Science.gov

Sample records for activity binding peptides

  1. Mycobacterium tuberculosis PE9 protein has high activity binding peptides which inhibit target cell invasion.

    PubMed

    Díaz, Diana P; Ocampo, Marisol; Pabón, Laura; Herrera, Chonny; Patarroyo, Manuel A; Munoz, Marina; Patarroyo, Manuel E

    2016-05-01

    PE/PPE proteins are involved in several processes during Mycobacterium tuberculosis (Mtb) infection of target cells; studying them is extremely interesting as they are the only ones from the Mycobacterium genus, they abound in pathogenic species such as Mtb and their function remains yet unknown. The PE9 protein (Rv1088) was characterised, the rv1088 gene was identified by PCR in Mtb complex strains and its expression and localisation on mycobacterial surface was confirmed by Western blot and immunoelectron microscopy. Bioinformatics tools were used for predicting PE9 protein structural aspects and experimental study involved the circular dichroism of synthetic peptides. The peptides were tested in binding assays involving U937 and A549 cells; two high activity binding peptides (HABPs) were found for both cell lines (39226-(1)MSYMIATPAALTAAATDIDGI(21) and 39232-(125)YQRHFGTGGQPEFRQHSEHRR(144)), one for U937 (39231-(104)YAGAGRRQRRRRSGDGQWRLRQ(124)) and one for A549 (39230-(83)YGTGVFRRRRGRQTVTAAEHRA(103)). HABP 39232 inhibited mycobacterial entry to A549 cells (∼70%) and U937 cells (∼50%), peptides 39226 and 39231 inhibited entry to U937 cells (∼60% and 80%, respectively) and peptide 39230 inhibited entry to A549 cells (∼60%). This emphasised HABPs' functional importance in recognition between Mtb H37Rv and target cell receptors. These peptide sequences could be involved in invasion and were recognised by the host's immune system, thereby highlighting their use when designing an efficient anti-tuberculosis multiantigenic vaccine. PMID:26851205

  2. Collagen-binding VEGF mimetic peptide: Structure, matrix interaction, and endothelial cell activation

    NASA Astrophysics Data System (ADS)

    Chan, Tania R.

    Long term survival of artificial tissue constructs depends greatly on proper vascularization. In nature, differentiation of endothelial cells and formation of vasculature are directed by dynamic spatio-temporal cues in the extracellular matrix that are difficult to reproduce in vitro. In this dissertation, we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF), which can be used to encode spatially controlled angiogenic signals in collagen-based scaffolds. The peptide, QKCMP, contains a collagen mimetic domain (CMP) that binds to type I collagen by a unique triple helix hybridization mechanism and a VEGF mimetic domain (QK) with pro-angiogenic activity. We demonstrate QKCMP's ability to hybridize with native and heat denatured collagens through a series of binding studies on collagen and gelatin substrates. Circular dichroism experiments show that the peptide retains the triple helical structure vital for collagen binding, and surface plasmon resonance study confirms the molecular interaction between the peptide and collagen strands. Cell culture studies demonstrate QKCMP's ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show that the peptide can be used to spatially modify collagen-based substrates to promote localized endothelial cell activation and network formation. To probe the biological events that govern these angiogenic cellular responses, we investigated the cell signaling pathways activated by collagen-bound QKCMP and determined short and long-term endothelial cell response profiles for p38, ERK1/2, and Akt signal transduction cascades. Finally, we present our efforts to translate the peptide's in vitro bioactivity to an in vivo burn injury animal model. When implanted at the wound site, QKCMP functionalized biodegradable hydrogels induce enhanced neovascularization in the granulation tissue. The results show QKCMP

  3. Spectroscopic and biological activity studies of the chromium-binding peptide EEEEGDD.

    PubMed

    Arakawa, Hirohumi; Kandadi, Machender R; Panzhinskiy, Evgeniy; Belmore, Kenneth; Deng, Ge; Love, Ebony; Robertson, Preshus M; Commodore, Juliette J; Cassady, Carolyn J; Nair, Sreejayan; Vincent, John B

    2016-06-01

    While trivalent chromium has been shown at high doses to have pharmacological effects improving insulin resistance in rodent models of insulin resistance, the mechanism of action of chromium at a molecular level is not known. The chromium-binding and transport agent low-molecular-weight chromium-binding substance (LMWCr) has been proposed to be the biologically active form of chromium. LMWCr has recently been shown to be comprised of a heptapeptide of the sequence EEEEDGG. The binding of Cr(3+) to this heptapeptide has been examined. Mass spectrometric and a variety of spectroscopic studies have shown that multiple chromic ions bind to the peptide in an octahedral fashion through carboxylate groups and potentially small anionic ligands such as oxide and hydroxide. A complex of Cr and the peptide when administered intravenously to mice is able to decrease area under the curve in intravenous glucose tolerance tests. It can also restore insulin-stimulated glucose uptake in myotubes rendered insulin resistant by treating them with a high-glucose media. PMID:26898644

  4. Predicting the Structure-Activity Relationship of Hydroxyapatite-Binding Peptides by Enhanced-Sampling Molecular Simulation.

    PubMed

    Zhao, Weilong; Xu, Zhijun; Cui, Qiang; Sahai, Nita

    2016-07-12

    Understanding the molecular structural and energetic basis of the interactions between peptides and inorganic surfaces is critical to their applications in tissue engineering and biomimetic material synthesis. Despite recent experimental progresses in the identification and functionalization of hydroxyapatite (HAP)-binding peptides, the molecular mechanisms of their interactions with HAP surfaces are yet to be explored. In particular, the traditional method of molecular dynamics (MD) simulation suffers from insufficient sampling at the peptide-inorganic interface that renders the molecular-level observation dubious. Here we demonstrate that an integrated approach combining bioinformatics, MD, and metadynamics provides a powerful tool for investigating the structure-activity relationship of HAP-binding peptides. Four low charge density peptides, previously identified by phage display, have been considered. As revealed by bioinformatics and MD, the binding conformation of the peptides is controlled by both the sequence and the amino acid composition. It was found that formation of hydrogen bonds between lysine residue and phosphate ions on the surface dictates the binding of positively charged peptide to HAP. The binding affinities of the peptides to the surface are estimated by free energy calculation using parallel-tempering metadynamics, and the results compare favorably to measurements reported in previous experimental studies. The calculation suggests that the charge density of the peptide primarily controls the binding affinity to the surface, while the backbone secondary structure that may restrain side chain orientation toward the surface plays a minor role. We also report that the application of enhanced-sampling metadynamics effects a major advantage over the steered MD method by significantly improving the reliability of binding free energy calculation. In general, our novel integration of diverse sampling techniques should contribute to the rational

  5. Antifreeze and cryoprotective activities of ice-binding collagen peptides from pig skin.

    PubMed

    Cao, Hui; Zhao, Ying; Zhu, Yu Bing; Xu, Fei; Yu, Jing Song; Yuan, Min

    2016-03-01

    A novel "hyperactive" ice-binding peptide from porcine collagen was prepared by alkaline protease hydrolysis and a series of column chromatography separations, and then its antifreeze and cryoprotective properties were reported. Using differential scanning calorimetry (DSC), the thermal hysteresis (TH) of ice-binding collagen peptides was closely related to their concentration and crystal fraction. Collagen hydrolysates with maximal TH were obtained by hydrolysis at pH 8.0, DH 15.0%, and 5% alkaline protease at 55°C. After purification by column chromatography, the AP-3 ice-binding collagen peptide (GLLGPLGPRGLL) with 1162.8Da molecular weights exhibited the highest TH (5.28°C), which can be classified as "hyperactive". Recrystallisation and melt-resistance of ice cream were improved by AP-3 ice-binding collagen peptide at 0.2% (w/v) in a similar manner to natural antifreeze proteins. Moreover, the addition of AP-3 collagen peptides in ice cream greatly elevated the glass transition temperature (Tg) to -17.64°C. PMID:26471678

  6. Purification and sequencing of the active site tryptic peptide from penicillin-binding protein 1b of Escherichia coli

    SciTech Connect

    Nicholas, R.A.; Suzuki, H.; Hirota, Y.; Strominger, J.L.

    1985-07-02

    This paper reports the sequence of the active site peptide of penicillin-binding protein 1b from Escherichia coli. Purified penicillin-binding protein 1b was labeled with (/sup 14/C)penicillin G, digested with trypsin, and partially purified by gel filtration. Upon further purification by high-pressure liquid chromatography, two radioactive peaks were observed, and the major peak, representing over 75% of the applied radioactivity, was submitted to amino acid analysis and sequencing. The sequence Ser-Ile-Gly-Ser-Leu-Ala-Lys was obtained. The active site nucleophile was identified by digesting the purified peptide with aminopeptidase M and separating the radioactive products on high-pressure liquid chromatography. Amino acid analysis confirmed that the serine residue in the middle of the sequence was covalently bonded to the (/sup 14/C)penicilloyl moiety. A comparison of this sequence to active site sequences of other penicillin-binding proteins and beta-lactamases is presented.

  7. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    SciTech Connect

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-08-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs.

  8. Calcitonin and Amylin Receptor Peptide Interaction Mechanisms: INSIGHTS INTO PEPTIDE-BINDING MODES AND ALLOSTERIC MODULATION OF THE CALCITONIN RECEPTOR BY RECEPTOR ACTIVITY-MODIFYING PROTEINS.

    PubMed

    Lee, Sang-Min; Hay, Debbie L; Pioszak, Augen A

    2016-04-15

    Receptor activity-modifying proteins (RAMP1-3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8-37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. PMID:26895962

  9. Discovery and Characterization of a Potent Interleukin-6 Binding Peptide with Neutralizing Activity In Vivo.

    PubMed

    Ranganath, Sheila; Bhandari, Ashok; Avitahl-Curtis, Nicole; McMahon, Jaimee; Wachtel, Derek; Zhang, Jenny; Leitheiser, Christopher; Bernier, Sylvie G; Liu, Guang; Tran, Tran T; Celino, Herodion; Tobin, Jenny; Jung, Joon; Zhao, Hong; Glen, Katie E; Graul, Chris; Griffin, Aliesha; Schairer, Wayne C; Higgins, Carolyn; Reza, Tammi L; Mowe, Eva; Rivers, Sam; Scott, Sonya; Monreal, Alex; Shea, Courtney; Bourne, Greg; Coons, Casey; Smith, Adaline; Tang, Kim; Mandyam, Ramya A; Masferrer, Jaime; Liu, David; Patel, Dinesh V; Fretzen, Angelika; Murphy, Craig A; Milne, G Todd; Smythe, Mark L; Carlson, Kenneth E

    2015-01-01

    Interleukin-6 (IL-6) is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman's Disease (CD) and rheumatoid arthritis (RA). Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R)/gp130 signaling complex continues to show promise as a therapeutic target. Monoclonal antibodies (mAbs) directed against components of this complex have been approved as therapeutics for both CD and RA. To potentially provide an additional modality to antagonize IL-6 induced pathophysiology, a peptide-based antagonist approach was undertaken. Using a combination of molecular design, phage-display, and medicinal chemistry, disulfide-rich peptides (DRPs) directed against IL-6 were developed with low nanomolar potency in inhibiting IL-6-induced pSTAT3 in U937 monocytic cells. Targeted PEGylation of IL-6 binding peptides resulted in molecules that retained their potency against IL-6 and had a prolongation of their pharmacokinetic (PK) profiles in rodents and monkeys. One such peptide, PN-2921, contained a 40 kDa polyethylene glycol (PEG) moiety and inhibited IL-6-induced pSTAT3 in U937 cells with sub-nM potency and possessed 23, 36, and 59 h PK half-life values in mice, rats, and cynomolgus monkeys, respectively. Parenteral administration of PN-2921 to mice and cynomolgus monkeys potently inhibited IL-6-induced biomarker responses, with significant reductions in the acute inflammatory phase proteins, serum amyloid A (SAA) and C-reactive protein (CRP). This potent, PEGylated IL-6 binding peptide offers a new approach to antagonize IL-6-induced signaling and associated pathophysiology. PMID:26555695

  10. Discovery and Characterization of a Potent Interleukin-6 Binding Peptide with Neutralizing Activity In Vivo

    PubMed Central

    Ranganath, Sheila; Bhandari, Ashok; Avitahl-Curtis, Nicole; McMahon, Jaimee; Wachtel, Derek; Zhang, Jenny; Leitheiser, Christopher; Bernier, Sylvie G.; Liu, Guang; Tran, Tran T.; Celino, Herodion; Tobin, Jenny; Jung, Joon; Zhao, Hong; Glen, Katie E.; Graul, Chris; Griffin, Aliesha; Schairer, Wayne C.; Higgins, Carolyn; Reza, Tammi L.; Mowe, Eva; Rivers, Sam; Scott, Sonya; Monreal, Alex; Shea, Courtney; Bourne, Greg; Coons, Casey; Smith, Adaline; Tang, Kim; Mandyam, Ramya A.; Masferrer, Jaime; Liu, David; Patel, Dinesh V.; Fretzen, Angelika; Murphy, Craig A.; Milne, G. Todd; Smythe, Mark L.; Carlson, Kenneth E.

    2015-01-01

    Interleukin-6 (IL-6) is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman’s Disease (CD) and rheumatoid arthritis (RA). Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R)/gp130 signaling complex continues to show promise as a therapeutic target. Monoclonal antibodies (mAbs) directed against components of this complex have been approved as therapeutics for both CD and RA. To potentially provide an additional modality to antagonize IL-6 induced pathophysiology, a peptide-based antagonist approach was undertaken. Using a combination of molecular design, phage-display, and medicinal chemistry, disulfide-rich peptides (DRPs) directed against IL-6 were developed with low nanomolar potency in inhibiting IL-6-induced pSTAT3 in U937 monocytic cells. Targeted PEGylation of IL-6 binding peptides resulted in molecules that retained their potency against IL-6 and had a prolongation of their pharmacokinetic (PK) profiles in rodents and monkeys. One such peptide, PN-2921, contained a 40 kDa polyethylene glycol (PEG) moiety and inhibited IL-6-induced pSTAT3 in U937 cells with sub-nM potency and possessed 23, 36, and 59 h PK half-life values in mice, rats, and cynomolgus monkeys, respectively. Parenteral administration of PN-2921 to mice and cynomolgus monkeys potently inhibited IL-6-induced biomarker responses, with significant reductions in the acute inflammatory phase proteins, serum amyloid A (SAA) and C-reactive protein (CRP). This potent, PEGylated IL-6 binding peptide offers a new approach to antagonize IL-6-induced signaling and associated pathophysiology. PMID:26555695

  11. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  12. Minimal determinants for binding activated G-alpha from the structure of a G-alpha-i1/peptide dimer†

    PubMed Central

    Johnston, Christopher A.; Lobanova, Ekaterina S.; Shavkunov, Alexander S.; Low, Justin; Ramer, J. Kevin; Blaesius, Rainer; Fredericks, Zoey; Willard, Francis S.; Kuhlman, Brian; Arshavsky, Vadim Y.; Siderovski, David P.

    2008-01-01

    G-proteins cycle between an inactive GDP-bound state and active GTP-bound state, serving as molecular switches that coordinate cellular signaling. We recently used phage-display to identify a series of peptides that bind Gα subunits in a nucleotide-dependent manner [Johnston, C. A., Willard, F. S., Jezyk, M. R., Fredericks, Z., Bodor, E. T., Jones, M. B., Blaesius, R., Watts, V. J., Harden, T. K., Sondek, J., Ramer, J. K., and Siderovski, D. P. (2005) Structure 13, 1069–1080]. Here we describe the structural features and functions of KB-1753, a peptide that binds selectively to GDP·AlF4−- and GTPγS-bound states of Gαi subunits. KB-1753 blocks interaction of Gαtransducin with its effector, cGMP phosphodiesterase, and inhibits transducin-mediated activation of cGMP degradation. Additionally, KB-1753 interferes with RGS protein binding and resultant GAP activity. A fluorescent KB-1753 variant was found to act as a sensor for activated Gα in vitro. The crystal structure of KB-1753 bound to Gαi1·GDP·AlF4− reveals binding to a conserved hydrophobic groove between switch II and α3 helices, and, along with supporting biochemical data and previous structural analyses, supports the notion that this is the site of effector interactions for Gαi subunits. PMID:16981699

  13. Minimal Determinants for Binding Activated G alpha from the Structure of a G alpha i1-Peptide Dimer

    SciTech Connect

    Johnston,C.; Lobanova, E.; Shavkunov, A.; Low, J.; Ramer, J.; Blasesius, R.; Fredericks, Z.; willard, F.; Kuhlman, B.; et al.

    2006-01-01

    G-Proteins cycle between an inactive GDP-bound state and an active GTP-bound state, serving as molecular switches that coordinate cellular signaling. We recently used phage display to identify a series of peptides that bind G{alpha}subunits in a nucleotide-dependent manner [Johnston, C. A., Willard, F. S., Jezyk, M. R., Fredericks, Z., Bodor, E. T., Jones, M. B., Blaesius, R., Watts, V. J., Harden, T. K., Sondek, J., Ramer, J. K., and Siderovski, D. P. (2005) Structure 13, 1069-1080]. Here we describe the structural features and functions of KB-1753, a peptide that binds selectively to GDP{center_dot}AlF{sub 4{sup -}}- and GTP{gamma}S-bound states of G{alpha}{sup i} subunits. KB-1753 blocks interaction of G{alpha}{sub transducin} with its effector, cGMP phosphodiesterase, and inhibits transducin-mediated activation of cGMP degradation. Additionally, KB-1753 interferes with RGS protein binding and resultant GAP activity. A fluorescent KB-1753 variant was found to act as a sensor for activated G{alpha} in vitro. The crystal structure of KB-1753 bound to G{alpha}{sub i1}-GDP{center_dot}AlF{sub 4{sup -}} reveals binding to a conserved hydrophobic groove between switch II and 3 helices and, along with supporting biochemical data and previous structural analyses, supports the notion that this is the site of effector interactions for G{alpha}i subunits.

  14. Simultaneous Binding of Basic Peptides at Intracellular Sites on a Large Conductance Ca2+-activated K+ Channel

    PubMed Central

    Favre, Isabelle; Moczydlowski, Edward

    1999-01-01

    The homologous Kunitz inhibitor proteins, bovine pancreatic trypsin inhibitor (BPTI) and dendrotoxin I (DTX-I), interact with large conductance Ca2+-activated K+ channels (maxi-KCa) by binding to an intracellular site outside of the pore to produce discrete substate events. In contrast, certain homologues of the Shaker ball peptide produce discrete blocking events by binding within the ion conduction pathway. In this study, we investigated ligand interactions of these positively charged peptide molecules by analysis of single maxi-KCa channels in planar bilayers recorded in the presence of DTX-I and BPTI, or DTX-I and a high-affinity homologue of ball peptide. Both DTX-I (Kd, 16.5 nM) and BPTI (Kd, 1,490 nM) exhibit one-site binding kinetics when studied alone; however, records in the presence of DTX-I plus BPTI demonstrate simultaneous binding of these two molecules. The affinity of BPTI (net charge, +6) decreases by 11.7-fold (Kd, 17,500 nM) when DTX-I (net charge, +10) is bound and, conversely, the affinity of DTX-I decreases by 10.8-fold (Kd, 178 nM) when BPTI is bound. The ball peptide homologue (BP; net charge, +6) exhibits high blocking affinity (Kd, 7.2 nM) at a single site when studied alone, but has 8.0-fold lower affinity (Kd, 57 nM) for blocking the DTX-occupied channel. The affinity of DTX-I likewise decreases by 8.4-fold (Kd, 139 nM) when BP is bound. These results identify two types of negatively coupled ligand–ligand interactions at distinct sites on the intracellular surface of maxi-KCa channels. Such antagonistic ligand interactions explain how the binding of BPTI or DTX-I to four potentially available sites on a tetrameric channel protein can exhibit apparent one-site kinetics. We hypothesize that negatively coupled binding equilibria and asymmetric changes in transition state energies for the interaction between DTX-I and BP originate from repulsive electrostatic interactions between positively charged peptide ligands on the channel surface

  15. Influence of Cysteine and Tryptophan Substitution on DNA-Binding Activity on Maize α-Hairpinin Antimicrobial Peptide.

    PubMed

    Sousa, Daniel A; Porto, William F; Silva, Maria Z; da Silva, Tatiane R; Franco, Octávio L

    2016-01-01

    For almost four decades, antimicrobial peptides have been studied, and new classes are being discovered. However, for therapeutic use of these molecules, issues related to the mechanism of action must be answered. In this work, the antimicrobial activity of the hairpinin MBP-1 was studied by the synthesis of two variants, one replacing cysteines and one tryptophan with alanine. Antibacterial activity was abolished in both variants. No membrane disturbance, even in concentrations higher than those required to inhibit the bacteria, was observed in SEM microscopy. The gel retardation assay showed that MBP-1 possesses a higher DNA-binding ability than variants. Finally, molecular modelling showed that the lack of cysteines resulted in structure destabilization and lack of tryptophan resulted in a less flexible peptide, with less solvent assessable surface area, both characteristics that could contribute to absence of activity. In summary, the data here reported add more information about the multiple mechanisms of action of α-hairpinins. PMID:27529210

  16. Short Self-Assembling Peptides Are Able to Bind to Copper and Activate Oxygen.

    PubMed

    Makhlynets, Olga V; Gosavi, Pallavi M; Korendovych, Ivan V

    2016-07-25

    We have shown that de novo designed peptides self-assemble in the presence of copper to create supramolecular assemblies capable of carrying out the oxidation of dimethoxyphenol in the presence of dioxygen. Formation of the supramolecular assembly, which is akin to a protein fold, is critical for productive catalysis since peptides possessing the same functional groups but lacking the ability to self-assemble do not catalyze substrate oxidation. The ease with which we have discovered robust and productive oxygen activation catalysts suggests that these prion-like assemblies might have served as intermediates in the evolution of enzymatic function and opens the path for the development of new catalyst nanomaterials. PMID:27276534

  17. Peptide Binding for Bio-Based Nanomaterials.

    PubMed

    Bedford, N M; Munro, C J; Knecht, M R

    2016-01-01

    Peptide-based strategies represent transformative approaches to fabricate functional inorganic materials under sustainable conditions by modeling the methods exploited in biology. In general, peptides with inorganic affinity and specificity have been isolated from organisms and through biocombinatorial selection techniques (ie, phage and cell surface display). These peptides recognize and bind the inorganic surface through a series of noncovalent interactions, driven by both enthalpic and entropic contributions, wherein the biomolecules wrap the metallic nanoparticle structure. Through these interactions, modification of the inorganic surface can be accessed to drive the incorporation of significantly disordered surface metal atoms, which have been found to be highly catalytically active for a variety of chemical transformations. We have employed synthetic, site-directed mutagenesis studies to reveal localized binding effects of the peptide at the metallic nanoparticle structure to begin to identify the biological basis of control over biomimetic nanoparticle catalytic activity. The protocols described herein were used to fabricate and characterize peptide-capped nanoparticles in atomic resolution to identify peptide sequence effects on the surface structure of the materials, which can then be directly correlated to the catalytic activity to identify structure/function relationships. PMID:27586350

  18. FRET analysis using sperm-activating peptides tagged with fluorescent proteins reveals that ligand-binding sites exist as clusters.

    PubMed

    Arcos-Hernández, César; Romero, Francisco; Sánchez-Guevara, Yoloxochitl; Beltrán, Carmen; Nishigaki, Takuya

    2016-02-01

    Long-range cellular communication between the sperm and egg is critical for external fertilization. Sperm-activating peptides (SAPs) are diffusible components of the outer layer of eggs in echinoderms, and function as chemoattractants for spermatozoa. The decapeptide named speract is the best-characterized sea urchin SAP. Biochemical and physiological actions of speract have been studied with purified or chemically synthesized peptides. In this work, we prepared recombinant speract fused to a fluorescent protein (FP; FP-speract) using three color variants: a cyan (eCFP), a yellow (mVenus) and a large Stokes shift yellow (mAmetrine) FP. Although these fluorescence tags are 20 times larger than speract, competitive binding experiments using mAmetrine-speract revealed that this FP-speract has binding affinity to the receptor that is comparable (7.6-fold less) to that of non-labeled speract. Indeed, 10 nmol l(-1) eCFP-speract induces physiological sperm responses such as membrane potential changes and increases in intracellular pH and Ca(2+) concentrations similar to those triggered by 10 nmol l(-1) speract. Furthermore, FP-speract maintains its fluorescence upon binding to its receptor. Using this property, we performed fluorescence resonance energy transfer (FRET) measurements with eCFP-speract and mVenus-speract as probes and obtained a positive FRET signal upon binding to the receptor, which suggests that the speract receptor exists as an oligomer, at least as a dimer, or alternatively that a single speract receptor protein possesses multiple binding sites. This property could partially account for the positive and/or negative cooperative binding of speract to the receptor. PMID:26889001

  19. Expression of curcin-transferrin receptor binding peptide fusion protein and its anti-tumor activity.

    PubMed

    Zheng, Qing; Xiong, Yao-Ling; Su, Zhi-Jian; Zhang, Qi-Hao; Dai, Xiao-Yong; Li, Lin-Yan; Xiao, Xue; Huang, Ya-Dong

    2013-06-01

    Curcin can inhibit the proliferation of tumor cells and promote tumor cell apoptosis, but the cytotoxicity of curcin is not selective for tumors or normal cells. In order to enhance the targeting of the anti-tumor ability of curcin, a transferrin receptor (TfR) binding peptide, TfRBP9, was fused with curcin. The curcin-TfRBP9 gene was cloned into pQE-30 and the recombinant vector pQE-30-curcin-TfRBP9 was established. Then the recombinant vector pQE-30-curcin-TfRBP9 was transferred into Escherichia coli M15. After being induced by 0.5mM IPTG for 6h at 37°C, the expressed quantity of the recombinant protein was about 30% of the total protein. Recombinant curcin-TfRBP9 was expressed in the form of an inclusion body. After dissolution, purification and renaturation, the purity of the recombinant curcin-TfRBP9 reached 95%. Immunofluorescence analysis showed that the TfRBP9 significantly enhanced the ability of the curcin binding to HepG2, and was enriched in the cytoplasm. The curcin-TfRBP9 fusion protein had significant proliferation inhibition effects on the HepG2 cells that over-expressed transferrin receptors, had lower inhibitory effects on the SKBR-3 cells that expressed low transferrin receptors, and had the lowest inhibitory effects on the LO-2 cells that were normal human liver cells. Compared with curcin, the curcin-TfRBP9 induced higher apoptosis rates in the HepG2 cells. PMID:23545225

  20. Inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cells by the peptides related to bacterial cell wall mucopeptide precursors: quantitative structure-activity relationships

    SciTech Connect

    Kim, K.H.; Martin, Y.; Otis, E.; Mao, J.

    1989-01-01

    Quantitative structure-activity relationships (QSAR) of N-Ac amino acids, N-Ac dipeptides, and N-Ac tripeptides in inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cell wall have been developed to probe the details of the binding between ristocetin and N-acetylated peptides. The correlation equations indicate that (1) the binding is stronger for peptides in which the side chain of the C-terminal amino acid has a large molar refractivity (MR) value, (2) the binding is weaker for peptides with polar than for those with nonpolar C-terminal side chains, (3) the N-terminal amino acid in N-Ac dipeptides contributes 12 times that of the C-terminal amino acid to binding affinity, and (4) the interactions between ristocetin and the N-terminal amino acid of N-acetyl tripeptides appear to be much weaker than those with the first two amino acids.

  1. Binding studies of antimicrobial peptides to Escherichia coli cells.

    PubMed

    Avitabile, Concetta; D'Andrea, Luca D; Saviano, Michele; Olivieri, Michele; Cimmino, Amelia; Romanelli, Alessandra

    2016-09-01

    Understanding the mechanism of action of antimicrobial peptides is pivotal to the design of new and more active peptides. In the last few years it has become clear that the behavior of antimicrobial peptides on membrane model systems does not always translate to cells; therefore the need to develop methods aimed at capturing details of the interactions of peptides with bacterial cells is compelling. In this work we analyzed binding of two peptides, namely temporin B and TB_KKG6A, to Escherichia coli cells and to Escherichia coli LPS. Temporin B is a natural peptide active against Gram positive bacteria but inactive against Gram negative bacteria, TB_KKG6A is an analogue of temporin B showing activity against both Gram positive and Gram negative bacteria. We found that binding to cells occurs only for the active peptide TB_KKG6A; stoichiometry and affinity constant of this peptide toward Escherichia coli cells were determined. PMID:27450805

  2. Binding stability of peptides derived from 1ALA residue and 7GLY residues to sites near active center of fluctuating papain

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2012-05-01

    We investigated the binding stability of peptides derived from 1ALA residue and 7GLY residues to sites near active center of fluctuating papain via molecular dynamics and docking simulations. Replacing GLY residue in 8GLY with ALA residue had a positive effect on binding stability to the sites in some cases although the replacing had a negative effect on it in other cases. Furthermore the replacing had a negative effect on the chance of binding to the sites. Residue in peptide should be replaced on the basis of systematic exploration of its position.

  3. Unique Peptide Substrate Binding Properties of 110-kDa Heat-shock Protein (Hsp110) Determine Its Distinct Chaperone Activity*

    PubMed Central

    Xu, Xinping; Sarbeng, Evans Boateng; Vorvis, Christina; Kumar, Divya Prasanna; Zhou, Lei; Liu, Qinglian

    2012-01-01

    The molecular chaperone 70-kDa heat-shock proteins (Hsp70s) play essential roles in maintaining protein homeostasis. Hsp110, an Hsp70 homolog, is highly efficient in preventing protein aggregation but lacks the hallmark folding activity seen in Hsp70s. To understand the mechanistic differences between these two chaperones, we first characterized the distinct peptide substrate binding properties of Hsp110s. In contrast to Hsp70s, Hsp110s prefer aromatic residues in their substrates, and the substrate binding and release exhibit remarkably fast kinetics. Sequence and structure comparison revealed significant differences in the two peptide-binding loops: the length and properties are switched. When we swapped these two loops in an Hsp70, the peptide binding properties of this mutant Hsp70 were converted to Hsp110-like, and more impressively, it functionally behaved like an Hsp110. Thus, the peptide substrate binding properties implemented in the peptide-binding loops may determine the chaperone activity differences between Hsp70s and Hsp110s. PMID:22157767

  4. A Structural Study of Norovirus 3C Protease Specificity: Binding of a Designed Active Site-Directed Peptide Inhibitor†

    PubMed Central

    2010-01-01

    Noroviruses are the major cause of human epidemic nonbacterial gastroenteritis. Viral replication requires a 3C cysteine protease that cleaves a 200 kDa viral polyprotein into its constituent functional proteins. Here we describe the X-ray structure of the Southampton norovirus 3C protease (SV3CP) bound to an active site-directed peptide inhibitor (MAPI) which has been refined at 1.7 Å resolution. The inhibitor, acetyl-Glu-Phe-Gln-Leu-Gln-X, which is based on the most rapidly cleaved recognition sequence in the 200 kDa polyprotein substrate, reacts covalently through its propenyl ethyl ester group (X) with the active site nucleophile, Cys 139. The structure permits, for the first time, the identification of substrate recognition and binding groups in a noroviral 3C protease and thus provides important new information for the development of antiviral prophylactics. PMID:21128685

  5. Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: intracellular DNA binding and cell cycle arrest.

    PubMed

    Li, Lirong; Sun, Jin; Xia, Shufang; Tian, Xu; Cheserek, Maureen Jepkorir; Le, Guowei

    2016-04-01

    We investigated the antifungal properties and anti-candidal mechanism of antimicrobial peptide APP. The minimum inhibitory concentration of APP was 8 μM against Candida albicans and Aspeogillus flavus, the concentration against Saccharomyces cerevisiae and Cryptococcus neoformans was 16 μM, while 32 μM inhibited Aspergilla niger and Trichopyton rubrum. APP caused slight depolarization (12.32 ± 0.87%) of the membrane potential of intact C. albicans cells when it exerted its anti-candidal activity and only caused 21.52 ± 0.48% C. albicans cell membrane damage. APP interacted with cell wall membrane, caused potassium efflux and nucleotide leakage. However, confocal fluorescence microscopy experiment and flow cytometry confirmed that FITC-labeled APP penetrated C. albicans cell membrane with 52.31 ± 1.88% cell-penetrating efficiency and accumulated in the cytoplasm. Then, APP interact with C. albicans genomic DNA and completely suppressed DNA migration above weight ratio (peptide/DNA) of 2, and significantly arrested cell cycles during the S-phase (S-phase cell population was 27.09 ± 0.73%, p < 0.05) after penetrating the cell membrane. Results indicated that APP kills C. albicans for efficient cell-penetrating efficiency, strong DNA-binding affinity and significant physiological changes inducing S-phase arrest in intracellular environment. PMID:26743655

  6. Conserved molecular switch interactions in modeled cardioactive RF-NH2 peptide receptors: Ligand binding and activation.

    PubMed

    Rasmussen, M; Leander, M; Ons, S; Nichols, R

    2015-09-01

    Peptides may act through G protein-coupled receptors to influence cardiovascular performance; thus, delineating mechanisms involved in signaling is a molecular-based strategy to influence health. Molecular switches, often represented by conserved motifs, maintain a receptor in an inactive state. However, once the switch is broken, the transmembrane regions move and activation occurs. The molecular switches of Drosophila melanogaster myosuppressin (MS) receptors were previously identified to include a unique ionic lock and novel 3-6 lock, as well as transmission and tyrosine toggle switches. In addition to MS, cardioactive ligands structurally related by a C-terminal RF-NH2 include sulfakinin, neuropeptide F (NPF), short NPF, and FMRF-NH2-containing peptide subfamilies. We hypothesized receptor molecular switch motifs were conserved within a RF-NH2 subfamily and across species. Thus, we investigated RF-NH2 receptor (RFa-R) molecular switches in D. melanogaster, Tribolium castaneum, Anopheles gambiae, Rhodnius prolixus, and Bombyx mori. Adipokinetic hormone (AKH), which does not contain a RF-NH2, was also examined. The tyrosine toggle switch and ionic lock showed a higher degree of conservation within a RF-NH2 subfamily than the transmission switch and 3-7 lock. AKH receptor motifs were not representative of a RF-NH2 subfamily. The motifs and interactions of switches in the RFa-Rs were consistent with receptor activation and ligand-specific binding. PMID:26211890

  7. A heparin binding synthetic peptide from human HIP / RPL29 fails to specifically differentiate between anticoagulantly active and inactive species of heparin

    PubMed Central

    Hoke, David E; Carson, Daniel D; Höök, Magnus

    2003-01-01

    Despite extensive progress in determining structures within heparin and heparan sulfate (Hp/HS) and the discovery of numerous proteinaceous binding partners for Hp/HS so far; the only detailed characterization of a specific protein-glycosaminoglycan interaction is antithrombin III (ATIII) binding to a Hp pentasaccharide containing a unique 3-O-sulfated glucosamine residue. Previously, it was reported from our laboratories that a 16 amino acid synthetic peptide derived from the C-terminus of human HIP/RPL29 (HIP peptide-1) enriched for ATIII-dependent anticoagulant activity, presumably by specifically binding the ATIII pentasaccharide. Herein, we demonstrate that HIP peptide-1 cannot enrich ATIII-dependent anticoagulant activity from a starting pool of porcine intestinal mucosa Hp through a bio-specific interaction. However, a HIP peptide-1 column can be used to enrich for anticoagulantly active Hp from a diverse pool of glycosaminoglycans known as Hp byproducts by a mechanism of nonspecific charge interactions. Thus, HIP peptide-1 cannot recognize Hp via bio-specific interactions but binds glycosaminoglycans by non-specific charge interactions. PMID:12659638

  8. An echistatin C-terminal peptide activates GPIIbIIIa binding to fibrinogen, fibronectin, vitronectin and collagen type I and type IV.

    PubMed Central

    Wright, P S; Saudek, V; Owen, T J; Harbeson, S L; Bitonti, A J

    1993-01-01

    Integrin binding to proteins often involves recognition of domains containing the arginine-glycine-aspartate (RGD) motif. Different binding affinities and specificities of the integrin-ligand protein interactions involve additional protein domains. The n.m.r. structure of the snake-venom protein echistatin suggested that the C-terminal portion of the molecule might be important, in addition to the RGD domain, in binding to the integrin glycoprotein IIbIIIa (GPIIbIIIa) [Saudek, Atkinson and Pelton (1991) Biochem. 30, 7369-7372]. The synthetic C-terminal peptide, echistatin-(40-49), PRNPHKGPAT, (1) inhibited binding of GPIIbIIIa to immobilized echistatin (IC50 3-6 mM), but did not inhibit binding of GPIIbIIIa to immobilized fibrinogen (up to 5 mM peptide), (2) activated GPIIbIIIa binding to fibronectin and vitronectin, usual ligands for the activated integrin, (3) activated binding of GPIIbIIIa to collagen type I and type IV, proteins not usually regarded as ligands for the integrin, and (4) stimulated 125I-fibrinogen binding by human platelets. These findings argue for an interaction of this non-RGD domain in echistatin with GPIIbIIIa, leading to activation of the integrin and extension of the ligand specificity to include immobilized collagen. PMID:7687129

  9. Structural Studies of a Lipid-Binding Peptide from Tunicate Hemocytes with Anti-Biofilm Activity

    PubMed Central

    Silva, Osmar N.; Alves, Eliane S. F.; de la Fuente-Núñez, César; Ribeiro, Suzana M.; Mandal, Santi M.; Gaspar, Diana; Veiga, Ana S.; Castanho, Miguel A. R. B.; Andrade, Cesar A. S.; Nascimento, Jessica M.; Fensterseifer, Isabel C. M.; Porto, William F.; Correa, Jose R.; Hancock, Robert. E. W.; Korpole, Suresh; Oliveira, Aline L.; Liao, Luciano M.; Franco, Octavio L.

    2016-01-01

    Clavanins is a class of peptides (23aa) histidine-rich, free of post-translational modifications. Clavanins have been studied largely for their ability to disrupt bacterial membranes. In the present study, the interaction of clavanin A with membranes was assessed by dynamic light scattering, zeta potential and permeabilization assays. We observed through those assays that clavanin A lysis bacterial cells at concentrations corresponding to its MIC. Further, the structure and function of clavanin A was investigated. To better understand how clavanin interacted with bacteria, its NMR structure was elucidated. The solution state NMR structure of clavanin A in the presence of TFE-d3 indicated an α-helical conformation. Secondary structures, based on circular dichroism measurements in anionic sodium dodecyl sulfate (SDS) and TFE (2,2,2-trifluorethanol), in silico lipid-peptide docking and molecular simulations with lipids DPPC and DOPC revealed that clavanin A can adopt a variety of folds, possibly influencing its different functions. Microcalorimetry assays revealed that clavanin A was capable of discriminating between different lipids. Finally, clavanin A was found to eradicate bacterial biofilms representing a previously unrecognized function. PMID:27292548

  10. Structural Studies of a Lipid-Binding Peptide from Tunicate Hemocytes with Anti-Biofilm Activity.

    PubMed

    Silva, Osmar N; Alves, Eliane S F; de la Fuente-Núñez, César; Ribeiro, Suzana M; Mandal, Santi M; Gaspar, Diana; Veiga, Ana S; Castanho, Miguel A R B; Andrade, Cesar A S; Nascimento, Jessica M; Fensterseifer, Isabel C M; Porto, William F; Correa, Jose R; Hancock, Robert E W; Korpole, Suresh; Oliveira, Aline L; Liao, Luciano M; Franco, Octavio L

    2016-01-01

    Clavanins is a class of peptides (23aa) histidine-rich, free of post-translational modifications. Clavanins have been studied largely for their ability to disrupt bacterial membranes. In the present study, the interaction of clavanin A with membranes was assessed by dynamic light scattering, zeta potential and permeabilization assays. We observed through those assays that clavanin A lysis bacterial cells at concentrations corresponding to its MIC. Further, the structure and function of clavanin A was investigated. To better understand how clavanin interacted with bacteria, its NMR structure was elucidated. The solution state NMR structure of clavanin A in the presence of TFE-d3 indicated an α-helical conformation. Secondary structures, based on circular dichroism measurements in anionic sodium dodecyl sulfate (SDS) and TFE (2,2,2-trifluorethanol), in silico lipid-peptide docking and molecular simulations with lipids DPPC and DOPC revealed that clavanin A can adopt a variety of folds, possibly influencing its different functions. Microcalorimetry assays revealed that clavanin A was capable of discriminating between different lipids. Finally, clavanin A was found to eradicate bacterial biofilms representing a previously unrecognized function. PMID:27292548

  11. Sequence-Specific DNA Binding by a Short Peptide Dimer

    NASA Astrophysics Data System (ADS)

    Talanian, Robert V.; McKnight, C. James; Kim, Peter S.

    1990-08-01

    A recently described class of DNA binding proteins is characterized by the "bZIP" motif, which consists of a basic region that contacts DNA and an adjacent "leucine zipper" that mediates protein dimerization. A peptide model for the basic region of the yeast transcriptional activator GCN4 has been developed in which the leucine zipper has been replaced by a disulfide bond. The 34-residue peptide dimer, but not the reduced monomer, binds DNA with nanomolar affinity at 4^circC. DNA binding is sequence-specific as judged by deoxyribonuclease I footprinting. Circular dichroism spectroscopy suggests that the peptide adopts a helical structure when bound to DNA. These results demonstrate directly that the GCN4 basic region is sufficient for sequence-specific DNA binding and suggest that a major function of the GCN4 leucine zipper is simply to mediate protein dimerization. Our approach provides a strategy for the design of short sequence-specific DNA binding peptides.

  12. Non-peptide ligand binding to the formyl peptide receptor FPR2--A comparison to peptide ligand binding modes.

    PubMed

    Stepniewski, Tomasz M; Filipek, Slawomir

    2015-07-15

    Ligands of the FPR2 receptor initiate many signaling pathways including activation of phospholipase C, protein kinase C, the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/protein kinase B pathway. The possible actions include also calcium flux, superoxide generation, as well as migration and proliferation of monocytes. FPR2 activation may induce a pro- and anti-inflammatory effect depending on the ligand type. It is also found that this receptor is involved in tumor growth. Most of currently known FPR2 ligands are agonists since they were designed based on N-formyl peptides, which are natural agonists of formyl receptors. Since the non-peptide drugs are indispensable for effective treatment strategies, we performed a docking study of such ligands employing a generated dual template homology model of the FPR2 receptor. The study revealed different binding modes of particular classes of these drugs. Based on the obtained docking poses we proposed a detailed location of three hydrophobic pockets in orthosteric binding site of FPR2. Our model emphasizes the importance of aromatic stacking, especially with regard to residues His102(3.29) and Phe257(6.51), for binding of FPR2 ligands. We also identified other residues important for non-peptide ligand binding in the binding site of FPR2. PMID:25882522

  13. Physicochemical explanation of peptide binding to HLA-A*0201 major histocompatibility complex: a three-dimensional quantitative structure-activity relationship study.

    PubMed

    Doytchinova, Irini A; Flower, Darren R

    2002-08-15

    A three-dimensional quantitative structure-activity relationship method for the prediction of peptide binding affinities to the MHC class I molecule HLA-A*0201 was developed by applying the CoMSIA technique on a set of 266 peptides. To increase the self consistency of the initial CoMSIA model, the poorly predicted peptides were excluded from the training set in a stepwise manner and then included in the study as a test set. The final model, based on 236 peptides and considering the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields, had q2 = 0.683 and r2 = 0.891. The stability of this model was proven by cross-validations in two and five groups and by a bootstrap analysis of the non-cross-validated model. The residuals between the experimental pIC50 (-logIC50) values and those calculated by "leave-one-out" cross-validation were analyzed. According to the best model, 63.2% of the peptides were predicted with /residuals/ < or = 0.5 log unit; 29.3% with 1.0 < or = /residuals/ < 0.5; and 7.5% with /residuals/ > 1.0 log unit. The mean /residual/ value was 0.489. The coefficient contour maps identify the physicochemical property requirements at each position in the peptide molecule and suggest amino acid sequences for high-affinity binding to the HLA-A*0201 molecule. PMID:12112675

  14. Rational modification of a dendrimeric peptide with antimicrobial activity: consequences on membrane-binding and biological properties.

    PubMed

    Batoni, Giovanna; Casu, Mariano; Giuliani, Andrea; Luca, Vincenzo; Maisetta, Giuseppantonio; Mangoni, Maria Luisa; Manzo, Giorgia; Pintus, Manuela; Pirri, Giovanna; Rinaldi, Andrea C; Scorciapino, Mariano A; Serra, Ilaria; Ulrich, Anne S; Wadhwani, Parvesh

    2016-03-01

    Peptide-based antibiotics might help containing the rising tide of antimicrobial resistance. We developed SB056, a semi-synthetic peptide with a dimeric dendrimer scaffold, active against both Gram-negative and Gram-positive bacteria. Being the mechanism of SB056 attributed to disruption of bacterial membranes, we enhanced the amphiphilic profile of the original, empirically derived sequence [WKKIRVRLSA-NH2] by interchanging the first two residues [KWKIRVRLSA-NH2], and explored the effects of this modification on the interaction of peptide, both in linear and dimeric forms, with model membranes and on antimicrobial activity. Results obtained against Escherichia coli and Staphylococcus aureus planktonic strains, with or without salts at physiological concentrations, confirmed the added value of dendrimeric structure over the linear one, especially at physiological ionic strength, and the impact of the higher amphipathicity obtained through sequence modification on enhancing peptide performances. SB056 peptides also displayed intriguing antibiofilm properties. Staphylococcus epidermidis was the most susceptible strain in sessile form, notably to optimized linear analog lin-SB056-1 and the wild-type dendrimer den-SB056. Membrane affinity of all peptides increased with the percentage of negatively charged lipids and was less influenced by the presence of salt in the case of dendrimeric peptides. The analog lin-SB056-1 displayed the highest overall affinity, even for zwitterionic PC bilayers. Thus, in addition to electrostatics, distribution of charged/polar and hydrophobic residues along the sequence might have a significant role in driving peptide-lipid interaction. Supporting this view, dendrimeric analog den-SB056-1 retained greater membrane affinity in the presence of salt than den-SB056, despite the fact that they bear exactly the same net positive charge. PMID:26614437

  15. A Short Peptide That Mimics the Binding Domain of TGF-β1 Presents Potent Anti-Inflammatory Activity

    PubMed Central

    Vaz, Emília R.; Fujimura, Patrícia T.; Araujo, Galber R.; da Silva, Carlos A. T.; Silva, Rangel L.; Cunha, Thiago M.; Lopes-Ferreira, Mônica; Lima, Carla; Ferreira, Márcio J.; Cunha-Junior, Jair P.; Taketomi, Ernesto A.; Goulart, Luiz R.; Ueira-Vieira, Carlos

    2015-01-01

    The transforming growth factor beta 1 (TGF-β1) is a pleiotropic cytokine with multiple roles in development, wound healing, and immune regulation. TGF-β1-mediated immune dysfunction may lead to pathological conditions, such as inflammation. Chronic inflammatory process is characterized by a continuous release of pro-inflammatory cytokines, and the inhibition or the blockage of these cytokines signaling pathways are considered a target treatment. In this context, despite the high numbers of TGF-β-targeted pathways, the inducible regulatory T cells (iTreg) to control inflammation seems to be a promising approach. Our aim was to develop novel peptides through phage display (PhD) technology that could mimic TGF-β1 function with higher potency. Specific mimetic peptides were obtained through a PhD subtraction strategy from whole cell binding using TGF-β1 recombinant as a competitor during elution step. We have selected a peptide that seems to play an important role on cellular differentiation and modulation of TNF-α and IL-10 cytokines. The synthetic pm26TGF-β1 peptide tested in PBMC significantly down-modulated TNF-α and up-regulated IL-10 responses, leading to regulatory T cells (Treg) phenotype differentiation. Furthermore, the synthetic peptide was able to decrease leukocytes rolling in BALB/C mice and neutrophils migration during inflammatory process in C57BL/6 mice. These data suggest that this peptide may be useful for the treatment of inflammatory diseases, especially because it displays potent anti-inflammatory properties and do not exhibit neutrophils’ chemoattraction. PMID:26312490

  16. Enhanced In Vivo Tumor Detection by Active Tumor Cell Targeting Using Multiple Tumor Receptor-Binding Peptides Presented on Genetically Engineered Human Ferritin Nanoparticles.

    PubMed

    Kwon, Koo Chul; Ko, Ho Kyung; Lee, Jiyun; Lee, Eun Jung; Kim, Kwangmeyung; Lee, Jeewon

    2016-08-01

    Human ferritin heavy-chain nanoparticle (hFTH) is genetically engineered to present tumor receptor-binding peptides (affibody and/or RGD-derived cyclic peptides, named 4CRGD here) on its surface. The affibody and 4CRGD specifically and strongly binds to human epidermal growth factor receptor I (EGFR) and human integrin αvβ3, respectively, which are overexpressed on various tumor cells. Through in vitro culture of EGFR-overexpressing adenocarcinoma (MDA-MB-468) and integrin-overexpressing glioblastoma cells (U87MG), it is clarified that specific interactions between receptors on tumor cells and receptor-binding peptides on engineered hFTH is critical in active tumor cell targeting. After labeling with the near-infrared fluorescence dye (Cy5.5) and intravenouse injection into MDA-MB-468 or U87MG tumor-bearing mice, the recombinant hFTHs presenting either peptide or both of affibody and 4CRGD are successfully delivered to and retained in the tumor for a prolonged period of time. In particular, the recombinant hFTH presenting both affibody and 4CRGD notably enhances in vivo detection of U87MG tumors that express heterogeneous receptors, integrin and EGFR, compared to the other recombinant hFTHs presenting either affibody or 4CRGD only. Like affibody and 4CRGD used in this study, other multiple tumor receptor-binding peptides can be also genetically introduced to the hFTH surface for actively targeting of in vivo tumors with heterogenous receptors. PMID:27356892

  17. A Phase I Clinical Trial of Systemically Delivered NEMO Binding Domain Peptide in Dogs with Spontaneous Activated B-Cell like Diffuse Large B-Cell Lymphoma

    PubMed Central

    Habineza Ndikuyeze, Georges; Gaurnier-Hausser, Anita; Patel, Reema; Baldwin, Albert S.; May, Michael J.; Flood, Patrick; Krick, Erika; Propert, Kathleen J.; Mason, Nicola J.

    2014-01-01

    Activated B-Cell (ABC) Diffuse Large B-Cell Lymphoma (DLBCL) is a common, aggressive and poorly chemoresponsive subtype of DLBCL, characterized by constitutive canonical NF-κB signaling. Inhibition of NF-κB signaling leads to apoptosis of ABC-DLBCL cell lines, suggesting targeted disruption of this pathway may have therapeutic relevance. The selective IKK inhibitor, NEMO Binding Domain (NBD) peptide effectively blocks constitutive NF-κB activity and induces apoptosis in ABC-DLBCL cells in vitro. Here we used a comparative approach to determine the safety and efficacy of systemic NBD peptide to inhibit constitutive NF-κB signaling in privately owned dogs with spontaneous newly diagnosed or relapsed ABC-like DLBCL. Malignant lymph nodes biopsies were taken before and twenty-four hours after peptide administration to determine biological effects. Intravenous administration of <2 mg/kg NBD peptide was safe and inhibited constitutive canonical NF-κB activity in 6/10 dogs. Reductions in mitotic index and Cyclin D expression also occurred in a subset of dogs 24 hours post peptide and in 3 dogs marked, therapeutically beneficial histopathological changes were identified. Mild, grade 1 toxicities were noted in 3 dogs at the time of peptide administration and one dog developed transient subclinical hepatopathy. Long term toxicities were not identified. Pharmacokinetic data suggested rapid uptake of peptide into tissues. No significant hematological or biochemical toxicities were identified. Overall the results from this phase I study indicate that systemic administration of NBD peptide is safe and effectively blocks constitutive NF-κB signaling and reduces malignant B cell proliferation in a subset of dogs with ABC-like DLBCL. These results have potential translational relevance for human ABC-DLBCL. PMID:24798348

  18. Crystallographic Recognition Controls Peptide Binding for Bio-Based Nanomaterials

    SciTech Connect

    R Coppage; J Slocik; B Briggs; A Frenkel; H Heinz; R Naik; M Knecht

    2011-12-31

    The ability to control the size, shape, composition, and activity of nanomaterials presents a formidable challenge. Peptide approaches represent new avenues to achieve such control at the synthetic level; however, the critical interactions at the bio/nano interface that direct such precision remain poorly understood. Here we present evidence to suggest that materials-directing peptides bind at specific time points during Pd nanoparticle (NP) growth, dictated by material crystallinity. As such surfaces are presented, rapid peptide binding occurs, resulting in the stabilization and size control of single-crystal NPs. Such specificity suggests that peptides could be engineered to direct the structure of nanomaterials at the atomic level, thus enhancing their activity.

  19. Peptide binding at the GLP-1 receptor.

    PubMed

    Mann, R; Nasr, N; Hadden, D; Sinfield, J; Abidi, F; Al-Sabah, S; de Maturana, R López; Treece-Birch, J; Willshaw, A; Donnelly, D

    2007-08-01

    The receptor for GLP-1 [glucagon-like peptide-1-(7-36)-amide] is a member of the 'Family B' of GPCRs (G-protein-coupled receptors) comprising an extracellular N-terminal domain containing six conserved cysteine residues (the N-domain) and a core domain (or J-domain) comprising the seven transmembrane helices and interconnecting loop regions. According to the two-domain model for peptide binding, the N-domain is primarily responsible for providing most of the peptide binding energy, whereas the core domain is responsible for binding the N-terminal region of the peptide agonists and transmitting the signal to the intracellular G-protein. Two interesting differences between the binding properties of two GLP-1 receptor agonists, GLP-1 and EX-4 (exendin-4), can be observed. First, while GLP-1 requires its full length to maintain high affinity, the eight N-terminal residues of EX-4 can be removed with little reduction in affinity. Secondly, EX-4 (but not GLP-1) can bind to the fully isolated N-domain of the receptor with an affinity matching that of the full-length receptor. In order to better understand these differences, we have studied the interaction between combinations of full-length or truncated ligands with full-length or truncated receptors. PMID:17635131

  20. Specific binding sites for muramyl peptides on murine macrophages

    SciTech Connect

    Silverman, D.H.S.; Krueger, J.M.; Karnovsky, M.L.

    1986-03-15

    Two radiolabeled (/sup 125/I) muramyl peptide derivatives of high specific activity were prepared: a tripeptide with an iodinated C-terminal tyrosine methyl ester (Ligand I), and a muramyl tripeptide with a C-terminal lysine derivatized with Bolton-Hunter reagent (Ligand II). These were used to characterize binding of muramyl peptides to monolayers of murine macrophages. Saturable high-affinity binding to resident, caseinate-elicited, and Listeria-activated peritoneal cells was observed with both radioligands. Binding affinities varied with the state of activation of the macrophages, and K/sub D/ values ranged from 48 +/- 33 pM (for resident macrophages, Ligand I) to 1020 +/- 90 pM (for activated macrophages, Ligand II). Specific binding sites were also found on a macrophage-derived cell line. The ability of several unlabeled muramyl peptides to compete with Ligands I and II for their binding sites was tested. Competition was stereospecific and correlated with known biological activities of these compounds (i.e., immunoadjuvanticity, pyrogenicity, and somnogenicity). The sites identified here for Ligands I and II may mediate some of the effects that muramyl peptides have previously been demonstrated to have on macrophages.

  1. Collagen-Gelatin Mixtures as Wound Model, and Substrates for VEGF-Mimetic Peptide Binding and Endothelial Cell Activation

    PubMed Central

    Chan, Tania R.; Stahl, Patrick J.; Li, Yang; Yu, S. Michael

    2015-01-01

    In humans, high level of collagen remodeling is seen during normal physiological events such as bone renewal, as well as in pathological conditions, such as arthritis, tumor growth and other chronic wounds. Our lab recently discovered that collagen mimetic peptide (CMP) is able to hybridize with denatured collagens at these collagen remodeling sites with high affinity. Here, we show that the CMP's high binding affinity to denatured collagens can be utilized to deliver angiogenic signals to scaffolds composed of heat-denatured collagens (gelatins). We first demonstrate hybridization between denatured collagens and QKCMP, a CMP with pro-angiogenic QK domain. We show that high levels of QKCMP can be immobilized to a new artificial matrix containing both fibrous type I collagen and heat denatured collagen through triple helix hybridization, and that the QKCMP is able to stimulate early angiogenic response of endothelial cells (ECs). We also show that the QKCMP can bind to excised tissues from burn injuries in cutaneous mouse model, suggesting its potential for promoting neovascularization of burn wounds. PMID:25584990

  2. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor

    SciTech Connect

    Johns, Douglas G. . E-mail: Douglas.G.Johns@gsk.com; Ao, Zhaohui; Heidrich, Bradley J.; Hunsberger, Gerald E.; Graham, Taylor; Payne, Lisa; Elshourbagy, Nabil; Lu, Quinn; Aiyar, Nambi; Douglas, Stephen A.

    2007-06-22

    Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [{sup 125}I]-ANP from NPR-C with pM-to-nM K {sub i} values. DNP displaced [{sup 125}I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K {sub i} > 1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.

  3. The anabolic effects of vitamin D-binding protein-macrophage activating factor (DBP-MAF) and a novel small peptide on bone.

    PubMed

    Schneider, Gary B; Grecco, Kristina J; Safadi, Fayez F; Popoff, Steven N

    2003-01-01

    Vitamin D-binding protein-macrophage activating factor (DBP-MAF) has previously been shown to stimulate bone resorption and correct the skeletal defects associated with osteopetrosis in two nonallelic mutations in rats. This same protein and a small fragment of the protein have now been shown to demonstrate an anabolic effect on the skeleton of both newborn and young adult, intact rats. The novel peptide fragment was synthetically produced based on the human amino acid sequence at the site of glycosylation in the third domain of the native protein (DBP). The peptide tested is 14 amino acids in length and demonstrates no homologies other than to that region of DBP. Newborn rats were injected i.p. with saline, peptide (0.4 ng/g body wt.) or DBP-MAF (2 ng/g body wt.) every other day from birth to 14 days of age. On day 16 the rats were euthanized and the long bones collected for bone densitometry by pQCT. After 2 weeks of treatment with either the whole protein (DBP-MAF) or the small peptide, bone density was significantly increased in the treated animals compared to the saline controls. Young adult female rats (180 grams) were given s.c. injections of saline or peptide (0.4 ng/g body wt. or 5 ng/g body wt.) every other day for 2 weeks; 2 days after the final injections, the rats were euthanized and the femurs and tibias collected for bone densitometry. Both doses of the peptide resulted in significant increases in bone density as determined by pQCT. Young adult rats were injected locally with a single dose of the peptide (1 microg) or saline into the marrow cavity of the distal femur. One week after the single injection, the bones were collected for radiographic and histological evaluation. The saline controls showed no evidence of new bone formation, whereas the peptide-treated animals demonstrated osteoinduction in the marrow cavity and osteogenesis of surrounding cortical and metaphyseal bone. These data suggest that DBP-MAF and the synthetic peptide represent

  4. Relative free energy of binding between antimicrobial peptides and SDS or DPC micelles.

    PubMed

    Sayyed-Ahmad, Abdallah; Khandelia, Himanshu; Kaznessis, Yiannis N

    2009-09-01

    We present relative binding free energy calculations for six antimicrobial peptide-micelle systems, three peptides interacting with two types of micelles. The peptides are the scorpion derived antimicrobial peptide (AMP), IsCT and two of its analogues. The micelles are dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles. The interfacial electrostatic properties of DPC and SDS micelles are assumed to be similar to those of zwitterionic mammalian and anionic bacterial membrane interfaces, respectively. We test the hypothesis that the binding strength between peptides and the anionic micelle SDS can provide information on peptide antimicrobial activity, since it is widely accepted that AMPs function by binding to and disrupting the predominantly anionic lipid bilayer of the bacterial cytoplasmic membrane. We also test the hypothesis that the binding strength between peptides and the zwitterionic micelle DPC can provide information on peptide haemolytic activities, since it is accepted that they also bind to and disrupt the zwitterionic membrane of mammalian cells. Equilibrium structures of the peptides, micelles and peptide-micelle complexes are obtained from more than 300 ns of molecular dynamics simulations. A thermodynamic cycle is introduced to compute the binding free energy from electrostatic, non-electrostatic and entropic contributions. We find relative binding free energy strengths between peptides and SDS to correlate with the experimentally measured rankings for peptide antimicrobial activities, and relative free energy binding strengths between peptides and DPC to correlate with the observed rankings for peptide haemolytic toxicities. These findings point to the importance of peptide-membrane binding strength for antimicrobial activity and haemolytic activity. PMID:21113423

  5. The Human Antimicrobial Peptide LL-37 Binds Directly to CsrS, a Sensor Histidine Kinase of Group A Streptococcus, to Activate Expression of Virulence Factors*

    PubMed Central

    Velarde, Jorge J.; Ashbaugh, Melissa; Wessels, Michael R.

    2014-01-01

    Group A Streptococcus (GAS) responds to subinhibitory concentrations of LL-37 by up-regulation of virulence factors through the CsrRS (CovRS) two-component system. The signaling mechanism, however, is unclear. To determine whether LL-37 signaling reflects specific binding to CsrS or rather a nonspecific response to LL-37-mediated membrane damage, we tested LL-37 fragments for CsrRS signaling and for GAS antimicrobial activity. We identified a 10-residue fragment (RI-10) of LL-37 as the minimal peptide that retains the ability to signal increased expression of GAS virulence factors, yet it has no detectable antimicrobial activity against GAS. Substitution of individual key amino acids in RI-10 reduced or abrogated signaling. These data do not support the hypothesis that CsrS detects LL-37-induced damage to the bacterial cell membrane but rather suggest that LL-37 signaling is mediated by a direct interaction with CsrS. To test whether LL-37 binds to CsrS, we used the purified CsrS extracellular domain to pull down LL-37 in vitro, a result that provides further evidence that LL-37 binds to CsrS. The dissociation of CsrS-mediated signaling from membrane damage by LL-37 fragments together with in vitro evidence for a direct LL-37-CsrS binding interaction constitute compelling evidence that signal transduction by LL-37 through CsrS reflects a direct ligand/receptor interaction. PMID:25378408

  6. Novel Heparan Sulfate-Binding Peptides for Blocking Herpesvirus Entry

    PubMed Central

    Dogra, Pranay; Martin, Emily B.; Williams, Angela; Richardson, Raphael L.; Foster, James S.; Hackenback, Nicole; Kennel, Stephen J.; Sparer, Tim E.; Wall, Jonathan S.

    2015-01-01

    Human cytomegalovirus (HCMV) infection can lead to congenital hearing loss and mental retardation. Upon immune suppression, reactivation of latent HCMV or primary infection increases morbidity in cancer, transplantation, and late stage AIDS patients. Current treatments include nucleoside analogues, which have significant toxicities limiting their usefulness. In this study we screened a panel of synthetic heparin-binding peptides for their ability to prevent CMV infection in vitro. A peptide designated, p5+14 exhibited ~ 90% reduction in murine CMV (MCMV) infection. Because negatively charged, cell-surface heparan sulfate proteoglycans (HSPGs), serve as the attachment receptor during the adsorption phase of the CMV infection cycle, we hypothesized that p5+14 effectively competes for CMV adsorption to the cell surface resulting in the reduction in infection. Positively charged Lys residues were required for peptide binding to cell-surface HSPGs and reducing viral infection. We show that this inhibition was not due to a direct neutralizing effect on the virus itself and that the peptide blocked adsorption of the virus. The peptide also inhibited infection of other herpesviruses: HCMV and herpes simplex virus 1 and 2 in vitro, demonstrating it has broad-spectrum antiviral activity. Therefore, this peptide may offer an adjunct therapy for the treatment of herpes viral infections and other viruses that use HSPGs for entry. PMID:25992785

  7. N-terminal modification of VEGF-A C terminus-derived peptides delineates structural features involved in neuropilin-1 binding and functional activity.

    PubMed

    Jia, Haiyan; Aqil, Rehan; Cheng, Lili; Chapman, Chris; Shaikh, Shaheda; Jarvis, Ashley; Chan, A W Edith; Hartzoulakis, Basil; Evans, Ian M; Frolov, Antonina; Martin, John; Frankel, Paul; Djordevic, Snezana; Zachary, Ian C; Selwood, David L

    2014-05-26

    The interaction between VEGF-A and its neuropilin (NRP) receptors mediates a number of important biological effects. NRP1 and the related molecule NRP2 are widely expressed on multiple tumour types and throughout the tumour vasculature, and are emerging as critical molecules required for the progression of angiogenic diseases. Given the increasing evidence supporting a role for NRP1 in tumour development, there is growing interest in developing inhibitors of NRP1 interactions with VEGF and its other ligands. In order to probe the interaction we synthesised a number of exon 7- and 8-derived bicyclic peptides with N-terminal lipophilic groups and found a simple N-octanoyl derivative (EG00086) to be the most potent and functionally active. Detailed modelling studies indicated that new intramolecular hydrogen bonds were formed, stabilising the structure and possibly contributing to the potency. Removal of a salt bridge between D142 and R164 implicated in VEGF-A binding to neuropilin-1 had a minor effect on potency. Isothermal calorimetry was used to assess binding of EG00086 to NRP1 and NRP2, and the stability of the peptide in serum and in vivo was investigated. EG00086 is a potent blocker of VEGF-promoted cellular adhesion to extracellular matrices, and phosphorylation of p130Cas contributes to this effect. PMID:24771685

  8. Identification of gliadin-binding peptides by phage display

    PubMed Central

    2011-01-01

    Background Coeliac disease (CD) is a common and complex disorder of the small intestine caused by intolerance to wheat gluten and related edible cereals like barley and rye. Peptides originating from incomplete gliadin digestion activate the lamina propria infiltrating T cells to release proinflammatory cytokines, which in turn cause profound tissue remodelling of the small intestinal wall. There is no cure for CD except refraining from consuming gluten-containing products. Results Phage from a random oligomer display library were enriched by repeated pannings against immobilised gliadin proteins. Phage from the final panning round were plated, individual plaques picked, incubated with host bacteria, amplified to a population size of 1011 to 1012 and purified. DNA was isolated from 1000 purified phage populations and the region covering the 36 bp oligonucleotide insert from which the displayed peptides were translated, was sequenced. Altogether more than 150 different peptide-encoding sequences were identified, many of which were repeatedly isolated under various experimental conditions. Amplified phage populations, each expressing a single peptide, were tested first in pools and then one by one for their ability to inhibit binding of human anti-gliadin antibodies in ELISA assays. These experiments showed that several of the different peptide-expressing phage tested inhibited the interaction between gliadin and anti-gliadin antibodies. Finally, four different peptide-encoding sequences were selected for further analysis, and the corresponding 12-mer peptides were synthesised in vitro. By ELISA assays it was demonstrated that several of the peptides inhibited the interaction between gliadin molecules and serum anti-gliadin antibodies. Moreover, ELISA competition experiments as well as dot-blot and western blot revealed that the different peptides interacted with different molecular sites of gliadin. Conclusions We believe that several of the isolated and

  9. Inhibitory effect of midkine-binding peptide on tumor proliferation and migration

    PubMed Central

    Huang, Hui-Lian; Shen, Jian-Fen; Min, Li-Shan; Ping, Jin-Liang; Lu, Yong-Liang; Dai, Li-Cheng

    2015-01-01

    Background: To investigate the inhibitory effect of midkine-binding peptides on human umbilical vein endothelial cells (HUVECs) proliferation and angiogenesis of xenograft tumor. Methods: The midkine-binding peptides were panned by Ph.D.-7™ Phage Display Peptide Library Kit, and the specific binding activities of positive clones to target protein were examined by phage ELISA. The effect of midkine-binding peptides on proliferation of HUVECs was confirmed by MTT test. The xenograft tumor model was formed in BALB/c mice with the murine hepatocarcinoma cells H22 (H22). Microvessel density (MVD) was analyzed by immunohistochemistry of factor VIII staining. Results: Midkine-binding peptides have the inhibitory effects on tumor angiogenesis, a proliferation assay using human umbilical vein endothelial cells (HUVECs) indicated that particular midkine-binding peptides significantly inhibited the proliferation of the HUVECs. Midkine-binding peptides were also observed to efficiently suppress angiogenesis induced by murine hepatocarcinoma H22 cells in BALB/c nude mice. Conclusion: The midkine-binding peptides can inhibit solid tumor growth by retarding the formation of new blood vessels. The results indicate that midkine-binding peptides may represent potent anti-angiogenesis agents in vivo. PMID:26191241

  10. Pituitary adenylate cyclase-activating peptide induces long-lasting neuroprotection through the induction of activity-dependent signaling via the cyclic AMP response element-binding protein-regulated transcription co-activator 1

    PubMed Central

    Baxter, Paul S; Martel, Marc-Andre; McMahon, Aoife; Kind, Peter C; Hardingham, Giles E

    2011-01-01

    Pituitary adenylate cyclase-activating peptide (PACAP) is a neuroprotective peptide which exerts its effects mainly through the cAMP-protein kinase A (PKA) pathway. Here, we show that in cortical neurons, PACAP-induced PKA signaling exerts a major part of its neuroprotective effects indirectly, by triggering action potential (AP) firing. Treatment of cortical neurons with PACAP induces a rapid and sustained PKA-dependent increase in AP firing and associated intracellular Ca2+ transients, which are essential for the anti-apoptotic actions of PACAP. Transient exposure to PACAP induces long-lasting neuroprotection in the face of apoptotic insults which is reliant on AP firing and the activation of cAMP response element (CRE) binding protein (CREB)-mediated gene expression. Although direct, activity-independent PKA signaling is sufficient to trigger phosphorylation on CREB’s activating serine-133 site, this is insufficient for activation of CREB-mediated gene expression. Full activation is dependent on CREB-regulated transcription co-activator 1 (CRTC1), whose PACAP-induced nuclear import is dependent on firing activity-dependent calcineurin signaling. Over-expression of CRTC1 is sufficient to rescue PACAP-induced CRE-mediated gene expression in the face of activity-blockade, while dominant negative CRTC1 interferes with PACAP-induced, CREB-mediated neuroprotection. Thus, the enhancement of AP firing may play a significant role in the neuroprotective actions of PACAP and other adenylate cyclase-coupled ligands. PMID:21623792

  11. Peptide mini-scaffold facilitates JNK3 activation in cells

    PubMed Central

    Zhan, Xuanzhi; Stoy, Henriette; Kaoud, Tamer S.; Perry, Nicole A.; Chen, Qiuyan; Perez, Alejandro; Els-Heindl, Sylvia; Slagis, Jack V.; Iverson, Tina M.; Beck-Sickinger, Annette G.; Gurevich, Eugenia V.; Dalby, Kevin N.; Gurevich, Vsevolod V.

