction selected for Ct-DT testing, crude agreement with the HC2 assay was 98% and the kappa was 0.92 (95% confidence interval [CI], 0.89 to 0.97). The 33 discordant samples that were further analyzed with the COBAS TaqMan test showed better agreement with the Ct-DT assay (31/33, P < 0.001). Among the 806 Ct-DT-positive samples, serovar E was the most common serovar (31%), followed by serovars F and D (both 21%) and serovar I (15%). In conclusion, the novel Ct-DT assay permits reliable detection and identification of C. trachomatis serovars. PMID:17959760

  5. A novel fluorescence-based assay for the rapid detection and quantification of cellular deoxyribonucleoside triphosphates

    PubMed Central

    Wilson, Peter M.; LaBonte, Melissa J.; Russell, Jared; Louie, Stan; Ghobrial, Andrew A.; Ladner, Robert D.

    2011-01-01

    Current methods for measuring deoxyribonucleoside triphosphates (dNTPs) employ reagent and labor-intensive assays utilizing radioisotopes in DNA polymerase-based assays and/or chromatography-based approaches. We have developed a rapid and sensitive 96-well fluorescence-based assay to quantify cellular dNTPs utilizing a standard real-time PCR thermocycler. This assay relies on the principle that incorporation of a limiting dNTP is required for primer-extension and Taq polymerase-mediated 5–3′ exonuclease hydrolysis of a dual-quenched fluorophore-labeled probe resulting in fluorescence. The concentration of limiting dNTP is directly proportional to the fluorescence generated. The assay demonstrated excellent linearity (R2 > 0.99) and can be modified to detect between ∼0.5 and 100 pmol of dNTP. The limits of detection (LOD) and quantification (LOQ) for all dNTPs were defined as <0.77 and <1.3 pmol, respectively. The intra-assay and inter-assay variation coefficients were determined to be <4.6% and <10%, respectively with an accuracy of 100 ± 15% for all dNTPs. The assay quantified intracellular dNTPs with similar results obtained from a validated LC–MS/MS approach and successfully measured quantitative differences in dNTP pools in human cancer cells treated with inhibitors of thymidylate metabolism. This assay has important application in research that investigates the influence of pathological conditions or pharmacological agents on dNTP biosynthesis and regulation. PMID:21576234

  6. Virus replicon particle based Chikungunya virus neutralization assay using Gaussia luciferase as readout

    PubMed Central

    2013-01-01

    Background Chikungunya virus (CHIKV) has been responsible for large epidemic outbreaks causing fever, headache, rash and severe arthralgia. So far, no specific treatment or vaccine is available. As nucleic acid amplification can only be used during the viremic phase of the disease, serological tests like neutralization assays are necessary for CHIKV diagnosis and for determination of the immune status of a patient. Furthermore, neutralization assays represent a useful tool to validate the efficacy of potential vaccines. As CHIKV is a BSL3 agent, neutralization assays with infectious virus need to be performed under BSL3 conditions. Our aim was to develop a neutralization assay based on non-infectious virus replicon particles (VRPs). Methods VRPs were produced by cotransfecting baby hamster kidney-21 cells with a CHIKV replicon expressing Gaussia luciferase (Gluc) and two helper RNAs expressing the CHIKV capsid protein or the remaining structural proteins, respectively. The resulting single round infectious particles were used in CHIKV neutralization assays using secreted Gluc as readout. Results Upon cotransfection of a CHIKV replicon expressing Gluc and the helper RNAs VRPs could be produced efficiently under optimized conditions at 32°C. Infection with VRPs could be measured via Gluc secreted into the supernatant. The successful use of VRPs in CHIKV neutralization assays was demonstrated using a CHIKV neutralizing monoclonal antibody or sera from CHIKV infected patients. Comparison of VRP based neutralization assays in 24- versus 96-well format using different amounts of VRPs revealed that in the 96-well format a high multiplicity of infection is favored, while in the 24-well format reliable results are also obtained using lower infection rates. Comparison of different readout times revealed that evaluation of the neutralization assay is already possible at the same day of infection. Conclusions A VRP based CHIKV neutralization assay using Gluc as readout

  7. Transactivation Assays to Assess Canine and Rodent Pregnane X Receptor (PXR) and Constitutive Androstane Receptor (CAR) Activation

    PubMed Central

    Pinne, Marija; Ponce, Elsa; Raucy, Judy L.

    2016-01-01

    The pregnane X receptor (PXR/SXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are nuclear receptors (NRs) involved in the regulation of many genes including cytochrome P450 enzymes (CYPs) and transporters important in metabolism and uptake of both endogenous substrates and xenobiotics. Activation of these receptors can lead to adverse drug effects as well as drug-drug interactions. Depending on which nuclear receptor is activated will determine which adverse effect could occur, making identification important. Screening for NR activation by New Molecular Entities (NMEs) using cell-based transactivation assays is the singular high throughput method currently available for identifying the activation of a particular NR. Moreover, screening for species-specific NR activation can minimize the use of animals in drug development and toxicology studies. With this in mind, we have developed in vitro transactivation assays to identify compounds that activate canine and rat PXR and CAR3. We found differences in specificity for canine and rat PXR, with the best activator for canine PXR being 10 μM SR12813 (60.1 ± 3.1-fold) and for rat PXR, 10 μM dexamethasone (60.9 ± 8.4 fold). Of the 19 test agents examined, 10 and 9 significantly activated rat and canine PXR at varying degrees, respectively. In contrast, 5 compounds exhibited statistically significant activation of rat CAR3 and 4 activated the canine receptor. For canine CAR3, 50 μM artemisinin proved to be the best activator (7.3 ± 1.8 and 10.5 ± 2.2 fold) while clotrimazole (10 μM) was the primary activator of the rat variant (13.7 ± 0.8 and 26.9 ± 1.3 fold). Results from these studies demonstrated that cell-based transactivation assays can detect species-specific activators and revealed that PXR was activated by at least twice as many compounds as was CAR3, suggesting that there are many more agonists for PXR than CAR. PMID:27732639

  8. Label-free functional assays of chemical receptors using a bioengineered cell-based biosensor with localized extracellular acidification measurement.

    PubMed

    Du, Liping; Zou, Ling; Zhao, Luhang; Huang, Liquan; Wang, Ping; Wu, Chunsheng

    2014-04-15

    New methods for functional assays of chemical receptors are highly essential for the research of chemical signal transduction mechanisms and for the development of chemical biosensors. This study described a novel bioengineered cell-based biosensor for label-free functional assays of chemical receptors by localized extracellular acidification measurement with a light-addressable potentiometric sensor (LAPS). A human taste receptor, hT2R4, and an olfactory receptor of Caenorhabditis elegans (C. elegans), ODR-10, were selected as models of chemical receptors, which were expressed on the plasma membrane of human embryonic kidney (HEK)-293 cells. The specific ligand binding function of expressed chemical receptors was monitored by localized extracellular acidification measurement using LAPS chip with a movable focused laser illuminating on the desired single cell. The function of expressed olfactory receptors was further validated using MDL12330A, which can specifically inhibit the activity of adenylyl cyclase. The obtained results indicate that both of chemical receptors were successfully expressed in HEK-293 cells and can be functionally assayed by this bioengineered cell-based biosensor that shows dose-dependent responses to the target ligands of chemical receptors. This bioengineered cell-based biosensor exhibits the sensitivity of 1.0 mV/s for hT2R4 assays, and 9.8 mV/s for ODR-10 assays. The negative control cells without any chemical receptor expression show no response to all the chemical stimuli tested. All the results demonstrate this bioengineered cell-based biosensor can be used to detect the interactions between chemical receptors and their ligands. This provides a valuable and promising approach for label-free functional assays of chemical receptors as well as for the research of other GPCRs.

  9. Field evaluation of a recombinant glutathione S-transferase-based pyrethroid quantification assay.

    PubMed

    Enayati, Ahmad Ali; Lengeler, Christian; Erlanger, Tobias; Hemingway, Janet

    2005-05-01

    A recombinant glutathione S-transferase (GST)-based pyrethroid quantification assay was field-tested in Ifakara, Tanzania. Initial laboratory tests suggested that all reagents used in the assay should be sufficiently stable for field use, provided that domestic refrigeration facilities were available. Insecticide-impregnated bednets were collected from a region where a social marketing programme was in progress. A total of 100 bednets were collected and the assay plus standard HPLC analysis was performed on the residues extracted from four replicate areas of each net. Insecticide residue estimations for assays performed on white and pale green bednet samples were accurate when compared with residue analysis by HPLC. However, for dark green or blue bednets, there was no correlation between the GST-based assay and HPLC pyrethroid quantification results. The assay failure with the dark coloured nets was caused by the extraction of the dyes along with the insecticide, which subsequently interfered with the GST assay. When the same samples were analysed by HPLC, the dyes were separated from the insecticide by reverse phase column chromatography and hence did not affect the results. PMID:15780344

  10. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods.

    PubMed

    Xing, Jiali; Wang, Gang; Zhang, Qiuxiang; Liu, Xiaoming; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Chen, Wei

    2015-01-01

    Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA) assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs) of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS), reducing power (RP), and inhibition of linoleic acid peroxidation (ILAP). Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs. PMID:25789875

  11. Development of a high-throughput assay for measuring lipase activity using natural triacylglycerols coated on microtiter plates.

    PubMed

    Serveau-Avesque, Carole; Verger, Robert; Rodriguez, Jorge A; Abousalham, Abdelkarim

    2013-09-21

    We have designed a convenient, specific, sensitive and continuous lipase assay based on the use of natural triacylglycerols (TAGs) from the Aleurites fordii seed oil which contains α-eleostearic acid (9,11,13,cis,trans,trans-octadecatrienoic acid) and which was coated in the wells of microtiter plates. The coated TAG film cannot be desorbed by the various buffers used during the lipase assay. Upon lipase action, α-eleostearic acid is liberated and desorbed from the interface and then solubilized into the micellar phase. Consequently, the UV absorbance of the α-eleostearic acid is considerably enhanced due to the transformation from an adsorbed to a water soluble state. The lipase activity can be measured continuously by recording the variations with time of the UV absorption spectra. The rate of lipolysis was monitored by measuring the increase of OD at 272 nm, which was found to be linear with time and directly proportional to the amount of added lipase. This microtiter plate lipase assay, based on coated TAGs, presents various advantages as compared to the classical systems: (i) coated TAGs on the microtiter plates could be stored for a long-time at 4 °C, (ii) higher sensitivity in lipase detection, (iii) good reproducibility, and (iv) increase of signal to noise ratio due to high UV absorption after transfer of α-eleostearic acid from an adsorbed to a soluble state. Low concentrations, down to 1 pg mL(-1) of pure Thermomyces lanuginosus or human pancreatic lipase, could be detected under standard assay conditions. The detection sensitivity of this coated method is around 1000 times higher as compared to those obtained with the classical emulsified systems. This continuous high throughput lipase assay could be used to screen new lipases and/or lipase inhibitors present in various biological samples.

  12. A high-content screening assay in transgenic zebrafish identifies two novel activators of fgf signaling.

    PubMed

    Saydmohammed, Manush; Vollmer, Laura L; Onuoha, Ezenwa Obi; Vogt, Andreas; Tsang, Michael

    2011-09-01

    Zebrafish have become an invaluable vertebrate animal model to interrogate small molecule libraries for modulators of complex biological pathways and phenotypes. We have recently described the implementation of a quantitative, high-content imaging assay in multi-well plates to analyze the effects of small molecules on Fibroblast Growth Factor (FGF) signaling in vivo. Here we have evaluated the capability of the assay to identify compounds that hyperactivate FGF signaling from a test cassette of agents with known biological activities. Using a transgenic zebrafish reporter line for FGF activity, we screened 1040 compounds from an annotated library of known bioactive agents, including FDA-approved drugs. The assay identified two molecules, 8-hydroxyquinoline sulfate and pyrithione zinc, that enhanced FGF signaling in specific areas of the brain. Subsequent studies revealed that both compounds specifically expanded FGF target gene expression. Furthermore, treatment of early stage embryos with either compound resulted in dorsalized phenotypes characteristic of hyperactivation of FGF signaling in early development. Documented activities for both agents included activation of extracellular signal-related kinase (ERK), consistent with FGF hyperactivation. To conclude, we demonstrate the power of automated quantitative high-content imaging to identify small molecule modulators of FGF. PMID:21932436

  13. Smartphone based visual and quantitative assays on upconversional paper sensor.

    PubMed

    Mei, Qingsong; Jing, Huarong; Li, You; Yisibashaer, Wuerzha; Chen, Jian; Nan Li, Bing; Zhang, Yong

    2016-01-15

    The integration of smartphone with paper sensors recently has been gain increasing attentions because of the achievement of quantitative and rapid analysis. However, smartphone based upconversional paper sensors have been restricted by the lack of effective methods to acquire luminescence signals on test paper. Herein, by the virtue of 3D printing technology, we exploited an auxiliary reusable device, which orderly assembled a 980nm mini-laser, optical filter and mini-cavity together, for digitally imaging the luminescence variations on test paper and quantitative analyzing pesticide thiram by smartphone. In detail, copper ions decorated NaYF4:Yb/Tm upconversion nanoparticles were fixed onto filter paper to form test paper, and the blue luminescence on it would be quenched after additions of thiram through luminescence resonance energy transfer mechanism. These variations could be monitored by the smartphone camera, and then the blue channel intensities of obtained colored images were calculated to quantify amounts of thiram through a self-written Android program installed on the smartphone, offering a reliable and accurate detection limit of 0.1μM for the system. This work provides an initial demonstration of integrating upconversion nanosensors with smartphone digital imaging for point-of-care analysis on a paper-based platform.

