Science.gov

Sample records for activity binding peptides

  1. Machine Learning Methods for Predicting HLA–Peptide Binding Activity

    PubMed Central

    Luo, Heng; Ye, Hao; Ng, Hui Wen; Shi, Leming; Tong, Weida; Mendrick, Donna L.; Hong, Huixiao

    2015-01-01

    As major histocompatibility complexes in humans, the human leukocyte antigens (HLAs) have important functions to present antigen peptides onto T-cell receptors for immunological recognition and responses. Interpreting and predicting HLA–peptide binding are important to study T-cell epitopes, immune reactions, and the mechanisms of adverse drug reactions. We review different types of machine learning methods and tools that have been used for HLA–peptide binding prediction. We also summarize the descriptors based on which the HLA–peptide binding prediction models have been constructed and discuss the limitation and challenges of the current methods. Lastly, we give a future perspective on the HLA–peptide binding prediction method based on network analysis. PMID:26512199

  2. Formylated MHC Class Ib Binding Peptides Activate Both Human and Mouse Neutrophils Primarily through Formyl Peptide Receptor 1

    PubMed Central

    Winther, Malene; Holdfeldt, André; Gabl, Michael; Wang, Ji Ming; Forsman, Huamei; Dahlgren, Claes

    2016-01-01

    Two different immune recognition systems have evolved in parallel to recognize peptides starting with an N-formylated methionine, and recognition similarities/differences between these two systems have been investigated. A number of peptides earlier characterized in relation to the H2-M3 complex that presents N-formylated peptides to cytotoxic T cells, have been characterized in relation to the formyl peptide receptors expressed by phagocytic neutrophils in both men (FPRs) and mice (Fprs). FPR1/Fpr1 was identified as the preferred receptor for all fMet-containing peptides examined, but there was no direct correlation between H2-M3 binding and the neutrophil activation potencies. Similarly, there was no direct correlation between the activities induced by the different peptides in human and mouse neutrophils, respectively. The formyl group was important in both H2-M3 binding and FPR activation, but FPR2 was the preferred receptor for the non-formylated peptide. The structural requirements differed between the H2-M3 and FPR/Fpr recognition systems and these data suggest that the two recognition systems have different evolutionary traits. PMID:27907124

  3. Specific erythrocyte binding capacity and biological activity of Plasmodium falciparum erythrocyte binding ligand 1 (EBL-1)-derived peptides

    PubMed Central

    Curtidor, Hernando; Rodríguez, Luis E.; Ocampo, Marisol; López, Ramses; García, Javier E.; Valbuena, John; Vera, Ricardo; Puentes, Álvaro; Vanegas, Magnolia; Patarroyo, Manuel E.

    2005-01-01

    Erythrocyte binding ligand 1 (EBL-1) is a member of the ebl multigene family involved in Plasmodium falciparum invasion of erythrocytes. We found that five EBL-1 high-activity binding peptides (HABPs) bound specifically to erythrocytes: 29895 (41HKKKSGELNNNKSGILRSTY60), 29903 (201LYECGK-KIKEMKWICTDNQF220), 29923 (601CNAILGSYADIGDIVRGLDV620), 29924(621WRDINTNKLSEK-FQKIFMGGY640), and 30018 (2481LEDIINLSKKKKKSINDTSFY2500). We also show that binding was saturable, not sialic acid-dependent, and that all peptides specifically bound to a 36-kDa protein on the erythrocyte membrane. The five HABPs inhibited in vitro merozoite invasion depending on the peptide concentration used, suggesting their possible role in the invasion process. PMID:15659376

  4. Collagen-binding VEGF mimetic peptide: Structure, matrix interaction, and endothelial cell activation

    NASA Astrophysics Data System (ADS)

    Chan, Tania R.

    Long term survival of artificial tissue constructs depends greatly on proper vascularization. In nature, differentiation of endothelial cells and formation of vasculature are directed by dynamic spatio-temporal cues in the extracellular matrix that are difficult to reproduce in vitro. In this dissertation, we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF), which can be used to encode spatially controlled angiogenic signals in collagen-based scaffolds. The peptide, QKCMP, contains a collagen mimetic domain (CMP) that binds to type I collagen by a unique triple helix hybridization mechanism and a VEGF mimetic domain (QK) with pro-angiogenic activity. We demonstrate QKCMP's ability to hybridize with native and heat denatured collagens through a series of binding studies on collagen and gelatin substrates. Circular dichroism experiments show that the peptide retains the triple helical structure vital for collagen binding, and surface plasmon resonance study confirms the molecular interaction between the peptide and collagen strands. Cell culture studies demonstrate QKCMP's ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show that the peptide can be used to spatially modify collagen-based substrates to promote localized endothelial cell activation and network formation. To probe the biological events that govern these angiogenic cellular responses, we investigated the cell signaling pathways activated by collagen-bound QKCMP and determined short and long-term endothelial cell response profiles for p38, ERK1/2, and Akt signal transduction cascades. Finally, we present our efforts to translate the peptide's in vitro bioactivity to an in vivo burn injury animal model. When implanted at the wound site, QKCMP functionalized biodegradable hydrogels induce enhanced neovascularization in the granulation tissue. The results show QKCMP

  5. Thermodynamics of engineered gold binding peptides: establishing the structure-activity relationships.

    PubMed

    Seker, Urartu Ozgur Safak; Wilson, Brandon; Kulp, John L; Evans, John S; Tamerler, Candan; Sarikaya, Mehmet

    2014-07-14

    Adsorption behavior of a gold binding peptide was experimentally studied to achieve kinetics and thermodynamics parameters toward understanding of the binding of an engineered peptide onto a solid metal surface. The gold-binding peptide, GBP1, was originally selected using a cell surface display library and contains 14 amino acid residues. In this work, single- and three-repeats of GBP1 were used to assess the effects of two parameters: molecular architecture versus secondary structure on adsorption on to gold substrate. The adsorption measurements were carried out using surface plasmon resonance (SPR) spectroscopy at temperatures ranging from 10 to 55 °C. At all temperatures, two different regimes of peptide adsorption were observed, which, based on the model, correspond to two sets of thermodynamics values. The values of enthalpy, ΔH(ads), and entropy, ΔS(ads), in these two regimes were determined using the van't Hoff approach and Gibbs-Helmholtz relationship. In general, the values of enthalpy for both peptides are negative indicating GBP1 binding to gold is an exothermic phenomenon and that the binding of three repeat gold binding peptide (3l-GBP1) is almost 5 times tighter than that for the single repeat (l-GBP1). More intriguing result is that the entropy of adsorption for the 3l-GBP1 is negative (-43.4 ± 8.5 cal/(mol K)), while that for the l-GBP1 is positive (10.90 ± 1.3 cal/(mol K)). Among a number of factors that synergistically contribute to the decrease of entropy, long-range ordered self-assembly of the 3l-GBP1 on gold surface is the most effective, probably through both peptide-solid and peptide-peptide intermolecular interactions. Additional adsorption experiments were conducted in the presence of 2,2,2-trifluoroethanol (TFE) to determine how the conformational structures of the biomolecules responded to the environmental perturbation. We found that the peptides differ in their conformational responses to the change in solution conditions; while

  6. Antifreeze and cryoprotective activities of ice-binding collagen peptides from pig skin.

    PubMed

    Cao, Hui; Zhao, Ying; Zhu, Yu Bing; Xu, Fei; Yu, Jing Song; Yuan, Min

    2016-03-01

    A novel "hyperactive" ice-binding peptide from porcine collagen was prepared by alkaline protease hydrolysis and a series of column chromatography separations, and then its antifreeze and cryoprotective properties were reported. Using differential scanning calorimetry (DSC), the thermal hysteresis (TH) of ice-binding collagen peptides was closely related to their concentration and crystal fraction. Collagen hydrolysates with maximal TH were obtained by hydrolysis at pH 8.0, DH 15.0%, and 5% alkaline protease at 55°C. After purification by column chromatography, the AP-3 ice-binding collagen peptide (GLLGPLGPRGLL) with 1162.8Da molecular weights exhibited the highest TH (5.28°C), which can be classified as "hyperactive". Recrystallisation and melt-resistance of ice cream were improved by AP-3 ice-binding collagen peptide at 0.2% (w/v) in a similar manner to natural antifreeze proteins. Moreover, the addition of AP-3 collagen peptides in ice cream greatly elevated the glass transition temperature (Tg) to -17.64°C.

  7. Prophenoloxidase activation and antimicrobial peptide expression induced by the recombinant microbe binding protein of Manduca sexta.

    PubMed

    Wang, Yang; Jiang, Haobo

    2017-04-01

    Manduca sexta microbe binding protein (MBP) is a member of the β-1,3-glucanase-related protein superfamily that includes Gram-negative bacteria-binding proteins (GNBPs), β-1,3-glucan recognition proteins (βGRPs), and β-1,3-glucanases. Our previous and current studies showed that the purified MBP from baculovirus-infected insect cells had stimulated prophenoloxidase (proPO) activation in the hemolymph of naïve and immune challenged larvae and that supplementation of the exogenous MBP and peptidoglycans (PGs) had caused synergistic increases in PO activity. To explore the underlying mechanism, we separated by SDS-PAGE naïve and induced larval plasma treated with buffer or MBP and detected on immunoblots changes in intensity and/or mobility of hemolymph (serine) proteases [HP14, HP21, HP6, HP8, proPO-activating proteases (PAPs) 1-3] and their homologs (SPH1, SPH2). In a nickel pull-down assay, we observed association of MBP with proHP14 (slightly), βGRP2, PG recognition protein-1 (PGRP1, indirectly), SPH1, SPH2, and proPO2. Further experiments indicated that diaminopimelic acid (DAP) or Lys PG, MBP, PGRP1, and proHP14 together trigger the proPO activation system in a Ca(2+)-dependent manner. Injection of the recombinant MBP into the 5th instar naïve larvae significantly induced the expression of several antimicrobial peptide genes, revealing a possible link between HP14 and immune signal transduction. Together, these results suggest that the recognition of Gram-negative or -positive bacteria via their PGs induces the melanization and Toll pathways in M. sexta.

  8. Purification and sequencing of the active site tryptic peptide from penicillin-binding protein 1b of Escherichia coli

    SciTech Connect

    Nicholas, R.A.; Suzuki, H.; Hirota, Y.; Strominger, J.L.

    1985-07-02

    This paper reports the sequence of the active site peptide of penicillin-binding protein 1b from Escherichia coli. Purified penicillin-binding protein 1b was labeled with (/sup 14/C)penicillin G, digested with trypsin, and partially purified by gel filtration. Upon further purification by high-pressure liquid chromatography, two radioactive peaks were observed, and the major peak, representing over 75% of the applied radioactivity, was submitted to amino acid analysis and sequencing. The sequence Ser-Ile-Gly-Ser-Leu-Ala-Lys was obtained. The active site nucleophile was identified by digesting the purified peptide with aminopeptidase M and separating the radioactive products on high-pressure liquid chromatography. Amino acid analysis confirmed that the serine residue in the middle of the sequence was covalently bonded to the (/sup 14/C)penicilloyl moiety. A comparison of this sequence to active site sequences of other penicillin-binding proteins and beta-lactamases is presented.

  9. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    SciTech Connect

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-08-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs.

  10. Second extracellular loop of human glucagon-like peptide-1 receptor (GLP-1R) has a critical role in GLP-1 peptide binding and receptor activation.

    PubMed

    Koole, Cassandra; Wootten, Denise; Simms, John; Miller, Laurence J; Christopoulos, Arthur; Sexton, Patrick M

    2012-02-03

    The glucagon-like peptide-1 receptor (GLP-1R) is a therapeutically important family B G protein-coupled receptor (GPCR) that is pleiotropically coupled to multiple signaling effectors and, with actions including regulation of insulin biosynthesis and secretion, is one of the key targets in the management of type II diabetes mellitus. However, there is limited understanding of the role of the receptor core in orthosteric ligand binding and biological activity. To assess involvement of the extracellular loop (ECL) 2 in ligand-receptor interactions and receptor activation, we performed alanine scanning mutagenesis of loop residues and assessed the impact on receptor expression and GLP-1(1-36)-NH(2) or GLP-1(7-36)-NH(2) binding and activation of three physiologically relevant signaling pathways as follows: cAMP formation, intracellular Ca(2+) (Ca(2+)(i)) mobilization, and phosphorylation of extracellular signal-regulated kinases 1 and 2 (pERK1/2). Although antagonist peptide binding was unaltered, almost all mutations affected GLP-1 peptide agonist binding and/or coupling efficacy, indicating an important role in receptor activation. However, mutation of several residues displayed distinct pathway responses with respect to wild type receptor, including Arg-299 and Tyr-305, where mutation significantly enhanced both GLP-1(1-36)-NH(2)- and GLP-1(7-36)-NH(2)-mediated signaling bias for pERK1/2. In addition, mutation of Cys-296, Trp-297, Asn-300, Asn-302, and Leu-307 significantly increased GLP-1(7-36)-NH(2)-mediated signaling bias toward pERK1/2. Of all mutants studied, only mutation of Trp-306 to alanine abolished all biological activity. These data suggest a critical role of ECL2 of the GLP-1R in the activation transition(s) of the receptor and the importance of this region in the determination of both GLP-1 peptide- and pathway-specific effects.

  11. Identification, activity, and structural studies of peptides incorporating the phorbol ester-binding domain of protein kinase C.

    PubMed Central

    Wender, P A; Irie, K; Miller, B L

    1995-01-01

    The family of homologous enzymes known as protein kinase C (PKC) has been the object of intense interest because of its crucial role in cellular signal transduction. Although considerable information about the activation of PKC has been gained through structure-activity, molecular modeling, and synthetic studies of both natural and designed activators, information about the structure of PKC itself has been limited by its large size and requirement for phospholipid cofactors. Additionally, difficulties in the purification of truncated mutants of PKC have thus far prevented their analysis by nuclear magnetic resonance (NMR) or x-ray crystallographic methods. We describe the identification, synthesis, ligand-binding analysis, cofactor requirements, and preliminary NMR evaluation of two subdomains (peptides B and C) of the regulatory domain of PKC-gamma. Peptides B and C bind [3H]phorbol 12,13-dibutyrate with good affinity (Kd = 6.4 microM and 414 nM, respectively) in the presence of phosphatidylserine. In comparison, the binding affinity of [3H]phorbol 12,13-dibutyrate for PKC was found to be 2.6 nM. Like PKC itself, these peptides also recognize other PKC activators, including dioctanoylglycerol and teleocidin B-4, and exhibit an ability to differentiate phorbol ester from its C-4 epimer. NMR studies of PKC subdomains are also described, indicating that both peptides B and C are well behaved in solution and do not exhibit any concentration-dependent changes. Finally, these studies reveal that peptide B becomes conformationally ordered only in the presence of phospholipid, suggesting that the regulatory domain of PKC itself might be organized for activation only when associated with the lipid bilayer, where its activator (diacylglycerol) is encountered. PMID:7816824

  12. Discovery and Characterization of a Potent Interleukin-6 Binding Peptide with Neutralizing Activity In Vivo

    PubMed Central

    Ranganath, Sheila; Bhandari, Ashok; Avitahl-Curtis, Nicole; McMahon, Jaimee; Wachtel, Derek; Zhang, Jenny; Leitheiser, Christopher; Bernier, Sylvie G.; Liu, Guang; Tran, Tran T.; Celino, Herodion; Tobin, Jenny; Jung, Joon; Zhao, Hong; Glen, Katie E.; Graul, Chris; Griffin, Aliesha; Schairer, Wayne C.; Higgins, Carolyn; Reza, Tammi L.; Mowe, Eva; Rivers, Sam; Scott, Sonya; Monreal, Alex; Shea, Courtney; Bourne, Greg; Coons, Casey; Smith, Adaline; Tang, Kim; Mandyam, Ramya A.; Masferrer, Jaime; Liu, David; Patel, Dinesh V.; Fretzen, Angelika; Murphy, Craig A.; Milne, G. Todd; Smythe, Mark L.; Carlson, Kenneth E.

    2015-01-01

    Interleukin-6 (IL-6) is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman’s Disease (CD) and rheumatoid arthritis (RA). Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R)/gp130 signaling complex continues to show promise as a therapeutic target. Monoclonal antibodies (mAbs) directed against components of this complex have been approved as therapeutics for both CD and RA. To potentially provide an additional modality to antagonize IL-6 induced pathophysiology, a peptide-based antagonist approach was undertaken. Using a combination of molecular design, phage-display, and medicinal chemistry, disulfide-rich peptides (DRPs) directed against IL-6 were developed with low nanomolar potency in inhibiting IL-6-induced pSTAT3 in U937 monocytic cells. Targeted PEGylation of IL-6 binding peptides resulted in molecules that retained their potency against IL-6 and had a prolongation of their pharmacokinetic (PK) profiles in rodents and monkeys. One such peptide, PN-2921, contained a 40 kDa polyethylene glycol (PEG) moiety and inhibited IL-6-induced pSTAT3 in U937 cells with sub-nM potency and possessed 23, 36, and 59 h PK half-life values in mice, rats, and cynomolgus monkeys, respectively. Parenteral administration of PN-2921 to mice and cynomolgus monkeys potently inhibited IL-6-induced biomarker responses, with significant reductions in the acute inflammatory phase proteins, serum amyloid A (SAA) and C-reactive protein (CRP). This potent, PEGylated IL-6 binding peptide offers a new approach to antagonize IL-6-induced signaling and associated pathophysiology. PMID:26555695

  13. Screening a Phage Display Library for Two Novel OmpU-Binding Peptides with Adhesion Antagonistic Activity against Vibrio mimicus

    PubMed Central

    Tao, Huizhu; Xiao, Ning; Li, Jinnian; Kong, Lingyan; Hou, Liting

    2016-01-01

    Vibrio mimicus is a pathogen that causes ascites disease in fish. We have previously demonstrated that the outer membrane protein U (OmpU) is an important adhesin in V. mimicus. Here eight specific OmpU-binding phage clones, which presented three different OmpU-binding peptides (designated P1, P2, P3), were screened from a commercially available phage displayed 12-mer peptide library using rOmpU protein as target. Then, synthetic OmpU-binding peptides were measured for their adhesion antagonistic activity and binding affinity via adhesion inhibition test and non-competitive ELISA, respectively. The results showed that after co-incubated with the mixture of rOmpU and P3, visible green fluorescence could be observed on the epithelioma papulosum cyprinidi (EPC) cells surface; while the EPC cells co-incubated with the mixture of rOmpU and P1/P2 exhibited little green fluorescence. The average adhesion number of V. mimicus 04–14 isolate before and after treatment with peptide was 21.4 ± 1.5, 20.8 ± 0.8 (irrelevant peptide), 20.2 ± 0.5 (P3), 5.1 ± 0.7 (P1) and 3.4 ± 0.8 (P2), respectively. There was a significant decrease in the adhesive level of 04–14 isolate treated with P1/ P2 compared to the untreated isolate (p<0.01). The affinity constants of P1 and P2 were (6.17 ± 0.19) × 108 L/mol and (1.24 ± 0.56) × 109 L/mol, respectively. Furthermore, protective effects of P1 and P2 on grass carps challenged with V. mimicus were preliminary detected. It was found there was delayed death of fish in the groups treated with P1/P2, and the survival rate of challenged fish improved with the increase of the dose of adhesion antagonistic peptide. Taken together, two novel OmpU-binding peptides, which possessed adhesion antagonistic activity, high affinity and a certain degree of antibacterial activity against V. mimicus, were screened and identified. PMID:27832083

  14. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  15. Minimal determinants for binding activated G-alpha from the structure of a G-alpha-i1/peptide dimer†

    PubMed Central

    Johnston, Christopher A.; Lobanova, Ekaterina S.; Shavkunov, Alexander S.; Low, Justin; Ramer, J. Kevin; Blaesius, Rainer; Fredericks, Zoey; Willard, Francis S.; Kuhlman, Brian; Arshavsky, Vadim Y.; Siderovski, David P.

    2008-01-01

    G-proteins cycle between an inactive GDP-bound state and active GTP-bound state, serving as molecular switches that coordinate cellular signaling. We recently used phage-display to identify a series of peptides that bind Gα subunits in a nucleotide-dependent manner [Johnston, C. A., Willard, F. S., Jezyk, M. R., Fredericks, Z., Bodor, E. T., Jones, M. B., Blaesius, R., Watts, V. J., Harden, T. K., Sondek, J., Ramer, J. K., and Siderovski, D. P. (2005) Structure 13, 1069–1080]. Here we describe the structural features and functions of KB-1753, a peptide that binds selectively to GDP·AlF4−- and GTPγS-bound states of Gαi subunits. KB-1753 blocks interaction of Gαtransducin with its effector, cGMP phosphodiesterase, and inhibits transducin-mediated activation of cGMP degradation. Additionally, KB-1753 interferes with RGS protein binding and resultant GAP activity. A fluorescent KB-1753 variant was found to act as a sensor for activated Gα in vitro. The crystal structure of KB-1753 bound to Gαi1·GDP·AlF4− reveals binding to a conserved hydrophobic groove between switch II and α3 helices, and, along with supporting biochemical data and previous structural analyses, supports the notion that this is the site of effector interactions for Gαi subunits. PMID:16981699

  16. Identification of an RNA aptamer binding hTERT-derived peptide and inhibiting telomerase activity in MCF7 cells.

    PubMed

    Varshney, Akhil; Bala, Jyoti; Santosh, Baby; Bhaskar, Ashima; Kumar, Suresh; Yadava, Pramod K

    2017-03-01

    Human telomerase reverse transcriptase is an essential rate-limiting component of telomerase complex. hTERT protein in association with other proteins and the human telomerase RNA (hTR) shows telomerase activity, essential for maintaining genomic integrity in proliferating cells. hTERT binds hTR through a decapeptide located in the RID2 (RNA interactive domain 2) domain of N-terminal region. Since hTERT is essential for telomerase activity, inhibitors of hTERT are of great interest as potential anti-cancer agent. We have selected RNA aptamers against a synthetic peptide from the RID2 domain of hTERT by employing in vitro selection protocol (SELEX). The selected RNAs could bind the free peptide, as CD spectra suggested conformational change in aptamer upon RID2 binding. Extracts of cultured breast cancer cells (MCF7) expressing this aptamer showed lower telomerase activity as estimated by TRAP assay. hTERT-binding RNA aptamers hold promise as probable anti-cancer therapeutic agent.

  17. Cancer cell-binding peptide fused Fc domain activates immune effector cells and blocks tumor growth

    PubMed Central

    Mobergslien, Anne; Peng, Qian; Vasovic, Vlada; Sioud, Mouldy

    2016-01-01

    Therapeutic strategies aiming at mobilizing immune effector cells to kill tumor cells independent of tumor mutational load and MHC expression status are expected to benefit cancer patients. Recently, we engineered various peptide-Fc fusion proteins for directing Fcg receptor-bearing immune cells toward tumor cells. Here, we investigated the immunostimulatory and anti-tumor effects of one of the engineered Fc fusion proteins (WN-Fc). In contrast to the Fc control, soluble WN-Fc-1 fusion protein activated innate immune cells (e.g. monocytes, macrophages, dendritic cells, NK cells), resulting in cytokine production and surface display of the lytic granule marker CD107a on NK cells. An engineered Fc-fusion variant carrying two peptide sequences (WN-Fc-2) also activated immune cells and bound to various cancer cell types with high affinity, including the murine 4T1 breast carcinoma cells. When injected into 4T1 tumor-bearing BALB/c mice, both peptide-Fc fusions accumulated in tumor tissues as compared to other organs such as the lungs. Moreover, treatment of 4T1 tumor-bearing BALB/c mice by means of two intravenous injections of the WN-Fc fusion proteins inhibited tumor growth with WN-Fc-2 being more effective than WN-Fc-1. Treatment resulted in tumor infiltration by T cells and NK cells. These new engineered WN-Fc fusion proteins may be a promising alternative to existing immunotherapies for cancer. PMID:27713158

  18. Identifying and characterising PPE7 (Rv0354c) high activity binding peptides and their role in inhibiting cell invasion.

    PubMed

    Díaz, Diana P; Ocampo, Marisol; Varela, Yahson; Curtidor, Hernando; Patarroyo, Manuel A; Patarroyo, Manuel E

    2017-02-15

    This study was aimed at characterising the PPE7 protein from the PE/PPE protein family. The presence and transcription of the rv0354c gene in the Mycobacterium tuberculosis complex was determined and the subcellular localisation of the PPE7 protein on mycobacterial membrane was confirmed by immunoelectron microscope. Two peptides were identified as having high binding activity (HABPs) and were tested in vitro regarding the invasion of Mycobacterium tuberculosis H37Rv. HABP 39224 inhibited invasion in A549 epithelial cells and U937 macrophages by more than 50%, whilst HABP 39225 inhibited invasion by 40% in U937 cells. HABP 39224, located in the protein's C-terminal region, has a completely conserved amino acid sequence in M. tuberculosis complex species and could be selected as a base peptide when designing a subunit-based, anti-tuberculosis vaccine.

  19. Direct inhibition of NF-κB activation by peptide targeting the NOA ubiquitin binding domain of NEMO.

    PubMed

    Chiaravalli, Jeanne; Fontan, Elisabeth; Fsihi, Hafida; Coic, Yves-Marie; Baleux, Françoise; Véron, Michel; Agou, Fabrice

    2011-11-01

    Aberrant and constitutive NF-κB activation are frequently reported in numerous tumor types, making its inhibition an attractive target for the treatment of certain cancers. NEMO (NF-κB essential modulator) is the crucial component of the canonical NF-κB pathway that mediates IκB kinase (IKK) complex activation. IKK activation resides in the ability of the C-terminal domain of NEMO to properly dimerize and interact with linear and K63-linked polyubiquitin chains. Here, we have identified a new NEMO peptide inhibitor, termed UBI (ubiquitin binding inhibitor) that derives from the NOA/NUB/UBAN ubiquitin binding site located in the CC2-LZ domain of NEMO. UBI specifically inhibits the NF-κB pathway at the IKK level in different cell types stimulated by a variety of NF-κB signals. Circular dichroïsm and fluorescence studies showed that UBI exhibits an increased α-helix character and direct, good-affinity binding to the NOA-LZ region of NEMO. We also showed that UBI targets NEMO in cells but its mode of inhibition is completely different from the previously reported LZ peptide (herein denoted NOA-LZ). UBI does not promote dissociation of NEMO subunits in cells but impairs the interaction between the NOA UBD of NEMO and polyubiquitin chains. Importantly, we showed that UBI efficiently competes with the in vitro binding of K63-linked chains, but not with linear chains. The identification of this new NEMO inhibitor emphasizes the important contribution of K63-linked chains for IKK activation in NF-κB signaling and would provide a new tool for studying the complex role of NF-κB in inflammation and cancer.

  20. TGF-β1 activation in human hamstring cells through growth factor binding peptides on polycaprolactone surfaces.

    PubMed

    Crispim, J; Fernandes, H A M; Fu, S C; Lee, Y W; Jonkheijm, P; Saris, D B F

    2017-01-26

    The administration of soluble growth factors (GFs) to injured tendons and ligaments (T/L) is known to promote and enhance the healing process. However, the administration of GFs is a complex, expensive and heavily-regulated process and only achieved by employing supraphysiological GF concentrations. In addition, for proper healing, specific and spatial immobilization of the GFs (s) is critical. We hypothesized that biomaterials functionalized with GF-binding peptides can be employed to capture endogenous GFs in a spatially-controlled manner, thus overcoming the need for the exogenous administration of supraphysiological doses of GFs. Here we demonstrate that the modification of films of polycaprolactone (PCL) with transforming growth factor β1 (TGF-β1)-binding peptides allows GFs to be captured and presented to the target cells. Moreover, using a TGF-β reporter cell line and immunocytochemistry, we show that the GFs retained their biological activity. In human primary tendon cells, the immobilized TGF-β1 activated TGF-β target genes ultimately lead to a 2.5-fold increase in total collagen matrix production. In vivo implantation in rats clearly shows an accumulation of TGF-β1 on the polymer films functionalized with the TGF-β1-binding peptide when compared with the native films. This accumulation leads to an increase in the recruitment of inflammatory cells at day 3 and an increase in the fibrogenic response and vascularization around the implant at day 7. The results herein presented will endow current and future medical devices with novel biological properties and by doing so will accelerate T/L healing.

  1. Novel synthetic cyclic integrin αvβ3 binding peptide ALOS4: antitumor activity in mouse melanoma models

    PubMed Central

    Yacobovich, Shiri; Tuchinsky, Lena; Kirby, Michael; Kardash, Tetiana; Agranyoni, Oryan; Nesher, Elimelech; Redko, Boris; Gellerman, Gary; Tobi, Dror; Gurova, Katerina; Koman, Igor; Fabian, Osnat Ashur; Pinhasov, Albert

    2016-01-01

    ALOS4, a unique synthetic cyclic peptide without resemblance to known integrin ligand sequences, was discovered through repeated biopanning with pIII phage expressing a disulfide-constrained nonapeptide library. Binding assays using a FITC-labeled analogue demonstrated selective binding to immobilized αvβ3 and a lack of significant binding to other common proteins, such as bovine serum albumin and collagen. In B16F10 cell cultures, ALOS4 treatment at 72 h inhibited cell migration (30%) and adhesion (up to 67%). Immunofluorescent imaging an ALOS4-FITC analogue with B16F10 cells demonstrated rapid cell surface binding, and uptake and localization in the cytoplasm. Daily injections of ALOS4 (0.1, 0.3 or 0.5 mg/kg i.p.) to mice inoculated with B16F10 mouse melanoma cells in two different cancer models, metastatic and subcutaneous tumor, resulted in reduction of lung tumor count (metastatic) and tumor mass (subcutaneous) and increased survival of animals monitored to 45 and 60 days, respectively. Examination of cellular activity indicated that ALOS4 produces inhibition of cell migration and adhesion in a concentration-dependent manner. Collectively, these results suggest that ALOS4 is a structurally-unique selective αvβ3 integrin ligand with potential anti-metastatic activity. PMID:27556860

  2. Inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cells by the peptides related to bacterial cell wall mucopeptide precursors: quantitative structure-activity relationships

    SciTech Connect

    Kim, K.H.; Martin, Y.; Otis, E.; Mao, J.

    1989-01-01

    Quantitative structure-activity relationships (QSAR) of N-Ac amino acids, N-Ac dipeptides, and N-Ac tripeptides in inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cell wall have been developed to probe the details of the binding between ristocetin and N-acetylated peptides. The correlation equations indicate that (1) the binding is stronger for peptides in which the side chain of the C-terminal amino acid has a large molar refractivity (MR) value, (2) the binding is weaker for peptides with polar than for those with nonpolar C-terminal side chains, (3) the N-terminal amino acid in N-Ac dipeptides contributes 12 times that of the C-terminal amino acid to binding affinity, and (4) the interactions between ristocetin and the N-terminal amino acid of N-acetyl tripeptides appear to be much weaker than those with the first two amino acids.

  3. Peptides derived from the copper-binding region of lysyl oxidase exhibit antiangiogeneic properties by inhibiting enzyme activity: an in vitro study.

    PubMed

    Mohankumar, Arun; Renganathan, Bhuvanasundar; Karunakaran, Coral; Chidambaram, Subbulakshmi; Konerirajapuram Natarajan, Sulochana

    2014-11-01

    Despite the rigorous research on abnormal angiogenesis, there is a persistent need for the development of new and efficient therapies against angiogenesis-related diseases. The role of Lysyl oxidase (LOX) in angiogenesis and cancer has been established in prior studies. Copper is known to induce the synthesis of LOX, and hence regulates its activity. Hypoxia-induced metastasis is dependent on LOX expression and activity. It has been believed that the inhibition of LOX would be a therapeutic strategy to inhibit angiogenesis. To explore this, we designed peptides (M peptides) from the copper-binding region of LOX and hypothesized them to modulate LOX. The peptides were characterized, and their copper-binding ability was confirmed by mass spectrometry. The M peptides were found to reduce the levels of intracellular copper when the cells were co-treated with copper. The peptides showed promising effect on aortic LOX, recombinant human LOX and LOX produced by human umbilical vein endothelial cells (HUVECs). The study also explores the effect of these peptides on copper and hypoxia-stimulated angiogenic response in HUVECs. It was found that the M peptides inhibited copper/hypoxia-induced LOX activity and inhibited stimulated HUVEC tube formation and migration. This clearly indicated the potential of M peptides in inhibiting angiogenesis, highlighting their role in the formulation of drugs for the same.

  4. Downstream signaling molecules bind to different phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) peptides of the high affinity IgE receptor.

    PubMed

    Kimura, T; Kihara, H; Bhattacharyya, S; Sakamoto, H; Appella, E; Siraganian, R P

    1996-11-01

    The cytoplasmic tails of both the beta and gamma subunits of the high affinity IgE receptor (FcepsilonRI) contain a consensus sequence termed the immunoreceptor tyrosine-based activation motif (ITAM). This motif plays a critical role in receptor-mediated signal transduction. Synthetic peptides based on the ITAM sequences of the beta and gamma subunits of FcepsilonRI were used to investigate which proteins associate with these motifs. Tyrosine-phosphorylated beta and gamma ITAM peptides immobilized on beads precipitated Syk, Lyn, Shc, Grb2, and phospholipase C-gamma1 from lysates of rat basophilic leukemia RBL-2H3 cells. Syk was precipitated predominantly by the tyrosine-diphosphorylated gamma ITAM peptide, but much less by the diphosphorylated beta ITAM peptide or by the monophosphorylated peptides. Phospholipase C-gamma1, Shc, and Grb2 were precipitated only by the diphosphorylated beta ITAM peptide. Non-phosphorylated ITAM peptides did not precipitate these proteins. In membrane binding assays, fusion proteins containing the Src homology 2 domains of phospholipase C-gamma1, Shc, Syk, and Lyn directly bound the tyrosine-phosphorylated ITAM peptides. Although the ITAM sequences of the beta and gamma subunits of FcepsilonRI are similar, once they are tyrosine-phosphorylated they preferentially bind different downstream signaling molecules. Tyrosine phosphorylation of the ITAM of the gamma subunit recruits and activates Syk, whereas the beta subunit may be important for the Ras signaling pathway.

  5. Antimicrobial Activity of Peptides Derived from Olive Flounder Lipopolysaccharide Binding Protein/Bactericidal Permeability-Increasing Protein (LBP/BPI)

    PubMed Central

    Nam, Bo-Hye; Moon, Ji-Young; Park, Eun-Hee; Kim, Young-Ok; Kim, Dong-Gyun; Kong, Hee Jeong; Kim, Woo-Jin; Jee, Young Ju; An, Cheul Min; Park, Nam Gyu; Seo, Jung-Kil

    2014-01-01

    We describe the antimicrobial function of peptides derived from the C-terminus of the olive flounder LBP BPI precursor protein. The investigated peptides, namely, ofLBP1N, ofLBP2A, ofLBP4N, ofLBP5A, and ofLBP6A, formed α-helical structures, showing significant antimicrobial activity against several Gram-negative bacteria, Gram-positive bacteria, and the yeast Candida albicans, but very limited hemolytic activities. The biological activities of these five analogs were evaluated against biomembranes or artificial membranes for the development of candidate therapeutic agents. Gel retardation studies revealed that peptides bound to DNA and inhibited migration on an agarose gel. In addition, we demonstrated that ofLBP6A inhibited polymerase chain reaction. These results suggested that the ofLBP-derived peptide bactericidal mechanism may be related to the interaction with intracellular components such as DNA or polymerase. PMID:25329706

  6. Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification.

    PubMed

    Piers, K L; Brown, M H; Hancock, R E

    1994-10-01

    Antimicrobial cationic peptides have been discovered in many different organisms and often possess a broad range of activity. In this study, we investigated the mechanisms of actions of melittin and two synthetic peptides, CEME (a cecropin-melittin hybrid) and CEMA, against gram-negative bacteria. CEMA was produced by recombinant DNA procedures and is an analog of CEME with a modified C terminus resulting in two additional positive charges. All three peptides showed good antimicrobial activity against four different gram-negative bacteria, but only CEMA was able to somewhat augment the activity of some conventional antibiotics in synergy studies. Studies using the bacteria Pseudomonas aeruginosa and Enterobacter cloacae showed that the peptides all possessed the ability to permeabilize bacterial outer membranes to the hydrophobic fluorophor 1-N-phenylnaphthylamine and the protein lysozyme, with CEMA being the most active. CEMA also had the strongest relative binding affinity for bacterial endotoxin (lipopolysaccharide). These data collectively indicated that these peptides all cross the outer membrane by the self-promoted uptake pathway and that CEMA is the peptide most effective at accessing this pathway.

  7. Identification of the Thiol Isomerase-binding Peptide, Mastoparan, as a Novel Inhibitor of Shear-induced Transforming Growth Factor β1 (TGF-β1) Activation*

    PubMed Central

    Brophy, Teresa M.; Coller, Barry S.; Ahamed, Jasimuddin

    2013-01-01

    TGF-β1 is a disulfide-bonded homodimeric protein produced by platelets and other cells that plays a role in many physiologic and pathologic processes. TGF-β1 is secreted as an inactive large latent complex (LLC) comprised of TGF-β1, latency-associated peptide, and latent TGF-β binding protein 1. We previously demonstrated that shear force can activate LLC and that thiol-disulfide exchange contributes to the process. We have now investigated the role of thiol isomerases in the activation of LLC in platelet releasates (PR) and recombinant LLC. The wasp venom peptide mastoparan, which inhibits the chaperone activity of PDI, inhibited stirring- and shear-induced activation of latent TGF-β1 by 90 and 75% respectively. To identify the proteins that bind to mastoparan either directly or indirectly, PR were chromatographed on a mastoparan affinity column. Latent TGF-β binding protein 1, latency-associated peptide, TGF-β1, clusterin, von Willebrand factor, multimerin-1, protein disulfide isomerase (PDI), ERp5, ERp57, and ERp72 eluted specifically from the column. Anti-PDI RL90 attenuated the inhibitory effect of mastoparan on LLC activation. Furthermore, reduced PDI inhibited activation of PR LLC, whereas oxidized PDI had no effect. We conclude that thiol isomerases and thiol-disulfide exchange contribute to TGF-β1 activation and identify a number of molecules that may participate in the process. PMID:23463512

  8. Biodiscovery of Aluminum Binding Peptides

    DTIC Science & Technology

    2013-08-01

    display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high...scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the self- sustaining peptide libraries to be rapidly screened for high...removal. An eCPX peptide display library was grown and induced as described in the paragraph above. After rinsing samples briefly in PBS, the aluminum

  9. The pyrokinin/ pheromone biosynthesis-activating neuropeptide (PBAN) family of peptides and their receptors in Insecta: evolutionary trace indicates potential receptor ligand-binding domains.

    PubMed

    Jurenka, R; Nusawardani, T

    2011-06-01

    The pyrokinin/pheromone biosynthesis-activating neuropeptide (PBAN) family of G-protein-coupled receptors and their ligands have been identified in various insects. Physiological functions of pyrokinin peptides include muscle contraction, whereas PBAN regulates, among other functions, pheromone production in moths which indicates the pleiotropic nature of these peptides. Based on the alignment of annotated genomic sequences, the pyrokinin/PBAN family of receptors have similarity with the corresponding structures of the capa or periviscerokinin receptors of insects and the neuromedin U receptors of vertebrates. In our study, evolutionary trace (ET) analysis on the insect receptor sequences was conducted to predict the putative ligand recognition and binding sites. The ET analysis of four class-specific receptors indicated several amino acid residues that are conserved in the transmembrane domains. The receptor extracellular domains exhibit several class-specific amino acid residues, which could indicate putative domains for activation of these receptors by ligand recognition and binding.

  10. Engineering short peptide sequences for uranyl binding.

    PubMed

    Lebrun, Colette; Starck, Matthieu; Gathu, Vicky; Chenavier, Yves; Delangle, Pascale

    2014-12-08

    Peptides are interesting tools to rationalize uranyl-protein interactions, which are relevant to uranium toxicity in vivo. Structured cyclic peptide scaffolds were chosen as promising candidates to coordinate uranyl thanks to four amino acid side chains pre-oriented towards the dioxo cation equatorial plane. The binding of uranyl by a series of decapeptides has been investigated with complementary analytical and spectroscopic methods to determine the key parameters for the formation of stable uranyl-peptide complexes. The molar ellipticity of the uranyl complex at 195 nm is directly correlated to its stability, which demonstrates that the β-sheet structure is optimal for high stability in the peptide series. Cyclodecapeptides with four glutamate residues exhibit the highest affinities for uranyl with log KC =8.0-8.4 and, therefore, appear as good starting points for the design of high-affinity uranyl-chelating peptides.

  11. Specific binding sites for muramyl peptides on murine macrophages

    SciTech Connect

    Silverman, D.H.S.; Krueger, J.M.; Karnovsky, M.L.

    1986-03-15

    Two radiolabeled (/sup 125/I) muramyl peptide derivatives of high specific activity were prepared: a tripeptide with an iodinated C-terminal tyrosine methyl ester (Ligand I), and a muramyl tripeptide with a C-terminal lysine derivatized with Bolton-Hunter reagent (Ligand II). These were used to characterize binding of muramyl peptides to monolayers of murine macrophages. Saturable high-affinity binding to resident, caseinate-elicited, and Listeria-activated peritoneal cells was observed with both radioligands. Binding affinities varied with the state of activation of the macrophages, and K/sub D/ values ranged from 48 +/- 33 pM (for resident macrophages, Ligand I) to 1020 +/- 90 pM (for activated macrophages, Ligand II). Specific binding sites were also found on a macrophage-derived cell line. The ability of several unlabeled muramyl peptides to compete with Ligands I and II for their binding sites was tested. Competition was stereospecific and correlated with known biological activities of these compounds (i.e., immunoadjuvanticity, pyrogenicity, and somnogenicity). The sites identified here for Ligands I and II may mediate some of the effects that muramyl peptides have previously been demonstrated to have on macrophages.

  12. Antimicrobial Peptides with Differential Bacterial Binding Characteristics

    DTIC Science & Technology

    2013-03-01

    screened also displayed discriminatory binding to pathogenic E. coli O157:H7 relative to non -pathogenic E. coli ML35. The three fragments that were...screened for binding to pathogenic and non -pathogenic Escherichia coli (a Gram- negative bacterium) as well as Staphylococcus aureus (a Gram-positive...strain-specific (pathogenic vs. non -pathogenic E. coli). Several of the peptide fragments demonstrated the ability to discriminate between

  13. Selective peptide binding using facially amphiphilic dendrimers.

    PubMed

    Gomez-Escudero, Andrea; Azagarsamy, Malar A; Theddu, Naresh; Vachet, Richard W; Thayumanavan, S

    2008-08-20

    Amphiphilic dendrimers, which contain both hydrophobic and hydrophilic groups in every repeat unit, exhibit environment-dependent assemblies both in hydrophilic solvent, water, and in lipophilic solvent, toluene. Upon investigating the status of these assemblies in a mixture of immiscible solvents, these dendrimers were found to be kinetically trapped in the solvent in which they are initially assembled. This property has been exploited to selectively extract peptides from aqueous solution into an organic phase, where the peptides bind to the interior functionalities of the dendritic inverse micelles. While the corresponding small molecule surfactant does not exhibit any selective binding toward peptides, all dendrons (G1-G3) are capable of this selective binding. We show that the inverse micelle-type assembly itself is crucial for the binding event and that the assembly formed by the G1 dendron has a greater capability for binding compared to the G2 or G3 dendrons. We have also shown that the average apparent pKa of the carboxylic acid functionalities varies with generation, and this could be the reason for the observed differences in binding capacity.

  14. Collagen-Gelatin Mixtures as Wound Model, and Substrates for VEGF-Mimetic Peptide Binding and Endothelial Cell Activation

    PubMed Central

    Chan, Tania R.; Stahl, Patrick J.; Li, Yang; Yu, S. Michael

    2015-01-01

    In humans, high level of collagen remodeling is seen during normal physiological events such as bone renewal, as well as in pathological conditions, such as arthritis, tumor growth and other chronic wounds. Our lab recently discovered that collagen mimetic peptide (CMP) is able to hybridize with denatured collagens at these collagen remodeling sites with high affinity. Here, we show that the CMP's high binding affinity to denatured collagens can be utilized to deliver angiogenic signals to scaffolds composed of heat-denatured collagens (gelatins). We first demonstrate hybridization between denatured collagens and QKCMP, a CMP with pro-angiogenic QK domain. We show that high levels of QKCMP can be immobilized to a new artificial matrix containing both fibrous type I collagen and heat denatured collagen through triple helix hybridization, and that the QKCMP is able to stimulate early angiogenic response of endothelial cells (ECs). We also show that the QKCMP can bind to excised tissues from burn injuries in cutaneous mouse model, suggesting its potential for promoting neovascularization of burn wounds. PMID:25584990

  15. The anabolic effects of vitamin D-binding protein-macrophage activating factor (DBP-MAF) and a novel small peptide on bone.

    PubMed

    Schneider, Gary B; Grecco, Kristina J; Safadi, Fayez F; Popoff, Steven N

    2003-01-01

    Vitamin D-binding protein-macrophage activating factor (DBP-MAF) has previously been shown to stimulate bone resorption and correct the skeletal defects associated with osteopetrosis in two nonallelic mutations in rats. This same protein and a small fragment of the protein have now been shown to demonstrate an anabolic effect on the skeleton of both newborn and young adult, intact rats. The novel peptide fragment was synthetically produced based on the human amino acid sequence at the site of glycosylation in the third domain of the native protein (DBP). The peptide tested is 14 amino acids in length and demonstrates no homologies other than to that region of DBP. Newborn rats were injected i.p. with saline, peptide (0.4 ng/g body wt.) or DBP-MAF (2 ng/g body wt.) every other day from birth to 14 days of age. On day 16 the rats were euthanized and the long bones collected for bone densitometry by pQCT. After 2 weeks of treatment with either the whole protein (DBP-MAF) or the small peptide, bone density was significantly increased in the treated animals compared to the saline controls. Young adult female rats (180 grams) were given s.c. injections of saline or peptide (0.4 ng/g body wt. or 5 ng/g body wt.) every other day for 2 weeks; 2 days after the final injections, the rats were euthanized and the femurs and tibias collected for bone densitometry. Both doses of the peptide resulted in significant increases in bone density as determined by pQCT. Young adult rats were injected locally with a single dose of the peptide (1 microg) or saline into the marrow cavity of the distal femur. One week after the single injection, the bones were collected for radiographic and histological evaluation. The saline controls showed no evidence of new bone formation, whereas the peptide-treated animals demonstrated osteoinduction in the marrow cavity and osteogenesis of surrounding cortical and metaphyseal bone. These data suggest that DBP-MAF and the synthetic peptide represent

  16. Plasmodium falciparum AMA-1 erythrocyte binding peptides implicate AMA-1 as erythrocyte binding protein.

    PubMed

    Urquiza, M; Suarez, J E; Cardenas, C; Lopez, R; Puentes, A; Chavez, F; Calvo, J C; Patarroyo, M E

    2000-10-15

    The role of AMA-1 during merozoite invasion has not yet been determined. However, reported experimental evidence suggests that this protein can be used, in particular as erythrocyte-binding protein, since, Fab fragments against this protein are able to block merozoite invasion. Using a previously described methodology, eight peptides with high binding activity to human erythrocyte, scattered along the different domains and having around 130 nM affinity constants, were identified in the Plasmodium falciparum AMA-1 protein. Their binding activity was sialic acid independent. Some of these peptides showed homology with the erythrocyte binding domains of one of the apical organelle protein family, MAEBL, identified in rodent malarial parasites. One of these peptides shares amino acid sequence with a previously reported B-cell epitope which induces antibodies to block parasite growth. The critical residues were identified for erythrocyte binding conserved peptides 4313 (DAEVAGTQYRLPSGKCPVFG), 4321 (VVDNWEKVCPRKNLQNAKFG), 4325 (MIKSAFLPTGAFKADRYKSH) and 4337 (WGEEKRASHTTPVLMEKPYY). All conserved peptides were able to block merozoite invasion of new RBC and development, suggesting that these peptides are involved in P. falciparum invasion.

  17. Molecular dynamics simulations of the active matrix metalloproteinase-2: positioning of the N-terminal fragment and binding of a small peptide substrate.

    PubMed

    Díaz, Natalia; Suárez, Dimas

    2008-07-01

    Herein we use different computational methods to study the structure and energetic stability of the catalytic domain of the active MMP-2 enzyme considering two different orientations of its N-terminal coil. The first orientation is largely solvent accessible and corresponds to that observed in the 1CK7 crystal structure of the proenzyme. In the second orientation, the N-terminal coil is packed against the Omega-loop and the alpha3-helix of the MMP-2 enzyme likewise in the so-called "superactivated" form of other MMPs. Binding to the MMP-2 catalytic domain of a short peptide substrate, which mimics the sequence of the alpha1 chain of collagen type I, is also examined considering again the two configurations of the N-terminal coil. All these MMP-2 models are subject to 20 ns molecular dynamics (MD) simulations followed by MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) calculations. The positioning of the N-terminal coil in the "superactivated" form is found to be energetically favored for the MMP-2 enzyme. Moreover, this configuration of the N-terminal moiety can facilitate the binding of peptide substrates. Globally, the results obtained in this study could be relevant for the structural-based design of specific MMP inhibitors.

  18. Antimicrobial and Antitumor Activities of Novel Peptides Derived from the Lipopolysaccharide- and β-1,3-Glucan Binding Protein of the Pacific Abalone Haliotis discus hannai

    PubMed Central

    Nam, Bo-Hye; Moon, Ji Young; Park, Eun Hee; Kong, Hee Jeong; Kim, Young-Ok; Kim, Dong-Gyun; Kim, Woo-Jin; An, Chul Min; Seo, Jung-Kil

    2016-01-01

    Antimicrobial peptides are a pivotal component of the invertebrate innate immune system. In this study, we identified a lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) gene from the pacific abalone Haliotis discus hannai (HDH), which is involved in the pattern recognition mechanism and plays avital role in the defense mechanism of invertebrates immune system. The HDH-LGBP cDNA consisted of a 1263-bp open reading frame (ORF) encoding a polypeptide of 420 amino acids, with a 20-amino-acid signal sequence. The molecular mass of the protein portion was 45.5 kDa, and the predicted isoelectric point of the mature protein was 4.93. Characteristic potential polysaccharide binding motif, glucanase motif, and β-glucan recognition motif were identified in the LGBP of HDH. We used its polysaccharide-binding motif sequence to design two novel antimicrobial peptide analogs (HDH-LGBP-A1 and HDH-LGBP-A2). By substituting a positively charged amino acid and amidation at the C-terminus, the pI and net charge of the HDH-LGBP increased, and the proteins formed an α-helical structure. The HDH-LGBP analogs exhibited antibacterial and antifungal activity, with minimal effective concentrations ranging from 0.008 to 2.2 μg/mL. Additionally, both were toxic against human cervix (HeLa), lung (A549), and colon (HCT 116) carcinoma cell lines but not much on human umbilical vein cell (HUVEC). Fluorescence-activated cell sorter (FACS) analysis showed that HDH-LGBP analogs disturb the cancer cell membrane and cause apoptotic cell death. These results suggest the use of HDH-LGBP analogs as multifunctional drugs. PMID:27983632

  19. Relative free energy of binding between antimicrobial peptides and SDS or DPC micelles

    PubMed Central

    Sayyed-Ahmad, Abdallah; Khandelia, Himanshu; Kaznessis, Yiannis N.

    2010-01-01

    We present relative binding free energy calculations for six antimicrobial peptide–micelle systems, three peptides interacting with two types of micelles. The peptides are the scorpion derived antimicrobial peptide (AMP), IsCT and two of its analogues. The micelles are dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles. The interfacial electrostatic properties of DPC and SDS micelles are assumed to be similar to those of zwitterionic mammalian and anionic bacterial membrane interfaces, respectively. We test the hypothesis that the binding strength between peptides and the anionic micelle SDS can provide information on peptide antimicrobial activity, since it is widely accepted that AMPs function by binding to and disrupting the predominantly anionic lipid bilayer of the bacterial cytoplasmic membrane. We also test the hypothesis that the binding strength between peptides and the zwitterionic micelle DPC can provide information on peptide haemolytic activities, since it is accepted that they also bind to and disrupt the zwitterionic membrane of mammalian cells. Equilibrium structures of the peptides, micelles and peptide–micelle complexes are obtained from more than 300 ns of molecular dynamics simulations. A thermodynamic cycle is introduced to compute the binding free energy from electrostatic, non-electrostatic and entropic contributions. We find relative binding free energy strengths between peptides and SDS to correlate with the experimentally measured rankings for peptide antimicrobial activities, and relative free energy binding strengths between peptides and DPC to correlate with the observed rankings for peptide haemolytic toxicities. These findings point to the importance of peptide–membrane binding strength for antimicrobial activity and haemolytic activity. PMID:21113423

  20. Role of the intra-A-chain disulfide bond of insulin-like peptide 3 in binding and activation of its receptor, RXFP2.

    PubMed

    Zhang, Suode; Hughes, Richard A; Bathgate, Ross A D; Shabanpoor, Fazel; Hossain, M Akhter; Lin, Feng; van Lierop, Bianca; Robinson, Andrea J; Wade, John D

    2010-09-01

    INSL3 is a member of the insulin-IGF-relaxin superfamily and plays a key role in male fetal development and in adult germ cell maturation. It is the cognate ligand for RXFP2, a leucine-rich repeat containing G-protein coupled receptor. To date, and in contrast to our current knowledge of the key structural features that are required for the binding of INSL3 to RXFP2, comparatively little is known about the key residues that are required to elicit receptor activation and downstream cell signaling. Early evidence suggests that these are contained principally within the A-chain. To further explore this hypothesis, we have undertaken an examination of the functional role of the intra-A-chain disulfide bond. Using solid-phase peptide synthesis together with regioselective disulfide bond formation, two analogs of human INSL3 were prepared in which the intra-chain disulfide bond was replaced, one in which the corresponding Cys residues were substituted with the isosteric Ser and the other in which the Cys were removed altogether. Both of these peptides retained nearly full RXFP2 receptor binding but were devoid of cAMP activity (receptor activation), indicating that the intra-A-chain disulfide bond makes a significant contribution to the ability of INSL3 to act as an RXFP2 agonist. Replacement of the disulfide bond with a metabolically stable dicarba bond yielded two isomers of INSL3 that each exhibited bioactivity similar to native INSL3. This study highlights the critical structural role played by the intra-A-chain disulfide bond of INSL3 in mediating agonist actions through the RXFP2 receptor.

  1. Identification of gliadin-binding peptides by phage display

    PubMed Central

    2011-01-01

    Background Coeliac disease (CD) is a common and complex disorder of the small intestine caused by intolerance to wheat gluten and related edible cereals like barley and rye. Peptides originating from incomplete gliadin digestion activate the lamina propria infiltrating T cells to release proinflammatory cytokines, which in turn cause profound tissue remodelling of the small intestinal wall. There is no cure for CD except refraining from consuming gluten-containing products. Results Phage from a random oligomer display library were enriched by repeated pannings against immobilised gliadin proteins. Phage from the final panning round were plated, individual plaques picked, incubated with host bacteria, amplified to a population size of 1011 to 1012 and purified. DNA was isolated from 1000 purified phage populations and the region covering the 36 bp oligonucleotide insert from which the displayed peptides were translated, was sequenced. Altogether more than 150 different peptide-encoding sequences were identified, many of which were repeatedly isolated under various experimental conditions. Amplified phage populations, each expressing a single peptide, were tested first in pools and then one by one for their ability to inhibit binding of human anti-gliadin antibodies in ELISA assays. These experiments showed that several of the different peptide-expressing phage tested inhibited the interaction between gliadin and anti-gliadin antibodies. Finally, four different peptide-encoding sequences were selected for further analysis, and the corresponding 12-mer peptides were synthesised in vitro. By ELISA assays it was demonstrated that several of the peptides inhibited the interaction between gliadin molecules and serum anti-gliadin antibodies. Moreover, ELISA competition experiments as well as dot-blot and western blot revealed that the different peptides interacted with different molecular sites of gliadin. Conclusions We believe that several of the isolated and

  2. Molecular mechanism of selective binding of peptides to silicon surface.

    PubMed

    Ramakrishnan, Sathish Kumar; Martin, Marta; Cloitre, Thierry; Firlej, Lucyna; Gergely, Csilla

    2014-07-28

    Despite extensive recent research efforts on material-specific peptides, the fundamental problem to be explored yet is the molecular interactions between peptides and inorganic surfaces. Here we used computer simulations (density functional theory and classical molecular dynamics) to investigate the adsorption mechanism of silicon-binding peptides and the role of individual amino acids in the affinity of peptides for an n-type silicon (n(+)-Si) semiconductor. Three silicon binding 12-mer peptides previously elaborated using phage display technology have been studied. The peptides' conformations close to the surface have been determined and the best-binding amino acids have been identified. Adsorption energy calculations explain the experimentally observed different degrees of affinity of the peptides for n(+)-Si. Our residual scanning analysis demonstrates that the binding affinity relies on both the identity of the amino acid and its location in the peptide sequence.

  3. Anticancer peptide CIGB-300 binds to nucleophosmin/B23, impairs its CK2-mediated phosphorylation, and leads to apoptosis through its nucleolar disassembly activity.

    PubMed

    Perera, Yasser; Farina, Hernán G; Gil, Jeovanis; Rodriguez, Arielis; Benavent, Fernando; Castellanos, Lila; Gómez, Roberto E; Acevedo, Boris E; Alonso, Daniel F; Perea, Silvio E

    2009-05-01

    CIGB-300, formerly known as P15-tat, is a proapoptotic peptide with established antiproliferative activity in vitro and antitumoral activity in vivo. This hypothesis-driven peptide was initially selected for its ability to impair the in vitro CK2-mediated phosphorylation in one of its substrates through direct binding to the conserved acidic phosphoaceptor domain. However, the actual in vivo target(s) on human cancer cells among the hundreds of CK2 substrates as well as the subsequent events that lead to apoptosis on tumor cells remains to be determined. In this work, we identified the multifunctional oncoprotein nucleophosmin/B23 as a major target for CIGB-300. In vivo, the CIGB-300-B23 interaction was shown by pull-down experiments and confirmed by the early in situ colocalization of both molecules in the cell nucleolus. Moreover, CIGB-300 inhibits the CK2-mediated phosphorylation of B23 in a dose-dependent fashion both in vitro and in vivo as shown using the recombinant GST fusion protein and the metabolic labeling approach, respectively. Such phosphorylation impairment was correlated with the ability of CIGB-300 to induce nucleolar disassembly as documented by the use of established markers for nucleolar structure. Finally, we showed that such a sequence of events leads to the rapid and massive onset of apoptosis both at the molecular and cellular levels. Collectively, these findings provide important clues by which the CIGB-300 peptide exerts its proapoptotic effect on tumor cells and highlights the suitability of the B23/CK2 pathway for cancer-targeted therapy.

  4. Peptide-mediated synthesis of gold nanoparticles: effects of peptide sequence and nature of binding on physicochemical properties.

    PubMed

    Li, Yue; Tang, Zhenghua; Prasad, Paras N; Knecht, Marc R; Swihart, Mark T

    2014-03-21

    Biomimetic nanotechnologies that use peptides to guide the growth and assembly of nanostructures offer new avenues for the creation of functional nanomaterials and manipulation of their physicochemical properties. However, the impacts of peptide sequence and binding motif upon the surface characteristics and physicochemical properties of nanoparticles remain poorly understood. The configurations of the biomolecules are expected to be extremely important for directing the synthesis and achieving desired material functionality, and these binding motifs will vary with the peptide sequence. Here, we have prepared a series of Au nanoparticles capped with a variety of materials-directing peptides with known affinity for metal surfaces. These nanomaterials were characterized by UV-vis and circular dichroism spectroscopies, transmission electron microscopy, and ζ-potential measurement. Then their catalytic activity for 4-nitrophenol reduction was analyzed. The results indicate that substantially different Au-peptide interfaces are generated using different peptide sequences, even when these sequences have similar binding affinity. This is consistent with recent work showing that Au-peptide binding affinity can have varying entropic and enthalpic contributions, with enthalpically- and entropically-driven binders exhibiting quite different ensembles of configurations on the Au surface. The catalytic activity, as reflected by the measured activation energy, did not correlate with the particle size or with the binding affinity of the peptides, suggesting that the reactivity of these materials is governed by the more subtle details of the conformation of the bound peptide and on the nanoparticle surface reconstruction as dictated by the peptide structure. Such variations in both nanoparticle surface reconstruction and peptide configuration could potentially be used to program specific functionality into the peptide-capped nanomaterials.

  5. Active Antitoxic Immunization against Ricin Using Synthetic Peptides

    DTIC Science & Technology

    1989-08-01

    Asn and Gln, active ester (2-nitro- phenyl) couplings were performed. All the couplings were monitored by the ninhydrin test . Couplings were repeated...Antisera from the •eptides were tested by ELISA for their binding to correspcnding immobilized peptides, - corresponding ricin subunit, and intact ricin...chain peptides as well as peptides from A-chain with overlapping sequences. Sera to these peptides were raised in mice and tested for anti-peptide

  6. Computational modeling of peptide-aptamer binding.

    PubMed

    Rhinehardt, Kristen L; Mohan, Ram V; Srinivas, Goundla

    2015-01-01

    Evolution is the progressive process that holds each living creature in its grasp. From strands of DNA evolution shapes life with response to our ever-changing environment and time. It is the continued study of this most primitive process that has led to the advancement of modern biology. The success and failure in the reading, processing, replication, and expression of genetic code and its resulting biomolecules keep the delicate balance of life. Investigations into these fundamental processes continue to make headlines as science continues to explore smaller scale interactions with increasing complexity. New applications and advanced understanding of DNA, RNA, peptides, and proteins are pushing technology and science forward and together. Today the addition of computers and advances in science has led to the fields of computational biology and chemistry. Through these computational advances it is now possible not only to quantify the end results but also visualize, analyze, and fully understand mechanisms by gaining deeper insights. The biomolecular motion that exists governing the physical and chemical phenomena can now be analyzed with the advent of computational modeling. Ever-increasing computational power combined with efficient algorithms and components are further expanding the fidelity and scope of such modeling and simulations. This chapter discusses computational methods that apply biological processes, in particular computational modeling of peptide-aptamer binding.

  7. Design and structure of stapled peptides binding to estrogen receptors.

    PubMed

    Phillips, Chris; Roberts, Lee R; Schade, Markus; Bazin, Richard; Bent, Andrew; Davies, Nichola L; Moore, Rob; Pannifer, Andrew D; Pickford, Andrew R; Prior, Stephen H; Read, Christopher M; Scott, Andrew; Brown, David G; Xu, Bin; Irving, Stephen L

    2011-06-29

    Synthetic peptides that specifically bind nuclear hormone receptors offer an alternative approach to small molecules for the modulation of receptor signaling and subsequent gene expression. Here we describe the design of a series of novel stapled peptides that bind the coactivator peptide site of estrogen receptors. Using a number of biophysical techniques, including crystal structure analysis of receptor-stapled peptide complexes, we describe in detail the molecular interactions and demonstrate that all-hydrocarbon staples modulate molecular recognition events. The findings have implications for the design of stapled peptides in general.

  8. Alternative peptide binding motifs of Qa-2 class Ib molecules define rules for binding of self and nonself peptides.

    PubMed

    Tabaczewski, P; Chiang, E; Henson, M; Stroynowski, I

    1997-09-15

    Studies of naturally processed peptides eluted from membrane-bound and soluble isoforms of murine class Ib Qa-2 molecules determined several features of these ligands, such as the conserved nonameric length and the preferred usage of specific residues at four to six of nine peptide positions. The structural information derived from these studies proved insufficient to distinguish between two interpretations: 1) that Qa-2 are peptide receptors of higher stringency than ordinary class I molecules, and 2) that Qa-2 molecules, like classical class I Ags, bind diverse arrays of peptides. We have addressed this issue by a systematic analysis of peptide residues involved in the binding of membrane-bound Qa-2 molecule, MQ9b. The optimal binding of synthetic peptides in vitro occurs at neutral pH. Two dominant anchors are required for peptide binding to MQ9b: His at position 7 and a hydrophobic residue, Leu, Ile, or Phe, at position 9. In addition, one or two auxiliary anchors participate in binding. The identity and the position of the auxiliary anchors differ from peptide to peptide, suggesting that the binding motifs defined from pool sequencing are composed of many superimposed alternative motifs present in individual peptides. The number of anchors used by Qa-2 peptides is similar to that found in ligands of classical class I Ags. Consequently, the Qa-2 are predicted to bind large repertoires of self and nonself peptides. In support of this interpretation we demonstrate that MQ9b binds strongly 5 of 17 motif-positive, pathogen-derived synthetic peptides.

  9. Peptide Inhibitors of the amyloidogenesis of IAPP: verification of the hairpin-binding geometry hypothesis.

    PubMed

    Sivanesam, Kalkena; Shu, Irene; Huggins, Kelly N L; Tatarek-Nossol, Marianna; Kapurniotu, Aphrodite; Andersen, Niels H

    2016-08-01

    Versions of a previously discovered β-hairpin peptide inhibitor of IAPP aggregation that are stabilized in that conformation, or even forced to remain in the hairpin conformation by a backbone cyclization constraint, display superior activity as inhibitors. The cyclized hairpin, cyclo-WW2, displays inhibitory activity at substoichiometric concentrations relative to this amyloidogenic peptide. The hairpin-binding hypothesis stands confirmed.

  10. Virus-binding proteins recovered from bacterial culture derived from activated sludge by affinity chromatography assay using a viral capsid peptide.