    2016-01-01

    Three-kinase mitogen-activated protein kinase (MAPK) signaling cascades are present in virtually all eukaryotic cells. MAPK cascades are organized by scaffold proteins, which assemble cognate kinases into productive signaling complexes. Arrestin-3 facilitates JNK activation in cells, and a short 25-residue arrestin-3 peptide was identified as the critical JNK3-binding element. Here we demonstrate that this peptide also binds MKK4, MKK7, and ASK1, which are upstream JNK3-activating kinases. This peptide is sufficient to enhance JNK3 activity in cells. A homologous arrestin-2 peptide, which differs only in four positions, binds MKK4, but not MKK7 or JNK3, and is ineffective in cells at enhancing activation of JNK3. The arrestin-3 peptide is the smallest MAPK scaffold known. This peptide or its mimics can regulate MAPKs, affecting cellular decisions to live or die. PMID:26868142

  12. Endogenous peptide(s) inhibiting [3H]cocaine binding in mouse brain.

    PubMed

    Reith, M E; Sershen, H; Lajtha, A

    1980-12-01

    The supernatant fraction of centrifuged homogenate of brain tissue contains material that inhibits the saturable binding of [3H]cocaine to crude mouse brain membranes. This material was subjected to heat treatment to remove protein; further purification was achieved by filtering through an Amicon UM-10 membrane ultrafilter and gel filtration of the ultrafiltrate on Sephadex G-25. Sensitivity to acid hydrolysis and peptidase action indicates that the inhibitory activity resides in peptide material with low molecular weight. The partially purified inhibitor has similar effects to that of cocaine on the specific binding of various ligands to opiate and nonopiate receptors in mouse brain membranes. PMID:6261176

  13. Screening peptide array library for the identification of cancer cell-binding peptides.

    PubMed

    Kaur, Kamaljit; Ahmed, Sahar; Soudy, Rania; Azmi, Sarfuddin

    2015-01-01

    The identification of cancer cell-specific ligands is a key requirement for the targeted delivery of chemotherapeutic agents. Usually phage display system is employed to discover cancer-specific peptides through a biopanning process. Synthetic peptide array libraries can be used as a complementary method to phage display for screening and identifying cancer cell-specific ligands. Here, we describe a peptide array-whole cell binding assay to identify cancer cell-specific peptides. A peptide array library based on a lead dodecapeptide, p160, is synthesized on a functionalized cellulose membrane using solid phase chemistry and a robotic synthesizer. The relative binding affinity of the peptide library is evaluated by incubating the library with fluorescently labeled cancerous or non-cancerous cells. Thereby the assay allows picking peptides that show selective and high binding to cancerous cells. These peptides represent potential candidates for use in cancer-targeted drug delivery, imaging, and diagnosis. PMID:25616337

  14. Concepts for Biologically Active Peptides

    PubMed Central

    Kastin, Abba J.; Pan, Weihong

    2012-01-01

    Here we review a unique aspect of CNS research on biologically active peptides that started against a background of prevalent dogmas but ended by exerting considerable influence on the field. During the course of refuting some doctrines, we introduced several concepts that were unconventional and paradigm-shifting at the time. We showed that (1) hypothalamic peptides can act ‘up’ on the brain as well as ‘down’ on the pituitary, (2) peripheral peptides can affect the brain, (3) peptides can cross the blood-brain barrier, (4) the actions of peptides can persist longer than their half-lives in blood, (5) perinatal administration of peptides can exert actions persisting into adulthood, (6) a single peptide can have more than one action, (7) dose-response relationships of peptides need not be linear, (8) the brain produces antiopiate as well as opiate peptides, (9) there is a selective high affinity endogenous peptide ligand for the mu-opiate receptor, (10) a peptide’s name does not restrict its effects, and (11) astrocytes assume an active role in response to metabolic disturbance and hyperleptinemia. The evolving questions in our laboratories reflect the diligent effort of the neuropeptide community to identify the roles of peptides in the CNS. The next decade is expected to see greater progress in the following areas: (a) interactions of peptides with other molecules in the CNS; (b) peptide involvement in cell-cell interactions; and (c) peptides in neuropsychiatric, autoimmune, and neurodegenerative diseases. The development of peptidomics and gene silencing approaches will expedite the formation of many new concepts in a new era. PMID:20726835

  15. Glucagon-like peptide-1 binding to rat skeletal muscle.

    PubMed

    Delgado, E; Luque, M A; Alcántara, A; Trapote, M A; Clemente, F; Galera, C; Valverde, I; Villanueva-Peñacarrillo, M L

    1995-01-01

    We have found [125I]glucagon-like peptide-1(7-36)-amide-specific binding activity in rat skeletal muscle plasma membranes, with an estimated M(r) of 63,000 by cross-linking and SDS-PAGE. The specific binding was time and membrane protein concentration dependent, and displaceable by unlabeled GLP-1(7-36)-amide with an ID50 of 3 x 10(-9) M of the peptide; GLP-1(1-36)-amide also competed, whereas glucagon and insulin did not. GLP-1(7-36)-amide did not modify the basal adenylate cyclase activity in skeletal muscle plasma membranes. These data, together with our previous finding of a potent glycogenic effect of GLP-1(7-36)-amide in rat soleus muscle, and also in isolated hepatocytes, which was not accompanied by a rise in the cell cyclic AMP content, lead use to believe that the insulin-like effects of this peptide on glucose metabolism in the muscle could be mediated by a type of receptor somehow different to that described for GLP-1 in pancreatic B cells, where GLP-1 action is mediated by the cyclic AMP-adenylate cyclase system. PMID:7784253

  16. Inhibition by synthetic peptides from human IgG Fc of OKT4 binding and Fc receptor binding

    SciTech Connect

    Gaarde, W.A.; McClurg, M.R.; Hahn, G.S.; Plummer, J.M.

    1986-03-05

    Synthetic peptides from the Fc region of human IgG were tested for the ability to inhibit IgG rosette formation, /sup 125/I-IgG binding to Fc receptors on lymphocytes, and expression of the T4 cell determinant. The Fc/sub ..gamma../ peptides inhibited IgG rosette formation and competitively inhibited both /sup 125/I-IgG binding to Fc receptors and OKT4 binding to the T4 cell determinant. Peptides containing D-amino acids did not inhibit IgG rosettes, OKT4 binding or /sup 125/I-IgG binding. OKT4 binding to T4 on MNC was inhibited by heat aggregated IgG but not by monomeric IgG. OKT3, OKT8 and OKT11 binding to their determinants was not altered by Fc/sub ..gamma../ peptides, aggregated IgG or monomeric IgG. These results suggest that T4 antigen, Fc receptor for IgG and the Fc/sub ..gamma../ peptide binding site are in close proximity on the cell surface and when occupied by their respective ligands may sterically hinder binding to other sites. Alternatively, Fc/sub ..gamma../ peptides may indirectly regulate cell surface expression of T4 and/or Fc receptors for IgG. These Fc/sub ..gamma../ peptides inhibit the MLR, inhibit antigen induced T cell proliferation and reverse animal models of autoimmune disease. The immunoregulatory activities of these peptides may be related to their selective action on T4 helper/inducer lymphocytes expressing Fc receptors.

  17. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  18. A Prevalent Peptide-Binding Domain Guides Ribosomal Natural Product Biosynthesis

    PubMed Central

    Burkhart, Brandon J.; Hudson, Graham A.; Dunbar, Kyle L.; Mitchell, Douglas A.

    2015-01-01

    Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a rapidly growing natural product class. RiPP precursor peptides can undergo extensive enzymatic tailoring, yielding structurally and functionally diverse products, and their biosynthetic logic makes them attractive bioengineering targets. Recent work suggests that unrelated RiPP modifying enzymes contain structurally similar precursor peptide-binding domains. Using profile hidden Markov model comparisons, we discovered related and previously unrecognized peptide-binding domains in proteins spanning the majority of known prokaryotic RiPP classes; thus, we named this conserved domain the RiPP precursor peptide recognition element (RRE). Through binding studies, we verify the role of the RRE for three distinct RiPP classes: linear azole-containing peptides, thiopeptides, and lasso peptides. Because numerous RiPP biosynthetic enzymes act on peptide substrates, our findings have powerful predictive value as to which protein(s) drive substrate binding, laying a foundation for further characterization of RiPP biosynthetic pathways and the rational engineering of new peptide-binding activities. PMID:26167873

  19. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2006-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  20. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2005-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  1. Glucagon-like peptide-1 binding to rat hepatic membranes.

    PubMed

    Villanueva-Peñacarrillo, M L; Delgado, E; Trapote, M A; Alcántara, A; Clemente, F; Luque, M A; Perea, A; Valverde, I

    1995-07-01

    We have found [125I]glucagon-like peptide (GLP)-1(7-36)amide specific binding activity in rat liver and isolated hepatocyte plasma membranes, with an M(r) of approximately 63,000, estimated by cross-linking and SDS-PAGE. The specific binding was time- and membrane protein concentration-dependent, and equally displaced by unlabelled GLP-1(7-36)amide and by GLP-1(1-36)amide, achieving its ID50 at 3 x 10(-9) M of the peptides. GLP-1(7-36)amide did not modify the basal or the glucagon (10(-8) M)-stimulated adenylate cyclase in the hepatocyte plasma membranes. These data, together with our previous findings of a potent glycogenic effect of GLP-1(7-36)amide in isolated rat hepatocytes, led us to postulate that the insulin-like effects of this peptide on glucose liver metabolism could be mediated by a type of receptor probably different from that described for GLP-1 in pancreatic B-cells or, alternatively, by the same receptor which, in this tissue as well as in muscle, uses a different transduction system. PMID:7561616

  2. Analysis of protective antigen peptide binding motifs using bacterial display technology

    NASA Astrophysics Data System (ADS)

    Sarkes, Deborah A.; Dorsey, Brandi L.; Stratis-Cullum, Dimitra N.

    2015-05-01

    In today's fast-paced world, a new biological threat could emerge at any time, necessitating a prompt, reliable, inexpensive detection reagent in each case. Combined with magnetic-activated cell sorting (MACS), bacterial display technology makes it possible to isolate selective, high affinity peptide reagents in days to weeks. Utilizing the eCPX display scaffold is also a rapid way to screen potential peptide reagents. Peptide affinity reagents for protective antigen (PA) of the biothreat Bacillus anthracis were previously discovered using bacterial display. Bioinformatics analysis resulted in the consensus sequence WXCFTC. Additionally, we have discovered PA binding peptides with a WW motif, one of which, YGLHPWWKNAPIGQR, can pull down PA from 1% human serum. The strength of these two motifs combined, to obtain a WWCFTC consensus, is assessed here using Fluorescence Activated Cell Sorting (FACS). While monitoring binding to PA, overall expression of the display scaffold was assessed using the YPet Mona expression control tag (YPet), and specificity was assessed by binding to Streptavidin R-Phycoerythrin (SAPE). The importance of high YPet binding is highlighted as many of the peptides in one of the three replicate experiments fell below our 80% binding threshold. We demonstrate that it is preferable to discard this experiment, due to questionable expression of the peptide itself, than to try to normalize for relative expression. The peptides containing the WWCFTC consensus were of higher affinity and greater specificity than the peptides containing the WW consensus alone, validating further investigation to optimize known PA binders.

  3. Peptide binding to HLA-DR1: a peptide with most residues substituted to alanine retains MHC binding.

    PubMed Central

    Jardetzky, T S; Gorga, J C; Busch, R; Rothbard, J; Strominger, J L; Wiley, D C

    1990-01-01

    Major histocompatibility complex (MHC) glycoproteins play an important role in the development of an effective immune response. An important MHC function is the ability to bind and present 'processed antigens' (peptides) to T cells. We show here that the purified human class II MHC molecule, HLA-DR1, binds peptides that have been shown to be immunogenic in vivo. Detergent-solubilized HLA-DR1 and a papain-cleaved form of the protein lacking the transmembrane and intracellular regions have similar peptide binding properties. A total of 39 single substitutions were made throughout an HLA-DR1 restricted hemagglutinin epitope and the results determine one amino acid in this peptide which is crucial to binding. Based on this analysis, a synthetic peptide was designed containing two residues from the original hemagglutinin epitope embedded in a chain of polyalanine. This peptide binds to HLA-DR1, indicating that the majority of peptide side chains are not required for high affinity peptide binding. Images Fig. 3. PMID:2189723

  4. Identification of peptides that bind to irradiated pancreatic tumor cells

    SciTech Connect

    Huang Canhui; Liu, Xiang Y.; Rehemtulla, Alnawaz; Lawrence, Theodore S. . E-mail: tsl@med.umich.edu

    2005-08-01

    Purpose: Peptides targeting tumor vascular cells or tumor cells themselves have the potential to be used as vectors for delivering either DNA in gene therapy or antitumor agents in chemotherapy. We wished to determine if peptides identified by phage display could be used to target irradiated pancreatic cancer cells. Methods and Materials: Irradiated Capan-2 cells were incubated with 5 x 10{sup 12} plaque-forming units of a phage display library. Internalized phage were recovered and absorbed against unirradiated cells. After five such cycles of enrichment, the recovered phage were subjected to DNA sequencing analysis and synthetic peptides made. The binding of both phage and synthetic peptides was evaluated by fluorescence staining and flow cytometry in vitro and in vivo. Results: We identified one 12-mer peptide (PA1) that binds to irradiated Capan-2 pancreatic adenocarcinoma cells but not to unirradiated cells. The binding of peptide was significant after 48 h incubation with cells. In vivo experiments with Capan-2 xenografts in nude mice demonstrated that these small peptides are able to penetrate tumor tissue after intravenous injections and bind specifically to irradiated tumor cells. Conclusion: These data suggest that peptides can be identified that target tumors with radiation-induced cell markers and may be clinically useful.

  5. Human IgA-binding Peptides Selected from Random Peptide Libraries

    PubMed Central

    Hatanaka, Takaaki; Ohzono, Shinji; Park, Mirae; Sakamoto, Kotaro; Tsukamoto, Shogo; Sugita, Ryohei; Ishitobi, Hiroyuki; Mori, Toshiyuki; Ito, Osamu; Sorajo, Koichi; Sugimura, Kazuhisa; Ham, Sihyun; Ito, Yuji

    2012-01-01

    Phage display system is a powerful tool to design specific ligands for target molecules. Here, we used disulfide-constrained random peptide libraries constructed with the T7 phage display system to isolate peptides specific to human IgA. The binding clones (A1–A4) isolated by biopanning exhibited clear specificity to human IgA, but the synthetic peptide derived from the A2 clone exhibited a low specificity/affinity (Kd = 1.3 μm). Therefore, we tried to improve the peptide using a partial randomized phage display library and mutational studies on the synthetic peptides. The designed Opt-1 peptide exhibited a 39-fold higher affinity (Kd = 33 nm) than the A2 peptide. An Opt-1 peptide-conjugated column was used to purify IgA from human plasma. However, the recovered IgA fraction was contaminated with other proteins, indicating nonspecific binding. To design a peptide with increased binding specificity, we examined the structural features of Opt-1 and the Opt-1-IgA complex using all-atom molecular dynamics simulations with explicit water. The simulation results revealed that the Opt-1 peptide displayed partial helicity in the N-terminal region and possessed a hydrophobic cluster that played a significant role in tight binding with IgA-Fc. However, these hydrophobic residues of Opt-1 may contribute to nonspecific binding with other proteins. To increase binding specificity, we introduced several mutations in the hydrophobic residues of Opt-1. The resultant Opt-3 peptide exhibited high specificity and high binding affinity for IgA, leading to successful isolation of IgA without contamination. PMID:23076147

  6. Discovery of 12-mer peptides that bind to wood lignin

    PubMed Central

    Yamaguchi, Asako; Isozaki, Katsuhiro; Nakamura, Masaharu; Takaya, Hikaru; Watanabe, Takashi

    2016-01-01

    Lignin, an abundant terrestrial polymer, is the only large-volume renewable feedstock composed of an aromatic skeleton. Lignin has been used mostly as an energy source during paper production; however, recent interest in replacing fossil fuels with renewable resources has highlighted its potential value in providing aromatic chemicals. Highly selective degradation of lignin is pivotal for industrial production of paper, biofuels, chemicals, and materials. However, few studies have examined natural and synthetic molecular components recognizing the heterogeneous aromatic polymer. Here, we report the first identification of lignin-binding peptides possessing characteristic sequences using a phage display technique. The consensus sequence HFPSP was found in several lignin-binding peptides, and the outer amino acid sequence affected the binding affinity of the peptides. Substitution of phenylalanine7 with Ile in the lignin-binding peptide C416 (HFPSPIFQRHSH) decreased the affinity of the peptide for softwood lignin without changing its affinity for hardwood lignin, indicating that C416 recognised structural differences between the lignins. Circular dichroism spectroscopy demonstrated that this peptide adopted a highly flexible random coil structure, allowing key residues to be appropriately arranged in relation to the binding site in lignin. These results provide a useful platform for designing synthetic and biological catalysts selectively bind to lignin. PMID:26903196

  7. Discovery of 12-mer peptides that bind to wood lignin.

    PubMed

    Yamaguchi, Asako; Isozaki, Katsuhiro; Nakamura, Masaharu; Takaya, Hikaru; Watanabe, Takashi

    2016-01-01

    Lignin, an abundant terrestrial polymer, is the only large-volume renewable feedstock composed of an aromatic skeleton. Lignin has been used mostly as an energy source during paper production; however, recent interest in replacing fossil fuels with renewable resources has highlighted its potential value in providing aromatic chemicals. Highly selective degradation of lignin is pivotal for industrial production of paper, biofuels, chemicals, and materials. However, few studies have examined natural and synthetic molecular components recognizing the heterogeneous aromatic polymer. Here, we report the first identification of lignin-binding peptides possessing characteristic sequences using a phage display technique. The consensus sequence HFPSP was found in several lignin-binding peptides, and the outer amino acid sequence affected the binding affinity of the peptides. Substitution of phenylalanine7 with Ile in the lignin-binding peptide C416 (HFPSPIFQRHSH) decreased the affinity of the peptide for softwood lignin without changing its affinity for hardwood lignin, indicating that C416 recognised structural differences between the lignins. Circular dichroism spectroscopy demonstrated that this peptide adopted a highly flexible random coil structure, allowing key residues to be appropriately arranged in relation to the binding site in lignin. These results provide a useful platform for designing synthetic and biological catalysts selectively bind to lignin. PMID:26903196

  8. Prediction of MHC binding peptides and epitopes from alfalfa mosaic virus.

    PubMed

    Gomase, Virendra S; Kale, Karbhari V; Chikhale, Nandkishor J; Changbhale, Smruti S

    2007-08-01

    Peptide fragments from alfalfa mosaic virus involved multiple antigenic components directing and empowering the immune system to protect the host from infection. MHC molecules are cell surface proteins, which take active part in host immune reactions and involvement of MHC class-I & II in response to almost all antigens. Coat protein of alfalfa mosaic virus contains 221 aa residues. Analysis found five MHC ligands in coat protein as 64-LSSFNGLGV-72; 86- RILEEDLIY-94; 96-MVFSITPSY-104; 100- ITPSYAGTF-108; 110- LTDDVTTED-118; having rescaled binding affinity and c-terminal cleavage affinity more than 0.5. The predicted binding affinity is normalized by the 1% fractil. The MHC peptide binding is predicted using neural networks trained on c-terminals of known epitopes. In analysis predicted MHC/peptide binding is a log transformed value related to the IC50 values in nM units. Total numbers of peptides found are 213. Predicted MHC binding regions act like red flags for antigen specific and generate immune response against the parent antigen. So a small fragment of antigen can induce immune response against whole antigen. This theme is implemented in designing subunit and synthetic peptide vaccines. The sequence analysis method allows potential drug targets to identify active sites against plant diseases. The method integrates prediction of peptide MHC class I binding; proteosomal c-terminal cleavage and TAP transport efficiency. PMID:17691913

  9. Antimicrobial activity of polycationic peptides.

    PubMed

    Giacometti, A; Cirioni, O; Barchiesi, F; Del Prete, M S; Scalise, G

    1999-11-01

    The in vitro activity of six polycationic peptides, buforin II, cecropin P1, indolicidin, magainin II, nisin, and ranalexin, were evaluated against several clinical isolates of gram-positive and gram-negative aerobic bacteria, yeasts, Pneumocystis carinii and Cryptosporidium parvum, by using microbroth dilution methods. The peptides exhibited different antibacterial activities and rapid time-dependent killing. The gram-negative organisms were more susceptible to buforin II and cecropin P1, whereas buforin II and ranalexin were the most active compounds against the gram-positive strains. Similarly, ranalexin showed the highest activity against Candida spp., whereas magainin II exerted the highest anticryptococcal activity. Finally, the peptides showed high anti-Pneumocystis activity, whereas no compound had strong inhibitory effect on C. parvum. PMID:10612440

  10. Folding and binding energy of a calmodulin-binding cell antiproliferative peptide.

    PubMed

    Almudallal, Ahmad M; Saika-Voivod, Ivan; Stewart, John M

    2015-09-01

    We carry out a computational study of a calmodulin-binding peptide shown to be effective in reducing cell proliferation. We find several folded states for two short variants of different length of the peptide and determine the location of the binding site on calmodulin, the binding free energy for the different conformers and structural details that play a role in optimal binding. Binding to a hydrophobic pocket in calmodulin occurs via an anchoring phenylalanine residue of the natively disordered peptide, and is enhanced when a neighbouring hydrophobic residue acts as a co-anchor. The shorter sequence possesses better binding to calmodulin, which is encouraging in terms of the development of non-peptide analogues as therapeutic agents. PMID:26310499

  11. PepBind: a comprehensive database and computational tool for analysis of protein-peptide interactions.

    PubMed

    Das, Arindam Atanu; Sharma, Om Prakash; Kumar, Muthuvel Suresh; Krishna, Ramadas; Mathur, Premendu P

    2013-08-01

    Protein-peptide interactions, where one partner is a globular protein (domain) and the other is a flexible linear peptide, are key components of cellular processes predominantly in signaling and regulatory networks, hence are prime targets for drug design. To derive the details of the protein-peptide interaction mechanism is often a cumbersome task, though it can be made easier with the availability of specific databases and tools. The Peptide Binding Protein Database (PepBind) is a curated and searchable repository of the structures, sequences and experimental observations of 3100 protein-peptide complexes. The web interface contains a computational tool, protein inter-chain interaction (PICI), for computing several types of weak or strong interactions at the protein-peptide interaction interface and visualizing the identified interactions between residues in Jmol viewer. This initial database release focuses on providing protein-peptide interface information along with structure and sequence information for protein-peptide complexes deposited in the Protein Data Bank (PDB). Structures in PepBind are classified based on their cellular activity. More than 40% of the structures in the database are found to be involved in different regulatory pathways and nearly 20% in the immune system. These data indicate the importance of protein-peptide complexes in the regulation of cellular processes. PMID:23896518

  12. Functional and Selective Bacterial Interfaces Using Cross-Scaffold Gold Binding Peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Hurley, Margaret M.; Jahnke, Justin P.; Stratis-Cullum, Dimitra N.

    2015-11-01

    We investigated the functional and selective activity of three phage-derived gold-binding peptides on the Escherichia coli ( E. coli) bacterial cell surface display scaffold (eCPX) for the first time. Gold-binding peptides, p3-Au12 (LKAHLPPSRLPS), p8#9 (VSGSSPDS), and Midas-2 (TGTSVLIATPYV), were compared side-by-side through experiment and simulation. All exhibited strong binding to an evaporated gold film, with approximately a 4-log difference in binding between each peptide and the control sample. The increased affinity for gold was also confirmed by direct visualization of samples using Scanning Electron Microscopy (SEM). Peptide dynamics in solution were performed to analyze innate structure, and all three were found to have a high degree of flexibility. Preferential binding to gold over silicon for all three peptides was demonstrated, with up to four orders of magnitude selectivity exhibited by p3-Au12. The selectivity was also clearly evident through SEM analysis of the boundary between the gold film and silicon substrate. Functional activity of bound E. coli cells was further demonstrated by stimulating filamentation and all three peptides were characterized as prolific relative to control samples. This work shows great promise towards functional and active bacterial-hybrid gold surfaces and the potential to enable the next generation living material interfaces.

  13. Sequence-specific DNA binding by glucocorticoid receptor "zinc finger peptides".

    PubMed

    Archer, T K; Hager, G L; Omichinski, J G

    1990-10-01

    Steroid hormone receptors can activate or repress transcription from responsive loci by binding to DNA. We have examined the mechanism of DNA binding by individually synthesizing the putative "zinc finger peptides" from the rat glucocorticoid receptor. Atomic absorption studies show that the peptides will bind zinc on an equimolar basis, and circular dichroism experiments demonstrate a significant alteration in secondary structure in the presence of zinc. The results from a series of experiments establish that metal ion is required for binding to DNA and that the amino-terminal zinc finger shows a significantly greater affinity for glucocorticoid response element-containing DNA over control DNA. These observations indicate that a single synthetic "zinc finger peptide" is able to bind to DNA in a sequence-specific manner. PMID:2120703

  14. Peptide Arrays for Binding Studies of E3 Ubiquitin Ligases.

    PubMed

    Klecker, Maria; Dissmeyer, Nico

    2016-01-01

    The automated SPOT (synthetic peptide arrays on membrane support technique) synthesis technology has entrenched as a rapid and robust method to generate peptide libraries on cellulose membrane supports. The synthesis method is based on conventional Fmoc chemistry building up peptides with free N-terminal amino acids starting at their cellulose-coupled C-termini. Several hundreds of peptide sequences can be assembled with this technique on one membrane comprising a strong binding potential due to high local peptide concentrations. Peptide orientation on SPOT membranes qualifies this array type for assaying substrate specificities of N-recognins, the recognition elements of the N-end rule pathway of targeted protein degradation (NERD). Pioneer studies described binding capability of mammalian and yeast enzymes depending on a peptide's N-terminus. SPOT arrays have been successfully used to describe substrate specificity of N-recognins which are the recognition elements of the N-end rule pathway of targeted protein degradation (NERD). Here, we describe the implementation of SPOT binding assays with focus on the identification of N-recognin substrates, applicable also for plant NERD enzymes. PMID:27424747

  15. Antiviral active peptide from oyster

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  16. Thermodynamics of peptide binding to the transporter associated with antigen processing (TAP).

    PubMed

    Neumann, Lars; Abele, Rupert; Tampé, Robert

    2002-12-13

    The ATP-binding cassette (ABC) transporter TAP plays an essential role in antigen processing and immune response to infected or malignant cells. TAP translocates proteasomal degradation products from the cytosol into the endoplasmic reticulum, where MHC class I molecules are loaded with these peptides. Kinetically stable peptide-MHC complexes are transported to the cell surface for inspection by cytotoxic T lymphocytes. The transport cycle of TAP is initiated by peptide binding, which is responsible for peptide selection and for stimulation of ATP-hydrolysis and subsequent translocation. Here we have analysed the driving forces for the formation of the peptide-TAP complex by kinetic and thermodynamic methods. First, the apparent peptide association and dissociation rates were determined at various temperatures. Strikingly, very high activation energies for apparent association (E(a)(ass)=106 kJmol(-1)) and dissociation (E(a)(diss)=80 kJmol(-1)) of the peptide-TAP complex were found. Next, the temperature-dependence of the peptide affinity constants was investigated by equilibrium-binding assays. Along with calculations of free enthalpy deltaG, enthalpy deltaH and entropy deltaS, a large positive change in heat capacity was resolved (deltaC degrees =23 kJmol(-1)K(-1)), indicating a fundamental structural reorganization of the TAP complex upon peptide binding. The inspection of the conformational entropy reveals that approximately one-fourth of all TAP residues is rearranged. These thermodynamic studies indicate that at physiological temperature, peptide binding is endothermic and driven by entropy. PMID:12470952

  17. Peptide Inhibitors of the amyloidogenesis of IAPP: verification of the hairpin-binding geometry hypothesis.

    PubMed

    Sivanesam, Kalkena; Shu, Irene; Huggins, Kelly N L; Tatarek-Nossol, Marianna; Kapurniotu, Aphrodite; Andersen, Niels H

    2016-08-01

    Versions of a previously discovered β-hairpin peptide inhibitor of IAPP aggregation that are stabilized in that conformation, or even forced to remain in the hairpin conformation by a backbone cyclization constraint, display superior activity as inhibitors. The cyclized hairpin, cyclo-WW2, displays inhibitory activity at substoichiometric concentrations relative to this amyloidogenic peptide. The hairpin-binding hypothesis stands confirmed. PMID:27317951

  18. Identification of Soft Matter Binding Peptide Ligands Using Phage Display.

    PubMed

    Günay, Kemal Arda; Klok, Harm-Anton

    2015-10-21

    Phage display is a powerful tool for the selection of highly affine, short peptide ligands. While originally primarily used for the identification of ligands to proteins, the scope of this technique has significantly expanded over the past two decades. Phage display nowadays is also increasingly applied to identify ligands that selectively bind with high affinity to a broad range of other substrates including natural and biological polymers as well as a variety of low-molecular-weight organic molecules. Such peptides are of interest for various reasons. The ability to selectively and with high affinity bind to the substrate of interest allows the conjugation or immobilization of, e.g., nanoparticles or biomolecules, or generally, facilitates interactions at materials interfaces. On the other hand, presentation of peptide ligands that selectively bind to low-molecular-weight organic materials is of interest for the development of sensor surfaces. The aim of this article is to highlight the opportunities provided by phage display for the identification of peptide ligands that bind to synthetic or natural polymer substrates or to small organic molecules. The article will first provide an overview of the different peptide ligands that have been identified by phage display that bind to these "soft matter" targets. The second part of the article will discuss the different characterization techniques that allow the determination of the affinity of the identified ligands to the respective substrates. PMID:26275106

  19. Competitive binding of antagonistic peptides fine-tunes stomatal patterning

    PubMed Central

    Lee, Jin Suk; Hnilova, Marketa; Maes, Michal; Lin, Ya-Chen Lisa; Putarjunan, Aarthi; Han, Soon-Ki; Avila, Julian; U.Torii, Keiko

    2015-01-01

    During development, cells interpret complex, often conflicting signals to make optimal decisions. Plant stomata, the cellular interface between a plant and the atmosphere, develop according to positional cues including a family of secreted peptides, EPIDERMAL PATTERNING FACTORS (EPFs). How these signaling peptides orchestrate pattern formation at a molecular level remains unclear. Here we report that Stomagen/EPF-LIKE9 peptide, which promotes stomatal development, requires ERECTA (ER)-family receptor kinases and interferes with the inhibition of stomatal development by the EPF2-ER module. Both EPF2 and Stomagen directly bind to ER and its co-receptor TOO MANY MOUTHS. Stomagen peptide competitively replaced EPF2 binding to ER. Furthermore, application of EPF2, but not Stomagen, elicited rapid phosphorylation of downstream signaling components in vivo. Our findings demonstrate how a plant receptor agonist and antagonist define inhibitory and inductive cues to fine-tune tissue patterning on the plant epidermis. PMID:26083750

  20. Simulation of Peptide Binding to Silica and Silica Mineralization

    NASA Astrophysics Data System (ADS)

    Emami, F. S.; Heinz, H.; Berry, R. J.; Varshney, V.; Farmer, B. L.; Naik, R. R.; Patwardhan, S. V.; Perry, C. C.

    2009-03-01

    The purpose of this study is to identify the nature of the interaction of peptides with silica surfaces and their effect on mineralization. Classical force fields (CVFF, PCFF) have been extended for silica aiming at the computation of surface properties in quantitative agreement with experiment, taking explicitly into account water molecules, pH, and surface coverage with peptides. We focus on the interaction of five short peptides (pep1, pep4, 82-4, H4, R5) identified by biopanning with regular and amorphous silica surfaces (Q3 and Q2) to understand the relation between peptide sequence and affinity to the surface. Results of the atomistic molecular dynamics simulation indicate adsorption energies, binding constants and conformational changes upon adsorption. The comparison of NMR chemical shifts in solution and on the surface in computation and experiment further aids in understanding the mechanism of binding.

  1. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin

    PubMed Central

    2014-01-01

    Background Many biologically active compounds bind to plasma transport proteins, and this binding can be either advantageous or disadvantageous from a drug design perspective. Human serum albumin (HSA) is one of the most important transport proteins in the cardiovascular system due to its great binding capacity and high physiological concentration. HSA has a preference for accommodating neutral lipophilic and acidic drug-like ligands, but is also surprisingly able to bind positively charged peptides. Understanding of how short cationic antimicrobial peptides interact with human serum albumin is of importance for developing such compounds into the clinics. Results The binding of a selection of short synthetic cationic antimicrobial peptides (CAPs) to human albumin with binding affinities in the μM range is described. Competitive isothermal titration calorimetry (ITC) and NMR WaterLOGSY experiments mapped the binding site of the CAPs to the well-known drug site II within subdomain IIIA of HSA. Thermodynamic and structural analysis revealed that the binding is exclusively driven by interactions with the hydrophobic moieties of the peptides, and is independent of the cationic residues that are vital for antimicrobial activity. Both of the hydrophobic moieties comprising the peptides were detected to interact with drug site II by NMR saturation transfer difference (STD) group epitope mapping (GEM) and INPHARMA experiments. Molecular models of the complexes between the peptides and albumin were constructed using docking experiments, and support the binding hypothesis and confirm the overall binding affinities of the CAPs. Conclusions The biophysical and structural characterizations of albumin-peptide complexes reported here provide detailed insight into how albumin can bind short cationic peptides. The hydrophobic elements of the peptides studied here are responsible for the main interaction with HSA. We suggest that albumin binding should be taken into careful

  2. Identification of high-affinity VEGFR3-binding peptides through a phage-displayed random peptide library

    PubMed Central

    Wu, Yan; Li, Cai-Yun

    2015-01-01

    Objective Vascular endothelial growth factor (VEGF) interaction with its receptor, VEGFR-3/Flt-4, regulates lymphangiogenesis. VEGFR-3/Flt-4 expression in cancer cells has been correlated with clinical stage, lymph node metastasis, and lymphatic invasion. The objective of this study is to identify a VEGFR-3/Flt-4-interacting peptide that could be used to inhibit VEGFR-3 for ovarian cancer therapy. Methods The extracellular fragment of recombinant human VEGFR-3/Flt-4 (rhVEGFR-3/Flt-4) fused with coat protein pIII was screened against a phage-displayed random peptide library. Using affinity enrichment and enzyme-linked immunosorbent assay (ELISA) screening, positive clones of phages were amplified. Three phage clones were selected after four rounds of biopanning, and the specific binding of the peptides to rhVEGFR-3 was detected by ELISA and compared with that of VEGF-D. Immunohistochemistry and immunofluorescence analyses of ovarian cancer tissue sections was undertaken to demonstrate the specificity of the peptides. Results After four rounds of biopanning, ELISA confirmed the specificity of the enriched bound phage clones for rhVEGFR-3. Sequencing and translation identified three different peptides. Non-competitive ELISA revealed that peptides I, II, and III had binding affinities for VEGFR-3 with Kaff (affinity constant) of 16.4±8.6 µg/mL (n=3), 9.2±2.1 µg/mL (n=3), and 174.8±31.1 µg/mL (n=3), respectively. In ovarian carcinoma tissue sections, peptide III (WHWLPNLRHYAS), which had the greatest binding affinity, also co-localized with VEGFR-3 in endothelial cells lining lymphatic vessels; its labeling of ovarian tumors in vivo was also confirmed. Conclusion These finding showed that peptide III has high specificity and activity and, therefore, may represent a potential therapeutic approach to target VEGF-VEGFR-3 signaling for the treatment or diagnosis of ovarian cancer. PMID:26197772

  3. Hydroxyapatite-binding peptides for bone growth and inhibition

    DOEpatents

    Bertozzi, Carolyn R.; Song, Jie; Lee, Seung-Wuk

    2011-09-20

    Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.

  4. Method of identity analyte-binding peptides

    DOEpatents

    Kauvar, Lawrence M.

    1990-01-01

    A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4-20 amino acids for specific affinity to the analyte.

  5. Method of identity analyte-binding peptides

    DOEpatents

    Kauvar, L.M.

    1990-10-16

    A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4--20 amino acids for specific affinity to the analyte. 5 figs.

  6. Calcium Carbonate Formation by Genetically Engineered Inorganic Binding Peptides

    NASA Astrophysics Data System (ADS)

    Gresswell, Carolyn Gayle

    Understanding how organisms are capable of forming (synthesize, crystallize, and organize) solid minerals into complex architectures has been a fundamental question of biomimetic materials chemistry and biomineralization for decades. This study utilizes short peptides selected using a cell surface display library for the specific polymorphs of calcium carbonate, i.e., aragonite and calcite, to identify two sets of sequences which can then be used to examine their effects in the formation, crystal structure, morphology of the CaCO3 minerals. A procedure of counter selection, along with fluorescence microscopy (FM) characterization, was adapted to insure that the sequences on the cells were specific to their respective substrate, i.e., aragonite or calcite. From the resulting two sets of sequences selected, five distinct strong binders were identified with a variety of biochemical characteristics and synthesized for further study. Protein derived peptides, using the known sequences of the proteins that are associated with calcite or aragonite, were also designed using a bioinformatics-based similarity analysis of the two sets of binders. In particular, an aragonite binding protein segment, AP7, a protein found in nacre, was chosen for this design and the resulting effects of the designed peptides and the AP7 were examined. Specifically, the binding affinities of the selected and the protein derived peptides off the cells were then tested using FM; these studies resulted in different binding characteristics of the synthesized and cellular bound peptides. Two of the peptides that displayed strong binding on the cells bound to neither of the CaCO 3 substrates and both the high and low similarity protein-derived peptides bound to both polymorphs. However, two of the peptides were found to only bind to their respective polymorph showing; these results are significant in that with this study it is demonstrated that the designed peptides based on experimental library

  7. Anti-peptide monoclonal antibody imaging of a common binding domain involved in muscle regulation.

    PubMed Central

    Van Eyk, J. E.; Caday-Malcolm, R. A.; Yu, L.; Irvin, R. T.; Hodges, R. S.

    1995-01-01

    Multiple-component regulatory protein systems function through a generalized mechanism where a single regulatory protein or ligand binds to a variety of receptors to modulate specific functions in a physiologically sensitive context. Muscle contraction is regulated by the interaction of actin with troponin I (TnI) or myosin in a Ca(2+)-sensitive manner. Actin utilizes a single binding domain (residues 1-28) to bind to residues 104-115 of TnI (Van Eyk JE, Sönnichsen FD, Sykes BD, Hodges RS, 1991, In: Rüegg JC, ed, Peptides as probes in muscle research, Heidelberg, Germany: Springer-Verlag, pp 15-31) and to myosin subfragment 1 (S1, an enzymatic fragment of myosin containing both the actin and ATP binding sites) (Van Eyk JE, Hodges RS, 1991, Biochemistry 30:11676-11682) in a Ca(2+)-sensitive manner. We have utilized an anti-TnI peptide (104-115) monoclonal antibody, Mab B4, that binds specifically to TnI, to image the common binding domain of actin and thus mimic the activity of actin including activation of the S1 ATPase activity and TnI-mediated regulation of the S1 ATPase. Mab B4 has also been utilized to identify a receptor binding domain on myosin (residues 633-644) that is recognized by actin. Interestingly, Mab B4 binds to the native protein receptors TnI and S1 with relative affinities of 100- and 25,000-fold higher than the binding affinity to the 12-residue peptide immunogen. Thus, anti-peptide monoclonal antibodies prepared against a receptor binding domain can mimic the ligand binding domain and be utilized as a powerful tool for the detailed analysis of complex multiple-component regulatory systems. PMID:7613476

  8. SPARC is a source of copper-binding peptides that stimulate angiogenesis.

    PubMed

    Lane, T F; Iruela-Arispe, M L; Johnson, R S; Sage, E H

    1994-05-01

    SPARC is a transiently expressed extracellular matrix-binding protein that alters cell shape and regulates endothelial cell proliferation in vitro. In this study, we show that SPARC mRNA and protein are synthesized by endothelial cells during angiogenesis in vivo. SPARC and peptides derived from a cationic region of the protein (amino acids 113-130) stimulated the formation of endothelial cords in vitro; moreover, these peptides stimulated angiogenesis in vivo. Mapping of the active domain demonstrated that the sequence KGHK was responsible for most of the angiogenic activity; substitution of the His residue decreased the effect. We found that proteolysis of SPARC provided a source of KGHK, GHK, and longer peptides that contained these sequences. Although the Cu(2+)-GHK complex had been identified as a mitogen/morphogen in normal human plasma, we found KGHK and longer peptides to be potent stimulators of angiogenesis. SPARC113-130 and KGHK were shown to bind Cu2+ with high affinity; however, previous incubation with Cu2+ was not required for the stimulatory activity. Since a peptide from a second cationic region of SPARC (SPARC54-73) also bound Cu2+ but had no effect on angiogenesis, the angiogenic activity appeared to be sequence specific and independent of bound Cu2+. Thus, specific degradation of SPARC, a matrix-associated protein expressed by endothelial cells during vascular remodeling, releases a bioactive peptide or peptides, containing the sequence (K)GHK, that could regulate angiogenesis in vivo. PMID:7514608

  9. SPARC is a source of copper-binding peptides that stimulate angiogenesis

    PubMed Central

    1994-01-01

    SPARC is a transiently expressed extracellular matrix-binding protein that alters cell shape and regulates endothelial cell proliferation in vitro. In this study, we show that SPARC mRNA and protein are synthesized by endothelial cells during angiogenesis in vivo. SPARC and peptides derived from a cationic region of the protein (amino acids 113- 130) stimulated the formation of endothelial cords in vitro; moreover, these peptides stimulated angiogenesis in vivo. Mapping of the active domain demonstrated that the sequence KGHK was responsible for most of the angiogenic activity; substitution of the His residue decreased the effect. We found that proteolysis of SPARC provided a source of KGHK, GHK, and longer peptides that contained these sequences. Although the Cu(2+)-GHK complex had been identified as a mitogen/morphogen in normal human plasma, we found KGHK and longer peptides to be potent stimulators of angiogenesis. SPARC113-130 and KGHK were shown to bind Cu2+ with high affinity; however, previous incubation with Cu2+ was not required for the stimulatory activity. Since a peptide from a second cationic region of SPARC (SPARC54-73) also bound Cu2+ but had no effect on angiogenesis, the angiogenic activity appeared to be sequence specific and independent of bound Cu2+. Thus, specific degradation of SPARC, a matrix-associated protein expressed by endothelial cells during vascular remodeling, releases a bioactive peptide or peptides, containing the sequence (K)GHK, that could regulate angiogenesis in vivo. PMID:7514608

  10. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

    PubMed

    Khan, Waqasuddin; Duffy, Fergal; Pollastri, Gianluca; Shields, Denis C; Mooney, Catherine

    2013-01-01

    Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif) containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58).Next, we trained a bidirectional recurrent neural network (BRNN) using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72) showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods) clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors. PMID:24019881

  11. Staphylococcal surface display of metal-binding polyhistidyl peptides

    SciTech Connect

    Samuelson, P.; Wernerus, H.; Svedberg, M.; Staahl, S.

    2000-03-01

    Recombinant Staphylococcus xylosus and Staphylococcus carnosus strains were generated with surface-exposed chimeric proteins containing polyhistidyl peptides designed for binding to divalent metal ions. Surface accessibility of the chimeric surface proteins was demonstrated and the chimeric surface proteins were found to be functional in terms of metal binding, since the recombinant staphylococcal cells were shown to have gained Ni{sup 2+}- and Cd{sup 2+}-binding capacity, suggesting that such bacteria could find use in bioremediation of heavy metals. This is, to their knowledge, the first time that recombinant, surface-exposed metal-binding peptides have been expressed on gram-positive bacteria. Potential environmental or biosensor applications for such recombinant staphylococci as biosorbents are discussed.

  12. Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity.

    PubMed

    Viet, Man Hoang; Ngo, Son Tung; Lam, Nguyen Sy; Li, Mai Suan

    2011-06-01

    The effects of beta-sheet breaker peptides KLVFF and LPFFD on the oligomerization of amyloid peptides were studied by all-atom simulations. It was found that LPFFD interferes the aggregation of Aβ(16-22) peptides to a greater extent than does KLVFF. Using the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method, we found that the former binds more strongly to Aβ(16-22). Therefore, by simulations, we have clarified the relationship between aggregation rates and binding affinity: the stronger the ligand binding, the slower the oligomerization process. The binding affinity of pentapeptides to full-length peptide Aβ(1-40) and its mature fibrils has been considered using the Autodock and MM-PBSA methods. The hydrophobic interaction between ligands and receptors plays a more important role for association than does hydrogen bonding. The influence of beta-sheet breaker peptides on the secondary structures of monomer Aβ(1-40) was studied in detail, and it turns out that, in their presence, the total beta-sheet content can be enhanced. However, the aggregation can be slowed because the beta-content is reduced in fibril-prone regions. Both pentapeptides strongly bind to monomer Aβ(1-40), as well as to mature fibrils, but KLVFF displays a lower binding affinity than LPFFD. Our findings are in accord with earlier experiments that both of these peptides can serve as prominent inhibitors. In addition, we predict that LPFFD inhibits/degrades the fibrillogenesis of full-length amyloid peptides better than KLVFF. This is probably related to a difference in their total hydrophobicities in that the higher the hydrophobicity, the lower the inhibitory capacity. The GROMOS96 43a1 force field with explicit water and the force field proposed by Morris et al. (Morris et al. J. Comput. Chem. 1998, 19, 1639 ) were employed for all-atom molecular dynamics simulations and Autodock experiments, respectively. PMID:21563780

  13. Erythromycin, roxithromycin, and clarithromycin: use of slow-binding kinetics to compare their in vitro interaction with a bacterial ribosomal complex active in peptide bond formation.

    PubMed

    Dinos, George P; Connell, Sean R; Nierhaus, Knud H; Kalpaxis, Dimitrios L

    2003-03-01

    In a cell-free system derived from Escherichia coli, it is shown that clarithromycin and roxithromycin, like their parent compound erythromycin, do not inhibit the puromycin reaction (i.e., the peptide bond formation between puromycin and AcPhe-tRNA bound at the P-site of 70S ribosomes programmed with heteropolymeric mRNA). Nevertheless, all three antibiotics compete for binding on the ribosome with tylosin, a 16-membered ring macrolide that behaves as a slow-binding, slowly reversible inhibitor of peptidyltransferase. The mutually exclusive binding of these macrolides to ribosomes is also corroborated by the fact that they protect overlapping sites in domain V of 23S rRNA from chemical modification by dimethyl sulfate. From this competition effect, detailed kinetic analysis revealed that roxithromycin or clarithromycin (A), like erythromycin, reacts rapidly with AcPhe-tRNA.MF-mRNA x 70S ribosomal complex (C) to form the encounter complex CA which is then slowly isomerized to a more tight complex, termed C*A. The value of the overall dissociation constant, K, encompassing both steps of macrolide interaction with complex C, is 36 nM for erythromycin, 20 nM for roxithromycin, and 8 nM for clarithromycin. Because the off-rate constant of C*A complex does not significantly differ among the three macrolides, the superiority of clarithromycin as an inhibitor of translation in E. coli cells and many Gram-positive bacteria may be correlated with its greater rate of association with ribosomes. PMID:12606769

  14. Early events elicited by Bombesin and structurally related peptides in quiescent Swiss 3T3 cells. I. Activation of protein kinase C and inhibition of epidermal growth factor binding

    SciTech Connect

    Zachary, I.; Sinnett-Smith, J.W.; Rozengurt, E.

    1986-01-01

    Addition of bombesin to quiescent cultures of Swiss 3T3 cells caused a rapid increase in the phosphorylation of an M/sub r/ 80,000 cellular protein (designated 80k). The effect was both concentration and time dependent. The 80k phosphoproteins generated in response to bombesin and to phorbol 12,13-dibutyrate were identical as judged by one- and two-dimensional PAGE and by peptide mapping after partial proteolysis with Staphylococcus aureus V8 protease. In addition, prolonged pretreatment of 3T3 cells with phorbol 12,13-dibutyrate, which leads to the disappearance of protein kinase C activity, blocked the ability of bombesin to stimulate 80k. Bombesin also caused a rapid (1 min) inhibition of /sup 125/I-labeled epidermal growth factor (/sup 125/I-EGF) binding to Swiss 3T3 cells. The inhibition was both concentration and temperature dependent and resulted from a marked decrease in the affinity of the EGF receptor for its ligand. These results strongly suggest that these responses are mediated by specific high-affinity receptors that recognize the peptides of the bombesin family in Swiss 3T3 cells. While an increase in cytosolic Ca/sup 2 +/ concentration does not mediate the bombesin inhibition of /sup 125/I-EGF binding, the activation of protein kinase C in intact Swiss 3T3 cells by peptides of the bombesin family may lead to rapid inhibition of the binding of /sup 125/I-EGF to its cellular receptor.

  15. A common landscape for membrane-active peptides

    PubMed Central

    Last, Nicholas B; Schlamadinger, Diana E; Miranker, Andrew D

    2013-01-01

    Three families of membrane-active peptides are commonly found in nature and are classified according to their initial apparent activity. Antimicrobial peptides are ancient components of the innate immune system and typically act by disruption of microbial membranes leading to cell death. Amyloid peptides contribute to the pathology of diverse diseases from Alzheimer's to type II diabetes. Preamyloid states of these peptides can act as toxins by binding to and permeabilizing cellular membranes. Cell-penetrating peptides are natural or engineered short sequences that can spontaneously translocate across a membrane. Despite these differences in classification, many similarities in sequence, structure, and activity suggest that peptides from all three classes act through a small, common set of physical principles. Namely, these peptides alter the Brownian properties of phospholipid bilayers, enhancing the sampling of intrinsic fluctuations that include membrane defects. A complete energy landscape for such systems can be described by the innate membrane properties, differential partition, and the associated kinetics of peptides dividing between surface and defect regions of the bilayer. The goal of this review is to argue that the activities of these membrane-active families of peptides simply represent different facets of what is a shared energy landscape. PMID:23649542

  16. Structural constraints for the binding of short peptides to claudin-4 revealed by surface plasmon resonance.

    PubMed

    Ling, Jun; Liao, Hailing; Clark, Robin; Wong, Mandy Sze Man; Lo, David D

    2008-11-01

    Claudin family transmembrane proteins play an important role in tight junction structure and function in epithelial cells. Among the 24 isoforms identified in mice and humans, claudin-4 and -3 serve as the receptor for Clostridium perfringens enterotoxin (Cpe). The second extracellular loop (Ecl2) of claudin-4 is responsible for the binding to the C-terminal 30 amino acids of Cpe (Cpe30). To define the structural constraints for the claudin-4/Cpe30 interaction, a surface plasmon resonance (SPR) method was developed. GST fusions with claudin-4 revealed that Ecl2 with the downstream transmembrane domain of claudin-4 reconstituted the basic structural requirement for optimal binding activity to Cpe30, with affinity in the nanomolar range. Two 12-mer peptides selected by phage display against claudin-4-transfected CHO cells and a 12-mer Cpe mutant peptide also showed significant affinity for claudin-4 with this SPR assay, suggesting that a short peptide can establish stable contact with Ecl2 with nanomolar affinity. Alignment of these short peptides unveiled a common Ecl2 binding motif: . Whereas the short peptides bound native claudin-4 on transfected CHO cells in pull-down assays, only the larger Cpe30 peptide affected trans-epithelial electrical resistance (TER) in peptide-treated Caco-2BBe monolayers. Importantly, Cpe30 retained its binding to claudin-4 when fused to the C terminus of influenza hemagglutinin, demonstrating that its binding activity can be maintained in a different biochemical context. These studies may help in the design of assays for membrane receptor interactions with soluble ligands, and in applying new targeting ligands to delivering attached "cargo" proteins. PMID:18782762

  17. Fe(2+) binding on amyloid β-peptide promotes aggregation.

    PubMed

    Boopathi, Subramaniam; Kolandaivel, Ponmalai

    2016-09-01

    The metal ions Zn(2+) , Cu(2+) , and Fe(2+) play a significant role in the aggregation mechanism of Aβ peptides. However, the nature of binding between metal and peptide has remained elusive; the detailed information on this from the experimental study is very difficult. Density functional theory (dft) (M06-2X/6-311++G (2df,2pd) +LANL2DZ) has employed to determine the force field resulting due to metal and histidine interaction. We performed 200 ns molecular dynamics (MD) simulation on Aβ1-42 -Zn(2+) , Aβ1-42 -Cu(2+) , and Aβ1-42 -Fe(2+) systems in explicit water with different combination of coordinating residues including the three Histidine residues in the N-terminal. The present investigation, the Aβ1-42 -Zn(2+) system possess three turn conformations separated by coil structure. Zn(2+) binding caused the loss of the helical structure of N-terminal residues which transformed into the S-shaped conformation. Zn(2+) has reduced the coil and increases the turn content of the peptide compared with experimental study. On the other hand, the Cu(2+) binds with peptide, β sheet formation is observed at the N-terminal residues of the peptide. Fe(2+) binding is to promote the formation of Glu22-Lys28 salt-bridge which stabilized the turn conformation in the Phe19-Gly25 residues, subsequently β sheets were observed at His13-Lys18 and Gly29-Gly37 residues. The turn conformation facilitates the β sheets are arranged in parallel by enhancing the hydrophobic contact between Gly25 and Met35, Lys16 and Met35, Leu17 and Leu34, Val18 and Leu34 residues. The Fe(2+) binding reduced the helix structure and increases the β sheet content in the peptide, which suggested, Fe(2+) promotes the oligomerization by enhancing the peptide-peptide interaction. Proteins 2016; 84:1257-1274. © 2016 Wiley Periodicals, Inc. PMID:27214008

  18. Effect of spacer length and type on the biological activity of peptide-polysaccharide matrices.

    PubMed

    Kumai, Jun; Hozumi, Kentaro; Yamada, Yuji; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2016-11-01

    Peptide-polysaccharide matrices can mimic extracellular matrix structure and function and are useful for tissue and cell engineering. The spacer between the peptide and the polysaccharide is important for both peptide conformation and the interaction between the peptide and receptors. Here, the effect of a spacer on the biological activity of peptide-polysaccharide matrices using various lengths of spacers consisting of glycine, β-alanine, and ε-aminocaproic acid has been examined. Active laminin-derived peptides, including a syndecan-binding peptide (AG73: RKRLQVQLSIRT), an integrin αvβ3-binding peptide (A99a: ALRGDN), and an integrin α6β1-binding peptide (A2G10: SYWYRIEASRTG), were used as the peptide ligands and chitosan was used as a polysaccharide matrix. The spacers did not influence the biological activity of the AG73-chitosan matrix. In contrast, the integrin-binding peptide-chitosan matrices showed spacer-dependent activity. Hydrophobic spacers enhanced the cell attachment activity of the A99a-chitosan matrix. A four-glycine spacer showed the strongest effect for the biological activity of the A2G10-chitosan matrix. These results suggested that spacer-optimization for each peptide is important for designing effective peptide-polysaccharide matrices. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 512-520, 2016. PMID:26588050

  19. Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization

    PubMed Central

    Ting, Yi Tian; Harris, Paul W. R.; Batot, Gaelle; Brimble, Margaret A.; Baker, Edward N.; Young, Paul G.

    2016-01-01

    Bacterial type I signal peptidases (SPases) are membrane-anchored serine proteases that process the signal peptides of proteins exported via the Sec and Tat secretion systems. Despite their crucial importance for bacterial virulence and their attractiveness as drug targets, only one such enzyme, LepB from Escherichia coli, has been structurally characterized, and the transient nature of peptide binding has stymied attempts to directly visualize SPase–substrate complexes. Here, the crystal structure of SpsB, the type I signal peptidase from the Gram-positive pathogen Staphylococcus aureus, is reported, and a peptide-tethering strategy that exploits the use of carrier-driven crystallization is described. This enabled the determination of the crystal structures of three SpsB–peptide complexes, both with cleavable substrates and with an inhibitory peptide. SpsB–peptide interactions in these complexes are almost exclusively limited to the canonical signal-peptide motif Ala-X-Ala, for which clear specificity pockets are found. Minimal contacts are made outside this core, with the variable side chains of the peptides accommodated in shallow grooves or exposed faces. These results illustrate how high fidelity is retained despite broad sequence diversity, in a process that is vital for cell survival. PMID:26870377

  20. A biologically active peptide mimetic of N-acetylgalactosamine/galactose

    PubMed Central

    Eggink, Laura L; Hoober, J Kenneth

    2009-01-01

    Background Glycosylated proteins and lipids are important regulatory factors whose functions can be altered by addition or removal of sugars to the glycan structure. The glycans are recognized by sugar-binding lectins that serve as receptors on the surface of many cells and facilitate initiation of an intracellular signal that changes the properties of the cells. We identified a peptide that mimics the ligand of an N-acetylgalactosamine (GalNAc)-specific lectin and asked whether the peptide would express specific biological activity. Findings A 12-mer phage display library was screened with a GalNAc-specific lectin to identify an amino acid sequence that binds to the lectin. Phage particles that were eluted from the lectin with free GalNAc were considered to have been bound to a GalNAc-binding site. Peptides were synthesized with the selected sequence as a quadravalent structure to facilitate receptor crosslinking. Treatment of human peripheral blood mononuclear cells for 24 h with the peptide stimulated secretion of interleukin-8 (IL-8) but not of IL-1β, IL-6, IL-10, or tumor necrosis factor-α (TNF-α). The secretion of IL-21 was stimulated as strongly with the peptide as with interferon-γ. Conclusion The data indicate that the quadravalent peptide has biological activity with a degree of specificity. These effects occurred at concentrations in the nanomolar range, in contrast to free sugars that generally bind to proteins in the micro- to millimolar range. PMID:19284521

  1. Prediction of Nucleotide Binding Peptides Using Star Graph Topological Indices.

    PubMed

    Liu, Yong; Munteanu, Cristian R; Fernández Blanco, Enrique; Tan, Zhiliang; Santos Del Riego, Antonino; Pazos, Alejandro

    2015-11-01

    The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development. PMID:27491034

  2. Use of synthetic peptides to locate novel integrin alpha2beta1-binding motifs in human collagen III.

    PubMed

    Raynal, Nicolas; Hamaia, Samir W; Siljander, Pia R-M; Maddox, Ben; Peachey, Anthony R; Fernandez, Rafael; Foley, Loraine J; Slatter, David A; Jarvis, Gavin E; Farndale, Richard W

    2006-02-17

    A set of 57 synthetic peptides encompassing the entire triplehelical domain of human collagen III was used to locate binding sites for the collagen-binding integrin alpha(2)beta(1). The capacity of the peptides to support Mg(2+)-dependent binding of several integrin preparations was examined. Wild-type integrins (recombinant alpha(2) I-domain, alpha(2)beta(1) purified from platelet membranes, and recombinant soluble alpha(2)beta(1) expressed as an alpha(2)-Fos/beta(1)-Jun heterodimer) bound well to only three peptides, two containing GXX'GER motifs (GROGER and GMOGER, where O is hydroxyproline) and one containing two adjacent GXX'GEN motifs (GLKGEN and GLOGEN). Two mutant alpha(2) I-domains were tested: the inactive T221A mutant, which recognized no peptides, and the constitutively active E318W mutant, which bound a larger subset of peptides. Adhesion of activated human platelets to GER-containing peptides was greater than that of resting platelets, and HT1080 cells bound well to more of the peptides compared with platelets. Binding of cells and recombinant proteins was abolished by anti-alpha(2) monoclonal antibody 6F1 and by chelation of Mg(2+). We describe two novel high affinity integrin-binding motifs in human collagen III (GROGER and GLOGEN) and a third motif (GLKGEN) that displays intermediate activity. Each motif was verified using shorter synthetic peptides. PMID:16326707

  3. Antiendotoxin activity of cationic peptide antimicrobial agents.

    PubMed Central

    Gough, M; Hancock, R E; Kelly, N M

    1996-01-01

    The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF stimulus. Furthermore, MBI-28 offered significant protection in a galactosamine-sensitized mouse model of lethal endotoxic shock. This protection correlated with the ability of MBI-28 to reduce LPS-induced circulating TNF by nearly 90% in this mouse model. Both MBI-27 and MBI-28 demonstrated antibacterial activity against gram-negative bacteria in vitro and in vivo against Pseudomonas aeruginosa infections in neutropenic mice. PMID:8945527

  4. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    NASA Astrophysics Data System (ADS)

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-08-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  5. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    PubMed Central

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-01-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor. PMID:27498819

  6. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response.

    PubMed

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2016-01-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor. PMID:27498819

  7. A Cell-Permeable Phospholipase C[gamma]1-Binding Peptide Transduces Neurons and Impairs Long-Term Spatial Memory

    ERIC Educational Resources Information Center

    Blum, Sonja; Dash, Pramod K.

    2004-01-01

    Growth factor-mediated signaling has emerged as an essential component of memory formation. In this study, we used a phospholipase C gamma 1 (PLC[gamma]1) binding, cell-penetrating peptide to sequester PLC[gamma]1 away from its target, the phosphotyrosine residues within the activated growth factor receptor. Peptides appear to transduce neurons…

  8. The different ligand-binding modes of relaxin family peptide receptors RXFP1 and RXFP2.

    PubMed

    Scott, Daniel J; Rosengren, K Johan; Bathgate, Ross A D

    2012-11-01

    Relaxin and insulin-like peptide 3 (INSL3) are peptide hormones with a number of important physiological roles in reproduction, regulation of extracellular matrix turnover, and cardiovascular function. Relaxin and INSL3 mediate their actions through the closely related G-protein coupled receptors, relaxin family peptide receptors 1 and 2 (RXFP1 and RXFP2), respectively. These receptors have large extracellular domains (ECD) that contain high-affinity ligand-binding sites within their 10 leucine-rich repeat (LRR)-containing modules. Although relaxin can bind and activate both RXFP1 and RXFP2, INSL3 can only bind and activate RXFP2. To investigate whether this difference is related to the nature of the high-affinity ECD binding site or to differences in secondary binding sites involving the receptor transmembrane (TM) domain, we created a suite of constructs with RXFP1/2 chimeric ECD attached to single TM helices. We show that by changing as little as one LRR, representing four amino acid substitutions, we were able to engineer a high-affinity INSL3-binding site into the ECD of RXFP1. Molecular modeling of the INSL3-RXFP2 interaction based on extensive experimental data highlights the differences in the binding mechanisms of relaxin and INSL3 to the ECD of their cognate receptors. Interestingly, when the engineered RXFP1/2 ECD were introduced into full-length RXFP1 constructs, INSL3 exhibited only low affinity and efficacy on these receptors. These results highlight critical differences both in the ECD binding and in the coordination of the ECD-binding site with the TM domain, and provide new mechanistic insights into the binding and activation events of RXFP1 and RXFP2 by their native hormone ligands. PMID:22973049

  9. Measurement of Peptide Binding to MHC Class II Molecules by Fluorescence Polarization.

    PubMed

    Yin, Liusong; Stern, Lawrence J

    2014-01-01

    Peptide binding to major histocompatibility complex class II (MHCII) molecules is a key process in antigen presentation and CD4+ T cell epitope selection. This unit describes a fairly simple but powerful fluorescence polarization-based binding competition assay to measure peptide binding to soluble recombinant MHCII molecules. The binding of a peptide of interest to MHCII molecules is assessed based on its ability to inhibit the binding of a fluorescence-labeled probe peptide, with the strength of binding characterized as IC50 (concentration required for 50% inhibition of probe peptide binding). Data analysis related to this method is discussed. In addition, this unit includes a support protocol for fluorescence labeling peptide using an amine-reactive probe. The advantage of this protocol is that it allows simple, fast, and high-throughput measurements of binding for a large set of peptides to MHCII molecules. PMID:25081912

  10. Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs

    PubMed Central

    Düvel, Juliane; Bense, Sarina; Möller, Stefan; Bertinetti, Daniela; Schwede, Frank; Morr, Michael; Eckweiler, Denitsa; Genieser, Hans-Gottfried; Jänsch, Lothar; Herberg, Friedrich W.; Frank, Ronald

    2015-01-01

    ABSTRACT High levels of the universal bacterial second messenger cyclic di-GMP (c-di-GMP) promote the establishment of surface-attached growth in many bacteria. Not only can c-di-GMP bind to nucleic acids and directly control gene expression, but it also binds to a diverse array of proteins of specialized functions and orchestrates their activity. Since its development in the early 1990s, the synthetic peptide array technique has become a powerful tool for high-throughput approaches and was successfully applied to investigate the binding specificity of protein-ligand interactions. In this study, we used peptide arrays to uncover the c-di-GMP binding site of a Pseudomonas aeruginosa protein (PA3740) that was isolated in a chemical proteomics approach. PA3740 was shown to bind c-di-GMP with a high affinity, and peptide arrays uncovered LKKALKKQTNLR to be a putative c-di-GMP binding motif. Most interestingly, different from the previously identified c-di-GMP binding motif of the PilZ domain (RXXXR) or the I site of diguanylate cyclases (RXXD), two leucine residues and a glutamine residue and not the charged amino acids provided the key residues of the binding sequence. Those three amino acids are highly conserved across PA3740 homologs, and their singular exchange to alanine reduced c-di-GMP binding within the full-length protein. IMPORTANCE In many bacterial pathogens the universal bacterial second messenger c-di-GMP governs the switch from the planktonic, motile mode of growth to the sessile, biofilm mode of growth. Bacteria adapt their intracellular c-di-GMP levels to a variety of environmental challenges. Several classes of c-di-GMP binding proteins have been structurally characterized, and diverse c-di-GMP binding domains have been identified. Nevertheless, for several c-di-GMP receptors, the binding motif remains to be determined. Here we show that the use of a synthetic peptide array allowed the identification of a c-di-GMP binding motif of a putative c

  11. Curvature sensing MARCKS-ED peptides bind to membranes in a stereo-independent manner.

    PubMed

    Yan, Lei; de Jesus, Armando Jerome; Tamura, Ryo; Li, Victoria; Cheng, Kui; Yin, Hang

    2015-07-01

    Membrane curvature and lipid composition plays a critical role in interchanging of matter and energy in cells. Peptide curvature sensors are known to activate signaling pathways and promote molecular transport across cell membranes. Recently, the 25-mer MARCKS-ED peptide, which is derived from the effector domain of the myristoylated alanine-rich C kinase substrate protein, has been reported to selectively recognize highly curved membrane surfaces. Our previous studies indicated that the naturally occurring L-MARCKS-ED peptide could simultaneously detect both phosphatidylserine and curvature. Here, we demonstrate that D-MARCKS-ED, composed by unnatural D-amino acids, has the same activities as its enantiomer, L-MARCKS-ED, as a curvature and lipid sensor. An atomistic molecular dynamics simulation suggests that D-MARCKS-ED may change from linear to a boat conformation upon binding to the membrane. Comparable enhancement of fluorescence intensity was observed between D- and L-MARCKS-ED peptides, indicating similar binding affinities. Meanwhile, circular dichroism spectra of D- and L-MARCKS-ED are almost symmetrical both in the presence and absence of liposomes. These results suggest similar behavior of artificial D- and natural L-MARCKS-ED peptides when binding to curved membranes. Our studies may contribute to further understanding of how MARCKS-ED senses membrane curvature as well as provide a new direction to develop novel membrane curvature probes. PMID:25851418

  12. Competitive binding of antagonistic peptides fine-tunes stomatal patterning.

    PubMed

    Lee, Jin Suk; Hnilova, Marketa; Maes, Michal; Lin, Ya-Chen Lisa; Putarjunan, Aarthi; Han, Soon-Ki; Avila, Julian; Torii, Keiko U

    2015-06-25

    During development, cells interpret complex and often conflicting signals to make optimal decisions. Plant stomata, the cellular interface between a plant and the atmosphere, develop according to positional cues, which include a family of secreted peptides called epidermal patterning factors (EPFs). How these signalling peptides orchestrate pattern formation at a molecular level remains unclear. Here we report in Arabidopsis that Stomagen (also called EPF-LIKE9) peptide, which promotes stomatal development, requires ERECTA (ER)-family receptor kinases and interferes with the inhibition of stomatal development by the EPIDERMAL PATTERNING FACTOR 2 (EPF2)-ER module. Both EPF2 and Stomagen directly bind to ER and its co-receptor TOO MANY MOUTHS. Stomagen peptide competitively replaced EPF2 binding to ER. Furthermore, application of EPF2, but not Stomagen, elicited rapid phosphorylation of downstream signalling components in vivo. Our findings demonstrate how a plant receptor agonist and antagonist define inhibitory and inductive cues to fine-tune tissue patterning on the plant epidermis. PMID:26083750

  13. SABinder: A Web Service for Predicting Streptavidin-Binding Peptides

    PubMed Central

    Kang, Juanjuan; Ru, Beibei; Zhou, Peng

    2016-01-01

    Streptavidin is sometimes used as the intended target to screen phage-displayed combinatorial peptide libraries for streptavidin-binding peptides (SBPs). More often in the biopanning system, however, streptavidin is just a commonly used anchoring molecule that can efficiently capture the biotinylated target. In this case, SBPs creeping into the biopanning results are not desired binders but target-unrelated peptides (TUP). Taking them as intended binders may mislead subsequent studies. Therefore, it is important to find if a peptide is likely to be an SBP when streptavidin is either the intended target or just the anchoring molecule. In this paper, we describe an SVM-based ensemble predictor called SABinder. It is the first predictor for SBP. The model was built with the feature of optimized dipeptide composition. It was observed that 89.20% (MCC = 0.78; AUC = 0.93; permutation test, p < 0.001) of peptides were correctly classified. As a web server, SABinder is freely accessible. The tool provides a highly efficient way to exclude potential SBP when they are TUP or to facilitate identification of possibly new SBP when they are the desired binders. In either case, it will be helpful and can benefit related scientific community. PMID:27610387

  14. SABinder: A Web Service for Predicting Streptavidin-Binding Peptides.

    PubMed

    He, Bifang; Kang, Juanjuan; Ru, Beibei; Ding, Hui; Zhou, Peng; Huang, Jian

    2016-01-01

    Streptavidin is sometimes used as the intended target to screen phage-displayed combinatorial peptide libraries for streptavidin-binding peptides (SBPs). More often in the biopanning system, however, streptavidin is just a commonly used anchoring molecule that can efficiently capture the biotinylated target. In this case, SBPs creeping into the biopanning results are not desired binders but target-unrelated peptides (TUP). Taking them as intended binders may mislead subsequent studies. Therefore, it is important to find if a peptide is likely to be an SBP when streptavidin is either the intended target or just the anchoring molecule. In this paper, we describe an SVM-based ensemble predictor called SABinder. It is the first predictor for SBP. The model was built with the feature of optimized dipeptide composition. It was observed that 89.20% (MCC = 0.78; AUC = 0.93; permutation test, p < 0.001) of peptides were correctly classified. As a web server, SABinder is freely accessible. The tool provides a highly efficient way to exclude potential SBP when they are TUP or to facilitate identification of possibly new SBP when they are the desired binders. In either case, it will be helpful and can benefit related scientific community. PMID:27610387

  15. F2L, a peptide derived from heme-binding protein, inhibits formyl peptide receptor-mediated signaling

    SciTech Connect

    Lee, Ha Young; Lee, Sun Young; Shin, Eun Ha; Kim, Sang Doo; Kim, Jung Mo; Lee, Mi-Sook; Ryu, Sung Ho; Bae, Yoe-Sik . E-mail: yoesik@donga.ac.kr

    2007-08-10

    F2L is an acetylated amino-terminal peptide derived from the cleavage of the human heme-binding protein. Very recently, F2L was identified as an endogenous chemoattractant peptide acting specifically through formyl peptide receptor-like (FPRL)2. In the present study, we report that F2L stimulates chemotactic migration in human neutrophils. However, F2L inhibits formyl peptide receptor (FPR) and FPRL1 activities, resulting in the complete inhibition of intracellular calcium increases, and superoxide generation induced by N-formyl-Met-Leu-Phe, MMK-1, or Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm) in human neutrophils. In terms of the inhibitory role of F2L on FPR- and FPRL-mediated signaling, we found that F2L competitively inhibits the binding of {sup 125}I-WKYMVm to its specific receptors, FPR and FPRL1. F2L is the first endogenous molecule that inhibits FPR- and FPRL1-mediated signaling, and is expected to be useful in the study of FPR and FPRL1 signaling and in the development of drugs to treat diseases involving the FPR family of receptors.