  14. Smartphone based visual and quantitative assays on upconversional paper sensor.

    PubMed

    Mei, Qingsong; Jing, Huarong; Li, You; Yisibashaer, Wuerzha; Chen, Jian; Nan Li, Bing; Zhang, Yong

    2016-01-15

    The integration of smartphone with paper sensors recently has been gain increasing attentions because of the achievement of quantitative and rapid analysis. However, smartphone based upconversional paper sensors have been restricted by the lack of effective methods to acquire luminescence signals on test paper. Herein, by the virtue of 3D printing technology, we exploited an auxiliary reusable device, which orderly assembled a 980nm mini-laser, optical filter and mini-cavity together, for digitally imaging the luminescence variations on test paper and quantitative analyzing pesticide thiram by smartphone. In detail, copper ions decorated NaYF4:Yb/Tm upconversion nanoparticles were fixed onto filter paper to form test paper, and the blue luminescence on it would be quenched after additions of thiram through luminescence resonance energy transfer mechanism. These variations could be monitored by the smartphone camera, and then the blue channel intensities of obtained colored images were calculated to quantify amounts of thiram through a self-written Android program installed on the smartphone, offering a reliable and accurate detection limit of 0.1μM for the system. This work provides an initial demonstration of integrating upconversion nanosensors with smartphone digital imaging for point-of-care analysis on a paper-based platform. PMID:26356763

  15. Quantitative comparison between microfluidic and microtiter plate formats for cell-based assays.

    PubMed

    Yin, Huabing; Pattrick, Nicola; Zhang, Xunli; Klauke, Norbert; Cordingley, Hayley C; Haswell, Steven J; Cooper, Jonathan M

    2008-01-01

    In this paper, we compare a quantitative cell-based assay measuring the intracellular Ca2+ response to the agonist uridine 5'-triphosphate in Chinese hamster ovary cells, in both microfluidic and microtiter formats. The study demonstrates that, under appropriate hydrodynamic conditions, there is an excellent agreement between traditional well-plate assays and those obtained on-chip for both suspended immobilized cells and cultured adherent cells. We also demonstrate that the on-chip assay, using adherent cells, provides the possibility of faster screening protocols with the potential for resolving subcellular information about local Ca2+ flux.

  16. Large-scale drug screening against Babesia divergens parasite using a fluorescence-based high-throughput screening assay.

    PubMed

    Rizk, Mohamed Abdo; El-Sayed, Shimaa Abd El-Salam; AbouLaila, Mahmoud; Tuvshintulga, Bumduuren; Yokoyama, Naoaki; Igarashi, Ikuo

    2016-08-30

    The validation of a fluorescence-based high-throughput screening (HTS) assay for determining the efficacies of large chemical libraries against Babesia divergens (bovine strain) in in vitro cultures was evaluated in this study. Hematocrits (HCTs) of 2.5%, 5%, and 10% were used for the in vitro culture at 1% parasitemia without daily replacement of the medium. Linearity and HTS assay results revealed that the best HCTs were 5% and 10%. The obtained IC50 values of diminazene aceturate, either by fluorescence-based HTS assay with and without daily replacement of medium or by fluorescence- and microscopy-based methods, did not differ significantly at 5% HCT. Actinonin and chloroquine diphosphate were the most effective drugs against the in vitro growth of B. divergens, followed by pyronaridine tetraphosphate- and luteolin-treated cultures. On contrary, tetracycline hydrochloride and (-)-epigallocatechin-3-gallate from green tea exhibited poor activity as compared with diminazene aceturate (positive control drug). The data indicated that 5% HCT without daily replacement of the culture medium mixed with bovine serum in vitro using a fluorescence-based HTS assay creates the best conditions for large-scale drug screening against B. divergens that infect cattle. PMID:27523944

  17. Use of a Standardized MxA Protein Measurement-Based Assay for Validation of Assays for the Assessment of Neutralizing Antibodies Against Interferon-β

    PubMed Central

    Subramanyam, Meena; Goelz, Susan; Goyal, Jaya; Jethwa, Vijay; Jones, Wendy; Files, James G.; Kramer, Daniel; Bird, Chris; Dilger, Paula; Tovey, Michael; Lallemand, Christophe; Thorpe, Robin

    2013-01-01

    Effective monitoring of the development of neutralizing antibodies (NAbs) against IFN-β in multiple sclerosis (MS) patients on IFN-β therapy is important for clinical decision making and disease management. To date, antiviral assays have been the favored approach for NAb determination, but variations in assay conditions between laboratories and the increasing use of novel assays have contributed to the reporting of inconsistent antibody data between laboratories and between products. This study, undertaken at the request of the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA), is a joint effort by manufacturers of IFN-β products (approved in Europe) towards harmonization of a NAb assay that facilitates generation of comparable NAb data, which, in conjunction with clinical outcomes, should prove useful for clinicians treating MS patients with IFN-β products. This article describes the standardized cellular myxovirus resistance protein A (MxA) protein measurement-based assay for detection of IFN-β NAbs and its use for the validation of assays used for the quantitative determination of such antibodies. Although titers varied between laboratories and the products used, utilization of IFN-β1a rather than IFN-β1b as the challenge antigen produced more consistent results in the NAb assay. Adoption of the standardized assay improves comparability between laboratories circumventing problems that arise when different, nonstandardized assays are employed for immunogenicity assessment. Based on the data, the EMA recommended for standardization purposes, the use of IFN-β1a in NAb assays, independent of the therapeutic product used for therapy and validation of new NAb procedures against the standardized assay described. PMID:23848523

  18. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    NASA Astrophysics Data System (ADS)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  19. Development of a quantitative fluorescence-based ligand-binding assay

    PubMed Central

    Breen, Conor J.; Raverdeau, Mathilde; Voorheis, H. Paul

    2016-01-01

    A major goal of biology is to develop a quantitative ligand-binding assay that does not involve the use of radioactivity. Existing fluorescence-based assays have a serious drawback due to fluorescence quenching that accompanies the binding of fluorescently-labeled ligands to their receptors. This limitation of existing fluorescence-based assays prevents the number of cellular receptors under investigation from being accurately measured. We have developed a method where FITC-labeled proteins bound to a cell surface are proteolyzed extensively to eliminate fluorescence quenching and then the fluorescence of the resulting sample is compared to that of a known concentration of the proteolyzed FITC-protein employed. This step enables the number of cellular receptors to be measured quantitatively. We expect that this method will provide researchers with a viable alternative to the use of radioactivity in ligand binding assays. PMID:27161290

  20. Droplet-based microfluidic washing module for magnetic particle-based assays

    PubMed Central

    Lee, Hun; Xu, Linfeng; Oh, Kwang W.

    2014-01-01

    In this paper, we propose a continuous flow droplet-based microfluidic platform for magnetic particle-based assays by employing in-droplet washing. The droplet-based washing was implemented by traversing functionalized magnetic particles across a laterally merged droplet from one side (containing sample and reagent) to the other (containing buffer) by an external magnetic field. Consequently, the magnetic particles were extracted to a parallel-synchronized train of washing buffer droplets, and unbound reagents were left in an original train of sample droplets. To realize the droplet-based washing function, the following four procedures were sequentially carried in a droplet-based microfluidic device: parallel synchronization of two trains of droplets by using a ladder-like channel network; lateral electrocoalescence by an electric field; magnetic particle manipulation by a magnetic field; and asymmetrical splitting of merged droplets. For the stable droplet synchronization and electrocoalescence, we optimized droplet generation conditions by varying the flow rate ratio (or droplet size). Image analysis was carried out to determine the fluorescent intensity of reagents before and after the washing step. As a result, the unbound reagents in sample droplets were significantly removed by more than a factor of 25 in the single washing step, while the magnetic particles were successfully extracted into washing buffer droplets. As a proof-of-principle, we demonstrate a magnetic particle-based immunoassay with streptavidin-coated magnetic particles and fluorescently labelled biotin in the proposed continuous flow droplet-based microfluidic platform. PMID:25379098

  1. Spectrophotometric total reducing sugars assay based on cupric reduction.

    PubMed

    Başkan, Kevser Sözgen; Tütem, Esma; Akyüz, Esin; Özen, Seda; Apak, Reşat

    2016-01-15

    As the concentration of reducing sugars (RS) is controlled by European legislation for certain specific food and beverages, a simple and sensitive spectrophotometric method for the determination of RS in various food products is proposed. The method is based on the reduction of Cu(II) to Cu(I) with reducing sugars in alkaline medium in the presence of 2,9-dimethyl-1,10-phenanthroline (neocuproine: Nc), followed by the formation of a colored Cu(I)-Nc charge-transfer complex. All simple sugars tested had the linear regression equations with almost equal slope values. The proposed method was successfully applied to fresh apple juice, commercial fruit juices, milk, honey and onion juice. Interference effect of phenolic compounds in plant samples was eliminated by a solid phase extraction (SPE) clean-up process. The method was proven to have higher sensitivity and precision than the widely used dinitrosalicylic acid (DNS) colorimetric method.

  2. Spectrophotometric total reducing sugars assay based on cupric reduction.

    PubMed

    Başkan, Kevser Sözgen; Tütem, Esma; Akyüz, Esin; Özen, Seda; Apak, Reşat

    2016-01-15

    As the concentration of reducing sugars (RS) is controlled by European legislation for certain specific food and beverages, a simple and sensitive spectrophotometric method for the determination of RS in various food products is proposed. The method is based on the reduction of Cu(II) to Cu(I) with reducing sugars in alkaline medium in the presence of 2,9-dimethyl-1,10-phenanthroline (neocuproine: Nc), followed by the formation of a colored Cu(I)-Nc charge-transfer complex. All simple sugars tested had the linear regression equations with almost equal slope values. The proposed method was successfully applied to fresh apple juice, commercial fruit juices, milk, honey and onion juice. Interference effect of phenolic compounds in plant samples was eliminated by a solid phase extraction (SPE) clean-up process. The method was proven to have higher sensitivity and precision than the widely used dinitrosalicylic acid (DNS) colorimetric method. PMID:26592591

  3. Miniaturized optical chemosensor for flow-based assays.

    PubMed

    Pokrzywnicka, Marta; Cocovi-Solberg, David J; Miró, Manuel; Cerdà, Víctor; Koncki, Robert; Tymecki, Łukasz

    2011-01-01

    A cost-effective, highly compact, and versatile optoelectronic device constructed of two ordinary light emitting diodes compatible with optosensing films has been developed. This fibreless device containing chemoreceptor, semiconductor light source, and detector integrated in a miniaturized flow-through cell of low microliter internal volume works as a complete photometric chemical sensor suitable for detection in flow analysis. The operation of the developed device under nonstationary programmable-flow conditions offered by sequential injection analysis has been demonstrated using Prussian Blue film as a model optical chemoreceptor. The unique spectroelectrochemical properties of the sensing material enable its use for optical sensing of redox species, whereby ascorbic acid and hydrogen peroxide have been chosen as model analytes. The reported SI-sensor system features fast and reproducible determination of both analytes in the submillimolar range of concentrations. The construction concept demonstrated in this work can be easily applied to other kinds of optical sensors based on absorbance sensing films. PMID:21103867

  4. Measurement of factor VIII activity using one-stage clotting assay: a calibration curve has not to be systematically included in each run.

    PubMed

    Lattes, S; Appert-Flory, A; Fischer, F; Jambou, D; Toulon, P

    2011-01-01

    Coagulation factor VIII (FVIII) is usually evaluated using activated partial thromboplastin time-based one-stage clotting assays. Guidelines for clotting factor assays indicate that a calibration curve should be included each time the assay is performed. Therefore, FVIII measurement is expensive, reagent- and time-consuming. The aim of this study was to compare FVIII activities obtained using the same fully automated assay that was calibrated once (stored calibration curve) or each time the assay was performed. Unique lots of reagents were used throughout the study. We analysed 255 frozen plasma samples from patients who were prescribed FVIII measurement including treated and untreated haemophilia A patients. Twenty-six runs were performed on a 28-week period, each including four lyophilized control and at most 10 patient plasma samples. In control samples, FVIII activities were not significantly different when the assay was performed using the stored calibration curve or was daily calibrated. The same applied to FVIII activities in patient plasma samples that were not significantly different throughout the measuring range of activities [68.3% (<1-179) vs. 67.6% (<1-177), P=0.48] and no relevant bias could be demonstrated when data were compared according to Bland and Altman. These results suggest that in the studied technical conditions, performing the FVIII assay using a stored calibration curve is reliable, for at least 6 months. Therefore, as far as the same lots of reagents are used, it is not mandatory to include a calibration curve each time the FVIII assay was performed. However, this strategy has to be validated if the assay is performed in different technical conditions.

  5. Development and Validation of a Luminescence-based, Medium-Throughput Assay for Drug Screening in Schistosoma mansoni

    PubMed Central

    Lalli, Cristiana; Guidi, Alessandra; Gennari, Nadia; Altamura, Sergio; Bresciani, Alberto; Ruberti, Giovina

    2015-01-01

    Background Schistosomiasis, one of the world’s greatest neglected tropical diseases, is responsible for over 280,000 human deaths per annum. Praziquantel, developed in the 1970s, has high efficacy, excellent tolerability, few and transient side effects, simple administration procedures and competitive cost and it is currently the only recommended drug for treatment of human schistosomiasis. The use of a single drug to treat a population of over 200 million infected people appears particularly alarming when considering the threat of drug resistance. Quantitative, objective and validated methods for the screening of compound collections are needed for the discovery of novel anti-schistosomal drugs. Methodology/Principal Findings The present work describes the development and validation of a luminescence-based, medium-throughput assay for the detection of schistosomula viability through quantitation of ATP, a good indicator of metabolically active cells in culture. This validated method is demonstrated to be fast, highly reliable, sensitive and automation-friendly. The optimized assay was used for the screening of a small compound library on S. mansoni schistosomula, showing that the proposed method is suitable for a medium-throughput semi-automated screening. Interestingly, the pilot screening identified hits previously reported to have some anti-parasitic activity, further supporting the validity of this assay for anthelminthic drug discovery. Conclusions The developed and validated schistosomula viability luminescence-based assay was shown to be successful and suitable for the identification of novel compounds potentially exploitable in future schistosomiasis therapies. PMID:25635836

  6. Identification of influenza virus inhibitors targeting NS1A utilizing fluorescence polarization-based high-throughput assay.