    PubMed

    Sano, Daisuke; Matsuo, Takahiro; Omura, Tatsuo

    2004-06-01

    The contamination of water environments by pathogenic viruses has raised concerns about outbreaks of viral infectious diseases in our society. Because conventional water and wastewater treatment systems are not effective enough to inactivate or remove pathogenic viruses, a new technology for virus removal needs to be developed. In this study, the virus-binding proteins (VBPs) in a bacterial culture derived from activated sludge were successfully recovered. The recovery of VBPs was achieved by applying extracted crude proteins from a bacterial culture to an affinity column in which a custom-made peptide of capsid protein from the poliovirus type 1 (PV1) Mahoney strain (H(2)N-DNPASTTNKDKL-COOH) was immobilized as a ligand. VBPs exhibited the ability to adsorb infectious particles of PV1 Sabin 1 as determined by enzyme-linked immunosorbent assay. The evaluation of surface charges of VBPs with ion-exchange chromatography found that a majority of VBP molecules had a net negative charge under the conditions of affinity chromatography. On the other hand, a calculated isoelectric point implied that the viral peptide in the affinity column was also charged negatively. As a result, the adsorption of the VBPs to the viral peptide in the affinity column occurred with a strong attractive force that was able to overcome the electrostatic repulsive force. Two-dimensional electrophoresis revealed that the isolated VBPs include a number of proteins, and their molecular masses were widely distributed but smaller than 100 kDa. Amino acid sequences of N termini of five VBPs were determined. Homology searches for the N termini against all protein sequences in the National Center for Biotechnology Information (NCBI) database showed that the isolated VBPs in this study were newly discovered proteins. These VBPs that originated with bacteria in activated sludge might be stable, because they are existing in the environment of wastewater treatments. Therefore, a virus removal technology

  11. Specific binding of a basic peptide from HIV-1 Rev.

    PubMed Central

    Kjems, J; Calnan, B J; Frankel, A D; Sharp, P A

    1992-01-01

    Human immunodeficiency virus type I (HIV-1) encodes a regulatory protein, Rev, which is required for cytoplasmic expression of incompletely spliced viral mRNA. Rev activity is mediated through specific binding to a cis-acting Rev responsive element (RRE) located within the env region of HIV-1. A monomer Rev binding site corresponding to 37 nucleotides of the RRE (IIB RNA) was studied by RNA footprinting, modification interference experiments and mutational analysis. Surprisingly, a 17 amino acid peptide, corresponding to the basic domain of Rev, binds specifically to this site at essentially identical nucleotides and probably induces additional base pairing. The Rev protein and related peptide interact primarily with two sets of nucleotides located at the junction of single and double stranded regions, and at an additional site located within a helix. This suggests that the domains of proteins responsible for specific RNA binding can be remarkably small and that the interaction between RNA and protein can probably induce structure in both constituents. Images PMID:1547776

  12. Concepts for Biologically Active Peptides

    PubMed Central

    Kastin, Abba J.; Pan, Weihong

    2012-01-01

    Here we review a unique aspect of CNS research on biologically active peptides that started against a background of prevalent dogmas but ended by exerting considerable influence on the field. During the course of refuting some doctrines, we introduced several concepts that were unconventional and paradigm-shifting at the time. We showed that (1) hypothalamic peptides can act ‘up’ on the brain as well as ‘down’ on the pituitary, (2) peripheral peptides can affect the brain, (3) peptides can cross the blood-brain barrier, (4) the actions of peptides can persist longer than their half-lives in blood, (5) perinatal administration of peptides can exert actions persisting into adulthood, (6) a single peptide can have more than one action, (7) dose-response relationships of peptides need not be linear, (8) the brain produces antiopiate as well as opiate peptides, (9) there is a selective high affinity endogenous peptide ligand for the mu-opiate receptor, (10) a peptide’s name does not restrict its effects, and (11) astrocytes assume an active role in response to metabolic disturbance and hyperleptinemia. The evolving questions in our laboratories reflect the diligent effort of the neuropeptide community to identify the roles of peptides in the CNS. The next decade is expected to see greater progress in the following areas: (a) interactions of peptides with other molecules in the CNS; (b) peptide involvement in cell-cell interactions; and (c) peptides in neuropsychiatric, autoimmune, and neurodegenerative diseases. The development of peptidomics and gene silencing approaches will expedite the formation of many new concepts in a new era. PMID:20726835

  13. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2006-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  14. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2005-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  15. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  16. Biologically active and antimicrobial peptides from plants.

    PubMed

    Salas, Carlos E; Badillo-Corona, Jesus A; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  17. Analysis of protective antigen peptide binding motifs using bacterial display technology

    NASA Astrophysics Data System (ADS)

    Sarkes, Deborah A.; Dorsey, Brandi L.; Stratis-Cullum, Dimitra N.

    2015-05-01

    In today's fast-paced world, a new biological threat could emerge at any time, necessitating a prompt, reliable, inexpensive detection reagent in each case. Combined with magnetic-activated cell sorting (MACS), bacterial display technology makes it possible to isolate selective, high affinity peptide reagents in days to weeks. Utilizing the eCPX display scaffold is also a rapid way to screen potential peptide reagents. Peptide affinity reagents for protective antigen (PA) of the biothreat Bacillus anthracis were previously discovered using bacterial display. Bioinformatics analysis resulted in the consensus sequence WXCFTC. Additionally, we have discovered PA binding peptides with a WW motif, one of which, YGLHPWWKNAPIGQR, can pull down PA from 1% human serum. The strength of these two motifs combined, to obtain a WWCFTC consensus, is assessed here using Fluorescence Activated Cell Sorting (FACS). While monitoring binding to PA, overall expression of the display scaffold was assessed using the YPet Mona expression control tag (YPet), and specificity was assessed by binding to Streptavidin R-Phycoerythrin (SAPE). The importance of high YPet binding is highlighted as many of the peptides in one of the three replicate experiments fell below our 80% binding threshold. We demonstrate that it is preferable to discard this experiment, due to questionable expression of the peptide itself, than to try to normalize for relative expression. The peptides containing the WWCFTC consensus were of higher affinity and greater specificity than the peptides containing the WW consensus alone, validating further investigation to optimize known PA binders.

  18. Differential peptide binding to CD40 evokes counteractive responses.

    PubMed

    Khan, Srijit; Alonso-Sarduy, Livan; Alonso, Livan; Roduit, Charles; Bandyopadhyay, Syamdas; Singh, Shailza; Saha, Shipra; Tacchini-Cottier, Fabienne; Roy, Somenath; Dietler, Giovanni; Kasas, Sandor; Das, Pradeep; Krishnasastry, M V; Saha, Bhaskar

    2012-05-01

    The antigen-presenting cell–expressed CD40 is implied in the regulation of counteractive immune responses such as induction of pro-inflammatory and anti-inflammatory cytokines interleukin (IL)–12 and IL-10, respectively. The mechanism of this duality in CD40 function remains unknown. Here, we investigated whether such duality depends on ligand binding. Based on CD40 binding, we identifed two dodecameric peptides, peptide-7 and peptide-19, from the phage peptide library. Peptide-7 induces IL-10 and increases Leishmania donovani infection in macrophages, whereas peptide-19 induces IL-12 and reduces L. donovani infection. CD40-peptide interaction analyses by surface plasmon resonance and atomic force microscopy suggest that the functional differences are not associated with the studied interaction parameters. The molecular dynamic simulation of the CD40-peptides interaction suggests that these two peptides bind to two different places on CD40. Thus, we suggest for the first time that differential binding of the ligands imparts functional duality to CD40.

  19. Formyl peptide receptor chimeras define domains involved in ligand binding.

    PubMed

    Perez, H D; Holmes, R; Vilander, L R; Adams, R R; Manzana, W; Jolley, D; Andrews, W H

    1993-02-05

    We have begun to study the structural requirements for the binding of formyl peptides to their specific receptors. As an initial approach, we constructed C5a-formyl peptide receptor chimeras. Unique (and identical) restriction sites were introduced within the transmembrane domains of these receptors that allowed for the exchange of specific areas. Four types of chimeric receptors were generated. 1) The C5a receptor was progressively substituted by the formyl peptide receptor. 2) The formyl peptide receptor was progressively substituted by the C5a receptor. 3) Specific domains of the C5a receptor were substituted by the corresponding domain of the formyl peptide receptor. 4) Specific domains of the formyl peptide receptor were replaced by the same corresponding domain of the C5a receptor. Wild type and chimeric receptors were transfected into COS 7 cells and their ability to bind formyl peptide determined, taking into account efficiency of transfection and expression of chimeric protein. Based on these results, a ligand binding model is presented in which the second, third, and fourth extracellular (and/or their transmembrane) domains together with the first transmembrane domain form a ligand binding pocket for formyl peptides. It is proposed that the amino-terminal domain plays a role by presumably providing a "lid" to the pocket. The carboxyl-terminal cytoplasmic tail appears to modulate ligand binding by regulating receptor affinity.

  20. Identification of peptides that bind to irradiated pancreatic tumor cells

    SciTech Connect

    Huang Canhui; Liu, Xiang Y.; Rehemtulla, Alnawaz; Lawrence, Theodore S. . E-mail: tsl@med.umich.edu

    2005-08-01

    Purpose: Peptides targeting tumor vascular cells or tumor cells themselves have the potential to be used as vectors for delivering either DNA in gene therapy or antitumor agents in chemotherapy. We wished to determine if peptides identified by phage display could be used to target irradiated pancreatic cancer cells. Methods and Materials: Irradiated Capan-2 cells were incubated with 5 x 10{sup 12} plaque-forming units of a phage display library. Internalized phage were recovered and absorbed against unirradiated cells. After five such cycles of enrichment, the recovered phage were subjected to DNA sequencing analysis and synthetic peptides made. The binding of both phage and synthetic peptides was evaluated by fluorescence staining and flow cytometry in vitro and in vivo. Results: We identified one 12-mer peptide (PA1) that binds to irradiated Capan-2 pancreatic adenocarcinoma cells but not to unirradiated cells. The binding of peptide was significant after 48 h incubation with cells. In vivo experiments with Capan-2 xenografts in nude mice demonstrated that these small peptides are able to penetrate tumor tissue after intravenous injections and bind specifically to irradiated tumor cells. Conclusion: These data suggest that peptides can be identified that target tumors with radiation-induced cell markers and may be clinically useful.

  1. Novel thrombopoietin mimetic peptides bind c-Mpl receptor: Synthesis, biological evaluation and molecular modeling.

    PubMed

    Liu, Yaquan; Tian, Fang; Zhi, Dejuan; Wang, Haiqing; Zhao, Chunyan; Li, Hongyu

    2017-02-01

    Thrombopoietin (TPO) acts in promoting the proliferation of hematopoietic stem cells and by initiating specific maturation events in megakaryocytes. Now, TPO-mimetic peptides with amino acid sequences unrelated to TPO are of considerable pharmaceutical interest. In the present paper, four new TPO mimetic peptides that bind and activate c-Mpl receptor have been identified, synthesized and tested by Dual-Luciferase reporter gene assay for biological activities. The molecular modeling research was also approached to understand key molecular mechanisms and structural features responsible for peptide binding with c-Mpl receptor. The results presented that three of four mimetic peptides showed significant activities. In addition, the molecular modeling approaches proved hydrophobic interactions were the driven positive forces for binding behavior between peptides and c-Mpl receptor. TPO peptide residues in P7, P13 and P7' positions were identified by the analysis of hydrogen bonds and energy decompositions as the key ones for benefiting better biological activities. Our data suggested the synthesized peptides have considerable potential for the future development of stable and highly active TPO mimetic peptides.

  2. Discovery of 12-mer peptides that bind to wood lignin.

    PubMed

    Yamaguchi, Asako; Isozaki, Katsuhiro; Nakamura, Masaharu; Takaya, Hikaru; Watanabe, Takashi

    2016-02-23

    Lignin, an abundant terrestrial polymer, is the only large-volume renewable feedstock composed of an aromatic skeleton. Lignin has been used mostly as an energy source during paper production; however, recent interest in replacing fossil fuels with renewable resources has highlighted its potential value in providing aromatic chemicals. Highly selective degradation of lignin is pivotal for industrial production of paper, biofuels, chemicals, and materials. However, few studies have examined natural and synthetic molecular components recognizing the heterogeneous aromatic polymer. Here, we report the first identification of lignin-binding peptides possessing characteristic sequences using a phage display technique. The consensus sequence HFPSP was found in several lignin-binding peptides, and the outer amino acid sequence affected the binding affinity of the peptides. Substitution of phenylalanine7 with Ile in the lignin-binding peptide C416 (HFPSPIFQRHSH) decreased the affinity of the peptide for softwood lignin without changing its affinity for hardwood lignin, indicating that C416 recognised structural differences between the lignins. Circular dichroism spectroscopy demonstrated that this peptide adopted a highly flexible random coil structure, allowing key residues to be appropriately arranged in relation to the binding site in lignin. These results provide a useful platform for designing synthetic and biological catalysts selectively bind to lignin.

  3. Discovery of 12-mer peptides that bind to wood lignin

    PubMed Central

    Yamaguchi, Asako; Isozaki, Katsuhiro; Nakamura, Masaharu; Takaya, Hikaru; Watanabe, Takashi

    2016-01-01

    Lignin, an abundant terrestrial polymer, is the only large-volume renewable feedstock composed of an aromatic skeleton. Lignin has been used mostly as an energy source during paper production; however, recent interest in replacing fossil fuels with renewable resources has highlighted its potential value in providing aromatic chemicals. Highly selective degradation of lignin is pivotal for industrial production of paper, biofuels, chemicals, and materials. However, few studies have examined natural and synthetic molecular components recognizing the heterogeneous aromatic polymer. Here, we report the first identification of lignin-binding peptides possessing characteristic sequences using a phage display technique. The consensus sequence HFPSP was found in several lignin-binding peptides, and the outer amino acid sequence affected the binding affinity of the peptides. Substitution of phenylalanine7 with Ile in the lignin-binding peptide C416 (HFPSPIFQRHSH) decreased the affinity of the peptide for softwood lignin without changing its affinity for hardwood lignin, indicating that C416 recognised structural differences between the lignins. Circular dichroism spectroscopy demonstrated that this peptide adopted a highly flexible random coil structure, allowing key residues to be appropriately arranged in relation to the binding site in lignin. These results provide a useful platform for designing synthetic and biological catalysts selectively bind to lignin. PMID:26903196

  4. Protein-protein interface-binding peptides inhibit the cancer therapy target human thymidylate synthase.

    PubMed

    Cardinale, Daniela; Guaitoli, Giambattista; Tondi, Donatella; Luciani, Rosaria; Henrich, Stefan; Salo-Ahen, Outi M H; Ferrari, Stefania; Marverti, Gaetano; Guerrieri, Davide; Ligabue, Alessio; Frassineti, Chiara; Pozzi, Cecilia; Mangani, Stefano; Fessas, Dimitrios; Guerrini, Remo; Ponterini, Glauco; Wade, Rebecca C; Costi, M Paola

    2011-08-23

    Human thymidylate synthase is a homodimeric enzyme that plays a key role in DNA synthesis and is a target for several clinically important anticancer drugs that bind to its active site. We have designed peptides to specifically target its dimer interface. Here we show through X-ray diffraction, spectroscopic, kinetic, and calorimetric evidence that the peptides do indeed bind at the interface of the dimeric protein and stabilize its di-inactive form. The "LR" peptide binds at a previously unknown binding site and shows a previously undescribed mechanism for the allosteric inhibition of a homodimeric enzyme. It inhibits the intracellular enzyme in ovarian cancer cells and reduces cellular growth at low micromolar concentrations in both cisplatin-sensitive and -resistant cells without causing protein overexpression. This peptide demonstrates the potential of allosteric inhibition of hTS for overcoming platinum drug resistance in ovarian cancer.

  5. Identification of Mimotope Peptides Which Bind to the Mycotoxin Deoxynivalenol-Specific Monoclonal Antibody

    PubMed Central

    Yuan, Qiaoping; Pestka, James J.; Hespenheide, Brandon M.; Kuhn, Leslie A.; Linz, John E.; Hart, L. Patrick

    1999-01-01

    Monoclonal antibody 6F5 (mAb 6F5), which recognizes the mycotoxin deoxynivalenol (DON) (vomitoxin), was used to select for peptides that mimic the mycotoxin by employing a library of filamentous phages that have random 7-mer peptides on their surfaces. Two phage clones selected from the random peptide phage-displayed library coded for the amino acid sequences SWGPFPF and SWGPLPF. These clones were designated DONPEP.2 and DONPEP.12, respectively. The results of a competitive enzyme-linked immunosorbent assay (ELISA) suggested that the two phage displayed peptides bound to mAb 6F5 specifically at the DON binding site. The amino acid sequence of DONPEP.2 plus a structurally flexible linker at the C terminus (SWGPFPFGGGSC) was synthesized and tested to determine its ability to bind to mAb 6F5. This synthetic peptide (designated peptide C430) and DON competed with each other for mAb 6F5 binding. When translationally fused with bacterial alkaline phosphatase, DONPEP.2 bound specifically to mAb 6F5, while the fusion protein retained alkaline phosphatase activity. The potential of using DONPEP.2 as an immunochemical reagent in a DON immunoassay was evaluated with a DON-spiked wheat extract. When peptide C430 was conjugated to bovine serum albumin, it elicited antibody specific to peptide C430 but not to DON in both mice and rabbits. In an in vitro translation system containing rabbit reticulocyte lysate, synthetic peptide C430 did not inhibit protein synthesis but did show antagonism toward DON-induced protein synthesis inhibition. These data suggest that the peptides selected in this study bind to mAb 6F5 and that peptide C430 binds to ribosomes at the same sites as DON. PMID:10427007

  6. Functional and Selective Bacterial Interfaces Using Cross-Scaffold Gold Binding Peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Hurley, Margaret M.; Jahnke, Justin P.; Stratis-Cullum, Dimitra N.

    2015-11-01

    We investigated the functional and selective activity of three phage-derived gold-binding peptides on the Escherichia coli ( E. coli) bacterial cell surface display scaffold (eCPX) for the first time. Gold-binding peptides, p3-Au12 (LKAHLPPSRLPS), p8#9 (VSGSSPDS), and Midas-2 (TGTSVLIATPYV), were compared side-by-side through experiment and simulation. All exhibited strong binding to an evaporated gold film, with approximately a 4-log difference in binding between each peptide and the control sample. The increased affinity for gold was also confirmed by direct visualization of samples using Scanning Electron Microscopy (SEM). Peptide dynamics in solution were performed to analyze innate structure, and all three were found to have a high degree of flexibility. Preferential binding to gold over silicon for all three peptides was demonstrated, with up to four orders of magnitude selectivity exhibited by p3-Au12. The selectivity was also clearly evident through SEM analysis of the boundary between the gold film and silicon substrate. Functional activity of bound E. coli cells was further demonstrated by stimulating filamentation and all three peptides were characterized as prolific relative to control samples. This work shows great promise towards functional and active bacterial-hybrid gold surfaces and the potential to enable the next generation living material interfaces.

  7. Serine repeat antigen peptides which bind specifically to red blood cells.

    PubMed

    Puentes, A; Garcia, J; Vera, R; Lopez, Q R; Urquiza, M; Vanegas, M; Salazar, L M; Patarroyo, M E

    2000-08-01

    It has been reported that serine repeat antigen (SERA) binds directly to human erythrocyte membranes, inside-out vesicles and intact mouse erythrocytes. Similarly, mAbs specific against SERA are effective in blocking red blood cell (RBC) invasion by P. falciparum merozoites. Furthermore, the N-terminal recombinant SERA fragment inhibits the merozoite invasion of erythrocyte. In this study of 49 non-overlapping 20-residue-long peptides encompassing the whole SERA protein FCR3 strain, seven peptides having high RBC binding activity were found. Six of these peptides (three from the SERA N-terminal domain) are located in conserved regions and show affinity constants between 150 and 1100 nM, Hill coefficients between 1.5 and 3.0 and 30000-120000 binding sites per cell. Some of these peptides inhibited in vitro merozoite invasion of erythrocyte and intra-erythrocytic development. Residues which are critical in the binding to erythrocytes (in bold face), i.e. 6725 (YLKETNNAISFESNSGSLEKK), 6733 (YALGSDIPEKCDTLASNCFLS), 6737 (YDNILVKMFKTNENNDKSELI), 6746 (DQGNCDTSWIFASKYHLETI), 6754 (YKKVQNLCGDDTADHAVNIVG) and 6762 (NEVSERVHVYHILKHIKDGK), were determined by means of competition assays with high-binding peptide glycine analogues. The identification of peptides which bind to erythrocyte membrane is important in understanding the process of RBC invasion by P. falciparum merozoites.

  8. Antiviral active peptide from oyster

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  9. Effect of clustered peptide binding on DNA condensation.

    PubMed

    Haley, Jennifer; Kabiru, Paul; Geng, Yan

    2010-01-01

    DNA condensation in-vitro has been studied as a model system to reveal common principles underlying gene packaging in biology, and as the critical first step towards the development of non-viral gene delivery vectors. In this study, we use a bio-inspired approach, where small DNA-binding peptides are controllably clustered by an amphiphilic block copolymer scaffold, to reveal the effect of clustered peptide binding on the energetics, size, shape and physical properties of DNA condensation in-vitro. This provides insights into the general architectural effect of gene-binding proteins on DNA condensation process. Moreover, the versatility afforded by regulating the clustering density and composition of peptides may provide a novel design platform for gene delivery applications in the future.

  10. Hydroxyapatite-binding peptides for bone growth and inhibition

    DOEpatents

    Bertozzi, Carolyn R.; Song, Jie; Lee, Seung-Wuk

    2011-09-20

    Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.

  11. Method of identity analyte-binding peptides

    DOEpatents

    Kauvar, L.M.

    1990-10-16

    A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4--20 amino acids for specific affinity to the analyte. 5 figs.

  12. Method of identity analyte-binding peptides

    DOEpatents

    Kauvar, Lawrence M.

    1990-01-01

    A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4-20 amino acids for specific affinity to the analyte.

  13. Identification of high-affinity VEGFR3-binding peptides through a phage-displayed random peptide library

    PubMed Central

    Wu, Yan; Li, Cai-Yun

    2015-01-01

    Objective Vascular endothelial growth factor (VEGF) interaction with its receptor, VEGFR-3/Flt-4, regulates lymphangiogenesis. VEGFR-3/Flt-4 expression in cancer cells has been correlated with clinical stage, lymph node metastasis, and lymphatic invasion. The objective of this study is to identify a VEGFR-3/Flt-4-interacting peptide that could be used to inhibit VEGFR-3 for ovarian cancer therapy. Methods The extracellular fragment of recombinant human VEGFR-3/Flt-4 (rhVEGFR-3/Flt-4) fused with coat protein pIII was screened against a phage-displayed random peptide library. Using affinity enrichment and enzyme-linked immunosorbent assay (ELISA) screening, positive clones of phages were amplified. Three phage clones were selected after four rounds of biopanning, and the specific binding of the peptides to rhVEGFR-3 was detected by ELISA and compared with that of VEGF-D. Immunohistochemistry and immunofluorescence analyses of ovarian cancer tissue sections was undertaken to demonstrate the specificity of the peptides. Results After four rounds of biopanning, ELISA confirmed the specificity of the enriched bound phage clones for rhVEGFR-3. Sequencing and translation identified three different peptides. Non-competitive ELISA revealed that peptides I, II, and III had binding affinities for VEGFR-3 with Kaff (affinity constant) of 16.4±8.6 µg/mL (n=3), 9.2±2.1 µg/mL (n=3), and 174.8±31.1 µg/mL (n=3), respectively. In ovarian carcinoma tissue sections, peptide III (WHWLPNLRHYAS), which had the greatest binding affinity, also co-localized with VEGFR-3 in endothelial cells lining lymphatic vessels; its labeling of ovarian tumors in vivo was also confirmed. Conclusion These finding showed that peptide III has high specificity and activity and, therefore, may represent a potential therapeutic approach to target VEGF-VEGFR-3 signaling for the treatment or diagnosis of ovarian cancer. PMID:26197772

  14. Peptide Ligand Structure and I-Aq Binding Avidity Influence T Cell Signaling Pathway Utilization

    PubMed Central

    Myers, Linda K; Cullins, David L; Park, Jeoung-Eun; Yi, Ae-Kyung; Brand, David D; Rosloniec, Edward F; Stuart, John M; Kang, Andrew H

    2015-01-01

    Factors that drive T cells to signal through differing pathways remain unclear. We have shown that an altered peptide ligand (A9) activates T cells to utilize an alternate signaling pathway which is dependent upon FcRγ and Syk. However, it remains unknown whether the affinity of peptide binding to MHC drives this selection. To answer this question we developed a panel of peptides designed so that amino acids interacting with the p6 and p9 predicted MHC binding pockets were altered. Analogs were tested for binding to I-Aq using a competitive binding assay and selected analogs were administered to arthritic mice. Using the collagen-induced arthritis (CIA) model, arthritis severity was correlated with T cell cytokine production and molecular T cell signaling responses. We establish that reduced affinity of interaction with the MHC correlates with T cell signaling through the alternative pathway, leading ultimately to secretion of suppressive cytokine and attenuation of arthritis. PMID:25982319

  15. Thermodynamics of RTA3 peptide binding to membranes and consequences for antimicrobial activity☆

    PubMed Central

    Hawrani, Ayman; Howe, Robin A.; Walsh, Timothy R.; Dempsey, Christopher E.

    2010-01-01

    RTA3 is an α-helical, amphipathic peptide with broad-spectrum activity against Gram-negative bacteria and low mammalian cell toxicity. RTA3 contains a cysteine residue, replacement of which with an alanine or serine (RTA3-C15S) virtually abolishes antimicrobial activity. Much of the activity of RTA3 can be recovered in RTA3-C15L, indicating that the C15 residue functions largely as a bulky hydrophobic side chain promoting target cell membrane interactions. The poorly active RTA3-C15S is a useful variant for assessing the mechanistic aspects of RTA3 activity. Binding and membrane perturbation in vesicles containing different proportions of negative surface charge are analyzed in terms of amino acid-specific free energy contributions to interfacial binding, which likely underlie variations in antimicrobial activity amongst RTA3 variants. Comparison with published free energy scales indicates that the reduced electrostatic contribution to binding to membranes having reduced negative surface charge can be compensated in RTA3 (but not RTA3-C15S) by a slightly deeper insertion of the C-terminus of the peptide to maximize hydrophobic contributions to binding. Analysis of inner membrane (IM)- and outer membrane (OM)-selective permeabilization of Escherichiacoli demonstrates a broad similarity between peptide effects on vesicles with low negative surface charge (20% negatively charged lipids), E.coli membrane perturbation, and antimicrobial activity, supporting a role for membrane perturbation in the killing mechanism of RTA3. The results demonstrate that large variations in antimicrobial activity on subtle changes in amino acid sequence in helical amphipathic peptides can be rationalized in terms of the thermodynamics of peptide binding to membranes, allowing a more systematic understanding of antimicrobial activity in these peptides. PMID:20346912

  16. Identification of a peptide binding protein that plays a role in antigen presentation

    SciTech Connect

    Lakey, E.K.; Margoliash, E.; Pierce, S.K.

    1987-03-01

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface protein is identified that was isolated by it ability to bind to a 24-amino acid peptide fragment of pigeon cytochrome c, residues 81-104, containing the major antigenic determinant for B10.A mouse T cells. This peptide binding protein, purified from (/sup 35/S)methionine-labeled cells, appears as two discrete bands of approx. =72 and 74 kDa after NaDodSO/sub 4//PAGE. The protein can be eluted from the peptide affinity column with equivalent concentrations of either the antigenic pigeon cytochrome c peptide or the corresponding nonantigenic peptide of mouse cytochrome c. However, it does not bind to the native cytochromes c, either of pigeon or mouse, and thus the protein appears to recognize some structure available only in the free peptides. This protein plays a role in antigen presentation. Its expression is not major histocompatibility complex-restricted in that the blocking activity of the antisera can be absorbed on spleen cells from mice of different haplotypes. This peptide binding protein can be isolated from a variety of cell types, including B cells, T cells, and fibroblasts. The anchoring of processed peptides on the cell surface by such a protein may play a role in antigen presentation.

  17. Calcium Carbonate Formation by Genetically Engineered Inorganic Binding Peptides

    NASA Astrophysics Data System (ADS)

    Gresswell, Carolyn Gayle

    Understanding how organisms are capable of forming (synthesize, crystallize, and organize) solid minerals into complex architectures has been a fundamental question of biomimetic materials chemistry and biomineralization for decades. This study utilizes short peptides selected using a cell surface display library for the specific polymorphs of calcium carbonate, i.e., aragonite and calcite, to identify two sets of sequences which can then be used to examine their effects in the formation, crystal structure, morphology of the CaCO3 minerals. A procedure of counter selection, along with fluorescence microscopy (FM) characterization, was adapted to insure that the sequences on the cells were specific to their respective substrate, i.e., aragonite or calcite. From the resulting two sets of sequences selected, five distinct strong binders were identified with a variety of biochemical characteristics and synthesized for further study. Protein derived peptides, using the known sequences of the proteins that are associated with calcite or aragonite, were also designed using a bioinformatics-based similarity analysis of the two sets of binders. In particular, an aragonite binding protein segment, AP7, a protein found in nacre, was chosen for this design and the resulting effects of the designed peptides and the AP7 were examined. Specifically, the binding affinities of the selected and the protein derived peptides off the cells were then tested using FM; these studies resulted in different binding characteristics of the synthesized and cellular bound peptides. Two of the peptides that displayed strong binding on the cells bound to neither of the CaCO 3 substrates and both the high and low similarity protein-derived peptides bound to both polymorphs. However, two of the peptides were found to only bind to their respective polymorph showing; these results are significant in that with this study it is demonstrated that the designed peptides based on experimental library

  18. The molecular basis for the prolonged blood circulation of lipidated incretin peptides: Peptide oligomerization or binding to serum albumin?

    PubMed

    Wang, Ying; Lomakin, Aleksey; Kanai, Sonoko; Alex, Rainer; Belli, Sara; Donzelli, Massimiliano; Benedek, George B

    2016-11-10

    Hybrid incretin peptides are a new generation of drugs for the treatment of diabetes and obesity. Despite their biological potency, the effectiveness of these peptides as drugs is limited by their short circulation time in blood (typically within minutes). In this work, we show that lipid conjugated forms of a GLP-1/GIP/glucagon hybrid peptides stay in circulation for hours. We studied the oligomerization and albumin-binding of the unconjugated hybrid peptide as well as its lipidated variants. These lipidated peptides differ in the N-terminal mutation, the position of lipidation and the linkage to lipid. We found that these lipidated peptides form stable oligomers at concentrations above 1mg/mL. This concentration range is relevant to formulation and storage of the peptides. We observed no binding between the peptide oligomers and human serum albumin. However, at the expected therapeutic concentration range (~10-100ng/mL), the oligomers dissociate into monomers. The monomers of lipidated peptides bind to albumin. We have determined the dissociation constants of binding between the lipidated peptides and serum albumin. The dissociation constants of albumin-binding of our lipidated peptides are all very close and similar to that of the fatty acid binding of albumin. Our findings suggest that the monomeric lipidated peptides bind to HSA mainly by the fatty acid chain. Therefore, albumin binding is likely to be a universal mechanism of the prolonged circulating duration of lipidated pharmaceutical peptides.

  19. Chemokine CCR3 ligands-binding peptides derived from a random phage-epitope library.

    PubMed

    Houimel, Mehdi; Mazzucchelli, Luca

    2013-01-01

    Eosinophils are major effectors cells implicated in a number of chronic inflammatory diseases in humans, particularly bronchial asthma and allergic rhinitis. The human chemokine receptor C-C receptor 3 (hCCR3) provides a mechanism for the recruitment of eosinophils into tissue and thus has recently become an attractive biological target for therapeutic intervention. In order to develop peptides antagonists of hCCR3-hCCL11 (human eotaxin) interactions, a random bacteriophage hexapeptide library was used to map structural features of hCCR3 by determining the epitopes of neutralizing anti-hCCR3 mAb 7B11. This mAb t is selective for hCCR3 and exhibit potent antagonist activity in receptor binding and functional assays. After three rounds of biopanning, four mAb7B11-binding peptides were identified from a 6-mer linear peptide library. The phage bearing the peptides showed specific binding to immobilized mAb 7B11 with over 94% of phages bound being competitively inhibited by free synthetic peptides. In FACScan analysis all selected phage peptides were able to strongly inhibit the binding of mAb 7B11 to hCCR3-transfected preB-300-19 murine cells. Furthermore, synthetic peptides of the corresponding phage epitopes were effective in blocking the antibody-hCCR3 interactions and to inhibit the binding of hCCL11 to hCCR3 transfectants. Chemically synthesized peptides CKGERF, FERKGK, SSMKVK and RHVSSQ, effectively competed for (125)I-hCCL11 binding to hCCR3 with IC(50) ranging from 3.5 to 9.7μM. Calcium release and chemotaxis of hCCR3 transfectants or human eosinophils were inhibited by all peptides in a dose-dependent manner. Furthermore, they showed inhibitory effects on chemotaxis of human eosinophils induced by hCCL11, hCCL5, hCCL7, hCCL8, and hCCL24. Specificities of all selected peptides were assessed with hCXCR1, hCXCR2, hCXCR3, and hCCR5 receptors. Peptides CKGERF and FERKGK showed inhibitory effects on eosinophil chemotaxis in a murine model of mCCL11-induced

  20. SPARC is a source of copper-binding peptides that stimulate angiogenesis

    PubMed Central

    1994-01-01

    SPARC is a transiently expressed extracellular matrix-binding protein that alters cell shape and regulates endothelial cell proliferation in vitro. In this study, we show that SPARC mRNA and protein are synthesized by endothelial cells during angiogenesis in vivo. SPARC and peptides derived from a cationic region of the protein (amino acids 113- 130) stimulated the formation of endothelial cords in vitro; moreover, these peptides stimulated angiogenesis in vivo. Mapping of the active domain demonstrated that the sequence KGHK was responsible for most of the angiogenic activity; substitution of the His residue decreased the effect. We found that proteolysis of SPARC provided a source of KGHK, GHK, and longer peptides that contained these sequences. Although the Cu(2+)-GHK complex had been identified as a mitogen/morphogen in normal human plasma, we found KGHK and longer peptides to be potent stimulators of angiogenesis. SPARC113-130 and KGHK were shown to bind Cu2+ with high affinity; however, previous incubation with Cu2+ was not required for the stimulatory activity. Since a peptide from a second cationic region of SPARC (SPARC54-73) also bound Cu2+ but had no effect on angiogenesis, the angiogenic activity appeared to be sequence specific and independent of bound Cu2+. Thus, specific degradation of SPARC, a matrix-associated protein expressed by endothelial cells during vascular remodeling, releases a bioactive peptide or peptides, containing the sequence (K)GHK, that could regulate angiogenesis in vivo. PMID:7514608

  1. Inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxyl-terminal domain of small GTP-binding proteins. Lack of amino acid sequence specificity and importance of polybasic motif.

    PubMed

    Joseph, G; Gorzalczany, Y; Koshkin, V; Pick, E

    1994-11-18

    The small GTP-binding protein (G protein) Rac1 is an obligatory participant in the assembly of the superoxide (O2-.)-generating NADPH oxidase complex of macrophages. We investigated the effect of synthetic peptides, mapping within the near carboxyl-terminal domains of Rac1 and of related G proteins, on the activity of NADPH oxidase in a cell-free system consisting of solubilized guinea pig macrophage membrane, a cytosolic fraction enriched in p47phox and p67phox (or total cytosol), highly purified Rac1-GDP dissociation inhibitor for Rho (Rho GDI) complex, and the activating amphiphile, lithium dodecyl sulfate. Peptides Rac1-(178-188) and Rac1-(178-191), but not Rac2-(178-188), inhibited NADPH oxidase activity in a Rac1-dependent system when added prior to or simultaneously with the initiation of activation. However, undecapeptides corresponding to the near carboxyl-terminal domains of RhoA and RhoC and, most notably, a peptide containing the same amino acids as Rac1-(178-188), but in reversed orientation, were also inhibitory. Surprisingly, O2-. production in a Rac2-dependent cell-free system was inhibited by Rac1-(178-188) but not by Rac2-(178-188). Finally, basic polyamino acids containing lysine, histidine, or arginine, also inhibited NADPH oxidase activation. We conclude that inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxyl-terminal domain of certain small G proteins is not amino acid sequence-specific but related to the presence of a polybasic motif. It has been proposed that such a motif serves as a plasma membrane targeting signal for a number of small G proteins (Hancock, J.F., Paterson, H., and Marshall, C.J. (1990) Cell 63, 133-139).

  2. Lasso Peptide Biosynthetic Protein LarB1 Binds Both Leader and Core Peptide Regions of the Precursor Protein LarA

    PubMed Central

    2016-01-01

    Lasso peptides are a member of the superclass of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Like all RiPPs, lasso peptides are derived from a gene-encoded precursor protein. The biosynthesis of lasso peptides requires two enzymatic activities: proteolytic cleavage between the leader peptide and the core peptide in the precursor protein, accomplished by the B enzymes, and ATP-dependent isopeptide bond formation, accomplished by the C enzymes. In a subset of lasso peptide biosynthetic gene clusters from Gram-positive organisms, the B enzyme is split between two proteins. One such gene cluster is found in the organism Rhodococcus jostii, which produces the antimicrobial lasso peptide lariatin. The B enzyme in R. jostii is split between two open reading frames, larB1 and larB2, both of which are required for lariatin biosynthesis. While the cysteine catalytic triad is found within the LarB2 protein, LarB1 is a PqqD homologue expected to bind to the lariatin precursor LarA based on its structural homology to other RiPP leader peptide binding domains. We show that LarB1 binds to the leader peptide of the lariatin precursor protein LarA with a sub-micromolar affinity. We used photocrosslinking with the noncanonical amino acid p-azidophenylalanine and mass spectrometry to map the interaction of LarA and LarB1. This analysis shows that the LarA leader peptide interacts with a conserved motif within LarB1 and, unexpectedly, the core peptide of LarA also binds to LarB1 in several positions. A Rosetta model built from distance restraints from the photocrosslinking experiments shows that the scissile bond between the leader peptide and core peptide in LarA is in a solvent-exposed loop. PMID:27800552

  3. Lasso Peptide Biosynthetic Protein LarB1 Binds Both Leader and Core Peptide Regions of the Precursor Protein LarA.

    PubMed

    Cheung, Wai Ling; Chen, Maria Y; Maksimov, Mikhail O; Link, A James

    2016-10-26

    Lasso peptides are a member of the superclass of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Like all RiPPs, lasso peptides are derived from a gene-encoded precursor protein. The biosynthesis of lasso peptides requires two enzymatic activities: proteolytic cleavage between the leader peptide and the core peptide in the precursor protein, accomplished by the B enzymes, and ATP-dependent isopeptide bond formation, accomplished by the C enzymes. In a subset of lasso peptide biosynthetic gene clusters from Gram-positive organisms, the B enzyme is split between two proteins. One such gene cluster is found in the organism Rhodococcus jostii, which produces the antimicrobial lasso peptide lariatin. The B enzyme in R. jostii is split between two open reading frames, larB1 and larB2, both of which are required for lariatin biosynthesis. While the cysteine catalytic triad is found within the LarB2 protein, LarB1 is a PqqD homologue expected to bind to the lariatin precursor LarA based on its structural homology to other RiPP leader peptide binding domains. We show that LarB1 binds to the leader peptide of the lariatin precursor protein LarA with a sub-micromolar affinity. We used photocrosslinking with the noncanonical amino acid p-azidophenylalanine and mass spectrometry to map the interaction of LarA and LarB1. This analysis shows that the LarA leader peptide interacts with a conserved motif within LarB1 and, unexpectedly, the core peptide of LarA also binds to LarB1 in several positions. A Rosetta model built from distance restraints from the photocrosslinking experiments shows that the scissile bond between the leader peptide and core peptide in LarA is in a solvent-exposed loop.

  4. Antibacterial activity of a synthetic peptide that mimics the LPS binding domain of Indian mud crab, Scylla serrata anti-lipopolysaccharide factor (SsALF) also involved in the modulation of vaginal immune functions through NF-kB signaling.

    PubMed

    Sharma, Sachin; Yedery, R D; Patgaonkar, M S; Selvaakumar, C; Reddy, K V R

    2011-01-01

    Recently the cDNA coding for anti-lipopolysaccharide factor (ALF) has been identified from the Indian mud crab, Scylla serrata and has been named S. serrata anti-lipopolysaccharide factor (SsALF). SsALF protein sequence demonstrated the presence of two highly conserved cystine residues between which the putative lipopolysaccharide (LPS) binding domain is known to be located. In this study, we have designed and synthesized a 24 amino acid linear (lSsALF24) and a cyclic (cSsALF24) peptides based on this putative LPS binding domain and demonstrated the ability of these peptides to bind to LPS. The peptides were active against vaginal pathogens demonstrated by MIC, CFU and phagocytosis assays. cSsALF24 did not show toxicity to human vaginal epithelial cells (HeLa-S3), macrophages and rabbit erythrocytes even at high concentration (64.64 μM). Flow cytometry results demonstrated that cSsALF24 peptide suppressed LPS induced phagocytosis of FITC labeled E. coli. HeLa cells were stimulated with LPS (10 μg/ml) alone for 6 h or after two washings with PBS, treated for 1 h with cSsALF24 (64.64 μM). After washing, the cells were cultured for 24 h in fresh media. The spent media as well as cells were collected for the determination of cytokine/chemokine levels such as interleukin-6 (IL-6) interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1) and interleukin-1α (IL-1α) using ELISA and RT-PCR respectively. Similar results were obtained with LPS stimulated cells treated with c/nSsALF24 or unstimulated cells treated with c/nSsALF24. The expression of cytokine/chemokines and mRNA's coding these proteins were unaffected in c/nSsALF24 treated cells. In contrast, in LPS stimulated cells, the expression levels of these molecules were up-regulated via the induction of nuclear factor kappa-B (NF-kB) levels. However, the expression of these pro-inflammatory markers was decreased in LPS stimulated cells following the treatment with cSsALF24, attributing anti

  5. Multidrug-resistance drug-binding peptides generated by using a phage display library.

    PubMed

    Popkov, M; Lussier, I; Medvedkine, V; Estève, P O; Alakhov, V; Mandeville, R

    1998-01-15

    A phage display library of random decapeptides was used to generate peptide ligands that can bind multidrug-resistance (MDR) drugs mimicking, in this respect, the drug-binding activity of P-glycoprotein. Seven peptide sequences were identified that specifically bound doxorubicin. Five of these sequences expressed the core consensus motif WXXW. The displacement assay showed that the phages expressing these peptides bound MDR type drugs (vinblastine, doxorubicin, verapamil, and genistein) with the same selectivity as P-glycoprotein and did not interact with non-MDR type drugs, such as arabinosylcytosine (Ara-C) and melphalan. One of the selected peptides that showed a highest capacity for the binding (VCDWWGWGIC) was synthesized and displayed competition with the phage for doxorubicin binding. The structure modeling suggested that all the selected sequences contained a hydrophobic envelope in which MDR drugs could be docked with substantial energy minimization. Western blot analysis showed that monospecific antibody obtained against the phage expressing VCDWWGWGIC peptide could specifically recognize P-glycoprotein in the membrane fraction of MDR phenotype MCF-7ADR cells. The MDR drug-binding sequences generated during this work could provide an important tool for design and screening of new chemotherapeutic agents.

  6. Specific binding of GM1-binding peptides to high-density GM1 in lipid membranes.

    PubMed

    Matsubara, Teruhiko; Iijima, Kazutoshi; Nakamura, Miwa; Taki, Takao; Okahata, Yoshio; Sato, Toshinori

    2007-01-16

    The ganglioside Galbeta1-3GalNAcbeta1-4(Neu5Acalpha2-3)Galbeta1-4Glcbeta1-1'Cer (GM1) is an important receptor. We have previously identified GM1-binding peptides based on affinity selection from a random peptide library. In the present study, we determined the amino acids essential for binding GM1 and investigated the specific interaction with GM1 in the lipid membrane. Arginines and aromatic amino acids in the consensus sequence (W/F)RxL(xP/Px)xFxx(Rx/xR)xP contributed to the ability of the peptides to bind GM1. The peptide p3, VWRLLAPPFSNRLLP, having the consensus sequence, showed high affinity for GM1 with a dissociation constant of 1.2 microM. Furthermore, the density-dependent binding of p3 was investigated using mixed monolayers of GM1 and Glcbeta1-1'Cer (GlcCer). p3 binds preferentially to high-density GM1, and its interaction with GM1 was found to be cooperative based on a Hill plot. These results indicated that a lateral assembly of GM1 molecules was required for the recognition of carbohydrates by p3. The GM1-binding peptide played a role as a unique anti-GM1 probe differing from the cholera toxin B subunit or antibodies.

  7. Automated benchmarking of peptide-MHC class I binding predictions

    PubMed Central

    Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason A.; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2015-01-01

    Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. Contact: mniel@cbs.dtu.dk or bpeters@liai.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25717196

  8. Screening of a specific peptide binding to esophageal squamous carcinoma cells from phage displayed peptide library.

    PubMed

    Ma, Caixia; Li, Chunyan; Jiang, Dongliang; Gao, Xiaojie; Han, Juanjuan; Xu, Nan; Wu, Qiong; Nie, Guochao; Chen, Wei; Lin, Fenghuei; Hou, Yingchun

    2015-06-01

    To select a specifically binding peptide for imaging detection of human esophageal squamous cell carcinoma (ESCC), a phage-displayed 12-mer peptide library was used to screen the peptide that bind to ESCC cells specifically. After four rounds of bio-panning, the phage recovery rate gradually increased, and specific phage clones were effectively enriched. The 60 randomly selected phage clones were tested using cellular enzyme-linked immunosorbent assay (ELISA), and 41 phage clones were identified as positive clones with the over 2.10 ratio of absorbance higher than other clones, IRP and PBS controls. From the sequencing results of the positive clones, 14 peptide sequences were obtained and ESCP9 consensus sequence was identified as the peptide with best affinity to ESCC cells via competitive inhibition, fluorescence microscopy, and flow cytometry. The results indicate that the peptide ESCP9 can bind to ESCC cells specifically and sensitively, and it is a potential candidate to be developed as an useful molecule to the imaging detection and targeting therapy for ESCC.

  9. Identification of a peptide sequence involved in homophilic binding in the neural cell adhesion molecule NCAM

    PubMed Central

    1992-01-01

    The neural cell adhesion molecule NCAM is capable of mediating cell- cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells transfected with NCAM mutant cDNAs using cell aggregation and NCAM- covasphere binding assays indicate that the third immunoglobulin-like domain is involved in homophilic binding. The epitopes of four monoclonal antibodies that have been previously shown to affect cell- cell adhesion mediated by NCAM were also mapped to domain 3. Overlapping hexapeptides were synthesized on plastic pins and assayed for binding with these monoclonal antibodies. One of them (PP) reacted specifically with the sequence KYSFNY. Synthetic oligopeptides containing the PP epitope were potent and specific inhibitors of NCAM binding activity. A substratum containing immobilized peptide conjugates also exhibited adhesiveness for neural retinal cells. Cell attachment was specifically inhibited by peptides that contained the PP- epitope and by anti-NCAM univalent antibodies. The shortest active peptide has the sequence KYSFNYDGSE, suggesting that this site is directly involved in NCAM homophilic interaction. PMID:1380002

  10. Docking studies of nickel-peptide deformylase (PDF) inhibitors: exploring the new binding pockets.

    PubMed

    Wang, Qiang; Zhang, Datong; Wang, Jianwu; Cai, Zhengting; Xu, Weiren

    2006-06-20

    The binding modes of a series of known activity inhibitors docking to Peptide deformylase (PDF) have been studied using molecular docking software AutoDock3.0.5. In this study, good correlation (R(2)=0.894) between calculated binding energies and experimental inhibitory activities is obtained. We find that some shallow pockets near the known active pocket are very important which can accommodate the side-chains of the inhibitor. Moreover, a new binding pocket is also explored. All these may provide something useful for designing the potent inhibitors.

  11. Discovery of peptidic miR-21 processing inhibitor by mirror image phage display: A novel method to generate RNA binding D-peptides.

    PubMed

    Sakamoto, Kotaro; Otake, Kentaro; Umemoto, Tadashi

    2017-02-15

    A novel method to generate RNA binding D-peptide has been developed. To achieve the screening method, phage display was applied to "Mirrored" RNA (L-enantiomer of RNA). We have selected pre-miR21 as an initial screening target to demonstrate the method. The mirrored pre-miR-21 binding peptide sequences were successfully obtained, and were chemically synthesized using D-amino acids. D-peptide is expected to have favorable properties as a drug candidate such as protease resistance and low immunogenicity. As a result of binding evaluation of the D-peptide to pre-miR-21, the EC50 value was 440nM. In addition, the D-peptide possessed inhibition activity to miR-21 processing.

  12. Binding Interactions of Bacterial Lipopolysaccharide and the Cationic Amphiphilic Peptides Polymyxin B and WLBU2

    PubMed Central

    Ryder, Matthew P.; Wu, Xiangming; McKelvey, GregR.; McGuire, Joseph; Schilke, Karl F.

    2014-01-01

    Passage of blood through a sorbent device for removal of bacteria and endotoxin by specific binding with immobilized, membrane-active, bactericidal peptides holds promise for treating severe blood infections. Peptide insertion in the target membrane and rapid/strong binding is desirable, while membrane disruption and release of degradation products to the circulating blood is not. Here we describe interactions between bacterial endotoxin (lipopolysaccharide, LPS) and the membrane-active, bactericidal peptides WLBU2 and polymyxin B (PmB). Analysis of the interfacial behavior of mixtures of LPS and peptide using air-water interfacial tensiometry and optical waveguide lightmode spectroscopy strongly suggests insertion of intact LPS vesicles by the peptide WLBU2 without vesicle destabilization. In contrast, dynamic light scattering (DLS) studies show that LPS vesicles appear to undergo peptide-induced destabilization in the presence of PmB. Circular dichroism spectra further confirm that WLBU2, which shows disordered structure in aqueous solution and substantially helical structure in membrane-mimetic environments, is stably located within the LPS membrane in peptide-vesicle mixtures. We therefore expect that presentation of WLBU2 at an interface, if tethered in a fashion which preserves its mobility and solvent accessibility, will enable the capture of bacteria and endotoxin without promoting reintroduction of endotoxin to the circulating blood, thus minimizing adverse clinical outcomes. On the other hand, our results suggest no such favorable outcome of LPS interactions with polymyxin B. PMID:24905681

  13. A common landscape for membrane-active peptides

    PubMed Central

    Last, Nicholas B; Schlamadinger, Diana E; Miranker, Andrew D

    2013-01-01

    Three families of membrane-active peptides are commonly found in nature and are classified according to their initial apparent activity. Antimicrobial peptides are ancient components of the innate immune system and typically act by disruption of microbial membranes leading to cell death. Amyloid peptides contribute to the pathology of diverse diseases from Alzheimer's to type II diabetes. Preamyloid states of these peptides can act as toxins by binding to and permeabilizing cellular membranes. Cell-penetrating peptides are natural or engineered short sequences that can spontaneously translocate across a membrane. Despite these differences in classification, many similarities in sequence, structure, and activity suggest that peptides from all three classes act through a small, common set of physical principles. Namely, these peptides alter the Brownian properties of phospholipid bilayers, enhancing the sampling of intrinsic fluctuations that include membrane defects. A complete energy landscape for such systems can be described by the innate membrane properties, differential partition, and the associated kinetics of peptides dividing between surface and defect regions of the bilayer. The goal of this review is to argue that the activities of these membrane-active families of peptides simply represent different facets of what is a shared energy landscape. PMID:23649542

  14. Prediction of Nucleotide Binding Peptides Using Star Graph Topological Indices.

    PubMed

    Liu, Yong; Munteanu, Cristian R; Fernández Blanco, Enrique; Tan, Zhiliang; Santos Del Riego, Antonino; Pazos, Alejandro

    2015-11-01

    The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development.

  15. Peptide binding properties of the three PDZ domains of Bazooka (Drosophila Par-3).

    PubMed

    Yu, Cao Guo; Tonikian, Raffi; Felsensteiner, Corinna; Jhingree, Jacquelyn R; Desveaux, Darrell; Sidhu, Sachdev S; Harris, Tony J C

    2014-01-01

    The Par complex is a conserved cell polarity regulator. Bazooka/Par-3 is scaffold for the complex and contains three PDZ domains in tandem. PDZ domains can act singly or synergistically to bind the C-termini of interacting proteins. Sequence comparisons among Drosophila Baz and its human and C. elegans Par-3 counterparts indicate a divergence of the peptide binding pocket of PDZ1 and greater conservation for the pockets of PDZ2 and PDZ3. However, it is unclear whether the domains from different species share peptide binding preferences, or if their tandem organization affects their peptide binding properties. To investigate these questions, we first used phage display screens to identify unique peptide binding profiles for each single PDZ domain of Baz. Comparisons with published phage display screens indicate that Baz and C. elegans PDZ2 bind to similar peptides, and that the peptide binding preferences of Baz PDZ3 are more similar to C. elegans versus human PDZ3. Next we quantified the peptide binding preferences of each Baz PDZ domain using single identified peptides in surface plasmon resonance assays. In these direct binding studies, each peptide had a binding preference for a single PDZ domain (although the peptide binding of PDZ2 was weakest and the least specific). PDZ1 and PDZ3 bound their peptides with dissociation constants in the nM range, whereas PDZ2-peptide binding was in the µM range. To test whether tandem PDZ domain organization affects peptide binding, we examined a fusion protein containing all three PDZ domains and their normal linker regions. The binding strengths of the PDZ-specific peptides to single PDZ domains and to the PDZ domain tandem were indistinguishable. Thus, the peptide binding pockets of each PDZ domain in Baz are not obviously affected by the presence of neighbouring PDZ domains, but act as isolated modules with specific in vitro peptide binding preferences.

  16. Phage display screen for peptides that bind Bcl-2 protein.

    PubMed

    Park, Hye-Yeon; Kim, Joungmok; Cho, June-Haeng; Moon, Ji Young; Lee, Su-Jae; Yoon, Moon-Young

    2011-01-01

    Bcl-2 family proteins are key regulators of apoptosis associated with human disease, including cancer. Bcl-2 protein has been found to be overexpressed in many cancer cells. Therefore, Bcl-2 protein is a potential diagnostic target for cancer detection. In the present study, the authors have identified several Bcl-2 binding peptides with high affinity (picomolar range) from a 5-round M13 phage display library screening. These peptides can be used to develop novel diagnostic probes or potent inhibitors with diverse polyvalencies.

  17. A biologically active peptide mimetic of N-acetylgalactosamine/galactose

    PubMed Central

    Eggink, Laura L; Hoober, J Kenneth

    2009-01-01

    Background Glycosylated proteins and lipids are important regulatory factors whose functions can be altered by addition or removal of sugars to the glycan structure. The glycans are recognized by sugar-binding lectins that serve as receptors on the surface of many cells and facilitate initiation of an intracellular signal that changes the properties of the cells. We identified a peptide that mimics the ligand of an N-acetylgalactosamine (GalNAc)-specific lectin and asked whether the peptide would express specific biological activity. Findings A 12-mer phage display library was screened with a GalNAc-specific lectin to identify an amino acid sequence that binds to the lectin. Phage particles that were eluted from the lectin with free GalNAc were considered to have been bound to a GalNAc-binding site. Peptides were synthesized with the selected sequence as a quadravalent structure to facilitate receptor crosslinking. Treatment of human peripheral blood mononuclear cells for 24 h with the peptide stimulated secretion of interleukin-8 (IL-8) but not of IL-1β, IL-6, IL-10, or tumor necrosis factor-α (TNF-α). The secretion of IL-21 was stimulated as strongly with the peptide as with interferon-γ. Conclusion The data indicate that the quadravalent peptide has biological activity with a degree of specificity. These effects occurred at concentrations in the nanomolar range, in contrast to free sugars that generally bind to proteins in the micro- to millimolar range. PMID:19284521

  18. Antiendotoxin activity of cationic peptide antimicrobial agents.

    PubMed

    Gough, M; Hancock, R E; Kelly, N M

    1996-12-01

    The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF stimulus. Furthermore, MBI-28 offered significant protection in a galactosamine-sensitized mouse model of lethal endotoxic shock. This protection correlated with the ability of MBI-28 to reduce LPS-induced circulating TNF by nearly 90% in this mouse model. Both MBI-27 and MBI-28 demonstrated antibacterial activity against gram-negative bacteria in vitro and in vivo against Pseudomonas aeruginosa infections in neutropenic mice.

  19. Antiendotoxin activity of cationic peptide antimicrobial agents.

    PubMed Central

    Gough, M; Hancock, R E; Kelly, N M

    1996-01-01

    The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF stimulus. Furthermore, MBI-28 offered significant protection in a galactosamine-sensitized mouse model of lethal endotoxic shock. This protection correlated with the ability of MBI-28 to reduce LPS-induced circulating TNF by nearly 90% in this mouse model. Both MBI-27 and MBI-28 demonstrated antibacterial activity against gram-negative bacteria in vitro and in vivo against Pseudomonas aeruginosa infections in neutropenic mice. PMID:8945527

  20. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    PubMed Central

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-01-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor. PMID:27498819

  1. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response.

    PubMed

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2016-08-08

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  2. A Cell-Permeable Phospholipase C[gamma]1-Binding Peptide Transduces Neurons and Impairs Long-Term Spatial Memory

    ERIC Educational Resources Information Center

    Blum, Sonja; Dash, Pramod K.

    2004-01-01

    Growth factor-mediated signaling has emerged as an essential component of memory formation. In this study, we used a phospholipase C gamma 1 (PLC[gamma]1) binding, cell-penetrating peptide to sequester PLC[gamma]1 away from its target, the phosphotyrosine residues within the activated growth factor receptor. Peptides appear to transduce neurons…

  3. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    PubMed

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  4. Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs

    PubMed Central

    Düvel, Juliane; Bense, Sarina; Möller, Stefan; Bertinetti, Daniela; Schwede, Frank; Morr, Michael; Eckweiler, Denitsa; Genieser, Hans-Gottfried; Jänsch, Lothar; Herberg, Friedrich W.; Frank, Ronald

    2015-01-01

    ABSTRACT High levels of the universal bacterial second messenger cyclic di-GMP (c-di-GMP) promote the establishment of surface-attached growth in many bacteria. Not only can c-di-GMP bind to nucleic acids and directly control gene expression, but it also binds to a diverse array of proteins of specialized functions and orchestrates their activity. Since its development in the early 1990s, the synthetic peptide array technique has become a powerful tool for high-throughput approaches and was successfully applied to investigate the binding specificity of protein-ligand interactions. In this study, we used peptide arrays to uncover the c-di-GMP binding site of a Pseudomonas aeruginosa protein (PA3740) that was isolated in a chemical proteomics approach. PA3740 was shown to bind c-di-GMP with a high affinity, and peptide arrays uncovered LKKALKKQTNLR to be a putative c-di-GMP binding motif. Most interestingly, different from the previously identified c-di-GMP binding motif of the PilZ domain (RXXXR) or the I site of diguanylate cyclases (RXXD), two leucine residues and a glutamine residue and not the charged amino acids provided the key residues of the binding sequence. Those three amino acids are highly conserved across PA3740 homologs, and their singular exchange to alanine reduced c-di-GMP binding within the full-length protein. IMPORTANCE In many bacterial pathogens the universal bacterial second messenger c-di-GMP governs the switch from the planktonic, motile mode of growth to the sessile, biofilm mode of growth. Bacteria adapt their intracellular c-di-GMP levels to a variety of environmental challenges. Several classes of c-di-GMP binding proteins have been structurally characterized, and diverse c-di-GMP binding domains have been identified. Nevertheless, for several c-di-GMP receptors, the binding motif remains to be determined. Here we show that the use of a synthetic peptide array allowed the identification of a c-di-GMP binding motif of a putative c

  5. Curvature sensing MARCKS-ED peptides bind to membranes in a stereo-independent manner.

    PubMed

    Yan, Lei; de Jesus, Armando Jerome; Tamura, Ryo; Li, Victoria; Cheng, Kui; Yin, Hang

    2015-07-01

    Membrane curvature and lipid composition plays a critical role in interchanging of matter and energy in cells. Peptide curvature sensors are known to activate signaling pathways and promote molecular transport across cell membranes. Recently, the 25-mer MARCKS-ED peptide, which is derived from the effector domain of the myristoylated alanine-rich C kinase substrate protein, has been reported to selectively recognize highly curved membrane surfaces. Our previous studies indicated that the naturally occurring L-MARCKS-ED peptide could simultaneously detect both phosphatidylserine and curvature. Here, we demonstrate that D-MARCKS-ED, composed by unnatural D-amino acids, has the same activities as its enantiomer, L-MARCKS-ED, as a curvature and lipid sensor. An atomistic molecular dynamics simulation suggests that D-MARCKS-ED may change from linear to a boat conformation upon binding to the membrane. Comparable enhancement of fluorescence intensity was observed between D- and L-MARCKS-ED peptides, indicating similar binding affinities. Meanwhile, circular dichroism spectra of D- and L-MARCKS-ED are almost symmetrical both in the presence and absence of liposomes. These results suggest similar behavior of artificial D- and natural L-MARCKS-ED peptides when binding to curved membranes. Our studies may contribute to further understanding of how MARCKS-ED senses membrane curvature as well as provide a new direction to develop novel membrane curvature probes.

  6. Efficient conformational sampling of peptides adsorbed onto inorganic surfaces: insights from a quartz binding peptide.

    PubMed

    Wright, Louise B; Walsh, Tiffany R

    2013-04-07

    Harnessing the properties of biomolecules, such as peptides, adsorbed on inorganic surfaces is of interest to many cross-disciplinary areas of science, ranging from biomineralisation to nanomedicine. Key to advancing research in this area is determination of the peptide conformation(s) in its adsorbed state, at the aqueous interface. Molecular simulation is one such approach for accomplishing this goal. In this respect, use of temperature-based replica-exchange molecular dynamics (T-REMD) can yield enhanced sampling of the interfacial conformations, but does so at great computational expense, chiefly because of the need to include an explicit representation of water at the interface. Here, we investigate a number of more economical variations on REMD, chiefly those based on Replica Exchange with Solvent Tempering (REST), using the aqueous quartz-binding peptide S1-(100) α-quartz interfacial system as a benchmark. We also incorporate additional implementation details specifically targeted at improving sampling of biomolecules at interfaces. We find the REST-based variants yield configurational sampling of the peptide-surface system comparable with T-REMD, at a fraction of the computational time and resource. Our findings also deliver novel insights into the binding behaviour of the S1 peptide at the quartz (100) surface that are consistent with available experimental data.

  7. Zooming into the binding groove of HLA molecules: which positions and which substitutions change peptide binding most?

    PubMed

    van Deutekom, Hanneke W M; Keşmir, Can

    2015-08-01

    Human leukocyte antigen (HLA) genes are the most polymorphic genes in the human genome. Almost all polymorphic residues are located in the peptide-binding groove, resulting in different peptide-binding preferences. Whether a single amino acid change can alter the peptide-binding repertoire of an HLA molecule has never been shown. To experimentally quantify the contribution of a single amino acid change to the peptide repertoire of even a single HLA molecule requires an immense number of HLA peptide-binding measurements. Therefore, we used an in silico method to study the effect of single mutations on the peptide repertoires. We predicted the peptide-binding repertoire of a large set of HLA molecules and used the overlap of the peptide-binding repertoires of each pair of HLA molecules that differ on a single position to measure how much single substitutions change the peptide binding. We found that the effect of a single substitution in the peptide-binding groove depends on the substituted position and the amino acids involved. The positions that alter peptide binding most are the most polymorphic ones, while those that are hardly variable among HLA molecules have the lowest effect on the peptide repertoire. Although expected, the relationship between functional divergence and polymorphism of HLA molecules has never been shown before. Additionally, we show that a single substitution in HLA-B molecules has more effect on the peptide-binding repertoire compared to that in HLA-A molecules. This provides an (alternative) explanation for the larger polymorphism of HLA-B molecules compared to HLA-A molecules.

  8. Subtle conformational changes induced in major histocompatibility complex class II molecules by binding peptides.

    PubMed

    Chervonsky, A V; Medzhitov, R M; Denzin, L K; Barlow, A K; Rudensky, A Y; Janeway, C A

    1998-08-18

    Intracellular trafficking of major histocompatibility complex (MHC) class II molecules is characterized by passage through specialized endocytic compartment(s) where antigenic peptides replace invariant chain fragments in the presence of the DM protein. These changes are accompanied by structural transitions of the MHC molecules that can be visualized by formation of compact SDS-resistant dimers, by changes in binding of mAbs, and by changes in T cell responses. We have observed that a mAb (25-9-17) that is capable of staining I-Ab on the surface of normal B cells failed to interact with I-Ab complexes with a peptide derived from the Ealpha chain of the I-E molecule but bound a similar covalent complex of I-Ab with the class II binding fragment (class II-associated invariant chain peptides) of the invariant chain. Moreover, 25-9-17 blocked activation of several I-Ab-reactive T cell hybridomas but failed to block others, suggesting that numerous I-Ab-peptide complexes acquire the 25-9-17(+) or 25-9-17(-) conformation. Alloreactive T cells were also able to discriminate peptide-dependent variants of MHC class II molecules. Thus, peptides impose subtle structural transitions upon MHC class II molecules that affect T cell recognition and may thus be critical for T cell selection and autiommunity.

  9. Fibronectin peptides that bind PDGF-BB enhance survival of cells and tissue under stress

    PubMed Central

    Lin, Fubao; Zhu, Jia; Tonnesen, Marcia G.; Taira, Breena R.; McClain, Steve A.; Singer, Adam J.; Clark, Richard A.F.

    2013-01-01

    Stressors after injury from a multitude of factors can lead to cell death. We have identified four fibronectin (FN) peptides, two from the first FN type III repeat (FNIII1), one from the 13th FN type III repeat (FNIII13), and one from FN variable region (IIICS), that when tethered to a surface acted as platelet-derived growth factor-BB (PDGF-BB) enhancers to promote cell survival. One of the FNIII1 peptides and its smallest (14mer) bioactive form (P12) were also active in solution. Specifically, P12 bound PDGF-BB (KD = 200nM), enhanced adult human dermal fibroblast (AHDF) survival under serum starvation, oxidative or endoplasmic reticulum (ER) stressors, and limited burn injury progression in a rat hot comb model. Furthermore, P12 inhibited ER stress-induced c-Jun N-terminal kinase (JNK) activation. Although many growth factors have been found to bind FN directly or indirectly, this is the first report to identify peptide sequences of growth factor-binding sites in FN. The finding of these novel peptides further delineated how the extracellular matrix protein FN can support cell survival. Since the peptide P12 is active in either soluble form or tethered to a substrate, it will have multifactorial uses as a bioactive in tissue engineering. PMID:24126844

  10. Peptide consensus sequence determination for the enhancement of the antimicrobial activity and selectivity of antimicrobial peptides

    PubMed Central

    Almaaytah, Ammar; Ajingi, Ya’u; Abualhaijaa, Ahmad; Tarazi, Shadi; Alshar’i, Nizar; Al-Balas, Qosay

    2017-01-01

    The rise of multidrug-resistant bacteria is causing a serious threat to the world’s human population. Recent reports have identified bacterial strains displaying pan drug resistance against antibiotics and generating fears among medical health specialists that humanity is on the dawn of entering a post-antibiotics era. Global research is currently focused on expanding the lifetime of current antibiotics and the development of new antimicrobial agents to tackle the problem of antimicrobial resistance. In the present study, we designed a novel consensus peptide named “Pepcon” through peptide consensus sequence determination among members of a highly homologous group of scorpion antimicrobial peptides. Members of this group were found to possess moderate antimicrobial activity with significant toxicity against mammalian cells. The aim of our design method was to generate a novel peptide with an enhanced antimicrobial potency and selectivity against microbial rather than mammalian cells. The results of our study revealed that the consensus peptide displayed potent antibacterial activities against a broad range of Gram-positive and Gram-negative bacteria. Our membrane permeation studies displayed that the peptide efficiently induced membrane damage and consequently led to cell death through the process of cell lysis. The microbial DNA binding assay of the peptide was found to be very weak suggesting that the peptide is not targeting the microbial DNA. Pepcon induced minimal cytotoxicity at the antimicrobial concentrations as the hemolytic activity was found to be zero at the minimal inhibitory concentrations (MICs). The results of our study demonstrate that the consensus peptide design strategy is efficient in generating peptides. PMID:28096686

  11. A Small Subset of Signal Peptidase Residues are Perturbed by Signal Peptide Binding

    PubMed Central

    Musial-Siwek, Monika; Yeagle, Philip L.; Kendall, Debra A.

    2008-01-01

    Perturbations of the chemical shifts of a small subset of residues in the catalytically active domain of Escherichia coli signal peptidase I (SPase I) upon binding signal peptide suggest the contact surface on the enzyme for the substrate. SPase I, an integral membrane protein, is vital to preprotein transport in prokaryotic and eukaryotic secretory systems; it binds and proteolyses the N-terminal signal peptide of the preprotein, permitting folding and localization of the mature protein. Employing isotopically labeled C-terminal E. coli SPase I Δ2–75 and an unlabeled soluble synthetic alkaline phosphatase signal peptide, SPase I Δ2–75 was titrated with the signal peptide and 2Δ 1H-15N hetero-nuclear single-quantum correlation nuclear magnetic resonance spectra revealed chemical shifts of specific enzyme residues sensitive to substrate binding. These residues were identified by 3D HNCACB, 3D CBCA(CO)NH, and 3D HN(CO) experiments. Residues Ile80, Glu82, Gln85, Ile86, Ser88, Gly89, Ser90, Met91, Leu95, Ile101, Gly109, Val132, Lys134, Asp142, Ile144, Lys145, and Thr234, alter conformation and are likely all in, or adjacent to, the substrate binding site. The remainder of the enzyme structure is unperturbed. Ramifications for conformational changes for substrate docking and catalysis are discussed. PMID:18637988

  12. Protection of Nonself Surfaces from Complement Attack by Factor H-Binding Peptides: Implications for Therapeutic Medicine

    PubMed Central

    Wu, You-Qiang; Qu, Hongchang; Sfyroera, Georgia; Tzekou, Apostolia; Kay, Brian K.; Nilsson, Bo; Ekdahl, Kristina Nilsson; Ricklin, Daniel; Lambris, John D.