  16. The TLQP-21 Peptide Activates the G-protein-coupled receptor C3aR1 via a Folding-upon-Binding Mechanism

    PubMed Central

    Severini, Cinzia; Gopinath, Tata; Braun, Patrick D.; Sassano, Maria F.; Gurney, Allison; Roth, Bryan L.; Vulchanova, Lucy; Possenti, Roberta; Veglia, Gianluigi; Bartolomucci, Alessandro

    2014-01-01

    SUMMARY TLQP-21, a VGF-encoded peptide is emerging as a novel target for obesity-associated disorders. TLQP-21 is found in the sympathetic nerve terminals in the adipose tissue and targets the G-protein-coupled-receptor (GPCR) Complement-3a-Receptor1 (C3aR1). So far, the mechanisms of TLQP-21-induced receptor activation remained unexplored. Here, we report that TLQP-21 is intrinsically disordered and undergoes a disorder-to-order transition, adopting an α-helical conformation, upon targeting cells expressing the C3aR1. We determined that the hot spots for TLQP-21 are located at the C-terminus, with mutations in the last four amino acids progressively reducing the bioactivity and, a single site mutation (R21A) or C-terminal amidation abolishing its function completely. Interestingly, the human TLQP-21 sequence carrying a S20A substitution activates the human C3aR1 receptor with lower potency compared to the rodent sequence. These studies reveal the mechanism of action of TLQP-21 and provide molecular templates for designing agonists and antagonists to modulate C3aR1 functions. PMID:25456411

  17. The TLQP-21 peptide activates the G-protein-coupled receptor C3aR1 via a folding-upon-binding mechanism.

    PubMed

    Cero, Cheryl; Vostrikov, Vitaly V; Verardi, Raffaello; Severini, Cinzia; Gopinath, Tata; Braun, Patrick D; Sassano, Maria F; Gurney, Allison; Roth, Bryan L; Vulchanova, Lucy; Possenti, Roberta; Veglia, Gianluigi; Bartolomucci, Alessandro

    2014-12-01

    TLQP-21, a VGF-encoded peptide is emerging as a novel target for obesity-associated disorders. TLQP-21 is found in the sympathetic nerve terminals in the adipose tissue and targets the G-protein-coupled receptor complement-3a receptor1 (C3aR1). The mechanisms of TLQP-21-induced receptor activation remain unexplored. Here, we report that TLQP-21 is intrinsically disordered and undergoes a disorder-to-order transition, adopting an α-helical conformation upon targeting cells expressing the C3aR1. We determined that the hot spots for TLQP-21 are located at the C terminus, with mutations in the last four amino acids progressively reducing the bioactivity and, a single site mutation (R21A) or C-terminal amidation abolishing its function completely. Additionally, the human TLQP-21 sequence carrying a S20A substitution activates the human C3aR1 receptor with lower potency compared to the rodent sequence. These studies reveal the mechanism of action of TLQP-21 and provide molecular templates for designing agonists and antagonists to modulate C3aR1 functions. PMID:25456411

  18. Selection of peptides binding to metallic borides by screening M13 phage display libraries

    PubMed Central

    2014-01-01

    Background Metal borides are a class of inorganic solids that is much less known and investigated than for example metal oxides or intermetallics. At the same time it is a highly versatile and interesting class of compounds in terms of physical and chemical properties, like semiconductivity, ferromagnetism, or catalytic activity. This makes these substances attractive for the generation of new materials. Very little is known about the interaction between organic materials and borides. To generate nanostructured and composite materials which consist of metal borides and organic modifiers it is necessary to develop new synthetic strategies. Phage peptide display libraries are commonly used to select peptides that bind specifically to metals, metal oxides, and semiconductors. Further, these binding peptides can serve as templates to control the nucleation and growth of inorganic nanoparticles. Additionally, the combination of two different binding motifs into a single bifunctional phage could be useful for the generation of new composite materials. Results In this study, we have identified a unique set of sequences that bind to amorphous and crystalline nickel boride (Ni3B) nanoparticles, from a random peptide library using the phage display technique. Using this technique, strong binders were identified that are selective for nickel boride. Sequence analysis of the peptides revealed that the sequences exhibit similar, yet subtle different patterns of amino acid usage. Although a predominant binding motif was not observed, certain charged amino acids emerged as essential in specific binding to both substrates. The 7-mer peptide sequence LGFREKE, isolated on amorphous Ni3B emerged as the best binder for both substrates. Fluorescence microscopy and atomic force microscopy confirmed the specific binding affinity of LGFREKE expressing phage to amorphous and crystalline Ni3B nanoparticles. Conclusions This study is, to our knowledge, the first to identify peptides that

  19. Activation of superoxide formation and lysozyme release in human neutrophils by the synthetic lipopeptide Pam3Cys-Ser-(Lys)4. Involvement of guanine-nucleotide-binding proteins and synergism with chemotactic peptides.

    PubMed Central

    Seifert, R; Schultz, G; Richter-Freund, M; Metzger, J; Wiesmüller, K H; Jung, G; Bessler, W G; Hauschildt, S

    1990-01-01

    Upon exposure to the bacterial chemotactic peptide fMet-Leu-Phe, human neutrophils release lysozyme and generate superoxide anions (O2.-). The synthetic lipoamino acid N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteine (Pam3Cys), which is derived from the N-terminus of bacterial lipoprotein, when attached to Ser-(Lys)4 [giving Pam3Cys-Ser-(Lys)4], activated O2.- formation and lysozyme release in human neutrophils with an effectiveness amounting to about 15% of that of fMet-Leu-Phe. Palmitic acid, muramyl dipeptide, lipopolysaccharide and the lipopeptides Pam3Cys-Ala-Gly, Pam3Cys-Ser-Gly, Pam3Cys-Ser, Pam3Cys-OMe and Pam3Cys-OH did not activate O2.- formation. Pertussis toxin, which ADP-ribosylates guanine-nucleotide-binding proteins (G-proteins) and functionally uncouples formyl peptide receptors from G-proteins, prevented activation of O2.- formation by fMet-Leu-Phe and inhibited Pam3Cys-Ser-(Lys)4-induced O2.- formation by 85%. Lipopeptide-induced exocytosis was pertussis-toxin-insensitive. O2.- formation induced by Pam3Cys-Ser-(Lys)4 and fMet-Leu-Phe was enhanced by cytochalasin B, by a phorbol ester and by a diacylglycerol kinase inhibitor. Addition of activators of adenylate cyclase and removal of extracellular Ca2+ inhibited O2.- formation by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 to different extents. Pam3Cys-Ser-(Lys)4 synergistically enhanced fMet-Leu-Phe-induced O2.- formation and primed neutrophils to respond to the chemotactic peptide at non-stimulatory concentrations. Our data suggest the following. (1) Pam3Cys-Ser-(Lys)4 activates neutrophils through G-proteins, involving pertussis-toxin-sensitive and -insensitive processes. (2) The signal transduction pathways activated by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 are similar but not identical. (3) In inflammatory processes, bacterial lipoproteins and chemotactic peptides may interact synergistically to activate O2.- formation, leading to enhanced bactericidal activity. PMID:2160237

  20. Studies on Anticancer Activities of Antimicrobial Peptides

    PubMed Central

    Hoskin, David W.; Ramamoorthy, Ayyalusamy

    2008-01-01

    In spite of great advances in cancer therapy, there is considerable current interest in developing anticancer agents with a new mode of action because of the development of resistance by cancer cells towards current anticancer drugs. A growing number of studies have shown that some of the cationic antimicrobial peptides (AMPs), which are toxic to bacteria but not to normal mammalian cells, exhibit a broad spectrum of cytotoxic activity against cancer cells. Such studies have considerably enhanced the significance of AMPs, both synthetic and from natural sources, which have been of importance both for an increased understanding of the immune system and for their potential as clinical antibiotics. The electrostatic attraction between the negatively charged components of bacterial and cancer cells and the positively charged AMPs is believed to play a major role in the strong binding and selective disruption of bacterial and cancer cell membranes, respectively. However, it is unclear why some host defense peptides are able to kill cancer cells when others do not. In addition, it is not clear whether the molecular mechanism(s) underlying the antibacterial and anticancer activities of AMPs are the same or different. In this article, we review various studies on different AMPs that exhibit cytotoxic activity against cancer cells. The suitability of cancer cell-targeting AMPs as cancer therapeutics is also discussed. PMID:18078805

  1. PeptiSite: a structural database of peptide binding sites in 4D.

    PubMed

    Acharya, Chayan; Kufareva, Irina; Ilatovskiy, Andrey V; Abagyan, Ruben

    2014-03-21

    We developed PeptiSite, a comprehensive and reliable database of biologically and structurally characterized peptide-binding sites, in which each site is represented by an ensemble of its complexes with protein, peptide and small molecule partners. The unique features of the database include: (1) the ensemble site representation that provides a fourth dimension to the otherwise three dimensional data, (2) comprehensive characterization of the binding site architecture that may consist of a multimeric protein assembly with cofactors and metal ions and (3) analysis of consensus interaction motifs within the ensembles and identification of conserved determinants of these interactions. Currently the database contains 585 proteins with 650 peptide-binding sites. http://peptisite.ucsd.edu/ link allows searching for the sites of interest and interactive visualization of the ensembles using the ActiveICM web-browser plugin. This structural database for protein-peptide interactions enables understanding of structural principles of these interactions and may assist the development of an efficient peptide docking benchmark. PMID:24406170

  2. Specific bindings of glycine peptides of distinctly different chain length on dynamic papain surfaces

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2011-06-01

    We investigated the specific bindings of peptides of 1-10 glycine residues (1-10GLY) on dynamic papain surfaces via molecular dynamics and docking simulations. Although the binding specificities of 1-5GLY on papain fluctuated little with time, the binding specificities of 6-10GLY on papain considerably fluctuated with time. Some residues had a significant impact on bindings of 6-10GLY to sites near active center of papain, and some of their residues were specific for each 6GLY, 8GLY, and 10GLY. Modification of these specific residues should allow for control of binding specificity of 6GLY, 8GLY, and 10GLY to the active center.

  3. Insulin Mimetic Peptide Disrupts the Primary Binding Site of the Insulin Receptor.

    PubMed

    Lawrence, Callum F; Margetts, Mai B; Menting, John G; Smith, Nicholas A; Smith, Brian J; Ward, Colin W; Lawrence, Michael C

    2016-07-22

    Sets of synthetic peptides that interact with the insulin receptor ectodomain have been discovered by phage display and reported in the literature. These peptides were grouped into three classes termed Site 1, Site 2, and Site 3 based on their mutual competition of binding to the receptor. Further refinement has yielded, in particular, a 36-residue Site 2-Site 1 fusion peptide, S519, that binds the insulin receptor with subnanomolar affinity and exhibits agonist activity in both lipogenesis and glucose uptake assays. Here, we report three-dimensional crystallographic detail of the interaction of the C-terminal, 16-residue Site 1 component (S519C16) of S519 with the first leucine-rich repeat domain (L1) of the insulin receptor. Our structure shows that S519C16 binds to the same site on the L1 surface as that occupied by a critical component of the primary binding site, namely the helical C-terminal segment of the insulin receptor α-chain (termed αCT). In particular, the two phenylalanine residues within the FYXWF motif of S519C16 are seen to engage the insulin receptor L1 domain surface in a fashion almost identical to the respective αCT residues Phe(701) and Phe(705) The structure provides a platform for the further development of peptidic and/or small molecule agents directed toward the insulin receptor and/or the type 1 insulin-like growth factor receptor. PMID:27281820

  4. Binding kinetics of grouper nervous necrosis viruses with functionalized antimicrobial peptides by nanomechanical detection.

    PubMed

    Kuan, Shu; Chi, Shau-Chi; Cheng, Yung-Jen; Chia, Ta-Jui; Huang, Long-Sun

    2012-01-15

    We report the binding kinetics of fish-infected grouper nervous necrosis viruses (NNV) and selected antimicrobial peptides (AMPs) by nanomechanical detection. AMPs, the vital member in an innate immunity, are promising candidates in the fight against pathogens due to their broad range of antimicrobial activity and low toxicity. Grouper NNV primarily cause mass mortality of many marine cultured fish species, and two selected AMPs in this study were found to inhibit viruses by agglutinating its virions to form aggregates. The binding activity of NNVs with functionalized AMPs onto a sensing microcantilever yielded induced surface stresses, indicating high binding strength of molecular interaction. The binding affinity and kinetic rate constants of molecular recognition events calculated for NNV-AMP(TH1-5) compared to NNV-AMP(cSALF) were found to be 2.1-fold and 4.43-fold, respectively, indicating TH1-5 effectively bind with NNV more than cSALF. Moreover, a microscopic X-ray photoelectron spectroscopy technique was employed for further validation of pre- and post-NNV binding onto peptides-functionalized sensing surface. An increase in the spectrum and intensity of the P 2p and N 1s elements for the post-NNV binding was clearly shown to ensure the existence of phosphate groups and nitrogen-containing ring structures of specific NNV-TH1-5 interaction. Therefore, the microcantilever biosensing technique provides a potential and useful screening of AMPs for affinity to NNVs. PMID:22035974

  5. Signal peptides are allosteric activators of the protein translocase.

    PubMed

    Gouridis, Giorgos; Karamanou, Spyridoula; Gelis, Ioannis; Kalodimos, Charalampos G; Economou, Anastassios

    2009-11-19

    Extra-cytoplasmic polypeptides are usually synthesized as 'preproteins' carrying amino-terminal, cleavable signal peptides and secreted across membranes by translocases. The main bacterial translocase comprises the SecYEG protein-conducting channel and the peripheral ATPase motor SecA. Most proteins destined for the periplasm and beyond are exported post-translationally by SecA. Preprotein targeting to SecA is thought to involve signal peptides and chaperones like SecB. Here we show that signal peptides have a new role beyond targeting: they are essential allosteric activators of the translocase. On docking on their binding groove on SecA, signal peptides act in trans to drive three successive states: first, 'triggering' that drives the translocase to a lower activation energy state; second, 'trapping' that engages non-native preprotein mature domains docked with high affinity on the secretion apparatus; and third, 'secretion' during which trapped mature domains undergo several turnovers of translocation in segments. A significant contribution by mature domains renders signal peptides less critical in bacterial secretory protein targeting than currently assumed. Rather, it is their function as allosteric activators of the translocase that renders signal peptides essential for protein secretion. A role for signal peptides and targeting sequences as allosteric activators may be universal in protein translocases. PMID:19924216

  6. Identification of five different Patr class I molecules that bind HLA supertype peptides and definition of their peptide binding motifs.

    PubMed

    McKinney, D M; Erickson, A L; Walker, C M; Thimme, R; Chisari, F V; Sidney, J; Sette, A

    2000-10-15

    We have sequenced the Pan troglodytes class I (Patr) molecules from three common chimpanzees and expressed them as single molecules in a class I-deficient cell line. These lines were utilized to obtain purified class I molecules to define the peptide binding motifs associated with five different Patr molecules. Based on these experiments, as well as analysis of the predicted structure of the B and F polymorphic MHC pockets, we classified five Patr molecules (Patr-A*0101, Patr-B*0901, Patr-B*0701, Patr-A*0602, and Patr-B*1301) within previously defined supertype specificities associated with HLA class I molecules (HLA-A3, -B7, -A1, and -A24 supertypes). The overlap in the binding repertoire between specific HLA and Patr class I molecules was in the range of 33 to 92%, depending on the particular Patr molecule as assessed by the binding of HIV-, hepatitis B virus-, and hepatitis C virus-derived epitopes. Finally, live cell binding assays of nine chimpanzee-derived B cell lines demonstrated that HLA supertype peptides bound to Patr class I molecules with frequencies in the 20-50% range. PMID:11035079

  7. A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition

    PubMed Central

    Kuo, Ping-Hsueh; Chang, Pei-Lin; Wang, Wen-Ching; Chuang, Yung-Jen; Chang, Margaret Dah-Tsyr

    2015-01-01

    As heparan sulfate proteoglycans (HSPGs) are known as co-receptors to interact with numerous growth factors and then modulate downstream biological activities, overexpression of HS/HSPG on cell surface acts as an increasingly reliable prognostic factor in tumor progression. Cell penetrating peptides (CPPs) are short-chain peptides developed as functionalized vectors for delivery approaches of impermeable agents. On cell surface negatively charged HS provides the initial attachment of basic CPPs by electrostatic interaction, leading to multiple cellular effects. Here a functional peptide (CPPecp) has been identified from critical HS binding region in hRNase3, a unique RNase family member with in vitro antitumor activity. In this study we analyze a set of HS-binding CPPs derived from natural proteins including CPPecp. In addition to cellular binding and internalization, CPPecp demonstrated multiple functions including strong binding activity to tumor cell surface with higher HS expression, significant inhibitory effects on cancer cell migration, and suppression of angiogenesis in vitro and in vivo. Moreover, different from conventional highly basic CPPs, CPPecp facilitated magnetic nanoparticle to selectively target tumor site in vivo. Therefore, CPPecp could engage its capacity to be developed as biomaterials for diagnostic imaging agent, therapeutic supplement, or functionalized vector for drug delivery. PMID:26064887

  8. Natural and synthetic peptides with antifungal activity.

    PubMed

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections. PMID:27502155

  9. Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Soares, Jason W.; Mello, Charlene M.

    2004-03-01

    Antimicrobial peptides (AMPs) have been discovered in insects, mammals, reptiles, and plants to protect against microbial infection. Many of these peptides have been isolated and studied exhaustively to decipher the molecular mechanisms that impart protection against infectious bacteria, fungi, and viruses. Unfortunately, the molecular mechanisms are still being debated within the scientific community but valuable clues have been obtained through structure/function relationship studies1. Biophysical studies have revealed that cecropins, isolated from insects and pigs, exhibit random structure in solution but undergo a conformational change to an amphipathic α-helix upon interaction with a membrane surface2. The lack of secondary structure in solution results in an extremely durable peptide able to survive exposure to high temperatures, organic solvents and incorporation into fibers and films without compromising antibacterial activity. Studies to better understand the antimicrobial action of cecropins and other AMPs have provided insight into the importance of peptide sequence and structure in antimicrobial activities. Therefore, enhancing our knowledge of how peptide structure imparts function may result in customized peptide sequences tailored for specific applications such as targeted cell delivery systems, novel antibiotics and food preservation additives. This review will summarize the current state of knowledge with respect to cell binding and antimicrobial activity of AMPs focusing primarily upon cecropins.

  10. Learning a peptide-protein binding affinity predictor with kernel ridge regression

    PubMed Central

    2013-01-01

    Background The cellular function of a vast majority of proteins is performed through physical interactions with other biomolecules, which, most of the time, are other proteins. Peptides represent templates of choice for mimicking a secondary structure in order to modulate protein-protein interaction. They are thus an interesting class of therapeutics since they also display strong activity, high selectivity, low toxicity and few drug-drug interactions. Furthermore, predicting peptides that would bind to a specific MHC alleles would be of tremendous benefit to improve vaccine based therapy and possibly generate antibodies with greater affinity. Modern computational methods have the potential to accelerate and lower the cost of drug and vaccine discovery by selecting potential compounds for testing in silico prior to biological validation. Results We propose a specialized string kernel for small bio-molecules, peptides and pseudo-sequences of binding interfaces. The kernel incorporates physico-chemical properties of amino acids and elegantly generalizes eight kernels, comprised of the Oligo, the Weighted Degree, the Blended Spectrum, and the Radial Basis Function. We provide a low complexity dynamic programming algorithm for the exact computation of the kernel and a linear time algorithm for it’s approximation. Combined with kernel ridge regression and SupCK, a novel binding pocket kernel, the proposed kernel yields biologically relevant and good prediction accuracy on the PepX database. For the first time, a machine learning predictor is capable of predicting the binding affinity of any peptide to any protein with reasonable accuracy. The method was also applied to both single-target and pan-specific Major Histocompatibility Complex class II benchmark datasets and three Quantitative Structure Affinity Model benchmark datasets. Conclusion On all benchmarks, our method significantly (p-value ≤ 0.057) outperforms the current state-of-the-art methods at predicting

  11. Epitope-specificity of recombinant antibodies reveals promiscuous peptide-binding properties

    PubMed Central

    Olsson, Niclas; Wallin, Stefan; James, Peter; Borrebaeck, Carl A K; Wingren, Christer

    2012-01-01

    Protein–peptide interactions are a common occurrence and essential for numerous cellular processes, and frequently explored in broad applications within biology, medicine, and proteomics. Therefore, understanding the molecular mechanism(s) of protein–peptide recognition, specificity, and binding interactions will be essential. In this study, we report the first detailed analysis of antibody–peptide interaction characteristics, by combining large-scale experimental peptide binding data with the structural analysis of eight human recombinant antibodies and numerous peptides, targeting tryptic mammalian and eukaryote proteomes. The results consistently revealed that promiscuous peptide-binding interactions, that is, both specific and degenerate binding, were exhibited by all antibodies, and the discovery was corroborated by orthogonal data, indicating that this might be a general phenomenon for low-affinity antibody–peptide interactions. The molecular mechanism for the degenerate peptide-binding specificity appeared to be executed through the use of 2–3 semi-conserved anchor residues in the C-terminal part of the peptides, in analogue to the mechanism utilized by the major histocompatibility complex–peptide complexes. In the long-term, this knowledge will be instrumental for advancing our fundamental understanding of protein–peptide interactions, as well as for designing, generating, and applying peptide specific antibodies, or peptide-binding proteins in general, in various biotechnical and medical applications. PMID:23034898

  12. One-step surface modification of polyurethane using affinity binding peptides for enhanced fouling resistance.

    PubMed

    Wang, Yibing; Yu, Yong; Zhang, Liting; Qin, Peng; Wang, Ping

    2015-01-01

    Affinity binding peptides were examined for surface fabrication of synthetic polymeric materials. Peptides possessing strong binding affinities toward polyurethane (PU) were discovered via biopanning of M13 phage peptide library. The apparent binding constant (K(app)) was as high as 2.68 × 10(9) M(-1) with surface peptide density exceeded 1.8 μg/cm(2). Structural analysis showed that the ideal peptide had a high content (75%) of H-donor amino acid residues, and that intensified hydrogen bond interaction was the key driving force for the highly stable binding of peptides on PU. PU treated with such affinity peptides promises applications as low-fouling materials, as peptides increased its wettability and substantially reduced protein adsorption and cell adhesion. These results demonstrated a facile but highly efficient one-step strategy for surface property modification of polymeric materials for biotechnological applications. PMID:25732121

  13. ARSENITE BINDING TO SYNTHETIC PEPTIDES: THE EFFECT OF INCREASING LENGTH BETWEEN TWO CYSTEINES

    EPA Science Inventory

    Binding of trivalent arsenicals to peptides and proteins can alter peptide/protein structure and enzyme function and thereby contribute to arsenic toxicity and carcinogenicity. We utilized radioactive 73As- labeled arsenite and vacuum filtration methodology to determine the bindi...

  14. Copper-binding peptides from human prion protein and newly designed peroxidative biocatalysts.

    PubMed

    Kagenishi, Tomoko; Yokawa, Ken; Kadono, Takashi; Uezu, Kazuya; Kawano, Tomonori

    2011-01-01

    A previous work suggested that peptides from the histidine-containing copper-binding motifs in human prion protein (PrP) function as peroxidase-like biocatalysts catalyzing the generation of superoxide anion radicals in the presence of neurotransmitters (aromatic monoamines) and phenolics such as tyrosine and tyrosyl residues on proteins. In this study, using various phenolic substrates, the phenol-dependent superoxide-generating activities of PrP-derived peptide sequences were compared. Among the peptides tested, the GGGTH pentapeptide was shown to be the most active catalyst for phenol-dependent reactions. Based on these results, we designed a series of oligoglycyl-histidines as novel peroxidative biocatalysts, and their catalytic performances including kinetics, heat tolerance, and freezing tolerance were analysed. PMID:21630593

  15. Inorganic binding peptides designed by phage display techniques for biotechnology applications

    NASA Astrophysics Data System (ADS)

    Liao, Chih-Wei

    Biomacromolecules play an important role in the control of hard tissue structure and function via specific molecular recognition interactions between proteins of the matrix and inorganic species of the biomineral phase. During the construction of the tissue, biomacromolecules are usually folded into a certain comformation, analogous to a "lock" for fitting with other proteins or smaller molecules as a "key". Currently, the rational design of molecular recognition in biomacro-molecules is still hard to accomplish because the protein conformation is too complex to precisely predict based on the existing conformational information of proteins found in biological systems. In the past two decades, the combinatorial approach (e.g. phage display techniques) has been used to select short binding peptides with molecular recognition to an inorganic target material without a prior knowledge of the amino acid sequence required for the specific binding. The technique has been referred to as "biopanning" because bacteriophages are used to "screen" for peptides that exhibit strong binding to a target material of interest. In this study, two diverse applications were chosen to demonstrate the utility of the biopanning approach. In one project, phage display techniques were used to pan for Indium Zinc Oxide (InZnO) binding peptides to serve as linkers between transducer devices and biosensing elements for demonstration of the feasibility of reversibly electro-activated biosensors. The amorphous InZnO, with its homogeneous surface, led to three consensus peptide sequences, AGFPNSTHSSNL, SHAPDSTWFALF, and TNSSSQFVVAIP. In addition, it was demonstrated that some selected phage clones of the InZnO binding peptides were able to be released from the InZnO surface after applying a voltage of 1400 mV on an electro-activated releasing device. In the second project, phage display techniques were used to select phage clones that bind specifically to francolite mineral in order to achieve

  16. [Progress on parasiticidal activity of anitimicrobial peptides].

    PubMed

    Liu, Ze-hua; Zhao, Jun-long

    2014-10-01

    Antimicrobial peptides are a kind of gene encoded, ribosome synthesized, small molecular polypeptides that have high efficiency, wide antibacterial spectrum, and low immunogenicity. Many studies have indicated that antimicrobial peptides can inhibit the growth of parasites or even kill them. This paper reviews the research progress on parasiticidal activity of the antimicrobial peptides in recent years, and presents the problems in the research. PMID:25726604

  17. Unusual features of Self-Peptide/MHC Binding by Autoimmune T Cell Receptors

    SciTech Connect

    Nicholson,M.; Hahn, M.; Wucherpfennig, K.

    2005-01-01

    Structural studies on T cell receptors (TCRs) specific for foreign antigens demonstrated a remarkably similar topology characterized by a central, diagonal TCR binding mode that maximizes interactions with the MHC bound peptide. However, three recent structures involving autoimmune TCRs demonstrated unusual interactions with self-peptide/MHC complexes. Two TCRs from multiple sclerosis patients bind with unconventional topologies, and both TCRs are shifted toward the peptide N terminus and the MHC class II {beta} chain helix. A TCR from the experimental autoimmune encephalomyelitis (EAE) model binds in a conventional orientation, but the structure is unusual because the self-peptide only partially fills the binding site. For all three TCRs, interaction with the MHC bound self-peptide is suboptimal, and only two or three TCR loops contact the peptide. Optimal TCR binding modes confer a competitive advantage for antimicrobial T cells during an infection, whereas altered binding properties may permit survival of a subset of autoreactive T cells during thymic selection.

  18. The recognition of collagen and triple-helical toolkit peptides by MMP-13: sequence specificity for binding and cleavage.

    PubMed

    Howes, Joanna-Marie; Bihan, Dominique; Slatter, David A; Hamaia, Samir W; Packman, Len C; Knauper, Vera; Visse, Robert; Farndale, Richard W

    2014-08-29

    Remodeling of collagen by matrix metalloproteinases (MMPs) is crucial to tissue homeostasis and repair. MMP-13 is a collagenase with a substrate preference for collagen II over collagens I and III. It recognizes a specific, well-known site in the tropocollagen molecule where its binding locally perturbs the triple helix, allowing the catalytic domain of the active enzyme to cleave the collagen α chains sequentially, at Gly(775)-Leu(776) in collagen II. However, the specific residues upon which collagen recognition depends within and surrounding this locus have not been systematically mapped. Using our triple-helical peptide Collagen Toolkit libraries in solid-phase binding assays, we found that MMP-13 shows little affinity for Collagen Toolkit III, but binds selectively to two triple-helical peptides of Toolkit II. We have identified the residues required for the adhesion of both proMMP-13 and MMP-13 to one of these, Toolkit peptide II-44, which contains the canonical collagenase cleavage site. MMP-13 was unable to bind to a linear peptide of the same sequence as II-44. We also discovered a second binding site near the N terminus of collagen II (starting at helix residue 127) in Toolkit peptide II-8. The pattern of binding of the free hemopexin domain of MMP-13 was similar to that of the full-length enzyme, but the free catalytic subunit bound none of our peptides. The susceptibility of Toolkit peptides to proteolysis in solution was independent of the very specific recognition of immobilized peptides by MMP-13; the enzyme proved able to cleave a range of dissolved collagen peptides. PMID:25008319

  19. Design of Compact Biomimetic Cellulose Binding Peptides as Carriers for Cellulose Catalytic Degradation.

    PubMed

    Khazanov, Netaly; Iline-Vul, Taly; Noy, Efrat; Goobes, Gil; Senderowitz, Hanoch

    2016-01-21

    The conversion of biomass into biofuels can reduce the strategic vulnerability of petroleum-based systems and at the same time have a positive effect on global climate issues. Lignocellulose is the cheapest and most abundant source of biomass and consequently has been widely considered as a source for liquid fuel. However, despite ongoing efforts, cellulosic biofuels are still far from commercial realization, one of the major bottlenecks being the hydrolysis of cellulose into simpler sugars. Inspired by the structural and functional modularity of cellulases used by many organisms for the breakdown of cellulose, we propose to mimic the cellulose binding domain (CBD) and the catalytic domain of these proteins by small molecular entities. Multiple copies of these mimics could subsequently be tethered together to enhance hydrolytic activity. In this work, we take the first step toward achieving this goal by applying computational approaches to the design of efficient, cost-effective mimetics of the CBD. The design is based on low molecular weight peptides that are amenable to large-scale production. We provide an optimized design of four short (i.e., ∼18 residues) peptide mimetics based on the three-dimensional structure of a known CBD and demonstrate that some of these peptides bind cellulose as well as or better than the full CBD. The structures of these peptides were studied by circular dichroism and their interactions with cellulose by solid phase NMR. Finally, we present a computational strategy for predicting CBD/peptide-cellulose binding free energies and demonstrate its ability to provide values in good agreement with experimental data. Using this computational model, we have also studied the dissociation pathway of the CBDs/peptides from the surface of cellulose. PMID:26691055

  20. Pulling peptides across nanochannels: resolving peptide binding and translocation through the hetero-oligomeric channel from Nocardia farcinica.

    PubMed

    Singh, Pratik Raj; Bárcena-Uribarri, Iván; Modi, Niraj; Kleinekathöfer, Ulrich; Benz, Roland; Winterhalter, Mathias; Mahendran, Kozhinjampara R

    2012-12-21

    We investigated translocation of cationic peptides through nanochannels derived from the Gram-positive bacterium Nocardia farcinica at the single-molecule level. The two subunits NfpA and NfpB form a hetero-oligomeric cation selective channel. On the basis of amino acid comparison we performed homology modeling and obtained a channel structurally related to MspA of Mycobacterium smegmatis. The quantitative single-molecule measurements provide an insight into transport processes of solutes through nanochannels. High-resolution ion conductance measurements in the presence of peptides of different charge and length revealed the kinetics of peptide binding. The observed asymmetry in peptide binding kinetics indicated a unidirectional channel insertion in the lipid bilayer. In the case of cationic peptides, the external voltage acts as a driving force that promotes the interaction of the peptide with the channel surface. At low voltage, the peptide just binds to the channel, whereas at higher voltage, the force is strong enough to pull the peptide across the channel. This allows distinguishing quantitatively between peptide binding and translocation through the channel. PMID:23121560

  1. Trastuzumab-binding peptide display by Tobacco mosaic virus

    SciTech Connect

    Frolova, Olga Y.; Petrunia, Igor V.; Komarova, Tatiana V.; Kosorukov, Vyacheslav S.; Sheval, Eugene V.; Gleba, Yuri Y.; Dorokhov, Yuri L.

    2010-11-10

    Human epidermal growth factor receptor-2 (HER2/neu) is a target for the humanized monoclonal antibody trastuzumab. Recently, trastuzumab-binding peptides (TBP) of HER2/neu that inhibit proliferation of breast cancer cells were identified. We have now studied conditions of efficient assembly in vivo of Tobacco mosaic virus (TMV)-based particles displaying TBP on its surface. The system is based on an Agrobacterium-mediated co-delivery of binary vectors encoding TMV RNA and coat protein (CP) with TBP in its C-terminal extension into plant leaves. We show how the fusion of amino acid substituted TBP (sTBP) to CP via a flexible peptide linker can improve the manufacturability of recombinant TMV (rTMV). We also reveal that rTMV particles with exposed sTBP retained trastuzumab-binding capacity but lost an anti-HER2/neu immunogenic scaffold function. Mouse antibodies against rTMV did not recognize HER2/neu on surface of human SK-BR-3 cells.

  2. Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein.

    PubMed

    Lo, Hsin-Yi; Li, Chia-Cheng; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-08-01

    Many food bioactive peptides with diverse functions have been discovered by studying plant proteins. We have previously identified a 68-residue insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia that exhibits hypoglycemic effects in mice via interaction with IR. By in vitro digestion, we found that mcIRBP-19, spanning residues 50-68 of mcIRBP, enhanced the binding of insulin to IR, stimulated the phosphorylation of PDK1 and Akt, induced the expression of glucose transporter 4, and stimulated both the uptake of glucose in cells and the clearance of glucose in diabetic mice. Furthermore, mcIRBP-19 homologs were present in various plants and shared similar β-hairpin structures and IR kinase-activating abilities to mcIRBP-19. In conclusion, our findings suggested that mcIRBP-19 is a blood glucose-lowering bioactive peptide that exhibits IR-binding potentials. Moreover, we newly identified novel IR-binding bioactive peptides in various plants which belonged to different taxonomic families. PMID:26988505

  3. The peptide LSARLAF causes platelet secretion and aggregation by directly activating the integrin alphaIIbbeta3.

    PubMed Central

    Derrick, J M; Taylor, D B; Loudon, R G; Gartner, T K

    1997-01-01

    A novel peptide (designed to bind to alphaIIbbeta3) caused platelet aggregation and aggregation-independent secretion of the contents of alpha-granules in an alphaIIbbeta3-dependent fashion. The agonist peptide induced secretion in the presence of prostaglandin E1. In cell-free assays, alphaIIbbeta3 bound specifically to immobilized agonist peptide and the peptide enhanced the binding of fibrinogen to immobilized alphaIIbbeta3. The agonist peptide apparently activates alphaIIbbeta3 by directly inducing a conformational change in the receptor. This change activates the platelets and causes secretion in a manner independent of fibrinogen binding. PMID:9230107

  4. The paradox of conformational constraint in the design of Cbl(TKB)-binding peptides

    PubMed Central

    Kumar, Eric A.; Chen, Qianyi; Kizhake, Smitha; Kolar, Carol; Kang, Myungshim; Chang, Chia-en A.; Borgstahl, Gloria E. O.; Natarajan, Amarnath

    2013-01-01

    Solving the crystal structure of Cbl(TKB) in complex with a pentapeptide, pYTPEP, revealed that the PEP region adopted a poly-L-proline type II (PPII) helix. An unnatural amino acid termed a proline-templated glutamic acid (ptE) that constrained both the backbone and sidechain to the bound conformation was synthesized and incorporated into the pYTPXP peptide. We estimated imposing structural constraints onto the backbone and sidechain of the peptide and preorganize it to the bound conformation in solution will yield nearly an order of magnitude improvement in activity. NMR studies confirmed that the ptE-containing peptide adopts the PPII conformation, however, competitive binding studies showed an order of magnitude loss of activity. Given the emphasis that is placed on imposing structural constraints, we provide an example to support the contrary. These results point to conformational flexibility at the interface, which have implications in the design of potent Cbl(TKB)-binding peptides. PMID:23572190

  5. Efficient Inhibition of Hepatitis B Virus Infection by a preS1-binding Peptide.

    PubMed

    Ye, Xiaoli; Zhou, Ming; He, Yonggang; Wan, Yanmin; Bai, Weiya; Tao, Shuai; Ren, Yanqin; Zhang, Xinxin; Xu, Jianqing; Liu, Jing; Zhang, Junqi; Hu, Kanghong; Xie, Youhua

    2016-01-01

    Entry inhibitors are promising novel antivirals against hepatitis B virus (HBV) infection. The existing potential entry inhibitors have targeted the cellular receptor(s). In this study, we aim to develop the first entry inhibitor that inhibits HBV infection via targeting viral particles. The preS1 segment of the large envelope glycoprotein of HBV is essential for virion attachment and infection. Previously, we obtained a preS1-binding short peptide B10 by screening a phage display peptide library using the N-terminal half of preS1 (residues 1 to 60, genotype C). We report here that by means of concatenation of B10, we identified a quadruple concatemer 4B10 that displayed a markedly increased preS1-binding activity. The main binding site of 4B10 in preS1 was mapped to the receptor binding enhancing region. 4B10 blocked HBV attachment to hepatic cells and inhibited HBV infection of primary human and tupaia hepatocytes at low nanomolar concentrations. The 4B10-mediated inhibition of HBV infection is specific as it did not inhibit the infection of vesicular stomatitis virus glycoprotein pseudotyped lentivirus or human immunodeficiency virus type 1. Moreover, 4B10 showed no binding activity to hepatic cells. In conclusion, we have identified 4B10 as a promising candidate for a novel class of HBV entry inhibitors. PMID:27384014

  6. Efficient Inhibition of Hepatitis B Virus Infection by a preS1-binding Peptide

    PubMed Central

    Ye, Xiaoli; Zhou, Ming; He, Yonggang; Wan, Yanmin; Bai, Weiya; Tao, Shuai; Ren, Yanqin; Zhang, Xinxin; Xu, Jianqing; Liu, Jing; Zhang, Junqi; Hu, Kanghong; Xie, Youhua

    2016-01-01

    Entry inhibitors are promising novel antivirals against hepatitis B virus (HBV) infection. The existing potential entry inhibitors have targeted the cellular receptor(s). In this study, we aim to develop the first entry inhibitor that inhibits HBV infection via targeting viral particles. The preS1 segment of the large envelope glycoprotein of HBV is essential for virion attachment and infection. Previously, we obtained a preS1-binding short peptide B10 by screening a phage display peptide library using the N-terminal half of preS1 (residues 1 to 60, genotype C). We report here that by means of concatenation of B10, we identified a quadruple concatemer 4B10 that displayed a markedly increased preS1-binding activity. The main binding site of 4B10 in preS1 was mapped to the receptor binding enhancing region. 4B10 blocked HBV attachment to hepatic cells and inhibited HBV infection of primary human and tupaia hepatocytes at low nanomolar concentrations. The 4B10-mediated inhibition of HBV infection is specific as it did not inhibit the infection of vesicular stomatitis virus glycoprotein pseudotyped lentivirus or human immunodeficiency virus type 1. Moreover, 4B10 showed no binding activity to hepatic cells. In conclusion, we have identified 4B10 as a promising candidate for a novel class of HBV entry inhibitors. PMID:27384014

  7. Membrane-Active Peptides and the Clustering of Anionic Lipids

    PubMed Central

    Wadhwani, P.; Epand, R.F.; Heidenreich, N.; Bürck, J.; Ulrich, A.S.; Epand, R.M.

    2012-01-01

    There is some overlap in the biological activities of cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs). We compared nine AMPs, seven CPPs, and a fusion peptide with regard to their ability to cluster anionic lipids in a mixture mimicking the cytoplasmic membrane of Gram-negative bacteria, as measured by differential scanning calorimetry. We also studied their bacteriostatic effect on several bacterial strains, and examined their conformational changes upon membrane binding using circular dichroism. A remarkable correlation was found between the net positive charge of the peptides and their capacity to induce anionic lipid clustering, which was independent of their secondary structure. Among the peptides studied, six AMPs and four CPPs were found to have strong anionic lipid clustering activity. These peptides also had bacteriostatic activity against several strains (particularly Gram-negative Escherichia coli) that are sensitive to lipid clustering agents. AMPs and CPPs that did not cluster anionic lipids were not toxic to E. coli. As shown previously for several types of AMPs, anionic lipid clustering likely contributes to the mechanism of antibacterial action of highly cationic CPPs. The same mechanism could explain the escape of CPPs from intracellular endosomes that are enriched with anionic lipids. PMID:22853904

  8. Haemoglobin binding with haptoglobin. Localization of the haptoglobin-binding sites on the beta-chain of human haemoglobin by synthetic overlapping peptides encompassing the entire chain.

    PubMed

    Yoshioka, N; Atassi, M Z

    1986-03-01

    A synthetic approach was employed to identify the haptoglobin-binding sites on the beta-chain of human haemoglobin. This approach consists of the synthesis of a series of consecutive overlapping peptides that, together, systematically represent the entire protein chain. Fourteen synthetic peptides (beta 1-15, beta 11-25 etc.) were examined for their ability to bind human haptoglobin by quantitative solid-phase radiometric titrations of 125I-labelled haptoglobin. Of these 14 peptides only peptides beta 11-25 and beta 131-146 bound haptoglobin significantly; peptide beta 21-35 exhibited a small binding activity as a consequence of the overlap with peptide beta 11-25. On this basis and by examination of the three-dimensional structure of haemoglobin, it was concluded that the beta-chain of haemoglobin has two binding sites for haptoglobin that reside in, but do not necessarily encompass all of, the regions beta 11-25 and beta 131-146. PMID:3718478

  9. Surface Plasmon Resonance Binding Kinetics of Alzheimer’s Disease Amyloid β Peptide Capturing- and Plaque Binding- Monoclonal Antibodies†

    PubMed Central

    Ramakrishnan, Muthu; Kandimalla, Karunya K.; Wengenack, Thomas M.; Howell, Kyle G.; Poduslo, Joseph F.

    2009-01-01

    Several different monoclonal antibodies (mAbs) have been actively developed in the field of Alzheimer’s disease (AD) for basic science and clinical applications; however, the binding kinetics of many of the mAbs with the β-amyloid peptides (Aβ) are poorly understood. A panel of mAbs with different Aβ recognition sites, including our plaque binding antibody (IgG4.1), a peptide capturing antibody (11A50), and two classical mAbs (6E10 and 4G8) used for immunohistochemistry, were chosen to characterize their binding kinetics to monomeric and fibrillar forms of Aβ40 using surface plasmon resonance and their amyloid plaque binding ability in AD mouse brain sections using immunohistochemistry. The plaque binding antibody (IgG4.1) with epitope specificity of Aβ(2-10) showed a weaker affinity (512 nM) to monomeric Aβ40 but higher affinity (1.5 nM) to Aβ40 fibrils and labeled dense core plaques better than 6E10 by immunohistochemistry. The peptide capturing antibody (11A50) showed preferential affinity (32.5 nM) to monomeric Aβ40, but did not bind to Aβ40 fibrils, whereas antibodies 6E10 and 4G8 had moderate affinity to monomeric Aβ40 (22.3 and 30.1 nM, respectively). 4G8, which labels diffuse plaques better than 6E10, had a higher association rate constant than 6E10 but showed similar association and dissociation kinetics compared to 11A50. Enzymatic digestion of IgG4.1 to the F(ab’)24.1 fragments or their polyamine-modified derivatives that enhance blood brain barrier permeability did not affect the kinetic properties of the antigen binding site. These differences in kinetic binding to monomeric and fibrillar Aβ among various antibodies could be utilized to distinguish mAbs that might be useful for immunotherapy or amyloid plaque imaging versus those that could be utilized for bioanalytical techniques. PMID:19775170

  10. Competition-based cellular peptide binding assays for 13 prevalent HLA class I alleles using fluorescein-labeled synthetic peptides.

    PubMed

    Kessler, Jan H; Mommaas, Bregje; Mutis, Tuna; Huijbers, Ivo; Vissers, Debby; Benckhuijsen, Willemien E; Schreuder, Geziena M Th; Offringa, Rienk; Goulmy, Els; Melief, Cornelis J M; van der Burg, Sjoerd H; Drijfhout, Jan W

    2003-02-01

    We report the development, validation, and application of competition-based peptide binding assays for 13 prevalent human leukocyte antigen (HLA) class I alleles. The assays are based on peptide binding to HLA molecules on living cells carrying the particular allele. Competition for binding between the test peptide of interest and a fluorescein-labeled HLA class I binding peptide is used as read out. The use of cell membrane-bound HLA class I molecules circumvents the need for laborious biochemical purification of these molecules in soluble form. Previously, we have applied this principle for HLA-A2 and HLA-A3. We now describe the assays for HLA-A1, HLA-A11, HLA-A24, HLA-A68, HLA-B7, HLA-B8, HLA-B14, HLA-B35, HLA-B60, HLA-B61, and HLA-B62. Together with HLA-A2 and HLA-A3, these alleles cover more than 95% of the Caucasian population. Several allele-specific parameters were determined for each assay. Using these assays, we identified novel HLA class I high-affinity binding peptides from HIVpol, p53, PRAME, and minor histocompatibility antigen HA-1. Thus these convenient and accurate peptide-binding assays will be useful for the identification of putative cytotoxic T lymphocyte epitopes presented on a diverse array of HLA class I molecules. PMID:12559627

  11. Covalent Conjugation of a Peptide Triazole to HIV-1 gp120 Enables Intramolecular Binding Site Occupancy

    PubMed Central

    2015-01-01

    The HIV-1 gp120 glycoprotein is the main viral surface protein responsible for initiation of the entry process and, as such, can be targeted for the development of entry inhibitors. We previously identified a class of broadly active peptide triazole (PT) dual antagonists that inhibit gp120 interactions at both its target receptor and coreceptor binding sites, induce shedding of gp120 from virus particles prior to host–cell encounter, and consequently can prevent viral entry and infection. However, our understanding of the conformational alterations in gp120 by which PT elicits its dual receptor antagonism and virus inactivation functions is limited. Here, we used a recently developed computational model of the PT–gp120 complex as a blueprint to design a covalently conjugated PT–gp120 recombinant protein. Initially, a single-cysteine gp120 mutant, E275CYU-2, was expressed and characterized. This variant retains excellent binding affinity for peptide triazoles, for sCD4 and other CD4 binding site (CD4bs) ligands, and for a CD4-induced (CD4i) ligand that binds the coreceptor recognition site. In parallel, we synthesized a PEGylated and biotinylated peptide triazole variant that retained gp120 binding activity. An N-terminally maleimido variant of this PEGylated PT, denoted AE21, was conjugated to E275C gp120 to produce the AE21–E275C covalent conjugate. Surface plasmon resonance interaction analysis revealed that the PT–gp120 conjugate exhibited suppressed binding of sCD4 and 17b to gp120, signatures of a PT-bound state of envelope protein. Similar to the noncovalent PT–gp120 complex, the covalent conjugate was able to bind the conformationally dependent mAb 2G12. The results argue that the PT–gp120 conjugate is structurally organized, with an intramolecular interaction between the PT and gp120 domains, and that this structured state embodies a conformationally entrapped gp120 with an altered bridging sheet but intact 2G12 epitope. The similarities of

  12. Inhibition of mu and delta opioid receptor ligand binding by the peptide aldehyde protease inhibitor, leupeptin.

    PubMed

    Christoffers, Keith H; Khokhar, Arshia; Chaturvedi, Kirti; Howells, Richard D

    2002-04-15

    We reported recently that the ubiquitin-proteasome pathway is involved in agonist-induced down regulation of mu and delta opioid receptors [J. Biol. Chem. 276 (2001) 12345]. While evaluating the effects of various protease inhibitors on agonist-induced opioid receptor down regulation, we observed that while the peptide aldehyde, leupeptin (acetyl-L-Leucyl-L-Leucyl-L-Arginal), did not affect agonist-induced down regulation, leupeptin at submillimolar concentrations directly inhibited radioligand binding to opioid receptors. In this study, the inhibitory activity of leupeptin on radioligand binding was characterized utilizing human embryonic kidney (HEK) 293 cell lines expressing transfected mu, delta, or kappa opioid receptors. The rank order of potency for leupeptin inhibition of [3H]bremazocine binding to opioid receptors was mu > delta > kappa. In contrast to the effect of leupeptin, the peptide aldehyde proteasome inhibitor, MG 132 (carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal), had significantly less effect on bremazocine binding to mu, delta, or kappa opioid receptors. We propose that leupeptin inhibits ligand binding by reacting reversibly with essential sulfhydryl groups that are necessary for high-affinity ligand/receptor interactions. PMID:11853866

  13. Malaria Parasite Survival Depends on Conserved Binding Peptides' Critical Biological Functions.

    PubMed

    Patarroyo, Manuel E; Arevalo-Pinzon, Gabriela; Reyes, Cesar; Moreno-Vranich, Armando; Patarroyo, Manuel A

    2016-01-01

    Biochemical, structural and single amino acid level analysis of 49 Plasmodium falciparum protein regions (13 sporozoite and 36 merozoite proteins) has highlighted the functional role of each conserved high activity binding peptide (cHABP) in cell host-microbe interaction, involving biological functions such as gliding motility, traversal activity, binding invasion, reproduction, nutrient ion transport and the development of severe malaria. Each protein's key function in the malaria parasite's asexual lifecycle (pre-erythrocyte and erythro-cyte) is described in terms of cHABPs; their sequences were located in elegant work published by other groups regarding critical binding regions implicated in malarial parasite invasion. Such cHABPs represent the starting point for developing a logical and rational methodology for selecting an appropriate mixture of modified cHABPs to be used in a completely effective, synthetic antimalarial vaccine. Such methodology could be used for developing vaccines against diseases scourging humanity. PMID:26317369

  14. The cell-penetrating peptide domain from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) has anti-inflammatory activity in vitro and in vivo

    SciTech Connect

    Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung; Park, Yoon-Jeong; Chung, Chong-Pyoung

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer HBP sequence identified from HB-EGF has cell penetration activity. Black-Right-Pointing-Pointer HBP inhibits the NF-{kappa}B dependent inflammatory responses. Black-Right-Pointing-Pointer HBP directly blocks phosphorylation and degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer HBP inhibits nuclear translocation of NF-{kappa}B p65 subunit. -- Abstract: A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-{alpha} and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-{alpha} and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-{kappa}B-dependent inflammatory responses by directly blocking the phosphorylation and degradation of I{kappa}B{alpha} and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-{kappa}B. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells.

  15. Influence of the membrane dipole potential on peptide binding to lipid bilayers

    PubMed Central

    Zhan, Huan; Lazaridis, Themis

    2011-01-01

    The implicit membrane model IMM1 is extended to include the membrane dipole potential and applied to molecular dynamics simulations of the helical peptides alamethicin, WALP23, influenza hemagglutinin fusion peptide, HIV fusion peptide, magainin, and the pre-sequence of cytochrome c oxidase subunit IV (p25). The results show that the orientation of the peptides in the membrane can be influenced by the dipole potential. The binding affinity of all peptides except for the hemagglutinin fusion peptide decreases upon increase of the dipole potential. The changes in both orientation and binding affinity are explained by the interaction of the dipole potential with the helix backbone dipole and ionic side-chains. In general, peptides that tend to insert the N-terminus in the membrane and/or have positively charged side chains will lose binding affinity upon increase of the dipole potential. PMID:22100997

  16. Phosphinic peptides, the first potent inhibitors of astacin, behave as extremely slow-binding inhibitors.

    PubMed Central

    Yiallouros, I; Vassiliou, S; Yiotakis, A; Zwilling, R; Stöcker, W; Dive, V

    1998-01-01

    A series of phosphinic pseudo-peptides varying in length and composition have been designed as inhibitors of the crayfish zinc endopeptidase astacin, the prototype of the astacin family and of the metzincin superfamily of metalloproteinases. The most efficient phosphinic peptide, fluorenylmethyloxycarbonyl-Pro-Lys-PhePsi(PO2CH2)Ala-P ro-Leu-Val, binds to astacin with a Ki value of 42 nM, which is about three orders of magnitude below the corresponding values for previously used hydroxamic acid derivatives. However, the rate constants for association (kon = 96.8 M-1.s-1) and dissociation (koff = 4.1 x 10(-6) s-1) are evidence for the extremely slow binding behaviour of this compound. N-terminally or C-terminally truncated phosphinic analogues of this parent molecule are much less potent, indicating a critical role of the peptide size on the potency. In particular, omission of the N-terminal proline residue leads to a 40-fold increase in Ki which is mostly due to a 75-fold higher koff value. These findings are consistent with the previously solved crystal structure of astacin complexed with one of the phosphinic peptides, benzyloxycarbonyl-Pro-Lys-PhePsi(PO2CH2)Ala-Pro-O-methyl, Ki = 14 microM [Grams, Dive, Yiotakis, Yiallouros, Vassiliou, Zwilling, Bode and Stöcker (1996) Nature Struct. Biol. 3, 671-675]. This structure also reveals that the phosphinic group binds to the active site as a transition-state analogue. The extremely slow binding behaviour of the phosphinic peptides is discussed in the light of the conformational changes involving a unique 'tyrosine switch' in the structure of astacin upon inhibitor binding. The phosphinic peptides may provide a rational basis for the design of drugs directed towards other members of the astacin family which, like bone morphogenetic protein 1 (BMP1; i.e. the procollagen C-proteinase), have become targets of pharmacological research. PMID:9531473

  17. Intragenic suppressors of Hsp70 mutants: Interplay between the ATPase- and peptide-binding domains

    PubMed Central

    Davis, Julie E.; Voisine, Cindy; Craig, Elizabeth A.

    1999-01-01

    ATP hydrolysis and polypeptide binding, the two key activities of Hsp70 molecular chaperones, are inherent properties of different domains of the protein. The coupling of these two activities is critical because the bound nucleotide determines, in part, the affinity of Hsp70s for protein substrate. In addition, cochaperones of the Hsp40 (DnaJ) class, which stimulate Hsp70 ATPase activity, have been proposed to play an important role in promoting efficient Hsp70 substrate binding. Because little is understood about this functional interaction between domains of Hsp70s, we investigated mutations in the region encoding the ATPase domain that acted as intragenic suppressors of a lethal mutation (I485N) mapping to the peptide-binding domain of the mitochondrial Hsp70 Ssc1. Analogous amino acid substitution in the ATPase domain of the Escherichia coli Hsp70 DnaK had a similar intragenic suppressive effect on the corresponding I462T temperature-sensitive peptide-binding domain mutation. I462T protein had a normal basal ATPase activity and was capable of nucleotide-dependent conformation changes. However, the reduced affinity of I462T for substrate peptide (and DnaJ) is likely responsible for the inability of I462T to function in vivo. The suppressor mutation (D79A) appears to partly alleviate the defect in DnaJ ATPase stimulation caused by I462T, suggesting that alteration in the interaction with DnaJ may alter the chaperone cycle to allow productive interaction with polypeptide substrates. Preservation of the intragenic suppression phenotypes between eukaryotic mitochondrial and bacterial Hsp70s suggests that the phenomenon studied here is a fundamental aspect of the function of Hsp70:Hsp40 chaperone machines. PMID:10430932

  18. Antifungal Activity and Action Mechanism of Histatin 5-Halocidin Hybrid Peptides against Candida ssp.

    PubMed

    Han, Juhye; Jyoti, Md Anirban; Song, Ho-Yeon; Jang, Woong Sik

    2016-01-01

    The candidacidal activity of histatin 5 is initiated through cell wall binding, followed by translocation and intracellular targeting, while the halocidin peptide exerts its activity by attacking the Candida cell membrane. To improve antimicrobial activities and to understand the killing mechanism of two peptides, six hybrid peptides were designed by conjugating histatin 5 and halocidin. A comparative approach was established to study the activity, salt tolerance, cell wall glucan binding assay, cytotoxicity, generation of ROS and killing kinetics. CD spectrometry was conducted to evaluate secondary structures of these hybrid peptides. Furthermore the cellular localization of hybrid peptides was investigated by confocal fluorescence microscopy. Of the six hybrid congeners, di-PH2, di-WP2 and HHP1 had stronger activities than other hybrid peptides against all tested Candida strains. The MIC values of these peptides were 1-2, 2-4 and 2-4 μg/ml, respectively. Moreover, none of the hybrid peptides was cytotoxic in the hemolytic assay and cell-based cytotoxicity assay. Confocal laser microscopy showed that di-PH2 and HHP1 were translocated into cytoplasm whereas di-WP2 was accumulated on surface of C. albicans to exert their candidacidal activity. All translocated peptides (Hst 5, P113, di-PH2) were capable of generating intracellular ROS except HHP1. Additionally, the KFH residues at C-terminal end of these peptides were assumed for core sequence for active translocation. PMID:26918792

  19. Antifungal Activity and Action Mechanism of Histatin 5-Halocidin Hybrid Peptides against Candida ssp

    PubMed Central

    Han, Juhye; Jyoti, Md. Anirban; Song, Ho-Yeon; Jang, Woong Sik

    2016-01-01

    The candidacidal activity of histatin 5 is initiated through cell wall binding, followed by translocation and intracellular targeting, while the halocidin peptide exerts its activity by attacking the Candida cell membrane. To improve antimicrobial activities and to understand the killing mechanism of two peptides, six hybrid peptides were designed by conjugating histatin 5 and halocidin. A comparative approach was established to study the activity, salt tolerance, cell wall glucan binding assay, cytotoxicity, generation of ROS and killing kinetics. CD spectrometry was conducted to evaluate secondary structures of these hybrid peptides. Furthermore the cellular localization of hybrid peptides was investigated by confocal fluorescence microscopy. Of the six hybrid congeners, di-PH2, di-WP2 and HHP1 had stronger activities than other hybrid peptides against all tested Candida strains. The MIC values of these peptides were 1–2, 2–4 and 2–4 μg/ml, respectively. Moreover, none of the hybrid peptides was cytotoxic in the hemolytic assay and cell-based cytotoxicity assay. Confocal laser microscopy showed that di-PH2 and HHP1 were translocated into cytoplasm whereas di-WP2 was accumulated on surface of C. albicans to exert their candidacidal activity. All translocated peptides (Hst 5, P113, di-PH2) were capable of generating intracellular ROS except HHP1. Additionally, the KFH residues at C-terminal end of these peptides were assumed for core sequence for active translocation. PMID:26918792

  20. Aqueous Peptide-TiO2 Interfaces: Isoenergetic Binding via Either Entropically or Enthalpically Driven Mechanisms.

    PubMed

    Sultan, Anas M; Westcott, Zayd C; Hughes, Zak E; Palafox-Hernandez, J Pablo; Giesa, Tristan; Puddu, Valeria; Buehler, Markus J; Perry, Carole C; Walsh, Tiffany R

    2016-07-20

    A major barrier to the systematic improvement of biomimetic peptide-mediated strategies for the controlled growth of inorganic nanomaterials in environmentally benign conditions lies in the lack of clear conceptual connections between the sequence of the peptide and its surface binding affinity, with binding being facilitated by noncovalent interactions. Peptide conformation, both in the adsorbed and in the nonadsorbed state, is the key relationship that connects peptide-materials binding with peptide sequence. Here, we combine experimental peptide-titania binding characterization with state-of-the-art conformational sampling via molecular simulations to elucidate these structure/binding relationships for two very different titania-binding peptide sequences. The two sequences (Ti-1, QPYLFATDSLIK; Ti-2, GHTHYHAVRTQT) differ in their overall hydropathy, yet via quartz-crystal microbalance measurements and predictions from molecular simulations, we show these sequences both support very similar, strong titania-binding affinities. Our molecular simulations reveal that the two sequences exhibit profoundly different modes of surface binding, with Ti-1 acting as an entropically driven binder while Ti-2 behaves as an enthalpically driven binder. The integrated approach presented here provides a rational basis for peptide sequence engineering to achieve the in situ growth and organization of titania nanostructures in aqueous media and for the design of sequences suitable for a range of technological applications that involve the interface between titania and biomolecules. PMID:27355097

  1. The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1.

    PubMed

    Sethi, Ashish; Bruell, Shoni; Patil, Nitin; Hossain, Mohammed Akhter; Scott, Daniel J; Petrie, Emma J; Bathgate, Ross A D; Gooley, Paul R

    2016-01-01

    H2 relaxin activates the relaxin family peptide receptor-1 (RXFP1), a class A G-protein coupled receptor, by a poorly understood mechanism. The ectodomain of RXFP1 comprises an N-terminal LDLa module, essential for activation, tethered to a leucine-rich repeat (LRR) domain by a 32-residue linker. H2 relaxin is hypothesized to bind with high affinity to the LRR domain enabling the LDLa module to bind and activate the transmembrane domain of RXFP1. Here we define a relaxin-binding site on the LDLa-LRR linker, essential for the high affinity of H2 relaxin for the ectodomain of RXFP1, and show that residues within the LDLa-LRR linker are critical for receptor activation. We propose H2 relaxin binds and stabilizes a helical conformation of the LDLa-LRR linker that positions residues of both the linker and the LDLa module to bind the transmembrane domain and activate RXFP1. PMID:27088579

  2. The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1

    PubMed Central

    Sethi, Ashish; Bruell, Shoni; Patil, Nitin; Hossain, Mohammed Akhter; Scott, Daniel J.; Petrie, Emma J.; Bathgate, Ross A. D.; Gooley, Paul R.

    2016-01-01

    H2 relaxin activates the relaxin family peptide receptor-1 (RXFP1), a class A G-protein coupled receptor, by a poorly understood mechanism. The ectodomain of RXFP1 comprises an N-terminal LDLa module, essential for activation, tethered to a leucine-rich repeat (LRR) domain by a 32-residue linker. H2 relaxin is hypothesized to bind with high affinity to the LRR domain enabling the LDLa module to bind and activate the transmembrane domain of RXFP1. Here we define a relaxin-binding site on the LDLa-LRR linker, essential for the high affinity of H2 relaxin for the ectodomain of RXFP1, and show that residues within the LDLa-LRR linker are critical for receptor activation. We propose H2 relaxin binds and stabilizes a helical conformation of the LDLa-LRR linker that positions residues of both the linker and the LDLa module to bind the transmembrane domain and activate RXFP1. PMID:27088579

  3. Binding of solvated peptide (EPLQLKM) with a graphene sheet via simulated coarse-grained approach.

    PubMed

    Sheikholeslami, Somayyeh; Pandey, R B; Dragneva, Nadiya; Floriano, Wely; Rubel, Oleg; Barr, Stephen A; Kuang, Zhifeng; Berry, Rajiv; Naik, Rajesh; Farmer, Barry

    2014-05-28

    Binding of a solvated peptide A1 ((1)E (2)P (3)L (4)Q (5)L (6)K (7)M) with a graphene sheet is studied by a coarse-grained computer simulation involving input from three independent simulated interaction potentials in hierarchy. A number of local and global physical quantities such as energy, mobility, and binding profiles and radius of gyration of peptides are examined as a function of temperature (T). Quantitative differences (e.g., the extent of binding within a temperature range) and qualitative similarities are observed in results from three simulated potentials. Differences in variations of both local and global physical quantities suggest a need for such analysis with multiple inputs in assessing the reliability of both quantitative and qualitative observations. While all three potentials indicate binding at low T and unbinding at high T, the extent of binding of peptide with the temperature differs. Unlike un-solvated peptides (with little variation in binding among residues), solvation accentuates the differences in residue binding. As a result the binding of solvated peptide at low temperatures is found to be anchored by three residues, (1)E, (4)Q, and (6)K (different from that with the un-solvated peptide). Binding to unbinding transition can be described by the variation of the transverse (with respect to graphene sheet) component of the radius of gyration of the peptide (a potential order parameter) as a function of temperature. PMID:24880319

  4. Novel Antimicrobial Peptides with High Anticancer Activity and Selectivity

    PubMed Central

    Chen, Kuan-Hao; Yu, Hui-Yuan; Chih, Ya-Han; Cheng, Hsi-Tsung; Chou, Yu-Ting; Cheng, Jya-Wei

    2015-01-01

    We describe a strategy to boost anticancer activity and reduce normal cell toxicity of short antimicrobial peptides by adding positive charge amino acids and non-nature bulky amino acid β-naphthylalanine residues to their termini. Among the designed peptides, K4R2-Nal2-S1 displayed better salt resistance and less toxicity to hRBCs and human fibroblast than Nal2-S1 and K6-Nal2-S1. Fluorescence microscopic studies indicated that the FITC-labeled K4R2-Nal2-S1 preferentially binds cancer cells and causes apoptotic cell death. Moreover, a significant inhibition in human lung tumor growth was observed in the xenograft mice treated with K4R2-Nal2-S1. Our strategy provides new opportunities in the development of highly effective and selective antimicrobial and anticancer peptide-based therapeutics. PMID:25970292

  5. Mercury binding on activated carbon

    SciTech Connect

    Bihter Padak; Michael Brunetti; Amanda Lewis; Jennifer Wilcox

    2006-11-15

    Density functional theory has been employed for the modeling of activated carbon (AC) using a fused-benzene ring cluster approach. Oxygen functional groups have been investigated for their promotion of effective elemental mercury binding on AC surface sites. Lactone and carbonyl functional groups yield the highest mercury binding energies. Further, the addition of halogen atoms has been considered to the modeled surface, and has been found to increase the AC's mercury adsorption capacity. The mercury binding energies increase with the addition of the following halogen atoms, F {gt} Cl {gt} Br {gt} I, with the fluorine addition being the most promising halogen for increasing mercury adsorption.

  6. A computational framework for the analysis of peptide microarray antibody binding data with application to HIV vaccine profiling.

    PubMed

    Imholte, Greg C; Sauteraud, Renan; Korber, Bette; Bailer, Robert T; Turk, Ellen T; Shen, Xiaoying; Tomaras, Georgia D; Mascola, John R; Koup, Richard A; Montefiori, David C; Gottardo, Raphael

    2013-09-30

    We present an integrated analytical method for analyzing peptide microarray antibody binding data, from normalization through subject-specific positivity calls and data integration and visualization. Current techniques for the normalization of such data sets do not account for non-specific binding activity. A novel normalization technique based on peptide sequence information quickly and effectively reduced systematic biases. We also employed a sliding mean window technique that borrows strength from peptides sharing similar sequences, resulting in reduced signal variability. A smoothed signal aided in the detection of weak antibody binding hotspots. A new principled FDR method of setting positivity thresholds struck a balance between sensitivity and specificity. In addition, we demonstrate the utility and importance of using baseline control measurements when making subject-specific positivity calls. Data sets from two human clinical trials of candidate HIV-1 vaccines were used to validate the effectiveness of our overall computational framework. PMID:23770318

  7. Controlling Affinity Binding with Peptide-Functionalized Poly(ethylene glycol) Hydrogels**

    PubMed Central

    Lin, Chien-Chi; Anseth, Kristi S.

    2009-01-01

    Poly(ethylene glycol) (PEG) hydrogels functionalized with peptide moieties have been widely used in regenerative medicine applications. While many studies have suggested the importance of affinity binding within PEG hydrogels, the relationships between the structures of the peptide motifs and their binding to protein therapeutics remain largely unexplored, especially in the recently developed thiol-acrylate photopolymerization systems. Herein, we employ Förster resonance energy transfer (FRET) and thiol-acrylate photopolymerizations to investigate how the architectures of affinity peptides in crosslinked hydrogels affect their binding to diffusible proteins. The binding between diffusible streptavidin and biotinylated peptide immobilized to PEG hydrogel network was used as a model system to reveal the interplay between affinity binding and peptide sequences/architectures. In addition, we design peptides with different structures to enhance affinity binding within PEG hydrogels and to provide tunable affinity-based controlled delivery of basic fibroblast growth factor (bFGF). This study demonstrates the importance of affinity binding in controlling the availability of hydrogel-encapsulated proteins and provides strategies for enhancing affinity binding of protein therapeutics to bound peptide moieties in thiol-acrylate photopolymerized PEG hydrogels. The results presented herein should find useful on the design and fabrication of hydrogels to retain and sustained release of growth factors for promoting tissue regeneration. PMID:20148198

  8. The structural basis for function in diamond-like carbon binding peptides.

    PubMed

    Gabryelczyk, Bartosz; Szilvay, Géza R; Linder, Markus B

    2014-07-29

    The molecular structural basis for the function of specific peptides that bind to diamond-like carbon (DLC) surfaces was investigated. For this, a competition assay that provided a robust way of comparing relative affinities of peptide variants was set up. Point mutations of specific residues resulted in significant effects, but it was shown that the chemical composition of the peptide was not sufficient to explain peptide affinity. More significantly, rearrangements in the sequence indicated that the binding is a complex recognition event that is dependent on the overall structure of the peptide. The work demonstrates the unique properties of peptides for creating functionality at interfaces via noncovalent binding for potential applications in, for example, nanomaterials, biomedical materials, and sensors. PMID:25007096

  9. Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction.

    PubMed

    Wu, Jinhong; Rong, Yuzhi; Wang, Zhengwu; Zhou, Yanfu; Wang, Shaoyun; Zhao, Bo

    2015-05-01

    This study aimed to isolate and characterise a novel sericin antifreeze peptide and investigate its ice-binding molecular mechanism. The thermal hysteresis activity of ice-binding sericin peptides (I-SP) was measured and their activity reached as high as 0.94 °C. A P4 fraction, with high hypothermia protective activity and inhibition activity of ice recrystallisation, was obtained from I-SP, and a purified sericin peptide, named SM-AFP, with the sequence of TTSPTNVSTT and a molecular weight of 1009.50 Da was then isolated from the P4 fraction. Treatment of Lactobacillus delbrueckii Subsp. bulgaricus LB340 LYO with 100 μg/ml synthetic SM-AFP led to 1.4-fold increased survival (p < 0.05). Finally, an SM-AFP/ice binding model was constructed and results of molecular dynamics simulation suggested that the binding of SM-AFP with ice and prevention of ice crystal growth could be attributed to hydrogen bond formation, hydrophobic interaction and non-bond interactions. Sericin peptides could be developed into beneficial cryoprotectants and used in frozen food processing. PMID:25529728

  10. A novel RNA-binding peptide regulates the establishment of the Medicago truncatula-Sinorhizobium meliloti nitrogen-fixing symbiosis.