    PubMed

    Cho, Eun Jeong; Xia, Shuangluo; Ma, Li-Chung; Robertus, Jon; Krug, Robert M; Anslyn, Eric V; Montelione, Gaetano T; Ellington, Andrew D

    2012-04-01

    This article describes the development of a simple and robust fluorescence polarization (FP)-based binding assay and adaptation to high-throughput identification of small molecules blocking dsRNA binding to NS1A protein (nonstructural protein 1 from type A influenza strains). This homogeneous assay employs fluorescein-labeled 16-mer dsRNA and full-length NS1A protein tagged with glutathione S-transferase to monitor the changes in FP and fluorescence intensity simultaneously. The assay was optimized for high-throughput screening in a 384-well format and achieved a z' score greater than 0.7. Its feasibility for high-throughput screening was demonstrated using the National Institutes of Health clinical collection. Six of 446 small molecules were identified as possible ligands in an initial screening. A series of validation tests confirmed epigallocatechine gallate (EGCG) to be active in the submicromolar range. A mechanism of EGCG inhibition involving interaction with the dsRNA-binding motif of NS1A, including Arg38, was proposed. This structural information is anticipated to provide a useful basis for the modeling of antiflu therapeutic reagents. Overall, the FP-based binding assay demonstrated its superior capability for simple, rapid, inexpensive, and robust identification of NS1A inhibitors and validation of their activity targeting NS1A.

  7. Performance of PCR-based and Bioluminescent assays for mycoplasma detection.

    PubMed

    Falagan-Lotsch, Priscila; Lopes, Talíria Silva; Ferreira, Nívea; Balthazar, Nathália; Monteiro, Antônio M; Borojevic, Radovan; Granjeiro, José Mauro

    2015-11-01

    Contaminated eukaryotic cell cultures are frequently responsible for unreliable results. Regulatory entities request that cell cultures must be mycoplasma-free. Mycoplasma contamination remains a significant problem for cell cultures and may have an impact on biological analysis since they affect many cell parameters. The gold standard microbiological assay for mycoplasma detection involves laborious and time-consuming protocols. PCR-based and Bioluminescent assays have been considered for routine cell culture screening in research laboratories since they are fast, easy and sensitive. Thus, the aim of this work is to compare the performance of two popular commercial assays, PCR-based and Bioluminescent assays, by assessing the level of mycoplasma contamination in cell cultures from Rio de Janeiro Cell Bank (RJCB) and also from customers' laboratories. The results obtained by both performed assays were confirmed by scanning electron microscopy. In addition, we evaluated the limit of detection of the PCR kit under our laboratory conditions and the storage effects on mycoplasma detection in frozen cell culture supernatants. The performance of both assays for mycoplasma detection was not significantly different and they showed very good agreement. The Bioluminescent assay for mycoplasma detection was slightly more dependable than PCR-based due to the lack of inconclusive results produced by the first technique, especially considering the ability to detect mycoplasma contamination in frozen cell culture supernatants. However, cell lines should be precultured for four days or more without antibiotics to obtain safe results. On the other hand, a false negative result was obtained by using this biochemical approach. The implementation of fast and reliable mycoplasma testing methods is an important technical and regulatory issue and PCR-based and Bioluminescent assays may be good candidates. However, validation studies are needed. PMID:26296900

  8. Electrochemical cells for voltammetry, coulometry, and protein activity assays of small-volume biological samples.

    PubMed

    Feldman, B J; Gheller, S F; Bailey, G F; Newton, W E; Schultz, F A

    1990-02-15

    Cell designs, experimental protocols, and results for electrochemical investigation of small quantitites of biological materials under anaerobic conditions are reported. Three types of electrochemical experiments are considered: (i) cyclic voltammetry of 20- to 100-microliters samples; (ii) direct coulometry of 0.5- to 1.5-ml samples; and (iii) an electrochemically initiated protein activity assay which includes provision for analysis of gaseous reaction products and correlation with electron flux. The first two procedures are illustrated by measurement of the formal electrode potential (E0') and number of electrons transferred (n) in redox reactions of small quantities of biological and inorganic materials. The third procedure is illustrated by assaying the activity of the MoFe protein plus Fe protein complex from Azotobacter vinelandii nitrogenase for reduction of C2H2 to C2H4.

  9. From SOMAmer-Based Biomarker Discovery to Diagnostic and Clinical Applications: A SOMAmer-Based, Streamlined Multiplex Proteomic Assay

    PubMed Central

    Kraemer, Stephan; Vaught, Jonathan D.; Bock, Christopher; Gold, Larry; Katilius, Evaldas; Keeney, Tracy R.; Kim, Nancy; Saccomano, Nicholas A.; Wilcox, Sheri K.; Zichi, Dom; Sanders, Glenn M.

    2011-01-01

    Recently, we reported a SOMAmer-based, highly multiplexed assay for the purpose of biomarker identification. To enable seamless transition from highly multiplexed biomarker discovery assays to a format suitable and convenient for diagnostic and life-science applications, we developed a streamlined, plate-based version of the assay. The plate-based version of the assay is robust, sensitive (sub-picomolar), rapid, can be highly multiplexed (upwards of 60 analytes), and fully automated. We demonstrate that quantification by microarray-based hybridization, Luminex bead-based methods, and qPCR are each compatible with our platform, further expanding the breadth of proteomic applications for a wide user community. PMID:22022604

  10. Nanoparticle-based assays in automated flow systems: A review.

    PubMed

    Passos, Marieta L C; Pinto, Paula C A G; Santos, João L M; Saraiva, M Lúcia M F S; Araujo, André R T S

    2015-08-19

    Nanoparticles (NPs) exhibit a number of distinctive and entrancing properties that explain their ever increasing application in analytical chemistry, mainly as chemosensors, signaling tags, catalysts, analytical signal enhancers, reactive species generators, analyte recognition and scavenging/separation entities. The prospect of associating NPs with automated flow-based analytical is undoubtedly a challenging perspective as it would permit confined, cost-effective and reliable analysis, within a shorter timeframe, while exploiting the features of NPs. This article aims at examining state-of-the-art on continuous flow analysis and microfluidic approaches involving NPs such as noble metals (gold and silver), magnetic materials, carbon, silica or quantum dots. Emphasis is devoted to NP format, main practical achievements and fields of application. In this context, the functionalization of NPs with distinct chemical species and ligands is debated in what concerns the motivations and strengths of developed approaches. The utilization of NPs to improve detector's performance in electrochemical application is out of the scope of this review. The works discussed in this review were published in the period of time comprised between the years 2000 and 2013. PMID:26343425

  11. Image based quantitative reader for Lateral flow immunofluorescence assay.

    PubMed

    Chowdhury, Kaushik Basak; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2015-08-01

    Fluorescence Lateral flow immunoassays (LFIA) have wide range of applications in point-of-care testing (POCT). An integrated, motion-free, accurate, reliable reader that performs automated quantitative analysis of LFIA is essential for POCT diagnosis. We demonstrate an image based quantitative method to read the lateral flow immunofluorescence test strips. The developed reader uses line laser diode module to illuminate the LFIA test strip having fluorescent dye. Fluorescence light coming from the region of interest (ROI) of the LFIA test strip was filtered using an emission filter and imaged using a camera following which images were processed in computer. A dedicated control program was developed that automated the entire process including illumination of the test strip using laser diode, capturing the ROI of the test strip, processing and analyzing the images and displaying of results. Reproducibility of the reader has been evaluated using few reference cartridges and HbA1c (Glycated haemoglobin) test cartridges. The proposed system can be upgraded to a compact reader for widespread testing of LFIA test strips. PMID:26736487

  12. Development of an FgMito assay: A highly sensitive mitochondrial based qPCR assay for quantification of Fusarium graminearum sensu stricto.

    PubMed

    Kulik, Tomasz; Ostrowska, Anna; Buśko, Maciej; Pasquali, Matias; Beyer, Marco; Stenglein, Sebastian; Załuski, Dariusz; Sawicki, Jakub; Treder, Kinga; Perkowski, Juliusz

    2015-10-01

    An ascomycete fungus, Fusarium graminearum sensu stricto (s.s.), is the major cause of Fusarium head blight (FHB), a devastating disease of cereals worldwide. The fungus contaminates crops with mycotoxins, which pose a serious threat to food and feed safety. In this study, we developed a highly sensitive mitochondrial based qPCR assay (FgMito qPCR) for quantification of F. graminearum s.s. To ensure high sensitivity of the assay, primers and a Minor-groove binding (MGB) probe were designed based on multi-copy mitochondrial DNA. The FgMito assay was successfully validated against a range of geographically diverse F. graminearum s.s. strains to ensure uniformity of the assay at an intraspecific level, as well as with other fungal species to ensure specificity. The assay was further evaluated in terms of efficiency and sensitivity against a test panel of different F. graminearum s.s. strains with various levels of pure fungal DNA and in the presence of wheat background DNA. The results showed a high efficiency of the assay developed, ranging from 93% to 101% with r(2)-values of >0.99. We further showed that three low concentrations of fungal template 2 pg, 0.6 pg and 0.2 pg could be reliably quantified in the presence of wheat background DNA. The FgMito assay was used to quantify F. graminearum s.s. DNA on 65 field samples from a range of hosts with defined levels of trichothecenes. We revealed a significant positive correlation between fungal DNA quantity and the sum of trichothecenes. Lastly, we showed a higher sensitivity of the FgMito assay than the nuclear based qPCR assay for F. graminearum s.s. by comparing Ct-values from both assays.

  13. Development of an FgMito assay: A highly sensitive mitochondrial based qPCR assay for quantification of Fusarium graminearum sensu stricto.

    PubMed

    Kulik, Tomasz; Ostrowska, Anna; Buśko, Maciej; Pasquali, Matias; Beyer, Marco; Stenglein, Sebastian; Załuski, Dariusz; Sawicki, Jakub; Treder, Kinga; Perkowski, Juliusz

    2015-10-01

    An ascomycete fungus, Fusarium graminearum sensu stricto (s.s.), is the major cause of Fusarium head blight (FHB), a devastating disease of cereals worldwide. The fungus contaminates crops with mycotoxins, which pose a serious threat to food and feed safety. In this study, we developed a highly sensitive mitochondrial based qPCR assay (FgMito qPCR) for quantification of F. graminearum s.s. To ensure high sensitivity of the assay, primers and a Minor-groove binding (MGB) probe were designed based on multi-copy mitochondrial DNA. The FgMito assay was successfully validated against a range of geographically diverse F. graminearum s.s. strains to ensure uniformity of the assay at an intraspecific level, as well as with other fungal species to ensure specificity. The assay was further evaluated in terms of efficiency and sensitivity against a test panel of different F. graminearum s.s. strains with various levels of pure fungal DNA and in the presence of wheat background DNA. The results showed a high efficiency of the assay developed, ranging from 93% to 101% with r(2)-values of >0.99. We further showed that three low concentrations of fungal template 2 pg, 0.6 pg and 0.2 pg could be reliably quantified in the presence of wheat background DNA. The FgMito assay was used to quantify F. graminearum s.s. DNA on 65 field samples from a range of hosts with defined levels of trichothecenes. We revealed a significant positive correlation between fungal DNA quantity and the sum of trichothecenes. Lastly, we showed a higher sensitivity of the FgMito assay than the nuclear based qPCR assay for F. graminearum s.s. by comparing Ct-values from both assays. PMID:26087129

  14. Rapid parallel flow cytometry assays of active GTPases using effector beads

    PubMed Central

    Buranda, Tione; BasuRay, Soumik; Swanson, Scarlett; Agola, Jacob; Bondu, Virginie; Wandinger-Ness, Angela

    2013-01-01

    We describe a rapid assay for measuring the cellular activity of small GTPases in response to a specific stimulus. Effector functionalized beads are used to quantify in parallel multiple, GTP-bound GTPases in the same cell lysate by flow cytometry. In a biologically relevant example, five different Ras family GTPases are shown for the first time to be involved in a concerted signaling cascade downstream of receptor ligation by Sin Nombre hantavirus. PMID:23928044

  15. In vitro cell-based assays for evaluation of antioxidant potential of plant-derived products.

    PubMed

    Nascimento da Silva, Luís Cláudio; Bezerra Filho, Clovis Macêdo; Paula, Raiana Apolinário de; Silva E Silva, Cristiane Santos; Oliveira de Souza, Larissa Isabela; Silva, Márcia Vanusa da; Correia, Maria Tereza Dos Santos; Figueiredo, Regina Célia Bressan Queiroz de

    2016-08-01

    Several plant-derived compounds have been screened by antioxidant assays, but many of these results are questionable, since they do not evaluate the pharmacologic parameters. In fact, the development of better antioxidants stills a great challenge. In vitro cell-based assays have been employed to assess the antioxidant effect of various compounds at subcellular level. Cell-based assays can also reveal compounds able to enhance the antioxidant pathways, but without direct radical scavenging action (which could not be detected by traditional assays). These methodologies are general of easy implementation and reproducible making them suitable for the early stages of drug discovery. Hydrogen peroxide, a nonradical derivative of oxygen, can be employed as an oxidative agent in these assays due its biochemical properties (presence of all biological systems, solubility) and capacity to induce cell death. Truthfully, if their limitations are understood (such as difference on cell metabolism when in in vitro conditions), these cell-based assays can provide useful information about the pathways involved in the protective effects of phytochemicals against cell death induced by oxidative stress, which can be exploited to develop new therapeutic approaches. PMID:27216086

  16. Kinetic assays for determining in vitro APS reductase activity in plants without the use of radioactive substances.

    PubMed

    Brychkova, Galina; Yarmolinsky, Dmitry; Sagi, Moshe

    2012-09-01

    Adenosine 5'-phosphosulfate (APS) reductase (APR; EC 1.8.4.9) catalyzes the two-electron reduction of APS to sulfite and AMP, a key step in the sulfate assimilation pathway in higher plants. In spite of the importance of this enzyme, methods currently available for detection of APR activity rely on radioactive labeling and can only be performed in a very few specially equipped laboratories. Here we present two novel kinetic assays for detecting in vitro APR activity that do not require radioactive labeling. In the first assay, APS is used as substrate and reduced glutathione (GSH) as electron donor, while in the second assay APS is replaced by an APS-regenerating system in which ATP sulfurylase catalyzes APS in the reaction medium, which employs sulfate and ATP as substrates. Both kinetic assays rely on fuchsin colorimetric detection of sulfite, the final product of APR activity. Incubation of the desalted protein extract, prior to assay initiation, with tungstate that inhibits the oxidation of sulfite by sulfite oxidase activity, resulted in enhancement of the actual APR activity. The reliability of the two methods was confirmed by assaying leaf extract from Arabidopsis wild-type and APR mutants with impaired or overexpressed APR2 protein, the former lacking APR activity and the latter exhibiting much higher activity than the wild type. The assays were further tested on tomato leaves, which revealed a higher APR activity than Arabidopsis. The proposed APR assays are highly specific, technically simple and readily performed in any laboratory.