    2011-01-01

    Exposure of nonself surfaces such as those of biomaterials or transplanted cells and organs to host blood frequently triggers innate immune responses, thereby affecting both their functionality and tolerability. Activation of the alternative pathway of complement plays a decisive role in this unfavorable reaction. Whereas previous studies demonstrated that immobilization of physiological regulators of complement activation (RCA) can attenuate this foreign body-induced activation, simple and efficient approaches for coating artificial surfaces with intact RCA are still missing. The conjugation of small molecular entities that capture RCA with high affinity is an intriguing alternative, as this creates a surface with autoregulatory activity upon exposure to blood. We therefore screened two variable cysteine-constrained phage-displayed peptide libraries for factor H-binding peptides. We discovered three peptide classes that differed with respect to their main target binding areas. Peptides binding to the broad middle region of factor H (domains 5–18) were of particular interest, as they do not interfere with either regulatory or binding activities. One peptide in this group (5C6) was further characterized and showed high factor H-capturing activity while retaining its functional integrity. Most importantly, when 5C6 was coated to a model polystyrene surface and exposed to human lepirudin-anticoagulated plasma, the bound peptide captured factor H and substantially inhibited complement activation by the alternative pathway. Our study therefore provides a promising and novel approach to produce therapeutic materials with enhanced biocompatibility. PMID:21339361

  13. Camptothecin binds to a synthetic peptide identified by a T7 phage display screen.

    PubMed

    Takakusagi, Yoichi; Kobayashi, Susumu; Sugawara, Fumio

    2005-11-01

    An analysis of non-biotinylated camptothecin (CPT) binding to the C-20-biotinylated CPT binding peptide NSSQSARR was carried out using two methods, quartz-crystal microbalance (QCM) and surface plasmon resonance (SPR). The peptide was immobilized peptide on a sensor chip and showed a dissociation constant (KD) of approximately 0.1 microM against CPT in QCM and SPR experiments.

  14. Rabies virus binding to an acetylcholine receptor alpha-subunit peptide.

    PubMed

    Lentz, T L

    1990-04-01

    The binding of 125I-labeled rabies virus to a synthetic peptide comprising residues 173-204 of the alpha 1-subunit of the nicotinic acetylcholine receptor was investigated. Binding of rabies virus to the receptor peptide was dependent on pH, could be competed with by unlabeled homologous virus particles, and was saturable. Synthetic peptides of snake venom, curaremimetic neurotoxins and of the structurally similar segment of the rabies virus glycoprotein, were effective in competing with labeled virus binding to the receptor peptide at micromolar concentrations. Similarly, synthetic peptides of the binding domain on the acetylcholine receptor competed for binding. These findings suggest that both rabies virus and neurotoxins bind to residues 173-204 of the alpha 1-subunit of the acetylcholine receptor. Competition studies with shorter alpha-subunit peptides within this region indicate that the highest affinity virus binding determinants are located within residues 179-192. A rat nerve alpha 3-subunit peptide, that does not bind alpha-bungarotoxin, inhibited binding of virus to the alpha 1 peptide, suggesting that rabies binds to neuronal nicotinic acetylcholine receptors. These studies indicate that synthetic peptides of the glycoprotein binding domain and of the receptor binding domain may represent useful antiviral agents by targeting the recognition event between the viral attachment protein and the host cell receptor, and inhibiting attachment of virus to the receptor.

  15. A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition

    PubMed Central

    Kuo, Ping-Hsueh; Chang, Pei-Lin; Wang, Wen-Ching; Chuang, Yung-Jen; Chang, Margaret Dah-Tsyr

    2015-01-01

    As heparan sulfate proteoglycans (HSPGs) are known as co-receptors to interact with numerous growth factors and then modulate downstream biological activities, overexpression of HS/HSPG on cell surface acts as an increasingly reliable prognostic factor in tumor progression. Cell penetrating peptides (CPPs) are short-chain peptides developed as functionalized vectors for delivery approaches of impermeable agents. On cell surface negatively charged HS provides the initial attachment of basic CPPs by electrostatic interaction, leading to multiple cellular effects. Here a functional peptide (CPPecp) has been identified from critical HS binding region in hRNase3, a unique RNase family member with in vitro antitumor activity. In this study we analyze a set of HS-binding CPPs derived from natural proteins including CPPecp. In addition to cellular binding and internalization, CPPecp demonstrated multiple functions including strong binding activity to tumor cell surface with higher HS expression, significant inhibitory effects on cancer cell migration, and suppression of angiogenesis in vitro and in vivo. Moreover, different from conventional highly basic CPPs, CPPecp facilitated magnetic nanoparticle to selectively target tumor site in vivo. Therefore, CPPecp could engage its capacity to be developed as biomaterials for diagnostic imaging agent, therapeutic supplement, or functionalized vector for drug delivery. PMID:26064887

  16. Small Retinoprotective Peptides Reveal a Receptor-binding Region on Pigment Epithelium-derived Factor*

    PubMed Central

    Kenealey, Jason; Subramanian, Preeti; Comitato, Antonella; Bullock, Jeanee; Keehan, Laura; Polato, Federica; Hoover, David; Marigo, Valeria; Becerra, S. Patricia

    2015-01-01

    The cytoprotective effects of pigment epithelium-derived factor (PEDF) require interactions between an as of a yet undefined region with a distinct ectodomain on the PEDF receptor (PEDF-R). Here we characterized the area in PEDF that interacts with PEDF-R to promote photoreceptor survival. Molecular docking studies suggested that the ligand binding site of PEDF-R interacts with the neurotrophic region of PEDF (44-mer, positions 78–121). Binding assays demonstrated that PEDF-R bound the 44-mer peptide. Moreover, peptide P1 from the PEDF-R ectodomain had affinity for the 44-mer and a shorter fragment within it, 17-mer (positions 98–114). Single residue substitutions to alanine along the 17-mer sequence were designed and tested for binding and biological activity. Altered 17-mer[R99A] did not bind to the P1 peptide, whereas 17-mer[H105A] had higher affinity than the unmodified 17-mer. Peptides 17-mer, 17-mer[H105A], and 44-mer exhibited cytoprotective effects in cultured retina R28 cells. Intravitreal injections of these peptides and PEDF in the rd1 mouse model of retinal degeneration decreased the numbers of dying photoreceptors, 17-mer[H105A] being most effective. The blocking peptide P1 hindered their protective effects both in retina cells and in vivo. Thus, in addition to demonstrating that the region composed of positions 98–114 of PEDF contains critical residues for PEDF-R interaction that mediates survival effects, the findings reveal distinct small PEDF fragments with neurotrophic effects on photoreceptors. PMID:26304116

  17. Structural and functional characterization of the human formyl peptide receptor ligand-binding region.

    PubMed Central

    Radel, S J; Genco, R J; De Nardin, E

    1994-01-01

    The formyl peptide (N-formyl-1-methionyl-1-leucyl-1-phenylalanine [FMLP]) receptor is involved in the activation of neutrophils and their subsequent response to chemotactic N-formylated peptides. Recently, we found that the first extracellular loop closest to the N-terminal end of the FMLP receptor exhibited the strongest ligand binding compared with that shown by other extracellular regions. By constructing amino acid substitutional variants of this domain, we have determined that residues Arg-84 and Lys-85 on this loop play major roles in ligand-binding activity. Furthermore, random rearrangement of the residues of this receptor region demonstrated that the position of these charged amino acids did not affect their involvement in ligand binding, although their presence was essential for this binding to occur. We propose that the portion of the first N-terminal extracellular loop of the FMLP receptor containing residues Arg-84 and Lys-85 contributes significantly to the active site in ligand-receptor binding. We further propose that this binding is not dependent on defined structure but rather that these charged moieties may function as important "contacts" in receptor-ligand interactions. Images PMID:8168934

  18. Signal peptides are allosteric activators of the protein translocase

    PubMed Central

    Gouridis, Giorgos; Karamanou, Spyridoula; Gelis, Ioannis; Kalodimos, Charalampos G.; Economou, Anastassios

    2010-01-01

    Extra-cytoplasmic polypeptides are usually synthesized as “preproteins” carrying aminoterminal, cleavable signal peptides1 and secreted across membranes by translocases. The main bacterial translocase comprises the SecYEG protein-conducting channel and the peripheral ATPase motor SecA2,3. Most proteins destined for the periplasm and beyond are exported post-translationally by SecA2,3. Preprotein targeting to SecA is thought to involve signal peptides4 and chaperones like SecB5,6. Here we reveal that signal peptides have a novel role beyond targeting: they are essential allosteric activators of the translocase. Upon docking on their binding groove on SecA, signal peptides act in trans to drive three successive states: first, “triggering” that drives the translocase to a lower activation energy state; then “trapping” that engages non-native preprotein mature domains docked with high affinity on the secretion apparatus and, finally, “secretion” during which trapped mature domains undergo multiple turnovers of translocation in segments7. A significant contribution by mature domains renders signal peptides less critical in bacterial secretory protein targeting than currently assumed. Rather, it is their function as allosteric activators of the translocase that renders signal peptides essential for protein secretion. A role for signal peptides and targeting sequences as allosteric activators may be universal in protein translocases. PMID:19924216

  19. Learning a peptide-protein binding affinity predictor with kernel ridge regression

    PubMed Central

    2013-01-01

    Background The cellular function of a vast majority of proteins is performed through physical interactions with other biomolecules, which, most of the time, are other proteins. Peptides represent templates of choice for mimicking a secondary structure in order to modulate protein-protein interaction. They are thus an interesting class of therapeutics since they also display strong activity, high selectivity, low toxicity and few drug-drug interactions. Furthermore, predicting peptides that would bind to a specific MHC alleles would be of tremendous benefit to improve vaccine based therapy and possibly generate antibodies with greater affinity. Modern computational methods have the potential to accelerate and lower the cost of drug and vaccine discovery by selecting potential compounds for testing in silico prior to biological validation. Results We propose a specialized string kernel for small bio-molecules, peptides and pseudo-sequences of binding interfaces. The kernel incorporates physico-chemical properties of amino acids and elegantly generalizes eight kernels, comprised of the Oligo, the Weighted Degree, the Blended Spectrum, and the Radial Basis Function. We provide a low complexity dynamic programming algorithm for the exact computation of the kernel and a linear time algorithm for it’s approximation. Combined with kernel ridge regression and SupCK, a novel binding pocket kernel, the proposed kernel yields biologically relevant and good prediction accuracy on the PepX database. For the first time, a machine learning predictor is capable of predicting the binding affinity of any peptide to any protein with reasonable accuracy. The method was also applied to both single-target and pan-specific Major Histocompatibility Complex class II benchmark datasets and three Quantitative Structure Affinity Model benchmark datasets. Conclusion On all benchmarks, our method significantly (p-value ≤ 0.057) outperforms the current state-of-the-art methods at predicting

  20. Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors.

    PubMed

    Pomorska, Dorota K; Gach, Katarzyna; Janecka, Anna

    2014-01-01

    The main role of endogenous opioid peptides is the modulation of pain. Opioid peptides exert their analgesic activity by binding to the opioid receptors distributed widely in the central nervous system (CNS). However, opioid receptors are also found on tissues and organs outside the CNS, including the cells of the immune system, indicating that opioids are capable of exerting additional effects in periphery. Morphine, which is a gold standard in the treatment of chronic pain, is well-known for its immunosuppressive effects. Much less is known about the immunomodulatory effects exerted by endogenous (enkephalins, endorphins, dynorphins and endomorphins) and synthetic peptides activating opioid receptors. In this review we tried to summarize opioid peptide-mediated modulation of immune cell functions which can be stimulatory as well as inhibitory.

  1. Endotoxin-Binding Peptides Derived from Casein Glycomacropeptide Inhibit Lipopolysaccharide-Stimulated Inflammatory Responses via Blockade of NF-κB activation in macrophages

    PubMed Central

    Cheng, Xue; Gao, Dongxiao; Chen, Bin; Mao, Xueying

    2015-01-01

    Systemic low-grade inflammation and increased circulating lipopolysaccharide (LPS) contribute to metabolic dysfunction. The inhibitory effects and underlying molecular mechanisms of casein glycomacropeptide (GMP) hydrolysate on the inflammatory response of LPS-stimulated macrophages were investigated. Results showed that the inhibitory effect of GMP hydrolysates obtained with papain on nitric oxide (NO) production were obviously higher than that of GMP hydrolysates obtained with pepsin, alcalase and trypsin (p < 0.05), and the hydrolysate obtained with papain for 1 h hydrolysis (GHP) exhibited the highest inhibitory effect. Compared with native GMP, GHP markedly inhibited LPS-induced NO production in a dose-dependent manner with decreased mRNA level of inducible nitric oxide synthase (iNOS). GHP blocked toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway activation, accompanied by downregulation of LPS-triggered significant upregulation of tumor necrosis factor (TNF)-α and interleukin (IL)-1β gene expression. Furthermore, GHP could neutralize LPS not only by direct binding to LPS, but also by inhibiting the engagement of LPS with the TLR4/MD2 complex, making it a potential LPS inhibitor. In conclusion, these findings suggest that GHP negatively regulates TLR4-mediated inflammatory response in LPS-stimulated RAW264.7 cells, and therefore may hold potential to ameliorate inflammation-related issues. PMID:25923657

  2. Copper-binding peptides from human prion protein and newly designed peroxidative biocatalysts.

    PubMed

    Kagenishi, Tomoko; Yokawa, Ken; Kadono, Takashi; Uezu, Kazuya; Kawano, Tomonori

    2011-01-01

    A previous work suggested that peptides from the histidine-containing copper-binding motifs in human prion protein (PrP) function as peroxidase-like biocatalysts catalyzing the generation of superoxide anion radicals in the presence of neurotransmitters (aromatic monoamines) and phenolics such as tyrosine and tyrosyl residues on proteins. In this study, using various phenolic substrates, the phenol-dependent superoxide-generating activities of PrP-derived peptide sequences were compared. Among the peptides tested, the GGGTH pentapeptide was shown to be the most active catalyst for phenol-dependent reactions. Based on these results, we designed a series of oligoglycyl-histidines as novel peroxidative biocatalysts, and their catalytic performances including kinetics, heat tolerance, and freezing tolerance were analysed.

  3. ARSENITE BINDING TO SYNTHETIC PEPTIDES: THE EFFECT OF INCREASING LENGTH BETWEEN TWO CYSTEINES

    EPA Science Inventory

    Binding of trivalent arsenicals to peptides and proteins can alter peptide/protein structure and enzyme function and thereby contribute to arsenic toxicity and carcinogenicity. We utilized radioactive 73As- labeled arsenite and vacuum filtration methodology to determine the bindi...

  4. Inorganic binding peptides designed by phage display techniques for biotechnology applications

    NASA Astrophysics Data System (ADS)

    Liao, Chih-Wei

    Biomacromolecules play an important role in the control of hard tissue structure and function via specific molecular recognition interactions between proteins of the matrix and inorganic species of the biomineral phase. During the construction of the tissue, biomacromolecules are usually folded into a certain comformation, analogous to a "lock" for fitting with other proteins or smaller molecules as a "key". Currently, the rational design of molecular recognition in biomacro-molecules is still hard to accomplish because the protein conformation is too complex to precisely predict based on the existing conformational information of proteins found in biological systems. In the past two decades, the combinatorial approach (e.g. phage display techniques) has been used to select short binding peptides with molecular recognition to an inorganic target material without a prior knowledge of the amino acid sequence required for the specific binding. The technique has been referred to as "biopanning" because bacteriophages are used to "screen" for peptides that exhibit strong binding to a target material of interest. In this study, two diverse applications were chosen to demonstrate the utility of the biopanning approach. In one project, phage display techniques were used to pan for Indium Zinc Oxide (InZnO) binding peptides to serve as linkers between transducer devices and biosensing elements for demonstration of the feasibility of reversibly electro-activated biosensors. The amorphous InZnO, with its homogeneous surface, led to three consensus peptide sequences, AGFPNSTHSSNL, SHAPDSTWFALF, and TNSSSQFVVAIP. In addition, it was demonstrated that some selected phage clones of the InZnO binding peptides were able to be released from the InZnO surface after applying a voltage of 1400 mV on an electro-activated releasing device. In the second project, phage display techniques were used to select phage clones that bind specifically to francolite mineral in order to achieve

  5. Highly potent antimicrobial peptides from N-terminal membrane-binding region of E. coli MreB

    PubMed Central

    Saikia, Karabi; Sravani, Yalavarthi Durga; Ramakrishnan, Vibin; Chaudhary, Nitin

    2017-01-01

    Microbial pathogenesis is a serious health concern. The threat escalates as the existing conventional antimicrobials are losing their efficacy against the evolving pathogens. Peptides hold promise to be developed into next-generation antibiotics. Antimicrobial peptides adopt amphipathic structures that could selectively bind to and disrupt the microbial membranes. Interaction of proteins with membranes is central to all living systems and we reasoned that the membrane-binding domains in microbial proteins could be developed into efficient antimicrobials. This is an interesting approach as self-like sequences could elude the microbial strategies of degrading the antimicrobial peptides, one of the mechanisms of showing resistance to antimicrobials. We selected the 9-residue-long membrane-binding region of E. coli MreB protein. The 9-residue peptide (C-terminal amide) and its N-terminal acetylated analog displayed broad-spectrum activity, killing Gram-negative bacteria, Gram-positive bacteria, and fungi. Extension with a tryptophan residue at the N-terminus drastically improved the activity of the peptides with lethal concentrations ≤10 μM against all the organisms tested. The tryptophan-extended peptides caused complete killing of C. albicans as well as gentamicin and methicillin resistant S. aureus at 5 μM concentration. Lipid-binding studies and electron microscopic analyses of the peptide-treated microbes suggest membrane disruption as the mechanism of killing. PMID:28230084

  6. Highly potent antimicrobial peptides from N-terminal membrane-binding region of E. coli MreB.

    PubMed

    Saikia, Karabi; Sravani, Yalavarthi Durga; Ramakrishnan, Vibin; Chaudhary, Nitin

    2017-02-23

    Microbial pathogenesis is a serious health concern. The threat escalates as the existing conventional antimicrobials are losing their efficacy against the evolving pathogens. Peptides hold promise to be developed into next-generation antibiotics. Antimicrobial peptides adopt amphipathic structures that could selectively bind to and disrupt the microbial membranes. Interaction of proteins with membranes is central to all living systems and we reasoned that the membrane-binding domains in microbial proteins could be developed into efficient antimicrobials. This is an interesting approach as self-like sequences could elude the microbial strategies of degrading the antimicrobial peptides, one of the mechanisms of showing resistance to antimicrobials. We selected the 9-residue-long membrane-binding region of E. coli MreB protein. The 9-residue peptide (C-terminal amide) and its N-terminal acetylated analog displayed broad-spectrum activity, killing Gram-negative bacteria, Gram-positive bacteria, and fungi. Extension with a tryptophan residue at the N-terminus drastically improved the activity of the peptides with lethal concentrations ≤10 μM against all the organisms tested. The tryptophan-extended peptides caused complete killing of C. albicans as well as gentamicin and methicillin resistant S. aureus at 5 μM concentration. Lipid-binding studies and electron microscopic analyses of the peptide-treated microbes suggest membrane disruption as the mechanism of killing.

  7. Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Soares, Jason W.; Mello, Charlene M.

    2004-03-01

    Antimicrobial peptides (AMPs) have been discovered in insects, mammals, reptiles, and plants to protect against microbial infection. Many of these peptides have been isolated and studied exhaustively to decipher the molecular mechanisms that impart protection against infectious bacteria, fungi, and viruses. Unfortunately, the molecular mechanisms are still being debated within the scientific community but valuable clues have been obtained through structure/function relationship studies1. Biophysical studies have revealed that cecropins, isolated from insects and pigs, exhibit random structure in solution but undergo a conformational change to an amphipathic α-helix upon interaction with a membrane surface2. The lack of secondary structure in solution results in an extremely durable peptide able to survive exposure to high temperatures, organic solvents and incorporation into fibers and films without compromising antibacterial activity. Studies to better understand the antimicrobial action of cecropins and other AMPs have provided insight into the importance of peptide sequence and structure in antimicrobial activities. Therefore, enhancing our knowledge of how peptide structure imparts function may result in customized peptide sequences tailored for specific applications such as targeted cell delivery systems, novel antibiotics and food preservation additives. This review will summarize the current state of knowledge with respect to cell binding and antimicrobial activity of AMPs focusing primarily upon cecropins.

  8. Identification of peptide motif that binds to the surface of zirconia.

    PubMed

    Hashimoto, Kazuhiko; Yoshinari, Masao; Matsuzaka, Kenichi; Shiba, Kiyotaka; Inoue, Takashi

    2011-01-01

    A zirconia-binding peptide motif was identified using a peptide phage display system. Yttria stabilized zirconia beads and discs were used as the target. Quartz crystal microbalance was used to monitor the binding of phages to zirconia. Starting from a library of phages displaying random sequences of 12-mer peptides, we repeated cycles of biopanning against zirconia beads. After four cycles of biopanning, we isolated a phage clone Φ#17. DNA sequencing of the corresponding portion of Φ#17 unexpectedly revealed that it displayed a 58-mer peptide (amino acid sequence: WMPSDVDINDPQGGGSRPNLHQPKPAAEAASKKKSENRKVPFYSHSWY-SSMSEDKRGW). We found that Φ#17 had a 300-fold, significantly higher binding affinity for zirconia discs than phages displaying no peptide. In quartz crystal microbalance assay, a rapid increase in energy dissipation was observed from Φ#17 but not from the control phages, indicating that Φ#17 binds to the surface of zirconia via its displayed peptide. We successfully identified a peptide motif that binds zirconia.

  9. Attaching the phage display-selected GLA peptide to liposomes: factors influencing target binding.

    PubMed

    van Rooy, Inge; Hennink, Wim E; Storm, Gert; Schiffelers, Raymond M; Mastrobattista, Enrico

    2012-02-14

    In our previous study, phage display selections were performed by in situ perfusion of a random peptide library through a mouse brain. This yielded two peptides (GLA and GYR) that showed significant binding to human brain endothelial cells (hCMEC/D3) when displayed on phage particles, but not to human umbilical vein endothelial cells (HUVECs). In the present study, these peptides were produced synthetically and coupled to liposomes to investigate the capacity of the peptides to act as ligands for targeting to hCMEC/D3 cells. Flow cytometry studies showed that these peptides when coupled to liposomes showed weak binding to the target brain endothelial cells. We hypothesized that the weak endothelial cell binding of the selected peptides when coupled to liposomes as compared to the binding of the peptides displayed on phage particles may be ascribed to: change of vehicle shape, change of peptide density, or change of peptide conformation. Peptide density on the liposomes influenced binding of the liposomes to the cells, however, this effect was minor. To study the influence of the peptide conformation, the GLA peptide was recombinantly produced fused to the N1-N2 domains of the phage p3 minor coat protein (p3-GLA) to mimic its conformation when displayed on phage particles. Binding of liposomes modified with either the GLA peptide or the p3-GLA protein to hCMEC/D3 cells was studied, and the p3-GLA-liposomes showed a higher binding to the cells compared to the GLA-liposomes. The experiments demonstrate that bringing the GLA peptide into the original phage protein environment restores and improves the peptide binding capacity and suggest that the GLA peptide, with some modifications, may be used as a brain-targeting ligand in the future.

  10. Unusual features of Self-Peptide/MHC Binding by Autoimmune T Cell Receptors

    SciTech Connect

    Nicholson,M.; Hahn, M.; Wucherpfennig, K.

    2005-01-01

    Structural studies on T cell receptors (TCRs) specific for foreign antigens demonstrated a remarkably similar topology characterized by a central, diagonal TCR binding mode that maximizes interactions with the MHC bound peptide. However, three recent structures involving autoimmune TCRs demonstrated unusual interactions with self-peptide/MHC complexes. Two TCRs from multiple sclerosis patients bind with unconventional topologies, and both TCRs are shifted toward the peptide N terminus and the MHC class II {beta} chain helix. A TCR from the experimental autoimmune encephalomyelitis (EAE) model binds in a conventional orientation, but the structure is unusual because the self-peptide only partially fills the binding site. For all three TCRs, interaction with the MHC bound self-peptide is suboptimal, and only two or three TCR loops contact the peptide. Optimal TCR binding modes confer a competitive advantage for antimicrobial T cells during an infection, whereas altered binding properties may permit survival of a subset of autoreactive T cells during thymic selection.

  11. Trastuzumab-binding peptide display by Tobacco mosaic virus

    SciTech Connect

    Frolova, Olga Y.; Petrunia, Igor V.; Komarova, Tatiana V.; Kosorukov, Vyacheslav S.; Sheval, Eugene V.; Gleba, Yuri Y.; Dorokhov, Yuri L.

    2010-11-10

    Human epidermal growth factor receptor-2 (HER2/neu) is a target for the humanized monoclonal antibody trastuzumab. Recently, trastuzumab-binding peptides (TBP) of HER2/neu that inhibit proliferation of breast cancer cells were identified. We have now studied conditions of efficient assembly in vivo of Tobacco mosaic virus (TMV)-based particles displaying TBP on its surface. The system is based on an Agrobacterium-mediated co-delivery of binary vectors encoding TMV RNA and coat protein (CP) with TBP in its C-terminal extension into plant leaves. We show how the fusion of amino acid substituted TBP (sTBP) to CP via a flexible peptide linker can improve the manufacturability of recombinant TMV (rTMV). We also reveal that rTMV particles with exposed sTBP retained trastuzumab-binding capacity but lost an anti-HER2/neu immunogenic scaffold function. Mouse antibodies against rTMV did not recognize HER2/neu on surface of human SK-BR-3 cells.

  12. Design of Compact Biomimetic Cellulose Binding Peptides as Carriers for Cellulose Catalytic Degradation.

    PubMed

    Khazanov, Netaly; Iline-Vul, Taly; Noy, Efrat; Goobes, Gil; Senderowitz, Hanoch

    2016-01-21

    The conversion of biomass into biofuels can reduce the strategic vulnerability of petroleum-based systems and at the same time have a positive effect on global climate issues. Lignocellulose is the cheapest and most abundant source of biomass and consequently has been widely considered as a source for liquid fuel. However, despite ongoing efforts, cellulosic biofuels are still far from commercial realization, one of the major bottlenecks being the hydrolysis of cellulose into simpler sugars. Inspired by the structural and functional modularity of cellulases used by many organisms for the breakdown of cellulose, we propose to mimic the cellulose binding domain (CBD) and the catalytic domain of these proteins by small molecular entities. Multiple copies of these mimics could subsequently be tethered together to enhance hydrolytic activity. In this work, we take the first step toward achieving this goal by applying computational approaches to the design of efficient, cost-effective mimetics of the CBD. The design is based on low molecular weight peptides that are amenable to large-scale production. We provide an optimized design of four short (i.e., ∼18 residues) peptide mimetics based on the three-dimensional structure of a known CBD and demonstrate that some of these peptides bind cellulose as well as or better than the full CBD. The structures of these peptides were studied by circular dichroism and their interactions with cellulose by solid phase NMR. Finally, we present a computational strategy for predicting CBD/peptide-cellulose binding free energies and demonstrate its ability to provide values in good agreement with experimental data. Using this computational model, we have also studied the dissociation pathway of the CBDs/peptides from the surface of cellulose.

  13. Baculoviral capsid display of His-tagged ZnO inorganic binding peptide

    PubMed Central

    Song, Lei; Liu, Yingying

    2010-01-01

    Virus-templated fabrication of compound structures can be made through incorporating the specifically inorganic-binding peptide into the viral scaffold, widely used is phage display system. Compared to prokaryotic phages, insect cell-based baculovirus has some strengths such as the adaptability to the proteins’ posttranslational modification and non-replication in mammalian cells. As an attempt to explore the baculovirus-mediated bioconjugates, we show in this study that a genetically engineered baculovirus, with a hexahistidine (His6) tagged ZnO binding peptide fused to the N-terminus of the viral capsid protein vp39 of AcNPV, was constructed. It maintains both the viral infectivity and the fusion protein’s activity. The presence of the fusion protein on the baculovirus particle was demonstrated by western blot analysis of purified budded virus. Its display on the virus capsid was revealed by virus fractionation analysis. The binding of nanosized ZnO powders to the virus capsid was visualized by transmission electron microscopy (TEM). This is the first report of the display of the inorganic-binding peptide on the capsid of eukaryotic baculovirus. Aimed at the nanomaterials’ application in the biological field, this research could find useful in the biotracking of the baculovirus transduction process and the preparation of novel functional nanodevices. PMID:20407822

  14. Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein.

    PubMed

    Lo, Hsin-Yi; Li, Chia-Cheng; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-08-01

    Many food bioactive peptides with diverse functions have been discovered by studying plant proteins. We have previously identified a 68-residue insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia that exhibits hypoglycemic effects in mice via interaction with IR. By in vitro digestion, we found that mcIRBP-19, spanning residues 50-68 of mcIRBP, enhanced the binding of insulin to IR, stimulated the phosphorylation of PDK1 and Akt, induced the expression of glucose transporter 4, and stimulated both the uptake of glucose in cells and the clearance of glucose in diabetic mice. Furthermore, mcIRBP-19 homologs were present in various plants and shared similar β-hairpin structures and IR kinase-activating abilities to mcIRBP-19. In conclusion, our findings suggested that mcIRBP-19 is a blood glucose-lowering bioactive peptide that exhibits IR-binding potentials. Moreover, we newly identified novel IR-binding bioactive peptides in various plants which belonged to different taxonomic families.

  15. The paradox of conformational constraint in the design of Cbl(TKB)-binding peptides

    PubMed Central

    Kumar, Eric A.; Chen, Qianyi; Kizhake, Smitha; Kolar, Carol; Kang, Myungshim; Chang, Chia-en A.; Borgstahl, Gloria E. O.; Natarajan, Amarnath

    2013-01-01

    Solving the crystal structure of Cbl(TKB) in complex with a pentapeptide, pYTPEP, revealed that the PEP region adopted a poly-L-proline type II (PPII) helix. An unnatural amino acid termed a proline-templated glutamic acid (ptE) that constrained both the backbone and sidechain to the bound conformation was synthesized and incorporated into the pYTPXP peptide. We estimated imposing structural constraints onto the backbone and sidechain of the peptide and preorganize it to the bound conformation in solution will yield nearly an order of magnitude improvement in activity. NMR studies confirmed that the ptE-containing peptide adopts the PPII conformation, however, competitive binding studies showed an order of magnitude loss of activity. Given the emphasis that is placed on imposing structural constraints, we provide an example to support the contrary. These results point to conformational flexibility at the interface, which have implications in the design of potent Cbl(TKB)-binding peptides. PMID:23572190

  16. Inhibition of LtxA toxicity by blocking cholesterol binding with peptides.

    PubMed

    Brown, A C; Koufos, E; Balashova, N V; Boesze-Battaglia, K; Lally, E T

    2016-02-01

    The leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans kills host immune cells, allowing the bacterium to establish an ecological niche in the upper aerodigestive tract of its human host. The interaction of LtxA with human immune cells is both complex and multifaceted, involving membrane lipids as well as cell-surface proteins. In the initial encounter with the host cell, LtxA associates with lymphocyte function-associated antigen-1, a cell surface adhesion glycoprotein. However, we have also demonstrated that the toxin associates strongly with the plasma membrane lipids, specifically cholesterol. This association with cholesterol is regulated by a cholesterol recognition amino acid consensus (CRAC) motif, with a sequence of (334) LEEYSKR(340), in the N-terminal region of the toxin. Here, we have demonstrated that removal of cholesterol from the plasma membrane or mutation of the LtxA CRAC motif inhibits the activity of the toxin in THP-1 cells. To inhibit LtxA activity, we designed a short peptide corresponding to the CRAC(336) motif of LtxA (CRAC(336WT)). This peptide binds to cholesterol and thereby inhibits the toxicity of LtxA in THP-1 cells. Previously, we showed that this peptide inhibits LtxA toxicity against Jn.9 (Jurkat) cells, indicating that peptides derived from the cholesterol-binding site of LtxA may have a potential clinical applicability in controlling infections of repeats-in-toxin-producing organisms.

  17. Inhibition of LtxA Toxicity by Blocking Cholesterol Binding With Peptides

    PubMed Central

    Brown, Angela C.; Koufos, Evan; Balashova, Nataliya; Boesze-Battaglia, Kathleen; Lally, Edward T.

    2015-01-01

    Summary The leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans kills host immune cells, allowing the bacterium to establish an ecological niche in the upper aerodigestive tract of its human host. The interaction of LtxA with human immune cells is both complex and multifaceted, involving membrane lipids as well as cell-surface proteins. In the initial encounter with the host cell, LtxA associates with lymphocyte function-associated antigen-1 (LFA-1), a cell surface adhesion glycoprotein. However, we have also demonstrated that the toxin associates strongly with the plasma membrane lipids, specifically cholesterol. This association with cholesterol is regulated by a cholesterol recognition amino acid consensus (CRAC) motif, with a sequence of 334LEEYSKR340, in the N-terminal region of the toxin. Here, we have demonstrated that removal of cholesterol from the plasma membrane or mutation of the LtxA CRAC motif inhibits the activity of the toxin in THP-1 cells. To inhibit LtxA activity, we designed a short peptide corresponding to the CRAC336 motif of LtxA (CRAC336WT). This peptide binds to cholesterol and thereby inhibits the toxicity of LtxA in THP-1 cells. Previously, we showed that this peptide inhibits LtxA toxicity against Jn.9 (Jurkat) cells, indicating that peptides derived from the cholesterol-binding site of LtxA may have a potential clinical applicability in controlling infections of RTX-producing organisms. PMID:26352738

  18. Metacaspase-binding peptide inhibits heat shock-induced death in Leishmania (L.) amazonensis.

    PubMed

    Peña, Mauricio S; Cabral, Guilherme C; Fotoran, Wesley L; Perez, Katia R; Stolf, Beatriz S

    2017-03-02

    Leishmania (Leishmania) amazonensis is an important agent of cutaneous leishmaniasis in Brazil. This parasite faces cell death in some situations during transmission to the vertebrate host, and this process seems to be dependent on the activity of metacaspase (MCA), an enzyme bearing trypsin-like activity present in protozoans, plants and fungi. In fact, the association between MCA expression and cell death induced by different stimuli has been demonstrated for several Leishmania species. Regulators and natural substrates of MCA are poorly known. To fulfill this gap, we have employed phage display over recombinant L. (L.) amazonensis MCA to identify peptides that could interact with the enzyme and modulate its activity. Four peptides were selected for their capacity to specifically bind to MCA and interfere with its activity. One of these peptides, similar to ecotin-like ISP3 of L. (L.) major, decreases trypsin-like activity of promastigotes under heat shock, and significantly decreases parasite heat shock-induced death. These findings indicate that peptide ligands identified by phage display affect trypsin-like activity and parasite death, and that an endogenous peptidase inhibitor is a possible natural regulator of the enzyme.

  19. Structure of Calmodulin Bound to a Calcineurin Peptide: A New Way of Making an Old Binding Mode

    SciTech Connect

    Ye,Q.; Li, X.; Wong, A.; Wei, Q.; Jia, Z.

    2006-01-01

    Calcineurin is a calmodulin-binding protein in brain and the only serine/threonine protein phosphatase under the control of Ca{sup 2+}/calmodulin (CaM), which plays a critical role in coupling Ca{sup 2+} signals to cellular responses. CaM up-regulates the phosphatase activity of calcineurin by binding to the CaM-binding domain (CBD) of calcineurin subunit A. Here, we report crystal structural studies of CaM bound to a CBD peptide. The chimeric protein containing CaM and the CBD peptide forms an intimate homodimer, in which CaM displays a native-like extended conformation and the CBD peptide shows -helical structure. Unexpectedly, the N-terminal lobe from one CaM and the C-terminal lobe from the second molecule form a combined binding site to trap the peptide. Thus, the dimer provides two binding sites, each of which is reminiscent of the fully collapsed conformation of CaM commonly observed in complex with, for example, the myosin light chain kinase (MLCK) peptide. The interaction between the peptide and CaM is highly specific and similar to MLCK.

  20. Designing new surfactant peptides for binding to carbon nanotubes via computational approaches.

    PubMed

    Mansouri, Alireza; Mahnam, Karim

    2017-03-14

    The non-covalent interaction between single-walled carbon nanotube and surfactant peptides makes them soluble in biological media to be used in nano-medicine, drug delivery and gene therapy. Pervious study has shown that two important parameters in binding peptides into nanotubes are hydrophobic effect and the number of aromatic amino acids. Ten surfactant peptides with the length of eight residue, including Lys, Trp, Tyr, Phe and Val, were designed to investigate the important parameters in binding peptides to a (6, 6) carbon nanotube. 500ns MD simulation was performed for free surfactant peptides in water or near to a nanotube. Our results have indicated that the binding affinity of peptides to nanotube increases with the increase of aromatic residue content. Also, among aromatic residues, the peptides containing Trp residues have higher binding affinity to nanotube compared to the peptides with Phe or Tyr residue. Steric hindrance between bulky aromatic residues in peptide sequence has negative influence in binding peptide to nanotube, and in designing a surfactant peptide, the number and distance of aromatic residue and polarity of them should be taken into account. Our results also show that in docking peptides to nanotube, full-flexible docking leads to incorrect results.

  1. A geometric and algebraic view of MHC-peptide complexes and their binding properties

    PubMed Central

    Cano, Pedro; Fan, Bo

    2001-01-01

    Background Major histocompatibility complex (MHC) molecules present peptides to T lymphocytes. It is of critical biological and medical importance to elucidate how different MHC alleles bind to a specific set of peptides. Method In this study we approach the problem from the algebraic and geometric point of view to analyse MHC-peptide-binding data accumulated over the years. The space of sequence properties (having a particular amino acid at a particular position) of MHC-peptide complexes conveys a geometric structure to these sequence properties in the form of a distance measure, which reveals the peptide binding requirements imposed by the polymorphic sequence characteristics of the MHC molecules. Results Comparison of the results of this study with our current knowledge of MHC-peptide binding constraints leads to robust agreement. This study provides the tools to quantitate these binding constraints giving a more detailed account of them and opening the way to make peptide binding predictions for MHC alleles for which there is no peptide elution data. In addition, the geometric representation of MHC-peptide complex sequence data gives a distance measure between amino acids in reference to their ability to meet MHC binding requirements. Conclusions The algebraic and geometric view of amino acid sequences provides a theoretical framework to study the function of proteins when there is enough variation in this sequence to account for the variation in their function, as it is the case with MHC molecules in regard to their ability to present peptides. PMID:11472639

  2. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: toward engineering of functional nanomedicines for Alzheimer's disease.

    PubMed

    Brambilla, Davide; Verpillot, Romain; Le Droumaguet, Benjamin; Nicolas, Julien; Taverna, Myriam; Kóňa, Juraj; Lettiero, Barbara; Hashemi, S Hossein; De Kimpe, Line; Canovi, Mara; Gobbi, Marco; Nicolas, Valérie; Scheper, Wiep; Moghimi, S Moein; Tvaroška, Igor; Couvreur, Patrick; Andrieux, Karine

    2012-07-24

    We have demonstrated that the polyethylene glycol (PEG) corona of long-circulating polymeric nanoparticles (NPs) favors interaction with the amyloid-beta (Aβ(1-42)) peptide both in solution and in serum. The influence of PEGylation of poly(alkyl cyanoacrylate) and poly(lactic acid) NPs on the interaction with monomeric and soluble oligomeric forms of Aβ(1-42) peptide was demonstrated by capillary electrophoresis, surface plasmon resonance, thioflavin T assay, and confocal microscopy, where the binding affected peptide aggregation kinetics. The capture of peptide by NPs in serum was also evidenced by fluorescence spectroscopy and ELISA. Moreover, in silico and modeling experiments highlighted the mode of PEG interaction with the Aβ(1-42) peptide and its conformational changes at the nanoparticle surface. Finally, Aβ(1-42) peptide binding to NPs affected neither complement activation in serum nor apolipoprotein-E (Apo-E) adsorption from the serum. These observations have crucial implications in NP safety and clearance kinetics from the blood. Apo-E deposition is of prime importance since it can also interact with the Aβ(1-42) peptide and increase the affinity of NPs for the peptide in the blood. Collectively, our results suggest that these engineered long-circulating NPs may have the ability to capture the toxic forms of the Aβ(1-42) peptide from the systemic circulation and potentially improve Alzheimer's disease condition through the proposed "sink effect".

  3. Improved bioactivity of antimicrobial peptides by addition of amino-terminal copper and nickel (ATCUN) binding motifs.

    PubMed

    Libardo, M Daben; Cervantes, Jorge L; Salazar, Juan C; Angeles-Boza, Alfredo M

    2014-08-01

    Antimicrobial peptides (AMPs) are promising candidates to help circumvent antibiotic resistance, which is an increasing clinical problem. Amino-terminal copper and nickel (ATCUN) binding motifs are known to actively form reactive oxygen species (ROS) upon metal binding. The combination of these two peptidic constructs could lead to a novel class of dual-acting antimicrobial agents. To test this hypothesis, a set of ATCUN binding motifs were screened for their ability to induce ROS formation, and the most potent were then used to modify AMPs with different modes of action. ATCUN binding motif-containing derivatives of anoplin (GLLKRIKTLL-NH2), pro-apoptotic peptide (PAP; KLAKLAKKLAKLAK-NH2), and sh-buforin (RAGLQFPVGRVHRLLRK-NH2) were synthesized and found to be more active than the parent AMPs against a panel of clinically relevant bacteria. The lower minimum inhibitory concentration (MIC) values for the ATCUN-anoplin peptides are attributed to the higher pore-forming activity along with their ability to cause ROS-induced membrane damage. The addition of the ATCUN motifs to PAP also increases its ability to disrupt membranes. DNA damage is the major contributor to the activity of the ATCUN-sh-buforin peptides. Our findings indicate that the addition of ATCUN motifs to AMPs is a simple strategy that leads to AMPs with higher antibacterial activity and possibly to more potent, usable antibacterial agents.

  4. Predicting sequences and structures of MHC-binding peptides: a computational combinatorial approach

    NASA Astrophysics Data System (ADS)

    Zeng, Jun; Treutlein, Herbert R.; Rudy, George B.

    2001-06-01

    Peptides bound to MHC molecules on the surface of cells convey critical information about the cellular milieu to immune system T cells. Predicting which peptides can bind an MHC molecule, and understanding their modes of binding, are important in order to design better diagnostic and therapeutic agents for infectious and autoimmune diseases. Due to the difficulty of obtaining sufficient experimental binding data for each human MHC molecule, computational modeling of MHC peptide-binding properties is necessary. This paper describes a computational combinatorial design approach to the prediction of peptides that bind an MHC molecule of known X-ray crystallographic or NMR-determined structure. The procedure uses chemical fragments as models for amino acid residues and produces a set of sequences for peptides predicted to bind in the MHC peptide-binding groove. The probabilities for specific amino acids occurring at each position of the peptide are calculated based on these sequences, and these probabilities show a good agreement with amino acid distributions derived from a MHC-binding peptide database. The method also enables prediction of the three-dimensional structure of MHC-peptide complexes. Docking, linking, and optimization procedures were performed with the XPLOR program [1].

  5. Characterization of the lipid-binding domain of the Plasmodium falciparum CTP:phosphocholine cytidylyltransferase through synthetic-peptide studies.

    PubMed Central

    Larvor, Marie-Pierre; Cerdan, Rachel; Gumila, Catherine; Maurin, Luc; Seta, Patrick; Roustan, Claude; Vial, Henri

    2003-01-01

    Phospholipid biosynthesis plays a key role in malarial infection and is regulated by CCT (CTP:phosphocholine cytidylyltransferase). This enzyme belongs to the group of amphitropic proteins which are regulated by reversible membrane interaction. To assess the role of the putative membrane-binding domain of Plasmodium falciparum CCT (PfCCT), we synthesized three peptides, K21, V20 and K54 corresponding to residues 274-294, 308-327 and 274-327 of PfCCT respectively. Conformational behaviour of the peptides, their ability to bind to liposomes and to destabilize lipid bilayers, and their insertion properties were investigated by different biophysical techniques. The intercalation mechanisms of the peptides were refined further by using surface-pressure measurements on various monolayers at the air/water interface. In the present study, we show that the three studied peptides are able to bind to anionic and neutral phospholipids, and that they present an alpha-helical conformation upon lipid binding. Peptides V20 and the full-length K54 intercalate their hydrophobic parts into an anionic bilayer and, to a lesser extent, a neutral one for V20. Peptide K21 interacts only superficially with both types of phospholipid vesicles. Adsorption experiments performed at the air/water interface revealed that peptide K54 is strongly surface-active in the absence of lipid. Peptide V20 presents an atypical behaviour in the presence of phosphatidylserine. Whatever the initial surface pressure of a phosphatidylserine film, peptide V20 and phosphatidylserine entities seem linked together in a special organization involving electrostatic and hydrophobic interactions. We showed that PfCCT presents different lipid-dependence properties from other studied CCTs. Although the lipid-binding domain seems to be located in the C-terminal region of the enzyme, as with the mammalian counterpart, the membrane anchorage, which plays a key role in the enzyme regulation, is driven by two alpha

  6. Histatins: salivary peptides with copper(II)- and zinc(II)-binding motifs: perspectives for biomedical applications.

    PubMed

    Melino, Sonia; Santone, Celeste; Di Nardo, Paolo; Sarkar, Bibudhendra

    2014-02-01

    Natural antimicrobial peptides represent a primordial mechanism of immunity in both vertebrate and nonvertebrate organisms. Among them, histatins belong to a family of human salivary metal-binding peptides displaying potent antibacterial, antifungal and wound-healing activities. These properties, along with the ability of histatins to inhibit collagenases and cysteine proteases, have attracted much attention for their potential use in the treatment of several oral diseases. This review critically assesses the studies carried out to date in order to provide a comprehensive and systematic vision of the information accumulated so far. In particular, the relationship between metal-binding and peptide activity is extensively analysed. The review provides important clues for developing possible therapeutic applications of histatins and their synthetic peptide analogues by creating a set of necessary resource materials to support investigators and industries interested in exploiting their unique properties.

  7. Preparation of peptides which mimic glycosphingolipids by using phage peptide library and their modulation on beta-galactosidase activity.

    PubMed

    Taki, T; Ishikawa, D; Hamasaki, H; Handa, S

    1997-11-24

    We describe the use of a phage-displayed random pentadecamer peptide library for searching glycosphingolipid mimicking peptides. Two phage clones (AD-1 and AD-2) were selected by biopanning using monoclonal antibody AD117m, directed to lactotetraosylceramide (Lc4Cer). The amino acid sequences of the selected clones showed high homology (VPPXFXXXY) in 9-mer. Three phage clones were selected by using monoclonal antibody H11, directed to neolactotetraosylceramide (nLc4Cer), the linkage isomer of Lc4Cer, and the displayed amino acid sequences were compared. One of these peptides showed the same amino acid sequence as that of AD-2 except for one amino acid substitution. Pentadecamer, 9-mer and point mutated 9-mer peptides were synthesized on the basis of the displayed amino acid sequences. Binding activity of the peptides to the monoclonal antibodies or Ricinus communis lectin showed that 9-mer peptides are enough to mimic the epitope carbohydrate structure. Furthermore, six of the synthesized peptides inhibited Jack bean beta-galactosidase activity towards nLc4Cer at a high concentration of the enzyme, whereas at lower enzyme concentrations some peptides showed potent activation of the enzyme activity. This is the first report of carbohydrate mimicking peptides which modulate glycosidase activity.

  8. Copper(II) complexes of terminally free alloferon peptide mutants containing two different histidyl (H(1) and H(6) or H(9) or H(12)) binding sites Structure Stability and Biological Activity.

    PubMed

    Matusiak, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Urbański, Arkadiusz; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa

    2015-10-01

    Mono- and dinuclear copper(II) complexes of the alloferon 1 with point mutations H9A/H12A H(1)GVSGH(6)GQA(9)GVA(12)G, H6A/H12A H(1)GVSGA(6)GQH(9)GVA(12)G and H6A/H9A H(1)GVSGA(6)GQA(9)GVH(12)G have been studied by potentiometric, UV-visible, CD, EPR spectroscopic, and mass spectrometry (MS) methods. Complete complex speciation at metal-to-ligand molar ratios 1:1 and 2:1 was obtained. For all systems studied in the 5 - 6.5 pH range, the CuL complex dominates with 3N{NH2,NIm-H(1),NIm-H(6 or 9 or 12)} binding site. The stability of the CuL complexes for the ligands studied varies according to the H9A/H12A>H6A/H12A>H6A/H9A series. For the dinuclear systems the amine/imidazole nitrogen donor atoms of the histidine residue H(1) and the imidazole nitrogen atoms of H(6) or H(9) or H(12) can be considered as independent metal-binding sites in the species formed. The stability of the dinuclear complexes is higher when two coordinated copper(II) ions are closer to each other. The inductions of phenoloxidase activity and apoptosis in vivo in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 have been studied. The H6A/H9A, H6A/H12A peptides displayed lower hemocytotoxic activity compared to that of alloferon 1, while the H9A/H12A analogue was not active. Among the copper(II) complexes, the most active was the Cu(II)-H9A/H12A complex formed at pH7.4 with 3N{NH2,NIm-H(1),NIm-H(6)} (CuL) and 3N{NH2,N(-),NIm-H(6)} and/or 4N{NH2,NIm-H(1),N(-),NIm-H(6)} (CuH-1L) binding sites. The Cu(II)-H6A/H9A and Cu(II)-H6A/H12A complexes were not active.

  9. G protein antagonists. A novel hydrophobic peptide competes with receptor for G protein binding.

    PubMed

    Mukai, H; Munekata, E; Higashijima, T

    1992-08-15

    A substance P (SP) analog, [D-Pro4,D-Trp7,9,10] SP4-11, is known to inhibit the actions of various structurally unrelated messenger molecules as well as SP. Our studies on the effects of this peptide on the regulation of purified G proteins by receptor showed that at least some of the biological effects of the peptide can be explained by the ability of the peptide to block the activation of G proteins by receptors. Here we report that a novel truncated SP-related peptide, pGlu-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH2, inhibited the activation of G(i) or G(o) by M2 muscarinic cholinergic receptor (M2 mAChR) or of Gs by beta-adrenergic receptor in the reconstituted phospholipid vesicles, assayed by receptor-promoted GTP hydrolysis. The inhibition by the peptide was apparently reversible and competitive with respect to receptor binding to G proteins; the inhibition could be overcome by increasing the concentration of receptor in the vesicles and was not altered by changes in the concentration of G protein. The competing effects of the peptide were used to analyze the effect of agonist on receptor-G protein interaction. The concentration change of muscarinic agonist did not alter the inhibitory effects of the peptide on M2 mAChR-promoted GTPase by G(o), which is consistent with the idea that agonist increases the regulatory efficiency of the receptor but does not alter its affinity for G proteins. This new group of compounds (G protein antagonists) is a promising tool to study receptor-G protein interaction quantitatively.

  10. Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state

    PubMed Central

    Choudhury, Hassanul G.; Tong, Zhen; Mathavan, Indran; Li, Yanyan; Iwata, So; Zirah, Séverine; Rebuffat, Sylvie; van Veen, Hendrik W.; Beis, Konstantinos

    2014-01-01

    Enterobacteriaceae produce antimicrobial peptides for survival under nutrient starvation. Microcin J25 (MccJ25) is an antimicrobial peptide with a unique lasso topology. It is secreted by the ATP-binding cassette (ABC) exporter McjD, which ensures self-immunity of the producing strain through efficient export of the toxic mature peptide from the cell. Here we have determined the crystal structure of McjD from Escherichia coli at 2.7-Å resolution, which is to the authors’ knowledge the first structure of an antibacterial peptide ABC transporter. Our functional and biochemical analyses demonstrate McjD-dependent immunity to MccJ25 through efflux of the peptide. McjD can directly bind MccJ25 and displays a basal ATPase activity that is stimulated by MccJ25 in both detergent solution and proteoliposomes. McjD adopts a new conformation, termed nucleotide-bound outward occluded. The new conformation defines a clear cavity; mutagenesis and ligand binding studies of the cavity have identified Phe86, Asn134, and Asn302 as important for recognition of MccJ25. Comparisons with the inward-open MsbA and outward-open Sav1866 structures show that McjD has structural similarities with both states without the intertwining of transmembrane (TM) helices. The occluded state is formed by rotation of TMs 1 and 2 toward the equivalent TMs of the opposite monomer, unlike Sav1866 where they intertwine with TMs 3–6 of the opposite monomer. Cysteine cross-linking studies on the McjD dimer in inside-out membrane vesicles of E. coli confirmed the presence of the occluded state. We therefore propose that the outward-occluded state represents a transition intermediate between the outward-open and inward-open conformation of ABC exporters. PMID:24920594

  11. The cell-penetrating peptide domain from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) has anti-inflammatory activity in vitro and in vivo

    SciTech Connect

    Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung; Park, Yoon-Jeong; Chung, Chong-Pyoung

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer HBP sequence identified from HB-EGF has cell penetration activity. Black-Right-Pointing-Pointer HBP inhibits the NF-{kappa}B dependent inflammatory responses. Black-Right-Pointing-Pointer HBP directly blocks phosphorylation and degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer HBP inhibits nuclear translocation of NF-{kappa}B p65 subunit. -- Abstract: A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-{alpha} and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-{alpha} and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-{kappa}B-dependent inflammatory responses by directly blocking the phosphorylation and degradation of I{kappa}B{alpha} and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-{kappa}B. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells.

  12. Binding properties of a peptide derived from beta-lactamase inhibitory protein.

    PubMed

    Rudgers, G W; Huang, W; Palzkill, T

    2001-12-01

    To overcome the antibiotic resistance mechanism mediated by beta-lactamases, small-molecule beta-lactamase inhibitors, such as clavulanic acid, have been used. This approach, however, has applied selective pressure for mutations that result in beta-lactamases no longer sensitive to beta-lactamase inhibitors. On the basis of the structure of beta-lactamase inhibitor protein (BLIP), novel peptide inhibitors of beta-lactamase have been constructed. BLIP is a 165-amino-acid protein that is a potent inhibitor of TEM-1 beta-lactamase (K(i) = 0.3 nM). The cocrystal structure of TEM-1 beta-lactamase and BLIP indicates that residues 46 to 51 of BLIP make critical interactions with the active site of TEM-1 beta-lactamase. A peptide containing this six-residue region of BLIP was found to retain sufficient binding energy to interact with TEM-1 beta-lactamase. Inhibition assays with the BLIP peptide reveal that, in addition to inhibiting TEM-1 beta-lactamase, the peptide also inhibits a class A beta-lactamase and a class C beta-lactamase that are not inhibited by BLIP. The crystal structures of class A and C beta-lactamases and two penicillin-binding proteins (PBPs) reveal that the enzymes have similar three-dimensional structures in the vicinity of the active site. This similarity suggests that the BLIP peptide inhibitor may have a broad range of activity that can be used to develop novel small-molecule inhibitors of various classes of beta-lactamases and PBPs.

  13. Binding Properties of a Peptide Derived from β-Lactamase Inhibitory Protein

    PubMed Central

    Rudgers, Gary W.; Huang, Wanzhi; Palzkill, Timothy

    2001-01-01

    To overcome the antibiotic resistance mechanism mediated by β-lactamases, small-molecule β-lactamase inhibitors, such as clavulanic acid, have been used. This approach, however, has applied selective pressure for mutations that result in β-lactamases no longer sensitive to β-lactamase inhibitors. On the basis of the structure of β-lactamase inhibitor protein (BLIP), novel peptide inhibitors of β-lactamase have been constructed. BLIP is a 165-amino-acid protein that is a potent inhibitor of TEM-1 β-lactamase (Ki = 0.3 nM). The cocrystal structure of TEM-1 β-lactamase and BLIP indicates that residues 46 to 51 of BLIP make critical interactions with the active site of TEM-1 β-lactamase. A peptide containing this six-residue region of BLIP was found to retain sufficient binding energy to interact with TEM-1 β-lactamase. Inhibition assays with the BLIP peptide reveal that, in addition to inhibiting TEM-1 β-lactamase, the peptide also inhibits a class A β-lactamase and a class C β-lactamase that are not inhibited by BLIP. The crystal structures of class A and C β-lactamases and two penicillin-binding proteins (PBPs) reveal that the enzymes have similar three-dimensional structures in the vicinity of the active site. This similarity suggests that the BLIP peptide inhibitor may have a broad range of activity that can be used to develop novel small-molecule inhibitors of various classes of β-lactamases and PBPs. PMID:11709298

  14. Screening of integrin-binding peptides in a laminin peptide library derived from the mouse laminin β chain short arm regions.

    PubMed

    Katagiri, Fumihiko; Takagi, Masaharu; Nakamura, Minako; Tanaka, Yoichiro; Hozumi, Kentaro; Kikkawa, Yamato; Nomizu, Motoyoshi

    2014-05-15

    Laminins, major components of basement membrane, consist of three different subunits, α, β, and γ chains, and so far, five α, three β, and three γ chains have been identified. We have constructed synthetic peptide libraries derived from the laminin sequences and identified various cell-adhesive peptides. Ten active peptides from the laminin α chain sequences (α1-α5) were found to promote integrin-mediated cell adhesion. Previously, we found fourteen cell-adhesive peptides from the β1 chain sequence but their receptors have not been analyzed. Here, we expanded the synthetic peptide library to add peptides from the short arm regions of the laminin β2 and β3 chains and screened for integrin-binding peptides. Twenty-seven peptides promoted human dermal fibroblast (HDF) attachment in a peptide-coated plate assay. The morphological appearance of HDFs on the peptide-coated plates differed depending on the peptides. B34 (REKYYYAVYDMV, mouse laminin β1 chain, 255-266), B67 (IPYSMEYEILIRY, mouse laminin β1 chain, 604-616), B2-105 (APNFWNFTSGRG, mouse laminin β2 chain, 1081-1092), and B3-19 (GHLTGGKVQLNL, mouse laminin β3 chain, 182-193) promoted HDF spreading and HDF attachment was inhibited by EDTA, suggesting that the peptides interact with integrins. Immunostaining analyses revealed that B67 induced well-organized actin stress fibers and focal contacts containing vinculin, however, B34, B2-105, and B3-19 did not exhibit stress fiber formation or focal contacts. The inhibition assay using anti-integrin antibodies indicated that B67 interacts with α3, α6, and β1 integrins, and B34 and B3-19 interact with β1 integrin. Based on adhesion analysis of peptides modified with an alanine scan and on switching analysis with the homologous inactive sequence B2-64 (LPRAMDYDLLLRW, mouse laminin β2 chain, 618-630), the Glu(8) residue in the B67 peptide was critical for HDF adhesion. These findings are useful for identifying an integrin binding motif. The B67 peptide

  15. Phosphinic peptides, the first potent inhibitors of astacin, behave as extremely slow-binding inhibitors.

    PubMed Central

    Yiallouros, I; Vassiliou, S; Yiotakis, A; Zwilling, R; Stöcker, W; Dive, V

    1998-01-01

    A series of phosphinic pseudo-peptides varying in length and composition have been designed as inhibitors of the crayfish zinc endopeptidase astacin, the prototype of the astacin family and of the metzincin superfamily of metalloproteinases. The most efficient phosphinic peptide, fluorenylmethyloxycarbonyl-Pro-Lys-PhePsi(PO2CH2)Ala-P ro-Leu-Val, binds to astacin with a Ki value of 42 nM, which is about three orders of magnitude below the corresponding values for previously used hydroxamic acid derivatives. However, the rate constants for association (kon = 96.8 M-1.s-1) and dissociation (koff = 4.1 x 10(-6) s-1) are evidence for the extremely slow binding behaviour of this compound. N-terminally or C-terminally truncated phosphinic analogues of this parent molecule are much less potent, indicating a critical role of the peptide size on the potency. In particular, omission of the N-terminal proline residue leads to a 40-fold increase in Ki which is mostly due to a 75-fold higher koff value. These findings are consistent with the previously solved crystal structure of astacin complexed with one of the phosphinic peptides, benzyloxycarbonyl-Pro-Lys-PhePsi(PO2CH2)Ala-Pro-O-methyl, Ki = 14 microM [Grams, Dive, Yiotakis, Yiallouros, Vassiliou, Zwilling, Bode and Stöcker (1996) Nature Struct. Biol. 3, 671-675]. This structure also reveals that the phosphinic group binds to the active site as a transition-state analogue. The extremely slow binding behaviour of the phosphinic peptides is discussed in the light of the conformational changes involving a unique 'tyrosine switch' in the structure of astacin upon inhibitor binding. The phosphinic peptides may provide a rational basis for the design of drugs directed towards other members of the astacin family which, like bone morphogenetic protein 1 (BMP1; i.e. the procollagen C-proteinase), have become targets of pharmacological research. PMID:9531473

  16. A Tubulin Binding Peptide Targets Glioma Cells Disrupting Their Microtubules, Blocking Migration, and Inducing Apoptosis

    PubMed Central

    Berges, Raphael; Balzeau, Julien; Peterson, Alan C; Eyer, Joel

    2012-01-01

    Despite aggressive treatment regimes, glioma remains a largely fatal disease. Current treatment limitations are attributed to the precarious locations within the brain where such tumors grow, their highly infiltrative nature precluding complete resection and lack of specificity among agents capable of attenuating their growth. Here, we show that in vitro, glioma cells of diverse origins internalize a peptide encompassing a tubulin-binding site (TBS) on the neurofilament light protein. The internalized peptide disrupts the microtubule network, inhibits migration and proliferation, and leads to apoptosis. Using an intracerebral transplant model, we show that most, if not all, of these responses to peptide exposure also occur in vivo. Notably, a single intratumor injection significantly attenuates tumor growth, while neither peptide uptake nor downstream consequences are observed elsewhere in the host nervous system. Such preferential uptake suggests that the peptide may have potential as a primary or supplementary glioblastoma treatment modality by exploiting its autonomous microtubule-disrupting activity or engaging its capacity to selectively target glioma cells with other cell-disrupting cargos. PMID:22491214

  17. Synthetic peptides mimicking the binding site of human acetylcholinesterase for its inhibitor fasciculin 2.

    PubMed

    Kafurke, Uwe; Erijman, Ariel; Aizner, Yonatan; Shifman, Julia M; Eichler, Jutta

    2015-09-01

    Molecules capable of mimicking protein binding and/or functional sites present useful tools for a range of biomedical applications, including the inhibition of protein-ligand interactions. Such mimics of protein binding sites can currently be generated through structure-based design and chemical synthesis. Computational protein design could be further used to optimize protein binding site mimetics through rationally designed mutations that improve intermolecular interactions or peptide stability. Here, as a model for the study, we chose an interaction between human acetylcholinesterase (hAChE) and its inhibitor fasciculin-2 (Fas) because the structure and function of this complex is well understood. Structure-based design of mimics of the hAChE binding site for Fas yielded a peptide that binds to Fas at micromolar concentrations. Replacement of hAChE residues known to be essential for its interaction with Fas with alanine, in this peptide, resulted in almost complete loss of binding to Fas. Computational optimization of the hAChE mimetic peptide yielded a variant with slightly improved affinity to Fas, indicating that more rounds of computational optimization will be required to obtain peptide variants with greatly improved affinity for Fas. CD spectra in the absence and presence of Fas point to conformational changes in the peptide upon binding to Fas. Furthermore, binding of the optimized hAChE mimetic peptide to Fas could be inhibited by hAChE, providing evidence for a hAChE-specific peptide-Fas interaction.

  18. The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1

    PubMed Central

    Sethi, Ashish; Bruell, Shoni; Patil, Nitin; Hossain, Mohammed Akhter; Scott, Daniel J.; Petrie, Emma J.; Bathgate, Ross A. D.; Gooley, Paul R.

    2016-01-01

    H2 relaxin activates the relaxin family peptide receptor-1 (RXFP1), a class A G-protein coupled receptor, by a poorly understood mechanism. The ectodomain of RXFP1 comprises an N-terminal LDLa module, essential for activation, tethered to a leucine-rich repeat (LRR) domain by a 32-residue linker. H2 relaxin is hypothesized to bind with high affinity to the LRR domain enabling the LDLa module to bind and activate the transmembrane domain of RXFP1. Here we define a relaxin-binding site on the LDLa-LRR linker, essential for the high affinity of H2 relaxin for the ectodomain of RXFP1, and show that residues within the LDLa-LRR linker are critical for receptor activation. We propose H2 relaxin binds and stabilizes a helical conformation of the LDLa-LRR linker that positions residues of both the linker and the LDLa module to bind the transmembrane domain and activate RXFP1. PMID:27088579

  19. Biologically active peptides: prospects for drug development.

    PubMed

    Hughes, J

    1980-08-11

    Biologically active peptides aree typified by their unbiquity of distribution, their high receptor affinity and an almost infinite diversity of structure. For these reasons, considerable effort is now being expended to elucidate the possible role of peptides in brain function. This effort has been stimulated by the discovery of a number of new endogenous peptides, such as the enkephalins, endorphins, vasoactive intestinal peptide and neurotensin. At present, there is no clearly defined role for these peptides, although they may form an important basis for the chemical coding of various brain functions, including pain, mood and memory. At present, the potential for drug development of peptide agonists remains in fairly circumscribed areas such as analgesia, pituitary hormone control, and gastrointestinal motor and secretory control. Peptide antagonists may provide a vast field for future development, although only one area, that of antifertility drugs based on LHRH antagonists, shows any promise of immediate success. Industrial research approaches to new peptide agonists and antagonists mainly rely at present on rational drug design through structural analogies. Other fruitful approaches to be considered are the screening of natural microbial and plant products and the possible application of genetic engineering techniques.

  20. The impact of DR3 microvariation on peptide binding: the combinations of specific DR beta residues critical to binding differ for different peptides.

    PubMed

    Posch, P E; Hurley, C K; Geluk, A; Ottenhoff, T H

    1996-09-01

    HLA-DR molecules are a group of highly polymorphic glycoprotein heterodimers that present peptide antigens to T lymphocytes for immune surveillance. To assess the significance of limited polymorphism on the functional differentiation of DR molecules, the binding of several immunogenic peptides to the DR3 microvariants [DR(alpha, beta 1*0302) and DR(alpha, beta 1*0301)] and to mutants of these DR3 molecules was examined. This analysis has shown that each residue (DR beta 26, DR beta 28, DR beta 47, and DR beta 86), which differentiates these two DR3 molecules, contributes to their functional distinction and that the relative contribution of each residue varies for different peptide/DR3 complexes. For example, DR beta 28 and DR beta 86 controlled the mycobacterium tuberculosis 65-kD heat shock protein peptides 3-13 and 4-15 (HSP) binding specificity to DR (alpha, beta 1*0301). [HSP does not bind to DR(alpha, beta 1*0302)], whereas DR beta 26, DR beta 28, and DR beta 86 controlled the influenza hemagglutinin peptide 306-318 (HA) binding specificity to DR(alpha, beta 1*0302). [HA does not bind to DR(alpha, beta 1*0301).] In comparison, DR beta 86 alone controlled the binding level difference of sperm whale myoglobin peptide 132-151 (SWM) and of myelin basic protein peptide 152-170 (MBP) [both bind to DR(alpha, beta 1*0301) at levels five times greater than to DR(alpha, beta 1*0302)] to the DR3 molecules. Although not critical, additional DR beta residues influenced the binding level of individual peptides of each of the DR3 molecules and, again, the combinations of these residues differed for different peptide/DR3 complexes. These data showed that individual DR residues vary in their relative contribution to the interaction between a specific DR molecule and different peptides and that limited polymorphism can create substantial differences in the peptide binding profiles among DR molecules.