    PubMed

    Laporte, Philippe; Satiat-Jeunemaître, Béatrice; Velasco, Isabel; Csorba, Tibor; Van de Velde, Willem; Campalans, Anna; Burgyan, Joszef; Arevalo-Rodriguez, Miguel; Crespi, Martin

    2010-04-01

    Plants use a variety of small peptides for cell to cell communication during growth and development. Leguminous plants are characterized by their ability to develop nitrogen-fixing nodules via an interaction with symbiotic bacteria. During nodule organogenesis, several so-called nodulin genes are induced, including large families that encode small peptides. Using a three-hybrid approach in yeast cells, we identified two new small nodulins, MtSNARP1 and MtSNARP2 (for small nodulin acidic RNA-binding protein), which interact with the RNA of MtENOD40, an early induced nodulin gene showing conserved RNA secondary structures. The SNARPs are acidic peptides showing single-stranded RNA-binding activity in vitro and are encoded by a small gene family in Medicago truncatula. These peptides exhibit two new conserved motifs and a putative signal peptide that redirects a GFP fusion to the endoplasmic reticulum both in protoplasts and during symbiosis, suggesting they are secreted. MtSNARP2 is expressed in the differentiating region of the nodule together with several early nodulin genes. MtSNARP2 RNA interference (RNAi) transgenic roots showed aberrant early senescent nodules where differentiated bacteroids degenerate rapidly. Hence, a functional symbiotic interaction may be regulated by secreted RNA-binding peptides. PMID:20042020

  11. Equilibrium binding of thrombin to recombinant human thrombomodulin: Effect of hirudin, fibrinogen, factor Va, and peptide analogues

    SciTech Connect

    Tsiang, Manuel; Lentz, S.R.; Dittman, W.A.; Wen, D.; Scarpati, E.M.; Sadler, J.E. )

    1990-11-01

    Thrombomodulin is an endothelial cell surface receptor for thrombin that acts as a physiological anticoagulant. The properties of recombinant human thrombomodulin were studied in COS-7, CHO, CV-1, and K562 cell lines. Thrombomudlin was expressed on the cell surface as shown by the acquisition of thrombin-dependent protein C activation. Like native thrombomodulin, recombinant thrombomodulin contained N-linked oligosaccharides, had M{sub r} {approximately} 100 000, and was inhibited or immunoprecipitated by anti-thrombomodulin antibodies. Binding studies demonstrated that nonrecombinant thrombomodulin expressed by A549 carcinoma cells and recombinant thrombomodulin expressed by CV-1 and K562 cells had similar K{sub d}'s for thrombin of 1.3 nM, 3.3 nM, and 4.7 nM, respectively. The K{sub d} for DIP-thrombin binding to recombinant thrombomodulin on CV-1(18A) cells was identical with that of thrombin. Increasing concentrations of hirudin or fibrinogen progressively inhibited the binding of {sup 125}I-DIP-thrombin, while factor Va did not inhibit binding. Three synthetic peptides were tested for ability to inhibit DIP-thrombin, while factor Va did not inhibit binding. Three synthetic peptides were tested for ability to inhibit DIP-thrombin binding. Both the hirudin peptide Hir{sup 53-64} and the thrombomodulin fifth-EGF-domain peptide Tm{sup 426-444} displaced DIP-thrombin from thrombomodulin, but the factor V peptide FacV{sup 30-43} which is similar in composition and charge to Hir{sup 53-64} showed no binding inhibition. The data exclude the significant formation of a ternary complex consisting of thrombin, thrombomodulin, and hirudin. These studies are consistent with a model in which thrombomodulin, hirudin, and fibrinogen compete for binding to DIP-thrombin at the same site.

  12. Autoradiographic localization and characterization of atrial natriuretic peptide binding sites in the rat central nervous system and adrenal gland

    SciTech Connect

    Gibson, T.R.; Wildey, G.M.; Manaker, S.; Glembotski, C.C.

    1986-07-01

    Atrial natriuretic peptides (ANP) have recently been identified in both heart and CNS. These peptides possess potent natriuretic, diuretic, and vasorelaxant activities, and are all apparently derived from a single prohormone. Specific ANP binding sites have been characterized in the adrenal zona glomerulosa and kidney cortex, and one study reported ANP binding sites in the CNS. However, a detailed examination of the localization of ANP binding sites throughout the brain has not been reported. In this study, quantitative autoradiography was employed to examine the distribution of ANP receptors in the rat CNS. The binding of (3-/sup 125/I-iodotyrosyl28) rat ANP-28 to binding sites in the rat CNS was saturable, specific for ANP-related peptides, and displayed high affinity (Kd = 600 pM). When the relative concentrations of ANP binding sites were determined throughout the rat brain, the highest levels of ANP binding were localized to the circumventricular organs, including the area postrema and subfornical organ, and the olfactory apparatus. Moderate levels of ANP binding sites were present throughout the midbrain and brain stem, while low levels were found in the forebrain, diencephalon, basal ganglia, cortex, and cerebellum. The presence of ANP binding sites in the subfornical organ and the area postrema, regions considered to be outside the blood-brain barrier, suggests that peripheral ANP levels may regulate some aspects of CNS control of salt and water balance. The possible functions of ANP binding sites in other regions of the rat brain are not known, but, like many other peptides, ANP may act as a neurotransmitter or neuromodulator at these loci.

  13. Rapid Synthesis, RNA Binding, and Antibacterial Screening of a Peptidic-Aminosugar (PA) Library

    PubMed Central

    Jiang, Liuwei; Watkins, Derrick; Jin, Yi; Gong, Changjun; King, Ada; Washington, Arren Z.; Green, Keith D.; Garneau-Tsodikova, Sylvie; Oyelere, Adegboyega K.; Arya, Dev P.

    2016-01-01

    A 215-member mono- and diamino acid peptidic-aminosugar (PA) library, with neomycin as the model aminosugar, was systematically and rapidly synthesized via solid phase synthesis. Antibacterial activities of the PA library, on 13 bacterial strains (seven Gram-positive and six Gram-negative bacterial strains), and binding affinities of the PA library for a 27-base model of the bacterial 16S ribosomal A-site RNA were evaluated using high-throughput screening. The results of the two assays were correlated using Ribosomal Binding-Bacterial Inhibition Plot (RB-BIP) analysis to provide structure–activity relationship (SAR) information. From this work, we have identified PAs that can discriminate the E. coli A-site from the human A-site by up to a 28-fold difference in binding affinity. Aminoglycoside-modifying enzyme activity studies indicate that APH(2″)-Ia showed nearly complete removal of activity with a number of PAs. The synthesis of the compound library and screening can both be performed rapidly, allowing for an iterative process of aminoglycoside synthesis and screening of PA libraries for optimal binding and antibacterial activity for lead identification. PMID:25706406

  14. Design of a RANK-Mimetic Peptide Inhibitor of Osteoclastogenesis with Enhanced RANKL-Binding Affinity

    PubMed Central

    Hur, Jeonghwan; Ghosh, Ambarnil; Kim, Kabsun; Ta, Hai Minh; Kim, Hyunju; Kim, Nacksung; Hwang, Hye-Yeon; Kim, Kyeong Kyu

    2016-01-01

    The receptor activator of nuclear factor κB (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function. PMID:26923188

  15. An effective and effecient peptide binding prediction approach for a broad set of HLA-DR molecules based on ordered weighted averaging of binding pocket profiles

    PubMed Central

    2013-01-01

    Background The immune system must detect a wide variety of microbial pathogens, such as viruses, bacteria, fungi and parasitic worms, to protect the host against disease. Antigenic peptides displayed by MHC II (class II Major Histocompatibility Complex) molecules is a pivotal process to activate CD4+ TH cells (Helper T cells). The activated TH cells can differentiate into effector cells which assist various cells in activating against pathogen invasion. Each MHC locus encodes a great number of allele variants. Yet this limited number of MHC molecules are required to display enormous number of antigenic peptides. Since the peptide binding measurements of MHC molecules by biochemical experiments are expensive, only a few of the MHC molecules have suffecient measured peptides. To perform accurate binding prediction for those MHC alleles without suffecient measured peptides, a number of computational algorithms were proposed in the last decades. Results Here, we propose a new MHC II binding prediction approach, OWA-PSSM, which is a significantly extended version of a well known method called TEPITOPE. The TEPITOPE method is able to perform prediction for only 50 MHC alleles, while OWA-PSSM is able to perform prediction for much more, up to 879 HLA-DR molecules. We evaluate the method on five benchmark datasets. The method is demonstrated to be the best one in identifying binding cores compared with several other popular state-of-the-art approaches. Meanwhile, the method performs comparably to the TEPITOPE and NetMHCIIpan2.0 approaches in identifying HLA-DR epitopes and ligands, and it performs significantly better than TEPITOPEpan in the identification of HLA-DR ligands and MultiRTA in identifying HLA-DR T cell epitopes. Conclusions The proposed approach OWA-PSSM is fast and robust in identifying ligands, epitopes and binding cores for up to 879 MHC II molecules. PMID:24565049

  16. Evaluation of Phosphatidylserine-Binding Peptides Radiolabeled with Fluorine 18 for in vivo Imaging of Apoptosis

    NASA Astrophysics Data System (ADS)

    Kapty, Janice Sarah

    We currently do not have a clinical method to directly assess apoptosis induced by cancer therapies. Phosphatidylserine (PS) is an attractive target for imaging apoptosis since it is on the exterior of the apoptotic cells and PS externalization is an early marker of apoptosis. PS-binding peptides are an attractive option for developing an imaging probe to detect apoptosis using positron emission tomography. In this study we evaluated binding characteristics of PS-binding peptides for ability to bind to PS, radiolabeled PS-binding peptides with fluorine-18, and performed in vitro and in vivo analysis of 18F radiolabeled PS-binding peptides including biodistribution analysis and dynamic PET imaging in a murine tumor model of apoptosis. Four peptides were evaluated for PS binding characteristics using a plate based assay system, a liposome mimic of cell membrane PS presentation, and a cell assay of apoptosis. The results indicate that all four peptides bind to PS and are specific to apoptotic cells. The widely used 18 F prosthetic group N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) and the recently developed N-[6-(4-[ 18F]fluorobenzylidene) aminooxyhexyl]maleimide ([18F]FBAM) were investigated for radiolabeling of two representative phosphatidylserine-binding peptides. The prosthetic groups were compared with respect to required reaction conditions for optimum labeling, radiolabeling yield and chemoselectivity. The N-terminus labeled product produced by reaction of [18F]SFB with binding peptide LIKKPF was produced in 18% radiochemical yield while no N-terminus labeled product could be isolated following [18F]SFB reaction with PDGLSR. When the peptides were modified by addition of a cysteine residue at the N-terminus they provided almost quantitative radiochemical yields with [18F]FBAM. Results indicate that for the peptides in this study, [18F]FBAM is a more useful prosthetic group compared to [18F]SFB due to its excellent chemo-selectivity and high radiochemical

  17. Improvement of insulin signaling in myoblast cells by an addition of SKIP-binding peptide within Pak1 kinase domain.

    PubMed

    Ijuin, Takeshi; Takenawa, Tadaomi

    2015-01-01

    Abnormalities in insulin-induced glucose incorporation in skeletal muscle were observed in Type 2 diabetes. Our previous studies revealed that the binding between skeletal muscle and kidney-enriched inositol polyphosphate phosphatase (SKIP) and p21-activated protein kinase (Pak1) at the plasma membrane is induced insulin-dependently and that this binding mediated a rapid and efficient termination of insulin signaling and a subsequent glucose uptake into skeletal muscle cells. Here, we identified 11-amino-acids peptide within kinase domain of Pak1, necessary and sufficient for SKIP binding. Expression of this region in C2C12 cells resulted in an increase in insulin signaling. Supplementation of a synthetic peptide of this sequence increased insulin signaling and insulin-induced glucose uptake into skeletal muscle cell lines. These findings suggest the physiological role of Pak1-SKIP binding in the regulation of insulin signaling in skeletal muscle. PMID:25446075

  18. Phosphorylation-dependent mineral-type specificity for apatite-binding peptide sequences.

    PubMed

    Addison, William N; Miller, Sharon J; Ramaswamy, Janani; Mansouri, Ahmad; Kohn, David H; McKee, Marc D

    2010-12-01

    Apatite-binding peptides discovered by phage display provide an alternative design method for creating functional biomaterials for bone and tooth tissue repair. A limitation of this approach is the absence of display peptide phosphorylation--a post-translational modification important to mineral-binding proteins. To refine the material specificity of a recently identified apatite-binding peptide, and to determine critical design parameters (net charge, charge distribution, amino acid sequence and composition) controlling peptide affinity for mineral, we investigated the effects of phosphorylation and sequence scrambling on peptide adsorption to four different apatites (bone-like mineral, and three types of apatite containing initially 0, 5.6 and 10.5% carbonate). Phosphorylation of the VTKHLNQISQSY peptide (VTK peptide) led to a 10-fold increase in peptide adsorption (compared to nonphosphorylated peptide) to bone-like mineral, and a 2-fold increase in adsorption to the carbonated apatite, but there was no effect of phosphorylation on peptide affinity to pure hydroxyapatite (without carbonate). Sequence scrambling of the nonphosphorylated VTK peptide enhanced its specificity for the bone-like mineral, but scrambled phosphorylated VTK peptide (pVTK) did not significantly alter mineral-binding suggesting that despite the importance of sequence order and/or charge distribution to mineral-binding, the enhanced binding after phosphorylation exceeds any further enhancement by altered sequence order. Osteoblast culture mineralization was dose-dependently inhibited by pVTK and to a significantly lesser extent by scrambled pVTK, while the nonphosphorylated and scrambled forms had no effect, indicating that inhibition of osteoblast mineralization is dependent on both peptide sequence and charge. Computational modeling of peptide-mineral interactions indicated a favorable change in binding energy upon phosphorylation that was unaffected by scrambling. In conclusion

  19. Structure-Activity Based Study of the Smac-Binding Pocket Within the DIR3 Domain of XIAP

    SciTech Connect

    Wist,A.; Gu, L.; Riedl, S.; Shi, Y.; McLendon, G.

    2007-01-01

    A small series of peptide mimics was designed and synthesized to contain a heterocyclic ring in place of the potentially labile N-terminal peptide bond of the tetrapeptide containing the Smac-XIAP-binding motif. Two Smac mimics were shown to bind to the BIR3 domain of XIAP with moderate affinity and one displayed increased activity in cells relative to the Smac peptides. The structures of BIR3-XIAP in complex with a Smac peptide and a peptide mimic were solved and analyzed to elucidate the structure-activity relationship surrounding the Smac-binding domain within BIR3-XIAP.

  20. First Structural View of a Peptide Interacting with the Nucleotide Binding Domain of Heat Shock Protein 90

    PubMed Central

    Raman, Swetha; Singh, Meetali; Tatu, Utpal; Suguna, Kaza

    2015-01-01

    The involvement of Hsp90 in progression of diseases like cancer, neurological disorders and several pathogen related conditions is well established. Hsp90, therefore, has emerged as an attractive drug target for many of these diseases. Several small molecule inhibitors of Hsp90, such as geldanamycin derivatives, that display antitumor activity, have been developed and are under clinical trials. However, none of these tested inhibitors or drugs are peptide-based compounds. Here we report the first crystal structure of a peptide bound at the ATP binding site of the N-terminal domain of Hsp90. The peptide makes several specific interactions with the binding site residues, which are comparable to those made by the nucleotide and geldanamycin. A modified peptide was designed based on these interactions. Inhibition of ATPase activity of Hsp90 was observed in the presence of the modified peptide. This study provides an alternative approach and a lead peptide molecule for the rational design of effective inhibitors of Hsp90 function. PMID:26599366

  1. Selection of a novel FGF23-binding peptide antagonizing the inhibitory effect of FGF23 on phosphate uptake.

    PubMed

    Huang, Tao; Lin, Xiaomian; Li, Quchou; Luo, Wu; Song, Li; Tan, Xiangpeng; Wang, Wenhui; Li, Xiaokun; Wu, Xiaoping

    2015-04-01

    Fibroblast growth factor 23 (FGF23) is a bone-derived endocrine regulator of phosphate homeostasis and has been considered as a potential therapeutic target for hypophosphatemic disorders. Herein, we isolated a novel FGF23-binding peptide by screening a phage display library with FGF23180-205, the minimal epitope of FGF23 binding to the binary fibroblast growth factor receptor (FGFR)-Klotho complex. The corresponding peptide (referred to as 23-b6) showed high homology to the immunoglobulin-like (Ig-like) domain III (D3) of FGFR1c, the predominant receptor mediating the phosphaturic activity of FGF23. The 23-b6 peptide and panning target FGF23180-205 carried opposite charges and shared similar hydrophilic profiles. Functional analysis indicated that synthetic 23-b6 peptide exhibited antagonistic effect on the inhibition of phosphate uptake by FGF23 in opossum kidney cells (OK cells). The mechanisms of 23-b6 peptide impairing the bioactivity of FGF23 involved blockade of the activation of Erk cascade and up-regulation of NaPi-2a and NaPi-2c expression in OK cells. Our results demonstrate that the 23-b6 peptide is a potent FGF23 antagonist with increased effect on phosphate uptake in kidney cells and might have therapeutic potentials in hypophosphatemic disorders characterized by an abnormally high level of FGF23. PMID:25515813

  2. Selective CGRP and adrenomedullin peptide binding by tethered RAMP-calcitonin receptor-like receptor extracellular domain fusion proteins

    PubMed Central

    Moad, Heather E; Pioszak, Augen A

    2013-01-01

    Calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are related peptides that are potent vasodilators. The CGRP and AM receptors are heteromeric protein complexes comprised of a shared calcitonin receptor-like receptor (CLR) subunit and a variable receptor activity modifying protein (RAMP) subunit. RAMP1 enables CGRP binding whereas RAMP2 confers AM specificity. How RAMPs determine peptide selectivity is unclear and the receptor stoichiometries are a topic of debate with evidence for 1:1, 2:2, and 2:1 CLR:RAMP stoichiometries. Here, we describe bacterial production of recombinant tethered RAMP-CLR extracellular domain (ECD) fusion proteins and biochemical characterization of their peptide binding properties. Tethering the two ECDs ensures complex stability and enforces defined stoichiometry. The RAMP1-CLR ECD fusion purified as a monomer, whereas the RAMP2-CLR ECD fusion purified as a dimer. Both proteins selectively bound their respective peptides with affinities in the low micromolar range. Truncated CGRP(27-37) and AM(37-52) fragments were identified as the minimal ECD complex binding regions. The CGRP C-terminal amide group contributed to, but was not required for, ECD binding, whereas the AM C-terminal amide group was essential for ECD binding. Alanine-scan experiments identified CGRP residues T30, V32, and F37 and AM residues P43, K46, I47, and Y52 as critical for ECD binding. Our results identify CGRP and AM determinants for receptor ECD complex binding and suggest that the CGRP receptor functions as a 1:1 heterodimer. In contrast, the AM receptor may function as a 2:2 dimer of heterodimers, although our results cannot rule out 2:1 or 1:1 stoichiometries. PMID:24115156

  3. Engineering of the function of diamond-like carbon binding peptides through structural design.

    PubMed

    Gabryelczyk, Bartosz; Szilvay, Géza R; Singh, Vivek K; Mikkilä, Joona; Kostiainen, Mauri A; Koskinen, Jari; Linder, Markus B

    2015-02-01

    The use of phage display to select material-specific peptides provides a general route towards modification and functionalization of surfaces and interfaces. However, a rational structural engineering of the peptides for optimal affinity is typically not feasible because of insufficient structure-function understanding. Here, we investigate the influence of multivalency of diamond-like carbon (DLC) binding peptides on binding characteristics. We show that facile linking of peptides together using different lengths of spacers and multivalency leads to a tuning of affinity and kinetics. Notably, increased length of spacers in divalent systems led to significantly increased affinities. Making multimers influenced also kinetic aspects of surface competition. Additionally, the multivalent peptides were applied as surface functionalization components for a colloidal form of DLC. The work suggests the use of a set of linking systems to screen parameters for functional optimization of selected material-specific peptides. PMID:25522202

  4. Investigating the Binding of Peptides to Graphene Surfaces for Biosensing Applications

    NASA Astrophysics Data System (ADS)

    Garley, Amanda; Saikia, Nabanita; Barr, Stephen; Leuty, Gary; Berry, Rajiv; Heinz, Hendrik

    The Air Force Research Lab is focused on developing highly selective and sensitive graphene-based sensors functionalized with peptides for biomolecule detection. To achieve this there is a need to model interfacial binding interactions between the organic and inorganic components to complement ongoing experimental investigations. It is important to characterize the binding behavior of individual amino acids, with the goal of predicting binding of large peptides. Since polarization is important in graphene systems, a new force field which includes polarizability is used. This allows for an in depth exploration of pi-pi interactions, electrostatics and van der Waals forces involved with binding. The binding strength is determined via enthalpy and free energy calculations. Additionally, structural quantities are computed, such as how aromatic rings align with the graphene surface and the arrangement of various residue substituents in relation to the surface and water layers. Computational results are useful in guiding experimental methods focused on rapidly screening optimal peptide sequence for binding.

  5. Binding of Hemagglutinin and Influenza Virus to a Peptide-Conjugated Lipid Membrane

    PubMed Central

    Matsubara, Teruhiko; Shibata, Rabi; Sato, Toshinori

    2016-01-01

    Hemagglutinin (HA) plays an important role in the first step of influenza virus (IFV) infection because it initiates the binding of the virus to the sialylgalactose linkages of the receptors on the host cells. We herein demonstrate that a HA-binding peptide immobilized on a solid support is available to bind to HA and IFV. We previously obtained a HA-binding pentapeptide (Ala-Arg-Leu-Pro-Arg), which was identified by phage-display selection against HAs from random peptide libraries. This peptide binds to the receptor-binding site of HA by mimicking sialic acid. A peptide-conjugated lipid (pep-PE) was chemically synthesized from the peptide and a saturated phospholipid. A lipid bilayer composed of pep-PE and an unsaturated phospholipid (DOPC) was immobilized on a mica plate; and the interaction between HA and the pep-PE/DOPC membrane was investigated using atomic force microscopy. The binding of IFV to the pep-PE/DOPC membrane was detected by an enzyme-linked immunosorbent assay and real-time reverse transcription PCR. Our results indicate that peptide-conjugated lipids are a useful molecular device for the detection of HA and IFV. PMID:27092124

  6. Binding of Hemagglutinin and Influenza Virus to a Peptide-Conjugated Lipid Membrane.

    PubMed

    Matsubara, Teruhiko; Shibata, Rabi; Sato, Toshinori

    2016-01-01

    Hemagglutinin (HA) plays an important role in the first step of influenza virus (IFV) infection because it initiates the binding of the virus to the sialylgalactose linkages of the receptors on the host cells. We herein demonstrate that a HA-binding peptide immobilized on a solid support is available to bind to HA and IFV. We previously obtained a HA-binding pentapeptide (Ala-Arg-Leu-Pro-Arg), which was identified by phage-display selection against HAs from random peptide libraries. This peptide binds to the receptor-binding site of HA by mimicking sialic acid. A peptide-conjugated lipid (pep-PE) was chemically synthesized from the peptide and a saturated phospholipid. A lipid bilayer composed of pep-PE and an unsaturated phospholipid (DOPC) was immobilized on a mica plate; and the interaction between HA and the pep-PE/DOPC membrane was investigated using atomic force microscopy. The binding of IFV to the pep-PE/DOPC membrane was detected by an enzyme-linked immunosorbent assay and real-time reverse transcription PCR. Our results indicate that peptide-conjugated lipids are a useful molecular device for the detection of HA and IFV. PMID:27092124

  7. Phosphorylation-dependent mineral type specificity for apatite-binding peptide sequences

    PubMed Central

    Addison, William N.; Miller, Sharon J.; Ramaswamy, Janani; Mansouri, Ahmad; Kohn, David H.; McKee, Marc D.

    2010-01-01

    Apatite-binding peptides discovered by phage display provide an alternative design method for creating functional biomaterials for bone and tooth tissue repair. A limitation of this approach is the absence of display peptide phosphorylation – a post-translational modification important to mineral-binding proteins. To refine the material specificity of a recently identified apatite-binding peptide, and to determine critical design parameters (net charge, charge distribution, amino acid sequence and composition) controlling peptide affinity for mineral, we investigated the effects of phosphorylation and sequence scrambling on peptide adsorption to four different apatites (bone-like mineral, and three types of apatite containing initially 0, 5.6 and 10.5% carbonate). Phosphorylation of peptide VTKHLNQISQSY (pVTK) led to a 10-fold increase in peptide adsorption (compared to nonphosphorylated peptide) to bone-like mineral, and a 2-fold increase in adsorption to the carbonated apatite, but there was no effect of phosphorylation on peptide affinity to pure hydroxyapatite (without carbonate). Sequence scrambling of the nonphosphorylated VTK peptide enhanced its specificity for the bone-like mineral, but scrambled pVTK peptide did not significantly alter mineral-binding suggesting that despite the importance of sequence order and/or charge distribution to mineral binding, the enhanced binding after phosphorylation exceeds any further enhancement by altered sequence order. Osteoblast culture mineralization was dose-dependently inhibited by pVTK and to a significantly lesser extent by scrambled pVTK, while the nonphosphorylated and scrambled forms had no effect, indicating that inhibition of osteoblast mineralization is dependent on both peptide sequence and charge. Computational modeling of peptide-mineral interactions indicated a favorable change in binding energy upon phosphorylation that was unaffected by scrambling. In conclusion, phosphorylation of serine residues

  8. Immunoregulatory activity of peptides related to platelet factor 4.

    PubMed Central

    Zucker, M B; Katz, I R; Thorbecke, G J; Milot, D C; Holt, J

    1989-01-01

    Platelet factor 4 (PF4), a secreted platelet protein, alleviates concanavalin A-induced immunosuppression in mice. We now find that activity also resides in (i) the C-terminal tridecapeptide of PF4 (P13S), (ii) an analog of this in which arginine replaces the lysine residues and in which the last two amino acids are absent, (iii) the C-terminal 18 amino acids of low-affinity platelet factor 4, which is very similar to P13S, and (iv) peptide fragments of P13S that contain only 5-9 amino acids. P13S treated with fluorescamine to derivatize the free amino groups retained immunoregulatory activity but did not bind to heparin-agarose. The N-terminal and middle portions of PF4, polylysine, protamine, and three unrelated peptides were inactive in this assay. PMID:2678107

  9. Tumor-Specific Peptide, Selected from a Phage Peptide Library, Enhances Antitumor Activity of Lactaptin

    PubMed Central

    Makartsova, Anna A.; Fomin, Alexandr S.; Nushtaeva, Anna A.; Koval, Olga A.

    2016-01-01

    A recombinant analogue of lactaptin (RL2), a new potential anticancer molecule, induces apoptosis in cultured tumor cells. The tumor suppression efficacy of RL2 was shown against mouse hepatoma-1 cells and MDA-MB-231 human breast adenocarcinoma cells. The RL2-based therapeutic drug lactaptin is distributed evenly throughout the organism, which reduces its antitumor efficacy. In the current study, we obtained a genetic construct that allows production of the recombinant fusion protein T3-RL2, consisting of RL2 and T3 peptide (YTYDPWLIFPAN), in E. coli cells. T3 peptide was selected from a phage peptide library as a result of two screenings: in vitro using MDA-MB-231 cell culture and in vivo using a mouse xenograft model of breast cancer MDA-MB-231. It was shown that the displayed peptide T3 provides binding and internalization of phage particles by MDA-MB-231 cells and their specific accumulation in MDA-MB-231 tumor tissue. In addition, based on the nucleotide sequences coding RL2 and the known tumor-targeting peptide iRGD, we obtained genetic constructs that provide synthesis of fusion proteins RL2-iRGD and RL-iRGD-His. We studied the cytotoxic activity of fusion proteins T3-RL2, RL2-iRGD and RL-iRGD-His in vitro using MDA-MB-231 and MCF-7 human adenocarcinoma cells. The in vitro results showed that the fusion proteins inhibit proliferation of both cell cultures, and their cytotoxic activity is higher than that of RL2. In vivo experiments on the study of the antitumor efficacy of the obtained fusion proteins demonstrated that T3-RL2 protein significantly inhibits MDA-MB-231 tumor growth in a xenograft model compared with RL2, while the antitumor effect of RL2-iRGD and RL-iRGD-His proteins is comparable to the effect of RL2. PMID:27513518

  10. Structure and Energetic Contributions of a Designed Modular Peptide-Binding Protein with Picomolar Affinity.

    PubMed

    Hansen, Simon; Tremmel, Dirk; Madhurantakam, Chaithanya; Reichen, Christian; Mittl, Peer R E; Plückthun, Andreas

    2016-03-16

    Natural armadillo repeat proteins (nArmRP) like importin-α or β-catenin bind their target peptides such that each repeat interacts with a dipeptide unit within the stretched target peptide. However, this modularity is imperfect and also restricted to short peptide stretches of usually four to six consecutive amino acids. Here we report the development and characterization of a regularized and truly modular peptide-specific binding protein, based on designed armadillo repeat proteins (dArmRP), binding to peptides of alternating lysine and arginine residues (KR)n. dArmRP were obtained from nArmRP through cycles of extensive protein engineering, which rendered them more uniform. This regularity is reflected in the consistent binding of dArmRP to (KR)-peptides, where affinities depend on the lengths of target peptides and the number of internal repeats in a very systematic manner, thus confirming the modularity of the interaction. This exponential dependency between affinity and recognition length suggests that each module adds a constant increment of binding energy to sequence-specific recognition. This relationship was confirmed by comprehensive mutagenesis studies that also reveal the importance of individual peptide side chains. The 1.83 Å resolution crystal structure of a dArmRP with five identical internal repeats in complex with the cognate (KR)5 peptide proves a modular binding mode, where each dipeptide is recognized by one internal repeat. The confirmation of this true modularity over longer peptide stretches lays the ground for the design of binders with different specificities and tailored affinities by the assembly of dipeptide-specific modules based on armadillo repeats. PMID:26878586

  11. [Biologically Active Peptides of King Crab Hepatopancreas].

    PubMed

    Bogdanov, V V; Berezin, B B; Il'ina, A P; Yamskova, V P; Yamskov, I A

    2015-01-01

    Substances of a peptide nature isolated from the hepatopancreas of the king crab Paralithodes camtschaticus exhibited physicochemical properties and membranotropic and specific activities similar to those of membranotropic homeostatic tissue-specific bioregulators previously found in different mammalian and plant tissues. Their biological effect on vertebrate tissues was demonstrated on a model of roller organotypic cultivation of Pleurodeles waltl newt liver tissue. PMID:26353409

  12. PepComposer: computational design of peptides binding to a given protein surface.

    PubMed

    Obarska-Kosinska, Agnieszka; Iacoangeli, Alfredo; Lepore, Rosalba; Tramontano, Anna

    2016-07-01

    There is a wide interest in designing peptides able to bind to a specific region of a protein with the aim of interfering with a known interaction or as starting point for the design of inhibitors. Here we describe PepComposer, a new pipeline for the computational design of peptides binding to a given protein surface. PepComposer only requires the target protein structure and an approximate definition of the binding site as input. We first retrieve a set of peptide backbone scaffolds from monomeric proteins that harbor the same backbone arrangement as the binding site of the protein of interest. Next, we design optimal sequences for the identified peptide scaffolds. The method is fully automatic and available as a web server at http://biocomputing.it/pepcomposer/webserver. PMID:27131789

  13. Nuclear magnetic resonance characterization of the binding of peptides from HIV GP120 by heparin

    SciTech Connect

    Mahan, J.A.; Rabenstein, D.L.

    1995-12-01

    Heparin has recently been shown to inhibit the growth and replication of human immunodeficiency virus, HIV. The inhibition of HIV by heparin is believed to be partly the result of its binding to envelope glycoprotein gp120 of the virus. Amino acids 307-330 of gp120 form a heparin-binding domain having the sequence: N-N-T-R-K-S-I-R-I-Q-R-G-P-G-R-A-F-V-T-I-G-K-I-G. This paper will present results on the characterization of the interaction of heparin with synthetic peptides derived from the heparin-binding domain of gp120 of HIV using one and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. Information will be presented on the amino acid residues of the peptides that are involved in the binding to heparin, the nature of the interactions between heparin and these residues, and the structure of the peptides in the peptide-heparin complexes.

  14. New horizons in mouse immunoinformatics: reliable in silico prediction of mouse class I histocompatibility major complex peptide binding affinity.

    PubMed

    Hattotuwagama, Channa K; Guan, Pingping; Doytchinova, Irini A; Flower, Darren R

    2004-11-21

    Quantitative structure-activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide-protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2-D(b), H2-K(b) and H2-K(k). As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online ( http://www.jenner.ac.uk/MHCPred). PMID:15534705

  15. Differential receptor binding characteristics of consecutive phenylalanines in micro-opioid specific peptide ligand endomorphin-2.

    PubMed

    Honda, Takeshi; Shirasu, Naoto; Isozaki, Kaname; Kawano, Michiaki; Shigehiro, Daiki; Chuman, Yoshiro; Fujita, Tsugumi; Nose, Takeru; Shimohigashi, Yasuyuki

    2007-06-01

    Endogenous opioid peptides consist of a conserved amino acid residue of Phe(3) and Phe(4), although their binding modes for opioid receptors have not been elucidated in detail. Endomorphin-2, which is highly selective and specific for the mu opioid receptor, possesses two Phe residues at the consecutive positions 3 and 4. In order to clarify the role of Phe(3) and Phe(4) in binding to the mu receptor, we synthesized a series of analogs in which Phe(3) and Phe(4) were replaced by various amino acids. It was found that the aromaticity of the Phe-beta-phenyl groups of Phe(3) and Phe(4) is a principal determinant of how strongly it binds to the receptor, although better molecular hydrophobicity reinforces the activity. The receptor binding subsites of Phe(3) and Phe(4) of endomorphin-2 were found to exhibit different structural requirements. The results suggest that [Trp(3)]endomorphin-2 (native endomorphin-1) and endomorphin-2 bind to different receptor subclasses. PMID:17395470

  16. Transmissible gastroenteritis virus; identification of M protein-binding peptide ligands with antiviral and diagnostic potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The membrane (M) protein is one of the major structural proteins of coronavirus particles. In this study, the M protein of transmissible gastroenteritis virus (TGEV) was used to biopan a 12-mer phage display random peptide library. Three phages expressing TGEV-M-binding peptides were identified and ...

  17. Conformational Contribution to Thermodynamics of Binding in Protein-Peptide Complexes through Microscopic Simulation

    PubMed Central

    Das, Amit; Chakrabarti, J.; Ghosh, Mahua

    2013-01-01

    We extract the thermodynamics of conformational changes in biomacromolecular complexes from the distributions of the dihedral angles of the macromolecules. These distributions are obtained from the equilibrium configurations generated via all-atom molecular dynamics simulations. The conformational thermodynamics data we obtained for calmodulin-peptide complexes using our methodology corroborate well with the experimentally observed conformational and binding entropies. The conformational free-energy changes and their contributions for different peptide-binding regions of calmodulin are evaluated microscopically. PMID:23528087

  18. A GBP 130 derived peptide from Plasmodium falciparum binds to human erythrocytes and inhibits merozoite invasion in vitro.

    PubMed

    Suarez, J E; Urquiza, M; Curtidor, H; Rodriguez, L E; Ocampo, M; Torres, E; Guzman, F; Patarroyo, M E

    2000-01-01

    The malarial GBP 130 protein binds weakly to intact human erythrocytes; the binding sites seem to be located in the repeat region and this region's antibodies block the merozoite invasion. A peptide from this region (residues from 701 to 720) which binds to human erythrocytes was identified. This peptide named 2220 did not bind to sialic acid; the binding site on human erythrocyte was affected by treatment with trypsin but not by chymotrypsin. The peptide was able to inhibit Plasmodium falciparum merozoite invasion of erythrocytes. The residues F701, K703, L705, T706, E713 (FYKILTNTDPNDEVERDNAD) were found to be critical for peptide binding to erythrocytes. PMID:10904405

  19. ZP-binding peptides identified via phage display stimulate production of sperm antibodies in dogs.

    PubMed

    Samoylova, Tatiana I; Cox, Nancy R; Cochran, Anna M; Samoylov, Alexandre M; Griffin, Brenda; Baker, Henry J

    2010-07-01

    Zona pellucida (ZP) glycoproteins play a central role in sperm-oocyte binding and fertilization. Sperm protein sequences that are involved in sperm-ZP recognition and have an important role in fertilization represent attractive targets for development of contraceptive vaccines, yet are currently unknown. To identify peptide sequences that recognize and bind to ZP proteins, we developed a novel selection procedure from phage display libraries that utilizes intact oocytes surrounded by ZP proteins. The major advantage of this procedure is that ZP proteins remain in their native conformation unlike a selection protocol previously published that utilized solubilized ZP on artificial solid support. Several peptides of 7 and 12 amino acids with binding specificity to canine ZP proteins were identified. Four of them (LNSFLRS, SSWYRGA, YLPIYTIPSMVY, and NNQSPILKLSIH) plus a control ZP-binding peptide (YLPVGGLRRIGG) from the literature were synthesized and tested for antigenic properties in dogs. NNQSPILKLSIH peptide stimulated production of anti-peptide antibodies. These antibodies bind to the acrosomal region of the canine sperm cell, demonstrating ability to act as sperm antibodies. The identified ZP-binding peptides (mimicking sperm cell surface antigens) may be useful in the design of immunocontraceptive agents for dogs. PMID:20434854

  20. Peptides in headlock – a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy

    PubMed Central

    Braun, Michael B.; Traenkle, Bjoern; Koch, Philipp A.; Emele, Felix; Weiss, Frederik; Poetz, Oliver; Stehle, Thilo; Rothbauer, Ulrich

    2016-01-01

    Nanobodies are highly valuable tools for numerous bioanalytical and biotechnical applications. Here, we report the characterization of a nanobody that binds a short peptide epitope with extraordinary affinity. Structural analysis reveals an unusual binding mode where the extended peptide becomes part of a β-sheet structure in the nanobody. This interaction relies on sequence-independent backbone interactions augmented by a small number of specificity-determining side chain contacts. Once bound, the peptide is fastened by two nanobody side chains that clamp it in a headlock fashion. Exploiting this unusual binding mode, we generated a novel nanobody-derived capture and detection system. Matrix-coupled nanobody enables the fast and efficient isolation of epitope-tagged proteins from prokaryotic and eukaryotic expression systems. Additionally, the fluorescently labeled nanobody visualizes subcellular structures in different cellular compartments. The high-affinity-binding and modifiable peptide tag of this system renders it a versatile and robust tool to combine biochemical analysis with microscopic studies. PMID:26791954

  1. Synthesis of gold structures by gold-binding peptide governed by concentration of gold ion and peptide.

    PubMed

    Kim, Jungok; Kim, Dong-Hun; Lee, Sylvia J; Rheem, Youngwoo; Myung, Nosang V; Hur, Hor-Gil

    2016-08-01

    Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 μm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions. PMID:27108675

  2. Genome-Wide Prediction and Validation of Peptides That Bind Human Prosurvival Bcl-2 Proteins

    PubMed Central

    DeBartolo, Joe; Taipale, Mikko; Keating, Amy E.

    2014-01-01

    Programmed cell death is regulated by interactions between pro-apoptotic and prosurvival members of the Bcl-2 family. Pro-apoptotic family members contain a weakly conserved BH3 motif that can adopt an alpha-helical structure and bind to a groove on prosurvival partners Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. Peptides corresponding to roughly 13 reported BH3 motifs have been verified to bind in this manner. Due to their short lengths and low sequence conservation, BH3 motifs are not detected using standard sequence-based bioinformatics approaches. Thus, it is possible that many additional proteins harbor BH3-like sequences that can mediate interactions with the Bcl-2 family. In this work, we used structure-based and data-based Bcl-2 interaction models to find new BH3-like peptides in the human proteome. We used peptide SPOT arrays to test candidate peptides for interaction with one or more of the prosurvival proteins Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. For the 36 most promising array candidates, we quantified binding to all five human receptors using direct and competition binding assays in solution. All 36 peptides showed evidence of interaction with at least one prosurvival protein, and 22 peptides bound at least one prosurvival protein with a dissociation constant between 1 and 500 nM; many peptides had specificity profiles not previously observed. We also screened the full-length parent proteins of a subset of array-tested peptides for binding to Bcl-xL and Mcl-1. Finally, we used the peptide binding data, in conjunction with previously reported interactions, to assess the affinity and specificity prediction performance of different models. PMID:24967846

  3. Anticoagulant activity of original synthetic peptide derivatives.

    PubMed

    Drozd, N N; Tolstenkov, A S; Makarov, V A; Miphtakhova, N T; Voyushina, T L; Sergeev, M E

    2008-01-01

    Original synthetic peptide derivatives exhibit anticoagulant activity in vitro and in vivo. They delayed fibrin clot formation from human blood plasma in tests for the intrinsic coagulation pathway (activated partial thromboplastin time) and final stage of plasma coagulation (thrombin time) and inhibited amidolytic activity of thrombin. We determined the minimum effective dose of the most active compound providing a 2-fold lengthening of blood clotting time (activated partial thromboplastin time test and thrombin time test), which persisted for 2-3 h. PMID:19024001

  4. Bioluminescent Ligand-Receptor Binding Assays for Protein or Peptide Hormones.

    PubMed

    Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    Bioluminescence has been widely used in biomedical research due to its high sensitivity, low background, and broad linear range. In recent studies, we applied bioluminescence to ligand-receptor binding assays for some protein or peptide hormones based on a newly developed small monomeric Nanoluciferase (NanoLuc) reporter that has the so far brightest bioluminescence. The conventional ligand-receptor binding assays rely on radioligands that have drawbacks, such as radioactive hazards and short shelf lives. In contrast, the novel bioluminescent binding assays use the NanoLuc-based protein or peptide tracers that are safe, stable, and ultrasensitive. Thus, the novel bioluminescent ligand-receptor binding assay would be applied to more and more protein or peptide hormones for ligand-receptor interaction studies in future. In the present article, we provided detailed protocols for setting up the novel bioluminescent ligand-receptor binding assays using two representative protein hormones as examples. PMID:27424896

  5. The peptide agonist-binding site of the glucagon-like peptide-1 (GLP-1) receptor based on site-directed mutagenesis and knowledge-based modelling

    PubMed Central

    Dods, Rachel L.; Donnelly, Dan

    2015-01-01

    Glucagon-like peptide-1 (7–36)amide (GLP-1) plays a central role in regulating blood sugar levels and its receptor, GLP-1R, is a target for anti-diabetic agents such as the peptide agonist drugs exenatide and liraglutide. In order to understand the molecular nature of the peptide–receptor interaction, we used site-directed mutagenesis and pharmacological profiling to highlight nine sites as being important for peptide agonist binding and/or activation. Using a knowledge-based approach, we constructed a 3D model of agonist-bound GLP-1R, basing the conformation of the N-terminal region on that of the receptor-bound NMR structure of the related peptide pituitary adenylate cyclase-activating protein (PACAP21). The relative position of the extracellular to the transmembrane (TM) domain, as well as the molecular details of the agonist-binding site itself, were found to be different from the model that was published alongside the crystal structure of the TM domain of the glucagon receptor, but were nevertheless more compatible with published mutagenesis data. Furthermore, the NMR-determined structure of a high-potency cyclic conformationally-constrained 11-residue analogue of GLP-1 was also docked into the receptor-binding site. Despite having a different main chain conformation to that seen in the PACAP21 structure, four conserved residues (equivalent to His-7, Glu-9, Ser-14 and Asp-15 in GLP-1) could be structurally aligned and made similar interactions with the receptor as their equivalents in the GLP-1-docked model, suggesting the basis of a pharmacophore for GLP-1R peptide agonists. In this way, the model not only explains current mutagenesis and molecular pharmacological data but also provides a basis for further experimental design. PMID:26598711

  6. Characterization and in vitro activity of a branched peptide boronic acid that interacts with HIV-1 RRE RNA.

    PubMed

    Wynn, Jessica E; Zhang, Wenyu; Tebit, Denis M; Gray, Laurie R; Hammarskjold, Marie-Louise; Rekosh, David; Santos, Webster L

    2016-09-01

    A branched peptide containing multiple boronic acids was found to bind RRE IIB selectively and inhibit HIV-1 p24 capsid production in a dose-dependent manner. Structure-activity relationship studies revealed that branching in the peptide is crucial for the low micromolar binding towards RRE IIB, and the peptide demonstrates selectivity towards RRE IIB in the presence of tRNA. Footprinting studies suggest a binding site on the upper stem and internal loop regions of the RNA, which induces enzymatic cleavage of the internal loops of RRE IIB upon binding. PMID:27091070

  7. High-throughput identification of putative receptors for cancer-binding peptides using biopanning and microarray analysis

    PubMed Central

    Ferraro, Daniel J; Bhave, Sandeep R; Kotipatruni, Rama P; Hunn, Jeremy C; Wildman, Scott A; Hong, Charles; Dadey, David Y. A.; Muhoro, Lincoln K.; Jaboin, Jerry J; Thotala, Dinesh; Hallahan, Dennis E

    2013-01-01

    Phage-display peptide biopanning has been successfully used to identify cancer-targeting peptides in multiple models. For cancer-binding peptides, identification of the peptide receptor is necessary to demonstrate mechanism of action and to further optimize specificity and target binding. The process of receptor identification can be slow and some peptides may turn out to bind ubiquitous proteins not suitable for further drug development. In this report, we describe a high-throughput method for screening a large number of peptides in parallel to identify peptide receptors, which we have termed “reverse biopanning,” which can then be selected for further development based on their peptide receptor. To demonstrate this method, we screened a library of 39 peptides previously identified in our laboratory to bind specifically cancers after irradiation. The reverse biopanning process identified 2 peptides, RKFLMTTRYSRV and KTAKKNVFFCSV, as candidate ligands for the protein tax interacting protein 1 (TIP-1), a protein previously identified in our laboratory to be expressed in the cell surface in tumors and upregulated after exposure to ionizing radiation. We used computational modeling as the initial method for rapid validation of peptide-TIP-1 binding. Pseudo-binding energies were calculated to be −360.645 kcal/mol, −487.239 kcal/mol, and −595.328 kcal/mol for HVGGSSV, TTRYSRV, and NVFFCSV respectively, suggesting that the peptides would have at least similar, if not stronger, binding to TIP-1 compared to the known TIP-1 binding peptide HVGGSSV. We validated peptide in vitro via electrophoretic mobility shift assay, which showed strong binding of RKFLMTTRYSRV and the truncated form TTRYSRV. This method allows for the identification of many peptide receptors and subsequent selection of peptides for further drug development based on the peptide receptor. PMID:23147990

  8. Improved eIF4E Binding Peptides by Phage Display Guided Design: Plasticity of Interacting Surfaces Yield Collective Effects

    PubMed Central

    Verma, Chandra S.; Liu, Yun; Lane, David P.; Brown, Christopher J.

    2012-01-01

    Eukaryotic initiation factor (eIF)4E is over-expressed in many types of cancer such as breast, head and neck, and lung. A consequence of increased levels of eIF4E is the preferential translation of pro-tumorigenic proteins (e.g. c-Myc and vascular endothelial growth factor) and as a result is regarded as a potential therapeutic target. In this work a novel phage display peptide has been isolated against eIF4E. From the phage sequence two amino acids were delineated which improved binding when substituted into the eIF4G1 sequence. Neither of these substitutions were involved in direct interactions with eIF4E and acted either via optimization of the helical capping motif or restricting the conformational flexibility of the peptide. In contrast, substitutions of the remaining phage derived amino acids into the eIF4G1 sequence disrupted binding of the peptide to eIF4E. Interestingly when some of these disruptive substitutions were combined with key mutations from the phage peptide, they lead to improved affinities. Atomistic computer simulations revealed that the phage and the eIF4G1 derivative peptide sequences differ subtly in their interaction sites on eIF4E. This raises the issue, especially in the context of planar interaction sites such as those exhibited by eIF4E, that given the intricate plasticity of protein surfaces, the construction of structure-activity relationships should account for the possibility of significant movement in the spatial positioning of the peptide binding interface, including significant librational motions of the peptide. PMID:23094039

  9. Label-free probe of HIV-1 TAT peptide binding to mimetic membranes.

    PubMed

    Rao, Yi; Kwok, Sheldon J J; Lombardi, Julien; Turro, Nicholas J; Eisenthal, Kenneth B

    2014-09-01

    The transacting activator of transduction (TAT) protein plays a key role in the progression of AIDS. Studies have shown that a +8 charged sequence of amino acids in the protein, called the TAT peptide, enables the TAT protein to penetrate cell membranes. To probe mechanisms of binding and translocation of the TAT peptide into the cell, investigators have used phospholipid liposomes as cell membrane mimics. We have used the method of surface potential sensitive second harmonic generation (SHG), which is a label-free and interface-selective method, to study the binding of TAT to anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-1'-rac-glycerol (POPG) and neutral 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes. It is the SHG sensitivity to the electrostatic field generated by a charged interface that enabled us to obtain the interfacial electrostatic potential. SHG together with the Poisson-Boltzmann equation yielded the dependence of the surface potential on the density of adsorbed TAT. We obtained the dissociation constants Kd for TAT binding to POPC and POPG liposomes and the maximum number of TATs that can bind to a given liposome surface. For POPC Kd was found to be 7.5 ± 2 μM, and for POPG Kd was 29.0 ± 4.0 μM. As TAT was added to the liposome solution the POPC surface potential changed from 0 mV to +37 mV, and for POPG it changed from -57 mV to -37 mV. A numerical calculation of Kd, which included all terms obtained from application of the Poisson-Boltzmann equation to the TAT liposome SHG data, was shown to be in good agreement with an approximated solution. PMID:25136100

  10. Label-free probe of HIV-1 TAT peptide binding to mimetic membranes

    PubMed Central

    Rao, Yi; Kwok, Sheldon J. J.; Lombardi, Julien; Turro, Nicholas J.; Eisenthal, Kenneth B.

    2014-01-01

    The transacting activator of transduction (TAT) protein plays a key role in the progression of AIDS. Studies have shown that a +8 charged sequence of amino acids in the protein, called the TAT peptide, enables the TAT protein to penetrate cell membranes. To probe mechanisms of binding and translocation of the TAT peptide into the cell, investigators have used phospholipid liposomes as cell membrane mimics. We have used the method of surface potential sensitive second harmonic generation (SHG), which is a label-free and interface-selective method, to study the binding of TAT to anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-1′-rac-glycerol (POPG) and neutral 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes. It is the SHG sensitivity to the electrostatic field generated by a charged interface that enabled us to obtain the interfacial electrostatic potential. SHG together with the Poisson–Boltzmann equation yielded the dependence of the surface potential on the density of adsorbed TAT. We obtained the dissociation constants Kd for TAT binding to POPC and POPG liposomes and the maximum number of TATs that can bind to a given liposome surface. For POPC Kd was found to be 7.5 ± 2 μM, and for POPG Kd was 29.0 ± 4.0 μM. As TAT was added to the liposome solution the POPC surface potential changed from 0 mV to +37 mV, and for POPG it changed from −57 mV to −37 mV. A numerical calculation of Kd, which included all terms obtained from application of the Poisson–Boltzmann equation to the TAT liposome SHG data, was shown to be in good agreement with an approximated solution. PMID:25136100

  11. Bioinspired silicification of silica-binding peptide-silk protein chimeras: comparison of chemically and genetically produced proteins.

    PubMed

    Canabady-Rochelle, Laetitia L S; Belton, David J; Deschaume, Olivier; Currie, Heather A; Kaplan, David L; Perry, Carole C

    2012-03-12

    Novel protein chimeras constituted of "silk" and a silica-binding peptide (KSLSRHDHIHHH) were synthesized by genetic or chemical approaches and their influence on silica-silk based chimera composite formation evaluated. Genetic chimeras were constructed from 6 or 15 repeats of the 32 amino acid consensus sequence of Nephila clavipes spider silk ([SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQG](n)) to which one silica binding peptide was fused at the N terminus. For the chemical chimera, 28 equiv of the silica binding peptide were chemically coupled to natural Bombyx mori silk after modification of tyrosine groups by diazonium coupling and EDC/NHS activation of all acid groups. After silica formation under mild, biomaterial-compatible conditions, the effect of peptide addition on the properties of the silk and chimeric silk-silica composite materials was explored. The composite biomaterial properties could be related to the extent of silica condensation and to the higher number of silica binding sites in the chemical chimera as compared with the genetically derived variants. In all cases, the structure of the protein/chimera in solution dictated the type of composite structure that formed with the silica deposition process having little effect on the secondary structural composition of the silk-based materials. Similarly to our study of genetic silk based chimeras containing the R5 peptide (SSKKSGSYSGSKGSKRRIL), the role of the chimeras (genetic and chemical) used in the present study resided more in aggregation and scaffolding than in the catalysis of condensation. The variables of peptide identity, silk construct (number of consensus repeats or silk source), and approach to synthesis (genetic or chemical) can be used to "tune" the properties of the composite materials formed and is a general approach that can be used to prepare a range of materials for biomedical and sensor-based applications. PMID:22229696

  12. HomoSAR: bridging comparative protein modeling with quantitative structural activity relationship to design new peptides.

    PubMed

    Borkar, Mahesh R; Pissurlenkar, Raghuvir R S; Coutinho, Evans C

    2013-11-15

    Peptides play significant roles in the biological world. To optimize activity for a specific therapeutic target, peptide library synthesis is inevitable; which is a time consuming and expensive. Computational approaches provide a promising way to simply elucidate the structural basis in the design of new peptides. Earlier, we proposed a novel methodology termed HomoSAR to gain insight into the structure activity relationships underlying peptides. Based on an integrated approach, HomoSAR uses the principles of homology modeling in conjunction with the quantitative structural activity relationship formalism to predict and design new peptide sequences with the optimum activity. In the present study, we establish that the HomoSAR methodology can be universally applied to all classes of peptides irrespective of sequence length by studying HomoSAR on three peptide datasets viz., angiotensin-converting enzyme inhibitory peptides, CAMEL-s antibiotic peptides, and hAmphiphysin-1 SH3 domain binding peptides, using a set of descriptors related to the hydrophobic, steric, and electronic properties of the 20 natural amino acids. Models generated for all three datasets have statistically significant correlation coefficients (r(2)) and predictive r2 (r(pred)2) and cross validated coefficient ( q(LOO)2). The daintiness of this technique lies in its simplicity and ability to extract all the information contained in the peptides to elucidate the underlying structure activity relationships. The difficulties of correlating both sequence diversity and variation in length of the peptides with their biological activity can be addressed. The study has been able to identify the preferred or detrimental nature of amino acids at specific positions in the peptide sequences. PMID:24105965

  13. Peptide Array on Cellulose Support—A Screening Tool to Identify Peptides with Dipeptidyl-Peptidase IV Inhibitory Activity within the Sequence of α-Lactalbumin

    PubMed Central

    Lacroix, Isabelle M. E.; Li-Chan, Eunice C. Y.

    2014-01-01

    The inhibition of the enzyme dipeptidyl-peptidase IV (DPP-IV) is an effective pharmacotherapeutic approach for the management of type 2 diabetes. Recent findings have suggested that dietary proteins, including bovine α-lactalbumin, could be precursors of peptides able to inhibit DPP-IV. However, information on the location of active peptide sequences within the proteins is far from being comprehensive. Moreover, the traditional approach to identify bioactive peptides from foods can be tedious and long. Therefore, the objective of this study was to use peptide arrays to screen α-lactalbumin-derived peptides for their interaction with DPP-IV. Deca-peptides spanning the entire α-lactalbumin sequence, with a frame shift of 1 amino acid between successive sequences, were synthesized on cellulose membranes using “SPOT” technology, and their binding to and inhibition of DPP-IV was studied. Among the 114 α-lactalbumin-derived decamers investigated, the peptides 60WCKDDQNPHS69 (αKi = 76 µM), 105LAHKALCSEK114 (Ki = 217 µM) and 110LCSEKLDQWL119 (Ki = 217 µM) were among the strongest DPP-IV inhibitors. While the SPOT- and traditionally-synthesized peptides showed consistent trends in DPP-IV inhibitory activity, the cellulose-bound peptides’ binding behavior was not correlated to their ability to inhibit the enzyme. This research showed, for the first time, that peptide arrays are useful screening tools to identify DPP-IV inhibitory peptides from dietary proteins. PMID:25402645

  14. Design and production of peptides mimicking the active site of serine esterases with covalent binding to the organophosphorous poison soman. Annual report, 1 July 1984-30 June 1985

    SciTech Connect

    Seltzman, H.H.

    1985-12-09

    The objective of this research program is to design, synthesize, and test peptides and peptide mimics that will scavange soman in vivo and thereby provide protection against this CW agent. The test compounds were designed to mimic the active site of serine esterases (AChE), which are the natural targets of soman, enabling them to react with soman and thus protect endogenous AChE. Cyclodextrins derivatized with peptide functional groups and their equivalents such as imidazole, histamine, ethylene diamine, diethylene triamine, catechol, and ethane dithiol were synthesized for testing. The synthesis of precursors to cyclohexapeptides containing histidine, serine, and aspartic acid, which are amino acids that have been implicated in the active site of numerous esterases, were pursued. Testing of the ability of alpha-, beta, and gamma-cyclodextrins to protect AChE frominactivation by soman was carried out in vitro. From this group of compounds, beta-cyclodextrin was observed to preserve the activity of AChE in a dose response manner achieving a 72.1% preservation of activity when present in 200,000 fold excess versus soman after only ten minutes incubation time (beta-cyclodextrin + soman). Neither alpha, nor gamma-cyclodextrin showed any protective effect at the same doses. The test results suggest that beta cyclodextrin is uniquely suited to scavange soman. Improved scavanging might be achieved with the modified cyclodextrins prepared above for testing.

  15. Identification of Plasmodium falciparum RhopH3 protein peptides that specifically bind to erythrocytes and inhibit merozoite invasion

    PubMed Central

    Pinzón, Carlos Giovanni; Curtidor, Hernando; Reyes, Claudia; Méndez, David; Patarroyo, Manuel Elkin

    2008-01-01

    The identification of sequences involved in binding to erythrocytes is an important step for understanding the molecular basis of merozoite–erythrocyte interactions that take place during invasion of the Plasmodium falciparum malaria parasite into host cells. Several molecules located in the apical organelles (micronemes, rhoptry, dense granules) of the invasive-stage parasite are essential for erythrocyte recognition, invasion, and establishment of the nascent parasitophorous vacuole. Particularly, it has been demonstrated that rhoptry proteins play an important role in binding to erythrocyte surface receptors, among which is the PfRhopH3 protein, which triggers important immune responses in patients from endemic regions. It has also been reported that anti-RhopH3 antibodies inhibit in vitro invasion of erythrocytes, further supporting its direct involvement in erythrocyte invasion processes. In this study, PfRhopH3 consecutive peptides were synthesized and tested in erythrocyte binding assays for identifying those regions mediating binding to erythrocytes. Fourteen PfRhopH3 peptides presenting high specific binding activity were found, whose bindings were saturable and presented nanomolar dissociation constants. These high-activity binding peptides (HABPs) were characterized by having α-helical structural elements, as determined by circular dichroism, and having receptors of a possible sialic acid-dependent and/or glycoprotein-dependent nature, as evidenced in enzyme-treated erythrocyte binding assays and further corroborated by cross-linking assay results. Furthermore, these HABPs inhibited merozoite in vitro invasion of normal erythrocytes at 200 μM by up to 60% and 90%, suggesting that some RhopH3 protein regions are involved in the P. falciparum erythrocyte invasion. PMID:18593818

  16. Modulation of CD44 Activity by A6-Peptide

    PubMed Central

    Finlayson, Malcolm

    2015-01-01

    Hyaluronan (HA) is a non-sulfated glycosaminoglycan distributed throughout the extracellular matrix that plays a major role in cell adhesion, migration, and proliferation. CD44, a multifunctional cell surface glycoprotein, is a receptor for HA. In addition, CD44 is known to interact with other receptors and ligands, and to mediate a number of cellular functions as well as disease progression. Studies have shown that binding of HA to CD44 in cancer cells activates survival pathways resulting in cancer cell survival. This effect can be blocked by anti-CD44 monoclonal antibodies. A6 is a capped, eight l-amino acid peptide (Ac-KPSSPPEE-NH2) derived from the biologically active connecting peptide domain of the serine protease, human urokinase plasminogen activator (uPA). A6 neither binds to the uPA receptor (uPAR) nor interferes with uPA/uPAR binding. A6 binds to CD44 resulting in the inhibition of migration, invasion, and metastasis of tumor cells, and the modulation of CD44-mediated cell signaling. A6 has been shown to have no dose-limiting toxicity in animal studies. A6 has demonstrated efficacy and an excellent safety profile in Phase 1a, 1b, and 2 clinical trials. In animal models, A6 has also exhibited promising results for the treatment of diabetic retinopathy and wet age-related macular degeneration through the reduction of retinal vascular permeability and inhibition of choroidal neovascularization, respectively. Recently, A6 has been shown to be directly cytotoxic for B-lymphocytes obtained from patients with chronic lymphocytic leukemia expressing the kinase, ZAP-70. This review will discuss the activity of A6, A6 modulation of HA and CD44, and a novel strategy for therapeutic intervention in disease. PMID:25870596

  17. Heparin binding domain of antithrombin III: Characterization using a synthetic peptide directed polyclonal antibody

    SciTech Connect

    Smith, J.W.; Dey, B.; Knauer, D.J. )

    1990-09-25

    Antithrombin III (ATIII) is a plasma-borne serine protease inhibitor that apparently forms covalent complexes with thrombin. The interaction between ATIII and thrombin is enhanced several thousandfold by the glycosaminoglycan, heparin. The authors have previously proposed that the heparin binding site of ATIII residues within a region extending from amino acid residues 114-156. Computer-assisted analysis of this region revealed the presence of a 22 amino acid domain (residues 124-145), part of which shows a strong potential for the formation of an amphipathic helix: hydrophobic on one face and highly positively charged on the other. In the presence studies, polyclonal antisera were generated against a synthetic peptide corresponding to residues 124-145 in native human ATIII. Affinity-purified IgG from these antisera, as well as monovalent Fab's derived from them, specifically blocked the binding of heparin to ATIII. Additionally, occupancy of the heparin binding site by these same monovalent and bivalent IgG's at least partially substituted for heparin, accelerating linkage formation between ATIII and thrombin. These results provide the first immunological evidence that region 124-145 is directly involved in the binding of heparin to ATIII and that an antibody-induced conformational change within this region can mediate ATIII activation.

  18. Peptides and proteins with antimicrobial activity

    PubMed Central

    Coutinho, Henrique Douglas Melo; Lôbo, Katiuscia Menezes; Bezerra, Denise Aline Casimiro; Lôbo, Inalzuir

    2008-01-01

    The increase of microbial resistance to antibiotics has led to a continuing search for newer and more effective drugs. Antimicrobial peptides are generally found in animals, plants, and microorganisms and are of great interest to medicine, pharmacology, and the food industry. These peptides are capable of inhibiting pathogenic microorganisms. They can attack parasites, while causing little or no harm to the host cells. The defensins are peptides found in granules in the polymorphonuclear neutrophils (PMNs) and are responsible for the defense of the organism. Several animal defensins, like dermaseptin, antileukoprotease, protegrin, and others, have had their activities and efficacy tested and been shown to be effective against bacteria, fungi, and protists; there are also specific defensins from invertebrates, e.g., drosomycin and heliomicin; from plants, e.g., the types A and B; and the bacteriocins, e.g., acrocin, marcescin, etc. The aim of the present work was to compile a comprehensive bibliographic review of the diverse potentially antimicrobial peptides in an effort to systematize the current knowledge on these substances as a contribution for further researches. The currently available bibliography does not give a holistic approach on this subject. The present work intends to show that the mechanism of defense represented by defensins is promising from the perspective of its application in the treatment of infectious diseases in human, animals and plants. PMID:21264153

  19. The Alzheimer's disease Aβ peptide binds to the anionic DMPS lipid bilayer.

    PubMed

    Lockhart, Christopher; Klimov, Dmitri K

    2016-06-01

    We have applied isobaric-isothermal replica exchange molecular dynamics (REMD) and the all-atom explicit water model to study binding of Aβ10-40 peptide to the anionic DMPS bilayer. To provide comparison with a zwitterionic bilayer, we used our previous REMD simulations probing binding of the same peptide to the DMPC bilayer. Using two sets of simulations, we comparatively analyzed the equilibrium Aβ conformational ensemble, peptide-bilayer interactions, and changes in the bilayer structure induced by Aβ binding. Our results are six-fold. (1) Binding to the DMPS bilayer triggers the formation of stable helix in the Aβ C-terminal, although the helix-inducing effect caused by DMPS lipids is weaker than that of DMPC. (2) Compared to the DMPC-bound Aβ monomer, the anionic bilayer weakens intrapeptide interactions, particularly, formed by charged amino acids. (3) Binding of Aβ peptide to the DMPS bilayer is primarily governed by electrostatic interactions between charged amino acids and charged lipid groups. In contrast, these interactions play minor role in Aβ binding to the DMPC bilayer. (4) Aβ peptide generally resides on the DMPS bilayer surface causing relatively minor bilayer thinning. The opposite scenario applies to Aβ binding to the DMPC bilayer. (5) In contrast to DMPC simulations, Aβ largely expels anionic lipids from its binding "footprint" forming a ring of charged amino acids mixed with charged lipid groups around the peptide. (6) Aβ binding disorders proximal DMPS lipids more strongly than their DMPC counterparts. Our simulations show that Aβ monomers fail to perturb anionic or zwitterionic bilayers across both leaflets. PMID:26947182

  20. Label-Free, In-Solution Screening of Peptide Libraries for Binding to Protein Targets Using Hydrogen Exchange Mass Spectrometry.

    PubMed

    Maaty, Walid S; Weis, David D

    2016-02-01

    There is considerable interest in the discovery of peptide ligands that bind to protein targets. Discovery of such ligands is usually approached by screening large peptide libraries. However, the individual peptides must be tethered to a tag that preserves their individual identities (e.g., phage display or one-bead one-compound). To overcome this limitation, we have developed a method for screening libraries of label-free peptides for binding to a protein target in solution as a single batch. The screening is based on decreased amide hydrogen exchange by peptides that bind to the target. Hydrogen exchange is measured by mass spectrometry. We demonstrate the approach using a peptide library derived from the Escherichia coli proteome that contained 6664 identifiable features. The library was spiked separately with a peptide spanning the calmodulin binding domain of endothelial nitric oxide synthase (eNOS, 494-513) and a peptide spanning the N-terminal 20 residues of bovine ribonuclease A (S peptide). Human calmodulin and bovine ribonuclease S (RNase S) were screened against the library. Using a novel data analysis workflow, we identified the eNOS peptide as the only calmodulin binding peptide and S peptide as the only ribonuclease S binding peptide in the library. PMID:26741284

  1. Peptide Bacteriocins--Structure Activity Relationships.

    PubMed

    Etayash, Hashem; Azmi, Sarfuddin; Dangeti, Ramana; Kaur, Kamaljit

    2015-01-01

    With the growing concerns in the scientific and health communities over increasing levels of antibiotic resistance, antimicrobial peptide bacteriocins have emerged as promising alternatives to conventional small molecule antibiotics. A substantial attention has recently focused on the utilization of bacteriocins in food preservation and health safety. Despite the fact that a large number of bacteriocins have been reported, only a few have been fully characterized and structurally elucidated. Since knowledge of the molecular structure is a key for understanding the mechanism of action and therapeutic effects of peptide, we centered our focus in this review on the structure-activity relationships of bacteriocins with a particular focus in seven bacteriocins, namely, nisin, microcin J25, microcin B17, microcin C, leucocin A, sakacin P, and pediocin PA-1. Significant structural changes responsible for the altered activity of the recent bacteriocin analogues are discussed here. PMID:26265354

  2. Coupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes.

    PubMed

    Doytchinova, Irini A; Walshe, Valerie A; Jones, Nicola A; Gloster, Simone E; Borrow, Persephone; Flower, Darren R

    2004-06-15

    The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative structure-affinity relationship methods to peptide-MHC binding. In this study we demonstrate the predictivity and utility of this approach. We determined the binding affinities of a set of 90 nonamer peptides for the MHC class I allele HLA-A*0201 using an in-house, FACS-based, MHC stabilization assay, and from these data we derived an additive quantitative structure-affinity relationship model for peptide interaction with the HLA-A*0201 molecule. Using this model we then designed a series of high affinity HLA-A2-binding peptides. Experimental analysis revealed that all these peptides showed high binding affinities to the HLA-A*0201 molecule, significantly higher than the highest previously recorded. In addition, by the use of systematic substitution at principal anchor positions 2 and 9, we showed that high binding peptides are tolerant to a wide range of nonpreferred amino acids. Our results support a model in which the affinity of peptide binding to MHC is determined by the interactions of amino acids at multiple positions with the MHC molecule and may be enhanced by enthalpic cooperativity between these component interactions. PMID:15187128

  3. Synthetic integrin-binding peptides promote adhesion and proliferation of human periodontal ligament cells in vitro.

    PubMed

    Grzesik, W J; Ivanov, B; Robey, F A; Southerland, J; Yamauchi, M

    1998-08-01

    Periodontal ligament (PDL) cells have been shown to express several integrins (alphav, alpha5, beta1, beta3) that use RGD (arginine-glycine-aspartic Acid)-dependent mechanisms for the recognition and binding of their ligands. The objective of this study was to evaluate the effects of certain integrin-binding cyclic and linear synthetic RGD-containing peptides on PDL cells' adhesion, proliferation, and de novo protein synthesis in vitro. Fifth passages of normal human PDL cells established from teeth extracted from patients (ages 12 to 14) for orthodontic reasons were used for all experiments. Synthetic peptides containing the EPRGDNYR sequence in two different spatial conformations (linear and cyclic) were covalently attached to bovine serum albumin (BSA). Type I collagen, EPRGDNYR-BSA conjugates, 1:1 mixtures of type I collagen and conjugates, as well as BSA (a negative control) were coated on bacteriological plastic and evaluated for their attachment-promoting activities. In addition, the effects of these substrates on cell proliferation were evaluated by [3H]thymidine incorporation by the PDL cells. For attachment and spreading, the cyclic forms of EPRGDNYR-BSA conjugate and type I collagen were most potent, followed by linear EPRGDNYR-BSA conjugate. The effects of all collagen/conjugate mixtures were equivalent to that of type I collagen except for the collagen/linear EPRGDNYR-BSA mixture, which was less potent. The cyclic EPRGDNYR-BSA conjugate was the most effective substrate to stimulate cell proliferation, and it was followed in potency by the linear peptide-BSA conjugate. Collagen alone did not stimulate [3H]thymidine incorporation above the control level. Mixtures of collagen with all of the conjugates showed stimulatory effects similar to that of the cyclic peptide-BSA conjugate. No significant differences in de novo protein synthesis were detected. These results suggest that the synthetic RGD-containing peptides attached to a carrier are potent ligands

  4. Diazepam binding inhibitor is a potent cholecystokinin-releasing peptide in the intestine.

    PubMed Central

    Herzig, K H; Schön, I; Tatemoto, K; Ohe, Y; Li, Y; Fölsch, U R; Owyang, C

    1996-01-01

    Pancreatic proteases in the duodenum inhibit the release of cholecystokinin (CCK) and thus exert feedback control of pancreatic exocrine secretion. Exclusion of proteases from the duodenum either by the diversion of bile-pancreatic juice or by the addition of protease inhibitors stimulates exocrine pancreatic secretion. The mechanism by which pancreatic proteases in the duodenum regulate CCK secretion is unknown. In this study, we isolated a trypsin-sensitive peptide that is secreted intraduodenally, releases CCK, and stimulates pancreatic enzyme secretion in rats. This peptide was found to be identical to the porcine diazepam binding inhibitor by peptide sequencing and mass spectrometry analysis. Intraduodenal infusion of 200 ng of synthetic porcine diazepam binding inhibitor1-86 in rats significantly stimulated pancreatic amylase output. Infusion of the CCK antagonist MK-329 completely blocked the diazepam binding inhibitor-stimulated amylase secretion. Similarly, diazepam binding inhibitor33-52 [corrected] also stimulated CCK release and pancreatic secretion in a dose-dependent manner although it was 100 times less potent than the whole peptide. Using a perfusion system containing isolated mucosal cells from the proximal intestine of rats, porcine diazepam binding inhibitor 10(-12) M) dose dependently stimulated CCK secretion. In separate studies, it was demonstrated that luminal secretion of the diazepam binding inhibitor immunoreactivity (7.5 X 10(11) M) could be detected in rat's intestinal washing following the diversion of bile-pancreatic juice. The secretion of this peptide was inhibited by atropine. In conclusion, we have isolated and characterized a CCK-releasing peptide that has a sequence identical to the porcine diazepam binding inhibitor from pig intestinal mucosa and that stimulates CCK release when administered intraduodenally in rat. This peptide may mediate feedback regulation of pancreatic enzyme secretion. Images Fig. 1 PMID:8755579

  5. Activation of p53-dependent responses in tumor cells treated with a PARC-interacting peptide

    SciTech Connect

    Vitali, Roberta; Cesi, Vincenzo; Tanno, Barbara; Ferrari-Amorotti, Giovanna; Dominici, Carlo; Calabretta, Bruno; Raschella, Giuseppe

    2008-04-04

    We tested the activity of a p53 carboxy-terminal peptide containing the PARC-interacting region in cancer cells with wild type cytoplasmic p53. Peptide delivery was achieved by fusing it to the TAT transduction domain (TAT-p53-C-ter peptide). In a two-hybrid assay, the tetramerization domain (TD) of p53 was necessary and sufficient to bind PARC. The TAT-p53-C-ter peptide disrupted the PARC-p53 complex. Peptide treatment caused p53 nuclear relocation, p53-dependent changes in gene expression and enhancement of etoposide-induced apoptosis. These studies suggest that PARC-interacting peptides are promising candidates for the enhancement of p53-dependent apoptosis in tumors with wt cytoplasmic p53.