  17. Fibrinolytic Activity and Dose-Dependent Effect of Incubating Human Blood Clots in Caffeic Acid Phenethyl Ester: In Vitro Assays

    PubMed Central

    Elnager, Abuzar; Hassan, Rosline; Idris, Zamzuri; Mustafa, Zulkifli; Wan-Arfah, Nadiah; Sulaiman, S. A.; Gan, Siew Hua; Abdullah, Wan Zaidah

    2015-01-01

    Background. Caffeic acid phenethyl ester (CAPE) has been reported to possess time-dependent fibrinolytic activity by in vitro assay. This study is aimed at investigating fibrinolytic dose-dependent activity of CAPE using in vitro assays. Methods. Standardized human whole blood (WB) clots were incubated in either blank controls or different concentrations of CAPE (3.75, 7.50, 15.00, 22.50, and 30.00 mM). After 3 hours, D-dimer (DD) levels and WB clot weights were measured for each concentration. Thromboelastography (TEG) parameters were recorded following CAPE incubation, and fibrin morphology was examined under a confocal microscope. Results. Overall, mean DD (μg/mL) levels were significantly different across samples incubated with different CAPE concentrations, and the median pre- and postincubation WB clot weights (grams) were significantly decreased for each CAPE concentration. Fibrin removal was observed microscopically and indicated dose-dependent effects. Based on the TEG test, the Ly30 fibrinolytic parameter was significantly different between samples incubated with two different CAPE concentrations (15.0 and 22.50 mM). The 50% effective dose (ED50) of CAPE (based on DD) was 1.99 mg/mL. Conclusions. This study suggests that CAPE possesses fibrinolytic activity following in vitro incubation and that it has dose-dependent activities. Therefore, further investigation into CAPE as a potential alternative thrombolytic agent should be conducted. PMID:25664321

  18. A rapid bioluminescence assay for measuring myeloperoxidase activity in human plasma.

    PubMed

    Goiffon, Reece J; Martinez, Sara C; Piwnica-Worms, David

    2015-02-10

    Myeloperoxidase (MPO) is a circulating cardiovascular disease (CVD) biomarker used to estimate clinical risk and patient prognosis. Current enzyme-linked immunosorbent assays (ELISA) for MPO concentration are costly and time-intensive. Here we report a novel bioluminescence assay, designated MPO activity on a polymer surface (MAPS), for measuring MPO activity in human plasma samples using the bioluminescent substrate L-012. The method delivers a result in under an hour and is resistant to confounding effects from endogenous MPO inhibitors. In a pilot clinical study, we compared MAPS and two clinical ELISAs using 72 plasma samples from cardiac catheterization patients. Results from parallel MAPS and ELISAs were concordant within 2±11 μg l(-1) MPO with similar uncertainty and reproducibility. Results between parallel MAPS and ELISA were in better agreement than those between independent ELISAs. MAPS may provide an inexpensive and rapid assay for determining MPO activity in plasma samples from patients with CVD or potentially other immune and inflammatory disorders.

  19. A rapid bioluminescence assay for measuring myeloperoxidase activity in human plasma

    PubMed Central

    Goiffon, Reece J.; Martinez, Sara C.; Piwnica-Worms, David

    2015-01-01

    Myeloperoxidase (MPO) is a circulating cardiovascular disease (CVD) biomarker used to estimate clinical risk and patient prognosis. Current enzyme-linked immunosorbent assays (ELISA) for MPO concentration are costly and time-intensive. Here we report a novel bioluminescence assay, designated MPO activity on a polymer surface (MAPS), for measuring MPO activity in human plasma samples using the bioluminescent substrate L-012. The method delivers a result in under an hour and is resistant to confounding effects from endogenous MPO inhibitors. In a pilot clinical study, we compared MAPS and two clinical ELISAs using 72 plasma samples from cardiac catheterization patients. Results from parallel MAPS and ELISAs were concordant within 2±11 μg l−1 MPO with similar uncertainty and reproducibility. Results between parallel MAPS and ELISA were in better agreement than those between independent ELISAs. MAPS may provide an inexpensive and rapid assay for determining MPO activity in plasma samples from patients with CVD or potentially other immune and inflammatory disorders. PMID:25666092

  20. Assessment of estrogenic activity in Tunisian water and wastewater by E-screen assay.

    PubMed

    Limam, Atef; Talorete, Terence P N; Ali, Mourad Ben Sik; Kawano, Mitsuko; Jenhani, Amel Ben Rejeb; Abe, Yukuo; Ghrabi, Ahmed; Isoda, Hiroko

    2007-01-01

    Wastewater and surface water samples from three wastewater treatment plants (WWTPs) and three rivers in Tunisia were assayed for estrogenic activity using the E-screen assay and enzyme-linked immunosorbent assay (ELISA). Results showed that all the Tunisian raw wastewater samples as well as the Roriche river water sample induced a strong proliferative response in human MCF-7 breast cancer cells. Tunisian raw wastewater had an average 17beta-estradiol content of 2,705.4 pg/ml, whereas that of the Roriche river was 36.7 pg/ml, which is sufficient for inducing endocrine-mediated responses in aquatic organisms. Results further showed that the Mornag WWTP, which uses the activated-sludge treatment system, has a higher estrogen removal efficiency than the stabilization ponds of the Gammart and pilot WWTPs. This study, which is the first of such studies in Tunisia, and probably the first in the North African region, underscores the need to detect and monitor the estrogenic activity of water and wastewater, given the scarcity of water in Tunisia and the detrimental impact of endocrine-disrupting compounds on the physiology of both animals and humans. PMID:18382414

  1. Use of In Vitro Assays to Assess Immunogenicity Risk of Antibody-Based Biotherapeutics

    PubMed Central

    Joubert, Marisa K.; Deshpande, Meghana; Yang, Jane; Reynolds, Helen; Bryson, Christine; Fogg, Mark; Baker, Matthew P.; Herskovitz, Jonathan; Goletz, Theresa J.; Zhou, Lei; Moxness, Michael; Flynn, Gregory C.; Narhi, Linda O.; Jawa, Vibha

    2016-01-01

    An In Vitro Comparative Immunogenicity Assessment (IVCIA) assay was evaluated as a tool for predicting the potential relative immunogenicity of biotherapeutic attributes. Peripheral blood mononuclear cells from up to 50 healthy naïve human donors were monitored up to 8 days for T-cell proliferation, the number of IL-2 or IFN-γ secreting cells, and the concentration of a panel of secreted cytokines. The response in the assay to 10 monoclonal antibodies was found to be in agreement with the clinical immunogenicity, suggesting that the assay might be applied to immunogenicity risk assessment of antibody biotherapeutic attributes. However, the response in the assay is a measure of T-cell functional activity and the alignment with clinical immunogenicity depends on several other factors. The assay was sensitive to sequence variants and could differentiate single point mutations of the same biotherapeutic. Nine mAbs that were highly aggregated by stirring induced a higher response in the assay than the original mAbs before stirring stress, in a manner that did not match the relative T-cell response of the original mAbs. In contrast, mAbs that were glycated by different sugars (galactose, glucose, and mannose) showed little to no increase in response in the assay above the response to the original mAbs before glycation treatment. The assay was also used successfully to assess similarity between multiple lots of the same mAb, both from the same manufacturer and from different manufacturers (biosimilars). A strategy for using the IVCIA assay for immunogenicity risk assessment during the entire lifespan development of biopharmaceuticals is proposed. PMID:27494246

  2. Use of In Vitro Assays to Assess Immunogenicity Risk of Antibody-Based Biotherapeutics.

    PubMed

    Joubert, Marisa K; Deshpande, Meghana; Yang, Jane; Reynolds, Helen; Bryson, Christine; Fogg, Mark; Baker, Matthew P; Herskovitz, Jonathan; Goletz, Theresa J; Zhou, Lei; Moxness, Michael; Flynn, Gregory C; Narhi, Linda O; Jawa, Vibha

    2016-01-01

    An In Vitro Comparative Immunogenicity Assessment (IVCIA) assay was evaluated as a tool for predicting the potential relative immunogenicity of biotherapeutic attributes. Peripheral blood mononuclear cells from up to 50 healthy naïve human donors were monitored up to 8 days for T-cell proliferation, the number of IL-2 or IFN-γ secreting cells, and the concentration of a panel of secreted cytokines. The response in the assay to 10 monoclonal antibodies was found to be in agreement with the clinical immunogenicity, suggesting that the assay might be applied to immunogenicity risk assessment of antibody biotherapeutic attributes. However, the response in the assay is a measure of T-cell functional activity and the alignment with clinical immunogenicity depends on several other factors. The assay was sensitive to sequence variants and could differentiate single point mutations of the same biotherapeutic. Nine mAbs that were highly aggregated by stirring induced a higher response in the assay than the original mAbs before stirring stress, in a manner that did not match the relative T-cell response of the original mAbs. In contrast, mAbs that were glycated by different sugars (galactose, glucose, and mannose) showed little to no increase in response in the assay above the response to the original mAbs before glycation treatment. The assay was also used successfully to assess similarity between multiple lots of the same mAb, both from the same manufacturer and from different manufacturers (biosimilars). A strategy for using the IVCIA assay for immunogenicity risk assessment during the entire lifespan development of biopharmaceuticals is proposed. PMID:27494246

  3. A cell-based high-throughput screening assay for posttranscriptional utrophin upregulation.

    PubMed

    Moorwood, Catherine; Soni, Neha; Patel, Gopal; Wilton, Steve D; Khurana, Tejvir S

    2013-04-01

    Duchenne muscular dystrophy (DMD) is a devastating muscle-wasting disease caused by mutations in the dystrophin gene. Utrophin is a homologue of dystrophin that can compensate for its absence when overexpressed in DMD animal models. Utrophin upregulation is therefore a promising therapeutic approach for DMD. Utrophin is regulated at both transcriptional and posttranscriptional levels. Transcriptional regulation has been studied extensively, and assays have been described for the identification of utrophin promoter-targeting molecules. However, despite the profound impact that posttranscriptional regulation has on utrophin expression, screening assays have not yet been described that could be used to discover pharmaceuticals targeting this key phase of regulation. We describe the development and validation of a muscle cell line-based assay in which a stably expressed luciferase coding sequence is flanked by the utrophin 5'- and 3'-untranslated regions (UTRs). The assay was validated using the posttranscriptional regulation of utrophin by miR-206. The assay has a Z' of 0.7, indicating robust performance in high-throughput format. This assay can be used to study utrophin regulatory mechanisms or to screen chemical libraries for compounds that upregulate utrophin posttranscriptionally via its UTRs. Compounds identified via this assay, used alone or in a synergistic combination with utrophin promoter-targeting molecules, would be predicted to have therapeutic potential for DMD.