  1. Filaggrin peptides with β-hairpin structure bind rheumatoid arthritis antibodies.

    PubMed

    Fischer, Sabrina; Geyer, Armin

    2014-04-07

    In the early detection of rheumatoid arthritis (RA) synthetic filaggrin peptides serve as antigens for rheumatoid-specific autoantibodies (anti-citrullinated peptide antibody, ACPA) in ELISA tests. In this work we present a peptide that exhibits the binding epitope of ACPA in the form of a stable folding β-hairpin. The homogeneity of the peptide folding was confirmed by NMR spectroscopy and might lead to the first proposed structure of the antibody-bound conformation of the epitope.

  2. Evidence of widespread binding of HLA class I molecules to peptides

    PubMed Central

    1990-01-01

    We have tested the binding of HLA class I proteins to peptides using a solid-phase binding assay. We tested 102 peptides, mostly derived from the HIV gag and HIV pol sequences. Most peptides did not bind to any class I protein tested. The pattern of binding among the three class I proteins tested, HLA-A2, -B27, and -B8, was approximately 85% concordant. Further, all five of the known HIV-1 gag T cell epitopes detected by human CTL bound at least one class I protein. Binding of class I to the peptides could be detected either by directly iodinated class I proteins, or indirectly using monoclonal antibodies specific for class I. The binding to the plates could be blocked with MA2.1, which binds in the alpha 1 region of A2, but not by W6/32, which binds elsewhere. The data presented here show that binding of class I to peptides is specific, but that many peptides bind to more than a single class I protein. PMID:2201749

  3. Cell attachment and spreading activity of mixed laminin peptide-chitosan membranes.

    PubMed

    Otagiri, Dai; Yamada, Yuji; Hozumi, Kentaro; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2013-11-01

    Laminins are a multifunctional molecule with numerous active sites that have been identified in short peptide sequences. Mixed peptide-conjugated chitosan membranes using laminin-derived active peptides have been previously demonstrated to be useful as a biomaterial for tissue engineering. In this study, two syndecan-binding peptides, AG73 (RKRLQVQLSIRT) and C16 (KAFDITYVRLKF), and three integrin-binding peptides, EF1zz (ATLQLQEGRLHFXFDLGKGR, X: Nle, binding to integrin α2β1), A99a (ALRGDN, binding to integrin αvβ3), and A2G10 (SYWYRIEASRTG, binding to integrin α6β1), were mixed in various combinations, conjugated to chitosan membranes, and evaluated for their cell attachment and spreading activities. The cell attachment and spreading activity of EF1zz, A99a, and A2G10 were enhanced by AG73. In contrast, C16 enhanced only the cell attachment and spreading activity of A99a and did not influence the activity of EF1zz and A2G10. As well as previous study, the AG73-chitosan membrane bound to only syndecan. On the other hand, the C16-chitosan membrane interacted with both syndecan and β1 integrin. These data suggest that interaction of different receptors can cause synergistic effects. Therefore, AG73 is widely applicable as a synergistic agent for mixed peptide-matrices using several types of integrin-binding peptides. Additionally, the A2G10/AG73-chitosan membrane may be useful to investigate detailed biological functions of α6β1 integrin, which is a major laminin-binding receptor. Using a combination of tissue-appropriate laminin-derived peptides, the mixed peptide-chitosan membranes may serve as functional biomaterials for tissue engineering.

  4. Use of functional polymorphisms to elucidate the peptide binding site of TAP complexes

    PubMed Central

    Geng, Jie; Pogozheva, Irina D.; Mosberg, Henry I.; Raghavan, Malini

    2015-01-01

    The transporter associated with antigen processing (TAP) translocates peptides from the cytosol to the endoplasmic reticulum (ER) lumen to enable immune surveillance by CD8+ T cells. Peptide transport is preceded by peptide binding to a cytosol-accessible surface of TAP1/TAP2 complexes, but the location of the TAP peptide-binding pocket remains unknown. Guided by the known contributions of polymorphic TAP variants to peptide selection, we combined homology modeling of TAP with experimental measurements to identify several TAP residues that interact with peptides. Models for peptide-TAP complexes were generated, which indicate bent conformation for peptides. The peptide-binding site of TAP is located at the hydrophobic boundary of the cytosolic membrane leaflet, with striking parallels to the glutathione binding site of NaAtm1, a transporter that functions in bacterial heavy metal detoxification. These studies illustrate the conservation of the ligand recognition modes of bacterial and mammalians transporters involved in peptide-guided cellular surveillance. PMID:26324772

  5. Human OGA binds substrates in a conserved peptide recognition groove.

    PubMed

    Schimpl, Marianne; Schüttelkopf, Alexander W; Borodkin, Vladimir S; van Aalten, Daan M F

    2010-11-15

    Modification of cellular proteins with O-GlcNAc (O-linked N-acetylglucosamine) competes with protein phosphorylation and regulates a plethora of cellular processes. O-GlcNAcylation is orchestrated by two opposing enzymes, O-GlcNAc transferase and OGA (O-GlcNAcase or β-N-acetylglucosaminidase), which recognize their target proteins via as yet unidentified mechanisms. In the present study, we uncovered the first insights into the mechanism of substrate recognition by human OGA. The structure of a novel bacterial OGA orthologue reveals a putative substrate-binding groove, conserved in metazoan OGAs. Guided by this structure, conserved amino acids lining this groove in human OGA were mutated and the activity on three different substrate proteins [TAB1 (transforming growth factor-β-activated protein kinase 1-binding protein 1), FoxO1 (forkhead box O1) and CREB (cAMP-response-element-binding protein)] was tested in an in vitro deglycosylation assay. The results provide the first evidence that human OGA may possess a substrate-recognition mechanism that involves interactions with O-GlcNAcylated proteins beyond the GlcNAc-binding site, with possible implications for differential regulation of cycling of O-GlcNAc on different proteins.

  6. Activity of a novel-designed antimicrobial peptide and its interaction with lipids.

    PubMed

    Yu, Lanlan; Fan, Qiannan; Yue, Xiu; Mao, Yexuan; Qu, Lingbo

    2015-04-01

    A new antimicrobial peptide l-RW containing double amphipathic binding sequences was designed, and its biological activities were investigated in the present study. L-RW showed antibacterial activity against several bacterial strains but low cytotoxicity to mammalian cells and low hemolytic activity to red blood cells, which makes it a potential and promising peptide for further development. Microscale thermophoresis (MST), a new technique, was applied to study the antimicrobial peptide-lipid interaction for the first time, which examined the binding affinities of this new antimicrobial peptide to various lipids, including different phospholipids, mixture lipids and bacterial lipid extracts. The results demonstrated that l-RW bound preferentially to negatively charged lipids over neutral lipids, which was consistent with the biological activities, revealing the important role of electrostatic interaction in the binding process. L-RW also showed higher binding affinity for lipid extract from Staphyloccocus aureus compared with Pseudomonas aeruginosa and Escherichia coli, which were in good agreement with the higher antibacterial activity against S. aureus than P. aeruginosa and E. coli, suggesting that the binding affinity is capable to predict the antibacterial activity to some extent. Additionally, the binding of l-RW to phospholipids was also performed in fetal bovine serum solution by MST, which revealed that the components in biological solution may have interference with the binding event. The results proved that MST is a useful and potent tool in antimicrobial peptide-lipid interaction investigation.

  7. Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction.

    PubMed

    Wu, Jinhong; Rong, Yuzhi; Wang, Zhengwu; Zhou, Yanfu; Wang, Shaoyun; Zhao, Bo

    2015-05-01

    This study aimed to isolate and characterise a novel sericin antifreeze peptide and investigate its ice-binding molecular mechanism. The thermal hysteresis activity of ice-binding sericin peptides (I-SP) was measured and their activity reached as high as 0.94 °C. A P4 fraction, with high hypothermia protective activity and inhibition activity of ice recrystallisation, was obtained from I-SP, and a purified sericin peptide, named SM-AFP, with the sequence of TTSPTNVSTT and a molecular weight of 1009.50 Da was then isolated from the P4 fraction. Treatment of Lactobacillus delbrueckii Subsp. bulgaricus LB340 LYO with 100 μg/ml synthetic SM-AFP led to 1.4-fold increased survival (p < 0.05). Finally, an SM-AFP/ice binding model was constructed and results of molecular dynamics simulation suggested that the binding of SM-AFP with ice and prevention of ice crystal growth could be attributed to hydrogen bond formation, hydrophobic interaction and non-bond interactions. Sericin peptides could be developed into beneficial cryoprotectants and used in frozen food processing.

  8. Properties of tobacco (Nicotiana tabacum) cadmium-binding peptide(s). Unique non-metallothionein cadmium ligands.

    PubMed Central

    Reese, R N; Wagner, G J

    1987-01-01

    The chemical and physical characteristics of Cd-binding peptides isolated from tobacco (Nicotiana tabacum) leaves and suspension-cultured tobacco cells were determined and compared with properties of rat liver Cd,Zn-thionein. Some emphasis was placed on metal-binding and specificity properties. Cd-peptides of apparent Mr 6000 and 2000 were induced in tobacco leaves by growth of plants with 90 microM-Cd. Only the apparent-Mr-2000 Cd-peptide was induced in the leaves of tobacco plants grown in the presence of 3 microM-Cd. In cultured tobacco cells exposed to a wide range of Cd levels (3-180 microM), a peptide of apparent Mr 2000 was observed. Under denaturing conditions [6 M-guanidinium chloride (GdmCl) with or without 100 mM-2-mercaptoethanol], all of the above forms were shown to have an Mr of approx. 1300, compared with an Mr of 6000 for Cd,Zn-thionein. The apparent disaggregation of the Mr-6000 form by GdmCl to what appears to be the unit Cd-binding peptide was reversible. Tobacco-derived Cd-peptide contained approx. 40, 35 and 15 residues of glutamate/glutamine, cysteine and glycine respectively, with serine, lysine, and aromatic residues being absent. Tobacco Cd-peptide had an isoelectric point (pI) of 3.15, which is lower than the pI greater than or equal to 4 reported for metallothionein. A 50% dissociation of Cd occurred at pH 5 and 3.5 for the tobacco Cd-peptide and Cd,Zn-thionein respectively, and GdmCl was shown to cause Cd dissociation from tobacco peptide, but not from metallothionein. No evidence was obtained for Zn induction in vivo of, or Zn binding in vitro to, tobacco Cd-peptide. Copper induced a low-Mr metal-binding component in cultured tobacco cells which did not appear to be identical with the peptide induced by Cd. Properties of tobacco Cd-peptide and Cd,Zn-thionein, including metal affinity and selectivity, are greatly different, except for the common presence of 30 residues of cysteine/100 residues. PMID:3593213

  9. Secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding - In vitro characterization

    DOE PAGES

    Wall, Jonathan S.; Williams, Angela; Wooliver, Craig; ...

    2016-08-11

    Here, polybasic helical peptides, such as peptide p5, bind human amyloid extracts and synthetic amyloid fibrils. When radio labeled, peptide p5 has been shown to specifically bind amyloid in vivo thereby allowing imaging of the disease. Structural requirements for heparin and amyloid binding have been studied using analogues of p5 that modify helicity and chirality.

  10. Caseins from bovine colostrum and milk strongly bind piscidin-1, an antimicrobial peptide from fish.

    PubMed

    Kütt, Mary-Liis; Stagsted, Jan

    2014-09-01

    A model system of bovine colostrum and piscidin, a fish-derived antimicrobial peptide, was developed to study potential interactions of antimicrobial peptides in colostrum. We did not detect any antimicrobial activity of colostrum using the radial plate diffusion assay; in fact colostrum completely abrogated activity of added piscidin. This could not be explained by degradation of piscidin by colostrum, which was less than ten percent. We found that colostrum even protected piscidin against degradation by added proteases. We further observed that colostrum and milk rapidly quenched the fluorescence of fluorescein-piscidin but not that of fluorescein. This effect was not seen with BSA and the specific quenching of fluorescein-piscidin by colostrum was saturably inhibited with unlabeled piscidin. Size exclusion chromatography indicated that fluorescein-piscidin bound to casein micelles with no apparent binding to IgG or whey proteins. Further, addition of pure caseins was able to quench fluorescence of fluorescein-piscidin and to inhibit the antimicrobial activity of piscidin. The interaction between caseins and piscidin could be dissociated by guanidine hydrochloride and recovered piscidin had antimicrobial activity against bacteria. Based on our results we propose that caseins could be carriers for antimicrobial peptides in colostrum and milk.

  11. Phage-displayed peptides selected for binding to Campylobacter jejuni are antimicrobial.

    PubMed

    Bishop-Hurley, Sharon L; Rea, Philippa J; McSweeney, Christopher S

    2010-10-01

    In developed countries, Campylobacter jejuni is a leading cause of zoonotic bacterial gastroenteritis in humans with chicken meat implicated as a source of infection. Campylobacter jejuni colonises the lower gastrointestinal tract of poultry and during processing is spread from the gastrointestinal tract onto the surface of dressed carcasses. Controlling or eliminating C.jejuni on-farm is considered to be one of the best strategies for reducing human infection. Molecules on the cell surface of C.jejuni interact with the host to facilitate its colonisation and persistence in the gastrointestinal tract of poultry. We used a subtractive phage-display protocol to affinity select for peptides binding to the cell surface of a poultry isolate of C.jejuni with the aim of finding peptides that could be used to control this microorganism in chickens. In total, 27 phage peptides, representing 11 unique clones, were found to inhibit the growth of C.jejuni by up to 99.9% in vitro. One clone was bactericidal, reducing the viability of C.jejuni by 87% in vitro. The phage peptides were highly specific. They completely inhibited the growth of two of the four poultry isolates of C.jejuni tested with no activity detected towards other Gram-negative and Gram-positive bacteria.

  12. Evaluation of Phosphatidylserine-Binding Peptides Radiolabeled with Fluorine 18 for in vivo Imaging of Apoptosis

    NASA Astrophysics Data System (ADS)

    Kapty, Janice Sarah

    We currently do not have a clinical method to directly assess apoptosis induced by cancer therapies. Phosphatidylserine (PS) is an attractive target for imaging apoptosis since it is on the exterior of the apoptotic cells and PS externalization is an early marker of apoptosis. PS-binding peptides are an attractive option for developing an imaging probe to detect apoptosis using positron emission tomography. In this study we evaluated binding characteristics of PS-binding peptides for ability to bind to PS, radiolabeled PS-binding peptides with fluorine-18, and performed in vitro and in vivo analysis of 18F radiolabeled PS-binding peptides including biodistribution analysis and dynamic PET imaging in a murine tumor model of apoptosis. Four peptides were evaluated for PS binding characteristics using a plate based assay system, a liposome mimic of cell membrane PS presentation, and a cell assay of apoptosis. The results indicate that all four peptides bind to PS and are specific to apoptotic cells. The widely used 18 F prosthetic group N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) and the recently developed N-[6-(4-[ 18F]fluorobenzylidene) aminooxyhexyl]maleimide ([18F]FBAM) were investigated for radiolabeling of two representative phosphatidylserine-binding peptides. The prosthetic groups were compared with respect to required reaction conditions for optimum labeling, radiolabeling yield and chemoselectivity. The N-terminus labeled product produced by reaction of [18F]SFB with binding peptide LIKKPF was produced in 18% radiochemical yield while no N-terminus labeled product could be isolated following [18F]SFB reaction with PDGLSR. When the peptides were modified by addition of a cysteine residue at the N-terminus they provided almost quantitative radiochemical yields with [18F]FBAM. Results indicate that for the peptides in this study, [18F]FBAM is a more useful prosthetic group compared to [18F]SFB due to its excellent chemo-selectivity and high radiochemical

  13. Antiproliferative and GH-inhibitory activity of chimeric peptides consisting of GHRP-6 and somatostatin.

    PubMed

    Dasgupta, P; Singh, A T; Mukherjee, R

    1999-06-07

    Chimeric peptides consisting of growth hormone releasing peptide (GHRP-6) linked to somatostatin (6-11) via an amide bond to provide the effector parts of both the peptides were synthesized. The anti-proliferative, cytotoxic, and GH-inhibitory activities of these chimeric peptides were determined in vitro in the rat pituitary adenoma cell line GH3. One of the chimeric peptides, GSD, exhibited significantly greater (p < 0.001) anti-neoplastic and GH-inhibitory activity, as compared to RC-160. The hybrid peptides displayed high affinity binding to somatostatin receptors on GH3 cells. The bioactivity of GSD was found to be mediated by the stimulation of tyrosine phosphatase, involving a cGMP-dependent pathway, through pertussis toxin-sensitive G-proteins. Such potent GH-inhibitory chimeric peptides may be of potential importance in the therapy of acromegaly, as well as provide novel tools to study the regulation of GH secretion by GHRP and somatostatin.

  14. Specificity of RSG-1.2 peptide binding to RRE-IIB RNA element of HIV-1 over Rev peptide is mainly enthalpic in origin.

    PubMed

    Kumar, Santosh; Bose, Debojit; Suryawanshi, Hemant; Sabharwal, Harshana; Mapa, Koyeli; Maiti, Souvik

    2011-01-01

    Rev is an essential HIV-1 regulatory protein which binds to the Rev responsive element (RRE) present within the env gene of HIV-1 RNA genome. This binding facilitates the transport of the RNA to the cytoplasm, which in turn triggers the switch between viral latency and active viral replication. Essential components of this complex have been localized to a minimal arginine rich Rev peptide and stem IIB region of RRE. A synthetic peptide known as RSG-1.2 binds with high binding affinity and specificity to the RRE-IIB than the Rev peptide, however the thermodynamic basis of this specificity has not yet been addressed. The present study aims to probe the thermodynamic origin of this specificity of RSG-1.2 over Rev Peptide for RRE-IIB. The temperature dependent melting studies show that RSG-1.2 binding stabilizes the RRE structure significantly (ΔT(m) = 4.3°C), in contrast to Rev binding. Interestingly the thermodynamic signatures of the binding have also been found to be different for both the peptides. At pH 7.5, RSG-1.2 binds RRE-IIB with a K(a) = 16.2±0.6×10(7) M(-1) where enthalpic change ΔH = -13.9±0.1 kcal/mol is the main driving force with limited unfavorable contribution from entropic change TΔS = -2.8±0.1 kcal/mol. A large part of ΔH may be due to specific stacking between U72 and Arg15. In contrast binding of Rev (K(a) = 3.1±0.4×10(7) M(-1)) is driven mainly by entropy (ΔH = 0 kcal/mol and TΔS = 10.2±0.2 kcal/mol) which arises from major conformational changes in the RNA upon binding.

  15. The peptide agonist-binding site of the glucagon-like peptide-1 (GLP-1) receptor based on site-directed mutagenesis and knowledge-based modelling.

    PubMed

    Dods, Rachel L; Donnelly, Dan

    2015-11-23

    Glucagon-like peptide-1 (7-36)amide (GLP-1) plays a central role in regulating blood sugar levels and its receptor, GLP-1R, is a target for anti-diabetic agents such as the peptide agonist drugs exenatide and liraglutide. In order to understand the molecular nature of the peptide-receptor interaction, we used site-directed mutagenesis and pharmacological profiling to highlight nine sites as being important for peptide agonist binding and/or activation. Using a knowledge-based approach, we constructed a 3D model of agonist-bound GLP-1R, basing the conformation of the N-terminal region on that of the receptor-bound NMR structure of the related peptide pituitary adenylate cyclase-activating protein (PACAP21). The relative position of the extracellular to the transmembrane (TM) domain, as well as the molecular details of the agonist-binding site itself, were found to be different from the model that was published alongside the crystal structure of the TM domain of the glucagon receptor, but were nevertheless more compatible with published mutagenesis data. Furthermore, the NMR-determined structure of a high-potency cyclic conformationally-constrained 11-residue analogue of GLP-1 was also docked into the receptor-binding site. Despite having a different main chain conformation to that seen in the PACAP21 structure, four conserved residues (equivalent to His-7, Glu-9, Ser-14 and Asp-15 in GLP-1) could be structurally aligned and made similar interactions with the receptor as their equivalents in the GLP-1-docked model, suggesting the basis of a pharmacophore for GLP-1R peptide agonists. In this way, the model not only explains current mutagenesis and molecular pharmacological data but also provides a basis for further experimental design.

  16. Cationic Hydrophobic Peptides with Antimicrobial Activity

    PubMed Central

    Stark, Margareta; Liu, Li-Ping; Deber, Charles M.

    2002-01-01

    The MICs of cationic, hydrophobic peptides of the prototypic sequence KKAAAXAAAAAXAAWAAXAAAKKKK-amide (where X is one of the 20 commonly occurring amino acids) are in a low micromolar range for a panel of gram-negative and gram-positive bacteria, with no or low hemolytic activity against human and rabbit erythrocytes. The peptides are active only when the average segmental hydrophobicity of the 19-residue core is above an experimentally determined threshold value (where X is Phe, Trp, Leu, Ile, Met, Val, Cys, or Ala). Antimicrobial activity could be increased by using peptides that were truncated from the prototype length to 11 core residues, with X being Phe and with 6 Lys residues grouped at the N terminus. We propose a mechanism for the interaction between these peptides and bacterial membranes similar to the “carpet model,” wherein the Lys residues interact with the anionic phospholipid head groups in the bacterial membrane surface and the hydrophobic core portion of the peptide is then able to interact with the lipid bilayer, causing disruption of the bacterial membrane. PMID:12384369

  17. A minimalist chemical model of matrix metalloproteinases--can small peptides mimic the more rigid metal binding sites of proteins?

    PubMed

    Árus, Dávid; Nagy, Nóra Veronika; Dancs, Ágnes; Jancsó, Attila; Berkecz, Róbert; Gajda, Tamás

    2013-09-01

    In order to mimic the active center of matrix metalloproteinases (MMPs), we synthesized a pentadecapeptide (Ac-KAHEFGHSLGLDHSK-NH2) corresponding to the catalytic zinc(II) binding site of human MMP-13. The multi-domain structural organization of MMPs fundamentally determines their metal binding affinity, catalytic activity and selectivity. Our potentiometric, UV-visible, CD, EPR, NMR, mass spectrometric and kinetic studies are aimed to explore the usefulness of such flexible peptides to mimic the more rigid metal binding sites of proteins, to examine the intrinsic metal binding properties of this naked sequence, as well as to contribute to the development of a minimalist, peptide-based chemical model of MMPs, including the catalytic properties. Since the multiimidazole environment is also characteristic for copper(II), and recently copper(II) containing variants of MMPs have been identified, we also studied the copper(II) complexes of the above peptide. Around pH 6-7 the peptide, similarly to MMPs, offers a {3Nim} coordination binding site for both zinc(II) and copper(II). In the case of copper(II), the formation of amide coordinated species at higher pH abolished the analogy with the copper(II) containing MMP variant. On the other hand, the zinc(II)-peptide system mimics some basic features of the MMP active sites: the main species around pH7 (ZnH2L) possesses a {3Nim,H2O} coordination environment, the deprotonation of the zinc-bound water takes place near the physiological pH, it forms relatively stable ternary complexes with hydroxamic acids, and the species ZnH2L(OH) and ZnH2L(OH)2 have notable hydrolytic activity between pH7 and 9.

  18. In silico designing breast cancer peptide vaccine for binding to MHC class I and II: A molecular docking study.

    PubMed

    Mahdavi, Manijeh; Moreau, Violaine

    2016-12-01

    Antigenic peptides or cancer peptide vaccines can be directly delivered to cancer patients to produce immunologic responses against cancer cells. Specifically, designed peptides can associate with Major Histocompatibility Complex (MHC) class I or II molecules on the cell surface of antigen presenting cells activating anti-tumor effector mechanisms by triggering helper T cell (Th) or cytotoxic T cells (CTL). In general, high binding to MHCs approximately correlates with in vivo immunogenicity. Consequently, a molecular docking technique was run on a library of novel discontinuous peptides predicted by PEPOP from Human epidermal growth factor receptor 2 (HER2 ECD) subdomain III. This technique is expected to improve the prediction accuracy in order to identify the best MHC class I and II binder peptides. Molecular docking analysis through GOLD identified the peptide 1412 as the best MHC binder peptide to both MHC class I and II molecules used in the study. The GOLD results predicted HLA-DR4, HLA-DP2 and TCR as the most often targeted receptors by the peptide 1412. These findings, based on bioinformatics analyses, can be exploited in further experimental analyses in vaccine design and cancer therapy to find possible proper approaches providing beneficial effects.

  19. Investigating the Binding of Peptides to Graphene Surfaces for Biosensing Applications

    NASA Astrophysics Data System (ADS)

    Garley, Amanda; Saikia, Nabanita; Barr, Stephen; Leuty, Gary; Berry, Rajiv; Heinz, Hendrik

    The Air Force Research Lab is focused on developing highly selective and sensitive graphene-based sensors functionalized with peptides for biomolecule detection. To achieve this there is a need to model interfacial binding interactions between the organic and inorganic components to complement ongoing experimental investigations. It is important to characterize the binding behavior of individual amino acids, with the goal of predicting binding of large peptides. Since polarization is important in graphene systems, a new force field which includes polarizability is used. This allows for an in depth exploration of pi-pi interactions, electrostatics and van der Waals forces involved with binding. The binding strength is determined via enthalpy and free energy calculations. Additionally, structural quantities are computed, such as how aromatic rings align with the graphene surface and the arrangement of various residue substituents in relation to the surface and water layers. Computational results are useful in guiding experimental methods focused on rapidly screening optimal peptide sequence for binding.

  20. Binding of Hemagglutinin and Influenza Virus to a Peptide-Conjugated Lipid Membrane

    PubMed Central

    Matsubara, Teruhiko; Shibata, Rabi; Sato, Toshinori

    2016-01-01

    Hemagglutinin (HA) plays an important role in the first step of influenza virus (IFV) infection because it initiates the binding of the virus to the sialylgalactose linkages of the receptors on the host cells. We herein demonstrate that a HA-binding peptide immobilized on a solid support is available to bind to HA and IFV. We previously obtained a HA-binding pentapeptide (Ala-Arg-Leu-Pro-Arg), which was identified by phage-display selection against HAs from random peptide libraries. This peptide binds to the receptor-binding site of HA by mimicking sialic acid. A peptide-conjugated lipid (pep-PE) was chemically synthesized from the peptide and a saturated phospholipid. A lipid bilayer composed of pep-PE and an unsaturated phospholipid (DOPC) was immobilized on a mica plate; and the interaction between HA and the pep-PE/DOPC membrane was investigated using atomic force microscopy. The binding of IFV to the pep-PE/DOPC membrane was detected by an enzyme-linked immunosorbent assay and real-time reverse transcription PCR. Our results indicate that peptide-conjugated lipids are a useful molecular device for the detection of HA and IFV. PMID:27092124

  1. Binding modes of thioflavin T molecules to prion peptide assemblies identified by using scanning tunneling microscopy.

    PubMed

    Mao, Xiaobo; Guo, Yuanyuan; Wang, Chenxuan; Zhang, Min; Ma, Xiaojing; Liu, Lei; Niu, Lin; Zeng, Qingdao; Yang, Yanlian; Wang, Chen

    2011-06-15

    The widely used method to monitor the aggregation process of amyloid peptide is thioflavin T (ThT) assay, while the detailed molecular mechanism is still not clear. In this work, we report here the direct identification of the binding modes of ThT molecules with the prion peptide GNNQQNY by using scanning tunneling microscopy (STM). The assembly structures of GNNQQNY were first observed by STM on a graphite surface, and the introduction of ThT molecules to the surface facilitated the STM observations of the adsorption conformations of ThT with peptide strands. ThT molecules are apt to adsorb on the peptide assembly with β-sheet structure and oriented parallel with the peptide strands adopting four different binding modes. This effort could benefit the understanding of the mechanisms of the interactions between labeling species or inhibitory ligands and amyloid peptides, which is keenly needed for developing diagnostic and therapeutic approaches.

  2. Engineering of the function of diamond-like carbon binding peptides through structural design.

    PubMed

    Gabryelczyk, Bartosz; Szilvay, Géza R; Singh, Vivek K; Mikkilä, Joona; Kostiainen, Mauri A; Koskinen, Jari; Linder, Markus B

    2015-02-09

    The use of phage display to select material-specific peptides provides a general route towards modification and functionalization of surfaces and interfaces. However, a rational structural engineering of the peptides for optimal affinity is typically not feasible because of insufficient structure-function understanding. Here, we investigate the influence of multivalency of diamond-like carbon (DLC) binding peptides on binding characteristics. We show that facile linking of peptides together using different lengths of spacers and multivalency leads to a tuning of affinity and kinetics. Notably, increased length of spacers in divalent systems led to significantly increased affinities. Making multimers influenced also kinetic aspects of surface competition. Additionally, the multivalent peptides were applied as surface functionalization components for a colloidal form of DLC. The work suggests the use of a set of linking systems to screen parameters for functional optimization of selected material-specific peptides.

  3. Semi-empirical quantum evaluation of peptide - MHC class II binding

    NASA Astrophysics Data System (ADS)

    González, Ronald; Suárez, Carlos F.; Bohórquez, Hugo J.; Patarroyo, Manuel A.; Patarroyo, Manuel E.

    2017-01-01

    Peptide presentation by the major histocompatibility complex (MHC) is a key process for triggering a specific immune response. Studying peptide-MHC (pMHC) binding from a structural-based approach has potential for reducing the costs of investigation into vaccine development. This study involved using two semi-empirical quantum chemistry methods (PM7 and FMO-DFTB) for computing the binding energies of peptides bonded to HLA-DR1 and HLA-DR2. We found that key stabilising water molecules involved in the peptide binding mechanism were required for finding high correlation with IC50 experimental values. Our proposal is computationally non-intensive, and is a reliable alternative for studying pMHC binding interactions.

  4. PepComposer: computational design of peptides binding to a given protein surface

    PubMed Central

    Obarska-Kosinska, Agnieszka; Iacoangeli, Alfredo; Lepore, Rosalba; Tramontano, Anna

    2016-01-01

    There is a wide interest in designing peptides able to bind to a specific region of a protein with the aim of interfering with a known interaction or as starting point for the design of inhibitors. Here we describe PepComposer, a new pipeline for the computational design of peptides binding to a given protein surface. PepComposer only requires the target protein structure and an approximate definition of the binding site as input. We first retrieve a set of peptide backbone scaffolds from monomeric proteins that harbor the same backbone arrangement as the binding site of the protein of interest. Next, we design optimal sequences for the identified peptide scaffolds. The method is fully automatic and available as a web server at http://biocomputing.it/pepcomposer/webserver. PMID:27131789

  5. Transmissible gastroenteritis virus; identification of M protein-binding peptide ligands with antiviral and diagnostic potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The membrane (M) protein is one of the major structural proteins of coronavirus particles. In this study, the M protein of transmissible gastroenteritis virus (TGEV) was used to biopan a 12-mer phage display random peptide library. Three phages expressing TGEV-M-binding peptides were identified and ...

  6. Identification of the core regulators of the HLA I-peptide binding process

    PubMed Central

    Zhang, Yu-Hang; Xing, Zhihao; Liu, Chenglin; Wang, ShaoPeng; Huang, Tao; Cai, Yu-Dong; Kong, Xiangyin

    2017-01-01

    During the display of peptide/human leukocyte antigen (HLA) -I complex for further immune recognition, the cleaved and transported antigenic peptides have to bind to HLA-I protein and the binding affinity between peptide epitopes and HLA proteins directly influences the immune recognition ability in human beings. Key factors affecting the binding affinity during the generation, selection and presentation processes of HLA-I complex have not yet been fully discovered. In this study, a new method describing the HLA class I-peptide interactions was proposed. Three hundred and forty features of HLA I proteins and peptide sequences were utilized for analysis by four candidate algorithms, screening the optimal classifier. Features derived from the optimal classifier were further selected and systematically analyzed, revealing the core regulators. The results validated the hypothesis that features of HLA I proteins and related peptides simultaneously affect the binding process, though with discrepant redundancy. Besides, the high relative ratio (16/20) of the amino acid composition features suggests the unique role of sequence signatures for the binding processes. Integrating biological, evolutionary and chemical features of both HLA I molecules and peptides, this study may provide a new perspective of the underlying mechanisms of HLA I-mediated immune reactions. PMID:28211542

  7. Inhibition of Human Respiratory Syncytial Virus Infectivity by a Dendrimeric Heparan Sulfate-Binding Peptide

    PubMed Central

    Donalisio, Manuela; Rusnati, Marco; Cagno, Valeria; Civra, Andrea; Bugatti, Antonella; Giuliani, Andrea; Pirri, Giovanna; Volante, Marco; Papotti, Mauro; Landolfo, Santo

    2012-01-01

    Respiratory syncytial virus (RSV) interacts with cell surface heparan sulfate proteoglycans (HSPGs) to initiate infection. The interaction of RSV with HSPGs thus presents an attractive target for the development of novel inhibitors of RSV infection. In the present study, a minilibrary of linear, dimeric, and dendrimeric peptides containing clusters of basic amino acids was screened with the aim of identifying peptides able to bind HSPGs and thus block RSV attachment and infectivity. Of the compounds identified, the dendrimer SB105-A10 was the most potent inhibitor of RSV infectivity, with 50% inhibitory concentrations (IC50s) of 0.35 μM and 0.25 μM measured in Hep-2 and A549 cells, respectively. SB105-A10 was found to bind to both cell types via HSPGs, suggesting that its antiviral activity is indeed exerted by competing with RSV for binding to cell surface HSPGs. SB105-A10 prevented RSV infection when added before the viral inoculum, in line with its proposed HSPG-binding mechanism of action; moreover, antiviral activity was also exhibited when SB105-A10 was added postinfection, as it was able to reduce the cell-to-cell spread of the virus. The antiviral potential of SB105-A10 was further assessed using human-derived tracheal/bronchial epithelial cells cultured to form a pseudostratified, highly differentiated model of the epithelial tissue of the human respiratory tract. SB105-A10 strongly reduced RSV infectivity in this model and exhibited no signs of cytotoxicity or proinflammatory effects. Together, these features render SB105-A10 an attractive candidate for further development as a RSV inhibitor to be administered by aerosol delivery. PMID:22850525

  8. The Same Major Histocompatibility Complex Polymorphism Involved in Control of HIV Influences Peptide Binding in the Mouse H-2Ld System*

    PubMed Central

    Narayanan, Samanthi; Kranz, David M.

    2013-01-01

    Single-site polymorphisms in human class I major histocompatibility complex (MHC) products (HLA-B) have recently been shown to correlate with HIV disease progression or control. An identical single-site polymorphism (at residue 97) in the mouse class I product H-2Ld influences stability of the complex. To gain insight into the human polymorphisms, here we examined peptide binding, stability, and structures of the corresponding Ld polymorphisms, Trp97 and Arg97. Expression of LdW97 and LdR97 genes in a cell line that is antigen-processing competent showed that LdR97 was expressed at higher levels than LdW97, consistent with enhanced stability of self-peptide·LdR97 complexes. To further examine peptide-binding capacities of these two allelic variants, we used a high affinity pep-Ld specific probe to quantitatively examine a collection of self- and foreign peptides that bind to Ld. LdR97 bound more effectively than LdW97 to most peptides, although LdW97 bound more effectively to two peptides. The results support the view that many self-peptides in the Ld system (or the HLA-B system) would exhibit enhanced binding to Arg97 alleles compared with Trp97 alleles. Accordingly, the self-peptide·MHC-Arg97 complexes would influence T-cell selection behavior, impacting the T-cell repertoire of these individuals, and could also impact peripheral T cell activity through effects of self-peptide·Ld interacting with TCR and/or CD8. The structures of several peptide·LdR97 and peptide·LdW97 complexes provided a framework of how this single polymorphism could impact peptide binding. PMID:24064213

  9. Tumor-Specific Peptide, Selected from a Phage Peptide Library, Enhances Antitumor Activity of Lactaptin

    PubMed Central

    Makartsova, Anna A.; Fomin, Alexandr S.; Nushtaeva, Anna A.; Koval, Olga A.

    2016-01-01

    A recombinant analogue of lactaptin (RL2), a new potential anticancer molecule, induces apoptosis in cultured tumor cells. The tumor suppression efficacy of RL2 was shown against mouse hepatoma-1 cells and MDA-MB-231 human breast adenocarcinoma cells. The RL2-based therapeutic drug lactaptin is distributed evenly throughout the organism, which reduces its antitumor efficacy. In the current study, we obtained a genetic construct that allows production of the recombinant fusion protein T3-RL2, consisting of RL2 and T3 peptide (YTYDPWLIFPAN), in E. coli cells. T3 peptide was selected from a phage peptide library as a result of two screenings: in vitro using MDA-MB-231 cell culture and in vivo using a mouse xenograft model of breast cancer MDA-MB-231. It was shown that the displayed peptide T3 provides binding and internalization of phage particles by MDA-MB-231 cells and their specific accumulation in MDA-MB-231 tumor tissue. In addition, based on the nucleotide sequences coding RL2 and the known tumor-targeting peptide iRGD, we obtained genetic constructs that provide synthesis of fusion proteins RL2-iRGD and RL-iRGD-His. We studied the cytotoxic activity of fusion proteins T3-RL2, RL2-iRGD and RL-iRGD-His in vitro using MDA-MB-231 and MCF-7 human adenocarcinoma cells. The in vitro results showed that the fusion proteins inhibit proliferation of both cell cultures, and their cytotoxic activity is higher than that of RL2. In vivo experiments on the study of the antitumor efficacy of the obtained fusion proteins demonstrated that T3-RL2 protein significantly inhibits MDA-MB-231 tumor growth in a xenograft model compared with RL2, while the antitumor effect of RL2-iRGD and RL-iRGD-His proteins is comparable to the effect of RL2. PMID:27513518

  10. A GBP 130 derived peptide from Plasmodium falciparum binds to human erythrocytes and inhibits merozoite invasion in vitro.

    PubMed

    Suarez, J E; Urquiza, M; Curtidor, H; Rodriguez, L E; Ocampo, M; Torres, E; Guzman, F; Patarroyo, M E

    2000-01-01

    The malarial GBP 130 protein binds weakly to intact human erythrocytes; the binding sites seem to be located in the repeat region and this region's antibodies block the merozoite invasion. A peptide from this region (residues from 701 to 720) which binds to human erythrocytes was identified. This peptide named 2220 did not bind to sialic acid; the binding site on human erythrocyte was affected by treatment with trypsin but not by chymotrypsin. The peptide was able to inhibit Plasmodium falciparum merozoite invasion of erythrocytes. The residues F701, K703, L705, T706, E713 (FYKILTNTDPNDEVERDNAD) were found to be critical for peptide binding to erythrocytes.

  11. [Biologically Active Peptides of King Crab Hepatopancreas].

    PubMed

    Bogdanov, V V; Berezin, B B; Il'ina, A P; Yamskova, V P; Yamskov, I A

    2015-01-01

    Substances of a peptide nature isolated from the hepatopancreas of the king crab Paralithodes camtschaticus exhibited physicochemical properties and membranotropic and specific activities similar to those of membranotropic homeostatic tissue-specific bioregulators previously found in different mammalian and plant tissues. Their biological effect on vertebrate tissues was demonstrated on a model of roller organotypic cultivation of Pleurodeles waltl newt liver tissue.

  12. Identification and analysis of the sap genes from Vibrio fischeri belonging to the ATP-binding cassette gene family required for peptide transport and resistance to antimicrobial peptides.

    PubMed

    Chen, H Y; Weng, S F; Lin, J W

    2000-03-24

    Partial nucleotide sequences of the sapD and sapF genes of the sap operon (GenBank Accession No. AF178651) from Vibrio fischeri ATCC 7744 have been determined, and the peptide transport system of ATP-binding proteins SapD and SapF encoded by the genes have been deduced. Alignment and comparison of the Sap proteins of V. fischeri, Escherichia coli, Salmonella typhimurium, and Haemophilus influenzae Rd show that these proteins are homologous. The sap operon residing in the genome enables V. fischeri to transport peptides and resist antimicrobial peptides. Nucleotide sequence and functional analyses confirm that the specific regulatory-region-like sequence R&R* that resides inside the sapD gene and before the sapF gene functions in gene expression and regulation; also, it is regulated by the LuxR-AI complex of the V. fischeri lux regulon. The putative upstream activator binding sequences SigmaUASI, SigmaUASII, SigmaUASIII TGTCGACTTGGGCCTCGCTGTCCGTATGCACA (72nd to 103rd bp), TGTCCGTATGCACA (90th to 103rd bp), and TGTTCAAGTACCAGAAAGACA (111st to 133rd bp) in the R&R* sequence, which are similar to the two-component regulator binding sequence TGT-N(8-12)-ACA and the LuxR-AI binding sequence ACCTGTAGGATCGTACAGGT in the regulatory region of the V. fischeri lux regulon, might be the specific sequences recognized by the LuxR-AI complex for enhancement.

  13. Prediction of peptide binding to a major histocompatibility complex class I molecule based on docking simulation.

    PubMed

    Ishikawa, Takeshi

    2016-10-01

    Binding between major histocompatibility complex (MHC) class I molecules and immunogenic epitopes is one of the most important processes for cell-mediated immunity. Consequently, computational prediction of amino acid sequences of MHC class I binding peptides from a given sequence may lead to important biomedical advances. In this study, an efficient structure-based method for predicting peptide binding to MHC class I molecules was developed, in which the binding free energy of the peptide was evaluated by two individual docking simulations. An original penalty function and restriction of degrees of freedom were determined by analysis of 361 published X-ray structures of the complex and were then introduced into the docking simulations. To validate the method, calculations using a 50-amino acid sequence as a prediction target were performed. In 27 calculations, the binding free energy of the known peptide was within the top 5 of 166 peptides generated from the 50-amino acid sequence. Finally, demonstrative calculations using a whole sequence of a protein as a prediction target were performed. These data clearly demonstrate high potential of this method for predicting peptide binding to MHC class I molecules.

  14. The primary structure of the Cytisus scoparius seed lectin and a carbohydrate-binding peptide.

    PubMed

    Konami, Y; Yamamoto, K; Osawa, T; Irimura, T

    1992-09-01

    The complete amino acid sequence of 2-acetamido-2-deoxy-D-galactose-binding Cytisus scoparius seed lectin II (CSII) was determined using a protein sequencer. After digestion of CSII with endoproteinase Lys-C or Asp-N, the resulting peptides were purified by reversed-phase high performance liquid chromatography (HPLC) and then subjected to sequence analysis. Comparison of the complete amino acid sequence of CSII with the sequences of other leguminous seed lectins revealed regions of extensive homology. The amino acid residues of concanavalin A (Con A) involved in the metal binding site are highly conserved among those of CSII. A carbohydrate-binding peptide of CSII was obtained from the endoproteinase Asp-N digest of CSII by affinity chromatography on a column of GalNAc-Gel. This peptide was retained on the GalNAc-Gel column and was presumed to have affinity for the column. The amino acid sequence of the retarded peptide was determined using a protein sequencer. The retarded peptide was found to correspond to the putative metal-binding region of Con A. These results strongly suggest that this peptide represents the carbohydrate-binding and metal ion-binding sites of CSII.

  15. Peptide array on cellulose support--a screening tool to identify peptides with dipeptidyl-peptidase IV inhibitory activity within the sequence of α-lactalbumin.

    PubMed

    Lacroix, Isabelle M E; Li-Chan, Eunice C Y

    2014-11-13

    The inhibition of the enzyme dipeptidyl-peptidase IV (DPP-IV) is an effective pharmacotherapeutic approach for the management of type 2 diabetes. Recent findings have suggested that dietary proteins, including bovine α-lactalbumin, could be precursors of peptides able to inhibit DPP-IV. However, information on the location of active peptide sequences within the proteins is far from being comprehensive. Moreover, the traditional approach to identify bioactive peptides from foods can be tedious and long. Therefore, the objective of this study was to use peptide arrays to screen α-lactalbumin-derived peptides for their interaction with DPP-IV. Deca-peptides spanning the entire α-lactalbumin sequence, with a frame shift of 1 amino acid between successive sequences, were synthesized on cellulose membranes using "SPOT" technology, and their binding to and inhibition of DPP-IV was studied. Among the 114 α-lactalbumin-derived decamers investigated, the peptides 60WCKDDQNPHS69 (αK(i) = 76 µM), 105LAHKALCSEK114 (K(i) = 217 µM) and 110LCSEKLDQWL119 (K(i) = 217 µM) were among the strongest DPP-IV inhibitors. While the SPOT- and traditionally-synthesized peptides showed consistent trends in DPP-IV inhibitory activity, the cellulose-bound peptides' binding behavior was not correlated to their ability to inhibit the enzyme. This research showed, for the first time, that peptide arrays are useful screening tools to identify DPP-IV inhibitory peptides from dietary proteins.

  16. Antifungal Activities of Peptides Derived from Domain 5 of High-Molecular-Weight Kininogen

    PubMed Central

    Sonesson, Andreas; Nordahl, Emma Andersson; Malmsten, Martin; Schmidtchen, Artur

    2011-01-01

    In both immunocompromised and immunocompetent patients, Candida and Malassezia are causing or triggering clinical manifestations such as cutaneous infections and atopic eczema. The innate immune system provides rapid responses to microbial invaders, without requiring prior stimulation, through a sophisticated system of antimicrobial peptides (AMPs). High molecular weight kininogen (HMWK) and components of the contact system have previously been reported to bind to Candida and other pathogens, leading to activation of the contact system. A cutaneous Candida infection is characterized by an accumulation of neutrophils, leading to an inflammatory response and release of enzymatically active substances. In the present study we demonstrate that antifungal peptide fragments are generated through proteolytic degradation of HMWK. The recombinant domain 5 (rD5) of HMWK, D5-derived peptides, as well as hydrophobically modified D5-derived peptides efficiently killed Candida and Malassezia. Furthermore, the antifungal activity of modified peptides was studied at physiological conditions. Binding of a D5-derived peptide, HKH20 (His479-His498), to the fungal cell membrane was visualized by fluorescence microscopy. Our data disclose a novel antifungal activity of D5-derived peptides and also show that proteolytic cleavage of HMWK results in fragments exerting antifungal activity. Of therapeutic interest is that structurally modified peptides show an enhanced antifungal activity. PMID:21941573

  17. Genome-Wide Prediction and Validation of Peptides That Bind Human Prosurvival Bcl-2 Proteins

    PubMed Central

    DeBartolo, Joe; Taipale, Mikko; Keating, Amy E.

    2014-01-01

    Programmed cell death is regulated by interactions between pro-apoptotic and prosurvival members of the Bcl-2 family. Pro-apoptotic family members contain a weakly conserved BH3 motif that can adopt an alpha-helical structure and bind to a groove on prosurvival partners Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. Peptides corresponding to roughly 13 reported BH3 motifs have been verified to bind in this manner. Due to their short lengths and low sequence conservation, BH3 motifs are not detected using standard sequence-based bioinformatics approaches. Thus, it is possible that many additional proteins harbor BH3-like sequences that can mediate interactions with the Bcl-2 family. In this work, we used structure-based and data-based Bcl-2 interaction models to find new BH3-like peptides in the human proteome. We used peptide SPOT arrays to test candidate peptides for interaction with one or more of the prosurvival proteins Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. For the 36 most promising array candidates, we quantified binding to all five human receptors using direct and competition binding assays in solution. All 36 peptides showed evidence of interaction with at least one prosurvival protein, and 22 peptides bound at least one prosurvival protein with a dissociation constant between 1 and 500 nM; many peptides had specificity profiles not previously observed. We also screened the full-length parent proteins of a subset of array-tested peptides for binding to Bcl-xL and Mcl-1. Finally, we used the peptide binding data, in conjunction with previously reported interactions, to assess the affinity and specificity prediction performance of different models. PMID:24967846

  18. Peptides with Dual Antimicrobial and Anticancer Activities

    PubMed Central

    Felício, Mário R.; Silva, Osmar N.; Gonçalves, Sônia; Santos, Nuno C.; Franco, Octávio L.

    2017-01-01

    In recent years, the number of people suffering from cancer and multi-resistant infections has increased, such that both diseases are already seen as current and future major causes of death. Moreover, chronic infections are one of the main causes of cancer, due to the instability in the immune system that allows cancer cells to proliferate. Likewise, the physical debility associated with cancer or with anticancer therapy itself often paves the way for opportunistic infections. It is urgent to develop new therapeutic methods, with higher efficiency and lower side effects. Antimicrobial peptides (AMPs) are found in the innate immune system of a wide range of organisms. Identified as the most promising alternative to conventional molecules used nowadays against infections, some of them have been shown to have dual activity, both as antimicrobial and anticancer peptides (ACPs). Highly cationic and amphipathic, they have demonstrated efficacy against both conditions, with the number of nature-driven or synthetically designed peptides increasing year by year. With similar properties, AMPs that can also act as ACPs are viewed as future chemotherapeutic drugs, with the advantage of low propensity to resistance, which started this paradigm in the pharmaceutical market. These peptides have already been described as molecules presenting killing mechanisms at the membrane level, but also acting toward intracellular targets, which increases their success compartively to one-target specific drugs. This review will approach the desirable characteristics of small peptides that demonstrated dual activity against microbial infections and cancer, as well as the peptides engaged in clinical trials. PMID:28271058

  19. Quantitative structure-activity relationships and docking studies of calcitonin gene-related peptide antagonists.

    PubMed

    Kyani, Anahita; Mehrabian, Mohadeseh; Jenssen, Håvard

    2012-02-01

    Defining the role of calcitonin gene-related peptide in migraine pathogenesis could lead to the application of calcitonin gene-related peptide antagonists as novel migraine therapeutics. In this work, quantitative structure-activity relationship modeling of biological activities of a large range of calcitonin gene-related peptide antagonists was performed using a panel of physicochemical descriptors. The computational studies evaluated different variable selection techniques and demonstrated shuffling stepwise multiple linear regression to be superior over genetic algorithm-multiple linear regression. The linear quantitative structure-activity relationship model revealed better statistical parameters of cross-validation in comparison with the non-linear support vector regression technique. Implementing only five peptide descriptors into this linear quantitative structure-activity relationship model resulted in an extremely robust and highly predictive model with calibration, leave-one-out and leave-20-out validation R(2) of 0.9194, 0.9103, and 0.9214, respectively. We performed docking of the most potent calcitonin gene-related peptide antagonists with the calcitonin gene-related peptide receptor and demonstrated that peptide antagonists act by blocking access to the peptide-binding cleft. We also demonstrated the direct contact of residues 28-37 of the calcitonin gene-related peptide antagonists with the receptor. These results are in agreement with the conclusions drawn from the quantitative structure-activity relationship model, indicating that both electrostatic and steric factors should be taken into account when designing novel calcitonin gene-related peptide antagonists.

  20. Synthesis of gold structures by gold-binding peptide governed by concentration of gold ion and peptide.

    PubMed

    Kim, Jungok; Kim, Dong-Hun; Lee, Sylvia J; Rheem, Youngwoo; Myung, Nosang V; Hur, Hor-Gil

    2016-08-01

    Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 μm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions.

  1. Multiple length peptide-pheromone variants produced by Streptococcus pyogenes directly bind Rgg proteins to confer transcriptional regulation.

    PubMed

    Aggarwal, Chaitanya; Jimenez, Juan Cristobal; Nanavati, Dhaval; Federle, Michael J

    2014-08-08

    Streptococcus pyogenes, a human-restricted pathogen, accounts for substantial mortality related to infections worldwide. Recent studies indicate that streptococci produce and respond to several secreted peptide signaling molecules (pheromones), including those known as short hydrophobic peptides (SHPs), to regulate gene expression by a quorum-sensing mechanism. Upon transport into the bacterial cell, pheromones bind to and modulate activity of receptor proteins belonging to the Rgg family of transcription factors. Previously, we reported biofilm regulation by the Rgg2/3 quorum-sensing circuit in S. pyogenes. The aim of this study was to identify the composition of mature pheromones from cell-free culture supernatants that facilitate biofilm formation. Bioluminescent reporters were employed to detect active pheromones in culture supernatants fractionated by reverse-phase chromatography, and mass spectrometry was used to characterize their properties. Surprisingly, multiple SHPs that varied by length were detected. Synthetic peptides of each variant were tested individually using bioluminescence reporters and biofilm growth assays, and although activities differed widely among the group, peptides comprising the C-terminal eight amino acids of the full-length native peptide were most active. Direct Rgg/SHP interactions were determined using a fluorescence polarization assay that utilized FITC-labeled peptide ligands. Peptide receptor affinities were seen to be as low as 500 nm and their binding affinities directly correlated with observed bioactivity. Revelation of naturally produced pheromones along with determination of their affinity for cognate receptors are important steps forward in designing compounds whose purpose is positioned for future therapeutics aimed at treating infections through the interference of bacterial communication.

  2. Multiple Length Peptide-Pheromone Variants Produced by Streptococcus pyogenes Directly Bind Rgg Proteins to Confer Transcriptional Regulation*

    PubMed Central

    Aggarwal, Chaitanya; Jimenez, Juan Cristobal; Nanavati, Dhaval; Federle, Michael J.

    2014-01-01

    Streptococcus pyogenes, a human-restricted pathogen, accounts for substantial mortality related to infections worldwide. Recent studies indicate that streptococci produce and respond to several secreted peptide signaling molecules (pheromones), including those known as short hydrophobic peptides (SHPs), to regulate gene expression by a quorum-sensing mechanism. Upon transport into the bacterial cell, pheromones bind to and modulate activity of receptor proteins belonging to the Rgg family of transcription factors. Previously, we reported biofilm regulation by the Rgg2/3 quorum-sensing circuit in S. pyogenes. The aim of this study was to identify the composition of mature pheromones from cell-free culture supernatants that facilitate biofilm formation. Bioluminescent reporters were employed to detect active pheromones in culture supernatants fractionated by reverse-phase chromatography, and mass spectrometry was used to characterize their properties. Surprisingly, multiple SHPs that varied by length were detected. Synthetic peptides of each variant were tested individually using bioluminescence reporters and biofilm growth assays, and although activities differed widely among the group, peptides comprising the C-terminal eight amino acids of the full-length native peptide were most active. Direct Rgg/SHP interactions were determined using a fluorescence polarization assay that utilized FITC-labeled peptide ligands. Peptide receptor affinities were seen to be as low as 500 nm and their binding affinities directly correlated with observed bioactivity. Revelation of naturally produced pheromones along with determination of their affinity for cognate receptors are important steps forward in designing compounds whose purpose is positioned for future therapeutics aimed at treating infections through the interference of bacterial communication. PMID:24958729

  3. Trends in the Binding of Cell Penetrating Peptides to siRNA: A Molecular Docking Study

    PubMed Central

    Gunathunge, B. G. C. M.; Wimalasiri, P. N.; Karunaratne, D. N.

    2017-01-01

    The use of gene therapeutics, including short interfering RNA (siRNA), is limited by the lack of efficient delivery systems. An appealing approach to deliver gene therapeutics involves noncovalent complexation with cell penetrating peptides (CPPs) which are able to penetrate the cell membranes of mammals. Although a number of CPPs have been discovered, our understanding of their complexation and translocation of siRNA is as yet insufficient. Here, we report on computational studies comparing the binding affinities of CPPs with siRNA, considering a variety of CPPs. Specifically, seventeen CPPs from three different categories, cationic, amphipathic, and hydrophobic CPPs, were studied. Molecular mechanics were used to minimize structures, while molecular docking calculations were used to predict the orientation and favorability of sequentially binding multiple peptides to siRNA. Binding scores from docking calculations were highest for amphipathic peptides over cationic and hydrophobic peptides. Results indicate that initial complexation of peptides will likely occur along the major groove of the siRNA, driven by electrostatic interactions. Subsequent binding of CPPs is likely to occur in the minor groove and later on bind randomly, to siRNA or previously bound CPPs, through hydrophobic interactions. However, hydrophobic CPPs do not show this binding pattern. Ultimately binding yields a positively charged nanoparticle capable of noninvasive cellular import of therapeutic molecules. PMID:28321253

  4. Free tyrosine and tyrosine-rich peptide-dependent superoxide generation catalyzed by a copper-binding, threonine-rich neurotoxic peptide derived from prion protein.

    PubMed

    Yokawa, Ken; Kagenishi, Tomoko; Goto, Kaishi; Kawano, Tomonori

    2009-01-01

    Previously, generation of superoxide anion (O(2)(*-)) catalyzed by Cu-binding peptides derived from human prion protein (model sequence for helical Cu-binding motif VNITKQHTVTTTT was most active) in the presence of catecholamines and related aromatic monoamines such as phenylethylamine and tyramine, has been reported [Kawano, T., Int J Biol Sci 2007; 3: 57-63]. The peptide sequence (corresponding to helix 2) tested here is known as threonine-rich neurotoxic peptide. In the present article, the redox behaviors of aromatic monoamines, 20 amino acids and prion-derived tyrosine-rich peptide sequences were compared as putative targets of the oxidative reactions mediated with the threonine-rich prion-peptide. For detection of O(2)(*-), an O(2)(*-)-specific chemiluminescence probe, Cypridina luciferin analog was used. We found that an aromatic amino acid, tyrosine (structurally similar to tyramine) behaves as one of the best substrates for the O(2)(*-) generating reaction (conversion from hydrogen peroxide) catalyzed by Cu-bound prion helical peptide. Data suggested that phenolic moiety is required to be an active substrate while the presence of neither carboxyl group nor amino group was necessarily required. In addition to the action of free tyrosine, effect of two tyrosine-rich peptide sequences YYR and DYEDRYYRENMHR found in human prion corresponding to the tyrosine-rich region was tested as putative substrates for the threonine-rich neurotoxic peptide. YYR motif (found twice in the Y-rich region) showed 2- to 3-fold higher activity compared to free tyrosine. Comparison of Y-rich sequence consisted of 13 amino acids and its Y-to-F substitution mutant sequence revealed that the tyrosine-residues on Y-rich peptide derived from prion may contribute to the higher production of O(2)(*-). These data suggest that the tyrosine residues on prion molecules could be additional targets of the prion-mediated reactions through intra- or inter-molecular interactions. Lastly, possible

  5. Identifying Plasmodium falciparum merozoite surface antigen 3 (MSP3) protein peptides that bind specifically to erythrocytes and inhibit merozoite invasion

    PubMed Central

    Rodríguez, Luis E.; Curtidor, Hernando; Ocampo, Marisol; Garcia, Javier; Puentes, Alvaro; Valbuena, John; Vera, Ricardo; López, Ramses; Patarroyo, Manuel E.

    2005-01-01

    Receptor–ligand interactions between synthetic peptides and normal human erythrocytes were studied to determine Plasmodium falciparum merozoite surface protein-3 (MSP-3) FC27 strain regions that specifically bind to membrane surface receptors on human erythrocytes. Three MSP-3 protein high activity binding peptides (HABPs) were identified; their binding to erythrocytes became saturable, had nanomolar affinity constants, and became sensitive on being treated with neuraminidase and trypsin but were resistant to chymotrypsin treatment. All of them specifically recognized 45-, 55-, and 72-kDa erythrocyte membrane proteins. They all presented α-helix structural elements. All HABPs inhibited in vitro P. falciparum merozoite invasion of erythrocytes by ~55%–85%, suggesting that MSP-3 protein’s role in the invasion process probably functions by using mechanisms similar to those described for other MSP family antigens. PMID:15987906

  6. Peptide-based identification of functional motifs and their binding partners.

    PubMed

    Shelton, Martin N; Huang, Ming Bo; Ali, Syed; Johnson, Kateena; Roth, William; Powell, Michael; Bond, Vincent

    2013-06-30

    Specific short peptides derived from motifs found in full-length proteins, in our case HIV-1 Nef, not only retain their biological function, but can also competitively inhibit the function of the full-length protein. A set of 20 Nef scanning peptides, 20 amino acids in length with each overlapping 10 amino acids of its neighbor, were used to identify motifs in Nef responsible for its induction of apoptosis. Peptides containing these apoptotic motifs induced apoptosis at levels comparable to the full-length Nef protein. A second peptide, derived from the Secretion Modification Region (SMR) of Nef, retained the ability to interact with cellular proteins involved in Nef's secretion in exosomes (exNef). This SMRwt peptide was used as the "bait" protein in co-immunoprecipitation experiments to isolate cellular proteins that bind specifically to Nef's SMR motif. Protein transfection and antibody inhibition was used to physically disrupt the interaction between Nef and mortalin, one of the isolated SMR-binding proteins, and the effect was measured with a fluorescent-based exNef secretion assay. The SMRwt peptide's ability to outcompete full-length Nef for cellular proteins that bind the SMR motif, make it the first inhibitor of exNef secretion. Thus, by employing the techniques described here, which utilize the unique properties of specific short peptides derived from motifs found in full-length proteins, one may accelerate the identification of functional motifs in proteins and the development of peptide-based inhibitors of pathogenic functions.

  7. Molecular level studies on binding modes of labeling molecules with polyalanine peptides

    NASA Astrophysics Data System (ADS)

    Mao, Xiaobo; Wang, Chenxuan; Ma, Xiaojing; Zhang, Min; Liu, Lei; Zhang, Lan; Niu, Lin; Zeng, Qindao; Yang, Yanlian; Wang, Chen

    2011-04-01

    In this work, the binding modes of typical labeling molecules (thioflavin T (ThT), Congo red (CR) and copper(ii) phthalocyanine tetrasulfonic acid tetrasodium salt (PcCu(SO3Na)4)) on pentaalanine, which is a model peptide segment of amyloidpeptides, have been resolved at the molecular level by using scanning tunneling microscopy (STM). In the STM images, ThT molecules are predominantly adsorbed parallel to the peptide strands and two binding modes could be identified. It was found that ThT molecules are preferentially binding on top of the peptide strand, and the mode of intercalated between neighboring peptides also exists. The parallel binding mode of CR molecules can be observed with pentaalaninepeptides. Besides the binding modes of labeling molecules, the CR and PcCu(SO3Na)4 display different adsorption affinity with the pentaalaninepeptides. The results could be beneficial for obtaining molecular level insight of the interactions between labeling molecules and peptides.In this work, the binding modes of typical labeling molecules (thioflavin T (ThT), Congo red (CR) and copper(ii) phthalocyanine tetrasulfonic acid tetrasodium salt (PcCu(SO3Na)4)) on pentaalanine, which is a model peptide segment of amyloidpeptides, have been resolved at the molecular level by using scanning tunneling microscopy (STM). In the STM images, ThT molecules are predominantly adsorbed parallel to the peptide strands and two binding modes could be identified. It was found that ThT molecules are preferentially binding on top of the peptide strand, and the mode of intercalated between neighboring peptides also exists. The parallel binding mode of CR molecules can be observed with pentaalaninepeptides. Besides the binding modes of labeling molecules, the CR and PcCu(SO3Na)4 display different adsorption affinity with the pentaalaninepeptides. The results could be beneficial for obtaining molecular level insight of the interactions between labeling molecules and peptides. Electronic

  8. Bio-inspired Silicification of Silica-binding Peptide-Silk Protein Chimeras: Comparison of Chemically and Genetically Produced Proteins

    PubMed Central

    Canabady-Rochelle, Laetitia L.S.; Belton, David J.; Deschaume, Olivier; Currie, Heather A.; Kaplan, David L.; Perry, Carole C.

    2012-01-01

    Novel protein chimeras constituted of ‘silk’ and a silica-binding peptide (KSLSRHDHIHHH) were synthesized by genetic or chemical approaches and their influence on silica-silk based chimera composite formation evaluated. Genetic chimeras were constructed from 6 or 15 repeats of the 32 amino acid consensus sequence of Nephila clavipes spider silk ([SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQG]n) to which one silica binding peptide was fused at the N terminus. For the chemical chimera, 25 equivalents of the silica binding peptide were chemically coupled to natural Bombyx mori silk after modification of tyrosine groups by diazonium coupling and EDC/NHS activation of all acid groups. After silica formation under mild, biomaterial compatible conditions the effect of peptide addition on the properties of the silk and chimeric silk-silica composite materials was explored. The composite biomaterial properties could be related to the extent of silica condensation and to the higher number of silica binding sites in the chemical chimera as compared to the genetically derived variants. In all cases, the structure of the protein / chimera in solution dictated the type of composite structure that formed with the silica deposition process having little effect on the secondary structural composition of the silk based materials. Similarly to our study of genetic silk based chimeras containing the R5 peptide (SSKKSGSYSGSKGSKRRIL), the role of the chimeras (genetic and chemical) used in the present study resided more in aggregation and scaffolding than in the catalysis of condensation. The variables of peptide identity, silk construct (number of consensus repeats or silk source) and approach to synthesis (genetic or chemical) can be used to ‘tune’ the properties of the composite materials formed and is a general approach which can be used to prepare a range of materials for biomedical and sensor based applications. PMID:22229696

  9. Heparin binding domain of antithrombin III: Characterization using a synthetic peptide directed polyclonal antibody

    SciTech Connect

    Smith, J.W.; Dey, B.; Knauer, D.J. )

    1990-09-25

    Antithrombin III (ATIII) is a plasma-borne serine protease inhibitor that apparently forms covalent complexes with thrombin. The interaction between ATIII and thrombin is enhanced several thousandfold by the glycosaminoglycan, heparin. The authors have previously proposed that the heparin binding site of ATIII residues within a region extending from amino acid residues 114-156. Computer-assisted analysis of this region revealed the presence of a 22 amino acid domain (residues 124-145), part of which shows a strong potential for the formation of an amphipathic helix: hydrophobic on one face and highly positively charged on the other. In the presence studies, polyclonal antisera were generated against a synthetic peptide corresponding to residues 124-145 in native human ATIII. Affinity-purified IgG from these antisera, as well as monovalent Fab's derived from them, specifically blocked the binding of heparin to ATIII. Additionally, occupancy of the heparin binding site by these same monovalent and bivalent IgG's at least partially substituted for heparin, accelerating linkage formation between ATIII and thrombin. These results provide the first immunological evidence that region 124-145 is directly involved in the binding of heparin to ATIII and that an antibody-induced conformational change within this region can mediate ATIII activation.

  10. A novel Chk1-binding peptide that enhances genotoxic sensitivity through the cellular redistribution of nuclear Chk1

    PubMed Central

    Kim, Kwang Seok; Choi, Kyu Jin; Bae, Sangwoo

    2016-01-01

    Since checkpoint kinase 1 (Chk1) is an essential factor for cell viability following DNA damage, the inhibition of Chk1 has been a major focus of pharmaceutical development to enhance the sensitivity of tumor cells to chemo- and radiotherapy that damage DNA. However, due to the off-target effects of conventional Chk1-targeting strategies and the toxicity of Chk1 inhibitors, alternative strategies are required to target Chk1. To facilitate such efforts, in this study, we identified a specific Chk1-binding 12-mer peptide from the screening of a phage display library and characterized the peptide in terms of cellular cytotoxicity, and in terms of its effect on Chk1 activity and sensitivity to genotoxic agents. This peptide, named N-terminal Chk1-binding peptide (Chk1-NP), bound the kinase domain of Chk1. Simulation of the binding revealed that the very N-terminus of the Chk1 kinase domain is the potential peptide binding site. Of note, the polyarginine-mediated internalization of Chk1-NP redistributed nuclear Chk1 with a prominent decrease in the nucleus in the absence of DNA damage. Treatment with Chk1-NP peptide alone decreased the viability of p53-defective HeLa cells, but not that of p53-functional NCI-H460 cells under normal conditions. The treatment of HeLa or NCI-H460 cells with the peptide significantly enhanced radiation sensitivity following ionizing radiation (IR) with a greater enhancement observed in HeLa cells. Moreover, the IR-induced destabilization of Chk1 was aggravated by treatment with Chk1-NP. Therefore, the decreased nuclear localization and protein levels of Chk1 seem to be responsible for the enhanced cancer cell killing following combined treatment with IR and Chk1-NP. The approach using the specific Chk1-binding peptide may facilitate the mechanistic understanding and potential modulation of Chk1 activities and may provide a novel rationale for the development of specific Chk1-targeting agents. PMID:28025997

  11. Biological activities and potential health benefits of bioactive peptides derived from marine organisms.

    PubMed

    Ngo, Dai-Hung; Vo, Thanh-Sang; Ngo, Dai-Nghiep; Wijesekara, Isuru; Kim, Se-Kwon

    2012-11-01

    Marine organisms have been recognized as rich sources of bioactive compounds with valuable nutraceutical and pharmaceutical potentials. Recently, marine bioactive peptides have gained much attention because of their numerous health beneficial effects. Notably, these peptides exhibit various biological activities such as antioxidant, anti-hypertensive, anti-human immunodeficiency virus, anti-proliferative, anticoagulant, calcium-binding, anti-obesity and anti-diabetic activities. This review mainly presents biological activities of peptides from marine organisms and emphasizing their potential applications in foods as well as pharmaceutical areas.