  6. Activation of p53-dependent responses in tumor cells treated with a PARC-interacting peptide.

    PubMed

    Vitali, Roberta; Cesi, Vincenzo; Tanno, Barbara; Ferrari-Amorotti, Giovanna; Dominici, Carlo; Calabretta, Bruno; Raschellà, Giuseppe

    2008-04-01

    We tested the activity of a p53 carboxy-terminal peptide containing the PARC-interacting region in cancer cells with wild type cytoplasmic p53. Peptide delivery was achieved by fusing it to the TAT transduction domain (TAT-p53-C-ter peptide). In a two-hybrid assay, the tetramerization domain (TD) of p53 was necessary and sufficient to bind PARC. The TAT-p53-C-ter peptide disrupted the PARC-p53 complex. Peptide treatment caused p53 nuclear relocation, p53-dependent changes in gene expression and enhancement of etoposide-induced apoptosis. These studies suggest that PARC-interacting peptides are promising candidates for the enhancement of p53-dependent apoptosis in tumors with wt cytoplasmic p53. PMID:18230339

  7. Eel calcitonin binding site distribution and antinociceptive activity in rats

    SciTech Connect

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-03-01

    The distribution of binding site for (/sup 125/I)-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing (/sup 125/I)-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain.

  8. Biochemical basis for enhanced binding of peptide dimers to X-linked inhibitor of apoptosis protein.

    PubMed

    Splan, Kathryn E; Allen, John E; McLendon, George L

    2007-10-23

    XIAP (X-linked inhibitor of apoptosis protein) is involved in the mediation of programmed cell death and, therefore, is a target for the development of cancer therapeutics. Peptide mimetics based upon Smac, the natural binding partner of XIAP, and specifically, dimeric peptides, have shown great promise in drug development. In the present work, the basis for enhanced dimer efficacy has been explored. Comparisons are made between the peptide binding site on the BIR3 domain of XIAP alone (residues 238-358) and a less truncated construct that includes both BIR2 and BIR3 domains (residues 151-350). This contingency differentially enhances the binding of dimeric tetrapeptides, potentially by providing additional hydrophobic binding surface. The effect of BIR2 on the BIR3 binding site is sustained, even if the BIR2 binding site is disrupted by mutagenesis, as shown by both a fluorescent competition assay and a polarity sensitive dye, badan. FRET measurements reveal an observed separation of >or=45 A between the BIR2 and BIR3 peptide binding pockets, thereby precluding a direct simultaneous interaction of the dimer molecules with both binding domains. Furthermore, variations in the linker length between dimeric tetrapeptides did not show a predictable trend in binding affinities, suggesting that local concentration effects were also an unlikely explanation for the enhanced dimeric affinities. Taken together, the results suggest that enhanced binding of dimeric peptides likely reflects the increased hydrophobic surface area on or near the BIR3 site and have significant ramifications for the design of therapeutics that target this class of proteins. PMID:17910418

  9. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae

    PubMed Central

    Jindal, Hassan Mahmood; Le, Cheng Foh; Mohd Yusof, Mohd Yasim; Velayuthan, Rukumani Devi; Lee, Vannajan Sanghiran; Zain, Sharifuddin Md; Isa, Diyana Mohd; Sekaran, Shamala Devi

    2015-01-01

    Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development. PMID:26046345

  10. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results.

    PubMed Central

    Ben-Tal, N; Honig, B; Peitzsch, R M; Denisov, G; McLaughlin, S

    1996-01-01

    We measured directly the binding of Lys3, Lys5, and Lys7 to vesicles containing acidic phospholipids. When the vesicles contain 33% acidic lipids and the aqueous solution contains 100 mM monovalent salt, the standard Gibbs free energy for the binding of these peptides is 3, 5, and 7 kcal/mol, respectively. The binding energies decrease as the mol% of acidic lipids in the membrane decreases and/or as the salt concentration increases. Several lines of evidence suggest that these hydrophilic peptides do not penetrate the polar headgroup region of the membrane and that the binding is mainly due to electrostatic interactions. To calculate the binding energies from classical electrostatics, we applied the nonlinear Poisson-Boltzmann equation to atomic models of the phospholipid bilayers and the basic peptides in aqueous solution. The electrostatic free energy of interaction, which arises from both a long-range coulombic attraction between the positively charged peptide and the negatively charged lipid bilayer, and a short-range Born or image charge repulsion, is a minimum when approximately 2.5 A (i.e., one layer of water) exists between the van der Waals surfaces of the peptide and the lipid bilayer. The calculated molar association constants, K, agree well with the measured values: K is typically about 10-fold smaller than the experimental value (i.e., a difference of about 1.5 kcal/mol in the free energy of binding). The predicted dependence of K (or the binding free energies) on the ionic strength of the solution, the mol% of acidic lipids in the membrane, and the number of basic residues in the peptide agree very well with the experimental measurements. These calculations are relevant to the membrane binding of a number of important proteins that contain clusters of basic residues. Images FIGURE 2 FIGURE 3 PMID:8842196

  11. Catalytic Activities Of [GADV]-Peptides

    NASA Astrophysics Data System (ADS)

    Oba, Takae; Fukushima, Jun; Maruyama, Masako; Iwamoto, Ryoko; Ikehara, Kenji

    2005-10-01

    We have previously postulated a novel hypothesis for the origin of life, assuming that life on the earth originated from “[GADV]-protein world”, not from the “RNA world” (see Ikehara's review, 2002). The [GADV]-protein world is constituted from peptides and proteins with random sequences of four amino acids (glycine [G], alanine [A], aspartic acid [D] and valine [V]), which accumulated by pseudo-replication of the [GADV]-proteins. To obtain evidence for the hypothesis, we produced [GADV]-peptides by repeated heat-drying of the amino acids for 30 cycles ([GADV]-P30) and examined whether the peptides have some catalytic activities or not. From the results, it was found that the [GADV]-P30 can hydrolyze several kinds of chemical bonds in molecules, such as umbelliferyl-β-D-galactoside, glycine-p-nitroanilide and bovine serum albumin. This suggests that [GADV]-P30 could play an important role in the accumulation of [GADV]-proteins through pseudo-replication, leading to the emergence of life. We further show that [GADV]-octapaptides with random sequences, but containing no cyclic compounds as diketepiperazines, have catalytic activity, hydrolyzing peptide bonds in a natural protein, bovine serum albumin. The catalytic activity of the octapeptides was much higher than the [GADV]-P30 produced through repeated heat-drying treatments. These results also support the [GADV]-protein-world hypothesis of the origin of life (see Ikehara's review, 2002). Possible steps for the emergence of life on the primitive earth are presented.

  12. Interaction of hyaluronan binding peptides with glycosaminoglycans in poly(ethylene glycol) hydrogels.

    PubMed

    Roberts, Justine J; Elder, Robert M; Neumann, Alexander J; Jayaraman, Arthi; Bryant, Stephanie J

    2014-04-14

    This study investigates the incorporation of hyaluronan (HA) binding peptides into poly(ethylene glycol) (PEG) hydrogels as a mechanism to bind and retain hyaluronan for applications in tissue engineering. The specificity of the peptide sequence (native RYPISRPRKRC vs non-native RPSRPRIRYKC), the role of basic amino acids, and specificity to hyaluronan over other GAGs in contributing to the peptide-hyaluronan interaction were probed through experiments and simulations. Hydrogels containing the native or non-native peptide retained hyaluronan in a dose-dependent manner. Ionic interactions were the dominating mechanism. In diH2O the peptides interacted strongly with HA and chondroitin sulfate, but in phosphate buffered saline the peptides interacted more strongly with HA. For cartilage tissue engineering, chondrocyte-laden PEG hydrogels containing increasing amounts of HA binding peptide and exogenous HA had increased retention and decreased loss of cell-secreted proteoglycans in and from the hydrogel at 28 days. This new matrix-interactive hydrogel platform holds promise for tissue regeneration. PMID:24597474

  13. The RXR{alpha} C-terminus T462 is a NMR sensor for coactivator peptide binding

    SciTech Connect

    Lu Jianyun Chen Minghe; DeKoster, Gregory T.; Cistola, David P.; Li, Ellen

    2008-02-22

    The C-terminal activation function-2 (AF-2) helix plays a crucial role in retinoid X receptor alpha (RXR{alpha})-mediated gene expression. Here, we report a nuclear magnetic resonance (NMR) study of the RXR{alpha} ligand-binding domain complexed with 9-cis-retinoic acid and a glucocorticoid receptor-interacting protein 1 peptide. The AF-2 helix and most of the C-terminal residues were undetectable due to a severe line-broadening effect. Due to its outstanding signal-to-noise ratio, the C-terminus residue, threonine 462 (T462) exhibited two distinct crosspeaks during peptide titration, suggesting that peptide binding was in a slow exchange regime on the chemical shift timescale. Consistently, the K{sub d} derived from T462 intensity decay agreed with that derived from isothermal titration calorimetry. Furthermore, the exchange contribution to the {sup 15}N transverse relaxation rate was measurable in either T462 or the bound peptide. These results suggest that T462 is a sensor for coactivator binding and is a potential probe for AF-2 helix mobility.

  14. Inhibition of peptide binding to DR molecules by a leupeptin-induced invariant chain fragment.

    PubMed

    Demotz, S; Danieli, C; Wallny, H J; Majdic, O

    1994-08-01

    Loading of peptides onto DR molecules was studied by characterizing precursors of the mature peptide-DR complexes expressed at the surface of B cells. Since invariant chain (Ii) prevents binding of peptides by DR molecules, it was speculated that analysis of complexes between DR heterodimers and proteolytic fragments of Ii offers the possibility to examine how DR molecules and peptides assemble. Using a procedure combining a two-step affinity chromatography and gel filtration, we isolated from leupeptin-treated B cells complexes between DR molecules and N-terminal Ii fragments previously called "leupeptin-induced polypeptides" (LIP; Blum and Cresswell, 1988, Proc. natn. Acad. Sci. U.S.A. 85, 3975-3979). It was observed that the most prominent LIP fragment has a relative molecular mass (M(r)) of 16 kDa. In addition, we show that this polypeptide species does not bear N-linked glycans, indicating that this fragment does not extend beyond residue 129 of Ii. Similarly to DR alpha beta heterodimers associated with the full length 33 and 35 kDa Ii forms, DR alpha beta heterodimers associated with LIP fragments are unstable in sodium dodecyl sulfate (SDS) at ambient temperature, whereas mature DR alpha beta heterodimers are resistant to dissociation with SDS. These results are indirect evidence that LIP-DR complexes are devoid of bound peptides. This possibility was supported by showing that LIP-DR complexes fail to bind a radioiodinated tetanus toxin peptide (125I-p2), while DR molecules, which are spontaneously released from complexes with LIP fragments, bind the labeled peptide. These results demonstrate that association with LIP fragments is sufficient to prevent binding of peptides by DR molecules. This notion was further documented by showing that binding of 125I-p2 on DR heterodimers is inhibited by preparations of LIP fragment. By contrast, a soluble recombinant fragment corresponding to the extracytoplasmic region of Ii did not block 125I-p2 binding. The results

  15. Studies on the Chitin Binding Property of Novel Cysteine-Rich Peptides from Alternanthera sessilis.

    PubMed

    Kini, Shruthi G; Nguyen, Phuong Q T; Weissbach, Sophie; Mallagaray, Alvaro; Shin, Joon; Yoon, Ho Sup; Tam, James P

    2015-11-01

    Hevein-like peptides make up a family of cysteine-rich peptides (CRPs) and play a role in plants in their defense against insects and fungal pathogens. In this study, we report the isolation and characterization of six hevein-like peptides, aSG1-G3 and aSR1-R3, collectively named altides from green and red varieties of Alternanthera sessilis, a perennial herb belonging to the Amaranthaceae family. Proteomic analysis of altides revealed they contain six cysteines (6C), seven glycines, four prolines, and a conserved chitin-binding domain (SXYGY/SXFGY). Thus far, only four 6C-hevein-like peptides have been isolated and characterized; hence, our study expands the existing library of these peptides. Nuclear magnetic resonance (NMR) study of altides showed its three disulfide bonds were arranged in a cystine knot motif. As a consequence of this disulfide arrangement, they are stable against thermal and enzymatic degradation. Gene cloning studies revealed altides contain a three-domain precursor with an endoplasmic reticulum signal peptide followed by a mature CRP domain and a short C-terminal tail. This indicates that the biosynthesis of altides is through the secretory pathway. (1)H NMR titration experiments showed that the 29-30-amino acid altides bind to chitin oligomers with dissociation constants in the micromolar range. Aromatic residues in the chitin-binding domain of altides were involved in the binding interaction. To the best of our knowledge, aSR1 is the smallest hevein-like peptide with a dissociation constant toward chitotriose comparable to those of hevein and other hevein-like peptides. Together, our study expands the existing library of 6C-hevein-like peptides and provides insights into their structure, biosynthesis, and interaction with chitin oligosaccharides. PMID:26467613

  16. Selection of staphylococcal enterotoxin B (SEB)-binding peptide using phage display technology

    SciTech Connect

    Soykut, Esra Acar; Dudak, Fahriye Ceyda; Boyaci, Ismail Hakki

    2008-05-23

    In this study, peptides were selected to recognize staphylococcal enterotoxin B (SEB) which cause food intoxication and can be used as a biological war agent. By using commercial M13 phage library, single plaque isolation of 38 phages was done and binding affinities were investigated with phage-ELISA. The specificities of the selected phage clones showing high affinity to SEB were checked by using different protein molecules which can be found in food samples. Furthermore, the affinities of three selected phage clones were determined by using surface plasmon resonance (SPR) sensors. Sequence analysis was realized for three peptides showing high binding affinity to SEB and WWRPLTPESPPA, MNLHDYHRLFWY, and QHPQINQTLYRM amino acid sequences were obtained. The peptide sequence with highest affinity to SEB was synthesized with solid phase peptide synthesis technique and thermodynamic constants of the peptide-SEB interaction were determined by using isothermal titration calorimetry (ITC) and compared with those of antibody-SEB interaction. The binding constant of the peptide was determined as 4.2 {+-} 0.7 x 10{sup 5} M{sup -1} which indicates a strong binding close to that of antibody.

  17. Computation of the binding free energy of peptides to graphene in explicit water.

    PubMed

    Welch, Corrinne M; Camden, Aerial N; Barr, Stephen A; Leuty, Gary M; Kedziora, Gary S; Berry, Rajiv J

    2015-07-28

    The characteristic properties of graphene make it useful in an assortment of applications. One particular application--the use of graphene in biosensors--requires a thorough understanding of graphene-peptide interactions. In this study, the binding of glycine (G) capped amino acid residues (termed GXG tripeptides) to trilayer graphene surfaces in aqueous solution was examined and compared to results previously obtained for peptide binding to single-layer free-standing graphene [A. N. Camden, S. A. Barr, and R. J. Berry, J. Phys. Chem. B 117, 10691-10697 (2013)]. In order to understand the interactions between the peptides and the surface, binding enthalpy and free energy values were calculated for each GXG system, where X cycled through the typical 20 amino acids. When the GXG tripeptides were bound to the surface, distinct conformations were observed, each with a different binding enthalpy. Analysis of the binding energy showed the binding of peptides to trilayer graphene was dominated by van der Waals interactions, unlike the free-standing graphene systems, where the binding was predominantly electrostatic in nature. These results demonstrate the utility of computational materials science in the mechanistic explanation of surface-biomolecule interactions which could be applied to a wide range of systems. PMID:26233167

  18. Structural studies on the forward and reverse binding modes of peptides to the chaperone DnaK.

    PubMed

    Zahn, Michael; Berthold, Nicole; Kieslich, Björn; Knappe, Daniel; Hoffmann, Ralf; Sträter, Norbert

    2013-07-24

    Hsp70 chaperones have been implicated in assisting protein folding of newly synthesized polypeptide chains, refolding of misfolded proteins, and protein trafficking. For these functions, the chaperones need to exhibit a significant promiscuity in binding to different sequences of hydrophobic peptide stretches. To characterize the structural basis of sequence specificity and flexibility of the Escherichia coli Hsp70 chaperone DnaK, we have analyzed crystal structures of the substrate binding domain of the protein in complex with artificially designed peptides as well as small proline-rich antimicrobial peptides. The latter peptides from mammals and insects were identified to target DnaK after cell penetration. Interestingly, the complex crystal structures reveal two different peptide binding modes. The peptides can bind either in a forward or in a reverse direction to the conventional substrate binding cleft of DnaK in an extended conformation. Superposition of the two binding modes shows a remarkable similarity in the side chain orientations and hydrogen bonding pattern despite the reversed peptide orientation. The DnaK chaperone has evolved to bind peptides in both orientations in the substrate binding cleft with comparable energy without rearrangements of the protein. Optimal hydrophobic interactions with binding pockets -2 to 0 appear to be the main determinant for the orientation and sequence position of peptide binding. PMID:23562829

  19. Simultaneous prediction of binding free energy and specificity for PDZ domain-peptide interactions

    PubMed Central

    Crivelli, Joseph J.; Lemmon, Gordon; Kaufmann, Kristian W.; Meiler, Jens

    2014-01-01

    Interactions between protein domains and linear peptides underlie many biological processes. Among these interactions, the recognition of C-terminal peptides by PDZ domains is one of the most ubiquitous. In this work, we present a mathematical model for PDZ domain-peptide interactions capable of predicting both affinity and specificity of binding based on x-ray crystal structures and comparative modeling with Rosetta. We developed our mathematical model using a large phage display dataset describing binding specificity for a wild type PDZ domain and 91 single mutants, as well as binding affinity data for a wild type PDZ domain binding to 28 different peptides. Structural refinement was carried out through several Rosetta protocols, the most accurate of which included flexible peptide docking and several iterations of side chain repacking and backbone minimization. Our findings emphasize the importance of backbone flexibility and the energetic contributions of side chain-side chain hydrogen bonds in accurately predicting interactions. We also determined that predicting PDZ domain-peptide interactions became increasingly challenging as the length of the peptide increased in the N-terminal direction. In the training dataset, predicted binding energies correlated with those derived through calorimetry and specificity switches introduced through single mutations at interface positions were recapitulated. In independent tests, our best performing protocol was capable of predicting dissociation constants well within one order of magnitude of the experimental values and specificity profiles at the level of accuracy of previous studies. To our knowledge, this approach represents the first integrated protocol for predicting both affinity and specificity for PDZ domain-peptide interactions. PMID:24305904

  20. Human IgE binding capacity of tryptic peptides from bovine alpha-lactalbumin.

    PubMed

    Maynard, F; Jost, R; Wal, J M

    1997-08-01

    The specific IgE binding capacity of native bovine alpha-lactalbumin (alpha-La), a globular whey protein, and tryptic peptides was investigated using 19 sera from patients with cow's milk protein allergy. The specific anti-bovine alpha-La IgE titers ranged from 0.6 to 125 IU/ml. Highly purified tryptic peptides from native and disulfide-bond-reduced alpha-La were obtained by reverse phase chromatography. By ELISA technique using immobilized native protein or peptides, 11 of the 19 sera reacted exclusively with intact protein while 8 of them also presented a specific IgE response to different tryptic peptides. Polyclonal IgE population specificity was not related to anti-bovine alpha-La IgE levels. Sequence (17G-K58) and larger peptides sharing this sequence were most strongly and frequently recognized. Competitive ELISA inhibition tests confirmed this IgE-specific response and gave also clear evidence for IgE binding to smaller peptides corresponding to sequences (6C-R10):S-S:(115L-L123) and (109A-L123). IgE binding to native alpha-La and large peptides confirmed the importance of conformational epitope(s). However, in some sera reduced and S-alkylated peptide (59I-K94) exhibited a similar or higher IgE binding capacity than the native corresponding fragment, suggesting the existence of sequential epitope(s) exposed through protein denaturation. Moreover, IgE binding sequences were also located within hydrophobic regions of alpha-La and/or within parts with high sequence homology to human alpha-La. PMID:9250594

  1. Although divergent in residues of the peptide binding site, conserved chimpanzee Patr-AL and polymorphic human HLA-A*02 have overlapping peptide-binding repertoires.

    PubMed

    Gleimer, Michael; Wahl, Angela R; Hickman, Heather D; Abi-Rached, Laurent; Norman, Paul J; Guethlein, Lisbeth A; Hammond, John A; Draghi, Monia; Adams, Erin J; Juo, Sean; Jalili, Roxana; Gharizadeh, Baback; Ronaghi, Mostafa; Garcia, K Christopher; Hildebrand, William H; Parham, Peter

    2011-02-01

    Patr-AL is an expressed, non-polymorphic MHC class I gene carried by ∼50% of chimpanzee MHC haplotypes. Comparing Patr-AL(+) and Patr-AL(-) haplotypes showed Patr-AL defines a unique 125-kb genomic block flanked by blocks containing classical Patr-A and pseudogene Patr-H. Orthologous to Patr-AL are polymorphic orangutan Popy-A and the 5' part of human pseudogene HLA-Y, carried by ∼10% of HLA haplotypes. Thus, the AL gene alternatively evolved in these closely related species to become classical, nonclassical, and nonfunctional. Although differing by 30 aa substitutions in the peptide-binding α(1) and α(2) domains, Patr-AL and HLA-A*0201 bind overlapping repertoires of peptides; the overlap being comparable with that between the A*0201 and A*0207 subtypes differing by one substitution. Patr-AL thus has the A02 supertypic peptide-binding specificity. Patr-AL and HLA-A*0201 have similar three-dimensional structures, binding peptides in similar conformation. Although comparable in size and shape, the B and F specificity pockets of Patr-AL and HLA-A*0201 differ in both their constituent residues and contacts with peptide anchors. Uniquely shared by Patr-AL, HLA-A*0201, and other members of the A02 supertype are the absence of serine at position 9 in the B pocket and the presence of tyrosine at position 116 in the F pocket. Distinguishing Patr-AL from HLA-A*02 is an unusually electropositive upper face on the α(2) helix. Stimulating PBMCs from Patr-AL(-) chimpanzees with B cells expressing Patr-AL produced potent alloreactive CD8 T cells with specificity for Patr-AL and no cross-reactivity toward other MHC class I molecules, including HLA-A*02. In contrast, PBMCs from Patr-AL(+) chimpanzees are tolerant of Patr-AL. PMID:21209280

  2. Intranasal Delivery of NEMO-Binding Domain Peptide Prevents Memory Loss in a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Rangasamy, Suresh B.; Corbett, Grant T.; Roy, Avik; Modi, Khushbu K.; Bennett, David A.; Mufson, Elliott J.; Ghosh, Sankar; Pahan, Kalipada

    2015-01-01

    Alzheimer’s disease (AD) is the most common form of dementia. Despite intense investigations, no effective therapy is available to halt its progression. We found that NF-κB was activated within the hippocampus and cortex of AD subjects and that activated forms of NF-κB negatively correlated with cognitive function monitored by Mini-Mental State Examination and global cognitive z score. Accordingly, NF-κB activation was also observed in the hippocampus of a transgenic (5XFAD) mouse model of AD. It has been shown that peptides corresponding to the NF-κB essential modifier (NEMO)-binding domain (NBD) of IκB kinase α (IKKα) or IκB kinase β (IKKβ) specifically inhibit the induction of NF-κB activation without inhibiting the basal NF-κB activity. Interestingly, after intranasal administration, wild-type NBD peptide entered into the hippocampus, reduced hippocampal activation of NF-κB, suppressed hippocampal microglial activation, lowered the burden of Aβ in the hippocampus, attenuated apoptosis of hippocampal neurons, protected plasticity-related molecules, and improved memory and learning in 5XFAD mice. Mutated NBD peptide had no such protective effect, indicating the specificity of our finding. These results suggest that selective targeting of NF-κB activation by intranasal administration of NBD peptide may be of therapeutic benefit for AD patients. PMID:26401561

  3. Intranasal Delivery of NEMO-Binding Domain Peptide Prevents Memory Loss in a Mouse Model of Alzheimer's Disease.

    PubMed

    Rangasamy, Suresh B; Corbett, Grant T; Roy, Avik; Modi, Khushbu K; Bennett, David A; Mufson, Elliott J; Ghosh, Sankar; Pahan, Kalipada

    2015-01-01

    Alzheimer's disease (AD) is the most common form of dementia. Despite intense investigations, no effective therapy is available to halt its progression. We found that NF-κB was activated within the hippocampus and cortex of AD subjects and that activated forms of NF-κB negatively correlated with cognitive function monitored by Mini-Mental State Examination and global cognitive z score. Accordingly, NF-κB activation was also observed in the hippocampus of a transgenic (5XFAD) mouse model of AD. It has been shown that peptides corresponding to the NF-κB essential modifier (NEMO)-binding domain (NBD) of IκB kinase α (IKKα) or IκB kinase β (IKKβ) specifically inhibit the induction of NF-κB activation without inhibiting the basal NF-κB activity. Interestingly, after intranasal administration, wild-type NBD peptide entered into the hippocampus, reduced hippocampal activation of NF-κB, suppressed hippocampal microglial activation, lowered the burden of Aβ in the hippocampus, attenuated apoptosis of hippocampal neurons, protected plasticity-related molecules, and improved memory and learning in 5XFAD mice. Mutated NBD peptide had no such protective effect, indicating the specificity of our finding. These results suggest that selective targeting of NF-κB activation by intranasal administration of NBD peptide may be of therapeutic benefit for AD patients. PMID:26401561

  4. Double Strain-Promoted Macrocyclization for the Rapid Selection of Cell-Active Stapled Peptides.

    PubMed

    Lau, Yu Heng; Wu, Yuteng; Rossmann, Maxim; Tan, Ban Xiong; de Andrade, Peterson; Tan, Yaw Sing; Verma, Chandra; McKenzie, Grahame J; Venkitaraman, Ashok R; Hyvönen, Marko; Spring, David R

    2015-12-14

    Peptide stapling is a method for designing macrocyclic alpha-helical inhibitors of protein-protein interactions. However, obtaining a cell-active inhibitor can require significant optimization. We report a novel stapling technique based on a double strain-promoted azide-alkyne reaction, and exploit its biocompatibility to accelerate the discovery of cell-active stapled peptides. As a proof of concept, MDM2-binding peptides were stapled in parallel, directly in cell culture medium in 96-well plates, and simultaneously evaluated in a p53 reporter assay. This in situ stapling/screening process gave an optimal candidate that showed improved proteolytic stability and nanomolar binding to MDM2 in subsequent biophysical assays. α-Helicity was confirmed by a crystal structure of the MDM2-peptide complex. This work introduces in situ stapling as a versatile biocompatible technique with many other potential high-throughput biological applications. PMID:26768531

  5. HIV-1 vaccine development: constrained peptide immunogens show improved binding to the anti-HIV-1 gp41 MAb.

    PubMed

    McGaughey, G B; Citron, M; Danzeisen, R C; Freidinger, R M; Garsky, V M; Hurni, W M; Joyce, J G; Liang, X; Miller, M; Shiver, J; Bogusky, M J

    2003-03-25

    The human immunodeficiency virus type I (HIV-1) transmembrane glycoprotein gp41 mediates viral entry through fusion of the target cellular and viral membranes. A segment of gp41 containing the sequence Glu-Leu-Asp-Lys-Trp-Ala has previously been identified as the epitope of the HIV-1 neutralizing human monoclonal antibody 2F5 (MAb 2F5). The 2F5 epitope is highly conserved among HIV-1 envelope glycoproteins. Antibodies directed at the 2F5 epitope have neutralizing effects on a broad range of laboratory-adapted HIV-1 variants and primary isolates. Recently, a crystal structure of the epitope bound to the Fab fragment of MAb 2F5 has shown that the 2F5 peptide adopts a beta-turn conformation [Pai, E. F., Klein, M. H., Chong, P., and Pedyczak, A. (2000) World Intellectual Property Organization Patent WO-00/61618]. We have designed cyclic peptides to adopt beta-turn conformations by the incorporation of a side-chain to side-chain lactam bridge between the i and i + 4 residues containing the Asp-Lys-Trp segment. Synthesis of extended, nonconstrained peptides encompassing the 2F5 epitope revealed that the 13 amino acid sequence, Glu-Leu-Leu-Glu-Leu-Asp-Lys-Trp-Ala-Ser-Leu-Trp-Asn, maximized MAb 2F5 binding. Constrained analogues of this sequence were explored to optimize 2F5 binding affinity. The solution conformations of the constrained peptides have been characterized by NMR spectroscopy and molecular modeling techniques. The results presented here demonstrate that both inclusion of the lactam constraint and extension of the 2F5 segment are necessary to elicit optimal antibody binding activity. The ability of these peptide immunogens to stimulate a high titer, peptide-specific immune response incapable of viral neutralization is discussed in regard to developing an HIV-1 vaccine designed to elicit a 2F5-like immune response. PMID:12641452

  6. Synthetic Antimicrobial Peptides Exhibit Two Different Binding Mechanisms to the Lipopolysaccharides Isolated from Pseudomonas aeruginosa and Klebsiella pneumoniae

    PubMed Central

    Chai, Hanbo; Allen, William E.; Hicks, Rickey P.

    2014-01-01

    Circular dichroism and 1H NMR were used to investigate the interactions of a series of synthetic antimicrobial peptides (AMPs) with lipopolysaccharides (LPS) isolated from Pseudomonas aeruginosa and Klebsiella pneumoniae. Previous CD studies with AMPs containing only three Tic-Oic dipeptide units do not exhibit helical characteristics upon interacting with small unilamellar vesicles (SUVs) consisting of LPS. Increasing the number of Tic-Oic dipeptide units to six resulted in five analogues with CD spectra that exhibited helical characteristics on binding to LPS SUVs. Spectroscopic and in vitro inhibitory data suggest that there are two possible helical conformations resulting from two different AMP-LPS binding mechanisms. Mechanism one involves a helical binding conformation where the AMP binds LPS very strongly and is not efficiently transported across the LPS bilayer resulting in the loss of inhibitory activity. Mechanism two involves a helical binding conformation where the AMP binds LPS very loosely and is efficiently transported across the LPS bilayer resulting in an increase in inhibitory activity. Mechanism three involves a nonhelical binding conformation where the AMP binds LPS very loosely and is efficiently transported across the LPS bilayer resulting in an increase in inhibitory activity. PMID:25610647

  7. Small Molecule Inhibited Parathyroid Hormone Mediated cAMP Response by N–Terminal Peptide Binding

    PubMed Central

    Kumar, Amit; Baumann, Monika; Balbach, Jochen

    2016-01-01

    Ligand binding to certain classes of G protein coupled receptors (GPCRs) stimulates the rapid synthesis of cAMP through G protein. Human parathyroid hormone (PTH), a member of class B GPCRs, binds to its receptor via its N–terminal domain, thereby activating the pathway to this secondary messenger inside cells. Presently, GPCRs are the target of many pharmaceuticals however, these drugs target only a small fraction of structurally known GPCRs (about 10%). Coordination complexes are gaining interest due to their wide applications in the medicinal field. In the present studies we explored the potential of a coordination complex of Zn(II) and anthracenyl–terpyridine as a modulator of the parathyroid hormone response. Preferential interactions at the N–terminal domain of the peptide hormone were manifested by suppressed cAMP generation inside the cells. These observations contribute a regulatory component to the current GPCR–cAMP paradigm, where not the receptor itself, but the activating hormone is a target. To our knowledge, this is the first report about a coordination complex modulating GPCR activity at the level of deactivating its agonist. Developing such molecules might help in the control of pathogenic PTH function such as hyperparathyroidism, where control of excess hormonal activity is essentially required. PMID:26932583

  8. Iron-chelating activity of chickpea protein hydrolysate peptides.

    PubMed

    Torres-Fuentes, Cristina; Alaiz, Manuel; Vioque, Javier

    2012-10-01

    Chickpea-chelating peptides were purified and analysed for their iron-chelating activity. These peptides were purified after affinity and gel filtration chromatography from a chickpea protein hydrolysate produced with pepsin and pancreatin. Iron-chelating activity was higher in purified peptide fractions than in the original hydrolysate. Histidine contents were positively correlated with the iron-chelating activity. Hence fractions with histidine contents above 20% showed the highest chelating activity. These results show that iron-chelating peptides are generated after chickpea protein hydrolysis with pepsin plus pancreatin. These peptides, through metal chelation, may increase iron solubility and bioavailability and improve iron absorption. PMID:25005984

  9. Potent inhibition of the classical pathway of complement by a novel C1q-binding peptide derived from the human astrovirus coat protein.

    PubMed

    Gronemus, Jenny Q; Hair, Pamela S; Crawford, Katrina B; Nyalwidhe, Julius O; Cunnion, Kenji M; Krishna, Neel K

    2010-01-01

    Previous work from our laboratories has demonstrated that purified, recombinant human astrovirus coat protein (HAstV CP) binds C1q and mannose-binding lectin (MBL) inhibiting activation of the classical and lectin pathways of complement, respectively. Analysis of the 787 amino acid CP molecule revealed that residues 79-139 share limited sequence homology with human neutrophil defensin-1 (HNP-1), a molecule previously demonstrated to bind C1q and MBL, inhibiting activation of the classical and lectin pathways of complement, respectively. A 30 amino acid peptide derived from this region of the CP molecule competitively inhibited the binding of wild-type CP to C1q. The parent peptide and various derivatives were subsequently assayed for C1q binding, inhibition of C1 and C4 activation as well as suppression of complement activation in hemolytic assays. The parent peptide and several derivatives inhibited complement activation in these functional assays to varying degrees. One peptide derivative in particular (E23A) displayed superior inhibition of complement activation in multiple assays of classical complement pathway activation. Further analysis revealed homology to a plant defensin allowing development of a proposed structural model for E23A. Based upon these findings, we hypothesize that further rationale optimization of E23A may result in a promising therapeutic inhibitor for the treatment of inflammatory and autoimmune diseases in which dysregulated activation of the classical and lectin pathways of complement contribute to pathogenesis. PMID:20728940

  10. Identification of the sAPRIL Binding Peptide and Its Growth Inhibition Effects in the Colorectal Cancer Cells

    PubMed Central

    Liu, Fang; Li, Jing; He, Mei-rong

    2015-01-01

    Background A proliferation-inducing ligand (APRIL) is a member of the tumor necrosis factor (TNF) super family. It binds to its specific receptors and is involved in multiple processes during tumorigenesis and tumor cells proliferation. High levels of APRIL expression are closely correlated to the growth, metastasis, and 5-FU drug resistance of colorectal cancer. The aim of this study was to identify a specific APRIL binding peptide (BP) able to block APRIL activity that could be used as a potential treatment for colorectal cancer. Methods A phage display library was used to identify peptides that bound selectively to soluble recombinant human APRIL (sAPRIL). The peptides with the highest binding affinity for sAPRIL were identified using ELISA. The effects of sAPRIL-BP on cell proliferation and cell cycle/apoptosis in vitro were evaluated using the CCK-8 assay and flow cytometry, respectively. An in vivo mouse model of colorectal cancer was used to determine the anti-tumor efficacy of the sAPRIL-BP. Results Three candidate peptides were characterized from eight phage clones with high binding affinity for sAPRIL. The peptide with the highest affinity was selected for further characterization. The identified sAPRIL-BP suppressed tumor cell proliferation and cell cycle progression in LOVO cells in a dose-dependent manner. In vivo in a mouse colorectal challenge model, the sAPRIL-BP reduced the growth of tumor xenografts in nude mice by inhibiting proliferation and inducing apoptosis intratumorally. Moreover, in an in vivo metastasis model, sAPRIL-BP reduced liver metastasis of colorectal cancer cells. Conclusions sAPRIL-BP significantly suppressed tumor growth in vitro and in vivo and might be a candidate for treating colorectal cancers that express high levels of APRIL. PMID:25826583

  11. Peptide displacement of ( sup 3 H)5-hydroxytryptamine binding to bovine cortical membranes

    SciTech Connect

    Takeuchi, Y.; Root-Bernstein, R.S.; Shih, J.C. )

    1990-12-01

    Chemical studies have demonstrated that peptides such as the encephalitogenic (EAE) peptide of myelin basic protein (MBP) and luteinizing hormone-releasing hormone (LHRH) can bind serotonin (5-hydroxytryptamine, 5-HT) in vitro. The present research was undertaken to determine whether such binding interferes with 5-HT binding to its 5-HT1 receptors on bovine cerebral cortical membranes. EAE peptide and LHRH displaced ({sup 3}H)5-HT with IC50s of 4.0 x 10(-4) and 1.8 x 10(-3) M respectively. MBP itself also showed apparent displacing ability with an IC50 of 6.0 x 10(-5) M, though it also caused aggregation of cortical membranes that might have interfered with normal receptor binding. These results support previous suggestions that the tryptophan peptide region of MBP may act as a 5-HT receptor in the neural system. We also tested the effects of muramyl dipeptide (N-acetyl-muramyl-L-Ala-D-isoGln, MD), a bacterial cell-wall breakdown product that acts as a slow-wave sleep promoter, binds to LHRH and EAE peptide, and competes for 5-HT binding sites on macrophages. It showed no significant displacement of 5-HT binding to cortical membranes (IC50 greater than 10(-1) M), but its D-Ala analogue did (IC50 = 1.7 x 10(-3) M). Thus, it seems likely that the 5-HT-related effects of naturally occurring muramyl peptides are physiologically limited by receptor types.

  12. Discovery and application of peptides that bind to proteins and solid state inorganic materials

    NASA Astrophysics Data System (ADS)

    Stearns, Linda A.

    A series of three projects was undertaken on the theme of peptide-based molecular recognition. In the first project, a messenger RNA (mRNA) display selection was carried out against the II-VI semiconductors zinc sulfide (ZnS), zinc selenide (ZnSe), and cadmium sulfide (CdS). Sequence analysis of 18-mer semiconductor-binding peptides (SBPs) following four rounds of selection indicated that the amino acid sequences were enriched in polar residues compared to the naive library, suggesting that hydrogen-bonding interactions are a dominant mode of interaction between the SBPs and their cognate inorganic surfaces. Select peptides were expressed as fusions of the green fluorescent protein (GFP) to visualize their recognition of semiconductor crystals. Interpretation of the results was complicated by a high fluorescence background that was observed with certain control GFP fusions. Additional experiments, including cross-specificity binding assays, are needed to characterize the peptides that were isolated in this selection. A second project described the practical application of a known inorganic-binding and nucleating peptide. Peptide A3, which was previously isolated by phage display, was chemically conjugated to a short DNA strand using the heterobifunctional linker succinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (SMCC). The resulting peptide-DNA conjugate was hybridized to ten complementary single-stranded capture probes extending outward from the surface of an origami DNA nanotube. A gold precursor solution was added to initiate nucleation and growth of gold nanoparticles at the site of the peptide. Transmission electron microscopy (TEM) was used to visualize the gold nanoparticle-decorated nanostructures. This approach holds immense promise for organizing compositionally-diverse materials at the nanoscale. In a third project, a novel non-iterative approach to mRNA display called covalent capture was demonstrated. Using human transferrin as a target

  13. Rational design of YAP WW1 domain-binding peptides to target TGFβ/BMP/Smad-YAP interaction in heterotopic ossification.

    PubMed

    Chen, Dong; Liu, Shenghe; Zhang, Wen; Sun, Luyuan

    2015-11-01

    The transforming growth factor-β/bone morphogenic protein/Smad signaling pathway has been raised as a new and promising therapeutic target of heterotopic ossification, which is mediated by recruitment of transcription coactivator Yes-associated protein (YAP) to Smad. Here, we described a successful integration of computational modeling and experimental assay to rationally design novel peptide aptamers to disrupt YAP-Smad interaction by targeting YAP WW1 domain. In the protocol, a computational genetic evolution strategy was used to improve a population of potential YAP WW1-binding peptides generated from the YAP-recognition site in Smad protein, from which several promising peptides were selected and their affinities toward YAP WW1 domain were determined using binding assay. In addition, a high-activity peptide was further optimized based on its complex structure with YAP WW1 domain to derive a number of derivative peptides with higher binding potency to the domain. We also found that a strong YAP WW1 binder should have a negatively charged N-terminus, a positively charged C-terminus and a nonpolar core to match the electrostatic distribution pattern in peptide-binding pocket of YAP WW1 domain, which may also form additional nonbonded interactions such as hydrogen bond, salt bridge and π-π stacking to confer stability and specificity for the domain-peptide recognition. PMID:26435515

  14. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2016-06-01

    Deprotonation of amino acids as occurs during transfer from stomach to intestines during food digestion was found by comparison of complex formation constants as determined electrochemically for increasing pH to increase calcium binding (i) by a factor of around 6 for the neutral amino acids, (ii) by a factor of around 4 for anions of the acidic amino acids aspartic and glutamic acid, and (iii) by a factor of around 5.5 for basic amino acids. Optimized structures of the 1:1 complexes and ΔHbinding for calcium binding as calculated by density functional theory (DFT) confirmed in all complexes a stronger calcium binding and shorter calcium-oxygen bond length in the deprotonated form. In addition, the stronger calcium binding was also accompanied by a binding site shift from carboxylate binding to chelation by α-amino group and carboxylate oxygen for leucine, aspartate, glutamate, alanine, and asparagine. For binary amino acid mixtures, the calcium-binding constant was close to the predicted geometric mean of the individual amino acid binding constants indicating separate binding of calcium to two amino acids when present together in solution. At high pH, corresponding to conditions for calcium absorption, the binding affinity increased in the order Lys < Arg < Cys < Gln < Gly ∼ Ala < Asn < His < Leu < Glu< Asp. In a series of glycine peptides, calcium-binding affinity was found to increase in the order Gly-Leu ∼ Gly-Gly < Ala-Gly < Gly-His ∼ Gly-Lys-Gly < Glu-Cys-Gly < Gly-Glu, an ordering confirmed by DFT calculations for the dipeptides and which also accounted for large synergistic effects in calcium binding for up to 6 kJ/mol when compared to the corresponding amino acid mixtures. PMID:27159329

  15. Identification of a potential hydrophobic peptide binding site in the C-terminal arm of trigger factor

    PubMed Central

    Shi, Yi; Fan, Dong-Jie; Li, Shu-Xin; Zhang, Hong-Jie; Perrett, Sarah; Zhou, Jun-Mei

    2007-01-01

    Trigger factor (TF) is the first chaperone to interact with nascent chains and facilitate their folding in bacteria. Escherichia coli TF is 432 residues in length and contains three domains with distinct structural and functional properties. The N-terminal domain of TF is important for ribosome binding, and the M-domain carries the PPIase activity. However, the function of the C-terminal domain remains unclear, and the residues or regions directly involved in substrate binding have not yet been identified. Here, a hydrophobic probe, bis-ANS, was used to characterize potential substrate-binding regions. Results showed that bis-ANS binds TF with a 1:1 stoichiometry and a Kd of 16 μM, and it can be covalently incorporated into TF by UV-light irradiation. A single bis-ANS–labeled peptide was obtained by tryptic digestion and identified by MALDI-TOF mass spectrometry as Asn391-Lys392. In silico docking analysis identified a single potential binding site for bis-ANS on the TF molecule, which is adjacent to this dipeptide and lies in the pocket formed by the C-terminal arms. The bis-ANS-labeled TF completely lost the ability to assist GAPDH or lysozyme refolding and showed increased protection toward cleavage by α-chymotrypsin, suggesting blocking of hydrophobic residues. The C-terminal truncation mutant TF389 also showed no chaperone activity and could not bind bis-ANS. These results suggest that bis-ANS binding may mimic binding of a substrate peptide and that the C-terminal region of TF plays an important role in hydrophobic binding and chaperone function. PMID:17525465

  16. Role of extracellular domain dimerization in agonist-induced activation of natriuretic peptide receptor A.

    PubMed

    Parat, Marie; McNicoll, Normand; Wilkes, Brian; Fournier, Alain; De Léan, André

    2008-02-01

    Natriuretic peptide receptor (NPR) A is composed of an extracellular domain (ECD) with a ligand binding site, a single transmembrane region, a kinase homology domain, and a guanylyl cyclase domain. The natural agonists atrial and brain natriuretic peptides (ANP, BNP) bind and activate NPRA, leading to cyclic GMP production, which is responsible for their role in cardiovascular homeostasis. Previous studies suggested that stabilization of a dimeric form of NPRA by agonist is essential for receptor activation. However, ligand specificity and sequential steps of this dimerization process have not been investigated. We used radioligand binding, fluorescence resonance energy transfer homoquenching, and molecular modeling to characterize the interaction of human NPRA-ECD with ANP, BNP, the superagonist (Arg(10),Leu(12),Ser(17),Leu(18))-rANP-(1-28), the minimized analog mini-ANP and the antagonist (Arg(6),beta-cyclohexyl-Ala(8),d-Tic(16),Arg(17),Cys(18))-rANP-(6-18)-amide (A71915). ANP binds to preformed ECD dimers and spontaneous dimerization is the rate-limiting step of the ligand binding process. All the studied peptides, including A71915 antagonist, induce a dose-dependent fluorescence homoquenching, specific to dimerization, with potencies highly correlated with their binding affinities. A71915 induced more quenching than other peptides, suggesting stabilization by the antagonist of ECD dimer in a distinct inactive conformation. In summary, these results indicate that the ligand-induced dimerization process of NPRA is different from that for cytokine receptor model. Agonists or antagonists bind to preformed dimeric ECD, leading to dimer stabilization in an active or inactive conformation, respectively. Furthermore, the highly sensitive fluorescence assay designed to assess dimerization could serve as a powerful tool for further detailing the kinetic steps involved in natriuretic peptide receptor binding and activation. PMID:17965196

  17. Retention of Conformational Entropy upon Calmodulin Binding to Target Peptides is Driven by Transient Salt Bridges

    SciTech Connect

    Smith, Dayle MA; Straatsma, TP; Squier, Thomas C.

    2012-10-03

    Calmodulin (CaM) is a highly flexible calcium-binding protein that mediates signal transduction through an ability to differentially bind to highly variable binding sequences in target proteins. To identify how binding affects CaM motions, and its relationship to conformational entropy and target peptide sequence, we have employed fully atomistic, explicit solvent molecular dynamics simulations of unbound CaM and CaM bound to five different target peptides. The calculated CaM conformational binding entropies correlate with experimentally derived conformational entropies with a correlation coefficient R2 of 0.95. Selected side-chain interactions with target peptides restrain interhelical loop motions, acting to tune the conformational entropy of the bound complex via widely distributed CaM motions. In the complex with the most conformational entropy retention (CaM in complex with the neuronal nitric oxide synthase binding sequence), Lys-148 at the C-terminus of CaM forms transient salt bridges alternating between Glu side chains in the N-domain, the central linker, and the binding target. Additional analyses of CaM structures, fluctuations, and CaM-target interactions illuminate the interplay between electrostatic, side chain, and backbone properties in the ability of CaM to recognize and discriminate against targets by tuning its conformational entropy, and suggest a need to consider conformational dynamics in optimizing binding affinities.

  18. Bioactive surface modification of metal oxides via catechol-bearing modular peptides: multivalent-binding, surface retention, and peptide bioactivity.

    PubMed

    Tang, Wen; Policastro, Gina M; Hua, Geng; Guo, Kai; Zhou, Jinjun; Wesdemiotis, Chrys; Doll, Gary L; Becker, Matthew L

    2014-11-19

    A series of multivalent dendrons containing a bioactive osteogenic growth peptide (OGP) domain and surface-binding catechol domains were obtained through solid phase synthesis, and their binding affinity to hydroxyapatite, TiO2, ZrO2, CeO2, Fe3O4 and gold was characterized using a quartz crystal microbalance with dissipation (QCM-d). Using the distinct difference in binding affinity of the bioconjugate to the metal oxides, TiO2-coated glass slides were selectively patterned with bioactive peptides. Cell culture studies demonstrated the bioavailability of the OGP and that OGP remained on the surface for at least 2 weeks under in vitro cell culture conditions. Bone sialoprotein (BSP) and osteocalcein (OCN) markers were upregulated 3-fold and 60-fold, respectively, relative to controls at 21 days. Similarly, 3-fold more calcium was deposited using the OGP tethered dendron compared to TiO2. These catechol-bearing dendrons provide a fast and efficient method to functionalize a wide range of inorganic materials with bioactive peptides and have the potential to be used in coating orthopaedic implants and fixation devices. PMID:25343707

  19. Targeted treatment of liver metastasis from gastric cancer using specific binding peptide

    PubMed Central

    Gong, Jianfeng; Tan, Gewen; Sheng, Nengquan; You, Weiqiang; Wang, Zhigang

    2016-01-01

    Gastric cancer ranks the first in China among all gastrointestinal cancers in terms of incidence, and liver metastasis is the leading cause of death for patients with advanced gastric cancer. Tumor necrosis factor (TNF) is a cytokine commonly chosen as the target for gene therapy against cancers. The specific binding peptide pd20 of gastric cancer cells with a high potential for liver metastasis was fused with human TNF to obtain the pd20-TNF gene using DNA recombinant technique. The expression of the fusion protein was induced and the protein was purified. In vitro activity test showed that the fusion protein greatly improved the membrane permeability of liver cells in nude mice with liver metastasis from gastric cancer. The tumor implantation experiment in nude mice showed that the fusion protein effectively mitigated the cancer lesions. The results provide important clues for developing the drugs for targeted treatment of liver metastasis from gastric cancer. PMID:27347305

  20. Preliminary characterization of a light-rare-earth-element-binding peptide of a natural perennial fern Dicranopteris dichotoma.

    PubMed

    Wang, Haiou; Shan, Xiao-Quan; Zhang, Shuzhen; Wen, Bei

    2003-05-01

    A light-rare-earth-element (LREE)-binding peptide was isolated from LREE hyperaccumulator Dicranopteris dichotomaleaves and characterized in terms of molecular weight and ultraviolet absorption spectrum. The molecular weight of the LREE-binding peptide was determined to be 2208 Da by matrix-assisted laser-desorption ionization-time of flight mass spectrometry (MALDI-TOFMS). The characteristic ultraviolet absorption spectrum of the peptide was observed at 220-300 nm, suggesting that the peptide chain contained aromatic amino acids. Compared to the unique features of the phytochelatins with a low absorption at 280 nm, the LREE-binding peptide is unlikely to be a typical phytochelatin. The present study suggests that the LREE-binding peptide is probably a natural peptide in D. dichotoma, and it may play an important role in hyperaccumulation of LREEs. PMID:12734617

  1. Adhesive and Migratory Effects of Phosphophoryn Are Modulated by Flanking Peptides of the Integrin Binding Motif

    PubMed Central

    Suzuki, Shigeki; Kobuke, Seiji; Haruyama, Naoto; Hoshino, Hiroaki; Kulkarni, Ashok B.; Nishimura, Fusanori

    2014-01-01

    Phosphophoryn (PP) is generated from the proteolytic cleavage of dentin sialophosphoprotein (DSPP). Gene duplications in the ancestor dentin matrix protein-1 (DMP-1) genomic sequence created the DSPP gene in toothed animals. PP and DMP-1 are phosphorylated extracellular matrix proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs). Many SIBLING members have been shown to evoke various cell responses through the integrin-binding Arg-Gly-Asp (RGD) domain; however, the RGD-dependent function of PP is not yet fully understood. We demonstrated that recombinant PP did not exhibit any obvious cell adhesion ability, whereas the simultaneously purified recombinant DMP-1 did. A cell adhesion inhibitory analysis was performed by pre-incubating human osteosarcoma MG63 cells with various PP peptides before seeding onto vitronectin. The results obtained revealed that the incorporation of more than one amino acid on both sides of the PP-RGD domain was unable to inhibit the adhesion of MG63 cells onto vitronectin. Furthermore, the inhibitory activity of a peptide containing the PP-RGD domain with an open carboxyl-terminal side (H-463SDESDTNSESANESGSRGDA482-OH) was more potent than that of a peptide containing the RGD domain with an open amino-terminal side (H-478SRGDASYTSDESSDDDNDSDSH499-OH). This phenomenon was supported by the potent cell adhesion and migration abilities of the recombinant truncated PP, which terminated with Ala482. Furthermore, various point mutations in Ala482 and/or Ser483 converted recombinant PP into cell-adhesive proteins. Therefore, we concluded that the Ala482-Ser483 flanking sequence, which was detected in primates and mice, was the key peptide bond that allowed the PP-RGD domain to be sequestered. The differential abilities of PP and DMP-1 to act on integrin imply that DSPP was duplicated from DMP-1 to serve as a crucial extracellular protein for tooth development rather than as an integrin

  2. In Silico Investigation of the Neurotensin Receptor 1 Binding Site: Overlapping Binding Modes for Small Molecule Antagonists and the Endogenous Peptide Agonist.

    PubMed

    Lückmann, Michael; Holst, Birgitte; Schwartz, Thue W; Frimurer, Thomas M

    2016-01-01

    The neurotensin receptor 1 (NTSR1) belongs to the family of 7TM, G protein-coupled receptors, and is activated by the 13-amino-acid peptide neurotensin (NTS) that has been shown to play important roles in neurological disorders and the promotion of cancer cells. Recently, a high-resolution x-ray crystal structure of NTSR1 in complex with NTS8-13 has been determined, providing novel insights into peptide ligand recognition by 7TM receptors. SR48692, a potent and selective small molecule antagonist has previously been used extensively as a tool compound to study NTSR1 receptor signaling properties. To investigate the binding mode of SR48692 and other small molecule compounds to NTSR1, we applied an Automated Ligand-guided Backbone Ensemble Receptor Optimization protocol (ALiBERO), taking receptor flexibility and ligand knowledge into account. Structurally overlapping binding poses for SR48692 and NTS8-13 were observed, despite their distinct chemical nature and inverse pharmacological profiles. The optimized models showed significantly improved ligand recognition in a large-scale virtual screening assessment compared to the crystal structure. Our models provide new insights into small molecule ligand binding to NTSR1 and could facilitate the structure-based design of non-peptide ligands for the evaluation of the pharmacological potential of NTSR1 in neurological disorders and cancer. PMID:27491650

  3. Peptide-based, irreversible inhibitors of gamma-secretase activity.

    PubMed

    Piper, Siân C; Amtul, Zareen; Galiñanes-Garcia, Laura; Howard, Victor G; Ziani-Cherif, Chewki; McLendon, Chris; Rochette, Marjorie J; Fauq, Abdul; Golde, Todd E; Murphy, M Paul

    2003-06-01

    The characterization of the enzymes responsible for amyloid beta-peptide (Abeta) production is considered to be a primary goal towards the development of future therapeutics for the treatment of Alzheimer's disease. Inhibitors of gamma-secretase activity were critical in demonstrating that the presenilins (PSs) likely comprised at least part of the active site of the gamma-secretase enzyme complex, with two highly conserved membrane aspartates presumably acting as catalytic residues. However, whether or not these aspartates are actually the catalytic residues of the enzyme complex or are merely essential for normal PS function and/or maturation is still unknown. In this paper, we report the development of reactive inhibitors of gamma-secretase activity that are functionally irreversible. Since such inhibitors have been shown to bind catalytic residues in other aspartyl proteases (e.g., HIV protease), they might be used to determine if the transmembrane aspartates of PSs are involved directly in substrate cleavage. PMID:12763025

  4. Interaction of Hyaluronan Binding Peptides with Glycosaminoglycans in Poly(ethylene glycol) Hydrogels

    PubMed Central

    2015-01-01

    This study investigates the incorporation of hyaluronan (HA) binding peptides into poly(ethylene glycol) (PEG) hydrogels as a mechanism to bind and retain hyaluronan for applications in tissue engineering. The specificity of the peptide sequence (native RYPISRPRKRC vs non-native RPSRPRIRYKC), the role of basic amino acids, and specificity to hyaluronan over other GAGs in contributing to the peptide–hyaluronan interaction were probed through experiments and simulations. Hydrogels containing the native or non-native peptide retained hyaluronan in a dose-dependent manner. Ionic interactions were the dominating mechanism. In diH2O the peptides interacted strongly with HA and chondroitin sulfate, but in phosphate buffered saline the peptides interacted more strongly with HA. For cartilage tissue engineering, chondrocyte-laden PEG hydrogels containing increasing amounts of HA binding peptide and exogenous HA had increased retention and decreased loss of cell-secreted proteoglycans in and from the hydrogel at 28 days. This new matrix-interactive hydrogel platform holds promise for tissue regeneration. PMID:24597474

  5. Dimensionality of carbon nanomaterials determines the binding and dynamics of amyloidogenic peptides: multiscale theoretical simulations.

    PubMed

    Todorova, Nevena; Makarucha, Adam J; Hine, Nicholas D M; Mostofi, Arash A; Yarovsky, Irene

    2013-01-01

    Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth. PMID:24339760

  6. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity.

    PubMed

    Cole, David K; Bulek, Anna M; Dolton, Garry; Schauenberg, Andrea J; Szomolay, Barbara; Rittase, William; Trimby, Andrew; Jothikumar, Prithiviraj; Fuller, Anna; Skowera, Ania; Rossjohn, Jamie; Zhu, Cheng; Miles, John J; Peakman, Mark; Wooldridge, Linda; Rizkallah, Pierre J; Sewell, Andrew K

    2016-06-01

    The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide-major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I-restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key-like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease. PMID:27183389

  7. Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove.

    PubMed

    McMurtrey, Curtis; Trolle, Thomas; Sansom, Tiffany; Remesh, Soumya G; Kaever, Thomas; Bardet, Wilfried; Jackson, Kenneth; McLeod, Rima; Sette, Alessandro; Nielsen, Morten; Zajonc, Dirk M; Blader, Ira J; Peters, Bjoern; Hildebrand, William

    2016-01-01

    HLA class I presentation of pathogen-derived peptide ligands is essential for CD8+ T-cell recognition of Toxoplasma gondii infected cells. Currently, little data exist pertaining to peptides that are presented after T. gondii infection. Herein we purify HLA-A*02:01 complexes from T. gondii infected cells and characterize the peptide ligands using LCMS. We identify 195 T. gondii encoded ligands originating from both secreted and cytoplasmic proteins. Surprisingly, T. gondii ligands are significantly longer than uninfected host ligands, and these longer pathogen-derived peptides maintain a canonical N-terminal binding core yet exhibit a C-terminal extension of 1-30 amino acids. Structural analysis demonstrates that binding of extended peptides opens the HLA class I F' pocket, allowing the C-terminal extension to protrude through one end of the binding groove. In summary, we demonstrate that unrealized structural flexibility makes MHC class I receptive to parasite-derived ligands that exhibit unique C-terminal peptide extensions. PMID:26824387

  8. Dimensionality of Carbon Nanomaterials Determines the Binding and Dynamics of Amyloidogenic Peptides: Multiscale Theoretical Simulations

    PubMed Central

    Hine, Nicholas D. M.; Mostofi, Arash A.; Yarovsky, Irene

    2013-01-01

    Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth. PMID:24339760

  9. Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove

    PubMed Central

    McMurtrey, Curtis; Trolle, Thomas; Sansom, Tiffany; Remesh, Soumya G; Kaever, Thomas; Bardet, Wilfried; Jackson, Kenneth; McLeod, Rima; Sette, Alessandro; Nielsen, Morten; Zajonc, Dirk M; Blader, Ira J; Peters, Bjoern; Hildebrand, William

    2016-01-01

    HLA class I presentation of pathogen-derived peptide ligands is essential for CD8+ T-cell recognition of Toxoplasma gondii infected cells. Currently, little data exist pertaining to peptides that are presented after T. gondii infection. Herein we purify HLA-A*02:01 complexes from T. gondii infected cells and characterize the peptide ligands using LCMS. We identify 195 T. gondii encoded ligands originating from both secreted and cytoplasmic proteins. Surprisingly, T. gondii ligands are significantly longer than uninfected host ligands, and these longer pathogen-derived peptides maintain a canonical N-terminal binding core yet exhibit a C-terminal extension of 1–30 amino acids. Structural analysis demonstrates that binding of extended peptides opens the HLA class I F’ pocket, allowing the C-terminal extension to protrude through one end of the binding groove. In summary, we demonstrate that unrealized structural flexibility makes MHC class I receptive to parasite-derived ligands that exhibit unique C-terminal peptide extensions. DOI: http://dx.doi.org/10.7554/eLife.12556.001 PMID:26824387

  10. Quantitative prediction of peptide binding to HLA-DP1 protein.

    PubMed

    Ivanov, Stefan; Dimitrov, Ivan; Doytchinova, Irini

    2013-01-01

    The exogenous proteins are processed by the host antigen-processing cells. Peptidic fragments of them are presented on the cell surface bound to the major hystocompatibility complex (MHC) molecules class II and recognized by the CD4+ T lymphocytes. The MHC binding is considered as the crucial prerequisite for T-cell recognition. Only peptides able to form stable complexes with the MHC proteins are recognized by the T-cells. These peptides are known as T-cell epitopes. All T-cell epitopes are MHC binders, but not all MHC binders are T-cell epitopes. The T-cell epitope prediction is one of the main priorities of immunoinformatics. In the present study, three chemometric techniques are combined to derive a model for in silico prediction of peptide binding to the human MHC class II protein HLA-DP1. The structures of a set of known peptide binders are described by amino acid z-descriptors. Data are processed by an iterative self-consisted algorithm using the method of partial least squares, and a quantitative matrix (QM) for peptide binding prediction to HLA-DP1 is derived. The QM is validated by two sets of proteins and showed an average accuracy of 86 percent. PMID:24091413

  11. Amino acid sequence of a vitamin K-dependent Ca2+-binding peptide from bovine prothrombin.

    PubMed

    Howard, J B; Fausch, M D

    1975-08-10

    The amino acid sequence of a 31-residue peptide from bovine prothrombin has been determined. This peptide has been shown to contain the vitamin K-dependent modification required for Ca2+ binding (Nelsestuen, G. L., and Suttie, J. W. (1973) Proc. Natl. Acad. Sci. U. S. A. 70, 3366-3370) and the modified amino acid, gamma-carboxyglutamic acid (Nelsestuen, G. L., Zytkovicz, T., and Howard, J. B. (1974) J. Biol. Chem. 249, 6347-6350). The peptide was shown to correspond to residues 12 to 42 of prothrombin. PMID:807581

  12. Arg13 of B-Type Natriuretic Peptide Reciprocally Modulates Binding to Guanylyl Cyclase but Not Clearance Receptors

    PubMed Central

    Dickey, Deborah M.; Barbieri, Kathryn A.; McGuirk, Christopher M.

    2010-01-01

    B-type natriuretic peptide (BNP) decreases cardiac preload and hypertrophy. As such, synthetic BNP, nesiritide, was approved for the treatment of acutely decompensated heart failure. However, two problems limit its therapeutic potential. First, ensuing hypertension decreases urine output, and second, guanylyl cyclase-A (GC-A), the primary signaling receptor for BNP, is down-regulated in heart failure. Thus, alternative or chimeric natriuretic peptides maintaining the renal but lacking the vasorelaxation properties of BNP provide an alternative approach. Here, we examined the ability of single amino acid substitutions in the conserved 17-amino acid disulfide ring structure of human BNP to activate GC-A and guanylyl cyclase-B (GC-B), which is not reduced in heart failure. We hypothesized that substitution of highly conserved residues in BNP with highly conserved residues from a GC-B-specific peptide would yield BNP variants with increased and decreased potency for human GC-B and GC-A, respectively. Substitution of Leu for Arg13 (l-bnp) yielded a 5-fold more potent activator of GC-B and 7-fold less potent activator of GC-A compared with wild type. l-bnp also bound GC-A 4.5-fold less tightly than wild type. In contrast, substitution of Met for Ser21 (M-BNP) had no effect. A peptide containing both the Leu and Met substitutions behaved similarly to l-bnp. Meanwhile, wild-type and l-bnp bound the natriuretic peptide clearance receptor with similar affinities. These data indicate that Arg13 of BNP is a critical discriminator of binding to guanylyl cyclase-linked but not clearance natriuretic peptide receptors, supporting designer natriuretic peptides as an alternative to wild-type BNP for the treatment of heart failure. PMID:20530652

  13. Structure-based optimization of GRP78-binding peptides that enhances efficacy in cancer imaging and therapy.

    PubMed

    Wang, Sheng-Hung; Lee, Andy Chi-Lung; Chen, I-Ju; Chang, Nai-Chuan; Wu, Han-Chung; Yu, Hui-Ming; Chang, Ya-Jen; Lee, Te-Wei; Yu, Jyh-Cherng; Yu, Alice L; Yu, John

    2016-07-01

    It is more challenging to design peptide drugs than small molecules through molecular docking and in silico analysis. Here, we developed a structure-based approach with various computational and analytical techniques to optimize cancer-targeting peptides for molecular imaging and therapy. We first utilized a peptide-binding protein database to identify GRP78, a specific cancer cell-surface marker, as a target protein for the lead, L-peptide. Subsequently, we used homologous modeling and molecular docking to identify a peptide-binding domain within GRP78 and optimized a series of peptides with a new protein-ligand scoring program, HotLig. Binding of these peptides to GRP78 was confirmed using an oriented immobilization technique for the Biacore system. We further examined the ability of the peptides to target cancer cells through in vitro binding studies with cell lines and clinical cancer specimens, and in vivo tumor imaging and targeted chemotherapeutic studies. MicroSPECT/CT imaging revealed significantly greater uptake of (188)Re-liposomes linked to these peptides as compared with non-targeting (188)Re-liposomes. Conjugation with these peptides also significantly increased the therapeutic efficacy of Lipo-Dox. Notably, peptide-conjugated Lipo-Dox significantly reduced stem-cell subpopulation in xenografts of breast cancer. The structure-based optimization strategy for peptides described here may be useful for developing peptide drugs for cancer imaging and therapy. PMID:27088408

  14. Binding of a C-end rule peptide to neuropilin-1 receptor: A molecular modeling approach

    PubMed Central

    Haspel, Nurit; Zanuy, David; Nussinov, Ruth; Teesalu, Tambet; Ruoslahti, Erkki; Aleman, Carlos

    2011-01-01

    Neuropilin-1 (NRP-1) is a receptor that plays an essential role in angiogenesis, vascular permeability and nervous system development. Previous studies have shown that peptides with an N-terminal Arg, especially peptides with the four residue consensus sequence R/K/XXR/K bind to NRP-1 cell surfaces. Peptides containing such consensus sequences promote binding and internalization into cells, while blocking the C-terminal Arg (or Lys) prevents the internalization. In this study we use molecular dynamics simulations to model the structural properties of the NRP-1 complex with a prototypic CendR peptide, RPAR. Our simulations show that RPAR binds NRP-1 through specific interactions of the RPAR C-terminus: three hydrogen bonds and a salt bridge anchor the ligand in the receptor pocket. The modeling results were used as the starting point for a systematic computational study of new RPAR analogs based on chemical modifications of its natural amino acids. Comparison of the structural properties of the new peptide - receptor complexes with the original organization suggest that some of the analogs can increase the binding affinity while reducing the natural sensitivity of RXXR to endogenous proteases. PMID:21247217

  15. Sequence-based prediction of protein-peptide binding sites using support vector machine.

    PubMed

    Taherzadeh, Ghazaleh; Yang, Yuedong; Zhang, Tuo; Liew, Alan Wee-Chung; Zhou, Yaoqi

    2016-05-15

    Protein-peptide interactions are essential for all cellular processes including DNA repair, replication, gene-expression, and metabolism. As most protein-peptide interactions are uncharacterized, it is cost effective to investigate them computationally as the first step. All existing approaches for predicting protein-peptide binding sites, however, are based on protein structures despite the fact that the structures for most proteins are not yet solved. This article proposes the first machine-learning method called SPRINT to make Sequence-based prediction of Protein-peptide Residue-level Interactions. SPRINT yields a robust and consistent performance for 10-fold cross validations and independent test. The most important feature is evolution-generated sequence profiles. For the test set (1056 binding and non-binding residues), it yields a Matthews' Correlation Coefficient of 0.326 with a sensitivity of 64% and a specificity of 68%. This sequence-based technique shows comparable or more accurate than structure-based methods for peptide-binding site prediction. SPRINT is available as an online server at: http://sparks-lab.org/. © 2016 Wiley Periodicals, Inc. PMID:26833816

  16. A polystyrene binding target-unrelated peptide isolated in the screening of phage display library.

    PubMed

    Bakhshinejad, Babak; Sadeghizadeh, Majid

    2016-11-01

    Phage display is a powerful methodology for the identification of peptide ligands binding to any desired target. However, the selection of target-unrelated peptides (TUPs) appears as a huge problem in the screening of phage display libraries through biopanning. The phage-displayed peptide TLHPAAD has been isolated both in our laboratory and by another reserach group on completely different screening targets prompting us to hypothesize that it may be a potential TUP. In the current study, we analyzed the binding characteristics and propagation rate of phage clone displaying TLHPAAD peptide (SW-TUP clone). The results of ELISA experiment and phage recovery assay provided strong support for the notion that SW-TUP phage binds to polystyrene with a significantly higher affinity than control phage clones. Furthermore, this polystyrene binding was demonstrated to occur in a concentration- and pH-dependent mode. Characterization of the propagation profile of phage clones within a specified time course revealed no statistically significant difference between the amplification rate of SW-TUP and control phages. Our findings lead us to the conclusion that SW-TUP phage clone with the displayed peptide TLHPAAD is not a true target binder and its selection in biopanning experiments results from its bidning affinity to the polystyrene surface of the solid phase. PMID:27555439

  17. Synthesis and Kinetic Analysis of Two Conformationally Restricted Peptide Substrates of Escherichia coli Penicillin-Binding Protein 5.