  4. Comparison of tetrazolium salt assays for evaluation of drug activity against Leishmania spp.

    PubMed

    Ginouves, Marine; Carme, Bernard; Couppie, Pierre; Prevot, Ghislaine

    2014-06-01

    In French Guiana, leishmaniasis is an essentially cutaneous infection. It constitutes a major public health problem, with a real incidence of 0.2 to 0.3%. Leishmania guyanensis is the causal species most frequently encountered in French Guiana. The treatment of leishmaniasis is essentially drug based, but the therapeutic compounds available have major side effects (e.g., liver damage and diabetes) and must be administered parenterally or are costly. The efficacy of some of these agents has declined due to the emergence of resistance in certain strains of Leishmania. There is currently no vaccine against leishmaniasis, and it is therefore both necessary and urgent to identify new compounds effective against Leishmania. The search for new drugs requires effective tests for evaluations of the leishmanicidal activity of a particular molecule or extract. Microculture tetrazolium assays (MTAs) are colorimetric tests based on the use of tetrazolium salts. We compared the efficacies of three tetrazolium salts-3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT), and 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-8)-for quantification of the promastigotes of various species of Leishmania. We found that the capacity of Leishmania to metabolize a tetrazolium salt depended on the salt used and the species of Leishmania. WST-8 was the tetrazolium salt best metabolized by L. guyanensis and gave the best sensitivity. PMID:24719447

  5. Comparison of Tetrazolium Salt Assays for Evaluation of Drug Activity against Leishmania spp.

    PubMed Central

    Ginouves, Marine; Carme, Bernard; Couppie, Pierre

    2014-01-01

    In French Guiana, leishmaniasis is an essentially cutaneous infection. It constitutes a major public health problem, with a real incidence of 0.2 to 0.3%. Leishmania guyanensis is the causal species most frequently encountered in French Guiana. The treatment of leishmaniasis is essentially drug based, but the therapeutic compounds available have major side effects (e.g., liver damage and diabetes) and must be administered parenterally or are costly. The efficacy of some of these agents has declined due to the emergence of resistance in certain strains of Leishmania. There is currently no vaccine against leishmaniasis, and it is therefore both necessary and urgent to identify new compounds effective against Leishmania. The search for new drugs requires effective tests for evaluations of the leishmanicidal activity of a particular molecule or extract. Microculture tetrazolium assays (MTAs) are colorimetric tests based on the use of tetrazolium salts. We compared the efficacies of three tetrazolium salts—3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT), and 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-8)—for quantification of the promastigotes of various species of Leishmania. We found that the capacity of Leishmania to metabolize a tetrazolium salt depended on the salt used and the species of Leishmania. WST-8 was the tetrazolium salt best metabolized by L. guyanensis and gave the best sensitivity. PMID:24719447

  6. A new cell line-based neutralization assay for primary HIV type 1 isolates.

    PubMed

    Shi, Y; Albert, J; Francis, G; Holmes, H; Fenyö, E M

    2002-09-01

    Simple and standardized assays for detection and quantification of neutralizing antibodies to primary HIV-1 isolates are needed in research on HIV-1 vaccines and pathogenesis. Here we describe a new HIV-1 neutralization assay that is based on plaque formation in U87.CD4-CCR5 and U87.CD4-CXCR4 cells, which is an attractive alternative to peripheral blood mononuclear cell-based assays. Infected cells form syncytia, that is, plaques, that can be stained with hematoxylin and enumerated by light microscopy. Neutralization is determined by the ability of a serum to reduce the number of plaque-forming units (PFU) relative to controls exposed to medium or negative serum. The intraassay variation of the plaque-forming unit determinations was tested with 15 serum-virus combinations and showed good reproducibility. The differences ranged from -19 to +27% and had a standard deviation of +/- 9.1%. On the basis of these data the cutoff for neutralization (i.e., plaque reduction) was set to 30% (3.3 standard deviations). Virus titration experiments showed that neutralization results were dependent on virus dose and therefore the neutralization assays should be performed with a virus dose of 10-100 PFU/well. The reproducibility of the new neutralization assay was tested with 4 primary viruses and 9 sera for a total of 20 virus-serum combinations. The mean difference in neutralization (i.e. plaque reduction) determinations performed on different days was as small as 11%. None of 10 Swedish sera and 1 Ugandan plasma pool from HIV-1-uninfected subjects were positive for neutralization, indicating that the assay has high specificity. In summary, the new U87.CD4 cell line-based neutralization assay for primary HIV-1 isolates is a highly reproducible, sensitive, and high-throughput assay that is well suited for large-scale HIV-1 neutralization studies.

  7. A Colorimetric Microplate Assay for DNA-Binding Activity of His-Tagged MutS Protein.

    PubMed

    Banasik, Michał; Sachadyn, Paweł

    2016-09-01

    A simple microplate method was designed for rapid testing DNA-binding activity of proteins. The principle of the assay involves binding of tested DNA by his-tagged protein immobilized on a nickel-coated ELISA plate, following colorimetric detection of biotinylated DNA with avidin conjugated to horseradish peroxidase. The method was used to compare DNA mismatch binding activities of MutS proteins from three bacterial species. The assay required relatively low amounts of tested protein (approximately 0.5-10 pmol) and DNA (0.1-10 pmol) and a relatively short time of analysis (up to 60 min). The method is very simple to apply and convenient to test different buffer conditions of DNA-protein binding. Sensitive colorimetric detection enables naked eye observations and quantitation with an ELISA reader. The performance of the assay, which we believe is a distinguishing trait of the method, is based on two strong and specific molecular interactions: binding of a his-tagged protein to a nickel-coated microplate and binding of biotinylated DNA to avidin. In the reported experiments, the solution was used to optimize the conditions for DNA mismatch binding by MutS protein; however, the approach could be implemented to test nucleic acids interactions with any protein of interest. PMID:27241123

  8. A high throughput Cre-lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry.

    PubMed

    Esposito, Anthony M; Cheung, Pamela; Swartz, Talia H; Li, Hongru; Tsibane, Tshidi; Durham, Natasha D; Basler, Christopher F; Felsenfeld, Dan P; Chen, Benjamin K

    2016-03-01

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes.

  9. Sensitive assay of GTP cyclohydrolase I activity in rat and human tissues using radioimmunoassay of neopterin

    SciTech Connect

    Sawada, M.; Horikoshi, T.; Masada, M.; Akino, M.; Sugimoto, T.; Matsuura, S.; Nagatsu, T.

    1986-04-01

    A highly sensitive and simple assay for the activity of GTP cyclohydrolase I (EC 3.5.4.16) was established using a newly developed radioimmunoassay. D-erythro-7,8-Dihydroneopterin triphosphate formed from GTP by GTP cyclohydrolase I was oxidized by iodine and dephosphorylated by alkaline phosphatase to D-erythro-neopterin, and quantified by a radioimmunoassay for D-erythro-neopterin. This method was highly sensitive and required only 0.2 mg of rat liver tissues for the measurement of the activity. It was reproducible and can be applied for the simultaneous assay of many samples. The activity of GTP cyclohydrolase I was measured in several rat tissues. For example, the enzyme activity in rat striatum (n = 5) was 13.7 +/- 1.5 pmol/mg protein per hour (mean +/- SE), and agreed well with those obtained by high-performance liquid chromatography with fluorescence detection. The activity in the autopsy human brains (caudate nucleus) was measured by this new method for the first time. The activity in the caudate nucleus from parkinsonian patients (n = 6) was 0.82 +/- 0.56 pmol/mg protein per hour which was significantly lower than the control value, 4.22 +/- 0.43 pmol/mg protein per hour (n = 10).

  10. [Detection of endotoxin activity in water environment and analysis of influence factors for TAL assay].

    PubMed

    Zhang, Can; Liu, Wen-jun; Zhang, Ming-lu; Tian, Fang; Sun, Wen; Qian, Ling-jia; Zhan, Rui

    2013-09-01

    Endotoxins, derived from cell walls of most Gram-negative bacteria and some cyanobacteria, are common pyrogen and highly immunogenic molecules, and related to many diseases. In this paper, a detection method for endotoxin activity in water environment using kinetic-turbid assay of Tachypleus Amebocyte Lysate (TAL) was established, the influence of pH and salts on TAL assay was investigated. Results showed that it was favorable for TAL assay in the pH range of 6.0-8.4, at low pHs, inhibition results were observed and opposite results were obtained at high pHs. The pH should be adjusted by Tris-HCl (pH = 7.4) buffer before the endotoxin detection. No significant interference was shown in the detection of water containing NaCl, Na2SO4, CaCl2, MgCl2 and KCl with a concentration of less than 50 mg x L(-1), however, the inhibition occurred at the concentration up to 1000-10,000 mg x L(-1). Only 2. 5 mg x L(-1) of FeCl, Fe2(SO4)3, AlCl3 and Al2 (SO4)3 caused significant inhibition. Endotoxin activities of ultrapure water, tap water and recreational water were detected by TAL assay, and their endotoxin activities were < 0.06 EU x mL(-1), 0.46 EU x mL(-1) and 432. 68 EU x mL(-1), respectively. PMID:24288979

  11. "Singing in the Tube"--audiovisual assay of plant oil repellent activity against mosquitoes (Culex pipiens).

    PubMed

    Adams, Temitope F; Wongchai, Chatchawal; Chaidee, Anchalee; Pfeiffer, Wolfgang

    2016-01-01

    Plant essential oils have been suggested as a promising alternative to the established mosquito repellent DEET (N,N-diethyl-meta-toluamide). Searching for an assay with generally available equipment, we designed a new audiovisual assay of repellent activity against mosquitoes "Singing in the Tube," testing single mosquitoes in Drosophila cultivation tubes. Statistics with regression analysis should compensate for limitations of simple hardware. The assay was established with female Culex pipiens mosquitoes in 60 experiments, 120-h audio recording, and 2580 estimations of the distance between mosquito sitting position and the chemical. Correlations between parameters of sitting position, flight activity pattern, and flight tone spectrum were analyzed. Regression analysis of psycho-acoustic data of audio files (dB[A]) used a squared and modified sinus function determining wing beat frequency WBF ± SD (357 ± 47 Hz). Application of logistic regression defined the repelling velocity constant. The repelling velocity constant showed a decreasing order of efficiency of plant essential oils: rosemary (Rosmarinus officinalis), eucalyptus (Eucalyptus globulus), lavender (Lavandula angustifolia), citronella (Cymbopogon nardus), tea tree (Melaleuca alternifolia), clove (Syzygium aromaticum), lemon (Citrus limon), patchouli (Pogostemon cablin), DEET, cedar wood (Cedrus atlantica). In conclusion, we suggest (1) disease vector control (e.g., impregnation of bed nets) by eight plant essential oils with repelling velocity superior to DEET, (2) simple mosquito repellency testing in Drosophila cultivation tubes, (3) automated approaches and room surveillance by generally available audio equipment (dB[A]: ISO standard 226), and (4) quantification of repellent activity by parameters of the audiovisual assay defined by correlation and regression analyses.

  12. "Singing in the Tube"--audiovisual assay of plant oil repellent activity against mosquitoes (Culex pipiens).

    PubMed

    Adams, Temitope F; Wongchai, Chatchawal; Chaidee, Anchalee; Pfeiffer, Wolfgang

    2016-01-01

    Plant essential oils have been suggested as a promising alternative to the established mosquito repellent DEET (N,N-diethyl-meta-toluamide). Searching for an assay with generally available equipment, we designed a new audiovisual assay of repellent activity against mosquitoes "Singing in the Tube," testing single mosquitoes in Drosophila cultivation tubes. Statistics with regression analysis should compensate for limitations of simple hardware. The assay was established with female Culex pipiens mosquitoes in 60 experiments, 120-h audio recording, and 2580 estimations of the distance between mosquito sitting position and the chemical. Correlations between parameters of sitting position, flight activity pattern, and flight tone spectrum were analyzed. Regression analysis of psycho-acoustic data of audio files (dB[A]) used a squared and modified sinus function determining wing beat frequency WBF ± SD (357 ± 47 Hz). Application of logistic regression defined the repelling velocity constant. The repelling velocity constant showed a decreasing order of efficiency of plant essential oils: rosemary (Rosmarinus officinalis), eucalyptus (Eucalyptus globulus), lavender (Lavandula angustifolia), citronella (Cymbopogon nardus), tea tree (Melaleuca alternifolia), clove (Syzygium aromaticum), lemon (Citrus limon), patchouli (Pogostemon cablin), DEET, cedar wood (Cedrus atlantica). In conclusion, we suggest (1) disease vector control (e.g., impregnation of bed nets) by eight plant essential oils with repelling velocity superior to DEET, (2) simple mosquito repellency testing in Drosophila cultivation tubes, (3) automated approaches and room surveillance by generally available audio equipment (dB[A]: ISO standard 226), and (4) quantification of repellent activity by parameters of the audiovisual assay defined by correlation and regression analyses. PMID:26412058

  13. Acoustic trapping as a generic non-contact incubation site for multiplex bead-based assays.

    PubMed

    Tenje, Maria; Xia, Hongyan; Evander, Mikael; Hammarström, Björn; Tojo, Axel; Belák, Sándor; Laurell, Thomas; LeBlanc, Neil

    2015-01-01

    In this study, we show a significantly reduced assay time and a greatly increased bead recovery for a commercial Luminex-based multiplex diagnostic immunoassay by performing all liquid handling steps of the assay protocol in a non-contact acoustic trapping platform. The Luminex assay is designed for detecting antibodies in poultry serum for infectious bursal disease virus, infectious bronchitis virus, Newcastle disease virus and avian reovirus. Here, we show proof-of-concept of a microfluidic system capable of being fully automated and handling samples in a parallel format with a miniature physical footprint where the affinity beads are retained in a non-contact levitated mode in a glass capillary throughout the assay protocol. The different steps are: incubation with the serum sample, secondary antibodies and fluorescent reporters and finally washing to remove any non-specifically bound species. A Luminex 200 instrument was used for the readout. The flow rates applied to the capillary during the initial trapping event and the wash steps were optimised for maximum bead recovery, resulting in a bead recovery of 75% for the complete assay. This can be compared to a bead recovery of approximately 30% when an automatic wash station was used when the assay was performed in the conventional manual format. The time for the incubation steps for a single assay was reduced by more than 50%, without affecting assay performance, since intermediate wash steps became redundant in the continuously perfused bead trapping capillary. We analyzed seven samples, in triplicates, and we can show that the readout of the assay performed in the acoustic trap compared 100% to the control ELISAs (positive or negative readout) and resulted in comparable S/P values as the conventional manual protocol. As the acoustic trapping does not require the particles to have magnetic properties, a greater degree of freedom in selecting microparticles can be provided. In extension, this can provide an

  14. Development of a QPatch Automated Electrophysiology Assay for Identifying KCa3.1 Inhibitors and Activators

    PubMed Central

    Jenkins, David Paul; Yu, Weifeng; Brown, Brandon M.; Løjkner, Lars Damgaard

    2013-01-01

    Abstract The intermediate-conductance Ca2+-activated K+ channel KCa3.1 (also known as KCNN4, IK1, or the Gárdos channel) plays an important role in the activation of T and B cells, mast cells, macrophages, and microglia by regulating membrane potential, cellular volume, and calcium signaling. KCa3.1 is further involved in the proliferation of dedifferentiated vascular smooth muscle cells and fibroblast and endothelium-derived hyperpolarization responses in the vascular endothelium. Accordingly, KCa3.1 inhibitors are therapeutically interesting as immunosuppressants and for the treatment of a wide range of fibroproliferative disorders, whereas KCa3.1 activators constitute a potential new class of endothelial function preserving antihypertensives. Here, we report the development of QPatch assays for both KCa3.1 inhibitors and activators. During assay optimization, the Ca2+ sensitivity of KCa3.1 was studied using varying intracellular Ca2+ concentrations. A free Ca2+ concentration of 1 μM was chosen to optimally test inhibitors. To identify activators, which generally act as positive gating modulators, a lower Ca2+ concentration (∼200 nM) was used. The QPatch results were benchmarked against manual patch-clamp electrophysiology by determining the potency of several commonly used KCa3.1 inhibitors (TRAM-34, NS6180, ChTX) and activators (EBIO, riluzole, SKA-31). Collectively, our results demonstrate that the QPatch provides a comparable but much faster approach to study compound interactions with KCa3.1 channels in a robust and reliable assay. PMID:24351043

  15. Long term response of a Concanavalin-A based fluorescence glucose sensing assay

    NASA Astrophysics Data System (ADS)

    Locke, Andrea K.; Cummins, Brian M.; Abraham, Alexander A.; Coté, Gerard L.