  12. Peptide binding to sheet silicate and metal nanoparticles: Insight from atomistic simulation

    NASA Astrophysics Data System (ADS)

    Heinz, Hendrik; Pandey, Ras B.; Drummy, Lawrence; Vaia, Richard A.; Naik, Rajesh R.; Farmer, Barry L.

    2008-03-01

    Short peptides (8 to 12 amino acids, excluding Cys) bind selectively to nanoparticles composed of Au, Pd, and montmorillonite depending on the sequence of amino acids, as evidenced by laboratory screening of several billion peptides. The molecular reasons for binding versus non-binding and the specificity toward a certain surface are analyzed by molecular dynamics simulation, using recent force field extensions for fcc metals and sheet silicates to reproduce surface and interface energies with <10% deviation compared to experiment. Polarization on even metal surfaces ranges from 3 to 5 kcal/mol and non-covalent binding energies from 0 and 80 kcal/mol per dodecapeptide. Adsorption energies, changes in chain conformation, Ramachandran plots, and orientational parameters, are analyzed in conjunction with NMR, TEM, and other experimental data. On montmorillonite, an ion exchange reaction of Lys side groups against alkali ions as well as interactions between alkali cations and polar groups in the peptide are explained.

  13. An SH2 domain model of STAT5 in complex with phospho-peptides define ``STAT5 Binding Signatures''

    NASA Astrophysics Data System (ADS)

    Gianti, Eleonora; Zauhar, Randy J.

    2015-05-01

    The signal transducer and activator of transcription 5 (STAT5) is a member of the STAT family of proteins, implicated in cell growth and differentiation. STAT activation is regulated by phosphorylation of protein monomers at conserved tyrosine residues, followed by binding to phospho-peptide pockets and subsequent dimerization. STAT5 is implicated in the development of severe pathological conditions, including many cancer forms. However, nowadays a few STAT5 inhibitors are known, and only one crystal structure of the inactive STAT5 dimer is publicly available. With a view to enabling structure-based drug design, we have: (1) analyzed phospho-peptide binding pockets on SH2 domains of STAT5, STAT1 and STAT3; (2) generated a model of STAT5 bound to phospho-peptides; (3) assessed our model by docking against a class of known STAT5 inhibitors (Müller et al. in ChemBioChem 9:723-727, 2008); (4) used molecular dynamics simulations to optimize the molecular determinants responsible for binding and (5) proposed unique "Binding Signatures" of STAT5. Our results put in place the foundations to address STAT5 as a target for rational drug design, from sequence, structural and functional perspectives.

  14. Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays.

    PubMed

    Kumada, Yoichi

    2014-11-01

    The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.

  15. Pro-oxidant activity of histatin 5 related Cu(II)-model peptide probed by mass spectrometry.

    PubMed

    Cabras, Tiziana; Patamia, Maria; Melino, Sonia; Inzitari, Rosanna; Messana, Irene; Castagnola, Massimo; Petruzzelli, Raffaele

    2007-06-22

    Histatin 5 is a cationic salivary peptide with strong candidacidal and bactericidal activity at physiological concentration. In this paper we demonstrate by optical spectroscopy and ESI-IT-MS experiments that a synthetic peptide related to the N-terminus of histatin 5 specifically binds copper ions in vitro and that the complex metal-peptide generates reactive oxygen species at physiological concentration of ascorbate, leading to significant auto-oxidation of the peptide within short reaction time. The oxidative activity of this peptide is associated to the presence of a specific metal binding site present at its N-terminus. The motif is constituted by the amino acid sequence NH(2)-Asp-Ser-His, representing a copper and nickel amino terminal binding site, known as "ATCUN motif". The results of the study suggest that the production of reactive oxygen species can be an intrinsic property of histatin 5 connected to its ability to bind metals.

  16. Peptide Bacteriocins--Structure Activity Relationships.

    PubMed

    Etayash, Hashem; Azmi, Sarfuddin; Dangeti, Ramana; Kaur, Kamaljit

    2015-01-01

    With the growing concerns in the scientific and health communities over increasing levels of antibiotic resistance, antimicrobial peptide bacteriocins have emerged as promising alternatives to conventional small molecule antibiotics. A substantial attention has recently focused on the utilization of bacteriocins in food preservation and health safety. Despite the fact that a large number of bacteriocins have been reported, only a few have been fully characterized and structurally elucidated. Since knowledge of the molecular structure is a key for understanding the mechanism of action and therapeutic effects of peptide, we centered our focus in this review on the structure-activity relationships of bacteriocins with a particular focus in seven bacteriocins, namely, nisin, microcin J25, microcin B17, microcin C, leucocin A, sakacin P, and pediocin PA-1. Significant structural changes responsible for the altered activity of the recent bacteriocin analogues are discussed here.

  17. An HLA-A3-binding prostate acid phosphatase-derived peptide can induce CTLs restricted to HLA-A2 and -A24 alleles.

    PubMed

    Terasaki, Yasunobu; Shichijo, Shigeki; Niu, Yamei; Komatsu, Nobukazu; Noguchi, Masanori; Todo, Satoru; Itoh, Kyogo

    2009-11-01

    We previously reported peptide vaccine candidates for HLA-A3 supertype (-A3, -A11, -A31, -A33)-positive cancer patients. In the present study, we examined whether those peptides can also induce cytotoxic T lymphocyte (CTL) activity restricted to HLA-A2, HLA-A24, and HLA-A26 alleles. Fourteen peptides were screened for their binding activity to HLA-A*0201, -A*0206, -A*0207, -A*2402, and -A*2601 molecules and then tested for their ability to induce CTL activity in peripheral blood mononuclear cells (PBMCs) from prostate cancer patients. Among these peptides, one from the prostate acid phosphatase protein exhibited binding activity to HLA-A*0201, -A*0206, and -A*2402 molecules. In addition, PBMCs stimulated with this peptide showed that HLA-A2 or HLA-A24 restricted CTL activity. Their cytotoxicity toward cancer cells was ascribed to peptide-specific and CD8+ T cells. These results suggest that this peptide could be widely applicable as a peptide vaccine for HLA-A3 supertype-, HLA-A2-, and -A24-positive cancer patients.

  18. DNA sensing by a Eu-binding peptide containing a proflavine unit.

    PubMed

    Ancel, Laetitia; Gateau, Christelle; Lebrun, Colette; Delangle, Pascale

    2013-01-18

    Synthesis of a lanthanide-binding peptide (LBP) for the detection of double-stranded DNA is presented. A proflavine moiety was introduced into a high affinity LBP involving two unnatural chelating amino acids in the Ln ion coordination. The Eu(3+)-LBP complex is demonstrated to bind to ct-DNA and to sensitize Eu luminescence. The DNA binding process is effectively detected via the Eu-centered luminescence thanks to the intimate coupling between the LBP scaffold and DNA intercalating unit.

  19. Monitoring membrane binding and insertion of peptides by two-color fluorescent label.

    PubMed

    Postupalenko, V Y; Shvadchak, V V; Duportail, G; Pivovarenko, V G; Klymchenko, A S; Mély, Y

    2011-01-01

    Herein, we developed an approach for monitoring membrane binding and insertion of peptides using a fluorescent environment-sensitive label of the 3-hydroxyflavone family. For this purpose, we labeled the N-terminus of three synthetic peptides, melittin, magainin 2 and poly-l-lysine capable to interact with lipid membranes. Binding of these peptides to lipid vesicles induced a strong fluorescence increase, which enabled to quantify the peptide-membrane interaction. Moreover, the dual emission of the label in these peptides correlated well with the depth of its insertion measured by the parallax quenching method. Thus, in melittin and magainin 2, which show deep insertion of their N-terminus, the label presented a dual emission corresponding to a low polar environment, while the environment of the poly-l-lysine N-terminus was rather polar, consistent with its location close to the bilayer surface. Using spectral deconvolution to distinguish the non-hydrated label species from the hydrated ones and two photon fluorescence microscopy to determine the probe orientation in giant vesicles, we found that the non-hydrated species were vertically oriented in the bilayer and constituted the best indicators for evaluating the depth of the peptide N-terminus in membranes. Thus, this label constitutes an interesting new tool for monitoring membrane binding and insertion of peptides.

  20. A novel Pim-1 kinase inhibitor targeting residues that bind the substrate peptide.

    PubMed

    Tsuganezawa, Keiko; Watanabe, Hisami; Parker, Lorien; Yuki, Hitomi; Taruya, Shigenao; Nakagawa, Yukari; Kamei, Daisuke; Mori, Masumi; Ogawa, Naoko; Tomabechi, Yuri; Handa, Noriko; Honma, Teruki; Yokoyama, Shigeyuki; Kojima, Hirotatsu; Okabe, Takayoshi; Nagano, Tetsuo; Tanaka, Akiko

    2012-03-30

    A new screening method using fluorescent correlation spectroscopy was developed to select kinase inhibitors that competitively inhibit the binding of a fluorescently labeled substrate peptide. Using the method, among approximately 700 candidate compounds selected by virtual screening, we identified a novel Pim-1 kinase inhibitor targeting its peptide binding residues. X-ray crystal analysis of the complex structure of Pim-1 with the inhibitor indicated that the inhibitor actually binds to the ATP-binding site and also forms direct interactions with residues (Asp128 and Glu171) that bind the substrate peptide. These interactions, which cause small side-chain movements, seem to affect the binding ability of the fluorescently labeled substrate. The compound inhibited Pim-1 kinase in vitro, with an IC(50) value of 150 nM. Treatment of cultured leukemia cells with the compound reduced the amount of p21 and increased the amount of p27, due to Pim-1 inhibition, and then triggered apoptosis after cell-cycle arrest at the G(1)/S phase. This screening method may be widely applicable for the identification of various new Pim-1 kinase inhibitors targeting the residues that bind the substrate peptide.

  1. Computation of the binding free energy of peptides to graphene in explicit water.

    PubMed

    Welch, Corrinne M; Camden, Aerial N; Barr, Stephen A; Leuty, Gary M; Kedziora, Gary S; Berry, Rajiv J

    2015-07-28

    The characteristic properties of graphene make it useful in an assortment of applications. One particular application--the use of graphene in biosensors--requires a thorough understanding of graphene-peptide interactions. In this study, the binding of glycine (G) capped amino acid residues (termed GXG tripeptides) to trilayer graphene surfaces in aqueous solution was examined and compared to results previously obtained for peptide binding to single-layer free-standing graphene [A. N. Camden, S. A. Barr, and R. J. Berry, J. Phys. Chem. B 117, 10691-10697 (2013)]. In order to understand the interactions between the peptides and the surface, binding enthalpy and free energy values were calculated for each GXG system, where X cycled through the typical 20 amino acids. When the GXG tripeptides were bound to the surface, distinct conformations were observed, each with a different binding enthalpy. Analysis of the binding energy showed the binding of peptides to trilayer graphene was dominated by van der Waals interactions, unlike the free-standing graphene systems, where the binding was predominantly electrostatic in nature. These results demonstrate the utility of computational materials science in the mechanistic explanation of surface-biomolecule interactions which could be applied to a wide range of systems.

  2. The role of anchor residues in the binding of peptides to HLA-A*1101 molecules.

    PubMed

    Chujoh, Y; Sobao, Y; Miwa, K; Kaneko, Y; Takiguchi, M

    1998-12-01

    The binding of 136 8- to 12-mer peptides carrying anchor residues at position 2 (P2) and the C-terminus to HLA-A*1101 molecules was analyzed by a stabilization assay using RMA-S transfectants expressing HLA-A*1101 and human beta2-microglobulin. 72.1% of these peptides bound to HLA-A*1101 molecules. Two known HLA-All-restricted cytotoxic T-lymphocyte epitope peptides showed high affinity to HLA-A*1101. The results confirmed a previous pool sequencing study of HLA-A*1101 binding self-peptides, which showed that Lys at the C-terminus and Val, Ile, Phe, Tyr, and Thr at P2 are anchor residues for HLA-A*1101. Thr and aliphatic hydrophobic residues Val, Ile, and Leu at P2 are stronger anchor residues than the aromatic hydrophobic residues Phe and Tyr. In addition, hydrophobic residues Leu, Phe, Tyr, Ile, and Ala at position 3 (P3) are secondary anchors but are weaker than those at P2. The affinities of the 8- and 12-mer peptides were significantly lower than those of 9- to 11-mer peptides. There was however no difference in affinity between 9-, 10- and 11-mer peptides. Furthermore, the analysis using peptides mutated at the C-terminus showed that HLA-A*1101 molecules can bind peptides carrying another positively charged residue, Arg. The present study clarified the role of the anchor residues at P2, P3 and the C-terminus in the binding of HLA-A*1101 molecules.

  3. The RXR{alpha} C-terminus T462 is a NMR sensor for coactivator peptide binding

    SciTech Connect

    Lu Jianyun Chen Minghe; DeKoster, Gregory T.; Cistola, David P.; Li, Ellen

    2008-02-22

    The C-terminal activation function-2 (AF-2) helix plays a crucial role in retinoid X receptor alpha (RXR{alpha})-mediated gene expression. Here, we report a nuclear magnetic resonance (NMR) study of the RXR{alpha} ligand-binding domain complexed with 9-cis-retinoic acid and a glucocorticoid receptor-interacting protein 1 peptide. The AF-2 helix and most of the C-terminal residues were undetectable due to a severe line-broadening effect. Due to its outstanding signal-to-noise ratio, the C-terminus residue, threonine 462 (T462) exhibited two distinct crosspeaks during peptide titration, suggesting that peptide binding was in a slow exchange regime on the chemical shift timescale. Consistently, the K{sub d} derived from T462 intensity decay agreed with that derived from isothermal titration calorimetry. Furthermore, the exchange contribution to the {sup 15}N transverse relaxation rate was measurable in either T462 or the bound peptide. These results suggest that T462 is a sensor for coactivator binding and is a potential probe for AF-2 helix mobility.

  4. Simultaneous prediction of binding free energy and specificity for PDZ domain-peptide interactions

    NASA Astrophysics Data System (ADS)

    Crivelli, Joseph J.; Lemmon, Gordon; Kaufmann, Kristian W.; Meiler, Jens

    2013-12-01

    Interactions between protein domains and linear peptides underlie many biological processes. Among these interactions, the recognition of C-terminal peptides by PDZ domains is one of the most ubiquitous. In this work, we present a mathematical model for PDZ domain-peptide interactions capable of predicting both affinity and specificity of binding based on X-ray crystal structures and comparative modeling with R osetta. We developed our mathematical model using a large phage display dataset describing binding specificity for a wild type PDZ domain and 91 single mutants, as well as binding affinity data for a wild type PDZ domain binding to 28 different peptides. Structural refinement was carried out through several R osetta protocols, the most accurate of which included flexible peptide docking and several iterations of side chain repacking and backbone minimization. Our findings emphasize the importance of backbone flexibility and the energetic contributions of side chain-side chain hydrogen bonds in accurately predicting interactions. We also determined that predicting PDZ domain-peptide interactions became increasingly challenging as the length of the peptide increased in the N-terminal direction. In the training dataset, predicted binding energies correlated with those derived through calorimetry and specificity switches introduced through single mutations at interface positions were recapitulated. In independent tests, our best performing protocol was capable of predicting dissociation constants well within one order of magnitude of the experimental values and specificity profiles at the level of accuracy of previous studies. To our knowledge, this approach represents the first integrated protocol for predicting both affinity and specificity for PDZ domain-peptide interactions.

  5. Intranasal Delivery of NEMO-Binding Domain Peptide Prevents Memory Loss in a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Rangasamy, Suresh B.; Corbett, Grant T.; Roy, Avik; Modi, Khushbu K.; Bennett, David A.; Mufson, Elliott J.; Ghosh, Sankar; Pahan, Kalipada

    2015-01-01

    Alzheimer’s disease (AD) is the most common form of dementia. Despite intense investigations, no effective therapy is available to halt its progression. We found that NF-κB was activated within the hippocampus and cortex of AD subjects and that activated forms of NF-κB negatively correlated with cognitive function monitored by Mini-Mental State Examination and global cognitive z score. Accordingly, NF-κB activation was also observed in the hippocampus of a transgenic (5XFAD) mouse model of AD. It has been shown that peptides corresponding to the NF-κB essential modifier (NEMO)-binding domain (NBD) of IκB kinase α (IKKα) or IκB kinase β (IKKβ) specifically inhibit the induction of NF-κB activation without inhibiting the basal NF-κB activity. Interestingly, after intranasal administration, wild-type NBD peptide entered into the hippocampus, reduced hippocampal activation of NF-κB, suppressed hippocampal microglial activation, lowered the burden of Aβ in the hippocampus, attenuated apoptosis of hippocampal neurons, protected plasticity-related molecules, and improved memory and learning in 5XFAD mice. Mutated NBD peptide had no such protective effect, indicating the specificity of our finding. These results suggest that selective targeting of NF-κB activation by intranasal administration of NBD peptide may be of therapeutic benefit for AD patients. PMID:26401561

  6. Therapeutic Effect on Targeted Hyaluronan Binding Peptide on Neurofibromatosis

    DTIC Science & Technology

    2005-09-01

    Furthermore, it confers stability to the peptide at low pH and high temperature, which makes it easy to manipulate and gives it a long shelf - life . Due to...were incubated with peptides for 24 hours and the cells were washed and harvested in lysis buffer (10 mM potassium phosphate at pH 7.5, 1 mM EDTA, 5...30 min followed by incubation with FITC-conjugated anti-goat IgG (1:200) at 4 ºC for 30 min. The cells were finally stained with propidium iodide and

  7. Activation of p53-dependent responses in tumor cells treated with a PARC-interacting peptide

    SciTech Connect

    Vitali, Roberta; Cesi, Vincenzo; Tanno, Barbara; Ferrari-Amorotti, Giovanna; Dominici, Carlo; Calabretta, Bruno; Raschella, Giuseppe

    2008-04-04

    We tested the activity of a p53 carboxy-terminal peptide containing the PARC-interacting region in cancer cells with wild type cytoplasmic p53. Peptide delivery was achieved by fusing it to the TAT transduction domain (TAT-p53-C-ter peptide). In a two-hybrid assay, the tetramerization domain (TD) of p53 was necessary and sufficient to bind PARC. The TAT-p53-C-ter peptide disrupted the PARC-p53 complex. Peptide treatment caused p53 nuclear relocation, p53-dependent changes in gene expression and enhancement of etoposide-induced apoptosis. These studies suggest that PARC-interacting peptides are promising candidates for the enhancement of p53-dependent apoptosis in tumors with wt cytoplasmic p53.

  8. Antibacterial activity and dual mechanisms of peptide analog derived from cell-penetrating peptide against Salmonella typhimurium and Streptococcus pyogenes.

    PubMed

    Li, Lirong; Shi, Yonghui; Cheserek, Maureen Jepkorir; Su, Guanfang; Le, Guowei

    2013-02-01

    A number of research have proven that antimicrobial peptides are of greatest potential as a new class of antibiotics. Antimicrobial peptides and cell-penetrating peptides share some similar structure characteristics. In our study, a new peptide analog, APP (GLARALTRLLRQLTRQLTRA) from the cell-penetrating peptide ppTG20 (GLFRALLRLLRSLWRLLLRA), was identified simultaneously with the antibacterial mechanism of APP against Salmonella typhimurium and Streptococcus pyogenes. APP displayed potent antibacterial activity against Gram-negative and Gram-positive strains. The minimum inhibitory concentration was in the range of 2 to 4 μM. APP displayed higher cell selectivity (about 42-fold increase) as compared to the parent peptide for it decreased hemolytic activity and increased antimicrobial activity. The calcein leakage from egg yolk L-α-phosphatidylcholine (EYPC)/egg yolk L-α-phosphatidyl-DL-glycerol and EYPC/cholesterol vesicles demonstrated that APP exhibited high selectivity. The antibacterial mechanism analysis indicated that APP induced membrane permeabilization in a kinetic manner for membrane lesions allowing O-nitrophenyl-β-D-galactoside uptake into cells and potassium release from APP-treated cells. Flow cytometry analysis demonstrated that APP induced bacterial live cell membrane damage. Circular dichroism, fluorescence spectra, and gel retardation analysis confirmed that APP interacted with DNA and intercalated into the DNA base pairs after penetrating the cell membrane. Cell cycle assay showed that APP affected DNA synthesis in the cell. Our results suggested that peptides derived from the cell-penetrating peptide have the potential for antimicrobial agent development, and APP exerts its antibacterial activity by damaging bacterial cell membranes and binding to bacterial DNA to inhibit cellular functions, ultimately leading to cell death.

  9. Increased antitumor activity of tumor-specific peptide modified thymopentin.

    PubMed

    Lao, Xingzhen; Li, Bin; Liu, Meng; Chen, Jiao; Gao, Xiangdong; Zheng, Heng

    2014-12-01

    Thymopoietin pentapeptide (thymopentin, TP5), an immunomodulatory peptide, has been successfully used as an immune system enhancer for treating immune deficiency, cancer, and infectious diseases. However, poor penetration into tumors remains a key limitation to the efficacy and application of TP5. iRGD (CRGDK/RGPD/EC) has been introduced to certain anticancer agents, and increased specific tumor penetrability of drugs and cell internalization have been observed. In the present study, we fused this iRGD fragment with the C-terminal of TP5 to yield a new product, TP5-iRGD. Cell attachment assay showed that TP5-iRGD exhibits more extensive attachment to the melanoma cell line B16F10 than wild-type TP5. Tumor cell viability assay showed that iRGD conjugation with the TP5 C-terminus increases the basal antiproliferative activity of the pentapeptide against the melanoma cell line B16F10, the human lung cancer cell line H460, and the human breast cancer cell line MCF-7. Subsequent injections of TP5-iRGD inhibited in vivo melanoma progression more efficiently than the native TP5. Murine spleen lymphocyte proliferation assay also showed that TP5-iRGD and the parent pentapeptide feature nearly identical spleen lymphocyte proliferation activities. We built an integrin αvβ3 and TP5-iRGD computational binding model to investigate the mechanism by which TP5-iRGD promotes increased activity further. Conjugation with iRGD promotes binding to integrin αvβ3, thereby increasing the tumor-homing efficiency of the resultant peptide. These experimental and computational observations of increased TP5-iRGD activity help broaden the usage of TP5 and reflect the great application potential of the peptide as an anticancer agent.

  10. Small Molecule Inhibited Parathyroid Hormone Mediated cAMP Response by N–Terminal Peptide Binding

    PubMed Central

    Kumar, Amit; Baumann, Monika; Balbach, Jochen

    2016-01-01

    Ligand binding to certain classes of G protein coupled receptors (GPCRs) stimulates the rapid synthesis of cAMP through G protein. Human parathyroid hormone (PTH), a member of class B GPCRs, binds to its receptor via its N–terminal domain, thereby activating the pathway to this secondary messenger inside cells. Presently, GPCRs are the target of many pharmaceuticals however, these drugs target only a small fraction of structurally known GPCRs (about 10%). Coordination complexes are gaining interest due to their wide applications in the medicinal field. In the present studies we explored the potential of a coordination complex of Zn(II) and anthracenyl–terpyridine as a modulator of the parathyroid hormone response. Preferential interactions at the N–terminal domain of the peptide hormone were manifested by suppressed cAMP generation inside the cells. These observations contribute a regulatory component to the current GPCR–cAMP paradigm, where not the receptor itself, but the activating hormone is a target. To our knowledge, this is the first report about a coordination complex modulating GPCR activity at the level of deactivating its agonist. Developing such molecules might help in the control of pathogenic PTH function such as hyperparathyroidism, where control of excess hormonal activity is essentially required. PMID:26932583

  11. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae

    PubMed Central

    Jindal, Hassan Mahmood; Le, Cheng Foh; Mohd Yusof, Mohd Yasim; Velayuthan, Rukumani Devi; Lee, Vannajan Sanghiran; Zain, Sharifuddin Md; Isa, Diyana Mohd; Sekaran, Shamala Devi

    2015-01-01

    Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development. PMID:26046345

  12. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae.

    PubMed

    Jindal, Hassan Mahmood; Le, Cheng Foh; Mohd Yusof, Mohd Yasim; Velayuthan, Rukumani Devi; Lee, Vannajan Sanghiran; Zain, Sharifuddin Md; Isa, Diyana Mohd; Sekaran, Shamala Devi

    2015-01-01

    Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development.

  13. Reassociation with beta 2-microglobulin is necessary for Kb class I major histocompatibility complex binding of exogenous peptides.

    PubMed Central

    Rock, K L; Rothstein, L E; Gamble, S R; Benacerraf, B

    1990-01-01

    T lymphocytes recognize endogenously produced antigenic peptides in association with major histocompatibility complex (MHC)-encoded molecules. Peptides from the extracellular fluid can be displayed in association with class I and class II MHC molecules. Here we report that mature Kb class I MHC molecules bind peptides upon dissociation and reassociation of their light chain. Intact Kb heterodimers, unlike class II MHC molecules, are relatively unreceptive to binding peptides. This property may maintain segregation of class I and class II MHC-restricted peptides and has implications for the use of peptides as vaccines. Images PMID:2217182

  14. Peptide displacement of ( sup 3 H)5-hydroxytryptamine binding to bovine cortical membranes

    SciTech Connect

    Takeuchi, Y.; Root-Bernstein, R.S.; Shih, J.C. )

    1990-12-01

    Chemical studies have demonstrated that peptides such as the encephalitogenic (EAE) peptide of myelin basic protein (MBP) and luteinizing hormone-releasing hormone (LHRH) can bind serotonin (5-hydroxytryptamine, 5-HT) in vitro. The present research was undertaken to determine whether such binding interferes with 5-HT binding to its 5-HT1 receptors on bovine cerebral cortical membranes. EAE peptide and LHRH displaced ({sup 3}H)5-HT with IC50s of 4.0 x 10(-4) and 1.8 x 10(-3) M respectively. MBP itself also showed apparent displacing ability with an IC50 of 6.0 x 10(-5) M, though it also caused aggregation of cortical membranes that might have interfered with normal receptor binding. These results support previous suggestions that the tryptophan peptide region of MBP may act as a 5-HT receptor in the neural system. We also tested the effects of muramyl dipeptide (N-acetyl-muramyl-L-Ala-D-isoGln, MD), a bacterial cell-wall breakdown product that acts as a slow-wave sleep promoter, binds to LHRH and EAE peptide, and competes for 5-HT binding sites on macrophages. It showed no significant displacement of 5-HT binding to cortical membranes (IC50 greater than 10(-1) M), but its D-Ala analogue did (IC50 = 1.7 x 10(-3) M). Thus, it seems likely that the 5-HT-related effects of naturally occurring muramyl peptides are physiologically limited by receptor types.

  15. Identification of IgE binding to Api g 1-derived peptides.

    PubMed

    Ruppel, Elvira; Aÿ, Bernhard; Boisguerin, Prisca; Dölle, Sabine; Worm, Margitta; Volkmer, Rudolf

    2010-11-02

    Celery is a frequent cause of food allergy in pollen-sensitized patients and can induce severe allergic reactions. Clinical symptoms cannot be predicted by skin prick tests (SPTs) or by determining allergen-specific immunoglobulin E (IgE). Our aim was to identify specific IgE binding peptides by using an array technique. For our study, the sera of 21 patients with positive double-blind, placebo-controlled food challenge (DBPCFC) to celery, as well as the sera of 17 healthy patients were used. Additionally, all patients underwent skin tests along with determinations of specific IgE binding. The major allergen of celery Api g 1.0101 (Apium graveolens) was synthesized as an array of overlapping peptides and probed with the patients' sera. We developed an improved immunoassay protocol by investigating peptide lengths, peptide densities, incubation parameters, and readout systems, which could influence IgE binding. Sera of celery-allergic patients showed binding to three distinct regions of Api g 1.0101. The region including amino acids 100 to 126 of Api g 1.0101 is the most important region for IgE binding. This region caused a fivefold higher binding of IgE from the sera of celery-allergic patients compared to those of healthy individuals. In particular, one peptide (VLVPTADGGSIC) was recognized by all sera of celery-allergic patients. In contrast, no binding to this peptide was detected in sera of the healthy controls. Our improved assay strategy allows us to distinguish between celery-allergic and healthy individuals, but needs to be explored in a larger cohort of well-defined patients.

  16. Isolation of a peptide binding protein and its role in antigen presentation

    SciTech Connect

    Lakey, E.; Pierce, S.K.; Margoliash, E.

    1986-03-05

    A mouse T cell hybrid, TPc9.1, recognizes pigeon cytochrome c (Pc) as processed and presented by histocompatible antigen presenting cells (APC). When paraformaldehyde fixed APC are employed, only a peptide fragment of Pc, Pc 81-104, and not the native Pc, is capable of stimulating TPc9.1 cells. Pc 81-104 appears to associate tightly with the APC surface since paraformaldehyde fixed APC which have been incubated with Pc 81-104 remain stimulatory following extensive washing. When APC are surface labeled with /sup 125/I, solubilized and affinity purified on Pc 81-104-Sepharose 4B columns, two predominant polypeptides of approximately 72 and 74 kd are isolated. Little or no immunoglobulin, Class I or Class II proteins are obtained under these conditions. Antisera from rabbits immunized with the affinity purified material, but not preimmune sera, block the activation of TPc 9.1 cells by Pc as well as Pc 81-104 when presented by live APC. Furthermore, these antisera are even more effective in blocking the activation of TPc9.1 cells by either APC which had been pulsed with Pc and then paraformaldehyde fixed, or by Pc 81-104 when added to paraformaldehyde fixed APC, suggesting that these antisera were not affecting antigen processing. Thus, these peptide binding proteins may play a role in antigen presentation, and they are being further characterized.

  17. Design of a hydroxyapatite-binding antimicrobial peptide with improved retention and antibacterial efficacy for oral pathogen control

    PubMed Central

    Huang, Zhi-bin; Shi, Xin; Mao, Jing; Gong, Shi-qiang

    2016-01-01

    Controlling and reducing the formation of pathogenic biofilm on tooth surface is the key to the prevention and treatment of the biofilm-associated oral diseases. Antimicrobial peptides (AMPs), considered as possible future alternatives for conventional antibiotics, have been extensively studied for the control of bacterial infection. Due to the rapid dilution and degradation by human saliva, AMP preparations designed for oral use with longer retention and higher efficacy are in urgent need. To this end, a hydroxyapatite (HAp)-binding antimicrobial peptide (HBAMP), which is based on the fusion of a specific HAp-binding heptapeptide (HBP7) domain and a broad-spectrum antimicrobial peptide (KSLW) domain, has been developed in our laboratory. HBAMP was supposed to form a contact-active antibacterial interface on tooth surface to inhibit the formation of biofilms. In this study, we investigated its binding behaviour, antibacterial activity against bacteria in both planktonic and sessile states, enzymatic stability in human saliva, and cytocompatibility to human gingival fibroblasts (HGFs). Our findings suggest that HBAMP could adsorb on tooth surface to provide effective antibacterial activity with improved retention. This study provides a proof-of-concept on using conjugated molecules to promote antibacterial efficacy by synergistically actions of HBAMP free in solution and bound on tooth surface. PMID:27910930

  18. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2016-06-01

    Deprotonation of amino acids as occurs during transfer from stomach to intestines during food digestion was found by comparison of complex formation constants as determined electrochemically for increasing pH to increase calcium binding (i) by a factor of around 6 for the neutral amino acids, (ii) by a factor of around 4 for anions of the acidic amino acids aspartic and glutamic acid, and (iii) by a factor of around 5.5 for basic amino acids. Optimized structures of the 1:1 complexes and ΔHbinding for calcium binding as calculated by density functional theory (DFT) confirmed in all complexes a stronger calcium binding and shorter calcium-oxygen bond length in the deprotonated form. In addition, the stronger calcium binding was also accompanied by a binding site shift from carboxylate binding to chelation by α-amino group and carboxylate oxygen for leucine, aspartate, glutamate, alanine, and asparagine. For binary amino acid mixtures, the calcium-binding constant was close to the predicted geometric mean of the individual amino acid binding constants indicating separate binding of calcium to two amino acids when present together in solution. At high pH, corresponding to conditions for calcium absorption, the binding affinity increased in the order Lys < Arg < Cys < Gln < Gly ∼ Ala < Asn < His < Leu < Glu< Asp. In a series of glycine peptides, calcium-binding affinity was found to increase in the order Gly-Leu ∼ Gly-Gly < Ala-Gly < Gly-His ∼ Gly-Lys-Gly < Glu-Cys-Gly < Gly-Glu, an ordering confirmed by DFT calculations for the dipeptides and which also accounted for large synergistic effects in calcium binding for up to 6 kJ/mol when compared to the corresponding amino acid mixtures.

  19. The key position: influence of staple location on constrained peptide conformation and binding.

    PubMed

    Keeling, Kelly L; Cho, Okki; Scanlon, Denis B; Booker, Grant W; Abell, Andrew D; Wegener, Kate L

    2016-10-18

    Constrained α-helical peptides are showing potential as biological probes and therapeutic agents that target protein-protein interactions. However, the factors that determine the optimal constraint locations are still largely unknown. Using the β-integrin/talin protein interaction as a model system, we examine the effect of constraint location on helical conformation, as well as binding affinity, using circular dichroism and NMR spectroscopy. Stapling increased the overall helical content of each integrin-based peptide tested. However, NMR analysis revealed that different regions within the peptide are stabilised, depending on constraint location, and that these differences correlate with the changes observed in talin binding mode and affinity. In addition, we show that examination of the atomic structure of the parent peptide provides insight into the appropriate placement of helical constraints.

  20. Binding of iron(III) to the single tyrosine residue of amyloid β-peptide probed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Miura, Takashi; Suzuki, Kiyoko; Takeuchi, Hideo

    2001-10-01

    The Fe(III) ion binds to amyloid β-peptide (Aβ) and induces significant aggregation of the peptide. In addition to the Aβ aggregation, the redox activity of the Fe(III) ion bound to Aβ is considered to play a role in the pathogenesis of Alzheimer's disease. In order to understand the role of Fe(III) in Aβ aggregation and neurotoxicity, we have examined the Fe(III)-binding mode of human Aβ by Raman spectroscopy. The Raman spectra of Fe(III)-Aβ complexes excited at 514.5 nm are dominated by resonance Raman bands of metal-bound tyrosinate, evidencing that the Fe(III) ion primarily binds to Aβ via the phenolic oxygen of Tyr10. In addition, carboxylate groups of glutamate/aspartate side chains are also bound to Fe(III). On the other hand, histidine residues in the N-terminal hydrophilic region of Aβ do not bind to Fe(III). These results are in sharp contrast to the Zn(II)- or Cu(II)-induced aggregation of Aβ, in which histidine residues act as the primary metal binding sites. The Fe(III)-Tyr10 binding may play an important role in Aβ aggregation and in decreasing the reduction potential of the bound Fe(III) ion.

  1. Retention of Conformational Entropy upon Calmodulin Binding to Target Peptides is Driven by Transient Salt Bridges

    SciTech Connect

    Smith, Dayle MA; Straatsma, TP; Squier, Thomas C.

    2012-10-03

    Calmodulin (CaM) is a highly flexible calcium-binding protein that mediates signal transduction through an ability to differentially bind to highly variable binding sequences in target proteins. To identify how binding affects CaM motions, and its relationship to conformational entropy and target peptide sequence, we have employed fully atomistic, explicit solvent molecular dynamics simulations of unbound CaM and CaM bound to five different target peptides. The calculated CaM conformational binding entropies correlate with experimentally derived conformational entropies with a correlation coefficient R2 of 0.95. Selected side-chain interactions with target peptides restrain interhelical loop motions, acting to tune the conformational entropy of the bound complex via widely distributed CaM motions. In the complex with the most conformational entropy retention (CaM in complex with the neuronal nitric oxide synthase binding sequence), Lys-148 at the C-terminus of CaM forms transient salt bridges alternating between Glu side chains in the N-domain, the central linker, and the binding target. Additional analyses of CaM structures, fluctuations, and CaM-target interactions illuminate the interplay between electrostatic, side chain, and backbone properties in the ability of CaM to recognize and discriminate against targets by tuning its conformational entropy, and suggest a need to consider conformational dynamics in optimizing binding affinities.

  2. Targeted treatment of liver metastasis from gastric cancer using specific binding peptide

    PubMed Central

    Gong, Jianfeng; Tan, Gewen; Sheng, Nengquan; You, Weiqiang; Wang, Zhigang

    2016-01-01

    Gastric cancer ranks the first in China among all gastrointestinal cancers in terms of incidence, and liver metastasis is the leading cause of death for patients with advanced gastric cancer. Tumor necrosis factor (TNF) is a cytokine commonly chosen as the target for gene therapy against cancers. The specific binding peptide pd20 of gastric cancer cells with a high potential for liver metastasis was fused with human TNF to obtain the pd20-TNF gene using DNA recombinant technique. The expression of the fusion protein was induced and the protein was purified. In vitro activity test showed that the fusion protein greatly improved the membrane permeability of liver cells in nude mice with liver metastasis from gastric cancer. The tumor implantation experiment in nude mice showed that the fusion protein effectively mitigated the cancer lesions. The results provide important clues for developing the drugs for targeted treatment of liver metastasis from gastric cancer. PMID:27347305

  3. A dispensable peptide from Acidithiobacillus ferrooxidans tryptophanyl-tRNA synthetase affects tRNA binding.

    PubMed

    Zúñiga, Roberto; Salazar, Juan; Canales, Mauricio; Orellana, Omar

    2002-12-18

    The activation domain of class I aminoacyl-tRNA synthetases, which contains the Rossmann fold and the signature sequences HIGH and KMSKS, is generally split into two halves by the connective peptides (CP1, CP2) whose amino acid sequences are idiosyncratic. CP1 has been shown to participate in the binding of tRNA as well as the editing of the reaction intermediate aminoacyl-AMP or the aminoacyl-tRNA. No function has been assigned to CP2. The amino acid sequence of Acidithiobacillus ferrooxidans TrpRS was predicted from the genome sequence. Protein sequence alignments revealed that A. ferrooxidans TrpRS contains a 70 amino acids long CP2 that is not found in any other bacterial TrpRS. However, a CP2 in the same relative position was found in the predicted sequence of several archaeal TrpRSs. A. ferrooxidans TrpRS is functional in vivo in Escherichia coli. A deletion mutant of A. ferrooxidans trpS lacking the coding region of CP2 was constructed. The in vivo activity of the mutant TrpRS in E. coli, as well as the kinetic parameters of the in vitro activation of tryptophan by ATP, were not altered by the deletion. However, the K(m) value for tRNA was seven-fold higher upon deletion, reducing the efficiency of aminoacylation. Structural modeling suggests that CP2 binds to the inner corner of the L shape of tRNA.

  4. Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry.

    PubMed Central

    Whittal, R. M.; Ball, H. L.; Cohen, F. E.; Burlingame, A. L.; Prusiner, S. B.; Baldwin, M. A.

    2000-01-01

    Electrospray ionization mass spectrometry (ESI-MS) was used to measure the binding of Cu2+ ions to synthetic peptides corresponding to sections of the sequence of the mature prion protein (PrP). ESI-MS demonstrates that Cu2+ is unique among divalent metal ions in binding to PrP and defines the location of the major Cu2+ binding site as the octarepeat region in the N-terminal domain, containing multiple copies of the repeat ProHisGlyGlyGlyTrpGlyGln. The stoichiometries of the complexes measured directly by ESI-MS are pH dependent: a peptide containing four octarepeats chelates two Cu2+ ions at pH 6 but four at pH 7.4. At the higher pH, the binding of multiple Cu2+ ions occurs with a high degree of cooperativity for peptides C-terminally extended to incorporate a fifth histidine. Dissociation constants for each Cu2+ ion binding to the octarepeat peptides, reported here for the first time, are mostly in the low micromolar range; for the addition of the third and fourth Cu2+ ions to the extended peptides at pH 7.4, K(D)'s are <100 nM. N-terminal acetylation of the peptides caused some reduction in the stoichiometry of binding at both pH's. Cu2+ also binds to a peptide corresponding to the extreme N-terminus of PrP that precedes the octarepeats, arguing that this region of the sequence may also make a contribution to the Cu2+ complexation. Although the structure of the four-octarepeat peptide is not affected by pH changes in the absence of Cu2+, as judged by circular dichroism, Cu2+ binding induces a modest change at pH 6 and a major structural perturbation at pH 7.4. It is possible that PrP functions as a Cu2+ transporter by binding Cu2+ ions from the extracellular medium under physiologic conditions and then releasing some or all of this metal upon exposure to acidic pH in endosomes or secondary lysosomes. PMID:10716185

  5. Selection of ganglioside GM1-binding peptides by using a phage library.

    PubMed

    Matsubara, T; Ishikawa, D; Taki, T; Okahata, Y; Sato, T

    1999-08-06

    Ganglioside Gal beta1 --> 3GalNAc beta1 --> 4(NeuAc alpha2 --> 3) Gal beta1 --> 4Glc beta1 -->1'Cer (GM1)-binding peptides were obtained from a phage-displayed pentadecapeptide library by an affinity selection. The selection processes were in situ-monitored by a quartz-crystal microbalance method, on which a ganglioside GM1 monolayer was transferred. After five rounds of biopanning, the DNA sequencing of 18 selected phages showed that only three individual clones were selected. The peptide sequences of the random region were found to be DFRRLPGAFWQLRQP, GWWYKGRARPVSAVA and VWRLLAPPFSNRLLP. Binding constants of these phage clones to the GM1 monolayer were 10(10) M(-1). Three synthetic pentadecapeptides inhibited the binding of cholera toxin B subunit to the GM1 monolayer with an IC50 of 24, 13 and 1.0 microM, respectively. These peptides will be useful for searching functional roles of ganglioside GMI.

  6. Cu(2+) affects amyloid-β (1-42) aggregation by increasing peptide-peptide binding forces.

    PubMed

    Hane, Francis; Tran, Gary; Attwood, Simon J; Leonenko, Zoya

    2013-01-01

    The link between metals, Alzheimer's disease (AD) and its implicated protein, amyloid-β (Aβ), is complex and highly studied. AD is believed to occur as a result of the misfolding and aggregation of Aβ. The dyshomeostasis of metal ions and their propensity to interact with Aβ has also been implicated in AD. In this work, we use single molecule atomic force spectroscopy to measure the rupture force required to dissociate two Aβ (1-42) peptides in the presence of copper ions, Cu(2+). In addition, we use atomic force microscopy to resolve the aggregation of Aβ formed. Previous research has shown that metal ions decrease the lag time associated with Aβ aggregation. We show that with the addition of copper ions the unbinding force increases notably. This suggests that the reduction of lag time associated with Aβ aggregation occurs on a single molecule level as a result of an increase in binding forces during the very initial interactions between two Aβ peptides. We attribute these results to copper ions acting as a bridge between the two peptide molecules, increasing the stability of the peptide-peptide complex.

  7. Adhesive and Migratory Effects of Phosphophoryn Are Modulated by Flanking Peptides of the Integrin Binding Motif

    PubMed Central

    Suzuki, Shigeki; Kobuke, Seiji; Haruyama, Naoto; Hoshino, Hiroaki; Kulkarni, Ashok B.; Nishimura, Fusanori

    2014-01-01

    Phosphophoryn (PP) is generated from the proteolytic cleavage of dentin sialophosphoprotein (DSPP). Gene duplications in the ancestor dentin matrix protein-1 (DMP-1) genomic sequence created the DSPP gene in toothed animals. PP and DMP-1 are phosphorylated extracellular matrix proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs). Many SIBLING members have been shown to evoke various cell responses through the integrin-binding Arg-Gly-Asp (RGD) domain; however, the RGD-dependent function of PP is not yet fully understood. We demonstrated that recombinant PP did not exhibit any obvious cell adhesion ability, whereas the simultaneously purified recombinant DMP-1 did. A cell adhesion inhibitory analysis was performed by pre-incubating human osteosarcoma MG63 cells with various PP peptides before seeding onto vitronectin. The results obtained revealed that the incorporation of more than one amino acid on both sides of the PP-RGD domain was unable to inhibit the adhesion of MG63 cells onto vitronectin. Furthermore, the inhibitory activity of a peptide containing the PP-RGD domain with an open carboxyl-terminal side (H-463SDESDTNSESANESGSRGDA482-OH) was more potent than that of a peptide containing the RGD domain with an open amino-terminal side (H-478SRGDASYTSDESSDDDNDSDSH499-OH). This phenomenon was supported by the potent cell adhesion and migration abilities of the recombinant truncated PP, which terminated with Ala482. Furthermore, various point mutations in Ala482 and/or Ser483 converted recombinant PP into cell-adhesive proteins. Therefore, we concluded that the Ala482-Ser483 flanking sequence, which was detected in primates and mice, was the key peptide bond that allowed the PP-RGD domain to be sequestered. The differential abilities of PP and DMP-1 to act on integrin imply that DSPP was duplicated from DMP-1 to serve as a crucial extracellular protein for tooth development rather than as an integrin

  8. Enriching Peptide Libraries for Binding Affinity and Specificity Through Computationally Directed Library Design.

    PubMed

    Foight, Glenna Wink; Chen, T Scott; Richman, Daniel; Keating, Amy E

    2017-01-01

    Peptide reagents with high affinity or specificity for their target protein interaction partner are of utility for many important applications. Optimization of peptide binding by screening large libraries is a proven and powerful approach. Libraries designed to be enriched in peptide sequences that are predicted to have desired affinity or specificity characteristics are more likely to yield success than random mutagenesis. We present a library optimization method in which the choice of amino acids to encode at each peptide position can be guided by available experimental data or structure-based predictions. We discuss how to use analysis of predicted library performance to inform rounds of library design. Finally, we include protocols for more complex library design procedures that consider the chemical diversity of the amino acids at each peptide position and optimize a library score based on a user-specified input model.

  9. Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove

    PubMed Central

    McMurtrey, Curtis; Trolle, Thomas; Sansom, Tiffany; Remesh, Soumya G; Kaever, Thomas; Bardet, Wilfried; Jackson, Kenneth; McLeod, Rima; Sette, Alessandro; Nielsen, Morten; Zajonc, Dirk M; Blader, Ira J; Peters, Bjoern; Hildebrand, William

    2016-01-01

    HLA class I presentation of pathogen-derived peptide ligands is essential for CD8+ T-cell recognition of Toxoplasma gondii infected cells. Currently, little data exist pertaining to peptides that are presented after T. gondii infection. Herein we purify HLA-A*02:01 complexes from T. gondii infected cells and characterize the peptide ligands using LCMS. We identify 195 T. gondii encoded ligands originating from both secreted and cytoplasmic proteins. Surprisingly, T. gondii ligands are significantly longer than uninfected host ligands, and these longer pathogen-derived peptides maintain a canonical N-terminal binding core yet exhibit a C-terminal extension of 1–30 amino acids. Structural analysis demonstrates that binding of extended peptides opens the HLA class I F’ pocket, allowing the C-terminal extension to protrude through one end of the binding groove. In summary, we demonstrate that unrealized structural flexibility makes MHC class I receptive to parasite-derived ligands that exhibit unique C-terminal peptide extensions. DOI: http://dx.doi.org/10.7554/eLife.12556.001 PMID:26824387

  10. Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove.

    PubMed

    McMurtrey, Curtis; Trolle, Thomas; Sansom, Tiffany; Remesh, Soumya G; Kaever, Thomas; Bardet, Wilfried; Jackson, Kenneth; McLeod, Rima; Sette, Alessandro; Nielsen, Morten; Zajonc, Dirk M; Blader, Ira J; Peters, Bjoern; Hildebrand, William

    2016-01-29

    HLA class I presentation of pathogen-derived peptide ligands is essential for CD8+ T-cell recognition of Toxoplasma gondii infected cells. Currently, little data exist pertaining to peptides that are presented after T. gondii infection. Herein we purify HLA-A*02:01 complexes from T. gondii infected cells and characterize the peptide ligands using LCMS. We identify 195 T. gondii encoded ligands originating from both secreted and cytoplasmic proteins. Surprisingly, T. gondii ligands are significantly longer than uninfected host ligands, and these longer pathogen-derived peptides maintain a canonical N-terminal binding core yet exhibit a C-terminal extension of 1-30 amino acids. Structural analysis demonstrates that binding of extended peptides opens the HLA class I F' pocket, allowing the C-terminal extension to protrude through one end of the binding groove. In summary, we demonstrate that unrealized structural flexibility makes MHC class I receptive to parasite-derived ligands that exhibit unique C-terminal peptide extensions.

  11. Apparent lack of MHC restriction in binding of class I HLA molecules to solid-phase peptides

    PubMed Central

    1990-01-01

    The specificity of binding of solubilized, purified HLA-A,B molecules to solid-phase peptides has been examined using the assay described by Bouillet et al. [1989. Nature (Lond.). 339:473.] 64 peptides derived from the sequences of viral antigens, HLA-A,B,C heavy chains, and clathrin light chains were tested for binding to HLA-A2.1, Aw68.1, Aw69, B44, and B5, molecules that differ by 5-17 residues of the peptide binding groove. 15 of the peptides, including those known to be T cell epitopes, gave significant binding. The pattern of peptide binding for each of the five HLA-A,B molecules was not significantly different. Binding was demonstrated to be a property of native beta 2m- associated HLA-A,B molecules that preserved conformational antigenic determinants after binding to peptide. In comparison to our previous results from solution-based assays the proportion of HLA-A,B molecules that can bind solid-phase peptides is very high. This accessibility of solid-phase peptides to the binding site of MHC molecules may be directly related to the observed absence of MHC specificity in the binding. PMID:1696957

  12. Increasing the affinity of selective bZIP-binding peptides through surface residue redesign

    PubMed Central

    Kaplan, Jenifer B; Reinke, Aaron W; Keating, Amy E

    2014-01-01

    The coiled-coil dimer is a prevalent protein interaction motif that is important for many cellular processes. The basic leucine-zipper (bZIP) transcription factors are one family of proteins for which coiled-coil mediated dimerization is essential for function, and misregulation of bZIPs can lead to disease states including cancer. This makes coiled coils attractive protein–protein interaction targets to disrupt using engineered molecules. Previous work designing peptides to compete with native coiled-coil interactions focused primarily on designing the core residues of the interface to achieve affinity and specificity. However, folding studies on the model bZIP GCN4 show that coiled-coil surface residues also contribute to binding affinity. Here we extend a prior study in which peptides were designed to bind tightly and specifically to representative members of each of 20 human bZIP families. These “anti-bZIP” peptides were designed with an emphasis on target-binding specificity, with contributions to design-target specificity and affinity engineered considering only the coiled-coil core residues. High-throughput testing using peptide arrays indicated many successes. We have now measured the binding affinities and specificities of anti-bZIPs that bind to FOS, XBP1, ATF6, and CREBZF in solution and tested whether redesigning the surface residues can increase design–target affinity. Incorporating residues that favor helix formation into the designs increased binding affinities in all cases, providing low-nanomolar binders of each target. However, changes in surface electrostatic interactions sometimes changed the binding specificity of the designed peptides. Impact Statement Designing molecules to bind native proteins is a fundamental objective in protein engineering. Ideally, designs should bind their targets both tightly and selectively. This paper reports binding affinities and specificities for computationally designed peptides that interact with human b

  13. Research progress in structure-activity relationship of bioactive peptides.

    PubMed

    Li, Ying; Yu, Jianmei

    2015-02-01

    Bioactive peptides are specific protein fragments that have positive impact on health. They are important sources of new biomedicine, energy and high-performance materials. The beneficial effects of bioactive peptides are due to their antioxidant, antihypertensive, anticarcinogenic, antimicrobial, and immunomodulatory activities. The structure-activity relationship of bioactive peptides plays a significant role in the development of innovative and unconventional synthetic polymeric counterparts. It provides the basis of the stereospecific synthesis, transformation, and development of bioactive peptide products. This review covers the progress of studies in the structure-activity relationship of some bioactive peptides including antioxidant peptides, angiotensin-I-converting enzyme-inhibitory peptides, and anticarcinogenic peptides in the past decade.

  14. Structural analysis of calmodulin binding by nNOS inhibitory amphibian peptides.

    PubMed

    Calabrese, Antonio N; Bowie, John H; Pukala, Tara L

    2015-01-20

    Calmodulin (CaM) is a ubiquitous protein in nature and plays a regulatory role in numerous biological processes, including the upregulation of nitric oxide (NO) synthesis in vivo. Several peptides that prevent NO production by interacting with CaM have been isolated in the cutaneous secretions of Australian amphibians, and are thought to serve as a defense mechanism against predators. In this work, we probe the mechanism by which three of these peptides, namely, caerin 1.8, dahlein 5.6, and a synthetic modification of citropin 1.1, interact with CaM to inhibit NO signaling. Isothermal titration calorimetry was used to determine thermodynamic parameters of the binding interactions and revealed that all the peptides bind to CaM in a similar fashion, with the peptide encapsulated between the two lobes of CaM. Ion mobility-mass spectrometry was used to investigate the changes in collision cross section that occur as a result of complexation, providing additional evidence for this binding mode. Finally, nuclear magnetic resonance spectroscopy was used to track chemical shift changes upon binding. The results obtained confirm that these complexes adopt canonical collapsed structures and demonstrate the strength of the interaction between the peptides and CaM. An understanding of these molecular recognition events provides insights into the underlying mechanism of the amphibian host-defense system.

  15. Selection of phage-displayed peptides that bind to a particular ligand-bound antibody.

    PubMed

    Tanaka, Fujie; Hu, Yunfeng; Sutton, Jori; Asawapornmongkol, Lily; Fuller, Roberta; Olson, Arthur J; Barbas, Carlos F; Lerner, Richard A

    2008-06-01

    Phage-displayed peptides that selectively bind to aldolase catalytic antibody 93F3 when bound to a particular 1,3-diketone hapten derivative have been developed using designed selection strategies with libraries containing 7-12 randomized amino acid residues. These phage-displayed peptides discriminated the particular 93F3-diketone complex from ligand-free 93F3 and from 93F3 bound to other 1,3-diketone hapten derivatives. By altering the selection procedures, phage-displayed peptides that bind to antibody 93F3 in the absence of 1,3-diketone hapten derivatives have also been developed. With using these phage-displayed peptides, ligand-bound states of the antibody were distinguished from each other. A docking model of one of the peptides bound to the antibody 93F3-diketone complex was created using a sequential divide-and-conquer peptide docking strategy; the model suggests that the peptide interacts with both the antibody and the ligand through a delicate hydrogen bonding network.

  16. Overlapping transport and chaperone-binding functions within a bacterial twin-arginine signal peptide.

    PubMed

    Grahl, Sabine; Maillard, Julien; Spronk, Chris A E M; Vuister, Geerten W; Sargent, Frank

    2012-03-01

    The twin-arginine translocation (Tat) pathway is a protein targeting system present in many prokaryotes. The physiological role of the Tat pathway is the transmembrane translocation of fully-folded proteins, which are targeted by N-terminal signal peptides bearing conserved SRRxFLK 'twin-arginine' amino acid motifs. In Escherichia coli the majority of Tat targeted proteins bind redox cofactors and it is important that only mature, cofactor-loaded precursors are presented for export. Cellular processes have been unearthed that sequence these events, for example the signal peptide of the periplasmic nitrate reductase (NapA) is bound by a cytoplasmic chaperone (NapD) that is thought to regulate assembly and export of the enzyme. In this work, genetic, biophysical and structural approaches were taken to dissect the interaction between NapD and the NapA signal peptide. A NapD binding epitope was identified towards the N-terminus of the signal peptide, which overlapped significantly with the twin-arginine targeting motif. NMR spectroscopy revealed that the signal peptide adopted a α-helical conformation when bound by NapD, and substitution of single residues within the NapA signal peptide was sufficient to disrupt the interaction. This work provides an increased level of understanding of signal peptide function on the bacterial Tat pathway.

  17. HLA-B37 and HLA-A2.1 molecules bind largely nonoverlapping sets of peptides.

    PubMed Central

    Carreno, B M; Anderson, R W; Coligan, J E; Biddison, W E

    1990-01-01

    T-cell recognition of peptides that are bound and presented by class I major histocompatibility complex molecules is highly specific. At present it is unclear what role class I peptide binding plays relative to T-cell receptor specificity in determination of immune recognition. A previous study from our group demonstrated that the HLA-A2.1 molecule could bind to 25% of the members of a panel of unrelated synthetic peptides as assessed by a functional peptide competition assay. To determine the peptide-binding specificity of another HLA class I molecule, we have examined the capacity of this panel of peptides to compete for the presentation of influenza virus nucleoprotein peptide NP-(335-350) by HLA-B37 to NP-peptide-specific HLA-B37-restricted cytotoxic T-lymphocyte lines. Forty-two percent of peptides tested were capable of inhibiting NP-(335-350) presentation by HLA-B37. Remarkably, none of these HLA-B37-binding peptides belong to the subset that was previously shown to bind to the HLA-A2.1 molecule. Only the NP-(335-350) peptide was capable of binding to both HLA-A2.1 and HLA-B37. These findings demonstrate that the peptide-binding specificities of HLA-B37 and HLA-A2.1 are largely nonoverlapping and suggest that, from the universe of peptides, individual HLA class I molecules can bind to clearly distinct subsets of these peptides. PMID:2333291

  18. Critical contribution of beta chain residue 57 in peptide binding ability of both HLA-DR and -DQ molecules.

    PubMed Central

    Nepom, B S; Nepom, G T; Coleman, M; Kwok, W W

    1996-01-01

    Position 57 in the beta chain of HLA class II molecules maintains an Asp/non-Asp dimorphism that has been conserved through evolution and is implicated in susceptibility to some autoimmune diseases. The latter effect may be due to the influence of this residue on the ability of class II alleles to bind specific pathogenic peptides. We utilized highly homologous pairs of both DR and DQ alleles that varied at residue 57 to investigate the impact of this dimorphism on binding of model peptides. Using a direct binding assay of biotinylated peptides on whole cells expressing the desired alleles, we report several peptides that bind differentially to the allele pairs depending on the presence or absence of Asp at position 57. Peptides with negatively charged residues at anchor position 9 bind well to alleles not containing Asp at position 57 in the beta chain but cannot bind well to homologous Asp-positive alleles. By changing the peptides at the single residue predicted to interact with this position 57, we demonstrate a drastically altered or reversed pattern of binding. Ala analog peptides confirm these interactions and identify a limited set of interaction sites between the bound peptides and the class II molecules. Clarification of the impact of specific class II polymorphisms on generating unique allele-specific peptide binding "repertoires" will aid in our understanding of the development of specific immune responses and HLA-associated diseases. PMID:8692969

  19. Amyloid-β peptide binds to cytochrome C oxidase subunit 1.

    PubMed

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  20. Amyloid-β Peptide Binds to Cytochrome C Oxidase Subunit 1

    PubMed Central

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H.; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1–42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1–42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1–42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1–42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1–42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD. PMID:22927926

  1. Reversibly Bound Chloride in the Atrial Natriuretic Peptide Receptor Hormone Binding Domain: Possible Allosteric Regulation and a Conserved Structural Motif for the Chloride-binding Site

    SciTech Connect

    Ogawa, H.; Qiu, Y; Philo, J; Arakawa, T; Ogata, C; Misono, K

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.

  2. Anticancer activities of bovine and human lactoferricin-derived peptides.

    PubMed

    Arias, Mauricio; Hilchie, Ashley L; Haney, Evan F; Bolscher, Jan G M; Hyndman, M Eric; Hancock, Robert E W; Vogel, Hans J

    2017-02-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.

  3. Detection of Cancer Cell Death Mediated by a Synthetic Granzyme B-like Peptide Fluorescent Conjugate and the same Peptide Binding in Bacteria.

    PubMed

    Lo, Wai Chun Jennifer; Luther, Donald Gene

    2014-03-01

    Granzyme-mediated apoptosis, supported by pore-forming perforin, plays an important role in CD8+ T lymphocytes (CTL)-dependent cellular immunity protection against both cancer and viral infection. Quantitative and qualitative problems with CTL are potential contributing factors to disease progression. The feasibility of developing CTL-independent cellular immunity is desired but must first overcome the barrier of CTL-independent target cell recognition. Granzyme B with its strong pro-apoptotic activity in many different target cells is investigated for use in the CTL-independent cellular immunity approach, and granzyme B or its bioactive peptides without the enzymatic activity are more desirable for use. Native granzyme B with enzymatic activity is usually investigated in cancer cells for its mediation of apoptosis by detection of DNA fragmentation. Detection of cell death mediated by such peptides in cancer cells is needed to demonstrate the potential therapeutic purposes. We show with never-before-seen microscopic images using fluorescence microscopy that a synthetic granzyme B-like peptide fluorescent conjugate (GP1R) can: 1) mediate cell death of different cancer cells via membrane extrusion, 2) bind to constitutively expressed binding targets in different cancer cells and bacteria, and 3) promote bacterial phagocytosis. The putative binding targets may serve as a universal pathologic biomarker detectable by GP1R. Our data taken together demonstrate the potential applications of GP1R for use in CTL-independent target cell recognition and target cell death induction. It may lead to development of rapid targeted detection and new treatment of cancer, viral and bacterial infections. The new treatment may show mutual benefits for two or more diseases.

  4. Activity Determinants of Helical Antimicrobial Peptides: A Large-Scale Computational Study

    PubMed Central

    He, Yi; Lazaridis, Themis

    2013-01-01

    Antimicrobial peptides (AMPs), produced by a wide range of organisms, have attracted attention due to their potential use as novel antibiotics. The majority of these peptides are cationic and are thought to function by permeabilizing the bacterial membrane, either by making pores or by dissolving it (‘carpet’ model). A key hypothesis in the literature is that antimicrobial and hemolytic activity correlate with binding affinity to anionic and zwitterionic membranes, respectively. Here we test this hypothesis by using binding free energy data collected from the literature and theoretical binding energies calculated from implicit membrane models for 53 helical AMPs. We indeed find a correlation between binding energy and biological activity, depending on membrane anionic content: antibacterial activity correlates best with transfer energy to membranes with anionic lipid fraction higher than 30% and hemolytic activity correlates best with transfer energy to a 10% anionic membrane. However, the correlations are weak, with correlation coefficient up to 0.4. Weak correlations of the biological activities have also been found with other physical descriptors of the peptides, such as surface area occupation, which correlates significantly with antibacterial activity; insertion depth, which correlates significantly with hemolytic activity; and structural fluctuation, which correlates significantly with both activities. The membrane surface coverage by many peptides at the MIC is estimated to be much lower than would be required for the ‘carpet’ mechanism. Those peptides that are active at low surface coverage tend to be those identified in the literature as pore-forming. The transfer energy from planar membrane to cylindrical and toroidal pores was also calculated for these peptides. The transfer energy to toroidal pores is negative in almost all cases while that to cylindrical pores is more favorable in neutral than in anionic membranes. The transfer energy to pores

  5. Specific binding of DNA to aggregated forms of Alzheimer's disease amyloid peptides.

    PubMed

    Camero, Sergio; Ayuso, Jose M; Barrantes, Alejandro; Benítez, María J; Jiménez, Juan S

    2013-04-01

    Anomalous protein aggregation is closely associated to age-related mental illness. Extraneuronal plaques, mainly composed of aggregated amyloid peptides, are considered as hallmarks of Alzheimer's disease. According to the amyloid cascade hypothesis, this disease starts as a consequence of an abnormal processing of the amyloid precursor protein resulting in an excess of amyloid peptides. Nuclear localization of amyloid peptide aggregates together with amyloid-DNA interaction, have been repeatedly reported. In this paper we have used surface plasmon resonance and electron microscopy to study the structure and behavior of different peptides and proteins, including β-lactoglobulin, bovine serum albumin, myoglobin, histone, casein and the amyloid-β peptides related to Alzheimer's disease Aβ25-35 and Aβ1-40. The main purpose of this study is to investigate whether proneness to DNA interaction is a general property displayed by aggregated forms of proteins, or it is an interaction specifically related to the aggregated forms of those particular proteins and peptides related to neurodegenerative diseases. Our results reveal that those aggregates formed by amyloid peptides show a particular proneness to interact with DNA. They are the only aggregated structures capable of binding DNA, and show more affinity for DNA than for other polyanions like heparin and polyglutamic acid, therefore strengthening the hypothesis that amyloid peptides may, by means of interaction with nuclear DNA, contribute to the onset of Alzheimer's disease.

  6. Copper-binding tripeptide motif increases potency of the antimicrobial peptide Anoplin via Reactive Oxygen Species generation.

    PubMed

    Libardo, M Daben J; Nagella, Sai; Lugo, Andrea; Pierce, Scott; Angeles-Boza, Alfredo M

    2015-01-02

    Antimicrobial peptides (AMPs) are broad spectrum antimicrobial agents that act through diverse mechanisms, this characteristic makes them suitable starting points for development of novel classes of antibiotics. We have previously reported the increase in activity of AMPs upon addition of the Amino Terminal Copper and Nickel (ATCUN) Binding Unit. Herein we synthesized the membrane active peptide, Anoplin and two ATCUN-Anoplin derivatives and show that the increase in activity is indeed due to the ROS formation by the Cu(II)-ATCUN complex. We found that the ATCUN-Anoplin peptides were up to four times more potent compared to Anoplin alone against standard test bacteria. We studied membrane disruption, and cellular localization and found that addition of the ATCUN motif did not lead to a difference in these properties. When helical content was calculated, we observed that ATCUN-Anoplin had a lower helical composition. We found that ATCUN-Anoplin are able to oxidatively damage lipids in the bacterial membrane and that their activity trails the rate at which ROS is formed by the Cu(II)-ATCUN complexes alone. This study shows that addition of a metal binding tripeptide motif is a simple strategy to increase potency of AMPs by conferring a secondary action.

  7. In-capillary detection of fast antibody-peptide binding using fluorescence coupled capillary electrophoresis.

    PubMed

    Qin, Yuqin; Qiu, Lin; Qin, Haifang; Ding, Shumin; Liu, Li; Teng, Yiwan; Chen, Yao; Wang, Cheli; Li, Jinchen; Wang, Jianhao; Jiang, Pengju

    2016-01-01

    Herein, we report a technique for detecting the fast binding of antibody-peptide inside a capillary. Anti-HA was mixed and interacted with FAM-labeled HA tag (FAM-E4 ) inside the capillary. Fluorescence coupled capillary electrophoresis (CE-FL) was employed to measure and record the binding process. The efficiency of the antibody-peptide binding on in-capillary assays was found to be affected by the molar ratio. Furthermore, the stability of anti-HA-FAM-E4 complex was investigated as well. The results indicated that E4 YPYDVPDYA (E4) or TAMRA-E4 YPYDVPDYA (TAMRA-E4) had the same binding priorities with anti-HA. The addition of excess E4 or TAMRA-E4 could lead to partial dissociation of the complex and take a two-step mechanism including dissociation and association. This method can be applied to detect a wide range of biomolecular interactions.