    PubMed

    Nemmara, Venkatesh V; Nicholas, Robert A; Pratt, R F

    2016-07-26

    Escherichia coli PBP5 (penicillin-binding protein 5) is a dd-carboxypeptidase involved in bacterial cell wall maturation. Beyond the C-terminal d-alanyl-d-alanine moiety, PBP5, like the essential high-molecular mass PBPs, has little specificity for other elements of peptidoglycan structure, at least as elicited in vitro by small peptidoglycan fragments. On the basis of the crystal structure of a stem pentapeptide derivative noncovalently bound to E. coli PBP6 (Protein Data Bank entry 3ITB ), closely similar in structure to PBP5, we have modeled a pentapeptide structure at the active site of PBP5. Because the two termini of the pentapeptide are directed into solution in the PBP6 crystal structure, we then modeled a 19-membered cyclic peptide analogue by cross-linking the terminal amines by succinylation. An analogous smaller, 17-membered cyclic peptide, in which the l-lysine of the original was replaced by l-diaminobutyric acid, could also be modeled into the active site. We anticipated that, just as the reactivity of stem peptide fragments of peptidoglycan with PBPs in vivo may be entropically enhanced by immobilization in the polymer, so too would that of our cyclic peptides with respect to their acyclic analogues in vitro. This paper describes the synthesis of the peptides described above that were required to examine this hypothesis and presents an analysis of their structures and reaction kinetics with PBP5. PMID:27420403

  18. The R6A-1 peptide binds to switch II of G{alpha}{sub i1} but is not a GDP-dissociation inhibitor

    SciTech Connect

    Willard, Francis S. . E-mail: fwillard@med.unc.edu; Siderovski, David P.

    2006-01-27

    Heterotrimeric G-proteins are molecular switches that convert signals from membrane receptors into changes in intracellular physiology. Recently, several peptides that bind heterotrimeric G-protein {alpha} subunits have been isolated including the novel G{alpha}{sub i1} . GDP binding peptides R6A and KB-752. The R6A peptide and its minimized derivative R6A-1 interact with G{alpha}{sub i1} . GDP. Based on spectroscopic analysis of BODIPYFL-GTP{gamma}S binding to G{alpha}{sub i1}, it has been reported that R6A-1 has guanine nucleotide dissociation inhibitor (GDI) activity against G{alpha}{sub i1} [W.W. Ja, R.W. Roberts, Biochemistry 43 (28) (2004) 9265-9275]. Using radioligand binding, we show that R6A-1 is not a GDI for G{alpha}{sub i1} subunits. Furthermore, we demonstrate that R6A-1 reduces the fluorescence quantum yield of the G{alpha}{sub i1}-BODIPYFL-GTP{gamma}S complex, thus explaining the previously reported GDI activity as a fluorescence artifact. We further show that R6A-1 has significant sequence similarity to the guanine nucleotide exchange factor peptide KB-752 that binds to switch II of G{alpha}{sub i1}. We use competitive binding analysis to show that R6A-1 also binds to switch II of G{alpha} subunits.

  19. Computational Design of the Sequence and Structure of a Protein-Binding Peptide

    PubMed Central

    Sammond, Deanne W.; Bosch, Dustin E.; Butterfoss, Glenn L.; Purbeck, Carrie; Machius, Mischa; Siderovski, David P.; Kuhlman, Brian

    2011-01-01

    The de novo design of protein-binding peptides is challenging, because it requires identifying both a sequence and a backbone conformation favorable for binding. We used a computational strategy that iterates between structure and sequence optimization to redesign the C-terminal portion of the RGS14 GoLoco motif peptide so that it adopts a new conformation when bound to Gαi1. An X-ray crystal structure of the redesigned complex closely matches the computational model, with a backbone RMSD of 1.1 Å. PMID:21388199

  20. Biopanning and characterization of peptides with Fe3O4 nanoparticles-binding capability via phage display random peptide library technique.

    PubMed

    You, Fei; Yin, Guangfu; Pu, Ximing; Li, Yucan; Hu, Yang; Huang, Zhongbin; Liao, Xiaoming; Yao, Yadong; Chen, Xianchun

    2016-05-01

    Functionalization of inorganic nanoparticles (NPs) play an important role in biomedical applications. A proper functionalization of NPs can improve biocompatibility, avoid a loss of bioactivity, and further endow NPs with unique performances. Modification with vairous specific binding biomolecules from random biological libraries has been explored. In this work, two 7-mer peptides with sequences of HYIDFRW and TVNFKLY were selected from a phage display random peptide library by using ferromagnetic NPs as targets, and were verified to display strong binding affinity to Fe3O4 NPs. Fourier transform infrared spectrometry, fluorescence microscopy, thermal analysis and X-ray photoelectron spectroscopy confirmed the presence of peptides on the surface of Fe3O4 NPs. Sequence analyses revealed that the probable binding mechanism between the peptide and Fe3O4 NPs might be driven by Pearson hard acid-hard base specific interaction and hydrogen bonds, accompanied with hydrophilic interactions and non-specific electrostatic attractions. The cell viability assay indicated a good cytocompatibility of peptide-bound Fe3O4 NPs. Furthermore, TVNFKLY peptide and an ovarian tumor cell A2780 specific binding peptide (QQTNWSL) were conjugated to afford a liner 14-mer peptide (QQTNWSLTVNFKLY). The binding and targeting studies showed that 14-mer peptide was able to retain both the strong binding ability to Fe3O4 NPs and the specific binding ability to A2780 cells. The results suggested that the Fe3O4-binding peptides would be of great potential in the functionalization of Fe3O4 NPs for the tumor-targeted drug delivery and magnetic hyperthermia. PMID:26896661

  1. Novel bioluminescent receptor-binding assays for peptide hormones: using ghrelin as a model.

    PubMed

    Liu, Yu; Shao, Xiao-Xia; Zhang, Lei; Song, Ge; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun

    2015-10-01

    Peptide hormones perform important biological functions by binding specific cell membrane receptors. For hormone-receptor interaction studies, receptor-binding assays are widely used. However, conventional receptor-binding assays rely on radioactive tracers that have drawbacks. In recent studies, we established novel non-radioactive receptor-binding assays for some recombinant protein hormones based on the ultrasensitive bioluminescence of a newly developed nanoluciferase (NanoLuc) reporter. In the present work, we extended the novel bioluminescent receptor-binding assay to peptide hormones that have small size and can be conveniently prepared by chemical synthesis. Human ghrelin, a 28-amino acid peptide hormone carrying a special O-fatty acid modification, was used as a model. To prepare a bioluminescent ghrelin tracer, a chemically synthesized ghrelin analog with a unique cysteine residue at the C-terminus was site-specifically conjugated with an engineered NanoLuc with a unique exposed cysteine residue at the C-terminus via a reversible disulfide linkage. The NanoLuc-conjugated ghrelin retained high binding affinity with the ghrelin receptor GHSR1a (K d = 1.14 ± 0.13 nM, n = 3) and was able to sensitively monitor the receptor-binding of various GHSR1a ligands. The novel bioluminescent receptor-binding assay will facilitate the interaction studies of ghrelin with its receptor. We also proposed general procedures for convenient conjugation of other peptide hormones with NanoLuc for novel bioluminescent receptor-binding assays. PMID:26002812

  2. Amyloid-β Peptide Binds to Cytochrome C Oxidase Subunit 1

    PubMed Central

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H.; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1–42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1–42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1–42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1–42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1–42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD. PMID:22927926

  3. The impact of cell-penetrating peptides on membrane bilayer structure during binding and insertion.

    PubMed

    Hirst, Daniel J; Lee, Tzong-Hsien; Kulkarni, Ketav; Wilce, Jacqueline A; Aguilar, Marie-Isabel

    2016-08-01

    We have studied the effect of penetratin and a truncated analogue on the bilayer structure using dual polarisation interferometry, to simultaneously measure changes in mass per unit area and birefringence (an optical parameter representing bilayer order) with high sensitivity during the binding and dissociation from the membrane. Specifically, we studied penetratin (RQIKIWFQNRRMKWKK), along with a shortened and biotinylated version known as R8K-biotin (RRMKWKKK(Biotin)-NH2). Overall both peptides bound only weakly to the neutral DMPC and POPC bilayers, while much higher binding was observed for the anionic DMPC/DMPG and POPC/POPG. The binding of penetratin to gel-phase DMPC/DMPG was adequately represented by a two-state model, whereas on the fluid-phase POPC/POPG it exhibited a distinctly different binding pattern, best represented by a three-state kinetic model. However, R8K-biotin did not bind well to DMPC/DMPG and showed a more transitory and superficial binding to POPC/POPG. Comparing the modelling results for both peptides binding to POPC/POPG suggests an important role for a securely bound intermediate prior to penetratin insertion and translocation. Overall these results further elucidate the mechanism of penetratin, and provide another example of the significance of the ability of DPI to measure structural changes and the use of kinetic analysis to investigate the stages of peptide-membrane interactions. PMID:27163492

  4. Transporter associated with antigen processing preselection of peptides binding to the MHC: a bioinformatic evaluation.

    PubMed

    Doytchinova, Irini; Hemsley, Shelley; Flower, Darren R

    2004-12-01

    TAP is responsible for the transit of peptides from the cytosol to the lumen of the endoplasmic reticulum. In an immunological context, this event is followed by the binding of peptides to MHC molecules before export to the cell surface and recognition by T cells. Because TAP transport precedes MHC binding, TAP preferences may make a significant contribution to epitope selection. To assess the impact of this preselection, we have developed a scoring function for TAP affinity prediction using the additive method, have used it to analyze and extend the TAP binding motif, and have evaluated how well this model acts as a preselection step in predicting MHC binding peptides. To distinguish between MHC alleles that are exclusively dependent on TAP and those exhibiting only a partial dependence on TAP, two sets of MHC binding peptides were examined: HLA-A*0201 was selected as a representative of partially TAP-dependent HLA alleles, and HLA-A*0301 represented fully TAP-dependent HLA alleles. TAP preselection has a greater impact on TAP-dependent alleles than on TAP-independent alleles. The reduction in the number of nonbinders varied from 10% (TAP-independent) to 33% (TAP-dependent), suggesting that TAP preselection is an important component in the successful in silico prediction of T cell epitopes. PMID:15557175

  5. Novel bioluminescent binding assays for interaction studies of protein/peptide hormones with their receptors.

    PubMed

    Liu, Ya-Li; Guo, Zhan-Yun

    2016-05-01

    Protein/peptide hormones are the largest group of endogenous signaling molecules and exert various biological functions by binding to specific cell membrane receptors. To study the interactions between these hormones and their receptors, quantitative ligand-receptor binding assays have been widely used for decades. However, the assays conventionally relied on the use of radioligands, which have some major drawbacks and can only be used in laboratories with a radioactive material license. We recently developed novel bioluminescent binding assays for several protein/peptide hormones using the brightest bioluminescent reporter known to date, nanoluciferase (NanoLuc). The NanoLuc reporter can be either chemically conjugated to an appropriate position, or genetically fused at one terminus, of protein/peptide hormones. Compared to conventional radioligands, these bioluminescent ligands have higher sensitivity, better safety, and longer shelf lives, and thus, represent a novel class of non-radioactive tracers for quantitative receptor binding assays. In the present review, we provide some general considerations and specific examples for setting up the bioluminescent binding assays. Such techniques can be applied to other protein/peptide hormones in future to facilitate their interaction studies with their receptors. PMID:27020777

  6. A novel hemoglobin-binding peptide reduces cell-free hemoglobin in murine hemolytic anemia.

    PubMed

    Hanson, Madelyn S; Xu, Hao; Flewelen, Timothy C; Holzhauer, Sandra L; Retherford, Dawn; Jones, Deron W; Frei, Anne C; Pritchard, Kirkwood A; Hillery, Cheryl A; Hogg, Neil; Wandersee, Nancy J

    2013-01-15

    Hemolysis can saturate the hemoglobin (Hb)/heme scavenging system, resulting in increased circulating cell-free Hb (CF-Hb) in hereditary and acquired hemolytic disease. While recent studies have suggested a central role for intravascular hemolysis and CF-Hb in the development of vascular dysfunction, this concept has stimulated considerable debate. This highlights the importance of determining the contribution of CF-Hb to vascular complications associated with hemolysis. Therefore, a novel Hb-binding peptide was synthesized and linked to a small fragment of apolipoprotein E (amino acids 141-150) to facilitate endocytic clearance. Plasma clearance of hE-Hb-b10 displayed a rapid phase t(1/2) of 16 min and slow phase t(1/2) of 10 h, trafficking primarily through the liver. Peptide hE-Hb-B10 decreased CF-Hb in mice treated with phenylhydrazine, a model of acute hemolysis. Administration of hE-Hb-B10 also attenuated CF-Hb in two models of chronic hemolysis: Berkeley sickle cell disease (SS) mice and mice with severe hereditary spherocytosis (HS). The hemolytic rate was unaltered in either chronic hemolysis model, supporting the conclusion that hE-Hb-B10 promotes CF-Hb clearance without affecting erythrocyte lysis. Interestingly, hE-Hb-B10 also decreased plasma ALT activity in SS and HS mice. Although acetylcholine-mediated facialis artery vasodilation was not improved by hE-Hb-B10 treatment, the peptide shifted vascular response in favor of NO-dependent vasodilation in SS mice. Taken together, these data demonstrate that hE-Hb-B10 decreases CF-Hb with a concomitant reduction in liver injury and changes in vascular response. Therefore, hE-Hb-B10 can be used to investigate the different roles of CF-Hb in hemolytic pathology and may have therapeutic benefit in the treatment of CF-Hb-mediated tissue damage. PMID:23125208

  7. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: Possible allosteric regulation and a conserved structural motif for the chloride-binding site

    PubMed Central

    Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(−)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(−) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(−) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis. PMID:20066666

  8. Reversibly Bound Chloride in the Atrial Natriuretic Peptide Receptor Hormone Binding Domain: Possible Allosteric Regulation and a Conserved Structural Motif for the Chloride-binding Site

    SciTech Connect

    Ogawa, H.; Qiu, Y; Philo, J; Arakawa, T; Ogata, C; Misono, K

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.

  9. Attractors in Sequence Space: Agent-Based Exploration of MHC I Binding Peptides.

    PubMed

    Jäger, Natalie; Wisniewska, Joanna M; Hiss, Jan A; Freier, Anja; Losch, Florian O; Walden, Peter; Wrede, Paul; Schneider, Gisbert

    2010-01-12

    Ant Colony Optimization (ACO) is a meta-heuristic that utilizes a computational analogue of ant trail pheromones to solve combinatorial optimization problems. The size of the ant colony and the representation of the ants' pheromone trails is unique referring to the given optimization problem. In the present study, we employed ACO to generate novel peptides that stabilize MHC I protein on the plasma membrane of a murine lymphoma cell line. A jury of feedforward neural network classifiers served as fitness function for peptide design by ACO. Bioactive murine MHC I H-2K(b) stabilizing as well as nonstabilizing octapeptides were designed, synthesized and tested. These peptides reveal residue motifs that are relevant for MHC I receptor binding. We demonstrate how the performance of the implemented ACO algorithm depends on the colony size and the size of the search space. The actual peptide design process by ACO constitutes a search path in sequence space that can be visualized as trajectories on a self-organizing map (SOM). By projecting the sequence space on a SOM we visualize the convergence of the different solutions that emerge during the optimization process in sequence space. The SOM representation reveals attractors in sequence space for MHC I binding peptides. The combination of ACO and SOM enables systematic peptide optimization. This technique allows for the rational design of various types of bioactive peptides with minimal experimental effort. Here, we demonstrate its successful application to the design of MHC-I binding and nonbinding peptides which exhibit substantial bioactivity in a cell-based assay. PMID:27463849

  10. Relationships between Membrane Binding, Affinity and Cell Internalization Efficacy of a Cell-Penetrating Peptide: Penetratin as a Case Study

    PubMed Central

    Alves, Isabel D.; Bechara, Cherine; Walrant, Astrid; Zaltsman, Yefim; Jiao, Chen-Yu; Sagan, Sandrine

    2011-01-01

    Background Penetratin is a positively charged cell-penetrating peptide (CPP) that has the ability to bind negatively charged membrane components, such as glycosaminoglycans and anionic lipids. Whether this primary interaction of penetratin with these cell surface components implies that the peptide will be further internalized is not clear. Methodology Using mass spectrometry, the amount of internalized and membrane bound penetratin remaining after washings, were quantified in three different cell lines: wild type (WT), glycosaminoglycans- (GAGneg) and sialic acid-deficient (SAneg) cells. Additionally, the affinity and kinetics of the interaction of penetratin to membrane models composed of pure lipids and membrane fragments from the referred cell lines was investigated, as well as the thermodynamics of such interactions using plasmon resonance and calorimetry. Principal Findings Penetratin internalized with the same efficacy in the three cell lines at 1 µM, but was better internalized at 10 µM in SAneg>WT>GAGneg. The heat released by the interaction of penetratin with these cells followed the ranking order of internalization efficiency. Penetratin had an affinity of 10 nM for WT cells and µM for SAneg and GAGneg cells and model membrane of phospholipids. The remaining membrane-bound penetratin after cells washings was similar in WT and GAGneg cells, which suggested that these binding sites relied on membrane phospholipids. The interaction of penetratin with carbohydrates was more superficial and reversible while it was stronger with phospholipids, likely because the peptide can intercalate between the fatty acid chains. Conclusion/Significance These results show that accumulation and high-affinity binding of penetratin at the cell-surface do not reflect the internalization efficacy of the peptide. Altogether, these data further support translocation (membrane phospholipids interaction) as being the internalization pathway used by penetratin at low

  11. Multiple biological activities for two peptides derived from the nerve growth factor precursor

    SciTech Connect

    Dicou, Eleni . E-mail: dicou@ipmc.cnrs.fr

    2006-09-01

    ProNGF can be cleaved proteolytically at dibasic residues and liberates two other peptides beside NGF, LIP1 a 29 amino acid (aa) peptide and LIP2 a 38 aa peptide. These peptides were found present in the rat intestine and shown to induce rapid phosphorylation of the Trk receptor in cell lines. The present study describes several novel biological properties for these peptides. They exert an anti-proliferative effect on the mitogenic activity of estrogen and IGF in MCF-7 cells. They protect against in vivo induction of excitotoxic lesions by the glutamatergic analogue ibotenate injected into the developing mouse brain and against in vitro NMDA-induced cell death in primary neuronal cultures. They bind to murine microglial cells and induce phosphorylation of Akt. These results suggest a role for LIP1 and LIP2 in cell survival.

  12. Three-dimensional structure of a peptide extending from one end of a class I MHC binding site.

    PubMed

    Collins, E J; Garboczi, D N; Wiley, D C

    1994-10-13

    Class I major histocompatibility complex (MHC) molecules present peptides to CD8+ T cells for immunological surveillance (reviewed in ref. 1). The structures of complexes of class I MHC molecules with octamer, nonamer and decamer peptides determined until now show a common binding mode, with both peptide termini bound in conserved pockets at the ends of the peptide binding site. Length variations were accommodated by the peptide bulging or zig-zagging in the middle. Here we describe the structure of a decamer peptide which binds with the carboxy-terminal residue positioned outside the peptide binding site. Several protein side chains have rearranged to allow the peptide to exit. The structure suggests that even longer peptides could bind. The energetic effect of the altered mode of binding has been assessed by measuring the stability of the complex to thermal denaturation. Peptides bound in this novel manner are stable at physiological temperature, raising questions about their role in T-cell recognition and their production by proteolytic processing. PMID:7935798

  13. OmpA Binding Mediates the Effect of Antimicrobial Peptide LL-37 on Acinetobacter baumannii

    PubMed Central

    Lin, Ming-Feng; Tsai, Pei-Wen; Chen, Jeng-Yi; Lin, Yun-You; Lan, Chung-Yu

    2015-01-01

    Multidrug-resistant Acinetobacter baumannii has recently emerged as an important pathogen in nosocomial infection; thus, effective antimicrobial regimens are urgently needed. Human antimicrobial peptides (AMPs) exhibit multiple functions and antimicrobial activities against bacteria and fungi and are proposed to be potential adjuvant therapeutic agents. This study examined the effect of the human cathelicidin-derived AMP LL-37 on A. baumannii and revealed the underlying mode of action. We found that LL-37 killed A. baumannii efficiently and reduced cell motility and adhesion. The bacteria-killing effect of LL-37 on A. baumannii was more efficient compared to other AMPs, including human ß–defensin 3 (hBD3) and histatin 5 (Hst5). Both flow cytometric analysis and immunofluorescence staining showed that LL-37 bound to A. baumannii cells. Moreover, far-western analysis demonstrated that LL-37 could bind to the A. baumannii OmpA (AbOmpA) protein. An ELISA assay indicated that biotin-labelled LL-37 (BA-LL37) bound to the AbOmpA74-84 peptide in a dose-dependent manner. Using BA-LL37 as a probe, the ~38 kDa OmpA signal was detected in the wild type but the ompA deletion strain did not show the protein, thereby validating the interaction. Finally, we found that the ompA deletion mutant was more sensitive to LL-37 and decreased cell adhesion by 32% compared to the wild type. However, ompA deletion mutant showed a greatly reduced adhesion defect after LL-37 treatment compared to the wild strain. Taken together, this study provides evidence that LL-37 affects A. baumannii through OmpA binding. PMID:26484669

  14. Binding of heparin by type III domains and peptides from the carboxy terminal hep-2 region of fibronectin.

    PubMed

    Ingham, K C; Brew, S A; Migliorini, M M; Busby, T F

    1993-11-23

    The major sites of heparin binding by fibronectin are located in fragments of 30 or 40 kDa that contain type III modules 12 through 14 or 15. Various proteolytic or recombinant subfragments and several synthetic peptides derived from this region have been compared with respect to their binding to fluorescein-labeled heparin in solution. Binding was monitored by the change in fluorescence anisotropy at 25 degrees C and pH 7.4 in 0.02 M Tris buffer, alone (TB) or with 0.15M NaCl (TBS). A 23-kDa fragment containing III13 and III14 but lacking III12 had Kd values of 0.3 and 1.8 microM in TB, and TBS, respectively, indistinguishable from the 30-kDa parent. Fragments containing only module III13 bound 2-3-fold weaker than the parent while those containing only III14 bound 6-50-fold weaker depending on the ionic strength. Fragments containing only III12 or III15 failed to bind at all in TBS. A cationic peptide derived from the amino terminus of III13 and containing the Arg-Arg-Ala-Arg consensus sequence, whose integrity was shown by Barkalow and Schwarzbauer [Barkalow, F. J., & Schwarzbauer, J. E. (1991) J. Biol. Chem. 266, 7812-7818] to be critical, failed to bind in TBS but bound weakly in TB. Two additional cationic peptides derived from the middle and C-terminal regions of III14 showed similar behavior. Thus while the major determinant(s) of heparin binding are located in III13, those determinants are only active when part of a properly folded structure. Furthermore, module III13 when isolated had a slightly lower affinity than fragments containing both III13 and III14.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8241146

  15. Brain natriuretic peptide binding sites in rats: In vitro autoradiographic study

    SciTech Connect

    Konrad, E.M.; Thibault, G.; Pelletier, S.; Genest, J.; Cantin, M. )

    1990-08-01

    Brain natriuretic peptide (BNP) is a recently discovered family of natriuretic peptides highly homologous to atrial natriuretic factor (ANF). Quantitative in vitro autoradiography with a computerized microdensitometer demonstrated that the distribution of BNP binding sites is similar to the known distribution pattern of ANF binding sites in rat tissues. Analysis of saturation and competition curves disclosed that the maximal binding capacity for BNP-(Asp-81--Tyr-106) and ANF-(Ser-99--Tyr-126) is similar within the plexiform layer of the olfactory bulb, the choroid plexus, and the adrenal zona glomerulosa. Examination of the competition curves of BNP-(Asp-81--Tyr-106), ANF-(Ser-99--Tyr-126), and des-(Gln-116--Gly-120)ANF-(Asp-102--Cys-121)NH2 (C-ANF, a ligand highly specific for ANF-R2 receptors) for {sup 125}I-labeled BNP-(Asp-81--Tyr-106) and {sup 125}I-labeled ANF-(Ser-99--Tyr-126) binding revealed that ANF fully displaced {sup 125}I-BNP binding and, conversely, BNP completely displaced {sup 125}I-ANF binding in these tissues, whereas C-ANF partially displaced 125-BNP and 125-ANF binding. Angiotensin II, insulin, glucagon, and substance P had no influence on {sup 125}I-BNP binding in the above tissues. These results support the view that BNP and ANF share the same binding sites in rats.

  16. Receptors for vasoactive intestinal peptide in rat anterior pituitary glands: Localization of binding to lactotropes

    SciTech Connect

    Wanke, I.E.; Rorstad, O.P. )

    1990-04-01

    Vasoactive intestinal peptide (VIP) has been implicated as a physiological PRL-releasing factor; however, characterization of VIP receptors on normal pituitaries using radioligand-binding methods has been problematic. In this study we demonstrated specific receptors for VIP in anterior pituitary glands of female rats using HPLC-purified monoiodinated (Tyr(125I)10)VIP. Binding of VIP was reversible, saturable to receptor and radioligand, regulated by guanine nucleotides, and dependent on time and temperature. Scatchard analysis of competitive binding studies indicated high and low affinity binding sites, with equilibrium dissociation constants (Kd) of 0.19 +/- 0.03 and 28 +/- 16 nM, respectively. The corresponding maximum numbers of binding sites were 158 +/- 34 fmol/mg and 11.7 +/- 6.9 pmol/mg. Binding was specific, as peptides with structural homology to VIP were less than 100th as potent as VIP. The rank order of potency of the peptides tested was VIP greater than rat (r) peptide histidine isoleucine = human (h) PHI greater than rGRF greater than bovine GRF = porcine PHI = VIP-(10-28) greater than hGRF greater than secretin greater than apamin greater than glucagon. Radioligand binding was associated primarily with lactotrope-enriched fractions prepared by unit gravity sedimentation of dispersed anterior pituitary cells. VIP stimulated PRL release from cultured rat anterior pituitary cells, with an ED50 of 1 nM. These results, comprising the first identification of specific VIP receptors in normal rat anterior pituitary tissue using radioligand-binding methods, provide additional support for a biological role of VIP in lactotrope function.

  17. Biologically active insulin-derived peptides.

    PubMed

    Fawcett, Janet

    2014-06-01

    Insulin has many actions within cells many of which are dependent on the cell type. For example, insulin stimulates glucose uptake in adipose tissue and skeletal muscle but not in liver. In liver glucose influx will increase as insulin stimulates the phosphorylation of glucose and eventual storage in the form of glycogen. Insulin also increases glucose oxidation, decreases glucose production, decreases lipolysis, increases protein synthesis and inhibits protein degradation in addition to others. Many actions have been related to insulin binding to its receptor and subsequent phosphorylation cascades, but insulin action on protein degradation has been shown to be linked to insulin degradation, specifically insulin degradation by the insulin-degrading enzyme (IDE). This activity has been shown to be due to an interaction of IDE with the proteasome, which is responsible for degradation of ubiquitin-tagged proteins. Smaller fragments of insulin that are produced by the action of IDE that do not bind to the insulin receptor show a small effect on protein degradation and a modest effect on mitogenesis. These small fragments do however inhibit lipolysis in a similar manner to insulin. If fragments are larger and can bind to the receptor they have been shown to increase glucose oxidation. Studies show that fragments of the insulin molecule have cellular activity, and that the varied actions of insulin are not completely controlled by insulin binding to the insulin receptor, even though the mechanisms may not be mutually exclusive. PMID:24559166

  18. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity

    PubMed Central

    Cole, David K.; Bulek, Anna M.; Dolton, Garry; Schauenberg, Andrea J.; Szomolay, Barbara; Trimby, Andrew; Jothikumar, Prithiviraj; Fuller, Anna; Skowera, Ania; Rossjohn, Jamie; Zhu, Cheng; Miles, John J.; Wooldridge, Linda; Rizkallah, Pierre J.; Sewell, Andrew K.

    2016-01-01

    The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease. PMID:27183389

  19. Self-assembling Peptide Nanotubes with Antiviral Activity Against Hepatitis C Virus

    PubMed Central

    Montero, Ana; Gastaminza, Pablo; Law, Mansun; Cheng, Guofeng; Chisari, Francis V.; Ghadiri, M. Reza

    2011-01-01

    SUMMARY Hepatitis C virus (HCV) infects chronically 3% of the world population and the current therapy against this pathogen is only partially effective. With the aim of developing novel antiviral strategies against HCV, we screened a d,l-α-peptide library using an unbiased methodology based on a cell culture infection system for HCV. We found a family of highly active amphiphilic eight-residue cyclic d,l-α-peptides that specifically blocked entry of all tested HCV genotypes into target cells at a post-binding step without affecting infection by other enveloped RNA viruses. Structure-activity relationship (SAR) studies indicate that antiviral activity was dependent on cyclic d,l-α-peptide self-assembly processes and that, although they possesses a net neutral charge, they display a characteristic charge distribution. Our results indicate that supramolecular amphiphilic peptide structures constitute a novel class of highly selective HCV entry inhibitors. PMID:22118679

  20. Antimicrobial and Immunomodulatory Activities of PR-39 Derived Peptides

    PubMed Central

    Veldhuizen, Edwin J. A.; Schneider, Viktoria A. F.; Agustiandari, Herfita; van Dijk, Albert; Tjeerdsma-van Bokhoven, Johanna L. M.; Bikker, Floris J.; Haagsman, Henk P.

    2014-01-01

    The porcine cathelicidin PR-39 is a host defence peptide that plays a pivotal role in the innate immune defence of the pig against infections. Besides direct antimicrobial activity, it is involved in immunomodulation, wound healing and several other biological processes. In this study, the antimicrobial- and immunomodulatory activity of PR-39, and N- and C-terminal derivatives of PR-39 were tested. PR-39 exhibited an unexpected broad antimicrobial spectrum including several Gram positive strains such as Bacillus globigii and Enterococcus faecalis. Of organisms tested, only Staphylococcus aureus was insensitive to PR-39. Truncation of PR-39 down to 15 (N-terminal) amino acids did not lead to major loss of activity, while peptides corresponding to the C-terminal part of PR-39 were hampered in their antimicrobial activity. However, shorter peptides were all much more sensitive to inhibition by salt. Active peptides induced ATP leakage and loss of membrane potential in Bacillus globigii and Escherichia coli, indicating a lytic mechanism of action for these peptides. Finally, only the mature peptide was able to induce IL-8 production in porcine macrophages, but some shorter peptides also had an effect on TNF-α production showing differential regulation of cytokine induction by PR-39 derived peptides. None of the active peptides showed high cytotoxicity highlighting the potential of these peptides for use as an alternative to antibiotics. PMID:24755622

  1. Binding sites of atrial natriuretic peptide in tree shrew adrenal gland

    SciTech Connect

    Fuchs, E.; Shigematsu, K.; Saavedra, J.M.

    1986-09-01

    Adrenal gland binding sites for atrial natriuretic peptide-(99-126) (ANP) were quantitated in tree shrew (Tupaia belangeri) by incubation of adrenal sections with (3-(/sup 125/I)-iodotyrosyl28) atrial natriuretic peptide-(99-126), followed by autoradiography with computerized microdensitometry. In the adrenal glands, there are three types of ANP binding sites. One is located in the zona glomerulosa (BMax 84 +/- 6 fmol/mg protein; Kd 122 +/- 9 pM); the second in the zona fasciculata and reticularis (BMax 29 +/- 2 fmol/mg protein; Kd 153 +/- 6 pM) and the third in the adrenal medulla (BMax 179 +/- 1 fmol/mg protein; Kd 70 +/- 2 pM). Besides the influence of ANP on the regulation of adrenocortical mineralcorticoid and glucocorticoid secretion our findings raise the possibility for a local site of action of atrial natriuretic peptide in the regulation of adrenomedullary catecholamines in the tree shrew, primates and man.

  2. Design of a G[center dot]C-specific DNA minor groove-binding peptide

    SciTech Connect

    Geierstanger, B.H.; Wemmer, D.E. ); Mrksich, M.; Dervan, P.B. )

    1994-10-28

    A four-ring tripeptide containing alternating imidazole and pyrrole carboxamides specifically binds six-base pair 5[prime]-(A,T)GCGC(A,T)-3[prime] sites in the minor groove of DNA. The designed peptide has a specificity completely reversed from that of the tripyrrole distamycin, which binds A,T sequences. Structural studies with nuclear magnetic resonance revealed that two peptides bound side-by-side and in an antiparallel orientation in the minor groove. Each of the four imidazoles in the 2:1 ligand-DNA complex recognized a specific guanine amino group in the GCGC core through a hydrogen bond. Targeting a designated four-base pair G[center dot]C tract by this synthetic ligand supports the generality of the 2:1 peptide-DNA motif for sequence-specific minor groove recognition of DNA. 24 refs., 4 figs., 1 tab.

  3. The specificity of protection against cationic antimicrobial peptides by lactoferrin binding protein B.

    PubMed

    Morgenthau, Ari; Partha, Sarathy K; Adamiak, Paul; Schryvers, Anthony B

    2014-10-01

    A variety of Gram-negative pathogens possess host-specific lactoferrin (Lf) receptors that mediate the acquisition of iron from host Lf. The integral membrane protein component of the receptor, lactoferrin binding protein A specifically binds host Lf and is required for acquisition of iron from Lf. In contrast, the role of the bi-lobed surface lipoprotein, lactoferrin binding protein B (LbpB), in Lf binding and iron acquisition is uncertain. A common feature of LbpBs from most species is the presence of clusters of negatively charged amino acids in the protein's C-terminal lobe. Recently it has been shown that the negatively charged regions from the Neisseria meningitidis LbpB are responsible for protecting against an 11 amino acid cationic antimicrobial peptide (CAP), lactoferricin (Lfcin), derived from human Lf. In this study we investigated whether the LbpB confers resistance to other CAPs since N. meningitidis is likely to encounter other CAPs from the host. LbpB provided protection against the cathelicidin derived peptide, cathelicidin related antimicrobial peptide (mCRAMP), but did not confer protection against Tritrp 1 or LL37 under our experimental conditions. When tested against a range of rationally designed synthetic peptides, LbpB was shown to protect against IDR-1002 and IDR-0018 but not against HH-2 or HHC10. PMID:25038734

  4. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding.

    PubMed

    Memczak, Henry; Lauster, Daniel; Kar, Parimal; Di Lella, Santiago; Volkmer, Rudolf; Knecht, Volker; Herrmann, Andreas; Ehrentreich-Förster, Eva; Bier, Frank F; Stöcklein, Walter F M

    2016-01-01

    Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing. PMID:27415624

  5. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding

    PubMed Central

    Kar, Parimal; Di Lella, Santiago; Volkmer, Rudolf; Knecht, Volker; Herrmann, Andreas; Ehrentreich-Förster, Eva; Bier, Frank F.; Stöcklein, Walter F. M.

    2016-01-01

    Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing. PMID:27415624

  6. PEPTIDE BINDING AS A MODE OF ACTION FOR THE CARCINOGENICITY AND TOXICITY OF ARSENIC

    EPA Science Inventory

    Arsenic exposure leads to tumors in human skin, lung, urinary bladder, kidney and liver. Three likely initial stages of arsenical-macromolecular interaction are (1) binding of trivalent arsenicals to the sulfhydryl groups of peptides and proteins, (2) arsenical-induced generation...

  7. Creating Prebiotic Sanctuary: Self-Assembling Supramolecular Peptide Structures Bind and Stabilize RNA

    NASA Astrophysics Data System (ADS)

    Carny, Ohad; Gazit, Ehud

    2011-04-01

    Any attempt to uncover the origins of life must tackle the known `blind watchmaker problem'. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.

  8. Comparison of the peptide binding preferences of three closely related TRAF paralogs: TRAF2, TRAF3, and TRAF5.

    PubMed

    Foight, Glenna Wink; Keating, Amy E

    2016-07-01

    Tumor necrosis factor receptor-associated factors (TRAFs) constitute a family of adapter proteins that act in numerous signaling pathways important in human biology and disease. The MATH domain of TRAF proteins binds peptides found in the cytoplasmic domains of signaling receptors, thereby connecting extracellular signals to downstream effectors. Beyond several very general motifs, the peptide binding preferences of TRAFs have not been extensively characterized, and differences between the binding preferences of TRAF paralogs are poorly understood. Here we report a screening system that we established to explore TRAF peptide-binding specificity using deep mutational scanning of TRAF-peptide ligands. We displayed single- and double-mutant peptide libraries based on the TRAF-binding sites of CD40 or TANK on the surface of Escherichia coli and screened them for binding to TRAF2, TRAF3, and TRAF5. Enrichment analysis of the library sequencing results showed differences in the permitted substitution patterns in the TANK versus CD40 backgrounds. The three TRAF proteins also demonstrated different preferences for binding to members of the CD40 library, and three peptides from that library that were analyzed individually showed striking differences in affinity for the three TRAFs. These results illustrate a previously unappreciated level of binding specificity between these close paralogs and demonstrate that established motifs are overly simplistic. The results from this work begin to outline differences between TRAF family members, and the experimental approach established herein will enable future efforts to investigate and redesign TRAF peptide-binding specificity. PMID:26779844

  9. Cross-linking of atrial natriuretic peptide to binding sites in rat olfactory bulb membranes

    SciTech Connect

    Wildey, G.M.; Glembotski, C.C.

    1986-12-01

    Binding sites for /sup 125/I-atrial natriuretic peptide (ANP)2 in rat olfactory bulb membranes have been studied using pharmacological and biochemical methods. Various unlabeled ANP-related peptides were tested for the ability to inhibit the binding of the radioligand in membrane binding assays. ANP(92-126) and ANP(99-126) were the most potent inhibitors tested, both exhibiting an IC50 value of 0.40 nM. ANP(103-126) and ANP(103-123) were 3 and 70 times less potent, respectively. ANP(111-126) was unable to inhibit the binding of the radioligand at a concentration of 1 microM. Several peptides unrelated to ANP were unable to inhibit the binding of the radioligand to rat olfactory bulb membranes. Membranes labeled with /sup 125/I-ANP were incubated with cross-linking agents and subjected to SDS-PAGE followed by autoradiography. A band possessing an apparent molecular mass of 116 kDa was identified. The labeling of this band was progressively decreased by increasing concentrations of unlabeled ANP(99-126) (IC50 = 0.6 nM) and by several other ANP-related peptides at nanomolar concentrations. For comparison purposes, ANP binding sites in rat aorta membranes were labeled with /sup 125/I-ANP and cross-linked using identical techniques. Three bands possessing molecular masses of 120, 72, and 62 kDa were identified. These results indicate that the ANP binding site in rat olfactory bulb membranes displays pharmacological and biochemical properties similar to peripheral ANP receptors.

  10. Analysis of Peptides and Proteins in Their Binding to GroEL

    PubMed Central

    Li, Yali; Zheng, Zhida; Ramsey, Andrew; Chen, Lingling

    2010-01-01

    The GroEL-GroES is an essential molecular chaperon system that assists protein folding in cell. Binding of various substrate proteins to GroEL is one of the key aspects in GroEL-assisted protein folding. Small peptides may mimic segments of the substrate proteins in contact with GroEL, and allow detailed structural analysis of the interactions. A model peptide SBP has been shown to bind to a region in GroEL that is important for binding of substrate proteins. Here, we investigated whether the observed GroEL-SBP interaction represented those of GroEL-substrate proteins, and whether SBP was able to mimic various aspects of substrate proteins in GroE-assisted protein folding cycle. We found that SBP competed with substrate proteins, including α-lactalbumin, rhodanese, and malate dehydrogenase, in binding to GroEL. SBP stimulated GroEL ATP hydrolysis rate in a manner similar to that of α-lactalbumin. SBP did not prevent GroES from binding to GroEL, and GroES association reduced the ATPase rates of GroEL/SBP and GroEL/α-lactalbumin to a comparable extent. Binding of both SBP and α-lactalbumin to apo GroEL was dominated by hydrophobic interaction. Interestingly, association of α-lactalbumin to GroEL/GroES was thermodynamically distinct from that to GroEL with reduced affinity and decreased contribution from hydrophobic interaction. However, SBP did not display such differential binding behaviors to apo GroEL and GroEL/GroES, likely due to the lack of a contiguous polypeptide chain that links all of the bound peptide fragments. Nevertheless, studies using peptides provide valuable information on the nature of GroEL-substrate protein interaction, which is central to understand the mechanism of GroEL-assisted protein folding. PMID:20814869

  11. Dissection of Binding between a Phosphorylated Tyrosine Hydroxylase Peptide and 14-3-3ζ: A Complex Story Elucidated by NMR

    PubMed Central

    Hritz, Jozef; Byeon, In-Ja L.; Krzysiak, Troy; Martinez, Aurora; Sklenar, Vladimir; Gronenborn, Angela M.

    2014-01-01

    Human tyrosine hydroxylase activity is regulated by phosphorylation of its N-terminus and by an interaction with the modulator 14-3-3 proteins. We investigated the binding of singly or doubly phosphorylated and thiophosphorylated peptides, comprising the first 50 amino acids of human tyrosine hydroxylase, isoform 1 (hTH1), that contain the critical interaction domain, to 14-3-3ζ, by 31P NMR. Single phosphorylation at S19 generates a high affinity 14-3-3ζ binding epitope, whereas singly S40-phosphorylated peptide interacts with 14-3-3ζ one order-of-magnitude weaker than the S19-phosphorylated peptide. Analysis of the binding data revealed that the 14-3-3ζ dimer and the S19- and S40-doubly phosphorylated peptide interact in multiple ways, with three major complexes formed: 1), a single peptide bound to a 14-3-3ζ dimer via the S19 phosphate with the S40 phosphate occupying the other binding site; 2), a single peptide bound to a 14-3-3ζ dimer via the S19 phosphorous with the S40 free in solution; or 3), a 14-3-3ζ dimer with two peptides bound via the S19 phosphorous to each binding site. Our system and data provide information as to the possible mechanisms by which 14-3-3 can engage binding partners that possess two phosphorylation sites on flexible tails. Whether these will be realized in any particular interacting pair will naturally depend on the details of each system. PMID:25418103

  12. MODELING OF THE ENDOSOMOLYTIC ACTIVITY OF HA2-TAT PEPTIDES WITH RED BLOOD CELLS AND GHOSTS†

    PubMed Central

    Lee, Ya-Jung; Johnson, Gregory; Pellois, Jean-Philippe

    2011-01-01

    HA2-TAT is a peptide-based delivery agent that combines the pH-sensitive HA2 fusion peptide from Influenza and the cell-penetrating peptide TAT from HIV. This chimeric peptide is engineered to induce the cellular uptake of macromolecules into endosomes via the TAT moiety and to respond to the acidifying lumen of endosomes to cause membrane leakage and release of macromolecules into cells via the HA2 moiety. The question of how HA2 and TAT affect the properties of one another remains, however, unanswered and the behavior of the peptide inside endosomes is mostly uncharacterized. To address these issues, the binding and membrane leakage activity of a glutamic acid-enriched analogue E5-TAT was assessed with red blood cells and giant unilamellar vesicles as membrane models for endosomes. Hemolysis and microscopy assays reveal that E5-TAT binds to membranes in a pH-dependent manner and causes membrane leakage by inducing the formation of pores through which macromolecules can escape. The TAT moiety contributes to this activity by causing a shift in the pH response of E5 and by binding to negatively charged phospholipids. On the other hand, TAT binding to glycosaminoglycans reduces the lytic activity of E5-TAT. Addition of TAT to the C-terminus of E5 can therefore either increase or inhibit the activity of E5 depending on the cellular components present at the membrane. Taken together, these results suggest a model for the endosomolytic activity of the peptide and provide the basis for the molecular design of future delivery agents. PMID:20704453

  13. Caspase-3 binds diverse P4 residues in peptides as revealed by crystallography and structural modeling.

    SciTech Connect

    Fang, Bin; Fu, Guoxing; Agniswamy, Johnson; Harrison, Robert W.; Weber, Irene T.

    2009-03-31

    Caspase-3 recognition of various P4 residues in its numerous protein substrates was investigated by crystallography, kinetics, and calculations on model complexes. Asp is the most frequent P4 residue in peptide substrates, although a wide variety of P4 residues are found in the cellular proteins cleaved by caspase-3. The binding of peptidic inhibitors with hydrophobic P4 residues, or no P4 residue, is illustrated by crystal structures of caspase-3 complexes with Ac-IEPD-Cho, Ac-WEHD-Cho, Ac-YVAD-Cho, and Boc-D(OMe)-Fmk at resolutions of 1.9-2.6 {angstrom}. The P4 residues formed favorable hydrophobic interactions in two separate hydrophobic regions of the binding site. The side chains of P4 Ile and Tyr form hydrophobic interactions with caspase-3 residues Trp206 and Trp214 within a non-polar pocket of the S4 subsite, while P4 Trp interacts with Phe250 and Phe252 that can also form the S5 subsite. These interactions of hydrophobic P4 residues are distinct from those for polar P4 Asp, which indicates the adaptability of caspase-3 for binding diverse P4 residues. The predicted trends in peptide binding from molecular models had high correlation with experimental values for peptide inhibitors. Analysis of structural models for the binding of 20 different amino acids at P4 in the aldehyde peptide Ac-XEVD-Cho suggested that the majority of hydrophilic P4 residues interact with Phe250, while hydrophobic residues interact with Trp206, Phe250, and Trp214. Overall, the S4 pocket of caspase-3 exhibits flexible adaptation for different residues and the new structures and models, especially for hydrophobic P4 residues, will be helpful for the design of caspase-3 based drugs.

  14. Arthritogenic peptide binding to DRB1*01 alleles correlates with susceptibility to rheumatoid arthritis.

    PubMed

    Roark, Christina L; Anderson, Kirsten M; Aubrey, Michael T; Rosloniec, Edward F; Freed, Brian M

    2016-08-01

    Genetic susceptibility to rheumatoid arthritis (RA) is often defined by the presence of a shared epitope (QKRAA, QRRAA, or RRRAA) at positions 70-74 in HLA-DRβ1. However, DRβ1*01:01 and 01:02 contain the same QRRAA epitope, but differ considerably in their susceptibility to RA. The purpose of this study was to determine if this difference could be explained by their ability to bind three arthritogenic peptides that we have previously shown to bind to the archetypal RA-susceptible allele, DRβ1*04:01, but not to the resistant DRβ1*08:01 allele. Binding of type II collagen(258-272), citrullinated and native vimentin(66-78), and citrullinated and native α-enolase(11-25) were measured on cell lines expressing either DRβ1*01:01, *01:02 or *01:03 in association with DRα1*01:01. DRβ1*01:01 and *01:02 both exhibited a 6.5-fold preference for citrullinated vimentin(66-78) compared to native vimentin. However, DRβ1*01:01 also exhibited a 1.7-fold preference for citrullinated α-enolase(11-25) and bound collagen(258-272), while DRβ1*01:02 bound neither of these peptides. Consistent with its known resistance to RA, DRβ1*01:03 preferentially bound native vimentin(66-78) and α-enolase(11-25) over the citrullinated forms of these peptides, and also failed to bind collagen(258-272). Site-directed mutagenesis was performed to determine which amino acid residues were responsible for the differences between these alleles. Mutating position 86 in DRβ1*01:01 from glycine to the valine residue found in DRβ1*01:02 eliminated binding of both citrullinated α-enolase(11-25) and collagen(258-272), thereby recapitulating the peptide-binding profile of DRβ1*01:02. The difference in susceptibility to rheumatoid arthritis between DRβ1*01:01 and *01:02 thus correlates with the effect of position 86 on the binding of these arthritogenic peptides. Consistent with their association with RA resistance, positions I67, D70 and E71 all contributed to the inability of DRβ1*01:03 to bind

  15. Fluorine substitutions in an antigenic peptide selectively modulate T-cell receptor binding in a minimally perturbing manner

    SciTech Connect

    Piepenbrink, Kurt H.; Borbulevych, Oleg Y.; Sommese, Ruth F.; Clemens, John; Armstrong, Kathryn M.; Desmond, Clare; Do, Priscilla; Baker, Brian M.

    2010-08-17

    TCR (T-cell receptor) recognition of antigenic peptides bound and presented by MHC (major histocompatibility complex) molecules forms the basis of the cellular immune response to pathogens and cancer. TCRs bind peptide - MHC complexes weakly and with fast kinetics, features which have hindered detailed biophysical studies of these interactions. Modified peptides resulting in enhanced TCR binding could help overcome these challenges. Furthermore, there is considerable interest in using modified peptides with enhanced TCR binding as the basis for clinical vaccines. In the present study, we examined how fluorine substitutions in an antigenic peptide can selectively impact TCR recognition. Using a structure-guided design approach, we found that fluorination of the Tax peptide [HTLV (human T-cell lymphotropic virus)-1 Tax] enhanced binding by the Tax-specific TCR A6, yet weakened binding by the Tax-specific TCR B7. The changes in affinity were consistent with crystallographic structures and fluorine chemistry, and with the A6 TCR independent of other substitutions in the interface. Peptide fluorination thus provides a means to selectively modulate TCR binding affinity without significantly perturbing peptide composition or structure. Lastly, we probed the mechanism of fluorine's effect on TCR binding and we conclude that our results were most consistent with a 'polar hydrophobicity' mechanism, rather than a purely hydrophobic- or electrostatic-based mechanism. This finding should have an impact on other attempts to alter molecular recognition with fluorine.

  16. Chemical activity of simple basic peptides

    NASA Astrophysics Data System (ADS)

    Brack, André; Barbier, Bernard

    1990-03-01

    Alternating all-L poly(leucyl-lysyl) increases markedly the rate of hydrolysis of oligoribonucleotides. Pure D poly (leucyl-lysyl) is as active as the all-L polymer. The homochiral polypeptides adopt aβ-sheet structure when complexed to the oligonucleotides. Alternating poly(D,L-Leu-D,L-Lys) made of racemic amino acids is much less efficient and is unable to adopt aβ-sheet structure. A set of alternating poly (leucyl-lysyl) ranging from the racemic to the homochiral all-L polymer has been checked. Their conformations can be described as a mixture of random coil andβ-sheet conformations, the amount ofβ-sheet increasing with the optical purity of the polymer. The hydrolytic activity follows the proportion ofβ-sheets, suggesting that the chemical activity is related to the geometry of the chain. Short peptides were prepared in order to evaluate the critical chain length required for the hydrolytic activity. A decapeptide is long enough to present 90% of the activity of the corresponding polypeptide.

  17. Strong Electrostatic Interactions Lead to Entropically Favorable Binding of Peptides to Charged Surfaces.

    PubMed

    Sprenger, K G; Pfaendtner, Jim

    2016-06-01

    Thermodynamic analyses can provide key insights into the origins of protein self-assembly on surfaces, protein function, and protein stability. However, obtaining quantitative measurements of thermodynamic observables from unbiased classical simulations of peptide or protein adsorption is challenging because of sampling limitations brought on by strong biomolecule/surface binding forces as well as time scale limitations. We used the parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) enhanced sampling method to study the adsorption behavior and thermodynamics of several explicitly solvated model peptide adsorption systems, providing new molecular-level insight into the biomolecule adsorption process. Specifically studied were peptides LKα14 and LKβ15 and trpcage miniprotein adsorbing onto a charged, hydrophilic self-assembled monolayer surface functionalized with a carboxylic acid/carboxylate headgroup and a neutral, hydrophobic methyl-terminated self-assembled monolayer surface. Binding free energies were calculated as a function of temperature for each system and decomposed into their respective energetic and entropic contributions. We investigated how specific interfacial features such as peptide/surface electrostatic interactions and surface-bound ion content affect the thermodynamic landscape of adsorption and lead to differences in surface-bound conformations of the peptides. Results show that upon adsorption to the charged surface, configurational entropy gains of the released solvent molecules dominate the configurational entropy losses of the bound peptide. This behavior leads to an apparent increase in overall system entropy upon binding and therefore to the surprising and seemingly nonphysical result of an apparent increased binding free energy at elevated temperatures. Opposite effects and conclusions are found for the neutral surface. Additional simulations demonstrate that by adjusting the ionic strength of the solution

  18. The Binding of Antigenic Peptides to HLA-DR Is Influenced by Interactions between Pocket 6 and Pocket 91

    PubMed Central

    James, Eddie A.; Moustakas, Antonis K.; Bui, John; Nouv, Randi; Papadopoulos, George K.; Kwok, William W.

    2013-01-01

    Peptide binding to class II MHC protein is commonly viewed as a combination of discrete anchor residue preferences for pockets 1, 4, 6/7, and 9. However, previous studies have suggested cooperative effects during the peptide binding process. Investigation of the DRB1*0901 binding motif demonstrated a clear interaction between peptide binding pockets 6 and 9. In agreement with prior studies, pockets 1 and 4 exhibited clear binding preferences. Previously uncharacterized pockets 6 and 7 accommodated a wide variety of residues. However, although it was previously reported that pocket 9 is completely permissive, several substitutions at this position were unable to bind. Structural modeling revealed a probable interaction between pockets 6 and 9 through β9Lys. Additional binding studies with doubly substituted peptides confirmed that the amino acid bound within pocket 6 profoundly influences the binding preferences for pocket 9 of DRB1*0901, causing complete permissiveness of pocket 9 when a small polar residue is anchored in pocket 6 but accepting relatively few residues when a basic residue is anchored in pocket 6. The β9Lys residue is unique to DR9 alleles. However, similar studies with doubly substituted peptides confirmed an analogous interaction effect for DRA1/B1*0301, a β9Glu allele. Accounting for this interaction resulted in improved epitope prediction. These findings provide a structural explanation for observations that an amino acid in one pocket can influence binding elsewhere in the MHC class II peptide binding groove. PMID:19648278

  19. Analysis of peptide-protein binding using amino acid descriptors: prediction and experimental verification for human histocompatibility complex HLA-A0201.

    PubMed

    Guan, Pingping; Doytchinova, Irini A; Walshe, Valerie A; Borrow, Persephone; Flower, Darren R

    2005-11-17

    Amino acid descriptors are often used in quantitative structure-activity relationship (QSAR) analysis of proteins and peptides. In the present study, descriptors were used to characterize peptides binding to the human MHC allele HLA-A0201. Two sets of amino acid descriptors were chosen: 93 descriptors taken from the amino acid descriptor database AAindex and the z descriptors defined by Wold and Sandberg. Variable selection techniques (SIMCA, genetic algorithm, and GOLPE) were applied to remove redundant descriptors. Our results indicate that QSAR models generated using five z descriptors had the highest predictivity and explained variance (q2 between 0.6 and 0.7 and r2 between 0.6 and 0.9). Further to the QSAR analysis, 15 peptides were synthesized and tested using a T2 stabilization assay. All peptides bound to HLA-A0201 well, and four peptides were identified as high-affinity binders. PMID:16279801

  20. LINC Complexes Form by Binding of Three KASH Peptides to Domain Interfaces of Trimeric SUN Proteins

    SciTech Connect

    Sosa, Brian A.; Rothballer, Andrea; Kutay, Ulrike; Schwartz, Thomas U.

    2012-08-31

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansive grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.

  1. Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300

    PubMed Central

    Dornan, David; Hupp, Ted R.

    2001-01-01

    The N-terminal BOX-I domain of p53 containing a docking site for the negative regulator MDM2 and the positive effector p300, harbours two recently identified phosphorylation sites at Thr18 or Ser20 whose affect on p300 is undefined. Biochemical assays demonstrate that although MDM2 binding is inhibited by these phosphorylations, p300 binding is strikingly stabilized by Thr18 or Ser20 phosphorylation. Introducing EGFP-BOX-I domain peptides with an aspartate substitution at Thr18 or Ser20 induced a significant inhibition of endogenous p53-dependent transcription in cycling cells, in irradiated cells, as well as in cells transiently co-transfected with p300 and p53. In contrast an EGFP-wild-type BOX-I domain peptide stimulated p53 activity via inhibition of MDM2 protein binding. These results suggest that phosphorylation of p53 at Thr18 or Ser20 can activate p53 by stabilizing the p300–p53 complex and also identify a class of small molecular weight ligands capable of selective discrimination between MDM2- and p300-dependent activities. PMID:11258706

  2. Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300.

    PubMed

    Dornan, D; Hupp, T R

    2001-02-01

    The N-terminal BOX-I domain of p53 containing a docking site for the negative regulator MDM2 and the positive effector p300, harbours two recently identified phosphorylation sites at Thr18 or Ser20O whose affect on p300 is undefined. Biochemical assays demonstrate that although MDM2 binding is inhibited by these phosphorylations, p300 binding is strikingly stabilized by Thr18 or Ser20 phosphorylation. Introducing EGFP-BOX-I domain peptides with an aspartate substitution at Thr18 or Ser20 induced a significant inhibition of endogenous p53-dependent transcription in cycling cells, in irradiated cells, as well as in cells transiently co-transfected with p300 and p53. In contrast an EGFP-wild-type BOX-I domain peptide stimulated p53 activity via inhibition of MDM2 protein binding. These results suggest that phosphorylation of p53 at Thr18 or Ser20 can activate p53 by stabilizing the p300-p53 complex and also identify a class of small molecular weight ligands capable of selective discrimination between MDM2- and p300-dependent activities. PMID:11258706

  3. Lock and Key Binding of the HOX YPWM Peptide to the PBX Homeodomain

    SciTech Connect

    Sprules, Tara; Green, N.; Featherstone, M.; Gehring, Kalle

    2003-01-10

    HOX homeodomain proteins bind short core DNA sequences to control very specific developmental processes. DNA binding affinity and sequence selectivity are increased by the formation of cooperative complexes with the PBX homeodomain protein. A conserved YPWM motif in the HOX protein is necessary for cooperative binding with PBX. We have determined the structure of a PBX homeodomain bound to a 14-mer DNA duplex. A relaxation-optimized procedure was developed to measure DNA residual dipolar couplings at natural abundance in the 20-kDa binary complex. When the PBX homeodomain binds to DNA, a fourth alpha-helix is formed in the homeodomain. This helix rigidifies the DNA recognition helix of PBX and forms a hydrophobic binding site for the HOX YPWM peptide. The HOX peptide itself shows some structure in solution and suggests that the interaction between PBX and HOX is an example of "lock and key" binding. The NMR structure explains the requirement of DNA for the PBX-HOX interaction and the increased affinity of DNA binding.

  4. Vasoactive intestinal peptide binding sites and fibers in the brain of the pigeon Columba livia: An autoradiographic and immunohistochemical study

    SciTech Connect

    Hof, P.R.; Dietl, M.M.; Charnay, Y.; Martin, J.L.; Bouras, C.; Palacios, J.M.; Magistretti, P.J. )

    1991-03-15

    The distribution of vasoactive intestinal peptide (VIP) binding sites in the pigeon brain was examined by in vitro autoradiography on slide-mounted sections. A fully characterized monoiodinated form of VIP, which maintains the biological activity of the native peptide, was used throughout this study. The highest densities of binding sites were observed in the hyperstriatum dorsale, archistriatum, auditory field L of neostriatum, area corticoidea dorsolateralis and temporo-parieto-occipitalis, area parahippocampalis, tectum opticum, nucleus dorsomedialis anterior thalami, and in the periventricular area of the hypothalamus. Lower densities of specific binding occurred in the neostriatum, hyperstriatum ventrale and nucleus septi lateralis, dorsolateral area of the thalamus, and lateral and posteromedial hypothalamus. Very low to background levels of VIP binding were detected in the ectostriatum, paleostriatum primitivum, paleostriatum augmentatum, lobus parolfactorius, nucleus accumbens, most of the brainstem, and the cerebellum. The distribution of VIP-containing fibers and terminals was examined by indirect immunofluorescence using a polyclonal antibody against porcine VIP. Fibers and terminals were observed in the area corticoidea dorsolateralis, area parahippocampalis, hippocampus, hyperstriatum accessorium, hyperstriatum dorsale, archistriatum, tuberculum olfactorium, nuclei dorsolateralis and dorsomedialis of the thalamus, and throughout the hypothalamus and the median eminence. Long projecting fibers were visualized in the tractus septohippocampalis. In the brainstem VIP immunoreactive fibers and terminals were observed mainly in the substantia grisea centralis, fasciculus longitudinalis medialis, lemniscus lateralis, and in the area surrounding the nuclei of the 7th, 9th, and 10th cranial nerves.

  5. Signal Peptide-Binding Drug as a Selective Inhibitor of Co-Translational Protein Translocation

    PubMed Central

    Vermeire, Kurt; Bell, Thomas W.; Van Puyenbroeck, Victor; Giraut, Anne; Noppen, Sam; Liekens, Sandra; Schols, Dominique; Hartmann, Enno

    2014-01-01

    In eukaryotic cells, surface expression of most type I transmembrane proteins requires translation and simultaneous insertion of the precursor protein into the endoplasmic reticulum (ER) membrane for subsequent routing to the cell surface. This co-translational translocation pathway is initiated when a hydrophobic N-terminal signal peptide (SP) on the nascent protein emerges from the ribosome, binds the cytosolic signal recognition particle (SRP), and targets the ribosome-nascent chain complex to the Sec61 translocon, a universally conserved protein-conducting channel in the ER-membrane. Despite their common function in Sec61 targeting and ER translocation, SPs have diverse but unique primary sequences. Thus, drugs that recognise SPs could be exploited to inhibit translocation of specific proteins into the ER. Here, through flow cytometric analysis the small-molecule macrocycle cyclotriazadisulfonamide (CADA) is identified as a highly selective human CD4 (hCD4) down-modulator. We show that CADA inhibits CD4 biogenesis and that this is due to its ability to inhibit co-translational translocation of CD4 into the lumen of the ER, both in cells as in a cell-free in vitro translation/translocation system. The activity of CADA maps to the cleavable N-terminal SP of hCD4. Moreover, through surface plasmon resonance analysis we were able to show direct binding of CADA to the SP of hCD4 and identify this SP as the target of our drug. Furthermore, CADA locks the SP in the translocon during a post-targeting step, possibly in a folded state, and prevents the translocation of the associated protein into the ER lumen. Instead, the precursor protein is routed to the cytosol for degradation. These findings demonstrate that a synthetic, cell-permeable small-molecule can be developed as a SP-binding drug to selectively inhibit protein translocation and to reversibly regulate the expression of specific target proteins. PMID:25460167

  6. A combined NMR and computational approach to investigate peptide binding to a designed Armadillo repeat protein.

    PubMed

    Ewald, Christina; Christen, Martin T; Watson, Randall P; Mihajlovic, Maja; Zhou, Ting; Honegger, Annemarie; Plückthun, Andreas; Caflisch, Amedeo; Zerbe, Oliver

    2015-05-22

    The specific recognition of peptide sequences by proteins plays an important role both in biology and in diagnostic applications. Here we characterize the relatively weak binding of the peptide neurotensin (NT) to the previously developed Armadillo repeat protein VG_328 by a multidisciplinary approach based on solution NMR spectroscopy, mutational studies, and molecular dynamics (MD) simulations, totaling 20μs for all MD runs. We describe assignment challenges arising from the repetitive nature of the protein sequence, and we present novel approaches to address them. Partial assignments obtained for VG_328 in combination with chemical shift perturbations allowed us to identify the repeats not involved in binding. Their subsequent elimination resulted in a reduced-size binder with very similar affinity for NT, for which near-complete backbone assignments were achieved. A binding mode suggested by automatic docking and further validated by explicit solvent MD simulations is consistent with paramagnetic relaxation enhancement data collected using spin-labeled NT. Favorable intermolecular interactions are observed in the MD simulations for the residues that were previously shown to contribute to binding in an Ala scan of NT. We further characterized the role of residues within the N-cap for protein stability and peptide binding. Our multidisciplinary approach demonstrates that an initial low-resolution picture for a low-micromolar-peptide binder can be refined through the combination of NMR, protein design, docking, and MD simulations to establish its binding mode, even in the absence of crystallographic data, thereby providing valuable information for further design. PMID:25816772

  7. Active sites of salivary proline-rich protein for binding to Porphyromonas gingivalis fimbriae.

    PubMed Central

    Kataoka, K; Amano, A; Kuboniwa, M; Horie, H; Nagata, H; Shizukuishi, S

    1997-01-01

    Porphyromonas gingivalis fimbriae specifically bind salivary acidic proline-rich protein 1 (PRP1) through protein-protein interactions. The binding domains of fimbrillin (a subunit of fimbriae) for PRP1 were analyzed previously (A. Amano, A. Sharma, J.-Y. Lee, H. T. Sojar, P. A. Raj, and R. J. Genco, Infect. Immun. 64:1631-1637, 1996). In this study, we investigated the sites of binding of the PRP1 molecules to the fimbriae. PRP1 (amino acid residues 1 to 150) was proteolysed to three fragments (residues 1 to 74 [fragment 1-74], 75 to 129, and 130 to 150). 125I-labeled fimbriae clearly bound fragments 75-129 and 130-150, immobilized on a polyvinylidene difluoride membrane; both fragments also inhibited whole-cell binding to PRP1-coated hydroxyapatite (HAP) beads by 50 and 83%, respectively. However, the N-terminal fragment failed to show any effect. Analogous peptides corresponding to residues 75 to 89, 90 to 106, 107 to 120, 121 to 129, and 130 to 150 of PRP1 were synthesized. The fimbriae significantly bound peptide 130-150, immobilized on 96-well plates, and the peptide also inhibited binding of 125I-labeled fimbriae to PRP1-coated HAP beads by almost 100%. Peptides 75-89, 90-106, and 121-129, immobilized on plates, showed considerable ability to bind fimbriae. For further analysis of active sites in residues 130 to 150, synthetic peptides corresponding to residues 130 to 137, 138 to 145, and 146 to 150 were prepared. Peptide 138-145 (GRPQGPPQ) inhibited fimbrial binding to PRP1-coated HAP beads by 97%. This amino acid sequence was shared in the alignment of residues 75 to 89, 90 to 106, and 107 to 120. Six synthetic peptides were prepared by serial deletions of individual residues from the N and C termini of peptide GRPQGPPQ. Peptide PQGPPQ was as inhibitory as peptide GRPQGPPQ. Further deletions of the dipeptide Pro-Gln from the N and C termini of peptide PQGPPQ resulted in significant loss of the inhibitory effect. These results strongly suggest that PQGPPQ

  8. Improving short antimicrobial peptides despite elusive rules for activity.

    PubMed

    Mikut, Ralf; Ruden, Serge; Reischl, Markus; Breitling, Frank; Volkmer, Rudolf; Hilpert, Kai

    2016-05-01

    Antimicrobial peptides (AMPs) can effectively kill a broad range of life threatening multidrug-resistant bacteria, a serious threat to public health worldwide. However, despite great hopes novel drugs based on AMPs are still rare. To accelerate drug development we studied different approaches to improve the antibacterial activity of short antimicrobial peptides. Short antimicrobial peptides seem to be ideal drug candidates since they can be synthesized quickly and easily, modified and optimized. In addition, manufacturing a short peptide drug will be more cost efficient than long and structured ones. In contrast to longer and structured peptides short AMPs seem hard to design and predict. Here, we designed, synthesized and screened five different peptide libraries, each consisting of 600 9-mer peptides, against Pseudomonas aeruginosa. Each library is presenting a different approach to investigate effectiveness of an optimization strategy. The data for the 3000 peptides were analyzed using models based on fuzzy logic bioinformatics and plausible descriptors. The rate of active or superior active peptides was improved from 31.0% in a semi-random library from a previous study to 97.8% in the best new designed library. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26687790

  9. Short communication: Identification of iron-binding peptides from whey protein hydrolysates using iron (III)-immobilized metal ion affinity chromatography and reversed phase-HPLC-tandem mass spectrometry.

    PubMed

    Cruz-Huerta, Elvia; Martínez Maqueda, Daniel; de la Hoz, Lucia; da Silva, Vera S Nunes; Pacheco, Maria Teresa Bertoldo; Amigo, Lourdes; Recio, Isidra

    2016-01-01

    Peptides with iron-binding capacity obtained by hydrolysis of whey protein with Alcalase (Novozymes, Araucaria, PR, Brazil), pancreatin, and Flavourzyme (Novozymes) were identified. Hydrolysates were subjected to iron (III)-immobilized metal ion affinity chromatography, and the bound peptides were sequenced by mass spectrometry. Regardless of the enzyme used, the domains f(42-59) and f(125-137) from β-lactoglobulin enclosed most of identified peptides. This trend was less pronounced in the case of peptides derived from α-lactalbumin, with sequences deriving from diverse regions. Iron-bound peptides exhibited common structural characteristics, such as an abundance of Asp, Glu, and Pro, as revealed by mass spectrometry and AA analysis. In conclusion, this characterization of iron-binding peptides helps clarify the relationship between peptide structure and iron-chelating activity and supports the promising role of whey protein hydrolysates as functional ingredients in iron supplementation treatments. PMID:26601589

  10. α-Enolase-binding peptide enhances drug delivery efficiency and therapeutic efficacy against colorectal cancer.

    PubMed

    Wu, Chien-Hsun; Kuo, Yi-Huei; Hong, Ruey-Long; Wu, Han-Chung

    2015-06-01

    Colorectal cancer is one of the most commonly diagnosed cancers and a leading cause of cancer mortality worldwide. Current treatment for colorectal cancer results in only limited success, and more effective therapeutic approaches are thus urgently needed. The development of new methods for early detection and effective treatments for cancer is contingent on the identification of biomarkers on the surface of cancer cells, as well as isolation of tumor-specific ligands with high binding affinity to such biomarkers. In vitro biopanning of a phage-displayed peptide library was used to identify specific peptides binding to human colorectal carcinoma cells. The targeting peptide pHCT74 showed the greatest potential for drug delivery in both in vitro and in vivo studies. The use of biotinylated peptides combined with an affinity trapping method and liquid chromatography-tandem mass spectrometry identified the target protein for the pHCT74 peptide as α-enolase. In animal model studies, combined pHCT74-conjugated liposomal doxorubicin (pHCT74-LD) and pHCT74-conjugated liposomal vinorelbine (pHCT74-sLV) therapy exhibited an enhanced antitumor effect and markedly extended the survival of mice with human colorectal cancer in subcutaneous and orthotopic models. Our findings indicate that α-enolase-targeted lipid nanoparticles have great potential for application in targeted drug delivery systems for colorectal cancer therapy. PMID:26041708

  11. Structural Stability and Binding Strength of a Designed Peptide-Carbon Nanotube Hybrid

    PubMed Central

    Roxbury, Daniel; Zhang, Shao-Qing; Mittal, Jeetain; DeGrado, William F.; Jagota, Anand

    2014-01-01

    Biological polymers hybridized with single-walled carbon nanotubes (SWCNTs) have elicited much interest recently for applications in SWCNT-based sorting as well as biomedical imaging, sensing, and drug delivery. Recently, de novo designed peptides forming a coiled-coil structure have been engineered to selectively disperse SWCNT of a certain diameter. Here we report on a study of the binding strength and structural stability of the hybrid between such a “HexCoil-Ala” peptide and the (6,5)-SWCNT. Using the competitive binding of a surfactant, we find that affinity strength of the peptide ranks in comparison to that of two single-stranded DNA sequences as (GT)30-DNA > HexCoil-Ala > (TAT)4T-DNA. Further, using replica exchange molecular dynamics (REMD), we show that the hexamer peptide complex has both similarities with and differences from the original design. While one of two distinct helix-helix interfaces of the original model was largely retained, a second interface showed much greater variability. These conformational differences allowed an aromatic tyrosine residue designed to lie along the solvent-exposed surface of the protein instead to penetrate between the two helices and directly contact the SWCNT. These insights will inform future designs of SWCNT-interacting peptides. PMID:24466357

  12. Integrated light-scattering spectroscopy, a sensitive probe for peptide-vesicle binding: application to the membrane-bound colicin E1 channel peptide.