    2015-03-01

    Competitive binding assays comprised of the protein Concanavalin A (ConA) have shown potential for use in continuous glucose monitoring devices. However, its time-dependent, thermal instability can impact the lifetime of these ConA based assays. In an attempt to design sensors with longer in vivo lifetimes, different groups have immobilized the protein to various surfaces. For example, Ballerstadt et al. have shown that immobilizing ConA onto the interior of a micro-dialysis membrane and allowing dextran to be freely suspended within solution allowed for successful in vivo glucose sensing up to 16 days. This work explores the glucose response of an assay comprised of modified ConA and a single fluorescently labeled competing ligand in free solution to increase the in vivo sensing lifetime without immobilization,. The behavior of this assay in the presence of varying glucose concentrations is monitored via fluorescence anisotropy over a 30 day period.

  16. Immunoliposome-based immunomagnetic concentration and separation assay for rapid detection of Cronobacter sakazakii.

    PubMed

    Shukla, Shruti; Lee, Gibaek; Song, Xinjie; Park, Sunhyun; Kim, Myunghee

    2016-03-15

    This study aimed to develop an immunoliposome-based immunomagnetic concentration and separation assay for the rapid detection of Cronobacter sakazakii (C. sakazakii), an acute opportunistic foodborne pathogenic bacterium, in both pure culture and infant formula. To develop the assay, magnetic nanoparticles (diameter 30 nm) were coated with immunoglobulin G (IgG), specifically anti-C. sakazakii IgG, and applied for the sensitive and efficient detection of C. sakazakii using immunoliposomes. The binding efficiency of anti-C. sakazakii IgG to the magnetic nanoparticles was 86.23 ± 0.59%. The assay developed in this study detected as few as 3.3 × 10(3) CFUmL(-1) of C. sakazakii in pure culture within 2h 30 min; in comparison, an indirect non-competitive enzyme-linked immunosorbent assay was able to detect 6.2 × 10(5) CFUmL(-1) of C. sakazakii in pure culture after 17 h. The developed assay did not show any cross-reactivity with other Cronobacter spp. or pathogens belonging to other genera. In addition, the method was able to detect 10(3) CFUmL(-1) of C. sakazakii in infant formula without any pre-incubation. These results confirm that the immunoliposome-based immunomagnetic concentration and separation assay may facilitate highly sensitive, efficient, and rapid detection of C. sakazakii. PMID:26547009

  17. Bead-Based Assays for Biodetection: From Flow-Cytometry to Microfluidics

    SciTech Connect

    Ozanich, Richard M.; Antolick, Kathryn C.; Bruckner-Lea, Cindy J.; Bunch, Kyle J.; Dockendorff, Brian P.; Grate, Jay W.; Nash, Michael A.; Tyler, Abby J.

    2009-05-04

    ABSTRACT The potential for the use of biological agents by terrorists is a real threat. Two approaches for detection of biological species will be described: 1) The use of microbead arrays for multiplexed flow cytometry detection of cytokines and botulinum neurotoxin simulant, and 2) a microfluidic platform for capture and separation of different size superparamagnetic nanoparticles followed by on-chip fluorescence detection of the sandwich complex. The methods and automated fluidic systems used for trapping functionalized microbeads will be described. This approach allows sample, assay reagents, and wash solutions to be perfused over a micro-column of beads, resulting in faster and more sensitive assays. The automated fluidic approach resulted in up to five-fold improvements in assay sensitivity/speed as compared to identical assays performed in a typical manual batch mode. A second approach for implementing multiplexed bead-based assays without using flow cytometry detection is currently under development. The goal of the microfluidic-based approach is to achieve rapid (<20 minutes), multiplexed (> 3 bioagents) detection using a simple and low-cost, integrated microfluidic/optical detection platform. Using fiber-optic guided laser-induced fluorescence, assay detection limits were shown to be in the 100’s of picomolar range (10’s of micrograms per liter) for botulinum neurotoxin simulant without any optimization of the microfluidic device or optical detection approach. Video taping magnetic nanoparticle capture and release was used to improve understanding of the process and revealed interesting behavior.

  18. An easy-to-perform photometric assay for methyltransferase activity measurements.

    PubMed

    Schäberle, Till F; Siba, Christian; Höver, Thomas; König, Gabriele M

    2013-01-01

    Methyltransferases (MTs) catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to a suitable substrate. Such methylations are important modifications in secondary metabolisms, especially on natural products produced by polyketide synthases and nonribosomal peptide synthetases, many of which are of special interest due to their prominent pharmacological activities (e.g., lovastatin, cyclosporin). To gain basic biochemical knowledge on the methylation process, it is of immense relevance to simplify methods concerning experimental problems caused by a large variety in substrates. Here, we present a photometric method to analyze MT activity by measuring SAM consumption in a coupled enzyme assay.

  19. A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents

    SciTech Connect

    Zhu, Xiaoming; Fu, Afu; Luo, Kathy Qian

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer An endothelial cell apoptosis assay using FRET-based biosensor was developed. Black-Right-Pointing-Pointer The fluorescence of the cells changed from green to blue during apoptosis. Black-Right-Pointing-Pointer This method was developed into a high-throughput assay in 96-well plates. Black-Right-Pointing-Pointer This assay was applied to screen vascular disrupting agents. -- Abstract: In this study, we developed a high-throughput endothelial cell apoptosis assay using a fluorescence resonance energy transfer (FRET)-based biosensor. After exposure to apoptotic inducer UV-irradiation or anticancer drugs such as paclitaxel, the fluorescence of the cells changed from green to blue. We developed this method into a high-throughput assay in 96-well plates by measuring the emission ratio of yellow fluorescent protein (YFP) to cyan fluorescent protein (CFP) to monitor the activation of a key protease, caspase-3, during apoptosis. The Z Prime factor for this assay was above 0.5 which indicates that this assay is suitable for a high-throughput analysis. Finally, we applied this functional high-throughput assay for screening vascular disrupting agents (VDA) which could induce endothelial cell apoptosis from our in-house compounds library and dioscin was identified as a hit. As this assay allows real time and sensitive detection of cell apoptosis, it will be a useful tool for monitoring endothelial cell apoptosis in living cell situation and for identifying new VDA candidates via a high-throughput screening.

  20. Development of a high-throughput screening method for LIM kinase 1 using a luciferase-based assay of ATP consumption

    PubMed Central

    Mezna, Mokdad; Wong, Ai Ching; Ainger, Margaret; Scott, Rebecca W; Hammonds, Tim; Olson, Michael F

    2014-01-01

    Kinases are attractive drug targets because of the central roles they play in signal transduction pathways and human diseases. Their well-formed ATP-binding pockets make ideal targets for small molecule inhibitors. For drug discovery purposes, many peptide-based kinase assays have been developed that measure substrate phosphorylation using fluorescence-based readouts. However, for some kinases these assays may not be appropriate. In the case of the LIM kinases (LIMK), an inability to phosphorylate peptide substrates resulted in previous high-throughput screens (HTS) using radioactive labeling of recombinant cofilin protein as the readout. We describe the development of a HTS-compatible assay that measures relative ATP levels using luciferase-generated luminescence as a function of LIMK activity. The assay was inexpensive to perform and proof-of-principle screening of kinase inhibitors demonstrated that compound potency against LIMK could be determined; ultimately the assay was used for successful prosecution of automated HTS. Following HTS, the secondary assay format was changed to obtain more accurate measures of potency and mechanism of action using more complex (and expensive) assays. The luciferase assay nonetheless provides an inexpensive and reliable primary assay for HTS that allowed for the identification of LIMK inhibitors to initiate discovery programs for the eventual treatment of human diseases. PMID:22156225

  1. The Fibrin slide assay for detecting urokinase activity in human fetal kidney cells

    NASA Technical Reports Server (NTRS)

    Sedor, K.

    1985-01-01

    The Fibrin Slide Technique of Hau C. Kwaan and Tage Astrup is discussed. This relatively simple assay involves two steps: the formation of an artificial clot and then the addition of an enzyme (UKOKINASE) to dissolve the clot. The actual dissolving away of the clot is detected by the appearance of holes (lysis zones) in the stained clot. The procedure of Kwaan and Astrup is repeated, along with modifications and suggestions for improvements based on experience with the technique.

  2. Development of a Direct and Continuous Phospholipase D Assay Based on the Chelation-Enhanced Fluorescence Property of 8-Hydroxyquinoline.

    PubMed

    Rahier, Renaud; Noiriel, Alexandre; Abousalham, Abdelkarim

    2016-01-01

    Through its production of phosphatidic acid (PA), phospholipase D (PLD) is strongly involved in vesicular trafficking and cell signaling, making this enzyme an important therapeutic target. However, most PLD assays developed so far are either discontinuous or based on the indirect determination of choline released during PLD-catalyzed phosphatidylcholine hydrolysis, making its kinetic characterization difficult. We present here the development of a direct, specific, and continuous PLD assay that is based on the chelation-enhanced fluorescence property of 8-hydroxyquinoline (8HQ) following Ca(2+) complexation with PLD-generated PA. The real-time fluorescence intensity from 8HQ/Ca(2+)/PA complexes can be converted to concentrations of product using a calibration curve, with a detection limit of 1.2 μM of PA on a microplate scale, thus allowing measurement of the PLD-catalyzed reaction rate parameters. Hence, this assay is well adapted for studying the substrate specificity of PLD, together with its kinetic parameters, using natural phospholipids with various headgroups. In addition, the assay was found to be effective in monitoring the competitive inhibition of PA formation in the production of phosphatidylalcohols following the addition of primary alcohols, such as ethanol, propan-1-ol, or butan-1-ol. Finally, this assay was validated using the purified recombinant Vigna unguiculata PLD, as well as the PLD from Streptomyces chromofuscus, cabbage, or peanuts, and no PA production could be detected using phospholipase A1, phospholipase A2, or phospholipase C, allowing for a reliable determination of PLD activity in crude protein extract samples. This easy to handle PLD assay constitutes, to our knowledge, the first direct and continuous PA determination method on a microplate scale. PMID:26636829

  3. A High-Content Assay for Biosensor Validation and for Examining Stimuli that Affect Biosensor Activity.

    PubMed

    Slattery, Scott D; Hahn, Klaus M

    2014-12-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor's maximally activated and inactivated state, and examine response to specific proteins. We describe here a method for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays, allows visual inspection (e.g., for cell health and biosensor or regulator localization). Optimization of single-chain and dual-chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for effects of upstream molecules.

  4. Activation of chemical promutagens by Selenastrum capricornutum in the plant cell/microbe coincubation assay

    SciTech Connect

    Gentile, J.M.; Lippert, M.; Johnson, P.; Shafer, T. )

    1990-05-01

    The critical balance of organisms living in aquatic environments is influenced by the presence and relationship of plants to those environments. However, even though plants occupy a fundamental trophic level within aquatic ecosystems, few studies have focused upon the effect of xenobiotics on aquatic plants, and even fewer studies have dealt with xenobiotic metabolism by aquatic plants. It is well established that plants can metabolize chemicals into mutagens. The impact of these unique plant-activated chemical mutagens on ecosystems, food chains and, ultimately, human health is an important question that will require intensive and integrative investigation. The plant cell/microbe coincubation assay is particularly advantageous for use with unicellular algae. The conditions of this assay are such that chemical metabolism and subsequent mutagen detection can be followed in intact algal cells under simulated field conditions. The purpose of this research was to demonstrate that a unicellular algal species could be used effectively in the plant cell/microbe coincubation assay to activate model chemical mutagens.

  5. A Fluorometric Activity Assay for Light-Regulated Cyclic-Nucleotide-Monophosphate Actuators.

    PubMed

    Schumacher, Charlotte Helene; Körschen, Heinz G; Nicol, Christopher; Gasser, Carlos; Seifert, Reinhard; Schwärzel, Martin; Möglich, Andreas

    2016-01-01

    As a transformative approach in neuroscience and cell biology, optogenetics grants control over manifold cellular events with unprecedented spatiotemporal definition, reversibility, and noninvasiveness. Sensory photoreceptors serve as genetically encoded, light-regulated actuators and hence embody the cornerstone of optogenetics. To expand the scope of optogenetics, ever more naturally occurring photoreceptors are being characterized, and synthetic photoreceptors with customized, light-regulated function are being engineered. Perturbational control over intracellular cyclic-nucleotide-monophosphate (cNMP) levels is achieved via sensory photoreceptors that catalyze the making and breaking of these second messengers in response to light. To facilitate discovery, engineering and quantitative characterization of such light-regulated cNMP actuators, we have developed an efficient fluorometric assay. Both the formation and the hydrolysis of cNMPs are accompanied by proton release which can be quantified with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). This assay equally applies to nucleotide cyclases, e.g., blue-light-activated bPAC, and to cNMP phosphodiesterases, e.g., red-light-activated LAPD. Key benefits include potential for parallelization and automation, as well as suitability for both purified enzymes and crude cell lysates. The BCECF assay hence stands to accelerate discovery and characterization of light-regulated actuators of cNMP metabolism. PMID:26965118

  6. Visualizing repetitive diffusion activity of double-strand RNA binding proteins by single molecule fluorescence assays.