  8. OmpA Binding Mediates the Effect of Antimicrobial Peptide LL-37 on Acinetobacter baumannii

    PubMed Central

    Lin, Ming-Feng; Tsai, Pei-Wen; Chen, Jeng-Yi; Lin, Yun-You; Lan, Chung-Yu

    2015-01-01

    Multidrug-resistant Acinetobacter baumannii has recently emerged as an important pathogen in nosocomial infection; thus, effective antimicrobial regimens are urgently needed. Human antimicrobial peptides (AMPs) exhibit multiple functions and antimicrobial activities against bacteria and fungi and are proposed to be potential adjuvant therapeutic agents. This study examined the effect of the human cathelicidin-derived AMP LL-37 on A. baumannii and revealed the underlying mode of action. We found that LL-37 killed A. baumannii efficiently and reduced cell motility and adhesion. The bacteria-killing effect of LL-37 on A. baumannii was more efficient compared to other AMPs, including human ß–defensin 3 (hBD3) and histatin 5 (Hst5). Both flow cytometric analysis and immunofluorescence staining showed that LL-37 bound to A. baumannii cells. Moreover, far-western analysis demonstrated that LL-37 could bind to the A. baumannii OmpA (AbOmpA) protein. An ELISA assay indicated that biotin-labelled LL-37 (BA-LL37) bound to the AbOmpA74-84 peptide in a dose-dependent manner. Using BA-LL37 as a probe, the ~38 kDa OmpA signal was detected in the wild type but the ompA deletion strain did not show the protein, thereby validating the interaction. Finally, we found that the ompA deletion mutant was more sensitive to LL-37 and decreased cell adhesion by 32% compared to the wild type. However, ompA deletion mutant showed a greatly reduced adhesion defect after LL-37 treatment compared to the wild strain. Taken together, this study provides evidence that LL-37 affects A. baumannii through OmpA binding. PMID:26484669

  9. Dimerized Translationally Controlled Tumor Protein-Binding Peptide Ameliorates Atopic Dermatitis in NC/Nga Mice

    PubMed Central

    Jin, Xing-Hai; Lim, Juhyeon; Shin, Dong Hae; Maeng, Jeehye; Lee, Kyunglim

    2017-01-01

    Our previous study showed that dimerized translationally controlled tumor protein (dTCTP) plays a role in the pathogenesis of allergic diseases, such as asthma and allergic rhinitis. A 7-mer peptide, called dTCTP-binding peptide 2 (dTBP2), binds to dTCTP and inhibits its cytokine-like effects. We therefore examined the protective effects of dTBP2 in house dust mite-induced atopic dermatitis (AD)-like skin lesions in Nishiki-nezumi Cinnamon/Nagoya (NC/Nga) mice. We found that topical administration of dTBP2 significantly reduced the AD-like skin lesions formation and mast cell infiltration in NC/Nga mice, similarly to the response seen in the Protopic (tacrolimus)-treated group. Treatment with dTBP2 also decreased the serum levels of IgE and reduced IL-17A content in skin lesions and inhibited the expression of mRNAs of interleukin IL-4, IL-5, IL-6, IL-13, macrophage-derived chemokine (MDC), thymus and activation-regulated chemokine (TARC) and thymic stromal lymphopoietin (TSLP). These findings indicate that dTBP2 not only inhibits the release of Th2 cytokine but also suppresses the production of proinflammatory cytokines in AD-like skin lesions in NC/Nga mice, by inhibiting TCTP dimer, in allergic responses. Therefore, dTCTP is a therapeutic target for AD and dTBP2 appears to have a potential role in the treatment of AD. PMID:28134765

  10. Direct demonstration of unique mode of natural peptide binding to the type 2 cholecystokinin receptor using photoaffinity labeling.

    PubMed

    Dong, Maoqing; Miller, Laurence J

    2013-08-01

    Direct analysis of mode of peptide docking using intrinsic photoaffinity labeling has provided detailed insights for the molecular basis of cholecystokinin (CCK) interaction with the type 1 CCK receptor. In the current work, this technique has been applied to the closely related type 2 CCK receptor that also binds the natural full agonist peptide, CCK, with high affinity. A series of photolabile CCK analog probes with sites of covalent attachment extending from position 26 through 32 were characterized, with the highest affinity analogs that possessed full biological activity utilized in photoaffinity labeling. The position 29 probe, incorporating a photolabile benzoyl-phenylalanine in that position, was shown to bind with high affinity and to be a full agonist, with potency not different from that of natural CCK, and to covalently label the type 2 CCK receptor in a saturable, specific and efficient manner. Using proteolytic peptide mapping, mutagenesis, and radiochemical Edman degradation sequencing, this probe was shown to establish a covalent bond with type 2 CCK receptor residue Phe¹²⁰ in the first extracellular loop. This was in contrast to its covalent attachment to Glu³⁴⁵ in the third extracellular loop of the type 1 CCK receptor, directly documenting differences in mode of docking this peptide to these receptors.

  11. DBAASP: database of antimicrobial activity and structure of peptides.

    PubMed

    Gogoladze, Giorgi; Grigolava, Maia; Vishnepolsky, Boris; Chubinidze, Mindia; Duroux, Patrice; Lefranc, Marie-Paule; Pirtskhalava, Malak

    2014-08-01

    The Database of Antimicrobial Activity and Structure of Peptides (DBAASP) is a manually curated database for those peptides for which antimicrobial activity against particular targets has been evaluated experimentally. The database is a depository of complete information on: the chemical structure of peptides; target species; target object of cell; peptide antimicrobial/haemolytic/cytotoxic activities; and experimental conditions at which activities were estimated. The DBAASP search page allows the user to search peptides according to their structural characteristics, complexity type (monomer, dimer and two-peptide), source, synthesis type (ribosomal, nonribosomal and synthetic) and target species. The database prediction algorithm provides a tool for rational design of new antimicrobial peptides. DBAASP is accessible at http://www.biomedicine.org.ge/dbaasp/.

  12. Receptors for vasoactive intestinal peptide in rat anterior pituitary glands: Localization of binding to lactotropes

    SciTech Connect

    Wanke, I.E.; Rorstad, O.P. )

    1990-04-01

    Vasoactive intestinal peptide (VIP) has been implicated as a physiological PRL-releasing factor; however, characterization of VIP receptors on normal pituitaries using radioligand-binding methods has been problematic. In this study we demonstrated specific receptors for VIP in anterior pituitary glands of female rats using HPLC-purified monoiodinated (Tyr(125I)10)VIP. Binding of VIP was reversible, saturable to receptor and radioligand, regulated by guanine nucleotides, and dependent on time and temperature. Scatchard analysis of competitive binding studies indicated high and low affinity binding sites, with equilibrium dissociation constants (Kd) of 0.19 +/- 0.03 and 28 +/- 16 nM, respectively. The corresponding maximum numbers of binding sites were 158 +/- 34 fmol/mg and 11.7 +/- 6.9 pmol/mg. Binding was specific, as peptides with structural homology to VIP were less than 100th as potent as VIP. The rank order of potency of the peptides tested was VIP greater than rat (r) peptide histidine isoleucine = human (h) PHI greater than rGRF greater than bovine GRF = porcine PHI = VIP-(10-28) greater than hGRF greater than secretin greater than apamin greater than glucagon. Radioligand binding was associated primarily with lactotrope-enriched fractions prepared by unit gravity sedimentation of dispersed anterior pituitary cells. VIP stimulated PRL release from cultured rat anterior pituitary cells, with an ED50 of 1 nM. These results, comprising the first identification of specific VIP receptors in normal rat anterior pituitary tissue using radioligand-binding methods, provide additional support for a biological role of VIP in lactotrope function.

  13. Specific receptor binding of atrial natriuretic peptide to rat renal cortex

    SciTech Connect

    Ogura, T.; Mitsui, T.; Ogawa, N.; Ota, Z.

    1985-09-01

    Radiolabeled receptor assay (RRA) of atrial natriuretic peptide (ANP) was studied in rat kidney membranes. Binding of ( SVI)-ANP to membrane preparations of rat whole kidney was saturated and show a high affinity. Furthermore, renal cortex membrane had a higher affinity for ANP binding site than renal medulla membrane. This high affinity ANP receptor site in renal cortex membrane indicated that ANP controlled the balance of water and sodium excretion due to this receptor site in the kidney.

  14. Role of peptide bond in the realization of biological activity of short peptides.

    PubMed

    Khavinson, V Kh; Tarnovskaya, S I; Lin'kova, N S; Chervyakova, N A; Nichik, T E; Elashkina, E V; Chalisova, N I

    2015-02-01

    We performed a comparative analysis of biological activity of Lys-Glu peptide and its amino acid constituents. It was established that Lys-Glu stimulated proliferation of splenic cells in organotypic culture, while the mixture of glutamic acid and lysine inhibited culture growth. Using the method of molecular docking, we showed that glutamic acid, lysine, and Lys-Glu peptide can interact with different DNA sequences. The energy of interaction and the most beneficial localization of glutamic acid, lysine, and Lys-Glu peptide in DNA molecule was calculated. We demonstrated the interaction of the peptide and amino acids with DNA along the minor groove. The energy of DNA interaction with the peptide is higher than with individual amino acids. The peptide bonds increase the interaction of Lys-Glu peptide with DNA, which potentiates the biological effect on cell proliferation in organotypic culture of splenic cells.

  15. Compensating Stereochemical Changes Allow Murein Tripeptide to Be Accommodated in a Conventional Peptide-binding Protein*

    PubMed Central

    Maqbool, Abbas; Levdikov, Vladimir M.; Blagova, Elena V.; Hervé, Mireille; Horler, Richard S. P.; Wilkinson, Anthony J.; Thomas, Gavin H.

    2011-01-01

    The oligopeptide permease (Opp) of Escherichia coli is an ATP-binding cassette transporter that uses the substrate-binding protein (SBP) OppA to bind peptides and deliver them to the membrane components (OppBCDF) for transport. OppA binds conventional peptides 2–5 residues in length regardless of their sequence, but does not facilitate transport of the cell wall component murein tripeptide (Mtp, l-Ala-γ-d-Glu-meso-Dap), which contains a d-amino acid and a γ-peptide linkage. Instead, MppA, a homologous substrate-binding protein, forms a functional transporter with OppBCDF for uptake of this unusual tripeptide. Here we have purified MppA and demonstrated biochemically that it binds Mtp with high affinity (KD ∼ 250 nm). The crystal structure of MppA in complex with Mtp has revealed that Mtp is bound in a relatively extended conformation with its three carboxylates projecting from one side of the molecule and its two amino groups projecting from the opposite face. Specificity for Mtp is conferred by charge-charge and dipole-charge interactions with ionic and polar residues of MppA. Comparison of the structure of MppA-Mtp with structures of conventional tripeptides bound to OppA, reveals that the peptide ligands superimpose remarkably closely given the profound differences in their structures. Strikingly, the effect of the d-stereochemistry, which projects the side chain of the d-Glu residue at position 2 in the direction of the main chain in a conventional tripeptide, is compensated by the formation of a γ-linkage to the amino group of diaminopimelic acid, mimicking the peptide bond between residues 2 and 3 of a conventional tripeptide. PMID:21705338

  16. Enhancing peptide ligand binding to vascular endothelial growth factor by covalent bond formation.

    PubMed

    Marquez, Bernadette V; Beck, Heather E; Aweda, Tolulope A; Phinney, Brett; Holsclaw, Cynthia; Jewell, William; Tran, Diana; Day, Jeffrey J; Peiris, Malalage N; Nwosu, Charles; Lebrilla, Carlito; Meares, Claude F

    2012-05-16

    Formation of a stable covalent bond between a synthetic probe molecule and a specific site on a target protein has many potential applications in biomedical science. For example, the properties of probes used as receptor-imaging ligands may be improved by increasing their residence time on the targeted receptor. Among the more interesting cases are peptide ligands, the strongest of which typically bind to receptors with micromolar dissociation constants, and which may depend on processes other than simple binding to provide images. The side chains of cysteine, histidine, or lysine are attractive for chemical attachment to improve binding to a receptor protein, and a system based on acryloyl probes attaching to engineered cysteine provides excellent positron emission tomographic images in animal models (Wei et al. (2008) J. Nucl. Med. 49, 1828-1835). In nature, lysine is a more common but less reactive residue than cysteine, making it an interesting challenge to modify. To seek practically useful cross-linking yields with naturally occurring lysine side chains, we have explored not only acryloyl but also other reactive linkers with different chemical properties. We employed a peptide-VEGF model system to discover that a 19mer peptide ligand, which carried a lysine-tagged dinitrofluorobenzene group, became attached stably and with good yield to a unique lysine residue on human vascular endothelial growth factor (VEGF), even in the presence of 70% fetal bovine serum. The same peptide carrying acryloyl and related Michael acceptors gave low yields of attachment to VEGF, as did the chloroacetyl peptide.

  17. Materials specificity and directed assembly of a gold-binding peptide.

    PubMed

    Tamerler, Candan; Duman, Memed; Oren, Ersin Emre; Gungormus, Mustafa; Xiong, Xiaorong; Kacar, Turgay; Parviz, Babak A; Sarikaya, Mehmet

    2006-11-01

    Adsorption studies of a genetically engineered gold-binding peptide, GBP1, were carried out using a quartz-crystal microbalance (QCM) to quantify its molecular affinity to noble metals. The peptide showed higher adsorption onto and lower desorption from a gold surface compared to a platinum substrate. The material specificity, that is, the preferential adsorption, of GBP1 was also demonstrated using gold and platinum micropatterned on a silicon wafer containing native oxide. The biotinylated three-repeat units of GBP1 were preferentially adsorbed onto gold regions delineated using streptavidin-conjugated quantum dots (SAQDs). These experiments not only demonstrate that an inorganic-binding peptide could preferentially adsorb onto a metal (Au) rather than an oxide (SiO2) but also onto one noble metal (Au) over another (Pt). This result shows the utility of an engineered peptide as a molecular erector in the directed immobilization of a nanoscale hybrid entity (SAQDs) over selected regions (Au) on a fairly complex substrate (Au and Pt micropatterned regions on silica). The selective and controlled adsorption of inorganic-binding peptides may have significant implications in nano- and nanobiotechnology, where they could be genetically tailored for specific use in the development of self-assembled molecular systems.

  18. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity

    PubMed Central

    Cole, David K.; Bulek, Anna M.; Dolton, Garry; Schauenberg, Andrea J.; Szomolay, Barbara; Trimby, Andrew; Jothikumar, Prithiviraj; Fuller, Anna; Skowera, Ania; Rossjohn, Jamie; Zhu, Cheng; Miles, John J.; Wooldridge, Linda; Rizkallah, Pierre J.; Sewell, Andrew K.

    2016-01-01

    The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease. PMID:27183389

  19. A novel BRET-based binding assay for interaction studies of relaxin family peptide receptor 3 with its ligands.

    PubMed

    Wang, Jia-Hui; Shao, Xiao-Xia; Hu, Meng-Jun; Wei, Dian; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun

    2017-02-04

    Relaxin family peptide receptor 3 (RXFP3) is an A-class G protein-coupled receptor that is implicated in the regulation of food intake and stress response upon activation by its cognate agonist relaxin-3. To study its interaction with various ligands, we developed a novel bioluminescence resonance energy transfer (BRET)-based binding assay using the brightest NanoLuc as an energy donor and a newly developed cyan-excitable orange fluorescent protein (CyOFP) as an energy acceptor. An engineered CyOFP without intrinsic cysteine residues but with an introduced cysteine at the C-terminus was overexpressed in Escherichia coli and chemically conjugated to the A-chain N-terminus of an easily labeled chimeric R3/I5 peptide via an intermolecular disulfide linkage. After the CyOFP-conjugated R3/I5 bound to a shortened human RXFP3 (removal of 33 N-terminal residues) fused with the NanoLuc reporter at the N-terminus, high BRET signals were detected. Saturation binding and real-time binding assays demonstrated that this BRET pair retained high binding affinity with fast association/dissociation. Using this BRET pair, binding potencies of various ligands with RXFP3 were conveniently measured through competition binding assays. Thus, the novel BRET-based binding assay facilitates interaction studies of RXFP3 with various ligands. The engineered CyOFP without intrinsic cysteine residues may also be applied to other BRET-based binding assays in future studies.

  20. Binding sites of atrial natriuretic peptide in tree shrew adrenal gland

    SciTech Connect

    Fuchs, E.; Shigematsu, K.; Saavedra, J.M.

    1986-09-01

    Adrenal gland binding sites for atrial natriuretic peptide-(99-126) (ANP) were quantitated in tree shrew (Tupaia belangeri) by incubation of adrenal sections with (3-(/sup 125/I)-iodotyrosyl28) atrial natriuretic peptide-(99-126), followed by autoradiography with computerized microdensitometry. In the adrenal glands, there are three types of ANP binding sites. One is located in the zona glomerulosa (BMax 84 +/- 6 fmol/mg protein; Kd 122 +/- 9 pM); the second in the zona fasciculata and reticularis (BMax 29 +/- 2 fmol/mg protein; Kd 153 +/- 6 pM) and the third in the adrenal medulla (BMax 179 +/- 1 fmol/mg protein; Kd 70 +/- 2 pM). Besides the influence of ANP on the regulation of adrenocortical mineralcorticoid and glucocorticoid secretion our findings raise the possibility for a local site of action of atrial natriuretic peptide in the regulation of adrenomedullary catecholamines in the tree shrew, primates and man.

  1. Arginine-rich peptides are blockers of VR-1 channels with analgesic activity.

    PubMed

    Planells-Cases, R; Aracil, A; Merino, J M; Gallar, J; Pérez-Payá, E; Belmonte, C; González-Ros, J M; Ferrer-Montiel, A V

    2000-09-15

    Vanilloid receptors (VRs) play a fundamental role in the transduction of peripheral tissue injury and/or inflammation responses. Molecules that antagonize VR channel activity may act as selective and potent analgesics. We report that synthetic arginine-rich hexapeptides block heterologously expressed VR-1 channels with submicromolar efficacy in a weak voltage-dependent manner, consistent with a binding site located near/at the entryway of the aqueous pore. Dynorphins, natural arginine-rich peptides, also blocked VR-1 activity with micromolar affinity. Notably, synthetic and natural arginine-rich peptides attenuated the ocular irritation produced by topical capsaicin application onto the eyes of experimental animals. Taken together, our results imply that arginine-rich peptides are VR-1 channel blockers with analgesic activity. These findings may expand the development of novel analgesics by targeting receptor sites distinct from the capsaicin binding site.

  2. High-energy water sites determine peptide binding affinity and specificity of PDZ domains.

    PubMed

    Beuming, Thijs; Farid, Ramy; Sherman, Woody

    2009-08-01

    PDZ domains have well known binding preferences for distinct C-terminal peptide motifs. For most PDZ domains, these motifs are of the form [S/T]-W-[I/L/V]. Although the preference for S/T has been explained by a specific hydrogen bond interaction with a histidine in the PDZ domain and the (I/L/V) is buried in a hydrophobic pocket, the mechanism for Trp specificity at the second to last position has thus far remained unknown. Here, we apply a method to compute the free energies of explicit water molecules and predict that potency gained by Trp binding is due to a favorable release of high-energy water molecules into bulk. The affinities of a series of peptides for both wild-type and mutant forms of the PDZ domain of Erbin correlate very well with the computed free energy of binding of displaced waters, suggesting a direct relationship between water displacement and peptide affinity. Finally, we show a correlation between the magnitude of the displaced water free energy and the degree of Trp-sensitivity among subtypes of the HTRA PDZ family, indicating a water-mediated mechanism for specificity of peptide binding.

  3. Calcium-binding capacity of wheat germ protein hydrolysate and characterization of Peptide-calcium complex.

    PubMed

    Liu, Feng-Ru; Wang, Li; Wang, Ren; Chen, Zheng-Xing

    2013-08-07

    This study investigates the ability of various wheat germ protein hydrolysates (WGPHs) to bind calcium and characterizes the peptide-calcium complexes. We demonstrate that the amount of Ca bound depended greatly on the type of enzyme, degree of hydrolysis (DH), amino acid composition, and molecular mass distribution of different hydrolysates. The maximum level of Ca bound (67.5 mg·g(-1)) occurred when Alcalase was used to hydrolyze wheat germ protein at a DH of 21.5%. Peptide fragments exhibiting high calcium-binding capacity had molecular mass <2000 Da. The calcium-binding peptides mainly consisted of Glu, Arg, Asp, and Gly, and the level of Ca bound was related to the hydrophobic amino acid content in WGPHs. UV-visible and Fourier transform infrared spectra demonstrate that amino nitrogen atoms and oxygen atoms on the carboxyl group were involved in complexation. Therefore, wheat germ protein is a promising protein source for the production of calcium-binding peptides and could be utilized as a bioactive ingredient for nutraceutical food production.

  4. The specificity of protection against cationic antimicrobial peptides by lactoferrin binding protein B.

    PubMed

    Morgenthau, Ari; Partha, Sarathy K; Adamiak, Paul; Schryvers, Anthony B

    2014-10-01

    A variety of Gram-negative pathogens possess host-specific lactoferrin (Lf) receptors that mediate the acquisition of iron from host Lf. The integral membrane protein component of the receptor, lactoferrin binding protein A specifically binds host Lf and is required for acquisition of iron from Lf. In contrast, the role of the bi-lobed surface lipoprotein, lactoferrin binding protein B (LbpB), in Lf binding and iron acquisition is uncertain. A common feature of LbpBs from most species is the presence of clusters of negatively charged amino acids in the protein's C-terminal lobe. Recently it has been shown that the negatively charged regions from the Neisseria meningitidis LbpB are responsible for protecting against an 11 amino acid cationic antimicrobial peptide (CAP), lactoferricin (Lfcin), derived from human Lf. In this study we investigated whether the LbpB confers resistance to other CAPs since N. meningitidis is likely to encounter other CAPs from the host. LbpB provided protection against the cathelicidin derived peptide, cathelicidin related antimicrobial peptide (mCRAMP), but did not confer protection against Tritrp 1 or LL37 under our experimental conditions. When tested against a range of rationally designed synthetic peptides, LbpB was shown to protect against IDR-1002 and IDR-0018 but not against HH-2 or HHC10.

  5. PEPTIDE BINDING AS A MODE OF ACTION FOR THE CARCINOGENICITY AND TOXICITY OF ARSENIC

    EPA Science Inventory

    Arsenic exposure leads to tumors in human skin, lung, urinary bladder, kidney and liver. Three likely initial stages of arsenical-macromolecular interaction are (1) binding of trivalent arsenicals to the sulfhydryl groups of peptides and proteins, (2) arsenical-induced generation...

  6. CD44v6-Peptide Functionalized Nanoparticles Selectively Bind to Metastatic Cancer Cells.

    PubMed

    Li, Linxian; Schmitt, Mark; Matzke-Ogi, Alexandra; Wadhwani, Parvesh; Orian-Rousseau, Veronique; Levkin, Pavel A

    2017-01-01

    CD44v6 peptide functionalized nanoparticles are fabricated in a facile and controllable way to selectively bind to CD44v6 positive tumor cells with highly efficient anticancer and antimetastatic properties. The reported modular synthesis and facile preparation makes this system highly potent for developing novel multifunctional nanocarriers for therapeutic and/or diagnostic anticancer applications.

  7. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding.

    PubMed

    Memczak, Henry; Lauster, Daniel; Kar, Parimal; Di Lella, Santiago; Volkmer, Rudolf; Knecht, Volker; Herrmann, Andreas; Ehrentreich-Förster, Eva; Bier, Frank F; Stöcklein, Walter F M

    2016-01-01

    Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing.

  8. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding

    PubMed Central

    Kar, Parimal; Di Lella, Santiago; Volkmer, Rudolf; Knecht, Volker; Herrmann, Andreas; Ehrentreich-Förster, Eva; Bier, Frank F.; Stöcklein, Walter F. M.

    2016-01-01

    Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing. PMID:27415624

  9. Coupled folding and binding kinetics in the intrinsically disordered peptide IA3

    NASA Astrophysics Data System (ADS)

    Narayanan, Ranjani; Ganesh, Omjoy; Edison, Arthur; Hagen, Stephen

    2008-03-01

    IA3 is an intrinsically disordered 68 residue peptide and is an endogenous inhibitor of yeast proteinase A (YPrA). X-ray crystallography of the IA3.YPrA complex [Li et al, Nat. Struct. Biol. (7), 113-117 (2000)] indicates that the N-terminus of IA3 adopts an alpha-helical fold when it is bound to the YPrA active site. We have used equilibrium circular dichroism and multi-wavelength, nanosecond time-resolved laser temperature-jump spectroscopy to study the coupled folding and binding interaction of IA3 with YPrA. Our initial measurements of the rate of helix formation in free IA3 indicate mono-exponential folding kinetics that extrapolate to kF˜ 10^5/s at room temperature in aqueous solutions. By comparing this rate to the kinetics we observe for IA3 interacting with YPrA, we can assess possible mechanisms for the coupled folding and binding of IA3.

  10. Bivalent cation binding effect on formation of the peptide bond

    NASA Astrophysics Data System (ADS)

    Remko, Milan; Rode, Bernd Michael

    2000-01-01

    The reactions between formic acid (or glycine) and ammonia, without and with Mg 2+, Ni 2+ and Cu 2+ cations as catalysts, have been studied as model reactions for peptide bond formation using the Becke3LYP functional and 6-311+G(d,p) basis set of DFT theory. Enthalpies and free energies for the stationary points of each reaction have been calculated to determine the thermodynamics of reactions investigated. A substantial decrease in reaction enthalpies and free energies was found for formic acid-ammonia and glycine-ammonia reactions catalysed by Mg 2+, Ni 2+ and Cu 2+ ions compared with those of the uncatalysed amide bond formation. The catalytic effect of the transition metal ions Ni 2+ and Cu 2+ is of similar strength and more pronounced than that of the Mg 2+ cation.

  11. Preorganized Peptide Scaffolds as Mimics of Phosphorylated Proteins Binding Sites with a High Affinity for Uranyl.

    PubMed

    Starck, Matthieu; Sisommay, Nathalie; Laporte, Fanny A; Oros, Stéphane; Lebrun, Colette; Delangle, Pascale

    2015-12-07

    Cyclic peptides with two phosphoserines and two glutamic acids were developed to mimic high-affinity binding sites for uranyl found in proteins such as osteopontin, which is believed to be a privileged target of this ion in vivo. These peptides adopt a β-sheet structure that allows the coordination of the latter amino acid side chains in the equatorial plane of the dioxo uranyl cation. Complementary spectroscopic and analytical methods revealed that these cyclic peptides are efficient uranyl chelating peptides with a large contribution from the phosphorylated residues. The conditional affinity constants were measured by following fluorescence tryptophan quenching and are larger than 10(10) at physiological pH. These compounds are therefore promising models for understanding uranyl chelation by proteins, which is relevant to this actinide ion toxicity.

  12. Achieving Peptide Binding Specificity and Promiscuity by Loops: Case of the Forkhead-Associated Domain

    PubMed Central

    Huang, Yu-ming M.; Chang, Chia-en A.

    2014-01-01

    The regulation of a series of cellular events requires specific protein–protein interactions, which are usually mediated by modular domains to precisely select a particular sequence from diverse partners. However, most signaling domains can bind to more than one peptide sequence. How do proteins create promiscuity from precision? Moreover, these complex interactions typically occur at the interface of a well-defined secondary structure, α helix and β sheet. However, the molecular recognition primarily controlled by loop architecture is not fully understood. To gain a deep understanding of binding selectivity and promiscuity by the conformation of loops, we chose the forkhead-associated (FHA) domain as our model system. The domain can bind to diverse peptides via various loops but only interact with sequences containing phosphothreonine (pThr). We applied molecular dynamics (MD) simulations for multiple free and bound FHA domains to study the changes in conformations and dynamics. Generally, FHA domains share a similar folding structure whereby the backbone holds the overall geometry and the variety of sidechain atoms of multiple loops creates a binding surface to target a specific partner. FHA domains determine the specificity of pThr by well-organized binding loops, which are rigid to define a phospho recognition site. The broad range of peptide recognition can be attributed to different arrangements of the loop interaction network. The moderate flexibility of the loop conformation can help access or exclude binding partners. Our work provides insights into molecular recognition in terms of binding specificity and promiscuity and helpful clues for further peptide design. PMID:24870410

  13. Interaction of heparin with internally quenched fluorogenic peptides derived from heparin-binding consensus sequences, kallistatin and anti-thrombin III.

    PubMed

    Pimenta, Daniel C; Nantes, Iseli L; de Souza, Eduardo S; Le Bonniec, Bernard; Ito, Amando S; Tersariol, Ivarne L S; Oliveira, Vitor; Juliano, Maria A; Juliano, Luiz

    2002-09-01

    Internally quenched fluorogenic (IQF) peptides bearing the fluorescence donor/acceptor pair o-aminobenzoic acid (Abz)/N-(2,4-dinitrophenyl)ethylenediamine (EDDnp) at N- and C-terminal ends were synthesized containing heparin-binding sites from the human serpins kallistatin and antithrombin, as well as consensus heparin-binding sequences (Cardin clusters). The dissociation constant (K(d)), as well as the stoichiometry for the heparin-peptide complexes, was determined directly by measuring the decrease in fluorescence of the peptide solution. Experimental procedures were as sensitive as those used to follow the fluorescence change of tryptophan in heparin-binding proteins. The conformation of the peptides and the heparin-peptide complexes were obtained from measurements of time-resolved fluorescence decay and CD spectra. Kallistatin (Arg(300)-Pro(319))-derived peptide (HC2) and one derived from antithrombin III helix D [(AT3D), corresponding to Ser(112)-Lys(139)], which are the heparin-binding sites in these serpins, showed significant affinity for 4500 Da heparin, for which K(d) values were 17 nM and 100 nM respectively. The CD spectra of the heparin-HC2 peptide complex did not show any significant alpha-helix content, different from the situation with peptide AT3D, for which complex-formation with heparin resulted in 24% alpha-helix content. The end-to-end distance distribution and the time-resolved fluorescence-decay measurements agree with the CD spectra and K(d) values. The synthetic alpha-methyl glycoside pentasaccharide AGA*IA(M) (where A represents N,6-O-sulphated alpha-d-glucosamine; G, beta-d-glucuronic acid; A*, N,3,6-O-sulphated alpha-d-glucosamine; I, 2-O-sulphated alpha-l-iduronic acid; and A(M), alpha-methyl glycoside of A) also binds to AT3D and other consensus heparin-binding sequences, although with lower affinity. The interaction of IQF peptides with 4500 Da heparin was displaced by protamine. In conclusion, IQF peptides containing Abz/EDDnp as the

  14. Interaction of heparin with internally quenched fluorogenic peptides derived from heparin-binding consensus sequences, kallistatin and anti-thrombin III.

    PubMed Central

    Pimenta, Daniel C; Nantes, Iseli L; de Souza, Eduardo S; Le Bonniec, Bernard; Ito, Amando S; Tersariol, Ivarne L S; Oliveira, Vitor; Juliano, Maria A; Juliano, Luiz

    2002-01-01

    Internally quenched fluorogenic (IQF) peptides bearing the fluorescence donor/acceptor pair o-aminobenzoic acid (Abz)/N-(2,4-dinitrophenyl)ethylenediamine (EDDnp) at N- and C-terminal ends were synthesized containing heparin-binding sites from the human serpins kallistatin and antithrombin, as well as consensus heparin-binding sequences (Cardin clusters). The dissociation constant (K(d)), as well as the stoichiometry for the heparin-peptide complexes, was determined directly by measuring the decrease in fluorescence of the peptide solution. Experimental procedures were as sensitive as those used to follow the fluorescence change of tryptophan in heparin-binding proteins. The conformation of the peptides and the heparin-peptide complexes were obtained from measurements of time-resolved fluorescence decay and CD spectra. Kallistatin (Arg(300)-Pro(319))-derived peptide (HC2) and one derived from antithrombin III helix D [(AT3D), corresponding to Ser(112)-Lys(139)], which are the heparin-binding sites in these serpins, showed significant affinity for 4500 Da heparin, for which K(d) values were 17 nM and 100 nM respectively. The CD spectra of the heparin-HC2 peptide complex did not show any significant alpha-helix content, different from the situation with peptide AT3D, for which complex-formation with heparin resulted in 24% alpha-helix content. The end-to-end distance distribution and the time-resolved fluorescence-decay measurements agree with the CD spectra and K(d) values. The synthetic alpha-methyl glycoside pentasaccharide AGA*IA(M) (where A represents N,6-O-sulphated alpha-d-glucosamine; G, beta-d-glucuronic acid; A*, N,3,6-O-sulphated alpha-d-glucosamine; I, 2-O-sulphated alpha-l-iduronic acid; and A(M), alpha-methyl glycoside of A) also binds to AT3D and other consensus heparin-binding sequences, although with lower affinity. The interaction of IQF peptides with 4500 Da heparin was displaced by protamine. In conclusion, IQF peptides containing Abz/EDDnp as the

  15. Differential binding of L- vs. D-isomers of cationic antimicrobial peptides to the biofilm exopolysaccharide alginate.

    PubMed

    Yin, Lois M; Lee, Soyoung; Mak, Jacky S W; Helmy, Amr S; Deber, Charles M

    2013-08-01

    Alginate is a biofilm exopolysaccharide secreted by the opportunistic pathogen Pseudomonas aeruginosa that acts to prevent the diffusion of antibiotics toward the bacterial cell membrane. Cationic antimicrobial peptides (CAPs) have been increasingly recognized as a viable alternative for prospective antimicrobial agents. The D-isomer chiral counterparts of active L-isomer CAPs tend to show slightly greater antimicrobial activities because bacteria lack proteases to hydrolyze the unnatural D-isomers. Using an enantiomeric pair of synthetic CAPs designed in our laboratory (L-4Leu in the sequence KKKKKKALFALWLAFLA-NH2 and its D-analog D-4Leu), we studied the binding and interactions of Lvs. D-isomers of CAPs with alginate using circular dichroism and Raman spectroscopic techniques. We found that the peptide D-4Leu underwent a more rapid structural transition over time from an initial alginate-induced α-helical conformation to a less soluble β-sheet conformation than L-4Leu, indicating that the D-isomer of this peptide has a relatively greater affinity for alginate. Through Raman spectroscopy it was observed that Raman modes at 1297 cm-1 and 1453 cm-1 wavenumbers were found to differ between the spectra obtained from the insoluble complexes formed between L-4Leu vs. D-4Leu and alginate. These modes were tentatively assigned to CH, and CH3 deformation modes, respectively. Our findings reveal previously undetected subtleties in the binding of this diastereomeric pair of peptides in the microenvironment of a biofilm exopolysaccharide, and provide guidelines for future development of antimicrobial peptides.

  16. Caspase-3 binds diverse P4 residues in peptides as revealed by crystallography and structural modeling.

    SciTech Connect

    Fang, Bin; Fu, Guoxing; Agniswamy, Johnson; Harrison, Robert W.; Weber, Irene T.

    2009-03-31

    Caspase-3 recognition of various P4 residues in its numerous protein substrates was investigated by crystallography, kinetics, and calculations on model complexes. Asp is the most frequent P4 residue in peptide substrates, although a wide variety of P4 residues are found in the cellular proteins cleaved by caspase-3. The binding of peptidic inhibitors with hydrophobic P4 residues, or no P4 residue, is illustrated by crystal structures of caspase-3 complexes with Ac-IEPD-Cho, Ac-WEHD-Cho, Ac-YVAD-Cho, and Boc-D(OMe)-Fmk at resolutions of 1.9-2.6 {angstrom}. The P4 residues formed favorable hydrophobic interactions in two separate hydrophobic regions of the binding site. The side chains of P4 Ile and Tyr form hydrophobic interactions with caspase-3 residues Trp206 and Trp214 within a non-polar pocket of the S4 subsite, while P4 Trp interacts with Phe250 and Phe252 that can also form the S5 subsite. These interactions of hydrophobic P4 residues are distinct from those for polar P4 Asp, which indicates the adaptability of caspase-3 for binding diverse P4 residues. The predicted trends in peptide binding from molecular models had high correlation with experimental values for peptide inhibitors. Analysis of structural models for the binding of 20 different amino acids at P4 in the aldehyde peptide Ac-XEVD-Cho suggested that the majority of hydrophilic P4 residues interact with Phe250, while hydrophobic residues interact with Trp206, Phe250, and Trp214. Overall, the S4 pocket of caspase-3 exhibits flexible adaptation for different residues and the new structures and models, especially for hydrophobic P4 residues, will be helpful for the design of caspase-3 based drugs.

  17. Arthritogenic peptide binding to DRB1*01 alleles correlates with susceptibility to rheumatoid arthritis.

    PubMed

    Roark, Christina L; Anderson, Kirsten M; Aubrey, Michael T; Rosloniec, Edward F; Freed, Brian M

    Genetic susceptibility to rheumatoid arthritis (RA) is often defined by the presence of a shared epitope (QKRAA, QRRAA, or RRRAA) at positions 70-74 in HLA-DRβ1. However, DRβ1*01:01 and 01:02 contain the same QRRAA epitope, but differ considerably in their susceptibility to RA. The purpose of this study was to determine if this difference could be explained by their ability to bind three arthritogenic peptides that we have previously shown to bind to the archetypal RA-susceptible allele, DRβ1*04:01, but not to the resistant DRβ1*08:01 allele. Binding of type II collagen(258-272), citrullinated and native vimentin(66-78), and citrullinated and native α-enolase(11-25) were measured on cell lines expressing either DRβ1*01:01, *01:02 or *01:03 in association with DRα1*01:01. DRβ1*01:01 and *01:02 both exhibited a 6.5-fold preference for citrullinated vimentin(66-78) compared to native vimentin. However, DRβ1*01:01 also exhibited a 1.7-fold preference for citrullinated α-enolase(11-25) and bound collagen(258-272), while DRβ1*01:02 bound neither of these peptides. Consistent with its known resistance to RA, DRβ1*01:03 preferentially bound native vimentin(66-78) and α-enolase(11-25) over the citrullinated forms of these peptides, and also failed to bind collagen(258-272). Site-directed mutagenesis was performed to determine which amino acid residues were responsible for the differences between these alleles. Mutating position 86 in DRβ1*01:01 from glycine to the valine residue found in DRβ1*01:02 eliminated binding of both citrullinated α-enolase(11-25) and collagen(258-272), thereby recapitulating the peptide-binding profile of DRβ1*01:02. The difference in susceptibility to rheumatoid arthritis between DRβ1*01:01 and *01:02 thus correlates with the effect of position 86 on the binding of these arthritogenic peptides. Consistent with their association with RA resistance, positions I67, D70 and E71 all contributed to the inability of DRβ1*01:03 to bind

  18. Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins.

    PubMed

    Coelho, Miguel B; Ascher, David B; Gooding, Clare; Lang, Emma; Maude, Hannah; Turner, David; Llorian, Miriam; Pires, Douglas E V; Attig, Jan; Smith, Christopher W J

    2016-08-15

    Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands.

  19. Identification and characterization of polydimethylsiloxane-binding peptides (PDMS-tag) for oriented immobilization of functional protein on a PDMS surface.

    PubMed

    Kumada, Yoichi; Otsuki, Ryoko; Sakoda, Yumiko; Akai, Ryota; Matoba, Kazutaka; Katayama, Junko; Kishimoto, Michimasa; Horiuchi, Jun-Ichi

    2016-10-20

    In this study we focused on identifying and characterizing polydimethylsiloxane-binding peptides (PDMS-tags) that show a strong binding affinity towards a PDMS surface. Three kinds of E. coli host proteins (ELN, OMC and TPA) that were preferentially adsorbed onto a PDMS surface were identified from the E. coli cell lysate via 2-D electrophoresis and MALDI TOF MS. Digestion of these PDMS-binding proteins by 3 types of proteases (trypsin, chymotrypsin and V8 protease) resulted in the production of a wide variety of peptide fragments with different amino acid biases. Nine types of peptide fragments showing binding affinities to a PDMS surface were identified, and they were genetically fused at the C-terminal region of glutathione S-transferase (GST). The adsorption kinetics of peptide-fused GSTs to a PDMS surface were evaluated using a quartz crystal microbalance (QCM) sensor equipped with a sensor chip coated with a PDMS thin film. Consequently, all GSTs fused with the peptides adsorbed at a level higher than that of wild-type GST. In particular, the adsorption levels of GSTs fused with ELN-V81, TPA-V81, and OMC-V81 peptides were 8- to 10-fold higher than that of the wild-type GST. These results indicated that the selected peptides possessed a strong binding affinity towards a PDMS surface even in cases where they were introduced to the C-terminal region of a model protein. The remaining activities of GSTs with PDMS-binding peptides were also greater than that of the wild-type GST. Almost a third (30%) of enzymatic activity was maintained by genetic fusion of the peptide ELN-V81, compared with only 1.5% of wild-type GST in the adsorption state. Thus, the PDMS-binding peptides (PDMS-tags) identified in this study will be considerably useful for the site-specific immobilization of functional proteins to a PDMS surface, which will be a powerful tool in the fabrication of protein-based micro-reactors and biosearation chips.

  20. Brain and atrial natriuretic peptides bind to common receptors in brain capillary endothelial cells.

    PubMed

    Gelfand, R A; Frank, H J; Levin, E; Pedram, A

    1991-08-01

    The recent discovery of brain natriuretic peptides (BNP) that stimulates natriuresis, diuresis, and vascular smooth muscle relaxation in a manner similar to that of atrial natriuretic peptide (ANP) suggests the possibility that these endocrine hormones function via some common mechanism. Indirect evidence from several laboratories suggests that BNP and ANP may bind to the same receptors. We examined whether ANP and BNP bind to a common set of receptors in cultured bovine brain capillary endothelial cells and in bovine aortic endothelial cells. Scatchard plot analysis of binding data shows a similar dissociation constant (KD) of approximately 0.3 nM and a maximal binding capacity (Bmax) of 50 fmol/mg protein for both natriuretic peptides in brain capillary cells and 0.6 nM and 80 fmol/mg protein, respectively, in the aortic endothelial cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the affinity cross-linked receptor-ligand complex shows a strongly labeled 65-kDa receptor and a 125-kDa band that is likely to be a receptor of the guanylate cyclase type. ANP and BNP cross compete equally for binding to the two receptors identified on the gels. ANP and BNP also stimulate guanosine 3', 5'-cyclic monophosphate production in these cells, consistent with the presence of a functional guanylate cyclase-linked B receptor. We conclude that ANP and BNP share common receptors in brain capillary and aortic endothelial cells.

  1. Fluorine substitutions in an antigenic peptide selectively modulate T-cell receptor binding in a minimally perturbing manner

    SciTech Connect

    Piepenbrink, Kurt H.; Borbulevych, Oleg Y.; Sommese, Ruth F.; Clemens, John; Armstrong, Kathryn M.; Desmond, Clare; Do, Priscilla; Baker, Brian M.

    2010-08-17

    TCR (T-cell receptor) recognition of antigenic peptides bound and presented by MHC (major histocompatibility complex) molecules forms the basis of the cellular immune response to pathogens and cancer. TCRs bind peptide - MHC complexes weakly and with fast kinetics, features which have hindered detailed biophysical studies of these interactions. Modified peptides resulting in enhanced TCR binding could help overcome these challenges. Furthermore, there is considerable interest in using modified peptides with enhanced TCR binding as the basis for clinical vaccines. In the present study, we examined how fluorine substitutions in an antigenic peptide can selectively impact TCR recognition. Using a structure-guided design approach, we found that fluorination of the Tax peptide [HTLV (human T-cell lymphotropic virus)-1 Tax] enhanced binding by the Tax-specific TCR A6, yet weakened binding by the Tax-specific TCR B7. The changes in affinity were consistent with crystallographic structures and fluorine chemistry, and with the A6 TCR independent of other substitutions in the interface. Peptide fluorination thus provides a means to selectively modulate TCR binding affinity without significantly perturbing peptide composition or structure. Lastly, we probed the mechanism of fluorine's effect on TCR binding and we conclude that our results were most consistent with a 'polar hydrophobicity' mechanism, rather than a purely hydrophobic- or electrostatic-based mechanism. This finding should have an impact on other attempts to alter molecular recognition with fluorine.

  2. LINC Complexes Form by Binding of Three KASH Peptides to Domain Interfaces of Trimeric SUN Proteins

    SciTech Connect

    Sosa, Brian A.; Rothballer, Andrea; Kutay, Ulrike; Schwartz, Thomas U.

    2012-08-31

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansive grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.

  3. Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300

    PubMed Central

    Dornan, David; Hupp, Ted R.

    2001-01-01

    The N-terminal BOX-I domain of p53 containing a docking site for the negative regulator MDM2 and the positive effector p300, harbours two recently identified phosphorylation sites at Thr18 or Ser20 whose affect on p300 is undefined. Biochemical assays demonstrate that although MDM2 binding is inhibited by these phosphorylations, p300 binding is strikingly stabilized by Thr18 or Ser20 phosphorylation. Introducing EGFP-BOX-I domain peptides with an aspartate substitution at Thr18 or Ser20 induced a significant inhibition of endogenous p53-dependent transcription in cycling cells, in irradiated cells, as well as in cells transiently co-transfected with p300 and p53. In contrast an EGFP-wild-type BOX-I domain peptide stimulated p53 activity via inhibition of MDM2 protein binding. These results suggest that phosphorylation of p53 at Thr18 or Ser20 can activate p53 by stabilizing the p300–p53 complex and also identify a class of small molecular weight ligands capable of selective discrimination between MDM2- and p300-dependent activities. PMID:11258706

  4. Lock and Key Binding of the HOX YPWM Peptide to the PBX Homeodomain

    SciTech Connect

    Sprules, Tara; Green, N.; Featherstone, M.; Gehring, Kalle

    2003-01-10

    HOX homeodomain proteins bind short core DNA sequences to control very specific developmental processes. DNA binding affinity and sequence selectivity are increased by the formation of cooperative complexes with the PBX homeodomain protein. A conserved YPWM motif in the HOX protein is necessary for cooperative binding with PBX. We have determined the structure of a PBX homeodomain bound to a 14-mer DNA duplex. A relaxation-optimized procedure was developed to measure DNA residual dipolar couplings at natural abundance in the 20-kDa binary complex. When the PBX homeodomain binds to DNA, a fourth alpha-helix is formed in the homeodomain. This helix rigidifies the DNA recognition helix of PBX and forms a hydrophobic binding site for the HOX YPWM peptide. The HOX peptide itself shows some structure in solution and suggests that the interaction between PBX and HOX is an example of "lock and key" binding. The NMR structure explains the requirement of DNA for the PBX-HOX interaction and the increased affinity of DNA binding.

  5. DNA minor groove binding of cross-linked lexitropsins: experimental conditions required to observe the covalently linked WPPW (groove wall-peptide-peptide-groove wall) motif.

    PubMed Central

    Chen, Y H; Lown, J W

    1995-01-01

    A theoretical analysis of binding interactions between covalently cross-linked lexitropsins and DNA is undertaken, in which a novel cyclic symmetric 2:2 dimeric lexitropsin-DNA-binding model is proposed. Applicability of commonly used techniques including NMR, quantitative footprinting, CD, and ethidium fluorometry to differentiate the covalently linked WPPW (groove Wall-Peptide-Peptide-groove Wall) from a 2:2 cross-linked lexitropsin-DNA duplex structure is examined. PMID:7612846

  6. Vasoactive intestinal peptide binding sites and fibers in the brain of the pigeon Columba livia: An autoradiographic and immunohistochemical study

    SciTech Connect

    Hof, P.R.; Dietl, M.M.; Charnay, Y.; Martin, J.L.; Bouras, C.; Palacios, J.M.; Magistretti, P.J. )

    1991-03-15

    The distribution of vasoactive intestinal peptide (VIP) binding sites in the pigeon brain was examined by in vitro autoradiography on slide-mounted sections. A fully characterized monoiodinated form of VIP, which maintains the biological activity of the native peptide, was used throughout this study. The highest densities of binding sites were observed in the hyperstriatum dorsale, archistriatum, auditory field L of neostriatum, area corticoidea dorsolateralis and temporo-parieto-occipitalis, area parahippocampalis, tectum opticum, nucleus dorsomedialis anterior thalami, and in the periventricular area of the hypothalamus. Lower densities of specific binding occurred in the neostriatum, hyperstriatum ventrale and nucleus septi lateralis, dorsolateral area of the thalamus, and lateral and posteromedial hypothalamus. Very low to background levels of VIP binding were detected in the ectostriatum, paleostriatum primitivum, paleostriatum augmentatum, lobus parolfactorius, nucleus accumbens, most of the brainstem, and the cerebellum. The distribution of VIP-containing fibers and terminals was examined by indirect immunofluorescence using a polyclonal antibody against porcine VIP. Fibers and terminals were observed in the area corticoidea dorsolateralis, area parahippocampalis, hippocampus, hyperstriatum accessorium, hyperstriatum dorsale, archistriatum, tuberculum olfactorium, nuclei dorsolateralis and dorsomedialis of the thalamus, and throughout the hypothalamus and the median eminence. Long projecting fibers were visualized in the tractus septohippocampalis. In the brainstem VIP immunoreactive fibers and terminals were observed mainly in the substantia grisea centralis, fasciculus longitudinalis medialis, lemniscus lateralis, and in the area surrounding the nuclei of the 7th, 9th, and 10th cranial nerves.

  7. Analysis of peptide-protein binding using amino acid descriptors: prediction and experimental verification for human histocompatibility complex HLA-A0201.

    PubMed

    Guan, Pingping; Doytchinova, Irini A; Walshe, Valerie A; Borrow, Persephone; Flower, Darren R

    2005-11-17

    Amino acid descriptors are often used in quantitative structure-activity relationship (QSAR) analysis of proteins and peptides. In the present study, descriptors were used to characterize peptides binding to the human MHC allele HLA-A0201. Two sets of amino acid descriptors were chosen: 93 descriptors taken from the amino acid descriptor database AAindex and the z descriptors defined by Wold and Sandberg. Variable selection techniques (SIMCA, genetic algorithm, and GOLPE) were applied to remove redundant descriptors. Our results indicate that QSAR models generated using five z descriptors had the highest predictivity and explained variance (q2 between 0.6 and 0.7 and r2 between 0.6 and 0.9). Further to the QSAR analysis, 15 peptides were synthesized and tested using a T2 stabilization assay. All peptides bound to HLA-A0201 well, and four peptides were identified as high-affinity binders.

  8. Spectroscopic characterization of copper(I) binding to apo and metal-reconstituted zinc finger peptides.

    PubMed

    Doku, Reginald T; Park, Grace; Wheeler, Korin E; Splan, Kathryn E

    2013-08-01

    Cu(I) exhibits high affinity for thiolate ligands, suggesting that thiol-rich zinc or iron binding sites may be subject to disruption during copper stress conditions. Zinc fingers constitute a large class of metalloproteins that use a combination of cysteine and histidine residues that bind Zn(II) as a structural element. Despite the shared preference of both copper and zinc for thiolate and amine coordination, the susceptibility of zinc finger domains toward copper substitution is not well studied. We report spectroscopic studies that characterize the Cu(I) binding properties of the zinc finger consensus peptides CP-CCHH, CP-CCHC, and CP-CCCC and the C-terminal zinc finger domain of HIV-1 nucleocapsid protein p7 (NCp7_C). Cu(I) binds to both the apopeptides and the Co(II)-substituted peptides, and the stoichiometry of Cu(I) binding is dependent on the number of cysteine thiols at the metal binding site. Fluorescence studies of the Zn(II)-NCp7_C complex indicate that Cu(I) also effectively competes with Zn(II) at the metal binding site, despite the high affinity of Zn(II) for the CCHC binding motif. Circular dichroism studies on both CP-CCHC and NCp7_C show that the conformations of the Cu(I)-bound complexes differ substantially from those of the Zn(II) species, implying that Cu(I) substitution is likely to impact zinc finger function. These results show that for the peptides studied here, Cu(I) is the thermodynamically favored metal despite the known high Zn(II) affinity of zinc finger domains, suggesting that Cu(I)-substituted zinc finger domains might be relevant in the context of both copper toxicity mechanisms and copper-responsive transcription factors.

  9. Antimicrobial and antibiofilm activity of quorum sensing peptides and Peptide analogues against oral biofilm bacteria.

    PubMed

    LoVetri, Karen; Madhyastha, Srinivasa

    2010-01-01

    Widespread antibiotic resistance is a major incentive for the investigation of novel ways to treat or prevent infections. Much effort has been put into the discovery of peptides in nature accompanied by manipulation of natural peptides to improve activity and decrease toxicity. The ever increasing knowledge about bacteria and the discovery of quorum sensing have presented itself as another mechanism to disrupt the infection process. We have shown that the natural quorum sensing (QS) peptide, competence-stimulating peptide (CSP), used by the caries causing bacteria Streptococcus mutans when used in higher than normally present concentrations can actually contribute to cell death in S. mutans. Using an analogue of this quorum sensing peptide (KBI-3221), we have shown it to be beneficial at decreasing biofilm of various Streptococcus species. This chapter looks at a number of assay methods to test the inhibitory effects of quorum sensing peptides and their analogues on the growth and biofilm formation of oral bacteria.

  10. Structural Stability and Binding Strength of a Designed Peptide-Carbon Nanotube Hybrid

    PubMed Central

    Roxbury, Daniel; Zhang, Shao-Qing; Mittal, Jeetain; DeGrado, William F.; Jagota, Anand

    2014-01-01

    Biological polymers hybridized with single-walled carbon nanotubes (SWCNTs) have elicited much interest recently for applications in SWCNT-based sorting as well as biomedical imaging, sensing, and drug delivery. Recently, de novo designed peptides forming a coiled-coil structure have been engineered to selectively disperse SWCNT of a certain diameter. Here we report on a study of the binding strength and structural stability of the hybrid between such a “HexCoil-Ala” peptide and the (6,5)-SWCNT. Using the competitive binding of a surfactant, we find that affinity strength of the peptide ranks in comparison to that of two single-stranded DNA sequences as (GT)30-DNA > HexCoil-Ala > (TAT)4T-DNA. Further, using replica exchange molecular dynamics (REMD), we show that the hexamer peptide complex has both similarities with and differences from the original design. While one of two distinct helix-helix interfaces of the original model was largely retained, a second interface showed much greater variability. These conformational differences allowed an aromatic tyrosine residue designed to lie along the solvent-exposed surface of the protein instead to penetrate between the two helices and directly contact the SWCNT. These insights will inform future designs of SWCNT-interacting peptides. PMID:24466357

  11. Tyrosine sulfation influences the chemokine binding selectivity of peptides derived from chemokine receptor CCR3.

    PubMed

    Zhu, John Z; Millard, Christopher J; Ludeman, Justin P; Simpson, Levi S; Clayton, Daniel J; Payne, Richard J; Widlanski, Theodore S; Stone, Martin J

    2011-03-08

    The interactions of chemokines with their G protein-coupled receptors play critical roles in the control of leukocyte trafficking in normal homeostasis and in inflammatory responses. Tyrosine sulfation is a common post-translational modification in the amino-terminal regions of chemokine receptors. However, tyrosine sulfation of chemokine receptors is commonly incomplete or heterogeneous. To investigate the possibility that differential sulfation of two adjacent tyrosine residues could bias the responses of chemokine receptor CCR3 to different chemokines, we have studied the binding of three chemokines (eotaxin-1/CCL11, eotaxin-2/CCL24, and eotaxin-3/CCL26) to an N-terminal CCR3-derived peptide in each of its four possible sulfation states. Whereas the nonsulfated peptide binds to the three chemokines with approximately equal affinity, sulfation of Tyr-16 gives rise to 9-16-fold selectivity for eotaxin-1 over the other two chemokines. Subsequent sulfation of Tyr-17 contributes additively to the affinity for eotaxin-1 and eotaxin-2 but cooperatively to the affinity for eotaxin-3. The doubly sulfated peptide selectively binds to both eotaxin-1 and eotaxin-3 approximately 10-fold more tightly than to eotaxin-2. Nuclear magnetic resonance chemical shift mapping indicates that these variations in affinity probably result from only subtle differences in the chemokine surfaces interacting with these receptor peptides. These data support the proposal that variations in sulfation states or levels may regulate the responsiveness of chemokine receptors to their cognate chemokines.

  12. Binding Site Prediction of Proteins with Organic Compounds or Peptides Using GALAXY Web Servers.

    PubMed

    Heo, Lim; Lee, Hasup; Baek, Minkyung; Seok, Chaok

    2016-01-01

    We introduce two GALAXY web servers called GalaxySite and GalaxyPepDock that predict protein complex structures with small organic compounds and peptides, respectively. GalaxySite predicts ligands that may bind the input protein and generates complex structures of the protein with the predicted ligands from the protein structure given as input or predicted from the input sequence. GalaxyPepDock takes a protein structure and a peptide sequence as input and predicts structures for the protein-peptide complex. Both GalaxySite and GalaxyPepDock rely on available experimentally resolved structures of protein-ligand complexes evolutionarily related to the target. With the continuously increasing size of the protein structure database, the probability of finding related proteins in the database is increasing. The servers further relax the complex structures to refine the structural aspects that are missing in the available structures or that are not compatible with the given protein by optimizing physicochemical interactions. GalaxyPepDock allows conformational change of the protein receptor induced by peptide binding. The atomistic interactions with ligands predicted by the GALAXY servers may offer important clues for designing new molecules or proteins with desired binding properties.

  13. Site-Specific Polymer Attachment to HR2 Peptide Fusion Inhibitors against HIV-1 Decreases Binding Association Rates and Dissociation Rates Rather Than Binding Affinity.

    PubMed

    Danial, Maarten; Stauffer, Angela N; Wurm, Frederik R; Root, Michael J; Klok, Harm-Anton

    2017-03-15

    A popular strategy for overcoming the limited plasma half-life of peptide heptad repeat 2 (HR2) fusion inhibitors against HIV-1 is conjugation with biocompatible polymers such as poly(ethylene glycol) (PEG). However, despite improved resistance to proteolysis and reduced renal elimination, covalent attachment of polymers often causes a loss in therapeutic potency. In this study, we investigated the molecular origins of the loss in potency upon conjugation of linear, midfunctional, and hyperbranched PEG-like polymers to peptides that inhibit HIV-1-host cell membrane fusion. Fluorescence binding assays revealed that polymer conjugation imparted mass transport limitations that manifested as coexistent slower association and dissociation rates from the gp41 target on HIV-1. Furthermore, reduced association kinetics rather than affinity disruption was responsible for the loss in antiviral potency. Finally, the binding assays indicated that the unmodified HR2-derived peptide demonstrated diffusion-limited binding. The observed high potency of the unmodified peptide in HIV-1 inhibition assays was therefore attributed to rapid peptide conformational changes upon binding to the gp41 prehairpin structure. This study emphasizes that the view in which polymer ligation to therapeutic peptides inadvertently leads to loss in potency due to a loss in binding affinity requires scientific verification on a case-by-case basis and that high peptide potency may be due to rapid target-binding events.

  14. Autoradiographic localization of peptide YY and neuropeptide Y binding sites in the medulla oblongata

    SciTech Connect

    Leslie, R.A.; McDonald, T.J.; Robertson, H.A.

    1988-09-01

    Peptide YY is a highly potent emetic when given intravenously in dogs. We hypothesized that the area postrema, a small brain stem nucleus that acts as a chemoreceptive trigger zone for vomiting and lies outside the blood-brain barrier, might have receptors that PYY would bind to, in order to mediate the emetic response. We prepared (/sup 125/I)PYY and used autoradiography to show that high affinity binding sites for this ligand were highly localized in the area postrema and related nuclei of the dog medulla oblongata. Furthermore, the distribution of (/sup 125/I)PYY binding sites in the rat medulla oblongata was very similar to that in the dog; the distribution of (/sup 125/I)PYY binding sites throughout the rat brain was seen to be similar to the distribution of (/sup 125/I)NPY binding sites.

  15. A novel method to measure HLA-DM-susceptibility of peptides bound to MHC class II molecules based on peptide binding competition assay and differential IC(50) determination.

    PubMed

    Yin, Liusong; Stern, Lawrence J

    2014-04-01

    HLA-DM (DM) functions as a peptide editor that mediates the exchange of peptides loaded onto MHCII molecules by accelerating peptide dissociation and association kinetics. The relative DM-susceptibility of peptides bound to MHCII molecules correlates with antigen presentation and immunodominance hierarchy, and measurement of DM-susceptibility has been a key effort in this field. Current assays of DM-susceptibility, based on differential peptide dissociation rates measured for individually labeled peptides over a long time base, are difficult and cumbersome. Here, we present a novel method to measure DM-susceptibility based on peptide binding competition assays performed in the presence and absence of DM, reported as a delta-IC(50) (change in 50% inhibition concentration) value. We simulated binding competition reactions of peptides with various intrinsic and DM-catalyzed kinetic parameters and found that under a wide range of conditions the delta-IC(50) value is highly correlated with DM-susceptibility as measured in off-rate assay. We confirmed experimentally that DM-susceptibility measured by delta-IC(50) is comparable to that measured by traditional off-rate assay for peptides with known DM-susceptibility hierarchy. The major advantage of this method is that it allows simple, fast and high throughput measurement of DM-susceptibility for a large set of unlabeled peptides in studies of the mechanism of DM action and for identification of CD4+ T cell epitopes.

  16. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane

    NASA Astrophysics Data System (ADS)

    Vivcharuk, Victor; Tomberli, Bruno; Tolokh, Igor S.; Gray, C. G.

    2008-03-01

    Molecular dynamics (MD) simulations are used to study the interaction of a zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with POPC is used as a model system for studying the details of membrane-peptide interactions, with the peptide selected because of its antimicrobial nature. Seventy-two 3 ns MD simulations, with six orientations of LFCinB at 12 different distances from a POPC membrane, are carried out to determine the potential of mean force (PMF) or free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the PMF for this relatively large system a new variant of constrained MD and thermodynamic integration is developed. A simplified method for relating the PMF to the LFCinB-membrane binding free energy is described and used to predict a free energy of adsorption (or binding) of -1.05±0.39kcal/mol , and corresponding maximum binding force of about 20 pN, for LFCinB-POPC. The contributions of the ions-LFCinB and the water-LFCinB interactions to the PMF are discussed. The method developed will be a useful starting point for future work simulating peptides interacting with charged membranes and interactions involved in the penetration of membranes, features necessary to understand in order to rationally design peptides as potential alternatives to traditional antibiotics.

  17. An alternative mechanism for the catalysis of peptide bond formation by L/F transferase: substrate binding and orientation.

    PubMed

    Fung, Angela W; Ebhardt, H Alexander; Abeysundara, Heshani; Moore, Jack; Xu, Zhizhong; Fahlman, Richard P

    2011-06-17

    Eubacterial leucyl/phenylalanyl tRNA protein transferase (L/F transferase) catalyzes the transfer of a leucine or a phenylalanine from an aminoacyl-tRNA to the N-terminus of a protein substrate. This N-terminal addition of an amino acid is analogous to that of peptide synthesis by ribosomes. A previously proposed catalytic mechanism for Escherichia coli L/F transferase identified the conserved aspartate 186 (D186) and glutamine 188 (Q188) as key catalytic residues. We have reassessed the role of D186 and Q188 by investigating the enzymatic reactions and kinetics of enzymes possessing mutations to these active-site residues. Additionally three other amino acids proposed to be involved in aminoacyl-tRNA substrate binding are investigated for comparison. By quantitatively measuring product formation using a quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based assay, our results clearly demonstrate that, despite significant reduction in enzymatic activity as a result of different point mutations introduced into the active site of L/F transferase, the formation of product is still observed upon extended incubations. Our kinetic data and existing X-ray crystal structures result in a proposal that the critical roles of D186 and Q188, like the other amino acids in the active site, are for substrate binding and orientation and do not directly participate in the chemistry of peptide bond formation. Overall, we propose that L/F transferase does not directly participate in the chemistry of peptide bond formation but catalyzes the reaction by binding and orientating the substrates for reaction in an analogous mechanism that has been described for ribosomes.

  18. Introducing folding stability into the score function for computational design of RNA-binding peptides boosts the probability of success.

    PubMed

    Xiao, Xingqing; Agris, Paul F; Hall, Carol K

    2016-05-01

    A computational strategy that integrates our peptide search algorithm with atomistic molecular dynamics simulation was used to design rational peptide drugs that recognize and bind to the anticodon stem and loop domain (ASL(Lys3)) of human tRNAUUULys3 for the purpose of interrupting HIV replication. The score function of the search algorithm was improved by adding a peptide stability term weighted by an adjustable factor λ to the peptide binding free energy. The five best peptide sequences associated with five different values of λ were determined using the search algorithm and then input in atomistic simulations to examine the stability of the peptides' folded conformations and their ability to bind to ASL(Lys3). Simulation results demonstrated that setting an intermediate value of λ achieves a good balance between optimizing the peptide's binding ability and stabilizing its folded conformation during the sequence evolution process, and hence leads to optimal binding to the target ASL(Lys3). Thus, addition of a peptide stability term significantly improves the success rate for our peptide design search.

  19. Chronic Beryllium Disease: revealing the role of beryllium ion and small peptides binding to HLA-DP2.

    PubMed

    Petukh, Marharyta; Wu, Bohua; Stefl, Shannon; Smith, Nick; Hyde-Volpe, David; Wang, Li; Alexov, Emil

    2014-01-01

    Chronic Beryllium (Be) Disease (CBD) is a granulomatous disorder that predominantly affects the lung. The CBD is caused by Be exposure of individuals carrying the HLA-DP2 protein of the major histocompatibility complex class II (MHCII). While the involvement of Be in the development of CBD is obvious and the binding site and the sequence of Be and peptide binding were recently experimentally revealed [1], the interplay between induced conformational changes and the changes of the peptide binding affinity in presence of Be were not investigated. Here we carry out in silico modeling and predict the Be binding to be within the acidic pocket (Glu26, Glu68 and Glu69) present on the HLA-DP2 protein in accordance with the experimental work [1]. In addition, the modeling indicates that the Be ion binds to the HLA-DP2 before the corresponding peptide is able to bind to it. Further analysis of the MD generated trajectories reveals that in the presence of the Be ion in the binding pocket of HLA-DP2, all the different types of peptides induce very similar conformational changes, but their binding affinities are quite different. Since these conformational changes are distinctly different from the changes caused by peptides normally found in the cell in the absence of Be, it can be speculated that CBD can be caused by any peptide in presence of Be ion. However, the affinities of peptides for Be loaded HLA-DP2 were found to depend of their amino acid composition and the peptides carrying acidic group at positions 4 and 7 are among the strongest binders. Thus, it is proposed that CBD is caused by the exposure of Be of an individual carrying the HLA-DP2*0201 allele and that the binding of Be to HLA-DP2 protein alters the conformational and ionization properties of HLA-DP2 such that the binding of a peptide triggers a wrong signaling cascade.

  20. Binding of antifusion peptides with HIVgp41 from molecular dynamics simulations: quantitative correlation with experiment.