    PubMed Central

    Strawbridge, K. B.; Palmer, L. R.; Merrill, A. R.; Hallett, F. R.

    1995-01-01

    Integrated light-scattering (ILS) spectroscopy was used to monitor the binding of the colicin E1 channel peptide to POPC:POPG large unilamellar vesicles (LUV; 60:40, mol:mol) at acidic pH (3.5). Binding conditions were chosen such that nearly all of the channel peptide was bound to the vesicles with little free peptide remaining in solution. The increase in vesicle size upon the insertion of the channel peptide was measured by performing a discrete inversion technique on data obtained from an ILS spectrometer. Vesicle size number distributions were determined for five different systems having peptide/vesicle ratios of approximately 0, 77, 154, 206, and 257. The experiment was repeated four times (twice at two different vesicle concentrations) to determine reproducibility. The relative changes in vesicle radius upon peptide binding to the membrane vesicles was remarkably reproducible even though these changes represented only a few nanometers. A comparison of vesicle size number distributions in the absence of bound peptide was made between ILS and dynamic light scattering (DLS) data and showed similar results. However, DLS was incapable of detecting the small changes due to peptide-induced vesicle swelling. The membrane-bound volume of the colicin E1 channel peptide was approximately 177 +/- 22 nm3. These data indicate that in the absence of a membrane potential (closed channel state) the colicin E1 channel peptide inserts into the membrane resulting in a significant displacement of the lipid bilayer as evidenced from the dose-dependent increase in the vesicle radius. These results indicate that ILS spectroscopy is a sensitive sizing technique that is capable of detecting relatively small changes in membrane vesicles and may have a wide application in the determination of peptide binding to membrane vesicles. Images FIGURE 2 PMID:7711234

  13. Binding Site Prediction of Proteins with Organic Compounds or Peptides Using GALAXY Web Servers.

    PubMed

    Heo, Lim; Lee, Hasup; Baek, Minkyung; Seok, Chaok

    2016-01-01

    We introduce two GALAXY web servers called GalaxySite and GalaxyPepDock that predict protein complex structures with small organic compounds and peptides, respectively. GalaxySite predicts ligands that may bind the input protein and generates complex structures of the protein with the predicted ligands from the protein structure given as input or predicted from the input sequence. GalaxyPepDock takes a protein structure and a peptide sequence as input and predicts structures for the protein-peptide complex. Both GalaxySite and GalaxyPepDock rely on available experimentally resolved structures of protein-ligand complexes evolutionarily related to the target. With the continuously increasing size of the protein structure database, the probability of finding related proteins in the database is increasing. The servers further relax the complex structures to refine the structural aspects that are missing in the available structures or that are not compatible with the given protein by optimizing physicochemical interactions. GalaxyPepDock allows conformational change of the protein receptor induced by peptide binding. The atomistic interactions with ligands predicted by the GALAXY servers may offer important clues for designing new molecules or proteins with desired binding properties. PMID:27094284

  14. Role of membrane lipids in peptide hormone function: binding of enkephalins to micelles.

    PubMed Central

    Deber, C M; Behnam, B A

    1984-01-01

    In the course of their biological function, peptide hormones must be transferred from an aqueous phase to the lipid-rich environment of their membrane-bound receptor proteins. We have investigated the possible influence of phospholipids in this process, using 360-MHz 1H and 90-MHz 13C NMR spectroscopy to examine the association of the opioid peptides [Met]- and [Leu]enkephalins (Tyr-Gly-Gly-Phe-Met/Leu) with phospholipid micelles. Binding of peptides to lipid was monitored in NMR spectra by selective chemical shift movements (e.g., the Phe aromatic ring protons) and residue-specific line broadening (e.g., of Met/Leu carbonyl- and alpha-carbon resonances). Results established that the zwitterionic hormones associate hydrophobically both with a neutral lipid (lysophosphatidylcholine) and (also electrostatically) with a negative lipid (lysophosphatidylglycerol). An association constant of Ka = 3.7 X 10(1) M-1 was calculated for the hydrophobic binding of enkephalin to lysophosphatidylcholine. NMR data suggested that enkephalin binds to the lipid with Met/Leu, Phe, and likely Tyr side-chain substituents associated with nonpolar interior regions of the micelle, whereas the COOH-terminal carboxylate moiety of the peptide is located in the surface of the lipid particle. An "attraction-interaction" model is proposed for hormone-lipid association wherein negative lipids attract the hormone electrostatically, while site-specific hydrophobic contacts facilitate its entry, concentration, and orientation into the lipid phase. PMID:6320173

  15. Engineering Photosystem I Complexes with Metal Oxide Binding Peptides for Bioelectronic Applications.

    PubMed

    Simmerman, Richard F; Zhu, Tuo; Baker, David R; Wang, Lijia; Mishra, Sanjay R; Lundgren, Cynthia A; Bruce, Barry D

    2015-10-21

    Conventional dye-sensitized solar cells comprise semiconducting anodes sensitized with complex synthetic organometallic dyes, a platinum counter electrode, and a liquid electrolyte. This work focuses on replacing synthetic dyes with a naturally occurring biological pigment-protein complex known as Photosystem I (PSI). Specifically, ZnO binding peptides (ZOBiP)-fused PSI subunits (ZOBiP-PsaD and ZOBiP-PsaE) and TiO2 binding peptides (TOBiP)-fused ferredoxin (TOBiP-Fd) have been produced recombinantly from Escherichia coli. The MOBiP-fused peptides have been characterized via western blotting, circular dichroism, MALDI-TOF, and cyclic voltammetry. ZOBiP-PSI subunits have been used to replace wild-type PsaD and PsaE, and TOBiP-Fd has been chemically cross-linked to the stromal hump of PSI. These MOBiP peptides and MOBiP-PSI complexes have been produced and incubated with various metal oxide nanoparticles, showing increased binding when compared to that of wild-type PSI complexes. PMID:26301489

  16. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane

    NASA Astrophysics Data System (ADS)

    Vivcharuk, Victor; Tomberli, Bruno; Tolokh, Igor S.; Gray, C. G.

    2008-03-01

    Molecular dynamics (MD) simulations are used to study the interaction of a zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with POPC is used as a model system for studying the details of membrane-peptide interactions, with the peptide selected because of its antimicrobial nature. Seventy-two 3 ns MD simulations, with six orientations of LFCinB at 12 different distances from a POPC membrane, are carried out to determine the potential of mean force (PMF) or free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the PMF for this relatively large system a new variant of constrained MD and thermodynamic integration is developed. A simplified method for relating the PMF to the LFCinB-membrane binding free energy is described and used to predict a free energy of adsorption (or binding) of -1.05±0.39kcal/mol , and corresponding maximum binding force of about 20 pN, for LFCinB-POPC. The contributions of the ions-LFCinB and the water-LFCinB interactions to the PMF are discussed. The method developed will be a useful starting point for future work simulating peptides interacting with charged membranes and interactions involved in the penetration of membranes, features necessary to understand in order to rationally design peptides as potential alternatives to traditional antibiotics.

  17. Introducing folding stability into the score function for computational design of RNA-binding peptides boosts the probability of success.

    PubMed

    Xiao, Xingqing; Agris, Paul F; Hall, Carol K

    2016-05-01

    A computational strategy that integrates our peptide search algorithm with atomistic molecular dynamics simulation was used to design rational peptide drugs that recognize and bind to the anticodon stem and loop domain (ASL(Lys3) ) of human tRNAUUULys3 for the purpose of interrupting HIV replication. The score function of the search algorithm was improved by adding a peptide stability term weighted by an adjustable factor λ to the peptide binding free energy. The five best peptide sequences associated with five different values of λ were determined using the search algorithm and then input in atomistic simulations to examine the stability of the peptides' folded conformations and their ability to bind to ASL(Lys3) . Simulation results demonstrated that setting an intermediate value of λ achieves a good balance between optimizing the peptide's binding ability and stabilizing its folded conformation during the sequence evolution process, and hence leads to optimal binding to the target ASL(Lys3) . Thus, addition of a peptide stability term significantly improves the success rate for our peptide design search. Proteins 2016; 84:700-711. © 2016 Wiley Periodicals, Inc. PMID:26914059

  18. Peptide fibrils with altered stability, activity, and cell selectivity

    PubMed Central

    Chen, Long; Liang, Jun F.

    2014-01-01

    Peptides have some unique and superior features compared to proteins. However, the use of peptides as therapeutics is hampered by their low stability and cell selectivity. In this study, a new lytic peptide (CL-1, FLGALFRALSRLL) was constructed. Under the physiological condition, peptide CL-1 self-assembled into dynamically stable aggregates with fibrils-like structures. Aggregated CL-1 demonstrated dramatically altered activity and stability in comparison with single molecule CL-1 and other lytic peptides: when incubated with co-cultured bacteria and tissue cells, CL-1 aggregates killed bacteria selectively but spared co-cultured human cells; CL-1 aggregates kept intact in human serum for more than five hours. Peptide-cell interaction studies performed on lipid monolayers and live human tissue cells revealed that in comparison with monomeric CL-1, aggregated CL-1 had decreased cell affinity and membrane insertion capability on tissue cells. A dynamic process involving aggregate dissociation and rearrangement seemed to be an essential step for membrane bound CL-1 aggregates to realize its cytotoxicity to tissue cells. Our study suggests that peptide aggregation could be as important as the charge and secondary structure of a peptide in affecting peptide-cell interactions. Controlling peptide self-assembly represents a new way to increase the stability and cell selectivity of bioactive peptides for wide biomedical applications. PMID:23713839

  19. Autoradiographic localization of peptide YY and neuropeptide Y binding sites in the medulla oblongata

    SciTech Connect

    Leslie, R.A.; McDonald, T.J.; Robertson, H.A.

    1988-09-01

    Peptide YY is a highly potent emetic when given intravenously in dogs. We hypothesized that the area postrema, a small brain stem nucleus that acts as a chemoreceptive trigger zone for vomiting and lies outside the blood-brain barrier, might have receptors that PYY would bind to, in order to mediate the emetic response. We prepared (/sup 125/I)PYY and used autoradiography to show that high affinity binding sites for this ligand were highly localized in the area postrema and related nuclei of the dog medulla oblongata. Furthermore, the distribution of (/sup 125/I)PYY binding sites in the rat medulla oblongata was very similar to that in the dog; the distribution of (/sup 125/I)PYY binding sites throughout the rat brain was seen to be similar to the distribution of (/sup 125/I)NPY binding sites.

  20. Prediction of peptides binding to MHC class I and II alleles by temporal motif mining

    PubMed Central

    2013-01-01

    Background MHC (Major Histocompatibility Complex) is a key player in the immune response of most vertebrates. The computational prediction of whether a given antigenic peptide will bind to a specific MHC allele is important in the development of vaccines for emerging pathogens, the creation of possibilities for controlling immune response, and for the applications of immunotherapy. One of the problems that make this computational prediction difficult is the detection of the binding core region in peptides, coupled with the presence of bulges and loops causing variations in the total sequence length. Most machine learning methods require the sequences to be of the same length to successfully discover the binding motifs, ignoring the length variance in both motif mining and prediction steps. In order to overcome this limitation, we propose the use of time-based motif mining methods that work position-independently. Results The prediction method was tested on a benchmark set of 28 different alleles for MHC class I and 27 different alleles for MHC class II. The obtained results are comparable to the state of the art methods for both MHC classes, surpassing the published results for some alleles. The average prediction AUC values are 0.897 for class I, and 0.858 for class II. Conclusions Temporal motif mining using partial periodic patterns can capture information about the sequences well enough to predict the binding of the peptides and is comparable to state of the art methods in the literature. Unlike neural networks or matrix based predictors, our proposed method does not depend on peptide length and can work with both short and long fragments. This advantage allows better use of the available training data and the prediction of peptides of uncommon lengths. PMID:23368521

  1. Copper(II) ions and the Alzheimer's amyloid-β peptide: Affinity and stoichiometry of binding

    NASA Astrophysics Data System (ADS)

    Tõugu, Vello; Friedemann, Merlin; Tiiman, Ann; Palumaa, Peep

    2014-10-01

    Deposition of amyloid beta (Aβ) peptides into amyloid plaques is the hallmark of Alzheimer's disease. According to the amyloid cascade hypothesis this deposition is an early event and primary cause of the disease, however, the mechanisms that cause this deposition remain elusive. An increasing amount of evidence shows that the interactions of biometals can contribute to the fibrillization and amyloid formation by amyloidogenic peptides. From different anions the copper ions deserve the most attention since it can contribute not only toamyloid formation but also to its toxicity due to the generation of ROS. In this thesis we focus on the affinity and stoichiometry of copper(II) binding to the Aβ molecule.

  2. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    PubMed

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. PMID:26537635

  3. Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Na+ on Peptide Adsorption

    SciTech Connect

    Wu, Chunya; Skelton, Adam; Chen, Mingjun; Vlcek, Lukas; Cummings, Peter T

    2011-01-01

    The dynamics of a single tripeptide Arg-Gly-Asp (RGD) adsorbing onto negatively charged hydroxylated rutile (110) surface in aqueous solution was studied using molecular dynamics (MD) simulations. The results indicate that the adsorbed Na{sup +} ions play an important role in determining the binding geometry of RGD. With an initial 'horseshoe' configuration, the charged side groups (COO{sup -} and NH{sub 2}) of the peptide are able to interact with the surface through direct hydrogen bonds (H bonds) in the very early stage of adsorption. The Na{sup +} ions approach the positively charged Arg side chain, competing with the Arg side chain for adsorption to the negatively charged hydroxyl oxygen. In coordination with the structural adjustment of the peptide, the Arg residue is driven to detach from the rutile surface. In contrast, the Na+ ions in close proximity to the negatively charged Asp side chain contribute to the binding of the COO{sup -} group on the surface, helping the carboxyl oxygen not involved in COO{sup -}-surface H bonds to orientate toward the hydroxyl hydrogens. Once both carboxyl oxygens form enough H bonds with the hydroxyl hydrogens, the redundant ions move toward a more favorable adsorption site.

  4. Rational Optimization of Conformational Effects Induced By Hydrocarbon Staples in Peptides and their Binding Interfaces

    NASA Astrophysics Data System (ADS)

    Lama, Dilraj; Quah, Soo T.; Verma, Chandra S.; Lakshminarayanan, Rajamani; Beuerman, Roger W.; Lane, David P.; Brown, Christopher J.

    2013-12-01

    eIF4E is frequently over-expressed in different cancers and causes increased translation of oncogenic proteins via deregulated cap-dependent translation. Inhibitors of the eIF4E:eIF4G interactions represent an approach that would normalize cap-dependent translation. Stapled peptides represent an emerging class of therapeutics that can target protein: protein interactions. We present here molecular dynamics simulations for a set of rationally designed stapled peptides in solution and in complex with eIF4E, supported with biophysical and crystallographic data. Clustering of the simulated structures revealed the favoured conformational states of the stapled peptides in their bound or free forms in solution. Identifying these populations has allowed us to design peptides with improved affinities by introducing mutations into the peptide sequence to alter their conformational distributions. These studies emphasise the effects that engineered mutations have on the conformations of free and bound peptides, and illustrate that both states must be considered in efforts to attain high affinity binding.

  5. Kinetics of T-cell receptor binding to peptide/I-Ek complexes: correlation of the dissociation rate with T-cell responsiveness.

    PubMed Central

    Matsui, K; Boniface, J J; Steffner, P; Reay, P A; Davis, M M

    1994-01-01

    Recognition by T-cell antigen receptors (TCRs) of processed peptides bound to major histocompatibility complex (MHC) molecules is required for the initiation of most T-lymphocyte responses. Despite the availability of soluble forms of TCRs and MHC heterodimers, this interaction has proven difficult to study directly due to the very low affinity. We report here on the kinetics of TCR binding to peptide/MHC complexes in a cell-free system using surface plasmon resonance. The apparent association rates for the interactions of related peptide/MHC complexes to one such TCR are relatively slow (900-3000 M-1.s-1) and dissociation rates are very fast (0.3-0.06 s-1) with t1/2 of 2-12 s at 25 degrees C. The calculated affinity of the engineered soluble molecules compares well with previously reported competition data for native TCRs or competition data reported here for native peptide/MHC complexes, indicating that these soluble heterodimers bind in the same manner as the original molecules expressed on cells. We also find that the peptide variants which give weaker T-cell stimulatory responses have similar affinities but distinctly faster dissociation rates compared with the original peptide (when loaded onto the MHC molecule) and that this later property may be responsible for their lower activity. This has implications for both downstream signaling events and models of TCR-peptide antagonists. PMID:7809136

  6. Cytotoxic T lymphocytes that recognize decameric peptide sequences of retinoblastoma binding protein 1 (RBP-1) associated with human breast cancer

    PubMed Central

    Takahashi, T; Cao, J; Hoon, D S B; Irie, R F

    1999-01-01

    Retinoblastoma binding protein 1 (RBP-1) is a 143-kDa nuclear phosphoprotein that promotes cell growth by inhibiting the product of retinoblastoma tumour suppressor gene (pRB). We recently found that RBP-1 contains KASIFLK, a heptameric peptide (250–256) recognized by human antibodies and overexpressed by breast cancer cells. In the present study, we demonstrate that human T-cells stimulated with RBP-1 decameric peptides containing KASIFLK can kill human breast cancer cells. These decamers, GLQKASIFLK (247–256) and KASIFLKTRV (250–259), have anchor motifs for both HLA-A2 and HLA-A3. Peripheral blood lymphocytes from 41 normal donors were stimulated by these peptides in culture media containing 15 IU ml−1 interleukin-2, 25 IU ml−1 interleukin-7 and 500 IU ml−1 granulocyte–macrophage colony-stimulating factor. Cytotoxic activity of the T-cells was assessed against autologous B lymphoblastoid cells pulsed with each peptide. Stimulation by GLQKASIFLK generated specific cytotoxic T lymphocyte (CTL) lines from HLA-A2, A3 donors, HLA-A2 donors and HLA-A3 donors. Stimulation with KASIFLKTRV generated specific CTL lines from HLA-A2 donors. No HLA-A2−, A3− CTL line showed specific cytotoxicity against these target cells. These CTL lines were also cytotoxic against HLA-A2 and HLA-A3 breast cancer cells but not against normal fibroblastoid cell lines, normal epidermal cell lines, or a melanoma cell line. RBP-1 peptide antigens may be of clinical significance as a potential peptide vaccine against human breast cancer. © 1999 Cancer Research Campaign PMID:10496363

  7. Isolation and detection of human IgA using a streptococcal IgA-binding peptide.

    PubMed

    Sandin, Charlotta; Linse, Sara; Areschoug, Thomas; Woof, Jenny M; Reinholdt, Jesper; Lindahl, Gunnar

    2002-08-01

    Bacterial proteins that bind to the Fc part of IgG have found widespread use in immunology. A similar protein suitable for the isolation and detection of human IgA has not been described. Here, we show that a 50-residue synthetic peptide, designated streptococcal IgA-binding peptide (Sap) and derived from a streptococcal M protein, can be used for single-step affinity purification of human IgA. High affinity binding of IgA required the presence in Sap of a C-terminal cysteine residue, not present in the intact M protein. Passage of human serum through a Sap column caused depletion of >99% of the IgA, and elution of the column allowed quantitative recovery of highly purified IgA, for which the proportions of the IgA1 and IgA2 subclasses were the same as in whole serum. Moreover, immobilized Sap could be used for single-step purification of secretory IgA of both subclasses from human saliva, with a recovery of approximately 45%. The Sap peptide could also be used to specifically detect IgA bound to Ag. Together, these data indicate that Sap is a versatile Fc-binding reagent that may open new possibilities for the characterization of human IgA. PMID:12133959

  8. Metal-binding peptides: Their role in responses to metal stress

    SciTech Connect

    Rauser, W.E. )

    1989-04-01

    Excess metals are one stress that plants may encounter. The metals Cd, Cu, Ni, and Zn are considered because of concern for their entry into the foodchain of animals and man. Studies of metal tolerant plants and cell cultures suggest three types of responses: exclusion of metal from protoplasts by binding to cell walls, differential membrane transport reducing metal exposure of enzymes, and intracellular chelation of metal in innocuous forms. One group of compounds involved in the latter response are metal-binding peptides designated phytochelatins. They are a family of small peptides composed of five kinds of amino acids, including 2 to 11 cysteines which provide thiols for selective binding of metal. Metals induce the synthesis of phytochelatins through unknown enzymes involving glutathione. In plant cell cultures the peptides bind about 90% of the intracellular Cd. In roots of young plants up to half of the metal is bound by phytochelatins. Intact plants probably use a combination of responses to deal with excess metals, phytochelatins may dominate in certain cases.

  9. Nanoparticle Assembly and Gelatin Binding Mediated by Triple Helical Collagen Mimetic Peptide.

    PubMed

    San, Boi Hoa; Li, Yang; Tarbet, E Bart; Yu, S Michael

    2016-08-10

    Peptide-conjugated nanoparticles (NPs) have promising potential for applications in biosensing, diagnosis, and therapeutics because of their appropriate size, unique self-assembly, and specific substrate-binding properties. However, controlled assembly and selective target binding are difficult to achieve with simple peptides on NP surfaces because high surface energy makes NPs prone to self-aggregate and adhere nonspecifically. Here, we report the self-assembly and gelatin binding properties of collagen mimetic peptide (CMP) conjugated gold NPs (CMP-NPs). We show that the orientation of CMPs displayed on the NP surface can control NP assembly either by promoting or hindering triple helical folding between CMPs of neighboring NPs. We also show that CMP-NPs can specifically bind to denatured collagen by forming triple-helical hybrids between denatured collagen strands and CMPs, demonstrating their potential use for detection and selective removal of gelatin from protein mixtures. CMP conjugated NPs offer a simple and effective method for NP assembly and for targeting denatured collagens with high specificity. Therefore, they may lead to new types of functional nanomaterials for detection and study of denatured collagen associated with diseases characterized by high levels of collagen degradation. PMID:27403657

  10. Common binding site for disialyllactose and tri-peptide in C-fragment of tetanus neurotoxin.

    PubMed

    Jayaraman, Seetharaman; Eswaramoorthy, Subramaniam; Kumaran, Desigan; Swaminathan, Subramanyam

    2005-11-01

    Clostridial neurotoxins are comprised of botulinum (BoNT) and tetanus (TeNT), which share significant structural and functional similarity. Crystal structures of the binding domain of TeNT complexed with disialyllactose (DiSia) and a tri-peptide Tyr-Glu-Trp (YEW) have been determined to 2.3 and 2.2 A, respectively. Both DiSia and YEW bind in a shallow cleft region on the surface of the molecule in the beta-trefoil domain, interacting with a set of common residues, Asp1147, Asp1214, Asn1216, and Arg1226. DiSia and YEW binding at the same site in tetanus toxin provides a putative site that could be occupied either by a ganglioside moiety or a peptide. Soaking experiments with a mixture of YEW and DiSia show that YEW competes with DiSia, suggesting that YEW can be used to block ganglioside binding. A comparison with the TeNT binding domain in complex with small molecules, BoNT/A and /B, provides insight into the different modes of ganglioside binding. PMID:16104015

  11. Analysis and prediction of affinity of TAP binding peptides using cascade SVM.

    PubMed

    Bhasin, Manoj; Raghava, G P S

    2004-03-01

    The generation of cytotoxic T lymphocyte (CTL) epitopes from an antigenic sequence involves number of intracellular processes, including production of peptide fragments by proteasome and transport of peptides to endoplasmic reticulum through transporter associated with antigen processing (TAP). In this study, 409 peptides that bind to human TAP transporter with varying affinity were analyzed to explore the selectivity and specificity of TAP transporter. The abundance of each amino acid from P1 to P9 positions in high-, intermediate-, and low-affinity TAP binders were examined. The rules for predicting TAP binding regions in an antigenic sequence were derived from the above analysis. The quantitative matrix was generated on the basis of contribution of each position and residue in binding affinity. The correlation of r = 0.65 was obtained between experimentally determined and predicted binding affinity by using a quantitative matrix. Further a support vector machine (SVM)-based method has been developed to model the TAP binding affinity of peptides. The correlation (r = 0.80) was obtained between the predicted and experimental measured values by using sequence-based SVM. The reliability of prediction was further improved by cascade SVM that uses features of amino acids along with sequence. An extremely good correlation (r = 0.88) was obtained between measured and predicted values, when the cascade SVM-based method was evaluated through jackknife testing. A Web service, TAPPred (http://www.imtech.res.in/raghava/tappred/ or http://bioinformatics.uams.edu/mirror/tappred/), has been developed based on this approach. PMID:14978300

  12. Arsenite binding to synthetic peptides based on the Zn finger region and the estrogen binding region of the human estrogen receptor-{alpha}

    SciTech Connect

    Kitchin, Kirk T. . E-mail: kitchin.kirk@epa.gov; Wallace, Kathleen

    2005-08-01

    We selected the estrogen receptor protein for study because of prior results indicating that arsenite is a 'potential nonsteroidal environmental estrogen'. We utilized radioactive {sup 73}As-labeled arsenite and vacuum filtration methodology to determine the binding affinity of arsenite to synthetic peptides. A zinc finger region containing four free sulfhydryls and the hormone binding region containing three free sulfhydryls based on the human estrogen receptor-{alpha} were studied. Peptide 15 (RYCAVCNDYASGYHYGVWSCEGCKA) bound arsenite with a K {sub d} of 2.2 {mu}M and B {sub max} (maximal binding capacity) of 89 nmol/mg protein. Peptide 10 (LECAWQGKCVEGTEHLYSMKCKNV) had a K {sub d} of 1.3 {mu}M and B {sub max} of 59 nmol/mg protein. In contrast, the monothiol peptide 19 (LEGAWQGKGVEGTEHLYSMKCKNV) bound arsenite with a higher K {sub d} of 124 {mu}M and a B {sub max} of 26 nmol/mg protein. In our studies, amino acids other than cysteine (including methionine and histidine) did not bind arsenite at all. Peptides modeled on the estrogen receptor with two or more nearby free sulfhydryls (two or five intervening amino acids) had low K {sub d} values in the 1-4 {mu}M range. Peptides containing single sulfhydryls or two sulfhydryls spaced 17 amino acids apart had higher K {sub d} values in the 100-200 {mu}M range, demonstrating lower affinity. With the exception of peptide 24 which had an unusually high B {sub max} value of 234 nmol/mg, the binding capacity of the studied peptides was proportional to the number of free cysteines. Binding of trivalent arsenicals to peptides and proteins can contribute to arsenic toxicity and carcinogenicity via altered peptide/protein structure and enzyme function.

  13. Structure and Bioactivity of a Modified Peptide Derived from the LPS-Binding Domain of an Anti-Lipopolysaccharide Factor (ALF) of Shrimp.

    PubMed

    Yang, Hui; Li, Shihao; Li, Fuhua; Xiang, Jianhai

    2016-05-01

    The lipopolysaccharide binding domain (LBD) in anti-lipopolysaccharide factor (ALF) is the main functional element of ALF, which exhibits antimicrobial activities. Our previous studies show that the peptide LBDv, synthesized based on the modified sequence of LBD (named LBD2) from FcALF2, exhibited an apparently enhanced antimicrobial activity. To learn the prospect of LBDv application, the characteristics of LBDv were analyzed in the present study. The LBDv peptide showed higher antimicrobial and bactericidal activities compared with LBD2. These activities of the LBDv peptide were stable after heat treatment. LBDv could also exhibit in vivo antimicrobial activity to Vibrio harveyi. The LBDv peptide was found to bind bacteria, quickly cause bacterial agglutination, and kill bacteria by damaging their membrane integrity. Structure analysis showed that both LBDv and LBD2 held the β-sheet structure, and the positive net charge and amphipathicity characteristic were speculated as two important components for their antimicrobial activity. The cytotoxicity of LBDv was evaluated in cultured Spodoptera frugiperda (Sf9) cells and Cherax quadricarinatus hemocytes. More than 80% cells could survive with the LBDv concentration up to 16 μM. Collectively, these findings highlighted the potential antimicrobial mechanism of LBD peptides, and provided important information for the commercial use of LBDv in the future. PMID:27213409

  14. Structure and Bioactivity of a Modified Peptide Derived from the LPS-Binding Domain of an Anti-Lipopolysaccharide Factor (ALF) of Shrimp

    PubMed Central

    Yang, Hui; Li, Shihao; Li, Fuhua; Xiang, Jianhai

    2016-01-01

    The lipopolysaccharide binding domain (LBD) in anti-lipopolysaccharide factor (ALF) is the main functional element of ALF, which exhibits antimicrobial activities. Our previous studies show that the peptide LBDv, synthesized based on the modified sequence of LBD (named LBD2) from FcALF2, exhibited an apparently enhanced antimicrobial activity. To learn the prospect of LBDv application, the characteristics of LBDv were analyzed in the present study. The LBDv peptide showed higher antimicrobial and bactericidal activities compared with LBD2. These activities of the LBDv peptide were stable after heat treatment. LBDv could also exhibit in vivo antimicrobial activity to Vibrio harveyi. The LBDv peptide was found to bind bacteria, quickly cause bacterial agglutination, and kill bacteria by damaging their membrane integrity. Structure analysis showed that both LBDv and LBD2 held the β-sheet structure, and the positive net charge and amphipathicity characteristic were speculated as two important components for their antimicrobial activity. The cytotoxicity of LBDv was evaluated in cultured Spodoptera frugiperda (Sf9) cells and Cherax quadricarinatus hemocytes. More than 80% cells could survive with the LBDv concentration up to 16 μM. Collectively, these findings highlighted the potential antimicrobial mechanism of LBD peptides, and provided important information for the commercial use of LBDv in the future. PMID:27213409

  15. Pharmacokinetics in rats of a long-acting human parathyroid hormone-collagen binding domain (PTH-CBD) peptide construct

    PubMed Central

    Stratford, Robert; Vu, Christopher; Sakon, Joshua; Katikaneni, Ranjitha; Gensure, Robert; Ponnapakkam, Tulasi

    2014-01-01

    The pharmacokinetics of a hybrid peptide consisting of the N-terminal biologically active region of human parathyroid hormone (PTH) linked to a collagen binding domain (CBD) were evaluated in female Sprague-Dawley rats. The peptide, PTH-CBD, consists of the first 33 amino acids of PTH linked as an extension of the amino acid chain to the CBD peptide derived from ColH collagenase of Clostridium histolyticum. Serum concentrations arising from single dose administration by the subcutaneous and intravenous routes were compared to those measured following route specific mole equivalent doses of PTH(1-34). Population-based modeling demonstrated similar systemic absorption kinetics and bioavailability for both peptides. Exposure to PTH-CBD was 6-fold higher due to a systemic clearance of approximately 20% relative to PTH(1-34); however, these kinetics were consistent with >95% of a dose being eliminated from serum within 24 hours. Results obtained support continued investigation of PTH-CBD as a bone targeted anabolic agent for the treatment of post-menopausal osteoporosis. PMID:24399637

  16. M13 phage peptide ZL4 exerts its targeted binding effect on schistosoma japonicum via alkaline phosphatase

    PubMed Central

    Liu, Yan; Yang, Shenghui; Xiao, Jianhua; Yu, Liang; Chen, Li; Zou, Ju; Wang, Kegeng; Tan, Sijie; Yu, Zhengyang; Zeng, Qingren

    2015-01-01

    The present study was to determine the targeting effect of M13 phage peptide ZL4 (MppZL4) on Schistosoma japonicum (S.j). Mice infected with S.j were injected with MppZL4. Real-time PCR was used to detect the distribution and metabolism of MppZL4 in the livers and lungs of mice. In vivo refusion test was performed to detect the targeting of MppZL4. Western blotting was employed to determine the expression of MppZL4. Live imaging was used to detect the distribution of oligopeptide MppZL4. Immunohistochemistry was employed to determine MppZL4 location on adult S.j body surface. Gomori method was employed to detect the influence of oligopeptide MppZL4 on alkaline phosphatase activity. The distribution and metabolism of MppZL4 and M13KE are not significantly different from each other at each time point. The abundance of MppZL4 is changed as S.j migrates in mice. The targeted binding effect of MppZL4 varies at different stages. ZL4 oligopeptide targets S.j in mice. The specific binding sites of MppZL4 on S.j body are mainly located in syncytial cells. The binding sites of MppZL4 on S.j body surface might be ALP or ALP-related proteins. MppZL4 had targeted binding effect on S.j with its binding site being associated with proteins related to S.j alkaline phosphatase. S.j tegument had a specifically binding site with exogenous peptides, offering new means to explore the interactions between hosts and parasites. Additionally, MppZL4 can possibly be used as targeting molecules in worm-resistant drugs or as tracing molecules in imaging diagnosis technologies. PMID:25973009

  17. Peptides presenting the binding site of human CD4 for the HIV-1 envelope glycoprotein gp120

    PubMed Central

    Meier, Julia; Kassler, Kristin; Sticht, Heinrich

    2012-01-01

    Summary Based on the structure of the HIV-1 glycoprotein gp120 in complex with its cellular receptor CD4, we have designed and synthesized peptides that mimic the binding site of CD4 for gp120. The ability of these peptides to bind to gp120 can be strongly enhanced by increasing their conformational stability through cyclization, as evidenced by binding assays, as well as through molecular-dynamics simulations of peptide–gp120 complexes. The specificity of the peptide–gp120 interaction was demonstrated by using peptide variants, in which key residues for the interaction with gp120 were replaced by alanine or D-amino acids. PMID:23209523

  18. Synthetic Peptide Ligands of the Antigen Binding Receptor Induce Programmed Cell Death in a Human B-Cell Lymphoma

    NASA Astrophysics Data System (ADS)

    Renschler, Markus F.; Bhatt, Ramesh R.; Dower, William J.; Levy, Ronald

    1994-04-01

    Peptide ligands for the antigen binding site of the surface immunoglobulin receptor of a human B-cell lymphoma cell line were identified with the use of filamentous phage libraries displaying random 8- and 12-amino acid peptides. Corresponding synthetic peptides bound specifically to the antigen binding site of this immunoglobulin receptor and blocked the binding of an anti-idiotype antibody. The ligands, when conjugated to form dimers or tetramers, induced cell death by apoptosis in vitro with an IC50 between 40 and 200 nM. This effect was associated with specific stimulation of intracellular protein tyrosine phosphorylation.

  19. Bactericidal Activity of Mammalian Cathelicidin-Derived Peptides

    PubMed Central

    Travis, Sue M.; Anderson, Norma N.; Forsyth, William R.; Espiritu, Cesar; Conway, Barbara D.; Greenberg, E. P.; McCray, Paul B.; Lehrer, Robert I.; Welsh, Michael J.; Tack, Brian F.

    2000-01-01

    Endogenous antimicrobial peptides of the cathelicidin family contribute to innate immunity. The emergence of widespread antibiotic resistance in many commonly encountered bacteria requires the search for new bactericidal agents with therapeutic potential. Solid-phase synthesis was employed to prepare linear antimicrobial peptides found in cathelicidins of five mammals: human (FALL39/LL37), rabbit (CAP18), mouse (mCRAMP), rat (rCRAMP), and sheep (SMAP29 and SMAP34). These peptides were tested at ionic strengths of 25 and 175 mM against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus. Each peptide manifested activity against P. aeruginosa irrespective of the NaCl concentration. CAP18 and SMAP29 were the most effective peptides of the group against all test organisms under both low- and high-salt conditions. Select peptides of 15 to 21 residues, modeled on CAP18 (37 residues), retained activity against the gram-negative bacteria and methicillin-sensitive S. aureus, although the bactericidal activity was reduced compared to that of the parent peptide. In accordance with the behavior of the parent molecule, the truncated peptides adopted an α-helical structure in the presence of trifluoroethanol or lipopolysaccharide. The relationship between the bactericidal activity and several physiochemical properties of the cathelicidins was examined. The activities of the full-length peptides correlated positively with a predicted gradient of hydrophobicity along the peptide backbone and with net positive charge; they correlated inversely with relative abundance of anionic residues. The salt-resistant, antimicrobial properties of CAP18 and SMAP29 suggest that these peptides or congeneric structures have potential for the treatment of bacterial infections in normal and immunocompromised persons and individuals with cystic fibrosis. PMID:10768969

  20. Bactericidal activity of mammalian cathelicidin-derived peptides.

    PubMed

    Travis, S M; Anderson, N N; Forsyth, W R; Espiritu, C; Conway, B D; Greenberg, E P; McCray, P B; Lehrer, R I; Welsh, M J; Tack, B F

    2000-05-01

    Endogenous antimicrobial peptides of the cathelicidin family contribute to innate immunity. The emergence of widespread antibiotic resistance in many commonly encountered bacteria requires the search for new bactericidal agents with therapeutic potential. Solid-phase synthesis was employed to prepare linear antimicrobial peptides found in cathelicidins of five mammals: human (FALL39/LL37), rabbit (CAP18), mouse (mCRAMP), rat (rCRAMP), and sheep (SMAP29 and SMAP34). These peptides were tested at ionic strengths of 25 and 175 mM against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus. Each peptide manifested activity against P. aeruginosa irrespective of the NaCl concentration. CAP18 and SMAP29 were the most effective peptides of the group against all test organisms under both low- and high-salt conditions. Select peptides of 15 to 21 residues, modeled on CAP18 (37 residues), retained activity against the gram-negative bacteria and methicillin-sensitive S. aureus, although the bactericidal activity was reduced compared to that of the parent peptide. In accordance with the behavior of the parent molecule, the truncated peptides adopted an alpha-helical structure in the presence of trifluoroethanol or lipopolysaccharide. The relationship between the bactericidal activity and several physiochemical properties of the cathelicidins was examined. The activities of the full-length peptides correlated positively with a predicted gradient of hydrophobicity along the peptide backbone and with net positive charge; they correlated inversely with relative abundance of anionic residues. The salt-resistant, antimicrobial properties of CAP18 and SMAP29 suggest that these peptides or congeneric structures have potential for the treatment of bacterial infections in normal and immunocompromised persons and individuals with cystic fibrosis. PMID:10768969

  1. Expression levels of MHC class I molecules are inversely correlated with promiscuity of peptide binding.

    PubMed

    Chappell, Paul; Meziane, El Kahina; Harrison, Michael; Magiera, Łukasz; Hermann, Clemens; Mears, Laura; Wrobel, Antony G; Durant, Charlotte; Nielsen, Lise Lotte; Buus, Søren; Ternette, Nicola; Mwangi, William; Butter, Colin; Nair, Venugopal; Ahyee, Trudy; Duggleby, Richard; Madrigal, Alejandro; Roversi, Pietro; Lea, Susan M; Kaufman, Jim

    2015-01-01

    Highly polymorphic major histocompatibility complex (MHC) molecules are at the heart of adaptive immune responses, playing crucial roles in many kinds of disease and in vaccination. We report that breadth of peptide presentation and level of cell surface expression of class I molecules are inversely correlated in both chickens and humans. This relationship correlates with protective responses against infectious pathogens including Marek's disease virus leading to lethal tumours in chickens and human immunodeficiency virus infection progressing to AIDS in humans. We propose that differences in peptide binding repertoire define two groups of MHC class I molecules strategically evolved as generalists and specialists for different modes of pathogen resistance. We suggest that differences in cell surface expression level ensure the development of optimal peripheral T cell responses. The inverse relationship of peptide repertoire and expression is evidently a fundamental property of MHC molecules, with ramifications extending beyond immunology and medicine to evolutionary biology and conservation. PMID:25860507

  2. Initial characterization of a dually radiolabeled peptide for simultaneous monitoring of protein targets and enzymatic activity

    PubMed Central

    Mebrahtu, Efrem; Zheleznyak, Alexander; Hur, Minjun A.; Laforest, Richard; Lapi, Suzanne E.

    2016-01-01

    Objective The goal of this study was to develop dually radiolabeled peptides for simultaneous imaging of cancer cell localization by targeting the αvβ3 integrin and their pathophysiology by targeting the activity of the proteolytic enzyme MMP2, involved in the metastatic process. Methods A hybrid peptide c(RGDfE)K(DOTA)PLGVRY containing a RGD motif for binding to the αvβ3 integrin, a metal chelator (DOTA) for radiolabeling with [64Cu], and the MMP2 substrate cleavage sequence PLGVRY with terminal tyrosine for labeling with [123I] was synthesized, labeled with [64Cu] and [123I], and evaluated in vitro as a potential imaging agent. Results The peptide was synthesized and labeled with [64Cu] and [123I] with 300 and 40 μCi/μg (542 and 72.2 mCi/μmol) specific activities, respectively, and radiochemical purity of>98%.c(RGDfE)K(DOTA)PLGVRY demonstrated high affinity for αvβ3 integrins(Kd = 83.4 ± 13.2 nM) in both substrate competition and cell binding assays. c(RGDfE)K(DOTA)PLGVRY peptide, but not the scrambled version, c(RGDfE)K(DOTA)GRPLVY was specifically cleaved by MMP2. Conclusions These results demonstrate the feasibility of developing dually radiolabeled peptides for the simultaneous imaging of cancer cells and their pathophysiologic activity. PMID:23154178

  3. REDV Peptide Conjugated Nanoparticles/pZNF580 Complexes for Actively Targeting Human Vascular Endothelial Cells.

    PubMed

    Shi, Changcan; Li, Qian; Zhang, Wencheng; Feng, Yakai; Ren, Xiangkui

    2015-09-16

    Herein, we demonstrate that the REDV peptide modified nanoparticles (NPs) can serve as a kind of active targeting gene carrier to condensate pZNF580 for specific promotion of the proliferation of endothelial cells (ECs). First, we synthesized a series of biodegradable amphiphilic copolymers by ring-opening polymerization reaction and graft modification with REDV peptide. Second, we prepared active targeting NPs via self-assembly of the amphiphilic copolymers using nanoprecipitation technology. After condensation with negatively charged pZNF580, the REDV peptide modified NPs/pZNF580 complexes were formed finally. Due to the binding affinity toward ECs of the specific peptide, these REDV peptide modified NPs/pZNF580 complexes could be recognized and adhered specifically by ECs in the coculture system of ECs and human artery smooth muscle cells (SMCs) in vitro. After expression of ZNF580, as the key protein to promote the proliferation of ECs, the relative ZNF580 protein level increased from 15.7% to 34.8%. The specificity in actively targeting ECs of the REDV peptide conjugated NPs/pZNF580 complexes was still retained in the coculture system. These findings in the present study could facilitate the development of actively targeting gene carriers for the endothelialization of artificial blood vessels. PMID:26373583

  4. Angiotensin peptides attenuate platelet-activating factor-induced inflammatory activity in rats.

    PubMed

    Sato, Akira; Yokoyama, Izumi; Ebina, Keiichi

    2015-11-01

    Angiotensin (Ang)--a peptide that is part of the renin-angiotensin system-induces vasoconstriction and a subsequent increase in blood pressure; Ang peptides, especially AngII, can also act as potent pro-inflammatory mediators. Platelet-activating factor (PAF) is a potent phospholipid mediator that is implicated in many inflammatory diseases. In this study, we investigated the effects of Ang peptides (AngII, AngIII, and AngIV) on PAF-induced inflammatory activity. In experiments using a rat hind-paw oedema model, AngII markedly and dose-dependently attenuated the paw oedema induced by PAF. The inhibitory effects of AngIII and AngIV on PAF-induced paw oedema were lower than that of AngII. Two Ang receptors, the AT1 and AT2 receptors, did not affect the AngII-mediated attenuation of PAF-induced paw oedema. Moreover, intrinsic tyrosine fluorescence studies demonstrated that AngII, AngIII, and AngIV interact with PAF, and that their affinities were closely correlated with their inhibitory effects on PAF-induced rat paw oedema. Also, AngII interacted with metabolite/precursor of PAF (lyso-PAF), and an oxidized phospholipid, 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), which bears a marked structural resemblance to PAF. Furthermore, POVPC dose-dependently inhibited AngII-mediated attenuation of PAF-induced paw oedema. These results suggest that Ang peptides can attenuate PAF-induced inflammatory activity through binding to PAF and lyso-PAF in rats. Therefore, Ang peptides may be closely involved in the regulation of many inflammatory diseases caused by PAF. PMID:26348270

  5. Delivering heparin-binding insulin-like growth factor 1 with self-assembling peptide hydrogels.

    PubMed

    Florine, Emily M; Miller, Rachel E; Liebesny, Paul H; Mroszczyk, Keri A; Lee, Richard T; Patwari, Parth; Grodzinsky, Alan J

    2015-02-01

    Heparin-binding insulin-like growth factor 1 (HB-IGF-1) is a fusion protein of IGF-1 with the HB domain of heparin-binding epidermal growth factor-like growth factor. A single dose of HB-IGF-1 has been shown to bind specifically to cartilage and to promote sustained upregulation of proteoglycan synthesis in cartilage explants. Achieving strong integration between native cartilage and tissue-engineered cartilage remains challenging. We hypothesize that if a growth factor delivered by the tissue engineering scaffold could stimulate enhanced matrix synthesis by both the cells within the scaffold and the adjacent native cartilage, integration could be enhanced. In this work, we investigated methods for adsorbing HB-IGF-1 to self-assembling peptide hydrogels to deliver the growth factor to encapsulated chondrocytes and cartilage explants cultured with growth factor-loaded hydrogels. We tested multiple methods for adsorbing HB-IGF-1 in self-assembling peptide hydrogels, including adsorption prior to peptide assembly, following peptide assembly, and with/without heparan sulfate (HS, a potential linker between peptide molecules and HB-IGF-1). We found that HB-IGF-1 and HS were retained in the peptide for all tested conditions. A subset of these conditions was then studied for their ability to stimulate increased matrix production by gel-encapsulated chondrocytes and by chondrocytes within adjacent native cartilage. Adsorbing HB-IGF-1 or IGF-1 prior to peptide assembly was found to stimulate increased sulfated glycosaminoglycan per DNA and hydroxyproline content of chondrocyte-seeded hydrogels compared with basal controls at day 10. Cartilage explants cultured adjacent to functionalized hydrogels had increased proteoglycan synthesis at day 10 when HB-IGF-1 was adsorbed, but not IGF-1. We conclude that delivery of HB-IGF-1 to focal defects in cartilage using self-assembling peptide hydrogels is a promising technique that could aid cartilage repair via enhanced matrix

  6. Asp residues of βDELSEED-motif are required for peptide binding in the Escherichia coli ATP synthase.

    PubMed

    Ahmad, Zulfiqar; Tayou, Junior; Laughlin, Thomas F

    2015-04-01

    This study demonstrates the requirement of Asp-380 and Asp-386 in the βDELSEED-motif of Escherichia coli ATP synthase for peptide binding and inhibition. We studied the inhibition profiles of wild-type and mutant E. coli ATP synthase in presence of c-terminal amide bound melittin and melittin related peptide. Melittin and melittin related peptide inhibited wild-type ATPase almost completely while only partial inhibition was observed in single mutations with replacement of Asp to Ala, Gln, or Arg. Additionally, very little or no inhibition occurred among double mutants βD380A/βD386A, βD380Q/βD386Q, or βD380R/βD386R signifying that removal of one Asp residue allows limited peptide binding. Partial or substantial loss of oxidative phosphorylation among double mutants demonstrates the functional requirement of βD380 and βD386 Asp residues. Moreover, abrogation of wild-type E. coli cell growth and normal growth of mutant cells in presence of peptides provides strong evidence for the requirement of βDELSEED-motif Asp residues for peptide binding. It is concluded that while presence of one Asp residue may allow partial peptide binding, both Asp residues, βD380 and βD386, are essential for proper peptide binding and inhibition of ATP synthase. PMID:25603139

  7. Structure, Energetics and Dynamics of Binding Coactivator Peptide to Human Retinoid X Receptor Alpha Ligand Binding Domain Complex with 9-cis-Retinoic Acid

    PubMed Central

    Xia, Gang; Boerma, LeeAnn J; Cox, Bryan D; Qiu, Cheng; Kang, Sebyung; Smith, Craig D; Renfrow, Matthew B; Muccio, Donald D

    2010-01-01

    Retinoid X receptors (RXRs) are ligand-dependent nuclear receptors, which are activated by the potent agonist 9-cis retinoic acid (9cRA). 9cRA binds to the ligand binding domain (LBD) of RXRs, and recruits coactivator proteins for gene transcription. Using isothermal titration calorimetry, the binding of a 13-mer coactivator peptide, GRIP-1, to the hRXRα-LBD homodimer complex containing 9cRA (hRXRα-LBD:9cRA:GRIP-1) is reported between 20° and 37 °C. ΔG is temperature independent (−8.5 kcal/mol), and GRIP-1 binding is driven by ΔH (−9.2 kcal/mol) at 25 °C. ΔCp is large and negative (−401 cal/mol-K). The crystal structure of hRXRα-LBD:9cRA:GRIP-1 is reported at 2.05 Å. When the structures of hRXRα-LBD:9cRA:GRIP-1 and hRXRα-LBD:9cRA (1FBY) homodimers are compared, E453 and E456 on helix 12 bury and form ionic interactions with GRIP-1. R302 on helix 4 realigns to form new salt bridges to both E453 and E456. F277 (helix 3), F437 (helix 11), and F450 (helix 12) move toward the hydrophobic interior. The changes in the near-UV spectrum at 260 nm of the hRXRα-LBD:9cRA:GRIP-1 support this structural change. Helix 11 tilts toward helix 12 by ≈ 1 Å modifying the ring conformation of 9cRA. Hydrogen-deuterium exchange mass spectroscopy indicate GRIP-1 binding to hRXRα-LBD:9cRA significantly decreases the exchange rates for peptides containing helices 3 (F277), 4 (R302), 11 (F437) and 12 (E453; E456). The structural changes and loss of dynamics of the GRIP-1 bound structure are used to interpret the energetics of coactivator peptide binding to the agonist-bound hRXRα-LBD. PMID:21049972

  8. Neutron Reflectometry Studies Define Prion Protein N-terminal Peptide Membrane Binding

    PubMed Central

    Le Brun, Anton P.; Haigh, Cathryn L.; Drew, Simon C.; James, Michael; Boland, Martin P.; Collins, Steven J.

    2014-01-01

    The prion protein (PrP), widely recognized to misfold into the causative agent of the transmissible spongiform encephalopathies, has previously been shown to bind to lipid membranes with binding influenced by both membrane composition and pH. Aside from the misfolding events associated with prion pathogenesis, PrP can undergo various posttranslational modifications, including internal cleavage events. Alpha- and beta-cleavage of PrP produces two N-terminal fragments, N1 and N2, respectively, which interact specifically with negatively charged phospholipids at low pH. Our previous work probing N1 and N2 interactions with supported bilayers raised the possibility that the peptides could insert deeply with minimal disruption. In the current study we aimed to refine the binding parameters of these peptides with lipid bilayers. To this end, we used neutron reflectometry to define the structural details of this interaction in combination with quartz crystal microbalance interrogation. Neutron reflectometry confirmed that peptides equivalent to N1 and N2 insert into the interstitial space between the phospholipid headgroups but do not penetrate into the acyl tail region. In accord with our previous studies, interaction was stronger for the N1 fragment than for the N2, with more peptide bound per lipid. Neutron reflectometry analysis also detected lengthening of the lipid acyl tails, with a concurrent decrease in lipid area. This was most evident for the N1 peptide and suggests an induction of increased lipid order in the absence of phase transition. These observations stand in clear contrast to the findings of analogous studies of Ab and α-synuclein and thereby support the possibility of a functional role for such N-terminal fragment-membrane interactions. PMID:25418300

  9. Enhancing Peptide Ligand Binding to Vascular Endothelial Growth Factor by Covalent Bond Formation

    PubMed Central

    Marquez, Bernadette V.; Beck, Heather E.; Aweda, Tolulope A.; Phinney, Brett; Holsclaw, Cynthia; Jewell, William; Tran, Diana; Day, Jeffrey J.; Peiris, Malalage N.; Nwosu, Charles; Lebrilla, Carlito; Meares, Claude F.

    2012-01-01

    Formation of a stable covalent bond between a synthetic probe molecule and a specific site on a target protein has many potential applications in biomedical science. For example, the properties of probes used as receptor-imaging ligands may be improved by increasing their residence time on the targeted receptor. Among the more interesting cases are peptide ligands, the strongest of which typically bind to receptors with micromolar dissociation constants, and which may depend on processes other than simple binding to provide images. The side chains of cysteine, histidine, or lysine are attractive for chemical attachment to improve binding to a receptor protein, and a system based on acryloyl probes attaching to engineered cysteine provides excellent positron emission tomographic images in animal models (Wei et al. (2008) J. Nucl. Med. 49, 1828-1835). In nature, lysine is a more common but less reactive residue than cysteine, making it an interesting challenge to modify. To seek practically useful cross-linking yields with naturally occurring lysine side chains, we have explored not only acryloyl but also other reactive linkers with different chemical properties. We employed a peptide-VEGF model system to discover that a 19mer peptide ligand, which carried a lysine-tagged dinitrofluorobenzene group, became attached stably and with good yield to a unique lysine residue on human vascular endothelial growth factor (VEGF), even in the presence of 70% fetal bovine serum. The same peptide carrying acryloyl and related Michael acceptors gave low yields of attachment to VEGF, as did the chloroacetyl peptide. PMID:22537066

  10. OMP Peptides Activate the DegS Stress-Sensor Protease by a Relief of Inhibition Mechanism

    SciTech Connect

    Sohn, Jungsan; Grant, Robert A.; Sauer, Robert T.; MIT

    2010-03-19

    In the E. coli periplasm, C-terminal peptides of misfolded outer-membrane porins (OMPs) bind to the PDZ domains of the trimeric DegS protease, triggering cleavage of a transmembrane regulator and transcriptional activation of stress genes. We show that an active-site DegS mutation partially bypasses the requirement for peptide activation and acts synergistically with mutations that disrupt contacts between the protease and PDZ domains. Biochemical results support an allosteric model, in which these mutations, active-site modification, and peptide/substrate binding act in concert to stabilize proteolytically active DegS. Cocrystal structures of DegS in complex with different OMP peptides reveal activation of the protease domain with varied conformations of the PDZ domain and without specific contacts from the bound OMP peptide. Taken together, these results indicate that the binding of OMP peptides activates proteolysis principally by relieving inhibitory contacts between the PDZ domain and the protease domain of DegS.

  11. Piezoresistive measurement of Swine H1N1 Hemagglutinin peptide binding with microcantilever arrays

    NASA Astrophysics Data System (ADS)

    Bajwa, N.; Maldonado, C. J.; Thundat, T.; Passian, A.

    2014-03-01

    Effective detection of Swine H1N1 Hemagglutinin peptide is crucial as it could be used as a positive control to screen for highly infectious flu strains such as Swine-Origin Influenza A (H1N1). Piezoresistive microcantilever arrays present a pathway towards highly sensitive and label-free detection of biomolecules by transducing the antigen-antibody binding into change in resistivity via induced surface stress variation. We demonstrate a mechanical transduction of Swine H1N1 Hemagglutinin peptide binding and suggest the employed technique may offer a potential platform for detection of the H1N1 virus, which could be clinically used to diagnose and provide subsequent relief.

  12. Quantitative online prediction of peptide binding to the major histocompatibility complex.

    PubMed

    Hattotuwagama, Channa K; Guan, Pingping; Doytchinova, Irini A; Zygouri, Christianna; Flower, Darren R

    2004-01-01

    With its implications for vaccine discovery, the accurate prediction of T cell epitopes is one of the key aspirations of computational vaccinology. We have developed a robust multivariate statistical method, based on partial least squares, for the quantitative prediction of peptide binding to major histocompatibility complexes (MHC), the principal checkpoint on the antigen presentation pathway. As a service to the immunobiology community, we have made a Perl implementation of the method available via a World Wide Web server. We call this server MHCPred. Access to the server is freely available from the URL: http://www.jenner.ac.uk/MHCPred. We have exemplified our method with a model for peptides binding to the common human MHC molecule HLA-B*3501. PMID:14629978

  13. Structure and Activity of Human Mitochondrial Peptide Deformylase, a Novel Cancer Target

    SciTech Connect

    Escobar-Alvarez, Sindy; Goldgur, Yehuda; Yang, Guangli; Ouerfelli, Ouathek; Li, Yueming; Scheinberg, David A.

    2009-07-21

    Peptide deformylase proteins (PDFs) participate in the N-terminal methionine excision pathway of newly synthesized peptides. We show that the human PDF (HsPDF) can deformylate its putative substrates derived from mitochondrial DNA-encoded proteins. The first structural model of a mammalian PDF (1.7 A), HsPDF, shows a dimer with conserved topology of the catalytic residues and fold as non-mammalian PDFs. The HsPDF C-terminus topology and the presence of a helical loop (H2 and H3), however, shape a characteristic active site entrance. The structure of HsPDF bound to the peptidomimetic inhibitor actinonin (1.7 A) identified the substrate-binding site. A defined S1' pocket, but no S2' or S3' substrate-binding pockets, exists. A conservation of PDF-actinonin interaction across PDFs was observed. Despite the lack of true S2' and S3' binding pockets, confirmed through peptide binding modeling, enzyme kinetics suggest a combined contribution from P2'and P3' positions of a formylated peptide substrate to turnover.

  14. Structure and activity of human mitochondrial peptide deformylase, a novel cancer target.

    PubMed

    Escobar-Alvarez, Sindy; Goldgur, Yehuda; Yang, Guangli; Ouerfelli, Ouathek; Li, Yueming; Scheinberg, David A

    2009-04-17

    Peptide deformylase proteins (PDFs) participate in the N-terminal methionine excision pathway of newly synthesized peptides. We show that the human PDF (HsPDF) can deformylate its putative substrates derived from mitochondrial DNA-encoded proteins. The first structural model of a mammalian PDF (1.7 A), HsPDF, shows a dimer with conserved topology of the catalytic residues and fold as non-mammalian PDFs. The HsPDF C-terminus topology and the presence of a helical loop (H2 and H3), however, shape a characteristic active site entrance. The structure of HsPDF bound to the peptidomimetic inhibitor actinonin (1.7 A) identified the substrate-binding site. A defined S1' pocket, but no S2' or S3' substrate-binding pockets, exists. A conservation of PDF-actinonin interaction across PDFs was observed. Despite the lack of true S2' and S3' binding pockets, confirmed through peptide binding modeling, enzyme kinetics suggest a combined contribution from P2'and P3' positions of a formylated peptide substrate to turnover. PMID:19236878

  15. sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides

    PubMed Central

    Luo, Heng; Ye, Hao; Ng, Hui Wen; Sakkiah, Sugunadevi; Mendrick, Donna L.; Hong, Huixiao

    2016-01-01

    Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. This algorithm can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system. PMID:27558848

  16. Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides

    SciTech Connect

    Kotrba, P.; Ruml, T.; Doleckova, L.; Lorenzo, V. de

    1999-03-01

    Metal binding peptides of sequences Gly-His-His-Pro-His-Gly (named HP) and Gly-Cys-Gly-Cys-Pro-Cys-Gly-Cys-Gly (named CP) were genetically engineered into LamB protein and expressed in Escherichia coli. The Cd{sup 2+}-to-HP and Cd{sup 2+}-to-CP stoichiometries of peptides were 1:1 and 3:1, respectively. Hybrid LamB proteins were found to be properly folded in the outer membrane of E. coli. Isolated cell envelopes of E. coli bearing newly added metal binding peptides showed an up to 1.8-fold increase in Cd{sup 2+} binding capacity. The bioaccumulation of Cd{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} by E. coli was evaluated. Surface display of CP multiplied the ability of E. coli to bind Cd{sup 2+} from growth medium fourfold. Display of HP peptide did not contribute to an increase in the accumulation of Cu{sup 2+} and Zn{sup 2+}. However, Cu{sup 2+} ceased contribution of HP for Cd{sup 2+} accumulation, probably due to the strong binding of Cu{sup 2+} to HP. Thus, considering the cooperation of cell structures with inserted peptides, the relative affinities of metal binding peptide and, for example, the cell wall to metal ion should be taken into account in the rational design of peptide sequences possessing specificity for a particular metal.

  17. Enhanced Bioaccumulation of Heavy Metal Ions by Bacterial Cells Due to Surface Display of Short Metal Binding Peptides

    PubMed Central

    Kotrba, Pavel; Dolečková, Lucie; de Lorenzo, Víctor; Ruml, Tomas

    1999-01-01

    Metal binding peptides of sequences Gly-His-His-Pro-His-Gly (named HP) and Gly-Cys-Gly-Cys-Pro-Cys-Gly-Cys-Gly (named CP) were genetically engineered into LamB protein and expressed in Escherichia coli. The Cd2+-to-HP and Cd2+-to-CP stoichiometries of peptides were 1:1 and 3:1, respectively. Hybrid LamB proteins were found to be properly folded in the outer membrane of E. coli. Isolated cell envelopes of E. coli bearing newly added metal binding peptides showed an up to 1.8-fold increase in Cd2+ binding capacity. The bioaccumulation of Cd2+, Cu2+, and Zn2+ by E. coli was evaluated. Surface display of CP multiplied the ability of E. coli to bind Cd2+ from growth medium fourfold. Display of HP peptide did not contribute to an increase in the accumulation of Cu2+ and Zn2+. However, Cu2+ ceased contribution of HP for Cd2+ accumulation, probably due to the strong binding of Cu2+ to HP. Thus, considering the cooperation of cell structures with inserted peptides, the relative affinities of metal binding peptide and, for example, the cell wall to metal ion should be taken into account in the rational design of peptide sequences possessing specificity for a particular metal. PMID:10049868

  18. sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides.

    PubMed

    Luo, Heng; Ye, Hao; Ng, Hui Wen; Sakkiah, Sugunadevi; Mendrick, Donna L; Hong, Huixiao

    2016-01-01

    Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. This algorithm can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system. PMID:27558848

  19. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid

    NASA Astrophysics Data System (ADS)

    Singh, Anirudha; Corvelli, Michael; Unterman, Shimon A.; Wepasnick, Kevin A.; McDonnell, Peter; Elisseeff, Jennifer H.

    2014-10-01

    Lubrication is key for the efficient function of devices and tissues with moving surfaces, such as articulating joints, ocular surfaces and the lungs. Indeed, lubrication dysfunction leads to increased friction and degeneration of these systems. Here, we present a polymer-peptide surface coating platform to non-covalently bind hyaluronic acid (HA), a natural lubricant in the body. Tissue surfaces treated with the HA-binding system exhibited higher lubricity values, and in vivo were able to retain HA in the articular joint and to bind ocular tissue surfaces. Biomaterials-mediated strategies that locally bind and concentrate HA could provide physical and biological benefits when used to treat tissue-lubricating dysfunction and to coat medical devices.

  20. Anti-Legionella activity of staphylococcal hemolytic peptides.

    PubMed

    Marchand, A; Verdon, J; Lacombe, C; Crapart, S; Héchard, Y; Berjeaud, J M

    2011-05-01

    A collection of various Staphylococci was screened for their anti-Legionella activity. Nine of the tested strains were found to secrete anti-Legionella compounds. The culture supernatants of the strains, described in the literature to produce hemolytic peptides, were successfully submitted to a two step purification process. All the purified compounds, except one, corresponded to previously described hemolytic peptides and were not known for their anti-Legionella activity. By comparison of the minimal inhibitory concentrations, minimal permeabilization concentrations, decrease in the number of cultivable bacteria, hemolytic activity and selectivity, the purified peptides could be separated in two groups. First group, with warnericin RK as a leader, corresponds to the more hemolytic and bactericidal peptides. The peptides of the second group, represented by the PSMα from Staphylococcus epidermidis, appeared bacteriostatic and poorly hemolytic. PMID:21291938

  1. Oligonucleotide delivery with cell surface binding and cell penetrating Peptide amphiphile nanospheres.

    PubMed

    Mumcuoglu, Didem; Sardan, Melis; Tekinay, Turgay; Guler, Mustafa O; Tekinay, Ayse B

    2015-05-01

    A drug delivery system designed specifically for oligonucleotide therapeutics can ameliorate the problems associated with the in vivo delivery of these molecules. The internalization of free oligonucleotides is challenging, and cytotoxicity is the main obstacle for current transfection vehicles. To develop nontoxic delivery vehicles for efficient transfection of oligonucleotides, we designed a self-assembling peptide amphiphile (PA) nanosphere delivery system decorated with cell penetrating peptides (CPPs) containing multiple arginine residues (R4 and R8), and a cell surface binding peptide (KRSR), and report the efficiency of this system in delivering G-3129, a Bcl-2 antisense oligonucleotide (AON). PA/AON (peptide amphiphile/antisense oligonucleotide) complexes were characterized with regards to their size and secondary structure, and their cellular internalization efficiencies were evaluated. The effect of the number of arginine residues on the cellular internalization was investigated by both flow cytometry and confocal imaging, and the results revealed that uptake efficiency improved as the number of arginines in the sequence increased. The combined effect of cell penetration and surface binding property on the cellular internalization and its uptake mechanism was also evaluated by mixing R8-PA and KRSR-PA. R8 and R8/KRSR decorated PAs were found to drastically increase the internalization of AONs compared to nonbioactive PA control. Overall, the KRSR-decorated self-assembled PA nanospheres were demonstrated to be noncytotoxic delivery vectors with high transfection rates and may serve as a promising delivery system for AONs. PMID:25828697

  2. Requirement of aggregation propensity of Alzheimer amyloid peptides for neuronal cell surface binding

    PubMed Central

    Bateman, David A; McLaurin, JoAnne; Chakrabartty, Avijit

    2007-01-01

    Background Aggregation of the amyloid peptides, Aβ40 and Aβ42, is known to be involved in the pathology of Alzheimer's disease (AD). Here we investigate the relationship between peptide aggregation and cell surface binding of three forms of Aβ (Aβ40, Aβ42, and an Aβ mutant). Results Using confocal microscopy and flow cytometry with fluorescently labelled Aβ, we demonstrate a correlation between the aggregation propensity of the Alzheimer amyloid peptides and their neuronal cell surface association. We find that the highly aggregation prone Aβ42 associates with the surface of neuronal cells within one hour, while the less aggregation prone Aβ40 associates over 24 hours. We show that a double mutation in Aβ42 that reduces its aggregation propensity also reduces its association with the cell surface. Furthermore, we find that a cell line that is resistant to Aβ cytotoxicity, the non-neuronal human lymphoma cell line U937, does not bind either Aβ40 or Aβ42. Conclusion Taken together, our findings reveal that amyloid peptide aggregation propensity is an essential determinant of neuronal cell surface association. We anticipate that our approach, involving Aβ imaging in live cells, will be highly useful for evaluating the efficacy of therapeutic drugs that prevent toxic Aβ association with neuronal cells. PMID:17475015

  3. Peptide and metal ion-dependent association of isolated helix-loop-helix calcium binding domains: studies of thrombic fragments of calmodulin.

    PubMed Central

    Brokx, R. D.; Vogel, H. J.

    2000-01-01

    Calmodulin (CaM), the ubiquitous, eukaryotic, bilobal calcium-binding regulatory protein, has been cleaved by thrombin to create two fragments. TM1 (1-106) and TM2 (107-148). NMR and CD results indicate that TMI and TM2 can associate in the presence of Ca2+ to form a complex similar to native CaM, even though the cleavage site is not in the linker region between two helix-loop-helix domains, but rather within an alpha-helix. Cadmium-113 NMR results show that this complex has enhanced metal-ion binding properties when compared to either TM1 or TM2 alone. This complex can bind several CaM-binding target peptides, as shown by gel bandshift assays, circular dichroism spectra, and 13C NMR spectra of biosynthetically methyl-13C-Met-labeled TM1 and TM2; moreover, gel bandshift assays show that the addition of a target peptide strengthens the interactions between TM1 and TM2 and increases the stability of the complex. Cadmium-113 NMR spectra indicate that the TM1:TM2 complex can also bind the antipsychotic drug trifluoperazine. However, in contrast to CaM:peptide complexes, the TM1:TM2:peptide complexes are disrupted by 4 M urea; moreover, TM1 and TM2 in combination are unable to activate CaM-dependent enzymes. This suggests that TM1:TM2 mixtures cannot bind target molecules as tightly as intact CaM, or perhaps that binding occurs but additional interactions with the target enzymes that are necessary for proper activation are perturbed by the proteolytic cleavage. The results presented here reflect the importance of the existence of helix-loop-helix Ca2+-binding domains in pairs in proteins such as CaM, and extend the understanding of the association of such domains in this class of proteins in general. PMID:10850806

  4. Specific DNA binding to a major histocompatibility complex enhancer sequence by a synthetic 57-residue double zinc finger peptide from a human enhancer binding protein.

    PubMed

    Sakaguchi, K; Appella, E; Omichinski, J G; Clore, G M; Gronenborn, A M

    1991-04-15

    Two 57-residue peptides containing one pair of "zinc fingers" from a human enhancer binding protein were prepared by solid-phase peptide synthesis. One peptide (MBP-DF) contained the native sequence, while the second peptide ([Abu11]MBP-DF) has an alpha-aminobutyric acid residue substituted for a nonconserved cysteine residue at position 11. The peptides were characterized by several chemical and physical methods, and their DNA binding properties were evaluated using gel retardation experiments. Spectroscopic studies demonstrated that addition of metal ions such as zinc and cobalt resulted in specific conformational changes in both peptides, indicating that cysteine-11 does not appear to be involved in metal chelation. One-dimensional 1H NMR studies indicate that a stable folded structure is formed upon addition of zinc, and the chemical shift pattern is consistent with that previously observed for one constituent single finger (Omichinski, J., Clore, G. M., Appella, E., Sakaguchi, K., and Gronenborn, A. M. (1990) Biochemistry 29, 9324-9334). Gel retardation experiments demonstrate that the peptides are capable of interacting with a 15-mer oligonucleotide comprising a portion of the major histocompatibility complex enhancer sequence and that the interaction is zinc-dependent. The dissociation constant for the [Abu11]MBP-DF peptide is 1.4 x 10(-7) M with maximal binding occurring at a zinc-to-peptide ratio of 2 to 1. The binding specificity observed with respect to related enhancer sequences exhibits the same relative order as noted previously for the whole protein. Studies with point mutants of the major histocompatibility complex enhancer binding sequence indicate that the last GC base pair in a four-guanine stretch plays a pivotal role in the interaction between the peptide and DNA. PMID:2016331

  5. Prediction of Antibacterial Activity from Physicochemical Properties of Antimicrobial Peptides

    PubMed Central

    Melo, Manuel N.; Ferre, Rafael; Feliu, Lídia; Bardají, Eduard; Planas, Marta; Castanho, Miguel A. R. B.