    PubMed

    Koh, Hye Ran; Wang, Xinlei; Myong, Sua

    2016-08-01

    TRBP, one of double strand RNA binding proteins (dsRBPs), is an essential cofactor of Dicer in the RNA interference pathway. Previously we reported that TRBP exhibits repetitive diffusion activity on double strand (ds)RNA in an ATP independent manner. In the TRBP-Dicer complex, the diffusion mobility of TRBP facilitates Dicer-mediated RNA cleavage. Such repetitive diffusion of dsRBPs on a nucleic acid at the nanometer scale can be appropriately captured by several single molecule detection techniques. Here, we provide a step-by-step guide to four different single molecule fluorescence assays by which the diffusion activity of dsRBPs on dsRNA can be detected. One color assay, termed protein induced fluorescence enhancement enables detection of unlabeled protein binding and diffusion on a singly labeled RNA. Two-color Fluorescence Resonance Energy Transfer (FRET) in which labeled dsRBPs is applied to labeled RNA, allows for probing the motion of protein along the RNA axis. Three color FRET reports on the diffusion movement of dsRBPs from one to the other end of RNA. The single molecule pull down assay provides an opportunity to collect dsRBPs from mammalian cells and examine the protein-RNA interaction at single molecule platform. PMID:27012177

  7. Development of a protease activity assay using heat-sensitive Tus-GFP fusion protein substrates.

    PubMed

    Askin, Samuel P; Morin, Isabelle; Schaeffer, Patrick M

    2011-08-15

    Proteases are implicated in various diseases and several have been identified as potential drug targets or biomarkers. As a result, protease activity assays that can be performed in high throughput are essential for the screening of inhibitors in drug discovery programs. Here we describe the development of a simple, general method for the characterization of protease activity and its use for inhibitor screening. GFP was genetically fused to a comparatively unstable Tus protein through an interdomain linker containing a specially designed protease site, which can be proteolyzed. When this Tus-GFP fusion protein substrate is proteolyzed it releases GFP, which remains in solution after a short heat denaturation and centrifugation step used to eliminate uncleaved Tus-GFP. Thus, the increase in GFP fluorescence is directly proportional to protease activity. We validated the protease activity assay with three different proteases, i.e., trypsin, caspase 3, and neutrophil elastase, and demonstrated that it can be used to determine protease activity and the effect of inhibitors with small sample volumes in just a few simple steps using a fluorescence plate reader.

  8. Towards the miniaturization of GPCR-based live-cell screening assays.

    PubMed

    Martins, Sofia A M; Trabuco, João R C; Monteiro, Gabriel A; Chu, Virginia; Conde, João P; Prazeres, D Miguel F

    2012-11-01

    G protein-coupled receptors (GPCRs) play a key role in many physiological or disease-related processes and for this reason are favorite targets of the pharmaceutical industry. Although ~30% of marketed drugs target GPCRs, their potential remains largely untapped. The discovery of new leads calls for the screening of thousands of compounds with high-throughput cell-based assays. Although microtiter plate-based high-throughput screening platforms are well established, microarray and microfluidic technologies hold potential for miniaturization, automation, and biosensor integration that may well redefine the format of GPCR screening assays. This paper reviews the latest research efforts directed to bringing microarray and microfluidic technologies into the realm of GPCR-based, live-cell screening assays.

  9. Micro segmented-flow in biochemical and cell-based assays.

    PubMed

    Clausell-Tormos, Jenifer; Merten, Christoph A

    2012-01-01

    Micro-segmented flow (e.g. in microfluidic channels, capillaries or a length of tubing) has become a promising technique in modern biology. Compared to conventional formats such as microtiter plates, sample volumes can be reduced about 1000-fold, thus allowing a massive reduction of assay costs and the use of samples available in low quantities, only (e.g. primary cells). Furthermore, assays can be highly parallelized and performed at superb spatio-temporal resolution. Here, we review the state-of-the-art in micro-segmented flow as applied in biochemical, cell- and multicellular organisms-based assays. We discuss likely future applications such as single cell / single organism proteomics and transcriptomics and point out the specific advantages and limitations compared to emulsion-based (droplet-based) approaches.

  10. What level of estrogenic activity determined by in vitro assays in municipal waste waters can be considered as safe?

    PubMed

    Jarošová, Barbora; Bláha, Luděk; Giesy, John P; Hilscherová, Klára

    2014-03-01

    In vitro assays are broadly used tools to evaluate the estrogenic activity in Waste Water Treatment Plant (WWTP) effluents and their receiving rivers. Since potencies of individual estrogens to induce in vitro and in vivo responses can differ it is not possible to directly evaluate risks based on in vitro measures of estrogenic activity. Estrone, 17beta-estradiol, 17alfa-ethinylestradiol and to some extent, estriol have been shown to be responsible for the majority of in vitro estrogenic activity of municipal WWTP effluents. Therefore, in the present study safe concentrations of Estrogenic Equivalents (EEQs-SSE) in municipal WWTP effluents were derived based on simplified assumption that the steroid estrogens are responsible for all estrogenicity determined with particular in vitro assays. EEQs-SSEs were derived using the bioassay and testing protocol-specific in vitro potencies of steroid estrogens, in vivo predicted no effect concentration (PNECs) of these compounds, and their relative contributions to the overall estrogenicity detected in municipal WWTP effluents. EEQs-SSEs for 15 individual bioassays varied from 0.1 to 0.4ng EEQ/L. The EEQs-SSEs are supposed to be increased by use of location-specific dilution factors of WWTP effluents entering receiving rivers. They are applicable to municipal wastewater and rivers close to their discharges, but not to industrial waste waters.

  11. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 7- and 5-, 6-, 8-positions.

    PubMed

    Kemnitzer, William; Kasibhatla, Shailaja; Jiang, Songchun; Zhang, Hong; Zhao, Jianghong; Jia, Shaojuan; Xu, Lifen; Crogan-Grundy, Candace; Denis, Réal; Barriault, Nancy; Vaillancourt, Louis; Charron, Sylvie; Dodd, Jennifer; Attardo, Giorgio; Labrecque, Denis; Lamothe, Serge; Gourdeau, Henriette; Tseng, Ben; Drewe, John; Cai, Sui Xiong

    2005-11-01

    As a continuation of our efforts to discover and develop the apoptosis inducing 4-aryl-4H-chromenes as novel anticancer agents, we explored the SAR of 4-aryl-4H-chromenes with modifications at the 7- and 5-, 6-, 8-positions. It was found that a small hydrophobic group, such as NMe2, NH2, NHEt, and OMe, is preferred at the 7-position. Di-substitution at either the 5,7-positions or the 6,7-positions generally led to a large decrease in potency. Di-substitution at the 7,8-positions, in general, was found to result in potent compounds. 7-NMe2, 7-NHEt, 7-OMe, and 7,8-di-NH2 analogs were found to have similar SAR for the 4-aryl group, and several 7-substituted and 7,8-di-substituted analogs were found to have similar potencies as the lead compound MX58151 (2a) both as caspase activators and inhibitors of cell proliferation.

  12. Fluorescence-Based Transport Assays Revisited in a Human Renal Proximal Tubule Cell Line.

    PubMed

    Caetano-Pinto, Pedro; Janssen, Manoe J; Gijzen, Linda; Verscheijden, Laurens; Wilmer, Martijn J G; Masereeuw, Rosalinde

    2016-03-01

    Apical transport is key in renal function, and the activity of efflux transporters and receptor-mediated endocytosis is pivotal in this process. The conditionally immortalized proximal tubule epithelial cell line (ciPTEC) endogenously expresses these systems. Here, we used ciPTEC to investigate the activity of three major efflux transporters, viz., breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp), as well as protein uptake through receptor-mediated endocytosis, using a fluorescence-based setup for transport assays. To this end, cells were exposed to Hoechst33342, chloromethylfluorescein-diacetate (CMFDA), and calcein-AM in the presence or absence of model inhibitors for BCRP (KO143), P-gp (PSC833), or MRPs (MK571). Overexpression cell lines MDCKII-BCRP and MDCKII-P-gp were used as positive controls, and membrane vesicles overexpressing one transporter were used to determine substrate and inhibitor specificities. Receptor-mediated endocytosis was investigated by determining the intracellular accumulation of fluorescently labeled receptor-associated protein (RAP-GST). In ciPTEC, BCRP and P-gp showed similar expressions and activities, whereas MRP4 was more abundantly expressed. Hoechst33342, GS-MF, and calcein are retained in the presence of KO143, MK571, and PSC833, showing clearly redundancy between the transporters. Noteworthy is the fact that both KO143 and MK571 can block BCRP, P-gp, and MRPs, whereas PSC833 appears to be a potent inhibitor for BCRP and P-gp but not the MRPs. Furthermore, ciPTEC accumulates RAP-GST in intracellular vesicles in a dose- and time-dependent manner, which was reduced in megalin-deficient cells. In conclusion, fluorescent-probe-based assays are fast and reproducible in determining apical transport mechanisms, in vitro. We demonstrate that typical substrates and inhibitors are not specific for the designated transporters, reflecting the complex interactions that can take place in

  13. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads.

    PubMed

    Centi, Sonia; Tombelli, Sara; Minunni, Maria; Mascini, Marco

    2007-02-15

    The DNA thrombin aptamer has been extensively investigated, and the coupling of this aptamer to different transduction principles has demonstrated the wide applicability of aptamers as bioreceptors in bioanalytical assays. The goal of this work was to design an aptamer-based sandwich assay with electrochemical detection for thrombin analysis in complex matrixes, using a simple target capturing step by aptamer-functionalized magnetic beads. The conditions for the aptamer immobilization and for the protein binding have been first optimized by surface plasmon resonance, and then transferred to the electrochemical-based assay performed onto screen-printed electrodes. The assay was then applied to the analysis of thrombin in buffer, spiked serum, and plasma and high sensitivity and specificity were found. Moreover, thrombin was generated in situ in plasma by the conversion of its precursor prothrombin, and the formation of thrombin was followed at different times. The concentrations detected by the electrochemical assay were in agreement with a simulation software that mimics the formation of thrombin over time (thrombogram). The proposed work demonstrates that the high specificity of aptamers together with the use of magnetic beads are the key features for aptamer-based analysis in complex matrixes, opening the possibility of a real application to diagnostics or medical investigation.

  14. Research on the chemical inactivation of antibiotic activity in assays of sterility and contamination of pharmaceuticals.

    PubMed

    Negretti, F; Casetta, P

    1991-01-01

    Membrane filtration, frequently used for removing antibacterial activity in assays of sterility and contamination of the antibiotics, presents the drawback of adsorption of antibiotic to membrane. The washing with large volumes of peptone water removes partially interferences with microbial growth. We evaluated the inactivating action of some chemical substances (albumin, calcium pantothenate, heparin, hydroxylamine, tri-valent iron) on the antimicrobial activity of membranes employed for antibiotic filtration. The results are not positive for the use of chemical substances in the antibiotic activity neutralization. In fact the per cent reduction of inhibition zones ranges from -61.5% to +20.0% and the inhibiting activity on the growth of colony forming units (CFU) oscillates from 89.6% to 100%. Discovery of new neutralizing substances and severe measures of asepsis in pharmaceutical production are recommended. PMID:12041793

  15. Comparative analysis of cholinesterase activities in food animals using modified Ellman and Michel assays

    PubMed Central

    Askar, Kasim Abass; Kudi, A. Caleb; Moody, A. John

    2011-01-01

    This study investigated correlations between modified Ellman and Michel assay methods for measuring cholinesterase (ChE) activities. It also established a foundation for the applicability of measuring ChE activities in food animal species as biochemical biomarkers for evaluating exposure to and effects of organophosphorus and carbamate pesticides. Measuring ChE activities in blood and tissue is currently the most important method of confirming the diagnosis of such exposure. The study also characterized the level of ChE activity in the selected organs/tissues of these animals and determined the best organ/tissue in which to measure ChE activity. The ChE activities were found to be higher in cattle than in sheep and higher in erythrocytes than in plasma and serum. The anticoagulant heparin significantly affects AChE activity in plasma compared with ethylenediamine tetra-acetic acid (EDTA). Of the different tissues tested, the mean of ChE activities was found to be highest in tissue from liver, followed by lung, muscle, kidney, and heart for sheep and cattle. In pigs, the ChE activities tested higher in kidney, liver, lung, muscle, and heart. The highest activities of ChE were found in pigs, followed by cattle and sheep. There was no significant difference between the modified Ellman and Michel method, but the percentage coefficient of variance (%CV) values were higher when the Michel method was used. PMID:22468023

  16. Highly sensitive and selective immuno-capture/electrochemical assay of acetylcholinesterase activity in red blood cells: a biomarker of exposure to organophosphorus pesticides and nerve agents.

    PubMed

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    2012-02-01

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold (MWCNTs-Au) nanocomposites modified screen printed carbon electrode (SPCE), which is used for the immobilization of AChE specific antibody. Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detection of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentrations of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to OP concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposure to OPs.

  17. Highly Sensitive and Selective Immuno-capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents

    SciTech Connect

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    2012-02-09

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold nanocomposites (MWCNTs-Au) modified screen printed carbon electrode (SPCE). Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detection of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentration of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to its concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in-vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposures to OPs.

  18. Estrogenic activity assessment of environmental chemicals using in vitro assays: identification of two new estrogenic compounds.