    PubMed

    Strockbine, Bentley; Rizzo, Robert C

    2007-05-15

    Peptides based on C-terminal regions of the human immunodeficiency virus (HIV) viral protein gp41 represent an important new class of antiviral therapeutics called peptide fusion inhibitors. In this study, computational methods were used to model the binding of six peptides that contain residues that pack into a conserved hydrophobic pocket on HIVgp41, an attractive target site for the development of small molecule inhibitors. Free energies of binding were computed using molecular mechanics Generalized Born surface area (MM-GBSA) methods from molecular dynamics (MD) simulations, which employed either explicit (TIP3P) or continuum Generalized Born (GB) water models and strong correlations between experimental and computational affinities were obtained in both cases. Energy decomposition of the TIP3P-MD results (r2 = 0.75) reveals that variation in experimental affinity is highly correlated with changes in intermolecular van der Waals energies (deltaE(vdw)) on both a local (residue-based, r2 = 0.94) and global (peptide-based, r2 = 0.84) scale. The results show that differential association of C-peptides with HIVgp41 is driven solely by changes within the conserved pocket supporting the hypothesis that this region is an important drug target site. Such strong agreement with experiment is notable given the large size of the ligands (34 amino-acids) relative to the small range of experimental affinities (2 kcal/mol) and demonstrates good sensitivity of this computational method for simulating peptide fusion inhibitors. Finally, inspection of simulation trajectories identified a highly populated pi-type hydrogen bond, which formed between Gln575 on the receptor and the aromatic ring of peptide ligand Phe631, which could have important implications for drug design.

  1. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    PubMed Central

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; Mcdougal, Owen M.

    2017-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. PMID:26537635

  2. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    PubMed

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results.

  3. Copper(II) ions and the Alzheimer's amyloid-β peptide: Affinity and stoichiometry of binding

    NASA Astrophysics Data System (ADS)

    Tõugu, Vello; Friedemann, Merlin; Tiiman, Ann; Palumaa, Peep

    2014-10-01

    Deposition of amyloid beta (Aβ) peptides into amyloid plaques is the hallmark of Alzheimer's disease. According to the amyloid cascade hypothesis this deposition is an early event and primary cause of the disease, however, the mechanisms that cause this deposition remain elusive. An increasing amount of evidence shows that the interactions of biometals can contribute to the fibrillization and amyloid formation by amyloidogenic peptides. From different anions the copper ions deserve the most attention since it can contribute not only toamyloid formation but also to its toxicity due to the generation of ROS. In this thesis we focus on the affinity and stoichiometry of copper(II) binding to the Aβ molecule.

  4. Effects of water molecules on binding kinetics of peptide receptor on a piezoelectric microcantilever

    NASA Astrophysics Data System (ADS)

    Hui Kim, Sang; Kyoung Yoo, Yong; Chae, Myung-Sic; Yoon Kang, Ji; Song Kim, Tae; Seon Hwang, Kyo; Hoon Lee, Jeong

    2012-12-01

    The use of highly selective reversible peptide receptors is essential for cantilever-based electronic nose systems. Here, we present the effects of water molecules on the binding kinetics of 2,4-dinitrotoluene (DNT) molecules with DNT selective peptide receptors linked with a tri(ethylene glycol)-based (TEG) self-assembled monolayer (SAM) in a gas phase in a piezoelectric microcantilever sensor. We observed 1.5-times faster reaction kinetics in wet conditions compared with dry conditions. In a dissociation step, distinctive differences in the recovery time were observed in wet conditions, which could be attributed to water retention efficiency of TEG-linkers for the conformation of biomolecules.

  5. Rational optimization of conformational effects induced by hydrocarbon staples in peptides and their binding interfaces.

    PubMed

    Lama, Dilraj; Quah, Soo T; Verma, Chandra S; Lakshminarayanan, Rajamani; Beuerman, Roger W; Lane, David P; Brown, Christopher J

    2013-12-13

    eIF4E is frequently over-expressed in different cancers and causes increased translation of oncogenic proteins via deregulated cap-dependent translation. Inhibitors of the eIF4E:eIF4G interactions represent an approach that would normalize cap-dependent translation. Stapled peptides represent an emerging class of therapeutics that can target protein: protein interactions. We present here molecular dynamics simulations for a set of rationally designed stapled peptides in solution and in complex with eIF4E, supported with biophysical and crystallographic data. Clustering of the simulated structures revealed the favoured conformational states of the stapled peptides in their bound or free forms in solution. Identifying these populations has allowed us to design peptides with improved affinities by introducing mutations into the peptide sequence to alter their conformational distributions. These studies emphasise the effects that engineered mutations have on the conformations of free and bound peptides, and illustrate that both states must be considered in efforts to attain high affinity binding.

  6. Rational Optimization of Conformational Effects Induced By Hydrocarbon Staples in Peptides and their Binding Interfaces

    NASA Astrophysics Data System (ADS)

    Lama, Dilraj; Quah, Soo T.; Verma, Chandra S.; Lakshminarayanan, Rajamani; Beuerman, Roger W.; Lane, David P.; Brown, Christopher J.

    2013-12-01

    eIF4E is frequently over-expressed in different cancers and causes increased translation of oncogenic proteins via deregulated cap-dependent translation. Inhibitors of the eIF4E:eIF4G interactions represent an approach that would normalize cap-dependent translation. Stapled peptides represent an emerging class of therapeutics that can target protein: protein interactions. We present here molecular dynamics simulations for a set of rationally designed stapled peptides in solution and in complex with eIF4E, supported with biophysical and crystallographic data. Clustering of the simulated structures revealed the favoured conformational states of the stapled peptides in their bound or free forms in solution. Identifying these populations has allowed us to design peptides with improved affinities by introducing mutations into the peptide sequence to alter their conformational distributions. These studies emphasise the effects that engineered mutations have on the conformations of free and bound peptides, and illustrate that both states must be considered in efforts to attain high affinity binding.

  7. Bifunctional designed peptides induce mineralization and binding to TiO2.

    PubMed

    Gitelman, Anna; Rapaport, Hanna

    2014-04-29

    A limitation of titanium implants is the rather poor bonding between the metal and the surrounding tissue. In this research, we aimed at developing functional peptides in the form of monomolecular coatings intended to improve adhesion between the native oxide of the metal (TiO2) and the calcium-phosphate mineralization layer with which it is in contact. Accordingly, a bifunctional peptide with a β-strand motif assumed to strongly bind to the oxide through two phosphorylated serine residues, both situated on the same face of the strand, was designed. The β-strand motif was extended by a mineralization "tail" composed of consecutive acidic amino acids capable of adsorbing calcium ions. This peptide was studied together with two additional control peptides, one serving to elucidate the role of the β-strand in stabilizing bonding with the oxide and the other demonstrating the ability of the tail to induce mineralization. The strong adsorption of the three peptides to the oxide surface was revealed by HPLC. That peptide presenting the mineralization tail showed the highest levels of adsorbed calcium and phosphate ions, as well as the largest area of cellular adherence, demonstrating its potential advantages for use with titanium implants in bone tissue.

  8. Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Na+ on Peptide Adsorption

    SciTech Connect

    Wu, Chunya; Skelton, Adam; Chen, Mingjun; Vlcek, Lukas; Cummings, Peter T

    2011-01-01

    The dynamics of a single tripeptide Arg-Gly-Asp (RGD) adsorbing onto negatively charged hydroxylated rutile (110) surface in aqueous solution was studied using molecular dynamics (MD) simulations. The results indicate that the adsorbed Na{sup +} ions play an important role in determining the binding geometry of RGD. With an initial 'horseshoe' configuration, the charged side groups (COO{sup -} and NH{sub 2}) of the peptide are able to interact with the surface through direct hydrogen bonds (H bonds) in the very early stage of adsorption. The Na{sup +} ions approach the positively charged Arg side chain, competing with the Arg side chain for adsorption to the negatively charged hydroxyl oxygen. In coordination with the structural adjustment of the peptide, the Arg residue is driven to detach from the rutile surface. In contrast, the Na+ ions in close proximity to the negatively charged Asp side chain contribute to the binding of the COO{sup -} group on the surface, helping the carboxyl oxygen not involved in COO{sup -}-surface H bonds to orientate toward the hydroxyl hydrogens. Once both carboxyl oxygens form enough H bonds with the hydroxyl hydrogens, the redundant ions move toward a more favorable adsorption site.

  9. Antimicrobial activity of human islet amyloid polypeptides: an insight into amyloid peptides' connection with antimicrobial peptides.

    PubMed

    Wang, Lan; Liu, Qian; Chen, Jin-Chun; Cui, Yi-Xian; Zhou, Bing; Chen, Yong-Xiang; Zhao, Yu-Fen; Li, Yan-Mei

    2012-07-01

    Human islet amyloid polypeptide (hIAPP) shows an antimicrobial activity towards two types of clinically relevant bacteria. The potency of hIAPP varies with its aggregation states. Circular dichroism was employed to determine the interaction between hIAPP and bacteria lipid membrane mimic. The antimicrobial activity of each aggregate species is associated with their ability to induce membrane disruption. Our findings provide new evidence revealing the antimicrobial activity of amyloid peptide, which suggest a possible connection between amyloid peptides and antimicrobial peptides.

  10. Secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding - In vitro characterization

    SciTech Connect

    Wall, Jonathan S.; Williams, Angela; Wooliver, Craig; Martin, Emily B.; Cheng, Xiaolin; Heidel, R. Eric; Kennel, Stephen J.

    2016-08-11

    Here, polybasic helical peptides, such as peptide p5, bind human amyloid extracts and synthetic amyloid fibrils. When radio labeled, peptide p5 has been shown to specifically bind amyloid in vivo thereby allowing imaging of the disease. Structural requirements for heparin and amyloid binding have been studied using analogues of p5 that modify helicity and chirality.

  11. GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis

    PubMed Central

    Wrzaczek, Michael; Vainonen, Julia P; Stael, Simon; Tsiatsiani, Liana; Help-Rinta-Rahko, Hanna; Gauthier, Adrien; Kaufholdt, David; Bollhöner, Benjamin; Lamminmäki, Airi; Staes, An; Gevaert, Kris; Tuominen, Hannele; Van Breusegem, Frank; Helariutta, Ykä; Kangasjärvi, Jaakko

    2015-01-01

    Recognition of extracellular peptides by plasma membrane-localized receptor proteins is commonly used in signal transduction. In plants, very little is known about how extracellular peptides are processed and activated in order to allow recognition by receptors. Here, we show that induction of cell death in planta by a secreted plant protein GRIM REAPER (GRI) is dependent on the activity of the type II metacaspase METACASPASE-9. GRI is cleaved by METACASPASE-9 in vitro resulting in the release of an 11 amino acid peptide. This peptide bound in vivo to the extracellular domain of the plasma membrane-localized, atypical leucine-rich repeat receptor-like kinase POLLEN-SPECIFIC RECEPTOR-LIKE KINASE 5 (PRK5) and was sufficient to induce oxidative stress/ROS-dependent cell death. This shows a signaling pathway in plants from processing and activation of an extracellular protein to recognition by its receptor. PMID:25398910

  12. GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis.

    PubMed

    Wrzaczek, Michael; Vainonen, Julia P; Stael, Simon; Tsiatsiani, Liana; Help-Rinta-Rahko, Hanna; Gauthier, Adrien; Kaufholdt, David; Bollhöner, Benjamin; Lamminmäki, Airi; Staes, An; Gevaert, Kris; Tuominen, Hannele; Van Breusegem, Frank; Helariutta, Ykä; Kangasjärvi, Jaakko

    2015-01-02

    Recognition of extracellular peptides by plasma membrane-localized receptor proteins is commonly used in signal transduction. In plants, very little is known about how extracellular peptides are processed and activated in order to allow recognition by receptors. Here, we show that induction of cell death in planta by a secreted plant protein GRIM REAPER (GRI) is dependent on the activity of the type II metacaspase METACASPASE-9. GRI is cleaved by METACASPASE-9 in vitro resulting in the release of an 11 amino acid peptide. This peptide bound in vivo to the extracellular domain of the plasma membrane-localized, atypical leucine-rich repeat receptor-like kinase POLLEN-SPECIFIC RECEPTOR-LIKE KINASE 5 (PRK5) and was sufficient to induce oxidative stress/ROS-dependent cell death. This shows a signaling pathway in plants from processing and activation of an extracellular protein to recognition by its receptor.

  13. Inhibition of HIV-1 enhancer-controlled transcription by artificial enhancer-binding peptides derived from bacteriophage 434 repressor.

    PubMed

    Caderas, G; Klauser, S; Liu, N; Bienz, A; Gutte, B

    1999-12-01

    An artificial HIV-1 enhancer-binding 42-residue peptide (R42) that had been derived from bacteriophage 434 repressor inhibited the cell-free in vitro transcription of HIV-1 enhancer-containing plasmids [Hehlgans, T., Stolz, M., Klauser, S., Cui, T., Salgam, P., Brenz Verca, S., Widmann, M., Leiser, A., Städler, K. & Gutte, B. (1993) FEBS Lett. 315, 51-55; Caderas, G. (1997) PhD Thesis, University of Zürich]. Here we show that, after N-terminal extension of R42 with a viral nuclear localization signal, the resulting nucR42 peptide was active in intact cells. NucR42 could be detected immunologically in nuclear extracts and produced a 60-70% reduction of the rate of transcription of an HIV-1 enhancer-carrying plasmid in COS-1 cells that had been cotransfected with the HIV enhancer plasmid, an expression plasmid for nucR42, and a control. NucR42 was also synthesized chemically and the synthetic product characterized by HPLC, mass spectrometry, and quantitative amino acid analysis. Band shift, footprint, and in vitro transcription assays in the presence of exogenous NF-kappaBp50 indicated that the binding sites of nucR42 and NF-kappaB on the HIV enhancers overlapped and that a relatively small excess of nucR42 sufficed to displace NF-kappaBp50. Band shift and in vitro transcription experiments showed also that exchange of the 434 repressor-derived nine-residue recognition helix of nucR42 for four glycines abolished the HIV enhancer binding specificity whereas leucine zipper- or retro-leucine zipper-mediated dimerization of R42 analogues increased it suggesting the potential application of such dimeric HIV enhancer-binding peptides as intracellular inhibitors of HIV replication.

  14. A Synthetic Peptide with the Putative Iron Binding Motif of Amyloid Precursor Protein (APP) Does Not Catalytically Oxidize Iron

    PubMed Central

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2012-01-01

    The β-amyloid precursor protein (APP), which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II) binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III) product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II) just as in ferritin. We measured the ferroxidase activity indirectly (i) by the incorporation of the Fe(III) product of the ferroxidase reaction into transferrin and directly (ii) by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II) oxidation by molecular oxygen. Zn(II) binds to transferrin and diminishes its Fe(III) incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and – by implication – of APP should be re-evaluated. PMID:22916096

  15. Structure and Bioactivity of a Modified Peptide Derived from the LPS-Binding Domain of an Anti-Lipopolysaccharide Factor (ALF) of Shrimp

    PubMed Central

    Yang, Hui; Li, Shihao; Li, Fuhua; Xiang, Jianhai

    2016-01-01

    The lipopolysaccharide binding domain (LBD) in anti-lipopolysaccharide factor (ALF) is the main functional element of ALF, which exhibits antimicrobial activities. Our previous studies show that the peptide LBDv, synthesized based on the modified sequence of LBD (named LBD2) from FcALF2, exhibited an apparently enhanced antimicrobial activity. To learn the prospect of LBDv application, the characteristics of LBDv were analyzed in the present study. The LBDv peptide showed higher antimicrobial and bactericidal activities compared with LBD2. These activities of the LBDv peptide were stable after heat treatment. LBDv could also exhibit in vivo antimicrobial activity to Vibrio harveyi. The LBDv peptide was found to bind bacteria, quickly cause bacterial agglutination, and kill bacteria by damaging their membrane integrity. Structure analysis showed that both LBDv and LBD2 held the β-sheet structure, and the positive net charge and amphipathicity characteristic were speculated as two important components for their antimicrobial activity. The cytotoxicity of LBDv was evaluated in cultured Spodoptera frugiperda (Sf9) cells and Cherax quadricarinatus hemocytes. More than 80% cells could survive with the LBDv concentration up to 16 μM. Collectively, these findings highlighted the potential antimicrobial mechanism of LBD peptides, and provided important information for the commercial use of LBDv in the future. PMID:27213409

  16. Relationship between peptide membrane curvature generation and bactericidal activities

    NASA Astrophysics Data System (ADS)

    Schmidt, Nathan; Lee, Michelle; Kuo, David; Ouellette, Andre; Wong, Gerard

    2013-03-01

    Many amphipathic peptides and amphipathic domains in proteins can restructure biological membranes. Two examples are host defense antimicrobial peptides (AMPs) which disrupt and destabilize the cell membranes of microbes, and apolipoproteins which help stabilize nanoscale lipid aggregates. We use complementary x-ray and bacterial cell assays to elucidate the molecular length scale membrane deformations generated by amphipathic peptides with different structural motifs and relate these deformations to their activities on bacteria. Small angle x-ray scattering is used to study the interactions of model membranes with prototypical AMPs and consensus peptides from the amphipathic domains in apolipoproteins. By characterizing the nanoscale curvature deformations induced by these two distinct classes of membrane restructuring peptides we will discuss the role of amino acid composition on curvature generation. Bactericidal assays are used to access the in vivo activities of different amphipathic peptide motifs in order to understand the relationships between cell viability and membrane curvature generation.

  17. A novel phage-library-selected peptide inhibits human TNF-α binding to its receptors.

    PubMed

    Brunetti, Jlenia; Lelli, Barbara; Scali, Silvia; Falciani, Chiara; Bracci, Luisa; Pini, Alessandro

    2014-06-03

    We report the identification of a new human tumor necrosis factor-alpha (TNF-α) specific peptide selected by competitive panning of a phage library. Competitive elution of phages was obtained using the monoclonal antibody adalimumab, which neutralizes pro-inflammatory processes caused by over-production of TNF-α in vivo, and is used to treat severe symptoms of rheumatoid arthritis. The selected peptide was synthesized in monomeric and branched form and analyzed for binding to TNF-α and competition with adalimumab and TNF-α receptors. Results of competition with TNF-α receptors in surface plasmon resonance and melanoma cells expressing both TNF receptors make the peptide a candidate compound for the development of a novel anti-TNF-α drug.

  18. Specificity Profiling of Protein-Binding Domains Using One-Bead-One-Compound Peptide Libraries

    PubMed Central

    Kunys, Andrew R.; Lian, Wenlong; Pei, Dehua

    2013-01-01

    One-bead-one-compound (OBOC) libraries consist of structurally related compounds (e.g., peptides) covalently attached to a solid support, with each resin bead carrying a unique compound. OBOC libraries of high structural diversity can be rapidly synthesized and screened without the need of any special equipment and therefore can be employed in any chemical or biochemical laboratory. OBOC peptide libraries have been widely used to map the ligand specificity of proteins, to determine the substrate specificity of enzymes, and to develop inhibitors against macromolecular targets. They have proven particularly useful in profiling the binding specificity of protein modular domains (e.g., SH2 domains, BIR domains, and PDZ domains) and subsequently using the specificity information to predict the protein targets of these domains. The protocols outlined in this article describe the methodologies for synthesizing and screening OBOC peptide libraries against SH2 and PDZ domains and the related data analysis. PMID:23788558

  19. Peptide-directed binding of quantum dots to integrins in human fibroblast.

    PubMed

    Shi, Peng; Chen, Hongfeng; Cho, Michael R; Stroscio, Michael A

    2006-03-01

    There is currently a major international effort aimed at integrating semiconductor nanostructures with biological structures. This paper reports the use of peptide sequences with certain motifs like artinine-glycine-aspartic acid (RGD) and leucine-aspartic acid-valine (LDV) to functionalize zinc sulfide (ZnS)-capped cadmiun selenide (CdSe) quantum dots, so that the quantum dot-peptide complexes selectively bind to integrins on HT1080 human fibrosarcoma cells membrane. In this way, an interface between semiconductor nanocrystals and subcellular components was achieved, and the distribution pattern of RGD and LDV receptors on HT1080 cell membranes is revealed. These findings point the way to using a wide class of peptide-functionalized semiconductor quantum dots for the study of cellular processes involving integrins.

  20. Inhibition of the tyrosine kinase activity of v-src, v-fgr, and v-yes gene products by a monoclonal antibody which binds both amino and carboxy peptide fragments of pp60v-src.

    PubMed Central

    McCarley, D J; Parsons, J T; Benjamin, D C; Parsons, S J

    1987-01-01

    A monoclonal antibody, R2D2, raised to the src gene product of Rous sarcoma virus was found to inhibit the tyrosine protein kinase activity of pp60v-src in autophosphorylation reactions and in reactions involving exogenously added substrates, such as casein and histone. R2D2 also inhibited the enzymatic activity of two related viral transforming proteins, pp70gag-fgr and pp90gag-yes. The inhibitory ability of R2D2 was dependent upon immunoglobulin concentration and could be demonstrated in both immune complexes formed directly with R2D2 and preformed immune complexes to which R2D2 was added. Binding sites in both the amino-terminal 110 amino acid residues and the carboxy-terminal 240 amino acids of pp60v-src were identified for R2D2. These results indicate that at least part of the epitope recognized by R2D2 resides within a region of the src protein which is required for protein kinase activity. The localization of the R2D2 epitope to the amino- as well as to the carboxy-terminal portions of pp60v-src, together with results of studies analyzing the relative binding efficiencies of R2D2 to the intact protein and to V-8 proteolytic fragments of pp60v-src, are consistent with the view that the R2D2 epitope is conformational in nature and that it is assembled from residues contained within both N-terminal and C-terminal regions of the molecule. Images PMID:2437325

  1. Inhibition of protein interactions with the beta 2 sliding clamp of Escherichia coli DNA polymerase III by peptides from beta 2-binding proteins.

    PubMed

    Wijffels, Gene; Dalrymple, Brian P; Prosselkov, Pavel; Kongsuwan, Kritaya; Epa, V Chandana; Lilley, Penelope E; Jergic, Slobodan; Buchardt, Jens; Brown, Susan E; Alewood, Paul F; Jennings, Philip A; Dixon, Nicholas E

    2004-05-18

    The sliding clamp of the Escherichia coli replisome is now understood to interact with many proteins involved in DNA synthesis and repair. A universal interaction motif is proposed to be one mechanism by which those proteins bind the E. coli sliding clamp, a homodimer of the beta subunit, at a single site on the dimer. The numerous beta(2)-binding proteins have various versions of the consensus interaction motif, including a related hexameric sequence. To determine if the variants of the motif could contribute to the competition of the beta-binding proteins for the beta(2) site, synthetic peptides derived from the putative beta(2)-binding motifs were assessed for their abilities to inhibit protein-beta(2) interactions, to bind directly to beta(2), and to inhibit DNA synthesis in vitro. A hierarchy emerged, which was consistent with sequence similarity to the pentameric consensus motif, QL(S/D)LF, and peptides containing proposed hexameric motifs were shown to have activities comparable to those containing the consensus sequence. The hierarchy of peptide binding may be indicative of a competitive hierarchy for the binding of proteins to beta(2) in various stages or circumstances of DNA replication and repair.

  2. Cationic Peptides and Peptidomimetics Bind Glycosaminoglycans as Potential Sema3A Pathway Inhibitors.

    PubMed

    Corredor, Miriam; Bonet, Roman; Moure, Alejandra; Domingo, Cecilia; Bujons, Jordi; Alfonso, Ignacio; Pérez, Yolanda; Messeguer, Àngel

    2016-03-29

    Semaphorin3A (Sema3A) is a vertebrate-secreted protein that was initially characterized as a repulsive-guidance cue. Semaphorins have crucial roles in several diseases; therefore, the development of Sema3A inhibitors is of therapeutic interest. Sema3A interacts with glycosaminoglycans (GAGs), presumably through its C-terminal basic region. We used different biophysical techniques (i.e., NMR, surface plasmon resonance, isothermal titration calorimetry, fluorescence, and UV-visible spectroscopy) to characterize the binding of two Sema3A C-terminus-derived basic peptides (FS2 and NFS3) to heparin and chondroitin sulfate A. We found that these peptides bind to both GAGs with affinities in the low-micromolar range. On the other hand, a peptoid named SICHI (semaphorin-induced chemorepulsion inhibitor), which is positively charged at physiological pH, was first identified by our group as being able to block Sema3A chemorepulsion and growth-cone collapse in axons at the extracellular level. To elucidate the direct target for the reported SICHI inhibitory effect in the Sema3A signaling pathway, we looked first to the protein-protein interaction between secreted Sema3A and the Nrp1 receptor. However, our results show that SICHI does not bind directly to the Sema3A sema domain or to Nrp1 extracellular domains. We evaluated a new, to our knowledge, hypothesis, according to which SICHI binds to GAGs, thereby perturbing the Sema3A-GAG interaction. By using the above-mentioned techniques, we observed that SICHI binds to GAGs and competes with Sema3A C-terminus-derived basic peptides for binding to GAGs. These data support the ability of SICHI to block the biologically relevant interaction between Sema3A and GAGs, thus revealing SICHI as a new, to our knowledge, class of inhibitors that target the GAG-protein interaction.

  3. Neutron Reflectometry Studies Define Prion Protein N-terminal Peptide Membrane Binding

    PubMed Central

    Le Brun, Anton P.; Haigh, Cathryn L.; Drew, Simon C.; James, Michael; Boland, Martin P.; Collins, Steven J.

    2014-01-01

    The prion protein (PrP), widely recognized to misfold into the causative agent of the transmissible spongiform encephalopathies, has previously been shown to bind to lipid membranes with binding influenced by both membrane composition and pH. Aside from the misfolding events associated with prion pathogenesis, PrP can undergo various posttranslational modifications, including internal cleavage events. Alpha- and beta-cleavage of PrP produces two N-terminal fragments, N1 and N2, respectively, which interact specifically with negatively charged phospholipids at low pH. Our previous work probing N1 and N2 interactions with supported bilayers raised the possibility that the peptides could insert deeply with minimal disruption. In the current study we aimed to refine the binding parameters of these peptides with lipid bilayers. To this end, we used neutron reflectometry to define the structural details of this interaction in combination with quartz crystal microbalance interrogation. Neutron reflectometry confirmed that peptides equivalent to N1 and N2 insert into the interstitial space between the phospholipid headgroups but do not penetrate into the acyl tail region. In accord with our previous studies, interaction was stronger for the N1 fragment than for the N2, with more peptide bound per lipid. Neutron reflectometry analysis also detected lengthening of the lipid acyl tails, with a concurrent decrease in lipid area. This was most evident for the N1 peptide and suggests an induction of increased lipid order in the absence of phase transition. These observations stand in clear contrast to the findings of analogous studies of Ab and α-synuclein and thereby support the possibility of a functional role for such N-terminal fragment-membrane interactions. PMID:25418300

  4. Assessing high affinity binding to HLA-DQ2.5 by a novel peptide library based approach.

    PubMed

    Jüse, Ulrike; Arntzen, Magnus; Højrup, Peter; Fleckenstein, Burkhard; Sollid, Ludvig M

    2011-04-01

    Here we report on a novel peptide library based method for HLA class II binding motif identification. The approach is based on water soluble HLA class II molecules and soluble dedicated peptide libraries. A high number of different synthetic peptides are competing to interact with a limited amount of HLA molecules, giving a selective force in the binding. The peptide libraries can be designed so that the sequence length, the alignment of binding registers, the numbers and composition of random positions are controlled, and also modified amino acids can be included. Selected library peptides bound to HLA are then isolated by size exclusion chromatography and sequenced by tandem mass spectrometry online coupled to liquid chromatography. The MS/MS data are subsequently searched against a library defined database using a search engine such as Mascot, followed by manual inspection of the results. We used two dodecamer and two decamer peptide libraries and HLA-DQ2.5 to test possibilities and limits of this method. The selected sequences which we identified in the fraction eluted from HLA-DQ2.5 showed a higher average of their predicted binding affinity values compared to the original peptide library. The eluted sequences fit very well with the previously described HLA-DQ2.5 peptide binding motif. This novel method, limited by library complexity and sensitivity of mass spectrometry, allows the analysis of several thousand synthetic sequences concomitantly in a simple water soluble format.

  5. Asp residues of βDELSEED-motif are required for peptide binding in the Escherichia coli ATP synthase.

    PubMed

    Ahmad, Zulfiqar; Tayou, Junior; Laughlin, Thomas F

    2015-04-01

    This study demonstrates the requirement of Asp-380 and Asp-386 in the βDELSEED-motif of Escherichia coli ATP synthase for peptide binding and inhibition. We studied the inhibition profiles of wild-type and mutant E. coli ATP synthase in presence of c-terminal amide bound melittin and melittin related peptide. Melittin and melittin related peptide inhibited wild-type ATPase almost completely while only partial inhibition was observed in single mutations with replacement of Asp to Ala, Gln, or Arg. Additionally, very little or no inhibition occurred among double mutants βD380A/βD386A, βD380Q/βD386Q, or βD380R/βD386R signifying that removal of one Asp residue allows limited peptide binding. Partial or substantial loss of oxidative phosphorylation among double mutants demonstrates the functional requirement of βD380 and βD386 Asp residues. Moreover, abrogation of wild-type E. coli cell growth and normal growth of mutant cells in presence of peptides provides strong evidence for the requirement of βDELSEED-motif Asp residues for peptide binding. It is concluded that while presence of one Asp residue may allow partial peptide binding, both Asp residues, βD380 and βD386, are essential for proper peptide binding and inhibition of ATP synthase.

  6. Measurement of Swine H1N1 Hemagglutinin Peptide binding with Piezoresistive Microcantilever Arrays

    SciTech Connect

    Bajwa, Navdeep K; Maldonado, Carlos J.; Thundat, Thomas George; Passian, Ali

    2014-03-24

    The effective detection of Swine H1N1 Hemagglutinin peptide is crucial as it could be used as a positive control to screen for highly infectious flu strains such as Swine-Origin Influenza A (H1N1). Piezoresistive microcantilever arrays present a pathway towards highly sensitive and label-free detection of biomolecules by transducing the antigen-antibody binding into change in resistivity via induced surface stress variation. We also demonstrate a mechanical transduction of Swine H1N1 Hemagglutinin peptide binding and suggest the employed technique may offer a potential platform for detection of the H1N1 virus, which could be clinically used to diagnose and provide subsequent relief.

  7. Piezoresistive measurement of Swine H1N1 Hemagglutinin peptide binding with microcantilever arrays

    NASA Astrophysics Data System (ADS)

    Bajwa, N.; Maldonado, C. J.; Thundat, T.; Passian, A.

    2014-03-01

    Effective detection of Swine H1N1 Hemagglutinin peptide is crucial as it could be used as a positive control to screen for highly infectious flu strains such as Swine-Origin Influenza A (H1N1). Piezoresistive microcantilever arrays present a pathway towards highly sensitive and label-free detection of biomolecules by transducing the antigen-antibody binding into change in resistivity via induced surface stress variation. We demonstrate a mechanical transduction of Swine H1N1 Hemagglutinin peptide binding and suggest the employed technique may offer a potential platform for detection of the H1N1 virus, which could be clinically used to diagnose and provide subsequent relief.

  8. MetaMHCpan, A Meta Approach for Pan-Specific MHC Peptide Binding Prediction.

    PubMed

    Xu, Yichang; Luo, Cheng; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2016-01-01

    Recent computational approaches in bioinformatics can achieve high performance, by which they can be a powerful support for performing real biological experiments, making biologists pay more attention to bioinformatics than before. In immunology, predicting peptides which can bind to MHC alleles is an important task, being tackled by many computational approaches. However, this situation causes a serious problem for immunologists to select the appropriate method to be used in bioinformatics. To overcome this problem, we develop an ensemble prediction-based Web server, which we call MetaMHCpan, consisting of two parts: MetaMHCIpan and MetaMHCIIpan, for predicting peptides which can bind MHC-I and MHC-II, respectively. MetaMHCIpan and MetaMHCIIpan use two (MHC2SKpan and LApan) and four (TEPITOPEpan, MHC2SKpan, LApan, and MHC2MIL) existing predictors, respectively. MetaMHCpan is available at http://datamining-iip.fudan.edu.cn/MetaMHCpan/index.php/pages/view/info .

  9. Anti-Biofilm Activity of a Self-Aggregating Peptide against Streptococcus mutans

    PubMed Central

    Ansari, Juliana M.; Abraham, Nabil M.; Massaro, Jenna; Murphy, Kelsey; Smith-Carpenter, Jillian; Fikrig, Erol

    2017-01-01

    Streptococcus mutans is the primary agent of dental cavities, in large part due to its ability to adhere to teeth and create a molecular scaffold of glucan polysaccharides on the tooth surface. Disrupting the architecture of S. mutans biofilms could help undermine the establishment of biofilm communities that cause cavities and tooth decay. Here we present a synthetic peptide P1, derived from a tick antifreeze protein, which significantly reduces S. mutans biofilm formation. Incubating cells with this peptide decreased biofilm biomass by approximately 75% in both a crystal violet microplate assay and an in vitro tooth model using saliva-coated hydroxyapatite discs. Bacteria treated with peptide P1 formed irregular biofilms with disconnected aggregates of cells and exopolymeric matrix that readily detached from surfaces. Peptide P1 can bind directly to S. mutans cells but does not possess bactericidal activity. Anti-biofilm activity was correlated with peptide aggregation and β-sheet formation in solution, and alternative synthetic peptides of different lengths or charge distribution did not inhibit biofilms. This anti-biofilm peptide interferes with S. mutans biofilm formation and architecture, and may have future applications in preventing bacterial buildup on teeth. PMID:28392782

  10. Anti-Biofilm Activity of a Self-Aggregating Peptide against Streptococcus mutans.

    PubMed

    Ansari, Juliana M; Abraham, Nabil M; Massaro, Jenna; Murphy, Kelsey; Smith-Carpenter, Jillian; Fikrig, Erol

    2017-01-01

    Streptococcus mutans is the primary agent of dental cavities, in large part due to its ability to adhere to teeth and create a molecular scaffold of glucan polysaccharides on the tooth surface. Disrupting the architecture of S. mutans biofilms could help undermine the establishment of biofilm communities that cause cavities and tooth decay. Here we present a synthetic peptide P1, derived from a tick antifreeze protein, which significantly reduces S. mutans biofilm formation. Incubating cells with this peptide decreased biofilm biomass by approximately 75% in both a crystal violet microplate assay and an in vitro tooth model using saliva-coated hydroxyapatite discs. Bacteria treated with peptide P1 formed irregular biofilms with disconnected aggregates of cells and exopolymeric matrix that readily detached from surfaces. Peptide P1 can bind directly to S. mutans cells but does not possess bactericidal activity. Anti-biofilm activity was correlated with peptide aggregation and β-sheet formation in solution, and alternative synthetic peptides of different lengths or charge distribution did not inhibit biofilms. This anti-biofilm peptide interferes with S. mutans biofilm formation and architecture, and may have future applications in preventing bacterial buildup on teeth.

  11. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid

    NASA Astrophysics Data System (ADS)

    Singh, Anirudha; Corvelli, Michael; Unterman, Shimon A.; Wepasnick, Kevin A.; McDonnell, Peter; Elisseeff, Jennifer H.

    2014-10-01

    Lubrication is key for the efficient function of devices and tissues with moving surfaces, such as articulating joints, ocular surfaces and the lungs. Indeed, lubrication dysfunction leads to increased friction and degeneration of these systems. Here, we present a polymer-peptide surface coating platform to non-covalently bind hyaluronic acid (HA), a natural lubricant in the body. Tissue surfaces treated with the HA-binding system exhibited higher lubricity values, and in vivo were able to retain HA in the articular joint and to bind ocular tissue surfaces. Biomaterials-mediated strategies that locally bind and concentrate HA could provide physical and biological benefits when used to treat tissue-lubricating dysfunction and to coat medical devices.

  12. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid.

    PubMed

    Singh, Anirudha; Corvelli, Michael; Unterman, Shimon A; Wepasnick, Kevin A; McDonnell, Peter; Elisseeff, Jennifer H

    2014-10-01

    Lubrication is key for the efficient function of devices and tissues with moving surfaces, such as articulating joints, ocular surfaces and the lungs. Indeed, lubrication dysfunction leads to increased friction and degeneration of these systems. Here, we present a polymer-peptide surface coating platform to non-covalently bind hyaluronic acid (HA), a natural lubricant in the body. Tissue surfaces treated with the HA-binding system exhibited higher lubricity values, and in vivo were able to retain HA in the articular joint and to bind ocular tissue surfaces. Biomaterials-mediated strategies that locally bind and concentrate HA could provide physical and biological benefits when used to treat tissue-lubricating dysfunction and to coat medical devices.

  13. Side-chain conformational space analysis (SCSA): a multi conformation-based QSAR approach for modeling and prediction of protein-peptide binding affinities.

    PubMed

    Zhou, Peng; Chen, Xiang; Shang, Zhicai

    2009-03-01

    In this article, the concept of multi conformation-based quantitative structure-activity relationship (MCB-QSAR) is proposed, and based upon that, we describe a new approach called the side-chain conformational space analysis (SCSA) to model and predict protein-peptide binding affinities. In SCSA, multi-conformations (rather than traditional single-conformation) have received much attention, and the statistical average information on multi-conformations of side chains is determined using self-consistent mean field theory based upon side chain rotamer library. Thereby, enthalpy contributions (including electrostatic, steric, hydrophobic interaction and hydrogen bond) and conformational entropy effects to the binding are investigated in terms of occurrence probability of residue rotamers. Then, SCSA was applied into the dataset of 419 HLA-A 0201 binding peptides, and nonbonding contributions of each position in peptide ligands are well determined. For the peptides, the hydrogen bond and electrostatic interactions of the two ends are essential to the binding specificity, van der Waals and hydrophobic interactions of all the positions ensure strong binding affinity, and the loss of conformational entropy at anchor positions partially counteracts other favorable nonbonding effects.

  14. A luminescent affinity tag for proteins based on the terbium(III)-binding peptide.

    PubMed

    Sueda, Shinji; Tanaka, Shogo; Inoue, Sayomi; Komatsu, Hideyuki

    2012-03-01

    Genetically encoded tags attached to proteins of interest are widely exploited for proteome analysis. Here, we present Tb(3+)-binding peptides (TBPs) which can be used for both luminescent measurements and affinity purification of proteins. TBPs consist of acidic amino acid residues and tryptophan residues which serve as Tb(3+)-binding sites and sensitizers for Tb(3+) luminescence, respectively. The Tb(3+) complexes of TBPs fused to a target protein exhibited luminescence characteristic of Tb(3+) by excitation of the tryptophan residue, and fusion proteins fused to one of the TPBs were successfully isolated from Escherichia coli cell lysate by affinity chromatography with a Tb(3+)-immobilized solid support.

  15. Differential changes in atrial natriuretic peptide and vasopressin receptor bindings in kidney of spontaneously hypertensive rat

    SciTech Connect

    Ogura, T.; Mitsui, T.; Yamamoto, I.; Katayama, E.; Ota, Z.; Ogawa, N.

    1987-01-19

    To elucidate the role of atrial natriuretic peptide (ANP) and vasopressin (VP) in a hypertensive state, ANP and VP receptor bindings in spontaneously hypertensive rat (SHR) kidney were analyzed using the radiolabeled receptor assay (RRA) technique. Systolic blood pressure of SHR aged 12 weeks was statistically higher than that of age-matched Wistar Kyoto (WKY) rats. Maximum binding capacity (Bmax) of (/sup 125/I)-ANP binding to the SHR kidney membrane preparations was statistically lower than that of WKY rats, but dissociation constant (Kd) was not significantly different. On the other hand, Bmax of (/sup 3/H)-VP binding to the SHR kidney membrane preparations was statistically higher than that of WKY rats, but Kd were similar. Since the physiological action of ANP is natriuresis and VP is the most important antidiuretic hormone in mammalia, these opposite changes of ANP and VP receptor bindings in SHR kidney suggested that these peptides may play an important role in the pathophysiology of the hypertensive state, although it has not been confirmed as yet.

  16. Antimicrobial activity of the scolopendrasin V peptide identified from the centipede, Scolopendra subspinipes mutilans.

    PubMed

    Lee, Joon Ha; Kim, In-Woo; Kim, Mi-Ae; Ahn, Mi-Young; Yun, Eun-Young; Hwang, Jae Sam

    2016-10-25

    In a previous study, we analyzed the transcriptome of Scolopendra subspinipes mutilans using next generation sequencing technology and identified several antimicrobial peptide candidates. One of peptides, scolopendrasin V, was selected based on the physicochemical properties of antimicrobial peptides using a bioinformatics strategy. In this study, we assessed the antimicrobial activities of scolopendrasin V by using radial diffusion assay and colony count assay. We also investigated the mode of action of scolopendrasin V using flow cytometry. We found that scolopendrasin V's mechanism of action involved binding to the surface of microorganisms via a specific interaction with lipopolysaccharides, lipoteichoic acid, and peptidoglycans, which are components of the bacterial membrane. These results provide a basis for developing peptide antibiotics.

  17. sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides

    PubMed Central

    Luo, Heng; Ye, Hao; Ng, Hui Wen; Sakkiah, Sugunadevi; Mendrick, Donna L.; Hong, Huixiao

    2016-01-01

    Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. This algorithm can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system. PMID:27558848

  18. Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides

    SciTech Connect

    Kotrba, P.; Ruml, T.; Doleckova, L.; Lorenzo, V. de

    1999-03-01

    Metal binding peptides of sequences Gly-His-His-Pro-His-Gly (named HP) and Gly-Cys-Gly-Cys-Pro-Cys-Gly-Cys-Gly (named CP) were genetically engineered into LamB protein and expressed in Escherichia coli. The Cd{sup 2+}-to-HP and Cd{sup 2+}-to-CP stoichiometries of peptides were 1:1 and 3:1, respectively. Hybrid LamB proteins were found to be properly folded in the outer membrane of E. coli. Isolated cell envelopes of E. coli bearing newly added metal binding peptides showed an up to 1.8-fold increase in Cd{sup 2+} binding capacity. The bioaccumulation of Cd{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} by E. coli was evaluated. Surface display of CP multiplied the ability of E. coli to bind Cd{sup 2+} from growth medium fourfold. Display of HP peptide did not contribute to an increase in the accumulation of Cu{sup 2+} and Zn{sup 2+}. However, Cu{sup 2+} ceased contribution of HP for Cd{sup 2+} accumulation, probably due to the strong binding of Cu{sup 2+} to HP. Thus, considering the cooperation of cell structures with inserted peptides, the relative affinities of metal binding peptide and, for example, the cell wall to metal ion should be taken into account in the rational design of peptide sequences possessing specificity for a particular metal.

  19. The Structure of the Amyloid-[beta] Peptide High-Affinity Copper II Binding Site in Alzheimer Disease

    SciTech Connect

    Streltsov, Victor A.; Titmuss, Stephen J.; Epa, V. Chandana; Barnham, Kevin J.; Masters, Colin L.; Varghese, Joseph N.

    2008-11-03

    Neurodegeneration observed in Alzheimer disease (AD) is believed to be related to the toxicity from reactive oxygen species (ROS) produced in the brain by the amyloid-{beta} (A{beta}) protein bound primarily to copper ions. The evidence for an oxidative stress role of A{beta}-Cu redox chemistry is still incomplete. Details of the copper binding site in A{beta} may be critical to the etiology of AD. Here we present the structure determined by combining x-ray absorption spectroscopy (XAS) and density functional theory analysis of A{beta} peptides complexed with Cu{sup 2+} in solution under a range of buffer conditions. Phosphate-buffered saline buffer salt (NaCl) concentration does not affect the high-affinity copper binding mode but alters the second coordination sphere. The XAS spectra for truncated and full-length A{beta}-Cu{sup 2+} peptides are similar. The novel distorted six-coordinated (3N3O) geometry around copper in the A{beta}-Cu{sup 2+} complexes include three histidines: glutamic, or/and aspartic acid, and axial water. The structure of the high-affinity Cu{sup 2+} binding site is consistent with the hypothesis that the redox activity of the metal ion bound to A{beta} can lead to the formation of dityrosine-linked dimers found in AD.

  20. The structure of the amyloid-beta peptide high-affinity copper II binding site in Alzheimer disease.

    PubMed

    Streltsov, Victor A; Titmuss, Stephen J; Epa, V Chandana; Barnham, Kevin J; Masters, Colin L; Varghese, Joseph N

    2008-10-01

    Neurodegeneration observed in Alzheimer disease (AD) is believed to be related to the toxicity from reactive oxygen species (ROS) produced in the brain by the amyloid-beta (Abeta) protein bound primarily to copper ions. The evidence for an oxidative stress role of Abeta-Cu redox chemistry is still incomplete. Details of the copper binding site in Abeta may be critical to the etiology of AD. Here we present the structure determined by combining x-ray absorption spectroscopy (XAS) and density functional theory analysis of Abeta peptides complexed with Cu(2+) in solution under a range of buffer conditions. Phosphate-buffered saline buffer salt (NaCl) concentration does not affect the high-affinity copper binding mode but alters the second coordination sphere. The XAS spectra for truncated and full-length Abeta-Cu(2+) peptides are similar. The novel distorted six-coordinated (3N3O) geometry around copper in the Abeta-Cu(2+) complexes include three histidines: glutamic, or/and aspartic acid, and axial water. The structure of the high-affinity Cu(2+) binding site is consistent with the hypothesis that the redox activity of the metal ion bound to Abeta can lead to the formation of dityrosine-linked dimers found in AD.

  1. The Structure of the Amyloid-β Peptide High-Affinity Copper II Binding Site in Alzheimer Disease

    PubMed Central

    Streltsov, Victor A.; Titmuss, Stephen J.; Epa, V. Chandana; Barnham, Kevin J.; Masters, Colin L.; Varghese, Joseph N.

    2008-01-01

    Neurodegeneration observed in Alzheimer disease (AD) is believed to be related to the toxicity from reactive oxygen species (ROS) produced in the brain by the amyloid-β (Aβ) protein bound primarily to copper ions. The evidence for an oxidative stress role of Aβ-Cu redox chemistry is still incomplete. Details of the copper binding site in Aβ may be critical to the etiology of AD. Here we present the structure determined by combining x-ray absorption spectroscopy (XAS) and density functional theory analysis of Aβ peptides complexed with Cu2+ in solution under a range of buffer conditions. Phosphate-buffered saline buffer salt (NaCl) concentration does not affect the high-affinity copper binding mode but alters the second coordination sphere. The XAS spectra for truncated and full-length Aβ-Cu2+ peptides are similar. The novel distorted six-coordinated (3N3O) geometry around copper in the Aβ-Cu2+ complexes include three histidines: glutamic, or/and aspartic acid, and axial water. The structure of the high-affinity Cu2+ binding site is consistent with the hypothesis that the redox activity of the metal ion bound to Aβ can lead to the formation of dityrosine-linked dimers found in AD. PMID:18599641

  2. Chloroplast Hsp93 Directly Binds to Transit Peptides at an Early Stage of the Preprotein Import Process1[OPEN

    PubMed Central

    Huang, Po-Kai; Chan, Po-Ting; Chen, Lih-Jen

    2016-01-01

    Three stromal chaperone ATPases, cpHsc70, Hsp90C, and Hsp93, are present in the chloroplast translocon, but none has been shown to directly bind preproteins in vivo during import, so it remains unclear whether any function as a preprotein-translocating motor and whether they have different functions during the import process. Here, using protein crosslinking followed by ionic detergent solubilization, we show that Hsp93 directly binds to the transit peptides of various preproteins undergoing active import into chloroplasts. Hsp93 also binds to the mature region of a preprotein. A time course study of import, followed by coimmunoprecipitation experiments, confirmed that Hsp93 is present in the same complexes as preproteins at an early stage when preproteins are being processed to the mature size. In contrast, cpHsc70 is present in the same complexes as preproteins at both the early stage and a later stage after the transit peptide has been removed, suggesting that cpHsc70, but not Hsp93, is important in translocating processed mature proteins across the envelope. PMID:26676256

  3. A Specific Peptide with Calcium-Binding Capacity from Defatted Schizochytrium sp. Protein Hydrolysates and the Molecular Properties.

    PubMed

    Cai, Xixi; Yang, Qian; Lin, Jiaping; Fu, Nanyan; Wang, Shaoyun

    2017-03-29

    Marine microorganisms have been proposed as a new kind of protein source. Efforts are needed in order to transform the protein-rich biological wastes left after lipid extraction into value-added bio-products. Thus, the utilization of protein recovered from defatted Schizochytrium sp. by-products presents an opportunity. A specific peptide Tyr-Leu (YL) with calcium-binding capacity was purified from defatted Schizochytrium sp. protein hydrolysates through gel filtration chromatography and RP-HPLC. The calcium-binding activity of YL reached 126.34 ± 3.40 μg/mg. The calcium-binding mechanism was investigated through ultraviolet, fluorescence and infrared spectroscopy. The results showed that calcium ions could form dative bonds with carboxyl oxygen atoms and amino nitrogen atoms as well as the nitrogen and oxygen atoms of amide bonds. YL-Ca exhibited excellent thermal stability and solubility, which was beneficial for its absorption and transport in the basic intestinal tract of the human body. Moreover, the cellular uptake of calcium in Caco-2 cells showed that YL-Ca could enhance calcium uptake efficiency and protect calcium ions against precipitation caused by dietary inhibitors such as tannic acid, oxalate, phytate and metal ions. The findings indicate that the by-product of Schizochytrium sp. is a promising source for making peptide-calcium bio-products as algae-based functional supplements for human beings.

  4. Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk.

    PubMed

    Sun, Yazhou; Zhou, Yahui; Liu, Xiao; Zhang, Fan; Yan, Linping; Chen, Ling; Wang, Xing; Ruan, Hongjie; Ji, Chenbo; Cui, Xianwei; Wang, Jiaqin

    2017-02-26

    Human milk has always been considered an ideal source of elemental nutrients to both preterm and full term infants in order to optimally develop the infant's tissues and organs. Recently, hundreds of endogenous milk peptides were identified in human milk. These peptides exhibited angiotensin-converting enzyme inhibition, immunomodulation, or antimicrobial activity. Here, we report the antimicrobial activity and mechanism of a novel type of human antimicrobial peptide (AMP), termed PDC213 (peptide derived from β-Casein 213-226 aa). PDC213 is an endogenous peptide and is present at higher levels in preterm milk than in full term milk. The inhibitory concentration curve and disk diffusion tests showed that PDC213 had obvious antimicrobial against S. aureus and Y. enterocolitica, the common nosocomial pathogens in neonatal intensive care units (NICUs). Fluorescent dye methods, electron microscopy experiments and DNA-binding activity assays further indicated that PDC213 can permeabilize bacterial membranes and cell walls rather than bind intracellular DNA to kill bacteria. Together, our results suggest that PDC213 is a novel type of AMP that warrants further investigation.

  5. Copper binding to prion octarepeat peptides, a combined metal chelate affinity and immunochemical approaches.

    PubMed

    Todorova-Balvay, Daniela; Simon, Stéphanie; Créminon, Christophe; Grassi, Jacques; Srikrishnan, Thamarapu; Vijayalakshmi, Mookambeswaran A

    2005-04-15

    Based on the hypothetical proposal of Sulkowski [E. Sulkowski, FEBS Lett. 307 (2) (1992) 129] for the implication of transition metal ions in the structural changes/oligomerisation of normal cellular prion protein (PrPc) resulting in the pathological isoform (PrPsc), we focused our study on the octarepat domain of this protein which has been supposed to be the metal binding site. We have studied the copper binding to synthetic prion octarepeat peptides (PHGGGWGQ)n (n=1, 3, 6) using metal chelate and size-exclusion modes of chromatographies. This copper binding induces oligomerisation resulting in multiple aggregates. Moreover, heterogeneity of metal bound octarepeat oligomers by ESI-MS has been demonstrated. In addition, anti prion antibodies specific to the octarepeat region were used to discriminate between metal free and copper, nickel and zinc bound hexamer octarepeat peptide. Differential recognition of Cu(II) and Zn(II) bound complexes has been observed which signify differences in exposed epitopes of aggregated peptides.

  6. Binding of leachable components of polymethyl methacrylate (PMMA) and peptide on modified SPR chip

    NASA Astrophysics Data System (ADS)

    Szaloki, M.; Vitalyos, G.; Harfalvi, J.; Hegedus, Cs

    2013-12-01

    Many types of polymers are often used in dentistry, which may cause allergic reaction, mainly methyl methacrylate allergy due to the leachable, degradable components of polymerized dental products. The aim of this study was to investigate the interaction between the leachable components of PMMA and peptides by Fourier-transform Surface Plasmon Resonance (FT SPR). In our previous work binding of oligopeptides (Ph.D.-7 and Ph.D.-12 Peptide Library Kit) was investigated to PMMA surface by phage display technique. It was found that oligopeptides bounded specifically to PMMA surface. The most common amino acids were leucine and proline inside the amino acids sequences of DNA of phages. The binding of haptens, as formaldehyde and methacrylic acid, to frequent amino acids was to investigate on the modified gold SPR chip. Self assembled monolayer (SAM) modified the surface of gold chip and ensured the specific binding between the haptens and amino acids. It was found that amino acids bounded to modified SPR gold and the haptens bounded to amino acids by creating multilayer on the chip surface. By the application of phage display and SPR modern bioanalytical methods the interaction between allergens and peptides can be investigated.

  7. Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer

    NASA Astrophysics Data System (ADS)

    Sanghvi, Archit B.; Miller, Kiley P.-H.; Belcher, Angela M.; Schmidt, Christine E.

    2005-06-01

    The goal in biomaterial surface modification is to retain a material's bulk properties while modifying only its surface to possess desired recognition and specificity. Here we develop a unique strategy for surface functionalization of an electrically conductive polymer, chlorine-doped polypyrrole (PPyCl), which has been widely researched for various electronic and biomedical applications. An M13 bacteriophage library was used to screen 109 different 12-mer peptide inserts against PPyCl. A binding phage (ϕT59) was isolated, and its binding stability and specificity to PPyCl was assessed using fluorescence microscopy and titer count analysis. The relative binding strength and mechanism of the corresponding 12-mer peptide and its variants was studied using atomic force microscopy and fluorescamine assays. Further, the T59 peptide was joined to a cell adhesive sequence and used to promote cell attachment on PPyCl. This strategy can be extended to immobilize a variety of molecules to PPyCl for numerous applications. In addition, phage display can be applied to other polymers to develop bioactive materials without altering their bulk properties.

  8. Membrane-active peptides from marine organisms--antimicrobials, cell-penetrating peptides and peptide toxins: applications and prospects.

    PubMed

    Ponnappan, Nisha; Budagavi, Deepthi Poornima; Yadav, Bhoopesh Kumar; Chugh, Archana

    2015-03-01

    Marine organisms are known to be a rich and unique source of bioactive compounds as they are exposed to extreme conditions in the oceans. The present study is an attempt to briefly describe some of the important membrane-active peptides (MAPs) such as antimicrobial peptides (AMPs), cell-penetrating peptides (CPPs) and peptide toxins from marine organisms. Since both AMPs and CPPs play a role in membrane perturbation and exhibit interchangeable role, they can speculatively fall under the broad umbrella of MAPs. The study focuses on the structural and functional characteristics of different classes of marine MAPs. Further, AMPs are considered as a potential remedy to antibiotic resistance acquired by several pathogens. Peptides from marine organisms show novel post-translational modifications such as cysteine knots, halogenation and histidino-alanine bridge that enable these peptides to withstand harsh marine environmental conditions. These unusual modifications of AMPs from marine organisms are expected to increase their half-life in living systems, contributing to their increased bioavailability and stability when administered as drug in in vivo systems. Apart from AMPs, marine toxins with membrane-perturbing properties could be essentially investigated for their cytotoxic effect on various pathogens and their cell-penetrating activity across various mammalian cells. The current review will help in identifying the MAPs from marine organisms with crucial post-translational modifications that can be used as template for designing novel therapeutic agents and drug-delivery vehicles for treatment of human diseases.

  9. An intrinsic agonist mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain

    PubMed Central

    Yin, Yanting; Zhou, X Edward; Hou, Li; Zhao, Li-Hua; Liu, Bo; Wang, Gaihong; Jiang, Yi; Melcher, Karsten; Xu, H Eric

    2016-01-01

    The glucagon-like peptide-1 receptor is a class B G protein coupled receptor (GPCR) that plays key roles in glucose metabolism and is a major therapeutic target for diabetes. The classic two-domain model for class B GPCR activation proposes that the apo-state receptor is auto-inhibited by its extracellular domain, which physically interacts with the transmembrane domain. The binding of the C-terminus of the peptide hormone to the extracellular domain allows the N-terminus of the hormone to insert into the transmembrane domain to induce receptor activation. In contrast to this model, here we demonstrate that glucagon-like peptide-1 receptor can be activated by N-terminally truncated glucagon-like peptide-1 or exendin-4 when fused to the receptor, raising the question regarding the role of N-terminal residues of peptide hormone in glucagon-like peptide-1 receptor activation. Mutations of cysteine 347 to lysine or arginine in intracellular loop 3 transform the receptor into a G protein-biased receptor and allow it to be activated by a nonspecific five-residue linker that is completely devoid of exendin-4 or glucagon-like peptide-1 sequence but still requires the presence of an intact extracellular domain. Moreover, the extracellular domain can activate the receptor in trans in the presence of an intact peptide hormone, and specific mutations in three extracellular loops abolished this extracellular domain trans-activation. Together, our data reveal a dominant role of the extracellular domain in glucagon-like peptide-1 receptor activation and support an intrinsic agonist model of the extracellular domain, in which peptide binding switches the receptor from the auto-inhibited state to the auto-activated state by releasing the intrinsic agonist activity of the extracellular domain. PMID:27917297

  10. An intrinsic agonist mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain.

    PubMed

    Yin, Yanting; Zhou, X Edward; Hou, Li; Zhao, Li-Hua; Liu, Bo; Wang, Gaihong; Jiang, Yi; Melcher, Karsten; Xu, H Eric

    2016-01-01

    The glucagon-like peptide-1 receptor is a class B G protein coupled receptor (GPCR) that plays key roles in glucose metabolism and is a major therapeutic target for diabetes. The classic two-domain model for class B GPCR activation proposes that the apo-state receptor is auto-inhibited by its extracellular domain, which physically interacts with the transmembrane domain. The binding of the C-terminus of the peptide hormone to the extracellular domain allows the N-terminus of the hormone to insert into the transmembrane domain to induce receptor activation. In contrast to this model, here we demonstrate that glucagon-like peptide-1 receptor can be activated by N-terminally truncated glucagon-like peptide-1 or exendin-4 when fused to the receptor, raising the question regarding the role of N-terminal residues of peptide hormone in glucagon-like peptide-1 receptor activation. Mutations of cysteine 347 to lysine or arginine in intracellular loop 3 transform the receptor into a G protein-biased receptor and allow it to be activated by a nonspecific five-residue linker that is completely devoid of exendin-4 or glucagon-like peptide-1 sequence but still requires the presence of an intact extracellular domain. Moreover, the extracellular domain can activate the receptor in trans in the presence of an intact peptide hormone, and specific mutations in three extracellular loops abolished this extracellular domain trans-activation. Together, our data reveal a dominant role of the extracellular domain in glucagon-like peptide-1 receptor activation and support an intrinsic agonist model of the extracellular domain, in which peptide binding switches the receptor from the auto-inhibited state to the auto-activated state by releasing the intrinsic agonist activity of the extracellular domain.

  11. OMP peptides activate the DegS stress-sensor protease by a relief of inhibition mechanism.

    PubMed

    Sohn, Jungsan; Grant, Robert A; Sauer, Robert T

    2009-10-14

    In the E. coli periplasm, C-terminal peptides of misfolded outer-membrane porins (OMPs) bind to the PDZ domains of the trimeric DegS protease, triggering cleavage of a transmembrane regulator and transcriptional activation of stress genes. We show that an active-site DegS mutation partially bypasses the requirement for peptide activation and acts synergistically with mutations that disrupt contacts between the protease and PDZ domains. Biochemical results support an allosteric model, in which these mutations, active-site modification, and peptide/substrate binding act in concert to stabilize proteolytically active DegS. Cocrystal structures of DegS in complex with different OMP peptides reveal activation of the protease domain with varied conformations of the PDZ domain and without specific contacts from the bound OMP peptide. Taken together, these results indicate that the binding of OMP peptides activates proteolysis principally by relieving inhibitory contacts between the PDZ domain and the protease domain of DegS.

  12. OMP Peptides Activate the DegS Stress-Sensor Protease by a Relief of Inhibition Mechanism

    SciTech Connect

    Sohn, Jungsan; Grant, Robert A.; Sauer, Robert T.; MIT

    2010-03-19

    In the E. coli periplasm, C-terminal peptides of misfolded outer-membrane porins (OMPs) bind to the PDZ domains of the trimeric DegS protease, triggering cleavage of a transmembrane regulator and transcriptional activation of stress genes. We show that an active-site DegS mutation partially bypasses the requirement for peptide activation and acts synergistically with mutations that disrupt contacts between the protease and PDZ domains. Biochemical results support an allosteric model, in which these mutations, active-site modification, and peptide/substrate binding act in concert to stabilize proteolytically active DegS. Cocrystal structures of DegS in complex with different OMP peptides reveal activation of the protease domain with varied conformations of the PDZ domain and without specific contacts from the bound OMP peptide. Taken together, these results indicate that the binding of OMP peptides activates proteolysis principally by relieving inhibitory contacts between the PDZ domain and the protease domain of DegS.

  13. Structure and Activity of Human Mitochondrial Peptide Deformylase, a Novel Cancer Target

    SciTech Connect

    Escobar-Alvarez, Sindy; Goldgur, Yehuda; Yang, Guangli; Ouerfelli, Ouathek; Li, Yueming; Scheinberg, David A.

    2009-07-21

    Peptide deformylase proteins (PDFs) participate in the N-terminal methionine excision pathway of newly synthesized peptides. We show that the human PDF (HsPDF) can deformylate its putative substrates derived from mitochondrial DNA-encoded proteins. The first structural model of a mammalian PDF (1.7 A), HsPDF, shows a dimer with conserved topology of the catalytic residues and fold as non-mammalian PDFs. The HsPDF C-terminus topology and the presence of a helical loop (H2 and H3), however, shape a characteristic active site entrance. The structure of HsPDF bound to the peptidomimetic inhibitor actinonin (1.7 A) identified the substrate-binding site. A defined S1' pocket, but no S2' or S3' substrate-binding pockets, exists. A conservation of PDF-actinonin interaction across PDFs was observed. Despite the lack of true S2' and S3' binding pockets, confirmed through peptide binding modeling, enzyme kinetics suggest a combined contribution from P2'and P3' positions of a formylated peptide substrate to turnover.

  14. Multi-frequency, multi-technique pulsed EPR investigation of the copper binding site of murine amyloid β peptide.

    PubMed

    Kim, Donghun; Bang, Jeong Kyu; Kim, Sun Hee

    2015-01-26

    Copper-amyloid peptides are proposed to be the cause of Alzheimer's disease, presumably by oxidative stress. However, mice do not produce amyloid plaques and thus do not suffer from Alzheimer's disease. Although much effort has been focused on the structural characterization of the copper- human amyloid peptides, little is known regarding the copper-binding mode in murine amyloid peptides. Thus, we investigated the structure of copper-murine amyloid peptides through multi-frequency, multi-technique pulsed EPR spectroscopy in conjunction with specific isotope labeling. Based on our pulsed EPR results, we found that Ala2, Glu3, His6, and His14 are directly coordinated with the copper ion in murine amyloid β peptides at pH 8.5. This is the first detailed structural characterization of the copper-binding mode in murine amyloid β peptides. This work may advance the knowledge required for developing inhibitors of Alzheimer's disease.

  15. Synthetic peptides corresponding to sequences of snake venom neurotoxins and rabies virus glycoprotein bind to the nicotinic acetylcholine receptor.

    PubMed

    Lentz, T L; Hawrot, E; Wilson, P T

    1987-01-01

    Peptides corresponding to portions of loop 2 of snake venom curare-mimetic neurotoxins and to a structurally similar region of rabies virus glycoprotein were synthesized. Interaction of these peptides with purified Torpedo electric organ acetylcholine receptor was tested by measuring their ability to block the binding of 125I-labeled alpha-bungarotoxin to the receptor. In addition, inhibition of alpha-bungarotoxin binding to a 32-residue synthetic peptide corresponding to positions 173-204 of the alpha-subunit was determined. Neurotoxin and glycoprotein peptides corresponding to toxin loop 2 inhibited labeled toxin binding to the receptor with IC50 values comparable to those of nicotine and the competitive antagonist d-tubocurarine and to the alpha-subunit peptides with apparent affinities between those of d-tubocurarine and alpha-cobratoxin. Substitution of neurotoxin residue Arg37, the proposed counterpart of the quaternary ammonium of acetylcholine, with a negatively charged Glu residue reduced the apparent affinity about 10-fold. Peptides containing the neurotoxin invariant residue Trp29 and 10- to 100-fold higher affinities than peptides lacking this residue. These results demonstrate that relatively short synthetic peptides retain some of the binding ability of the native protein from which they are derived, indicating that such peptides are useful in the study of protein-protein interactions. The ability of the peptides to compete alpha-bungarotoxin binding to the receptor with apparent affinities comparable to those of other cholinergic ligands indicates that loop 2 of the neurotoxins and the structurally similar segment of the rabies virus glycoprotein act as recognition sites for the acetylcholine receptor. Invariant toxin residues Arg37 and Trp29 and their viral homologs play important, although not essential, roles in binding, possibly by interaction with complementary anionic and hydrophobic subsites on the acetylcholine receptor. The alpha

  16. Role of glycosylation in the anticancer activity of antibacterial peptides against breast cancer cells.

    PubMed

    Han, Yang-Yang; Liu, Hong-Yan; Han, Dong-Ju; Zong, Xi-Cui; Zhang, Shuang-Quan; Chen, Yu-Qing

    2013-11-01

    Antibacterial peptides (ABPs) with cancer-selective toxicity have received much more attention as alternative chemotherapeutic agents in recent years. However, the basis of their anticancer activity remains unclear. The modification of cell surface glycosylation is a characteristic of cancer cells. The present study investigated the effect of glycosylation, in particular sialic acid, on the anticancer activity of ABPs. We showed that aurein 1.2, buforin IIb and BMAP-28m exhibited selective cytotoxicity toward MX-1 and MCF-7 breast cancer cells. The binding activity, cytotoxicity and apoptotic activity of ABPs were enhanced by the presence of O-, N-glycoproteins, gangliosides and sialic acid on the surface of breast cancer cells. Among N-, O-glycoproteins and ganglioside, O-glycoproteins almost had the strongest effect on the binding and cytotoxicity of the three peptides. Further, up-regulation of hST6Gal1 in CHO-K1 cells enhanced the susceptibility of cells to these peptides. Finally, the growth of MX-1 xenograft tumors in mice was significantly suppressed by buforin IIb treatment, which was associated with induction of apoptosis and inhibition of vascularization. These data demonstrate that the three peptides bind to breast cancer cells via an interaction with surface O-, N-glycoproteins and gangliosides. Sialic acids act as key glycan binding sites for cationic ABP binding to glycoproteins and gangliosides. Therefore, glycosylation in breast cancer cells plays an important role in the anticancer activity of ABPs, which may partly explain their cancer-selective toxicity. Anticancer ABPs with cancer-selective cytotoxicity will be promising candidates for anticancer therapy in the future.

  17. Review: Production and functionality of active peptides from milk.

    PubMed

    Muro Urista, C; Álvarez Fernández, R; Riera Rodriguez, F; Arana Cuenca, A; Téllez Jurado, A

    2011-08-01

    In recent years, research on the production of active peptides obtained from milk and their potential functionality has grown, to a great extent. Bioactive peptides have been defined as specific protein fragments that have a positive impact on body functions or conditions, and they may ultimately have an influence on health. Individual proteins of casein or milk-derived products such as cheese and yogurt have been used as a protein source to study the isolation and activity of peptides with several applications. Currently, the milk whey waste obtained in the production of cheese also represents a protein source from which active peptides could be isolated with potential industrial applications. The active properties of milk peptides and the results found with regard to their physiological effects have led to the classification of peptides as belonging to the group of ingredients of protein nature, appropriate for use in functional foods or pharmaceutical formulations. In this study, the main peptides obtained from milk protein and the past research studies about its production and biological activities will be explained. Second, an analysis will be made on the methods to determinate the biological activities, the separation of bioactive peptides and its structure identification. All of these form the base required to obtain synthetic peptides. Finally, we explain the experimental animal and human trials done in the past years. Nevertheless, more research is required on the design and implementation of equipment for the industrial production and separation of peptides. In addition, different authors suggest that more emphasis should therefore be given to preclinical studies, proving that results are consistent and that effects are demonstrated repeatedly by several research human groups.