    2011-01-01

    Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations. PMID:22194847

  6. Oncolytic Activities of Host Defense Peptides

    PubMed Central

    Al-Benna, Sammy; Shai, Yechiel; Jacobsen, Frank; Steinstraesser, Lars

    2011-01-01

    Cancer continues to be a leading source of morbidity and mortality worldwide in spite of progress in oncolytic therapies. In addition, the incidence of cancers affecting the breast, kidney, prostate and skin among others continue to rise. Chemotherapeutic drugs are widely used in cancer treatment but have the serious drawback of nonspecific toxicity because these agents target any rapidly dividing cell without discriminating between healthy and malignant cells. In addition, many neoplasms eventually become resistant to conventional chemotherapy due to selection for multidrug-resistant variants. The limitations associated with existing chemotherapeutic drugs have stimulated the search for new oncolytic therapies. Host defense peptides (HDPs) may represent a novel family of oncolytic agents that can avoid the shortcomings of conventional chemotherapy because they exhibit selective cytotoxicity against a broad spectrum of malignant human cells, including multi-drug-resistant neoplastic cells. Oncolytic activity by HDPs is usually via necrosis due to cell membrane lysis, but some HDPs can trigger apoptosis in cancer cells via mitochondrial membrane disruption. In addition, certain HDPs are anti-angiogenic which may inhibit cancer progression. This paper reviews oncolytic HDP studies in order to address the suitability of selected HDPs as oncolytic therapies. PMID:22174648

  7. Coupling of importin beta binding peptide on plasmid DNA: transfection efficiency is increased by modification of lipoplex's physico-chemical properties

    PubMed Central

    Carrière, Marie; Escriou, Virginie; Savarin, Aline; Scherman, Daniel

    2003-01-01

    Background Non-viral vectors for gene transfer are less immunogenic than viral vectors but also less efficient. Significant effort has focused on enhancing non-viral gene transfer efficiency by increasing nuclear import of plasmid DNA, particularly by coupling nuclear localization peptidic sequences to plasmid DNA. Results We have coupled a 62-aminoacid peptide derived from hSRP1α importin beta binding domain, called the IBB peptide to plasmid DNA by using the heterobifunctional linker N-(4-azido-2,3,5,6 tetrafluorobenzyl)-6-maleimidyl hexanamide (TFPAM-6). When covalently coupled to plasmid DNA, IBB peptide did not increase the efficiency of cationic lipid mediated transfection. The IBB peptide was still able to interact with its nuclear import receptor, importin β, but non-specifically. However, we observed a 20-fold increase in reporter gene expression with plasmid DNA / IBB peptide complexes under conditions of inefficient transfection. In which case, IBB was associated with plasmid DNA through self assembling ionic interaction. Conclusions The improvement of transfection activity was not due to an improved nuclear import of DNA, but rather by the modification of physicochemical properties of IBB peptide / plasmid complexes. IBB peptide increased lipoplex size and these larger complexes were more efficient for gene transfer. PMID:12969505

  8. The Structure of the Amyloid-[beta] Peptide High-Affinity Copper II Binding Site in Alzheimer Disease

    SciTech Connect

    Streltsov, Victor A.; Titmuss, Stephen J.; Epa, V. Chandana; Barnham, Kevin J.; Masters, Colin L.; Varghese, Joseph N.

    2008-11-03

    Neurodegeneration observed in Alzheimer disease (AD) is believed to be related to the toxicity from reactive oxygen species (ROS) produced in the brain by the amyloid-{beta} (A{beta}) protein bound primarily to copper ions. The evidence for an oxidative stress role of A{beta}-Cu redox chemistry is still incomplete. Details of the copper binding site in A{beta} may be critical to the etiology of AD. Here we present the structure determined by combining x-ray absorption spectroscopy (XAS) and density functional theory analysis of A{beta} peptides complexed with Cu{sup 2+} in solution under a range of buffer conditions. Phosphate-buffered saline buffer salt (NaCl) concentration does not affect the high-affinity copper binding mode but alters the second coordination sphere. The XAS spectra for truncated and full-length A{beta}-Cu{sup 2+} peptides are similar. The novel distorted six-coordinated (3N3O) geometry around copper in the A{beta}-Cu{sup 2+} complexes include three histidines: glutamic, or/and aspartic acid, and axial water. The structure of the high-affinity Cu{sup 2+} binding site is consistent with the hypothesis that the redox activity of the metal ion bound to A{beta} can lead to the formation of dityrosine-linked dimers found in AD.

  9. Chloroplast Hsp93 Directly Binds to Transit Peptides at an Early Stage of the Preprotein Import Process.

    PubMed

    Huang, Po-Kai; Chan, Po-Ting; Su, Pai-Hsiang; Chen, Lih-Jen; Li, Hsou-min

    2016-02-01

    Three stromal chaperone ATPases, cpHsc70, Hsp90C, and Hsp93, are present in the chloroplast translocon, but none has been shown to directly bind preproteins in vivo during import, so it remains unclear whether any function as a preprotein-translocating motor and whether they have different functions during the import process. Here, using protein crosslinking followed by ionic detergent solubilization, we show that Hsp93 directly binds to the transit peptides of various preproteins undergoing active import into chloroplasts. Hsp93 also binds to the mature region of a preprotein. A time course study of import, followed by coimmunoprecipitation experiments, confirmed that Hsp93 is present in the same complexes as preproteins at an early stage when preproteins are being processed to the mature size. In contrast, cpHsc70 is present in the same complexes as preproteins at both the early stage and a later stage after the transit peptide has been removed, suggesting that cpHsc70, but not Hsp93, is important in translocating processed mature proteins across the envelope. PMID:26676256

  10. Chloroplast Hsp93 Directly Binds to Transit Peptides at an Early Stage of the Preprotein Import Process1[OPEN

    PubMed Central

    Huang, Po-Kai; Chan, Po-Ting; Chen, Lih-Jen

    2016-01-01

    Three stromal chaperone ATPases, cpHsc70, Hsp90C, and Hsp93, are present in the chloroplast translocon, but none has been shown to directly bind preproteins in vivo during import, so it remains unclear whether any function as a preprotein-translocating motor and whether they have different functions during the import process. Here, using protein crosslinking followed by ionic detergent solubilization, we show that Hsp93 directly binds to the transit peptides of various preproteins undergoing active import into chloroplasts. Hsp93 also binds to the mature region of a preprotein. A time course study of import, followed by coimmunoprecipitation experiments, confirmed that Hsp93 is present in the same complexes as preproteins at an early stage when preproteins are being processed to the mature size. In contrast, cpHsc70 is present in the same complexes as preproteins at both the early stage and a later stage after the transit peptide has been removed, suggesting that cpHsc70, but not Hsp93, is important in translocating processed mature proteins across the envelope. PMID:26676256

  11. Differential changes in atrial natriuretic peptide and vasopressin receptor bindings in kidney of spontaneously hypertensive rat

    SciTech Connect

    Ogura, T.; Mitsui, T.; Yamamoto, I.; Katayama, E.; Ota, Z.; Ogawa, N.

    1987-01-19

    To elucidate the role of atrial natriuretic peptide (ANP) and vasopressin (VP) in a hypertensive state, ANP and VP receptor bindings in spontaneously hypertensive rat (SHR) kidney were analyzed using the radiolabeled receptor assay (RRA) technique. Systolic blood pressure of SHR aged 12 weeks was statistically higher than that of age-matched Wistar Kyoto (WKY) rats. Maximum binding capacity (Bmax) of (/sup 125/I)-ANP binding to the SHR kidney membrane preparations was statistically lower than that of WKY rats, but dissociation constant (Kd) was not significantly different. On the other hand, Bmax of (/sup 3/H)-VP binding to the SHR kidney membrane preparations was statistically higher than that of WKY rats, but Kd were similar. Since the physiological action of ANP is natriuresis and VP is the most important antidiuretic hormone in mammalia, these opposite changes of ANP and VP receptor bindings in SHR kidney suggested that these peptides may play an important role in the pathophysiology of the hypertensive state, although it has not been confirmed as yet.

  12. Review: Production and functionality of active peptides from milk.

    PubMed

    Muro Urista, C; Álvarez Fernández, R; Riera Rodriguez, F; Arana Cuenca, A; Téllez Jurado, A

    2011-08-01

    In recent years, research on the production of active peptides obtained from milk and their potential functionality has grown, to a great extent. Bioactive peptides have been defined as specific protein fragments that have a positive impact on body functions or conditions, and they may ultimately have an influence on health. Individual proteins of casein or milk-derived products such as cheese and yogurt have been used as a protein source to study the isolation and activity of peptides with several applications. Currently, the milk whey waste obtained in the production of cheese also represents a protein source from which active peptides could be isolated with potential industrial applications. The active properties of milk peptides and the results found with regard to their physiological effects have led to the classification of peptides as belonging to the group of ingredients of protein nature, appropriate for use in functional foods or pharmaceutical formulations. In this study, the main peptides obtained from milk protein and the past research studies about its production and biological activities will be explained. Second, an analysis will be made on the methods to determinate the biological activities, the separation of bioactive peptides and its structure identification. All of these form the base required to obtain synthetic peptides. Finally, we explain the experimental animal and human trials done in the past years. Nevertheless, more research is required on the design and implementation of equipment for the industrial production and separation of peptides. In addition, different authors suggest that more emphasis should therefore be given to preclinical studies, proving that results are consistent and that effects are demonstrated repeatedly by several research human groups. PMID:21917640

  13. Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics.

    PubMed

    Vegarud, G E; Langsrud, T; Svenning, C

    2000-11-01

    Minerals and trace elements in cow's milk occur as inorganic ions and salts or form complexes with proteins and peptides, carbohydrates, fats and small molecules. The main mineral binder or chelators of calcium are the caseins, alphas1-casein, alphas2-casein, beta-casein and kappa-casein, but also whey proteins and lactoferrin bind specific minerals like calcium, magnesium, zinc, iron, sodium and potassium. Less documented is the binding of trace elements. Peptides obtained by in vitro or in vivo hydrolysis act as mineral trappers through specific and non-specific binding sites. They may then function as carriers, chelators, of various minerals and thus enhance or inhibit bioavailability. Peptides from milk proteins have found interesting new applications in the food industry as products with improved functionality or as ingredients of dietary products, or used in pharmaceutical industry. Fortification of foods with minerals in a low concentration has for a long time been used in some countries to overcome mineral deficiency, which is an increasing problem in humans. These types of foods are being used to create a new generation of super foods in the industry today. PMID:11242452

  14. Binding of leachable components of polymethyl methacrylate (PMMA) and peptide on modified SPR chip

    NASA Astrophysics Data System (ADS)

    Szaloki, M.; Vitalyos, G.; Harfalvi, J.; Hegedus, Cs

    2013-12-01

    Many types of polymers are often used in dentistry, which may cause allergic reaction, mainly methyl methacrylate allergy due to the leachable, degradable components of polymerized dental products. The aim of this study was to investigate the interaction between the leachable components of PMMA and peptides by Fourier-transform Surface Plasmon Resonance (FT SPR). In our previous work binding of oligopeptides (Ph.D.-7 and Ph.D.-12 Peptide Library Kit) was investigated to PMMA surface by phage display technique. It was found that oligopeptides bounded specifically to PMMA surface. The most common amino acids were leucine and proline inside the amino acids sequences of DNA of phages. The binding of haptens, as formaldehyde and methacrylic acid, to frequent amino acids was to investigate on the modified gold SPR chip. Self assembled monolayer (SAM) modified the surface of gold chip and ensured the specific binding between the haptens and amino acids. It was found that amino acids bounded to modified SPR gold and the haptens bounded to amino acids by creating multilayer on the chip surface. By the application of phage display and SPR modern bioanalytical methods the interaction between allergens and peptides can be investigated.

  15. Oxpholipin 11D: An Anti-Inflammatory Peptide That Binds Cholesterol and Oxidized Phospholipids

    PubMed Central

    Ruchala, Piotr; Navab, Mohamad; Jung, Chun-Ling; Hama-Levy, Susan; Micewicz, Ewa D.; Luong, Hai; Reyles, Jonathan E.; Sharma, Shantanu; Waring, Alan J.; Fogelman, Alan M.; Lehrer, Robert I.

    2010-01-01

    Background Many Gram-positive bacteria produce pore-forming exotoxins that contain a highly conserved, 12-residue domain (ECTGLAWEWWRT) that binds cholesterol. This domain is usually flanked N-terminally by arginine and C-terminally by valine. We used this 14-residue sequence as a template to create a small library of peptides that bind cholesterol and other lipids. Methodology/Results Several of these peptides manifested anti-inflammatory properties in a predictive in vitro monocyte chemotactic assay, and some also diminished the pro-inflammatory effects of low-density lipoprotein in apoE-deficient mice. The most potent analog, Oxpholipin-11D (OxP-11D), contained D-amino acids exclusively and was identical to the 14-residue design template except that diphenylalanine replaced cysteine-3. In surface plasmon resonance binding studies, OxP-11D bound oxidized (phospho)lipids and sterols in much the same manner as D-4F, a widely studied cardioprotective apoA-I-mimetic peptide with anti-inflammatory properties. In contrast to D-4F, which adopts a stable α-helical structure in solution, the OxP-11D structure was flexible and contained multiple turn-like features. Conclusion Given the substantial evidence that oxidized phospholipids are pro-inflammatory in vivo, OxP-11D and other Oxpholipins may have therapeutic potential. PMID:20418958

  16. The further characterization of the peptide specifically binding to gastric cancer.

    PubMed

    Han, Juanjuan; Gao, Xiaojie; Duan, Wei; Lin, Fenghuei; Nie, Guochao; Xue, Qinqin; Huang, Yingzhuo; Duan, Yan; Wang, Qian; Hou, Yingchun

    2016-06-01

    Targeting peptide has been considered to be useful as a small molecule probe leading to multifunctional properties for both imaging detection and targeting therapy. Thus, the identification of novel targets is urgently needed to develop innovative agents to effectively control gastric cancer metastasis and progression. Previously, we reported a novel 12-mer peptide, GP-5 (IHKDKNAPSLVP), binding to gastric carcinoma (GC) cells specifically and sensitively, and it was screened by using a phage displayed peptide library and primarily analyzed. In this study, it was further identified via fluorescence microscopy, flow cytometry, tissue chip and other methods. Our results indicated that the peptide GP-5 presents a particularly high affinity and specificity to GC cells and tissues, whereas only background detection occurred with other control cancer cells, cancer tissues or normal tissues. Taken together, all results support that the peptide GP-5 is a potential candidate to be developed as a useful molecule fragment for the imaging detection and targeting therapy of GC. PMID:26808386

  17. Structure-based characterization of the binding of peptide to the human endophilin-1 Src homology 3 domain using position-dependent noncovalent potential analysis.

    PubMed

    Fu, Chunjiang; Wu, Gang; Lv, Fenglin; Tian, Feifei

    2012-05-01

    Many protein-protein interactions are mediated by a peptide-recognizing domain, such as WW, PDZ, or SH3. In the present study, we describe a new method called position-dependent noncovalent potential analysis (PDNPA), which can accurately characterize the nonbonding profile between the human endophilin-1 Src homology 3 (hEndo1 SH3) domain and its peptide ligands and quantitatively predict the binding affinity of peptide to hEndo1 SH3. In this procedure, structure models of diverse peptides in complex with the hEndo1 SH3 domain are constructed by molecular dynamics simulation and a virtual mutagenesis protocol. Subsequently, three noncovalent interactions associated with each position of the peptide ligand in the complexed state are analyzed using empirical potential functions, and the resulting potential descriptors are then correlated with the experimentally measured affinity on the basis of 1997 hEndo1 SH3-binding peptides with known activities, using linear partial least squares regression (PLS) and the nonlinear support vector machine (SVM). The results suggest that: (i) the electrostatics appears to be more important than steric properties and hydrophobicity in the formation of the hEndo1 SH3-peptide complex; (ii) P(-4) of the core decapeptide ligand with the sequence pattern P(-6)P(-5)P(-4)P(-3)P(-2)P(-1)P(0)P(1)P(2)P(3) is the most important position in terms of determining both the stability and specificity of the architecture of the complex, and; (iii) nonlinear SVM appears to be more effective than linear PLS for accurately predicting the binding affinity of a peptide ligand to hEndo1 SH3, whereas PLS models are straightforward and easy to interpret as compared to those built by SVM. PMID:21947444

  18. pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-β peptide.

    PubMed

    Ghalebani, Leila; Wahlström, Anna; Danielsson, Jens; Wärmländer, Sebastian K T S; Gräslund, Astrid

    2012-05-11

    Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-β (Aβ) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with (15)N- and (13)C,(15)N-labeled Aβ(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to Aβ may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the Aβ peptide under these conditions. PMID:22525674

  19. Characterization of Self-Assembled Monolayers of Peptide Mimotopes of CD20 Antigen and Their Binding with Rituximab.

    PubMed

    Leo, Norman; Shang, Yuqin; Yu, Jing-jiang; Zeng, Xiangqun

    2015-12-29

    CD20, expressed in greater than 90% of B-lymphocytic lymphomas, is a target for antibody therapy. Rituximab is a chimeric therapeutic monoclonal antibody (mAb) against the protein CD20, allowing it to destroy B cells and to treat lymphoma, leukemia, transplant rejection, and autoimmune disorder. In this work, the binding of rituximab to self-assembled monolayers (SAMs) of peptide mimotopes of CD20 antigen was systematically characterized. Four peptide mimotopes of CD 20 antigen were selected from the literature and redesigned to allow their SAM immobilizations on gold electrodes through a peptide linker with cysteine. The bindings of these peptides with rituximab and control mAbs (trastuzumab and bevacizumab) were characterized by quartz crystal microbalance (QCM). Among the four peptide mimotopes initially selected, the peptide designated as CN-14 (CGSGSGSWPRWLEN) was the most selective and sensitive for rituximab binding. The CN-14 SAM was further characterized by ellipsometry and atomic force microscopy. The thickness of the CN-14 SAM film was approximately 32 Å, and the CN-14 SAM is suggested to be stabilized by a salt bridge of Arg-10 and Glu-13 between CN-14 peptides. The CN-14 salt bridge was evaluated by a series of modifications to the CN-14 peptide sequence and characterized by QCM. The CN-14 amide variant produced a better affinity to rituximab than CN-14 without a significant impact on selectivity. As the pKa of the Glu residue of CN-14 increased, the affinity of the SAM to rituximab increased, whereas the selectivity decreased. This was attributed to the weakening of the salt bridge between the CN-14 Arg-10 and Glu-13 at higher pKa values for Glu-13. Our study shows that peptide mimotopes have potential benefits in sensor applications, as the peptide-peptide interactions in the SAMs can be manipulated by the addition of functional groups to the peptide to influence the binding of target proteins. PMID:26609837

  20. Atrial Natriuretic Peptide Inhibits Spontaneous Contractile Activity of Lymph Nodes.

    PubMed

    Lobov, G I; Pan'kova, M N

    2016-06-01

    Atrial natriuretic peptide dose-dependently inhibited spontaneous phase and tonic activity of smooth muscle strips from the capsule of isolated bovine mesenteric lymph nodes. Pretreatment with L-NAME, diclofenac, and methylene blue had practically no effect on the peptide-induced relaxation responses. In contrast, glibenclamide significantly reduced the inhibitory effect of atrial natriuretic peptide. We suppose that the NO-dependent and cyclooxygenase signaling pathways are not involved in implementation of the inhibitory effects of atrial natriuretic peptide. ATP-sensitive K(+)-channels of the smooth muscle cell membrane are the last component in the signaling pathway leading to relaxation of smooth muscles of the lymph node capsule caused by atrial natriuretic peptide; activation of these channels leads to membrane hyperpolarization and smooth muscle relaxation. PMID:27383173

  1. Peptides of the constant region of antibodies display fungicidal activity.

    PubMed

    Polonelli, Luciano; Ciociola, Tecla; Magliani, Walter; Zanello, Pier Paolo; D'Adda, Tiziana; Galati, Serena; De Bernardis, Flavia; Arancia, Silvia; Gabrielli, Elena; Pericolini, Eva; Vecchiarelli, Anna; Arruda, Denise C; Pinto, Marcia R; Travassos, Luiz R; Pertinhez, Thelma A; Spisni, Alberto; Conti, Stefania

    2012-01-01

    Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents. PMID:22470523

  2. Synthesis of peptide-conjugated light-driven molecular motors and evaluation of their DNA-binding properties.

    PubMed

    Nagatsugi, Fumi; Takahashi, Yusuke; Kobayashi, Maiko; Kuwahara, Shunsuke; Kusano, Shuhei; Chikuni, Tomoko; Hagihara, Shinya; Harada, Nobuyuki

    2013-05-01

    Synthetic light-driven molecular motors are molecular machines capable of rotation under photo-irradiation. In this paper, we report the synthesis of peptide-conjugated molecular motors and evaluate their DNA-binding properties. PMID:23324812

  3. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts

    SciTech Connect

    Martin, Emily B.; Williams, Angela; Heidel, Eric; Macy, Sallie; Kennel, Stephen J.; Wall, Jonathan S.

    2013-06-21

    Highlights: •Polybasic peptide p5 binds human light chain amyloid extracts. •The binding of p5 with amyloid involves both glycosaminoglycans and fibrils. •Heparinase treatment led to a correlation between p5 binding and fibril content. •p5 binding to AL amyloid requires electrostatic interactions. -- Abstract: In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as

  4. Lanthanide-binding helix-turn-helix peptides: Solution structure of a designed metallonuclease

    PubMed Central

    Welch, Joel T.; Kearney, William R.; Franklin, Sonya J.

    2003-01-01

    A designed lanthanide-binding chimeric peptide based on the strikingly similar geometries of the EF-hand and helix-turn-helix (HTH) motifs was investigated by NMR and CD spectroscopy and found to retain the same overall solution structure of the parental motifs. CD spectroscopy showed that the 33-mer peptide P3W folds on binding lanthanides, with an increase in α-helicity from 20% in the absence of metal to 38% and 35% in the presence of excess Eu(III) and La(III) ions, respectively. The conditional binding affinities of P3W for La(III) (5.9 ± 0.3 μM) and for Eu(III) (6.2 ± 0.3 μM) (pH 7.8, 5 mM Tris) were determined by tryptophan fluorescence titration. The La(III) complex of peptide P3, which differs from P3W by only one Trp-to-His substitution, has much less signal dispersion in the proton NMR spectra than LaP3W, indicating that the Trp residue is a critical hydrophobic anchor for maintaining a well-folded helix-turn-helix structure. A chemical-shift index analysis indicates the metallopeptide has a helix-loop-helix secondary structure. A structure calculated by using nuclear Overhauser effect and other NMR constraints reveals that P3W not only has a tightly folded metal-binding loop but also retains the α−α corner supersecondary structure of the parental motifs. Although the solution structure is undefined at both the N and C termini, the NMR structure confirms the successful incorporation of a metal-binding loop into a HTH sequence. PMID:12644701

  5. Site-specific DNA cleavage by artificial zinc finger-type nuclease with cerium-binding peptide

    SciTech Connect

    Nakatsukasa, Takako; Shiraishi, Yasuhisa; Negi, Shigeru; Imanishi, Miki; Futaki, Shiroh; Sugiura, Yukio . E-mail: sugiura@scl.kyoto-u.ac.jp

    2005-04-29

    The addition of a new function to native proteins is one of the most attractive protein-based designs. In this study, we have converted a C{sub 2}H{sub 2}-type zinc finger as a DNA-binding motif into a novel zinc finger-type nuclease by connecting two distinct zinc finger proteins (Sp1 and GLI) with a functional linker possessing DNA cleavage activity. As a DNA cleavage domain, we chose an analogue of the metal-binding loop (12 amino acid residues), peptide P1, which has been reported to exhibit a strong binding affinity for a lanthanide ion and DNA cleavage ability in the presence of Ce(IV). Our newly designed nucleases, Sp1(P1)GLI and Sp1(P1G)GLI, can strongly bind to a lanthanide ion and show a unique DNA cleavage pattern, in which certain positions between the two DNA-binding sites are specifically cleaved. The present result provides useful information for expanding the design strategy for artificial nucleases.

  6. Effects of Lys to Glu mutations in GsMTx4 on membrane binding, peptide orientation, and self-association propensity, as analyzed by molecular dynamics simulations.

    PubMed

    Nishizawa, Kazuhisa; Nishizawa, Manami; Gnanasambandam, Radhakrishnan; Sachs, Frederick; Sukharev, Sergei I; Suchyna, Thomas M

    2015-11-01

    GsMTx4, a gating modifier peptide acting on cationic mechanosensitive channels, has a positive charge (+5e) due to six Lys residues. The peptide does not have a stereospecific binding site on the channel but acts from the boundary lipids within a Debye length of the pore probably by changing local stress. To gain insight into how these Lys residues interact with membranes, we performed molecular dynamics simulations of Lys to Glu mutants in parallel with our experimental work. In silico, K15E had higher affinity for 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine bilayers than wild-type (WT) peptide or any other mutant tested, and showed deeper penetration than WT, a finding consistent with the experimental data. Experimentally, the inhibitory activities of K15E and K25E were most compromised, whereas K8E and K28E inhibitory activities remained similar to WT peptide. Binding of WT in an interfacial mode did not influence membrane thickness. With interfacial binding, the direction of the dipole moments of K15E and K25E was predicted to differ from WT, whereas those of K8E and K28E oriented similarly to that of WT. These results support a model in which binding of GsMTx4 to the membrane acts like an immersible wedge that serves as a membrane expansion buffer reducing local stress and thus inhibiting channel activity. In simulations, membrane-bound WT attracted other WT peptides to form aggregates. This may account for the positive cooperativity observed in the ion channel experiments. The Lys residues seem to fine-tune the depth of membrane binding, the tilt angle, and the dipole moments. PMID:26342676

  7. Structural Basis for Receptor Activity-Modifying Protein-Dependent Selective Peptide Recognition by a G Protein-Coupled Receptor.

    PubMed

    Booe, Jason M; Walker, Christopher S; Barwell, James; Kuteyi, Gabriel; Simms, John; Jamaluddin, Muhammad A; Warner, Margaret L; Bill, Roslyn M; Harris, Paul W; Brimble, Margaret A; Poyner, David R; Hay, Debbie L; Pioszak, Augen A

    2015-06-18

    Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind related GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. The structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes. PMID:25982113

  8. Structural Basis for Receptor Activity-Modifying Protein-Dependent Selective Peptide Recognition by a G Protein-Coupled Receptor

    PubMed Central

    Booe, Jason M.; Walker, Christopher S.; Barwell, James; Kuteyi, Gabriel; Simms, John; Jamaluddin, Muhammad A.; Warner, Margaret L.; Bill, Roslyn M.; Harris, Paul W.; Brimble, Margaret A.; Poyner, David R.; Hay, Debbie L.; Pioszak, Augen A.

    2015-01-01

    Summary Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind related GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. The structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes. PMID:25982113

  9. Antioxidant activities of a peptide derived from chicken dark meat.

    PubMed

    Fukada, Yoko; Mizutani, Saki; Nomura, Sarika; Hara, Wakana; Matsui, Riko; Nagai, Kumiko; Murakami, Yuki; Washio, Nanami; Ikemoto, Narumi; Terashima, Masaaki

    2016-05-01

    Antioxidant activities against hypochlorite ions and peroxyl radicals of a chicken dark meat hydrolysate digested with pepsin were examined with the myoglobin method based on the structure change of myoglobin due to redox reaction with reactive oxygen species (ROS). A peptide that showed strong antioxidant activity against the peroxyl radical was isolated from the hydrolysate using HPLC equipped with a hydrophobic-interacting column. The sequence of the first five amino acid residues of the peptide was determined as YASGR (Tyr-Ala-Ser-Gly-Arg), and this sequence matched with the amino acid residues 143-147 of chicken β-actin (GenBank: CAA25004.1). The synthetic peptide YASGR showed very high antioxidant activity against the peroxyl radical. Antioxidant activities of the free amino acids, confirmed that the tyrosine residue of this peptide was possibly responsible for antioxidant activity. PMID:27407214

  10. Primary structure of the 175K Plasmodium falciparum erythrocyte binding antigen and identification of a peptide which elicits antibodies that inhibit malaria merozoite invasion.

    PubMed

    Sim, B K; Orlandi, P A; Haynes, J D; Klotz, F W; Carter, J M; Camus, D; Zegans, M E; Chulay, J D

    1990-11-01

    The Plasmodium falciparum gene encoding erythrocyte binding antigen-175 (EBA-175), a putative receptor for red cell invasion (Camus, D., and T. J. Hadley. 1985. Science (Wash. DC). 230:553-556.), has been isolated and characterized. DNA sequencing demonstrated a single open reading frame encoding a translation product of 1,435 amino acid residues. Peptides corresponding to regions on the deduced amino acid sequence predicted to be B cell epitopes were assessed for immunogenicity. Immunization of mice and rabbits with EBA-peptide 4, a synthetic peptide encompassing amino acid residues 1,062-1,103, produced antibodies that recognized P. falciparum merozoites in an indirect fluorescent antibody assay. When compared to sera from rabbits immunized with the same adjuvant and carrier protein, sera from rabbits immunized with EBA-peptide 4 inhibited merozoite invasion of erythrocytes in vitro by 80% at a 1:5 dilution. Furthermore, these sera inhibited the binding of purified, authentic EBA-175 to erythrocytes, suggesting that their activity in inhibiting merozoite invasion of erythrocytes is mediated by blocking the binding of EBA-175 to erythrocytes. Since the nucleotide sequence of EBA-peptide 4 is conserved among seven strains of P. falciparum from throughout the world (Sim, B. K. L. 1990. Mol. Biochem. Parasitol. 41:293-296.), these data identify a region of the protein that should be a focus of vaccine development efforts. PMID:2229177

  11. Structural and computational analysis of peptide recognition mechanism of class-C type penicillin binding protein, alkaline D-peptidase from Bacillus cereus DF4-B.

    PubMed

    Nakano, Shogo; Okazaki, Seiji; Ishitsubo, Erika; Kawahara, Nobuhiro; Komeda, Hidenobu; Tokiwa, Hiroaki; Asano, Yasuhisa

    2015-01-01

    Alkaline D-peptidase from Bacillus cereus DF4-B, called ADP, is a D-stereospecific endopeptidase reacting with oligopeptides containing D-phenylalanine (D-Phe) at N-terminal penultimate residue. ADP has attracted increasing attention because it is useful as a catalyst for synthesis of D-Phe oligopeptides or, with the help of substrate mimetics, L-amino acid peptides and proteins. Structure and functional analysis of ADP is expected to elucidate molecular mechanism of ADP. In this study, the crystal structure of ADP (apo) form was determined at 2.1 Å resolution. The fold of ADP is similar to that of the class C penicillin-binding proteins of type-AmpH. Docking simulations and fragment molecular orbital analyses of two peptides, (D-Phe)4 and (D-Phe)2-(L-Phe)2, with the putative substrate binding sites of ADP indicated that the P1 residue of the peptide interacts with hydrophobic residues at the S1 site of ADP. Furthermore, molecular dynamics simulation of ADP for 50 nsec suggested that the ADP forms large cavity at the active site. Formation of the cavity suggested that the ADP has open state in the solution. For the ADP, having the open state is convenient to bind the peptides having bulky side chain, such as (D-Phe)4. Taken together, we predicted peptide recognition mechanism of ADP. PMID:26370172

  12. MHC2MIL: a novel multiple instance learning based method for MHC-II peptide binding prediction by considering peptide flanking region and residue positions

    PubMed Central

    2014-01-01

    Background Computational prediction of major histocompatibility complex class II (MHC-II) binding peptides can assist researchers in understanding the mechanism of immune systems and developing peptide based vaccines. Although many computational methods have been proposed, the performance of these methods are far from satisfactory. The difficulty of MHC-II peptide binding prediction comes mainly from the large length variation of binding peptides. Methods We develop a novel multiple instance learning based method called MHC2MIL, in order to predict MHC-II binding peptides. We deem each peptide in MHC2MIL as a bag, and some substrings of the peptide as the instances in the bag. Unlike previous multiple instance learning based methods that consider only instances of fixed length 9 (9 amino acids), MHC2MIL is able to deal with instances of both lengths of 9 and 11 (11 amino acids), simultaneously. As such, MHC2MIL incorporates important information in the peptide flanking region. For measuring the distances between different instances, furthermore, MHC2MIL explicitly highlights the amino acids in some important positions. Results Experimental results on a benchmark dataset have shown that, the performance of MHC2MIL is significantly improved by considering the instances of both 9 and 11 amino acids, as well as by emphasizing amino acids at key positions in the instance. The results are consistent with those reported in the literature on MHC-II peptide binding. In addition to five important positions (1, 4, 6, 7 and 9) for HLA(human leukocyte antigen, the name of MHC in Humans) DR peptide binding, we also find that position 2 may play some roles in the binding process. By using 5-fold cross validation on the benchmark dataset, MHC2MIL outperforms two state-of-the-art methods of MHC2SK and NN-align with being statistically significant, on 12 HLA DP and DQ molecules. In addition, it achieves comparable performance with MHC2SK and NN-align on 14 HLA DR molecules. MHC2MIL

  13. Oligomerization of Peptides LVEALYL and RGFFYT and Their Binding Affinity to Insulin

    PubMed Central

    Chiang, Hsin-Lin; Ngo, Son Tung; Chen, Chun-Jung; Hu, Chin-Kun; Li, Mai Suan

    2013-01-01

    Recently it has been proposed a model for fibrils of human insulin in which the fibril growth proceeds via stacking LVEALYL (fragment 11–17 from chain B of insulin) into pairs of tightly interdigitated -sheets. The experiments have also shown that LVEALYL has high propensity to self-assembly and binding to insulin. This necessitates study of oligomerization of LVEALYL and its binding affinity to full-length insulin. Using the all-atom simulations with Gromos96 43a1 force field and explicit water it is shown that LVEALYL can aggregate. Theoretical estimation of the binding free energy of LVEALYL to insulin by the molecular mechanic Poisson-Boltzmann surface area method reveals its strong binding affinity to chain B, implying that, in agreement with the experiments, LVEALYL can affect insulin aggregation via binding mechanism. We predict that, similar to LVEALYL, peptide RGFFYT (fragment B22-27) can self-assemble and bind to insulin modulating its fibril growth process. The binding affinity of RGFFYT is shown to be comparable with that of LVEALYL. PMID:23805182

  14. An approach to the construction of tailor-made amphiphilic peptides that strongly and selectively bind to hairpin RNA targets.

    PubMed

    Lee, Su Jin; Hyun, Soonsil; Kieft, Jeffrey S; Yu, Jaehoon

    2009-02-18

    The hairpin RNA motif is one of the most frequently observed secondary structures and is often targeted by therapeutic agents. An amphiphilic peptide with seven lysine and eight leucine residues and its derivatives were designed for use as ligands against RNA hairpin motifs. We hypothesized that variations in both the hydrophobic leucine-rich and hydrophilic lysine-rich spheres of these amphiphilic peptides would create extra attractive interactions with hairpin RNA targets. A series of alanine-scanned peptides were probed to identify the most influential lysine residues in the hydrophilic sphere. The binding affinities of these modified peptides with several hairpins, such as RRE, TAR from HIV, a short hairpin from IRES of HCV, and a hairpin from the 16S A-site stem from rRNA, were determined. Since the hairpin from IRES of HCV was the most susceptible to the initial series of alanine-scanned peptides, studies investigating how further variations in the peptides effect binding employed the IRES hairpin. Next, the important Lys residues were substituted by shorter chain amines, such as ornithine, to place the peptide deeper into the hairpin groove. In a few cases, a 70-fold improved binding was observed for peptides that contained the specifically located shorter amine side chains. To further explore changes in binding affinities brought about by alterations in the hydrophobic sphere, tryptophan residues were introduced in place of leucine. A few peptides with tryptophan in specific positions also displayed 70-fold improved binding affinities. Finally, double mutant peptides incorporating both specifically located shorter amine side chains in the hydrophilic region and tryptophan residues in the hydrophobic region were synthesized. The binding affinities of peptides containing the simple double modification were observed to be 80 times lower, and their binding specificities were increased 40-fold. The results of this effort provide important information about

  15. Influence of a mutation in the ATP-binding region of Ca2+/calmodulin-dependent protein kinase II on its interaction with peptide substrates.

    PubMed

    Praseeda, Mullasseril; Pradeep, Kurup K; Krupa, Ananth; Krishna, S Sri; Leena, Suseela; Kumar, R Rajeev; Cheriyan, John; Mayadevi, Madhavan; Srinivasan, Narayanaswamy; Omkumar, Ramakrishnapillai V

    2004-03-01

    CaMKII (Ca2+/calmodulin-dependent protein kinase II) is expressed in high concentrations in the brain and is found enriched in the postsynaptic densities. The enzyme is activated by the binding of calmodulin to the autoregulatory domain in the presence of high levels of intracellular Ca2+, which causes removal of auto-inhibition from the N-terminal catalytic domain. Knowledge of the 3D (three-dimensional) structure of this enzyme at atomic resolution is restricted to the association domain, a region at the extreme C-terminus. The catalytic domain of CaMKII shares high sequence similarity with CaMKI. The 3D structure of the catalytic core of CaMKI comprises ATP- and substrate-binding regions in a cleft between two distinct lobes, similar to the structures of all protein kinases solved to date. Mutation of Glu-60, a residue in the ATP-binding region of CaMKII, to glycine exerts different effects on phosphorylation of two peptide substrates, syntide and NR2B ( N -methyl-D-aspartate receptor subunit 2B) 17-mer. Although the mutation caused increases in the Km values for phosphorylation for both the peptide substrates, the effect on the kcat values for each was different. The kcat value decreased in the case of syntide, whereas it increased in the case of the NR2B peptide as a result of the mutation. This resulted in a significant decrease in the apparent kcat/Km value for syntide, but the change was minimal for the NR2B peptide. These results indicate that different catalytic mechanisms are employed by the kinase for the two peptides. Molecular modelling suggests structural changes are likely to occur at the peptide-binding pocket in the active state of the enzyme as a consequence of the Glu-60-->Gly mutation. PMID:14558884

  16. Molecular design of specific metal-binding peptide sequences from protein fragments: theory and experiment.

    PubMed

    Kozísek, Milan; Svatos, Ales; Budesínský, Milos; Muck, Alexander; Bauer, Mikael C; Kotrba, Pavel; Ruml, Tomás; Havlas, Zdenek; Linse, Sara; Rulísek, Lubomír

    2008-01-01

    A novel strategy is presented for designing peptides with specific metal-ion chelation sites, based on linking computationally predicted ion-specific combinations of amino acid side chains coordinated at the vertices of the desired coordination polyhedron into a single polypeptide chain. With this aim, a series of computer programs have been written that 1) creates a structural combinatorial library containing Zi-(X)n-Zj sequences (n=0-14; Z: amino acid that binds the metal through the side chain; X: any amino acid) from the existing protein structures in the non-redundant Protein Data Bank; 2) merges these fragments into a single Z1-(X)n1 -Z2-(X)n2 -Z3-(X)n3 -...-Zj polypeptide chain; and 3) automatically performs two simple molecular mechanics calculations that make it possible to estimate the internal strain in the newly designed peptide. The application of this procedure for the most M2+-specific combinations of amino acid side chains (M: metal; see L. Rulísek, Z. Havlas J. Phys. Chem. B 2003, 107, 2376-2385) yielded several peptide sequences (with lengths of 6-20 amino acids) with the potential for specific binding with six metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+). The gas-phase association constants of the studied metal ions with these de novo designed peptides were experimentally determined by MALDI mass spectrometry by using 3,4,5-trihydroxyacetophenone as a matrix, whereas the thermodynamic parameters of the metal-ion coordination in the condensed phase were measured by isothermal titration calorimetry (ITC), chelatometry and NMR spectroscopy methods. The data indicate that some of the computationally predicted peptides are potential M2+-specific metal-ion chelators. PMID:18633954

  17. Peptide microarrays for the profiling of cytotoxic T-lymphocyte activity using minimum numbers of cells

    PubMed Central

    Hoff, Antje; Bagû, Ana-Cristina; André, Thomas; Roth, Günter; Wiesmüller, Karl-Heinz; Gückel, Brigitte

    2010-01-01

    The identification of epitopes that elicit cytotoxic T-lymphocyte activity is a prerequisite for the development of cancer-specific immunotherapies. However, especially the parallel characterization of several epitopes is limited by the availability of T cells. Microarrays have enabled an unprecedented miniaturization and parallelization in biological assays. Here, we developed peptide microarrays for the detection of CTL activity. MHC class I-binding peptide epitopes were pipetted onto polymer-coated glass slides. Target cells, loaded with the cell-impermeant dye calcein, were incubated on these arrays, followed by incubation with antigen-expanded CTLs. Cytotoxic activity was detected by release of calcein and detachment of target cells. With only 200,000 cells per microarray, CTLs could be detected at a frequency of 0.5% corresponding to 1,000 antigen-specific T cells. Target cells and CTLs only settled on peptide spots enabling a clear separation of individual epitopes. Even though no physical boundaries were present between the individual spots, peptide loading only occurred locally and cytolytic activity was confined to the spots carrying the specific epitope. The peptide microarrays provide a robust platform that implements the whole process from antigen presentation to the detection of CTL activity in a miniaturized format. The method surpasses all established methods in the minimum numbers of cells required. With antigen uptake occurring on the microarray, further applications are foreseen in the testing of antigen precursors that require uptake and processing prior to presentation. PMID:20512327

  18. Structural Basis for Parathyroid Hormone-related Protein Binding to the Parathyroid Hormone Receptor and Design of Conformation-selective Peptides

    SciTech Connect

    Pioszak, Augen A.; Parker, Naomi R.; Gardella, Thomas J.; Xu, H. Eric

    2009-12-01

    Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are two related peptides that control calcium/phosphate homeostasis and bone development, respectively, through activation of the PTH/PTHrP receptor (PTH1R), a class B G protein-coupled receptor. Both peptides hold clinical interest for their capacities to stimulate bone formation. PTH and PTHrP display different selectivity for two distinct PTH1R conformations, but how their binding to the receptor differs is unclear. The high resolution crystal structure of PTHrP bound to the extracellular domain (ECD) of PTH1R reveals that PTHrP binds as an amphipathic {alpha}-helix to the same hydrophobic groove in the ECD as occupied by PTH, but in contrast to a straight, continuous PTH helix, the PTHrP helix is gently curved and C-terminally 'unwound.' The receptor accommodates the altered binding modes by shifting the side chain conformations of two residues within the binding groove: Leu-41 and Ile-115, the former acting as a rotamer toggle switch to accommodate PTH/PTHrP sequence divergence, and the latter adapting to the PTHrP curvature. Binding studies performed with PTH/PTHrP hybrid ligands having reciprocal exchanges of residues involved in different contacts confirmed functional consequences for the altered interactions and enabled the design of altered PTH and PTHrP peptides that adopt the ECD-binding mode of the opposite peptide. Hybrid peptides that bound the ECD poorly were selective for the G protein-coupled PTH1R conformation. These results establish a molecular model for better understanding of how two biologically distinct ligands can act through a single receptor and provide a template for designing better PTH/PTHrP therapeutics.

  19. Interaction of the Heparin-Binding Consensus Sequence of β-Amyloid Peptides with Heparin and Heparin-Derived Oligosaccharides.

    PubMed

    Nguyen, Khanh; Rabenstein, Dallas L

    2016-03-10

    Alzheimer's disease (AD) is characterized by the presence of amyloid plaques in the AD brain. Comprised primarily of the 40- and 42-residue β-amyloid (Aβ) peptides, there is evidence that the heparan sulfate (HS) of heparan sulfate proteoglycans (HSPGs) plays a role in amyloid plaque formation and stability; however, details of the interaction of Aβ peptides with HS are not known. We have characterized the interaction of heparin and heparin-derived oligosaccharides with a model peptide for the heparin- and HS-binding domain of Aβ peptides (Ac-VHHQKLV-NH2; Aβ(12-18)), with mutants of Aβ(12-18), and with additional histidine-containing peptides. The nature of the binding interaction was characterized by NMR, binding constants and other thermodynamic parameters were determined by isothermal titration calorimetry (ITC), and relative binding affinities were determined by heparin affinity chromatography. The binding of Aβ(12-18) by heparin and heparin-derived oligosaccharides is pH-dependent, with the imidazolium groups of the histidine side chains interacting site-specifically within a cleft created by a trisaccharide sequence of heparin, the binding is mediated by electrostatic interactions, and there is a significant entropic contribution to the binding free energy as a result of displacement of Na(+) ions from heparin upon binding of cationic Aβ(12-18). The binding constant decreases as the size of the heparin-derived oligosaccharide decreases and as the concentration of Na(+) ion in the bulk solution increases. Structure-binding relationships characterized in this study are analyzed and discussed in terms of the counterion condensation theory of the binding of cationic peptides by anionic polyelectrolytes. PMID:26872053

  20. Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation.

    PubMed

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Delangle, Pascale; Guilloreau, Luc; Adriano, Jean-Marc; Berthomieu, Catherine

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9)TKE(12) sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d) = 25±6 nM to K(d) = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d) = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as)(P-O) and ν(s)(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as)(UO(2))(2+) vibration (from 923 cm(-1) to 908 cm(-1)) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. PMID:22870263

  1. Modulating Uranium Binding Affinity in Engineered Calmodulin EF-Hand Peptides: Effect of Phosphorylation

    PubMed Central

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Delangle, Pascale; Guilloreau, Luc; Adriano, Jean-Marc; Berthomieu, Catherine

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T9TKE12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from Kd = 25±6 nM to Kd = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (Kd = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the νas(P-O) and νs(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in νas(UO2)2+ vibration (from 923 cm−1 to 908 cm−1) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. PMID:22870263

  2. Antibodies that neutralize human beta interferon biologic activity recognize a linear epitope: analysis by synthetic peptide mapping.

    PubMed Central

    Redlich, P N; Hoeprich, P D; Colby, C B; Grossberg, S E

    1991-01-01

    The location of biologically relevant epitopes on recombinant human beta interferon in which Ser-17 replaces Cys-17 (rh[Ser17]IFN-beta) was evaluated by testing the immunoreactivity of antibodies against 159 sequential, overlapping octamer peptides. Three monoclonal antibodies (mAbs) that neutralize rh[Ser17]IFN-beta biologic activity, designated A1, A5, and A7, bound to peptides spanning only residues 39-48, whereas nonneutralizing mAb bound less specifically at multiple sites near the amino terminus. The immunoreactivity of peptides spanning residues 40-47 that contained a series of single amino acid substitutions suggested that residues 41-43 (Pro-Glu-Glu) and 46 (Gln) are important for the binding of neutralizing mAbs. The reactivity of mAbs to larger synthetic peptides containing rh[Ser17]IFN-beta sequences from residue 32 through residue 56 was evaluated. All mAbs except A7 reacted with synthetic peptides representing rh[Ser17]IFN-beta residues 32-47, 40-56, and 32-56, but only mAbs A1 and A5 bound to the core peptide composed of residues 40-47. Peptide 32-56 effectively blocked the binding of mAbs A1 and A5 to rh[Ser17]IFN-beta and markedly inhibited their neutralizing activity. Biologic activity of the peptides was undetectable. Rabbit antisera raised against peptides 32-47 and 40-56 recognized rh[Ser17]IFN-beta but did not neutralize its antiviral activity. Thus, structure-function analysis by peptide mapping has permitted the identification of a linear epitope recognized by neutralizing antibody on a biologically active cytokine. We conclude that the region spanning residues 32-56 is of major importance in the expression of the biologic activity of human IFN-beta. Images PMID:1708891

  3. Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins.

    PubMed

    Coelho, Miguel B; Ascher, David B; Gooding, Clare; Lang, Emma; Maude, Hannah; Turner, David; Llorian, Miriam; Pires, Douglas E V; Attig, Jan; Smith, Christopher W J

    2016-08-15

    Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands. PMID:27528752

  4. Reactive Center Loop (RCL) Peptides Derived from Serpins Display Independent Coagulation and Immune Modulating Activities.

    PubMed

    Ambadapadi, Sriram; Munuswamy-Ramanujam, Ganesh; Zheng, Donghang; Sullivan, Colin; Dai, Erbin; Morshed, Sufi; McFadden, Baron; Feldman, Emily; Pinard, Melissa; McKenna, Robert; Tibbetts, Scott; Lucas, Alexandra

    2016-02-01

    Serpins regulate coagulation and inflammation, binding serine proteases in suicide-inhibitory complexes. Target proteases cleave the serpin reactive center loop scissile P1-P1' bond, resulting in serpin-protease suicide-inhibitory complexes. This inhibition requires a near full-length serpin sequence. Myxomavirus Serp-1 inhibits thrombolytic and thrombotic proteases, whereas mammalian neuroserpin (NSP) inhibits only thrombolytic proteases. Both serpins markedly reduce arterial inflammation and plaque in rodent models after single dose infusion. In contrast, Serp-1 but not NSP improves survival in a lethal murine gammaherpesvirus68 (MHV68) infection in interferon γ-receptor-deficient mice (IFNγR(-/-)). Serp-1 has also been successfully tested in a Phase 2a clinical trial. We postulated that proteolytic cleavage of the reactive center loop produces active peptide derivatives with expanded function. Eight peptides encompassing predicted protease cleavage sites for Serp-1 and NSP were synthesized and tested for inhibitory function in vitro and in vivo. In engrafted aorta, selected peptides containing Arg or Arg-Asn, not Arg-Met, with a 0 or +1 charge, significantly reduced plaque. Conversely, S-6 a hydrophobic peptide of NSP, lacking Arg or Arg-Asn with -4 charge, induced early thrombosis and mortality. S-1 and S-6 also significantly reduced CD11b(+) monocyte counts in mouse splenocytes. S-1 peptide had increased efficacy in plasminogen activator inhibitor-1 serpin-deficient transplants. Plaque reduction correlated with mononuclear cell activation. In a separate study, Serp-1 peptide S-7 improved survival in the MHV68 vasculitis model, whereas an inverse S-7 peptide was inactive. Reactive center peptides derived from Serp-1 and NSP with suitable charge and hydrophobicity have the potential to extend immunomodulatory functions of serpins. PMID:26620556

  5. Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of β-Hairpin Peptides

    PubMed Central

    2016-01-01

    Bacteria have acquired extensive resistance mechanisms to protect themselves against antibiotic action. Today the bacterial membrane has become one of the “final frontiers” in the search for new compounds acting on novel targets to address the threat of multi-drug resistant (MDR) and XDR bacterial pathogens. β-Hairpin antimicrobial peptides are amphipathic, membrane-binding antibiotics that exhibit a broad range of activities against Gram-positive, Gram-negative, and fungal pathogens. However, most members of the class also possess adverse cytotoxicity and hemolytic activity that preclude their development as candidate antimicrobials. We examined peptide hydrophobicity, amphipathicity, and structure to better dissect and understand the correlation between antimicrobial activity and toxicity, membrane binding, and membrane permeability. The hydrophobicity, pI, net charge at physiological pH, and amphipathic moment for the β-hairpin antimicrobial peptides tachyplesin-1, polyphemusin-1, protegrin-1, gomesin, arenicin-3, and thanatin were determined and correlated with key antimicrobial activity and toxicity data. These included antimicrobial activity against five key bacterial pathogens and two fungi, cytotoxicity against human cell lines, and hemolytic activity in human erythrocytes. Observed antimicrobial activity trends correlated with compound amphipathicity and, to a lesser extent, with overall hydrophobicity. Antimicrobial activity increased with amphipathicity, but unfortunately so did toxicity. Of note, tachyplesin-1 was found to be 8-fold more amphipathic than gomesin. These analyses identify tachyplesin-1 as a promising scaffold for rational design and synthetic optimization toward an antibiotic candidate. PMID:27331141

  6. Receptor Binding by Cholera Toxin B-Subunit and Amino Acid Modification Improves Minimal Peptide Immunogenicity

    PubMed Central

    Boberg, Andreas; Stålnacke, Alexandra; Bråve, Andreas; Hinkula, Jorma; Wahren, Britta; Carlin, Nils

    2012-01-01

    We increase our understanding of augmenting a cellular immune response, by using an HIV-1 protease-derived epitope (PR75–84), and variants thereof, coupled to the C-terminal, of the B subunit of cholera toxin (CTB). Fusion proteins were used for immunizations of HLA-A0201 transgenic C57BL/6 mice. We observed different capacities to elicit a cellular immune response by peptides with additions of five to ten amino acids to the PR epitope. There was a positive correlation between the magnitude of the elicited cellular immune response and the capacity of the fusion protein to bind GM-1. This binding capacity is affected by its ability to form natural pentamers of CTB. Our results suggest that functional CTB pentamers containing a foreign amino acid-modified epitope is a novel way to overcome the limited cellular immunogenicity of minimal peptide antigens. This way of using a functional assay as readout for improved cellular immunogenicity might become highly valuable for difficult immunogens such as short peptides (epitopes).

  7. Molecular modeling of hair keratin/peptide complex: Using MM-PBSA calculations to describe experimental binding results.

    PubMed

    Azoia, Nuno G; Fernandes, Margarida M; Micaêlo, Nuno M; Soares, Cláudio M; Cavaco-Paulo, Artur

    2012-05-01

    Molecular dynamics simulations of a keratin/peptide complex have been conducted to predict the binding affinity of four different peptides toward human hair. Free energy calculations on the peptides' interaction with the keratin model demonstrated that electrostatic interactions are believed to be the main driving force stabilizing the complex. The molecular mechanics-Poisson-Boltzmann surface area methodology used for the free energy calculations demonstrated that the dielectric constant in the protein's interior plays a major role in the free energy calculations, and the only way to obtain accordance between the free energy calculations and the experimental binding results was to use the average dielectric constant. PMID:22275089

  8. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8positive T-cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presenta...

  9. Understanding Binding Peptide Design Using a Synthesis of Residue Physicality and Energetic Frustration

    NASA Astrophysics Data System (ADS)

    Flowers, Lenaya; Tripathi, Swarnendu; Cheung, Margaret

    The ubiquitous nature of Calmodulin (CaM) allows it to bind to numerous peptides, thus altering the function of a protein complex. Variations in CaM's function are a product of the numerous binding targets (BT) and their significant biological pathways. Given that CaM is a well-studied protein, we have found that certain amino acids in CaM's sequence play an important role in the event of protein binding. 36 CaM binding targets were analyzed to find sequential, physical commonalities. Using the Frustrometer (frustrometer.tk), we obtained z-scores (a numerical value for level of frustration) for each amino acids in a given binding target sequence. From those results, we were able to identify which residues show a highly favorable energetic change after binding and those that do not. We have found charged residues show the most prominent change when bound to CaM, these amino acids may provide a critical role in the overall design and function of a CaM-BT complex.

  10. Calcium Binding by Ro 60 Multiple Antigenic Peptides on PVDF Membrane.

    PubMed

    Kurien, Biji T; Bachmann, Michael P

    2015-01-01

    Antibodies directed against ribonucleoprotein (RNP) particles are observed in systemic lupus erythematosus. Ro RNP particle is one such target. It is composed of a 60 kDa protein (Ro 60 or SS-A) that is non-covalently associated with at least one of the four short uridine-rich RNAs (the hY RNAs). Previously, we showed that multiple antigenic peptides (MAPs) made from the sequence of the Ro 60 autoantigen could be used, using double-immunodiffusion studies, enzyme-linked immunosorbant assay, affinity chromatography, and surface plasmon resonance, to show intramolecular and intermolecular protein-protein interaction within the Ro 60 RNP particle. We also observed that calcium is important in mediating this interaction. We hypothesized, therefore, that 60 kDa Ro is a calcium-binding protein. To investigate this, we electrophoresed 60 kDa Ro MAPs, transferred them to PVDF membrane, and assayed calcium binding using the Quin-2 system. Several Ro 60 MAPs were found to bind calcium using this assay, as well as bovine serum albumin, another calcium-binding protein. However, a MAP constructed from the Sm autoantigen did not bind to calcium. These data, along with our observation regarding the involvement of calcium in protein-protein interaction occurring between Ro 60 antigen and Ro 60 MAPs, makes us propose that Ro 60 antigen is a calcium-binding protein. PMID:26139264

  11. Marine Peptides and Their Anti-Infective Activities

    PubMed Central

    Kang, Hee Kyoung; Seo, Chang Ho; Park, Yoonkyung

    2015-01-01

    Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish) from 2006 to the present. PMID:25603351

  12. Hsp90-peptide complexes stimulate antigen presentation through the class II pathway after binding scavenger receptor SREC-I

    PubMed Central

    Murshid, Ayesha; Gong, Jianlin; Calderwood, Stuart K

    2016-01-01

    Molecular chaperones such as heat shock protein 90 (Hsp90) have been shown to form complexes with tumor antigens and can be used to prepare anticancer vaccines largely due to this property. Earlier studies had suggested that, mice immunized with a molecular chaperone based vaccine derived from tumors became immune to further vaccination and that both CD8+ and CD4+ T cells were activated by the chaperone vaccine in a manner dependent on scavenger receptor SREC-I. Here we have investigated mechanisms whereby SREC-I might facilitate uptake of Hsp90 conjugated peptides by APC into the MHC class II pathway for presentation to CD4+ T cells. Our studies showed that antigenic peptides associated with Hsp90 were taken up into the Class II pathway by a mechanism dependent on SREC-I binding and internalization and presented to CD4+ T cells. In addition our studies showed that SREC-I could associate with MHC class II molecules on the cell surface and in intracellular endosomes, suggesting a mechanism involving facilitated uptake of peptides into the MHC class II pathway. These studies in addition to our earlier findings showed SREC-I to play a primary role in chaperone-associated antigen uptake both through cross priming of MHC class I molecules and entry into the class II pathway. PMID:25155057

  13. Identification of two uridine binding domain peptides of the UDP-glucose-binding site of rabbit muscle glycogenin.

    PubMed

    Carrizo, M E; Curtino, J A

    1998-12-30

    Glycogenin, the autoglucosyltransferase that initiates the de novo biosynthesis of glycogen, photoaffinity labeled with [beta32P]5-azido-UDP-glucose. The photoinsertion of the azidouridine derivative showed activating ultraviolet light dependency, saturation effects, and inhibition by UDP-glucose, thus demonstrating the specificity of the interaction. In the absence of Mn2+, the requirement for the catalytic activity of glycogenin, the photolabeling decreased by 70%. Competitive binding experiments indicated that the pyrophosphate or a phosphate was the moiety of UDP-glucose implicated in the strongest interaction at the binding site. Proteolytic digestion of photolabeled glycogenin resulted in the identification of two labeled fragments, 89-143 and 168-233, that carried the uridine binding sites. This is the first report of the region of glycogenin that harbors the UDP-glucose-binding domain. PMID:9918805

  14. T-cell hybridoma specific for a cytochrome c peptide: specific antigen binding and interleukin 2 production.

    PubMed Central

    Carel, S; Bron, C; Corradin, G

    1983-01-01

    T-cell hybridomas were obtained after fusion of BW 5147 thymoma and long-term cultured T cells specific for cytochrome c peptide 66-80 derivatized with a 2,4-dinitroaminophenyl (DNAP) group. The resulting hybridomas were selected for their capacity to specifically bind to soluble radiolabeled peptide antigen. One T-cell hybrid was positive for antigen binding. This hybrid T cell exhibits surface phenotypic markers of the parent antigen-specific T cells. The binding could be inhibited either by an excess of unlabeled homologous antigen or by cytochrome c peptide 11-25 derivatized with a 2-nitrophenylsulfenyl group. Several other peptide antigens tested failed to inhibit binding of the radioactive peptide. This suggests that a specific amino acid sequence, modified by a DNAP group, is the antigenic structure recognized by the putative T-cell receptor. In addition, direct interaction of DNAP-66-80 peptide with the hybridoma cell line induced production of the T-cell growth factor interleukin 2. Furthermore, supernatants derived from syngeneic macrophages pulsed with the relevant peptide also induced the antigen-specific hybridoma to produce interleukin 2. Images PMID:6192442

  15. Cellular Uptake and Ultrastructural Localization Underlie the Pro-apoptotic Activity of a Hydrocarbon-stapled BIM BH3 Peptide.

    PubMed

    Edwards, Amanda L; Wachter, Franziska; Lammert, Margaret; Huhn, Annissa J; Luccarelli, James; Bird, Gregory H; Walensky, Loren D

    2015-09-18

    Hydrocarbon stapling has been applied to restore and stabilize the α-helical structure of bioactive peptides for biochemical, structural, cellular, and in vivo studies. The peptide sequence, in addition to the composition and location of the installed staple, can dramatically influence the properties of stapled peptides. As a result, constructs that appear similar can have distinct functions and utilities. Here, we perform a side-by-side comparison of stapled peptides modeled after the pro-apoptotic BIM BH3 helix to highlight these principles. We confirm that replacing a salt-bridge with an i, i + 4 hydrocarbon staple does not impair target binding affinity and instead can yield a biologically and pharmacologically enhanced α-helical peptide ligand. Importantly, we demonstrate by electron microscopy that the pro-apoptotic activity of a stapled BIM BH3 helix correlates with its capacity to achieve cellular uptake without membrane disruption and accumulate at the organellar site of mechanistic activity. PMID:26151238

  16. In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands

    PubMed Central

    Hong Enriquez, Rolando Pablo; Santambrogio, Carlo; Grandori, Rita; Marasco, Daniela; Giordano, Antonio; Scoles, Giacinto; Fortuna, Sara

    2015-01-01

    Short peptides can be designed in silico and synthesized through automated techniques, making them advantageous and versatile protein binders. A number of docking-based algorithms allow for a computational screening of peptides as binders. Here we developed ex-novo peptides targeting the maltose site of the Maltose Binding Protein, the prototypical system for the study of protein ligand recognition. We used a Monte Carlo based protocol, to computationally evolve a set of octapeptides starting from a polialanine sequence. We screened in silico the candidate peptides and characterized their binding abilities by surface plasmon resonance, fluorescence and electrospray ionization mass spectrometry assays. These experiments showed the designed binders to recognize their target with micromolar affinity. We finally discuss the obtained results in the light of further improvement in the ex-novo optimization of peptide based binders. PMID:26252476

  17. pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-{beta} peptide

    SciTech Connect

    Ghalebani, Leila; Wahlstroem, Anna; Danielsson, Jens; Waermlaender, Sebastian K.T.S.; Graeslund, Astrid

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cu(II) and Zn(II) display pH-dependent binding to the A{beta}(1-40) peptide. Black-Right-Pointing-Pointer At pH 7.4 both metal ions display residue-specific binding to the A{beta} peptide. Black-Right-Pointing-Pointer At pH 5.5 the binding specificity is lost for Zn(II). Black-Right-Pointing-Pointer Differential Cu(II) and Zn(II) binding may help explain metal-induced AD toxicity. -- Abstract: Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-{beta} (A{beta}) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with {sup 15}N- and {sup 13}C,{sup 15}N-labeled A{beta}(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to A{beta} may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the A{beta} peptide under these conditions.

  18. Enhancing In Silico Protein-Based Vaccine Discovery for Eukaryotic Pathogens Using Predicted Peptide-MHC Binding and Peptide Conservation Scores

    PubMed Central

    Goodswen, Stephen J.; Kennedy, Paul J.; Ellis, John T.

    2014-01-01

    Given thousands of proteins constituting a eukaryotic pathogen, the principal objective for a high-throughput in silico vaccine discovery pipeline is to select those proteins worthy of laboratory validation. Accurate prediction of T-cell epitopes on protein antigens is one crucial piece of evidence that would aid in this selection. Prediction of peptides recognised by T-cell receptors have to date proved to be of insufficient accuracy. The in silico approach is consequently reliant on an indirect method, which involves the prediction of peptides binding to major histocompatibility complex (MHC) molecules. There is no guarantee nevertheless that predicted peptide-MHC complexes will be presented by antigen-presenting cells and/or recognised by cognate T-cell receptors. The aim of this study was to determine if predicted peptide-MHC binding scores could provide contributing evidence to establish a protein’s potential as a vaccine. Using T-Cell MHC class I binding prediction tools provided by the Immune Epitope Database and Analysis Resource, peptide binding affinity to 76 common MHC I alleles were predicted for 160 Toxoplasma gondii proteins: 75 taken from published studies represented proteins known or expected to induce T-cell immune responses and 85 considered less likely vaccine candidates. The results show there is no universal set of rules that can be applied directly to binding scores to distinguish a vaccine from a non-vaccine candidate. We present, however, two proposed strategies exploiting binding scores that provide supporting evidence that a protein is likely to induce a T-cell immune response–one using random forest (a machine learning algorithm) with a 72% sensitivity and 82.4% specificity and the other, using amino acid conservation scores with a 74.6% sensitivity and 70.5% specificity when applied to the 160 benchmark proteins. More importantly, the binding score strategies are valuable evidence contributors to the overall in silico vaccine

  19. Enhanced Amphiphilic Profile of a Short β-Stranded Peptide Improves Its Antimicrobial Activity

    PubMed Central

    Manzo, Giorgia; Scorciapino, Mariano A.; Wadhwani, Parvesh; Bürck, Jochen; Montaldo, Nicola Pietro; Pintus, Manuela; Sanna, Roberta; Casu, Mariano; Giuliani, Andrea; Pirri, Giovanna; Luca, Vincenzo; Ulrich, Anne S.; Rinaldi, Andrea C.

    2015-01-01

    SB056 is a novel semi-synthetic antimicrobial peptide with a dimeric dendrimer scaffold. Active against both Gram-negative and -positive bacteria, its mechanism has been attributed to a disruption of bacterial membranes. The branched peptide was shown to assume a β-stranded conformation in a lipidic environment. Here, we report on a rational modification of the original, empirically derived linear peptide sequence [WKKIRVRLSA-NH2, SB056-lin]. We interchanged the first two residues [KWKIRVRLSA-NH2, β-SB056-lin] to enhance the amphipathic profile, in the hope that a more regular β-strand would lead to a better antimicrobial performance. MIC values confirmed that an enhanced amphiphilic profile indeed significantly increases activity against both Gram-positive and -negative strains. The membrane binding affinity of both peptides, measured by tryptophan fluorescence, increased with an increasing ratio of negatively charged/zwitterionic lipids. Remarkably, β-SB056-lin showed considerable binding even to purely zwitterionic membranes, unlike the original sequence, indicating that besides electrostatic attraction also the amphipathicity of the peptide structure plays a fundamental role in binding, by stabilizing the bound state. Synchrotron radiation circular dichroism and solid-state 19F-NMR were used to characterize and compare the conformation and mobility of the membrane bound peptides. Both SB056-lin and β-SB056-lin adopt a β-stranded conformation upon binding POPC vesicles, but the former maintains an intrinsic structural disorder that also affects its aggregation tendency. Upon introducing some anionic POPG into the POPC matrix, the sequence-optimized β-SB056-lin forms well-ordered β-strands once electro-neutrality is approached, and it aggregates into more extended β-sheets as the concentration of anionic lipids in the bilayer is raised. The enhanced antimicrobial activity of the analogue correlates with the formation of these extended β-sheets, which

  20. A Palladium-Binding Deltarhodopsin for Light-Activated Conversion of Protonic to Electronic Currents.

    PubMed

    Soto-Rodríguez, Jessica; Hemmatian, Zahra; Josberger, Erik E; Rolandi, Marco; Baneyx, François

    2016-08-01

    Fusion of a palladium-binding peptide to an archaeal rhodopsin promotes intimate integration of the lipid-embedded membrane protein with a palladium hydride protonic contact. Devices fabricated with the palladium-binding deltarhodopsin enable light-activated conversion of protonic currents to electronic currents with on/off responses complete in seconds and a nearly tenfold increase in electrical signal relative to those made with the wild-type protein. PMID:27185384

  1. Structure-Based Design of Inhibitors of Protein–Protein Interactions: Mimicking Peptide Binding Epitopes

    PubMed Central

    Pelay-Gimeno, Marta; Glas, Adrian; Koch, Oliver; Grossmann, Tom N

    2015-01-01

    Protein–protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A–D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices. PMID:26119925

  2. Biophysical characterization of G-protein coupled receptor-peptide ligand binding

    PubMed Central

    Langelaan, David N.; Ngweniform, Pascaline; Rainey, Jan K.

    2011-01-01

    G-protein coupled receptors (GPCRs) are ubiquitous membrane proteins allowing intracellular response to extracellular factors that range from photons of light to small molecules to proteins. Despite extensive exploitation of GRCRs as therapeutic targets, biophysical characterization of GPCR-ligand interactions remains challenging. In this minireview, we focus on techniques which have been successfully employed for structural and biophysical characterization of peptide ligands binding to their cognate GPCRs. The techniques reviewed include solution-state nuclear magnetic resonance (NMR) spectroscopy; solid-state NMR; X-ray diffraction; fluorescence spectroscopy and single molecule fluorescence methods; flow cytometry; surface plasmon resonance; isothermal titration calorimetry; and, atomic force microscopy. The goal herein is to provide a cohesive starting point to allow selection of techniques appropriate to the elucidation of a given GPCR-peptide interaction. PMID:21455262

  3. Conformational Changes of Calmodulin on Calcium and Peptide Binding Monitored by Film Bulk Acoustic Resonators

    PubMed Central

    Nirschl, Martin; Ottl, Johannes; Vörös, Janos

    2011-01-01

    Film bulk acoustic resonators (FBAR) are mass sensitive, label-free biosensors that allow monitoring of the interaction between biomolecules. In this paper we use the FBAR to measure the binding of calcium and the CaMKII peptide to calmodulin. Because the mass of the calcium is too small to be detected, the conformational change caused by the binding process is measured by monitoring the resonant frequency and the motional resistance of the FBAR. The resonant frequency is a measure for the amount of mass coupled to the sensor while the motional resistance is influenced by the viscoelastic properties of the adsorbent. The measured frequency shift during the calcium adsorptions was found to be strongly dependent on the surface concentration of the immobilized calmodulin, which indicates that the measured signal is significantly influenced by the amount of water inside the calmodulin layer. By plotting the measured motional resistance against the frequency shift, a mass adsorption can be distinguished from processes involving measurable conformational changes. With this method three serial processes were identified during the peptide binding. The results show that the FBAR is a promising technology for the label-free measurement of conformational changes. PMID:25585566

  4. Bioactivation of water-soluble peptidic quantum dot through biotin-streptavidin binding

    NASA Astrophysics Data System (ADS)

    Dif, A.; Touchet, S.; Nagarajan, S.; Baudy-Floc'h, M.; Dahan, M.; Piehler, J.; Marchi-Artzner, V.

    2008-02-01

    This paper describes the preparation of bioactive water-soluble fluorescent CdSe/ZnS semi-conductor quantum dots with a small hydrodynamic diameter of 10 nm. These quantum dots are functionalized with a biotinylated peptide that can be introduced at different ratios onto the surface of the quantum dots. Their ability to bind to streptavidin in solution is tested by using gel electrophoresis and fluorescence resonance energy transfer with a fluorescent labeled-streptavidin. The binding of these quantum dots to Agarose micrometric beads coated with streptavidin is also analyzed by fluorescent optical microscopy. A synthetic pegylated peptide is successfully used to prevent the non specific adsorption of streptavidin onto the quantum dots. A specific binding to the streptavidin results in the formation of a very stable streptavidin-quantum dot complex without any significant aggregation. The average number of streptavidin per quantum dot is found to be to 4 at the most. Such bioactivate quantum dots can be further conjugated to any biotinylated biomolecule and used in biological medium.

  5. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry.

    PubMed

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-15

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed. PMID:26363471

  6. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-01

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu2 + with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15 K in 20 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu2 + ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu2 + ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the C