    PubMed Central

    Lascombe, I; Beffa, D; Rüegg, U; Tarradellas, J; Wahli, W

    2000-01-01

    Environmental chemicals with estrogenic activities have been suggested to be associated with deleterious effects in animals and humans. To characterize estrogenic chemicals and their mechanisms of action, we established in vitro and cell culture assays that detect human estrogen receptor [alpha] (hER[alpha])-mediated estrogenicity. First, we assayed chemicals to determine their ability to modulate direct interaction between the hER[alpha] and the steroid receptor coactivator-1 (SRC-1) and in a competition binding assay to displace 17ss-estradiol (E(2)). Second, we tested the chemicals for estrogen-associated transcriptional activity in the yeast estrogen screen and in the estrogen-responsive MCF-7 human breast cancer cell line. The chemicals investigated in this study were o,p'-DDT (racemic mixture and enantiomers), nonylphenol mixture (NPm), and two poorly analyzed compounds in the environment, namely, tris-4-(chlorophenyl)methane (Tris-H) and tris-4-(chlorophenyl)methanol (Tris-OH). In both yeast and MCF-7 cells, we determined estrogenic activity via the estrogen receptor (ER) for o,p'-DDT, NPm, and for the very first time, Tris-H and Tris-OH. However, unlike estrogens, none of these xenobiotics seemed to be able to induce ER/SRC-1 interactions, most likely because the conformation of the activated receptor would not allow direct contacts with this coactivator. However, these compounds were able to inhibit [(3)H]-E(2) binding to hER, which reveals a direct interaction with the receptor. In conclusion, the test compounds are estrogen mimics, but their molecular mechanism of action appears to be different from that of the natural hormone as revealed by the receptor/coactivator interaction analysis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:10903615

  19. Comparison of antioxidant activities of different parts from snow chrysanthemum (Coreopsis tinctoria Nutt.) and identification of their natural antioxidants using high performance liquid chromatography coupled with diode array detection and mass spectrometry and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt-based assay.

    PubMed

    Chen, L X; Hu, D J; Lam, S C; Ge, L; Wu, D; Zhao, J; Long, Z R; Yang, W J; Fan, B; Li, S P

    2016-01-01

    Snow chrysanthemum (Coreopsis tinctoria Nutt.), a world-widely well-known flower tea material, has attracted more and more attention because of its beneficial health effects such as antioxidant activity and special flavor. In this study, a high performance liquid chromatography coupled with diode array detection and mass spectrometry (HPLC-DAD-MS) and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt (ABTS) based assay was employed for comparison and identification of antioxidants in different samples of snow chrysanthemum. The results showed that snow chrysanthemum flowers possessed the highest while stems presented the lowest antioxidant capacities. Fourteen detected peaks with antioxidant activity were temporarily identified as 3,4',5,6,7-pentahydroxyflavanone-O-hexoside, chlorogenic acid, 2R-3',4',8-trihydroxyflavanone-7-O-glucoside, flavanomarein, flavanocorepsin, flavanokanin, quercetagitin-7-O-glucoside, 3',5,5',7-tetrahydroxyflavanone-O-hexoside, marein, maritimein, 1,3-dicaffeoylquinic acid, coreopsin, okanin and acetyl-marein by comparing their UV spectra, retention times and MS data with standards or literature data. Antioxidants existed in snow chrysanthemum are quite different from those reported in Chrysanthemum morifolium, a well-known traditional beverage in China, which indicated that snow chrysanthemum may be a promising herbal tea material with obvious antioxidant activity. PMID:26521095

  20. Comparison of antioxidant activities of different parts from snow chrysanthemum (Coreopsis tinctoria Nutt.) and identification of their natural antioxidants using high performance liquid chromatography coupled with diode array detection and mass spectrometry and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt-based assay.

    PubMed

    Chen, L X; Hu, D J; Lam, S C; Ge, L; Wu, D; Zhao, J; Long, Z R; Yang, W J; Fan, B; Li, S P

    2016-01-01

    Snow chrysanthemum (Coreopsis tinctoria Nutt.), a world-widely well-known flower tea material, has attracted more and more attention because of its beneficial health effects such as antioxidant activity and special flavor. In this study, a high performance liquid chromatography coupled with diode array detection and mass spectrometry (HPLC-DAD-MS) and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt (ABTS) based assay was employed for comparison and identification of antioxidants in different samples of snow chrysanthemum. The results showed that snow chrysanthemum flowers possessed the highest while stems presented the lowest antioxidant capacities. Fourteen detected peaks with antioxidant activity were temporarily identified as 3,4',5,6,7-pentahydroxyflavanone-O-hexoside, chlorogenic acid, 2R-3',4',8-trihydroxyflavanone-7-O-glucoside, flavanomarein, flavanocorepsin, flavanokanin, quercetagitin-7-O-glucoside, 3',5,5',7-tetrahydroxyflavanone-O-hexoside, marein, maritimein, 1,3-dicaffeoylquinic acid, coreopsin, okanin and acetyl-marein by comparing their UV spectra, retention times and MS data with standards or literature data. Antioxidants existed in snow chrysanthemum are quite different from those reported in Chrysanthemum morifolium, a well-known traditional beverage in China, which indicated that snow chrysanthemum may be a promising herbal tea material with obvious antioxidant activity.

  1. Quantitative Analysis of NF-κB Transactivation Specificity Using a Yeast-Based Functional Assay

    PubMed Central

    Sharma, Vasundhara; Jordan, Jennifer J.; Ciribilli, Yari; Resnick, Michael A.; Bisio, Alessandra; Inga, Alberto

    2015-01-01

    The NF-κB transcription factor family plays a central role in innate immunity and inflammation processes and is frequently dysregulated in cancer. We developed an NF-κB functional assay in yeast to investigate the following issues: transactivation specificity of NF-κB proteins acting as homodimers or heterodimers; correlation between transactivation capacity and in vitro DNA binding measurements; impact of co-expressed interacting proteins or of small molecule inhibitors on NF-κB-dependent transactivation. Full-length p65 and p50 cDNAs were cloned into centromeric expression vectors under inducible GAL1 promoter in order to vary their expression levels. Since p50 lacks a transactivation domain (TAD), a chimeric construct containing the TAD derived from p65 was also generated (p50TAD) to address its binding and transactivation potential. The p50TAD and p65 had distinct transactivation specificities towards seventeen different κB response elements (κB-REs) where single nucleotide changes could greatly impact transactivation. For four κB-REs, results in yeast were predictive of transactivation potential measured in the human MCF7 cell lines treated with the NF-κB activator TNFα. Transactivation results in yeast correlated only partially with in vitro measured DNA binding affinities, suggesting that features other than strength of interaction with naked DNA affect transactivation, although factors such as chromatin context are kept constant in our isogenic yeast assay. The small molecules BAY11-7082 and ethyl-pyruvate as well as expressed IkBα protein acted as NF-κB inhibitors in yeast, more strongly towards p65. Thus, the yeast-based system can recapitulate NF-κB features found in human cells, thereby providing opportunities to address various NF-κB functions, interactions and chemical modulators. PMID:26147604

  2. A high-throughput assay for modulators of NNT activity in permeabilized yeast cells.

    PubMed

    Meadows, Nicholas A; Saxty, Barbara; Albury, Mary S; Kettleborough, Catherine A; Ashcroft, Frances M; Moore, Anthony L; Cox, Roger D

    2011-08-01

    Nicotinamide nucleotide transhydrogenase (NNT) mutant mice show glucose intolerance with impaired insulin secretion during glucose tolerance tests. Uncoupling of the β cell mitochondrial metabolism due to such mutations makes NNT a novel target for therapeutics in the treatment of pathologies such as type 2 diabetes. The authors propose that increasing NNT activity would help reduce deleterious buildup of reactive oxygen species in the inner mitochondrial matrix. They have expressed human Nnt cDNA for the first time in Saccharomyces cerevisiae, and transhydrogenase activity in mitochondria isolated from these cells is six times greater than is seen in wild-type mitochondria. The same mitochondria have partially uncoupled respiration, and the cells have slower growth rates compared to cells that do not express NNT. The authors have used NNT's role as a redox-driven proton pump to develop a robust fluorimetric assay in permeabilized yeast. Screening in parallel a library of known pharmacologically active compounds (National Institute of Neurological Disorders and Stroke collection) against NNT ± cells, they demonstrate a robust and reproducible assay suitable for expansion into larger and more diverse compound sets. The identification of NNT activators may help in the elucidation of the role of NNT in mammalian cells and assessing its potential as a therapeutic target for insulin secretion disorders.

  3. Mutagenic activity of sweepings and pigments from a household-wax factory assayed with Salmonella typhimurium.

    PubMed

    Varella, S D; Pozetti, G L; Vilegas, W; Varanda, E A

    2004-12-01

    The mutagenic activity of garbage originating from a household wax industry was determined by the Salmonella/microsome assay, using the bacterial strains TA100, TA98 and YG1024. The garbage was obtained by sweeping the floor of the factory at the end of the work shift. Organic compounds were extracted by ultrasound for 30 min in dichloromethane or 70% ethanol. After evaporation of solvent, these extracts (HFS: household-wax factory sweepings) were dissolved in DMSO, and were tested for the mutagenic activity at varying concentrations (HFS-ET: 0.08-0.68 mg/plate, HFS-DCM: 0.60-7.31 mg/plate). The colouring agents (pigments) used in the production of the wax were also dissolved in DMSO and tested with the assay. The concentrations tested for each pigment were: Amaranth: 0.46-3.65 mg/plate, Auramine: 0.15-1.2 mg/plate and Rhodamine B: 0.22-1.82 mg/plate. Both ET and DCM organic extracts had mutagenic activity, especially in the YG1024 strain. The pigments behaved in a similar way, demonstrating that YG1024 was the most sensitive strain for the detection of mutagenicity, and that metabolization increased the activity. Human exposure (occupational and non-occupational) to industrial residues generated during the household-wax manufacturing and packaging process should be monitored, since this type of garbage is normally deposited in the environment without any control.

  4. Developing in vitro reporter gene assays to assess the hormone receptor activities of chemicals frequently detected in drinking water.

    PubMed

    Sun, Hong; Si, Chaozong; Bian, Qian; Chen, Xiaodong; Chen, Liansheng; Wang, Xinru

    2012-08-01

    The present study intended to develop receptor-mediated luciferase reporter gene assays to evaluate and compare the estrogen receptor (ER), androgen receptor (AR) and thyroid hormone receptor (TR) activities of target chemicals. Di-2-ethylhexyl-phthalate (DEHP), chlorpyrifos (CPF), 2,4-dichlorophenoxyacetic acid (2,4-D) and bisphenol A (BPA) are some of the most common contaminants in drinking water and are frequently detected in China and worldwide. The chemicals were tested at concentrations of 0.1, 1, 10 and 100 times their maximum contaminant level in drinking water. The results showed that BPA possessed various activities on ER, AR and TR. DEHP and CPF could suppress 17β-estradiol or testosterone activity with different potencies, and DEHP possessed weaker anti-thyroid hormone activity. 2,4-D showed no agonist or antagonist activity against these hormone receptors, but it significantly enhanced the activity of testosterone through AR. Furthermore, the mixture of DEHP and CPF exhibited stronger ER and AR antagonist activities than each single component alone, but their combined effects were less than the expected effects based on the additive model. These results implied that the transcription activation mediated by hormone receptors was the potential endocrine-disrupting mechanism of the test chemicals. Our study also provided useful tools for evaluation of their endocrine disrupting activity.

  5. Cultivar origin and admixture detection in Turkish olive oils by SNP-based CAPS assays.

    PubMed

    Uncu, Ali Tevfik; Frary, Anne; Doganlar, Sami

    2015-03-01

    The aim of this study was to establish a DNA-based identification key to ascertain the cultivar origin of Turkish monovarietal olive oils. To reach this aim, we sequenced short fragments from five olive genes for SNP (single nucleotide polymorphism) identification and developed CAPS (cleaved amplified polymorphic DNA) assays for SNPs that alter restriction enzyme recognition motifs. When applied on the oils of 17 olive cultivars, a maximum of five CAPS assays were necessary to discriminate the varietal origin of the samples. We also tested the efficiency and limit of our approach for detecting olive oil admixtures. As a result of the analysis, we were able to detect admixing down to a limit of 20%. The SNP-based CAPS assays developed in this work can be used for testing and verification of the authenticity of Turkish monovarietal olive oils, for olive tree certification, and in germplasm characterization and preservation studies.

  6. Biosensors and Bio-Bar Code Assays Based on Biofunctionalized Magnetic Microbeads

    PubMed Central

    Jaffrezic-Renault, Nicole; Martelet, Claude; Chevolot, Yann; Cloarec, Jean-Pierre

    2007-01-01

    This review paper reports the applications of magnetic microbeads in biosensors and bio-bar code assays. Affinity biosensors are presented through different types of transducing systems: electrochemical, piezo electric or magnetic ones, applied to immunodetection and genodetection. Enzymatic biosensors are based on biofunctionalization through magnetic microbeads of a transducer, more often amperometric, potentiometric or conductimetric. The bio-bar code assays relie on a sandwich structure based on specific biological interaction of a magnetic microbead and a nanoparticle with a defined biological molecule. The magnetic particle allows the separation of the reacted target molecules from unreacted ones. The nanoparticles aim at the amplification and the detection of the target molecule. The bio-bar code assays allow the detection at very low concentration of biological molecules, similar to PCR sensitivity.

  7. Screening of Dengue Virus Antiviral Activity of Marine Seaweeds by an In Situ Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Koishi, Andrea Cristine; Zanello, Paula Rodrigues; Bianco, Éverson Miguel; Bordignon, Juliano; Nunes Duarte dos Santos, Claudia

    2012-01-01

    Dengue is a significant public health problem worldwide. Despite the important social and clinical impact, there is no vaccine or specific antiviral therapy for prevention and treatment of dengue virus (DENV) infection. Considering the above, drug discovery research for dengue is of utmost importance; in addition natural marine products provide diverse and novel chemical structures with potent biological activities that must be evaluated. In this study we propose a target-free approach for dengue drug discovery based on a novel, rapid, and economic in situ enzyme-linked immunosorbent assay and the screening of a panel of marine seaweed extracts.