  18. Copper(II) complex formation with a linear peptide encompassing the putative cell binding site of angiogenin.

    PubMed

    La Mendola, Diego; Magrì, Antonio; Vagliasindi, Laura I; Hansson, Örjan; Bonomo, Raffaele P; Rizzarelli, Enrico

    2010-11-28

    Angiogenin is one of the more potent angiogenic factors known, whose activity may be affected by the presence of copper ions. Copper(II) complexes with the peptides encompassing the putative endothelial cell binding domain of angiogenin, Ac-KNGNPHREN-NH(2) and Ac-PHREN-NH(2), have been characterized by potentiometric, UV-vis, CD and EPR spectroscopic methods. The coordination features of all the copper complex species derived by both peptides are practically the same, as predictable because of the presence of a proline residue within their aminoacidic sequence. In particular, Ac-PHREN-NH(2) is really the aminoacidic sequence involved in the binding to copper(II). Thermodynamic and spectroscopic evidence are given that side chain oxygen donor atom of glutamyl residue is involved in the copper binding up to physiological pH. EPR parameters suggest that the carboxylate group is still involved also in the predominant species [Cu(L)H(-2)], the metal coordination environment being probably formed by N(Im), 2N(-), H(2)O in equatorial plane and an oxygen atom from COO(-) in apical position, or vice versa, with the carboxylate oxygen atom in the copper coordination plane and the water molecule confined to one of the apical positions. Moreover, the comparison with the thermodynamic and spectroscopic results in the case of the copper(ii) complex species formed by the single point mutated peptide, Ac-PHRQN-NH(2), provides further evidence of the presence of carboxylate oxygen atom in the copper coordination sphere.

  19. Mechanical properties that influence antimicrobial peptide activity in lipid membranes.

    PubMed

    Marín-Medina, Nathaly; Ramírez, Diego Alejandro; Trier, Steve; Leidy, Chad

    2016-12-01

    Antimicrobial peptides are small amphiphilic proteins found in animals and plants as essential components of the innate immune system and whose function is to control bacterial infectious activity. In order to accomplish their function, antimicrobial peptides use different mechanisms of action which have been deeply studied in view of their potential exploitation to treat antibiotic-resistant bacterial infections. One of the main mechanisms of action of these peptides is the disruption of the bacterial membrane through pore formation, which, in some cases, takes place via a monomer to oligomer cooperative transition. Previous studies have shown that lipid composition, and the presence of exogenous components, such as cholesterol in model membranes or carotenoids in bacteria, can affect the potency of distinct antimicrobial peptides. At the same time, considering the membrane as a two-dimensional material, it has been shown that membrane composition defines its mechanical properties which might be relevant in many membrane-related processes. Nevertheless, the correlation between the mechanical properties of the membrane and antimicrobial peptide potency has not been considered according to the importance it deserves. The relevance of these mechanical properties in membrane deformation due to peptide insertion is reviewed here for different types of pores in order to elucidate if indeed membrane composition affects antimicrobial peptide activity by modulation of the mechanical properties of the membrane. This would also provide a better understanding of the mechanisms used by bacteria to overcome antimicrobial peptide activity.

  20. Sparse Neural Network Models of Antimicrobial Peptide-Activity Relationships.

    PubMed

    Müller, Alex T; Kaymaz, Aral C; Gabernet, Gisela; Posselt, Gernot; Wessler, Silja; Hiss, Jan A; Schneider, Gisbert

    2016-12-01

    We present an adaptive neural network model for chemical data classification. The method uses an evolutionary algorithm for optimizing the network structure by seeking sparsely connected architectures. The number of hidden layers, the number of neurons in each layer and their connectivity are free variables of the system. We used the method for predicting antimicrobial peptide activity from the amino acid sequence. Visualization of the evolved sparse network structures suggested a high charge density and a low aggregation potential in solution as beneficial for antimicrobial activity. However, different training data sets and peptide representations resulted in greatly varying network structures. Overall, the sparse network models turned out to be less accurate than fully-connected networks. In a prospective application, we synthesized and tested 10 de novo generated peptides that were predicted to either possess antimicrobial activity, or to be inactive. Two of the predicted antibacterial peptides showed cosiderable bacteriostatic effects against both Staphylococcus aureus and Escherichia coli. None of the predicted inactive peptides possessed antibacterial properties. Molecular dynamics simulations of selected peptide structures in water and TFE suggest a pronounced peptide helicity in a hydrophobic environment. The results of this study underscore the applicability of neural networks for guiding the computer-assisted design of new peptides with desired properties.

  1. Blocking TNF-α by combination of TNF-α- and TNFR-binding cyclic peptide ameliorates the severity of TNBS-induced colitis in rats.

    PubMed

    Yin, Bingjiao; Hu, Xin; Wang, Jing; Liang, Huifang; Li, Xiaoyan; Niu, Nin; Li, Baihua; Jiang, Xiaodan; Li, Zhuoya

    2011-04-10

    Tumor necrosis factor alpha (TNF-α) has been implicated in the pathogenesis of Crohn's disease. TNF antagonists are effectively used to treat these patients, although the efficiency of different antagonists varies. In the present study we combined TNF-α binding cyclic peptide (TBCP) and TNFR1 binding cyclic peptide (TRBCP) to treat TNBS-induced colitis in rats for one week. The symptoms of colitis including bloody diarrhea, rectal prolapse, and a profound and sustained weight loss were significantly ameliorated and the colon inflammatory damage, both macroscopic and histological scores, MPO activity, and NO production were markedly decreased in rats by neutralization of TNF-α and blocking TNFR1, as compared with those in rats treated with irrelevant peptide or normal saline (P<0.05). The transcripts of IL-1β and IL-8, and the protein expression of TNF-α in rats treated with both TBCP and TRBCP were also down-regulated (P<0.05), while these proinflammatory cytokines remained unchanged in rats treated with irrelevant peptide or normal saline. These findings suggest that the combination of TNF-α- and TNFR1-binding peptide effectively improves the symptoms of TNBS-induced colitis and alleviates colonic pathological damages in rats. This combination may be a potent candidate for clinical treatment of the inflammatory bowel disease.

  2. MHC2MIL: a novel multiple instance learning based method for MHC-II peptide binding prediction by considering peptide flanking region and residue positions

    PubMed Central

    2014-01-01

    Background Computational prediction of major histocompatibility complex class II (MHC-II) binding peptides can assist researchers in understanding the mechanism of immune systems and developing peptide based vaccines. Although many computational methods have been proposed, the performance of these methods are far from satisfactory. The difficulty of MHC-II peptide binding prediction comes mainly from the large length variation of binding peptides. Methods We develop a novel multiple instance learning based method called MHC2MIL, in order to predict MHC-II binding peptides. We deem each peptide in MHC2MIL as a bag, and some substrings of the peptide as the instances in the bag. Unlike previous multiple instance learning based methods that consider only instances of fixed length 9 (9 amino acids), MHC2MIL is able to deal with instances of both lengths of 9 and 11 (11 amino acids), simultaneously. As such, MHC2MIL incorporates important information in the peptide flanking region. For measuring the distances between different instances, furthermore, MHC2MIL explicitly highlights the amino acids in some important positions. Results Experimental results on a benchmark dataset have shown that, the performance of MHC2MIL is significantly improved by considering the instances of both 9 and 11 amino acids, as well as by emphasizing amino acids at key positions in the instance. The results are consistent with those reported in the literature on MHC-II peptide binding. In addition to five important positions (1, 4, 6, 7 and 9) for HLA(human leukocyte antigen, the name of MHC in Humans) DR peptide binding, we also find that position 2 may play some roles in the binding process. By using 5-fold cross validation on the benchmark dataset, MHC2MIL outperforms two state-of-the-art methods of MHC2SK and NN-align with being statistically significant, on 12 HLA DP and DQ molecules. In addition, it achieves comparable performance with MHC2SK and NN-align on 14 HLA DR molecules. MHC2MIL

  3. Potentiation of T Cell Stimulatory Activity by Chemical Fixation of a Weak Peptide-MHC Complex

    PubMed Central

    Hwang, Inkyu; Kim, Kwangmi; Choi, Sojin; Lomunova, Maria

    2017-01-01

    The stability of peptide-MHC complex (pMHC) is an important factor to shape the fate of peptide-specific T cell immune response, but how it influences on T cell activation process is poorly understood. To better understand that, we investigated various T cell activation events driven by Ld MHCI loaded with graded concentrations of P2Ca and QL9 peptides, respectively, with 2C TCR Tg T cells; the binding strength of P2Ca for Ld is measurably weaker than that of QL9, but either peptides in the context of Ld interact with 2C TCR with a similar strength. When their concentrations required for early T cell activation events, which occur within several minutes to an hour, were concerned, EC50s of QL9 were about 100 folds lower than those of P2Ca, which was expected from their association constants for Ld. When EC50s for late activation events, which takes over several hours to occur, were concerned, the differences grew even larger (> 300 folds), suggesting that, due to weak binding, Ld/P2Ca dissociate from each other more easily to lose its antigenicity in a short time. Accordingly, fixation of Ld/P2Ca with paraformaldehyde resulted in a significant improvement in its immunogenicity. These results imply that binding strength of a peptide for a MHC is a critical factor to determine the duration of pMHC-mediated T cell activation and thus the attainment of productive T cell activation. It is also suggested that paraformaldehyde fixation should be an effective tool to ameliorate the immunogenicity of pMHC with a poor stability. PMID:28152301

  4. Interaction of the Heparin-Binding Consensus Sequence of β-Amyloid Peptides with Heparin and Heparin-Derived Oligosaccharides.

    PubMed

    Nguyen, Khanh; Rabenstein, Dallas L

    2016-03-10

    Alzheimer's disease (AD) is characterized by the presence of amyloid plaques in the AD brain. Comprised primarily of the 40- and 42-residue β-amyloid (Aβ) peptides, there is evidence that the heparan sulfate (HS) of heparan sulfate proteoglycans (HSPGs) plays a role in amyloid plaque formation and stability; however, details of the interaction of Aβ peptides with HS are not known. We have characterized the interaction of heparin and heparin-derived oligosaccharides with a model peptide for the heparin- and HS-binding domain of Aβ peptides (Ac-VHHQKLV-NH2; Aβ(12-18)), with mutants of Aβ(12-18), and with additional histidine-containing peptides. The nature of the binding interaction was characterized by NMR, binding constants and other thermodynamic parameters were determined by isothermal titration calorimetry (ITC), and relative binding affinities were determined by heparin affinity chromatography. The binding of Aβ(12-18) by heparin and heparin-derived oligosaccharides is pH-dependent, with the imidazolium groups of the histidine side chains interacting site-specifically within a cleft created by a trisaccharide sequence of heparin, the binding is mediated by electrostatic interactions, and there is a significant entropic contribution to the binding free energy as a result of displacement of Na(+) ions from heparin upon binding of cationic Aβ(12-18). The binding constant decreases as the size of the heparin-derived oligosaccharide decreases and as the concentration of Na(+) ion in the bulk solution increases. Structure-binding relationships characterized in this study are analyzed and discussed in terms of the counterion condensation theory of the binding of cationic peptides by anionic polyelectrolytes.

  5. Modulating Uranium Binding Affinity in Engineered Calmodulin EF-Hand Peptides: Effect of Phosphorylation

    PubMed Central

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Delangle, Pascale; Guilloreau, Luc; Adriano, Jean-Marc; Berthomieu, Catherine

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T9TKE12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from Kd = 25±6 nM to Kd = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (Kd = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the νas(P-O) and νs(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in νas(UO2)2+ vibration (from 923 cm−1 to 908 cm−1) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. PMID:22870263

  6. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts.

    PubMed

    Martin, Emily B; Williams, Angela; Heidel, Eric; Macy, Sallie; Kennel, Stephen J; Wall, Jonathan S

    2013-06-21

    In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as therapeutics for the treatment of amyloid diseases.

  7. Structural Basis for Parathyroid Hormone-related Protein Binding to the Parathyroid Hormone Receptor and Design of Conformation-selective Peptides

    SciTech Connect

    Pioszak, Augen A.; Parker, Naomi R.; Gardella, Thomas J.; Xu, H. Eric

    2009-12-01

    Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are two related peptides that control calcium/phosphate homeostasis and bone development, respectively, through activation of the PTH/PTHrP receptor (PTH1R), a class B G protein-coupled receptor. Both peptides hold clinical interest for their capacities to stimulate bone formation. PTH and PTHrP display different selectivity for two distinct PTH1R conformations, but how their binding to the receptor differs is unclear. The high resolution crystal structure of PTHrP bound to the extracellular domain (ECD) of PTH1R reveals that PTHrP binds as an amphipathic {alpha}-helix to the same hydrophobic groove in the ECD as occupied by PTH, but in contrast to a straight, continuous PTH helix, the PTHrP helix is gently curved and C-terminally 'unwound.' The receptor accommodates the altered binding modes by shifting the side chain conformations of two residues within the binding groove: Leu-41 and Ile-115, the former acting as a rotamer toggle switch to accommodate PTH/PTHrP sequence divergence, and the latter adapting to the PTHrP curvature. Binding studies performed with PTH/PTHrP hybrid ligands having reciprocal exchanges of residues involved in different contacts confirmed functional consequences for the altered interactions and enabled the design of altered PTH and PTHrP peptides that adopt the ECD-binding mode of the opposite peptide. Hybrid peptides that bound the ECD poorly were selective for the G protein-coupled PTH1R conformation. These results establish a molecular model for better understanding of how two biologically distinct ligands can act through a single receptor and provide a template for designing better PTH/PTHrP therapeutics.

  8. Resonance Energy Transfer Relates the Gas-Phase Structure and Pharmacological Activity of Opioid Peptides.

    PubMed

    Kopysov, Vladimir; Boyarkin, Oleg V

    2016-01-11

    Enkephalins are efficient pain-relief drugs that bind to transmembrane opioid receptors. One key structural parameter that governs the pharmacological activity of these opioid peptides and is typically determined from condensed-phase structures is the distance between the aromatic rings of their Tyr and Phe residues. We use resonance energy transfer, detected by a combination of cold ion spectroscopy and mass spectrometry, to estimate the Tyr-Phe spacing for enkephalins in the gas phase. In contrast to the condensed-phase structures, these distances appear to differ substantially in enkephalins with different pharmacological efficiencies, suggesting that gas-phase structures might be a better pharmacophoric metric for ligand peptides.

  9. Combinatorial peptide libraries reveal the ligand-binding mechanism of the oligopeptide receptor OppA of Lactococcus lactis

    PubMed Central

    Detmers, Frank J. M.; Lanfermeijer, Frank C.; Abele, Rupert; Jack, Ralph W.; Tampé, Robert; Konings, Wil N.; Poolman, Bert

    2000-01-01

    The oligopeptide transport system (Opp) of Lactococcus lactis has the unique capacity to mediate the transport of peptides from 4 up to at least 18 residues. The substrate specificity of this binding protein-dependent ATP-binding cassette transporter is determined mainly by the receptor protein OppA. To study the specificity and ligand-binding mechanism of OppA, the following strategy was used: (i) OppA was purified and anchored via the lipid moiety to the surface of liposomes; (ii) the proteoliposomes were used in a rapid filtration-based binding assay with radiolabeled nonameric bradykinin as a reporter peptide; and (iii) combinatorial peptide libraries were used to determine the specificity and selectivity of OppA. The studies show that (i) OppA is able to bind peptides up to at least 35 residues, but there is a clear optimum in affinity for nonameric peptides; (ii) the specificity for nonameric peptides is not equally distributed over the whole peptide, because positions 4, 5, and 6 in the binding site are more selective; and (iii) the differences in affinity for given side chains is relatively small, but overall hydrophobic residues are favored—whereas glycine, proline, and negatively charged residues lower the binding affinity. The data indicate that not only the first six residues (enclosed by the protein) but also the C-terminal three residues interact in a nonopportunistic manner with (the surface of) OppA. This binding mechanism is different from the one generally accepted for receptors of ATP-binding cassette-transporter systems. PMID:11050157

  10. Peptide microarrays for the profiling of cytotoxic T-lymphocyte activity using minimum numbers of cells.

    PubMed

    Hoff, Antje; Bagû, Ana-Cristina; André, Thomas; Roth, Günter; Wiesmüller, Karl-Heinz; Gückel, Brigitte; Brock, Roland

    2010-09-01

    The identification of epitopes that elicit cytotoxic T-lymphocyte activity is a prerequisite for the development of cancer-specific immunotherapies. However, especially the parallel characterization of several epitopes is limited by the availability of T cells. Microarrays have enabled an unprecedented miniaturization and parallelization in biological assays. Here, we developed peptide microarrays for the detection of CTL activity. MHC class I-binding peptide epitopes were pipetted onto polymer-coated glass slides. Target cells, loaded with the cell-impermeant dye calcein, were incubated on these arrays, followed by incubation with antigen-expanded CTLs. Cytotoxic activity was detected by release of calcein and detachment of target cells. With only 200,000 cells per microarray, CTLs could be detected at a frequency of 0.5% corresponding to 1,000 antigen-specific T cells. Target cells and CTLs only settled on peptide spots enabling a clear separation of individual epitopes. Even though no physical boundaries were present between the individual spots, peptide loading only occurred locally and cytolytic activity was confined to the spots carrying the specific epitope. The peptide microarrays provide a robust platform that implements the whole process from antigen presentation to the detection of CTL activity in a miniaturized format. The method surpasses all established methods in the minimum numbers of cells required. With antigen uptake occurring on the microarray, further applications are foreseen in the testing of antigen precursors that require uptake and processing prior to presentation.

  11. Cholesterol-Enriched Domain Formation Induced by Viral-Encoded, Membrane-Active Amphipathic Peptide

    PubMed Central

    Hanson, Joshua M.; Gettel, Douglas L.; Tabaei, Seyed R.; Jackman, Joshua; Kim, Min Chul; Sasaki, Darryl Y.; Groves, Jay T.; Liedberg, Bo; Cho, Nam-Joon; Parikh, Atul N.

    2016-01-01

    The α-helical (AH) domain of the hepatitis C virus nonstructural protein NS5A, anchored at the cytoplasmic leaflet of the endoplasmic reticulum, plays a role in viral replication. However, the peptides derived from this domain also exhibit remarkably broad-spectrum virocidal activity, raising questions about their modes of membrane association. Here, using giant lipid vesicles, we show that the AH peptide discriminates between membrane compositions. In cholesterol-containing membranes, peptide binding induces microdomain formation. By contrast, cholesterol-depleted membranes undergo global softening at elevated peptide concentrations. Furthermore, in mixed populations, the presence of ∼100 nm vesicles of viral dimensions suppresses these peptide-induced perturbations in giant unilamellar vesicles, suggesting size-dependent membrane association. These synergistic composition- and size-dependent interactions explain, in part, how the AH domain might on the one hand segregate molecules needed for viral assembly and on the other hand furnish peptides that exhibit broad-spectrum virocidal activity. PMID:26745420

  12. Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides.

    PubMed

    Wang, Mingjun; Tang, Sheila T; Stryhn, Anette; Justesen, Sune; Larsen, Mette V; Dziegiel, Morten H; Lewinsohn, David M; Buus, Søren; Lund, Ole; Claesson, Mogens H

    2011-04-01

    Major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTL) are known to play an important role in the control of Mycobacterium tuberculosis infection so identification of CTL epitopes from M. tuberculosis is of importance for the development of effective peptide-based vaccines. In the present work, bioinformatics technology was employed to predict binding motifs of 9mer peptides derived from M. tuberculosis for the 12 HLA-I supertypes. Subsequently, the predicted peptides were synthesized and assayed for binding to HLA-I molecules in a biochemically based system. The antigenicity of a total of 157 peptides with measured affinity for HLA-I molecules of K(D) ≤ 500 nM were evaluated using peripheral blood T cells from strongly purified protein derivative reactive healthy donors. Of the 157 peptides, eight peptides (5%) were found to induce T-cell responses. As judged from blocking with HLA class I and II subtype antibodies in the ELISPOT assay culture, none of the eight antigenic peptides induced HLA class I restricted CD8(+) T-cell responses. Instead all responses were blocked by pan-HLA class II and anti-HLA-DR antibodies. In addition, CD4(+) T-cell depletion before the 10 days of expansion, resulted in total loss of reactivity in the ELISPOT culture for most peptide specificities. FACS analyses with intracellular interferon-γ staining of T cells expanded in the presence of M. tuberculosis peptides confirmed that the responsive cells were indeed CD4(+). In conclusion, T-cell immunity against HLA-I binding 9mer M. tuberculosis-derived peptides might in many cases turn out to be mediated by CD4(+) T cells and restricted by HLA-II molecules. The use of 9mer peptides recognized by both CD8(+) and CD4(+) T cells might be of importance for the development of future M. tuberculosis peptide-based vaccines.

  13. In vitro evolution of a peptide with a hematite binding motif that may constitute a natural metal-oxide binding archetype.

    PubMed

    Lower, Brian H; Lins, Roberto D; Oestreicher, Zachery; Straatsma, Tjerk P; Hochella, Michael F; Shi, Liang; Lower, Steven K

    2008-05-15

    Phage-display technology was used to evolve peptides that selectively bind to the metal-oxide hematite (Fe2O3) from a library of approximately 3 billion different polypeptides. The sequences of these peptides contained the highly conserved amino acid motif, Ser/Thr-hydrophobic/aromatic-Ser/Thr-Pro-Ser/Thr. To better understand the nature of the peptide-metal oxide binding demonstrated by these experiments, molecular dynamics simulations were carried out for Ser-Pro-Ser at a hematite surface. These simulations show that hydrogen bonding occurs between the two serine amino acids and the hydroxylated hematite surface and that the presence of proline between the hydroxide residues restricts the peptide flexibility, thereby inducing a structural-binding motif. A search of published sequence data revealed that the binding motif (Ser/Thr-Pro-Ser/Thr) is adjacent to the terminal heme-binding domain of both OmcA and MtrC, which are outer membrane cytochromes from the metal-reducing bacterium Shewanella oneidensis MR-1. The entire five amino acid consensus sequence (Ser/Thr-hydrophobic/ aromatic-Ser/Thr-Pro-Ser/Thr) was also found as multiple copies in the primary sequences of metal-oxide binding proteins Sil1 and Sil2 from Thalassiosira pseudonana. We suggest that this motif constitutes a natural metal-oxide binding archetype that could be exploited in enzyme-based biofuel cell design and approaches to synthesize tailored metal-oxide nanostructures.

  14. Molecular modeling of hair keratin/peptide complex: Using MM-PBSA calculations to describe experimental binding results.

    PubMed

    Azoia, Nuno G; Fernandes, Margarida M; Micaêlo, Nuno M; Soares, Cláudio M; Cavaco-Paulo, Artur

    2012-05-01

    Molecular dynamics simulations of a keratin/peptide complex have been conducted to predict the binding affinity of four different peptides toward human hair. Free energy calculations on the peptides' interaction with the keratin model demonstrated that electrostatic interactions are believed to be the main driving force stabilizing the complex. The molecular mechanics-Poisson-Boltzmann surface area methodology used for the free energy calculations demonstrated that the dielectric constant in the protein's interior plays a major role in the free energy calculations, and the only way to obtain accordance between the free energy calculations and the experimental binding results was to use the average dielectric constant.

  15. Antimicrobial Dendrimeric Peptides: Structure, Activity and New Therapeutic Applications.

    PubMed

    Scorciapino, Mariano A; Serra, Ilaria; Manzo, Giorgia; Rinaldi, Andrea C

    2017-03-03

    Microbial resistance to conventional antibiotics is one of the most outstanding medical and scientific challenges of our times. Despite the recognised need for new anti-infective agents, however, very few new drugs have been brought to the market and to the clinic in the last three decades. This review highlights the properties of a new class of antibiotics, namely dendrimeric peptides. These intriguing novel compounds, generally made of multiple peptidic sequences linked to an inner branched core, display an array of antibacterial, antiviral and antifungal activities, usually coupled to low haemolytic activity. In addition, several peptides synthesized in oligobranched form proved to be promising tools for the selective treatment of cancer cells.

  16. Root diffusion barrier control by a vasculature-derived peptide binding to the SGN3 receptor.

    PubMed

    Doblas, Verónica G; Smakowska-Luzan, Elwira; Fujita, Satoshi; Alassimone, Julien; Barberon, Marie; Madalinski, Mathias; Belkhadir, Youssef; Geldner, Niko

    2017-01-20

    The root endodermis forms its extracellular diffusion barrier by developing ringlike impregnations called Casparian strips. A factor responsible for their establishment is the SCHENGEN3/GASSHO1 (SGN3/GSO1) receptor-like kinase. Its loss of function causes discontinuous Casparian strips. SGN3 also mediates endodermal overlignification of other Casparian strip mutants. Yet, without ligand, SGN3 function remained elusive. Here we report that schengen2 (sgn2) is defective in an enzyme sulfating peptide ligands. On the basis of this observation, we identified two stele-expressed peptides (CASPARIAN STRIP INTEGRITY FACTORS, CIF1/2) that complement sgn2 at nanomolar concentrations and induce Casparian strip mislocalization as well as overlignification-all of which depend on SGN3. Direct peptide binding to recombinant SGN3 identifies these peptides as SGN3 ligands. We speculate that CIF1/2-SGN3 is part of a barrier surveillance system, evolved to guarantee effective sealing of the supracellular Casparian strip network.

  17. A Palladium-Binding Deltarhodopsin for Light-Activated Conversion of Protonic to Electronic Currents.

    PubMed

    Soto-Rodríguez, Jessica; Hemmatian, Zahra; Josberger, Erik E; Rolandi, Marco; Baneyx, François

    2016-08-01

    Fusion of a palladium-binding peptide to an archaeal rhodopsin promotes intimate integration of the lipid-embedded membrane protein with a palladium hydride protonic contact. Devices fabricated with the palladium-binding deltarhodopsin enable light-activated conversion of protonic currents to electronic currents with on/off responses complete in seconds and a nearly tenfold increase in electrical signal relative to those made with the wild-type protein.

  18. Definition of an extended MHC class II-peptide binding motif for the autoimmune disease-associated Lewis rat RT1.BL molecule.

    PubMed

    Wauben, M H; van der Kraan, M; Grosfeld-Stulemeyer, M C; Joosten, I

    1997-02-01

    The Lewis rat, an inbred rat strain susceptible to several well-characterized experimental autoimmune diseases, provides a good model to study peptide-mediated immunotherapy. Peptide immunotherapy focussing on the modulation of T cell responses by interfering with TCR-peptide-MHC complex formation requires the elucidation of the molecular basis of TCR-peptide-MHC interactions for an efficient design of modulatory peptides. In the Lewis rat most autoimmune-associated CD4+ T cell responses are MHC class II RT1.BL restricted. In this study, the characteristics of RT1.BL-peptide interactions were explored. A series of substitution analogs of two Lewis rat T cell epitopes was examined in a direct peptide-MHC binding assay on isolated RT1.BL molecules. Furthermore, other autoimmune-related as well as non-disease-related T cell epitopes were tested in the binding assay. This has led to the definition of an extended RT1.BL-peptide binding motif. The RT1.BL-peptide binding motif established in this study is the first described rat MHC-peptide binding motif based on direct MHC-peptide binding experiments. To predict good or intermediate RT1.BL binding peptides, T cell epitope search profiles were deduced from this motif. The motif and search profiles will greatly facilitate the prediction of modulatory peptides based on autoimmune-associated T cell epitopes and the identification of target structures in experimental autoimmune diseases in Lewis rats.

  19. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8positive T-cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presenta...

  20. Thermodynamics of binding of calcium, magnesium, and zinc to the N-methyl-D-aspartate receptor ion channel peptidic inhibitors, conantokin-G and conantokin-T.

    PubMed

    Prorok, M; Castellino, F J

    1998-07-31

    The binding isotherms of the divalent metal cations, Ca2+, Mg2+, and Zn2+, to the synthetic gamma-carboxyglutamic acid-containing neuroactive peptides, conantokin-G (con-G) and conantokin-T (con-T), have been determined by isothermal titration calorimetry (ITC) at 25 degreesC and pH 6.5. We have previously shown by potentiometric measurements that con-G contains 2-3 equivalent Ca2+ sites with an average Kd value of 2800 microM. With Mg2+ as the ligand, two separate exothermic sites are obtained by ITC, one of Kd = 46 microM and another of Kd = 311 microM. Much tighter binding of Zn2+ is observed for these latter two sites (Kd values = 0.2 microM and 1.1 microM), and a third considerably weaker binding site is observed, characterized by a Kd value of 286 microM and an endothermic enthalpy of binding. con-T possesses a single exothermic tight binding site for Ca2+, Mg2+, and Zn2+, with Kd values of 428 microM, 10.2 microM, and 0.5 microM, respectively. Again, in the case of con-T, a weak (Kd = 410 microM) endothermic binding site is observed for Zn2+. The binding of these cations to con-G and con-T result in an increase in the alpha-helical content of the peptides. However, this helix is somewhat destabilized in both cases by binding of Zn2+ to its weakest site. Since the differences observed in binding affinities of these three cations to the peptides are substantially greater than their comparative Kd values to malonate, we conclude that the structure of the peptide and, most likely, the steric and geometric properties imposed on the cation site as a result of peptide folding greatly influence the strength of the interaction of cations with con-G and con-T. Further, since the Zn2+ concentrations released in the synaptic cleft during excitatory synaptic activity are sufficiently high relative to the Kd of Zn2+ for con-G and con-T, this cation along with Mg2+, are most likely the most significant metal ion ligands of these peptides in neuronal cells.

  1. Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of β-Hairpin Peptides

    PubMed Central

    2016-01-01

    Bacteria have acquired extensive resistance mechanisms to protect themselves against antibiotic action. Today the bacterial membrane has become one of the “final frontiers” in the search for new compounds acting on novel targets to address the threat of multi-drug resistant (MDR) and XDR bacterial pathogens. β-Hairpin antimicrobial peptides are amphipathic, membrane-binding antibiotics that exhibit a broad range of activities against Gram-positive, Gram-negative, and fungal pathogens. However, most members of the class also possess adverse cytotoxicity and hemolytic activity that preclude their development as candidate antimicrobials. We examined peptide hydrophobicity, amphipathicity, and structure to better dissect and understand the correlation between antimicrobial activity and toxicity, membrane binding, and membrane permeability. The hydrophobicity, pI, net charge at physiological pH, and amphipathic moment for the β-hairpin antimicrobial peptides tachyplesin-1, polyphemusin-1, protegrin-1, gomesin, arenicin-3, and thanatin were determined and correlated with key antimicrobial activity and toxicity data. These included antimicrobial activity against five key bacterial pathogens and two fungi, cytotoxicity against human cell lines, and hemolytic activity in human erythrocytes. Observed antimicrobial activity trends correlated with compound amphipathicity and, to a lesser extent, with overall hydrophobicity. Antimicrobial activity increased with amphipathicity, but unfortunately so did toxicity. Of note, tachyplesin-1 was found to be 8-fold more amphipathic than gomesin. These analyses identify tachyplesin-1 as a promising scaffold for rational design and synthetic optimization toward an antibiotic candidate. PMID:27331141

  2. pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-{beta} peptide

    SciTech Connect

    Ghalebani, Leila; Wahlstroem, Anna; Danielsson, Jens; Waermlaender, Sebastian K.T.S.; Graeslund, Astrid

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cu(II) and Zn(II) display pH-dependent binding to the A{beta}(1-40) peptide. Black-Right-Pointing-Pointer At pH 7.4 both metal ions display residue-specific binding to the A{beta} peptide. Black-Right-Pointing-Pointer At pH 5.5 the binding specificity is lost for Zn(II). Black-Right-Pointing-Pointer Differential Cu(II) and Zn(II) binding may help explain metal-induced AD toxicity. -- Abstract: Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-{beta} (A{beta}) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with {sup 15}N- and {sup 13}C,{sup 15}N-labeled A{beta}(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to A{beta} may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the A{beta} peptide under these conditions.

  3. In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands

    PubMed Central

    Hong Enriquez, Rolando Pablo; Santambrogio, Carlo; Grandori, Rita; Marasco, Daniela; Giordano, Antonio; Scoles, Giacinto; Fortuna, Sara

    2015-01-01

    Short peptides can be designed in silico and synthesized through automated techniques, making them advantageous and versatile protein binders. A number of docking-based algorithms allow for a computational screening of peptides as binders. Here we developed ex-novo peptides targeting the maltose site of the Maltose Binding Protein, the prototypical system for the study of protein ligand recognition. We used a Monte Carlo based protocol, to computationally evolve a set of octapeptides starting from a polialanine sequence. We screened in silico the candidate peptides and characterized their binding abilities by surface plasmon resonance, fluorescence and electrospray ionization mass spectrometry assays. These experiments showed the designed binders to recognize their target with micromolar affinity. We finally discuss the obtained results in the light of further improvement in the ex-novo optimization of peptide based binders. PMID:26252476

  4. Structure-Based Design of Inhibitors of Protein–Protein Interactions: Mimicking Peptide Binding Epitopes

    PubMed Central

    Pelay-Gimeno, Marta; Glas, Adrian; Koch, Oliver; Grossmann, Tom N

    2015-01-01

    Protein–protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A–D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices. PMID:26119925

  5. Rifampicin-Independent Interactions between the Pregnane X Receptor Ligand Binding Domain and Peptide Fragments of Coactivator and Corepressor Proteins

    PubMed Central

    Navaratnarajah, Punya; Steele, Bridgett L.; Redinbo, Matthew R.; Thompson, Nancy L.

    2015-01-01

    The pregnane X receptor (PXR), a member of the nuclear receptor superfamily, regulates the expression of drug-metabolizing enzymes in a ligand-dependent manner. The conventional view of nuclear receptor action is that ligand binding enhances the receptor’s affinity for coactivator proteins, while decreasing its affinity for corepressors. To date, however, no known rigorous biophysical studies have been conducted to investigate the interaction among PXR, its coregulators, and ligands. In this work, steady-state total internal reflection fluorescence microscopy (TIRFM) and total internal reflection with fluorescence recovery after photobleaching were used to measure the thermodynamics and kinetics of the interaction between the PXR ligand binding domain and a peptide fragment of the steroid receptor coactivator-1 (SRC-1) in the presence and absence of the established PXR agonist, rifampicin. Equilibrium dissociation and dissociation rate constants of ~5 μM and ~2 s−1, respectively, were obtained in the presence and absence of rifampicin, indicating that the ligand does not enhance the affinity of the PXR and SRC-1 fragments. Additionally, TIRFM was used to examine the interaction between PXR and a peptide fragment of the corepressor protein, the silencing mediator for retinoid and thyroid receptors (SMRT). An equilibrium dissociation constant of ~70 μM was obtained for SMRT in the presence and absence of rifampicin. These results strongly suggest that the mechanism of ligand-dependent activation in PXR differs significantly from that seen in many other nuclear receptors. PMID:22185585

  6. Lyme Disease-Causing Borrelia Species Encode Multiple Lipoproteins Homologous to Peptide-Binding Proteins of ABC-Type Transporters

    PubMed Central

    Kornacki, Jon A.; Oliver, Donald B.

    1998-01-01

    To identify cell envelope proteins of Borrelia burgdorferi, the causative agent of Lyme disease, we constructed a library of B. burgdorferi genes fused to the Escherichia coli phoA gene, which expresses enzymatically active alkaline phosphatase. One such gene, oppA-1, encodes a predicted polypeptide with significant similarities to various peptide-binding proteins of ABC-type transporters. Immediately downstream of oppA-1 are two genes, oppA-2 and oppA-3, whose predicted polypeptide products show strong similarities in their amino acid sequences to OppA-1, including a sequence that resembles the most highly conserved region in peptide-binding proteins. By labeling with [3H]palmitate, OppA-1, OppA-2, and OppA-3 were shown to be lipoproteins. DNA hybridization analysis showed that the oppA-1 oppA-2 oppA-3 region is located on the linear chromosome of B. burgdorferi, and the genes are conserved among different Borrelia species that cause Lyme disease (B. burgdorferi, B. garinii, and B. afzelli), suggesting that all three homologous genes are important to the maintenance of Lyme disease spirochetes in one or more of their hosts. PMID:9712756

  7. Enhancing in silico protein-based vaccine discovery for eukaryotic pathogens using predicted peptide-MHC binding and peptide conservation scores.

    PubMed

    Goodswen, Stephen J; Kennedy, Paul J; Ellis, John T

    2014-01-01

    Given thousands of proteins constituting a eukaryotic pathogen, the principal objective for a high-throughput in silico vaccine discovery pipeline is to select those proteins worthy of laboratory validation. Accurate prediction of T-cell epitopes on protein antigens is one crucial piece of evidence that would aid in this selection. Prediction of peptides recognised by T-cell receptors have to date proved to be of insufficient accuracy. The in silico approach is consequently reliant on an indirect method, which involves the prediction of peptides binding to major histocompatibility complex (MHC) molecules. There is no guarantee nevertheless that predicted peptide-MHC complexes will be presented by antigen-presenting cells and/or recognised by cognate T-cell receptors. The aim of this study was to determine if predicted peptide-MHC binding scores could provide contributing evidence to establish a protein's potential as a vaccine. Using T-Cell MHC class I binding prediction tools provided by the Immune Epitope Database and Analysis Resource, peptide binding affinity to 76 common MHC I alleles were predicted for 160 Toxoplasma gondii proteins: 75 taken from published studies represented proteins known or expected to induce T-cell immune responses and 85 considered less likely vaccine candidates. The results show there is no universal set of rules that can be applied directly to binding scores to distinguish a vaccine from a non-vaccine candidate. We present, however, two proposed strategies exploiting binding scores that provide supporting evidence that a protein is likely to induce a T-cell immune response-one using random forest (a machine learning algorithm) with a 72% sensitivity and 82.4% specificity and the other, using amino acid conservation scores with a 74.6% sensitivity and 70.5% specificity when applied to the 160 benchmark proteins. More importantly, the binding score strategies are valuable evidence contributors to the overall in silico vaccine discovery

  8. Enhancing In Silico Protein-Based Vaccine Discovery for Eukaryotic Pathogens Using Predicted Peptide-MHC Binding and Peptide Conservation Scores

    PubMed Central

    Goodswen, Stephen J.; Kennedy, Paul J.; Ellis, John T.

    2014-01-01

    Given thousands of proteins constituting a eukaryotic pathogen, the principal objective for a high-throughput in silico vaccine discovery pipeline is to select those proteins worthy of laboratory validation. Accurate prediction of T-cell epitopes on protein antigens is one crucial piece of evidence that would aid in this selection. Prediction of peptides recognised by T-cell receptors have to date proved to be of insufficient accuracy. The in silico approach is consequently reliant on an indirect method, which involves the prediction of peptides binding to major histocompatibility complex (MHC) molecules. There is no guarantee nevertheless that predicted peptide-MHC complexes will be presented by antigen-presenting cells and/or recognised by cognate T-cell receptors. The aim of this study was to determine if predicted peptide-MHC binding scores could provide contributing evidence to establish a protein’s potential as a vaccine. Using T-Cell MHC class I binding prediction tools provided by the Immune Epitope Database and Analysis Resource, peptide binding affinity to 76 common MHC I alleles were predicted for 160 Toxoplasma gondii proteins: 75 taken from published studies represented proteins known or expected to induce T-cell immune responses and 85 considered less likely vaccine candidates. The results show there is no universal set of rules that can be applied directly to binding scores to distinguish a vaccine from a non-vaccine candidate. We present, however, two proposed strategies exploiting binding scores that provide supporting evidence that a protein is likely to induce a T-cell immune response–one using random forest (a machine learning algorithm) with a 72% sensitivity and 82.4% specificity and the other, using amino acid conservation scores with a 74.6% sensitivity and 70.5% specificity when applied to the 160 benchmark proteins. More importantly, the binding score strategies are valuable evidence contributors to the overall in silico vaccine

  9. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry.

    PubMed

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-15

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed.

  10. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-01

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu2 + with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15 K in 20 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu2 + ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu2 + ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu2 + ions are discussed.

  11. Multiple antigen peptide dendrimer elicits antibodies for detecting rat and mouse growth hormone binding proteins

    PubMed Central

    Aguilar, Roberto M.; Talamantes, Frank J.; Bustamante, Juan J.; Muñoz, Jesus; Treviño, Lisa R.; Martinez, Andrew O.; Haro, Luis S.

    2009-01-01

    The membrane-bound rat growth hormone receptor (GH-R) and an alternatively spliced isoform, the soluble rat GH binding protein (GH-BP), are comprised of identical N-terminal GH binding domains, however, their C-terminal sequences differ. Immunological reagents are needed to distinguish between the two isoforms in order to understand their respective roles in mediating the actions of GH. Accordingly, a tetravalent multiple antigen peptide (MAP) dendrimer with four identical branches of a C-terminal peptide sequence of the rat GH-BP (GH-BP263-279) was synthesized and used as an immunogen in rabbits. Solid-phase peptide synthesis of four GH-BP263-279 segments onto a tetravalent Lys2-Lys-β-Ala-OH core peptide was carried out using N-(9-fluorenyl)methoxycarbonyl chemistry. The mass of the RP-HPLC purified synthetic product, 8398 Da, determined by ESI-MS, was identical to expected mass. Three anti-rat GH-BP263-279 MAP antisera, BETO-8039, BETO-8040 and BETO-8041, at dilutions of 10-3, recognized both the rat GH-BP263-279 MAP and recombinant mouse GH-BP with ED50s within a range of 5-10 fmol but did not cross-react with BSA in dot blot analyses. BETO-8041 antisera (10-3 dilution) recognized GH-BPs of rat serum and liver having Mrs ranging from 35-130 kDa but did not recognize full-length rat GH-Rs. The antisera also detected recombinant mouse GH-BPs. In summary, the tetravalent rat GH-BP263-279 MAP dendrimer served as an effective immunogenic antigen in eliciting high titer antisera specific for the C-termini of both rat and mouse GH-BPs. The antisera will facilitate studies aimed at improving our understanding of the biology of GH-BPs. PMID:19089805

  12. Marine peptides and their anti-infective activities.

    PubMed

    Kang, Hee Kyoung; Seo, Chang Ho; Park, Yoonkyung

    2015-01-16

    Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish) from 2006 to the present.

  13. Marine Peptides and Their Anti-Infective Activities

    PubMed Central

    Kang, Hee Kyoung; Seo, Chang Ho; Park, Yoonkyung

    2015-01-01

    Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish) from 2006 to the present. PMID:25603351

  14. Identification and Tumour-Binding Properties of a Peptide with High Affinity to the Disialoganglioside GD2

    PubMed Central

    Müller, Jan; Reichel, Robin; Vogt, Sebastian; Müller, Stefan P.; Sauerwein, Wolfgang; Brandau, Wolfgang; Eggert, Angelika

    2016-01-01

    Neuroectodermal tumours are characterized by aberrant processing of disialogangliosides concomitant with high expression of GD2 or GD3 on cell surfaces. Antibodies targeting GD2 are already in clinical use for therapy of neuroblastoma, a solid tumour of early childhood. Here, we set out to identify peptides with high affinity to human disialoganglioside GD2. To this end, we performed a combined in vivo and in vitro screen using a recombinant phage displayed peptide library. We isolated a phage displaying the peptide sequence WHWRLPS that specifically binds to the human disialoganglioside GD2. Binding specificity was confirmed by mutational scanning and by comparative analyses using structurally related disialogangliosides. In vivo, significant enrichment of phage binding to xenografts of human neuroblastoma cells in mice was observed. Tumour-specific phage accumulation could be blocked by intravenous coinjection of the corresponding peptide. Comparative pharmacokinetic analyses revealed higher specific accumulation of 68Ga-labelled GD2-binding peptide compared to 111In-labelled peptide in xenografts of human neuroblastoma. In contrast to 124I-MIBG, which is currently evaluated as a neuroblastoma marker in PET/CT, 68Ga-labelled GD2-specific peptide spared the thyroid but was enriched in the kidneys, which could be partially blocked by infusion of amino acids.In summary, we here report on a novel tumour-homing peptide that specifically binds to the disialoganglioside GD2, accumulates in xenografts of neuroblastoma cells in mice and bears the potential for tumour detection using PET/CT. Thus, this peptide may serve as a new scaffold for diagnosing GD2-positive tumours of neuroectodermal origin. PMID:27716771

  15. Electrostatic binding and hydrophobic collapse of peptide-nucleic acid aggregates quantified using force spectroscopy.

    PubMed

    Camunas-Soler, Joan; Frutos, Silvia; Bizarro, Cristiano V; de Lorenzo, Sara; Fuentes-Perez, Maria Eugenia; Ramsch, Roland; Vilchez, Susana; Solans, Conxita; Moreno-Herrero, Fernando; Albericio, Fernando; Eritja, Ramón; Giralt, Ernest; Dev, Sukhendu B; Ritort, Felix

    2013-06-25

    Knowledge of the mechanisms of interaction between self-aggregating peptides and nucleic acids or other polyanions is key to the understanding of many aggregation processes underlying several human diseases (e.g., Alzheimer's and Parkinson's diseases). Determining the affinity and kinetic steps of such interactions is challenging due to the competition between hydrophobic self-aggregating forces and electrostatic binding forces. Kahalalide F (KF) is an anticancer hydrophobic peptide that contains a single positive charge that confers strong aggregative properties with polyanions. This makes KF an ideal model to elucidate the mechanisms by which self-aggregation competes with binding to a strongly charged polyelectrolyte such as DNA. We use optical tweezers to apply mechanical forces to single DNA molecules and show that KF and DNA interact in a two-step kinetic process promoted by the electrostatic binding of DNA to the aggregate surface followed by the stabilization of the complex due to hydrophobic interactions. From the measured pulling curves we determine the spectrum of binding affinities, kinetic barriers, and lengths of DNA segments sequestered within the KF-DNA complex. We find there is a capture distance beyond which the complex collapses into compact aggregates stabilized by strong hydrophobic forces and discuss how the bending rigidity of the nucleic acid affects this process. We hypothesize that within an in vivo context, the enhanced electrostatic interaction of KF due to its aggregation might mediate the binding to other polyanions. The proposed methodology should be useful to quantitatively characterize other compounds or proteins in which the formation of aggregates is relevant.

  16. Stabilized sulfur binding using activated fillers

    DOEpatents

    Kalb, Paul D.; Vagin, Vyacheslav P.; Vagin, Sergey P.

    2015-07-21

    A method of making a stable, sulfur binding composite comprising impregnating a solid aggregate with an organic modifier comprising unsaturated hydrocarbons with at least one double or triple covalent bond between adjacent carbon atoms to create a modifier-impregnated aggregate; heating and drying the modifier-impregnated aggregate to activate the surface of the modifier-impregnated aggregate for reaction with sulfur.

  17. Cellular Uptake and Ultrastructural Localization Underlie the Pro-apoptotic Activity of a Hydrocarbon-stapled BIM BH3 Peptide.

    PubMed

    Edwards, Amanda L; Wachter, Franziska; Lammert, Margaret; Huhn, Annissa J; Luccarelli, James; Bird, Gregory H; Walensky, Loren D

    2015-09-18

    Hydrocarbon stapling has been applied to restore and stabilize the α-helical structure of bioactive peptides for biochemical, structural, cellular, and in vivo studies. The peptide sequence, in addition to the composition and location of the installed staple, can dramatically influence the properties of stapled peptides. As a result, constructs that appear similar can have distinct functions and utilities. Here, we perform a side-by-side comparison of stapled peptides modeled after the pro-apoptotic BIM BH3 helix to highlight these principles. We confirm that replacing a salt-bridge with an i, i + 4 hydrocarbon staple does not impair target binding affinity and instead can yield a biologically and pharmacologically enhanced α-helical peptide ligand. Importantly, we demonstrate by electron microscopy that the pro-apoptotic activity of a stapled BIM BH3 helix correlates with its capacity to achieve cellular uptake without membrane disruption and accumulate at the organellar site of mechanistic activity.

  18. Conversion of scFv peptide-binding specificity for crystal chaperone development

    SciTech Connect

    Pai, Jennifer C.; Culver, Jeffrey A.; Drury, Jason E.; Motani, Rakesh S.; Lieberman, Raquel L.; Maynard, Jennifer A.

    2012-02-07

    In spite of advances in protein expression and purification over the last decade, many proteins remain recalcitrant to structure determination by X-ray crystallography. One emerging tactic to obtain high-quality protein crystals for structure determination, particularly in the case of membrane proteins, involves co-crystallization with a protein-specific antibody fragment. Here, we report the development of new recombinant single-chain antibody fragments (scFv) capable of binding a specific epitope that can be introduced into internal loops of client proteins. The previously crystallized hexa-histidine-specific 3D5 scFv antibody was modified in the complementary determining region and by random mutagenesis, in conjunction with phage display, to yield scFvs with new biochemical characteristics and binding specificity. Selected variants include those specific for the hexa-histidine peptide with increased expression, solubility (up to 16.6 mg/ml) and sub-micromolar affinity, and those with new specificity for the EE hexa-peptide (EYMPME) and nanomolar affinity. Complexes of one such chaperone with model proteins harboring either an internal or a terminal EE tag were isolated by gel filtration. The 3.1 {angstrom} resolution structure of this chaperone reveals a binding surface complementary to the EE peptide and a {approx}52 {angstrom} channel in the crystal lattice. Notably, in spite of 85% sequence identity, and nearly identical crystallization conditions, the engineered scFv crystallizes in a different space group than the parent 3D5 scFv, and utilizes two new crystal contacts. These engineered scFvs represent a new class of chaperones that may eliminate the need for de novo identification of candidate chaperones from large antibody libraries.

  19. Enhanced Amphiphilic Profile of a Short β-Stranded Peptide Improves Its Antimicrobial Activity

    PubMed Central

    Manzo, Giorgia; Scorciapino, Mariano A.; Wadhwani, Parvesh; Bürck, Jochen; Montaldo, Nicola Pietro; Pintus, Manuela; Sanna, Roberta; Casu, Mariano; Giuliani, Andrea; Pirri, Giovanna; Luca, Vincenzo; Ulrich, Anne S.; Rinaldi, Andrea C.

    2015-01-01

    SB056 is a novel semi-synthetic antimicrobial peptide with a dimeric dendrimer scaffold. Active against both Gram-negative and -positive bacteria, its mechanism has been attributed to a disruption of bacterial membranes. The branched peptide was shown to assume a β-stranded conformation in a lipidic environment. Here, we report on a rational modification of the original, empirically derived linear peptide sequence [WKKIRVRLSA-NH2, SB056-lin]. We interchanged the first two residues [KWKIRVRLSA-NH2, β-SB056-lin] to enhance the amphipathic profile, in the hope that a more regular β-strand would lead to a better antimicrobial performance. MIC values confirmed that an enhanced amphiphilic profile indeed significantly increases activity against both Gram-positive and -negative strains. The membrane binding affinity of both peptides, measured by tryptophan fluorescence, increased with an increasing ratio of negatively charged/zwitterionic lipids. Remarkably, β-SB056-lin showed considerable binding even to purely zwitterionic membranes, unlike the original sequence, indicating that besides electrostatic attraction also the amphipathicity of the peptide structure plays a fundamental role in binding, by stabilizing the bound state. Synchrotron radiation circular dichroism and solid-state 19F-NMR were used to characterize and compare the conformation and mobility of the membrane bound peptides. Both SB056-lin and β-SB056-lin adopt a β-stranded conformation upon binding POPC vesicles, but the former maintains an intrinsic structural disorder that also affects its aggregation tendency. Upon introducing some anionic POPG into the POPC matrix, the sequence-optimized β-SB056-lin forms well-ordered β-strands once electro-neutrality is approached, and it aggregates into more extended β-sheets as the concentration of anionic lipids in the bilayer is raised. The enhanced antimicrobial activity of the analogue correlates with the formation of these extended β-sheets, which

  20. The b' domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins.

    PubMed Central

    Klappa, P; Ruddock, L W; Darby, N J; Freedman, R B

    1998-01-01

    Protein disulfide isomerase (PDI) is a very efficient catalyst of folding of many disulfide-bonded proteins. A great deal is known about the catalytic functions of PDI, while little is known about its substrate binding. We recently demonstrated by cross-linking that PDI binds peptides and misfolded proteins, with high affinity but broad specificity. To characterize the substrate-binding site of PDI, we investigated the interactions of various recombinant fragments of human PDI, expressed in Escherichia coli, with different radiolabelled model peptides. We observed that the b' domain of human PDI is essential and sufficient for the binding of small peptides. In the case of larger peptides, specifically a 28 amino acid fragment derived from bovine pancreatic trypsin inhibitor, or misfolded proteins, the b' domain is essential but not sufficient for efficient binding, indicating that contributions from additional domains are required. Hence we propose that the different domains of PDI all contribute to the binding site, with the b' domain forming the essential core. PMID:9463371

  1. Enzymatic hydrolysis of heated whey: iron-binding ability of peptides and antigenic protein fractions.

    PubMed

    Kim, S B; Seo, I S; Khan, M A; Ki, K S; Lee, W S; Lee, H J; Shin, H S; Kim, H S

    2007-09-01

    This study evaluated the influence of various enzymes on the hydrolysis of whey protein concentrate (WPC) to reduce its antigenic fractions and to quantify the peptides having iron-binding ability in its hydrolysates. Heated (for 10 min at 100 degrees C) WPC (2% protein solution) was incubated with 2% each of Alcalase, Flavourzyme, papain, and trypsin for 30, 60, 90, 120, 150, 180, and 240 min at 50 degrees C. The highest hydrolysis of WPC was observed after 240 min of incubation with Alcalase (12.4%), followed by Flavourzyme (12.0%), trypsin (10.4%), and papain (8.53%). The nonprotein nitrogen contents of WPC hydrolysate followed the hydrolytic pattern of whey. The major antigenic fractions (beta-lactoglobulin) in WPC were degraded within 60 min of its incubation with Alcalase, Flavourzyme, or papain. Chromatograms of enzymatic hydrolysates of heated WPC also indicated complete degradation of beta-lactoglobulin, alpha-lactalbumin, and BSA. The highest iron solubility was noticed in hydrolysates derived with Alcalase (95%), followed by those produced with trypsin (90%), papain (87%), and Flavourzyme (81%). Eluted fraction 1 (F-1) and fraction 2 (F-2) were the respective peaks for the 0.25 and 0.5 M NaCl chromatographic step gradient for analysis of hydrolysates. Iron-binding ability was noticeably higher in F-1 than in F-2 of all hydrolysates of WPC. The highest iron contents in F-1 were observed in WPC hydrolysates derived with Alcalase (0.2 mg/kg), followed by hydrolysates derived with Flavourzyme (0.14 mg/kg), trypsin (0.14 mg/kg), and papain (0.08 mg/kg). Iron concentrations in the F-2 fraction of all enzymatic hydrolysates of WPC were low and ranged from 0.03 to 0.05 mg/kg. Fraction 1 may describe a new class of iron chelates based on the reaction of FeSO4 x 7 H2O with a mixture of peptides obtained by the enzymatic hydrolysis of WPC. The chromatogram of Alcalase F-1 indicated numerous small peaks of shorter wavelengths, which probably indicated a variety of

  2. Identification of Cellular Binding Sites for a Novel Human Anti-Breast Cancer Peptide

    DTIC Science & Technology

    2004-05-01

    the linear form of the peptide, AFPep, has been isolated and identified by mass spectroscopy as Hsp72 which together with Hsp9O and other components...AFPep and Hsp72 and the relevance to the anti-breast cancer activity of AFPep are currently being evaluated. In addition, an in vitro cell culture method

  3. Shiga toxin binds to activated platelets.

    PubMed

    Ghosh, S A; Polanowska-Grabowska, R K; Fujii, J; Obrig, T; Gear, A R L

    2004-03-01

    Hemolytic uremic syndrome (HUS) is associated with acute renal failure in children and can be caused by Shiga toxin (Stx)-producing Escherichia coli. Thrombocytopenia and formation of renal thrombi are characteristic of HUS, suggesting that platelet activation is involved in its pathogenesis. However, whether Shiga toxin directly activates platelets is controversial. The present study evaluates if potential platelet sensitization during isolation by different procedures influences platelet interaction with Shiga toxin. Platelets isolated from sodium citrate anticoagulated blood were exposed during washing to EDTA and higher g forces than platelets prepared from acid-citrate-dextrose (ACD) plasma. Platelet binding of Stx was significantly higher in EDTA-washed preparations relative to ACD-derived platelets. Binding of Stx was also increased with ACD-derived platelets when activated with thrombin (1 U mL-1) and exposure of the Gb3 Stx receptor was detected only on platelets subjected to EDTA, higher g forces or thrombin. EDTA-exposed platelets lost their normal discoid shape and were larger. P-selectin (CD62P) exposure was significantly increased in EDTA-washed preparations relative to ACD-derived platelets, suggesting platelet activation. Taken together, these results suggest that direct binding of Stx occurs only on 'activated' platelets rather than on resting platelets. The ability of Stx to interact with previously activated platelets may be an important element in understanding the pathogenesis of HUS.

  4. Designed low amphipathic peptides with alpha-helical propensity exhibiting antimicrobial activity via a lipid domain formation mechanism.

    PubMed

    Yamamoto, Naoki; Tamura, Atsuo

    2010-05-01

    Although several low amphipathic peptides have been known to exhibit antimicrobial activity, their mode of action has not been completely elucidated. In this study, using designed low amphipathic peptides that retain different alpha-helical content and hydrophobicity, we attempted to investigate the mechanism of these properties. Calorimetric and thermodynamic analyses demonstrated that the peptides induce formation of two lipid domains in an anionic liposome at a high peptide-to-lipid ratio. On the other hand, even at a low peptide-to-lipid ratio, they caused minimal membrane damage, such as flip-flop of membrane lipids or leakage of calcein molecules from liposomes, and never translocated across membranes. Interaction energies between the peptides and anionic liposomes showed good correlation with antimicrobial activity for both Escherichia coli and Bacillus subtilis. We thus propose that the domain formation mechanism in which antimicrobial peptides exhibit activity solely by forming lipid domains without membrane damage is a major determinant of the antimicrobial activity of low amphipathic peptides. These peptides appear to stiffen the membrane such that it is deprived of the fluidity necessary for biological functions. We also showed that to construct the lipid domains, peptides need not form stable and cooperative structures. Rather, it is essential for peptides to only interact tightly with the membrane interface via strong electrostatic interactions, and slight differences in binding strength are invoked by differences in hydrophobicity. The peptides thus designed might pave the way for "clean" antimicrobial reagents that never cause release of membrane elements and efflux of their inner components.

  5. [Biologically Active Peptides Isolated from Dill Anethum graveolens L].

    PubMed

    Kulikova, O G; Maltsev, D I; Ilyina, A P; Burdina, A V; Yamskova, V P; Yamskov, I A

    2015-01-01

    Peptide mixtures with molecular weights of 1000-2000 Da and in vivo membrano-trophic activity against mouse hepatocyte culture at very low concentrations were isolated from dill Anethum graveolens L. leaves. It has been found that plant peptides in aqueous solution formed larger nanosized particles of approximately 90 nm with a secondary structure mainly composed of β-structures and random coil structures. We demonstrated that peptides isolated from A. graveolens in vitro at an ultra-low dosage affected the size of the area of pigmented cells of amphibian liver, which are analogous to Kupffer cells of the mammalian liver, using roller organotypic newt liver culture models.

  6. Generating high accuracy peptide binding data in high throughput with yeast surface display and SORTCERY

    PubMed Central

    Reich, Lothar “Luther”; Dutta, Sanjib; Keating, Amy E.

    2016-01-01

    Library methods are widely used to study protein-protein interactions, and high-throughput screening or selection followed by sequencing can identify a large number of peptide ligands for a protein target. In this chapter we describe a procedure called "SORTCERY" that can rank the affinities of library members for a target with high accuracy. SORTCERY follows a three-step protocol. First, fluorescence activated cell sorting (FACS) is used to sort a library of yeast displayed peptide ligands according to their affinities for a target. Second, all sorted pools are deep sequenced. Third, the resulting data are analyzed to create a ranking. We demonstrate an application of SORTCERY to the problem of ranking peptide ligands for the anti-apoptotic regulator Bcl-xL. PMID:27094295

  7. A new fingerprint to predict nonribosomal peptides activity

    NASA Astrophysics Data System (ADS)

    Abdo, Ammar; Caboche, Ségolène; Leclère, Valérie; Jacques, Philippe; Pupin, Maude

    2012-10-01

    Bacteria and fungi use a set of enzymes called nonribosomal peptide synthetases to provide a wide range of natural peptides displaying structural and biological diversity. So, nonribosomal peptides (NRPs) are the basis for some efficient drugs. While discovering new NRPs is very desirable, the process of identifying their biological activity to be used as drugs is a challenge. In this paper, we present a novel peptide fingerprint based on monomer composition (MCFP) of NRPs. MCFP is a novel method for obtaining a representative description of NRP structures from their monomer composition in fingerprint form. Experiments with Norine NRPs database and MCFP show high prediction accuracy (>93 %). Also a high recall rate (>82 %) is obtained when MCFP is used for screening NRPs database. From this study it appears that our fingerprint, built from monomer composition, allows an effective screening and prediction of biological activities of NRPs database.

  8. The N-terminal peptide of mammalian GTP cyclohydrolase I is an autoinhibitory control element and contributes to binding the allosteric regulatory protein GFRP.

    PubMed

    Higgins, Christina E; Gross, Steven S

    2011-04-08

    GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme for biosynthesis of tetrahydrobiopterin (BH4), an obligate cofactor for NO synthases and aromatic amino acid hydroxylases. BH4 can limit its own synthesis by triggering decameric GTPCH to assemble in an inhibitory complex with two GTPCH feedback regulatory protein (GFRP) pentamers. Subsequent phenylalanine binding to the GTPCH·GFRP inhibitory complex converts it to a stimulatory complex. An N-terminal inhibitory peptide in GTPCH may also contribute to autoregulation of GTPCH activity, but mechanisms are undefined. To characterize potential regulatory actions of the N-terminal peptide in rat GTPCH, we expressed, purified, and characterized a truncation mutant, devoid of 45 N-terminal amino acids (Δ45-GTPCH) and contrasted its catalytic and GFRP binding properties to wild type GTPCH (wt-GTPCH). Contrary to prior reports, we show that GFRP binds wt-GTPCH in the absence of any small molecule effector, resulting in allosteric stimulation of GTPCH activity: a 20% increase in Vmax, 50% decrease in KmGTP, and increase in Hill coefficient to 1.6, from 1.0. These features of GFRP-stimulated wt-GTPCH activity were phenocopied by Δ45-GTPCH in the absence of bound GFRP. Addition of GFRP to Δ45-GTPCH failed to elicit complex formation or a substantial further increase in GTPCH catalytic activity. Expression of Δ45-GTPCH in HEK-293 cells elicited 3-fold greater BH4 accumulation than an equivalent of wt-GTPCH. Together, results indicate that the N-terminal peptide exerts autoinhibitory control over rat GTPCH and is required for GFRP binding on its own. Displacement of the autoinhibitory peptide provides a molecular mechanism for physiological up-regulation of GTPCH activity.

  9. Ribosomal crystallography: peptide bond formation, chaperone assistance and antibiotics activity.

    PubMed

    Yonath, Ada

    2005-08-31

    The peptidyl transferase center (PTC) is located in a protein free environment, thus confirming that the ribosome is a ribozyme. This arched void has dimensions suitable for accommodating the 3' ends of the A-and the P-site tRNAs, and is situated within a universal sizable symmetry-related region that connects all ribosomal functional centers involved in amino-acid polymerization. The linkage between the elaborate PTC architecture and the A-site tRNA position revealed that the A- to P-site passage of the tRNA 3' end is performed by a rotatory motion, which leads to stereochemistry suitable for peptide bond formation and for substrate mediated catalysis, thus suggesting that the PTC evolved by gene-fusion. Adjacent to the PTC is the entrance of the protein exit tunnel, shown to play active roles in sequence-specific gating of nascent chains and in responding to cellular signals. This tunnel also provides a site that may be exploited for local co-translational folding and seems to assist in nascent chain trafficking into the hydrophobic space formed by the first bacterial chaperone, the trigger factor. Many antibiotics target ribosomes. Although the ribosome is highly conserved, subtle sequence and/or conformational variations enable drug selectivity, thus facilitating clinical usage. Comparisons of high-resolution structures of complexes of antibiotics bound to ribosomes from eubacteria resembling pathogens, to an archaeon that shares properties with eukaryotes and to its mutant that allows antibiotics binding, demonstrated the unambiguous difference between mere binding and therapeutical effectiveness. The observed variability in antibiotics inhibitory modes, accompanied by the elucidation of the structural basis to antibiotics mechanism justifies expectations for structural based improved properties of existing compounds as well as for the development of novel drugs.

  10. Binding affinities of amino acid analogues at the charged aqueous titania interface: implications for titania-binding peptides.

    PubMed

    Sultan, Anas M; Hughes, Zak E; Walsh, Tiffany R

    2014-11-11

    Despite the extensive utilization of biomolecule-titania interfaces, biomolecular recognition and interactions at the aqueous titania interface remain far from being fully understood. Here, atomistic molecular dynamics simulations, in partnership with metadynamics, are used to calculate the free energy of adsorption of different amino acid side chain analogues at the negatively-charged aqueous rutile TiO2 (110) interface, under conditions corresponding with neutral pH. Our calculations predict that charged amino acid analogues have a relatively high affinity to the titania surface, with the arginine analogue predicted to be the strongest binder. Interactions between uncharged amino acid analogues and titania are found to be repulsive or weak at best. All of the residues that bound to the negatively-charged interface show a relatively stronger adsorption compared with the charge-neutral interface, including the negatively-charged analogue. Of the analogues that are found to bind to the titania surface, the rank ordering of the binding affinities is predicted to be "arginine" > "lysine" ≈ aspartic acid > "serine". This is the same ordering as was found previously for the charge-neutral aqueous titania interface. Our results show very good agreement with available experimental data and can provide a baseline for the interpretation of peptide-TiO2 adsorption data.

  11. Amyloid-beta peptide binds to microtubule-associated protein 1B (MAP1B).

    PubMed

    Gevorkian, Goar; Gonzalez-Noriega, Alfonso; Acero, Gonzalo; Ordoñez, Jorge; Michalak, Colette; Munguia, Maria Elena; Govezensky, Tzipe; Cribbs, David H; Manoutcharian, Karen

    2008-05-01

    Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer's disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer's disease.

  12. AMYLOID-β PEPTIDE BINDS TO MICROTUBULE-ASSOCIATED PROTEIN 1B (MAP1B)

    PubMed Central

    Gevorkian, Goar; Gonzalez-Noriega, Alfonso; Acero, Gonzalo; Ordoñez, Jorge; Michalak, Colette; Munguia, Maria Elena; Govezensky, Tzipe; Cribbs, David H.; Manoutcharian, Karen

    2008-01-01

    Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer’s disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer’s disease. PMID:18079022

  13. Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials.

    PubMed

    Palchesko, Rachelle N; Buckholtz, Gavin A; Romeo, Jared D; Gawalt, Ellen S

    2014-07-01

    Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences.

  14. How Membrane-Active Peptides Get into Lipid Membranes.

    PubMed

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular

  15. Effect of calcium-binding peptide from Pacific cod (Gadus macrocephalus) bone on calcium bioavailability in rats.